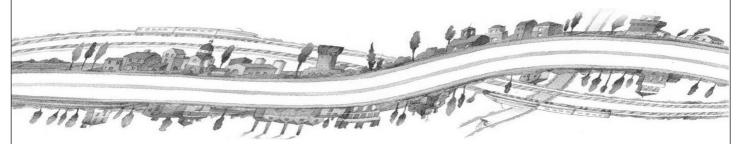


AUTOSTRADA REGIONALE CISPADANA DAL CASELLO DI REGGIOLO-ROLO SULLA A22 AL CASELLO DI FERRARA SUD SULLA A13

CODICE C.U.P. E81B08000060009


PROGETTO DEFINITIVO

VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 (ex 2RE) Cispadana tra S.P. n. 2 "Reggiolo - Gonzaga" e la ex S.S. n. 62 "della Cisa" PARTE GENERALE

IDRAULICA DI PIATTAFORMA

PARTE GENERALE

RELAZIONE IDRAULICA DI PIATTAFORMA

IL PROGETTISTA

Alpina S.p.A.

Dott. Ing. Marco Bonfanti
Ordine Ingegneri di Milano
n. A/23384

RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Emilio Salsi Albo Ing. Reggio-Emilia n° 945 IL CONCESSIONARIO

Autostrada Regionale Cispedena S.p.A. IL PRESIDENTE Grazieno Pattuzzi

G					
F					
Е					
D					
С					
В					
А	17.04.2012	EMISSIONE	ing. Maddalena	ing Bonfanti	ing Salsi
REV.	DATA	DESCRIZIONE	REDAZIONE	CONTROLLO	APPROVAZIONE

IDENTIFICAZIONE	ELABORATO
-----------------	------------------

NUM. FRUUR.						
5	0	4	9			

FASE P D

O LOTTO

D 0 3

CODICE OPERA WBS

TRATTO OPERA AMBITO

WW

TIPO ELABORATO

PROGRESSIVO 1

RFV.

Α

DATA: MAGGIO 2012

SCALA:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

INDICE

1.	PREME	SSA	2
2.	CRITER	RI PROGETTUALI ED ARTICOLAZIONE DELLO STUDIO	3
3.	RIFERI	MENTI NORMATIVI E TECNICI	5
4.	DESCR	IZIONE DEL SISTEMA DI DRENAGGIO	6
5.	INDIVID	UAZIONE DEI RECETTORI E DEI LIMITI DI PORTATA	8
6.	ANALIS	SI IDROLOGICHE	12
6.1		logia di ricostruzione delle curve di possibilità pluviometrica per intensità di pioggia da 1, 2.5, 3, 6, 12 e 24 ore	.12
6.2		logia di ricostruzione delle curve di possibilità pluviometrica per intensità di pioggia a 1 ora	.14
7.	DIMENS	SIONAMENTO DEL SISTEMA DI DRENAGGIO	16
7.1	l. Calcolo	del velo idrico sulla piattaforma stradale	.16
7.2	2. Calcolo	del coefficiente di deflusso	.17
7.3	3. Dimens	ionamento degli elementi di drenaggio	.18
7.4	I. Canalet	tta ad embrice	.19
		erifica degli elementi di margine	
8.	DIMENS	SIONAMENTO DEI FOSSI DI LAMINAZIONE	23
ALL	EGATO	I – CALCOLO DEL VELO IDRICO	26
ALL	EGATO	II – INTERASSI SCARICHI	27
ALL	EGATO	III – DIMENSIONAMENTO FOSSI DI GUARDIA	29

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

1. PREMESSA

La presente relazione ha lo scopo di definire e verificare il sistema di raccolta, convogliamento e scarico nel recapito finale delle acque di piattaforma della viabilità di Adduzione al Sistema Autostradale tra la SP 2 "Reggiolo-Gonzaga" e la ex S.S. 62 "della Cisa (2RE)", che si configura nell'ambito del progetto definitivo della nuova Autostrada Regionale Cispadana, infrastruttura stradale di categoria C1 - strada extraurbana secondaria, avente origine in corrispondenza del casello di Reggiolo-Rolo sulla A22 "Autostrada del Brennero" e termine al casello di Ferrara Sud sulla A13 "Autostrada Bologna-Padova.

La realizzazione della viabilità di adduzione comporta l'impermeabilizzazione delle superfici di piattaforma stradale con conseguenti problematiche connesse alla gestione delle acque meteoriche drenate, dovute all'incremento delle portate idrauliche consegnate ai canali recettori.

Lo studio, che ha carattere idrologico, idraulico ed ambientale, ha portato alla definizione del sistema di raccolta, smaltimento e trattamento delle acque di piattaforma e comprende:

- 1. reti interconnesse di raccolta, evacuazione delle acque di piattaforma;
- 2. presidi di sicurezza per il controllo degli sversamenti accidentali
- 3. fossi di laminazione per il controllo delle portate rilasciate.

Per il corretto dimensionamento di tali opere, è stato individuato il migliore assetto da assegnare al sistema di drenaggio tenendo conto:

- della sollecitazioni pluviometriche;
- dei vincoli normativi;
- della particolare situazione morfologica e idraulica delle aree interessate dall'infrastruttura stradale;
- dei vincoli quantitativi dei canali recettori

Il sistema di drenaggio delle acque di piattaforma è caratterizzato da un sistema di tipo "aperto", dunque non viene effettuato alcun trattamento delle acque di prima pioggia. Le acque vengono quindi interamente captate mediante embrici e convogliate ai fossi di guardia che recapitano ai canali ricettori.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

2. CRITERI PROGETTUALI ED ARTICOLAZIONE DELLO STUDIO

I criteri progettuali assunti derivanti dal Progetto Preliminare, sono i seguenti.

- progettazione della rete di evacuazione delle acque di piattaforma dimensionata per tempo di ritorno TR=20 anni;
- invarianza idraulica al recettore: si impongono come limiti allo scarico i valori udometrici prescritti dal Consorzio di Bonifica Terre dei Gonzaga in Destra Po.
- scarichi individuati nella rete idrica superficiale nei corsi d'acqua principali e secondari da parte del Consorzio di Bonifica; ogni scarico è dotato di manufatto di rilascio controllato;
- evitare di riversare scarichi accidentali nei corpi recettori finali
- invarianza di bacino afferente: non si può scaricare in un fosso o canale acque a lui non deputate originariamente
- garantire sempre e ovunque la continuità idraulica dei campi sia ai fini di scolo che irrigua a monte ed a valle della infrastruttura stradale in progetto

Lo studio della rete di laminazione, trattamento ed evacuazione, delle acque di piattaforma autostradale si è articolato attraverso le seguenti fasi.

- 1) Individuazione dei recettori e dei loro limiti di portata
- 2) Analisi idrologiche: preliminarmente sono state ricavate le curve di possibilità pluviometrica caratteristiche per ogni ambito territoriale da utilizzare nel dimensionamento degli afflussi che sollecitano la rete, quindi si è proceduto alla trasformazione Afflussi/Deflussi.
- 3) Schema idraulico di funzionamento delle reti di raccolta e smaltimento: comprende l'individuazione dei manufatti elementari del drenaggio di piattaforma ed il relativo dimensionamento in funzione dei parametri di progetto assunti; comprende anche la individuazione dei tratti omogenei e dei bacini ad essi afferenti
- 4) Verifiche idrauliche: comprende il calcolo dei fossi di guardia e l'impatto dello scarico delle acque di piattaforma con i limiti allo scarico imposti,
- 5) Dimensionamento dei manufatti di modulazione, evacuazione e laminazione

I metodi di calcolo e di analisi adottati sono sinteticamente riportati nei singoli paragrafi, mentre si rimanda alla bibliografia di settore per gli approfondimenti teorici ed applicativi.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

Nell'ambito del presente progetto non si ritiene necessario prevedere la separazione e il trattamento delle acque di prima pioggia prima della restituzione delle acque di pioggia all'ambiente naturale data la tipologia di viabilità in questione.

La predisposizione dei sistemi di raccolta delle acque di prima pioggia assolve, infatti, al duplice intento di intercettare gli eventuali sversamenti di sostanze non compatibili con la rete idrografica naturale in occasione di imprevisti inconvenienti di esercizio (ribaltamento mezzi, ecc.) e di raccogliere le inevitabili scorie prodotte da un intenso flusso veicolare. Per questa viabilità si ritiene che l'accumulo di inquinanti in tempo secco ed il loro lavaggio operato dalla pioggia sia trascurabile rispetto alle viabilità autostradali, interessate da intenso traffico veicolare e caratterizzate da superfici molto superiori.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

3. RIFERIMENTI NORMATIVI E TECNICI

Il progetto del sistema di smaltimento e trattamento delle acque di piattaforma è stato redatto conformemente alla "Normativa legislativa" ed alla "Normativa tecnica" vigenti sul territorio nazionale e regionale di interesse.

Gli aspetti inerenti la raccolta e smaltimento delle acque di piattaforma attraverso sistemi di fognatura canalizzata a cielo aperto od in sezioni chiuse sono stati affrontati con riferimento ai numerosi testi di norme tecniche UNI, EN, CEN, ecc... ai quali si rimanda e che per brevità non vengono riportati nel testo.

Gli aspetti inerenti il calcolo dei collettori fognari e degli impianti di depurazione sono stati sviluppati in conformità alle indicazioni tecniche riportate nel Regio Decreto n° 1265 del 27 luglio 1934 "Testo unico delle leggi sanitarie" nel Decreto Ministeriale LLPP del 12 dicembre 1985 "Normativa tecnica per le tubazioni" e nella Circolare Ministeriale LLPP n° 11633 del 7 gennaio 1974 "Istruzioni per la progettazione delle fognature e degli impianti di trattamento delle acque di rifiuto".

Gli aspetti inerenti la qualità delle acque, in particolare le problematiche connesse con la raccolta delle acque di prima pioggia sono trattate nell'ambito del Decreto Legislativo 152/99 e la successiva modifica costituita dal D.Lgs 258/00, in cui le acque di "prima pioggia" sono affrontate all'Articolo n. 39 ed esplicitati attraverso l'apposita Direttiva regionale. "Direttiva concernente indirizzi per la gestione delle acque di prima pioggia e di lavaggio da aree esterne" approvata con delibera della Giunta Regionale del 14 febbraio 2005, n. 286".

Si è inoltre fatto riferimento alle linee guida di progettazione emanate dalla Regione Emilia Romagna con Deliberazione della Giunta Regionale 18/12/2006 n° 1860 "Linee guida di indirizzo per la gestione acque meteoriche di dilavamento e acque di prima pioggia in attuazione della deliberazione G.R. n. 286 del 14/2/2005" e alla Legge Regionale n.4 del 6 marzo 2007.

Per un quadro esaustivo della normativa applicata si faccia riferimento all'elaborato:

PD_0_0000_0000_0_GE_KT_01 Elenco delle Normative di riferimento

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

4. DESCRIZIONE DEL SISTEMA DI DRENAGGIO

La sicurezza del traffico e le condizioni generali dell'ambiente urbano sono affidate sia alla corretta geometria del corpo stradale che al corretto dimensionamento delle opere di drenaggio, che devono provvedere alla raccolta, all'incanalamento ed all'allontanamento delle acque che vengono intercettate dal corpo stradale.

Il principale obiettivo nella progettazione delle opere di drenaggio è dunque quello di garantire l'assenza di ristagni d'acqua sulla superficie di usura della strada, che potrebbero seriamente pregiudicare la sicurezza degli automobilisti.

Il sistema di smaltimento delle acque meteoriche adottato, non prevede la componente di trattamento delle acque di prima pioggia. La giustificazione deriva da un flusso veicolare non sostenuto e da aree limitate.

Il dimensionamento delle opere è stato effettuato sulla base della portata massima attesa, determinata mediante l'utilizzo di un modello di trasformazione afflussi-deflussi che consente di valutare la portata di progetto a partire dalla conoscenza della curva di possibilità pluviometrica per un tempo di ritorno di 20 anni.

Il sistema di drenaggio in progetto è caratterizzato, per tutta la sua estensione dalla tipologia di viabilità in rilevato: a determinati intervalli l'elemento marginale di trattenuta dell'afflusso di dilavamento è interrotto da manufatti di invito in calcestruzzo che si raccordano ad una canaletta ad embrici. Le acque vengono convogliate ai fossi di guardia posti al piede del rilevato.

I fossi di guardia verranno realizzati in terra, sia per contenere i costi di realizzazione, sia per ottenere un migliore inserimento ambientale; in corrispondenza degli scarichi degli embrici è previsto un rivestimento in cls sul fondo e sulle sponde del fosso. Solo in corrispondenza degli acquiferi critici verrà prevista la posa di un materassino bentonitico ed uno strato vegetale di 20cm; nel caso di fossi pensili le arginature saranno costituite da materiale prevalentemente argilloso. I fossi avranno larghezza al fondo e altezza minima pari a 0.5 m, con pendenza delle sponde pari a 2/3; poiché sono intagliati sul piano campagna, seguendo le quote esistenti, le profondità varieranno in funzione del raccordo con il recettore.

Si ritiene necessaria l'impermeabilizzazione dei fossi qualora l'acquifero profondo non sia confinato al tetto da almeno uno spessore di 4÷5 m di argille. Tale spessore è stato così definito per tener conto dell'approfondimento dei fenomeni fessurativi per essiccamento nei terreni argillosi, con conseguente aumento del grado di permeabilità secondario dei terreni superficiali. Si verifica questa situazione lungo l'intero intervento viabilistico.

I fossi di laminazione scaricano le acque nella rete idrica superficiale esistente ogni qual volta viene intersecato un corso d'acqua o un fosso di scolo. Lo scarico avviene attraverso un manufatto di regolazione

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

in cls costituito da una soglia sfiorante all'interno della quale viene praticata una foronomia adeguata alla regolazione richiesta e una paratoia per la trattenuta degli sversamenti accidentali. In particolare, nel caso di fossi non arginati, la quota di scarico dovrà essere minimo pari a - 20 cm dal piano campagna.

AUTOSTRADA REGIONALE CISPADANA

REGIONE EMILIA ROMAGNA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

5. INDIVIDUAZIONE DEI RECETTORI E DEI LIMITI DI PORTATA

Il reticolo idrografico interferito è costituito da una fitta rete di canali artificiali consortili e privati. La scelta dei corsi d'acqua riceventi le acque di piattaforma, pur accettando l'ipotesi dell'invarianza idraulica, è stata suffragata da una serie di considerazioni che hanno poi trovato conforto da uno stretto rapporto con il Consorzio di Bonifica.

Di seguito si riporta la tabella con l'indicazione dei limiti di scarico consentiti, relativamente a ogni interferenza idraulica. Per maggiori dettagli si rimanda alla relazione idraulica di piattaforma dell'asse autostradale.

COD	NOME RILIEVO	GESTORE	RANGO	NECESSITA' DI SCARICARE ACQUE DI PIATTAFORMA	LIMITI ALLO SCARICO I/(s*ha)
D03DTC03	FOSSO 11	privato	minore	no	solo in caso di assenza di altri recapiti in cui è consentito scaricare si consente un limite allo scarico di 4 l/s*ha.
D03DWS04	FOSSO 4	privato	minore	sì	solo in caso di assenza di altri recapiti in cui è consentito scaricare si consente un limite allo scarico di 4 l/s*ha.
D03DTC09	FOSSO 5	privato	minore	sì	solo in caso di assenza di altri recapiti in cui è consentito scaricare si consente un limite allo scarico di 4 l/s*ha.
D03DTC10	FOSSO 86	privato	minore	no	solo in caso di assenza di altri recapiti in cui è consentito scaricare si consente un limite allo scarico di 4 l/s*ha.
D03DTS11	CANALE BUCA BERTONA	CONSORZIO DI BONIFICA TERRE DEI GONZAGA IN DESTRA PO	secondario	sì	8.00
D03DTC12	FOSSO 87	privato	minore	sì	4.00
D03DTS14	CANALE LAZZARELLO	CONSORZIO DI BONIFICA TERRE DEI	secondario	sì	8.00

AUTOSTRADA REGIONALE CISPADANA

REGIONE EMILIA ROMAGNA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

		GONZAGA IN			
		DESTRA PO			
D03DTC15	FOSSO 6	privato	minore	no	solo in caso di assenza di altri recapiti in cui è consentito scaricare si consente un limite allo scarico di 4 l/s*ha.
D03DWS17	CANALE CORTE STORCHIA	privato	secondario	sì	solo in caso di assenza di altri recapiti in cui è consentito scaricare si consente un limite allo scarico di 4 l/s*ha
D03DTC19	FOSSO 7	privato	secondario	no	solo in caso di assenza di altri recapiti in cui è consentito scaricare si consente un limite allo scarico di 4 l/s*ha.
D03DTC19	FOSSO 7	privato	secondario	sì	solo in caso di assenza di altri recapiti in cui è consentito scaricare si consente un limite allo scarico di 4 l/s*ha.
D03DTS21	CANALE IN LOCALITA' NEGRE	privato	secondario	sì	solo in caso di assenza di altri recapiti in cui è consentito scaricare si consente un limite allo scarico di 4 l/s*ha.
D03DTC23	FOSSO STRADA MARTIRI FOSSE ARDEATINE IN SX	privato	minore	sì	solo in caso di assenza di altri recapiti in cui è consentito scaricare si consente un limite allo scarico di 4 l/s*ha
D03DTC26	FOSSO 8	privato	minore	sì	solo in caso di assenza di altri recapiti in cui è consentito scaricare si consente un limite allo scarico di 4 l/s*ha
D03DTS31	CANALE VIA FERMI	privato	minore	sì	solo in caso di assenza di altri recapiti in cui è consentito scaricare si consente un limite allo scarico di 4 l/s*ha
D03DWS30	FOSSO 9	privato	minore	no	solo in caso di assenza di altri recapiti in cui è consentito scaricare si consente un limite allo scarico di 4 l/s*ha.
D03DTS33	CAVO BOVINO	CONSORZIO DI BONIFICA TERRE DEI GONZAGA IN DESTRA PO	secondario	sì	20.00
D03DTC34	FOSSO 100	privato	minore	sì	solo in caso di assenza di altri recapiti in cui è consentito scaricare si consente un limite allo scarico di 4 l/s*ha

AUTOSTRADA REGIONALE CISPADANA

REGIONE EMILIA ROMAGNA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

D03DTC35	FOSSO 10	privato	minore	sì	solo in caso di assenza di altri recapiti in cui è consentito scaricare si consente un limite allo scarico di 4 l/s*ha
D03DTC36	DIVERSIVO BOVINO	CONSORZIO DI BONIFICA TERRE DEI GONZAGA IN DESTRA PO	secondario	no	0.00
D03DTS37	CANALE MARGONARA	CONSORZIO DI BONIFICA TERRE DEI GONZAGA IN DESTRA PO	secondario	sì	8.00
D03DTC38	FOSSO DI STRADA MARGONARA	privato	minore	sì	solo in caso di assenza di altri recapiti in cui è consentito scaricare si consente un limite allo scarico di 4 l/s*ha.
D03DTC39	FOSSO 12	privato	minore	sì	solo in caso di assenza di altri recapiti in cui è consentito scaricare si consente un limite allo scarico di 4 l/s*ha.
D03DTS42	CANALE CAMPOLUNGO	CONSORZIO DI BONIFICA TERRE DEI GONZAGA IN DESTRA PO	secondario	sì	8.00
D03DP004	COLLETTORE PRINCIPALE	CONSORZIO DI BONIFICA TERRE DEI GONZAGA IN DESTRA PO	principale	sì	15.00
D03DTC45	CANALE DI GRONDA DI REGGIOLO	CONSORZIO DI BONIFICA TERRE DEI GONZAGA IN DESTRA PO	secondario	no	20.00
D03DTS46	CANALE DI GRONDA DI REGGIOLO	CONSORZIO DI BONIFICA TERRE DEI GONZAGA IN DESTRA PO	secondario	no	20.00

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

D03DTC47	FOSSO 16	privato	minore	sì	solo in caso di assenza di altri recapiti in cui è consentito scaricare si consente un limite allo scarico di 4 l/s*ha.
D03DWS52 D03DWS54	FOSSO 17	privato	minore	sì	solo in caso di assenza di altri recapiti in cui è consentito scaricare si consente un limite allo scarico di 4 l/s*ha.

TABELLA 6.1-1- CORPI IDRICI RICETTORI E LIMITI ALLO SCARICO PER IL TRACCIATO AUTOSTRADALE

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

6. ANALISI IDROLOGICHE

Lo studio idrologico ha previsto l'indagine sul regime delle piogge di breve durata e forte intensità per un Tempo di Ritorno di 20 anni, in tutti i pluviometri situati nelle vicinanze della viabilità, finalizzata alla definizione delle curve di possibilità pluviometrica e dei relativi ietogrammi di progetto. Lo studio è stato suddiviso in due parti ciascuna influenzata dalla durata di pioggia:

- verifica dei manufatti di raccolta e smaltimento sollecitata da eventi di pioggia di durata >1 ora.
 Rientrano tra questi i sistemi di raccolta tramite fosso di guardia che come già anticipato svolge anche la funzione laminativa
 - 2) verifica dei manufatti di raccolta e smaltimento sollecitata da eventi di pioggia di durata <1 ora. Rientrano tra questi i manufatti di captazione delle acque meteoriche (embrici, caditoie, cunette, bocchettoni..), ovvero quelli che necessariamente debbono scaricare prima possibile le acque defluite.

6.1. Metodologia di ricostruzione delle curve di possibilità pluviometrica per intensità di pioggia da 1, 1.5, 2, 2.5, 3, 6, 12 e 24 ore

Per la determinazione della relazione fra altezza (h) e durata (t) dell'evento di pioggia in funzione del tempo di ritorno (TR), si fa riferimento alla legge probabilistica che meglio si adatta al campione di dati utilizzato.

Nel caso delle stazioni pluviometriche in esame, la determinazione della relazione fra altezza (h) e durata (t) dell'evento di pioggia, in funzione del Tempo di Ritorno (TR), è stata ottenuta tramite la legge probabilistica di Gumbel, stimandone i parametri a(T) ed n(T), al fine di ottenere la curva di possibilità pluviometrica nella forma:

$$h = a(T)t^{n(T)} ag{6.1}$$

L'elaborazione statistica ha portato alla definizione delle curve di possibilità climatica, dove l'altezza di pioggia espressa in millimetri è rappresentata dall'espressione:

$$h = n - \frac{\ln \left(-\ln \left(1 - \frac{1}{T_R}\right)\right)}{a}$$

6.2

dove:

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

TR = tempo di ritorno

$$n = Y - \overline{Y}_N \cdot S_V / S_N$$

$$a = S_N / S_Y$$

Y_N = media della variabile ridotta

S_N = deviazione standard della variabile ridotta

Y = media aritmetica delle massime altezze di pioggia osservate

Sy = scarto quadratico medio delle massime altezze di pioggia osservate.

Il valore assunto dai parametri Sx e Sn è funzione del numero di osservazioni a disposizione; tali valori sono riportati nella tabella sottostante.

					Media ri	idotta VN	201			
N	0	1	2	3	4	5	6	7	8	9
10	0,4952	0,4996	0,5035	0,5070	0,5100	0,5128	0,5154	0.5177	0,5198	0,5217
20	0,5236	0,5252	0,5268	0,5282	0,5296	0,5309	0,5321	0,5332	0,5343	0,5353
30	0,5362	0,5371	0,5380	0,5388	0,5396	0,5403	0,5411	0.5417	0,5424	0,5430
40	0,5436	0,5442	0,5448	0,5453	0,5458	0,5463	0,5468	0,5472	0,5477	0,5481
50	0,5485	0,5489	0,5493	0,5497	0.5501	0,5504	0,5508	0,5511	0.5515	0,5518
60	0,5521	0.5524	0.5527	0,5530	0,5532	0.5535	0,5538	0.5540	0,5543	0,5545
70	0,5548	0,5550	0,5552	0,5555	0,5557	0,5559	0,5561	0,5563	0,5565	0,556
80	0,5569	0,5571	0,5573	0,5574	0,5576	0,5578	0,5580	0.5581	0,5583	0.5584
90	0,5586	0,5588	0,5589	0,5591	0,5592	0,5593	0,5595	0,5596	0,5598	0.5599
100	0,5500	0,5602	0,5603	0,5604	0,5605	0,5606	0,5608	0,5609	0,5610	0,561
			1	Devia	zione star	ndard rid	otta S _N	D(
N	0	1	2	3	4	5	6	7	8	9
10	1,0010	1,0148	1,0270	1,0378	1,0476	1,0564	1,0644	1,0717	1,0785	1,084
20	1,0904	1,0958	1,1008	1,1055	1,1098	1,1140	1,1178	1,1215	1,1250	1,1283
30	1,1314	1,1344	1,1372	1,1399	1,1425	1,1449	1,1473	1,1496	1,1518	1,1538
40	1,1559	1,1578	1,1597	1,1614	1,1632	1,1649	1,1665	1,1680	1,1696	1,1710
50	1,1724	1,1738	1,1752	1,1765	1,1777	1,1789	1,1801	1.1813	1,1824	1,1835
60	1,1846	1,1856	1,1866	1,1876	1,1886	1,1895	1,1904	1.1913	1,1922	1,193
70	1,1939	1,1947	1,1955	1,1963	1.1971	1,1978	1,1986	1,1993	1,2000	1,200
80	1,2014	1,2020	1,2027	1,2033	1,2039	1,2045	1,2052	1,2057	1,2063	1,2069
90	1,2075	1,2080	1,2086	1,2091	1,2096	1,2101	1,2106	1,2111	1,2116	1,212
100	1,2126	1,2130	1,2135	1,2139	1,2144	1,2148	1,2153	1,2157	1,2161	1,2165

TABELLA 6.1-1- VALORI DEI PARAMETRI (YN) E SN SECONDO GUMBELL

Per stimare la CPP rappresentativa di ogni singolo tratto stradale di sviluppo medio di 4 km si è proceduto nel seguente modo: si sono prese in esame le 3 stazioni pluviometriche prossime all'infrastruttura stradale, associando ad ognuna di esse un peso, calcolato con il metodo dell'inverso della distanza, si ricavano le intensità di pioggia per assegnato TR all'interno di ogni singolo tratto.

Il metodo dell'inverso delle distanze si basa sull'ipotesi che in ciascun punto del bacino la precipitazione possa essere stimata sulla base di tutte le precipitazioni misurate, attribuendo ad esse un peso pari Codice documento: 5049_PD_0_D03_DWP03_0_WW_RI_01_A Pagina 13 di 30

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

all'inverso della distanza tra il punto e la stazione pluviometrica. Frequentemente si fa riferimento alla distanza al quadrato.

Indicato con k il generico elemento della griglia, essendo k = 1,... K, il peso w_{ki} del pluviometro i nella maglia k risulta:

$$Wki = \frac{\frac{1}{d_i^2}}{\sum_{j=1,M_{d_i^2}}}.$$
 6.3

dove di indica la distanza tra l'elemento della griglia ed il pluviometro i ed M è il numero complessivo di pluviometri considerati.

Si riportano di seguito, per il TR20 anni le tabelle riassuntive dei valori dei parametri delle CPP per i diversi tratti della viabilità in questione.

Km 2			
а	41.073		
n	0.266		
Km 4			
а	41.313		
n	0.271		

TABELLA 6.1-2 - PARAMETRI DELLE CPP PER DURATE DI PIOGGIA SUPERIORI ALL'ORA

6.2. Metodologia di ricostruzione delle curve di possibilità pluviometrica per intensità di pioggia inferiori a 1 ora

Per la verifica dei sistemi di raccolta, per i quali la risposta al deflusso è immediata, si deve necessariamente calcolare la sollecitazione più gravosa durante eventi di pioggia intensi e di durata inferiore ad 1 ora.

Il calcolo dei parametri delle CPP per durate inferiori all'ora è stato effettuato mediante la formula di Bell a partire dalle CPP per durate superiori all'ora.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

$$\frac{h_{d,T}}{h_{6,0,T}} = 0.54d^{0.25} - 0.5$$

Con essa è possibile calcolare la pioggia di durata d<60 minuti e tempo di ritorno T, in funzione del valore $h_{60,T}$ fornito dalla CPP relativa allo stesso periodo di ritorno.

I risultati ottenuti sono riportati nella sottostante tabella.

Km 2			
а	42.841		
n	0.469		
Km 4			
а	43.092		
n	0.469		

TABELLA 6.2-1 - PARAMETRI DELLE CPP PER DURATE DI PIOGGIA INFERIORI ALL'ORA

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

7. DIMENSIONAMENTO DEL SISTEMA DI DRENAGGIO

7.1. Calcolo del velo idrico sulla piattaforma stradale

Il processo di deflusso dalla sede stradale agli elementi marginali è da considerare con attenzione, dato i problemi che il velo liquido può porre per il traffico veicolare.

Le precipitazioni che si abbattono sulla sede stradale, soprattutto se brevi ed intense, possono produrre un deflusso superficiale di non trascurabile entità, il quale se non controllato con adatte disposizioni, può causare inconvenienti di rilievo.

Il velo idrico sulla sede stradale deve, infatti, essere contenuto entro prefissati valori (esso non dovrebbe superare i 6 mm [Rooseboom ed altri, 1986]), per non condizionare l'aderenza degli pneumatici, per questo motivo è necessario assegnare un'opportuna pendenza trasversale alla sede stradale.

L'altezza del velo liquido dipende, oltre che dalla pendenza trasversale, dall'intensità di precipitazione, dal percorso che compie l'acqua per raggiungere il bordo della carreggiata e dalla larghezza della strada e dunque dalla circostanza che il tratto stradale sia in rettifilo (in genere scola metà carreggiata per lato) o in curva (scola solo da una parte).

Il valore del velo idrico massimo h_{max} [mm], viene determinato attraverso un'espressione derivata da alcune esperienze condotte in Gran Bretagna dal Road Research Laboratory nella seguente forma:

$$h_{\max} = 0.0474 \cdot \sqrt{L_{eff} \cdot p \cdot i^{-0.2}}$$
 7.1

Dove:

L_{eff}: lunghezza del percorso dell'acqua prima di raggiungere le canalizzazioni a lato della carreggiata
 [m], può essere calcolata sulla base della seguente formula:

$$L_{eff} = L_c \left[1 + \left(\frac{i_l}{i_t} \right)^2 \right]^{0.5}$$
 7.2

- i: pendenza della strada lungo la linea di corrente ricavata come risultante delle pendenze trasversali e longitudinali i_t e i_l :

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

$$i = \left(i_t^2 + i_t^2\right)^{0.5}$$
 7.3

- L_c: larghezza della carreggiata [m];
- p: intensità di pioggia [mm/h];

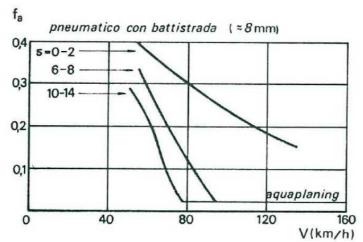


FIGURA 7.1-1 - RAPPORTO VELO IDRICO/ADERENZA

L'ALLEGATO I – CALCOLO DEL VELO IDRICO, riporta i calcoli per la determinazione di h_{max}, da cui si evince come i valori massimi raggiunti, assumono valori ovunque inferiori al valore limite assunto pari a 6 mm.

7.2. Calcolo del coefficiente di deflusso

Nei modelli di trasformazione dell'afflusso meteorico in deflusso, la precipitazione va depurata della componente destinata ad infiltrarsi nel terreno. La valutazione della portata infiltrata può essere effettuata attraverso il coefficiente di afflusso φ che rappresenta il rapporto tra il volume della pioggia netta ed il volume della pioggia totale. Tale coefficiente dipende da diversi fattori, alcuni dei quali variabili nel tempo. Nel presente progetto, per semplicità, il coefficiente φ verrà considerato costante per tutta la durata della pioggia.

Di seguito, vengono riportati i coefficienti di deflusso in funzione della superficie scolante:

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

TIPO DI PAVIMENTAZIONE	COEFFICIENTE DI DEFLUSSO
Pavimentazione stradale	0.9
Scarpata erbosa	0.50
Superfici a verde piane	0.30

TABELLA 7.2-1 - COEFFICIENTI DI DEFLUSSO.

Il valore relativamente elevato assunto per le superfici erbose è giustificato dalla notevole pendenza delle scarpate.

Detto ϕ_i il coefficiente di deflusso relativo alla superficie S_i il valore medio del coefficiente, relativo ad aree caratterizzate da differenti valori, si ottiene dalla seguente media ponderata:

$$\varphi = \frac{\sum_{i} (S_i \cdot \varphi_i)}{\sum_{i} (S_i)}$$
 7.4

I bacini contribuenti considerati sono quelli corrispondenti alle superfici di competenza dei differenti recapiti finali.

7.3. Dimensionamento degli elementi di drenaggio

Nei paragrafi successivi si riportano i criteri generali di dimensionamento di tutti gli elementi che costituiscono il sistema di drenaggio delle acque di piattaforma.

Il sistema è del tipo aperto, risulta perciò costituito da un sistema di canalette ad embrici che raccolgono le acque di piattaforma e che le immettono nei fossi disperdenti.

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

7.4. Canaletta ad embrice

L'allontanamento delle acque dalla sede stradale al fosso di laminazione al piede del rilevato è affidato alle canalette ad embrice disposte ad interassi regolari lungo la scarpata.

Il funzionamento idraulico di un embrice può essere assimilato a quello di una soglia sfiorante; la portata sfiorata Q [m³/s] può essere definita come:

$$Q = C_a L h \sqrt{2gh}$$
 7.5

nella quale:

- C_a = 0,385 è il coefficiente di deflusso;
- L [m] rappresenta la larghezza dell'embrice
- h [m] rappresenta l'altezza del velo liquido all'imbocco dell'embrice.

Nell'ALLEGATO II – INTERASSI SCARICHI, sono state riportate le tabelle di dimensionamento degli embrici. In particolare è stata calcolata la portata sfiorata e, dal rapporto tra quest'ultima e la portata drenata determinata con la formula razionale per unità di lunghezza, il passo minimo degli embrici al variare del tracciato.

7.4.1. <u>Dimensionamento dei bocchettoni</u>

La raccolta delle acque piovane dai viadotti e dai ponti avviene mediante bocchettoni, il cui dimensionamento viene condotto seguendo la formulazione della luce sotto battente:

$$Q=Cq\cdot A\cdot \sqrt{2gh}$$

Con Cq=0.6, coefficiente di deflusso, h carico sull'imbocco e A sezione libera al deflusso.

La portata che il discendente è in grado di smaltire deve essere maggiore o uguale a quella in arrivo, considerando la posizione degli elementi di scarico e la larghezza della sede stradale.

Lungo l'intervento in esame verranno posizionati bocchettoni solamente lungo le spalle del Ponte sul Collettore principale, a monte del giunto di dilazione, in modo da evitare l'infiltrazione meteorica.

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

La portata captata dal bocchettone risulta pari a 21 l/s, molto maggiore rispetto alla portata in arrivo a ciascun bocchettone, pari a 3 l/s, pertanto la verifica risulta essere soddisfatta.

7.4.2. Verifica degli elementi di margine

La conformazione della piattaforma stradale consente il deflusso delle acque meteoriche verso il margine della carreggiata stradale, presso il ciglio si origina quindi un'area di deflusso a forma triangolare che interessa la banchina stradale. Le condizioni di deflusso idrico lungo il margine stradale sono determinate dalle pendenze longitudinali e trasversali del corpo stradale, tali parametri individuano quindi la capacità di deflusso che può ottenersi lungo il ciglio. La capacità idraulica lungo il margine stradale è limitata dalla larghezza massima ammissibile per il velo idrico in piattaforma che evidentemente non deve interessare in alcun modo la parte carrabile della piattaforma stradale. La verifica degli elementi di margine consiste quindi nel rapportare la capacità idraulica del margine stradale per i diversi sottotratti stradali, distinti sulla base dei valori di pendenza longitudinale e alla larghezza di piattaforma drenata, all'apporto meteorico specifico, ovvero alla stima della portata meteorica afferente per metro lineare di piattaforma stradale; dagli esiti di tale raffronto si ricava l'interasse massimo al quale devono porsi gli elementi di raccolta delle acque meteoriche (embrici, caditoie) per evitare il rischio che il deflusso idrico possa interessare anche il traffico veicolare.

Il calcolo del deflusso idrico in banchina viene eseguito considerando una sezione di deflusso triangolare, delimitata dal cordolo laterale e dal piano stradale inclinato, Figura 7.4–1.

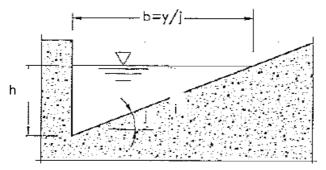


FIGURA 7.4-1 - SEZIONE TIPICA DI UNA BANCHINA LATERALE.

Il moto che si instaura viene assimilato al moto uniforme, con riferimento alla portata Q $[m^3/s]$ che compete alla sezione terminale del tratto compreso tra due scarichi. Indicando con A $[m^2]$ e R [m] rispettivamente area e raggio idraulica della sezione, con i la pendenza longitudinale e con K_s $[m^{1/3}/s]$ il coefficiente di scabrezza secondo Gauckler - Strickler si ha la ben nota formula di Chézy:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

$$Q = AK_s R^{\frac{2}{3}} i^{\frac{1}{2}}$$
 7.6

Considerando la geometria della sede stradale e ipotizzando un allagamento della sede stradale che interessi l'intera banchina, si ottiene la portata convogliabile per ogni tratto stradale.

La portata drenata viene determinata tramite il metodo razionale. Considerando i parametri delle CPP forniti dall'analisi idrologica, un coefficiente di laminazione ϵ pari a 1 e un coefficiente di efflusso ϕ pari a 0.9 (superficie praticamente impermeabile), in funzione del tempo di corrivazione t_c [h], si ottengono l'intensità di precipitazione massima prevista i [mm/h], il coefficiente udometrico u [l/s/ha] e la portata drenata dalla piattaforma stradale $Q_{drenata}$ [l/s]. La $Q_{drenata}$ = $u \cdot A$

7.9 rappresenta la formula razionale.

$$i = a \cdot t_c^{n-1} \tag{7.7}$$

$$u = 2.78 \cdot \boldsymbol{\varphi} \cdot \boldsymbol{\varepsilon} \cdot i$$
 7.8

$$Q_{drenata} = u \cdot A \tag{7.9}$$

Dividendo il valore della massima portata transitabile in banchina per la portata drenata, si ottiene l'interasse tra gli scarichi.

Tale interasse deve essere tale per cui gli elementi di raccolta (embrici e caditoie) siano in grado di smaltire la portata in arrivo, come spiegato nei precedenti paragrafi.

In Tabella 7.4–1 e Tabella 7.4–2 sono riassunti i risultati ottenuti, riportati nell' ALLEGATO II – INTERASSI SCARICHI.

TRATTO STRADALE	ELEMENTO DI RACCOLTA ACQUE DI PIATTAFORMA	INTERASSE [m]
Pk da 0+000 a 0+360	Embrice	10
Pk da 0+360 a 0+650	Embrice	20
Pk da 0+650 a 3+400	Embrice	10
Pk da 3+400 a 7+455	Embrice	25

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

TABELLA 7.4-1 - INTERASSE E TIPOLOGIA ELEMENTI DI RACCOLTA ACQUE DI PIATTAFORMA LUNGO L'ASSE PRINCIPALE

INTERSEZIONE	ELEMENTO DI RACCOLTA ACQUE DI PIATTAFORMA	INTERASSE [m]
R1- assi A e C	Embrice	10
R2- assi A e C	Embrice	10
R3- assi A e C	Embrice	25
R4- asse A	Embrice	25
R4- assi B e C	Embrice	10
T1	Embrice	10
T2 1_3	Embrice	15
T2 4_7	Embrice	20
T3 1_3	Embrice	35
T3 4_6	Embrice	35

TABELLA 7.4-2 - INTERASSE E TIPOLOGIA ELEMENTI DI RACCOLTA ACQUE DI PIATTAFORMA LUNGO GLI ASSI SECONDARI

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

8. DIMENSIONAMENTO DEI FOSSI DI LAMINAZIONE

I fossi di guardia al piede del rilevato sono impostati in modo da garantire la laminazione delle acque di piattaforma prima del collegamento ai canali recettori. La necessità di contenere le portate scaricate nel reticolo idrico superficiale e nel contempo l'esigenza di limitare l'impatto sul territorio della nuova opera in termini di aumento delle superfici impermeabili determina il dimensionamento dei fossi di guardia, ovvero le dimensioni dei fossi sono ricavate in modo da garantire lo scarico controllato delle portate idrauliche assumendo come limite di scarico i valori richiesti dal Consorzio di Bonifica Terre di Gonzaga:

- 15 20 l/s*ha per i canali consorziali di grandi dimensioni
- 8 l/s*ha per il reticolo consorziale minore
- 4 l/s*ha per i fossi privati

I limiti di scarico consentiti in ogni singolo corso d'acqua interferito sono riportati in Tabella 6.1-1.

Le dimensioni del fosso di guardia sono calcolate rispetto al massimo volume idrico che è necessario invasare. Il valore della volumetria necessaria viene determinata mediante l'applicazione dell'equazione di continuità applicata ad ogni istante prescelto durante l'intero periodo di pioggia:

$$V_{2} - V_{1} = \frac{(qe_{1} - qu_{1}) + (qe_{2} - qu_{2})}{2} \cdot (t_{2} - t_{1})$$
8.1

dove i pedici 1 e 2 identificano istanti temporali distinti e consecutivi, la portata entrante Qe è pari al valore dell'idrogramma di progetto nell'istante temporale considerato, la portata uscente Qu è invece pari alla portata scaricata. Variando la durata di pioggia e quindi variando l'idrogramma in ingresso si ottiene la durata di pioggia critica che massimizza il volume invasato che quindi rappresenta il parametro dimensionante della sezione di riferimento del fosso di guardia.

L'effettiva limitazione delle portate scaricate nel reticolo superficiale si ottiene prevedendo in corrispondenza della sezione terminale del fosso un opportuno setto ove è realizzato presso il fondo una luce di scarico. Il dimensionamento dell'orifizio si basa sull'applicazione dell'equazione dell'efflusso sotto battente

$$Q = \mu \cdot A \cdot \sqrt{2 \cdot g \cdot h}$$

in cui:

 Q è la portata scaricata dalla luce il cui valore è fissato sulla base del limite di scarico ammissibile per lo specifico fosso in ragione della relativa superficie afferente

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

- μè il coefficiente d'efflusso (pari a 0.6)
- A è la luce di efflusso (incognita da determinare)
- h è il carico sulla luce, in particolare riguardo a tale dato si deve considerare che indipendentemente dalla tipologia dei fossi esso può assumere il valore massimo tale per cui si abbia un franco idraulico di sicurezza di 5-10 cm.

Nel caso di fossi non arginati verrà considerato anche l'apporto delle acque meteoriche defluenti dai campi circostanti, per una fascia di terreno di 5 metri, considerando un coefficiente di deflusso pari a ϕ = 0.30.

Oltre ai vincoli rappresentati dai limiti allo scarico sopra menzionati, occorre dimensionare i fossi di scolo delle acque di piattaforma autostradale garantendo sempre un volume di laminazione almeno pari a 500 m³/ha di superficie impermeabilizzata.

La continuità dei fossi di guardia in corrispondenza degli accessi ai fondi agricoli sarà garantita mediante tombini φ1000, il cui dimensionamento è stato effettuato garantendo la volumetria dei fossi necessaria alla laminazione e un grado di riempimento dei tombini stessi inferiore al 75%.

Nell' ALLEGATO III – DIMENSIONAMENTO FOSSI DI GUARDIA si riportano i dati di calcolo e le dimensioni di progetto dei fossi di guardia.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE

D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

ALLEGATO I - CALCOLO DEL VELO IDRICO

				Asse A														
Progressive			0+000-0+200	0+200-0+350	0+350-0+650	0+650-1+200	1+200-1+464	1+464-1+900	1+900-2+750	2+819-3+400	3+400-3+500	3+500-3+950	3+950-4+800	4+800-5+350	5+350-5+750	5+750-6+550	6+550-7+100	7+100-7+455
Larghezza falda stradale	WF	m	5.25	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	5.25	5.25	5.25	5.25	5.25	5.25	5.25
Pendenza longitudinale	SL	m/m	0.0005	0.0005	0.007	0.0005	0.0012	0.0012	0.0004	0.002	0.0013	0.0013	0.002	0.002	0.005	0.002	0.006	0.002
Pendenza trasversale	ST	m/m	0.025	0.025	0.025	0.0265	0.0265	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
Calcolo del percorso del ruscellamento	Leff	m	5.3	10.5	10.9	10.5	10.5	10.5	10.5	10.5	10.5	5.3	5.3	5.3	5.4	5.3	5.4	5.3
Calcolo della pendenza fittizzia	i	m/m	0.025	0.025	0.026	0.027	0.027	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.026	0.025
Altezza velo liquido in assenza afalto drenant	hmax	mm	2.9	4.1	4.1	4.0	4.0	4.1	4.1	4.1	4.1	2.9	2.9	2.9	2.9	2.9	2.9	2.9

			R	1	R	2	R	13		R4		T1	Т	2	Т	3
Progressive			Α	С	Α	С	Α	С	Α	В	С		1_3	4_7	1_3	4_6
Larghezza falda stradale	WF	m	6.5	6.5	6.5	6.5	4.25	4.25	4.9	8.5	9.15	4.25	2	2	4.25	4.25
Pendenza longitudinale	SL	m/m	0.04	0.034	0.016	0.0225	0.0113	0.02	0.0108	0.0018	0.015	0.028	0.022	0.034	0.04	0.04
Pendenza trasversale	ST	m/m	0.025	0.03	0.03	0.0294	0.025	0.025	0.025	0.03	0.005	0.025	0.025	0.025	0.025	0.025
Calcolo del percorso del ruscellamento	Leff	m	12.26417547	9.824346176	7.366666667	8.185080863	4.663983383	5.442655602	5.337681354	8.515286255	28.93484059	6.381230289	2.664132129	3.376151655	8.018883962	8.018883962
Calcolo della pendenza fittizzia	į.	m/m	0.047169906	0.045343136	0.034	0.03702175	0.027435196	0.032015621	0.027233068	0.030053951	0.015811388	0.037536649	0.033301652	0.042201896	0.047169906	0.047169906
Altezza velo liquido in assenza afalto drenante	hmax	mm	3.882267572	3.5022634	3.212469508	3.329042853	2.668186428	2.794681555	2.858619129	3.540125007	7.420203811	2.931300876	1.939920862	2.082782258	3.139230831	3.139230831

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

9. ALLEGATO II - INTERASSI SCARICHI

Pk inizio tratto pk- fine tratto	Г		0+000-0+200	0+200-0+350	0+350-0+650	0+650-1+200	1+200-1+464	1+464-1+900	1+900-2+750	2+819-3+400	3+400-3+500	3+950-4+800	4+800-5+350	5+350-5+750	5+750-6+550	6+550-7+100	7+100-7+455
Sezioni			1_6	6_9	9_15	15_34	34_40	40_49	49_75	78_91	95_105	105_122	122_136	136_144	144_160	160_174	174_188
Larghezza piattaforma drenata	W	m	5.25	10.5	10.5	10.5	10.5	10.5	10.5	10.5	5.25	5.25	5.25	5.25	5.25	5.25	5.25
Pendenza stradale trasversale	i	%	0.025	0.025	0.025	0.0265	0.0265	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
Angolo sulla verticale	q	gradi	88.57	88.57	88.57	88.48	88.48	88.57	88.57	88.57	7 88.57	88.57	88.57	88.57	88.57	88.57	88.57
Larghezza banchina allagata	b	m	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
Altezza d'acqua massima ammissibile	h	m	0.038	0.038	0.038	0.040	0.040		0.038	0.038	0.038	0.038	0.038	0.038		0.038	
Pendenza stradale longitudinale	р	%	0.001	0.001	0.007	0.001	0.001	0.001	0.000	0.002	0.001	0.002	0.002	0.005	0.002	0.006	0.002
Area di deflusso	Ad	m ²	0.028	0.028	0.028	0.030	0.030	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028
Raggio idraulico banchina	R	m	0.018	0.018	0.018	0.019	0.019	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018
Coefficiente di Strickler	Ks	m ^{1/3} /s	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75
Portata longitudinale convogliata dalla banchina	Q	l/s	3.27	3.27	12.25	3.60	5.58	5.07	2.93	6.55	5.28	6.55	6.55	10.35	6.55	11.34	
Velocità di deflusso in cunetta	v	m/s	0.12	0.12	0.44	0.12	0.19	0.18	0.10	0.23	0.19	0.23	0.23	0.37	0.23	0.40	0.23
Coefficiente udometrico	u	l/s/ha	401.04	401.04	401.04	401.04	401.04	401.04	401.04	401.04	401.04	403.39	403.39	403.39	403.39	403.39	403.39
Portata drenata/m	Ö	l/sm	0.21	0.42	0.42	0.42			0.42	0.42		0.21		0.21		0.21	
Interasse scarichi		m	15.55		29.09	8.56			6.95	15.55		30.92		48.88		53.55	
Verifica interasse embrici																	
Carico idrico	h	m	0.038	0.038	0.038	0.040	0.040	0.038	0.038	0.038	0.038	0.038	0.038	0.038			
Portata sfiorata embrice	Q	l/s	22.55	22.55	22.55	24.61	24.61	22.55	22.55	22.55	22.55	22.55	22.55	22.55	22.55	22.55	
Interasse embrici	Хe	m	107.12	53.56	53.56	58.45	58.45	53.56	53.56	53.56	107.12	106.49	106.49	106.49	106.49	106.49	106.49
	_																
Progetto																	
interasse elementi raccolta mista	m	1	10	10	20	10	10	10	10	10	25	25	25	25	25	25	25

AUTOSTRADA REGIONALE CISPADANA

dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

Intersezione			F	21	R	2	R	3		R4		T1	T	2	Т	3
Sezioni			Α	С	A	С	A	С	A	В	С		1_3	4_7	1_3	4_6
Larghezza piattaforma drenata	W	m	6.5	6.5	6.5	6.5	4.25	4.25	4.9	8.5	9.15	4.25	2	2	4.25	4.25
Pendenza stradale trasversale	i	%	0.025	0.03	0.03	0.0294	0.025	0.025	0.025	0.03	0.005	0.025	0.025	0.025	0.025	0.025
Angolo sulla verticale	q	gradi	88.57	88.28	88.28	88.32	88.57	88.57	88.57	88.28	89.71	88.57	88.57	88.57	88.57	88.57
Larghezza banchina allagata	b	m	0.5	0.5	0.5	0.5	1	1	1	1	1.5	0.5	0.5	0.5	0.8	
Altezza d'acqua massima ammissibile	h	m	0.013	0.015	0.015	0.015	0.025	0.025	0.025	0.030	0.008	0.013	0.013	0.013	0.020	0.020
Pendenza stradale longitudinale	р	%	0.040	0.034	0.016	0.023	0.011	0.020	0.011	0.002	0.015	0.028	0.022	0.034	0.040	0.040
Area di deflusso	Ad	m ²	0.003	0.004	0.004	0.004	0.013	0.013	0.013	0.015	0.006	0.003	0.003	0.003	0.008	0.008
Raggio idraulico banchina	R	m	0.006	0.007	0.007	0.007	0.012	0.012	0.012	0.015	0.004	0.006	0.006	0.006	0.010	0.010
Coefficiente di Strickler	Ks	m ^{1/3} /s	75	75	75	75	75	75	75	75	75	75	75	75	75	76
Portata longitudinale convogliata dalla banchina	Q	l/s	1.56	1.95	1.34	1.53	5.28	7.02	5.16	2.85	1.24	1.31	1.16	1.44	5.48	5.55
Velocità di deflusso in cunetta	٧	m/s	0.50	0.52	0.36	0.42	0.42	0.56	0.41	0.19	0.22	0.42	0.37	0.46	0.68	0.69
Coefficiente udometrico	u	l/s/ha	363.0544026		363.0544026	363.0544026	363.0544026	363.0544026	363.0544026	363.0544026	363.0544026	363.0544026	363.0544026	363.0544026	363.0544026	363.0544026
Portata drenata/m	Q	l/sm	0.235985362		0.235985362	0.235985362	0.154298121	0.154298121	0.177896657	0.308596242	0.332194778	0.154298121	0.072610881	0.072610881	0.154298121	0.154298121
Interasse scarichi		m	6.628236926	8.253333362	5.661739977	6.494288734	34.21206867	45.51505912	29.00980711	9.220792959	3.741695088	8.481476644	15.97580422	19.86053063	35.5012042	35.97455359
Verifica interasse embrici																
Carico idrico	h	m	0.0125	0.015	0.015	0.0147	0.025	0.025	0.025	0.03	0.0075	0.0125	0.0125	0.0125		
Portata sfiorata embrice		l/s	4.34041895	5.705628884	5.705628884	5.535318736	12.27655869	12.27655869	12.27655869	16.1379555	2.017244437	4.34041895	4.34041895	4.34041895		8.784390325
Interasse embrici	Хe	m	18.39274656	24.17789325	24.17789325	23.45619532	79.56388972	79.56388972	69.00949619	52.2947246	6.072474851	28.13008298	59.77642633	59.77642633	56.93128511	56.93128511
Progetto																
interasse elementi raccolta mista	m		10	10	10	10	25	25	25	10	10	10	15	20	35	35

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

RELAZIONE IDRAULICA DI PIATTAFORMA

ALLEGATO III – DIMENSIONAMENTO FOSSI DI GUARDIA

progressiva di monte	progressiva di valle	lato strada	base minore [m]	altezza [m]	base maggiore [m]	pendenza fondo scorrevole	N° elementi di regolazione	φ orifizio [mm]
100	450	dex	2	0.6	3.8	0.1	1	32
100	450	sin	2	0.5	3.5	0.1	1	25
600	500	dex	2	0.5	3.5	0.2	1	25
600	500	sin	0.5	0.5	2	0.2	1	20
600	800	dex	2	0.5	3.5	0.2	1	32
600	800	sin	0.5	0.5	2	0.2	1	20
800	1015	dex	2	0.6	3.8	0.2	1	32
800	1015	sin	0.5	0.5	2	0.2	1	20
1200	1015	dex	2	0.7	4.1	0.3	1	25
1200	1015	sin	0.5	0.5	2	0.3	1	20
1200	1425	dex	2	0.7	4.1	0.3	1	40
1200	1425	sin	0.5	0.5	2	0.3	1	20
1670	1425	dex	2	0.5	3.5	0.1	1	40
1670	1425	sin	0.5	0.5	2	0.1	1	20
1670	1925	dex	2	0.5	3.5	0.1	1	32
1670	1925	sin	0.5	0.5	2	0.1	1	20
2180	1930	dex	0.5	0.5	2	0.2	1	20
2180	1930	sin	2	0.7	4.1	0.2	1	32
2180	2470	dex	0.5	0.5	2	0.1	1	20
2180	2470	sin	2	0.5	3.5	0.1	1	32
2470	2570	dex	0.5	0.5	2	0.1	1	20
2470	2570	sin	2	0.5	3.5	0.1	1	20
2770	2570	dex	0.5	0.5	2	0.1	1	20
2770	2570	sin	2	0.5	3.5	0.1	1	25
2770	3405	dex	0.5	0.5	2	0.1	3	20 (primo); 20(secondo); 20 (terzo)
2770	3405	sin	2	0.5	3.5	0.1	3	20(primo), 40 (secondo) 50 (terzo)
3515	3710	dex	0.5	0.5	2	0.05	1	50
3515	3710	sin	0.5	0.5	2	0.05	1	50
3955	3710	dex	0.5	0.5	2	0.05	1	60
3955	3710	sin	0.5	0.5	2	0.05	1	60
4250	3955	dex	0.8	0.5	2.3	0.05	1	25
4250	3955	sin	0.8	0.5	2.3	0.05	1	25

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

PROGETTO DELLE VIABILITA' DI ADDUZIONE AL SISTEMA AUTOSTRADALE D03 - Cispadana tra la SP n° 2 "Reggiolo-Gonzaga" e la ex SS n° 62 "della Cisa"

4300	4480	dex	1.5	0.5	3	0.2	1	25
4300	4480	sin	1.5	0.5	3	0.2	1	25
5050	4480	dex	1	0.5	2.5	0.1	3	20 (primo); 32 (secondo); 32(terzo)
5050	4480	sin	1	0.5	2.5	0.1	3	20 (primo); 32 (secondo); 32(terzo)
5050	5550	dex	1	0.5	2.5	0.2	3	32 (primo); 40(secondo); 50(terzo)
5050	5550	sin	1	0.5	2.5	0.2	3	32 (primo); 40(secondo); 50(terzo)
6125	5550	dex	1	0.5	2.5	0.05	2	25 (primo); 32 (secondo)
6125	5550	sin	1	0.5	2.5	0.05	2	25 (primo); 32 (secondo)
6150	6480	dex	1	0.5	2.5	0.05	1	40
6150	6480	sin	1	0.5	2.5	0.05	1	40
6480	6760	dex	0.5	0.5	2	0.05	1	50
6480	6760	sin	0.5	0.5	2	0.05	1	50
6770	6880	dex	0.5	0.5	2	0.05	1	32
6770	6880	sin	0.5	0.5	2	0.05	1	32
6880	7400	dex	0.5	0.5	2	0.05	2	60 (primo); 80 (secondo)
6880	7400	sin	0.5	0.5	2	0.05	2	60 (primo); 80 (secondo)