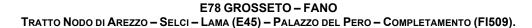


Direzione Progettazione e Realizzazione Lavori

E78 GROSSETO - FANO Tratto Nodo di Arezzo — Selci — Lama (E45) — Palazzo del Pero — Completamento

PROGETTO DEFINITIVO

FI 509


ANAS - DIREZIONE PROGETTAZIONE E REALIZZAZIONE LAVORI PROGETTAZIONE ATI: IL GEOLOGO I PROGETTISTI SPECIAL **GPI**ngegneria (Mandataria) GESTIONE PROGETTI INGEGNERIA srl Ing. Ambrogio \$ Dott. Geol. Marco Leonardi Ordine Ingegr Ordine dei geologi Provincia di Roma della Regione Lazio n. 1541 COORDINATORE PER LA SICUREZZA Ing. Moreno Panfili IN FASE DI PROGETTAZIONE (Mandante) Ordine Ingegneri Provincia di Perugia n. A2657 Arch. Santo Salvatore Vermiglio Ordine Architetti (Mandante) Ing. Matteo Bordugo Provincia di Reggio Calabria n. 1270 Ordine Ingegneri VISTO: IL RESP. DEL PROCEDIMENTO Provincia di Pordenone al n. 790A IL PROGETTISTA RESPONSABILE DELL'INNTEGRAZIONE DELLE PRESTAZION Ing. Francesco Pisani SPECIALISTICHE. (DPR207/10 ART 15 COMMA 12): IO GUIDUCCI PRINE NGEGNER VISTO: IL RESP. DEL PROGETTO Ing. Giuseppe Resta Dott. Ing. GIORGIO GUIDUCCI OMA Arch.Pianif. Marco Colazza Ordine Ingegneri 14035 Ordine Ingegneri Provincia di Roma n. 14035 Provincia di Roma n. 20629

STUDI ED INDAGINI

Geotecnica

Relazione geotecnica

CODICE PROGETTO PROGETTO LIV.PROG ANNO		NOME FILE TOOGEOOGETR	REVISIONE	SCALA		
DPAN	259 D 21	CODICE TOOGEOOGETREO1		A	1:2.000/1:200	
D						
С						
В						
А	Emissione		Maggio '22	Colleselli	Signorelli	Guiducci
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

NOTA

1. <u>NOTA</u>

LA STRADA DI COLLEGAMENTO S.R.73 -RACCORDO A1 AREZZO-BATTIFOLLE NON È OGGETTO DELLA PRESENTE VERIFICA DI OTTEMPERANZA

LA STRADA DI COLLEGAMENTO E 78 - S.R. 71 NON È OGGETTO DELLA PRESENTE VERIFICA DI OTTEMPERANZA

TRATTO NODO DI AREZZO – SELCI – LAMA (E45) – PALAZZO DEL PERO – COMPLETAMENTO (FI509).

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

INDICE

2.1. 2.2. 2.3. SIM INQ CAN 5.1. 5.2. 5.4. 5.5.	NOFELA BIBLE BOLE UAD MPAC CAN CAN BAT CAN CAN	ENTAZIONE DI RIFERIMENTO RMATIVA E RACCOMANDAZIONI TECNICHE BORATI DI PROGETTO LIOGRAFIA OGIA RAMENTO GEOLOGICO, GEOMORFOLOGICO E IDROGEOLOGICO GNE DI INDAGINE ESEGUITE MPAGNA DI INDAGINE 1994 – TRATTO "SAN ZENO-PALAZZO DEL PERO", SUB TRATTO "O-AREZZO" MPAGNA DI INDAGINE 1999-2000 – TRATTO "SAN ZENO - PALAZZO DEL PERO", SUB TRATO "A ZENO - AREZZO" MPAGNA DI INDAGINE 2006 – STRADA DI COLLEGAMENTO S.R. 73 - RACCORDO A1 AREZ TIFOLLE". MPAGNA DI INDAGINE 2008 – TRATTO "SAN ZENO - AREZZO" MPAGNA DI INDAGINE 2008 – TRATTO "SAN ZENO - AREZZO"	811121315 SAN15 ATTO16 ZZO171819
2.2. 2.3. SIM INQ CAN 5.1. 5.2. 5.4. 5.5.	ELA BIBL BOL UAD MPAC CAN CAN "SAI CAN BAT CAN CAN	BORATI DI PROGETTO	91315 SAN15 ATTO16 ZZO171819
2.3. SIM INQ CAN 5.1. 5.2. 5.3. 5.4. 5.5.	BIBLE BOLO UAD INTERPOLATION CAME INTO ITERATION CAME ITERATION CA	COGIA RAMENTO GEOLOGICO, GEOMORFOLOGICO E IDROGEOLOGICO SINE DI INDAGINE ESEGUITE MPAGNA DI INDAGINE 1994 – TRATTO "SAN ZENO-PALAZZO DEL PERO", SUB TRATTO "O-AREZZO" MPAGNA DI INDAGINE 1999-2000 – TRATTO "SAN ZENO - PALAZZO DEL PERO", SUB TRATO "INDAGINE 1999-2000 – TRATTO "SAN ZENO - PALAZZO DEL PERO", SUB TRATO "INDAGINE 2006 – STRADA DI COLLEGAMENTO S.R. 73- RACCORDO A1 AREZTIFOLLE" MPAGNA DI INDAGINE 2008 – TRATTO "SAN ZENO - AREZZO" MPAGNA DI INDAGINE 2008 – TRATTO "SAN ZENO - AREZZO"	11 12 15 SAN 15 ATTO 16 ZZO- 17 18
SIM INQ CAN 5.1. 5.2. 5.3. 5.4. 5.5.	BOLO UAD MPAC CAM ZEN CAM "SAI CAM BAT CAM	RAMENTO GEOLOGICO, GEOMORFOLOGICO E IDROGEOLOGICO GNE DI INDAGINE ESEGUITE MPAGNA DI INDAGINE 1994 – TRATTO "SAN ZENO-PALAZZO DEL PERO", SUB TRATTO "O-AREZZO" MPAGNA DI INDAGINE 1999-2000 – TRATTO "SAN ZENO - PALAZZO DEL PERO", SUB TRATO "ZENO - AREZZO" MPAGNA DI INDAGINE 2006 – STRADA DI COLLEGAMENTO S.R. 73- RACCORDO A1 AREZ TIFOLLE" MPAGNA DI INDAGINE 2008 – TRATTO "SAN ZENO - AREZZO" MPAGNA DI INDAGINE 2001 – TRATTO "SAN ZENO - AREZZO"	12 15 SAN 15 ATTO 16 ZZO- 17 18 19
INQ CAN 5.1. 5.2. 5.3. 5.4. 5.5.	CAM CAM "SAI CAM BAT CAM	RAMENTO GEOLOGICO, GEOMORFOLOGICO E IDROGEOLOGICO SNE DI INDAGINE ESEGUITE MPAGNA DI INDAGINE 1994 – TRATTO "SAN ZENO-PALAZZO DEL PERO", SUB TRATTO "O-AREZZO" MPAGNA DI INDAGINE 1999-2000 – TRATTO "SAN ZENO - PALAZZO DEL PERO", SUB TRAN ZENO - AREZZO" MPAGNA DI INDAGINE 2006 – STRADA DI COLLEGAMENTO S.R. 73- RACCORDO A1 AREZ TIFOLLE" MPAGNA DI INDAGINE 2008 – TRATTO "SAN ZENO - AREZZO" MPAGNA DI INDAGINE 2021 – TRATTO "SAN ZENO - AREZZO"	13 15 SAN 15 ATTO 16 ZZO- 17 18 19
CAN 5.1. 5.2. 5.3. 5.4. 5.5.	CAM CAM SAI CAM BAT CAM CAM	IPAGNA DI INDAGINE ESEGUITE. MPAGNA DI INDAGINE 1994 – TRATTO "SAN ZENO-PALAZZO DEL PERO", SUB TRATTO "O-AREZZO"	15 SAN 15 ATTO 16 ZZO- 17 18 19
5.1. 5.2. 5.3. 5.4. 5.5.	CAM ZEN CAM "SAI CAM BAT CAM	IPAGNA DI INDAGINE 1994 – TRATTO "SAN ZENO-PALAZZO DEL PERO", SUB TRATTO "O-AREZZO" IPAGNA DI INDAGINE 1999-2000 – TRATTO "SAN ZENO - PALAZZO DEL PERO", SUB TRAN ZENO - AREZZO" IPAGNA DI INDAGINE 2006 – STRADA DI COLLEGAMENTO S.R. 73- RACCORDO A1 AREZ TIFOLLE". IPAGNA DI INDAGINE 2008 – TRATTO "SAN ZENO - AREZZO"	SAN 15 ATTO 16 ZZO- 17 18 19
5.2. 5.3. 5.4. 5.5.	ZEN CAM "SAI CAM BAT CAM	O-AREZZO"	15 ATTO 16 ZZO- 17 18 19
5.3. 5.4. 5.5.	CAM "SAI CAM BAT CAM	IPAGNA DI INDAGINE 1999-2000 – TRATTO "SAN ZENO - PALAZZO DEL PERO", SUB TRA N ZENO - AREZZO"	16 17 17 18
5.3. 5.4. 5.5.	"SAI CAM BAT CAM	N ZENO - AREZZO"	16 ZZO- 17 18 19
5.4. 5.5.	CAM BAT CAM	IPAGNA DI INDAGINE 2006 – STRADA DI COLLEGAMENTO S.R. 73- RACCORDO A1 AREZ TIFOLLE". IPAGNA DI INDAGINE 2008 – TRATTO "SAN ZENO - AREZZO"	zzo- 17 18 19
5.4. 5.5.	BAT CAN	TIFOLLE"	17 18 19
5.5.	CAN CAN	IPAGNA DI INDAGINE 2008 – TRATTO "SAN ZENO - AREZZO"IPAGNA DI INDAGINE 2021 – TRATTO "SAN ZENO - AREZZO"	18 19
5.5.	CAN	IPAGNA DI INDAGINE 2021 – TRATTO "SAN ZENO - AREZZO"	19
PRO	VE I	N OLTO	04
		N SITO	<u>21</u>
6.1.	PRO	VE PENETROMETRICHE DINAMICHE (SPT)	21
6.2.	Rılı	EVO DEI LIVELLI DI FALDA	22
6.3.	PRO	OVE DI CARICO SU PIASTRA	25
6.4.	INDA	AGINI SIMICHE	27
6.4	.1.	Prove sismiche in foro (Down Hole)	27
6.4	.2.	Prospezioni simiche a rifrazione	28
6.4	.3.	MASW	29
6.5.	PRO	VE DI LABORATORIO	30
CRI	TERI	DI INTERPRETAZIONE DELLE INDAGINI	31
7.1.	PRO	PRIETÀ FISICHE	31
7.1	.1.	Identificazione dei terreni	31
7.1	.2.	Parametri fisici	31
	.3.	Densità relativa	31
7.1	CAR	ATTERISTICHE DI RESISTENZA AL TAGLIO	32
	7.1. 7.1 7.1	CRITERI 7.1. PRO 7.1.1. 7.1.2. 7.1.3.	CRITERI DI INTERPRETAZIONE DELLE INDAGINI 7.1. PROPRIETÀ FISICHE 7.1.1. Identificazione dei terreni 7.1.2. Parametri fisici 7.1.3. Densità relativa

PROGETTAZIONE ATI:

TRATTO NODO DI AREZZO - SELCI - LAMA (E45) - PALAZZO DEL PERO - COMPLETAMENTO (FI509).

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

7.2.2.	Terreni incoerenti	33
7.3. CA	RATTERISTICHE DI DEFORMABILITÀ	33
7.3.1.	Moduli alle piccole deformazioni	33
7.3.2.	Moduli operativi	34
7.4. CAF	RATTERIZZAZIONE GEOMECCANICA DEL SUBSTRATO ROCCIOSO	37
7.4.1.	Classificazione della qualità dell'ammasso roccioso	37
7.4.2.	Parametri di resistenza a rottura e di deformabilità	38
8. INQUAD	RAMENTO GEOTECNICO	44
9. CARAT	<u> TERIZZAZIONE DELLE UNITÀ GEOTECNICHE – STRADA DI COLLEGA</u>	<u>MENTO</u>
SR73 – RAC	CORDO A1 AREZZO – BATTIFOLLE	45
9.1. Uni	TÀ GEOTECNICA A (FL)	46
9.1.1.	N _{SPT}	46
9.1.2.	Granulometria	46
9.1.3.	Peso di volume del terreno	47
9.1.4.	Limiti di Atterberg	47
9.1.5.	Indice dei vuoti	47
9.1.6.	Resistenza al taglio in cond. drenate	47
9.1.7.	Coesione non drenata	47
9.1.8.	Velocità delle onde di taglio e Modulo di taglio alle piccole deformazioni G ₀	49
9.1.9.	Grado di sovraconsolidazione	49
9.1.10.	Indice di compressione	49
9.1.11.	Indice di ricompressione	49
9.1.12.	Coefficiente di compressione secondario	49
9.1.13.	Coefficiente di consolidazione c _v	49
9.1.14.	Modulo confinato M per fondazioni dirette	49
9.2. Uni	TÀ GEOTECNICA L (FL, AT)	50
9.2.1.	N _{SPT}	51
9.2.2.	Granulometria	52
9.2.3.	Peso di volume del terreno	53
9.2.4.	Diagramma di plasticità di Casagrande	54
9.2.5.	Limite di liquidità	55
9.2.6.	Indice di plasticità	56
9.2.7.	Indice dei vuoti	57
9.2.8.	Resistenza al taglio in condizioni drenate	58

PROGETTAZIONE ATI:

Pag. 2 di 210

TRATTO NODO DI AREZZO – SELCI – LAMA (E45) – PALAZZO DEL PERO – COMPLETAMENTO (FI509).

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

	9.2.9.	Coesione non drenata	60
	9.2.10.	Velocità delle onde di taglio e Modulo di taglio alle piccole deformazioni G ₀	61
	9.2.11.	Grado di sovraconsolidazione	62
	9.2.12.	Indice di compressione	63
	9.2.13.	Indice di ricompressione	64
	9.2.14.	Coefficiente di compressione secondario	65
	9.2.15.	Coefficiente di consolidazione c _v	66
	9.2.16.	Modulo confinato M per fondazioni dirette	67
9.	3. Uni	TÀ GEOTECNICA S (FL, AT)	68
	9.3.1.	N _{SPT}	69
	9.3.2.	Granulometria	70
	9.3.1.	Densità relativa	71
	9.3.2.	Angolo di resistenza al taglio	72
	9.3.3.	Velocità delle onde di taglio	73
	9.3.4.	Modulo di taglio alle piccole deformazioni G₀	74
	9.3.5.	Modulo elastico di Young	75
9.	4. Uni	TÀ GEOTECNICA G (FL)	77
	9.4.1.	N _{SPT}	78
	9.4.2.	Granulometria	79
	9.4.3.	Densità relativa	80
	9.4.4.	Angolo di resistenza al taglio	81
	9.4.5.	Velocità delle onde di taglio	82
	9.4.6.	Modulo di taglio alle piccole deformazioni G ₀	83
	9.4.7.	Modulo elastico di Young	84
9.	5. MO	DELLO GEOTECNICO DI RIFERIMENTO - STRADA DI COLLEGAMENTO S	R73 –
	Rad	CCORDO A1 AREZZO - BATTIFOLLE	86
<u>10.</u>	CARAT	TERIZZAZIONE DELLE UNITÀ GEOTECNICHE – ASSE PRINCIPALE	<u>88</u>
10).1. Uni	TÀ GEOTECNICA A (FL)	89
10).2. Uni	TÀ GEOTECNICA L (FL)	89
	10.2.1.	N _{SPT}	91
	10.2.2.	Granulometria	92
	10.2.3.	Peso di volume del terreno	93
	10.2.4.	Diagramma di plasticità di Casagrande	94
	10.2.5.	Limite di liquidità	95
		_	

PROGETTAZIONE ATI:

Pag. 3 di 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

	10.2.6.	Indice di plasticità	96
	10.2.7.	Indice dei vuoti	97
	10.2.8.	Resistenza al taglio in cond. drenate	98
	10.2.9.	Coesione non drenata	. 100
	10.2.10.	Velocità delle onde di taglio e Modulo di taglio alle piccole deformazioni G ₀	. 101
	10.2.11.	Grado di sovraconsolidazione	. 101
	10.2.12.	Indice di compressione	. 103
	10.2.13.	Indice di ricompressione	. 104
	10.2.14.	Coefficiente di compressione secondario	. 105
	10.2.15.	Coefficiente di consolidazione c _v	. 106
	10.2.16.	Modulo confinato M per fondazioni dirette	. 107
10	.3. Uni	TÀ GEOTECNICA LS (AT)	. 108
	10.3.1.	Numero colpi SPT	. 109
	10.3.2.	Granulometria	. 110
	10.3.3.	Peso di volume del terreno	. 111
	10.3.4.	Diagramma di plasticità di Casagrande	. 112
	10.3.5.	Limite di liquidità	. 113
	10.3.6.	Indice di plasticità	. 114
	10.3.7.	Indice dei vuoti	. 115
	10.3.8.	Resistenza al taglio in cond. Drenate	. 116
	10.3.9.	Coesione non drenata	. 118
	10.3.10.	Velocità delle onde di taglio e $\ Modulo\ di\ taglio\ alle\ piccole\ deformazioni\ G_0\$. 119
	10.3.11.	Grado di sovraconsolidazione	. 119
	10.3.12.	Indice di compressione	. 120
	10.3.13.	Indice di ricompressione	. 121
	10.3.14.	Coefficiente di compressione secondario	. 122
	10.3.15.	Coefficiente di consolidazione c _v	. 123
	10.3.16.	Modulo confinato M per fondazioni dirette	. 124
10	.4. Uni	TÀ GEOTECNICA S (FL)	. 125
	10.4.1.	N _{SPT}	. 126
	10.4.2.	Granulometria	. 127
	10.4.3.	Densità relativa	. 128
	10.4.4.	Angolo di resistenza al taglio	. 129
	10.4.5.	Velocità delle onde di taglio	. 130

PROGETTAZIONE ATI:

Pag. 4 di 210

E78 GROSSETO – FANO TRATTO NODO DI AREZZO – SELCI – LAMA (E45) – PALAZZO DEL PERO – COMPLETAMENTO (FI509).

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

10.4.6.	Modulo di taglio alle piccole deformazioni G ₀	131
10.4.7.	Modulo elastico di Young	132
10.5. UN	TÀ GEOTECNICA R	134
10.5.1.	Granulometria	135
10.5.2.	Angolo di resistenza al taglio	136
10.5.3.	Velocità delle onde di taglio e Modulo di taglio alle piccole deformazioni G0	137
10.5.4.	Modulo elastico di Young	137
10.6. MC	DELLO GEOTECNICO DI RIFERIMENTO – ASSE PRINCIPALE	138
11. CARAT	<u> TERIZZAZIONE DELLE UNITÀ GEOTECNICHE – STRADA DI COLLEGA</u>	<u>MENTO</u>
E79-SR71		140
11.1. UN	TÀ GEOTECNICA L (FL,CA)	141
11.1.1.	N _{SPT}	142
11.1.2.	Granulometria	143
11.1.3.	Peso di volume del terreno	144
11.1.4.	Diagramma di plasticità di Casagrande	145
11.1.5.	Limite di liquidità	146
11.1.6.	Indice di plasticità	147
11.1.7.	Indice dei vuoti	148
11.1.8.	Resistenza al taglio in condizioni drenate	149
11.1.9.	Coesione non drenata	151
11.1.10	. Grado di sovraconsolidazione	152
11.1.11	. Indice di compressione	153
11.1.12	. Indice di ricompressione	154
11.1.13	. Coefficiente di compressione secondario	155
11.1.14	. Coefficiente di consolidazione c _v	155
11.1.15	. Modulo confinato M per fondazioni dirette	156
11.2. MC	DELLO GEOTECNICO DI RIFERIMENTO – STRADA DI COLLEGAMENTO E	'9-SR71
		157
12. CARAT	TERIZZAZIONE GEOMECCANICA DEL SUBSTRATO	158
13. FALDA	DI PROGETTO	<u>161</u>
14. PROBLI	EMATICHE GEOTECNICHE E SOLUZIONI TECNICHE ADOTTATE	162
	UEFAZIONE	
	Curve granulometriche	
14.1.2.	Metodo di Idriss e Boulanger (2004) - prove SPT	166

PROGETTAZIONE ATI:

Pag. 5 di 210

E78 GROSSETO – FANO TRATTO NODO DI AREZZO – SELCI – LAMA (E45) – PALAZZO DEL PERO – COMPLETAMENTO (FI509).

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

14.2. RIL	EVATI	176
14.2.1.	Geometria rilevati	176
14.2.2.	Materiali rilevati	177
14.2.3.	Fasi costruttive	178
14.2.4.	Piano di posa dei rilevati	178
14.2.5.	Stratigrafia di progetto	183
14.2.6.	Cedimenti	184
14.2.7.	Verifiche di stabilità	196
14.3. sc.	AVI PROVVISIONALI	209
14.3.1.	Scavi provvisionali	209
14.4. OP	PERE D'ARTE MAGGIORI	209
14.5. INT	ERVENTI DI STABILIZZAZIONE DELLE FRANE	209
15. ALLEG	ATI	210
15.1 RIS	SULTATI DELLE PROVE DI LABORATORIO	210

PROGETTAZIONE ATI:

Pag. 6 di 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

1. PREMESSA

La presente relazione ha come finalità la relazione geotecnica delle aree interessate dal Progetto Definitivo Tratto Nodo Di Arezzo – Selci – Lama (E45) – Palazzo Del Pero – Completamento (FI509), comprese le fasce attraversate rispettivamente dalla "Strada di collegamento E78-S.R. 71" e dalla "Strada di collegamento S.R. 73-Raccordo A1 Arezzo-Battifolle".

Il lavoro è stato svolto in ottemperanza al D.M. 17/01/2018 "Aggiornamento delle Norme Tecniche per le Costruzioni", ed ai sensi della legge sui lavori pubblici D.lgs. n. 50/2016 e del regolamento D.P.R. 207/2010 considerando il livello progettuale di progetto definitivo.

PROGETTAZIONE ATI:

Pag. 7 di 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

2. **DOCUMENTAZIONE DI RIFERIMENTO**

2.1. NORMATIVA E RACCOMANDAZIONI TECNICHE

- D.M. 17/01/2018 Aggiornamento delle "Norme tecniche per le costruzioni";
- [2] Circolare 21/01/2019 "Istruzioni per l'applicazione dell'Aggiornamento delle Nuove norme tecniche per le costruzioni di cui al DM17/01/2018;
- EN 1997 Eurocode 7: Geotechnical Design; [3]
- EN 1998 Eurocode 8: Design of structures for earthquake resistance; [4]
- AGI (1994) Raccomandazioni sulle prove geotecniche di laboratorio. Associazione [5] Geotecnica Italiana;
- [6] AGI (1977) "Raccomandazioni sulla programmazione ed esecuzione delle indagini geotecniche;
- [7] AGI (2005) "Aspetti geotecnici della progettazione in zona sismica";
- [8] ASG (2016). Linee guida per indagini geofisiche. Associazione Italiana di Geofisica;
- [9] ASTM International - ASTM D1586/ D1586M-18, Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils;
- [10] ASTM International ASTM D4633-16, Standard Test Method for Energy Measurement for Dynamic Penetrometers;
- [11] UNI EN ISO 22476-3:2021, Indagini e prove geotecniche Prove in sito Parte 3: Prova penetrometrica dinamica tipo SPT (Standard Penetration Test);
- [12] UNI 11531-1:2014, Costruzione e manutenzione delle opere civili delle Infrastrutture, Criteri per l'impiego dei materiali, Parte I: Terre e miscele di aggregati non legati, Aprile 2014;

PROGETTAZIONE ATI:

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

2.2. ELABORATI DI PROGETTO

- [1] T00GE01GEORE01 B, Relazione geologica, geomorfologica e idrogeologica
- [2] T00GE01GEORE02 A, Rilievi geomeccanici
- [3] T00GE01GEOCG01-03_B, Carta geologica - Asse principale - Tav. 1,2,3 di 7
- T00GE01GEOCG04-06 B, Carta geologica Strada di collegamento S.R.73 Raccordo [4] A1 Arezzo-Battifolle - Tav. 4,5,6 di 7
- T00GE01GEOCG07 B, Carta geologica-Strada di collegamento E78-S.R.71 Tav. 7 di 7 [5]
- T00GE01GEOCG08-10 A, Carta geomorfologica Asse principale Tav. 1,2,3 di 7 [6]
- T00GE01GE0CG11-13_A, Carta geomorfologica Strada di collegamento S.R.73 -[7] Raccordo A1 Arezzo-Battifolle - Tav. 4,5,6 di 7
- [8] T00GE01GEOCG14 A Carta geomorfologica - Strada di collegamento E78-S.R.71 -Tav. 7 di 7
- [9] T00GE01GEOCI01-03_B, Carta idrogeologica - Asse principale - Tav. 1,2,3 di 7
- [10] T00GE01GE0Cl04-06 B, Carta idrogeologica Strada di collegamento S.R.73 -Raccordo A1 Arezzo-Battifolle - Tav. 4,5,6 di 7
- [11] T00GE01GEOCl07_B, Carta idrogeologica-Strada di collegamento E78-S.R.71-Tav.7 di
- [12] T00GE01GE0FG01-03 B, Profilo geologico Asse principale Tav. 1,2,3 di 7
- [13] T00GE01GE0FG04-06_B Profilo geologico - Strada di collegamento S.R.73 -Raccordo A1 Arezzo-Battifolle - Tav. 4,5,6 di 7
- [14] T00GE01GEOFG07 B, Profilo geologico Strada di collegamento E78-S.R.71- Tav. 7 di 7
- [15] T00GE01GEOSG01-02 B, Sezioni geologiche
- [16] T00GE00GE0RE01_A, Risultati campagna indagini pregresse Relazione sulle indagini geognostiche 1994-1999,2000
- [17] T00GE00GEORE02 A, Risultati campagna indagini pregresse Certificati prove di laboratorio geotecnico 1994-1999,2000
- [18] T00GE00GEORE03 A, Risultati campagna indagini pregresse Relazione sulle indagini geognostiche 2008
- [19] T00GE00GEORE04 A, Risultati campagna indagini pregresse Certificati prove di laboratorio geotecnico 2008
- [20] T00GE00GEORE05 A, Risultati campagna indagini pregresse Relazione sulle indagini geognostiche 2006 - Raccordo Arezzo - Battifolle
- [21] T00GE00GEORE06_A, Risultati campagna indagini pregresse Certificati prove di laboratorio geotecnico 2006 - Raccordo Arezzo - Battifolle
- [22] T00GE00GEORE07 A, Documentazione indagini geognostiche Sondaggi geognostici e prove in sito
- [23] T00GE00GEORE08 A, Documentazione indagini geognostiche Saggi di scavo e prove di carico su piastra
- [24] T00GE00GEORE09 A, Documentazione indagini geognostiche Analisi e prove di laboratorio geotecnico
- [25] T00GE00GEORE10 A, Documentazione indagini geognostiche Campagna geofisica

9 di Pag. 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

- [26] T00GE00GEOPU01-03 C, Planimetria ubicazione indagini geognostiche Asse principale - Tav. 1,2,3 di 7
- [27] T00GE00GEOPU04-06 C, Planimetria ubicazione indagini geognostiche Strada di collegamento S.R.73 – Raccordo A1 Arezzo-Battifolle - Tav. 4,5,6 di 7
- [28] T00GE00GEOPU07_C, Planimetria ubicazione indagini geognostiche Strada di collegamento E78-S.R.71 - Tav. 7 di 7
- [29] T00GE00GETRE02_A, Relazione geotecnica Allegati
- [30] T00GE00GETRE03 A, Piano di monitoraggio strutturale e geotecnico
- [31] T00GE00GETFG01-03 A, Profilo geotecnico Asse principale Tav. 1,2,3 di 8
- [32] T00GE00GETFG04-06 AProfilo geotecnico Strada di collegamento S.R.73 Raccordo A1 Arezzo-Battifolle - Tav. 4,5,6 di 8
- [33] T00GE00GETFG07 A, Profilo geotecnico Strada di collegamento E78-S.R.71 Tav. 7 di 8
- [34] T00GE01GETRE01_B, Relazione sismica
- [35] T00GE01GETCS01-07 B, Planimetria con classificazione sismica del territorio Tav. 1-7

GPIngegneria

Pag. 10 di 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

2.3. BIBLIOGRAFIA

- [36] Bieniawski Z. T., Engineering Rock Mass Classifications, Wiley-Interscience Publication,
- [37] Bishop, A.W. (1955). "The use of the slip circle in the analysis of slopes", Geotechnique, vol. 5, pp.7-17
- [38] Boussinesq, M.J. (1885). Applications des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques, Gautier Villars, Paris
- [39] Colombo P, Colleselli F., (2004) Elementi di Geotecnica, Terza edizione, Ed. Zanichelli;
- [40] Deree D. U., (1963) Technical Description of Rock Cores for Engineering Prupose, Felsmechanik und Ingenieurgeologie/Rock Mechanics and Engineering Geology, Journal of the International Society of Rock Mechanics, Vol. I, No. 1, p. 16. 1963.
- [41] Hoek E., Brown E. T., Practical Estimates of Rock Mas Strength, Int. J. Rock Mech. Min. Sci. Vol. 34, 1998
- [42] Hoek, E., Carranza-Torres, C.T., and Corkum, B., (2002) Hoek-Brown failure criterion -2002 edition. Proc. North American Rock Mechanics Society meeting in Toronto in July 2002.
- [43] Liao S., Withman R.V. (1985). Overburden Correction Factors for SPT in Sand. J. of Geotechnical Eng., Vol. 112, n° 3;
- [44] NAVFAC DM 7.1, 1982 Edition, May 1982 SOIL MECHANICS;
- [45] Palmstom A., 1995, A rock mass characterization system for rock engineering purposes. J. of Rock Mech. & Tunnelling Tech, Vol. I No 2, 1-40.
- [46] Priest S.D., Hudson J.A. (1981), Estimation of discontinuity spacing and trace length using scanline survayes; Volume 18, Issue 3, Pages 183-197;
- [47] Schnaid F., Lehane B.M., Fahey M. (2004) "In situ test characterisation of unusual geomaterials" Proc. 2nd Int. Conf. on Site Charact., Milpress, Porto 1:49-74;
- [48] Shioi Y., Fukuni J. (1982). Application of the N-value to design of foundation in Japan. Proceedings of the second European symposium on penetration testing, Amsterdam;
- [49] Skempton A.W. (1986) "Standard penetration procedure and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation" Geotechnique 36, n. 3;
- [50] Terzaghi, K. e Peck, R.B. (1948). Soil Mechanics in Engineering Practice, John Wiley & Sons. New York:
- [51] Yoshida Y., Motonori I. (1988) "Empyrical formulae of SPT Blow-counts for gravely soils" Proc. ISOPT I, Orlando FLA;

GPIngegneria

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

3. SIMBOLOGIA

Si riporta di seguito l'elenco dei simboli dei parametri geotecnici utilizzati nella presente relazione:

densità del terreno: ρ

peso di volume del terreno / peso di volume immerso del terreno γ / γ

contenuto d'acqua naturale W_n

limite di liquidità W_L limite di plasticità Wρ IΡ indice di plasticità D_r densità relativa

φ' valore dell'angolo di resistenza al taglio efficace (f di picco)

valore caratteristico angolo di resistenza al taglio efficace (f di picco) φ'_k

valore dell'angolo di attrito residuo ďκ

valore della coesione in condizioni drenate efficace c'

valore caratteristico coesione in condizioni drenate efficace C'k

valore della coesione in condizioni non drenate C_{u}

valore caratteristico coesione in condizioni non drenate C_{u.k}

Resistenza a compressione della roccia σ_{c} $G_{max} = G_0$ modulo di taglio alle piccole deformazioni modulo di Young alle piccole deformazioni E_0

 E_{25} modulo con riferimento ad un grado di mobilitazione della resistenza ultima a taglio

pari al 25-30% e una deformazione dell'ordine di 1x10-3)

 E_{m} modulo di elasticità dell'ammasso roccioso

modulo elastico di Young operativo (opere di fondazione dirette) E_{op, fondaz dirette}

E_{op, fondaz profonde} modulo elastico di Young operativo (opere di fondazione profonde – opere di sostegno)

М modulo edometrico confinato

modulo edometrico operativo per fondazioni dirette M_{fondaz dirette} modulo edometrico operativo per fondazioni profonde M_{fondaz profonde}

rapporto tra il modulo elastico di ricompressione e di compressione vergine r

intervallo tensionale relativo alla prova edometrica Δσ

OCR grado di sovraconsolidazione

indice dei vuoti iniziale e٥ indice di compressione \mathbf{c}_{C} indice di ricompressione C_R

coefficiente di consolidazione verticale C_V

coefficiente di permeabilità k velocità delle onde di taglio V_s coefficiente di Poisson

profondità dal piano campagna Z

PROGETTAZIONE ATI:

TRATTO NODO DI AREZZO - SELCI - LAMA (E45) - PALAZZO DEL PERO - COMPLETAMENTO (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

4. INQUADRAMENTO GEOLOGICO, GEOMORFOLOGICO E IDROGEOLOGICO

L'itinerario stradale di progetto attraversa trasversalmente, da Ovest a Est:

L'area pianeggiante della terminazione occidentale della Val di Chiana, tra le loc. Boscherino e San Zeno, una depressione originatesi nel Villafranchiano, colmata da sedimenti continentali fluviali pleistocenici coperti da sedimenti fluvio-palustri olocenici; la catena di M. Lignano appartenente alla porzione occidentale della catena Sub-Appenninica Tosco-Umbra, costituita dalla formazione torbiditica del Macigno del Chianti (Oligocene Sup. – Miocene Inf.). In realtà il tracciato di progetto in questa porzione attraversa una piccola vallecola colmata in parte da alluvioni recenti (Olocene) ma intercetta un rilievo formato dalle Arenarie del Cervarola, la Piana di Arezzo caratterizzata come per il primo tratto da depositi alluvionali olocenici.

Le litologie presenti nell'area sono quelle elencate di seguito.

Arenarie del Cervarola (AC), formate da un'alternanza di siltiti, arenarie fini e marne argillose con locali intercalazioni di calcari marnosi e noduli di selce. È presente una coltre di alterazione rappresentata da un ammasso costituito da uno scheletro di clasti e blocchi arenacei e marnosi in matrice sabbiosa-argillosa. Il tratto sud-occidentale presenta una prevalenza di arenarie, in cui si riconoscono banchi spessi fino oltre 5 m, seguite in alto da alternanze di marne, talora calcaree, e arenarie, con rare intercalazioni argillitiche. Nel tratto centrale si registra un'alternanza di strati marnosi e strati arenacei; le marne sono frequentemente calcaree. Nel settore nord-orientale (fino al margine con la piana di Arezzo) si registra ancora un'alternanza di strati di marne frequentemente calcaree e strati arenacei: tale sequenza verso il basso passa ad arenarie prevalenti che si presentano talora in strati e banchi molto spessi come si registra presso il margine del tratto.

Marne di San Polo (MP), si incontrano soltanto a fine lotto del Tratto dell'Asse principale, al di sotto delle coperture Alluvionali, sono marne giallastre e grigie a frattura scheggiosa.

Depositi continentali fluvio-lacustri (FL), argille sabbiose con frequenti intercalazioni, generalmente di estensione limitata, di lenti o banchi di sabbie giallastre, ghiaie e cottoli silicei derivante dallo smantellamento del flysch arenaceo che ricoprono le Arenarie del Cervarola. Essi vengono intercettati nella prima metà del tratto San Zeno-Arezzo e da entrambe le strade di collegamento, la SR 73-Raccordo A1 e la E78-SR71;

Depositi alluvionali recenti ed attuali (AT), depositi alluvionali recenti di ambiente fluviale, costituiti da litotipi rappresentati da limi argillosi, limi sabbiosi, argille limose, con spessi banchi di sabbie e strati ghiaiosi, di età olocenica;

Depositi eluviali (E), sono la coltre detritica e di alterazione superficiale ad opera degli agenti esogeni che possono essere trasportati per intervento della gravità o agenti di trasporto (colluvio), oppure possono rimanere in posto, nella loro sede originaria (eluvio);

PROGETTAZIONE ATI:

Pag. 13 di 210

TRATTO NODO DI AREZZO - SELCI - LAMA (E45) - PALAZZO DEL PERO - COMPLETAMENTO (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Detriti di versante e di falda-conoidi (DT), materiale litoide a granulometria molto variabile, da qualche centimetro al metro, immerso in una matrice sabbioso-argillosa talora, per aree limitate, in assetto stratificato;

Terreni di riporto (R), data l'intensa urbanizzazione dell'area, sono presenti terreni di riporto rappresentati da materiali eterogenei, da limi sabbiosi e/o argillosi a sabbie limose, con ghiaia o ciottoli di varia composizione, spesso clasti di marna, arenaria e laterizi; talora vi è presente sostanza organica.

Dal punto di vista idrogeologico i depositi alluvionali hanno una permeabilità che dipende dalla porosità e vengono alimentati dall'infiltrazione delle acque piovane, dagli alvei fluviali e in qualche caso a laterale e profonda delle rocce confinanti. La soggiacenza della falda nei settori di piana alluvionale e variabile da pochi metri a profondità intorno ai 10 m dal p.c..

Per quanto riguarda gli ammassi rocciosi la loro permeabilità è medio-bassa e dipendente dal loro grado di fratturazione.

GPIngegneria

engeko

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

5. CAMPAGNE DI INDAGINE ESEGUITE

Di seguito vengono elencate, in sintesi, tutte le campagne di indagine, le relative indagini e prove di laboratorio eseguite nell'area del progetto. Per quanto riguarda la loro ubicazione si rimanda agli elaborati di progetto T00GE00GE0PU01-07 B.

5.1. CAMPAGNA DI INDAGINE 1994 – TRATTO "SAN ZENO-PALAZZO DEL PERO", SUB TRATTO "SAN ZENO-AREZZO"

La campagna nell'anno 1994 è stata eseguita dalla ditta Geotecnica ANGELI ANGELO e costituita da n. 13 sondaggi a carotaggio continuo, denominati S1÷S13 spinti fino profondità variabile tra 10 e 20 m.

Nell'ambito dei sondaggi sono state eseguite prove penetrometriche dinamiche del tipo Standard Penetration Test (SPT), prelevati campioni di terreno indisturbato, eseguite prove di permeabilità Lefranc a carico variabile, Lugeon e sono stati posti in opera dei piezometri per il monitoraggio della falda (S1, S2, S5, S6, S8, S12).

I campioni di terreno indisturbato sono stati sottoposti a prove di laboratorio geotecnico: prove di classificazione, analisi granulometriche, limiti di Atterberg, prove di taglio, prove triassiali e prove edometriche.

Nella Tabella seguente sono riportate schematicamente le indagini eseguite nel 1994

SONDAGGIO / ANNO	PROFONDITA' (m)	N. CAMPIONI INDISTURBATI	N. SPT	N. PROVE LEFRANC	PROFONDITÀ PIEZOMETRI (m)
S1-1994	19.0	10	3		19.0
S2-1994	18.3	6	3		18.3
S3-1994	20.0	12	3	1	
S4-1994	10.0	2	2		
S5-1994	12.2	3	2		12.0
S6-1994	10.0				10.0
S7-1994	10.0	3	1		
S8-1994	10.0		1		10.0
S9-1994	10.0		1	1	
S10-1994	10.0	2			
S11-1994	20.0	6	3		
S12-1994	20.0	7	2		18.7
S13-1994	10.0	1	1		

Tabella 5-1 - Lista delle indagini eseguite nel 1994


Per i risultati relativi alla campagna di indagine dell'anno 1994 si rimanda agli elaborati T00GE00GE0RE01-02 A.

PROGETTAZIONE ATI:

Pag. 15 di 210

TRATTO NODO DI AREZZO - SELCI - LAMA (E45) - PALAZZO DEL PERO - COMPLETAMENTO (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

5.2. CAMPAGNA DI INDAGINE 1999-2000 – TRATTO "SAN ZENO - PALAZZO DEL PERO", SUB TRATTO "SAN ZENO - AREZZO"

La campagna degli anni 1999-2000 è stata eseguita dalla ditta ANGELO SICILIA (Nov. 1999- Mar. 2000) ed è costituita da n. 20 sondaggi a carotaggio continuo, denominati S1÷S20 spinti fino profondità variabile tra 10 e 30 m da p.c..

Nel corso delle perforazioni sono stati eseguite prove penetrometriche dinamiche del tipo Standard Penetration test (SPT) e prelevati campioni di terreno indisturbato.

I campioni sono stati sottoposti a prove di laboratorio geotecnico dalla ditta LAGIC Sas. E consistono in: prove di classificazione, analisi granulometriche, limiti di Atterberg, prove di taglio, prove triassiali e prove edometriche, prove a espansione laterale libera (ELL).

Nella Tabella seguente sono riportate schematicamente le indagini eseguite nel 1999-2000.

SONDAGGIO/ ANNO	PROFONDITÀ (m)	N. CAMPIONI INDISTURBATI	N. SPT
S1-1999 - 2000	10.0	2	3
S2-1999 - 2000	10.0	2	3
S3-1999 - 2000	20.7	1	4
S4-1999 - 2000	16.0	2	2
S5-1999 - 2000	15.5	2	3
S6-1999 - 2000	26.0	1	2
S7-1999 - 2000	25.0	2	5
S8-1999 - 2000	22.0	3	4
S9-1999 - 2000	17.0	2	3
S10-1999 - 2000	10.0	2	3
S11-1999 - 2000	15.0	2	3
S12-1999 - 2000	17.0	1	3
S13-1999 - 2000	30.0	4	7
S14-1999 - 2000	30.0	1	2
S15-1999 - 2000	10.0	1	3
S16-1999 - 2000	30.1	2	6
S17-1999 - 2000	29.0	2	3
S18-1999 - 2000	15.2	2	3
S19-1999 - 2000	30.0	3	6
S20-1999 - 2000	28.0	4	7

Tabella 5-2 - Lista delle indagini eseguite nel 1999

PROGETTAZIONE ATI:

Pag. 16 di 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Per i risultati relativi alla campagna di indagine dell'anno 1999-2000 si rimanda agli elaborati T00GE00GEORE01-02 A.

5.3. CAMPAGNA DI INDAGINE 2006 – STRADA DI COLLEGAMENTO S.R. 73- RACCORDO A1 AREZZO-BATTIFOLLE".

La campagna dell'anno 2006 è stata esequita dalla ditta TECNECO S.r.l. ed è costituita da n. 8 sondaggi a carotaggio continuo, denominati S1÷S8 spinti fino profondità variabile tra 6.5 e 30 m da p.c..

Nel corso delle perforazioni sono state eseguite prove penetrometriche dinamiche del tipo Standard Penetration test (SPT), prelevati campioni di terreno indisturbato e installati piezometri per il monitoraggio della falda, è disponibile soltanto la lettura piezometrica eseguita a seguito dell'esecuzione della perforazione.

I campioni sono stati sottoposti a prove di laboratorio geotecnico dalla ditta ELLETIPI srl. e consistono in: prove di classificazione, analisi granulometriche, limiti di Atterberg, prove di taglio, prove triassiali e prove edometriche, prove a espansione laterale libera (ELL).

Nella Tabella sequente sono riportate schematicamente le indagini esequite nel 2006.

SONDAGGIO/ ANNO	PROFONDITÀ (m)	CAMPIONI INDISTURBATI E DISTURBATI	N. SPT	PROFONDITÀ PIEZOMETRI (m)
S1-2006	30.0	2+4	5	30
S2-2006	30.0	2+2	5	27
S3-2006	25.0	3+2	4	24
S4-2006	6.5		1	6
S5-2006	30.0	0+5	5	28.5
S6-2006	30.0	1+5	7	28.7
S7-2006	25.0	2+2	1	23.5
S8-2006	25.0	2+4	7	21

Tabella 5-3 - Elenco delle indagini eseguite nel 2006

Sono state eseguite anche:

- n. 8 prove penetrometriche statiche con punta elettrica tipo CPTE (denominate CPTE2÷CPTE8, CPTE8b) spinte alla max profondità di 19.20 metri dal piano campagna
- n. 2 prospezioni sismiche a rifrazione (ml 240) (Stesa AB ml 96, distanza intergeofonica 4 m, Stesa CD ml 144, distanza intergeofonica 6 m)

Per i risultati relativi alla campagna di indagine dell'anno 2006 si rimanda agli elaborati T00GE00GEORE05 A e T00GE00GEORE06 A.

PROGETTAZIONE ATI:

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

5.4. CAMPAGNA DI INDAGINE 2008 – TRATTO "SAN ZENO - AREZZO"

La campagna dell'anno 2008 è stata eseguita dalla ditta Geotecnica Lavori S.r.l. ed è costituita da n. 6 sondaggi a carotaggio continuo, denominati SD, SI, SL, SE, SK, SM, spinti fino a profondità variabile tra 20 e 29.5 m da p.c. e n. 1 sondaggio a distruzione di nucleo denominato SLD e spinto fino alla profondità di 12 m dal p.c.

Nel corso delle perforazioni sono stati eseguite prove penetrometriche dinamiche del tipo Standard Penetration test (SPT), eseguite prove pressiometriche (SK D1- 9.5 m; SE D1- 10.30; SI D1 – 10.70; SD D1- 12 m) e sono stati posti in opera dei piezometri per il monitoraggio della falda e un inclinometro per il monitoraggio di un dissesto (Terra Snc).

I campioni sono stati sottoposti a prove di laboratorio geotecnico dalla ditta Geoanalisi S.r.l. e consistono in: prove di classificazione, analisi granulometriche, limiti di Atterberg, prove di taglio, prove triassiali e prove edometriche, prove a espansione laterale libera (ELL).

Ad integrazione dei sondaggi sono stati eseguiti anche n 12 pozzetti esplorativi (denominati PZ1-PZ2, PZ4-PZ11, PZ13, PZ18) spinti fino a profondità compresa tra m 1.70 e m 3.50 e nell'ambito dei quali sono state eseguite n. 8 prove di carico su piastra (nei pozzetti esplorativi PZ1-PZ2, PZ4-PZ5, PZ7, PZ9-PZ11).

Nella Tabella seguente sono riportate schematicamente le indagini eseguite nel 2008.

SONDAGGIO / ANNO	PROFONDITÀ (m)	CAMPIONI INDISTURBAT I	N. SPT	N. PROVE PRESSIOMET RICHE	PROFONDITÀ INCLINOMET RO (m)	PROFONDITÀ PIEZOMETRO (m)
SD - 2008	25.0	10	2	1		20
SE - 2008	20.0	2	1	1		15
SI - 2008	20.0	7		1	20	
SL - 2008	20.0	3	3			15
SK - 2008	20.0	5		1		15
SM - 2008	29.5	4	6			15
SId - 2008	12.0					12

Tabella 5-4 - Elenco delle indagini eseguite nel 2008

Per i risultati relativi alla campagna di indagine dell'anno 2008 si rimanda agli elaborati T00GE00GE0RE03/04_A.

PROGETTAZIONE ATI:

GPIngegneria

TRATTO NODO DI AREZZO - SELCI - LAMA (E45) - PALAZZO DEL PERO - COMPLETAMENTO (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

5.5. CAMPAGNA DI INDAGINE 2021 – TRATTO "SAN ZENO - AREZZO"

La campagna dell'anno 2021 è stata eseguita dalla RTI 3TI Progetti Italia - Geoconsol Srl – Geofisica Misue Snc- Pizzi Terra rl – Geoplanning e servizi S.r.l. ed è costituita da n. 23 sondaggi a carotaggio continuo, spinti fino a profondità variabile da 15 e 35 m da p.c..

I sondaggi sono stati eseguiti sull'asse principale e sono stati denominati con una sigla corrispondente al tratto di appartenenza (A per l'Asse principale, C per la Strada di collegamento SR73-Raccordo A1 Arezzo Battifolle, D per la strada di collegamento E78-SR71) seguita da un numero progressivo: i 10 sondaggi eseguiti sulla "Strada di collegamento S.R. 73-Raccordo A1 Arezzo-Battifolle" (Ramo C) sono stati denominati con la sigla CS, i 3 sondaggi eseguiti sulla "Strada di collegamento E78-S.R. 71" (ramo D) sono stati denominati con la sigla DS, mentre per il restante tratto A la sigla è AS.

Durante le perforazioni sono state eseguite n. 32 prove penetrometriche del tipo Standard Penetration Test (SPT) e prelevati n. 9 campioni indisturbati e n. 13 rimaneggiati. Sono inoltre stati installati dei piezometri per il monitoraggio della falda.

I campioni di terreno indisturbato sono stati sottoposti a prove di laboratorio da parte del laboratorio geotecnico GEOPLANNING Srl. e consistono in: consistenti in: analisi e prove di classificazione, prove di taglio, prove edometriche, prove triassiali e prove ad espansione laterale libera (ELL).

Nella Tabella seguente sono riportate schematicamente le indagini eseguite nel 2021.

SONDAGGIO/AN NO	PROFONDITÀ (m)	CAMPIONI INDISTURBATI E RIMANEGGIATI	N. SPT	DOWN-HOLE (m)	PROFONDITÀ PIEZOMETRI (m)
AS01 - 2021	20	3-1	3		
AS02 - 2021	15	2- 2	3		15
AS03 - 2021	20	1- 1	3		19,5
AS04 - 2021	15	1- 1	3		15
AS05 - 2021	20	1- 1	3		
AS06 - 2021	20	0-2	3		20
AS07 - 2021	25	0-2	3		25
AS08 - 2021	35	0-1	3	35	
AS09 - 2021	15	1-0	2		15
AS10 - 2021	25	0-2	6		
CS01 - 2021	35	3-0	3	35	
CS02 - 2021	30	3-0	3		30
CS03 - 2021	35	3-0	3	35	
CS04 - 2021	35	3-0	3	35	
CS05 - 2021	30	3-0	3		30
CS05bis - 2021	30	3-0	3		30
CS06 - 2021	35	2-0	3	35	
CS07 - 2021	30	3-0	3		30

PROGETTAZIONE ATI:

Pag. 19 di 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

CS08 - 2021	30	3-0	3		30
CS09 - 2021	35	3-0	3	35	
DS01 - 2021	20	1-0	3		20
DS02 - 2021	30	3-0	3		30
DS03 - 2021	20	1-0	3		20

Tabella 5-5 - Elenco delle indagini eseguite nel 2021

In corrispondenza di tutti i punti di esecuzione di carotaggi sono state eseguite propedeuticamente ai lavori delle indagini elettromagnetiche finalizzate alla individuazione di eventuali corpi sepolti.

Sono state eseguite, inoltre, le seguenti indagini:

- n. 4 prospezioni Multichannel Analysis of Surface Waves, MASW (A MASW1/2/3/4);
- n. 10 prospezioni di sismica a rifrazione (A Sism 01-02-03-04 e C Sism 01-02-03 e D Sism 01-02-03);
- n. 6 prove Down-hole nei fori dei sondaggi AS08, CS01, CS03, CS04, CS06, CS09.
- n. 16 pozzetti geognostici eseguiti con escavatore meccanico, denominati APZ 01, 02, 03, 04, 05, 08, 09, 10, 12, CPZ01, 02, 03, 05, 08, DPZ_01, 02 e spinti fino alla profondità di 4 m dal p.c. All'interno di tutti i pozzetti è stata eseguita una prova di carico su piastra e sono stati prelevati campioni di terreno rimaneggiato per le prove di classificazione di laboratorio (granulometrie e limiti di Atterberg).

Per i risultati relativi alla campagna di indagine dell'anno 2008 si rimanda agli elaborati T00GE00GEORE07÷10 A.

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

6. PROVE IN SITO

6.1. PROVE PENETROMETRICHE DINAMICHE (SPT)

La prova penetrometrica SPT consiste nell'infissione a percussione di un campionatore standard, del peso di 63,5 kg, che consente di valutare la resistenza meccanica, valutata come numero di colpi N del maglio per ottenere un avanzamento di 300 mm. Tale prova si esegue a varie profondità lungo una verticale di sondaggio e consente di determinare il grado di addensamento attraverso la resistenza che il terreno offre alla penetrazione. Il campionatore può essere a punta aperta (tipo Raymond) oppure, per terreni grossolani e con presenza di ciottoli, a punta conica.

Il numero di colpi (N) necessario per una penetrazione del campionatore pari a 300 mm (dopo 150 mm di infissione preliminare), è il dato assunto come indice della resistenza alla penetrazione (N_{SPT}). I valori di N_{SPT} possono essere normalizzati per tener conto dell'influenza della pressione efficace del terreno, riferendoli ad un valore unitario della pressione verticale efficace σ'_{Rif} = 1 kg/cm², mediante l'espressione:

$$N_1 = C_N \cdot N_{SPT}$$

dove N è il numero di colpi (N_{SPT}) misurati con la prova standard e C_N è un coefficiente di correzione che dipende dalla tensione efficace litostatica σ'_{v} normalizzata ($\sigma'_{v0}/\sigma'_{Rif}$) ed è ricavabile dalla:

$$C_N = 1/\sigma_v^{(n)}$$

con n=0.5 (Liao e Whitman, 1985) e σ'_{Rif} = 1 kg/cm².

È inoltre possibile tenere conto anche dell'efficienza del dispositivo di infissione e riferire il numero di colpi N ad un rendimento medio identificato tradizionalmente pari al 60%.

Il valore normalizzato di N, che tenga conto sia della pressione del terreno sovrastante che del rendimento del sistema di infissione, può essere quindi calcolato come: $(N_1)_{60} = \frac{ER \times N_{SPT}}{60 \times {\sigma'}_v^{(n)}}$

$$(N_1)_{60} = \frac{ER \times N_{SPT}}{60 \times \sigma_n^{\prime(n)}}$$

dove ER è il rendimento medio misurato del sistema di infissione, assunto mediamente pari al 60% per gli apparecchi SPT italiani.

L'Associazione Geotecnica Italiana (AGI) ha incluso la prova SPT nelle Raccomandazioni per le Indagini Geotecniche (1977), mentre la prova è compresa negli standard ASTM (D4633-16 e D1586/D1586M-18) e negli standard europei UNI EN ISO (22476-3:2012).

PROGETTAZIONE ATI:

Pag. 21 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

6.2. RILIEVO DEI LIVELLI DI FALDA

Per l'inquadramento idrogeologico dell'area si rimanda alla Relazione geologica (T00GE01GEORE01 A) e agli elaborati progetto della idrogeologica di Carta (T00GE01GEOCI01÷7 A).

Allo scopo di indagare l'effettiva presenza di falde idriche sotterranee e il relativo andamento della superficie piezometrica, nel corso delle campagne di indagini geognostiche sono stati acquisiti dati di monitoraggio relativi alle strumentazioni piezometriche installate.

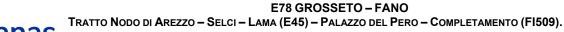
Si riportano in seguito le Tabelle relative ai monitoraggi piezometrici eseguiti nel corso delle campagne geognostiche eseguite per il progetto e le letture del livello di falda eseguite durante i sondaggi.

SONDAGGIO	TIPOLOGIA PIEZOMETRO	LETTURA 16/11/1994 (m DA P.C.)	LETTURA 27/10/1994 (m DA P.C.)	LETTURE ESEGUITE DURANTE L'ESECUZIONE DEI SONDAGGI (m DA P.C.)
S1	Tubo aperto	3.1	3.95	
S2	Tubo aperto	9.5	9.95	
S3	-			7.5
S4	-			assente
S5	Tubo aperto	5.4		
S6	Tubo aperto	9	9.4	
S 7	-			assente
S8	Tubo aperto	9.95	9.9	
S 7	1			4
S9	-			4
S10	-			0.5
S11	-			6.85
S12	Tubo aperto	7.8	8.1	
S13	-			5.4

Tabella 6-1 - Livelli del livello di falda misurati in occasione della campagna di indagine del 1994

SONDAGGIO	LETTURE ESEGUITE DURANTE L'ESECUZIONE DEI SONDAGGI (m DA P.C.)
S1	7.6
S2	6.8
S3	6.5
S4	2.7
S5	5.5
S6	5.3

PROGETTAZIONE ATI:


Pag. 22 di 210

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

SONDAGGIO	LETTURE ESEGUITE DURANTE L'ESECUZIONE DEI SONDAGGI (m DA P.C.)
S7	4.8
S8	3.5
S9	5.5
S10	5.9
S11	6.7
S12	8.4
S13	0.8
S14	4.7
S15	4.3
S16	4
S17	3.5
S18	2.4
S19	3.1
S20	2.9

Tabella 6-2 - Livelli del livello di falda misurati in occasione della campagna di indagine del 1999-2000

PIEZOMETRO	TIPOLOGIA PIEZOMETRO	LETTURE (m s.l.m.)
S1	fessurato da 6-9 e da 21-27 m	9.5
S2	fessurato da 6-9 e da 18-27 m	10.5
S3	fessurato da 3-9 e da 15-24 m	8.7
S4	fessurato da 3-6 m	>6.5
S5	fessurato da 3-27 m	12.4
S6	fessurato da 4.7-7.7 e da 16.7- 28.7 m	12.4
S7	fessurato da 2.5-8.5 e da 11.5- 23.5 m	3.4
S8	fessurato da 3-21 m	10.6

Tabella 6-3 - Livelli piezometrici misurati in occasione della campagna di indagine del 2006

PIEZOMETRO	TIPOLOGIA PIEZOMETRO	LETTURA 13/03/2008 (m DA P.C.)
SD-08	Tubo aperto	0.07
SE-08	Casagrande	11.36
SL-08	Tubo aperto	2.57
SK-08	Tubo aperto	13.05
SM-08	Tubo aperto	2.42

PROGETTAZIONE ATI:

Pag. 23 di 210

E78 GROSSETO – FANO
TRATTO NODO DI AREZZO – SELCI – LAMA (E45) – PALAZZO DEL PERO – COMPLETAMENTO (FI509).

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

PIEZOMETRO	TIPOLOGIA PIEZOMETRO	LETTURA 13/03/2008 (m DA P.C.)
SK-08	Tubo aperto	13.05
SId-08	Tubo aperto	7.53

Tabella 6-4 - Livelli piezometrici misurati in occasione della campagna di indagine del 2008

		LETTURA (m DA P.C.)									
PIEZOMETRO	TIPOLOGIA PIEZOMETRO	02/03/2021	13/04/2021	04÷06/21	08/06/2021	07/07/2021	29/09/2021	04/11/2021	14/12/2021	14/01/2022	17/02/2022
AS02	Tubo aperto	8.00	5.25				7.32	7.15	5.52	5.19	5.76
AS03	Tubo aperto	4.00	2.53				5.56	5.28	3.53	3.00	3.18
AS04	Tubo aperto	1.00	0.29				5.58	5.11	1.66	0.20	0.47
AS06	Tubo aperto	13.00	11.86				13.52	13.45	12.88	12.35	12.63
AS07	Tubo aperto	7.50	6.29				13.28	13.67	13.15	12.44	12.45
AS09	Tubo aperto	2.00	1.29				5.82	3.00	1.29	1.14	1.15
CS02	Tubo aperto			4.00		3.20	11.42	11.08	10.88	10.91	10.85
CS05	Tubo aperto			3.27		3.00	10.15	10.23	10.19	9.69	9.75
CS05bis	Tubo aperto			5.52		4.13	11.40	11.50	11.47	11.13	11.09
CS07	Tubo aperto			6.23		5.20	10.14	9.63	9.45	8.95	9.15
CS08	Tubo aperto			7.50		9.30	10.36	10.84	10.44	9.96	9.80
DS01	Tubo aperto			2.64	2.10		2.54	2.59	1.24	0.94	1.07
DS02	Tubo aperto			3.20	2.65		2.94	2.95	1.88	1.38	1.30
DS03	Tubo aperto			2.79	1.70		11.15	9.35	5.14	3.42	4.00

Tabella 6-5 - Livelli piezometrici misurati in occasione della campagna di indagine del 2021

TRATTO NODO DI AREZZO - SELCI - LAMA (E45) - PALAZZO DEL PERO - COMPLETAMENTO (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

6.3. PROVE DI CARICO SU PIASTRA

La prova di carico su piastra (PLT) simula il comportamento di un terreno sottoposto a un carico ed è in grado di fornire informazioni riguardo il rapporto carico/cedimento e il modulo di deformazione del terreno Md.

La prova è di rapida e semplice esecuzione: si tratta per lo più di disporre di una superficie di prova debitamente rullata e regolarizzata, sulla quale la piastra (comunemente del diametro di 300 mm, ma anche di diametri decisamente superiori) possa aderire nel modo più uniforme possibile. Il carico, trasmesso tramite un martinetto idraulico, viene applicato alla piastra sfruttando una massa di contrasto, comunemente data da un macchinario pesante (trattore, escavatore, autocarro, ecc.). La prova PLT è condotta rispettando la norma CNR BU N. 146 del 14 dicembre 1992.

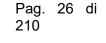
Nell'ambito delle indagini sono state realizzate 8 prove PLT nella campagna dell'anno 2008 e 16 nella campagna del 2021 all'interno di pozzetti.

Nella seguente Tabella sono presentati i valori del modulo di deformazione Md ottenuti e specificata la classificazione delle terre secondo la norma UNI 11531-1:2014 sui campioni estratti durante l'esecuzione dei pozzetti.

POZZETTO	ANNO	PROFONDITA' CAMPIONE z (m)	CLASSIFICAZIONE CAMPIONI secondo UNI 11531-1:2014	Md (MPa)
A PZ01 (A S01)	2021	2	A7-6	24.9*
A PZ01 (A S01)	2021	4	A4	
A PZ02 (A S02)	2021	2	A6	25.6*
A PZ02 (A S02)	2021	4	A6	
A PZ03 (A S03)	2021	2	A6	27.8*
A PZ03 (A S03)	2021	4	A6	
A PZ04 (A S04)	2021	2	A6	21.5*
A PZ04 (A S04)	2021	4	A7-6	
A PZ05 (A S05)	2021	2	A7-6	18.5*
A PZ05 (A S05)	2021	4	A6	
A PZ06 (A S06)	2021	2	A6	
A PZ06 (A S06)	2021	4	A6	
A PZ07 (A S07)	2021	2	A2-6	
A PZ07 (A S07)	2021	4	A2-6	
A PZ08 (A S08)	2021	2	A2-4	34.6*
A PZ08 (A S08)	2021	4	A6	
A PZ09 (A S09)	2021	2	A6	15.7*
A PZ09 (A S09)	2021	4	A7-6	
A PZ010 (A S10)	2021	2	A4	13.1*
A PZ010 (A S10)	2021	4	A4	
D PZ01 (D S01)	2021	2	A6	30.0*
D PZ01 (D S01)	2021	4	A6	
D PZ02 (D S02)	2021	2	A6	26.8*

PROGETTAZIONE ATI:

Pag. 25 di 210


GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

POZZETTO	ANNO	PROFONDITA' CAMPIONE z (m) CLASSIFICAZIONE CAMPIONI secondo UNI 11531-1:2014		Md (MPa)
D PZ02 (D S02)	2021	4	A2-6	
D PZ03 (D S03)	2021	2	A6	
D PZ03 (D S03)	2021	4	A6	
C PZ01 (C S01)	2021	2	A7-6	22.0*
C PZ01 (C S01)	2021	4	A6	
C PZ02 (C S02)	2021	2	A6	22.1*
C PZ02 (C S02)	2021	4	A7-6	
C PZ03 (C S03)	2021	2	A6	22.1*
C PZ03 (C S03)	2021	4	A6	
C PZ04 (C S04)	2021	2	A6	
C PZ04 (C S04)	2021	4	A4	
C PZ05 (C S05)	2021	2	A2-4	28.3*
C PZ05 (C S05)	2021	4	A2-4	
C PZ07 (C S07)	2021	2	A7-6	
C PZ07 (C S07)	2021	4	A4	
C PZ08 (C S08)	2021	2	A2-4	30.7*
C PZ08 (C S08)	2021	4	A4	
C PZ09 (C S09)	2021	2	A6	
C PZ09 (C S09)	2021	4	A7-6	
C PZ05bis (C S09)	2021	2	A7-6	
C PZ05bis (C S09)	2021	4	A2-4	
C PZ06 (C S09)	2021	2	A2-4	
C PZ06 (C S09)	2021	4	A2-4	
Pz01cp	2008	0.8		25.4
Pz02cp	2008	0.95		24.8
Pz04cp	2008	0.8		28.3
Pz05cp	2008	0.85		69.8
Pz6	2008	0.8		2.4
Pz09cp	2008	1.2		9.6
Pz10cp	2008	1		19.7
Pz11cp	2008	1		18.5

^{*} Le prove di carico su piastra (PLT) della campagna del 2021 sono state eseguite alla profondità di 0.2-0.3 m da p.c.

Tabella 6-6 - Valori del Modulo di deformazione Md e classificazione UNI 11531-1:2014 per i pozzetti delle campagne di indagini del 2008 e del 2021.

PROGETTAZIONE ATI:

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

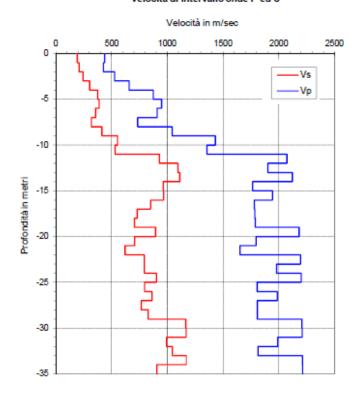
GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

6.4. INDAGINI SIMICHE

Nell'ambito del presente Progetto definitivo è stata eseguita una campagna di indagini geofisiche nel 2021 che ha compreso l'esecuzione di prove sismiche in foro di tipo Down-hole, prospezioni sismiche a rifrazione, prove sismiche di onde superficiali di tipo MASW (Multichannel Analysis of Surface Waves).

Sono state eseguite, inoltre, indagini con metodo elettromagnetico nel dominio della frequenza di tipo FDEM, all'individuazione di eventuali elementi metallici sepolti in corrispondenza dei siti dei previsti carotaggi e saggi di scavo.

6.4.1. Prove sismiche in foro (Down Hole)


Sono state eseguite misure con tecnica Down-Hole, che hanno consentito, nei sondaggi A S08 per il Tratto dell'Asse principale e CS01, CS03, CS04, CS06 e CS09 per il Tratto Strada di collegamento SR73 - Raccordo A1 Arezzo Battifolle, la misura di dettaglio del profilo di velocità delle onde di compressione e di taglio grazie alle quali è possibile ottenere i valori dei moduli elastici dinamici del terreno fino a 35 m di profondità.

Nella seguenti Figure una immagine che rappresenta il funzionalmento della tecnica Down-hole e un esempio di restituzione delle velocità V_S e V_P con la profondità (DH- AS08).

SCHEMA DI DOWN-HOLE A DUE RICEVITORI

Azoto in Piostro battuto Geofani 30

Velocità di intervallo onde P ed S

PROGETTAZIONE ATI:

GPIngegneria

210

Pag. 27 di

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Figura 6-1 Schema del funzionamento della tecnica Down – hole e esempio della restituzione delle velocità V_S e V_P con la profondità

6.4.2. PROSPEZIONI SIMICHE A RIFRAZIONE

Sono state eseguite 4 prove di sismica a rifrazione ad onde P e S nel Tratto Asse principale (A_Sism01, A_Sism02, A_Sism03, A_Sism04), 3 nel Tratto Strada collegamento SR73 – Raccordo A1 Arezzo Battifolle (C_Sism01, C_Sism02, C_Sism03) e 3 nel Tratto Strada collegamento E78-SR71 (D Sism01, D Sism02, D Sism03).

Di seguito un esempio della restituzione dei dati in onde S e P per la A Sism1.

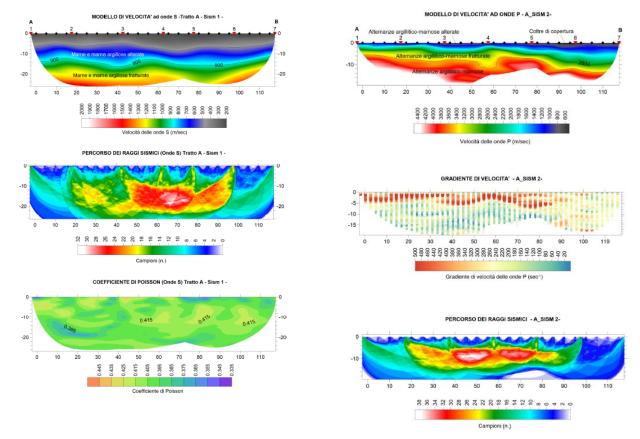


Figura 6-2 Esempio della restituzione dei dati in onde S e P per la A_Sism1.

TRATTO NODO DI AREZZO - SELCI - LAMA (E45) - PALAZZO DEL PERO - COMPLETAMENTO (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

6.4.3. MASW

Lungo il tracciato sono state realizzate 4 prospezioni sismiche con metodologia MASW nel Tratto Asse principale (A Masw01, A Masw02, A Masw03, A Masw04).

La tecnica di analisi si basa sullo studio della dispersione della velocità di fase delle onde superficiali di tipo Rayleigh (R).

Nella seguente Figura l'esempio della A_Masw2: la curva di dispersione, la curva di inversione e della restituzione della velocità delle onde S.

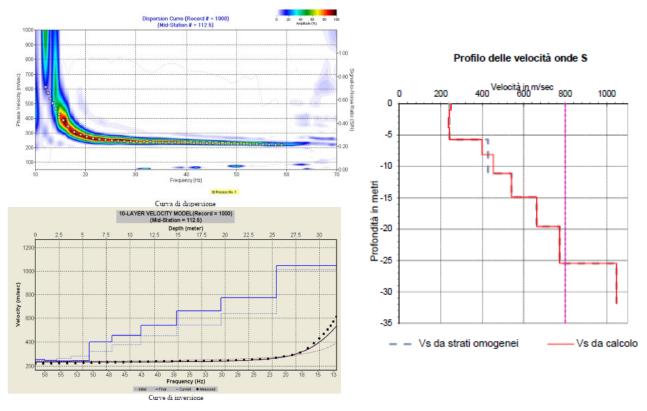


Figura 6-3 A_Masw2: esempio delle curve di dispersione e inversione e della restituzione della velocità delle onde s

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

6.5. PROVE DI LABORATORIO

Sui campioni prelevati durante i sondaggi sono state eseguite le seguenti prove di laboratorio:

- Parametri fisici e classificazione (fusi granulometrici, limiti di Atterberg, indice plasticità, pesi di volume naturale, grado di saturazione, contenuto di acqua naturale, indice dei vuoti iniziale);
- Prova di taglio diretto e prova di taglio residuo;
- Prova triassiale consolidata drenata (CID);
- Prova triassiale non consolidata non drenata (UU);
- Prova triassiale consolidata non drenata (CIU);
- Prova ad espansione laterale libera (ELL);
- Prova edometrica;
- Point Load Test;
- Prova di compressione uniassiale;
- Prova permeabilità diretta cella triassiale;

I risultati delle prove di laboratorio vengono riportati nelle tabelle in Allegato 1.

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

7. CRITERI DI INTERPRETAZIONE DELLE INDAGINI

Dal punto di vista dei criteri di caratterizzazione geotecnica, si distinguono tre tipologie di materiale:

- materiali a prevalente comportamento coesivo;
- materiali a prevalente comportamento incoerente;
- substrato roccioso.

L'individuazione del tipo di materiale, e quindi la scelta del metodo di interpretazione, è fatta principalmente sulla base della descrizione stratigrafica dei sondaggi e delle prove di laboratorio sui campioni di terreno. Sono stati inoltre utilizzati i risultati ottenuti dalle prove N_{SPT} e i risultati in termini di velocità delle onde di taglio (V_S) da prove geofisiche Down-Hole e sismica a riflessione.

7.1. PROPRIETÀ FISICHE

7.1.1. IDENTIFICAZIONE DEI TERRENI

La classificazione dei terreni è stata ottenuta dai risultati delle prove di laboratorio in termini di fusi granulometrici.

7.1.2. PARAMETRI FISICI

La determinazione dei parametri fisici è stata effettuata facendo riferimento ai risultati alle prove di laboratorio in termini di:

- limiti di Atterberg (limite liquido, limite plastico, indice di plasticità);
- pesi di volume naturale;
- grado di saturazione;
- contenuti d'acqua naturale;
- indice dei vuoti iniziale.

7.1.3. DENSITÀ RELATIVA

I valori di densità relativa Dr dei terreni granulari sono stati valutati in funzione dei risultati delle prove penetrometriche Standard Penetration Test, mediante diverse correlazioni in base alla natura dei terreni.

In presenza di terreni sabbiosi i valori sono stati valutati mediante l'impiego della relazione introdotta da Terzaghi e Peck (1948) e successivamente modificata da Skempton (1986), riportata di seguito:

$$D_r = \sqrt{\frac{(N_1)_{60}}{A}}$$

dove:

PROGETTAZIONE ATI:

Pag. 31 di 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

(N₁)₆₀ è la resistenza penetrometrica dinamica normalizzata per tenere conto sia della tensione litostatica che del rendimento del sistema di infissione

-
$$A \cong \begin{cases} 60/65 \text{ sabbie grosse} \\ 55/60 \text{ sabbie fini} \end{cases}$$

In presenza di terreni di natura ghiaioso-sabbiosa invece i valori della densità relativa sono stati stimati secondo la relazione proposta da Yoshida et al. (1988):

$$D_r = 25 \cdot N_{SPT}^{0.44} \cdot (\sigma'_{vo})^{-0.13}$$

nella quale la pressione verticale effettiva σ'_{vo} è espressa in kPa.

7.2. CARATTERISTICHE DI RESISTENZA AL TAGLIO

7.2.1. TERRENI COESIVI

7.2.1.1. Resistenza a taglio in condizioni non drenate

La resistenza al taglio non drenata cu dei terreni a grana fine è stata valutata facendo riferimento all'interpretazione delle prove in sito (SPT, Pocket Penetrometer e Torvane) e alle prove di laboratorio di compressione uniassiale ad espansione laterale libera (ELL).

Valutazione di cu da prove SPT

La coesione non drenata cu è stata stimata, in funzione della resistenza compressione semplice qu, secondo quanto proposto nel manuale del NAV-FAC 7.1 Soil Mechanics (1982) come riportato nel grafico seguente.

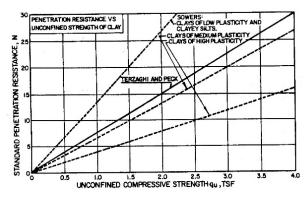


Figura 7-1 - Resistenza a compressione semplice e Nspt (Nav-Fac D.M. 7.1 1982)

Dal quale si ottiene la seguente relazione:

$$c_{\nu}(kPa) = A \times N_{SPT}$$

dove:

A = 4per argille di bassa plasticità e limi;

A = 6per argille di media plasticità;

A= 12 per argille alta plasticità.

Pag. 32 di PROGETTAZIONE ATI: 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Valutazione di c_u da prove con Pocket Penetrometers e Torvane

La resistenza al taglio non drenata è stata stimata anche a partire dai risultati delle prove di Pocket Penetrometers e Torvane eseguite durante l'esecuzione dei sondaggi, dividendo per due la resistenza alla punta misurata in corso di perforazione (PP) confrontata con la resistenza al taglio fornita dalla prova scissometrica Torvane.

I risultati di entrambe le prove sono stati elaborati, restituendo un valor medio tra entrambe le prove lungo uno spessore significativo.

Valutazione di cu da prove di laboratorio

Inoltre, sono a disposizione i risultati delle prove di espansione libera (ELL) condotte sui campioni prelevati nel corso dei sondaggi.

7.2.1.2. Resistenza a taglio in condizioni drenate

I parametri di resistenza in termini di sforzi efficaci sono stati determinati sulla base dei risultati delle prove di laboratorio disponibili: taglio diretto (TD), triassiali consolidate drenate (TX-CID) e triassiali consolidate non drenate (TX-CIU).

7.2.2. TERRENI INCOERENTI

Valutazione di Ø' da prove SPT

L'angolo di resistenza al taglio è stato stimato a partire dalle prove SPT con la correlazione proposta dalla Japanese National Railway, valida per sabbie medio grosse e sabbie ghiaiose:

$$\mathcal{O}' = 0.3 \times N_{SPT} + 27^{\circ}$$
 (Japanese-National-Railway)

Per sabbie fini o limose invece è stata utilizzata la correlazione proposta da Shioi e Fukuni (1982):

$$Q' = \sqrt{15 \times N_{SPT}} + 15^{\circ}$$
 (Road-Bridge-Specification)

Valutazione di Ø' da prove di laboratorio

Inoltre, sono a disposizione i risultati delle prove di taglio diretto (TD), triassiali consolidate drenate (TX-CID) e triassiali consolidate non drenate (TX-CIU) condotte sui campioni prelevati nel corso dei sondaggi.

7.3. CARATTERISTICHE DI DEFORMABILITÀ

7.3.1. MODULI ALLE PICCOLE DEFORMAZIONI

Il modulo G_0 è stato valutato in base alla velocità delle onde di taglio V_s , ottenute direttamente dalle prove geofisiche (Down Hole, Sismiche a rifrazione), utilizzando le seguenti equazioni:

PROGETTAZIONE ATI:

E78 GROSSETO – FANO
TRATTO NODO DI AREZZO – SELCI – LAMA (E45) – PALAZZO DEL PERO – COMPLETAMENTO (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

$$G_0 = \frac{\rho}{g} (V_s)^2$$

dove:

- ρ è la densità del terreno;
- Vs è la velocità delle onde di taglio.

Per la valutazione di v_s si può riferimento, inoltre, alle formule di Yoshida et al. (1988):

$$V_S = k \times N_{SPT}^{0.25} \times \sigma_{vo}^{0.14}$$

in cui k rappresenta un coefficiente compreso tra 49÷60, in funzione del tipo di terreno analizzato.

TERRENO	SABBIA FINE	25% GHIAIA	50% GHIAIA	QUALSIASI TERRENO
k	49	56	60	55

Tabella 7-1 - Coefficiente k in funzione del tipo di terreno Yoshida et al. (1988)

Dal modulo di taglio è possibile ricavare il modulo elastico E_0 alle piccole deformazioni definito come:

$$E_0 = G_0 \cdot 2 \cdot (1 + \nu)$$

dove:

 ν è il coefficiente di Poisson assunto pari 0.25 per i terreni granulari e pari a 0.30 per i terreni coesivi

7.3.2. MODULI OPERATIVI

Essendo il comportamento dei terreni non lineare, i moduli di deformabilità "operativi" da associare allo specifico problema al contorno vengono a dipendere dalle effettive deformazioni indotte e/o dal grado di mobilitazione della resistenza al taglio.

Nel caso di ricorso a metodi di calcolo non lineari i dati di ingresso sono essenzialmente i moduli elastici iniziali e le curve di degrado del modulo in funzione del livello deformazionale indotto.

Nel caso di ricorso a metodi di calcolo lineari il modulo viene stimato ipotizzandolo pari ad una certa percentuale di quello iniziale.

GPIngegneria

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

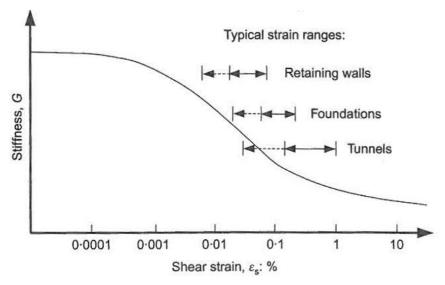


Figura 7-2 - Variazione tipica del modulo di rigidezza in funzione della deformazione unitaria, Mair (1993).

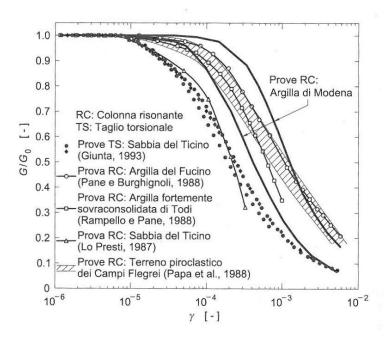


Figura 7-3 - Dipendenza del modulo di taglio dal livello deformativo, Lancellotta (2012).

7.3.2.1. Terreni incoerenti

Nel caso di problematiche di cedimento di fondazioni superficiali e di utilizzo delle note espressioni ricavate dalla teoria dell'elasticità per aree di carico rettangolari, il modulo di Young "operativo" può essere assunto pari a circa 1/10÷1/8 E₀, valore significativo di deformazioni di taglio unitarie dell'ordine di 0.1% inoltre, si può far riferimento al modulo E₂₅ (modulo con riferimento ad un grado di mobilitazione della resistenza ultima a taglio pari al 25-30% e una deformazione dell'ordine di 1x10-3) determinato con la correlazione di Jamiolkowski et al. (1988) in funzione della densità relativa D_r e di N_{SPT}:

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

$$E_{25} = (1.05 - 0.35 D_r) \times N_{SPT}$$

Nel calcolo di opere di sostegno tipo paratie, tirantate e non, e di opere di fondazione di tipo profondo il modulo di Young "operativo" può essere assunto pari a 1/5÷1/8 di quello iniziale, valore significativo di deformazioni di taglio unitarie minori di 0.1%, al pari si può far riferimento al modulo compressibilità E valutato tramite la correlazione di D'Appollonia (1970):

$$E = 0.756 \times N_{SPT} + 18.75$$

7.3.2.2. Terreni coesivi

I parametri di deformabilità dei terreni coesi (indice di compressione c_c , indice di ricompressione c_r , coefficiente di compressione secondaria C_α , coefficiente di consolidazione C_v e grado di sovraconsolidazione OCR) sono stati definiti a partire dai risultati delle prove Edometriche condotte nelle varie campagne di indagine.

Inoltre, per ulteriore confronto, l'indice di compressione è stato ricavato a partire dall'indice di plasticità (Kulhawy and Mayne, 1990).

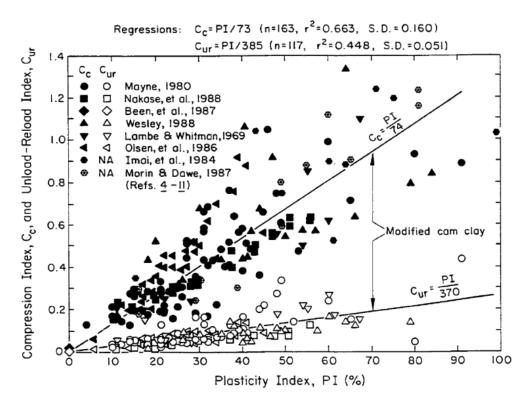


Figura 7-4 - Dipendenza dell'indice di compressione Cc da IP (Kulhawy and Mayne, 1990).

Inoltre, per il dimensionamento delle opere di fondazione diretta è stato definito il modulo confinato $M_{\text{fond. Dirette}}$, valutato sulla base di:

PROGETTAZIONE ATI:

Pag. 36 di 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

le correlazioni proposte da Stroud et Butler nel 1975, per depositi coesivi di origine glaciale con presenza di inclusioni di ghiaia e ciottoli:

$$M(MPa) = f \times N_{SPT}$$

con f pari a 0,6 nel caso di terreni limosi e 0,5 nel caso di terreni prevalentemente argillosi.

i risultati delle prove edometriche condotte sui campioni prelevati in sito.

Per il dimensionamento delle opere di sostegno e di fondazioni profonde il modulo confinato operativo è stato valutato a partire dai corrispondenti moduli M a deformazioni elevate (definiti per il dimensionamento delle opere di fondazione dirette) considerando un incremento della rigidezza del doppio circa.

7.4. CARATTERIZZAZIONE GEOMECCANICA DEL SUBSTRATO ROCCIOSO

L'intero tracciato è caratterizzato dalla presenza di un substrato roccioso che è affiorante in alcuni tratti (tratta Asse Principale: pk: 2+975 ÷ 3+175, tratta Strada di collegamento SR73-Raccordo A1 Arezzo - Battifolle: pk: 2+275÷2+600) mentre, generalmente si trova al di sotto dei terreni alluvionali per il resto del tracciato del progetto.

Il substrato non è stato rilevato nel tratto Asse Principale alle pk: 0+000 ÷0+575, 3+450 ÷ 5+260; nella tratta Strada di collegamento SR73-Raccordo A1 Arezzo – Battifolle alle pk: 0+000 ÷0+075, 1+025÷1+525, 3+050÷3+875, mentre nella Strada di collegamento E78-SR71 è stato rilevato soltanto nel sondaggio DS02.

In ambito della Relazione Geologica (T00GE01GEORE01 A) sono stati eseguiti 5 rilievi geomeccanici affrontati nella Relazione – Geologia – Rilievi geomeccanici (T00GE01GEORE02 A).

7.4.1. CLASSIFICAZIONE DELLA QUALITÀ DELL'AMMASSO ROCCIOSO

Il Rock Quality Designation (RQD) è un parametro di classificazione delle rocce proposto nel 1963 da D. U. Deere. Su ogni spezzone di roccia estratto in ciascuna manovra di carotaggio è possibile effettuare il calcolo del parametro RQD come il rapporto di seguito illustrato:

$$RQD(\%) = \frac{\sum lunghezza\ spezzoni\ materiale\ fresco > 10\ cm}{lunghezza\ totale\ della\ manovra\ di\ carotaggio}\cdot 100$$

Dai valori di RQD ottenuti è possibile classificare la qualità della roccia come illustrato nella seguente Tabella, proposta da Deree (1963).

RQD (%)	QUALITÀ
<25	Molto scarsa
25-50	Scarsa

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

50-75	Discreta
75-90	Buona
90-100	Eccellente

Tabella 7-2 - Classificazione della qualità dell'ammasso roccioso tramite il calcolo del parametro RQD, Deree (1963).

In alternativa l'RQD può essere ricavato durante un rilievo geomeccanico basandosi sui parametri di densità delle discontinuità, utilizzando un approccio monodimensionale con la relazione di Priest e Hudson (1981):

$$RQD = 100e(0.1n)0.1n + 1)$$

dove n= numero medio di giunti per unità di lunghezza (metro);

oppure con l'approccio bidimensionale proposto da Palmstom (1982):

$$RQD = 115 - 3.3 J_V$$

dove J_v= numero di fratture per metro cubo di roccia.

I valori dell'RQD sono stati ricavati durante i rilievi geomeccanici e variano tra il 9.1 e il 73.6% indicando una forte variabilità della qualità della roccia, da molto scarsa a buona.

7.4.2. PARAMETRI DI RESISTENZA A ROTTURA E DI DEFORMABILITÀ

La classificazione dell'ammasso roccioso tramite il metodo GSI può essere utilizzata per la stima dei principali parametri di resistenza e deformabilità dell'ammasso roccioso.

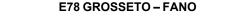
In questa sezione si illustra brevemente il procedimento per la determinazione della resistenza dell'ammasso roccioso di fondazione in accordo con i criteri di Hoek-Brown e di Mohr-Coulomb.

Il criterio di rottura di Hoek-Brown generalizzato per ammassi rocciosi (Hoek et al., 2002) è definito dalla seguente relazione:

$$\sigma_1' = \sigma_3' + \sigma_{ci} \left(m_b \frac{\sigma_3'}{\sigma_{ci}} + s \right)^a$$

dove:

- σ'_1 e σ'_3 sono rispettivamente gli sforzi efficace principale massimo e minimo;
- σ_{ci} è la resistenza a compressione uniassiale della roccia. Per il valore della resistenza a compressione si è fatto riferimento alle prove eseguite durante i rilievi geomeccanici riportati nella seguente Tabella;



GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

N. STAZIONE GEOMECCANICA	RESISTENZA A COMPRESSIONE UNIASSIALE (MPa)
Stazione geomeccanica SG1	38.4
Stazione geomeccanica SG2	36.8
Stazione geomeccanica SG3	40.7
Stazione geomeccanica SG4	36.8
Stazione geomeccanica SG5	30.6

Tabella 7-3 Resistenza a compressione semplice (MPa) calcolate durante i rilievi geomeccanici (T00GE01GEORE02_A)

 m_i è una costante del materiale intatto, calcolabile a partire dai risultati delle prove di laboratorio o, in assenza di esse, in base alla natura della roccia tramite l'utilizzo di tabelle proposte da vari autori. Nella Tabella seguente si riporta la proposta di Hoek (2006). Per il caso di studio è stato scelto il valore conservativo pari a 7.

Rock	Class	Group	Texture			
type			Coarse	Medium	Fine	Very fine
TARY	Clastic		Conglomerates* (21 ± 3) Breccias (19 ± 5)	Sandstones 17 ± 4	Siltstones 7 ± 2 Grey wackes (18 ± 3)	Claystones 4 ± 2 Shales (6 ± 2) Maris (7 ± 2)
SEDIMENTARY		Carbonates	Crystalline Limestone (12 ± 3)	Sparitic Limestones (10 ± 2)	Micritic Limestones (9 ± 2)	Dolomites (9 ± 3)
	Non- Clastic	Evaporites		Gypsum 8 ± 2	Anhydrite 12 ± 2	
	Organic					Chalk 7 ± 2
METAMORPHIC	Non Foliate	d	Marble 9 ± 3	Homfels (19 ± 4) Metasandstone (19 ± 3)	Quartzites 20 ± 3	
METAN	Slightly foliated		Migmatite (29 ± 3)	Amphibolites 26 ± 6		
	Foliated**		Oneiss 28 ± 5	Schists 12 ± 3	Phyllites (7 ± 3)	States 7 ± 4
		Light	Granite 32 ± 3 Granodio (29 ± 3			
Sinc	Plutonic	Dark	Gabbro 27 ± 3 Norite 20 ± 5	Dolerite (16 ± 5)		
IONEOUS	Hypabyssal		Porphyries (20 ± 5)		Diabase (15 ± 5)	Peridotite (25 ± 5)
Volcanic		Lava		Rhyolite (25 ± 5) Andesite 25 ± 5	Dacite (25 ± 3) Basalt (25 ± 5)	Obsidian (19 ± 3)
		Pyroclastic	Agglomerate (19±3)	Breccia (19 ± 5)	Tuff (13 ± 5)	

Tabella 7-4 - Determinazione della costante mi (Hoek, 2006) in funzione della granulometria e della struttura cristallina.

PROGETTAZIONE ATI:

Pag. 39 di 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

GSI (Geological Strenght Index) è un indice per la classificazione dell'ammasso roccioso proposto da Hoek et al. (1994). Questo metodo è basato sul grado di fratturazione dell'ammasso e sulle caratteristiche dei giunti. A seguito della raccolta dei dati durante i rilievi geomeccanici sono stati ricavati i valori di GSI, di seguito riportati.

N. STAZIONE GEOMECCANICA	GSI
Stazione geomeccanica SG1	47.4
Stazione geomeccanica SG2	58.9
Stazione geomeccanica SG3	47.6
Stazione geomeccanica SG4	57.2
Stazione geomeccanica SG5	47.1

Tabella 7-5 - Valori di GSI stimati durante i rilievi geomeccanici (T00GE01GEORE02_A)

il valore della costante m_b viene ricavato dalla costante m_i del materiale intatto secondo la seguente relazione:

$$m_b = m_i \exp\left(\frac{GSI - 100}{28 - 14D}\right)$$

dove D è un fattore che dipende dal grado di disturbo dell'ammasso roccioso, ed è variabile da 0 per rocce indisturbate ad 1 per rocce molto disturbate. I valori di D proposti da Hoek (2002) sono riportati nella seguente Tabella.

Appearance of rock mass	Description of rock mass	Suggested value of D
	Excellent quality controlled blasting or excavation by Tunnel Boring Machine results in minimal disturbance to the confined rock mass surrounding a numel.	D=0
	Mechanical or hand excavation in poor quality rock masses (no blasting) results in minimal disturbance to the surrounding rock mass. Where squeezing problems result in significant floor heave, disturbance can be severe unless a temporary invert, as shown in the photograph, is placed.	D = 0.5 No invert
	Very poor quality blasting in a hard rock tunnel results in severe local damage, extending 2 or 3 m, in the surrounding rock mass.	D=0.8
	Small scale blasting in civil engineering slopes results in modest rock mass damage, particularly if controlled blasting is used as shown on the left hand side of the photograph. However, stress relief results in some disturbance.	D = 0.7 Good blasting D = 1.0 Poor blasting
	Very large open pit mine slopes suffer significant disturbance due to heavy production blasting and also due to stress relief from overburden removal. In some softer rocks excavation can be carried out by ripping and dozing and the degree of damage to the slopes is less.	D = 1.0 Production blasting D = 0.7 Mechanical excavation

Tabella 7-6 - Determinazione del fattore di disturbo D (Hoek, 2006)

E78 GROSSETO – FANO
TRATTO NODO DI AREZZO – SELCI – LAMA (E45) – PALAZZO DEL PERO – COMPLETAMENTO (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Le costanti s e a sono definite dalle seguenti equazioni:

$$s = \exp\left(\frac{GSI - 100}{9 - 3D}\right)$$
$$a = \frac{1}{2} + 1/6\left(e^{-GSI/15} - e^{-20/15}\right)$$

Una volta determinati i parametri di resistenza del criterio di rottura di Hoek-Brown, le seguenti relazioni permettono di ricavare la coesione e l'angolo di resistenza al taglio per la determinazione del criterio di rottura di Mohr-Coulomb:

$$\phi' = \sin^{-1} \left[\frac{6am_b (s + m_b \sigma_{3n})^{a-1}}{2(1+a)(2+a) + 6am_b (s + m_b \sigma_{3n})^{a-1}} \right]$$

$$c' = \frac{\sigma_{ci} \left[(1+2a)s + (1-a)m_b \sigma_{3n} \right] (s + m_b \sigma_{3n})^{a-1}}{(1+a)(2+a)\sqrt{1 + \left(6am_b (s + m_b \sigma_{3n})^{a-1}\right) / ((1+a)(2+a))}}$$

dove:

- m_b, s ed a sono tre costanti calcolabili dalle caratteristiche dell'ammasso roccioso descritte precedentemente;

$$- \quad \sigma_{3n}' = \frac{\sigma_{3\,max}'}{\sigma_{ci}}$$

il valore σ'_{3max} di rappresenta il limite superiore della tensione di confinamento e definisce l'intervallo nel quale è stata individuata l'equivalenza fra il criterio di rottura di Hoek-Brown e quello di Mohr-Coulomb.

In tale contesto è possibile, perciò, tracciare nello stesso piano degli sforzi i criteri di rottura di Hoek-Brown e quello di Mohr-Coulomb, assumendo che vi sia una relazione lineare in grado di approssimare lo stato di sforzo a rottura nel campo di variazione delle tensioni principali compreso fra $\sigma_t < \sigma_3 < \sigma'_{3 \text{ max}}$, come raffigurato di seguito.

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

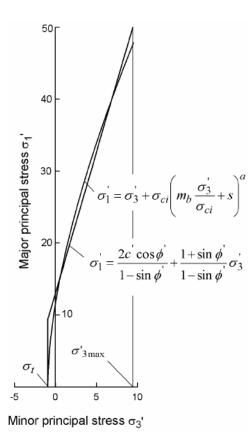


Figura 7-5 Relazione fra gli sforzi principali massimi e minimi per il criterio di Hoek- Brown e per quello equivalente di Mohr - Coulomb

Per ricavare σ'_{3max} sui pendii, Hoek (2002) propone la seguente formulazione, utilizzando l'analisi di Bishop:

$$\frac{\sigma'_{3max}}{\sigma'_{cm}} = 0.72 \left(\frac{\sigma'_{cm}}{\gamma H}\right)^{-0.91}$$

dove:

- γ è il peso di volume dell'ammasso roccioso;
- H è l'altezza del pendio;
- σ'_{cm} è la resistenza dell'ammasso roccioso, definita dalla seguente equazione:

$$\sigma'_{cm} = \sigma_{ci} \frac{(m_b + 4s - a(m_b - 8s)(m_b/4 + s)^{a-1})}{2(1+a)(2+a)}$$

Per ricavare σ'_{3max} per opere profonde (tunnel profondi o tunnel profondi meno di 3 volte il diametro del tunnel), Hoek (2002) propone la seguente equazione che fitta i risultati riportati nella Figura 7-6:

$$\frac{\sigma'_{3max}}{\sigma'_{cm}} = 0.47 \left(\frac{\sigma'_{cm}}{\gamma H}\right)^{-0.94}$$

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

dove:

- γ e σ'_{cm} , come definiti in precedenza per l'equazione dei pendii;
- H è la profondità della galleria al di sotto del piano campagna.

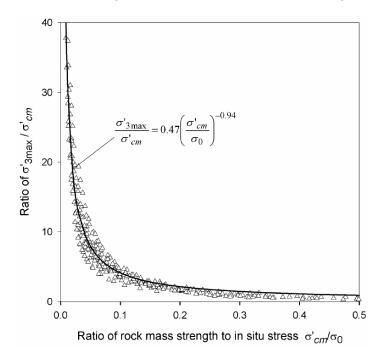


Figura 7-6 Relazione per il calcolo di σ'_{3max} per i parametri equivalenti di Mohr Coulomb e Hoek- Brown per i tunnel

Hoek (2002) sostiene inoltre che nel caso in cui lo sforzo orizzontale è più alto di quello verticale allora al posto di γH dev'essere usato lo sforzo orizzontale.

Per quanto riguarda i parametri di deformabilità è possibile stimare la rigidezza dell'ammasso roccioso in base all'esito della classificazione dell'ammasso roccioso (classificazione RMR), dell'indice GSI e sulla base dei risultati delle prove sclerometriche che stimano la resistenza a compressione monodimensionale.

In particolare, secondo Hoek and Brown (1998) è possibile stimare il modulo di elasticità dell'ammasso roccioso Em con la seguente formulazione che considera in modo esplicito il valore di resistenza a compressione uniassiale del materiale roccia, sc, e l'indice GSI dell'ammasso roccioso, valida per il campo di valori: valori σ_c< 100 MPa.

$$Em = \sqrt{\frac{\sigma_{C}}{100}} x \ 10^{(\frac{GSI-100}{40})}$$
, per σ_{c} < 100 MPa

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

8. INQUADRAMENTO GEOTECNICO

Nei seguenti paragrafi si presenta la caratterizzazione geotecnica dei terreni coesivi, incoerenti e del substrato roccioso indagati.

Tutte le unità geotecniche fanno riferimento alle unità geologiche descritte nella Relazione geologica (T00GE01GEORE01). Di seguito una Tabella che correla le unità geotecniche suddivise per tratto e le unità geologica corrispondenti.

TRATTO	UNITÀ GEOTECNICA	TIPOLOGIA TERRENO	UNITÀ GEOLOGICA
Strada di collegamento SR73 – Raccordo A1 Arezzo – Battifolle	A (FL)	Coesivo in prevalenza argilloso	FL
Strada di collegamento SR73 – Raccordo A1 Arezzo – Battifolle	LS (AT)	Coesivo in prevalenza limoso sabbioso	АТ
Strada di collegamento SR73 – Raccordo A1 Arezzo – Battifolle	S (FL)	Incoerente sabbia	FL
Strada di collegamento SR73 – Raccordo A1 Arezzo – Battifolle	R	Riporto	R
Asse principale	A (FL)	Coesivo in prevalenza argilloso	FL
Asse principale	L (FL,AT)	Coesivo in prevalenza limoso	FL, AT
Asse principale	S (FL,AT)	Incoerente sabbia	FL, AT
Asse principale	G (FL)	Incoerente ghiaia	FL
Strada di collegamento E79-SR71	L (FL,CA)	Coesivo in prevalenza limoso	FL, CA

Tabella 8-1 Schema riassuntivo delle unità geotecniche e le corrispondenti geologiche

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9. <u>Caratterizzazione delle unità geotecniche – Strada di collegamento SR73 – Raccordo A1 Arezzo – Battifolle</u>

Le tavole di progetto che raffigurano il profilo geotecnico a cui si fa riferimento per il tratto della Strada di collegamento SR73 – Raccordo A1 Arezzo – Battifolle sono, da sud verso nord:

- T00GE00GETFG04 A, profilo dalla pk 0+000 alla pk 1+400,
- T00GE00GETFG05_A, profilo dalla pk 1+400 alla pk 2+775,
- T00GE00GETFG06_A, profilo dalla pk 2+775 alla pk 4+079,
- T00GE00GETSG03 A, sezione geotecnica GEOT6,
- T00GE00GETSG04 A, sezioni geotecniche GEOT7, GEOT8,
- T00GE00GETSG05_A, sezioni geotecniche GEOT9.

Dalla **pk 0+000 alla pk 1+575** il profilo stratigrafico è caratterizzato della presenza di terreni prettamente coesivi da mediamente consistenti a consistenti sino a 20 m circa di profondità (resistenza di punta q_c è variabile tra 1 e 2 MPa). Si rileva la prevalenza di terreni prettamente limosi appartenenti all'unità geotecnica (U.G. L(FL)) di media plasticità con grado di sovraconsolidazione significativo in superficie e decrescente con la profondità.

Fino alla pk 0+700 all'interno dei limi sono presenti, nei primi 14 m da p.c., due lenti di argilla da moderatamente consistenti a consistenti con potenze che arrivano fino a 6 m (U.G. A(FL)). Lungo tutto il tratto, sempre nei primi 20 m, sono inoltre state rilevate lenti più o meno continue e spesse di sabbie fini limo-argillose con lenti centimetriche di ghiaie medio fine in matrice sabbiosa limosa o inclusi di clasti sporadici (U.G. S(FL)), con discreto grado di addensamento (q_c>8 MPa).

Più in profondità sono state rileva ghiaie eterometriche da addensate a molto addensate (q_c maggiori di 20 MPa oppure a rifiuto) in matrice sabbioso limosa (U.G. G(FL)). All'interno dell'unità geotecnica G(FL) sono presenti lenti di argilla intercettate dai sondaggi S1-06, CS01, S2-06.

Dalla **pk 1+575** alla **pk 2+250** alla base dei terreni superficiali limosi che si trovano sempre fino a profondità di 19-20 m e con caratteristiche simili a quelle del primo tratto, è stato rilevato il substrato roccioso costituito dalle Arenarie del Cervarola.

Dalla pk 2+250 alla pk 2+650 il substrato è affiorante.

Dalla **pk 2+650 fino alla pk 4+079** i terreni superficiali di natura limosa (U.G. L(FL,AT)) sono presenti sino a 15 m circa di profondità ma la presenza di livelli prettamente incoerenti (U.G. S (AT)) diventa molto più importante in particolare in corrispondenza del Canale Maestro della Chiana laddove diventa predominate.

A profondità superiori a 15 m sino alla pk 2+800 è stato rilevato il substrato roccioso e lungo il resto mentre lungo il resto del tratto l'unità delle ghiaie (U.G. G(FL)).

PROGETTAZIONE ATI:

GPIngegneria G

Pag. 45 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.1. Unità geotecnica A (FL)

Questa unità geotecnica ha una litologia prevalentemente argillosa, corrispondente all'unità geologica dei depositi continentali fluvio-lacustri terrazzati "FL". Questi sedimenti sono rappresentati da lenti di argille e argille debolmente limose da moderatamente consistenti a molto consistenti.

I campioni estratti all'interno di questa unità sono quelli riportati nella seguente Tabella.

		PROFONDITÀ CAMPIONI		
SONDAGGIO	ANNO	CAMPIONI	Z _{in}	Z _{fin}
			(m)	(m)
CS01	2021	1	4.40	4.90
S1-06	2006	Sh1	7.00	7.60

Tabella 9-1 Campioni estratti nell'unità A(FL)

9.1.1. N_{SPT}

In questa unità è stata eseguita soltanto una prova penetrometrica di tipo SPT sul sondaggio S1-06 alla profondità di 3 m; il valore di N_{SPT} è 21.

9.1.2. GRANULOMETRIA

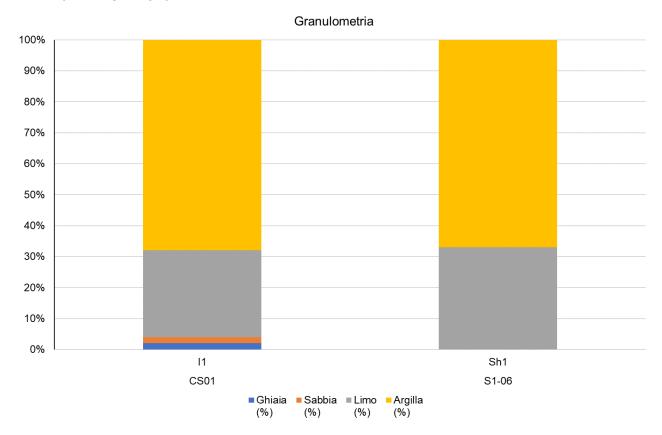


Figura 9-1 - Granulometria dei terreni relativi ai campioni eseguiti nell'unità A (FL)

PROGETTAZIONE ATI:

Pag. 46 di 210

TRATTO NODO DI AREZZO - SELCI - LAMA (E45) - PALAZZO DEL PERO - COMPLETAMENTO (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.1.3. PESO DI VOLUME DEL TERRENO

Dalle prove di laboratorio, eseguite nei campioni estratti all'interno dell' unità A(FL), è stato stimato un peso di volume del terreno variabile tra 18 e 19 kN/m³.

9.1.4. LIMITI DI ATTERBERG

In laboratorio sono stati misurati i limiti di Atterberg del campione I1 prelevato dal sondaggio CS01 alla profondità di 4.4- 4.9. Il limite di liquidità è risultato pari a 85 l'indice di plasticità pari a 35. Plottando i valori dell'indice di plasticità e del limite di liquidità nel Diagramma di plasticità di Casagrande il campione ricade nella zona dei Limi inorganici di alta compressibilità ed argille organiche.

9.1.5. INDICE DEI VUOTI

Dalle prove di laboratorio, eseguite nei campioni estratti all'interno dell' unità A(FL), è stato calcolato un indice dei vuoti variabile tra 0.85 e 0.87.

9.1.6. RESISTENZA AL TAGLIO IN COND. DRENATE

Sono disponibili i risultati di una prova di taglio diretto, eseguita sul campione 1 prelevato alla profondità di 4.4 m del sondaggio CS01, che hanno fornito un' angolo di resistenza al taglio pari a 18° e c' pari a 9 kPa e i risultati di una prova triassiale C.D sullo stesso campione che hanno fornito φ' 22° e c' 51 kPa.

9.1.7. COESIONE NON DRENATA

Nel seguente grafico si riporta la stima della coesione non drenata a partire dai valori N_{SPT} in funzione della profondità dal p.c., i risultati delle prove di espansione laterale libera dei campioni eseguiti in tale unità e i valori medi della coesione non drenata determinata in sito con il Pocket Penetrometer e il Torvane.

La linea blu rappresenta per un rapido confronto la stima di c_u nell'ipotesi di terreno normalmente consolidato, assumendo $c_u = 0.27 \,\sigma'_v$ in considerazione di Ip.

In rosso viene rappresentato l'andamento del valore caratteristico della coesione non drenata assunto in progetto.

TRATTO NODO DI AREZZO - SELCI - LAMA (E45) - PALAZZO DEL PERO - COMPLETAMENTO (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

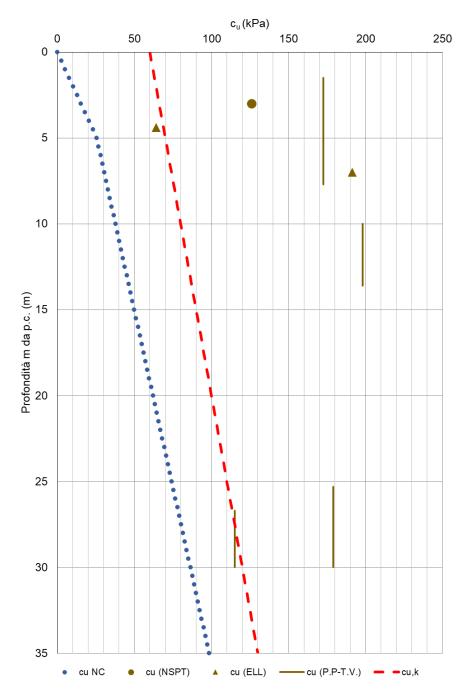


Figura 9-2 - Grafico della stima della coesione non drenata nell' unità A (FL)

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.1.8. VELOCITÀ DELLE ONDE DI TAGLIO E MODULO DI TAGLIO ALLE PICCOLE DEFORMAZIONI G₀

Nell'unità A (FL) sono stati rilevati valori delle V_s dalla prova down-hole (DH C S01) pari a circa 170÷280 m/s.

La stima del modulo G₀ è stata ricavata a partire dai valori delle Vs ricavati dalle prove down-hole ottenendo un range pari a 60 ÷ 160 MPa.

9.1.9. GRADO DI SOVRACONSOLIDAZIONE

Sono state eseguite due prove edometriche su entrambi i campioni prelevati nell'unità A(FL) che hanno stimato un grado di consolidazione pari a 2 per la prova eseguita nel campione Sh1 prelevato alla profondità di 4.4 m dal sondaggio S1-06, pari a 5 per la prova eseguita nel campione 1 (7 m) prelevato alla profondità di 7 m dal sondaggio CS01.

9.1.10. INDICE DI COMPRESSIONE

È stato stimato un valore dell'indice di compressione variabile tra 0.302 e 0.336 dalle prove edometriche eseguite sui campioni prelevati sull'unità A(FL), e pari a 0.479 a partire dall'indice di plasticità.

9.1.11. INDICE DI RICOMPRESSIONE

È stato stimato un valore dell'indice di ricompressione variabile tra 0.047 e 0.073 dalle prove edometriche.

9.1.12. COEFFICIENTE DI COMPRESSIONE SECONDARIO

È stato stimato un valore del coefficiente di compressione secondario variabile tra 0.002 e 0.01 dalle prove edometriche.

9.1.13. COEFFICIENTE DI CONSOLIDAZIONE CV

È stato stimato un valore coefficiente di consolidazione c_v variabile tra 0.0002 e 0.0005 cm²/s dalle prove edometriche.

9.1.14. MODULO CONFINATO M PER FONDAZIONI DIRETTE

È stato stimato un valore del modulo operativo confinato M per fondazioni dirette variabile tra 5 e 8 MPa dalle prove edometriche esequite sui campioni prelevati dall'unità A(FL) e un modulo pari a 11 MPa a partire dai valori N_{SPT} tramite la correlazione proposta da Stroud.

PROGETTAZIONE ATI:

Pag. 49 di 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

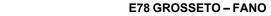
GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.2. UNITÀ GEOTECNICA L (FL, AT)

Questa unità geotecnica rappresenta la litologia prevalentemente limosa delle unità geologica dei depositi continentali fluvio-lacustri terrazzati "FL" e dei depositi alluvionali recenti ed attuali "AT". Questi sedimenti sono rappresentati da limi la cui granulometria varia dai limi argillosi a limi sabbiosi.

I campioni prelevati all'interno di questa unità sono quelli riportati nella seguente Tabella.

601104 6010	ANNO	PROFONDITÀ CAMPIONI			
SONDAGGIO	ANNO	CAMPIONI	Z _{in} Z _{fin}		UNITA' GEOTECNICA
			(m)	(m)	
CS01	2021	2	13.70	14.20	U.G L(FL)
CS02	2021	1	4.00	4.40	U.G L(FL)
CS02	2021	2	12.00	12.50	U.G L(FL)
CS02	2021	3	17.00	17.50	U.G L(FL)
CS03	2021	1	4.50	4.90	U.G L(FL)
CS03	2021	2	9.00	9.50	U.G L(FL)
CS03	2021	3	16.00	16.50	U.G L(FL)
CS08	2021	2	11.00	11.50	U.G L(FL)
CS08	2021	3	17.00	17.50	U.G L(FL)
CS09	2021	2	9.60	10.00	U.G L(FL)
CS09	2021	3	16.50	17.00	U.G L(FL)
S1-06	2006	C3	17.00	17.30	U.G L(FL)
S1-06	2006	Sh2	13.00	13.60	U.G L(FL)
S2-06	2006	Sh1	11.20	11.80	U.G L(FL)
S2-06	2006	Sh2	15.30	16.00	U.G L(FL)
S3-06	2006	Sh1	3.00	3.60	U.G L(FL)
S3-06	2006	Sh2	12.40	13.00	U.G L(FL)
S3-06	2006	Sh3	15.40	16.00	U.G L(FL)
S6-06	2006	C2	13.00	13.40	U.G L(FL)
S7-06	2006	C2	14.60	15.00	U.G L(FL)
S7-06	2006	Sh1	3.00	3.60	U.G L(FL)
S7-06	2006	Sh2	10.00	10.60	U.G L(FL)
CS06	2021	1	10.00	10.50	U.G L(AT)
CS07	2021	2	10.50	11.00	U.G L(AT)
CS08	2021	1	3.00	3.50	U.G L(AT)


Tabella 9-2 Campioni estratti nell'unità L(FL, AT)

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.2.1. N_{SPT}

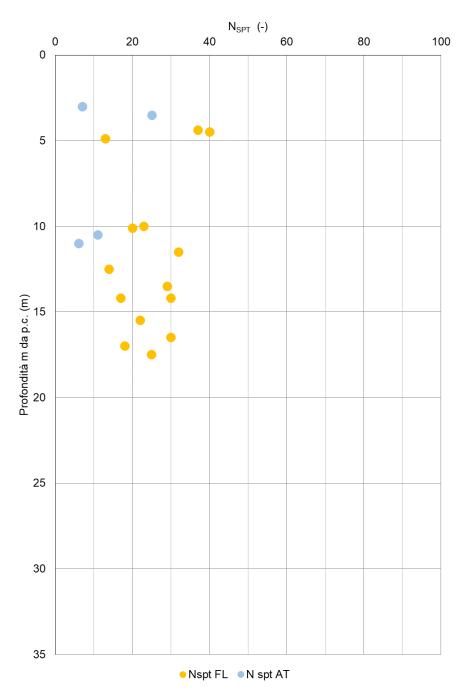


Figura 9-3 - Grafico di NSPT in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità L (FL, AT)

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.2.2. GRANULOMETRIA

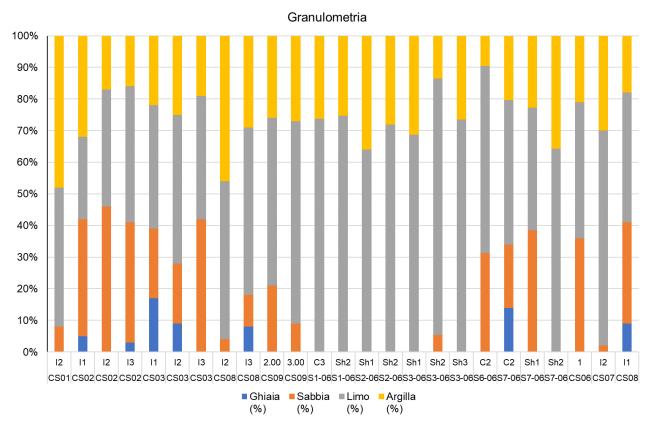
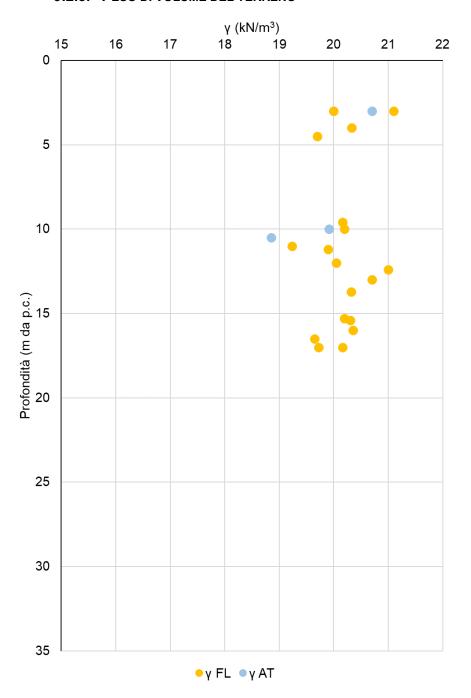


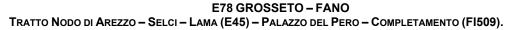
Figura 9-4 - Granulometria dei terreni relativi ai campioni eseguiti nell'unità L (FL,AT)

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.2.3. PESO DI VOLUME DEL TERRENO




Figura 9-5 - Grafico del peso di volume del terreno in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL, AT)

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.2.4. DIAGRAMMA DI PLASTICITÀ DI CASAGRANDE

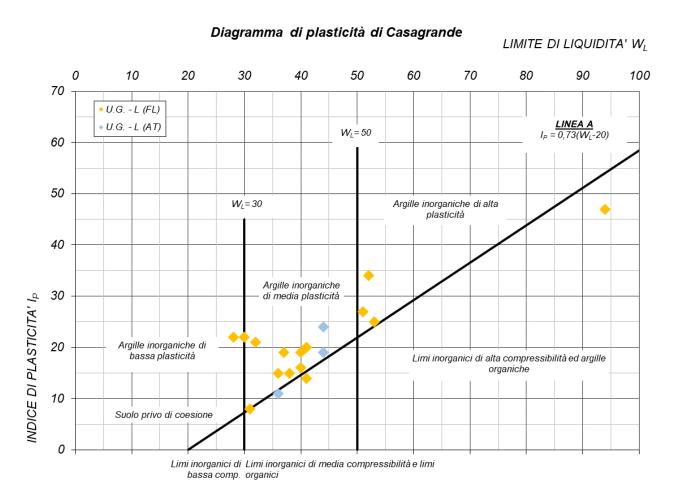


Figura 9-6 - Diagramma di plasticità di Casagrande relativo ai campioni eseguiti nell'unità L (FL, AT)

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.2.5. LIMITE DI LIQUIDITÀ

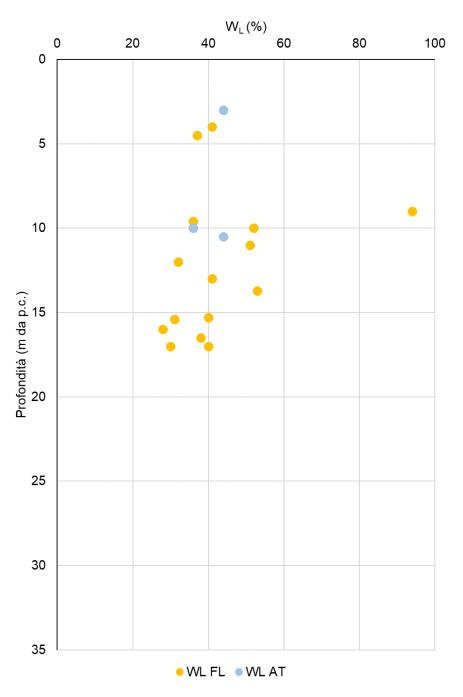


Figura 9-7 - Grafico del limite di liquidità del terreno in funzione della profondità dal p.c. dei campioni eseguiti nell'unità A (FL)

PROGETTAZIONE ATI:

Pag. 55 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.2.6. INDICE DI PLASTICITÀ

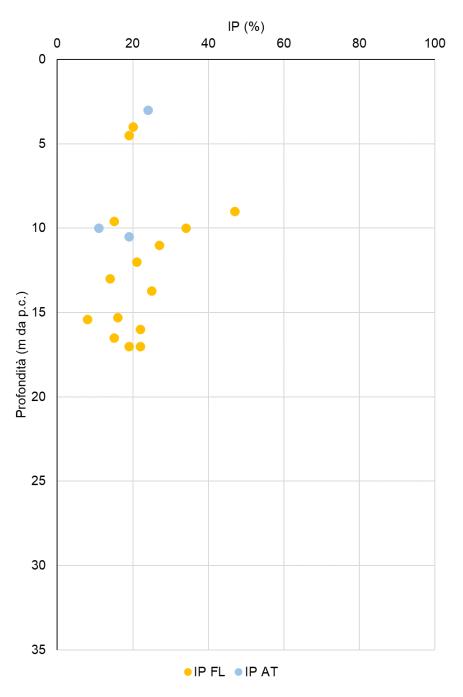


Figura 9-8 - Grafico dell'indice di plasticità del terreno in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL, AT)

E78 GROSSETO - FANO Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.2.7. INDICE DEI VUOTI

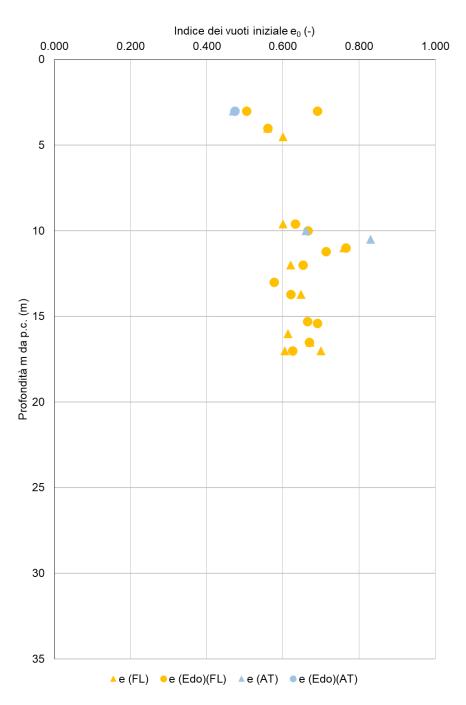


Figura 9-9 - Grafico dell'indice dei vuoti in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL, AT)

PROGETTAZIONE ATI:

210

Pag. 57 di

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.2.8. RESISTENZA AL TAGLIO IN CONDIZIONI DRENATE

Nel seguente grafico si riporta la stima dell'angolo di resistenza al taglio con rappresentati i risultati delle prove di taglio diretto e triassiali C.D. dei campioni eseguiti in tale unità L (FL, AT). In rosso è rappresentato il valore caratteristico dell'angolo di resistenza al taglio assunto per l'unità L(FL,AT).

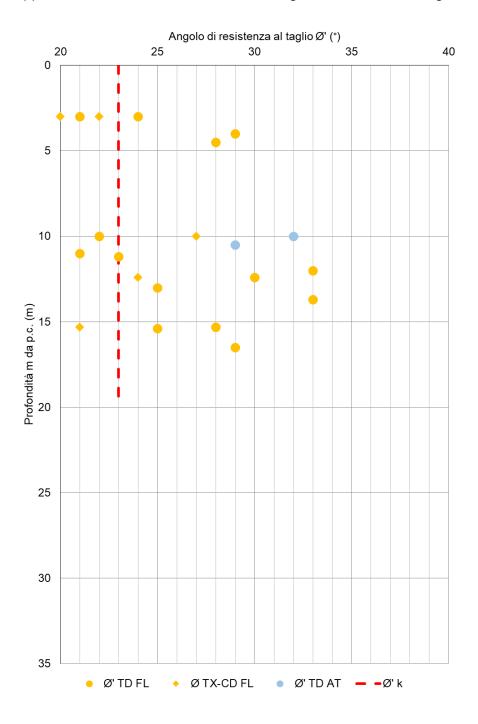


Figura 9-10 - Grafico della stima dell'angolo di resistenza al taglio nell'unità L (FL, AT)

PROGETTAZIONE ATI:

210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Il valore caratteristico è stato assunto in via cautelativa ma trascurando i campioni prettamente coesivi con un angolo di resistenza al taglio Ø≤24° considerando anche i risultati delle prove di taglio che forniscono valori della coesione c' molto maggiori di quelli di progetto definiti nel seguente grafico. Grafico della stima della coesione efficace con rappresentati i risultati delle prove di taglio diretto e triassiali C.D. dei campioni eseguiti in tale unità L (FL, AT).). In rosso è rappresentato il valore caratteristico della coesione efficace assunto per l'unità L(FL,AT).

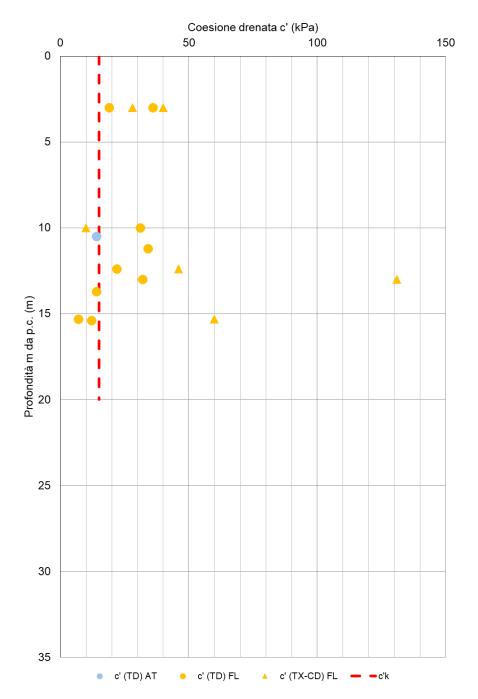


Figura 9-11 - Grafico della stima della coesione efficace nell' unità L (FL, AT)

PROGETTAZIONE ATI:

210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.2.9. COESIONE NON DRENATA

Grafico della stima della coesione non drenata a partire dai valori N_{SPT} in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità L (FL, AT); sono rappresentati anche i risultati delle prove espansione laterale libera dei campioni eseguiti in tale unità e i valori medi dei pocket penetrometer e dei torvane.

La linea blu rappresenta per un rapido confronto la stima di cu nell'ipotesi di terreno normalmente consolidato, assumendo $c_u = 0.24 \sigma'_v$ in considerazione di Ip.

In rosso viene rappresentato l'andamento del valore caratteristico della coesione non drenata assunto in progetto.

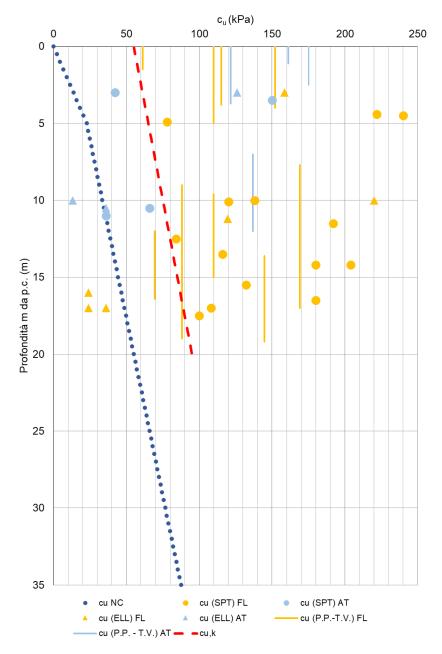


Figura 9-12: Grafico della stima della coesione non drenata nell' unità L (FL, AT)

PROGETTAZIONE ATI:

Pag. 60 di 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Nell'assunzione del valore caratteristico non sono stati considerati i risultati delle prove ELL che si pongono al di sotto della linea blu, in quanto valori associati a campioni con contenuto in sabbia, in base alle prove granulometriche, molto elevato e quindi poco rappresentativi del comportamento complessivo dell' U.G. L.

9.2.10. Velocità delle onde di taglio e Modulo di taglio alle piccole deformazioni $G_{\rm 0}$

Nell'unità L (FL, AT) sono stati rilevati valori delle v_s delle prove Down-Hole pari a circa 200 m/s.

La stima del modulo G₀ è stata ricavata a partire dai valori delle Vs ricavati dalle prove down-hole ottenendo un range pari a 80 MPa.

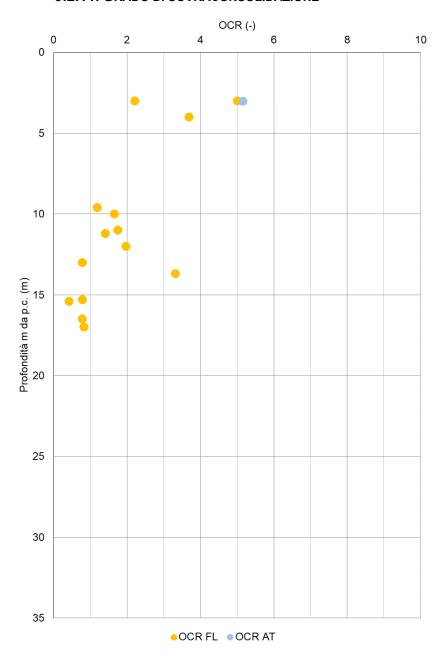
PROGETTAZIONE ATI:

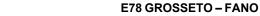
Pag. 61 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.2.11. GRADO DI SOVRACONSOLIDAZIONE




Figura 9-13 - Grafico grado di sovraconsolidazione OCR in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL, AT)

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.2.12. INDICE DI COMPRESSIONE

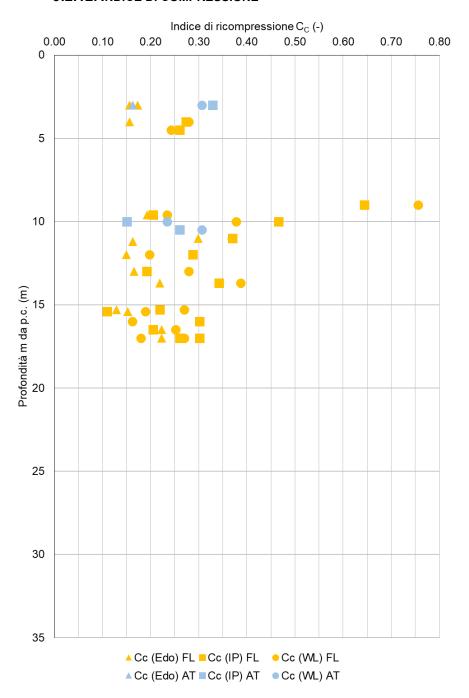


Figura 9-14 - Grafico dell'indice di compressione in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL, AT)

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.2.13. INDICE DI RICOMPRESSIONE

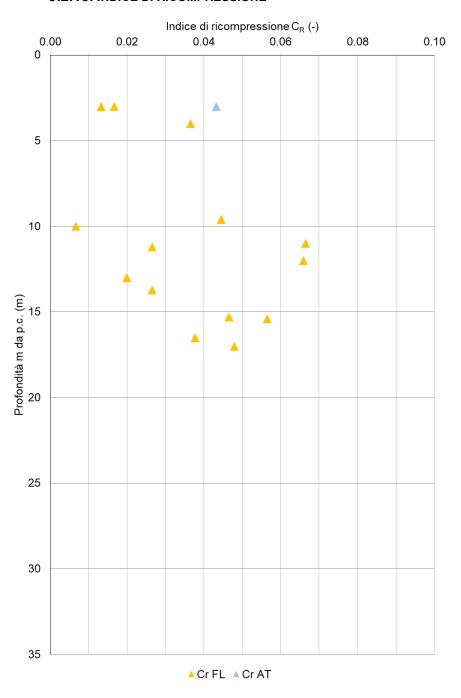


Figura 9-15 - Grafico dell'indice di ricompressione in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL, AT)

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.2.14. COEFFICIENTE DI COMPRESSIONE SECONDARIO

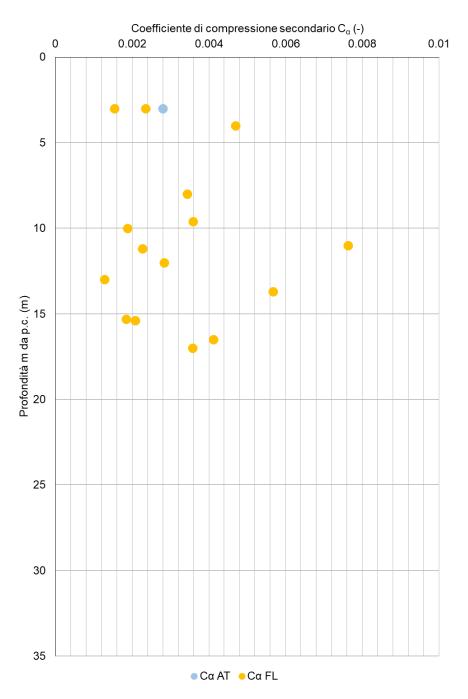


Figura 9-16 - Grafico dell'coefficiente di compressione secondario in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL, AT)

PROGETTAZIONE ATI:

Pag. 65 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.2.15. COEFFICIENTE DI CONSOLIDAZIONE C_{ν}

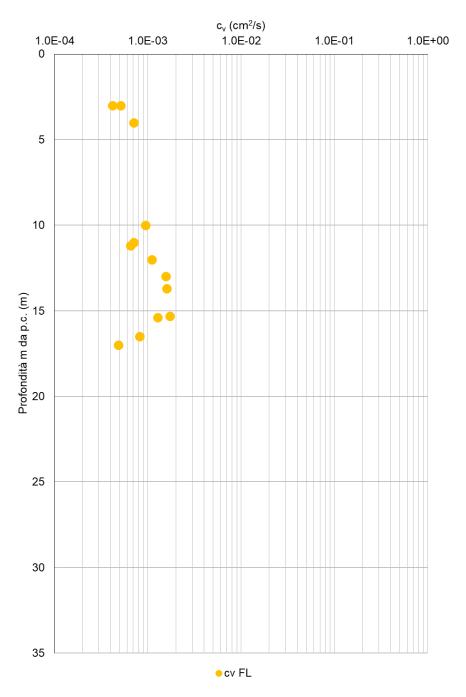


Figura 9-17 – Grafico del coefficiente di consolidazione in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL, AT)

PROGETTAZIONE ATI:

Pag. 66 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.2.16. MODULO CONFINATO M PER FONDAZIONI DIRETTE

Grafico della stima del modulo operativo confinato M per fondazioni dirette a partire dai valori N_{SPT} tramite la correlazione proposta da Stroud in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità L (FL, AT); inoltre, sono rappresentati i moduli ricavati dalle prove edometriche eseguite in tale unità. In rosso è rappresentato il valore di riferimento M per fondazioni dirette per l'unità L(FL,AT).

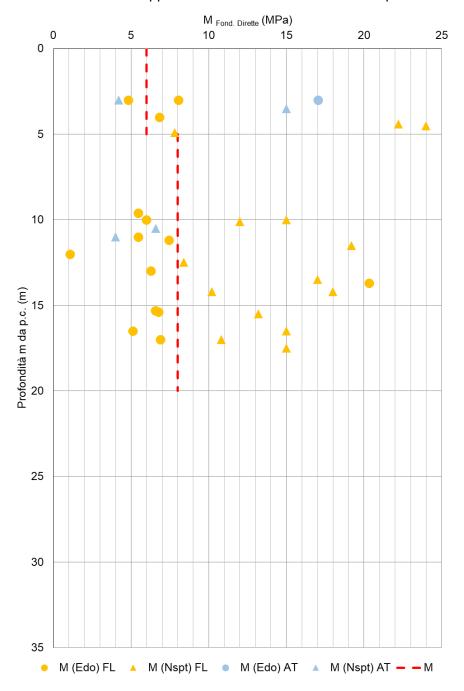


Figura 9-18 - Grafico della stima modulo operativo confinato M per fondazioni dirette in funzione della profondità dal p.c. nell'unità L (FL, AT)

PROGETTAZIONE ATI:

Pag. 67 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (F1509).

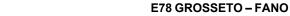
GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.3. UNITÀ GEOTECNICA S (FL, AT)

L'unità geotecnica S comprende le sabbie fini limo-argillose con lenti centimetriche di ghiaie medio fine in matrice sabbiosa limosa o inclusi di clasti sporadici appartenenti all'unità geologica "FL" e le sabbie medio fini limose e localmente ghiaiose con lenti da cm a dm di ghiaia eterometrica medio fine in matrice sabbiosa-limosa con grado addensamento moderato appartenenti all'unità geologica "AT".

I campioni estratti all'interno di questa unità sono quelli riportati nella seguente Tabella.

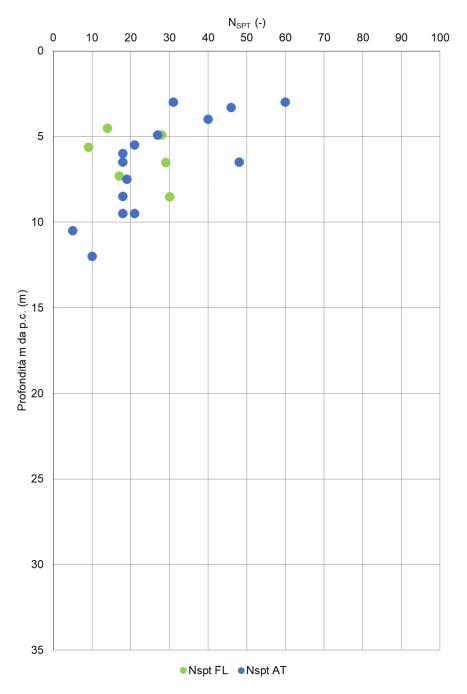
CONDACCIO	SONDACCIO ANNO CAMBIONI		PROFONDITÀ CAMPIONI		LINUTAL CEOTECNICA
SONDAGGIO	ANNO	CAMPIONI	Z _{in}	Z _{fin}	UNITA' GEOTECNICA
			(m)	(m)	
CS09	2021	1	4.00	4.50	U.G S(FL)
S1-06	2006	C2	9.30	9.60	U.G S(FL)
S2-06	2006	C1	5.50	5.80	U.G S(FL)
S3-06	2006	C1	7.30	7.60	U.G S(FL)
S7-06	2006	C1	5.30	5.60	U.G S(FL)
CS04	2021	Sh1	7.50	8.00	U.G S(AT)
CS05	2021	1	3.00	3.50	U.G S(AT)
CS05	2021	2	8.00	8.50	U.G S(AT)
CS05bis	2021	Sh2	9.00	9.50	U.G S(AT)
CS05bis	2021	Sh1	3.50	4.00	U.G S(AT)
CS07	2021	1	6.00	6.50	U.G S(AT)
S5-06	2006	C1	4.00	4.50	U.G S(AT)
S5-06	2006	C3	11.70	12.00	U.G S(AT)
S5-06	2006	C2	8.40	8.80	U.G S(AT)
S6-06	2006	C1	6.00	6.30	U.G S(AT)
S8-06	2006	C2	9.60	9.90	U.G S(AT)
S8-06	2006	C1	3.00	4.00	U.G S(AT)

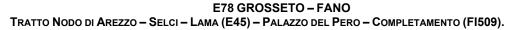

Tabella 9-3 Campioni estratti nell'unità S(FL, AT)

TRATTO NODO DI AREZZO - SELCI - LAMA (E45) - PALAZZO DEL PERO - COMPLETAMENTO (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.3.1. N_{SPT}




Figura 9-19 - Grafico di N_{SPT} in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità S (FL, AT)

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

9.3.2. GRANULOMETRIA

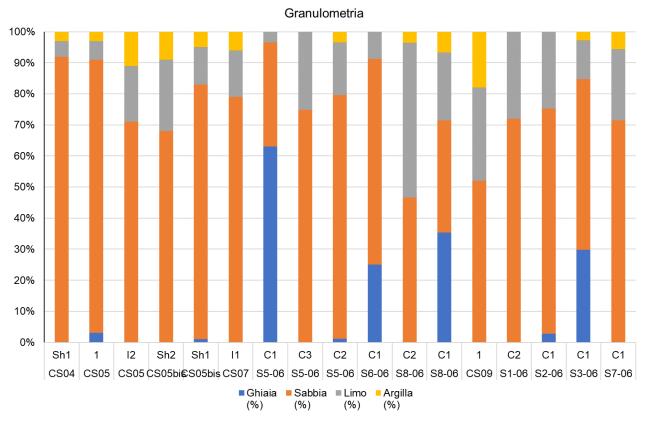


Figura 9-20 - Granulometria dei terreni relativi ai campioni eseguiti nell'unità S (FL, AT)

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.3.1. DENSITÀ RELATIVA

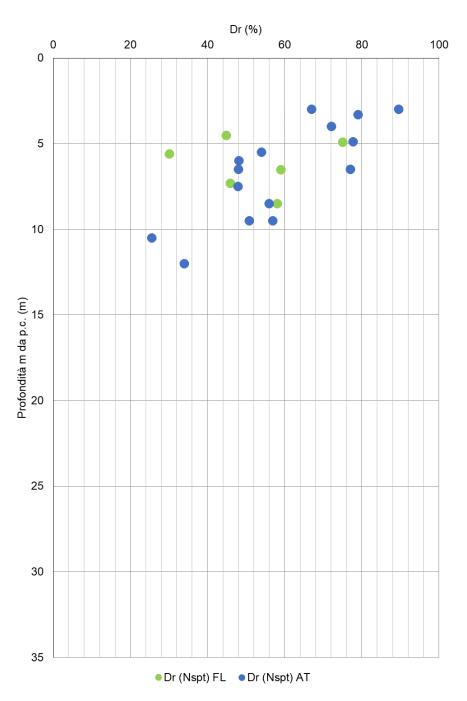


Figura 9-21 - Grafico della stima della densità relativa in funzione della profondità dal p.c. nell'unità S (FL, AT)

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.3.2. ANGOLO DI RESISTENZA AL TAGLIO

Nel seguente grafico si riporta la stima dell'angolo di resistenza al taglio con rappresentati i risultati delle prove di taglio diretto dei campioni eseguiti in tale unità S (FL, AT) e i risultati ottenuti a partire dai valori di N_{SPT} tramite la correlazione proposta da Shioi e Fukuni (1982). In rosso è rappresentato il valore caratteristico dell'angolo di resistenza al taglio assunto per l'unità S(FL,AT). Nella valutazione del valore caratteristico sono stati trascurati i valori inferiori a 27° in quanto legati a N_{SPT} molto bassi per la presenza di intercalazioni limoso-argillose.

Figura 9-22 - Grafico della stima dell'angolo di resistenza al taglio nell'unità S (FL, AT)

PROGETTAZIONE ATI:

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.3.3. VELOCITÀ DELLE ONDE DI TAGLIO

Di seguito si riportano valori di Vs ricavati dalle prove down-hole in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità S (FL, AT); inoltre sono rappresentati i risultati ottenuti a partire dai valori di N_{SPT} tramite la correlazione proposta da Yhosida et al. (1988).

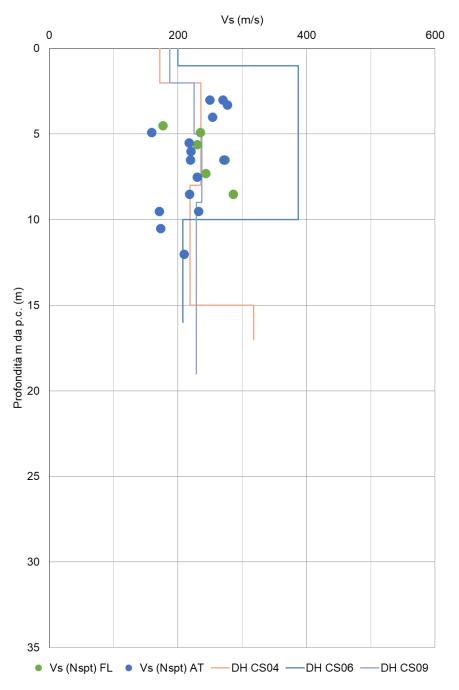


Figura 9-23 - Grafico di v_S in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità S (FL, AT)

PROGETTAZIONE ATI:

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.3.4. MODULO DI TAGLIO ALLE PICCOLE DEFORMAZIONI G_0

Il seguente grafico riporta la stima modulo Go a partire dai valori delle Vs ricavati dalle prove downhole e dalle prove N_{SPT} in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità S (FL, AT).

Figura 9-24 - Grafico della stima modulo G₀ a partire dai valori delle Vs in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità A(FL)

PROGETTAZIONE ATI:

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.3.5. MODULO ELASTICO DI YOUNG

Nel seguente grafico si riporta la stima del modulo elastico di Young operativo per le fondazioni dirette a partire dai valori N_{SPT} tramite la correlazione proposta da Jamiolkowski (E₂₅) e 1/10 del modulo di Young alle piccole deformazioni ottenuto a partire dai valori N_{SPT} (E₀ / 10) in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità S (FL, AT). In rosso il range dei valori del modulo elastico E per fondazioni dirette di riferimento assunti per l'unità S(FL,AT).

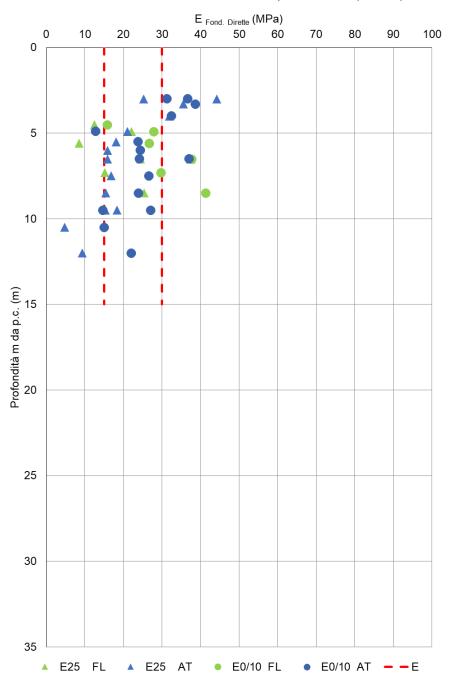


Figura 9-25 - Grafico della stima modulo operativo E per fondazioni dirette in funzione della profondità dal p.c. nell'unità S (FL, AT)

PROGETTAZIONE ATI:

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Di seguito invece si riporta la stima del modulo elastico di Young operativo per il dimensionamento delle fondazioni profonde a partire dai valori N_{SPT} tramite la correlazione proposta da D'Apollonia (E) e 1/8 del modulo di Young alle piccole deformazioni ottenuto a partire dai valori N_{SPT} (E₀ / 8) in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità S (FL, AT). In rosso il range dei valori del modulo elastico E per fondazioni profonde di riferimento assunto per l'unità S(FL, AT).

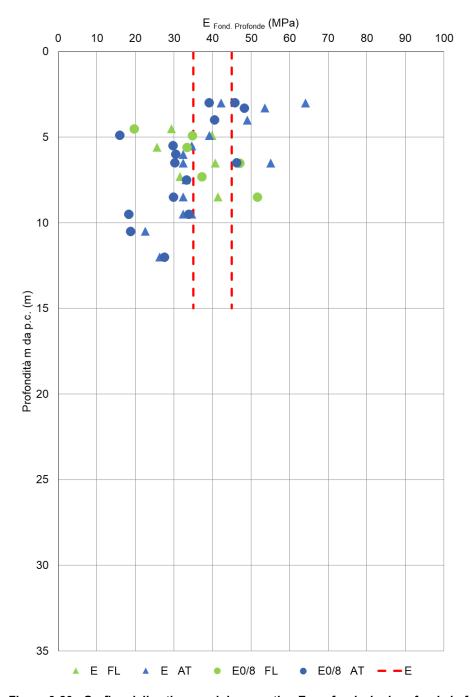


Figura 9-26 - Grafico della stima modulo operativo E per fondazioni profonde in funzione della profondità dal p.c. nell'unità S (FL, AT)

PROGETTAZIONE ATI:

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

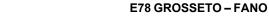
GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.4. UNITÀ GEOTECNICA G (FL)

L'unità geotecnica G (FL) presenta un'alternanza di ghiaie eterometriche molto addensate in matrice sabbioso limosa ed è corrispondente all'unità geologica dei depositi continentali fluvio-lacustri "FL".

I campioni estratti all'interno di questa unità sono quelli riportati nella seguente Tabella.

CONDACCIO	ANINO	CAMPIONI		ONDITÀ PIONI	UNITA' GEOTECNICA
SONDAGGIO	ANNO	CAMPIONI	Z _{in}	Z _{fin}	UNITA GEOTECNICA
			(m)	(m)	
S8-06	2006	C4	17.50	18.00	U.G G(FL)
CS01	2021	3	18.30	18.80	U.G G(FL)
CS04	2021	Sh2	15.00	15.50	U.G G(FL)
CS05bis	2021	Sh3	16.00	16.50	U.G G(FL)
CS06	2021	2	15.00	15.50	U.G G(FL)
CS07	2021	3	15.50	16.00	U.G G(FL)
CS09	2021	5	31.50	32.00	U.G G(FL)
CS09	2021	4	26.50	27.00	U.G G(FL)
S1-06	2006	C4	23.60	24.00	U.G G(FL)
S2-06	2006	C2	22.70	23.00	U.G G(FL)
S5-06	2006	C4	15.50	15.80	U.G G(FL)
S6-06	2006	C3	17.60	17.90	U.G G(FL)
S6-06	2006	C5	29.30	29.80	U.G G(FL)
CS05	2022	3	16.00	16.50	U.G G(FL)


Tabella 9-4 Campioni estratti nell'unità G(FL)

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.4.1. N_{SPT}

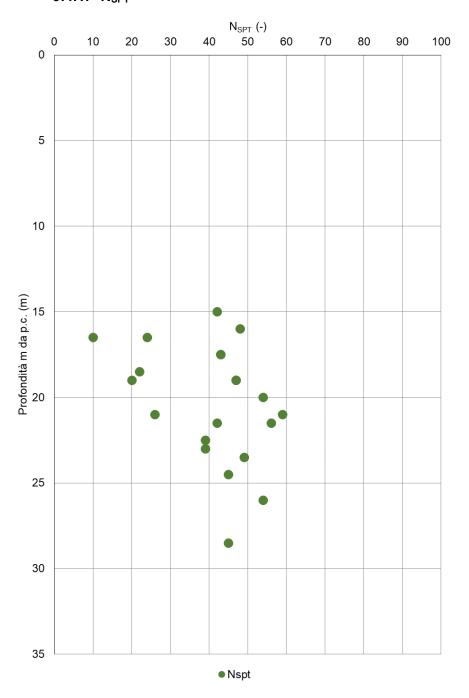


Figura 9-27 - Grafico di N_{SPT} in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità G (FL)

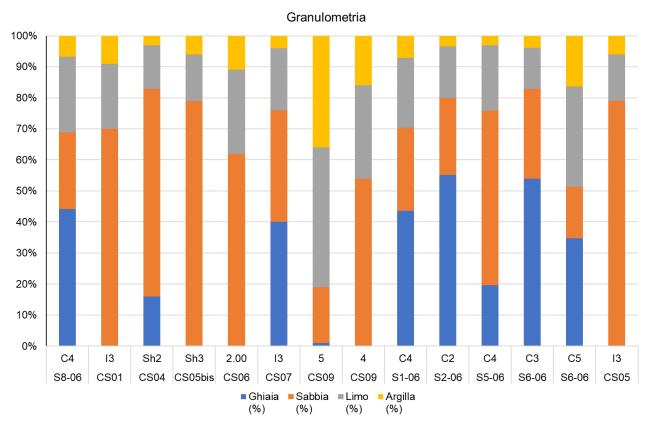
PROGETTAZIONE ATI:

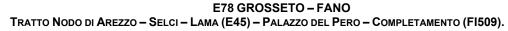
GPIngegneria

Pag. 78 di 210

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.4.2. GRANULOMETRIA




Figura 9-28 - Granulometria dei terreni relativi ai campioni eseguiti nell'unità G (FL)

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.4.3. DENSITÀ RELATIVA

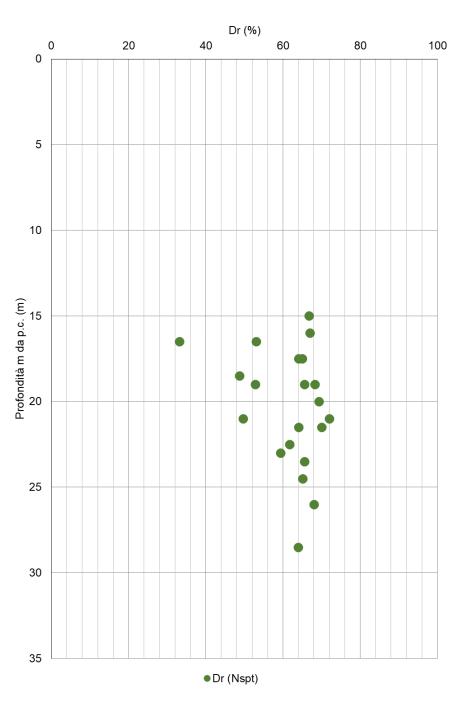


Figura 9-29 - Grafico della stima della densità relativa in funzione della profondità dal p.c. nell'unità G (FL)

PROGETTAZIONE ATI:

Pag. 80 di 210

TRATTO NODO DI AREZZO - SELCI - LAMA (E45) - PALAZZO DEL PERO - COMPLETAMENTO (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.4.4. ANGOLO DI RESISTENZA AL TAGLIO

Di seguito si riporta la stima dell'angolo di resistenza al taglio con rappresentati i risultati delle prove di taglio diretto dei campioni eseguiti in tale unità G(FL) e i risultati ottenuti a partire dai valori di N_{SPT} tramite la correlazione proposta dalla Japanese National Railway. In rosso il valore caratteristico dell'angolo di resistenza al taglio assunto per l'unità G(FL). Nella stima del valore caratteristico si è ritenuto opportuno dare un peso minore ai risultati delle prove di taglio diretto condotte su campioni prevalentemente sabbiosi e non ghiaiosi.

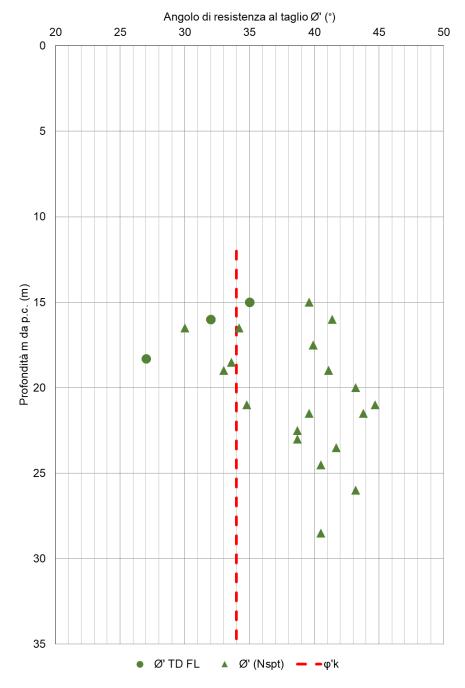


Figura 9-30 - Grafico della stima dell'angolo di resistenza al taglio nell'unità G (FL)

PROGETTAZIONE ATI:

Pag. 81 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.4.5. VELOCITÀ DELLE ONDE DI TAGLIO

Grafico della stima dei valori delle Vs ricavati dalle prove down-hole in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità G (FL); inoltre sono rappresentati i risultati ottenuti a partire dai valori di N_{SPT} tramite la correlazione proposta da Yhosida et al. (1988).

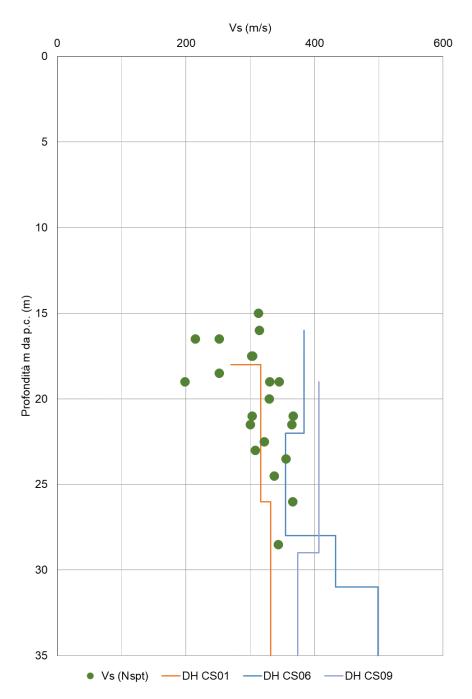


Figura 9-31 - Grafico di Vs in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità G (FL)

PROGETTAZIONE ATI:

Pag. 82 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.4.6. MODULO DI TAGLIO ALLE PICCOLE DEFORMAZIONI G_0

Grafico della stima modulo G₀ a partire dai valori delle Vs ricavati dalle prove down-hole e dalle prove N_{SPT} in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità G (FL).

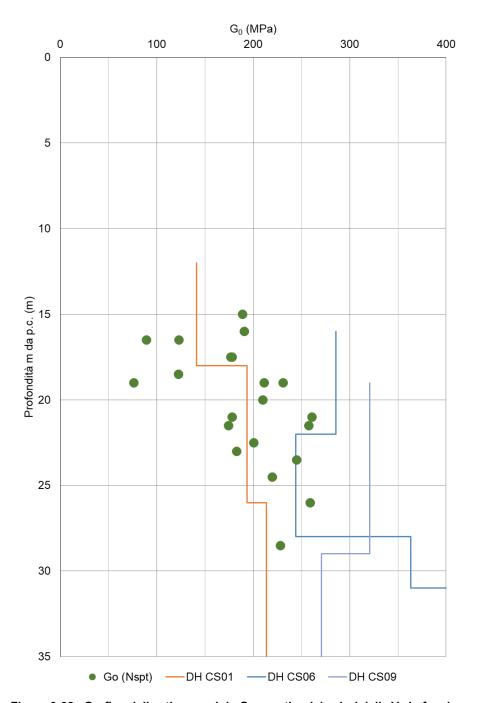


Figura 9-32 - Grafico della stima modulo G₀ a partire dai valori delle Vs in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità G (FL)

PROGETTAZIONE ATI:

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.4.7. MODULO ELASTICO DI YOUNG

Nel seguente grafico si riporta la stima del modulo elastico di Young operativo per le fondazioni dirette a partire dai valori N_{SPT} tramite la correlazione proposta da Jamiolkowski (E₂₅) e 1/10 del modulo di Young alle piccole deformazioni ottenuto a partire dai valori N_{SPT} (E₀ / 10) in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità G (FL). In rosso il range del valore di riferimento del modulo E per fondazioni dirette di progetto indicato per l'unità G(FL).

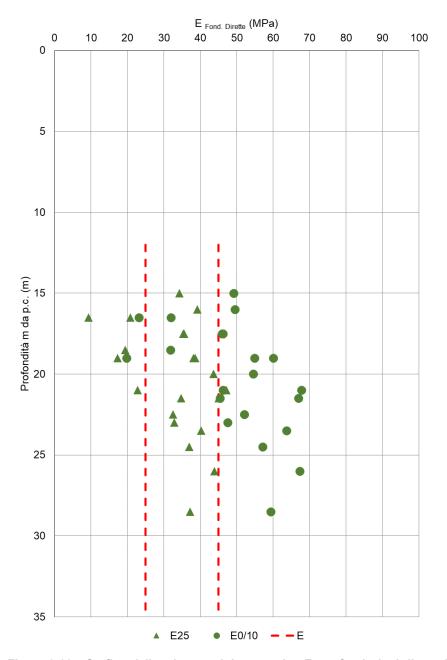


Figura 9-33 - Grafico della stima modulo operativo E per fondazioni dirette in funzione della profondità dal p.c. nell'unità G (FL)

PROGETTAZIONE ATI:

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Di seguito la stima del modulo elastico di Young operativo per le fondazioni profonde a partire dai valori N_{SPT} tramite la correlazione proposta da D'Apollonia (E) e 1/8 del modulo di Young alle piccole deformazioni ottenuto a partire dai valori N_{SPT} (E₀ / 8) in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità G (FL). In rosso il range di valori di riferimento del modulo elastico operativo E per fondazioni profonde-opere di sostegno per l'unità G(FL).

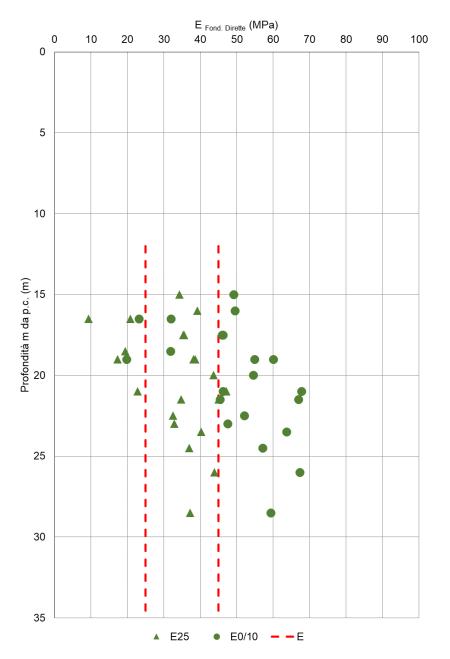


Figura 9-34 - Grafico della stima modulo operativo E per fondazioni profonde in funzione della profondità dal p.c. nell'unità G (FL)

PROGETTAZIONE ATI:

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

9.5. MODELLO GEOTECNICO DI RIFERIMENTO – STRADA DI COLLEGAMENTO SR73 – RACCORDO A1 AREZZO - BATTIFOLLE

Le seguenti Tabelle riportano i parametri per le proprietà fisiche, di resistenza al taglio e le caratteristiche di deformabilità delle unità geotecniche del Tratto Strada di collegamento SR 73, Raccordo A1 Arezzo Battifolle. Gli spessori degli strati sono definiti in funzione delle progressive di progetto nei profili indicati al paragrafo 9.

Unità geotecnica	Unità geologica	γ/γ' (kN/m³)	WL (%)	IP (%)	e ₀ (-)	Dr (%)
A (FL)	FL	19/9	85	35	0.85	-
L (FL, AT)	FL, AT	19.5/9.5	30÷50	10÷30	0.60÷0.70	-
S (FL, AT)	FL, AT	20/10	-	-	-	75÷50
G (FL)	FL	21/11	-	-	-	50÷70

Tabella 9-5 Parametri per le proprietà fisiche delle unità geotecniche

Unità geotecnica		Va	lori caratteris	tici	Variabilità parametri		
	Unità geologica	ф' к	c' _k	C _{uk}	φ'	c'	Cu
		(°)	(kPa)	(kPa)	(°)	(kPa)	(kPa)
A (FL)	FL	20	25	60+2z*	18÷22	50÷10	50÷150
L (FL, AT)	FL, AT	23	15	55+2z*	20÷28	40÷10	50÷200
S (FL, AT)	FL, AT	32	-	-	29÷35	-	-
G (FL)	FL	34	-	-	32÷38	-	-

^{* :} valore variabile con la profondità z

Tabella 9-6 Parametri caratteristici e variabilità dei parametri per le proprietà di resistenza al taglio delle unità geotecniche

U. geot.	U. geot. U. Vs	G_0	ν	OCR	C _c	C _r	C_{α}	C _v	
3 3 3 3	geo.	(m/s)	(MPa)	(-)	(-)	(-)	(-)	(-)	(cm²/s)
A (FL)	FL	z=0÷10 m: 170 z > 10m: 280	z=0-10 m: 60 z > 10m: 160	0.30	<2	0.30	0.06	0.002÷0.006	2÷5E-4
L (FL, AT)	FL, AT	200	80	0.30	4 - 0.3 z *	0.2÷0.6	0.04	0.002÷0.004	1÷2E-5
S (FL, AT)	FL, AT	200÷400	80÷310	0.25	-	-	-	-	-
G (FL)	FL	300÷400	170÷310	0.25	-	-	-	-	-

^{* :} valore variabile con la profondità z

Tabella 9-7 Parametri di deformabilità delle unità geotecniche

TRATTO NODO DI AREZZO – SELCI – LAMA (E45) – PALAZZO DEL PERO – COMPLETAMENTO (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Unità geotecnica	Unità geologica	M _{fond. Dirette}	M _{fond. Profonde}	E _{fond. Dirette}	E _{fond. Profonde}	r
A (FL)	FL	8÷10	16÷20	-	-	4
L (FL, AT)	FL, AT	z=0÷5m:6, z>5m:8	z=0÷5m:12, z>5m:16	-	-	4
S (FL, AT)	FL, AT	-	-	15÷30	25÷40	2
G (FL)	FL	-	-	25÷45	40÷60	2

z=profondità (m)

Tabella 9-8 Valori di riferimento per i moduli operativi delle unità geotecniche

Per quanto riguarda la caratterizzazione geotecnica del substrato roccioso si rimanda a quanto riportato al paragrafo 12.

PROGETTAZIONE ATI:

Pag. 87 di 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10. Caratterizzazione delle unità geotecniche – Asse principale

Le tavole di progetto che raffigurano il profilo geotecnico a cui si fa riferimento per l'Asse principale sono, da ovest vero est:

- T00GE00GETFG01_A dalla pk 0+000 alla pk 1+950;
- T00GE00GETFG02 A dalla pk 1+950 alla pk 3+650;
- T00GE00GETFG03_A dalla pk 3+650 alla 5+260;
- T00GE00GETSG01_A, sezioni geotecniche GEOT1, GEOT2;
- T00GE00GETSG02_A, sezioni geotecniche GEOT3, GEOT4;
- T00GE00GETSG03 A, sezioni geotecniche GEOT5.

Dalla **pk 0+000 alla pk 0+575** il profilo rilevato indica la prevalenza sino ad una profondità di 20-25 m dal p.c di terreni prettamente (U.G. L(FL)) di plasticità medio bassa e di discreta consistenza. Si tratta di terreni generalmente sovraconsolidati sino ad una profondità di 10 m circa.

I sondaggi eseguiti in questa zona (S1-06, AS01, S1-99, S2-99) indicano, sempre a profondità inferiori a 20-25 m, la presenza di lenti di sabbia appartenenti all'unità geotecnica S(FL) mediamente addensate. Lungo tale tratto non è stata riscontrata la presenza del substrato roccioso.

Nel tratto dalla **pk 0+575 alla 2+350** i livelli superficiali sono caratterizzati dalla prevalenza di terreni limosi (U.G. L(FL)) ma già a profondità limitata. (generalmente a 8-9 m) è stato rilevato il substrato roccioso formato dalle Arenarie del Cervarola (U.G. AC). Come per il tratto precedente, localmente il livello limoso superficiale è intercalato lenti sabbiose (U.G.L(FL).

In corrispondenza del tratto dalla **pk 2+350 alla pk 2+900** si rilevano significative modifiche del profilio stratifico naturale per effetto degli interventi antropici (galleria ferroviaria esistente): sono infatti presenti, in particolare tra la pk 2+350÷2+650, terreni di riporto sino a profondità massime di 10 m circa, legati a fasi di scavo e rinterro del substrato roccioso che è stato rilevato molto superficiale.

Nel tratto **pk 2+990÷3+200** il substrato roccioso, costituito della Arenarie del Cervarola è affiorante.

Dalla **pk 3+200 in poi** il substrato tende ad immergersi rapidamente tanto che dalla progressiva pk 3+400 non è stato più rilevato sino alle profondità indagate. I terreni di fondazione indagati sono prevalentemente limi sabbiosi (U.G.LS (AT)), con frequenti intercalazioni di ghiaie a matrice sabbioso-limosa-argillosa e lenti argillose. I terreni sono di buona consistenza e sovraconsolidati sino a 10 m circa di profondità. Lungo tale tratta il tracciato di progetto è previsto in affiancamento e allargamento al rilevato stradale già esistente (U.G. R).

In base ai rilevi geologici condotti, come evidenziato nelle sezioni geotecniche GEOT3 e GEOT4 sono presenti dei depositi superficiali di antiche frane stabilizzate che non presentano segni di attività. La viabilità principale non interferisce con tali depositi, interessati solo da alcune opere minori di viabilità secondaria.

PROGETTAZIONE ATI:

Pag. 88 di 210

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

TRATTO NODO DI AREZZO - SELCI - LAMA (E45) - PALAZZO DEL PERO - COMPLETAMENTO (FI509).

10.1. UNITÀ GEOTECNICA A (FL)

Questa unità geotecnica è presente soltanto in corrispondenza del sondaggio S1-06, tra le progressive del Tratto Asse principale pk 0+000 e pk 0+125. Per quanto riguarda la caratterizzazione geotecnica si rimanda alla caratterizzazione già eseguita nel paragrafo 9.1 dell'unità A(FL) per la strada di collegamento SR73 – Raccordo A1 Arezzo – Battifolle.

10.2. UNITÀ GEOTECNICA L (FL)

Questa unità geotecnica rappresenta la litologia prevalentemente limosa delle unità geologica dei depositi continentali fluvio-lacustri terrazzati "FL". Questi sedimenti sono rappresentati da limi la cui granulometria varia dai limi argillosi a limi sabbiosi.

I campioni prelevati all'interno di questa unità sono quelli riportati nella seguente Tabella.

			PROFONDIT	PROFONDITÀ CAMPIONI		
SONDAGGIO	ANNO	CAMPIONI	Z _{in}	Z _{fin}		
			(m)	(m)		
AS01	2021	2	10.00	10.50		
AS01	2021	3	17.00	17.50		
AS01	2021	R1	12.00	12.80		
AS02	2021	1	6.00	6.50		
AS02	2021	2	9.00	9.50		
AS03	2021	1	7.00	7.50		
AS03	2021	R1	12.00	12.30		
AS04	2021	1	4.00	4.50		
AS05	2021	1	2.00	2.40		
S1	1994	1	2.70	3.00		
S1	1994	2	5.70	6.30		
S2	1994	1	5.50	6.20		
S2	1994	2	8.40	9.10		
S2	1994	2	8.40	9.10		
S3	1994	1	4.30	5.00		
S4	1994	1	3.10	3.70		
S11	1994	1	2.00	2.70		
S11	1994	2	4.20	4.90		
S12	1994	1	2.00	2.70		
S12	1994	1	2.00	2.70		
S12	1994	2	3.50	4.10		
S13	1994	2	3.50	4.10		
S1	1999	1	1.00	1.50		
S1	1999	1	5.00	5.60		
S2	1999	1 parte bassa	1.00	1.60		
S2	1999	2	5.00	5.60		
S3	1999	1	2.00	2.60		

PROGETTAZIONE ATI:

Pag. 89 di 210

TRATTO NODO DI AREZZO — SELCI — LAMA (E45) — PALAZZO DEL PERO — COMPLETAMENTO (FI509).

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

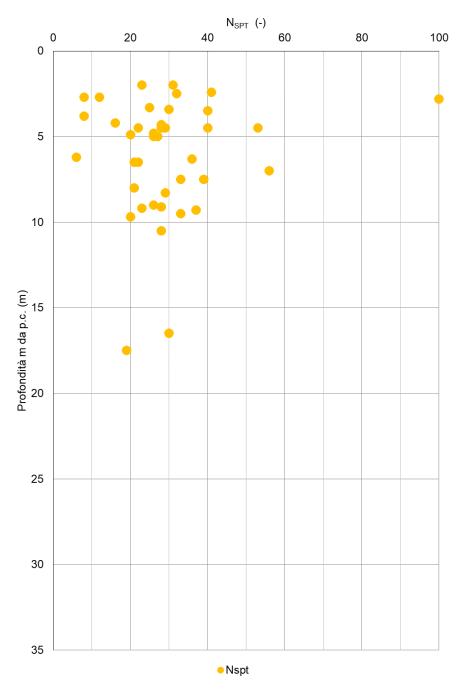
			PROFONDITÀ CAMPIONI		
SONDAGGIO	ANNO	CAMPIONI	Z _{in}	Z _{fin}	
			(m)	(m)	
S4	1999	2	5.00	5.60	
S5	1999	2	5.00	5.60	
S9	1999	1	10.00	10.60	
S10	1999	1	5.00	5.60	
S1	2006	C3	17.00	17.30	
S1	2006	Sh2	13.00	13.60	
SD	2008	Cl1	1.00	1.40	
SE	2008	Cl1	3.00	3.60	
SE	2008	Cl2	5.50	6.10	

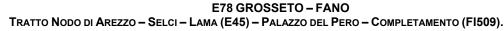
Tabella 10-1 Campioni estratti nell'unità L(FL)

TRATTO NODO DI AREZZO - SELCI - LAMA (E45) - PALAZZO DEL PERO - COMPLETAMENTO (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.2.1. N_{SPT}




Figura 10-1 - Grafico di N_{SPT} in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità L (FL)

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.2.2. GRANULOMETRIA

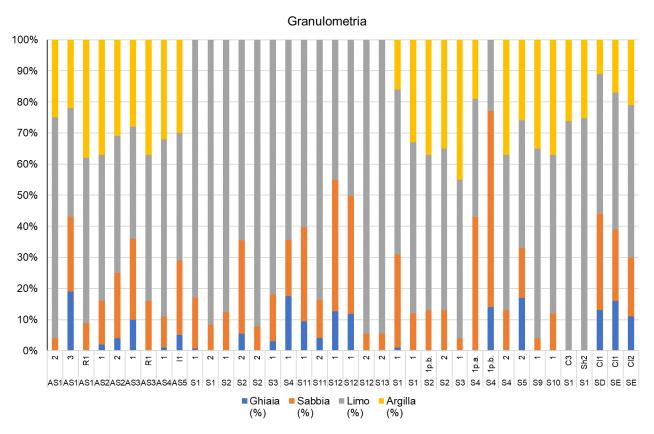


Figura 10-2 - Granulometria dei terreni relativi ai campioni eseguiti nell'unità L (FL)

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.2.3. PESO DI VOLUME DEL TERRENO

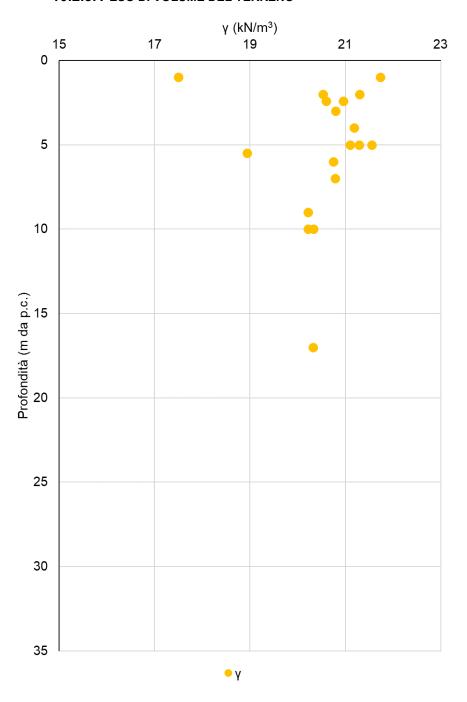
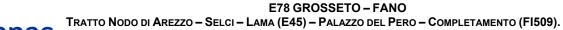


Figura 10-3 - Grafico del peso di volume del terreno in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL)


PROGETTAZIONE ATI:

GPIngegneria GESTIONE PROGETTI INGEGNERIA srl

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.2.4. DIAGRAMMA DI PLASTICITÀ DI CASAGRANDE

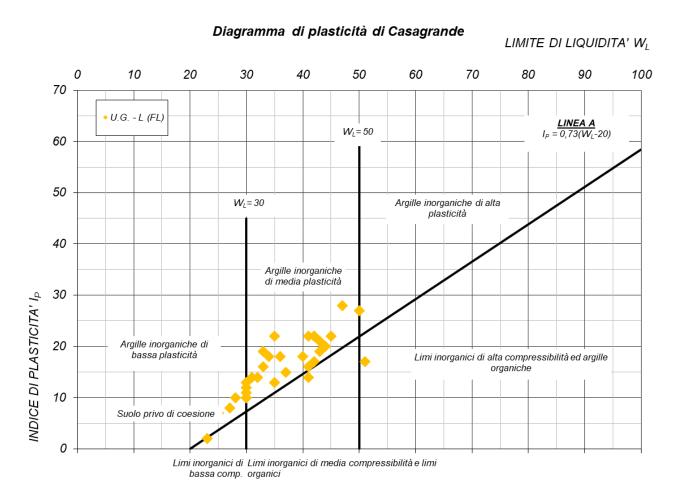


Figura 10-4 - Diagramma di plasticità di Casagrande relativo ai campioni eseguiti nell'unità L (FL)

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.2.5. LIMITE DI LIQUIDITÀ

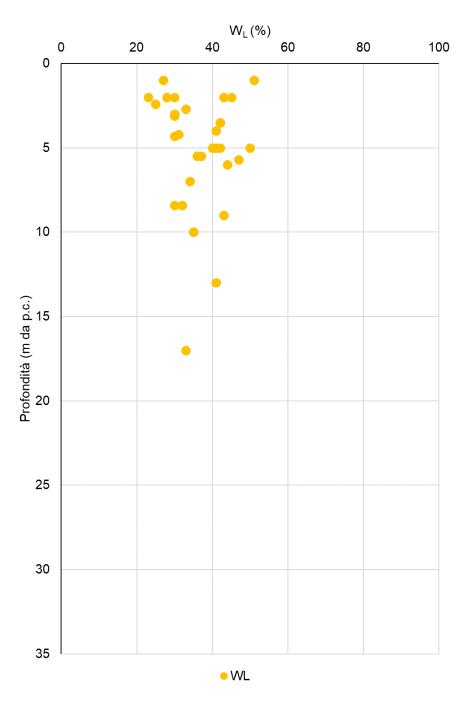


Figura 10-5 - Grafico del limite di liquidità del terreno in funzione della profondità dal p.c. dei campioni eseguiti nell'unità A (FL)

PROGETTAZIONE ATI:

GPIngegneria GESTIONE PROGETTI INGEGNERIA srl

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.2.6. INDICE DI PLASTICITÀ

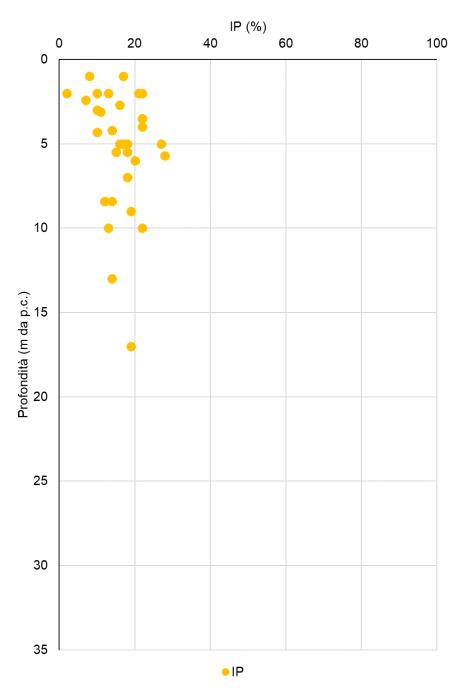
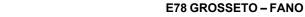


Figura 10-6 - Grafico dell'indice di plasticità del terreno in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL)

PROGETTAZIONE ATI:


Pag. 96 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.2.7. INDICE DEI VUOTI

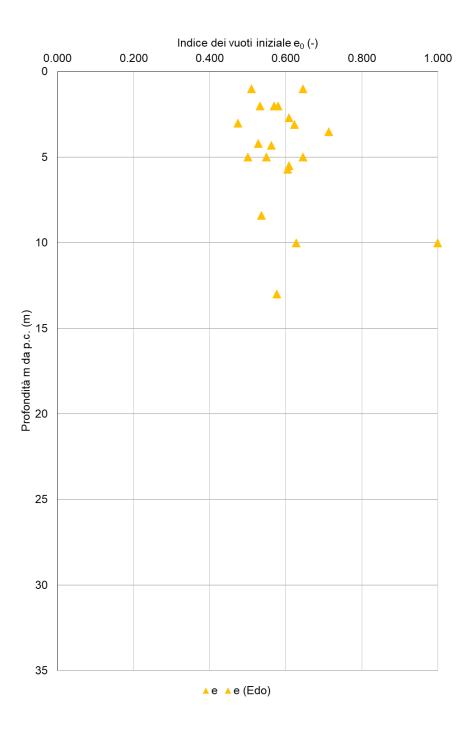


Figura 10-7 - Grafico dell'indice dei vuoti in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL)

PROGETTAZIONE ATI:

Pag. 97 di 210

E78 GROSSETO - FANO Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.2.8. RESISTENZA AL TAGLIO IN COND. DRENATE

Nel seguente grafico si riporta la stima dell'angolo di resistenza al taglio con rappresentati i risultati delle prove di taglio diretto e triassiali C.D. e C.U. dei campioni eseguiti in tale unità L (FL).Il valore caratteristico assunto per il progetto è evidenziato in rosso.

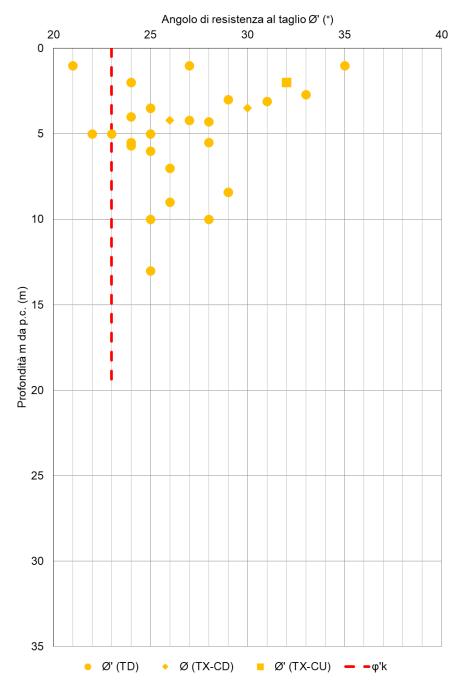


Figura 10-8 - Grafico della stima dell'angolo di resistenza al taglio nell'unità L (FL)

PROGETTAZIONE ATI:

Pag. 98 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Di seguito si riporta il grafico con rappresentati i valori di coesione efficace risultanti delle prove di taglio diretto e triassiali C.D. Il valore caratteristico, evidenziato in rosso è stato definito trascurando i valori di coesione inferiori a 10 kPa correlati ad angoli di resistenza al taglio φ'molto maggiori del valore caratteristico assunto (vedi Figura 10-8).

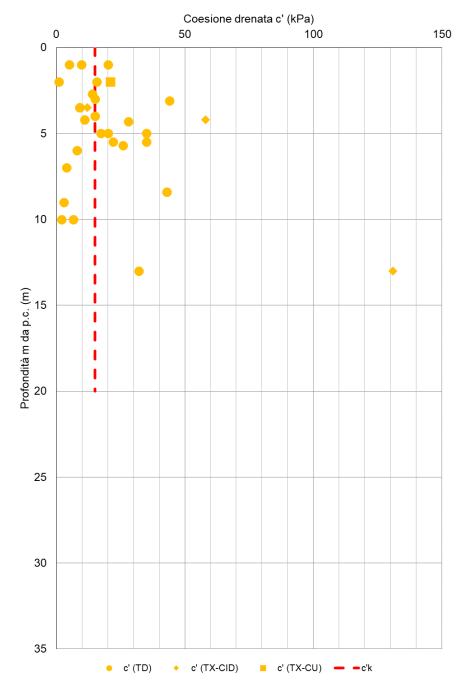


Figura 10-9 - Grafico della stima della coesione efficace nell' unità L (FL)

PROGETTAZIONE ATI:

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.2.9. COESIONE NON DRENATA

Il swguente grafico riporta la stima della coesione non drenata a partire dai valori N_{SPT} in funzione della profondità dal p.c.; sono inoltre rappresentati anche i risultati delle prove ELL, UU e i valori medi del Pocket Penetrometer e del Torvane. La linea blu corrisponde alla cu normalconsolidata calcolata assumendo una falda media pari a 5 m dal p.c, in rosso è rappresentato il valor caratteristico per le verifiche. I limitati campioni con una coesione inferiore al valore caratteristico rappresentano isolate condizioni con una percentuale di sabbia più alta.

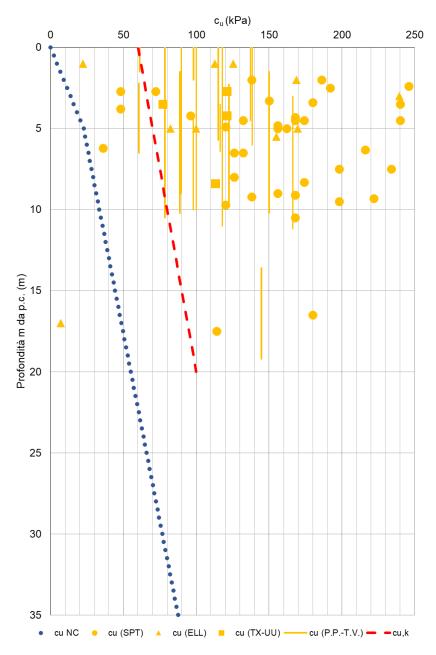


Figura 10-10: Grafico della stima della coesione non drenata nell'unità L (FL)

PROGETTAZIONE ATI:

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

VELOCITÀ DELLE ONDE DI TAGLIO E MODULO DI TAGLIO ALLE PICCOLE 10.2.10. DEFORMAZIONI Go

Nell'unità L (FL) sono stati rilevati valori delle v_s delle prove down-load pari a circa 200÷300 m/s.

La stima del modulo G₀ è stata ricavata a partire dai valori delle Vs ricavati dalle prove down-hole ottenendo un range pari a 80÷150 MPa.

10.2.11. **GRADO DI SOVRACONSOLIDAZIONE**

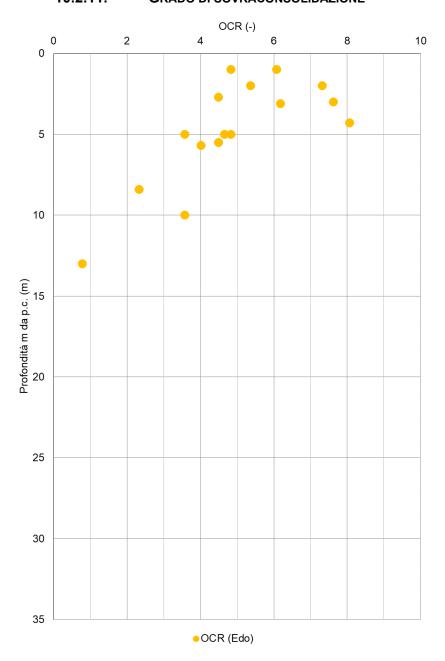


Figura 10-11 - Grafico grado di sovraconsolidazione OCR in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL)

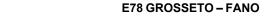
PROGETTAZIONE ATI:

Pag. 101 di 210

E78 GROSSETO – FANO
TRATTO NODO DI AREZZO – SELCI – LAMA (E45) – PALAZZO DEL PERO – COMPLETAMENTO (FI509).

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

PROGETTAZIONE ATI:



Pag. 102 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.2.12. **INDICE DI COMPRESSIONE**

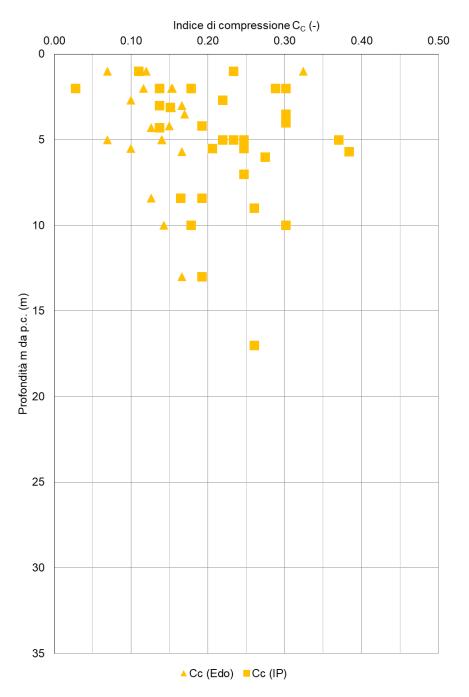


Figura 10-12 - Grafico dell'indice di compressione in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL)

PROGETTAZIONE ATI:

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.2.13. INDICE DI RICOMPRESSIONE

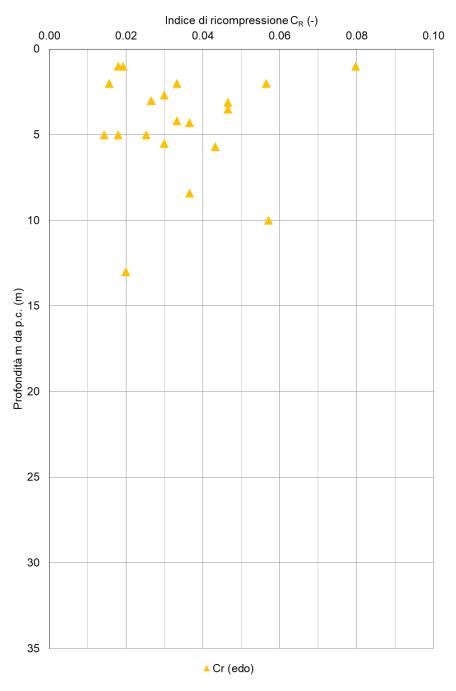


Figura 10-13 - Grafico dell'indice di ricompressione in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL)

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.2.14. **COEFFICIENTE DI COMPRESSIONE SECONDARIO**

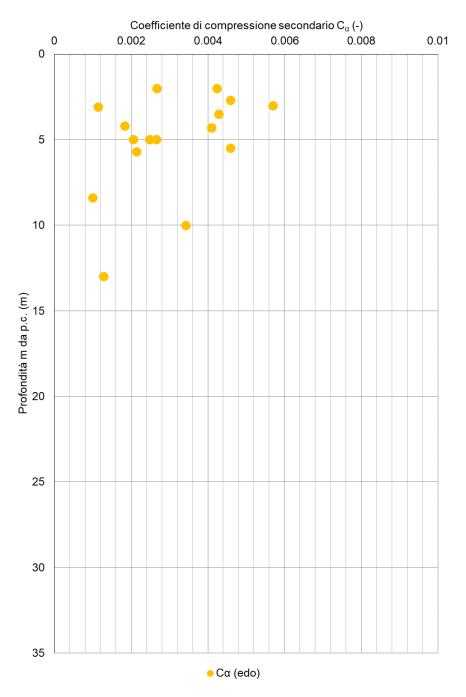


Figura 10-14 - Grafico dell'indice di compressione secondaria in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL)

PROGETTAZIONE ATI:

Pag. 105 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.2.15. COEFFICIENTE DI CONSOLIDAZIONE C_{ν}

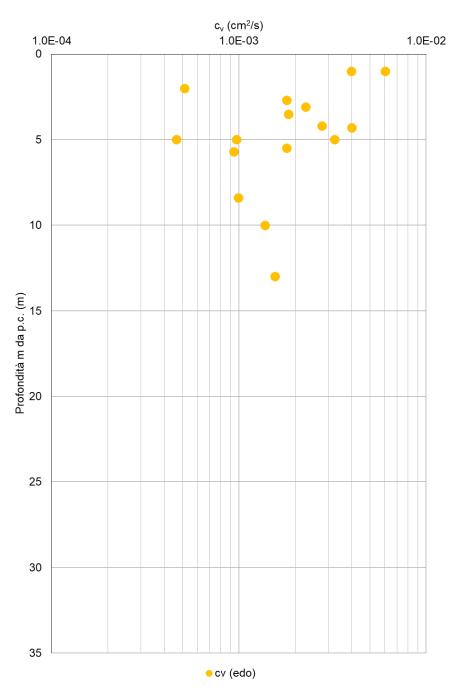


Figura 10-15 – Grafico del coefficiente di consolidazione in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL)

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.2.16. MODULO CONFINATO M PER FONDAZIONI DIRETTE

Di seguito si riporta Gla stima del modulo operativo confinato M per fondazioni dirette a partire dai valori N_{SPT} tramite la correlazione proposta da Stroud, inoltre, sono rappresentati i moduli ricavati dalle prove edometriche. In rosso è evidenziato il range dei valori di riferimento assunti per le verifiche.

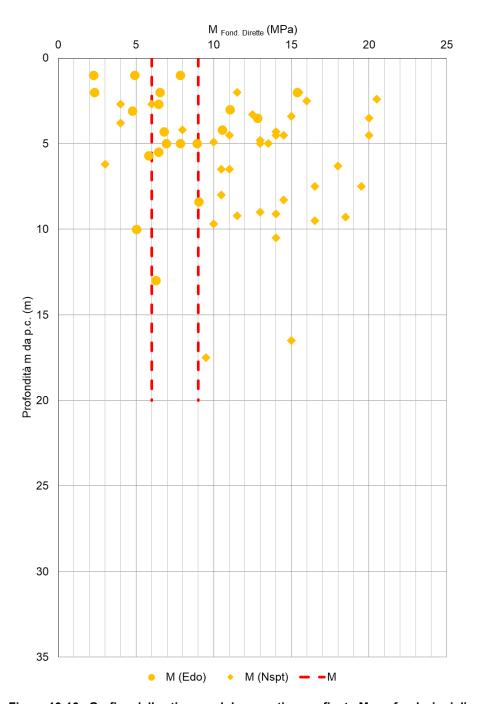


Figura 10-16 - Grafico della stima modulo operativo confinato M per fondazioni dirette in funzione della profondità dal p.c. nell'unità L (FL)

PROGETTAZIONE ATI:

Pag. 107 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

UNITÀ GEOTECNICA LS (AT) 10.3.

Questa unità geotecnica rappresenta la litologia prevalentemente limosa della unità geologica dei depositi alluvionali recenti ed attuali "AT", caratterizzata da terreni medio-fini, costituiti in prevalenza da limi più o meno argillosi, con frequenti intercalazioni di ghiaie a matrice sabbioso-limosa-argillosa.

I campioni estratti all'interno di questa unità sono quelli riportati nella seguente Tabella.

			PROFONDIT	À CAMPIONI
SONDAGGIO	ANNO	CAMPIONI	Z _{in}	Z _{fin}
			(m)	(m)
S13	1999	1	2.00	2.40
S13	1999	2	6.00	6.60
S13	1999	3	9.50	10.10
S13	1999	4 parte alta	15.00	15.60
S13	1999	4 parte bassa	15.00	15.60
S17	1999	1	2.40	3.00
S17	1999	2	2.40	3.00
S18	1999	1	1.00	1.60
S18	1999	2	5.50	6.10
S19	1999	1	2.00	2.60
S19	1999	2	10.00	10.60
S19	1999	3	15.00	15.60
S20	1999	1	2.00	2.60
S20	1999	2	6.00	6.60
S20	1999	3	10.00	10.60
S20	1999	4	15.00	15.60
SL	2008	Cl1	2.00	2.45
SL	2008	Cl2	5.50	6.00
SL	2008	Cl2	16.00	16.40
SM	2008	Cl1	2.50	3.00
SM	2008	Cl2	7.50	8.00
SM	2008	Cl3	13.50	14.00
SM	2008	Cl4	19.00	19.50

Tabella 10-2 Campioni estratti nell'unità LS(AT)

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.3.1. NUMERO COLPI SPT

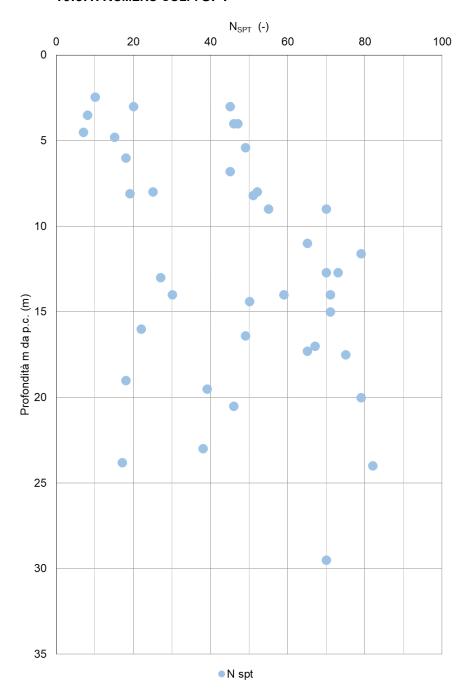


Figura 10-17 - Grafico di N_{SPT} in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità LS (AT)

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.3.2. GRANULOMETRIA

La granulometria prevalente è quella limosa ma come si vede dal grafico seguente sono presenti anche terreni con percentuali sabbiose significative a che l'unità geotecnica LS(AT) è un'unità prevalentemente limosa ma frequenti lenti di sabbia e ghiaia.

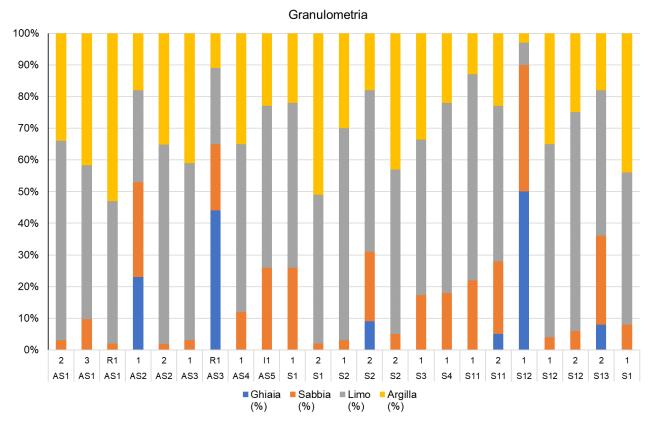


Figura 10-18 - Granulometria dei terreni relativi ai campioni eseguiti nell'unità LS (AT)

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.3.3. PESO DI VOLUME DEL TERRENO

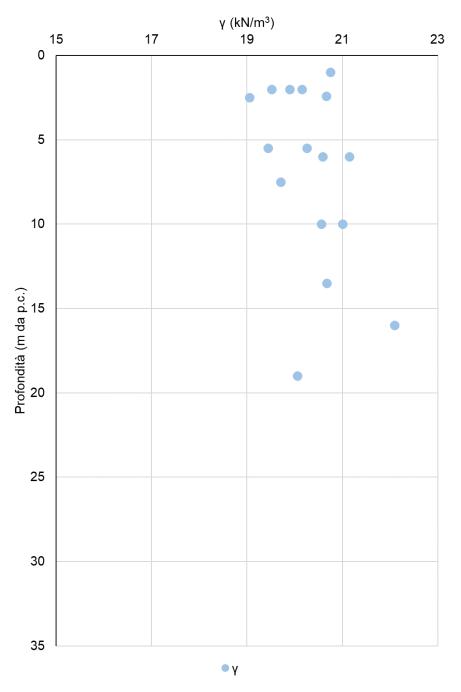
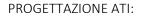
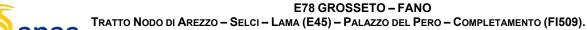



Figura 10-19 - Grafico del peso di volume del terreno in funzione della profondità dal p.c. dei campioni eseguiti nell'unità LS (AT)



GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.3.4. DIAGRAMMA DI PLASTICITÀ DI CASAGRANDE

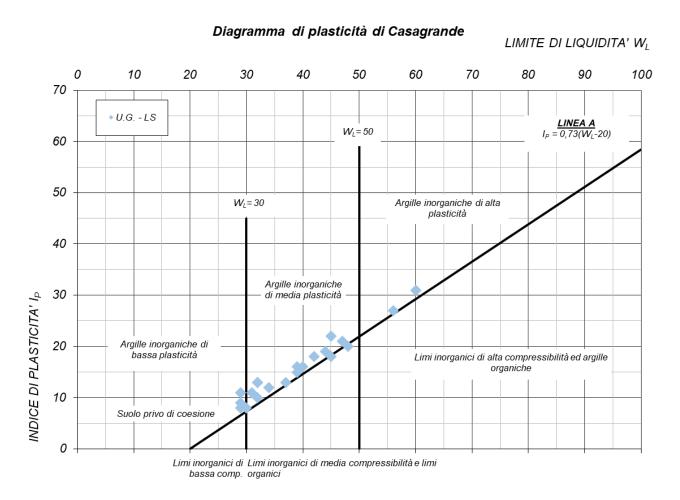


Figura 10-20 - Diagramma di plasticità di Casagrande relativo ai campioni eseguiti nell'unità LS (AT)

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.3.5. LIMITE DI LIQUIDITÀ

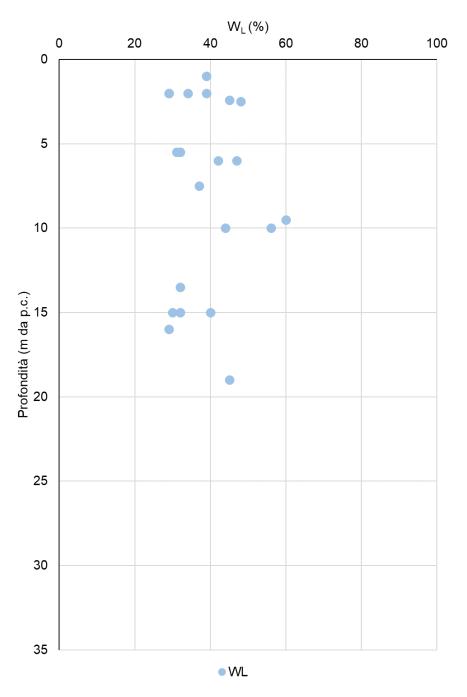


Figura 10-21 - Grafico del limite di liquidità del terreno in funzione della profondità dal p.c. dei campioni eseguiti nell'unità LS (AT)

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.3.6. INDICE DI PLASTICITÀ

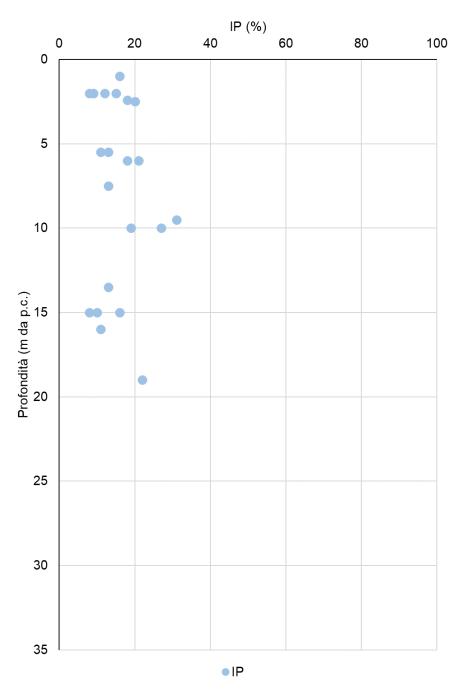


Figura 10-22 - Grafico dell'indice di plasticità del terreno in funzione della profondità dal p.c. dei campioni eseguiti nell'unità LS (AT)

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.3.7. INDICE DEI VUOTI

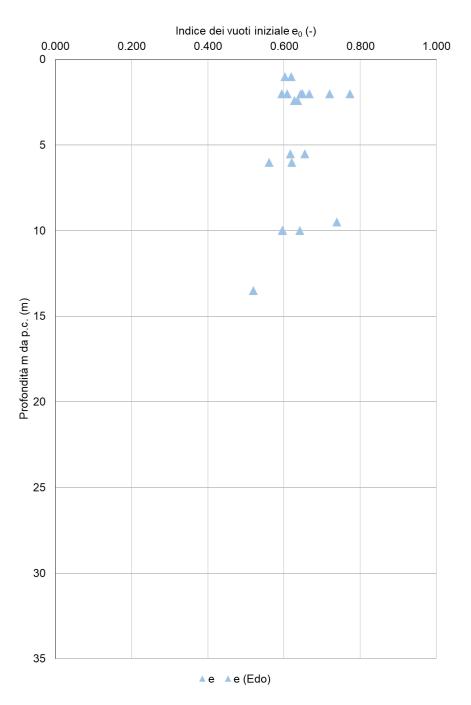


Figura 10-23 - Grafico dell'indice dei vuoti in funzione della profondità dal p.c. dei campioni eseguiti nell'unità LS (AT)

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.3.8. RESISTENZA AL TAGLIO IN COND. DRENATE

Nel seguente grafico si riportano i valori dell'angolo di resistenza al taglio ottenuti da prove di taglio diretto e triassiali C.U. Il valore caratteristico evidenziato in rosso è stato definito trascurando i risultati delle prove che indicano φ' inferiore a 23° cui corrisponde una coesione c' (vedi Figura 10-25) ben maggiore del valore caratteristico assunto.

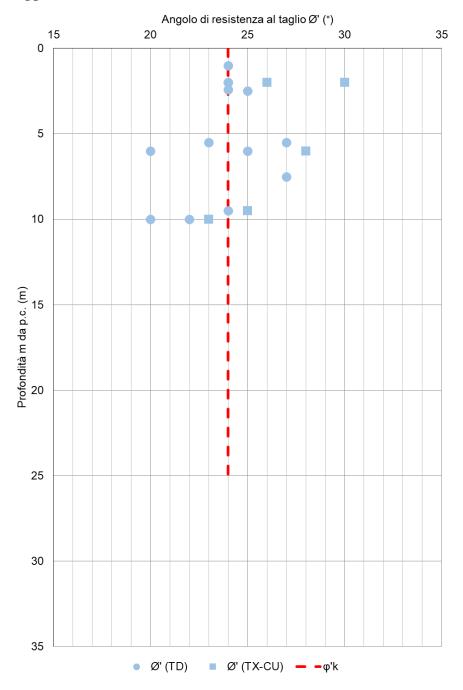


Figura 10-24 - Grafico della stima dell'angolo di resistenza al taglio nell'unità LS (AT)

PROGETTAZIONE ATI:

210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Di seguito il grafico della coesione efficace dai risultati delle prove di taglio diretto e triassiali C.U. dei campioni eseguite.

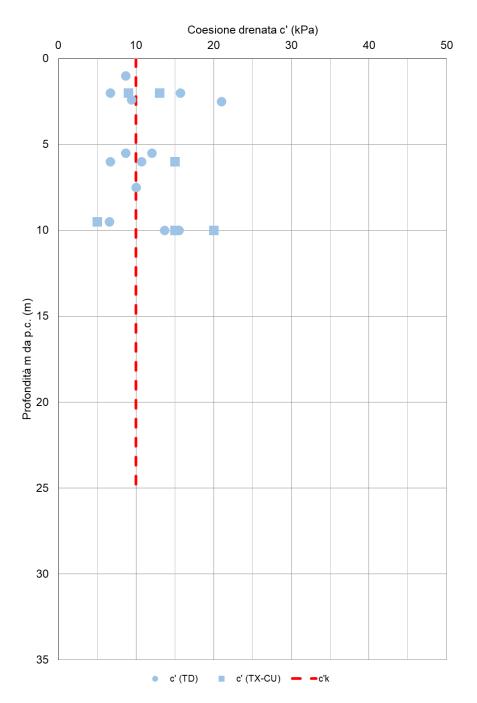


Figura 10-25 - Grafico della stima della coesione efficace nell' unità LS (AT)

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.3.9. COESIONE NON DRENATA

Nel seguente grafico si riporta la stima della coesione non drenata a partire dai valori N_{SPT}; sono rappresentati anche i risultati delle prove ELL, triassiali CU e i valori medi del Pocket Penetrometer e dei Torvane.

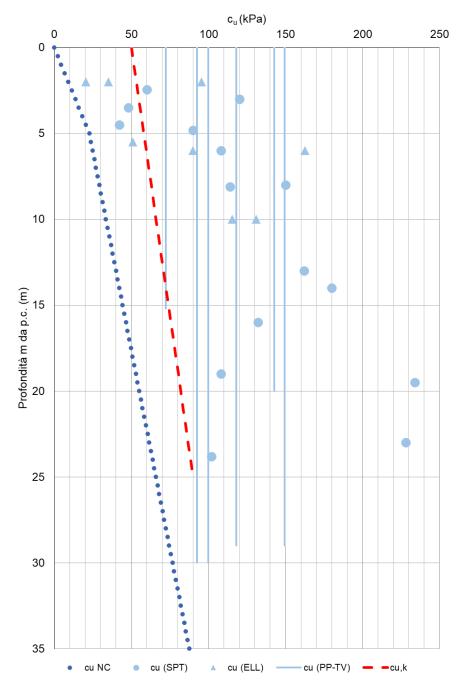


Figura 10-26: Grafico della stima della coesione non drenata nell' unità LS (AT)

PROGETTAZIONE ATI:

GPIngegneria

210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.3.10. VELOCITÀ DELLE ONDE DI TAGLIO E MODULO DI TAGLIO ALLE PICCOLE DEFORMAZIONI Go

Nell'unità LS (AT) sono stati rilevati valori delle V_s delle prove down-hole pari a circa 200÷350 m/s. La stima del modulo G₀ è stata ricavata a partire dai valori delle Vs ricavati dalle prove Down-Hole ottenendo un range pari a 80÷200 MPa.

10.3.11. **GRADO DI SOVRACONSOLIDAZIONE**

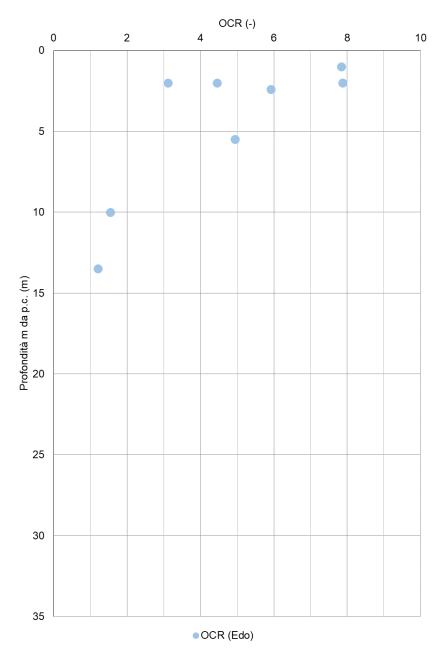


Figura 10-27 - Grafico grado di sovraconsolidazione OCR in funzione della profondità dal p.c. dei campioni eseguiti nell'unità LS (AT)

PROGETTAZIONE ATI:

Pag. 119 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.3.12. **INDICE DI COMPRESSIONE**

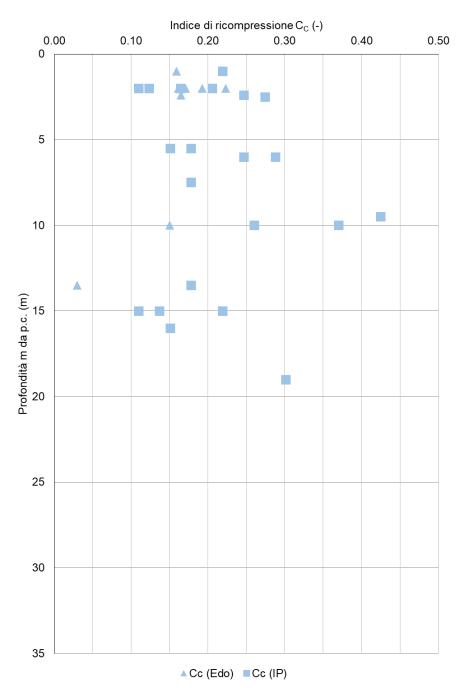


Figura 10-28 - Grafico dell'indice di compressione in funzione della profondità dal p.c. dei campioni eseguiti nell'unità LS (AT)

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.3.13. **INDICE DI RICOMPRESSIONE**

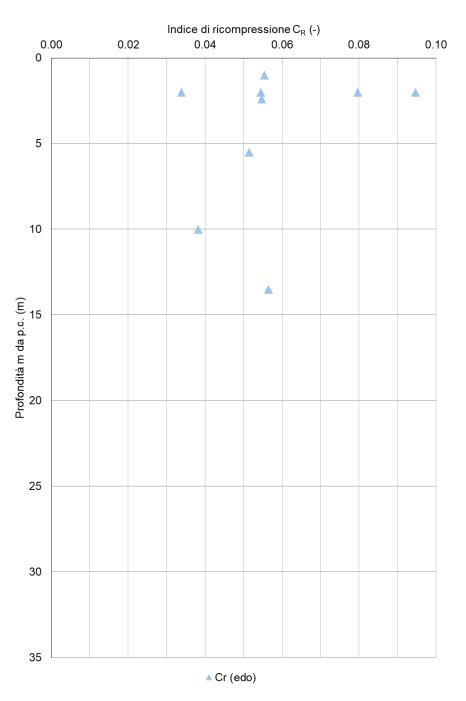


Figura 10-29 - Grafico dell'indice di ricompressione in funzione della profondità dal p.c. dei campioni eseguiti nell'unità LS (AT)

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.3.14. **COEFFICIENTE DI COMPRESSIONE SECONDARIO**

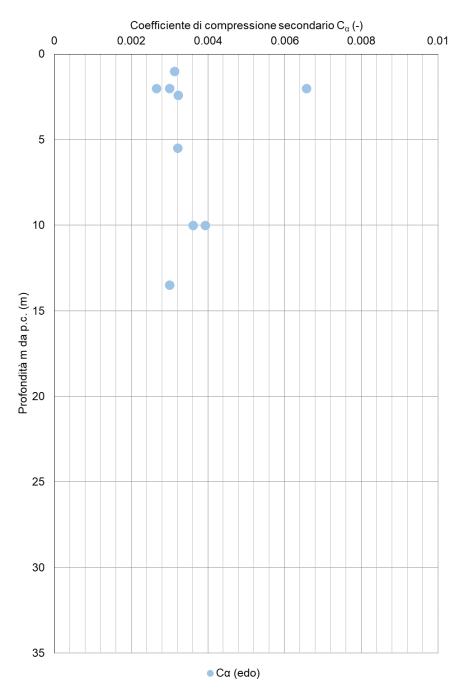


Figura 10-30 - Grafico dell'indice di compressione secondaria in funzione della profondità dal p.c. dei campioni eseguiti nell'unità LS (AT)

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.3.15. COEFFICIENTE DI CONSOLIDAZIONE C_{ν}

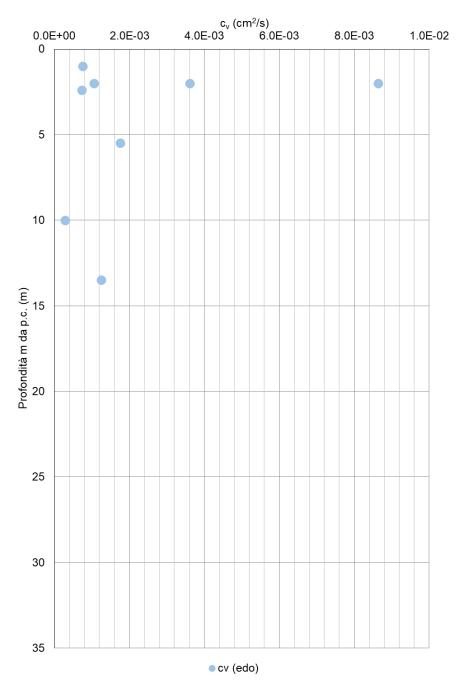


Figura 10-31 – Grafico del coefficiente di consolidazione in funzione della profondità dal p.c. dei campioni eseguiti nell'unità LS (AT)

PROGETTAZIONE ATI:

Pag. 123 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.3.16. MODULO CONFINATO M PER FONDAZIONI DIRETTE

Nel seguente grafico si riporta la stima del modulo operativo confinato M per fondazioni dirette a partire dai valori N_{SPT}; inoltre, sono rappresentati i moduli ricavati dalle prove edometriche. In rosso è evidenziato il range dei valori di riferimento assunti per le verifiche.

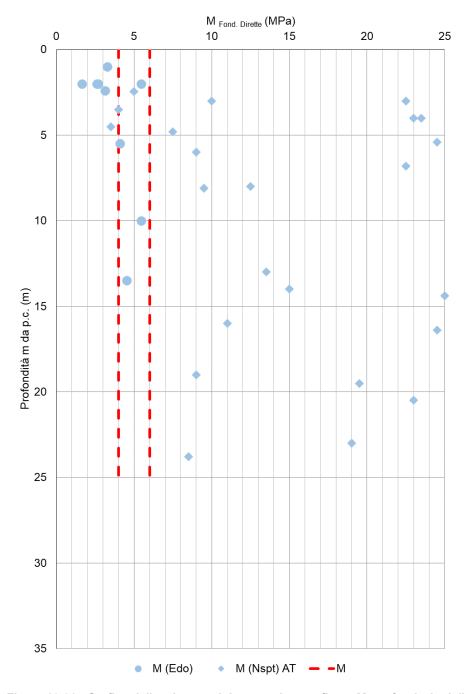


Figura 10-32 - Grafico della stima modulo operativo confinato M per fondazioni dirette in funzione della profondità dal p.c. nell'unità LS (AT)

PROGETTAZIONE ATI:

Pag. 124 di 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

UNITÀ GEOTECNICA S (FL) 10.4.

L'unità geotecnica S comprende lenti all'interno dell'unità geologica "FL" costituite da sabbie fini limoargillose con livelli centimetrici di ghiaie medio fine in matrice sabbiosa limosa.

I campioni prelevati all'interno di questa unità sono quelli riportati nella seguente Tabella.

			PROFONDIT	À CAMPIONI
SONDAGGIO	ANNO	CAMPIONI	Z _{in}	Z _{fin}
			(m)	(m)
AS02	2021	R1	11.70	12.00
AS02	2021	R2	14.00	14.20
S2	1999	1 parte alta	1.00	1.60
S4	1999	1 parte alta	2.40	3.00
S4	1999	1 parte bassa	2.40	3.00
S7	1999	1	10.00	10.60
\$8	1999	2	10.00	10.60
S10	1999	1	1.00	1.60
S11	1999	1	1.00	1.60
S12	1999	1 parte alta	2.00	2.60
S12	1999	1 parte bassa	2.00	2.60
S1	2006	C2	9.30	9.60

Tabella 10-3 Campioni estratti nell'unità S(FL)

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.4.1. N_{SPT}

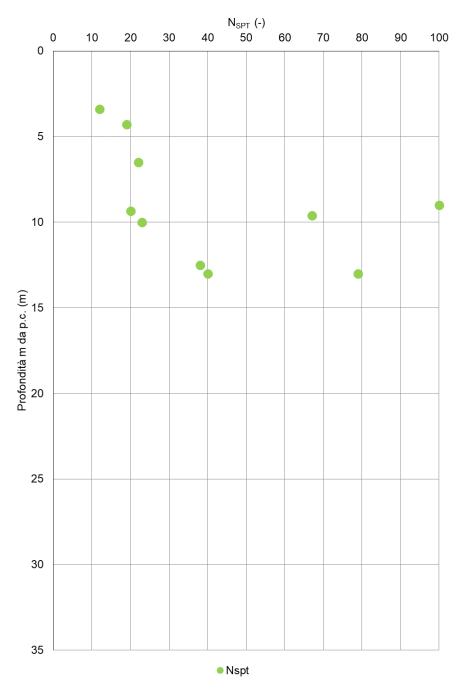


Figura 10-33 - Grafico di N_{SPT} in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità S (FL)

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.4.2. GRANULOMETRIA

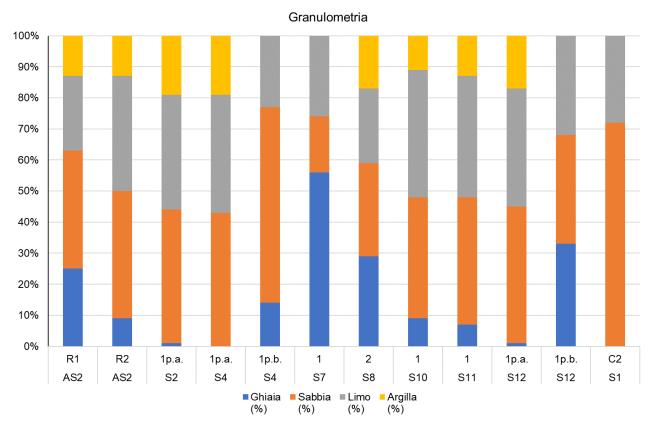


Figura 10-34 - Granulometria dei terreni relativi ai campioni eseguiti nell'unità S (FL)

TRATTO NODO DI AREZZO - SELCI - LAMA (E45) - PALAZZO DEL PERO - COMPLETAMENTO (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.4.3. DENSITÀ RELATIVA

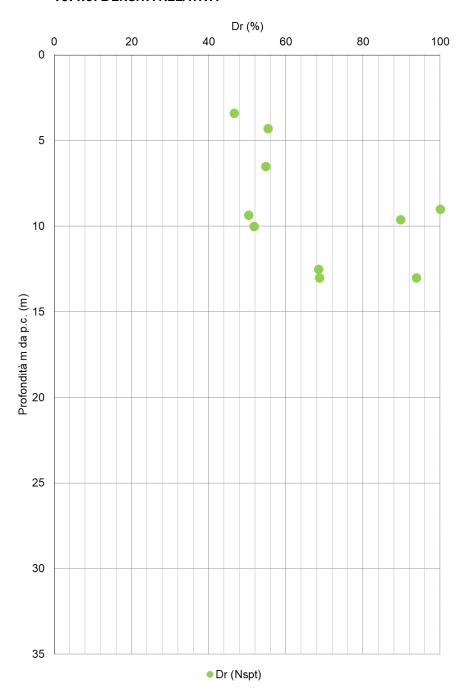


Figura 10-35 - Grafico della stima della densità relativa in funzione della profondità dal p.c. nell'unità S (FL)

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.4.4. ANGOLO DI RESISTENZA AL TAGLIO

Nel seguente grafico si riporta la stima dell'angolo di resistenza al taglio con rappresentati i risultati delle prove di taglio diretto dei campioni eseguiti in tale unità S (FL) e i risultati ottenuti a partire dai valori di N_{SPT} tramite la correlazione proposta da Shioi e Fukuni (1982).

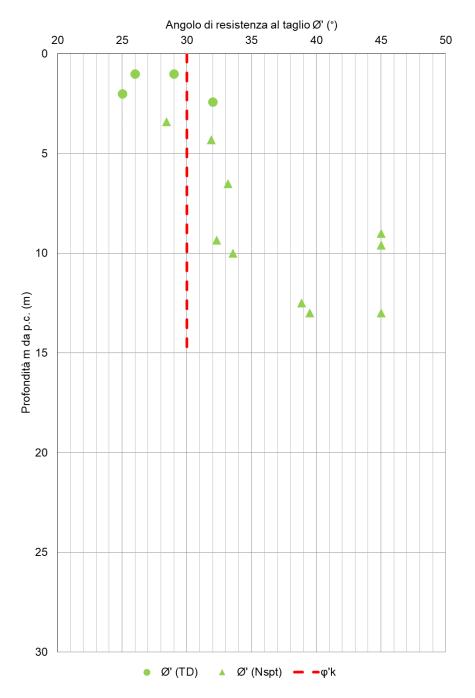


Figura 10-36 - Grafico della stima dell'angolo di resistenza al taglio nell'unità S (FL)

PROGETTAZIONE ATI:

210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.4.5. VELOCITÀ DELLE ONDE DI TAGLIO

Nell'unità S (FL) sono stati rilevati valori delle v_s delle prove down-load pari a circa 400 m/s, inoltre sono rappresentati nel seguente grafico i risultati ottenuti a partire dai valori di N_{SPT} tramite la correlazione proposta da Yhosida et al. (1988).

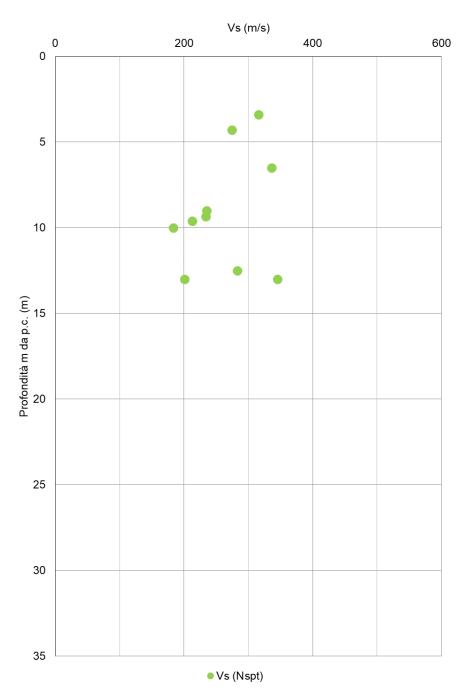


Figura 10-37 - Grafico di vs in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità S (FL)

PROGETTAZIONE ATI:

Pag. 130 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.4.6. Modulo di taglio alle piccole deformazioni G_{0}

Grafico della stima modulo G₀ a partire dai valori delle Vs ricavati dalle prove N_{SPT} in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità S (FL).

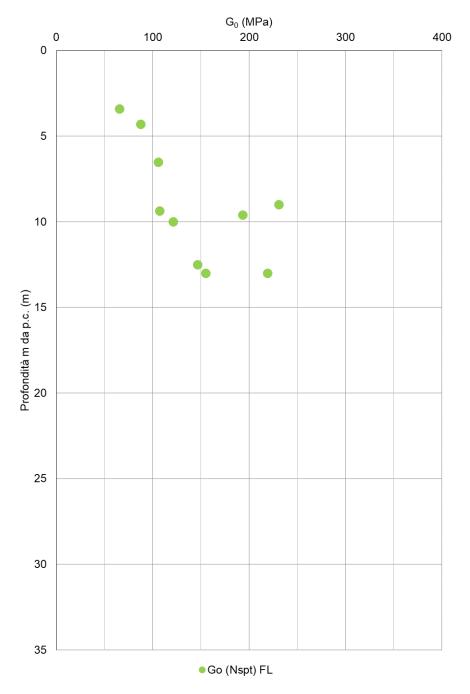


Figura 10-38 - Grafico della stima modulo Go a partire dai valori delle Vs in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità A(FL)

PROGETTAZIONE ATI:

Pag. 131 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.4.7. MODULO ELASTICO DI YOUNG

Nel seguente grafico si riporta la stima del modulo elastico di Young operativo per le fondazioni dirette a partire dai valori N_{SPT} tramite la correlazione proposta da Jamiolkowski (E₂₅) e 1/10 del modulo di Young alle piccole deformazioni. In rosso è evidenziato il range dei parametri di riferimento indicati per le verifiche.

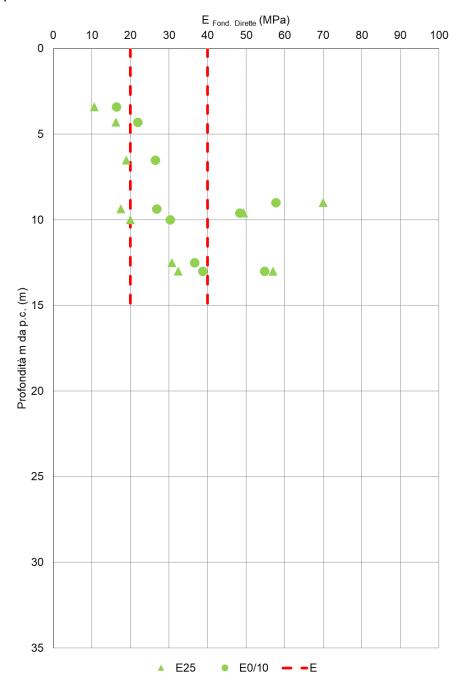


Figura 10-39 - Grafico della stima modulo operativo E per fondazioni dirette in funzione della profondità dal p.c. nell'unità S (FL)

PROGETTAZIONE ATI:

210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Di seguito il grafico del modulo elastico di Young operativo per le fondazioni profonde a partire dai valori N_{SPT} tramite la correlazione proposta da D'Apollonia (E) e 1/8 del modulo di Young alle piccole deformazioni. In rosso è evidenziato il range dei parametri di riferimento indicati per le verifiche.

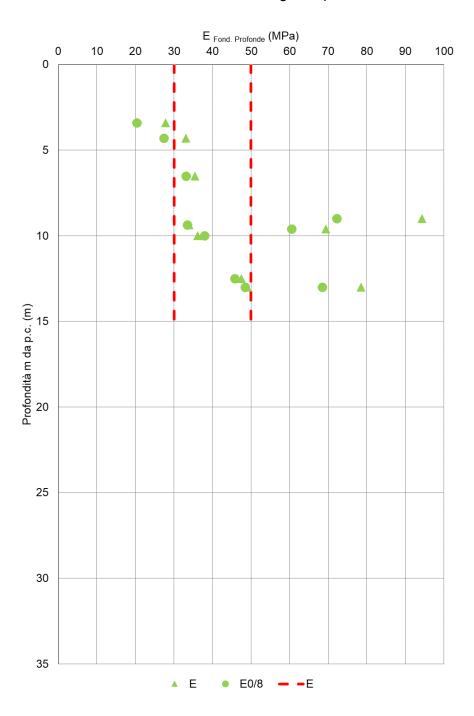


Figura 10-40 - Grafico della stima modulo operativo E per fondazioni profonde in funzione della profondità dal p.c. nell'unità S (FL)

PROGETTAZIONE ATI:

210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (F1509).

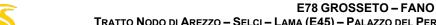
GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

UNITÀ GEOTECNICA R 10.5.

Lungo la tratta principale sono presenti terreni di fondazione di riporto rappresentati dalla pk1+250 alla 1+625 da materiali eterogenei, da limi sabbiosi e/o argillosi a sabbie limose con ghiaia o ciottoli di varia composizione, spesso clasti di marna, arenaria e laterizi, e dalla pk 2+350 alla 2+900 da materiali di riempimento (principalmente degli scavi eseguiti per la galleria ferroviaria esistente) costituiti da ghiaia, ciottoli, frammenti lapidei, laterizi e elementi antropici in matrice di sabbia grossolana.

I campioni prelevati all'interno di questa unità sono quelli riportati nella seguente Tabella.

			PROFONDIT	PROFONDITÀ CAMPIONI		
SONDAGGIO	ANNO	CAMPIONI	Z _{in}	Z _{fin}		
			(m)	(m)		
AS07	2021	R1	3.70	4.00		
S7	1994	1	2.10	2.50		
S5	1999	1	1.00	1.60		
S6	1999	1	2.00	2.60		
S7	1999	1	2.40	3.00		
\$8	1999	1	2.00	2.60		
S9	1999	1	2.00	2.60		
S14	1999	1	2.00	2.60		
S15	1999	1	1.00	1.60		


Tabella 10-4 Campioni prelevati nell'unità R

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

10.5.1. GRANULOMETRIA

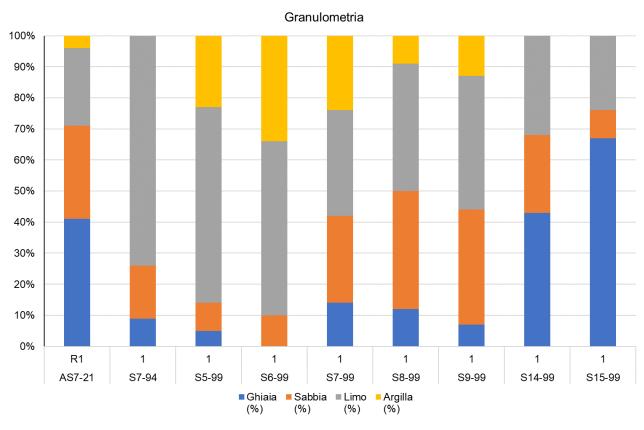


Figura 10-41 - Granulometria dei terreni relativi ai campioni prelevati nell'unità R

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.5.2. ANGOLO DI RESISTENZA AL TAGLIO

Nel seguente grafico si riporta la stima dell'angolo di resistenza al taglio con rappresentati i risultati delle prove di taglio diretto dei campioni eseguiti in tale unità R e i risultati ottenuti a partire dai valori di N_{SPT} tramite la correlazione proposta da Shioi e Fukuni (1982).

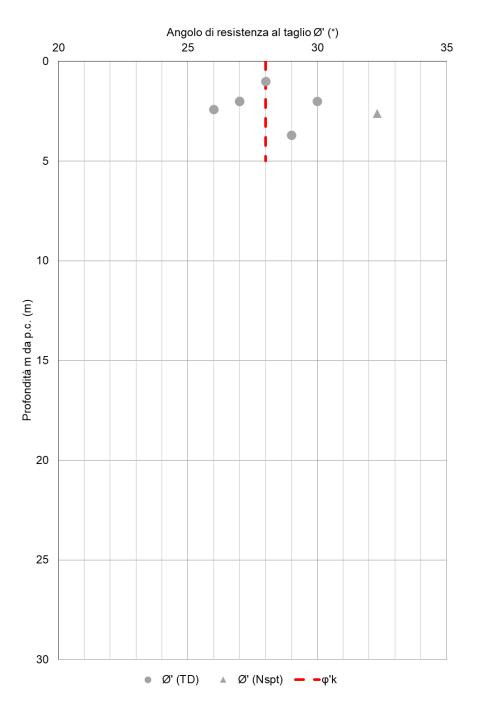


Figura 10-42 - Grafico della stima dell'angolo di resistenza al taglio nell'unità R

PROGETTAZIONE ATI:

210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

10.5.3. VELOCITÀ DELLE ONDE DI TAGLIO E MODULO DI TAGLIO ALLE PICCOLE DEFORMAZIONI GO

Nell'unità R sono stati rilevati valori delle v_s delle prove down-hole pari a circa 200 m/s. La stima del modulo G₀ è stata ricavata a partire dai valori delle Vs ricavati dalle prove down-hole ottenendo un range pari a 80 MPa.

10.5.4. MODULO ELASTICO DI YOUNG

A partire dalla correlazione proposta da Jamiolkowski (E25) e considerando 1/10 del modulo di Young alle piccole deformazioni si può assumente un moudlo operativo E per le fondazioni dirette di 20 Mpa, allo stesso modo a partire dalla correlazione di D'Apollonia e considerando 1/8 del modulo E₀ si può valutare un modulo di 30 MPa per il dimensionamento delle opere di fondazione profonda.

PROGETTAZIONE ATI:

Pag. 137 di 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

MODELLO GEOTECNICO DI RIFERIMENTO - ASSE PRINCIPALE 10.6.

Unità geotecnica	Unità geologica	γ/γ' (kN/m³)	WL (%)	IP (%)	e ₀	Dr (%)
L (FL)	FL	19.5/9.5	30÷50	10÷30	0.55÷0.65	-
LS (AT)	AT	19.5/9.5	30÷50	10÷20	0.60÷0.70	-
S (FL)	FL	20/10	-	-	-	50÷70
R	R	20/10	-	-	-	-

Tabella 10-5 Parametri per le proprietà fisiche delle unità geotecniche

		Va	lori caratteris	tici	Variabilità parametri			
Unità geotecnica	Unità geologica	Ф'к	c' _k	C _{uk}	φ'	c'	Cu	
		(°)	(kPa)	(kPa)	(°)	(kPa)	(kPa)	
L (FL)	FL	23	15	60+2z*	22÷26	30÷10	50÷200	
LS (AT)	AT	24	10	50+1.6z*	22÷27	30÷20	40÷150	
S (FL)	FL	30	-	-	25÷32	-	-	
R	R	28	-	-	26÷30	-	-	

^{*:} valore variabile con la profondità z

Tabella 10-6 Parametri caratteristici e variabilità parametri per le proprietà di resistenza al taglio delle unità geotecniche

Unità	Unità	Vs	G ₀	ν	OCR	Cc	C _r	Cα	C _v
geotecnica	geologica	(m/s)	(MPa)	(-)	(-)	(-)	(-)	(-)	(cm ² /s)
L (FL)	FL	200÷350	80÷150	0.30	6-0.4z*	0.1÷0.15	0.04	0.002÷0.004	1÷2E-4
LS (AT)	AT	200÷350	80÷200	0.30	6-0.4z*	0.15÷0.2	0.05	0.002÷0.005	1÷2E-3
S (FL)	FL	200÷400	80÷230	0.25	-	-	-	-	-
R	R	200	80	0.25	-	-	1	-	-

^{* :} valore variabile con la profondità z

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Tabella 10-7 Parametri di deformabilità delle unità geotecniche

Unità geotecnica	Unità geologica	M _{fond. Dirette}	M _{fond. Profonde}	E _{fond. Dirette}	E _{fond. Profonde}
L (FL)	FL	6÷9	12÷18	-	-
LS (AT)	AT	4÷6	8÷12	-	-
S (FL)	FL	-	-	20÷40	30÷50
R	R	-	-	20	30

Tabella 10-8 Valori di riferimento per i moduli operativi delle unità geotecniche

Per quanto riguarda la caratterizzazione geotecnica del substrato roccioso si rimanda a quanto riportato al paragrafo 12.

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

11. Caratterizzazione delle unità geotecniche - Strada di collegamento E79-SR71

Le tavole di progetto che raffigurano l'andamento stratigrafico a cui si fa riferimento per la Strada di collegamento E79-SR71 sono, da ovest verso est:

- T00GE00GETFG07_A, profilo da pk 0+000 alla pk 0+993;
- T00GE00GETFG08 A, profilo da pk 0+993 alla pk 0+403;
- T00GE00GETSG05 A, sezione geotecnica GEOT10.

L'intero tratto è caratterizzato, sino alla massima profondità indagata, dalla presenza terreni coesivi di natura limosa (U.G. L(FL, CA)).

Il substrato roccioso delle Arenarie del Cervarola è intercettato soltanto dal sondaggio DS02 a profondità superiori a 30m.

PROGETTAZIONE ATI:

GPIngegneria

Pag. 140 di 210

TRATTO NODO DI AREZZO - SELCI - LAMA (E45) - PALAZZO DEL PERO - COMPLETAMENTO (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

UNITÀ GEOTECNICA L (FL,CA) 11.1.

Questa unità geotecnica rappresenta la litologia prevalentemente limosa delle unità geologica dei depositi continentali fluvio-lacustri terrazzati "FL" e dei depositi di un conoide alluvionale "CA". Questi sedimenti sono rappresentati da limi la cui granulometria varia dai limi argillosi a limi sabbiosi. I campioni prelevati all'interno di questa unità sono quelli riportati nella seguente Tabella.

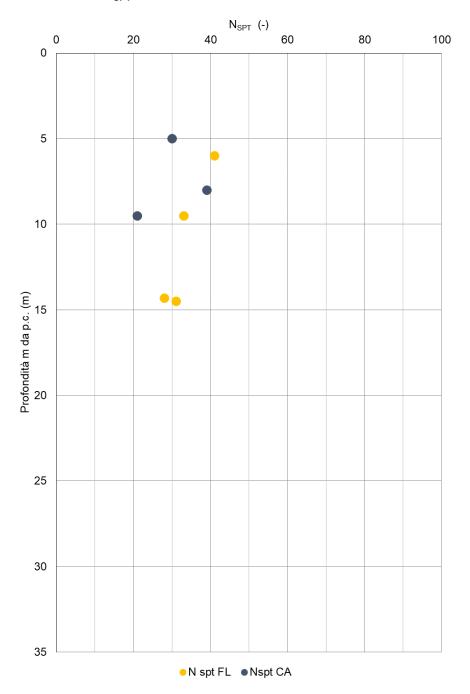
SONDACCIO	ANNO	CAMPIONE		NDITÀ PIONI	UNITA' GEOTECNICA
SONDAGGIO	ANNO	CAMPIONE	z _{in}	z _{fin} (m)	UNITA GEOTECNICA
DS01	2021	1	9.00	9.50	U.G L(FL)
DS02	2021	3	14.00	14.50	U.G L(FL)
DS02	2021	1	4.50	5.00	U.G L(CA)
DS02	2021	2	9.00	9.50	U.G L(CA)
DS02	2021	4	18.50	19.00	U.G L(CA)
DS03	2021	1	4.50	5.00	U.G L(CA)

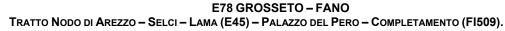
Tabella 11-1 Campioni prelevati nell'unità L(FL, CA)

TRATTO NODO DI AREZZO - SELCI - LAMA (E45) - PALAZZO DEL PERO - COMPLETAMENTO (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

11.1.1. N_{SPT}




Figura 11-1 - Grafico di N_{SPT} in funzione della profondità dal p.c. relativo ai valori rilevati nell'unità L (FL,CA)

11.1.2. GRANULOMETRIA

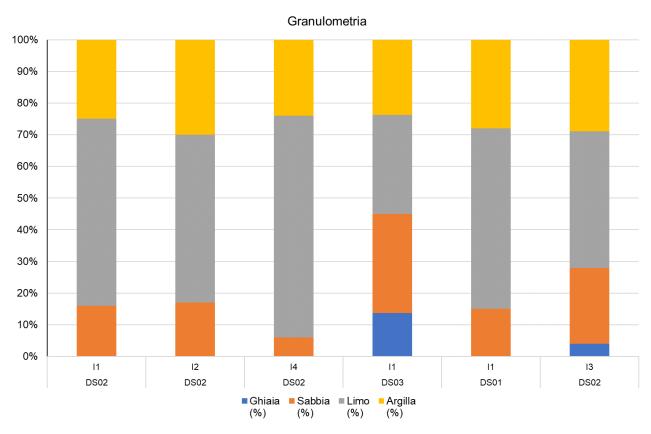


Figura 11-2 - Granulometria dei terreni relativi ai campioni eseguiti nell'unità L (FL,CA)

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

11.1.3. PESO DI VOLUME DEL TERRENO

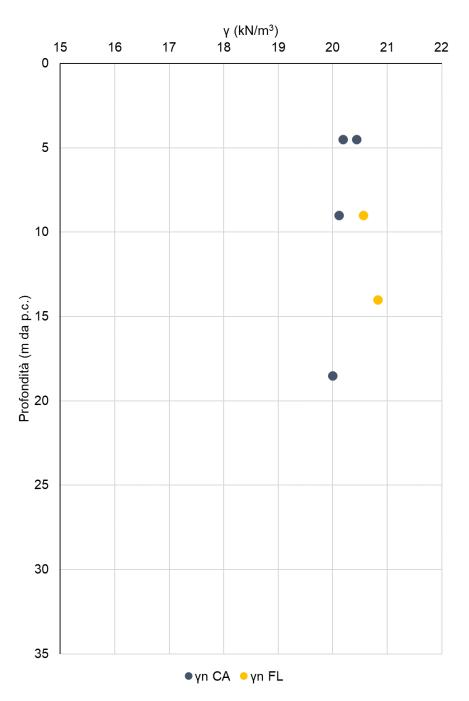
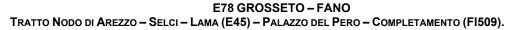


Figura 11-3 - Grafico del peso di volume del terreno in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL,CA)

PROGETTAZIONE ATI:



210

11.1.4. DIAGRAMMA DI PLASTICITÀ DI CASAGRANDE

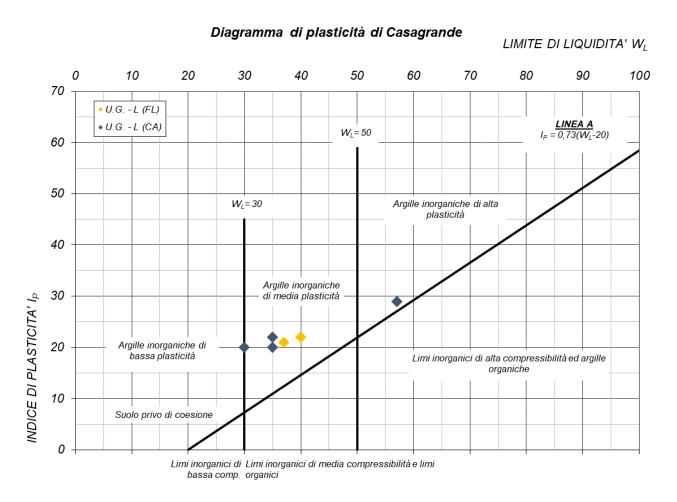


Figura 11-4 - Diagramma di plasticità di Casagrande relativo ai campioni eseguiti nell'unità L (FL,CA)

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

11.1.5. LIMITE DI LIQUIDITÀ

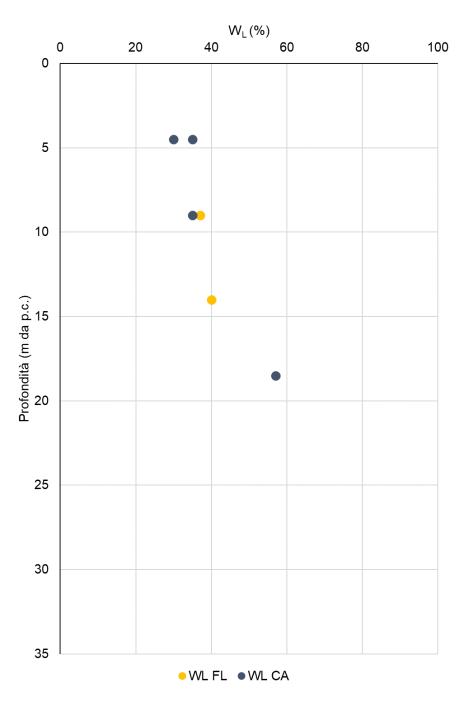


Figura 11-5 - Grafico del limite di liquidità del terreno in funzione della profondità dal p.c. dei campioni eseguiti nell'unità A (FL,CA)

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

11.1.6. INDICE DI PLASTICITÀ

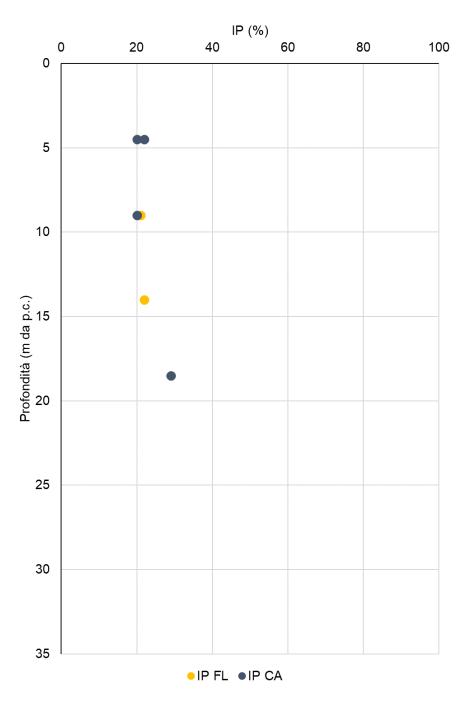


Figura 11-6 - Grafico dell'indice di plasticità del terreno in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL,CA)

PROGETTAZIONE ATI:

210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

11.1.7. INDICE DEI VUOTI

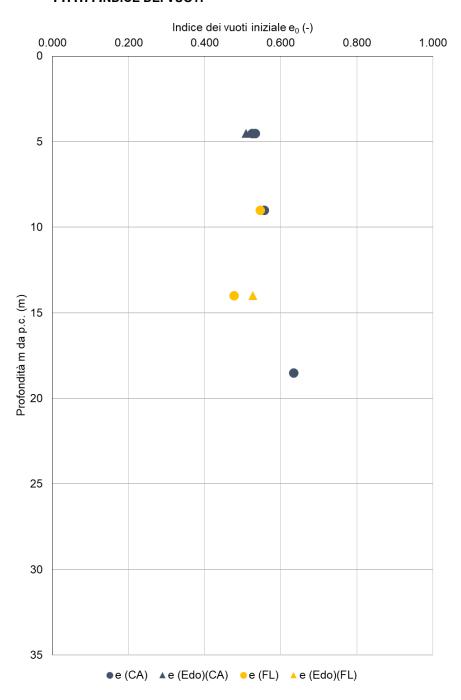


Figura 11-7 - Grafico dell'indice dei vuoti in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL,CA)

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

11.1.8. RESISTENZA AL TAGLIO IN CONDIZIONI DRENATE

Nei seguenti grafici si riportano i risultati delle prove di taglio diretto dei campioni eseguite in tale unità L (FL,CA) e i valori caratteristici assunti per il progetto.

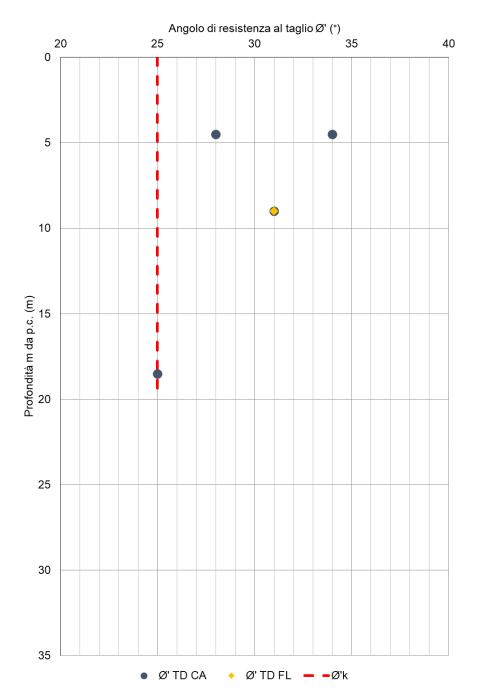


Figura 11-8 - Grafico della stima dell'angolo di resistenza al taglio nell'unità L (FL,CA)

PROGETTAZIONE ATI:


210

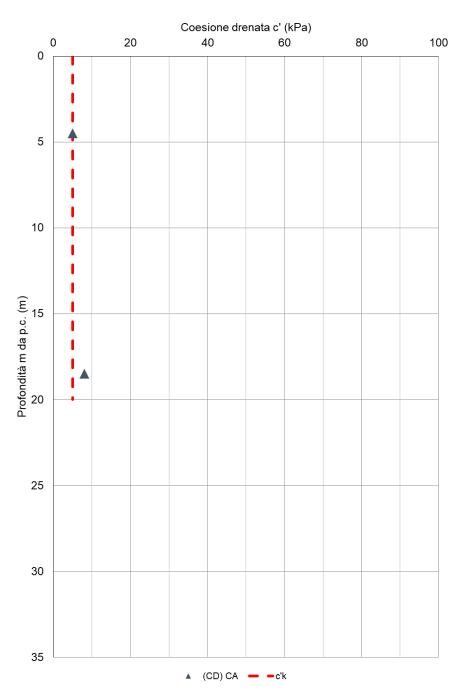


Figura 11-9 - Grafico della stima della coesione efficace nell' unità L (FL,CA)

TRATTO NODO DI AREZZO - SELCI - LAMA (E45) - PALAZZO DEL PERO - COMPLETAMENTO (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

11.1.9. COESIONE NON DRENATA

Il seguente grafico riporta la stima della coesione non drenata a partire dai valori N_{SPT}; sono rappresentati anche i risultati delle ELL. Il valore caratteristico assunto tiene conto anche del limitato numero di prove disponibili.

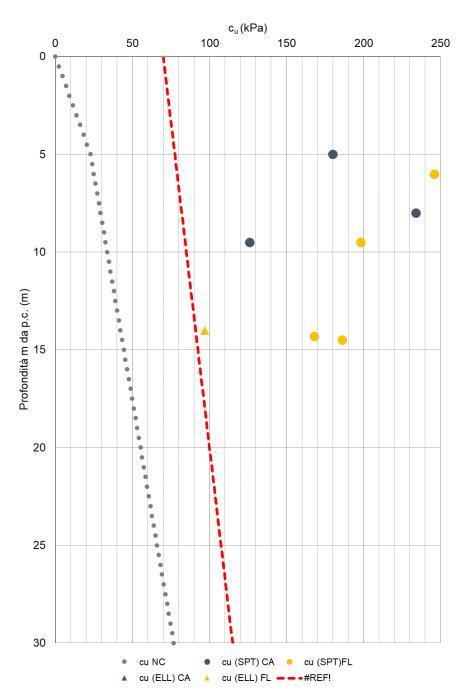


Figura 11-10: Grafico della stima della coesione non drenata nell' unità L (FL,CA)

PROGETTAZIONE ATI:

210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

11.1.10. **GRADO DI SOVRACONSOLIDAZIONE**

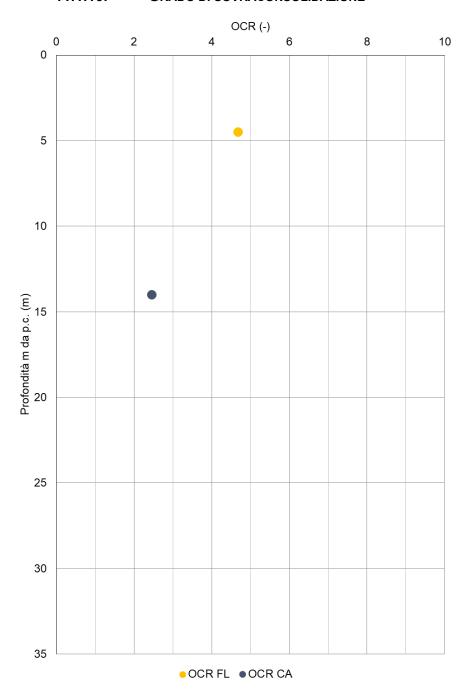


Figura 11-11 - Grafico grado di sovraconsolidazione OCR in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL,CA)

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

11.1.11. **INDICE DI COMPRESSIONE**

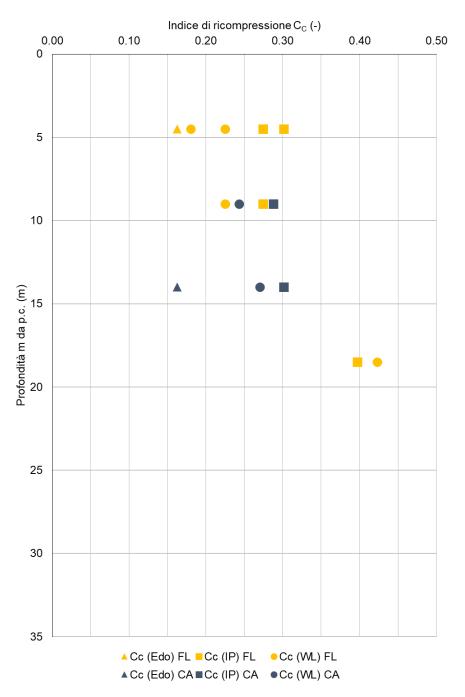


Figura 11-12 - Grafico dell'indice di compressione in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL,CA)

PROGETTAZIONE ATI:

GPIngegneria GESTIONE PROGETTI INGEGNERIA srl

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

11.1.12. **INDICE DI RICOMPRESSIONE**

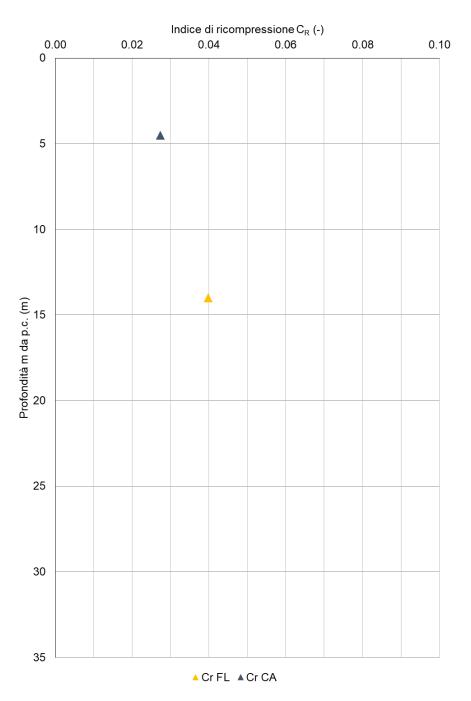


Figura 11-13 - Grafico dell'indice di ricompressione in funzione della profondità dal p.c. dei campioni eseguiti nell'unità L (FL,CA)

PROGETTAZIONE ATI:

Pag. 154 di 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

11.1.13. COEFFICIENTE DI COMPRESSIONE SECONDARIO

È stato valutato il coefficiente di compressione secondario in base alla prova edometrica eseguita sul campione I3 del sondaggio DS02 prelevato alla profondità di 14 m e il suo valore è pari a 0.0023.

11.1.14. COEFFICIENTE DI CONSOLIDAZIONE CV

È stato stimato il coefficiente di consolidazione grazie alla prova edometrica eseguita sul campione 13 del sondaggio DS02 prelevato alla profondità di 14 m e il suo valore è pari a 3.9E-03 cm²/s.

PROGETTAZIONE ATI:

Pag. 155 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

11.1.15. MODULO CONFINATO M PER FONDAZIONI DIRETTE

Nel seguente grafico si riporta la stima del modulo operativo confinato M per fondazioni dirette a partire dai valori N_{SPT}; inoltre, sono rappresentati i moduli ricavati dalle prove edometriche eseguite in tale unità. In rosso il range dei parametri di riferimento indicati per le verifiche.

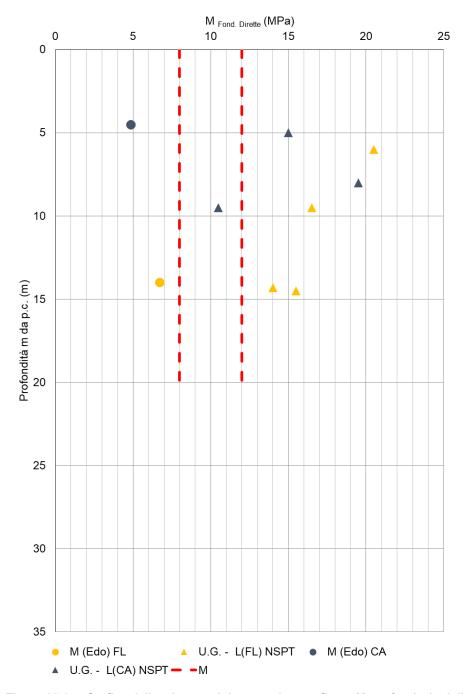


Figura 11-14 - Grafico della stima modulo operativo confinato M per fondazioni dirette in funzione della profondità dal p.c. nell'unità L (FL,CA)

PROGETTAZIONE ATI:

210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

MODELLO GEOTECNICO DI RIFERIMENTO - STRADA DI COLLEGAMENTO 11.2. E79-SR71

Unità			WL	IP	e ₀	Dr
geotecnica	geologica	(kN/m³)	(%)	(%)	(-)	(%)
L (FL,CA)	FL/CA	19.5/9.5	30÷50	20	0.5÷0.6	-

Tabella 11-2 Parametri geotecnici per le proprietà fisiche dell'unità geotecnica L(FL,CA)

Unità geotecnica		Va	lori caratteris	tici	Variabilità parametri				
	Unità geologica	Ф'к	c' _k	C _{uk}	Ф'к	c' _k	c _{uk} (kPa) 50÷170		
		(°)	(kPa)	(kPa)	(°)	(kPa)	(kPa)		
L (FL,CA)	FL/CA	25	5	70+1.5z*	25÷30	5÷0	50÷170		

^{*:} valore variabile con la profondità z

Tabella 11-3 Parametri caratteristici per le proprietà di resistenza al taglio dell'unità geotecnica L(FL,CA)

Unità	Unità	Vs	G ₀	v	OCR	Cc	C _r	C_{α}	C _v
geotecnica	geologica	(m/s)	(MPa)	(-)	(-)	(-)	(-)	(-)	(cm²/s)
L (FL,CA)	FL/CA	-	-	0.30	5÷2	0.15÷0.3	0.04	0.002	4.0E-03

Tabella 11-4 Parametri di deformabilità dell'unità geotecnica L(FL,CA)

Unità geotecnica	Unità geologica	M _{fond. Dirette}	M _{fond. Profonde} (MPa)	E _{fond. Dirette}	E _{fond. Profonde}
L (FL,CA)	FL/CA	8÷12	16÷24	-	-

Tabella 11-5 Valori di riferimento per i moduli operativi dell'unità geotecnica L(FL,CA)

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

12. Caratterizzazione geomeccanica del substrato

La formazione rocciosa che interessa il tracciato è quella delle Arenarie del Cervarola costituita da una alternanza di siltiti, arenarie fini e marne argillose; talvolta si ritrovano intercalazioni di calcari marnosi con liste e noduli di selce altre volte intercalazioni di scisti nerastri e lenti marnose. Gli strati arenacei sono generalmente di esiguo spessore (3 - 4 cm), ma possono raggiungere spessori anche di 20 - 30 cm.

È spesso presente una coltre di alterazione rappresentata da un ammasso costituito da uno scheletro di clasti e blocchi arenacei e marnosi in matrice sabbiosa-argillosa, in particolare nelle porzioni più superficiali al contatto con i depositi alluvionali.

Nella campagna di indagini del 2008 sono stati prelevati dei campioni di roccia sui quali sono state eseguite delle prove di laboratorio, riassunte nella seguente Tabella.

SONDAGGIO	CAMPIONI	тх	-CU	γs	γ d	DETERMI ONDE "		COMPRI	ESSIONE SSIALE	PLT
JOHE HOUSE	C/ 10111	c' (TX-CU)	ф' (TX-CU)			V _{P media}	V _{S media}	ν	σ_{c}	σ _c (MPa) 29.2 29.8 28.7 17.4 14.6
		(kPa)	[°]	(kN/m³)	(kN/m³)	(m/s)	(m/s)	(MPa)	(MPa)	(MPa)
SI-08	Cl1				26	1941	750	0.23	39.4	29.2
SI-08	Cl2			27	27					29.8
SI-08	Cl3				26					28.7
SK-08	Cl1	15	82		26	3981	1648	0.32	4.2	17.4
SK-08	Cl2	21	87	26	26			0.34	4.1	14.6
SD-08	Cl1				26	2513	1274	0.21	23.3	26.6
SD-08	Cl2	35	87							32.1
SD-08	Cl3				26	2945	1039	0.36	35.6	40.1

Tabella 12-1 Prove di laboratorio eseguite sui campioni di roccia estratti dai sondaggi durante la campagna del 2008.

Nell'ambito della redazione del progetto esecutivo sono state eseguite, inoltre, cinque stazioni di rilevamento geomeccanico su affioramenti litoidi della formazione arenacea. Le caratteristiche geomeccaniche degli ammassi rocciosi appena citati sono descritte nella Relazione geomeccanica (T00GE01GE0RE02 A) e la seguente Tabella sono riportati i valori di σ_c, GSI e RQD assegnati.

N. STAZIONE GEOMECCANICA	TRATTO	σ_{c}	GSI	RQD
N. STAZIONE GEOWIECCANICA	TRATTO	(MPa)	(-)	(%)
Stazione geomeccanica SG1	Strada coll. E79-SR71	38.4	47.4	20
Stazione geomeccanica SG2	Strada coll. SR73-Racc. A1	36.8	58.9	56
Stazione geomeccanica SG3	Strada coll. SR73-Racc. A1	40.7	47.6	20
Stazione geomeccanica SG4	Asse principale	36.8	57.2	73.6
Stazione geomeccanica SG5	Asse principale	30.6	47.1	9.1

Tabella 12-2 Valori di σ_c , GSI e RQD assegnati agli ammassi rocciosi nelle 5 stazioni geomeccaniche (00GE01GEORE02_A).

PROGETTAZIONE ATI:

Pag. 158 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Secondo i criteri indicati al paragrafo 7.4, sono stati determinati i valori di resistenza equivalenti secondo il criterio di rottura Mohr-Coulomb.

Di seguito vengono riportati tali valori con riferimento alle differenti problematiche da analizzare (stabilità dei fronti di scavo e dimensionamento di opere di fondazione profonda)

La seguente tabella riporta i valori di c', φ', Em per pendii con un'altezza di 10 m.

N. STAZIONE GEOMECCANICA	TRATTO	c'	φ'	Em
N. STAZIONE GEOWIECCANICA	TRATTO	(kPa)	(°)	(MPa)
Stazione geomeccanica SG1	Strada coll. E79-SR71	105	41	2668
Stazione geomeccanica SG2	Strada coll. SR73-Racc. A1	220	46	5062
Stazione geomeccanica SG3	Strada coll. SR73-Racc. A1	110	41	2778
Stazione geomeccanica SG4	Asse principale	195	45	4590
Stazione geomeccanica SG5	Asse principale	88	39	2340

Tabella 12-3 Valori di c', φ', Em per pendii con una altezza di 10 m

La seguente tabella riporta i valori di c', φ', Em per pendii con un'altezza di 15 m.

N. STAZIONE GEOMECCANICA	TRATTO	c'	φ'	Em
N. STAZIONE GEOMECCANICA	TRATTO	(kPa)	(°)	(MPa)
Stazione geomeccanica SG1	Strada coll. E79-SR71	120	38	2668
Stazione geomeccanica SG2	Strada coll. SR73-Racc. A1	237	43	5062
Stazione geomeccanica SG3	Strada coll. SR73-Racc. A1	126	39	2778
Stazione geomeccanica SG4	Asse principale	221	42	4590
Stazione geomeccanica SG5	Asse principale	103	36	2340

Tabella 12-4 Valori di c', φ', Em per pendii con una altezza di 15 m

La seguente tabella riporta i valori di c', φ', Em nel caso pali spinti fino ad una profondità di 15 m.

N. CTATIONE GEOMECCANICA	TRATTO	c'	φ'	Em
N. STAZIONE GEOMECCANICA	TRATTO	(kPa)	(°)	(MPa)
Stazione geomeccanica SG1	Strada coll. E79-SR71	101	41	2667
Stazione geomeccanica SG2	Strada coll. SR73-Racc. A1	217	46	2062
Stazione geomeccanica SG3	Strada coll. SR73-Racc. A1	107	42	2778
Stazione geomeccanica SG4	Asse principale	191	46	4590
Stazione geomeccanica SG5	Asse principale	85	40	2340

PROGETTAZIONE ATI:

Pag. 159 di 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

Tabella 12-5 Valori di c', ϕ ', Em per pali spinti fino a 15 m

La seguente tabella riporta i valori di c', φ', Em nel caso pali spinti fino ad una profondità di 20 m.

N. CTATIONE GEOMECCANICA	TRATTO	c'	φ'	Em
N. STAZIONE GEOMECCANICA	TRATTO	(kPa)	(°)	(MPa)
Stazione geomeccanica SG1	Strada coll. E79-SR71	121	38	2667
Stazione geomeccanica SG2	Strada coll. SR73-Racc. A1	236	43	2062
Stazione geomeccanica SG3	Strada coll. SR73-Racc. A1	126	39	2778
Stazione geomeccanica SG4	Asse principale	211	43	4590
Stazione geomeccanica SG5	Asse principale	104	36	2340

Tabella 12-6 Valori di c', φ ', Em per pali spinti fino a 15 m

Come valori caratteristici si ritiene opportuno far riferimento a quelli di seguito indicati che rappresentano l'inviluppo inferiore di quanto riportato nelle precedenti tabelle.

UNITÀ	UNITÀ	γ/γ'	c' _k	Ф'к	Em
GEOTECNICA	GEOLOGICA	(kN/m³)	(kPa)	(°)	(MPa)
AC	AC	24/14	120	36	2400

Tabella 12-7 Parametri geotecnici di riferimento per l'unità geotecnica AC

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

13. Falda di progetto

Il numero di misure del livello della falda, nonostante le differenti campagne di indagine, risulta limitato.

Nei profili stratigrafici è riportata, in base alle misure disponibili, il livello della falda stimato sia in condizioni di esercizio, che di progetto (a lungo termine). Il livello di progetto è stato assunto pari al massimo livello registrato incrementato di 1 m, ipotesi che si ritiene sufficientemente cautelativa anche in considerazione della variabilità dei livelli massimi rilevati rispetto a quelli medi.

PROGETTAZIONE ATI:

Pag. 161 di 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

14. Problematiche geotecniche e soluzioni tecniche adottate

14.1. LIQUEFAZIONE

Le NTC 2018, al par. 7.11.3.4.1 stabiliscono che:

"Il sito presso il quale è ubicato il manufatto deve essere stabile nei confronti della liquefazione, intendendo con tale termine quei fenomeni associati alla perdita di resistenza al taglio o ad accumulo di deformazioni plastiche in terreni saturi, prevalentemente sabbiosi, sollecitati da azioni cicliche e dinamiche che agiscono in condizioni non drenate.

Se il terreno risulta suscettibile alla liquefazione e gli effetti conseguenti appaiono tali da influire sulle condizioni di stabilità di pendii o manufatti, occorre procedere ad interventi di consolidamento del terreno e/o trasferire il carico a strati di terreno non suscettibili di liquefazione.

In assenza di interventi di miglioramento del terreno, l'impiego di fondazioni profonde richiede comunque la valutazione della riduzione della capacità portante e degli incrementi delle sollecitazioni indotti nei pali."

Allo scopo di accertare la stabilità del sito di progetto rispetto alla liquefazione, è stata condotta una valutazione di pericolosità attraverso metodi basati sulla resistenza penetrometrica da prove SPT.

Si ricorda come, a causa della breve durata del moto sismico, il terreno reagisca in condizioni sostanzialmente non drenate. In tali condizioni, il comportamento non lineare dei materiali granulari saturi, sottoposti a carici ciclici indotti dal terremoto, porta alla generazione di sovrappressioni interstiziali con diminuzione anche significativa di resistenza e rigidezza apparente. Alla successiva dissipazione di tali sovrappressioni, corrisponde una riduzione di volume con la generazione di deformazioni permanenti in grado di causare, nello specifico, problematiche di esercizio post-sisma, stabilità dei rilevati, delle opere di sostegno e di attraversamento.

Il fenomeno della liquefazione è profondamente influenzato dal numero dei cicli del moto sismico del suolo, dalla densità relativa D_R e dalla granulometria del terreno. Un terreno a grana grossa, a parità di altri fattori, è maggiormente esposto al pericolo della liquefazione quanto minore è la sua densità relativa. Il potenziale di liquefazione aumenta poi, ovviamente, al crescere del numero di cicli, ossia del valore di magnitudo sismica di riferimento.

Il problema principale che si pone in fase di progettazione è valutare la stabilità del sito di progetto rispetto alla liquefazione quando il terreno di fondazione comprenda strati estesi o lenti spesse di sabbie sciolte sottofalda, anche se contenenti una frazione fine limoso-argillosa.

Le NTC2018 al paragrafo 7.11.3.4.2 stabiliscono che la verifica alla liquefazione può essere omessa quando si manifesti una delle seguenti circostanze:

- 1. Accelerazioni massime attese al piano campagna in condizioni di campo libero minori di 0.1g;
- 2. Profondità media stagionale della falda superiore a 15 m dal piano campagna, per piano campagna sub-orizzontale e strutture con fondazioni superficiali;
- 3. Depositi costituiti da sabbie pulite con resistenza penetrometrica normalizzata $(N_1)_{60} > 30$ oppure $q_{c1N} > 180$ dove $(N_1)_{60}$ è il valore della resistenza determinata in prove penetrometriche dinamiche SPT normalizzata ad una tensione efficace verticale di 100 kPa e q_{c1N} è il valore della resistenza determinata in prove penetrometriche statiche CPT, normalizzata ad una tensione verticale efficace di 100 kPa;
- 4. Distribuzione granulometrica esterna alle zone comprese tra le curve di normativa (coefficiente di uniformità Uc < 3.5) e (coefficiente di uniformità Uc > 3.5).

Nel caso in esame, come riportato nella Relazione Sismica l'accelerazione massima orizzontale attesa con riferimento allo Stato Limite di Salvaguardia della Vita (SLV), tenuto conto delle modifiche prodotte dalle condizioni stratigrafiche locali e da quelle morfologiche del sito, è pari a:

PROGETTAZIONE ATI:

Pag. 162 di 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Classe di suolo B $a_{max} = 0.195g \times 1.20 \times 1.0 = 0.234g$; Classe di suolo C $a_{max} = 0.195g \times 1.42 \times 1.0 = 0.277g$; Classe di suolo E $a_{max} = 0.195g \times 1.48 \times 1.0 = 0.289g$

Tutti i valori risultano maggiori di 0.1g.

Per la determinazione della magnitudo di progetto si è fatto riferimento ai grafici della disaggregazione del INGV (Riportati nella Relazione Sismica). La disaggregazione della pericolosità sismica è un'operazione che consente di valutare i contributi di diverse sorgenti sismiche alla pericolosità di un sito. Dai grafici viene fornito il terremoto che domina lo scenario di pericolosità. La magnitudo di riferimento per la valutazione della pericolosità a liquefazione è stata così assunta pari a M=5.5.

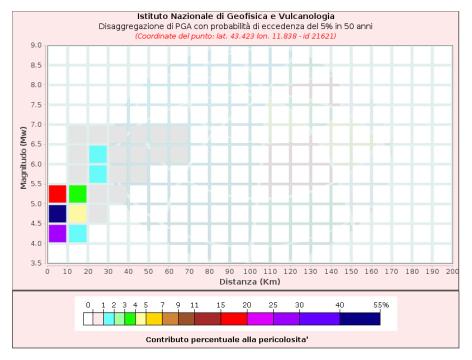


Figura 14-1 - Grafico di disaggregazione e definizione dei valori medi del sisma di progetto (INGV)

Lungo il tratto dell'Asse principale la falda di esercizio risulta generalmente compresa tra 2÷5 m; mentre nei tratti delle Strade di collegamento risulta generalmente ad una profondità di 10 m dal piano campagna.

Per le unità prettamente coesive (U.G. L (FL, AT), U.G. L (FL), U.G. A (FL), U.G. L (FL, CA)) vengono riportate nel paragrafo successivo le curve granulometriche dei campioni prelevati entro i primi 20 m; in tali grafici sono riportati anche i fusi limite relativi al coefficiente di uniformità Uc>3.5, che corrispondono un modesto rischio di liquefazione. Nonostante alcune curve ricadano all'interno di tali fusi, generalmente il contenuto di fine è almeno pari al 70÷100%, il che porterebbe ad escludere un significativo rischio di liquefazione in tali unità.

Cautelativamente vengono comunque svolte le seguenti verifiche sia per i terreni incoerenti che per le formazioni sopradescritte nei confronti del rischio di liquefazione con il Metodo di Idriss e Boulanger

PROGETTAZIONE ATI:

Pag. 163 di 210

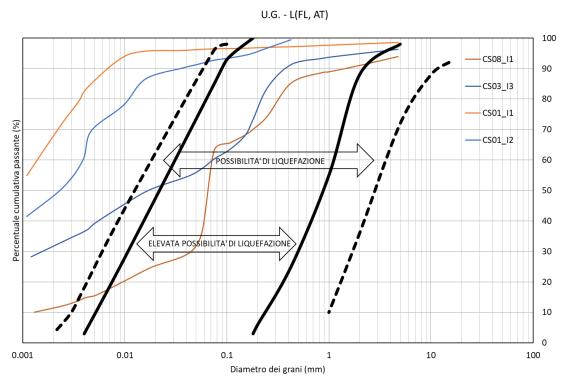
Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

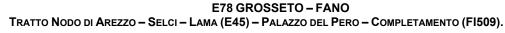
GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

(2004); tale metodo indica il rischio di liquefazione sulla base della resistenza rilevata dalle prove SPT e dal contenuto di materiale fine nel terreno.

14.1.1. CURVE GRANULOMETRICHE

Vengono di seguito riportate le curve granulometriche dei campioni prelevati a profondità minori di 20 m dal p.c.. Le curve dei fusi limite sono riferite a terreni caratterizzati da un coefficiente di uniformità U_c>3.5.




Figura 14-2 Fusi granulometrici dei campioni più sabbiosi dell'U.G. L (FL, AT) del Tratto Asse principale

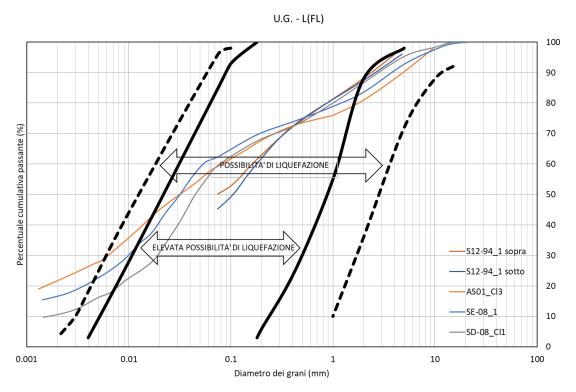


Figura 14-3 Fusi granulometrici dei campioni più sabbiosi dell'U.G. L (FL) del Tratto Asse principale.

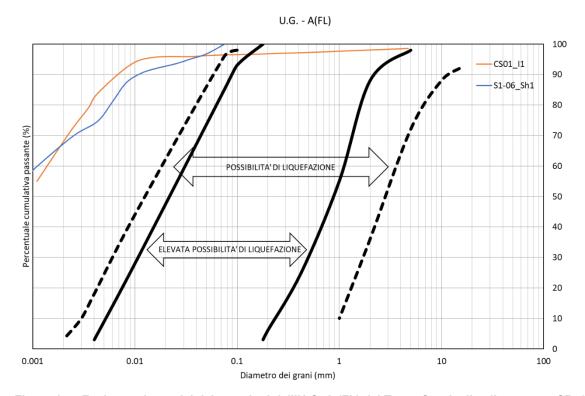


Figura 14-4 Fusi granulometrici dei campioni dell'U.G. A (FL) del Tratto Strada di collegamento SR73 – Raccordo A1 Arezzo-Battifolle

PROGETTAZIONE ATI:

Pag. 165 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

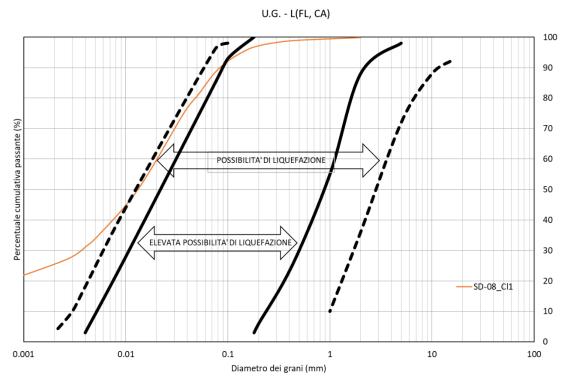


Figura 14-5 Fuso granulometrici del campione con il contenuto di fine minore dell'U.G. L (FL, CA) del Tratto Strada di collegamento E78-SR71.

14.1.2. METODO DI IDRISS E BOULANGER (2004) - PROVE SPT

L'analisi della liquefazione tramite il metodo di Idriss e Boulanger (2004) a partire dalle prove SPT viene implementata nel codice di calcolo Settle 3D (ver. 5.012) della Rocscience.

Il metodo consiste nel valutare il pericolo di liquefazione confrontando lo sforzo di taglio ciclico normalizzato rispetto alla pressione verticale in sito (CSR) e la resistenza normalizzata del terreno al taglio ciclico (CRR).

Lo sforzo di taglio indotto ad ogni profondità in un sito a superficie piana durante l'evento sismico è dovuto essenzialmente alla propagazione delle onde di taglio polarizzate orizzontalmente. Seed e Idriss (1971) indicano che la tensione di taglio ciclico indotta dallo scuotimento sismico (sforzo di taglio ciclico normalizzato CSR) venga approssimata da un valore dell'accelerazione pari al 65% della accelerazione di picco a_{max} come segue:

$$\mathit{CSR} = \frac{\tau_c}{\sigma'_{v0}} = 0.65 \cdot \frac{\tau_{max}}{\sigma'_{v0}} = 0.65 \cdot \frac{a_{max}}{g} \cdot \frac{\sigma_{v0}}{\sigma'_{v0}} \cdot r_d$$

dove:

a_{max} = accelerazione massima di progetto;

accelerazione di gravità;

valore rappresentativo dello sforzo di taglio ciclico;

tensione verticale alla profondità in esame, in termini di tensioni totali;

tensione verticale alla profondità in esame, in termini di tensioni efficaci;

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

coefficiente di riduzione dello sforzo di taglio ciclico in funzione della profondità da piano campagna, calcolato come segue in accordo a Idriss (1999):

$$ln(r_d) = \alpha(z) + \beta(z)M_w$$

- $\alpha(z) = -1.012 1.126 \sin\left(\frac{z}{11.73} + 5.133\right)$
- $\beta(z) = 0.106 + 0.118 \sin\left(\frac{z}{11.28} + 5.142\right)$
- z = profondità in metri (≤ 34 m); per profondità maggiori di 34 m r_d = 0.5
- M_W = magnitudo del terremoto

Il rapporto di resistenza ciclica CRR è stato valutato mediante relazioni empiriche che correlano la sollecitazione sismica ai risultati di prove in sito di tipo SPT.

La resistenza penetrometrica SPT è espressa come numero di colpi N₁₍₆₀₎ normalizzato ad una pressione verticale efficace di 100 kPa oltre che corretto per il valore standard di energia trasmessa (60% del valore nominale), come segue:

$$(N_1)_{60} = N_{SPT}C_NC_EC_BC_RC_S$$

In questa espressione:

C_N = coefficiente correttivo che tiene conto dell'influenza della pressione verticale efficace. In letteratura sono presenti diversi metodi per la valutazione del coefficiente correttivo C_N. Qui è stata applicata la relazione proposta da Idriss e Boulanger (2004):

oroposta da idriss e Boulanger (2004)
$$C_N = \left(\frac{P_a}{\sigma'_{vo}}\right)^{0.784 - 0.0768\sqrt{(N_1)_{60}}} \le 1.7$$

in cui Pa è la pressione atmosferica, pari a 100 kPa, σ'_{v0} è la tensione verticale in sito, in termini di sforzi efficaci, e $(N_1)_{,60} \le 46$.

C_E = coefficiente correttivo che va a considerare il rendimento energetico dell'attrezzatura e riconduce le misure ad un rendimento energetico del 60 % e può essere valutato nel modo seguente:

$$C_E = \frac{ER_m}{60}$$

in cui ER_m è il fattore di rendimento (espresso in %) del trasferimento dell'energia del meglio all'attrezzo campionatore, relativo alla macchina utilizzata per fare la prova; considerando che la configurazione di prova normalmente adoperata in Italia ha un rendimento energetico del 60 %, tale coefficiente è stato posto pari ad 1.

C_R = coefficiente correttivo che tiene conto della lunghezza dell'asta dal punto di impatto del martello sulla punta del campionatore; si utilizzano i valori proposti da Cetin et al. (2004) riportati nel seguente grafico:

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

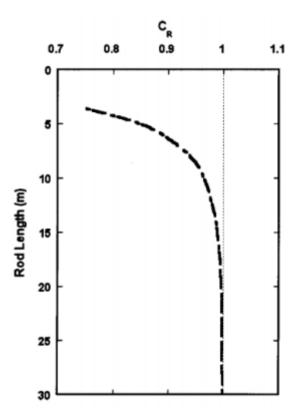


Figura 14-6 - Grafico del coefficiente CR in funzione della lunghezza dell'asta proposto da Cetin et al (2004)

Il numero di colpi SPT deve essere ulteriormente corretto utilizzando le seguenti formule proposte da Idriss e Boulanger (2008) per riferirsi ad un numero di colpi SPT equivalente per sabbie pulite $(N_1)_{,60,cs}$, in base al contenuto di fine FC:

$$\begin{split} &(N_1)_{60cs} = (N_1)_{60} + \Delta (N_1)_{60} \\ &\Delta (N_1)_{60} = exp \left(1.63 + \frac{9.7}{FC + 0.01} - \left(\frac{15.7}{FC + 0.01} \right)^2 \right) \end{split}$$

Il rapporto di resistenza ciclica CRR è stato valutato tramite le relazioni di Idriss & Boulanger (2004), per eventi sismici di M=7.5 ed in riferimento ad una tensione σ'_{v} = p_a (100 kPa):

$$CRR_{M=7.5,\sigma=1} = exp\left(\frac{(N_1)_{60cs}}{14.1} + \left(\frac{(N_1)_{60cs}}{126}\right)^2 - \left(\frac{(N_1)_{60cs}}{23.6}\right)^3 + \left(\frac{(N_1)_{60cs}}{25.4}\right)^4 - 2.8\right)$$

Il rapporto di resistenza ciclica CRR così calcolato deve essere moltiplicato per il fattore di scala della Magnitudo, MSF, in modo tale da riferirsi alla magnitudine del terremoto caratterizzante il sito in oggetto, e da un coefficiente di tensione di sovraccarico Ks.

Il fattore di scala della Magnitudo MSF viene calcolato tramite la formula proposta da Idriss e Boulanger (2014):

$$MSF = 1 + (MSF_{max} - 1) \left(8.64 \exp\left(-\frac{M}{4}\right) - 1.325 \right)$$

PROGETTAZIONE ATI:

Pag. 168 di 210

E78 GROSSETO – FANO
TRATTO NODO DI AREZZO – SELCI – LAMA (E45) – PALAZZO DEL PERO – COMPLETAMENTO (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

$$MSF_{max} = 1.09 + \left(\frac{(N_1)_{60CS}}{31.5}\right)^2 \le 2.2$$

Il coefficiente K_s viene valutato tramite la formula proposta da Idriss e Boulanger (2008):

$$K_{\sigma} = 1 - C_{\sigma} \ln \left(\frac{\sigma'_{vo}}{P_a} \right) \le 1.1$$

Con:

$$C_{\sigma} = \frac{1}{(18.9 - 2.55)\sqrt{(N_1)_{60}}}$$

Infine, il fattore di sicurezza FS rispetto al fenomeno della liquefazione vale:

$$FS = \frac{CRR_{M=7.5,\sigma=1} \cdot MSF \cdot K_{\sigma}}{CSR}$$

Viene eseguita la verifica alla liquefazione tramite il metodo appena descritto sui tratti omogenei.

In seguito a quando sopradescritto (paragrafo 14.1.1) l'U.G. A (FL) viene considerata non liquefacibile, mentre agli strati propensi a tale fenomeno sono stati dati i seguenti contenuti di fine FC:

- U.G. L (FL, AT) FC=50%;

- U.G. LS (AT) FC=40%;

 U.G. S (FL, AT) FC=15÷25%.

Di seguito si riportano i risultati delle analisi condotte; nei grafici di sinistra si può notare la stratigrafia del sondaggio dove le unità geotecniche sono rappresentate dai seguenti colori, si riporta inoltre il contenuto di fine :

U.G. A (FL) marrone;

U.G. L (FL, AT) verde;

- U.G. LS (AT) grigio;

- U.G. S (FL, AT) azzurro;

- U.G. G (FL) rosa;

U.G. AC ocra.

Asse di progetto

Sondaggi AS01÷AS04, S1÷S2-94, SD÷SE, S1÷S11-99

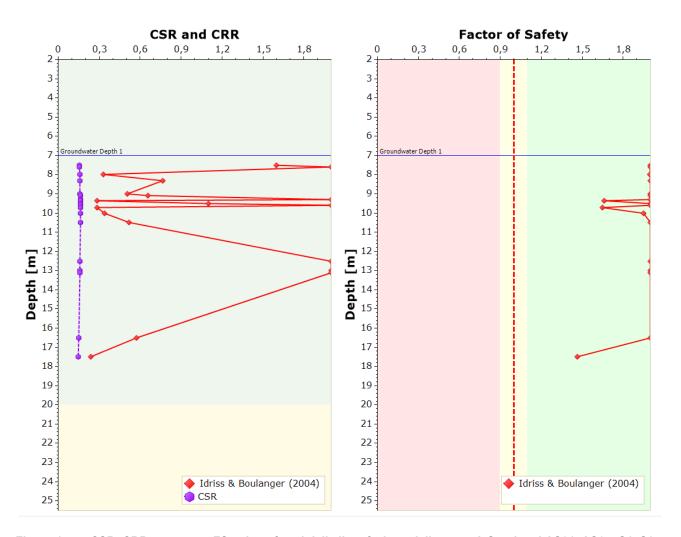


Figura 14-7: CSR, CRR(Mw=7.5, o=1) e FS nei confronti della liquefazione della tratta A Sondaggi AS01÷AS04, S1÷S2-94, SD÷SE, S1÷S11-99

Sondaggi AS10, SL÷SM, S13-99, S18÷S19-99

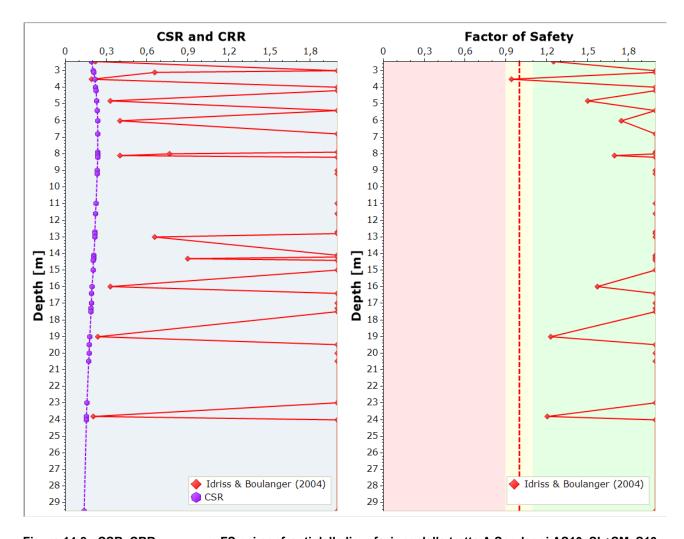


Figura 14-8 : CSR, CRR_(Mw=7.5, σ=1) e FS nei confronti della liquefazione della tratta A Sondaggi AS10, SL÷SM, S13-99, S18÷S19-99

Strada di collegamento SR73 - Raccordo A1 Arezzo-Battifolle

Sondaggi S01/06, CS01

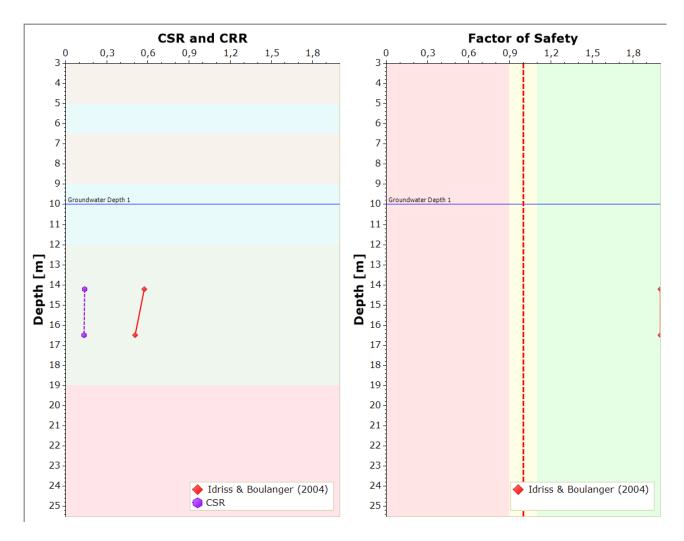


Figura 14-9 : CSR, CRR_(Mw=7.5, σ=1) e FS nei confronti della liquefazione della tratta C Sondaggi S01/06, CS01

Sondaggi S02÷S03/06, CS02

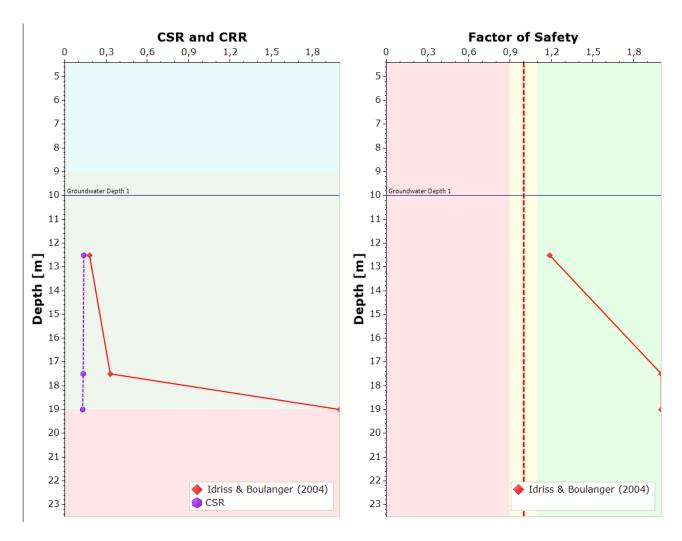


Figura 14-10 : CSR, CRR_(Mw=7.5, σ=1) e FS nei confronti della liquefazione della tratta C Sondaggi S02÷S03/06, CS02

Sondaggi CS03

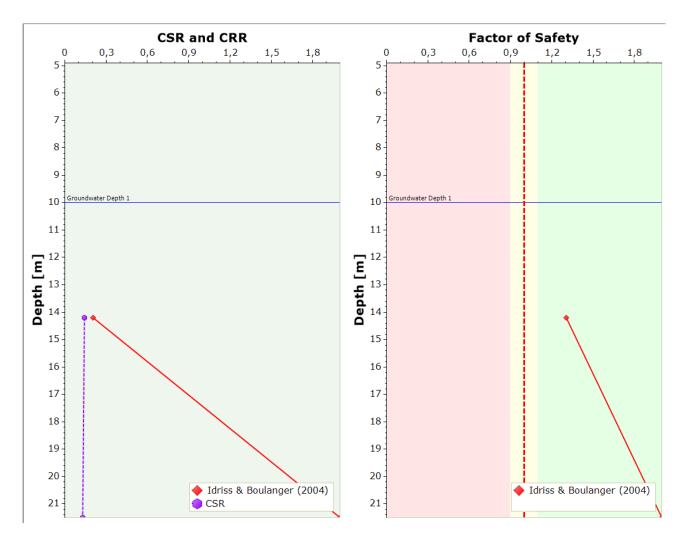


Figura 14-11 : CSR, CRR_(Mw=7.5, σ=1) e FS nei confronti della liquefazione della tratta C Sondaggi CS03

Sondaggi S06÷S07/06, CS06÷CS09

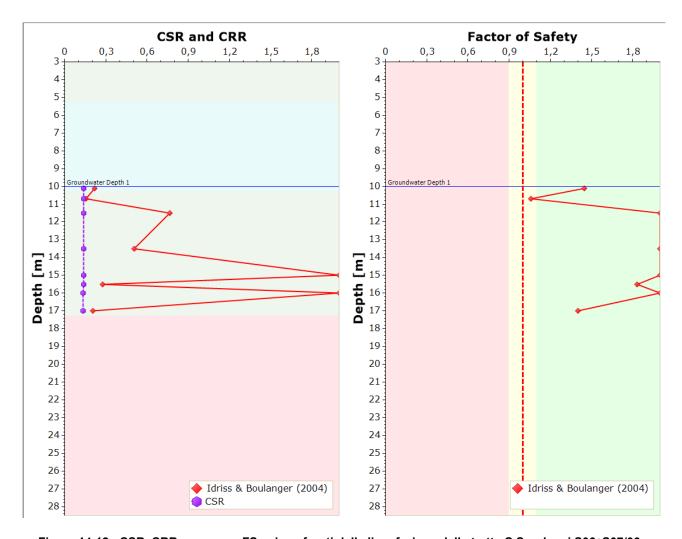


Figura 14-12 : CSR, CRR_(Mw=7.5, σ=1) e FS nei confronti della liquefazione della tratta C Sondaggi S06÷S07/06, CS06÷CS09

VELOCE COMMENTO FINALE

TRATTO NODO DI AREZZO - SELCI - LAMA (E45) - PALAZZO DEL PERO - COMPLETAMENTO (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

14.2. RILEVATI

Lungo l'asse principale in corrispondenza dell'opere d'arte i rilevati autostradali sono caratterizzati da un'altezza massima di circa 7.0 m, mentre i rilevati delle viabilità interferite raggiungo l'altezza massima di circa 10.0 m. Lungo il tratto che si sviluppa dalla progressiva pk 3+200 alla 5+200, il rilevato autostradale verrà realizzato in allargamento del rilevato stradale esistente di altezza massima pari a 7.5 m.

Lungo la strada di collegamento E 78 / Arezzo Battifolle (Strada di categoria C1) invece il rilevato stradale presenta altezze massime variabili da 8.5 m a 10.0 m.

Infine, lungo la strada di collegamento E 78 / SR71 (Strada di categoria C2) il rilevato stradale presenta altezze inferiori ai 3.0 m.

14.2.1. GEOMETRIA RILEVATI

Le scarpate, con pendenza 3 h : 2 d (circa 34°), presentano una berma orizzontale di 2.0 m per i rilevati di altezza maggiore di 5.0 m.

14.2.1.1. Sezione Tipo A in rilevato H = 7.0 m

SEZIONE TIPO RILEVATO ASSE PRINCIPALE - H = 7.0 m

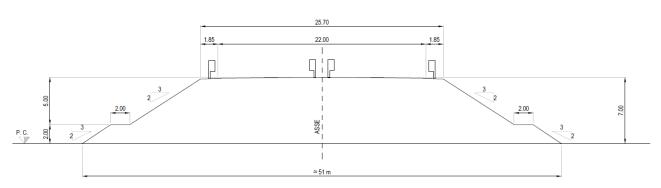
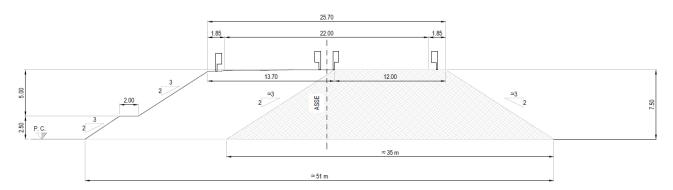



Figura 14-13 : Sezione Tipo A rilevato autostradale H = 7.0 m

14.2.1.2. Sezione Tipo B in allargamento rilevato H = 7.5 m

SEZIONE TIPO RINGROSSO RILEVATO ASSE PRINCIPALE - H = 7.5 m

PROGETTAZIONE ATI:

Pag. 176 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Figura 14-14 : Sezione Tipo B rilevato autostradale in allargamento H = 7.5 m

14.2.1.3. Sezione Tipo C in rilevato H = 8.5 m

SEZIONE TIPO AREZZO-BATTIFOLLE E78/A-B (STRADA C1) - H = 8.5 m

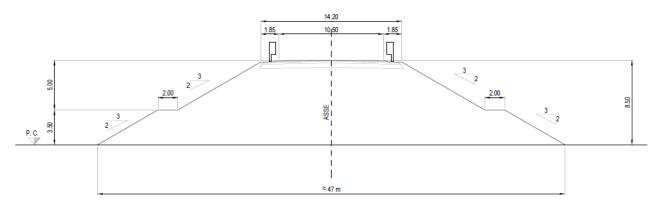


Figura 14-15 : Sezione Tipo C rilevato strada categoria C1 H = 8.5 m

14.2.1.4. Sezione Tipo D in rilevato H = 10.0 m

SEZIONE TIPO AREZZO-BATTIFOLLE E78/A-B (STRADA C1) - H = 10.00 m

Figura 14-16 : Sezione Tipo D rilevato strada categoria C1 H = 10.0 m

14.2.2. MATERIALI RILEVATI

Il corpo dei rilevati è previsto con materiale idoneo caratterizzato da un angolo di resistenza al taglio $\varphi' \ge 35^{\circ}$ per il quale si è assunto un peso di volume y pari a 19 kN/m³.

TRATTO NODO DI AREZZO - SELCI - LAMA (E45) - PALAZZO DEL PERO - COMPLETAMENTO (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

14.2.3. FASI COSTRUTTIVE

Come dimostrato nei seguenti paragrafi per i terreni di fondazione in corrispondenza dei rilevati di altezza maggiore si possono stimare cedimenti totali sino a 50 cm circa. Si tratta di cedimenti di tipo elastico per i terreni incoerenti e di consolidazione per quanto riguarda i terreni coesivi.

Al fine di evitare fenomeni di attrito negativo per i pali di fondazione di strutture quali spalle di ponte o viadotti, è necessario prevedere un rilevato di precarico. Tali rilevati dovranno essere realizzati di altezza di 2m circa in più rispetto a quelli di progetto e lasciati in opera per un periodo di 6-8 mesi nel corso dei quali, in base alle stime condotte e di seguito riportate, matura il 90-95% dei cedimenti di consolidazione.

14.2.4. PIANO DI POSA DEI RILEVATI

Il piano di posa dei rilevati verrà realizzato previa la rimozione di uno spessore di terreno variabile da circa 40 cm a 80 cm, dato dalla somma dello spessore di scotico (20 cm) e dello spessore di terreno vegetale (variabile tra 20 e 60 cm).

Come riportato nel paragrafo 6.3 infatti, il modulo di deformazione M_d ottenuto dalle prove di carico su piastra già a 20-30 cm dal piano campagna risulta compreso tra 10 e 30 MPa con un valor medio di 25 MPa.

Nelle seguenti tabelle sono riportati gli spessori di scotico, di bonifica e la loro somma per ogni sondaggio / pozzetto di indagine; nonché, dove presente, il modulo di deformazione ottenuto dalle prove di carico.

Asse principale

Prova	Pk (m)	Spessore terreno vegetale (m)	Spessore riporti / rilevati (m)	Md (MPa) 0.2-0.3 m da p.c.	Spessore scotico (cm)	Spessore Bonifica (cm)	TOT (cm)
S1-06	0+014	0.0	0.0		20	20	40
PZ2cp	0+450	0.4	0.0	25	20	20	40
APZ01	0+587	0.3	0.0	25	20	20	40
APZ02	0+600	0.3	0.0	26	20	20	40
AS01	0+625	0.3	0.0		20	20	40
S1-99	0+637	0.0	0.0		20	20	40
PZ4cp	0+670	0.5	0.0	28	20	20	40
PZ5cp	0+790	0.4	0.0	70	20	20	40
S2-99	0+791	0.0	0.0		20	20	40
S1-94	0+900	0.0	0.0		20	20	40
S3-99	0+938	0.0	0.0		20	20	40
APZ03	1+009	0.0	0.0	28	20	20	40
S4-99	1+125	0.0	0.7		20	20	40
PZ6cp	1+130	0.5	0.0	2	20	40	60
S5-99	1+320	0.0	2.3		20	20	40
AS02	1+386	0.3	0.0		20	20	40

PROGETTAZIONE ATI:

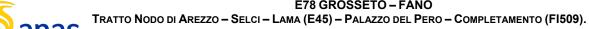
Pag. 178 di 210

TRATTO NODO DI AREZZO – SELCI – LAMA (E45) – PALAZZO DEL PERO – COMPLETAMENTO (FI509).

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

S6-99	1+428	0.0	3.5		20	20	40
S7-99	1+428	0.0	3.4		20	20	40
S8-99	1+558	0.0	4.3		20	20	40
S9-99	1+606	0.0	3.0		20	20	40
AS03	1+682	0.0	0.0		20	20	40
APZ04	1+694	0.3	0.0	22	20	20	40
S10-99	1+760	0.0	0.6		20	20	40
AS04	1+925	0.3	0.0		20	20	40
SD-08	1+925	0.0	2.0		20	20	40
S11-99	2+145	0.3	0.0		20	20	40
S2-94	2+155	0.0	0.0		20	20	40
SE-08	2+187	0.4	0.0		20	20	40
S12-99	2+325	0.0	0.0		20	20	40
S3-94	2+352	0.2	0.0		20	20	40
AS05	2+353	0.0	0.6		20	20	40
S3-94	2+354	0.2	0.0		20	20	40
S12-94	2+416	0.5	1.5		20	40	60
S11-94	2+430	0.0	1.0		20	20	40
S4-94	2+485	0.0	1.0		20	20	40
S5-94	2+489	0.4	0.3		20	20	40
AS06	2+584	0.0	0.2		20	20	40
AS07	2+616	0.0	0.4		20	20	40
S13-94	2+617	0.0	0.0		20	20	40
S14-99	2+618	0.0	3.0		20	20	40
S6-94	2+679	0.0	0.0		20	20	40
S7-94	2+688	0.0	0.0		20	20	40
S15-99	2+725	0.0	0.4		20	20	40
S8-94	2+779	1.3	0.0		20	20	40
S9-94	2+782	0.0	3.0		20	20	40
AS08	2+823	0.0	4.3		20	20	40
S10-94	2+896	0.0	2.0		20	20	40
APZ05	2+909	0.0	0.0	19	20	20	40
PZ7cp	2+950	0.4	0.0		20	20	40
SId-08	3+012	0.2	0.8		20	20	40
S16-99	3+114	0.0	0.9		20	20	40
SK-08	3+150	0.5	0.5		20	40	60
PZ8cp	3+182	0.4	0.0		20	20	40
S17-99	3+278	0.0	1.9		20	20	40
AS09	3+295	0.0	0.0		20	20	40
PZ9cp	3+330	0.7	0.0	10	20	60	80
S13-99	3+512	0.0	0.0		20	60	80

PROGETTAZIONE ATI:


Pag. 179 di 210

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

D=10am	2.670	0.7	١ ٥٥		20		80
Pz10cp	3+678	0.7	0.0		20	60	
S18-00	3+680	1.0	0.0		20	60	80
APZ08	3+890	0.0	0.0	35	20	20	40
Pz11cp	3+930	0.5	0.0	19	20	20	40
PZ1cp	3+937	0.4	0.0	25	20	20	40
S19-00	3+954	0.0	1.5		20	20	40
SL-08	4+353	0.1	0.0		20	20	40
APZ10	4+625	0.0	0.0	13	20	20	40
SM-08	4+727	0.4	0.0		20	20	40
APZ09	4+735	0.2	0.0	16	20	20	40
Pz13	4+775	0.4	0.0		20	20	40
APZ12	4+830	0.0	0.0		20	20	40
Pz18	4+975	0.3	0.0		20	20	40
AS10	5+070	0.0	0.7		20	20	40

Tabella 14-1 Spessore di scotico e di bonifica per ogni prova (sondaggio-pozzetto) Asse Principale

Strada di collegamento SR73 - Raccordo A1 Arezzo-Battifolle

Sondaggio	Pk (m)	Spessore terreno vegetale (m)	Spessore riporti / rilevati (m)	Md (MPa) 0.2-0.3 m da p.c.	Spessore scotico (cm)	Spessore Bonifica (cm)	TOT (cm)
CPZ1	0+375	0.4	0.0	22	20	20	40
CS01	0+390	0.4	0.0		20	20	40
CPZ2	0+725	0.4	0.0	22	20	20	40
S2-06	0+843	0.0	0.2		20	20	40
CPZ3	1+061	0.2	0.0	22	20	20	40
CS02	1+225	0.2	0.0		20	20	40
S3-06	1+656	0.0	1.5		20	20	40
CPZ5	1+958	1.0	0.0	28	20	20	40
CS03	2+225	0.2	0.0		20	20	40
S6-06	2+425	0.0	0.0		20	20	40
S4-06	2+498	0.0	0.0		20	20	40
CS04	2+911	0.0	0.0		20	20	40
S5-06	2+950	0.0	0.0		20	20	40
S8-06	3+050	0.0	0.3		20	40	60
CS05bis	3+067	0.0	0.3		20	20	40
CS05	3+230	0.0	0.0		20	20	40
CS06	3+342	0.0	0.0		20	20	40
CS07	3+665	0.6	0.0		20	20	40
CS08	3+726	0.3	0.0		20	20	40
CS09	3+884	0.3	0.0		20	20	40

PROGETTAZIONE ATI:

Pag. 180 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

CPZ8	3+951	0.4	0.0	31	20	20	40	
S7-06	4+018	0.0	0.5		20	20	40	

Tabella 14-2 Spessore di scotico e di bonifica per ogni prova (sondaggio-pozzetto) Strada di collegamento SR73 - Raccordo A1 Arezzo-Battifolle

Strada di collegamento E78 - SR71

Sondaggio	Pk (m)	Spessore terreno vegetale (m)	Spessore riporti / rilevati (m)	Md (MPa) 0.2-0.3 m da p.c.	Spessore scotico (cm)	Spessore Bonifica (cm)	TOT (cm)
DS01	0+257	0.2	0.0		20	20	40
DS02	0+807	0.2	0.0		20	20	40
DS03	0+340	0.4	0.0		20	20	40
DPZ01	0+450	0.2	0.0	30	20	20	40
DPZ02	0+390	0.2	0.0	27	20	20	40

Tabella 14-3 Spessore di scotico e di bonifica per ogni prova (sondaggio-pozzetto) Strada di collegamento E78 -

Si riportano inoltre nelle seguenti tabelle le progressive dei diversi tratti con un ugual spessore di bonifica.

Asse principale

Pk iniziale	Pk finale	Lunghezza tratto (m)	Spessore scotico (cm)	Spessore Bonifica (cm)	TOT (cm)
0+000	1+125	1125	20	20	40
1+125	1+185	60	20	40	60
1+185	2+385	1200	20	20	40
2+385	2+445	60	20	40	60
2+445	3+120	675	20	20	40
3+120	3+180	60	20	40	60
3+180	3+310	130	20	20	40
3+310	3+750	440	20	60	80
3+750	5+070	1320	20	20	40

Tabella 14-4 Progressive spessore di scotico e di bonifica Asse principale

PROGETTAZIONE ATI:

Pag. 181 di 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

Strada di collegamento SR73 - Raccordo A1 Arezzo-Battifolle

Pk iniziale	Pk finale	Lunghezza tratto (m)	Spessore scotico (cm)	Spessore Bonifica (cm)	TOT (cm)
0+000	4+018	4018	20	20	40

Tabella 14-5 Progressive spessore di scotico e di bonifica Strada di collegamento SR73 - Raccordo A1 Arezzo-**Battifolle**

Strada di collegamento E78 - SR71

Pk iniziale	Pk finale	Lunghezza tratto (m)	Spessore scotico terreno vegetale (cm)	Spessore Bonifica (cm)	TOT (cm)
0+000	0+390	390	20	20	40

Tabella 14-6 Progressive spessore di scotico e di bonifica Strada di collegamento E78 – SR71

GPIngegneria

PROGETTAZIONE ATI:

Pag. 182 di

210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

14.2.5. STRATIGRAFIA DI PROGETTO

Nelle tabelle seguenti si riportano le stratigrafie di calcolo utilizzate per la stima dei cedimenti e delle analisi di stabilità globale dei rilevati. Le differenti sezioni tipologiche presentate al paragrafo 14.2.1, sono state verificate in corrispondenza delle rispettive condizioni stratigrafiche più gravose, come di seguito riportato.

	Sezione Tipo A - H=7.0m	Sezione Tipo B - H=7.5m			
z [m]	pk 0+600	pk 4+900			
	Cedimenti e Stabilità globale	Cedimenti e Stabilità globale			
	Cat. Sismica C	Cat. Sismica C			
1	U.G. L (FL)	U.G. LS (AT)			
30					

Tabella 14-7 Tratte omogenee Asse principale

z [m]	Sezione Tipo C - H=8.5m pk 0+450 Cedimenti e Stabilità globale Cat. Sismica C	Sezione Tipo D - H=10.0m Pk 2+200 Cedimenti Cat. Sismica B	Sezione Tipo D - H=10.0m pk 2+850 Stabilità globale Cat. Sismica E
1	U.G. L (FL,AT)	U.G. L (FL,AT)	U.G. L (FL,AT)
2			
3			
4	U.G. A (FL)		
5			
6			
7	U.G. S (FL,AT)		
8			
9	U.G. A (FL)		
10			
11			
12			
13			
14	U.G. L (FL,AT)		
15			
16			U.G. G (FL)
17			
18			
19			U.G. AC
20			
21	U.G. G (FL)		
22			
23		U.G. AC	
24			
25			
26	U.G. A (FL)		
27			
28			
29	U.G. G (FL)		
30			

Tabella 14-8 Tratte omogenee Strada di collegamento E78 / Arezzo – Battifolle

PROGETTAZIONE ATI:

Pag. 183 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

шс	γ/γ'	ф' к	C' _k	C _{u k}	OCR	C _c	Cr	Cα	Cv
U.G.	(kN/m³)	(°)	(kPa)	(kPa)	(-)	(-)	(-)	(-)	(m ² /s)
L (FL)	19.5/9.5	23	15	60+2z*	6-0.4z*	0.14	0.04	0.002	3.00 10 ⁻⁷
LS (AT)	19.5/9.5	24	10	50+1.6z*	6-0.4z*	0.16	0.05	0.003	3.50 10 ⁻⁷

Tabella 14-9 Parametri di resistenza e di compressibilità Asse principale

11.6	γ/γ'	ф' к	C' k	C _{u k}	OCR	Cc	Cr	Cα	C _v	E
U.G.	(kN/m³)	(°)	(kPa)	(kPa)	(-)	(-)	(-)	(-)	(m ² /s)	(MPa)
A (FL)	19/9	20	25	60+2z*	2	0.30	0.06	0.005	3.67 10 ⁻⁸	-
L (FL,AT)	19.5/9.5	23	15	55+2z*	4-0.3z*	0.18	0.04	0.002	2.75 10 ⁻⁷	-
S (FL,AT)	20/10	32	1	-	-	ı	1	1	-	25
G (FL)	21/11	34	1	-	-	ı	-	1	-	45
AC	22/12	36	120	-	-	-	-	-	-	-

Tabella 14-10 Parametri di resistenza e di compressibilità Strada di collegamento E78 / Arezzo - Battifolle

14.2.6. CEDIMENTI

La stima dei cedimenti è stata condotta utilizzando il programma Settle 3 (ver. 5.014) della Rocscience che schematizza il terreno come un multistrato con caratteristiche geotecniche variabili da strato a strato; il modello assume strati di terreno di spessore costante, moto dell'acqua e deformazioni del terreno solo nella direzione verticale (condizioni di tipo edometrico), incompressibilità delle particelle solide e dell'acqua, saturazione totale del terreno al di sotto della quota di falda (Sr=100%).

Il codice di calcolo determina innanzitutto l'incremento di tensione efficace $\Delta\sigma'_{vi}$ indotto dal carico applicato all'interno di ciascuno strato con la teoria di Boussinesq (1885, doc.rif. [38]).

Per quanto riguarda i livelli coesivi, nell'istante in cui viene applicato il carico, per le ipotesi assunte, la sovrapressione neutra indotta, in condizioni non drenate, è uguale all'incremento di tensione totale provocato dal carico: $\Delta u/\Delta\sigma_v$. Viene poi calcolato l'andamento nel tempo delle sovrapressioni neutre tramite l'equazione:

$$c_v \cdot \frac{\partial^2 u}{\partial z^2} = \frac{\partial u}{\partial t}$$

Per il principio delle tensioni efficaci, la dissipazione nel tempo delle sovrapressioni neutre induce un incremento delle tensioni efficaci nel terreno al quale corrisponde un cedimento ΔH che viene ricavato sulla base delle curve "tensione verticale effettiva σ'_v – indice dei vuoti e", determinate grazie alle prove di compressibilità edometrica a disposizione e modellate nel codice tramite l'indice di compressibilità C_c e l'indice di ricompressione C_r utilizzando la seguente equazione:

$$\Delta H_i = \frac{H_i}{1 + e_{0i}} \left(C_{r,i} \log \frac{P_c}{\sigma'_i} + C_{c,i} \log \frac{\sigma'_f}{P_c} \right)$$

PROGETTAZIONE ATI:

Pag. 184 di 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

dove, per ciascuno strato coesivo, si ha:

- H_i spessore dello strato i-esimo:
- indice dei vuoti iniziale dello strato i-esimo; e_{0i}
- indice di compressibilità dello strato i-esimo; $C_{c.i}$
- indice di ricompressione dello strato i-esimo; $C_{r,i}$
- tensione verticale efficace iniziale (caso in cui $\sigma_0 < \sigma_{nc}$); σ_{i}
- tensione verticale efficace di normalconsolidazione;
- tensione verticale efficace finale (caso in cui $\sigma_f > \sigma_{nc}$).

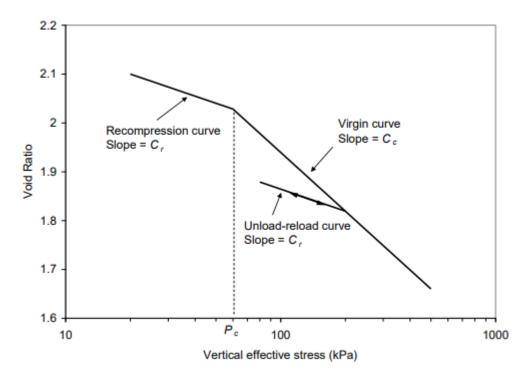


Figura 14-17 Curve tensione verticale effettiva (σ'_v) – indice dei vuoti (e)

Per gli strati di natura incoerente sabbiosa, il cedimento, di entità minore, viene determinato con la relazione

$$\Delta H_i = H_i \cdot \left(\frac{\Delta \sigma'_{vi}}{M_i} \right)$$

dove:

- $\Delta\sigma'_{vi}$ l'incremento di tensione efficace verticale in corrispondenza dello strato i-esimo;
- H_i è lo spessore dello strato i-esimo;
- M_i il modulo elastico definito a partire da $E_{fond. \, Dir.}$

I cedimenti di consolidazione secondaria degli strati coesivi vengono calcolati con la seguente equazione:

E78 GROSSETO – FANO Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

$$\Delta H_{s,i} = H_{0,i} \cdot C_{\alpha,i} \cdot \log \frac{t}{t_{100}}$$

in cui H_0 è lo spessore iniziale di ciascuno strato, C_{α} l'indice di compressione secondaria e t_{100} è il tempo di completamento della consolidazione primaria.

I tempi di consolidazione degli strati coesivi vengono stimati con la relazione:

$$t = \frac{T_v \cdot H^2}{c_v}$$

dove: T_v è il fattore adimensionale di tempo funzione del grado di consolidazione, H è il percorso massimo di drenaggio e c_v il coefficiente di consolidazione verticale dello strato.

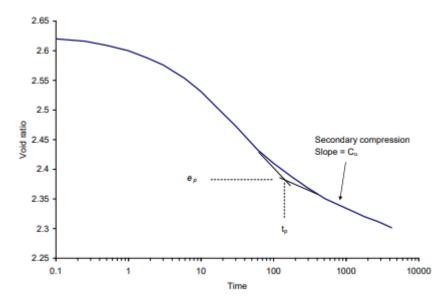


Figura 14-18 Coefficiente di consolidazione secondario

TRATTO NODO DI AREZZO - SELCI - LAMA (E45) - PALAZZO DEL PERO - COMPLETAMENTO (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

14.2.6.1. Cedimenti rilevati

14.2.6.1.1. Sezione Tipo A in rilevato H = 7.0 m – Asse Principale

Nelle seguenti figure si riportano i cedimenti del terreno di fondazione massimi totali attesi dopo 1 anno e dopo 50 anni; si evidenziano le seguenti ipotesi:

- le verifiche sono state condotte con riferimento alla stratigrafia riportata in Tabella 14-7, con i parametri di compressibilità riportati in Tabella 14-9;
- vista la presenza di sottili lenti di terreni incoerenti, l'intero strato coesivo è stato modellato suddividendolo in strati di spessore pari a 4.0m con la possibilità di drenaggio alla base di ognuno di essi;
- la falda è stata considerata ad una profondità di 7.0 m (Falda di esercizio);
- i cedimenti sono stati valutati con riferimento ai soli carichi permanenti.

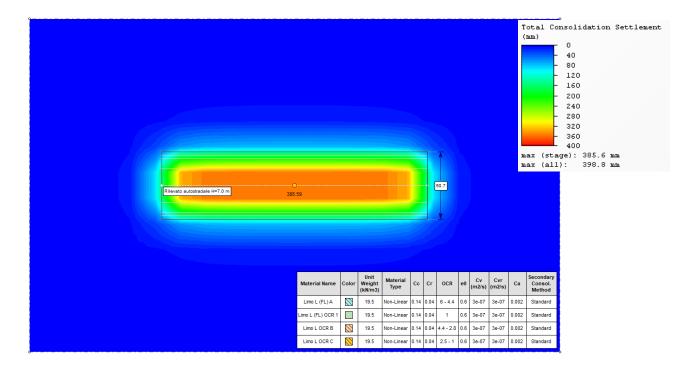
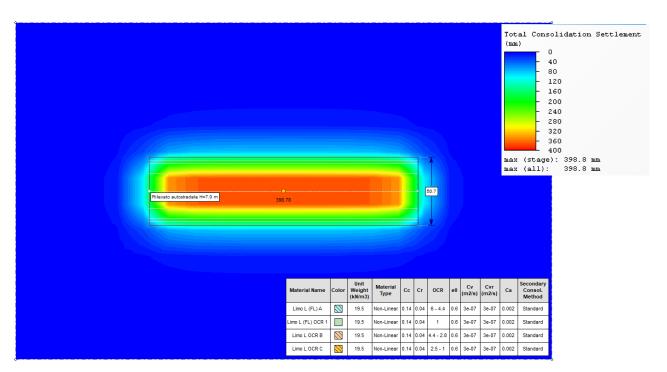


Figura 14-19 Cedimenti massimi attesi per il rilevato autostradale Sezione Tipo A H = 7.0 m a 1 anno

PROGETTAZIONE ATI:

GPINGEGNERIA
GESTIONE PROGETTI INGEGNERIA SI



GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

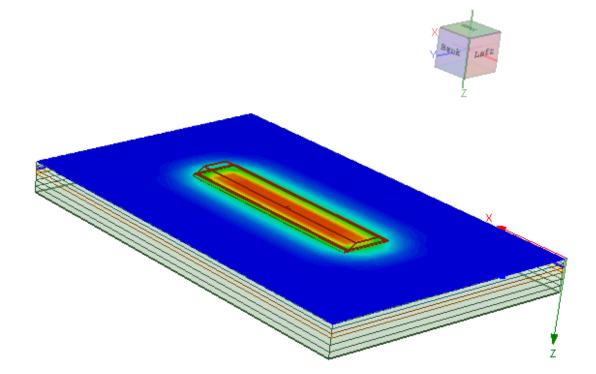
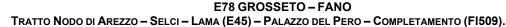


Figura 14-20 Cedimenti massimi attesi per il rilevato autostradale Sezione Tipo A H = 7.0 m a 50 anni


PROGETTAZIONE ATI:

GPIngegneria GESTIONE PROGETTI INGEGNERIA srl

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

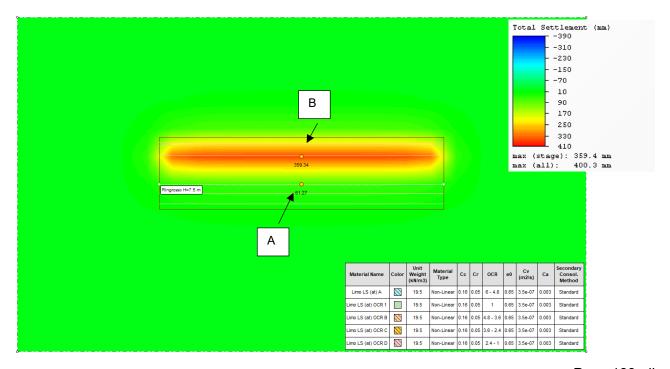

Cedimento to	tale	
δ_{1anno}	[mm]	400
δ 50 anni	[mm]	470
Cedimento di	consolid	azione primaria
δ cons. primaria	[mm]	400
Tempo di con	solidazio	ne primaria al 90%
t _{90%}	[mesi]	6
Cedimento di	consolid	azione secondaria
δ 50 anni	[mm]	70

Tabella 14-11 Cedimenti del terreno di fondazione per il rilevato autostradale Sezione Tipo A H = 7.0

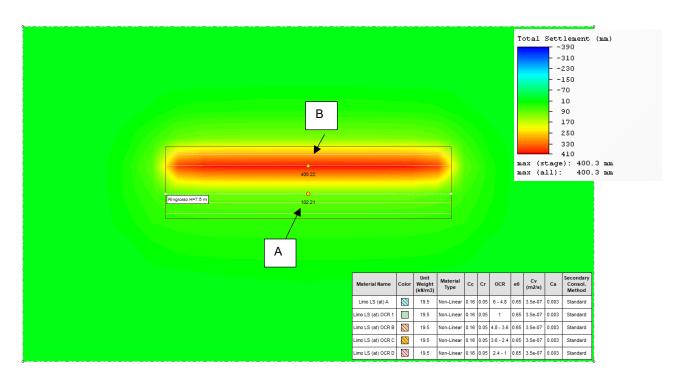
14.2.6.1.2. Sezione Tipo B in allargamento rilevato H = 7.5 m – Asse Principale

Nelle seguenti figure si riportano i cedimenti massimi del terreno di fondazione totali attesi dopo 1 anno e dopo 50 anni; si evidenziano le seguenti ipotesi:

- le verifiche sono state condotte con riferimento alla stratigrafia riportata in Tabella 14-7, con i parametri di compressibilità riportati in Tabella 14-9;
- vista la presenza di sottili lenti di terreni incoerenti, l'intero strato coesivo è stato modellato suddividendolo in strati di spessore pari a 3.0m con la possibilità di drenaggio alla base di ognuno di essi;
- la falda è stata considerata ad una profondità di 2.0 m (Falda di esercizio);
- i cedimenti sono stati valutati con riferimento ai soli carichi permanenti;
- i cedimenti riportati nelle seguenti tabelle sono stati determinati al netto dei cedimenti già maturati dal rilevato esistente.

PROGETTAZIONE ATI:

Pag. 189 di 210



Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

Figura 14-21 Cedimenti massimi attesi per il rilevato autostradale Sezione Tipo B H = 7.5 m a 1 anno

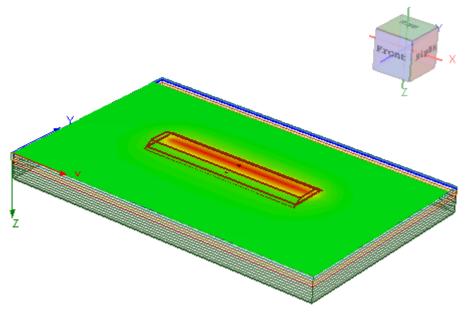


Figura 14-22 Cedimenti massimi attesi per il rilevato autostradale Sezione Tipo B H = 7.5 m a 50 anni

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

Cedimento to	otale	Esistente [A]	Nuovo [B]
$\delta_{1\text{anno}}$	[mm]	60	360
δ 50 anni	[mm]	100	400
Cedimento di	i consolidazione prima	ıria	
δ cons. primaria	[mm]	60	360
Tempo di con	solidazione primaria (al 90%	
t _{90%}	[mesi]	3	3
Cedimento di	i consolidazione secon	daria	
δ 50 anni	[mm]	40	40

Tabella 14-12 Cedimenti del terreno di fondazione per il rilevato autostradale Sezione Tipo B H = 7.5 m

14.2.6.1.3. Sezione Tipo C in rilevato H = 8.5 m - collegamento E 78 / Arezzo Battifolle

Nelle seguenti figure si riportano i cedimenti del terreno di fondazione massimi totali attesi dopo 1 anno e dopo 50 anni; si evidenziano le seguenti ipotesi:

- le verifiche sono state condotte con riferimento alla stratigrafia riportata in Tabella 14-8, con i parametri di compressibilità riportati in Tabella 14-10;
- vista la presenza di sottili lenti di terreni incoerenti, lo strato di limo più profondo è stato modellato suddividendolo in strati di spessore pari a 2.5m con la possibilità di drenaggio alla base di ognuno di essi;
- la falda è stata considerata ad una profondità di 10.0 m (Falda di esercizio);
- i cedimenti sono stati valutati con riferimento ai soli carichi permanenti.

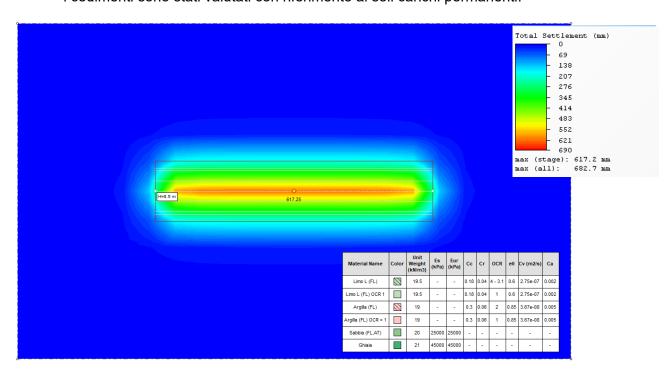
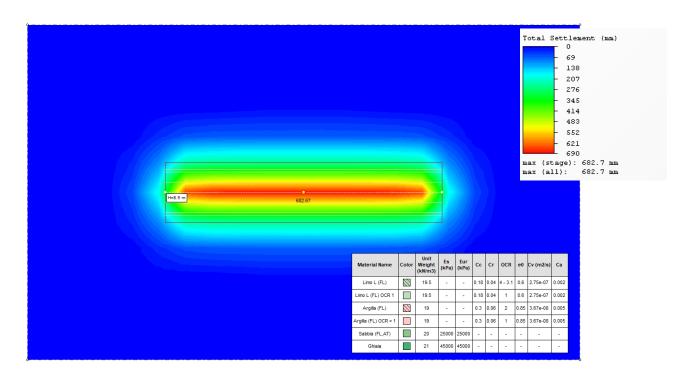


Figura 14-23 Cedimenti massimi attesi per il rilevato stradale Sezione Tipo C H = 8.5 m a 1 anno

PROGETTAZIONE ATI:

Pag. 191 di 210



GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

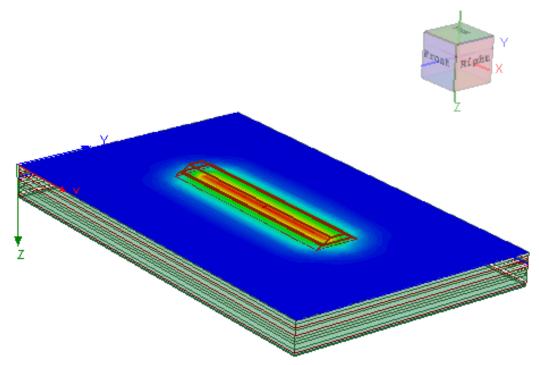


Figura 14-24 Cedimenti massimi attesi per il rilevato stradale Sezione Tipo C H = 8.5 m a 50 anni

Cedimento totale

PROGETTAZIONE ATI:

Pag. 192 di 210

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

$\delta_{1\text{anno}}$	[mm]	615
δ 50 anni	[mm]	680
Cedimento el	astico	
δ	[mm]	25
Cedimento di	consolid	azione primaria
$\delta_{\text{ cons. primaria}}$	[mm]	610
Tempo di con	solidazio	ne primaria al 90%
t _{90%}	[mesi]	6
Cedimento di	consolid	azione secondaria
δ 50 anni	[mm]	45

Tabella 14-13 Cedimenti del terreno per il rilevato stradale Sezione Tipo C H = 8.5 m

14.2.6.1.4. Sezione Tipo D in rilevato H = 10.0 m collegamento E 78 / Arezzo Battifolle

Nelle seguenti figure si riportano i cedimenti del terreno di fondazione massimi totali attesi dopo 1 anno e dopo 50 anni; si evidenziano le seguenti ipotesi:

- le verifiche sono state condotte con riferimento alla stratigrafia riportata in Tabella 14-8, con i parametri di compressibilità riportati in Tabella 14-10;
- il substrato roccioso non è stato inserito nel modello;
- vista la presenza di sottili lenti di terreni incoerenti, lo strato di limo è stato modellato suddividendolo in strati di spessore pari a 2.5m con la possibilità di drenaggio alla base di ognuno di essi;
- la falda è stata considerata ad una profondità di 10.0 m (Falda di esercizio);
- i cedimenti sono stati valutati con riferimento ai soli carichi permanenti.

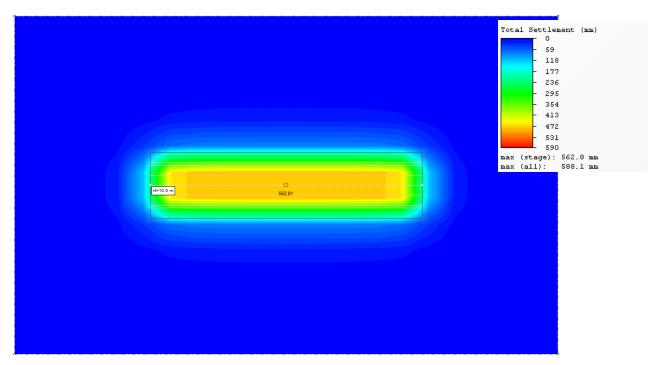
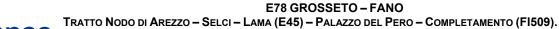
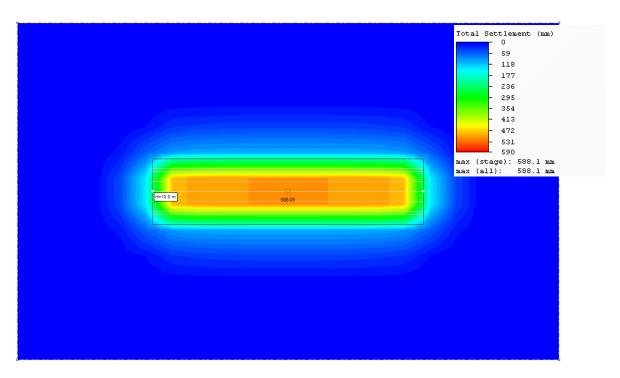


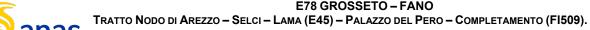
Figura 14-25 Cedimenti massimi attesi per il rilevato stradale Sezione Tipo D H = 10.0 m a 1 anno

PROGETTAZIONE ATI:


Pag. 193 di 210

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE




Figura 14-26 Cedimenti massimi attesi per il rilevato stradale Sezione Tipo D H = 10.0 m a 50 anni

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

Cedimento totale

δ _{1 anno}	[mm]	560
δ 50 anni	[mm]	590
Cedimento di	i consolid	azione primaria
δ cons. primaria	[mm]	550

Tempo di consolidazione primaria al 90%

L 90%	[IIIesi]	5	
Cedimento d	di consolid	azione secondaria	
δ_{50anni}	[mm]	30	

Tabella 14-14 Cedimenti del terreno di fondazione per il rilevato stradale Sezione Tipo D H = 10.0 m

PROGETTAZIONE ATI:

GPIngegneria

Pag. 195 di 210

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (F1509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

14.2.7. VERIFICHE DI STABILITÀ

Le verifiche sono state condotte con il codice di calcolo Slide2 (ver. 9.020) della Rocscience utilizzando il metodo di Bishop semplificato (1955, doc.rif.[37]) ed ipotizzando superfici di scorrimento circolari di raggio r, con il materiale coinvolto nella rottura suddiviso in conci di larghezza b (vedi schema riportato di seguito), per ognuna delle quali vengono valutati il momento stabilizzante Ms (resistenza R del sistema geotecnico) e il momento ribaltante M_r (azione E) calcolati rispetto al centro del cerchio.

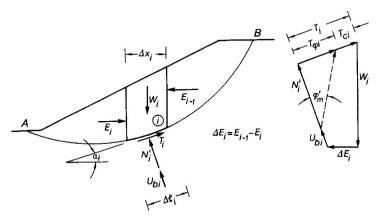


Figura 14-27 Schema metodo di Bishop semplificato (1955)

Il contributo al momento stabilizzante M_s di un concio è fornito in generale dalla resistenza alla base, somma della componente del peso W ortogonale alla base moltiplicata per la tangente dell'angolo di resistenza al taglio \emptyset e della eventuale coesione c, moltiplicata per la lunghezza b/cos α , dove α è l'inclinazione della base del concio rispetto all'orizzontale. Nell'ipotesi che il concio sia parzialmente immerso in acqua e che alla base la pressione idraulica valga u si ottiene:

$$M_s = \frac{c \times b + (W - u \times b) \times \tan \emptyset}{m\alpha} \times r$$

dove:

$$m\alpha = \cos\alpha \times \left(1 + \frac{\tan\alpha \times \tan\emptyset}{F}\right)$$

Il contributo al momento ribaltante M_r di un concio è fornito dalla componente del peso W parallela alla base del concio:

$$M_r = W \times \sin \alpha \times r$$

Il programma non definisce separatamente il valore dell'effetto delle azioni E che portano instabilità (momenti ribaltanti M_r) e della resistenza corrispondente R (momenti stabilizzanti M_s), ma solo il loro rapporto (F=R/E) che è il "fattore di sicurezza globale".

La stabilità globale, secondo quanto indicato nell'Eurocodice 7, può essere verificata utilizzando il "fattore di sicurezza globale" F e un fattore ausiliario definito ODF ("Over-design factor"), di seguito definito con riferimento all'approccio A2+M2+R2 indicato dalle NTC 2018:

- viene calcolato il fattore di sicurezza F come rapporto R/E utilizzando i parametri di resistenza dei terreni di progetto φ_d e c_d e amplificando i carichi con i coefficienti parziali γ_{G1} e γ_{G2} ;
- viene calcolato ODF dividendo F per il coefficiente parziale sulle resistenze y_R.

E78 GROSSETO – FANO
TRATTO NODO DI AREZZO – SELCI – LAMA (E45) – PALAZZO DEL PERO – COMPLETAMENTO (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Affinché le verifiche siano soddisfatte deve quindi risultare:

$$ODF = \frac{F}{\gamma_r} = \frac{R(\phi_d, c_d)/E(\phi_d, c_d)}{\gamma_r} > 1$$

Il coefficiente γ_r per il terreno, ai sensi delle NTC 18, è stato assunto pari a 1.1.

Le verifiche in condizioni sismiche vengono condotte ponendo pari all'unità i coefficienti parziali sulle azioni e sui parametri di resistenza del terreno e assumendo γ_r pari a 1.2. Nella condizione sismica i sovraccarichi stradali sono stati moltiplicati per il coefficiente di combinazione Ψ₂=0.3, come previsto dalle NTC18 al §2.5.2. Tali analisi sono state condotte mediante metodo di tipo pseudo-statico che considera un sistema di forze orizzontali e verticali applicate ai volumi di terreno coinvolti.

Le forze orizzontali di inerzia, dovute alla azione sismica, sono state considerate con intensità pari a:

 $F_h = k_h \times W$

con

$$k_h = \beta_S \times \frac{a_{max}}{g}$$

dove:

- coefficiente di riduzione dell'accelerazione massima al sito (pari a 0.38 nelle verifiche dello stato limite ultimo SLV);
- accelerazione orizzontale massima attesa al sito;
- W peso del materiale;
- accelerazione di gravità.

Le forze verticali sono state considerate pari a:

$$F_{\nu} = k_{\nu} \times W$$

con

$$k_v = \pm 0.5 \times k_h$$

Come riportato nella Relazione sismica (doc. rif. [34]), lungo i tracciati l'accelerazione massima orizzontale attesa con riferimento allo Stato Limite di Salvaguardia della Vita (SLV), tenuto conto delle modifiche prodotte dalle condizioni stratigrafiche locali e da quelle morfologiche del sito, è pari a:

Classe di suolo B $a_{max} = 0.195g \times 1.20 \times 1.0 = 0.234g$;

Classe di suolo C $a_{max} = 0.195g \times 1.42 \times 1.0 = 0.277g$;

Classe di suolo E $a_{max} = 0.195g \times 1.48 \times 1.0 = 0.289g$

Per cui si ha:

 $k_h = 0.38 \; \frac{0.234 \; g}{g} = 0.089$ Classe di suolo B $k_v = \pm 0.5 \times 0.089 = \pm 0.044$;

Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

• Classe di suolo C
$$k_h = 0.38 \; \frac{0.277 \; g}{g} = 0.105$$

$$k_v = \pm 0.5 \times 0.089 = \pm 0.052$$

• Classe di suolo E
$$k_h = 0.38 \; \frac{0.289 \, g}{g} = 0.110$$

$$k_v = \pm 0.5 \times 0.089 = \pm 0.055$$
.

14.2.7.1. Analisi di stabilità

14.2.7.1.1. Sezione Tipo A in rilevato H = 7.0 m – Asse Principale

Nelle seguenti figure si riportano lo schema del modello di calcolo e le verifiche in condizioni statiche e dinamiche; si evidenziano le seguenti ipotesi:

- le verifiche sono state condotte con riferimento alla stratigrafia riportata in Tabella 14-7, con i parametri di compressibilità riportati in Tabella 14-9;
- la falda è stata considerata ad una profondità di 5.0 m dal p.c. nelle verifiche statiche (Falda di progetto) e 7.0 m in quelle sismiche (Falda di esercizio);
- le analisi sono state condotte in condizioni non drenate;
- è stato considerato un sovraccarico stradale variabile pari a 20 kPa in condizioni statiche e pari a 6 kPa in condizioni dinamiche.

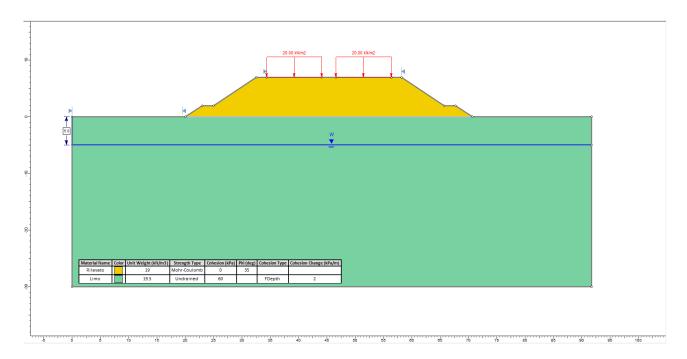


Figura 14-28 Modello di calcolo Sezione Tipo A rilevato autostradale H = 7.0 m

PROGETTAZIONE ATI:

Pag. 198 di 210

E78 GROSSETO - FANO Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

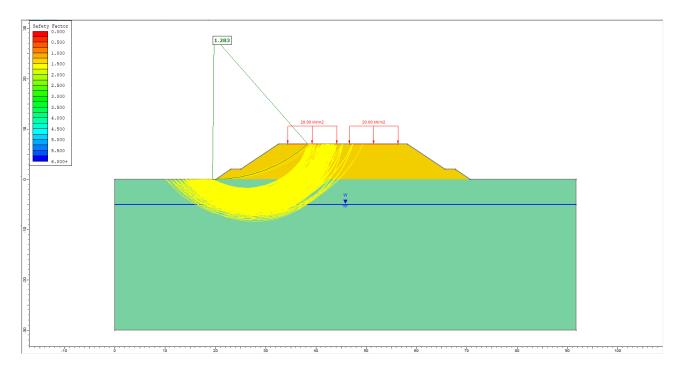


Figura 14-29 Analisi SLU Sezione Tipo A rilevato autostradale H = 7.0 m ODF=1.283

Figura 14-30 Analisi SLV (k_v > 0) Sezione Tipo A rilevato autostradale H = 7.0 m ODF=1.510

PROGETTAZIONE ATI:

Pag. 199 di 210

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

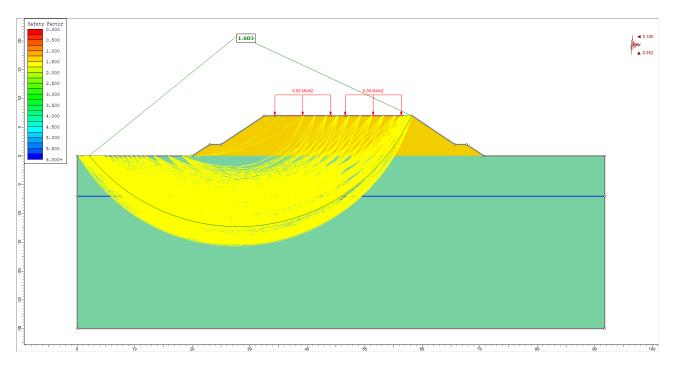


Figura 14-31 Analisi SLV (k_v < 0) Sezione Tipo A rilevato autostradale H = 7.0 m ODF=1.603

14.2.7.1.2. Sezione Tipo B in allargamento rilevato H = 7.5 m – Asse Principale

Nelle seguenti figure si riportano lo schema del modello di calcolo e le verifiche in condizioni statiche e dinamiche; si evidenziano le seguenti ipotesi:

- le verifiche sono state condotte con riferimento alla stratigrafia riportata in Tabella 14-7, con i parametri di compressibilità riportati in Tabella 14-9;
- la falda è stata considerata ad una profondità di 0.0 m dal p.c. nelle verifiche statiche (Falda di progetto) e 2.0 m in quelle sismiche (Falda di esercizio);
- le analisi sono state condotte in condizioni non drenate;
- è stato considerato un sovraccarico stradale variabile pari a 20 kPa in condizioni statiche e pari a 6 kPa in condizioni dinamiche.

PROGETTAZIONE ATI:

210

E78 GROSSETO - FANO Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

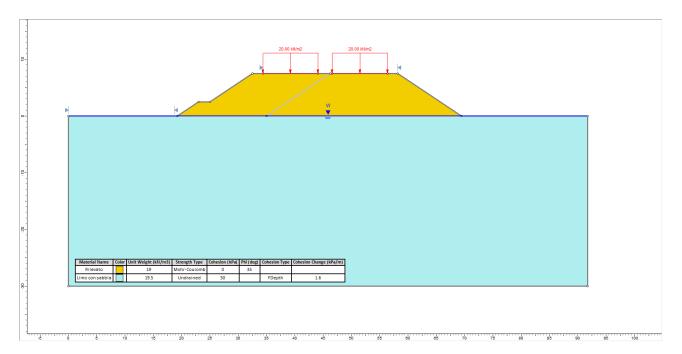


Figura 14-32 Modello di calcolo Sezione Tipo B in allargamento rilevato H = 7.5 m

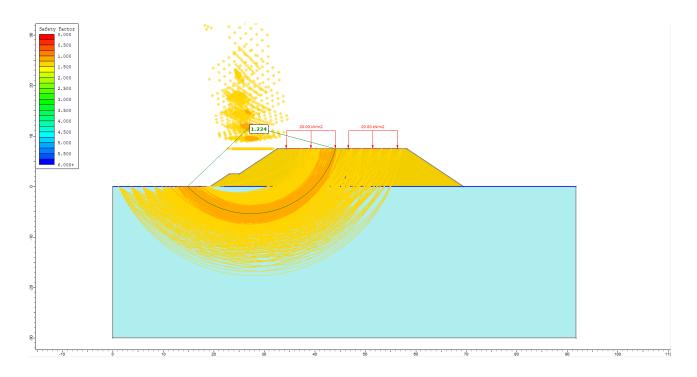


Figura 14-33 Analisi SLU Sezione Tipo B in allargamento rilevato H = 7.5 m ODF=1.224

E78 GROSSETO - FANO Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

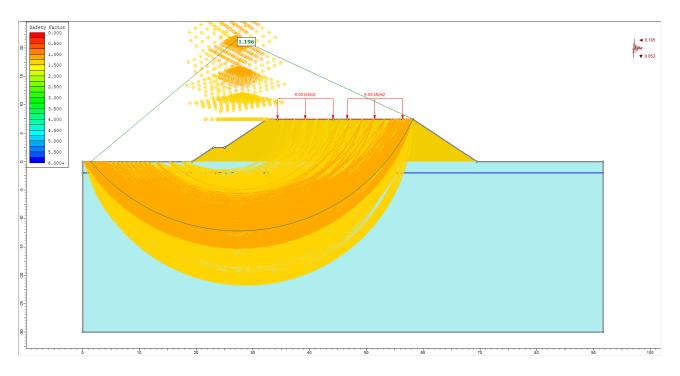


Figura 14-34 Analisi SLV (k_v > 0) Sezione Tipo B in allargamento rilevato H = 7.5 m ODF=1.196

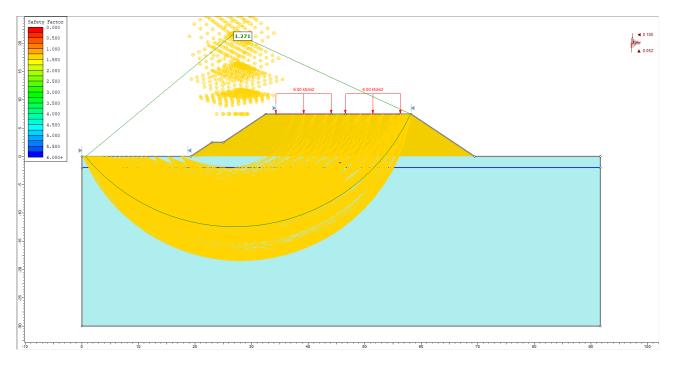


Figura 14-35 Analisi SLV (k_v < 0) Tipo B in allargamento rilevato H = 7.5 m ODF=1.271

PROGETTAZIONE ATI:

GPIngegneria GESTIONE PROGETTI INGEGNERIA srl

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

14.2.7.1.3. Sezione Tipo C in rilevato H = 8.5 m- collegamento E 78 / Arezzo Battifolle

Nelle seguenti figure si riportano lo schema del modello di calcolo e le verifiche in condizioni statiche e dinamiche; si evidenziano le seguenti ipotesi:

- le verifiche sono state condotte con riferimento alla stratigrafia riportata in Tabella 14-8, con i parametri di compressibilità riportati in Tabella 14-10;
- la falda è stata considerata ad una profondità di 2.5 m dal p.c. nelle verifiche statiche (Falda di progetto) e 10.0 m in quelle sismiche (Falda di esercizio);
- le analisi sono state condotte in condizioni non drenate;
- è stato considerato un sovraccarico stradale variabile pari a 20 kPa in condizioni statiche e pari a 6 kPa in condizioni dinamiche.

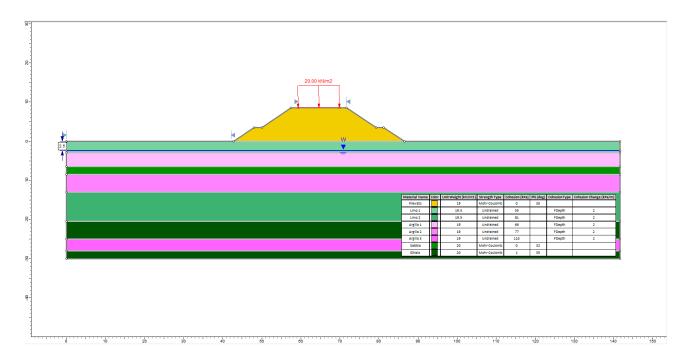


Figura 14-36 Modello di calcolo Sezione Tipo C in rilevato H = 8.5 m

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

Figura 14-37 Analisi SLU Sezione Tipo C in rilevato H = 8.5 m ODF=1.138

Figura 14-38 Analisi SLV ($k_v > 0$) Sezione C in rilevato H = 8.5 m ODF=1.052

PROGETTAZIONE ATI:

GPIngegneria GESTIONE PROGETTI INGEGNERIA srl

E78 GROSSETO - FANO Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

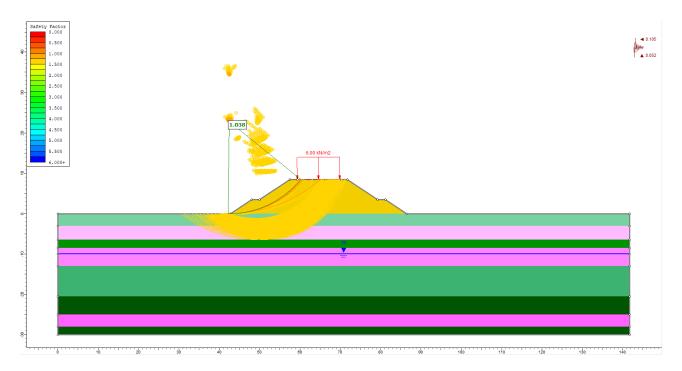


Figura 14-39 Analisi SLV (k_v < 0) Tipo C in rilevato H = 8.5 m ODF=1.038

14.2.7.1.4. Sezione Tipo D in rilevato H = 10.0 m collegamento E 78 / Arezzo Battifolle

Nelle seguenti figure si riportano lo schema del modello di calcolo e le verifiche in condizioni statiche e dinamiche; si evidenziano le seguenti ipotesi:

- le verifiche sono state condotte con riferimento alla stratigrafia riportata in Tabella 14-8, con i parametri di compressibilità riportati in Tabella 14-10;
- la falda è stata considerata ad una profondità di 2.5 m dal p.c. nelle verifiche statiche (Falda di progetto) e 10.0 m in quelle sismiche (Falda di esercizio);
- le analisi sono state condotte in condizioni non drenate;
- è stato considerato un sovraccarico stradale variabile pari a 20 kPa in condizioni statiche e pari a 6 kPa in condizioni dinamiche.

E78 GROSSETO - FANO Tratto Nodo di Arezzo - Selci - Lama (E45) - Palazzo del Pero - Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

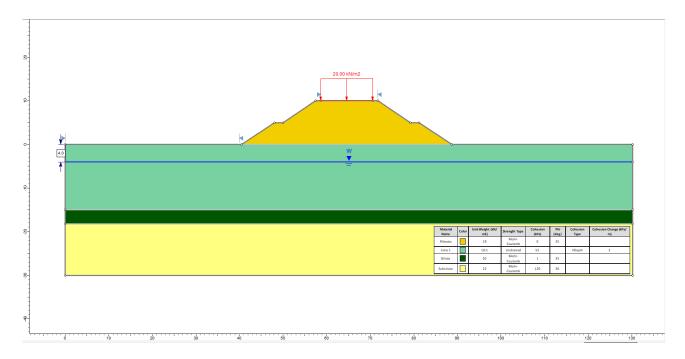


Figura 14-40 Modello di calcolo Sezione Tipo D in rilevato H = 10.0 m

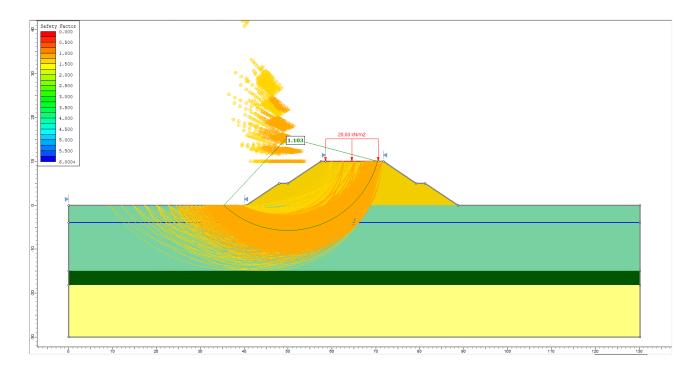


Figura 14-41 Analisi SLU Sezione Tipo D in rilevato H = 10.0 m ODF=1.103

E78 GROSSETO - FANO Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

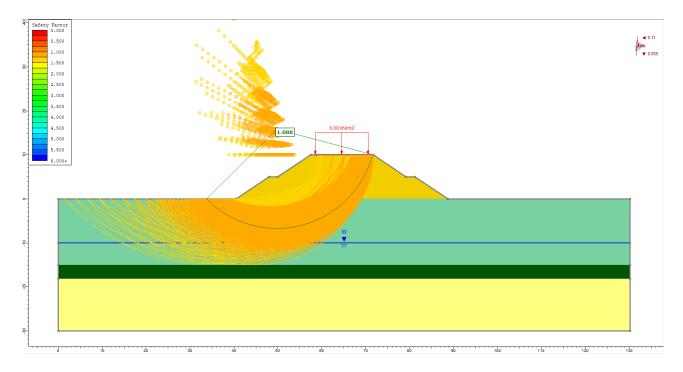


Figura 14-42 Analisi SLV (k_v > 0) Sezione Tipo D in rilevato H = 10.0 m ODF=1.088

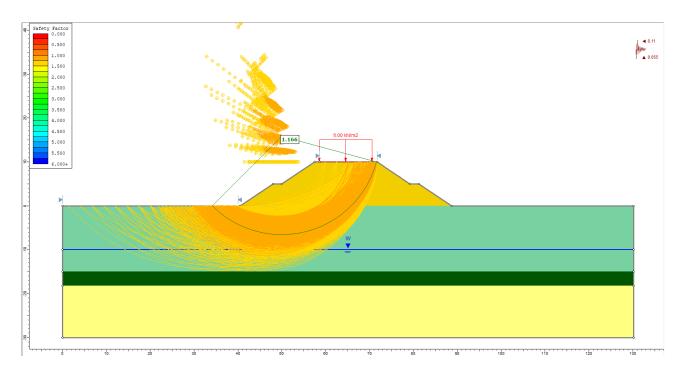


Figura 14-43 Analisi SLV (k_v < 0) Sezione Tipo D in rilevato H = 10.0 m ODF=1.166

PROGETTAZIONE ATI:

GPIngegneria

TRATTO NODO DI AREZZO – SELCI – LAMA (E45) – PALAZZO DEL PERO – COMPLETAMENTO (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

Nella tabella seguente sono riassunti i coefficienti per le diverse analisi di stabilità eseguite:

ODF	Sezione A	Sezione B	Sezione C	Sezione D
ODF	H = 7.0 m	H = 7.5 m	H = 8.5 m	H = 10.0 m
SLU	1.283	1.224	1.138	1.103
SLV (k _v > 0)	1.510	1.196	1.052	1.088
SLV (k _v < 0)	1.603	1.271	1.038	1.166

Tabella 14-15 Risultati verifiche di stabilità

Le verifiche di stabilità globale risultano soddisfatte.

PROGETTAZIONE ATI:

GPIngegneria

Tratto Nodo di Arezzo – Selci – Lama (E45) – Palazzo del Pero – Completamento (FI509).

GEOTECNICA - RELAZIONE GEOTECNICA GENERALE

14.3. SCAVI PROVVISIONALI

14.3.1. SCAVI PROVVISIONALI

Per gli scavi provvisionali profondi meno di 5m con terreni coesivi la pendenza degli scavi può essere tenuta pari a 1:1 (45°), con terreni incoerenti invece pari a 2:3 (34°).

Nel caso di scavi profondi più di 5m, la massima pendenza consentita è di 2:3 (34°) con la realizzazione di una banca di larghezza pari a 2.0m ogni 5m di altezza di scavo.

14.4. **OPERE D'ARTE MAGGIORI**

Tutte le opere d'arte maggiori, Ponte nella ZI "San Zeno", Viadotto sul Canale Maestro della Chiana, Viadotto San Giuliano e i tre cavalcavia alle pk 2+205, 4+441 e 4+732, sono previste su fondazioni di tipo profondo (pali trivellati a grande diametro).

Le verifiche geotecniche delle singole opere sono riportate nelle rispettive relazioni di calcolo alle quali si rimanda.

14.5. INTERVENTI DI STABILIZZAZIONE DELLE FRANE

In base ai rilevi geologici condotti, come evidenziato nelle sezioni geotecniche GEOT3 (in corrispondenza della pk 2+500 circa dell'Asse principale) e GEOT4 (in corrispondenza della pk 2+925 circa dell'Asse principale) sono presenti dei depositi superficiali di antiche frane stabilizzate che non presentano segni di attività. La viabilità principale non interferisce con tali depositi, interessati solo da alcune opere minori di viabilità secondaria. Il progetto prevede per tale viabilità secondaria interventi a raso o su rilevati di modesta altezza. In assenza di ulteriori dati a conferma della stabilità di tali aree sono previsti interventi di consolidamento con berlinesi di micropali atte ad incrementare il grado di stabilità in corrispondenza della nuova viabilità.

GPIngegneria

PROGETTAZIONE ATI:

3engeko

TRATTO NODO DI AREZZO – SELCI – LAMA (E45) – PALAZZO DEL PERO – COMPLETAMENTO (FI509).

GEOTECNICA – RELAZIONE GEOTECNICA GENERALE

15. ALLEGATI

15.1. RISULTATI DELLE PROVE DI LABORATORIO

Asse Pr	incipa	ale																																
			D (10)			Peso di	Peso di	Peso di	Peso di	Peso di											- ·												. .	Taglio
			Profondità campioni		Contenuto di acqua	volume	volume dei	volume	volume	volume	Indice dei vuoti	Porosità	Grado di saturazione	Lin	niti di At	tterberg		Granulo	metria		Taglio diretto	TX-CI	D ELI	TX-0	U		Prova	a edome	etrica			TX-UU	Determina: onde S	diretto
Sondaggio	Anno	Campioni	Gampioni	Unità	ui acqua	naturale	grani	secco	immerso	saturo	vuoti		Saturazione								unotto												l ondo o c	residuo
33			Z _{in} Z _{fin}		Wn	Υn	Ϋ́s	γ _d	ν'	γ _{sat}	е	n	Sr	W, W	/ _P W _R	IP Ic	Ghiaia	Sabbia	Limo	Argilla	с' ф'	c'	φ' c _u	c'	φ' e ₀	C _r C _c	М	OCR	C _v	Ken	Сα	Cu	V _{P media} V	V _{S media} C' φ'
			_	4					3.			()											-				-	_		K _{ED}	σα	(I-D-)		
S13	1999	1	(m) (m) 2.00 2.40	U.G LS(AT)	(%) 21.7	(kN/m³) 0.02	(kN/m³) 27.62	(kN/m³) 17.18	(kN/m³)	(kN/m³)	(-) 0.608	(-) 0.378	(%) 99	(%) (%)	, , ,	15 1.2	(%)	(%)	(%) 63	(%)	(kPa) (°)	(KPa)	(°) (kPa		* / * /	(-) (-) 0.034 0.16		1) (-)	(cm2/s)	(m/s) 4.7E-08	0.003	(kPa)	(m/s) ((m/s) (kPa) (°)
S13	1999	2	6.00 6.60		21.7	20.59	27.48	16.96			0.62	0.383	95	42 2		18 1.1	0	10	50	43	7 20)	90			0.034 0.10	51 3	12	1.1L-03	4.7L=00	0.003		-+	-+-+
S13	1999	3	9.50 10.10		26.2	0.02	27.67	15.92			0.738	0.425	98	60 2	9	31 1.1	0	2	45	53	7 24	ı İ		5	25									
S13	1999		15.00 15.60		21.6												23	30	29	18														
S13 S17	1999 1999	4 parte bassa	15.00 15.60 2.40 3.00	\ /	22.3 22.3	20.66	27.63	16.89			0.636	0.389	96	32 2 45 2		10 1.0 18 1.3	0	3	68 56	38 41	0 24	1	_	-	0.628	0.055 0.16	55 3	6	7 3F-04	4.4E-08	0.003		\leftarrow	
S17	1999	2	2.40 3.00		22.8	20.00	27.00	0.00			0.000	0.505	30	45 Z		10 1.0	44	21	24	11	3 27				0.020	0.000 0.10	5 5		7.5L-04	4.4L-00	0.003		- +	
S18	1999	1	1.00 1.60		21.9	20.75	27.56	17.02			0.619	0.382	98	39 2		16 1.1	0	12	53	35	9 24	1			0.602	0.055 0.15	59 3	8	7.6E-04	3.6E-08	0.003			
S18	1999	2	5.50 6.10		92.8	20.26	27.44	16.59			0.654	0.395	93	31 2		11	0	26	51	23	9 23	3	51	_	0.617	0.051 0.17		5	1.8E-03				\vdash	
S19 S19	1999 1999	2	2.00 2.60 10.00 10.60	U.G LS(AT) U.G LS(AT)	22.6 22.3	19.52 20.56	27.39 27.59	15.92 16.81			0.72	0.419	86 96	29 2 56 2		9 0.7	0	26 2	52 47	22 51	14 20	1	131		26 0.773 23 0.595	0.095 0.22 0.038 0.15	_	2		5.9E-07 1.1E-08			-+	-+
S19	1999	3	15.00 15.60		19.2	20.50	21.00	10.01			0.041	0.001	30	40 2		16 1.3	0	3	67	30	14 20	1	10	1 10	20 0.000	0.000 0.10	0 0		2.01-04	1.12-00	0.004		- +	
S20	1999	1	2.00 2.60		20.8	20.15	27.49	16.68			0.648	0.393	88	34 2		12 1.1	9	22	51	18			21		30 0.644	0.054 0.17	'1 5	3	1.4E-02	6.4E-07	0.004			
S20	1999	2	6.00 6.60		19.5	21.15	27.63	17.70			0.561	0.359	96	47 2		21 1.3	0	5	52	43	11 25	5	163		00								\longrightarrow	
S20 S20	1999 1999	3 4	10.00 10.60 15.00 15.60		20.3 19	21.00	27.67	17.34			0.596	0.373	94	44 2 30 2		19 1.2 8 1.4	0	19 18	54 60	37 22	15 22		116	3 20	23						1		+	- - -
SL	2008	CI1	2.00 2.45	_ \ /	25	20		16.4						29 2		8 0.5		22	65	13			35		0.666	0.080 0.19	3 3	8	3.6E-03	2.6E-10	0.017		-	
SL	2008	CI2	5.50 6.00	U.G LS(AT)	19	19		16.24						32 1		13 1.0	5	23	49	23	12 27													
SL SM	2008	CI2 CI1	16.00 16.40 2.50 3.00		18 25	22 19		18.37 15.27						29 1 48 2		11 1.0 20 1.2	50 0	40 4	7 61	3 35	21 25	1		+			+	-	1	1	1 1		\longrightarrow	\longrightarrow
SM	2008	Cl2	7.50 8.00		25	20		16.26						37 2		13 1.2		6	69	25	10 27	,	-	-		_	+	-	-		+ +			
SM	2008	Cl3	13.50 14.00	U.G LS(AT)	21	21		17.09						32 1	9	13 0.8	8	28	46	18					0.520	0.056 0.03	30 5	1	1.2E-03	6.0E-11	0.017			
SM	2008	CI4	19.00 19.50		25	20	00.77	16.13					-	45 2	3	22 0.9	0	8	48	44									1	1			\Box \top	\rightarrow
AS07 S7	2021 1994	R1	3.70 4.00 2.10 2.50		18.9	19.68	26.53 26	NC 17.6	9.87	NC	NC 0.55	NC 0.35	94	33 2	n	13 1.1	41 8.94	30 17	25 73.97	4	0 29	1		-	0.560	0.027 0.12	20 6	n	3 3 = 03	1.9E-10	0.001			
S5	1994	1	1.00 1.60		23.5	0.02	27.53	16.13			0.55	0.35	92	35 2		12 1.0	5	9	63	23	5 28	3	45	+	0.300	U.12	0	9	J.JE-03	1.82-10	0.001		-+	
S6	1999	1	2.00 2.60	U.G R	19.2	20.71	27.66	17.37			0.592	0.372	90	36 2		12 1.4		10	56	34	14 27	,	100	_										
S7	1999		2.40 3.00		19.4	20.61	27.35	17.26			0.584	0.369	91	36 2	2	14 1.2		28	34	24	2 26	5	34										\longrightarrow	-
S8 S9	1999 1999	1	2.00 2.60 2.00 2.60		22.5 24	20.66 20.52	27.31 27.65	16.87 16.48			0.619 0.678	0.382 0.404	99 100	26 1	a	7 0.3	12 7	38 37	41 43	9 13	5 30 3 27	,	22								-		\leftarrow	-+-+
S14	1999		2.00 2.60		13.9	20.02	27.00	10.40			0.070	0.404	100	20 1	3	7 0.0	43	25	32	10	3 21												- +	
S15	1999	1	1.00 1.60		14.2												67	9	24															
AS04 AS05	2021	R1	12.80 13.00 14.50 15.00		10.1	19.21	26.77	17.44	9.39	20.9	0.537	0.349	51			 	16	26	45	13	0 23	3	_										+	
AS05 AS06	2021	R1 R1	2.70 3.00			20.12 18.75	26.43 26.6	NC NC	10.31 8.39	NC NC	NC NC	NC NC					32 45	18 17	42 33	5	0 31	,									1		+	- - -
AS06	2021	R2	6.00 6.40			20.55	26.32	NC	10.74	NC	NC	NC					26	24	37	13	0 33	3											-	
AS07	2021	R2	13.00 13.30	_		21.3	26.74	NC	11.5	NC	NC	NC					44	28	23	5	0 30)											\vdash	
S3 S11	1994 1999	2	7.50 7.80 5.00 5.60		14.6 18.9									34 1	8	16 1.2	45.47 26	20.55		17	0	1												
S16	1999	1	2.00 2.60		11.9											 	59	19	22	17	0	1						-			1		-+	- + +
S16	1999	1	10.00 10.60		8												30	28	42															
SI	2008	CI1	2.40 2.65					25.6																									1941	750
SI SI	2008	CI2 CI3	7.65 8.00 12.75 13.00				27	26.85 25.58						 		-						1									1		$\overline{}$	
SK	2008	CI1	7.65 8.00					25.52																15	82								3981 1	1648
SK	2008	Cl2	13.00 13.35	U.G AC			26	25.96																21	87									
SD	2008		10.80 11.00					25.81																0.5									2513 1	1274
SD SD	2008		18.50 18.75 21.50 21.80					26.41														-	-	35	87			+					2945 1	1039
AS01	2021		6.00 6.50		17.3	21.01	26.09	17.91	11.2	20.99	0.46	0.315	100	36 1	7 5	19 1.0	31	25	27	17	3 30)			0.484	0.027 0.11	0 9	4	1.4E-03	1.2E-10	0.003		2040	1000
S1	2006			U.G G(FL)													43.5	26.8		7														
AS02 AS02	2021			U.G S(FL)	1		26.61 26.14	NC NC	NC NC	NC NC	NC NC	NC NC		\vdash		+	25 9		24	13 13		+	_	+	HH		+	-	1	1	1		\longrightarrow	\longrightarrow
S2		1 parte alta		U.G S(FL)	20.3	20.70	26.14	NC 17.22	NC	NC	0.599	0.375	93	41 2	2	19 1.1			37			+	+	+			+	+	+	+	+ 1			
S4	1999	1 parte alta	2.40 3.00	U.G S(FL)	22.4	20.60	27.51	16.87			0.631	0.387	97	25 1		7 0.4	0	43	38															
S4				U.G S(FL)	17.4	20.96	27.48	17.85			0.539	0.35	89	$\perp \Gamma$	\perp		14	63			22 32	4 7	13						1	1	1 1		, — ‡	\bot
S7 S8	1999 1999			U.G S(FL) U.G S(FL)	17.6									37 3	2	5 3.9	56 29		26 24	17		+		+	++	-	+	-	1	1	+ +		+	+++
S10	1999			U.G S(FL)		20.79	27.46	18.14			0.514	0.339	78	29 2		9 1.6				11	3 26	3	34	+			+	1	1	1				
S11	1999	1	1.00 1.60	U.G S(FL)	26.7	21.76	27.46	18.65									7	41	39	13	11 29		35											
S12	1999			U.G S(FL)	18.7	21.44	27.40	18.06			0.517	0.341	99	30 2	1	9 1.3				17	9 25	5						-	1	1	1			-+-
S12 S1	2006	1 parte bassa C2		U.G S(FL) U.G S(FL)	1										-	+ + -	33	35 72		0				+				-	1	1	1		-+	
AS01				U.G L(FL)	24.9	20.22	26.51	16.19	10.41	20.01	0.64	0.39	105	35 1	3 9	22 0.5					2 28	3											= +	
AS01	2021	3	17.00 17.50) U.G L(FL)		20.32	26.56	16.82	10.51	20.4	0.58	0.368	97			19 0.6	19	24	35	22			7											
AS01 AS02	2021			U.G L(FL)	18.3	20 7F	25.91	NC 17.54	NC 10.94	NC 20.8	NC 0.51	NC 0.506	97	11 0	4 0	20 1.3	0			38 37	8 25	+		-			-	-	1	1	1 1			
AS02 AS02				U.G L(FL) U.G L(FL)	18.3	20.75 20.22	26.37 26.21	17.54 16.88	10.94	20.8	0.51	0.506	95	43 2	4 9	19 1.3	4			31			+	+			-	-	+	+	1		+	+++
AS03	2021	1	7.00 7.50	U.G L(FL)	18.6	20.79	26.29	17.53	10.97	20.8	0.503	0.335	99	34 1	6 9	18 0.9	10	26	36	28									<u> </u>					
AS03	2021	R1	12.00 12.30	U.G L(FL)			26.1	NC	NC	NC	NC	NC					0	16	47	37														
AS04				U.G L(FL) U.G L(FL)		21.18	26.38	17.78	11.36	20.99	0.486	0.327	106 98			22 1.0 21 1.1								+	0.500	0.033 0.15	3 45	7	1 45 00	Q 4E 40	0.002			\longrightarrow
AS05 S1	2021 1994			U.G L(FL)		20.53	26.38 26	17.17 16.6	10.72	20.6	NC 0.6	NC 0.37	98	33 1		16 0.7					1 24 14 33			+		0.033 0.15 0.030 0.10						121		9 30
S1	1994	2	5.70 6.30	U.G L(FL)			26	16.2			0.63	0.39	100	47 1	9	28 0.8	0.12	8.22	91.62		26 24					0.043 0.16			9.4E-04	7.0E-09	0.002			11 15
S2	1994		5.50 6.20	U.G L(FL)	24.8		26	15.78			0.67	0.4	99	36 1	8	18 0.6	0.16	12.21	87.67		22 24				0.609	0.030 0.10	00 6	4	1.8E-03	1.3E-10	0.005			16 21
S2	1994			U.G L(FL)			26	16.57			0.59	0.37	100	30 1		12 0.6					43 29		_	_	0.500	0.027 0.40	06 0	-	0.05.04	705 44	0.004	113		24 25
S2 S3	1994 1994			U.G L(FL) U.G L(FL)			26 26	17.25 16.86			0.53	0.35 0.36	100 99	32 1 30 2		14 0.9 10 0.9					43 29 28 28			+		0.037 0.12 0.037 0.12		8		7.3E-11 2.4E-10		113	-+	8 20
S4	1994			U.G L(FL)			26	16.86			0.57	0.35	91	30 1		11 1.0					44 31			1	0.623	0.047 0.15	53 5	6	2.3E-03	1.5E-10	0.001			12 24
S11	1994	1	2.00 2.70	U.G L(FL)	19.2		26	17.35			0.52	0.34	99	30 1	7	13 0.8	9.38	30.41	60.21						0.580	0.056 0.11	6 2	5	1.5E-04	2.8E-11	0.003			
S11	1994	2	4.20 4.90	U.G L(FL)	17.7		26	18			0.49	0.33	98	31 1	7	14 1.0	4.1	12.15	83.75		11 27	58	26		0.528	0.033 0.14	19 11	13	2.8E-03	2.7E-09	0.002	121		3 19

Asse Principale

Asse Pr	iricipai	<u> </u>																							1													
Sondaggio	Anno	Campioni	Profo camp		Unità	Contenuto di acqua	Peso di volume naturale	Peso di volume dei grani	Peso di volume secco	Peso di volume immerso	volume		Porosità	Grado di saturazione	Lir	niti di At	terberg		Gra	ınulometi	ria		Taglio diretto	TX-CID	ELL	TX-Cl	J			Prova e	edometri	ica			TX-UU	Determine onde S	SeP	Taglio diretto residuo
		·	Z _{in}	Z _{fin}		Wn	γ _n	γ _s	Υd	γ'	Ysat	е	n	Sr	W _L V	V _P W _R	IP	Ic Ghia	a Sabl	oia Lim	o Argil	a c	с' ф'	с' ф'	Cu	c'	ф' е ₀	Cr	Сс	М	OCR	C _v	K _{ED}	Cα	Cu	V _{P media}	V _{S media}	с' ф'
			(m)	(m)		(%)	(kN/m³)	(kN/m ³)	(kN/m ³)	(kN/m ³)	(kN/m ³)	(-)	(-)	(%)	(%) (%) (%)	(%)	(%) (%	(%	6) (%) (%) (kF	Pa) (°)	(kPa) (°)	(kPa)	(kPa)	(°) (-)	(-)	(-)	(MPa)	(-)	(cm2/s)	(m/s)		(kPa)	(m/s)	(m/s)	(kPa) (°)
S12	1994	1	2.00	2.70	U.G L(FL)	13.8		26	18			0.49	0.33	76	23 2	21	2	4.6 12.	8 42.	22 45.	02																	
S12	1994	1	2.00	2.70	U.G L(FL)	15.4		26	18.14			0.46	0.31	91	28 ′	8	10	1.3 11.	38.	04 50.	16																	
S12	1994	2	3.50	4.10	U.G L(FL)	19.8		26	17.06			0.46	0.36	97	42 2	20	22	1.0 0.2	5.2	28 94.	48	9	9 25	12 30			0.713	0.047	0.169	13	12	1.8E-03	4.0E-11	0.004	77			1 20
S13	1994	2	3.50	4.10	U.G L(FL)	19.8		26	17.06			0.46	0.36	97	42 2	20	22	1.0 0.2	1 5.2	28 94.	48		9 25	9 25											77			
S1	1999	1	1.00	1.50	U.G L(FL)	27.2	17.50	27.42	13.79			0.98	0.497	75	51 3	34	17	1.4 1	3	0 53	3 16	3 1	10 27		113		1.013	0.019	0.324	5	17	6.1E-03	5.3E-07	0.014				
S1	1999	1	5.00	5.60	U.G L(FL)													0	1	2 55	5 33	3																
S2	1999	1 parte bassa	1.00	1.60	U.G L(FL)													0	1	3 50	37	7 2	20 21		126		0.646	0.018	0.069	8	5	4.7E-04	1.0E-07	0.002				
S2	1999	2	5.00	5.60	U.G L(FL)	20.6	21.10	0.03	0.02			0.577	0.366	99	41 2	25	16	1.3 0	1	3 52	2 3	5 1	17 22		82		0.646	0.018	0.069	8	5	4.7E-04	1.0E-07	0.002				
S3	1999	1	2.00	2.60	U.G L(FL)	18.9	21.30	27.54	17.91			0.538	0.35	96	45 2	23	22	1.2 0	4	5′	1 4	5 1	16 24		169	21	32 0.569	0.016	0.154	7	12	5.1E-04	2.4E-08	0.004				
S4	1999	2	5.00	5.60	U.G L(FL)	19.8	21.29	27.61	17.77			0.554	0.356	99	40 2	22	18	1.1 0	1	3 50	3	7 2	20 23		170		0.549	0.025	0.141	7	5	9.7E-04	4.3E-08	0.003				
S5	1999	2	5.00	5.60	U.G L(FL)	17.4	21.55	27.47	18.36			0.497	0.332	96	50 2		27	1.2 17	1	6 41	1 26	3	35 25		100		0.501						1.5E-07					
S9	1999	1	10.00	10.60	U.G L(FL)	23.6	20.33	27.60	16.45			0.678	0.404	96	35 2	22	13	0.9 0	4	6	1 3	5 7	7 25				0.628	0.057	0.143	5	4	1.4E-03	1.3E-07	0.003				
S10	1999	1	5.00	5.60	U.G L(FL)	22.7			0.00						42 2	25	17	1.1 0	1	2 5	1 37	7																
S1	2006	C3	17.00	17.30	U.G L(FL)															73		3																
S1	2006	Sh2	13.00	13.60	U.G L(FL)	21	2.07		17.10						41 2	7 15	14	1.4		74.	.7 2	5 3	32 25	131 11			0.577	0.020	0.166	6	1	1.6E-03	1.8E-08	0.001				
SD	2008	CI1	1.00	1.40	U.G L(FL)	19	22		18.32						27 ′	9	8	1.0 13	3	1 45	5 1	1 5	5 35		22.15		0.510	0.080	0.120				2.2E-10					
SE	2008	CI1	3.00	3.60	U.G L(FL)	14	21		18.44						30 2	20	10	1.6 16	2	3 44	1 17	7 1	15 29		239.5		0.474	0.027	0.166	11	8	1.1E-02	6.6E-10	0.006				
SE	2008	CI2	5.50	6.10	U.G L(FL)	19	19		15.9						37 2	22	15	1.2 11	1	9 49	9 2	1 3	35 28		155										·			

Strada c	ollega	mento S	SR73 -	Racco	ordo A1, A	rezzo-Ba	ttifolle																										
Sondaggio	Anno	Campioni		ondità pioni	Unità	Contenuto di acqua	Peso di volume naturale	Peso di volume dei grani	Peso di volume secco	Peso di volume immerso	Peso di volume saturo	Indice dei vuoti	Porosità	Grado di saturazione		Limiti di	Atterbe	rg		Granulo	metria		Tag diret		TX-CD	ELL			F	Prova ed	ometric	a	
			Z _{in}	Z _{fin}		Wn	γ_{n}	γ _s	γ_{d}	γ'	γ_{sat}	е	n	Sr	W_L	W _P V	/ _R IP	lc	Ghiaia	Sabbia	Limo	Argilla	c'	φ'	c' c	þ' c _u	e_0	C_{r}	C _C	М	OCR	C _v	K _{ED}
			(m)	(m)		(%)	(kN/m³)	(kN/m³)	(kN/m³)	(kN/m ³)	(kN/m³)	(-)	(-)	(%)	(%)	(%) (%	6) (%)	(%)	(%)	(%)	(%)	(%)	(kPa)	(°) (kPa) (°) (kPa)	(-)	(-)		(MPa)	(-)	(cm ² /s)	(m/s)
CS04	2021	Sh3	25.00	25.50	AC	15.2	21.68	29.49	18.82	11.87	21.68	0.41	0.291	100	34		_		+	17	26	7	0	34	,itt u) () (iti u)	()	()	()	(ivii u)	()	(01173)	(111,10)
CS06	2021	1	10.00	10.50	U.G L(AT)	26.9	19.91	26.01	15.69	10.09	19.62	0.661	0.398	108	36		-	-	- 50	36	43	21	0	32		13			\vdash			 	\vdash
CS07	2021	I2	10.50	11.00	U.G L(AT)	30.5	18.85	26.38	14.44	9.03	18.93	0.83	0.454	99	44	_	_	+		2	68	30	14	29		36	+		╁			 	
CS08	2021	11	3.00	3.50	U.G L(AT)	16.6	20.7	26.09	17.75	10.89	20.9	0.47	0.321	94	44	20		+	9	32	41	18	17	23		126	0.474	0.043	0.163	17	5	1 335 02	1.05E-09
CS04	2021	Sh1	7.50	8.00	U.G S(AT)	17.2	20.27	26.96	17.73	10.46	20.9	0.504	0.335	90	ND		_	1.1	9	92	5	3	0	25		120	0.474	0.043	0.103	17	3	1.33L-02	1.03L-09
CS05	2021	1	3.00	3.50	U.G S(AT)	5.9	16.8	25.82	15.86	6.99	19.62	0.63	0.333	25	ND	NC I			3	88	6	3	0	46					\vdash			<u> </u>	
CS05	2021	I2	8.00	8.50	U.G S(AT)	20	19.28	25.02	16.09	9.47	19.82	0.62	0.370	86					3	71	18	11	0	40			0.506	0.024	0.113	5	2	<u> </u>	
CS05bis	2021	Sh2	9.00	9.50	U.G S(AT)	16.3	19.14	26.3	16.46	9.33	20.11	0.601	0.375	73						68	23	9	0	22			0.590	0.024	0.113	J		<u> </u>	
	_	Sh1			, ,	5.6	16.14	25.9				0.001	0.373	21		-	-	+	1	+		5	0	20		+	+		\vdash			 	
CS05bis	2021	J11	3.50	4.00 6.50	U.G S(AT)				15.29 17.31	6.33 10.47	19.33					-	-	+	+ '-	82 79	12 15	6	0	29		+	0.522	0.024	0.116	10	2	 	
CS07	+ +	• •	6.00		U.G S(AT)	17.2	20.29	26.15	17.31	10.47	20.6	0.51	0.339	89				-	62.1				U	33		-	0.522	0.031	0.116	10		 	1
S5-06	2006	C1	4.00	4.50	U.G S(AT)														63.1	33.5	3.4	0										 	
S5-06	2006	C3	11.70	12.00	U.G S(AT)														4.4	74.9	25.1	0				-			 			 	-
S5-06	2006	C2	8.40	8.80	U.G S(AT)														1.1	78.5	17	3							 '			 	
S6-06	2006	C1	6.00	6.30	U.G S(AT)														25.1	66.2	8.7	0										 	
S8-06	2006	C2	9.60	9.90	U.G S(AT)													-	05.5	46.7	49.8	4					+					 	
S8-06	2006	C1	3.00	4.00	U.G S(AT)	00.7	10.70	22.27	14.00	0.0	40.04	0.045	0.450		0.5	50 4	4 05	4.0	35.5	36.2	21.9	7					0.000	0.070	0.000			0.045.04	0.075.44
CS01	2021	1	4.40	4.90	U.G A(FL)	30.7	18.72	26.37	14.32	8.9	18.84	0.845	0.458	98	85	50 1	1 35	1.6	2	2	28	68				64	0.860	1			5		
S1-06	2006	Sh1	7.00	7.60	U.G A(FL)	32	19.10		14.50											0	33	67	9	22	51 1	8	0.870	0.047	0.302	5	2	5.30E-04	5.50E-09
S8-06	2006	C4	17.50	18.00	U.G G(FL)												_		44.2	24.7	24.4	7	_			-			<u> </u>			 '	<u> </u>
CS01	2021	13	18.30	18.80	U.G G(FL)	22.4	20.68	26.13	16.9	10.87	20.4	0.55	0.355	109	ND				0	70	21	9	0	27		-			<u> </u>			 '	<u> </u>
CS04	2021	Sh2	15.00	15.50	U.G G(FL)	17.3	20.74	26.06	17.68	10.93	20.9	0.476	0.322	97	ND	NC N	D		16	67	14	3	0	35		-			<u> </u>			 '	1
CS05bis	2021	Sh3	16.00	16.50	U.G G(FL)	15.3	20.87	26.6	18.1	11.06	21.29	0.47	0.321	55						79	15	6	0	32			0.596		0.130		2	<u> </u>	
CS06	2021	2	15.00		U.G G(FL)	24.9	19.88	26.22	15.92	10.07	19.82	0.651	0.394	102						62	27	11	0	35			0.640	0.055	0.206	5	1	<u> </u>	
CS07	2021	13	15.50	16.00	U.G G(FL)	11.4	21.41	26.36	19.22	11.59	21.88	0.37	0.272	82				-	40	36	20	4							<u> </u>			<u> </u>	
CS09	2021	5	31.50	32.00	U.G G(FL)	20.3	20.45	26.26	17	10.64	20.5	0.547	0.354	100		21		_	1	18	45	36					0.533				1	2.39E-04	
CS09	2021	4	26.50		U.G G(FL)	22.4	19.08	26.25	15.59	9.27	19.62	0.687	0.407	87	24	19 :	2 5	0.3		54	30	16				12	0.734	0.072	0.253	7	1	7.99E-03	1.93E-09
S1-06	2006	C4	23.60	24.00	U.G G(FL)														43.5	26.8	22.5	7							<u> </u>			<u> </u>	
S2-06	2006	C2	22.70		U.G G(FL)														55.1	24.8	16.6	4				-			<u> </u>			<u> </u>	1
S5-06	2006	C4	15.50		U.G G(FL)														19.6		21.1	3							<u> </u>			<u> </u>	
S6-06	2006	C3	17.60		U.G G(FL)														53.9	29.1	13.2								<u> </u>			<u> </u>	
S6-06	2006	C5	29.30		U.G G(FL)														34.8		32.3								<u> </u>			<u> </u>	
CS05	2022	I3	16.00		U.G G(FL)		20.87	26.60	18.01	11.06	21.29	0.473	0.321	88				4		79	15	6		32			_		<u> </u>			 '	
CS09	2021	1	4.00		U.G S(FL)	21.3	16.14	26.03	13.31	6.33	18.15	0.96	0.49	59	30	19 :	2 11	0.8		52	30	18	0	31		44	0.660	0.038	0.239	3	4	6.59E-03	2.03E-09
S1-06	2006	C2	9.30	9.60	U.G S(FL)															72	28	0							<u> </u>			<u> </u>	
S2-06	2006	C1	5.50	5.80	U.G S(FL)														2.8	72.5	24.7	0				-			<u> </u>			<u> </u>	
S3-06	2006	C1	7.30	7.60	U.G S(FL)														29.8	1	12.4	3							<u> </u>			<u> </u>	
S7-06	2006	C1	5.30		U.G S(FL)											-			<u> </u>	71.4	23	6							<u> </u>		_		
CS01	2021	2	13.70		U.G L(FL)	27	20.32	26.33	16	10.51	19.82	0.648	0.393	112		28 1	_	_	-	8	44	48		33	_		_	_	0.219		3		8.23E-11
CS02	2021	1	4.00	4.40	U.G L(FL)	18.2	20.33	26.69	17.2	10.52	20.7	0.56	0.357	89	41		3 20	_	_	37	26	32		29	_				0.156		l —	7.11E-04	
CS02	2021	2	12.00		U.G L(FL)	24.8	20.05	25.9	16.07	10.24	19.82	0.62	0.381	107	32				_	46	37	17	0	33			0.652	0.066	0.149	1	2	1.11E-03	6.83E-10
CS02	2021	3	17.00		U.G L(FL)	25.2	19.72	26.65	15.75	9.91	19.82	0.7	0.41	99	30	8		_	_	38	43	16		$oldsymbol{oldsymbol{oldsymbol{eta}}}$		36		ļ	 '		<u> </u>	 '	
CS03	2021	1	4.50		U.G L(FL)	20.9	19.7	26.07	16.3	9.89	20.01	0.6	0.376	92	37	18	10	_		22	39	22	0	28				ļ			<u> </u>	 '	
CS03	2021	2	9.00	9.50	U.G L(FL)	67.9	14.03	25.19	8.36	4.22	14.91	2.02	0.699	86	94				_	19	47	25		$\sqcup \!\!\! \perp$					└			 '	
CS03	2021	3	16.00		U.G L(FL)	23.8	20.35	26.49	16.44	10.54	20.21	0.614	0.38	105	28				_	42	39	19		$\vdash \vdash$	_	24	4	1	<u> </u>			<u> </u>	
CS08	2021	2	11.00		U.G L(FL)	29.6	19.23	26.1	14.84	9.42	19.03	0.76	0.433	103	51		2 27		-	4	50	46	0	21			_	_	0.299		2	7.07E-04	
CS08	2021	3	17.00		U.G L(FL)	23	20.16	26.25	16.39	10.34	20.11	0.605	0.377	102	40		3 19		_	10	53	29		$\sqcup \!\!\! \perp$		24			0.223		1		1.40E-10
CS09	2021	2	9.60		U.G L(FL)	22.2	20.16	26.37	16.5	10.32	20.21	0.601	0.375	99	36					21	53	26		$\sqcup \!\!\! \perp$				_	0.193		1	-	4.27E-09
CS09	2021	3	16.50		U.G L(FL)	24.6	19.65	26.31	15.77	9.84	19.72	0.671	0.402	99	38	23	3 15	0.9		9	64	27	0	29			0.669	0.038	0.223	5	1	8.21E-04	3.60E-10
S1-06	2006	C3	17.00		U.G L(FL)				ļ		ļ				\sqcup		\perp			.	73	26		$\sqcup \!\!\! \perp$					└			 '	igsquare
S1-06	2006	Sh2	13.00	13.60	U.G L(FL)	21.2	2.07		17.10						41	27 1	5 14	1.37			74.7	25	32	25	131 1	1	0.577	0.020	0.166	6	1	1.56E-03	1.82E-08

Strada collegamento SR73 - Raccordo A1, Arezzo-Battifolle

Sondaggio	Anno	Campioni	Profo cam		Unità	Contenuto di acqua	Peso di volume naturale	Peso di volume dei grani	Peso di volume secco	Peso di volume immerso	Peso di volume saturo	Indice dei vuoti	Porosità	Grado di saturazione		Limiti	di Atte	rberg			Granulo	metria		Tagli dirett		TX-CD	ELL			F	Prova ed	lometric	a	
		·	Z _{in}	Z _{fin}		Wn	γ _n	Υs	γ_{d}	γ'	γ_{sat}	е	n	Sr	W_{L}	W _P	W_R	IP	lc	Ghiaia	Sabbia	Limo	Argilla	c'	φ'	с' ф	' C _u	e ₀	C _r	Сс	М	OCR	C _v	K _{ED}
			(m)	(m)		(%)	(kN/m³)	(kN/m³)	(kN/m ³)	(kN/m ³)	(kN/m ³)	(-)	(-)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(kPa)	(°) (I	(Pa) (°) (kPa)	(-)	(-)	(-)	(MPa)	(-)	(cm ² /s)	(m/s)
S2-06	2006	Sh1	11.20	11.80	U.G L(FL)	26.2	19.90															64	36	34	23		120	0.713	0.027	0.163	7	1	6.52E-04	
S2-06	2006	Sh2	15.30	16.00	U.G L(FL)	24.5	20.20		16.20						40	24	17	16 (0.94			71.9	28	7	28	60 2 ⁻	1	0.665	0.047	0.130	7	1	1.72E-03	
S3-06	2006	Sh1	3.00	3.60	U.G L(FL)	24.6	20.00		16.00													68.7	31	36	21	40 20	158	0.690	0.017	0.173	8	5	4.21E-04	
S3-06	2006	Sh2	12.40	13.00	U.G L(FL)	18.5	21.00		17.00												5.4	81.1	14	22	30	46 24	1							
S3-06	2006	Sh3	15.40	16.00	U.G L(FL)	23.9	20.30		16.40						31	23	17	8 (0.88			73.5	27	12	25			0.690	0.056	0.153	7	0	1.28E-03	
S6-06	2006	C2	13.00	13.40	U.G L(FL)																31.3	59.1	10											
S7-06	2006	C2	14.60	15.00	U.G L(FL)															13.9	20	45.8	20											
S7-06	2006	Sh1	3.00	3.60	U.G L(FL)	17.3	21.10		18.00												38.5	38.6	23	19	24	28 22	2	0.504	0.013	0.156	5	2	5.13E-04	
S7-06	2006	Sh2	10.00	10.60	U.G L(FL)	24.7	20.20		16.20						52	18	17	34 (0.78			64.3	36	31	22	10 2	7 220	0.666	0.007	0.149	6	2	9.48E-04	

Strada di collegamento E79-SR71

Sondaggio	Anno	Campioni	Profo		Unità	Contenuto di acqua	volume	Peso di volume dei grani	Peso di volume secco	Peso di volume immerso	Peso di volume saturo	VIIOTI	Porosità	Grado di saturazione		Limit	i di Att	erber	g		Granulo	metria		Tagli dirett (CD	0	ELL			<u>Pro</u>	va edor	metrica		
Soridaggio	Aiiio	Campioni	z _{in}	z_{fin}	Offica	Wn	γ _n	γ_{s}	γ_{d}	γ'	γ_{sat}	е	n	Sr	W_{L}	W _F	W _R	IP	lc	Ghiaia	Sabbia	Limo	Argilla	c'	φ'	C _u	e_0	C _r	Сс	М	OCR	C _v	K _{ED}
			(m)	(m)		(%)	(kN/m ³)	(kN/m ³)	(kN/m ³)	(kN/m ³)	(kN/m ³)	(-)	(-)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(kPa)	[°] (kPa)	(-)	(-)	(-)	(MPa)	(-)	(cm ² /s)	(m/s)
DS01	2021	I1	9.00	9.50	U.G L(FL)	19.9	20.56	26.45	17.14	10.74	20.6	0.546	0.353	98	37	16	7	21	0.8	0	15	57	28	0	31								
DS02	2021	13	14.00	14.50	U.G L(FL)	17.8	20.83	26.07	17.69	11.02	20.9	0.477	0.323	99	40	18	4	22	1.0	4	24	43	29			97	0.527	0.040	0.163	7	2	3.9E-03	2.0E-10
DS02	2021	I1	4.50	5.00	U.G L(CA)	20.5	20.44	25.96	16.97	10.63	20.4	0.533	0.348	102	30	10	8	20	0.5	0	16	59	25	5	28								
DS02	2021	12	9.00	9.50	U.G L(CA)	20.2	20.11	26.01	16.73	10.3	20.21	0.557	0.358	96	35	15	5	20	0.7	0	17	53	30	0	31								
DS02	2021	14	18.50	19.00	U.G L(CA)	26.1	20	25.78	15.86	10.19	19.62	0.634	0.388	109	57	28	11	29	1.1	0	6	70	24	8	25								
DS03	2021	I1	4.50	5.00	U.G L(CA)	17.2	20.19	26.21	17.22	10.37	20.6	0.525	0.344	88	35	13	3	22	0.8	11	25	25	19	0	34		0.509	0.027	0.162	5	5		

Laboratorio rocce, geomeccanica

Laborate		, 9												
SONDAGGIO	Anno	CAMPIONI		ondità pioni	Unità	T	K-CU	Ϋ́s	Υd	Determinaz S e			essione ssiale	PLT
			z _{in}	Z _{fin}		c' (TX-CU)	ф' (TX-CU)			V _{P media}	V _{S media}	n	σ_{c}	σ_{c}
			(m)	(m)		(kPa)	(°)	(kN/m³)	(kN/m ³)	(m/s)	(m/s)	(MPa)	(MPa)	(MPa)
SI-08	2008	Cl1	2.40	2.65	U.G AC				26	1941	750	0.23	39.4	29.2
SI-08	2008	CI2	7.65	8.00	U.G AC			27	27					29.8
SI-08	2008	Cl3	12.75	13.00	U.G AC				26					28.7
SK-08	2008	Cl1	7.65	8.00	U.G AC	15	82		26	3981	1648	0.32	4.2	17.4
SK-08	2008	Cl2	13.00	13.35	U.G AC	21	87	26	26			0.34	4.1	14.6
SD-08	2008	Cl1	10.80	11.00	U.G AC				26	2513	1274	0.21	23.3	26.6
SD-08	2008	CI2	18.50	18.75	U.G AC	35	87							32.1
SD-08	2008	Cl3	21.50	21.80	U.G AC				26	2945	1039	0.36	35.6	40.1