

COMUNE DI MATERA

REGIONE BASILICATA

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DELL'ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO DISTINTO AL N.C.T. AI FG. N. 39 - 40

IMPIANTO AGROVOLTAICO

ELABORATO:

DISCIPLINARE DESCRITTIVO E PRESTAZIONALE **DEGLI ELEMENTI TECNICI**

IDENTIFICAZIONE ELABORATO											
Livello Prog.	Codice Rintracciabilità		Tipo Doc.	Sez. Elaborato	N° Foglio	Tot. Fogli	N°	[°] Elaborato	DATA	SCALA	
PD	2019	00118	RT	07	1	18	07.03	3_D.D.P.	10/2021	-:-	
REVISIONI											
REV	DATA			DESCRIZION	ΝE			ESEGUITO	VERIFICATO	APPROVATO	
01	[]		[]						N/A	N/A	

PROGETTAZIONE

Dott. Ing. Vito Caliò Amministratore Unico

70017 Putignano (BA) M.: +39 328 4819015 E.: v.calio@maya-eng.com PEC: vito.calio@ingpec.eu

4. Via San Girolamo

MAYA ENGINEERING SRLS

MAYA ENGINEERING SRLS 4, Via San Girolamo 70017 Putignano (BA) C.E./P.IVA 08365980724 mo Oalio

(TIMBRO E FIRMA)

TECNICO SPECIALISTA

Dott. Ing. Vito Caliò 4. Via San Girolamo 70017 Putignano (BA) M.: + 39 328 4819015 E.: v.calio@maya-eng.com

SPAZIO RISERVATO AGLI ENTI

RICHIEDENTE

ALPHA ENERGIE S.R.L.

C.F./P.IVA 01907670762 STRADA STATALE 94, n.13 85055 Picerno (PZ)

(TIMBRO E FIRMA PER BENESTARE)

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DELL'ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO DISTINTO AL N.C.T. AI FG. N. 39 - 40 - IMPIANTO AGROVOLTAICO

SOMMARIO

1	PRE	MESSA	1
2	INV	ERTER	1
3	PAN	INELLI FOTOVOLTAICI	2
4	SPE	CIFICHE TECNICHE OPERE STRUTTURALI	3
	4.1	Allestimento cantiere	3
	4.2	Scavi e movimenti terra	3
	4.3	Recinzione	3
	4.3.	1 Cancelli di accesso	4
	4.4	Strutture di sostegno dei moduli fotovoltaici	5
	4.5	Cabine elettriche	6
5	COL	LAUDO E SPECIFICHE PRESTAZIONALI D'IMPIANTO	7
	5.1	Collaudo	7
	5.1.	1 Valutazione delle prestazioni	7
	5.1.2	2 Misure dell'irraggiamento solare e della temperatura di lavoro dei moduli	8
6	RIF	ERIMENTI LEGISLATIVI E NORMATIVI	9
	6.1	Leggi e decreti	9
	6.2	Eurocodici	9
	6.3	Altri documenti	9
	6.4	Legislazione e normativa nazionale in ambito civile e strutturale	9
	6.5	Legislazione e normativa nazionale in ambito elettrico	10
	6.6	Sicurezza elettrica	10
	6.7	Parte fotovoltaica	11
	6.8	Quadri elettrici	12
	6.9	Rete elettrica del distributore e allacciamento degli impianti	12
	6.10	Cavi, cavidotti e accessori	13
	6.11	Conversione della potenza	14
	6.12	Scariche atmosferiche e sovratensioni	14
	6.13	Dispositivi di potenza	14
	6.14	Compatibilità elettromagnetica	15
	6.15	Energia solare	15
	6.16	Sistemi di misura dell'energia elettrica	15

07.03_D.D.P.	0	Disciplinare descrittivo e prestazione	10/2021	1	17
Documento	REV	Descrizione	Data	Pag.	Tot.

1 PREMESSA

Il proponente dell'iniziativa ha intenzione di realizzare un impianto di produzione dell'energia elettrica da fonte fotovoltaica avente potenza in immissione pari a 14,993 MW (AC) e potenza moduli pari a 15,014 MWP (DC) con relativo collegamento alla rete elettrica - Impianto AEPV_03B ubicato in agro del comune di Matera. 0Di seguito si riportano tutti gli elementi necessari alla completa definizione del Progetto.

2 INVERTER

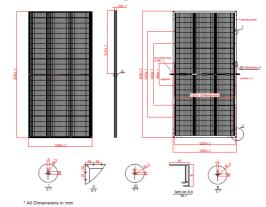
SUN2000-185KTL-H1

	Efficiency
Max. Efficiency	99.03%
European Efficiency	98.69%
	Input
Max. Input Voltage	1,500 V
Max. Current per MPPT	26 A
Max. Short Circuit Current per MPPT	40 A
Start Voltage	550 V
MPPT Operating Voltage Range	500 V ~ 1,500 V
Nominal Input Voltage	1,080 V
Number of Inputs	18
Number of MPP Trackers	9
	Output
Nominal AC Active Power	175,000 W @40°C
Max. AC Apparent Power	185,000 VA
Nominal Output Voltage	800 V, 3W + PE
Rated AC Grid Frequency	50 Hz / 60 Hz
Nominal Output Current	126.3 A @40°C
Max. Output Current	134.9 A
Adjustable Power Factor Range	0.8 LG 0.8 LD
Max. Total Harmonic Distortion	< 3%
	Protection
Input-side Disconnection Device	Yes
Anti-islanding Protection	Yes
AC Overcurrent Protection	Yes
DC Reverse-polarity Protection	Yes
PV-array String Fault Monitoring	Yes
DC Surge Arrester	Type II
AC Surge Arrester	Type II
DC Insulation Resistance Detection	Yes
Residual Current Monitoring Unit	Yes
Residual Current Worldoning Offic	Communication
Display	LED Indicators, Bluetooth/WLAN + APP
USB	Yes
MBUS	Yes
RS485	Yes
R5485	
B	General 467 270 447
Dimensions (W x H x D)	1,035 x 700 x 365 mm (40.7 x 27.6 x 14.4 inch)
Weight (with mounting plate)	84 kg (185.2 lb.)
Operating Temperature Range	-25°C ~ 60°C (-13°F ~ 140°F)
Cooling Method	Smart Air Cooling
Max. Operating Altitude without Derating	4,000 m (13,123 ft.)
Relative Humidity	0 ~ 100%
DC Connector	Staubli MC4 EVO2
AC Connector	Waterproof Connector + OT/DT Terminal
Protection Degree	IP66
Topology	Transformerless
Standard	d Compliance (more available upon request)
Certificates	EN 62109-1/-2, IEC 62109-1/-2, EN 50530, IEC 62116, IEC 60068, IEC 61683, IEC 6172 IEC 62910, P.O. 12.3, RD 1699, RD 661, RD 413, RD 1565, RD 1663, ABNT NBR 1614! ABNT NBR 16150, ABNT NBR IEC 62116

07.03_D.D.P.	0	Disciplinare descrittivo e prestazione	10/2021	2	17
Documento	REV	Descrizione	Data	Pag.	Tot.

3 PANNELLI FOTOVOLTAICI

SHIFTING • THE FUTURE www.seraphim-energy.com


Mechanical Specifications

External Dimension	2596x1303x30mm					
Weight	42kg					
Solar Cells	PERC Mono crystalline(144pcs)					
Front / Back Glass	2.0mm AR coating semi-tempered glass, low iron					
Frame	Anodized aluminium alloy					
Junction Box	IP68, 3 diodes					
Output Cables	4.0mm², 250mm(+)/350mm(-) or Customized Length					

Packing Configuration

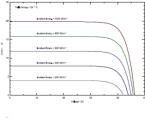
Container	20'GP	40'HQ
Pieces per Pallet	32	32
Pallets per Container	4	9
Pieces per Container	128	288

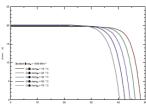
Technical drawing

Electrical Characteristics

Module Type	SRP-655	-BMA-BG	SRP-660	-BMA-BG	SRP-665	-BMA-BG	SRP-670	-BMA-BG	SRP-675	-BMA-BG	SRP-680	-BMA-BG
STC	Front	Back	Front	Back	Front	Back	Front	Back	Front	Back	Front	Back
Maximum Power -P _{mp} (W)	655	491	660	495	665	499	670	503	675	506	680	510
Open Circuit Voltage -V _∞ (V)	43.7	43.4	43.9	43.6	44.1	43.8	44.3	44.0	44.5	44.2	44.7	44.4
Short Circuit Current -I _{sc} (A)	19.09	14.32	19.14	14.36	19.19	14.40	19.24	14.44	19.29	14.48	19.34	14.52
Maximum Power Voltage -V _{mp} (V)	36.62	36.59	36.82	36.81	37.01	37.02	37.21	37.24	37.40	37.38	37.59	37.59
Maximum Power Current -I _{mp} (A)	17.89	13.42	17.93	13.45	17.97	13.48	18.01	13.51	18.05	13.54	18.09	13.57
Module Efficiency STC-η _m (%)	19	36	19.51		19.66		19.81		19.96		20.10	
Power Tolerance (W)					,	(0, +3%)						
Pmax Temperature Coefficient					-0.35 %/°C							
Voc Temperature Coefficient			-0.27 %/°C									
Isc Temperature Coefficient						+0.05	%/°C					

STC: Irradiance 1000 W/m² module temperature 25°C AM=1.5; Power measurement tolerance: +/-3%


Rear Side Power Gain(SRP-670-BMA-BG)


Power Gain	10%	15%	20%	25%	30%
Maximum Power -P _{mp} (W)	737	771	804	838	871
Open Circuit Voltage -V _∞ (V)	44.3	44.3	44.3	44.3	44.3
Short Circuit Current -I _{sc} (A)	21.16	22.13	23.15	24.11	25.10
Maximum Power Voltage -V _{mp} (V)	37.21	37.21	37.21	37.21	37.21
Maximum Power Current -I _{mp} (A)	19.81	20.71	21.61	22.51	23.41

Application Conditions

Maximum System Voltage	1500V DC		
Maximum Series Fuse Rating	25A		
Operating Temperature	-40~+85 °C		
Nominal Operating Cell Temperature	45±2 °C		
Bifaciality	70%±10%		
Mechanical Load	Front side 5400 Pa / Back side 2400 Pa		

I-V Curve

Data-sheet di modulo fotovoltaico di progetto

07.03_D.D.P.	0	Disciplinare descrittivo e prestazione	10/2021	3	17
Documento	REV	Descrizione	Data	Pag.	Tot.

4 SPECIFICHE TECNICHE OPERE STRUTTURALI

4.1 Allestimento cantiere

Le aree destinate ai baraccamenti e al deposito dei materiali saranno opportunamente recintate sia per evitare intrusioni sia per limitare i rischi per la sicurezza. L'altezza della recinzione dovrà essere di almeno 2 m.

Per il trasporto dei materiali e delle attrezzature (sia all'interno del Deposito sia fino alle distinte sezioni dell'Impianto) si prevede l'utilizzo di mezzi tipo furgoni e cassonetti: si precisa che, compatibilmente con quanto previsto dal cronoprogramma di costruzione che verrà elaborato dall'Appaltatore in fase di progettazione esecutiva, nell'area preposta per il deposito verrà stoccata una quantità di materiale strettamente necessaria alla lavorazione giornaliera prevista.

A servizio degli addetti alle lavorazioni saranno previsti idonei baraccamenti, da dimensionare e attrezzare tenendo conto del numero massimo di lavoratori contemporaneamente presenti in cantiere.

In aggiunta, in funzione dei picchi di presenza in cantiere di lavoratori, potrebbero essere predisposti dei wc chimici.

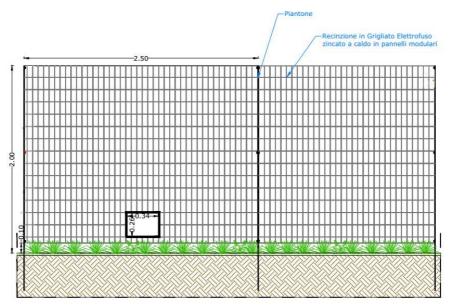
4.2 Scavi e movimenti terra

Le attività previste in merito agli scavi e alla movimentazione delle terre si possono riassumere nelle seguenti voci:

- Realizzazione scavi per fondazioni delle cabine: la fondazione dei cabinati sarà del tipo a platea in calcestruzzo armato su fondo di magrone. La fondazione, da realizzarsi con getto in opera dellaplatea e successiva posa della vasca prefabbricata, sarà parzialmente interrata e la sua esecuzione in opera prevede la rimozione dello strato superficiale di terreno vegetale per garantire una maggiore stabilità dell'opera.
- Realizzazione scavi per fondazioni dei cancelli di accesso e recinzione: la fondazione
 dei cancelli di accesso sarà realizzata a mezzo di getto in opera su fondo di magrone, ad
 idonea profondità di scavo. La recinzione sarà sostenuta da montanti infissi direttamente
 nel terreno.
- Realizzazione cavidotti interrati: i cavidotti interrati richiederanno la realizzazione di scavi a sezione rettangolare in funzione della tipologia di cavi previsti (BT e/o MT + segnale). Le trincee verranno immediatamente richiuse successivamente alla posa dei tubi passacavi o dei cavi, ove interrati direttamente, con il materiale di risulta e ricompattate.

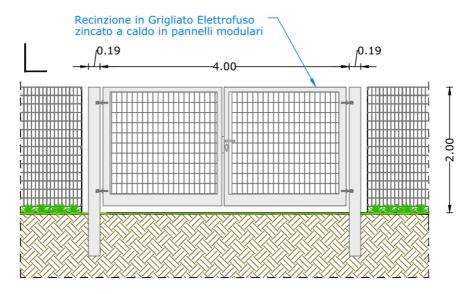
Tutto il materiale derivante dagli scavi verrà gestito in accordo alla normativa vigente (D.P.R. 120/17 e D.Lgs. 152/06).

4.3 Recinzione


A delimitazione delle aree di installazione è prevista la realizzazione di una recinzione perimetrale costituita da rete metallica a pali infissi nel terreno.

La recinzione sarà costituita da pannelli rigidi in rete elettrosaldata (di altezza pari a 2 m) costituita da tondini in acciaio zincato e nervature orizzontali di supporto. Gli elementi della recinzione avranno verniciatura con resine poliestere di colore verde muschio.

07.03_D.D.P.	0	Disciplinare descrittivo e prestazione	10/2021	4	17
Documento	REV	Descrizione	Data	Pag.	Tot.



Particolare recinzione

4.3.1 Cancelli di accesso

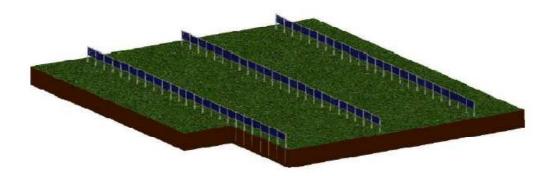
È prevista l'installazione di cancelli carrabili e pedonali in funzione delle varie aree identificate dal progetto e dell'effettiva fruizione delle diverse aree d'impianto. Per quanto riguarda la parte carrabile, il cancello prevedrà un'anta con sezione di passaggio pari ad almeno 4 m di larghezza e 2 m di altezza scorrevole. L'accesso pedonale prevedrà una sola anta di larghezza minima di almeno 0,8 m e altezza 2m. I montanti saranno realizzati con profilati metallici a sezione quadrata almeno 175 x 175 mm e dovranno essere marcati CE. Il tamponamento sarà conforme alla tipologia di recinzione utilizzata e la serratura sarà di tipo manuale. Il materiale dovrà essere acciaio rifinito mediante zincatura a caldo.

Particolare cancello di ingresso

07.03_D.D.P.	0	Disciplinare descrittivo e prestazione	10/2021	5	17
Documento	REV	Descrizione	Data	Pag.	Tot.

4.4 Strutture di sostegno dei moduli fotovoltaici

Le innumerevoli applicazioni del fotovoltaico fanno sì che le strutture di supporto e sostegno dei moduli siano, per geometria e concezione, personalizzate per ogni singolo progetto. Qualunque sia la struttura di sostegno prescelta, quest'ultima deve essere in grado di reggere il proprio peso nonché di resistere alle sollecitazioni esercitate da fattori esterni quali:


- la neve, per esempio, può comportare sollecitazioni di carico dovute all'accumulo sulla superficie dei moduli, anche se ne caso specifico essendo le strutture ortogonali alla terreno, non permettono accumulo di neve, se non per quella caduta a vento;
- la pressione dovuta all'azione del vento agente sul piano dei moduli che si traduce in quel fenomeno chiamato "effetto vela".

Da non sottovalutare per esempio, nella scelta dei materiali, è anche l'eventualità della presenza di azioni corrosive sulle parti metalliche della struttura che ne pregiudicherebbero la stabilità nel tempo.

Le Norme Tecniche per le Costruzioni (NTC) di cui al decreto del Ministero delle infrastrutture e dei trasporti 17 gennaio 2018 e la CIRCOLARE 21 gennaio 2019, n. 7 C.S.LL.PP. Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018 stabiliscono i criteri per i carichi permanenti, carico d'esercizio, sovraccarico neve e azioni termiche.

Le strutture di sostegno prese in esame per il presente documento preliminare sono di nuova concezione, per Agrovoltaico. Tutti i componenti e le strutture saranno progettati in fase esecutiva per le condizioni ambientali specifiche dei siti in base alle normative locali e in base alle richieste tecniche inclusa l'ipotesi progettuale del carico del vento.

La caratteristica chiave del prodotto risiede nella semplicità concettuale e di realizzazione, per mezzo di semplici pali infissi e travetti di collegamento, la struttura modulare può essere replicata all'infinito.

Questa soluzione offre i seguenti vantaggi principali:

Completamente equilibrato e modulare, la struttura non richiede personale specializzato per l'installazione e il montaggio o lavori di manutenzione.

Considerando la classificazione dell'ambiente corrosivo e considerando una vita di progetto minima di 25 anni, i pali della fondazione saranno zincati a caldo secondo EN ISO 1461: 2009, altre parti saranno zincate a caldo o pregalvanizzate (Sendzmir) in base alle specifiche del progetto.

07.03_D.D.P.	0	Disciplinare descrittivo e prestazione	10/2021	6	17
Documento	REV	Descrizione	Data	Pag.	Tot.

Il palo è un profilo in acciaio omega per massimizzare la superficie di contatto con il terreno, la profondità dipende dal tipo di terreno. Una tipica flangia utilizzata per pilotare il montante con un autista che dovrebbe avere una guida per mantenere la direzione di inserimento entro le tolleranze minime.

In conformità con i vincoli ambientali più rigorosi, questa soluzione elimina la necessità di fondazioni in calcestruzzo, che riduce anche i tempi di costruzione.

Tutti i valori relativi alla resistenza al vento o al meccanismo di difesa devono essere considerati come valori minimi. I valori di impostazione effettivi saranno conformi alle Norme Tecniche per le Costruzioni (NTC 2018).

4.5 Cabine elettriche

Le cabine elettriche saranno del tipo prefabbricato in cemento armato vibrato o messe in opera con pannelli prefabbricati, comprensive di vasca di fondazione prefabbricata in c.a.v. o messe in opera in cemento ciclopico o cemento armato con maglie elettrosaldate, con porta di accesso e griglie di aereazione in vetroresina, impianto elettrico di illuminazione, copertura impermeabilizzata con guaina bituminosa e rete di messa a terra interna ed esterna

Il manufatto dovrà presentare una notevole rigidità strutturale ed una grande resistenza agli agenti esterni atmosferici che lo renderanno adatto all'uso anche in ambienti con atmosfera inquinata ed aggressiva.

L'armatura interna della cabina sarà totalmente collegata elettricamente, dovrà creare una vera gabbia di Faraday tale da proteggere tutto il sistema da sovratensioni atmosferiche limitando inoltre, a valori trascurabili, gli effetti delle tensioni di passo e di contatto.

L'armatura metallica sarà costituita da acciaio e rete elettrosaldata tipo Feb 44k c. (kg/cmq. > 2600).

07.03_D.D.P.	0	Disciplinare descrittivo e prestazione	10/2021	7	17
Documento	REV	Descrizione	Data	Pag.	Tot.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DELL'ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO DISTINTO AL N.C.T. AI FG. N. 39 - 40 - IMPIANTO AGROVOLTAICO

Le pareti esterne, dovranno essere trattate con un rivestimento murale plastico idrorepellente costituito da resine sintetiche pregiate, polvere di quarzo, ossidi coloranti ed additivi che garantiscono il perfetto ancoraggio sul manufatto, inalterabilità del colore e stabilità agli sbalzi di temperatura.

5 COLLAUDO E SPECIFICHE PRESTAZIONALI D'IMPIANTO

5.1 Collaudo

Ad installazione avvenuta, verranno effettuate delle prove di collaudo in accordo alla normativa vigente IEC/EN62446 e, nello specifico, si prevede quanto segue:

- Verifica di sicurezza: si esegue la misura di continuità dei conduttori di protezione e delle relative connessioni e la misura della resistenza di isolamento dei conduttori attivi di un modulo o di un intero campo fotovoltaico (IEC/EN62446), senza la necessità di utilizzare un interruttore esterno per porre in cortocircuito i terminali positivo e negativo.
- Verifica della funzionalità: è la verifica della funzionalità dei collegamenti e delle stringhe di un campo fotovoltaico (IEC/EN62446) misurando la tensione a vuoto e la corrente di cortocircuito alle condizioni operative e riferite alle condizioni standard ('STC'), fornendo esito immediato inerente la misura appena effettuata, sia in termini assoluti sia per comparazione con le stringhe precedentemente testate;
- <u>Verifica delle prestazioni:</u> si effettua l'analisi delle prestazioni del campo fotovoltaico nelle condizioni di esercizio, fornendo una indicazione della potenza generata e del rendimento del campo stesso secondo quanto indicato dalla normativa di riferimento.

La prova di collaudo di un impianto fotovoltaico rappresenta una delle attività più importanti nel percorso di realizzazione dell'opera, in quanto un'accurata ispezione permette di individuare piccoli difetti che le impegnative condizioni di esercizio farebbero sicuramente ingigantire con il trascorrere del tempo.

Per eseguire prove di collaudo verrà utilizzato uno strumento utile alla realizzazione dei controlli di efficienza in accordo alle prescrizioni della guida CEI 82-25 e per l'esecuzione di test sulle caratteristiche I–V nei moduli/stringhe fotovoltaici. In questo modo è possibile individuare e risolvere problemi legati ad eventuali bassi valori di efficienza degli impianti.

Il collaudo, inoltre, prevederà una verifica di funzionamento continuativo per un periodo tempo limitato (tipicamente 5-10 giorni) al termine del quale si verificheranno le prestazioni dell'Impianto.

5.1.1 Valutazione delle prestazioni

La verifica prestazionale dell'Impianto in fase di avvio verrà effettuata in termini di energia valutando l'indice di prestazione ('Performance Ratio' o 'PR'), corretto in temperatura).

Il PR evidenzia l'effetto complessivo delle perdite sull'energia generata in corrente alternata dall'impianto fotovoltaico, dovute allo sfruttamento incompleto della radiazione solare, al rendimento di conversione dell'inverter e alle inefficienze o guasti dei componenti (inclusi il disaccoppiamento fra le stringhe e gli eventuali ombreggiamenti sui moduli). In analogia a quanto indicato nella Norma CEI EN 61724, espresso come nell'equazione, si definisce il PR come segue:

07.03_D.D.P.	0	Disciplinare descrittivo e prestazione	10/2021	8	17
Documento	REV	Descrizione	Data	Pag.	Tot.

$$PR = \frac{Energia\ Misurata}{Energia\ Teorica}$$

e, più in dettaglio, come:

$$PR = \left(\frac{Energia\ Misurata\ [kWh] \times 1\left[{}^{kW}/_{m^2}\right]}{Irraggiamento\ Misurato\ \left[{}^{kWh}/_{m^2}\right] \times Potenza\ di\ Picco\ [kWp]}\right)$$

dove:

- Energia Misurata, è l'energia generata come misurata al contatore;
- Energia Teorica, è l'energia teoricamente generabile in condizioni ideali dall'impianto dato l'Irraggiamento Misurato e la Potenza di Picco installata;
- Irraggiamento Misurato, è l'irraggiamento effettivamente misurato sul piano dei moduli dai dispositivi di rilevamento dell'irraggiamento installati sull'Impianto. Il parametro verrà essere corretto in base alla reale temperatura misurata sui moduli.

5.1.2 Misure dell'irraggiamento solare e della temperatura di lavoro dei moduli

Ai fini della verifica del PR, la misura dell'irraggiamento solare sul piano dei moduli sarà effettuata in modo che il valore ottenuto risulti rappresentativo dell'irraggiamento sull'intero impianto o sulla sezione d'impianto in esame.

In questo caso, sarà opportuno misurare contemporaneamente l'irraggiamento con più sensori adeguatamente dislocati su tutta l'area di installazione (indicativamente uno ogni 20.000 m2) e assumere la media delle misurazioni attendibili come valore di riferimento.

La misura sarà effettuata con un sensore solare (o solarimetro) che può adottare differenti principi di funzionamento. A questo scopo, sono usualmente utilizzati il solarimetro a termopila (o piranometro) e il solarimetro ad effetto fotovoltaico (chiamato anche PV reference solar device, si veda la Norma CEI EN 60904-4). Il solarimetro sarà posizionato in condizioni di non ombreggiamento dagli ostacoli vicini.

La temperatura della cella fotovoltaica Tcel sarà determinata mediante uno dei seguenti metodi:

- misura diretta con un sensore a contatto (termoresistivo o a termocoppia) applicato sul retro del modulo;
- misura della tensione a vuoto del modulo e calcolo della corrispondente Tcel secondo la Norma CEI EN 60904-5;
- misura della temperatura ambiente Tamb e calcolo della corrispondente Tcel secondo la formula:

$$Tcel = Tamb + (NOCT - 20) * Gp / 800$$

La misura della temperatura della cella fotovoltaica Tce verrà effettuata con un sensore con incertezza tipo non superiore a 1°C.

07.03_D.D.P.	0	Disciplinare descrittivo e prestazione	10/2021	9	17
Documento	REV	Descrizione	Data	Pag.	Tot.

RIFERIMENTI LEGISLATIVI E NORMATIVI

La legislazione e normativa nazionale cui si è fatto riferimento nel Progetto è la seguente:

6.1 Leggi e decreti

- Direttiva Macchine 2006/42/CE
- "Norme Tecniche per le Costruzioni 2018" indicate dal DM del 17 gennaio 2018, pubblicate sulla Gazzetta Ufficiale il 20 febbraio 2018, in vigore dal 22 marzo 2018, con nota n. 3187 del Consiglio superiore dei Lavori pubblici (Csllpp) del 21 marzo 2018 e relative circolari applicative della norma.

Eurocodici 6.2

- UNI EN 1991 (serie) Eurocodice 1 Azioni sulle strutture;
- UNI EN 1994 (serie) Eurocodice 4 Progettazione delle strutture composte acciaiocalcestruzzo;
- UNI EN 1998 (serie) Eurocodice 8 Progettazione delle strutture per la resistenza sismica;
- UNI EN 1999 (serie) Eurocodice 9 Progettazione delle strutture di alluminio.

6.3 Altri documenti

Esistono inoltre documenti (e.g. istruzioni CNR) che non hanno valore di normativa, ma a cui i Decreti Ministeriali fanno espressamente riferimento:

- CNR 10022/84 Costruzioni di profilati di acciaio formati a freddo;
- CNR 10011/97 Costruzioni in acciaio. Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione;
- CNR 10024/86 Analisi mediante elaboratore: impostazione e redazione delle relazioni di
- CNR-DT 207/2008, "Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni".

Eventuali normative non elencate, se mandatarie per la progettazione del sistema possono essere referenziate. In caso di conflitto tra normative e leggi applicabili, il seguente ordine di priorità dovrà essere rispettato:

- Leggi e regolamenti Italiani;
- Leggi e regolamenti comunitari (EU);
- Documento in oggetto;
- Specifiche di società (ove applicabili);
- Normative internazionali.

Legislazione e normativa nazionale in ambito civile e strutturale

- Decreto Ministeriale Infrastrutture 17 gennaio 2018 "Norme Tecniche per le Costruzioni 2018";
- Legge 5.11.1971 N° 1086 (norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica);

07.03_D.D.P.	0	Disciplinare descrittivo e prestazione	10/2021	10	17
Documento	REV	Descrizione	Data	Pag.	Tot.

- CNR-UNI 10021- 85 (Strutture di acciaio per apparecchi di sollevamento. Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione);
- D.M. 15 luglio 2014 "Approvazione della regola tecnica di prevenzione incendi per la progettazione, l'installazione e l'esercizio delle macchine elettriche fisse con presenza di liquidi isolanti combustibili in quantità superiore ad 1 m3".

6.5 Legislazione e normativa nazionale in ambito elettrico

- D. Lgs. 9 aprile 2008 n. 81 e s.m.i.;
- (Attuazione dell'articolo 1 della Legge 3 agosto 2007, n. 123, in materia di tutela della saluta e della sicurezza nei luoghi di lavoro);
- CEI EN 50110-1 (Esercizio degli impianti elettrici);
- CEI 11-27 (Lavori su impianti elettrici);
- CEI 0-10 (Guida alla manutenzione degli impianti elettrici);
- CEI 82-25 (Guida alla realizzazione di sistemi di generazione fotovoltaica collegati alle reti elettriche di Media e Bassa Tensione);
- CEI 0-16 (Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti AT e MT delle imprese distributrici di energia elettrica);
- CEI UNI EN ISO/IEC 17025:2008 Requisiti generali per la competenza dei laboratori di prova e di taratura CEI 0-2 Guida per la definizione della documentazione di progetto degli impianti elettrici;
- CEI EN 60445 (CEI 16-2) Principi base e di sicurezza per l'interfaccia uomo-macchina, marcatura e identificazione – Identificazione dei morsetti degli apparecchi e delle estremità dei conduttori.

6.6 Sicurezza elettrica

- CEI 0-16 Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti AT ed MT delle imprese distributrici di energia elettrica;
- CEI 11-27 Lavori su impianti elettrici;
- CEI 64-8 Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e a 1500 V in corrente continua;
- CEI 64-8/7 (Sez.712) Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e a 1500 V in corrente continua - Parte 7: Ambienti ed applicazioni particolari;
- CEI 64-12 Guida per l'esecuzione dell'impianto di terra negli edifici per uso residenziale e terziario:
- CEI 64-14 Guida alla verifica degli impianti elettrici utilizzatori;
- IEC/TS 60479-1 Effects of current on human beings and livestock Part 1: General aspects;
- IEC 60364-7-712 Electrical installations of buildings Part 7-712: Requirements for special installations or locations Solar photovoltaic (PV) power supply systems;
- CEI EN 60529 (CEI 70-1) Gradi di protezione degli involucri (codice IP);

07.03_D.D.P.	0	Disciplinare descrittivo e prestazione	10/2021	11	17
Documento	REV	Descrizione	Data	Pag.	Tot.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DELL'ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO DISTINTO AL N.C.T. AI FG. N. 39 - 40 - IMPIANTO AGROVOLTAICO

- CEI 64-57 Edilizia ad uso residenziale e terziario Guida per l'integrazione degli impianti elettrici utilizzatori e per la predisposizione di impianti ausiliari, telefonici e di trasmissione dati negli edifici
 - Impianti di piccola produzione distribuita;
- CEI EN 61140 (CEI 0-13) Protezione contro i contatti elettrici Aspetti comuni per gli impianti e le apparecchiature;
- CEI EN 61936-1 (CEI 99-2): Impianti elettrici con tensione superiore a 1 kV in corrente alternata.

6.7 Parte fotovoltaica

- ANSI/UL 1703:2002 Flat-Plate Photovoltaic Modules and Panels;
- IEC/TS 61836 Solar photovoltaic energy systems Terms, definitions and symbols;
- CEI EN 50380 (CEI 82-22) Fogli informativi e dati di targa per moduli fotovoltaici;
- CEI EN 50438 (CEI 311-1) Prescrizioni per la connessione di micro-generatori in parallelo alle reti di distribuzione pubblica in bassa tensione;
- CEI EN 50461 (CEI 82-26) Celle solari Fogli informativi e dati di prodotto per celle solari al silicio cristallino:
- CEI EN 50521(82-31) Connettori per sistemi fotovoltaici Prescrizioni di sicurezza e prove;
- CEI EN 60891 (CEI 82-5) Caratteristiche I-V di dispositivi fotovoltaici in Silicio cristallino –
 Procedure di riporto dei valori misurati in funzione di temperatura e irraggiamento;
- CEI EN 60904-1 (CEI 82-1) Dispositivi fotovoltaici Parte 1: Misura delle caratteristiche fotovoltaiche corrente-tensione;
- CEI EN 60904-2 (CEI 82-2) Dispositivi fotovoltaici Parte 2: Prescrizione per i dispositivi solari di riferimento;
- CEI EN 60904-3 (CEI 82-3) Dispositivi fotovoltaici Parte 3: Principi di misura dei sistemi solari fotovoltaici (PV) per uso terrestre e irraggiamento spettrale di riferimento;
- CEI EN 60904-4 (82-32) Dispositivi fotovoltaici Parte 4: Dispositivi solari di riferimento -Procedura per stabilire la tracciabilità della taratura;
- CEI EN 60904-5 (82-10) Dispositivi fotovoltaici Parte 5: Determinazione della temperatura equivalente di cella (ETC) dei dispositivi solari fotovoltaici (PV) attraverso il metodo della tensione a circuito aperto;
- CEI EN 60904-7 (82-13) Dispositivi fotovoltaici Parte 7: Calcolo della correzione dell'errore di disadattamento fra le risposte spettrali nelle misure di dispositivi fotovoltaici;
- CEI EN 60904-8 (82-19) Dispositivi fotovoltaici Parte 8: Misura della risposta spettrale di un dispositivo fotovoltaico;
- CEI EN 60904-9 (82-29) Dispositivi fotovoltaici Parte 9: Requisiti prestazionali dei simulatori solari;
- CEI EN 60068-2-21 (91-40) 2006 Prove ambientali Parte 2-21: Prove Prova U: Robustezza dei terminali e dell'interconnessione dei componenti sulla scheda:
- CEI EN 61173 (CEI 82-4) Protezione contro le sovratensioni dei sistemi fotovoltaici (FV) per la produzione di energia – Guida;

07.03_D.D.P.	0	Disciplinare descrittivo e prestazione	10/2021	12	17
Documento	REV	Descrizione	Data	Pag.	Tot.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DELL'ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO DISTINTO AL N.C.T. AI FG. N. 39 - 40 - IMPIANTO AGROVOLTAICO

- CEI EN 61215 (CEI 82-8) Moduli fotovoltaici (FV) in Silicio cristallino per applicazioni terrestri – Qualifica del progetto e omologazione del tipo;
- CEI EN 61646 (CEI 82-12) Moduli fotovoltaici (FV) a film sottile per usi terrestri Qualifica del progetto e approvazione di tipo;
- CEI EN 61277 (CEI 82-17) Sistemi fotovoltaici (FV) di uso terrestre per la generazione di energia elettrica – Generalità e guida;
- CEI EN 61345 (CEI 82-14) Prova all'UV dei moduli fotovoltaici (FV);
- CEI EN 61683 (CEI 82-20) Sistemi fotovoltaici Condizionatori di potenza Procedura per misurare l'efficienza;
- CEI EN 61701 (CEI 82-18) Prova di corrosione da nebbia salina dei moduli fotovoltaici (FV);
- CEI EN 61724 (CEI 82-15) Rilievo delle prestazioni dei sistemi fotovoltaici Linee guida per la misura, lo scambio e l'analisi dei dati;
- CEI EN 61727 (CEI 82-9) Sistemi fotovoltaici (FV) Caratteristiche dell'interfaccia di raccordo alla rete;
- CEI EN 61730-1 (CEI 82-27) Qualificazione per la sicurezza dei moduli fotovoltaici (FV) Parte 1: Prescrizioni per la costruzione;
- CEI EN 61730-2 (CEI 82-28) Qualificazione per la sicurezza dei moduli fotovoltaici (FV) Parte 2: Prescrizioni per le prove;
- CEI EN 61829 (CEI 82-16) Schiere di moduli fotovoltaici (FV) in Silicio cristallino Misura sul campo delle caratteristiche I-V;
- CEI EN 62093 (CEI 82-24) Componenti di sistemi fotovoltaici moduli esclusi (BOS) -Qualifica di progetto in condizioni ambientali naturali;
- CEI EN 62108 (82-30) Moduli e sistemi fotovoltaici a concentrazione (CPV) Qualifica del progetto e approvazione di tipo

6.8 Quadri elettrici

- CEI EN 61439-1 (CEI 17-113) Apparecchiature assiemate di protezione e di manovra per bassa tensione (quadri BT). Parte 1: Regole Generali;
- CEI EN 61439-2 (CEI 17-114) Apparecchiature assiemate di protezione e di manovra per bassa tensione (quadri BT). Parte 2: Quadri di potenza;
- CEI EN 61439-3 (CEI 17-116) Apparecchiature assiemate di protezione e di manovra per bassa tensione (quadri BT). Parte 3: Quadri di distribuzione destinati ad essere utilizzati da persone comuni (DBO);
- CEI 23-51 Prescrizioni per la realizzazione, le verifiche e le prove dei quadri di distribuzione per installazioni fisse per uso domestico e similare.

6.9 Rete elettrica del distributore e allacciamento degli impianti

- CEI 11-1 Impianti elettrici con tensione superiore a 1 kV in corrente alternata;
- CEI 11-17 Impianti di produzione, trasmissione e distribuzione di energia elettrica Linee in cavo;

07.03_D.D.P.	0	Disciplinare descrittivo e prestazione	10/2021	13	17
Documento	REV	Descrizione	Data	Pag.	Tot.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DELL'ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO DISTINTO AL N.C.T. AI FG. N. 39 - 40 - IMPIANTO AGROVOLTAICO

- CEI 11-20 Impianti di produzione di energia elettrica e gruppi di continuità collegati a reti di I e II categoria;
- CEI 11-20, V1 Impianti di produzione di energia elettrica e gruppi di continuità collegati a reti di I e II categoria Variante;
- CEI 11-20, V2 Impianti di produzione di energia elettrica e gruppi di continuità collegati alle reti di I e II categoria – Allegato C - Prove per la verifica delle funzioni di interfaccia con la rete elettrica per i micro generatori;
- CEI EN 50110-1 (CEI 11-48) Esercizio degli impianti elettrici;
- CEI EN 50160 (CEI 8-9) Caratteristiche della tensione fornita dalle reti pubbliche di distribuzione dell'energia elettrica.

6.10 Cavi, cavidotti e accessori

- CEI 20-13 Cavi con isolamento estruso in gomma per tensioni nominali da 1 a 30 kV;
- CEI 20-14 Cavi isolati con polivinilcloruro per tensioni nominali da 1 kV a 3 kV;
- CEI-UNEL 35024-1 Cavi elettrici isolati con materiale elastomerico o termoplastico per tensioni nominali non superiori a 1000 V in corrente alternata e a 1500 V in corrente continua – Portate di corrente in regime permanente per posa in aria;
- CEI-UNEL 35026 Cavi elettrici isolati con materiale elastomerico o termoplastico per tensioni nominali di 1000 V in corrente alternata e 1500 V in corrente continua. Portate di corrente in regime permanente per posa interrata;
- CEI 20-40 Guida per l'uso di cavi a bassa tensione;
- CEI 20-65 Cavi elettrici isolati con materiale elastomerico, termoplastico e isolante minerale per tensioni nominali non superiori a 1000 V in corrente alternata e 1500 V in corrente continua - Metodi di verifica termica (portata) per cavi raggruppati in fascio contenente conduttori di sezione differente
- CEI 20-67 Guida per l'uso dei cavi 0,6/1 kV;
- CEI 20-91 Cavi elettrici con isolamento e guaina elastomerici senza alogeni non propaganti la fiamma con tensione nominale non superiore a 1 000 V in corrente alternata e 1 500 V in corrente continua per applicazioni in impianti fotovoltaici;
- CEI EN 50086-1 (CEI 23-39) Sistemi di tubi ed accessori per installazioni elettriche Parte
 1: Prescrizioni generali;
- CEI EN 50086-2-4 (CEI 23-46) Sistemi di canalizzazione per cavi Sistemi di tubi;
- Parte 2-4: Prescrizioni particolari per sistemi di tubi interrati;
- CEI EN 50262 (CEI 20-57) Pressacavo metrici per installazioni elettriche;
- CEI EN 60423 (CEI 23-26) Tubi per installazioni elettriche Diametri esterni dei tubi per installazioni elettriche e filettature per tubi e accessori;
- CEI EN 61386-1 (CEI 23-80) Sistemi di tubi e accessori per installazioni elettriche Parte 1: Prescrizioni generali;
- CEI EN 61386-21 (CEI 23-81) Sistemi di tubi e accessori per installazioni elettriche Parte 21: Prescrizioni particolari per sistemi di tubi rigidi e accessori;
- CEI EN 61386-22 (CEI 23-82) Sistemi di tubi e accessori per installazioni elettriche;
- Parte 22: Prescrizioni particolari per sistemi di tubi pieghevoli e accessori;

07.03_D.D.P.	0	Disciplinare descrittivo e prestazione	10/2021	14	17
Documento	REV	Descrizione	Data	Pag.	Tot.

- CEI EN 61386-23 (CEI 23-83) Sistemi di tubi e accessori per installazioni elettriche;
- Parte 23: Prescrizioni particolari per sistemi di tubi flessibili e accessori.

6.11 Conversione della potenza

- CEI 22-2 Convertitori elettronici di potenza per applicazioni industriali e di trazione;
- CEI EN 60146-1-1 (CEI 22-7) Convertitori a semiconduttori Prescrizioni generali e convertitori commutati dalla linea Parte 1-1: Specifiche per le prescrizioni fondamentali;
- CEI EN 60146-1-3 (CEI 22-8) Convertitori a semiconduttori Prescrizioni generali e convertitori commutati dalla linea – Parte 1-3: Trasformatori e reattori;
- CEI UNI EN 45510-2-4 (CEI 22-20) Guida per l'approvvigionamento di apparecchiature destinate a centrali per la produzione di energia elettrica – Parte 2-4;
- Apparecchiature elettriche Convertitori statici di potenza.

6.12 Scariche atmosferiche e sovratensioni

- CEI EN 50164-1 (CEI 81-5) Componenti per la protezione contro i fulmini (LPC) Parte 1: Prescrizioni per i componenti di connessione;
- CEI EN 61643-11 (CEI 37-8) Limitatori di sovratensioni di bassa tensione Parte 11: Limitatori di sovratensioni connessi a sistemi di bassa tensione Prescrizioni e prove;
- CEI EN 62305-1 (CEI 81-10/1) Protezione contro i fulmini Parte 1: Principi generali;
- CEI EN 62305-2 (CEI 81-10/2) Protezione contro i fulmini Parte 2: Valutazione del rischio;
- CEI EN 62305-3 (CEI 81-10/3) Protezione contro i fulmini Parte 3: Danno materiale alle strutture e pericolo per le persone;
- CEI EN 62305-4 (CEI 81-10/4) Protezione contro i fulmini Parte 4: Impianti elettrici ed elettronici nelle strutture.

6.13 Dispositivi di potenza

- CEI EN 50123 (serie) (CEI 9-26 serie) Applicazioni ferroviarie, tranviarie, filoviarie e metropolitane - Impianti fissi - Apparecchiatura a corrente continua;
- CEI EN 50178 (CEI 22-15) Apparecchiature elettroniche da utilizzare negli impianti di potenza;
- CEI EN 60898-1 (CEI 23-3/1) Interruttori automatici per la protezione dalle sovracorrenti per impianti domestici e similari – Parte 1: Interruttori automatici per funzionamento in corrente alternata;
- CEI EN 60898-2 (CEI 23-3/2) Interruttori automatici per la protezione dalle sovracorrenti per impianti domestici e similari - Parte 2: Interruttori per funzionamento in corrente alternata e in corrente continua;
- CEI EN 60947-1 (CEI 17-44) Apparecchiature a bassa tensione Parte 1: Regole generali;
- CEI EN 60947-2 (CEI 17-5) Apparecchiature a bassa tensione Parte 2: Interruttori automatici;
- CEI EN 60947-4-1 (CEI 17-50) Apparecchiature a bassa tensione Parte 4-1: Contattori ed avviatori – Contattori e avviatori elettromeccanici.

07.03_D.D.P.	0	Disciplinare descrittivo e prestazione	10/2021	15	17
Documento	REV	Descrizione	Data	Pag.	Tot.

6.14 Compatibilità elettromagnetica

- CEI 110-26 Guida alle norme generiche EMC;
- CEI EN 50263 (CEI 95-9) Compatibilità elettromagnetica (EMC) Norma di prodotto per i rele di misura e i dispositivi di protezione;
- CEI EN 60555-1 (CEI 77-2) Disturbi nelle reti di alimentazione prodotti da apparecchi elettrodomestici e da equipaggiamenti elettrici simili Parte 1: Definizioni;
- CEI EN 61000-2-2 (CEI 110-10) Compatibilità elettromagnetica (EMC) Parte 2-2:
 Ambiente Livelli di compatibilità per i disturbi condotti in bassa frequenza e la trasmissione dei segnali sulle reti pubbliche di alimentazione a bassa tensione;
- CEI EN 61000-2-4 (CEI 110-27) Compatibilità elettromagnetica (EMC) Parte 2-4:
 Ambiente Livelli di compatibilità per disturbi condotti in bassa frequenza negli impianti industriali;
- CEI EN 61000-3-2 (CEI 110-31) Compatibilità elettromagnetica (EMC) Parte 3-2: Limiti Limiti perle emissioni di corrente armonica (apparecchiature con corrente di ingresso 16 A per fase);
- CEI EN 61000-3-3 (CEI 110-28) Compatibilità elettromagnetica (EMC) Parte 3-3: Limiti Limitazione delle fluttuazioni di tensione e del flicker in sistemi di alimentazione in bassa tensione per apparecchiature con corrente nominale 16 A e non soggette ad allacciamento su condizione;
- CEI EN 61000-3-12 (CEI 210-81) Compatibilità elettromagnetica (EMC) Parte 3-12: Limiti
 Limiti per le correnti armoniche prodotte da apparecchiature collegate alla rete pubblica a bassa tensione aventi correnti di ingresso > 16 A e <= 75 A per fase;
- CEI EN 61000-6-1 (CEI 210-64) Compatibilità elettromagnetica (EMC) Parte 6-1: Norme generiche Immunità per gli ambienti residenziali, commerciali e dell'industria leggera;
- CEI EN 61000-6-2 (CEI 210-54) Compatibilità elettromagnetica (EMC) Parte 6-2: Norme generiche -Immunità per gli ambienti industriali;
- CEI EN 61000-6-3 (CEI 210-65) Compatibilità elettromagnetica (EMC) Parte 6-3: Norme generiche -Emissione per gli ambienti residenziali, commerciali e dell'industria leggera;
- CEI EN 61000-6-4 (CEI 210-66) Compatibilità elettromagnetica (EMC) Parte 6-4: Norme generiche Emissione per gli ambienti industriali.

6.15 Energia solare

- UNI 8477-1 Energia solare Calcolo degli apporti per applicazioni in edilizia Valutazione dell'energia raggiante ricevuta;
- UNI EN ISO 9488 Energia solare Vocabolario;
- UNI 10349 Riscaldamento e raffrescamento degli edifici Dati climatici.

6.16 Sistemi di misura dell'energia elettrica

- CEI 13-4 Sistemi di misura dell'energia elettrica Composizione, precisione e verifica;
- CEI EN 62052-11 (CEI 13-42) Apparati per la misura dell'energia elettrica (c.a.) Prescrizioni generali, prove e condizioni di prova Parte 11: Apparato di misura;

07.03_D.D.P.	0	Disciplinare descrittivo e prestazione	10/2021	16	17
Documento	REV	Descrizione	Data	Pag.	Tot.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DELL'ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO DISTINTO AL N.C.T. AI FG. N. 39 - 40 - IMPIANTO AGROVOLTAICO

- CEI EN 62053-11 (CEI 13-41) Apparati per la misura dell'energia elettrica (c.a.) Prescrizioni particolari - Parte 11: Contatori elettromeccanici per energia attiva (classe 0,5, 1 e 2):
- CEI EN 62053-21 (CEI 13-43) Apparati per la misura dell'energia elettrica (c.a.) –
 Prescrizioni particolari Parte 21: Contatori statici di energia attiva (classe 1 e 2);
- CEI EN 62053-22 (CEI 13-44) Apparati per la misura dell'energia elettrica (c.a.) –
 Prescrizioni particolari Parte 22: Contatori statici per energia attiva (classe 0,2 S e 0,5 S);
- CEI EN 50470-1 (CEI 13-52) Apparati per la misura dell'energia elettrica (c.a.) Parte 1: Prescrizioni generali, prove e condizioni di prova - Apparato di misura (indici di classe A, B e C);
- CEI EN 50470-2 (CEI 13-53) Apparati per la misura dell'energia elettrica (c.a.) Parte 2: Prescrizioni particolari - Contatori elettromeccanici per energia attiva (indici di classe A e B);
- CEI EN 50470-3 (CEI 13-54) Apparati per la misura dell'energia elettrica (c.a.) Parte 3: Prescrizioni particolari Contatori statici per energia attiva (indici di classe A, B e C);
- CEI EN 62059-31-1 (13-56) Apparati per la misura dell'energia elettrica Fidatezza Parte 31-1: Prove accelerate di affidabilità Temperatura e umidità elevate.

07.03_D.D.P.	0	Disciplinare descrittivo e prestazione	10/2021	17	17
Documento	REV	Descrizione	Data	Pag.	Tot.