

REGIONE BASILICATA

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DELL'ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO DISTINTO AL N.C.T. AI FG. N. 39 - 40

IMPIANTO AGROVOLTAICO

ELABORATO:

AGROVOLTAICO, BENEFICIO AMBIENTALE E CARBON FOOTPRINT

				IDENTIF	ICAZIONE E	LABORATO)			
Livello Prog.	Codice F	Rintracciabilità	Tipo Doc.	Sez. Elaborato	N° Foglio	Tot. Fogli	N°	[°] Elaborato	DATA	SCALA
PD	2019	000118	RT	03	1	56	RFC	2_03.04	10/2021	-:-
					REVISIO	VI				
REV	DATA			DESCRIZION	NE			ESEGUITO	VERIFICATO	APPROVATO
01	[]			[]				IVC	N/A	N/A
·										

PROGETTAZIONE

Dott. Ing. Vito Caliò

4, Via San Girolamo 70017 Putignano (BA) M.: +39 328 4819015

E.: v.calio@maya-eng.com PEC: vito.calio@ingpec.eu

MAYA ENGINEERING SRLS

MAYA ENGINEERING SRLS 4, Via San Girolamo 70017 Putignano (BA) C.E./P.IVA 08365980724

> MO Oalio (TIMBRO E FIRMA)

TECNICO SPECIALISTA

Prof. Dott. Francesco Magno Geologo

38, Via Colonne 72100 Brindisi (BR) M.: +39 337 825366 E.: frmagno@libero.it

SPAZIO RISERVATO AGLI ENTI

RICHIEDENTE

ALPHA ENERGIE S.R.L.

C.F./P.IVA 01907670762 STRADA STATALE 94, n.13 85055 Picerno (PZ)

(TIMBRO E FIRMA PER BENESTARE)

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Indice

1	Pre	messa.	.2
2	Le	caratteristiche fisiche dell'impianto fotovoltaico da realizzare.	.5
3	Le e	emissioni di CO2 "evitate" nell'immissione in atmosfera	.7
	3.1	Emissioni di "gas a effetto serra" diversi da CO2 ed altri inquinanti	.8
	3.2	Analisi e risultati della "decomposizione".	12
	3.3 PNIE	La normativa nazionale di riferimento e le previsioni degli obiettivi desunti dal	16
4 si		Carbonio" stoccato nel suolo e le pratiche di "agricoltura conservativa" per attivare il "agro-fotovoltaico"	22
	4.1	Il "Piano colturale" dell'Agronomo	24
	4.2	"Agricoltura conservativa"2	27
	4.2.	1 Vantaggi e svantaggi della "agricoltura conservativa"	28
	4.3	Le emissioni ed il potenziale di sequestro di "carbonio" dai suoli	32
	4.4	Le pratiche di gestione.	34
	4.5	Il calcolo della CO2 emessa e fissata e le modalità di contabilizzazione	36
	4.6	Metodologia da applicare per la quantificazione della "CO2 Assorbita dal suolo"3	39
5	La '	"impronta di carbonio" (carbon footprint-CF) aggregata all'impianto in progetto4	12
	5.1	Premessa Errore. Il segnalibro non è definit	0.
	5.2	La valutazione quantitativa della "Carbon footprint" per l'impianto proposto4	1 6
6	Cor	nsiderazioni conclusive.	51

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

1 Premessa.

Con questa nota tecnica si intendono fornire ulteriori chiarimenti relativi al "beneficio ambientale" ed in particolare all'utilizzo della metodica denominata "Agrovoltaico" e dall'impronta ecologica denominata "Carbon footprint", indotti dalla realizzazione dell'impianto fotovoltaico proposto dalla Alpha Energie Srl per l'impianto identificato con la sigla AEPV03_B, da realizzare nell'ambito delle aree che sono, come di seguito, catastalmente identificate nel territorio comunale di Matera:

- Foglio n. 39 ed alle particelle nn. 40, 170 e 289.
- Foglio n. 40 ed alla particella n: 8.

L'estensione globale dell'impianto e quale sommatoria delle richiamate particelle catastali, è pari a **24,64 mq.** suddiviso per lotti funzionali; in definitiva, le aree interessate dall'impianto sono, in termini di estensione, così differenziati:

- 24,64 ha: superfice totale dell'impianto;
- **0,789 ha:** ingombro strutture verticali, superficie radiante dei moduli fotovoltaici+ superficie destinata a servizi (strade, cabine, ecc.) + superficie per mitigazione spazi a verde, arnie, strisce d'impollinazione, pozze naturalistiche e sassaie;
- **62,43 Ha:** totale area destinata all'agricoltura conservativa.

La sviluppo delle fonti rinnovabili nel settore elettrico ha determinato un'evidente e riconosciuta riduzione delle emissioni di gas a "effetto serra", nel confronto con la medesima produzione energetica da fonti fossili.

Fatto salvo che la statistica delle "emissioni" evitate è, con cadenza biennale, elaborata dal GSE per la pubblicazione della relazione nazionale sui progressi del Paese, ai sensi della Direttiva 2009/28/CE, in questa nota si è ritenuto opportuno considerare i riscontri rivenienti non tanto dall'ultima pubblicazione del GSE, quanto dai vari Rapporti elaborati, in particolare da ISPRA, e più in generale dalla bibliografia di settore (C.E., FAO, ecc.).

Infatti, nel mentre la metodologia adottata da GSE prevede che ciascuna fonte rinnovabile sostituisca la quota di produzione fossile, che risulta marginale nel periodo di produzione (festivo, lavorativo di picco e non di picco), la metodologia adottata da ISPRA, in linea con la metodologia realizzata da EEA (2015), consiste nel calcolo delle emissioni nell'ipotesi che l'equivalente energia elettrica da fonti rinnovabili sia realizzata con il mix fossile.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Un altro aspetto sul quale si avrà modo di soffermarci è la così detta "impronta ambientale" prodotta dall'impianto che, se pur estremamente limitata nella "pressione", con evidenti benefici delle quantità massiche immesse in atmosfera, ha una minima rilevanza se considerata nelle esclusive fasi di cantierizzazione e di decommissioning dell'impianto.

In particolare, si è reso necessario approfondire considerazioni in merito alla capacità del "suolo" di immagazzinare "Carbonio" (carbon sink) che, con le introduzioni agricole previste dall'esperto (agricoltura conservativa), rendono tale aspetto estremamente positivo, a differenza di quanto avviene nell'attuale condizione di coltivazione agricola tradizionale.

Lo specialista Agronomo nella propria relazione tecnica del "Piano colturale" entra nel merito dell'utilizzo dei terreni non interessati direttamente dalle strutture impiantistiche, avanzando l'ipotesi si effettuare su tali aree "libere" la "coltivazione conservativa" con la tecnica della "minimum tillage" e, quando possibile, la "no-tillage".

La "agricoltura conservativa" fa riferimento a tutte quelle pratiche che minimizzano l'alterazione della composizione, della struttura e della naturale biodiversità della matrice "suolo" salvaguardandolo dall'erosione e dalla degradazione e permettendo di amplificare la capacità di trattenere la i "gas serra" che, nelle politiche/norme derivanti dal Protocollo di Kyoto, sono espresse in CO2 equivalente, con l'applicazione dei coefficienti di GWP (Global Warming Potential) di ciascun composto. In sostanza, la "agricoltura conservativa", rispetto a quella tradizionale, si differenzia per la non applicazione di tutte quelle pratiche che prevedono un rimescolamento degli strati del terreno che nel medio o lungo periodo portano a una riduzione della sostanza organica nei suoli ed alla immissione in atmosfera dei gas clima alteranti presenti nel suolo.

In definitiva, la realizzazione delle metodiche della "agricoltura conservativa" sulle aree dell'impronta del parco fotovoltaico utili per la coltivazione, costituisce la giusta connessione fra la produzione di energia da fonte rinnovabile e la produzione da "agricoltura conservativa" che, congiuntamente, viene riconosciuta come tecnologia "agro-fotovoltaica" (agrivoltaic system).

Si avrà modo di riportare che tale applicazione tecnologica viene a produrre notevoli benefici "ambientali" connessi, sostanzialmente: al trattenere nelle matrici suolo e sottosuolo la CO2 e gli altri gas clima alteranti, a migliorare le condizioni di "microclima" che inducono ad una migliore produzione agricola e ad un maggior rendimento degli stessi pannelli fotovoltaici.

Di seguito si riportano dapprima considerazioni relative alla genericità del problema connesso al risparmio delle emissioni immesse in atmosfera e, nella seconda parte, si entra nel merito dell'im-

FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

pianto AEPV03_B proposto dalla Alpha Energie Srl, con la quantificazione del contributo ambientale riveniente dall'impronta del parco fotovoltaico che, per tale aspetto è del tutto positiva.

Infine, appare necessario riportare che, senza l'applicazione della metodica dello "agrovoltaico", il suolo sottostante perde qualsiasi funzione diversa da quella di ospitare le strutture di generazione elettrica, divenendo a tutti gli effetti un suolo "consumato" in cui, per ogni impianto, la gestione della vegetazione spontanea e delle funzioni residuali del suolo costituisce una voce di costo; costo da ridurre nella misura del possibile anche attraverso uso di diserbanti e pesticidi.

In assenza di una visione e di nuove regole per gli impianti da realizzare in aree agricole, si aprirà un conflitto, difficilmente sanabile, tra declino dei costi tecnologici e aumento dei costi territoriali nella produzione fotovoltaica, generando una zona grigia per incursioni speculative.

A maggior rischio risulterebbe il Sud, in cui la crisi che sta attraversando l'agricoltura, legata anche a crescenti minacce climatiche, rischia di accelerare i processi di abbandono delle coltivazioni e di trasformazione incontrollata di ampie aree.

La sostenibilità economica e ambientale del fotovoltaico e la sua accettabilità sociale, dipenderà dunque, in misura determinante, dalla capacità di costruire un efficace e trasparente sistema di regole entro le quali possano trovare spazio progetti efficaci di integrazione paesaggistica, agricola ed ambientale, connessi ad evidenti benefici economici, ambientali e sociali.

In questo quadro bene alloggia la prospettiva dello "agrovoltaico" che integra la produzione di energia da fotovoltaico nell'attività agricola, con installazioni che permettono di continuare le colture agricole o l'allevamento e che prevedono un ruolo per gli agricoltori, che vanno ad integrare il reddito aziendale ed a prevenire l'abbandono o la dismissione dell'attività produttiva.

In questo quadro prospettico si è mossa la Committente Alpha Energie Srl che ha proposto un nuovo "delivery model" per il fotovoltaico ed i terreni agricoli annessi, con le aziende agricole/cooperative che vengono ad assumere un ruolo predominante nella gestione del "suolo", rendendolo produttivo e socialmente efficace.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

2 Le caratteristiche fisiche dell'impianto fotovoltaico da realizzare.

L'area di progetto è ubicata nel territorio comunale di Matera (BR), nella Contrada "Masseria Sant'Agostino", posta nella porzione orientale del territorio amministrato; i terreni in oggetto sono facilmente raggiungibili:

- Da Est dalla Strada Provinciale n. 140 e da questa, verso W da una strada di penetrazione rurale;
- La richiamata strada rurale può essere imboccata anche da Sud ed in particolare attraverso la S.P. Matera-Gioia del Colle n. 22.

Di rilevante, nella localizzazione dell'impianto e sua prossimità, vi è la presenza della Via Appia Antica, denominata S.P: n. 140 ed in gestione dea parte della Provincia di Bari che presenta, sul fianco occidentale, un "tratturo" che gli storici assicurano costituisca la vecchia via "Appia" che da Roma raggiungeva e terminava a Brindisi.

L'impianto, da realizzare nella porzione di NE del territorio comunale di Matera, in Contrada "Masseria Sant'Agostino" è costituito da n. 5 sottocampi che, nell'insieme definiscono un "unicum" impiantistico identificato come "AEPV03_B".

Tavola n. 1: Impianto su ortofoto.

COMUNE DI MATERA

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

In merito all'area residuale appare opportuno riportare che questa costituisce la porzione di terreno agricolo sul quale verranno effettuate tutte le operazioni connesse: alla coltivazione "agrivoltaica", agli per spazi a verde, alle arnie, alle strisce d'impollinazione, alle pozze naturalistiche e alle sassaie; su tutte queste aree verrà calcolato il beneficio ambientale riveniente dalla "carbon footprint".

La tavola n. 2, che segue, riproduce il lay-out dell'impianto con indicate le aree di rispetto e la suddivisione in n. 5 sottocampi; in coda anche la tabella con le caratteristiche dei sottocampi.

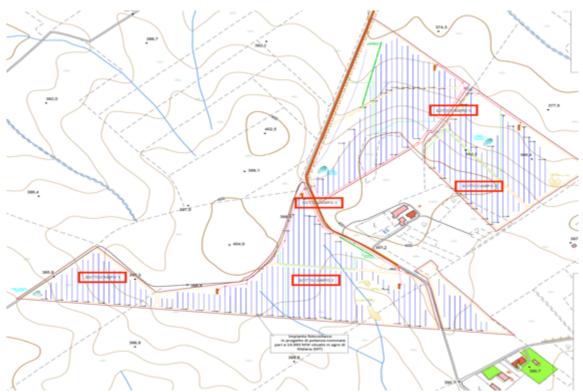


Tavola n. 2: Lay-out dell'impianto e relativa legenda.

	Sottocampo1	Sottocampo2	Sottocampo3	Sottocampo4	Sottocampo5	TOTALE IMPIANTO
Stutture da 30	630	450	450	180	510	
Stutture da 60	3780	3960	3960	4260	3900	
	4410	4410	4410	4440	4410	22080
N° Moduli	4410	4410	4410	4440	4410	22080
Potenza C.C. (kW)	2998,8	2998,8	2998,8	3019,2	2998,8	15014,4
N° Inverter	17	17	17	16	16	83
Potenza Inverter (kW)	3145	3145	3145	2960	2960	15355

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

3 Le emissioni di CO2 "evitate" nell'immissione in atmosfera.

La metodologia delle "emissioni evitate", considerate in questa succinta analisi, fornisce valori differenti rispetto alla metodologia adottata dal GSE e ciò pur adottando un metodo di calcolo omogeneo per valutare l'impatto delle fonti rinnovabili nel settore elettrico, indipendente dall'influenza di fattori economici e contingenti che possono modificare i costi marginali dell'energia elettrica.

Il grafico di tabella n. 3 rende evidente che il contributo alla riduzione delle emissioni di "gas serra" è stato rilevante fin dal 1990, grazie al fondamentale apporto di energia idroelettrica e che negli ultimi anni la forbice tra "emissioni effettive" e "emissioni teoriche", senza fonti rinnovabili, si allarga in seguito allo sviluppo delle medesime fonti rinnovabili non tradizionali.

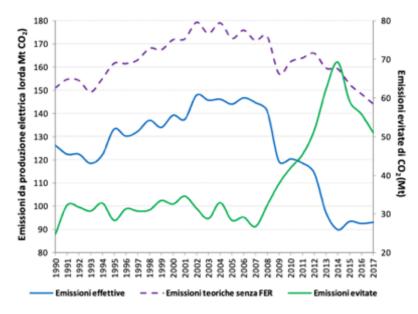


Figura 2.6 - Andamento delle emissioni effettive per la produzione lorda di energia elettrica e delle emissioni teoriche per la produzione di energia elettrica da fonti rinnovabili con equivalente produzione da fonti fossili.

Tabella n. 3: Raffronto fra emissioni effettive, teoriche senza FER ed emissioni evitate.

Dalla Tabella n. 3 si evince chiaramente che, dal 1990 fino al 2007, l'impatto delle fonti rinnovabili in termini di riduzione delle emissioni presenta un andamento oscillante intorno a un valore medio di 92,6 Mt CO2, parallelamente alla variabilità osservata per la produzione idroelettrica.

Successivamente, lo sviluppo delle fonti non tradizionali ha determinato un'impennata dell'impatto con un picco di riduzione delle emissioni registrato nel 2014 quando, grazie alla produzione rinnovabile, non sono state emesse 162,2 Mt di CO2.

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Negli anni successivi e fino al 2017, si osserva una repentina diminuzione delle emissioni evitate, parallelamente alla diminuzione della produzione elettrica da fonti rinnovabili; appare del tutto evidente che la riduzione è dovuta alla mancanza di incentivi statali.

La produzione elettrica da fonti rinnovabili del 2017 ha permesso di evitare l'emissione di **51 Mt di CO2.**

Considerando l'impatto delle fonti rinnovabili registrato in passato diventa utile osservare l'andamento delle emissioni evitate a partire dall'anno base 2005 quando la produzione rinnovabile da FER ha consentito di evitare l'emissione di **28,3 Mt CO2.**

La tabella n. 4 riporta le emissioni annuali evitate al netto del valore registrato nel 2005.

Tabella 2.10 – Emissioni di CO₂ evitate (Mt) rispetto al 2005.

	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Emissioni evitate	0,8	0,0	3,9	9,5	13,6	17,0	23,3	33,9	40,9	30,8	27,5	22,7

Tabella n. 4: Emissioni di CO2 evitate in Mt, rispetto al 2005.

E' evidente che negli ultimi anni l'impatto delle fonti rinnovabili, pur rimanendo rilevante rispetto al 2005, si sia sensibilmente ridotto rispetto al picco del 2014, confermando la riduzione degli investimenti nel campo delle FER, dovute alle frastica eliminazione dei contributi statali.

3.1 Emissioni di "gas a effetto serra" diversi da CO2 ed altri inquinanti.

La produzione di energia elettrica e calore comporta anche l'emissione in atmosfera di gas a effetto serra diversi dalla CO2 quali metano (CH4) e protossido di azoto (N2O) e di altri contaminanti atmosferici come previsti nell'Accordo di Kyoto.

Sebbene metano e protossido di azoto siano emessi in quantità estremamente limitata, rispetto all'anidride carbonica, **questi gas sono caratterizzati da elevati potenziali di riscaldamento globale** (25 per il metano e 298 per protossido di azoto).

Il protossido di azoto (N2O) in particolare è il potente gas serra che, prodotto principalmente dall'uso di fertilizzanti azotati in agricoltura, sta crescendo a ritmi talmente sostenuti da mettere a

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

rischio gli obiettivi climatici dell'accordo di Parigi; infatti, negli ultimi decenni si è registrata un'impennata della concentrazione atmosferica di protossido di azoto (N2O), il terzo gas serra di lunga durata più importante dopo l'anidride carbonica (CO2) e il metano (CH4), che contribuisce alla riduzione dell'ozono stratosferico e se tale trend dovesse proseguire a ritmi così sostenuti, l'aumento della temperatura media globale potrebbe sforare ben oltre la soglia dei 2°C stabilita dagli accordi di Parigi 2015.

Appare anche opportuno rilevare che da recenti statistiche circa l'incremento della temperatura negli ultimi 50 anni, la Provincia di Matera ove alloggia l'impianto proposto, ha subito un innalzamento di 2,7°C; il maggior incremento in Italia lo ha registrato la provincia di Brindisi con un incremento di ben 3,2°C.

Quanto di questo disequilibrio termico sia dovuto all'incremento dell'uso di fertilizzanti azotati in agricoltura è tutto da definire; resta la certezza che, al di là del contributo fornito dai due grossi poli energetici da fossile ed industriali di Brindisi e Taranto, la quota attribuibile al protossido di azoto è decisamente elevata; **l'agricoltura tradizionale, quindi, come concausa degli squilibri climatici.** Limitare le emissioni di N2O è di grande importanza per raggiungere gli obiettivi dell'accordo sul clima di Parigi, tuttavia, questo deve essere necessariamente accompagnato alla riduzione delle emissioni di CO2, che appare ancora più urgente.

Il progetto dell'impianto fotovoltaico proposto e che negli spazi agricoli utili applica la metodica "agrivoltaica", nel suo piccolo, contribuisce alla riduzione dei richiamati gas climalteranti.

Di seguito, alla tabella n. 5, sono riportate le emissioni dei **gas climalteranti in termini di** "CO2 equivalente" per intervalli quinquennali a partire dal 2005, con i relativi "fattori di emissione", a valle della considerazione dei rispettivi potenziali di riscaldamento globale dei due gas stimati da ISPRA, nel contesto dell'Inventario delle emissioni nazionali elaborato da ISPRA (2019).

Tabella 2.11 - Gas serra dal settore elettrico per la produzione di energia elettrica e calore (Mt CO200).

Gas serra	2005	2010	2015	2016	2017
Anidride carbonica - CO ₂	156,8	134,2	106,4	105,9	106,1
Metano - CH ₄	0,16	0,17	0,23	0,23	0,23
Protossido di azoto - N2O	0,48	0,51	0,56	0,56	0,53
GHG	157,4	134,8	107,1	106,7	106,9

Tabella n. 5: Gas serra dal settore elettrico per la produzione di energia (Mt COe eq).

Dalla tabella n. 5 si evince come le emissioni di CO2 siano diminuite con la maggiore produzione di energia elettrica da FER ed a partire dal 2005 e come, invece, si sia stabilizzata negli ultimi quinquenni per i minori investimenti effettuati e dovuti alla mancanza di incentivi statali.

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

E' del tutto evidente che la mancanza di incentivi viene a produrre una stasi nella realizzazione di impianti FER e, sostanzialmente, anche una stasi nella riduzione dei benefici ambientali.

Tabella 2.12 – Fattori di emissione di gas serra dal settore elettrico per la produzione di energia elettrica e calore (g CO_{2cq}/kWh*).

Gas serra	2005	2010	2015	2016	2017
Anidride carbonica - CO ₂	447,4	377,9	312,0	303,5	298,9
Metano - CH ₄	0,5	0,5	0,7	0,7	0,6
Protossido di azoto - N2O	1,4	1,4	1,6	1,6	1,5
GHG	449,2	379,8	314,3	305,7	301,0

^{*} energia elettrica totale al netto dai pompaggi + calore in kWh

Tabella n. 6: Fattori di emissione dal settore elettrico per la produzione di energia e calore (gr. COe eq/ KWh).

La precedente tabella n. 6 riporta i "fattori di emissione", del solo settore elettrico per la produzione di energia elettrica che, congiuntamente a quanto riportato nella tabella n. 5, relativa alle emissioni di "gas serra", seguono l'andamento quinquennale connesso alla produzione energetica da FER.

Le emissioni di metano e protossido di azoto incidono da **0,4**% a **0,7**% sulle emissioni di gas serra totali provenienti dal settore elettrico per la produzione di elettricità e calore.

La quota emissiva dovuta alla sola produzione elettrica può essere stimata considerando la ripartizione di energia utilizzata negli impianti del settore.

Nella sottostante tabella n. 7 è riportato il contenuto energetico dei combustibili utilizzati nell'intero settore elettrico dal 2005 per la produzione di energia elettrica e calore.

Tabella 2.13 - Contenuto energetico dei combustibili utilizzati nel settore elettrico (PJ).

Energia dei combustibili	2005	2010	2015	2016	2017
Settore elettrico	2.239	2.000	1.689	1.712	1.760
per produzione di energia elettrica	2.024	1.773	1.448	1.464	1.513
per produzione di calore	215	227	241	247	247

Tabella n. 7: Contenuto energetico dei combustibili utilizzati nel settore elettrico (PJ).

La combustione nel settore elettrico è inoltre responsabile delle emissioni in atmosfera di contaminanti che alterano la qualità dell'aria e nella sottostante tabella n. 8 sono riportate le emissioni dei principali contaminanti atmosferici quali ossidi di azoto (NOx), ossidi di zolfo (SOx), composti organici volatili non metanici (COVNM), monossido di carbonio (CO), ammoniaca (NH3) e materiale particolato (PM10).

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Tabella 2.14 – Contaminanti atmosferici emessi dal settore elettrico per la produzione di energia elettrica e calore (kt).

Contaminanti atmosferici	2005	2010	2015	2016	2017
Ossidi di azoto - NO _x	129,0	102,3	86,3	82,9	80,7
Ossidi di zolfo - SO _x	183,9	79,0	32,5	25,0	22,6
Composti organici volatili non metanici - COVNM	18,0	25,3	26,7	29,1	29,7
Monossido di carbonio - CO	36,3	35,7	32,0	33,6	34,7
Ammoniaca - NH ₃	0,2	0,2	0,2	0,2	0,2
Materiale particolato - PM ₁₀	5,9	3,4	2,0	2,0	1,9

Tabella n. 8: Contaminanti atmosferici emessi dal settore elettrico (Kt).

Le emissioni dei contaminanti considerati sono diminuite dal 2005 eccetto per i composti organici volatili, i soli a mostrare un incremento delle emissioni e dei relativi fattori di emissione per unità di energia prodotta (+65,4% nel 2017 rispetto al 2005).

Di seguito si riportano i "Fattori di emissione" per i contaminanti atmosferici emessi dal settore di produzione di elettricità, per i quinquenni considerati a partire dal 2005.

Tabella 2.15 – Fattori di emissione dei contaminanti atmosferici emessi dal settore elettrico per la produzione di energia elettrica e calore (mg/kWh*).

Contaminanti atmosferici	2005	2010	2015	2016	2017
Ossidi di azoto - NO _x	368,2	288,1	253,1	237,7	227,4
Ossidi di zolfo - SO _x	524,7	222,5	95,4	71,7	63,6
Composti organici volatili non metanici - COVNM	51,3	71,3	78,4	83,5	83,8
Monossido di carbonio - CO	103,5	100,5	94,0	96,3	97,7
Ammoniaca - NH ₃	0,6	0,6	0,7	0,6	0,5
Materiale particolato - PM ₁₀	16,9	9,6	6,0	5,6	5,4

^{*} energia elettrica totale al netto dai pompaggi + calore in kWh

Tabella n. 9: Fattori di emissione dei contaminanti atmosferici del settore elettrico (mg/KWh).

Di particolare rilievo, anche ai fini della qualità dell'aria, è la riduzione del fattore di emissione degli ossidi di zolfo che nel 2017 diminuisce del 87,9% rispetto al 2005.

L'emissione degli ossidi di zolfo è fondamentalmente dovuta ai combustibili solidi che negli ultimi anni sono utilizzati da impianti ad alta efficienza dotati di sistemi di abbattimento delle emissioni di zolfo (desolforatori).

I sistemi di abbattimento hanno contribuito, inoltre, alla significativa riduzione delle emissioni di ossidi di azoto (denitrificatori) e di materiale particolato, rispettivamente -38,2% e -68,2% dei valori registrati nel 2005.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

3.2 Analisi e risultati della "decomposizione".

L'analisi della "decomposizione" è una tecnica che consente di studiare la variazione di un "indicatore" in un determinato intervallo temporale, in relazione alla variazione dei suoi determinanti; in altre parole, la variazione di un parametro viene decomposta nella variazione dei parametri che lo determinano. Recentemente questo tipo di analisi è stata estesa anche in campo ambientale, nell'ambito dell'analisi delle emissioni atmosferiche, al fine di comprendere le cause alla base delle variazioni.

In letteratura sono disponibili due principali tecniche di decomposizione: Structural decomposition analysis (SDA) e Index decomposition analysis (IDA), (Hoekstra, van der Bergh, 2003). Le due metodologie, sviluppate indipendentemente, presentano caratteristiche differenti sia in relazione all'ambito di applicazione, sia in relazione ai dati di cui necessitano; la principale differenza tra le due tecniche consiste nel modello dei dati utilizzato. IDA può essere applicata solo a dati aggregati a livello settoriale in forma vettoriale e consente di valutare solo gli effetti diretti della variazione dei parametri determinanti, mentre SDA consente, sia l'utilizzo delle matrici inputoutput e la valutazione degli effetti indiretti, sia l'uti-lizzo dei dati settoriali.

Considerata la rilevanza della CO2 tra i gas a effetto serra emessi per la generazione elettrica, la seguente analisi, effettuata con la metodologia SDA da ISPRA, è stata effettuata solo sulle emissioni di CO2. I fattori considerati nell'analisi (tecnologia, tipologia di combustibile, fonti rinnovabili, produzione elettrica totale) concorrono alla riduzione delle emissioni atmosferiche, laddove l'incremento della produzione elettrica determina un effetto contrario, come riportato nella successiva tabella n. 10

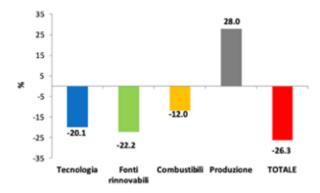


Figura 3.1 – Analisi di decomposizione delle emissioni atmosferiche di CO₂ nel periodo 1990-2017. E' riportato il contributo alla variazione delle emissioni atmosferiche rispetto al 1990 per i quattro fattori identificati e la variazione totale osservata nello stesso periodo.

Tabella n. 10: Analisi di decomposizione delle emissioni atmosferiche di CO2 1990-20187

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

I risultati dell'analisi mostrano che i fattori considerati – tecnologico, fonti rinnovabili, combustibile – contribuiscono alla riduzione delle emissioni atmosferiche di CO2 rispettivamente per il 20,1%, 22,2% e 12%, mentre l'incremento della produzione elettrica determina un aumento delle emissioni del 28%.

L'effetto cumulato dei quattro fattori ha determinato una riduzione delle emissioni atmosferiche di CO2 nel 2017 del 26,3% rispetto alle emissioni osservate nel 1990 (-33,2 MtCO2). In altre parole, la riduzione dovuta alla variazione del fattore tecnologico (diminuzione dei fattori di emissione specifici dei combustibili fossili) nel periodo 1990-2017 sarebbe stata di 25,3 MtCO2 qualora gli altri fattori fossero rimasti invariati.

La riduzione dovuta alla composizione di combustibili sarebbe stata di 15,2 MtCO2, mentre l'incremento della quota di energia prodotta da fonti rinnovabili rispetto al 1990 avrebbe determinato una riduzione delle emissioni di 28 MtCO2. Tali effetti di riduzione delle emissioni sono "compensati" da un aumento netto della produzione di energia elettrica che avrebbe comportato un incremento delle emissioni atmosferiche di 35,3 MtCO2, in assenza del contributo degli altri fattori.

Considerando le tipologie di combustibili, la riduzione della quota di prodotti petroliferi rappresenta di gran lunga il maggior contributo alla diminuzione delle emissioni atmosferiche, come riportato nella sottostante tabella n. 11.

Tabella 3.1 – Analisi di decomposizione delle emissioni atmosferiche. E' riportato il contributo percentuale alla variazione delle emissioni atmosferiche nel periodo 1990-2017 per i quattro fattori identificati e la variazione totale osservata nello stesso periodo.

Combustibili	Tecnologia	FER	Combustibili	Produzione elettrica	Totale
Solidi	-0,18	-5,69	-0,98	7,07	0,23
Gas naturale	-11,55	-7,91	34,27	9,47	24,29
Gas derivati	-0,79	-1,03	-1,91	1,32	-2,42
Prodotti petroliferi	-6,27	-7,14	-46,81	9,62	-50,61
Altri combustibili[1]	-1,28	-0,41	3,42	0,48	2,21
Totale	-20,07	-22,18	-12,01	27,96	-26,30

[1] E' esclusa l'elettricità prodotta da rifiuti biodegradabili, biogas e biomasse di origine vegetale.

Tabella n. 11: Analisi di decomposizione delle emissioni atmosferiche.

In relazione al contributo delle fonti rinnovabili alla riduzione delle emissioni atmos-feriche è necessario sottolineare che a partire dal 2007 la crisi economica ha ridotto sensibilmente i consumi di combustibili fossili aumentando, nel contempo, la quota di fonti rinnovabili in seguito alla priorità di dispacciamento dell'energia elettrica prodotta da tali fonti.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

In ogni caso, ogni unità di energia elettrica prodotta da fonti rinnovabili (FER) contribuisce alla riduzione delle emissioni atmosferiche in maniera di gran lunga superiore a qualsiasi altro fattore, nell'ipotesi di sostituzione di una equivalente quantità di energia elettrica prodotta da qualsiasi fonte fossile.

L'applicazione della Index Decomposition Analysis con la metodologia LMDI proposta da Ang (2005) mostra risultati analoghi a quelli della Structural Decomposition Analysis con la metodologia proposta da Dietzenbacher e Los (1998).

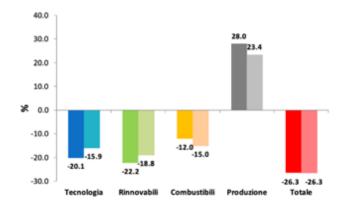


Figura 3.3 – Confronto dei risultati della analisi di decomposizione delle emissioni atmosferiche nel periodo 1990-2017 con metodologie SDA e IDA, rispettivamente la prima e la seconda barra per ciascun fattore.

Tabella n. 12: Confronto dell'analisi di decomposizione delle emissioni atmosferiche.

Le due metodologie presentano differenti percentuali del contributo di ciascun fattore alla variazione delle emissioni di CO2 nel periodo esaminato, ma mostrano essenzialmente la stessa struttura.

Dai risultati osservati si può concludere che la riduzione delle emissioni atmosferiche nel settore elettrico nel periodo 1990-2017 sia prevalentemente dovuta all'incremento della produzione elettrica da fonti rinnovabili e all'incremento dell'efficienza della trasformazione elettrica nel settore termoelettrico.

In definitiva, lo sviluppo delle fonti rinnovabili nel settore elettrico ha subito un rilevante impulso negli ultimi anni nonostante l'arresto dell'andamento positivo osservato fino al 2014.

La quota di <u>energia elettrica rinnovabile</u> rispetto alla produzione totale lorda è passata da 15,3% nel 2007 a 43,1% nel 2014 per scendere fino a 35,1% nel 2017.

Le prime stime per il 2018 mostrano una inversione di tendenza dovuta unicamente all'aumento della produzione idroelettrica.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Lo sviluppo dell'energia elettrica rinnovabile consegue le politiche di riduzione delle emissioni di gas serra e di incremento delle fonti rinnovabili rispetto ai consumi finali.

Tale incremento è stato possibile attraverso diverse misure quali: incentivazione delle fonti rinnovabili nel settore elettrico e priorità di dispacciamento dell'energia elettrica da fonti rinnovabili; pertanto, a partire dal 2007 la crisi economica ha ridotto drasticamente i consumi totali aumentando nel contempo la quota delle fonti rinnovabili.

Per quanto riguarda le emissioni atmosferiche del settore elettrico si osserva una rapida diminuzione dei fattori di emissione di CO2 per la generazione elettrica.

I risultati dell'analisi della decomposizione possono essere sintetizzati come segue:

- le emissioni di CO2 sono diminuite da 126,2 Mt nel 1990 a 93 Mt nel 2017, mentre la produzione lorda di energia elettrica è passata nello stesso periodo da 216,6 TWh a 295,8 TWh; i fattori di emissione di CO2 per la generazione di energia elettrica mostrano quindi una rapida diminuzione nel periodo 1990-2017. Considerando anche le emissioni dovute alla produzione di calore nel 2017 le emissioni di CO2 del settore elettrico ammontano a 106,1 Mt;
- le emissioni di CH4 e N2O incidono da 0,4% a 0,7% sulle emissioni di gas serra totali provenienti dal settore elettrico per la produzione di elettricità e calore;
- i fattori di emissione dei principali contaminanti atmosferici emessi dal settore elettrico mostrano una costante diminuzione. In particolare, si registrano significative riduzioni rispetto al 2005 dei fattori di emissione di ossidi di zolfo (-87,9%), ossidi di azoto (-38,2%) e materiale particolato (-68,2%).
- l'analisi della decomposizione mostra che, storicamente, l'aumento dell'efficienza tecnologica nel settore termoelettrico e il connesso incremento della quota di gas naturale, hanno avuto un ruolo dominate nella diminuzione delle emissioni di CO2, mentre negli ultimi anni il significativo incremento della quota di energia elettrica prodotta da fonti rinnovabili assume un ruolo prevalente rispetto agli altri fattori considerati.

I fattori di emissione nel settore della generazione e del consumo di energia elettrica sono indispensabili per la programmazione e il monitoraggio di iniziative volte alla riduzione delle emissioni di gas serra che coinvolgano il settore elettrico, in relazione alle strategie di sviluppo del settore a livello nazionale e alle misure di risparmio energetico che è possibile adottare anche a livello locale.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Il potenziale di riduzione delle emissioni di gas serra può essere valutato solo attraverso la conoscenza dei fattori di emissione per la produzione di energia elettrica dalle diverse fonti energetiche e la quantificazione del contributo dei fattori determinanti la variazione delle emissioni atmosferiche.

I "fattori di emissione" forniti nel presente studio consentono di effettuare una stima delle emissioni di CO2 evitate in seguito al contributo di diverse componenti e l'analisi della decomposizione fornisce una quantificazione del relativo contributo.

In termini pratici, utilizzando i "fattori di emissione" per i consumi elettrici stimati per il 2017, il risparmio di un kWh a livello di utenza media consente di evitare l'emissione in atmosfera di un quantitativo di CO2 pari al rispettivo fattore di emissione nazionale, ovvero 308,1 g, mentre la sostituzione di un kWh prodotto da fonti fossili, con uno prodotto da fonti rinnovabili, consente di evitare l'emissione di 491 g CO2.

Tali dati possono essere utili per valutare, in termini comparativi, le prestazioni di diversi interventi nel settore elettrico.

3.3 La normativa nazionale di riferimento e le previsioni degli obiettivi desunti dal PNIEC.

Il Piano Nazionale Integrato per l'Energia ed il Clima (PNIEC), concorre ad un'ampia trasformazione nella quale la "decarbonizzazione", la "economia circolare", l'efficienza e l'uso razionale ed equo delle risorse naturali rappresentano obiettivi e strumenti per un'economia più rispettosa delle persone e dell'ambiente; l'Italia, quindi, condivide l'approccio olistico proposto dal regolamento comunitario di "governance" che mira ad una strategia organica e sinergica sull'energia.

Per supportare e fornire una robusta base analitica al Piano Nazionale Integrato per l'Energia e il Clima (PNIEC) sono stati sviluppati:

- uno scenario BASE che descrive un'evoluzione del sistema energetico con politiche e misure correnti;
- uno scenario di Piano (PNIEC) che quantifica gli obiettivi strategici del piano.

Nella tabella seguente sono illustrati i principali obiettivi del piano al 2030 su rinnovabili, efficienza energetica ed emissioni di gas serra e le principali misure previste per il raggiungimento degli obiettivi del Piano.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

	Obietti	vi 2020	Obietti	vi 2030	
	UE	ITALIA	UE	(PNIEC)	
Energie rinnovabili (FER)					
Quota di energia da FER nei Consumi Finali Lordi di energia	20%	17%	32%	30%	
Quota di energia da FER nei Consumi Finali Lordi di energia nei trasporti	10%	10%	14%	22%	
Quota di energia da FER nei Consumi Finali Lordi per riscaldamento e raffrescamento			+1,3% annuo (indicativo)	+1,3% annuo (indicativo)	
Efficienza energetica					
Riduzione dei consumi di energia primaria rispetto allo scenario PRIMES 2007	-20%	-24%	-32,5% (indicativo)	-43% (indicativo)	
Risparmi consumi finali tramite regimi obbligatori efficienza energetica	-1,5% annuo (senza trasp.)	-1,5% annuo (senza trasp.)	-0,8% annuo (con trasporti)	-0,8% annuo (con trasporti	
Emissioni gas serra					
Riduzione dei GHG vs 2005 per tutti gli impianti vincolati dalla normativa ETS	-21%		-43%		
Riduzione dei GHG vs 2005 per tutti i settori non ETS	-10%	-13%	-30%	-33%	
Riduzione complessiva dei gas a effetto serra rispetto ai livelli del 1990	-20%		-40%		
Interconnettività elettrica					
Livello di interconnettività elettrica	10%	8%	15%	10%1	
Capacità di interconnessione elettrica (MW)		9.285		14.375	

Più nel particolare la tabella n. 9 del Piano riporta gli obiettivi FER complessivi da raggiungere entro il 2030.

Tabella 9 - Obiettivo FER complessivo al 2030 (ktep)

	2016	2017	2025	2030
Numeratore	21.081	22.000	27.168	33.428
Produzione lorda di energia elettrica da FER	9.504	9.729	12.281	16.060
Consumi finali FER per riscaldamento e raffrescamento	10.538	11.211	12.907	15.031
Consumi finali di FER nei trasporti	1.039	1.060	1.980	2.337
Denominatore - Consumi finali lordi complessivi	121.153	120.435	116.064	111.359
Quota FER complessiva (%)	17,4%	18,3%	23,4%	30,0%

Da questa tabella e dalle altre tavole "obbiettivo" del PNIEC si rileva che <u>servono ben 33 GWp</u> <u>da nuovi impianti fotovoltaici</u> che, di certo, non potranno essere allocati solo ed esclusivamente sui "tetti".

E' del tutto evidente che per raggiungere l'obiettivo decennale richiamato, sarà necessario realizzare impianti su terreni agricoli che presentano condizioni tali che oggi non consentono una redditizia attività agricola e che, sotto il profilo ambientale/paesaggistico, non presentano caratteristiche di "pregio".

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Il Piano, quindi, sposa pienamente la metodica "agro-voltaica" (agrivoltaic system) che, in particolare, nella principale politica per l'energia ed il clima, viene riportato nella fase di "decarbo-nizzazione" del settore "non energetico" e nelle misure relative: sia alla "Politica Agricola Comune" (PAC) e nei "Piani di Sviluppo Rurale" (PSR) che, ancora ed in particolare, alla politica della "Riduzione delle emissioni in atmosfera provenienti dalle attività agricole – zootecniche" (Vedi: Accordo Bacino Padano 2013).

Fatto salvo quanto riportato nella precedente tabella n. 9 del Piano, questo prevede che il contributo delle Rinnovabili al soddisfacimento dei consumi finali lordi totali al 2030 (30%) sia così differenziato fra i diversi settori:

- 55,0 % di quota rinnovabili nel settore elettrico;
- 33,9 % di quota rinnovabili nel settore termico (usi per riscaldamento e raffreddamento);
- 11,1 % per quanto riguarda l'incorporazione di rinnovabili nei trasporti.

Di seguito si riportano le due tabelle (n. 7 e 8) del Piano relativa alla "quota" FER complessiva del 30% da raggiungere entro il 2030 e quella specifica per la quota FER elettrica.

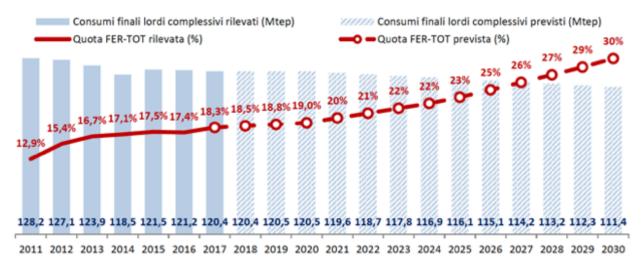
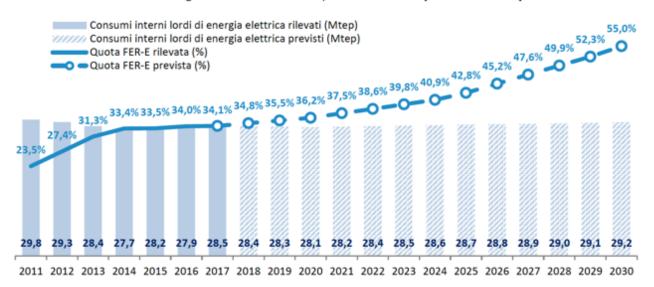


Figura 7 - Traiettoria della quota FER complessiva [Fonte: GSE e RSE]



FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Figura 8 - Traiettoria della quota FER elettrica [Fonte: GSE e RSE]

Dal Piano si rileva che il maggiore contributo alla crescita delle "rinnovabili" deriverà proprio dal settore elettrico che al 2030 raggiungerà i 16 Mteq di generazione da FER, pari a 187 TWh.

La forte penetrazione di tecnologie di produzione elettrica rinnovabile, principalmente fotovoltaico ed eolico, permetterà al settore di coprire il 55% dei consumi finali elettrici lordi, con energia rinnovabile, contro il 34,1 del 2017; difatti, il significativo potenziale incremento previsto, grazie anche alla riduzione dei costi degli impianti fotovoltaici ed eolici, prospettano un importante sviluppo di queste tecnologie, la cui produzione del settore fotovoltaico dovrebbe triplicare entro il 2030.

Tabella 10 - Obiettivi di crescita della potenza (MW) da fonte rinnovabile al 2030

Fonte	2016	2017	2025	2030
Idrica	18.641	18.863	19.140	19.200
Geotermica	815	813	920	950
Eolica	9.410	9.766	15.950	19.300
di cui off shore	0	0	300	900
Bioenergie	4.124	4.135	3.570	3.760
Solare	19.269	19.682	28.550	52.000
di cui CSP	0	U	250	880
Totale	52.258	53.259	68.130	95.210

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Tabella 11 - Obiettivi e traiettorie di crescita al 2030 della quota rinnovabile nel settore elettrico (TWh)

	2016	2017	2025	2030
Produzione rinnovabile	110,5	113,1	142,9	186,8
Idrica (effettiva)	42,4	36,2		
Idrica (normalizzata)	46,2	46,0	49,0	49,3
Eolica (effettiva)	17,7	17,7		
Eolica (normalizzata)	16,5	17,2	31,0	41,5
Geotermica	6,3	6,2	6,9	7,1
Bioenergie*	19,4	19,3	16,0	15,7
Solare	22,1	24,4	40,1	73,1
Denominatore - Consumi Interni Lordi di energia elettrica	325,0	331,8	334	339,5
Quota FER-E (%)	34,0%	34,1%	42,6%	55,0%

^{*} Per i bioliquidi (inclusi nelle bioenergie insieme alle biomasse solide e al biogas) si riporta solo il contributo dei bioliquidi sostenibili.

Dalle tabelle di Piano n. 10 ed 11 si rileva che il contributo atteso per il raggiungimento della quota FER, pari al 55% è attribuito al "solare" (non differenziato).

Dal Piano, inoltre, si rileva che "il richiamato incremento da fotovoltaico avverrà promuovendo, in particolare, l'installazione su edificato, tettoie, parcheggi, aree di servizio, ecc.; rimane tuttavia importante, per il raggiungimento degli obiettivi previsti al 2030 la diffusione anche di grandi impianti fotovoltaici a terra, privilegiando però zone improduttive, non destinate ad altri usi, quali le superfici non utilizzabili ad uso agricolo".

Il Piano riporta ancora che per i "grandi impianti fotovoltaici": "In tale prospettiva vanno favorite le realizzazioni in aree già artificiali (con riferimento alla classificazione SNPA), siti contaminati, discariche e aree lungo il sistema infrastrutturale".

Come riferito ed evidenziato anche dalle maggiori Associazioni ambientaliste (Legambiente, Greenpeace, WWF ed Italia Solare – 17 luglio 2020) in una nota rimessa al Governo, testualmente riportano: " I 32 GW di nuovi impianti fotovoltaici non possono oggettivamente essere realizzati in 10 anni solo su tetti e aree contaminate. Occorre, infatti, creare le condizioni affinché gli impianti fotovoltaici possano essere installati anche su terreni agricoli che non presentano condizioni tali da consentire una redditizia attività agricola e non hanno caratteristiche di pregio sotto il profilo ambientale».

Si concorda pienamente con le 4 Associazioni, ancor più quando riportano che: "<u>Il fotovoltaico può benissimo affiancare le coltivazioni con il vantaggio, per l'agricoltore, di beneficiare di una entrata integrativa in grado di aiutare la sua attività agricola»</u>.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Oggi purtroppo non vi è una regolamentazione adeguata circa l'utilizzo dei terreni agrari per la realizzazione di impianti fotovoltaici; questa situazione porta spesso gli Enti locali ad adottare moratorie estemporanee e/o provvedimenti di dubbia costituzionalità che, in qualche modo, alimentano la "sindrome di Nimby".

Sempre dalla richiamata lettera delle 4 Associazioni si evidenzia ancora che : " E' importante individuare dei parametri oggettivi, ragionevoli e subito disponibili, per non rallentare lo sviluppo del fotovoltaico (di cui abbiamo urgente necessità) ma anche a sostegno delle stesse imprese agricole, che possono vedere nella produzione di energia rinnovabile uno sviluppo della propria attività ovvero generare dalla concessione dei siti alla generazione fotovoltaica somme preziose per investimenti nella propria attività, anche mantenendo l'attività agricola tra le file di moduli fotovoltaici".

E' del tutto evidente che tutto ciò si sposa pienamente con l'applicazione del "agro-voltaico" prevista nell'ambito dell'impianto proposto.

Infine, tornado al Piano Nazionale Integrato per l'Energia ed il Clima (PNIEC) ed in particolare al Capitolo 3 relativo alla "Dimensione della decarbonizzazione" - " Emissioni e assorbimenti di gas a effetto serra", circa la promozione di misure destinate al sequestro della CO2 nei suoli agricoli e nei sistemi forestali, il Piano riporta che si valuteranno, eventuali azioni per la promozione di iniziative volte al sequestro della CO2 nei suoli agricoli e nei sistemi forestali (suoli, biomassa ipogea, epigea, legno, ecc.), considerando anche potenziali misure di pagamento dei servizi ecosistemici per la silvicoltura e collegati ai suoli agricoli e ai sistemi colturali sia erbacei (seminativi, ecc.) che arborei.

In definitiva, si ritiene di poter affermare che la previsione progettuale relativa all'applicazione delle metodiche della "agricoltura conservativa" e del "minimum tillage" e/o "no-tillege" rientrano pienamente nel agrivoltaic system e quindi nella prospettiva di avere sia un "beneficio ambientale" (nulle quantità massiche di gas climalteranti in atmosfera) ed un corrispettivo "beneficio sociale" indotto dall'occupazione di personale qualificato, dalla redditività dell'area coltivata, ecc.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

4 Il "Carbonio" stoccato nel suolo e le pratiche di "agricoltura conservativa" per attivare il sistema "agro-fotovoltaico".

Il sequestro di carbonio nei suoli e nelle foreste è una delle strategie che potrebbero essere applicate a larga scala per sottrarre CO2 dall'atmosfera; questo aspetto è stato oggetto di numerosi studi e di alcune iniziative politiche.

L'interesse per il potenziale di stoccaggio nei suoli è legato al fatto che il suolo costituisce il più grande serbatoio di "carbonio terrestre", pari a circa tre volte il contenuto attuale di carbonio dell'atmosfera, 4 volte l'ammontare delle emissioni antropogeniche cumulate e 250 volte l'ammontare delle emissioni da combustibile fossile annuali.

Incrementare il contenuto di "carbonio nel suolo", anche di poco in termini percentuali, <u>può</u> rappresentare un sostanziale contributo alla sottrazione di CO2 dall'atmosfera; allo stesso modo una perdita di carbonio costituisce un ostacolo ad obiettivi ambiziosi di mitigazione del cambiamento climatico.

Il suolo può quindi essere considerato un'arma a doppio taglio nei confronti del bilancio del carbonio (FAO, 2017 b).

Le strategie di sequestro di carbonio nei suoli, che fanno affidamento sulle pratiche di gestione agricola e che verranno di seguito descritte (minima lavorazione, colture di copertura, input da effluenti zootecnici, ecc.) possono contribuire a soddisfare tale domanda, introducendo benefici ausiliari di sequestro di carbonio: per questo motivo il sequestro di carbonio nei suoli è considerato una strategia win-win.

In ciò ricade la pratica di coltivazione dei suoli posti nell'area d'imposta di un impianto fotovoltaico che, come rilevato e riportato al Capitolo n. 2 di questa relazione, rimane utile per almeno il 94-96% della superfice occupata dall'impianto.

La messa a confronto fra un sistema di gestione dei suoli attraverso la "agricoltura tradizionale", con sistemi di gestione di "agricoltura conservativa", <u>ha evidenziato quanto quest'ultima</u> <u>sia molto più efficace nella funzione di contenimento del "carbonio" nel suolo</u>.

La relazione dell'Agronomo, allegata al progetto pone in evidenza la necessità di utilizzare la "cover crop" o "coltura di copertura", quale "agricoltura conservativa", con la posa a coltura, al di sotto delle stringhe fotovoltaiche e nelle aree disponibili, di essenze colturali in rotazione che verranno, dopo la raccolta, costantemente trinciate e lasciate al suolo; ciò produrrà un effetto migliorativo ad opera degli azoto-fissatori simbionti ed un importante incremento di sostanza

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

organica dovuto all'effetto pacciamante delle ripetute trinciature, oltre che aumentare la capacità di stoccaggio di carbonio nel suolo (carbon sink).

Di seguito, alla tabella n. 13, sono riportati i maggiori serbatoi terrestri, confrontati con l'emissione annua e cumulata di carbonio.

Tabella 1 – Dimensioni dei maggiori serbatoi di carbonio terrestri e confronto con l'emissione annua e cumulata di carbonio

Serbatoio	Contenuto di carbonio	Fonte	
Suolo (< 40 cm di profondità)	800 Gt C	La Ouéré et al. 2016	
Suolo (< 1 m di profondità)	1500 ± 230 Gt C	Le Quéré et al., 2016	
Suolo (< 2 m di profondità)	2400 Gt C	Paustian et al., 2016	
Atmosfera	829 ± 10 Gt C	Ciais et al., 2013	
Emissione cumulata di C nel periodo 1750-2011	555 ± 85 Gt C		
Emissione cumulata di C da combustibili fossili e produzione di cemento nel periodo 1750-2011	375 ± 30 Gt C		
Emissione cumulata di C dalla variazione degli usi del suolo nel periodo 1750-2011	180 ± 80 Gt C		
Emissione di C da combustibili fossili e produzione di cemento nel 2011	9,5 ± 0,8 Gt C/anno		

Tabella n. 13: Dimensioni dei maggiori serbatoi terrestri di "carbonio".

La "Sostanza Organica nel Suolo" (SOM) è composta da una mistura di sostanze organiche parzialmente decomposte e gioca un ruolo fondamentale in molte funzionalità del suolo e in molti servizi ecosistemici come l'attenuazione (buffering) del cambiamento climatico, il supporto alla produzione di generi alimentari, la regolazione della disponibilità delle risorse idriche ed altro.

Cambiamenti nella quantità o nella qualità di SOM influiscono sulla capacità dei suoli di garantire tali servizi ecosistemici, rendendo necessaria una gestione oculata dei terreni agricoli.

La gestione della sostanza organica, che è composta per circa il 58% da "carbonio organico", con pratiche di gestione agricole e di uso del suolo sostenibili è universalmente riconosciuta come strategia di ripristino dello stato di salute dei suoli che permette di combattere il degrado ambientale (land degradation) e la desertificazione, incrementando la resilienza degli ecosistemi agricoli al cambiamento climatico (FAO, 2107a).

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

4.1 Il "Piano colturale" dell'Agronomo.

In particolare, dal "Piano colturale" dell'agronomo si evince:

"Il presente piano colturale è stato elaborato mediante analisi incrociata delle caratteristiche pedoclimatiche del territorio, della struttura del suolo, e del layout dell'impianto fotovoltaico. La scelta delle colture proposte è stata effettuata valutando le peculiarità delle stesse e la capacità di ogni specie di adattarsi alle condizioni ambientali che si possono venire a creare in un'area destinata alla produzione di energia rinnovabile e con un impianto ad inseguimento solare con asse di rotazione N-S.

Per consentire la coltivazione tra le file dei pannelli fotovoltaici verticali si è optato per un layout d'impianto tale da garantire una superficie minima coltivabile di 8,00 m fino ad un massimo di circa 12,0 m quando i pannelli sono inclinati (a riposo).

All'interno del parco fotovoltaico verranno coltivate specie accomunate da molteplici fattori agronomici quali:

- basso fabbisogno di radiazioni solari;
- bassa esigenza di risorsa idrica;
- impiego della manodopera e ridotti interventi per ciclo colturale;
- operazioni colturali interamente meccanizzate;
- portamento vegetativo inferiore a 80 cm;
- basso rischio di incendio".

Con lo studio agronomico si è voluto dare particolare rilevanza all'aspetto della tutela ambientale, oltre alle esigenze agronomiche. Per tale motivo si è deciso di orientarsi sul concetto di "agricoltura conservativa", che ha lo scopo di promuovere la produzione agricola ottimizzando l'uso delle risorse e contribuendo a ridurre il degrado del terreno attraverso la gestione integrata del suolo, dell'acqua e delle risorse biologiche.

Nel caso specifico si è deciso di optare per l'attuazione di tecniche colturali indicate genericamente come "minimum tillage" o "minima lavorazione" e periodicamente e quando possibile anche con la "no-tillage" - "zero-lavorazioni".

I principi cardine su cui si basa l'agricoltura conservativa sono:

- avvicendamento colturale;
- riduzione delle lavorazioni;
- copertura del suolo.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Nella metodica proposta, l'avvicendamento colturale assume una particolare rilevanza al fine di evitare l'impoverimento dei minerali del "suolo" in funzione della capacità bioattrattiva del sistema rizomico, più che di quello fogliare e del prodotto; per tale ragione i terreni saranno sottoposti ad una caratterizzazione chimico-organica durante la fase di coltivazione. Dal monitoraggio si potrà desumere meglio la risposta dei terreni alle colture previste e si potranno scegliere più adeguatamente gli ammendanti d'arricchimento che, nel qual caso, saranno sempre di origine naturale (biochar, ecc.) e mai fertilizzanti chimici azotati.

Come riportato nella relazione del "Piano Colturale", ampliare il numero delle specie e delle famiglie botaniche coltivate, evitando il frequente ripetersi delle stesse colture sui terreni grazie all'allungamento e diversificazione degli avvicendamenti e riducendo i periodi d'interruzione colturale, segue molteplici obiettivi, quali:

- coprire il terreno e proteggerlo dagli agenti atmosferici in maniera continua e più efficace;
- migliorare la struttura del suolo attraverso l'azione degli apparati radicali di piante diverse:
- stimolare l'attività biologica nel terreno;
- evitare che i terreni vadano incontro alla perdita della fertilità, detta anche "stanchezza dei terreni";
- sfruttare le caratteristiche di alcune famiglie botaniche, come le leguminose, di migliorare il contenuto di elementi nutritivi nel terreno;
- limitare il proliferare di agenti patogeni che si moltiplicano in modo molto più efficace quando si ripete la stessa coltura;
- limitare i rischi ambientali dovuti alla lisciviazione dei nitrati, al ruscellamento superficiale ed all'erosione, alla perdita di biodiversità;
- la diversificazione colturale permette, già da sola, di conservare e arricchire la fertilità del suolo, di assicurare e talora anche migliorare le rese produttive.

Nel caso specifico sarà previsto un avvicendamento colturale di 4 anni tra:

- Zafferano (Crocus Sativus L.)
- **Cece** (Cicer arietinum):
- Miscela di cereali da foraggio;
- Lenticchia (Lens culinars Medik);

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Le colture scelte si adattano a diversi tipi di terreno, prediligendo quelli di medio impasto e tendenzialmente soffici in modo tale che si evitino fenomeni di ristagno idrico che potrebbero danneggiare la coltura. Si prestano bene alla coltivazione a mezz'ombra, non hanno particolari esigenze idriche e prediligono zone di coltivazione con clima temperato. Sono colture che non richiedono molte lavorazioni e quelle necessarie vengono eseguite tutte meccanicamente, limitando così la presenza di manodopera nei terreni interessati.

In questa prima fase del progetto "agro-fotovoltaico" la gestione delle colture avverrà secondo le tecniche utilizzate per "l'agricoltura convenzionale", ma non si esclude in futuro la possibilità di utilizzare metodi di coltivazione biologica.

Per le motivazioni in precedenza elencate, lo **zafferano** rappresenta il giusto compromesso che consente la produzione di energia elettrica e la produzione agricola, data l'elevata redditività della coltura e le caratteristiche pedologiche e climatiche che ne permettono la coltivazione.

Lo zafferano viene a rappresentare, per le caratteristiche che possiede e le risposte di redditività che fornisce, la coltura principale il ciclo di coltivazione può variare dai 4/5 anni, per poi essere sostituita, nell'avvicendamento colturale richiamato e per ulteriori 2/3 anni, dalle essenze riportate (cece, miscela di cereali da foraggio e lenticchia); del resto le colture "food" (cece e lenticchia) sono del tutto possibili in virtù di una "non contaminazione" chimica dei terreni e delle scarse capacità bioattraenti di metalli pesanti che possiedono.

Sempre dalla relazione dell'Agronomo si riporta che, per lo zafferano che costituisce la coltura principale, la messa a dimora dei bulbi avverrà in file binate, larghe 50 cm, su un terreno leggermente baulato in modo da agevolare la raccolta manuale dei fiori e impedire il ristagno idrico durante i periodi più piovosi. I cormi di zafferano saranno disposti lungo le file a circa 20 cm tra loro, sapendo che i bulbi necessiteranno di maggiore spazio per la moltiplicazione e crescita negli anni successivi, e saranno depositati ad una profondità di circa 15 cm.

Lo scopo della riduzione delle lavorazioni consiste nel limitare il più possibile il disturbo del suolo, **senza invertire mai gli strati**, e di favorire l'incorporazione della sostanza organica, migliorandone qualità, quantità e distribuzione lungo il profilo del suolo.

La diminuzione dell'intensità e della profondità delle lavorazioni determina una maggiore protezione fisica della sostanza organica all'interno dei microaggregati riducendone l'ossidazione.

L'attività biologica non perturbata ed, in particolare, l'attività dei lombrichi, contribuisce a loro volta all'evoluzione della sostanza organica e completano l'azione di riorganizzazione e strutturazione del suolo assicurata dalle radici delle piante.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

L'assenza di disturbo meccanico, associata a un minor numero di passaggi e transiti sui terreni, permette così di aumentare la fertilità del suolo, che sviluppa la sua naturale porosità e la capacità d'infiltrazione e filtrazione dell'acqua.

Le operazioni colturali da eseguire sono essenzialmente di tipo meccanico. Nel caso specifico si è deciso di optare per l'attuazione di tecniche colturali, indicate genericamente come "minimum tillage" o "minima lavorazione", che consentono di limitare oltre al numero di interventi anche i costi di produzione, senza però inficiare le caratteristiche qualitative e quantitative del prodotto finale.

Tutte le operazioni, per rispettare la scelta della pratica della "minima lavorazione", non supereranno la profondità di lavorazione di 5/10 cm.; là dove possibile (prossimità delle fondazioni dei pannelli fotovoltaici verticali) si opererà con il sistema della "no-tillage" – "nessuna lavorazione" evitando, quindi, che anche la minima porzione di top soil sia interessata dalle azioni di ripulitura della matrice organica superficiale, lasciando intonsa la porzione rizomica.

4.2 "Agricoltura conservativa".

La "agricoltura conservativa", come proposta dall'esperto Agronomo per le aree dell'impianto fotovoltaico non interessate da strutture di servizio, consiste in tutte quelle pratiche che minimizzano l'alterazione della composizione, della struttura e della naturale biodiversità del suolo, salvaguardandolo dall'erosione e dalla degradazione.

Rispetto ai metodi di "agricoltura tradizionale" si distingue per il non utilizzo dell'aratura o di tutte le pratiche che prevedono un rimescolamento degli strati del terreno che nel medio o lungo periodo portano a una riduzione della sostanza organica nei suoli.

La perdita di sostanza organica nei suoli provoca una destrutturazione del suolo che crea croste e compattamenti che ne favoriscono l'erosione e la perdita di "carbonio" dalla "carbon silk" che altro non è che una trappola per il contenimento del "carbonio" stesso.

Tra le pratiche riconosciute di "agricoltura conservativa" si possono individuare la minima lavorazione e la semina su sodo o non lavorazione che non prevede lavorazioni di movimentazione del suolo, se non la semina.

Un suolo coltivato attraverso minime lavorazioni o non lavorazioni, sul quale vengono rilasciati residui colturali, costituirà uno strato superficiale di protezione dall'azione erosiva prodotta dalle precipitazioni atmosferiche e dal vento e stabilizzerà il suolo per quel che riguarda il

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

contenuto idrico e la temperatura, <u>oltre che eviterà la fuoriuscita del carbonio e degli altri elementi che sono intrappolati e che contribuiscono all'effetto serra ed alle variazioni climatiche.</u>

Questo strato a sua volta diviene un habitat per insetti, funghi, batteri e altri organismi che macerano i residui e li decompongono, fino a creare humus che stabilizza e struttura il suolo.

Gli scopi che inducono a utilizzare un'alterazione minima del suolo, tramite la semina su sodo o la lavorazione ridotta del terreno, sono quelli di preservare la struttura, la fauna e la sostanza organica del suolo.

Il terreno sottoposto a pratiche di "agricoltura conservativa", nei periodi tra una coltura e quella successiva, viene mantenuto coperto (colture di copertura, residui e coltri protettive) per proteggere il terreno e contribuire all'eliminazione delle erbe infestanti.

Sono privilegiate associazioni e rotazioni colturali diversificate, che favoriscono lo sviluppo dei microrganismi del suolo e combattono le erbe infestanti, i parassiti e le fitopatologie.

Il rimescolamento del terreno è lasciato all'opera della fauna terricola e degli apparati radicali delle colture. La fertilità del terreno (nutrienti e acqua) viene gestita attraverso la copertura del suolo, le rotazioni colturali e la lotta alle erbe infestanti. Sono tuttavia accettati l'utilizzo di concimi naturali.

4.2.1 Vantaggi e svantaggi della "agricoltura conservativa".

Nei terreni agricoli qualsiasi lavorazione che prevede l'apertura del terreno e il rivoltamento degli strati organici superficiali (top soil) fa perdere ingenti quantità di carbonio sotto forma di CO2; pertanto, si riconosce che il comparto agricolo è uno dei maggiori emettitori di questo gas-serra.

Le emissioni dei gas serra nelle politiche derivanti dal Protocollo di Kyoto sono indicate in termini di tonnellate di CO2 equivalente applicando i coefficienti di Global Warming Potential (GWP) di ciascun composto (ISPRA, 2013)

Nella tabella che segue vengono inserite le quantità di CO2 equivalenti stoccate a livello forestale e agricolo per la Regione Lombardia, calcolate da ISPRA attraverso dei modelli di stima del carbonio come: il Forest, Gain-Loss Method e Stock-Difference Method basati sulla metodologia IPCC, seguendo la classificazione definita nelle Good Practice Guidance for Land Use, Land-Use Change and Forestry (IPCC, 2003). I calcoli dello stoccaggio sono dedotti per via modellistica e non attraverso prove in campo.

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Gli impegni sottoscritti dagli Stati con l'approvazione della Convenzione ONU sui cambiamenti climatici (UNFCCC), la ratifica del Protocollo di Kyoto (PK) e la crescente sensibilità nell'opinione pubblica sugli effetti dei gas serra, hanno portato alla definizione di strategie e politiche legate allo stoccaggio del carbonio nei suoli e al possibile sviluppo di mercati di crediti di carbonio.

	Carbon stock change in living biomass		Net C stock	Net C stock	Total	Total	
	Increase	Decrease	Net change	change in dead organic matter	change in soils	Total	Total
			Mt	С		Mt C	Mt CO ₂
1990	19,5	-15,2	4,3	0,7	6,4	11,4	41,9
1991	19,7	-12,1	7,7	1,2	7,2	16,0	58,8
1992	20,0	-12,7	7,3	1,2	7,1	15,5	57,0
1993	20,2	-15,7	4,5	0,8	6,4	11,7	42,9
1994	20,4	-13,1	7,4	1,2	7,1	15,7	57,5
1995	20,7	-12,4	8,3	1,3	7,3	16,8	61,8
1996	20,9	-12,8	8,1	1,3	7,3	16,7	61,1
1997	21,1	-15,1	6,0	1,0	6,8	13,8	50,6
1998	21,3	-15,7	5,6	0,9	6,7	13,3	48,8
1999	21,5	-14,5	7,1	1,2	7,0	15,3	56,0
2000	21,8	-15,0	6,8	1,1	7,0	14,9	54,5
2001	22,0	-13,6	8,4	1,3	7,3	17,1	62,6
2002	22,2	-12,8	9,4	1,5	7,6	18,4	67,6
2003	22,4	-14,7	7,7	1,2	7,2	16,1	59,2
2004	22,7	-13,7	9,0	1,4	7,5	17,8	65,4
2005	22,9	-13,6	9,2	1,4	7,5	18,2	66,7
2006	23,1	-13,8	9,3	1,4	7,5	18,3	67,0
2007	23,3	-18,3	5,0	0,9	6,6	12,5	46,0
2008	23,5	-15,0	8,5	1,3	7,4	17,2	63,1
2009	23,5	-14,4	9,0	1,4	7,3	17,7	65,0

Tabella 1.2 – Carbonio stoccato in biomasse legnose (carbon stock in living biomass), nella sostanza organica e nei suoli agricoli (fonte ISPRA).

Dalla tabella che precede è possibile desumere che:

- La quantità di carbonio organico stoccato <u>nel "suolo" è quasi sempre superiore a</u> quello delle biomasse legnose e nelle sostanze organiche;
- Il rapporto fra il "carbonio organico" e la "CO2" è quasi sempre dell'ordine di 1/3 1/4 a favore della CO2.

Rispetto ai metodi di agricoltura convenzionale, la "agricoltura conservativa" si distingue per il non utilizzo dell'aratura o di tutte le pratiche che prevedono un rimescolamento degli strati del terreno che nel medio o lungo periodo portano a una riduzione della sostanza organica nei suoli.

La perdita di sostanza organica nei suoli provoca una destrutturazione del suolo che crea croste e compattamenti che ne favoriscono l'erosione.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Tra le pratiche riconosciute di "agricoltura conservativa" si possono individuare la minima lavorazione (minimum-tillage) e la semina su "sodo" (terreni non lavorati-no tillage) o non lavorazione che non prevedono movimentazione del suolo, se non la semina.

Un suolo coltivato attraverso minime lavorazioni o non lavorazioni sul quale vengono rilasciati residui colturali, costituirà uno strato superficiale di protezione dall'azione erosiva prodotta dalle precipitazioni atmosferiche e dal vento e stabilizzerà il suolo per quel che riguarda il contenuto idrico e la temperatura.

Questo strato a sua volta diviene un habitat per insetti, funghi, batteri e altri organismi che macerano i residui e li decompongono fino a creare humus che stabilizza e struttura il suolo.

Gli scopi che inducono a utilizzare un'alterazione minima del suolo, tramite la semina su sodo o la lavorazione ridotta del terreno, sono quelli di preservare la struttura, la fauna e la sostanza organica del suolo. Il terreno sottoposto a pratiche di agricoltura conservativa, nei periodi tra una coltura e quella successiva, viene mantenuto coperto (colture di copertura, residui e coltri protettive) per proteggere il terreno e contribuire all'eliminazione delle erbe infestanti.

Sono privilegiate associazioni e rotazioni colturali diversificate, come previsto nel "piano colturale" dell'Agronomo, che favoriscono lo sviluppo dei microrganismi del suolo e combattono le erbe infestanti, i parassiti e le fitopatologie.

Il rimescolamento del terreno è lasciato all'opera della fauna terricola e degli apparati radicali delle colture.

La fertilità del terreno (nutrienti e acqua) viene gestita attraverso la copertura del suolo, le rotazioni colturali e la lotta alle erbe infestanti. Sono tuttavia accettati l'utilizzo di concimi chimici (opportunamente scelti in funzione di un arricchimento di sali minerali e dispersi sul terreno con macchinari e pratiche consentite) e di concimi naturali con una particolare in particolare tendenza all'uso del biochar, previa un'attenta caratterizzazione chimica.

I vantaggi della "agricoltura conservativa" riguardano principalmente la ridotta perdita di suolo, un minor livello di emissioni di CO2, CH4 e N2O legato a fattori di iniezione degli effluenti e non rivoltamento degli strati e una minore perdita di inquinanti nelle acque grazie alla minore perdita di suolo e la copertura dello stesso.

<u>Fattori collegati e dipendenti sono l'accumulo di "carbonio" nei suoli</u>, una maggior presenza di fauna terricola e quindi una maggiore biodiversità.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Inoltre, le tecniche di "agricoltura conservativa" consentono di abbattere la spesa energetica e di ridurre i costi di produzione.

Vantaggi e svantaggi dell'agricoltura conservativa sono desunti dal sito FAO sulla "agricoltura conservativa", quali:

- si crea un sistema sostenibile nel tempo in grado di incrementare la fauna nei suoli e aumentare così la biodiversità del terreno coltivato senza influire, nel lungo periodo, sulle produzioni;
- i suoli diventano un luogo di "stoccaggio di carbonio" contribuendo così a ridurre le emissioni di CO2 equivalenti ed a mitigare il riscaldamento globale. Gli agricoltori che applicano tecniche di agricoltura conservativa potrebbero essere considerati a tutti gli effetti dei produttori di "crediti di carbonio";
- l'aratura o il rivoltamento delle zolle richiedono alle macchine agricole una grande potenza, da rapportare con la tessitura e struttura del suolo che si traduce in alti consumi di combustibile.

Attraverso la non lavorazione o la minima lavorazione si possono ridurre i consumi di carburante del 30% - 40% (fonte FAO); i suoli sottoposti ad "agricoltura conservativa" hanno un minore run-off (scorrimento di acqua sul terreno) in ragione dei residui lasciati sui terreni e di conseguenza sono soggetti a una minore erosione.

La maggior copertura del suolo ne incrementa la disponibilità idrica attraverso la riduzione dell'evaporazione che avverrebbe dal suolo nudo; l'agricoltura conservativa richiede minori ore di lavoro per gli agricoltori principalmente per la preparazione del terreno e per la semina. Sul lungo periodo riduce i costi di investimento e manutenzione dei macchinari.

D'altra parte, si riscontrano alcuni svantaggi:

- l'acquisto di macchinari nuovi certificati per l'agricoltura conservativa può essere uno sforzo non sostenibile dall'agricoltore, anche se esistono finanziamenti legati al PSR sull'ammodernamento delle aziende agricole;
- nel passaggio da "agricoltura convenzionale" ad "agricoltura conservativa" sono necessari tempi variabili, fino a che il sistema non sia completamente abituato alle nuove dinamiche e pratiche agricole;
- è necessario un periodo di apprendimento per gli agricoltori che intendano passare da "agricoltura convenzionale" ad "agricoltura conservativa";

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

- le rese in un primo periodo si riducono per arrivare in seguito a dei livelli simili a quelle ottenute con tecniche convenzionali, ma compensate dai minori costi delle minime lavorazioni;
- in alcune zone con pratiche di irrigazioni a scorrimento o inondazione le tecniche conservative sono di più difficile introduzione.

4.3 Le emissioni ed il potenziale di sequestro di "carbonio" dai suoli.

La dimensione e l'evoluzione temporale del contenuto di "carbonio organico" nel suolo è governata da un "bilancio del carbonio" che prende in considerazione fattori positivi (dovuti alla somma di contributi endogeni quali residui colturali, radici ed essudati radicali e contributi esogeni quali l'aggiunta di materiali vegetali, di ammendanti organici, di fertilizzanti e di concimi) e fattori negativi (dovuti alle perdite per mineralizzazione e per respirazione microbica).

Il contenuto di "carbonio organico" in un suolo <u>può quindi essere incrementato aumentando i quantitativi in input o riducendo i tassi di decomposizione, determinando così una rimozione netta di CO2 dall'atmosfera.</u>

Le principali emissioni di CO2 del settore agricolo sono dovute alle perturbazioni antropogeniche sul suolo introdotte dalle pratiche agricole. L'aratura favorisce il processo di mineralizzazione soprattutto attraverso la disgregazione fisica degli aggregati che espone il carbonio alla decomposizione mediata dai microorganismi ed alla perdita in atmosfera.

La dinamica, e in particolare la perdita, del contenuto di carbonio nei terreni agricoli è inoltre incrementata da svariati fenomeni di degrado. Questi fenomeni possono avere natura fisica, chimica o biologica e a loro volta dipendono da numerosi fattori che spaziano dalle pratiche di gestione del suolo alle condizioni climatiche ed alle caratteristiche strutturali dei suoli, parametri sito-specifici soggetti ad elevata variabilità.

La maggior parte dei suoli agricoli presenta un contenuto minore del quantitativo potenziale, in funzione delle specifiche condizioni climatiche e delle caratteristiche dei suoli.

Le perdite di carbonio in alcuni terreni sono dell'ordine dei 30-40 t C/ha o da metà a due terzi del quantitativo storico.

Tra tutti i fenomeni di degrado del suolo, l'erosione è quello che comporta un impatto maggiore nella diminuzione del contenuto di carbonio.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

<u>Una gestione migliorata del suolo può ridurre sostanzialmente le emissioni di gas ad effetto serra ed immagazzinare nei suoli parte della CO2 rimossa dall'atmosfera dalle piante, sotto forma di sostanza organica.</u>

In aggiunta alla diminuzione delle emissioni di gas ad effetto serra e al sequestro di carbonio, una gestione migliorata del suolo che incrementi la sostanza organica e regoli il ciclo dell'azoto (con l'agricoltura conservativa) può indurre delle importanti sinergie, quali un aumento della fertilità e della produttività, un aumento della biodiversità, una riduzione di fenomeni di erosione, inquinamento e ruscellamento e un aumento della resilienza delle colture e dei pascoli al cambiamento climatico.

In definitiva quindi, con il termine "soil C sequestration" si fa riferimento in letteratura al processo di "sequestro della CO2 atmosferica" da parte delle piante ed al suo processo di immagazzinamento sotto forma di sostanza organica (soil organic matter, SOM): <u>il fine ultimo è ottenere un incremento del quantitativo di carbonio nel suolo</u>.

Il processo si compone di tre sottoprocessi successivi:

- 1. rimozione di CO2 dall'atmosfera per fotosintesi;
- 2. trasformazione del "carbonio" sotto forma di biomassa;
- 3. trasferimento del "carbonio" da biomassa al suolo, dove è immagazzinato sotto forma di SOC (Carbonio Organico del Suolo) nel pool più labile.

A questo fine è importante approfondire la comprensione della distribuzione del carbonio con la profondità del suolo e le conoscenze della dinamica del processo di incapsulamento in microaggregati, che proteggono il carbonio da processi di consumo per via microbica e ne aumentano il tempo di residenza nel suolo.

Vari sviluppi della ricerca scientifica sono indirizzati allo studio della risposta nella distribuzione verticale del carbonio nei suoli in funzione delle diverse tipologie di colture e delle rispettive lunghezze di penetrazione delle radici nel suolo. Dall'introduzione delle pratiche di agricoltura intensiva ad oggi una grande porzione dei suoli sono stati soggetti ad una continua perdita di carbonio ed i relativi stock sono diminuiti di pari passo.

La conversione di questi suoli a usi più "conservativi" e l'adozione di opportune pratiche di gestione (agricoltura conservativa) possono determinare un consistente sequestro di carbonio.

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

A parità di altri fattori il potenziale di sequestro di carbonio a livello mondiale <u>è maggiore</u> per suoli degradati ed ecosistemi desertificati e minore per le foreste, con valori intermedi per le altre tipologie, secondo l'ordine indicato in Lal (2004):

Suoli degradati ed ecosistemi desertificati > Terreni agricoli > Pascoli > Foreste.

La maggior parte dei terreni agricoli è stato soggetto a perdite di "carbonio organico" che si pensa possano essere recuperate nel corso dei prossimi 25-50 anni.

Circa il 33% dei suoli mondiali risulta soggetto a degrado ed i suoli di molti ecosistemi agricoli hanno subito perdite del 25-75% del contenuto di carbonio originario, per un quantitativo stimato in circa 42-78 Gt C, mentre la capacità di recupero è stata individuata in circa 21-51 Gt C (FAO, 2017a).

La ricerca scientifica si sta focalizzando sulla determinazione dei ratei di sequestro e su una valutazione delle incertezze relative a queste misure.

In ogni caso, le potenzialità future di sequestro di carbonio dipendono da numerosi fattori tra i quali la tipologia di suolo, il contenuto iniziale di carbonio, il clima e le pratiche di gestione.

4.4 Le pratiche di gestione.

Il contenuto di carbonio nei suoli agricoli può essere incrementato adottando le cosiddette "pratiche di gestione raccomandate" ("Recommended Management Practices", RMP), (Lal, 2004); qui di seguito, alla Tabella n. 14, si riporta una descrizione delle singole RMP.

Tabella 2 – Confronto tra pratiche di gestione ordinarie e le pratiche di gestione raccomandate in relazione al sequestro di carbonio (Lal, 2004)

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Pratiche di gestione raccomandate (RMP)		
Recupero dei residui come pacciame di superficie		
Minima lavorazione, no-till e pacciamatura		
Colture di copertura (cover crops)		
Rotazione ad elevata diversità		
Gestione mirata degli input		
Gestione integrata dei nutrienti con fertilizzanti organici ed agricoltura di precisione		
Integrazione del pascolo (e di colture prative poliennali e/o dell'agroforestazione) negli ordinamenti colturali		
Irrigazione a goccia o sub-irrigazione		
armaci Gestione integrata delle infestanti		
ni marginali Programmi conservativi, recupero di suoli degradati mediante land-use change		

Tabella n. 14: Pratiche per il sequestro del carbonio nel suolo.

Appare opportuno rilevare come la previsione proposta dall'Agronomo, per i suoli dell'impianto fotovoltaico, è relativa al metodo della coltura "maggese" che, come pratica di gestione raccomandata (RMP) vede proprio la "coltura di copertura" (cover crop), come "coltura conservativa".

Un ulteriore aspetto da tenere in considerazione riguarda la biodiversità nei suoli, che determina un impatto positivo nel mantenimento e nell'accrescimento del contenuto in carbonio.

A parità di altri fattori, gli ecosistemi ad elevata biodiversità sono in grado di sequestrare un maggior quantitativo di carbonio degli ecosistemi a minore biodiversità (Lal, 2004).

Nei sistemi agricoli la biodiversità può incrementare inoltre con il passaggio da agricoltura "convenzionale" a "conservativa" (ERSAF, 2014).

Le RMP fino a qui presentate, rappresentano i campi di studio sui quali la ricerca si sta focalizzando nell'intento di valutare fattibilità ed applicabilità delle strategie di sequestro di carbonio a livello mondiale.

Insieme al cambiamento di uso del suolo possono contribuire ad aumentare in valore assoluto gli input di "carbonio nei suoli".

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

4.5 Il calcolo della CO2 emessa e fissata e le modalità di contabilizzazione.

In virtù del fatto che la realizzazione di un impianto fotovoltaico prevede per Regione Puglia come forma di "compensazione" per l'uso del suolo, la realizzazione di aree boscate e della tipologia mediterranea (4% della superfice catastale dell'impianto), per poter stabilire la quantità di CO2 emessa da un determinato bosco è necessario disporre di sistemi di calcolo scientifici riconosciuti e di un progetto di bosco.

Attraverso la tipologia composizionale del progetto boschivo è possibile valutare la quantità di CO2 fissata nell'ambito dell'apparato forestale.

In materia d'inventario e monitoraggio dei gas serra, il settore dell'agricoltura, della selvicoltura e della gestione delle altre terre (Agriculture, Forestry and Other Land Use, AFOLU) ha una serie di caratteristiche intrinseche che lo rendono differente dagli altri settori emissivi; innanzi tutto perché i gas serra nel settore AFOLU sono di duplice segno e le stime devono essere condotte:

- sia per gli assorbimenti di CO2 dall'atmosfera (fissata poi nella biomassa viva, nella biomassa morta e nel suolo);
- sia per le emissioni di CO2 e di altri gas non-CO2 verso l'atmosfera.

L'inventario, inoltre, si caratterizza per una serie variegata e complessa di processi biologici, fisici e chimici, diffusi nello spazio e assai variabili nel tempo.

In terzo luogo, i fattori che governano le emissioni e gli assorbimenti possono essere sia naturali sia antropici (e questi a loro volta diretti o indiretti), peraltro difficilmente distinguibili tra loro.

L'inventariazione e il monitoraggio dei "gas serra" del settore AFOLU si presentano dunque estremamente complessi, soprattutto in confronto agli altri settori emissivi.

In ambito UNFCCC, il termine "sink" (letteralmente pozzo) è usato per indicare ogni processo, attività o meccanismo che rimuova un gas serra dall'atmosfera.

La vegetazione e le foreste scambiano grandi quantità di gas serra con l'atmosfera.

Le piante, grazie alla fotosintesi, assorbono CO2 dall'atmosfera e rilasciano O2; una parte della CO2 assorbita è restituita all'atmosfera con la respirazione, mentre una parte è trattenuta come stock nei vari composti organici presenti in una pianta.

L'afforestazione e la riforestazione, o l'adozione di qualsivoglia modalità di gestione delle coltivazioni agricole e dei soprassuoli forestali che determinino un aumento degli "stock di C" nelle piante, nella lettiera e nel suolo, rimuovono un'ulteriore porzione di CO2 dall'atmosfera.

IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF 03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO"

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Ad esempio, se un'area agricola o pascoliva è convertita in bosco, una quota di CO2 è rimossa dall'atmosfera e immagazzinata nella biomassa arborea.

Lo "stock di C" su quell'area aumenta, creando quindi un "sink" di carbonio.

In ogni modo, la foresta di nuova formazione <u>funge da "sink di C" fino a quando lo "stock di C" continua a crescere; aumenta fintantoché non sia raggiunto il limite massimo</u> (equilibrium), <u>oltre al quale le perdite dovute alla respirazione e alla morte degli alberi, bilanciano l'aumento</u> di "C" dovuto alla fotosintesi.

Inoltre, il verificarsi di eventi esterni straordinari, quali ad esempio incendi, temporali o attacchi fitopatologici, rappresenta un rischio aggiuntivo per l'efficacia di fissazione del soprassuolo.

Anche il legno prelevato dal bosco e trasformato in prodotti legnosi costituisce uno stock di carbonio; questo stock (extraboschivo) aumenterà (agendo pertanto da sink) fino a quando il deperimento e la distruzione dei vecchi prodotti resterà inferiore alla fabbricazione di nuovi.

Quindi i prodotti da questi (boschi) derivanti hanno una capacità finita di rimuovere CO2 dall'atmosfera e non agiscono come "sink" perpetuo di Carbonio.

Al contrario, un terreno che è destinato alla produzione di biomassa consente di produrre materiali con effetto sostitutivo rispetto ai combustibili fossili e può potenzialmente ridurre indefinitamente le emissioni di gas serra.

Appare opportuno rilevare, quindi, che ai fini del bilancio connesso alla "cattura di Carbonio nel suolo" è più efficace un prato coltivato a "maggese", posto al di sotto di un impianto fotovoltaico che, un'area boschiva.

Quando una superficie forestale non è ripiantata dopo la sua utilizzazione o viene perduta in modo permanente, a causa d'eventi naturali, **lo stock di C che si era accumulato è disperso.**

Al contrario, i benefici derivanti dalla sostituzione dei combustibili fossili con biomasse forestali sono irreversibili, anche se il modello bioenergetico opera solo per un tempo limitato.

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

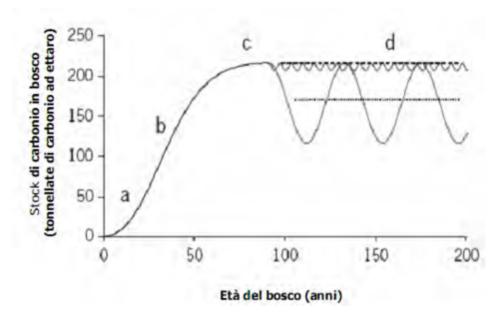


Tabella n. 15: Accumulo di "C" in un nuovo soprassuolo forestale gestito per avere effetto di "carbon sink".

Dalla Tabella n. 15 si possono osservare quattro fasi **d'accumulo del carbonio in un bosco**:

- a. fase iniziale d'affermazione del soprassuolo;
- b. fase di maggior vigore;
- c. fase matura;
- d. fase d'equilibrio nel lungo periodo.

Osservando l'evoluzione per lungo tempo è evidente che, dopo un aumento del "C" durante la fase iniziale di sviluppo del soprassuolo, il "C" non aumenta né diminuisce. Ciò avviene perché l'accumulo di C nella biomassa arborea è bilanciato dalle perdite dello stesso causate da fenomeni di disturbo naturali e dall'ossidazione che si verifica durante i processi di decomposizione del legno degli alberi che, man mano, muoiono e sono sostituiti da soggetti nuovi.

Nel grafico della Tabella n. 15 sono indicati due esempi di dinamica del "C" nel periodo d'equilibrio, con tendenza d'oscillazione ridotta (linea tratteggiata) e alta (linea continua). Non è stata considerata la dinamica del "Carbonio" nel suolo, nella lettiera e nei residui legnosi grossolani.

Fatto salvo che il "soprassuolo" è periodicamente tagliato per fornire legname ed eventualmente bio-energia, si prevede che dopo ogni taglio sia eseguito un pronto reimpianto.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Ipotizzando una successione di diversi turni si osserva come, dopo l'aumento del "C" durante la fase iniziale d'affermazione del soprassuolo, il "C" non aumenta né diminuisce poiché l'aumento è bilanciato dalla rimozione dovuta al taglio ed esbosco.

Nella pratica forestale questo avviene quando un bosco è costituito da tanti soprassuoli, come quello illustrato nella Tabella n. 16, piantati e utilizzati in tempi diversi (compresa forestale).

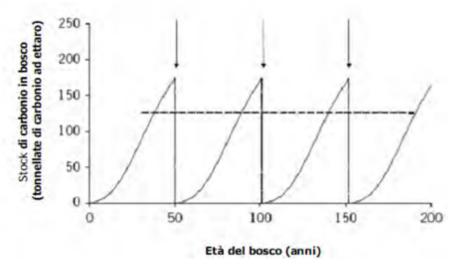


Tabella n. 16: Accumulo di "C" in una nuova piantagione forestale creata per la produzione di legname.

Per il bosco nel suo complesso, quindi, l'accumulo di "C" si può rappresentare più debitamente con la linea tratteggiata.

La dinamica del "C" nel suolo, nella lettiera, nei residui legnosi grossolani e nei prodotti legnosi non è qui considerata; anche l'impatto al di fuori della foresta (prodotti legnosi e bioenergia) è stato escluso.

4.6 Metodologia da applicare per la quantificazione della "CO2 Assorbita dal suolo".

La metodologia da applicare nel progetto relativo, sia alla realizzazione del boschetto che alla coltivazione del suolo dell'impianto fotovoltaico proposto con la pratica agronomica del "maggese vestito", si dovrà prendere in considerazione la durata di un intero ciclo colturale e le varie componenti che lo costituiscono (caratteristiche del suolo, profondità del sottosuolo, modalità di reperimento delle sementi, dei concimi, ecc.).

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Dopo di ciò sarà possibile redigere un bilancio energetico individuando i punti critici e fornendo ad ognuno di questi delle "linee guide" al fine di ridurre la produzione di CO2, partendo dal presupposto che le due attività hanno, comunque, una quantità di "CO2 Assorbita" maggiore della "CO2 prodotta"; tale considerazione si ritiene sia stata sufficientemente motivata in tutto quanto riportato nei precedenti paragrafi.

La formula generale che sarà utilizzata per la redazione del bilancio è la seguente:

CO2 = ((CO2 Assorbita da colture (t)) + (CO2 ASSORBITA dal terreno (t)))

((CO2 prodotta da lavorazioni (t)) + (CO2 prodotta da trattamenti (t)) + (CO2 prodotta da concimazioni (t)) + (CO2 prodotta da potature (t)) + (CO2 prodotta da la raccolta (t)) + (CO2 prodotta da trasferimenti interni (t)) + (CO2 prodotta da trasferimenti esterni (t)) + (CO2 prodotta da processi di trasformazione (t))).

Nel calcolo della "CO2 Prodotta", dopo un intero ciclo di coltivazione, saranno quindi presi in esame i seguenti fattori:

- lavorazioni, concimazioni ed i trattamenti colturali effettuati su tutta la superficie dell'impianto fotovoltaico non interessata da quella occupata dai "servizi", comprensiva di quella compensativa a boschi;
- spostamenti interni all'impianto non legati alle fasi di una coltura, ma dalle diverse attività organizzative aziendali;
- spostamenti necessari per il ritiro delle sementi/concimi presso i fornitori;
- gestione del terreno dell'impianto utile alla "coltivazione conservativa" a "maggese";
- eventuali processi di trasformazione.

Nel calcolo della "CO2 Assorbita" sarà presa in esame la capacità assorbente di tutte le colture e del terreno dell'intera superfice dell'impianto.

Per ogni appezzamento relativo alla composizione dell'impianto fotovoltaico, sarà determinata la capacità di assorbimento e/o produzione di CO2. La quantificazione della CO2 assorbita sarà calcolata utilizzando coefficienti per unità di peso rilevati da bibliografia.

La quantità della biomassa vegetale sarà determinata con indagine da foto aree e spettrometrie all'infrarosso rilevate attraverso il sistema SAPR (SENS FLY EBEE—AG, con camera CANON S110

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

NIR e camera la CANON S110 RGB) con il quale sarà possibile monitorare l'accrescimento delle colture e le relative variazioni della quantità di biomassa nelle diverse fasi fenologiche delle colture.

La "CO2 Aziendale" e nel qual caso "CO2 impiantistica", sarà data dalla differenza tra la CO2 Assorbita e la CO2 Prodotta, se positivo vuol dire che l'azienda assorbe più CO2 di quanta ne produce, se invece sarà negativo vuol dire che l'assorbimento sarà inferiore rispetto alla produzione.

Analiticamente, in fase di attività dell'impianto, si procederà con la seguente metodologia:

- 1. saranno analizzate le seguenti caratteristiche:
 - caratteristiche stazionarie (orografia, pendenza, ecc....);
 - caratteristiche pedologiche.
- 2. Individuazione degli "appezzamenti tipo" e della parcella "Tipo" tenendo conto dei seguenti aspetti:
 - giacitura del terreno;
 - frazionamento dell'impianto in lotti funzionali;
 - coltura (perenne, pluriennale, annuale);
 - pedologia.
- 3. Per verificare l'andamento colturale e per calcolare la biomassa delle varie tipologie messe a dimora, saranno fatti dei rilievi SAPR su ogni particella tipo.
- **4. Per calcolare la biomassa vegetale in grado di assorbire CO2** sarà seguita la procedura a seconda delle diverse colture:
 - nel caso di essenze arbustive oltre a rilevare il volume della biomassa della chioma sarà misurata l'altezza del tronco e la morfologia della chioma;
 - per i seminativi sarà rilevato solo il volume della biomassa.
- 5. In ogni particella tipo individuata saranno realizzati campionamenti della biomassa per calcolarne l'altezza e il peso specifico del campione ad ogni fase fenologica rilevante e le varie caratteristiche utilizzando la seguente metodologia:
 - individuazione di 2 sezioni (2x2 m.) di terreno ai lati dell'impianto fotovoltaico;
 - individuazione di 2 sezioni centrali all'impianto;
 - all'interno delle sezioni sopra descritte saranno effettuati i 4 prelievi di riferimento (dimensioni della superficie di riferimento: 21 cm x 30 cm).

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

- 6. Per ogni particella e coltura tipo si procederà al calcolo della produzione di CO2 generata dalle operazioni colturali e dai trattamenti effettuati nelle varie fasi di crescita della pianta e per la preparazione del terreno prima della semina.
- 7. Per ogni particella e coltura tipo si procederà al calcolo dell'assorbimento di CO2 che varia in base alla crescita della pianta e quindi all'aumento della biomassa.
- 8. Per ogni processo produttivo saranno reperiti i dati relativi al consumo energetico e saranno convertiti in t di CO2.

Infine, sarà stilato un "bilancio energetico" mettendo a confronto i dati precedentemente calcolati.

Il Bilancio verrà rimesso alla Provincia ed all'ARPA Puglia, dopo il primo ciclo di lavorazioni e verrà riproposto con cadenza triennale.

5 La "impronta di carbonio" (carbon footprint-CF) aggregata all'impianto in progetto.

La misura dell'impatto che le attività umane hanno sull'ambiente in termini di emissioni di gas serra è la "*Carbon footprint*" (Cf), letteralmente "*impronta di carbonio*", che misura la quantità complessiva di anidride carbonica e altri gas serra (CH4, N2O, HFC, ecc) associati ad un prodotto e nel qual caso, ad un impianto fotovoltaico, lungo il suo intero ciclo di vita.

Tale misura viene espressa in "quantità di CO2 equivalente emessa" (CO2eq): tutti i Ghg (gas ad effetto serra) indicati dal Protocollo di Kyoto (anidride carbonica, metano, protossido d'azoto,

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

idrofluorocarburi, esafluoruro di zolfo, perfluorocarburi), hanno un proprio "potere climalterante" (il global warming potential, Gwp) il cui valore è proporzionale a quello della CO2 posto convenzionalmente uguale a 1, al quale vengono tutti ricondotti.

Come si rileva, nella definizione stessa di "*Carbon footprint*" si fa espressamente riferimento all'intero ciclo di vita, rendendo il Life Cycle Thinking l'approccio teorico corretto per valutarla.

Se la metodologia LCA considera però numerose "categorie di impatto" lungo il ciclo di vita di un sistema, la valutazione della "Carbon footprint" si focalizza unicamente sulla categoria "Global warming potential" (Gwp), misurata in termini di CO2equivalente.

Il processo di contabilità e di calcolo dell'impronta di carbonio è in via di notevole sviluppo e diversi sono gli approcci proposti, oggetto di numerose pubblicazioni, sia scientifiche sia divulgative: alcuni principi, inerenti alla contabilità o modellazione, sono più o meno universalmente accettati anche se persiste una grande soggettività legata alla metodologia da adottare, alla scelta dei confini del sistema, alla completezza, all'unità funzionale di riferimento.

Esistono alcune norme volontarie di riferimento che vengono utilizzate già da qualche tempo, quali la **Pas 2050** del Bsi (*Specification for the assessment of the life cycle greenhouse gas emissions of goods and services*), il *Ghg protocol corporate standard* e **Iso 14064** (questi ultimi due solo per le Organizzazioni).

Nel 2013 specificatamente per la "Carbon footprint di prodotto" (Cfp) è stato rilasciato il Techinical standard **ISO/TS 14067** che definisce principi, requisiti e linee guida per la quantificazione e la comunicazione della Cfp medesima, costituendosi come primo passo per la pubblicazione dello standard vero e proprio in cui dovrebbe trasformarsi a breve.

Tutte queste norme si basano esplicitamente sulle logiche e gli strumenti metodologici espressi dagli standard internazionali di riferimento per l'LCA, UNI EN ISO 14040:2006 e UNI EN ISO 14044:2006, concentrandosi sulla sola categoria di impatto "Global warming potential", codificando quindi la "Carbon footprint" come bilancio netto delle emissioni di gas serra di un prodotto lungo il suo intero ciclo di vita e, quindi, nel qual caso, dalla realizzazione dei pannelli al fine vita di un impianto fotovoltaico, considerato pari a 30 anni.

È utile ricordare in questo ambito anche la raccomandazione della Commissione Europea, relativa all'uso di metodologie comuni per misurare e comunicare le prestazioni ambientali nel corso del ciclo di vita dei prodotti e delle organizzazioni, che evidenzia l'importanza dell'analisi delle "impronte ambientali" dei prodotti (Pef – Product environmental footprint) e delle organizzazioni (Oef – Organizational environmental footprint), da realizzarsi secondo metodologie e standard

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

riconosciuti, per permettere una adeguata **comunicazione** delle **prestazioni ambientali** di prodotti e organizzazioni.

Da questo punto di vista Lca garantisce, anche tramite le norme ISO di riferimento, l'approccio metodologico che risponde a questi requisiti.

Il calcolo della "Carbon footprint" deve porsi come punto di partenza per avviare percorsi per la riduzione delle emissioni e come primo passo necessario per sviluppare protocolli alternativi che possano garantire, ad un qualsiasi sistema, le medesime performance in termini di efficienza, al contempo riducendo (o anche azzerando) la sua impronta sul clima, anche tramite interventi di compensazione delle emissioni residue.

La "Carbon footprint" si configura anche come forte strumento di comunicazione, una possibile etichetta o marchio di qualità per un prodotto, che si affianca ad altre "impronte" parziali di impatto, quali ad esempio l'impronta idrica e ad etichette già presenti sul mercato quali Emas, Epd o altre certificazioni che identificano un parziale beneficio verso l'ambiente da parte di un prodotto (biologico, compostabile e via dicendo compresi i pannelli fotovoltaici).

In definitiva e per gli scopi che ci siamo prefissati per questa relazione, attraverso la metodologia nota come "Lyfe Cycle Assessment" (LCA) è possibile, per un impianto fotovoltaico e con un appropriato monitoraggio, quantificare il loro "impatto" (positivo) nella capacità di "stoccaggio della CO2".

La metodica LCA ha permesso, quindi, in particolare attraverso le richiamate norme UNI-EN-ISO, di ottenere e confrontare il "sequestro di CO2" in funzione delle diverse specie agricole e, nel qual caso, in quelle previste per la, "coltivazione conservativa" dei suoli e per la realizzazione dei "boschi mediterranei".

Da quanto richiamato e dalla letteratura si evince che per un "bosco" i risultati medi possono sommarsi in:

- Noce/pioppo = 20.179 t/a/ha di CO2eq;
- Olivo (media delle diverse qualità) = 9.542 t/a/ha di CO2eq;
- Quercia = 4.713 t/a/ha di CO2eq.

Sul cotico erboso coltivato nell'area utile dell'impianto fotovoltaico, caratterizzato da diverse specie di graminacee e leguminose (vedi relazione agronomica), sarà calcolato l'accumulo di carbonio mediante misura del LAI (LI-COR LAI 2000, LiCor inc, USA), successivamente raccolto e

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

di particolare interesse per quanto previsto sui suoli che verranno ad essere interessati dalla realizzazione dell'impianto di produzione energetica da fotovoltaico, secondo quanto proposto dall'Agronomo.

La quantità di carbonio accumulata annualmente nelle radici, sia in piante giovani che in quelle vecchie, è risultato pari a circa il 30% del totale accumulatori dagli organi aerei.

Le differenze di accumulo tra gli organi ipogei ed epigei sono riassunte nella sottostante tabella n. 17.

Componenti	%	%	
Componenti	1° anno	2° anno	
		40.0	
Canopy	21	18,8	
Residui lavorazioni olive	14,9	15,3	
produzione di olio	9,5	10	
Cover crop	34,2	36,1	
crescita del tronco	1,4	1	
crescita delle radici	14,9	14,5	
ricambio delle foglie	4,1	4,3	

Tabella n. 17: Percentuale di Carbonio accumulato negli organi ipogei ed ipogei per due anni.

Dalla tabella è possibile rilevare che il ruolo delle "cover crops", che si intende attivare e sviluppare sui terreni dell'impianto fotovoltaico, nel budget del Carbonio, sono fondamentali negli obiettivi di riduzione; i risultati riportati nella tabella n. 17 (Nardino et Altri-2013), contribuiscono alla valutazione della capacità di "Sink" (funzione di accumulo) di un'importante e largamente diffusa categoria di colture, fra cui le "graminacee" e le "leguminose" previste dall'Agronomo.

Dalla tabella e da quanto riportato precedentemente, risulta che l'olivo è una specie arbustiva altamente in grado di fissare e stoccare il carbonio, per cui, in presenza di oliveti infetti dal batterio della "xilella", sarebbe più produttivo ripiantare una piantagione di olivi che, invece, prevedere un "bosco mediterraneo" come forma di compensazione dell'occupazione di suolo da parte dell'impianto fotovoltaico.

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

5.1 La valutazione quantitativa della "Carbon footprint" per l'impianto proposto.

Con la finalità di quantizzare l'impatto dell'impianto fotovoltaico proposto, ai fini della conoscenza dell'impronta ecologica indotta dal "Carbonio", denominata come "Carbon footprint" (Cf), dovuta alla sottrazione di suolo e con le considerazioni progettuali riportate dall'esperto Agronomo, di seguito si riportano alcuni dati di letteratura e dalle banche dati di riferimento, che permettono di giungere alla valutazione della CO2 stoccata nel terreno, grazie alla presenza dell'impianto.

Successivamente si riporterà il confronto con la "CO2" NON immessa in atmosfera nel raffronto con la medesima quantità di energia elettrica prodotta da fonti fossili.

I dati che si forniscono sono rivenienti, come riportato innanzi, dal LCA (Ciclo della vita) che, nel caso di un impianto fotovoltaico è calcolato con i vari metodi richiamati in relazione e fornisce valori differenti che, nel qual caso, si mediano.

Tutto ciò, come già richiamato, nell'evidenza che nella fase di realizzazione e di decommissioning dell'impianto, si registra un'impronta ambientale negativa dovuta, solo ed esclusivamente alle emissioni in atmosfera dei mezzi utilizzati per le attività relative alla realizzazione ed alla dismissione.

Resta ben inciso che nella fase di "esercizio" dell'impianto, non vi è alcuna emissione di gas ad effetto serra e vi è un "beneficio ambientale" dovuto anche alla coltivazione a "maggese" dei suoli utili dell'impianto.

Seguendo i principi del LCA, le richiamate fasi di lavorazione dell'impianto definiscono una "Carbon footprint" che, espressa in "CO2 equivalente" e pur differenziandosi nella tipologia e nelle dimensioni dell'impianto fotovoltaico, porta ad un range di valori molto ampio e compreso fra 8 e 170 gCO2eq/KWh, con un valore di "mediana" in difetto, pari a circa 40 gCO2eq/KWh.

Tali valori sono di molto inferiori alla "carbon footprint" di medesimi impianti di produzione elettrica alimentati con combustibili fossili ed in particolare con:

- Gas naturale: media pari a circa 390 gCO2eq/KWh;
- Carbone: media pari a circa 930 gCO2eq/KWh.

E' del tutto evidente che per tale applicazione si tralascia lo "stoccaggio di carbonio nel suolo" che, come riportato e con la programmazione delle misure di "mitigazione" e "compensazione" previste (bosco mediterraneo e cover crop) portano ad incrementare la capacità di trattenimento della CO2 nell'ordine di circa il 3-7 gCO2eq/KWh e quindi con una media di 5 gCO2eq/KWh.

COMUNE DI MATERA

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Nella premessa di questa relazione sono stati riportati i dati relativi all'impianto ed in particolare quelli reali connessi all'occupazione di "suolo" da parte delle strutture di fondazione e dei servizi (cabine, strade interne, cavidotti).

- 34,64 ha: superfice totale dell'impianto;
- **0,789 ha:** superficie radiante dei moduli fotovoltaici+ superficie destinata a servizi (strade, cabine, ecc.) + superficie per mitigazione spazi a verde, arnie, strisce d'impollinazione, pozze naturalistiche e sassaie;
- 23,85 Ha: totale area destinata all'agricoltura conservativa.

Per l'impianto in oggetto, si è riportato che i suoli sottratti alla tipologia di "cover crop" sono solo dell'ordine del 3,20 % (0,79 ha), per cui la quota di superficie dell'impianto, potenzialmente interessata dalle coltivazioni previste nella relazione del "Piano Colturale" è pari a circa il 96,80%.

Per il calcolo della quantità di "CO2 assorbita" si uso della formula:

CO2 assorbita = Aprato x Assorb.

Dove:

A prato = Area impianto in "agricoltura coinservativa" in ha;

A s = Assorbimento specifico del prato stabile pari a 5 gCO2eq/KWh

Inoltre:

A prato= (A lotto – A imp.)

Dove:

A lotto = Σ Area particelle pari a 24,64 ha;

A imp. = Area effettivamente coperta da "servizi", pari a circa 0,79 ha.

A libera = (Alotto-Aimpianto)= 23,85 ha.

Da ciò il calcolo della CO2 assorbita, considerando anche la durata di un impianto pari a 30 anni, si formula in:

Carbon footprint

CO2 assorbita = [(Alotto – Aimp) + Alibera x Aimp]

area impianto	246.400,00	mq	24,64	На
strade, cabine, ecc	7.890,00	mq	0,79	На

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

DIFFERENZA	238.510,00	mq	23,85	На
		,		
Rapporto	3,20	%	96,80	%
		ı		
CO2 Assorbita	3.692,21	Tonn CO2		
		i		
CO2 Assorbita totale lotto	3.810,56	Tonn CO2		
		i		
Differenza CO2 Asso. 30 anni	118,35	Differenza Co2 30 anni		
Differenza CO2 Ass. 1 anno	3,95	differenza (CO2 * anno	
Rapporto fra CO2	96,89	differenza (CO2 * anno	3,11

CO2 assorbita = **3.962,21** tCO2 eq

Volendo considerare l'ipotesi di un totale utilizzo del terreno del lotto con il lay-out e quindi escludendo l'area destinata ai "servizi" dell'impianto (cabine, strade interne, ecc.), si avrà:

CO2 assorbita (totale lotto) = [Alotto x Aass x 30 anni] = 3.810,56 tCO2 eq

Il rapporto: Cass. Imp./ Cass. Lotto = 96.89% con una differenza del 3.11%

In definitiva, dall'analisi presentata, la riduzione della "CO2 stoccata nel terreno", con l'intero lotto contenente i pannelli fotovoltaici coltivato a "cover crop", sarebbe limitato, annualmente, solo al 3,11 % (118,35 t CO2 eq.) in più rispetto allo stesso terreno con la presenza dell'impianto fotovoltaico.

La particolare condizione del terreno acquisito, con le pertinenze da rispettare ma che possono essere comunque trattate con la "agricoltura conservativa", permette di estendere il beneficio ambientale ad ulteriori 0,79 ha che producono una quantità di CO2 assorbita pari a:

118,35 tCO2 eq.

Il totale della CO2 contenuta nel suolo sale quindi a 3.810,56 tCO2 eq.

Le aree di "servizio" costituenti l'impianto, fatto salvo che al di sotto dei tracher è possibile realizzate colture di "agricoltura conservativa", concorrono ad una riduzione dello stoccaggio della CO2 nel suolo e sottosuolo e per l'intero ciclo di vita dell'impianto pari a 118,35 eq per l'intero ciclo di cita dell'impianto, considerato pari a 30 anni; valore irrisorio rispetto alle tonnellate

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

in grado di essere stoccate nel terreno, con le modalità descritte e nell'intero ciclo di vita dell'impianto (30 anni), pari a 3.810,56 tCO2 eq.

Nella realtà, i terreni individuati per la realizzazione dell'impianto sono tutt'altro che coltivati con "agricoltura conservativa", per cui nell'attuale stato di abbandono colturale e/o di "agricoltura tradizionale", la perdita di "Carbonio Organico" dal serbatoio "suolo e sottosuolo" è molto, ma molto maggiore, rispetto alla differenza calcolata per la superfice reale interessata dall'impianto fotovoltaico e ipotizzata come se fosse coltivata ad "agricoltura conservativa".

Così come riportato nella relazione di "*mitigazioni*" e "*compensazioni*, un utile indicatore per definire il risparmio di combustibile derivante dall'utilizzo di fonti energetiche rinnovabili è il fattore di conversione dell'energia elettrica in energia primaria [TEP/MWh].

Questo coefficiente individua le T.E.P. (Tonnellate Equivalenti di Petrolio) necessarie per la realizzazione di $\bf 1$ MWh di energia, ovvero le TEP risparmiate con l'adozione di tecnologie fotovoltaiche per la produzione di energia elettrica, considerando un fattore di conversione di $\bf 1.700$ h/a.

Risparmio in combustibile fossile x Mw prodotto	TEP (1 MW)
Fattore di conversione dell'energia elettrica in energia primaria (TEP /MWh)	0,187
TEP Risparmiate in un anno (t)	317,9
TEOP risparmiate in 30 anni (t)	9.537

• la fonte dei dati è relativa all'art. 2, comma 3 dei Decreti Ministeriali del 20 luglio 2004.

Inoltre, l'impianto fotovoltaico consente la riduzione di emissioni in atmosfera delle sostanze che hanno effetto inquinante e di quelle che contribuiscono all'effetto serra, sempre per la produzione di **1 MWh**. e, considerando i fattori di conversione riportati nella Tabelle n. 6 e 15 (Ispra) per un mix di combustibili e per il 2016 come anno di riferimento (1.700 h), si produce la tabella che segue (x MWp):

Emissioni evitate in atmosfera	CO ₂	S0x	Nox	Polveri
Emissioni specifiche in Atmosfera (Kg/MWh)	303,5	71,6	237,6	5,7
Emissioni evitate in un anno (tonn.) (circa)	515,95	121,72	403,92	9,69

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Emissioni 6	evitate in 30 anni (tonn) (circa)	15.478,50	3.651,60	12.117,60	290,70
	Quantitativi per n. 1 MW				

Tali valori desunti per la produzione equivalente da mix fossile pari ad **1Mw**, proiettati per l'impianto in essere che presenta una produzione di **15,014 MWp** e con il rendimento richiamato (0,9%), porta ad un risparmio ambientale e nei termini temporali di **30 anni pari a**:

- emissioni in atmosfera per impianto da 15,014 MWp:

	CO2	SO2	NOx	Polveri
Emissioni evitate in 30 anni (Kg) (circa)	232.394,20	54.825,12	181.933,65	4.364,57

- combustibile fossile risparmiato per impianto da 15,014 MWp:

	1 anno	30 anni
TEOP risparmiate in 30 anni	9.537,00	143.188,52

In conclusione, un sistema fotovoltaico presenta l'indubbio vantaggio di produrre energia elettrica senza emettere, in fase di esercizio, <u>alcuna sostanza inquinante in atmosfera</u>; in altri termini, la produzione di energia elettrica, a partire dall'irraggiamento solare, in sostituzione delle fonti fossili <u>consente un risparmio netto di emissioni atmosferiche inquinanti, come riportate</u> nelle richiamate tabelle.

Ai valori di risparmio delle quantità massiche immesse in atmosfera per la medesima quantità di energia prodotta da fonti fossili, vanno aggiunte le quantità di "Carbonio" ed altri gas climalteranti, che i terreni dell'impianto fotovoltaico, convertiti in "coltivazioni conservative", riescono a catturare.

A questi valori di mancata emissione in atmosfera vanno detratti i minimi incrementi prodotti nella fase di cantiere e di decommissionig dell'impianto, prodotti dai mezzi in movimento ed il cui rapporto con le quantità massiche di CO2 eq. non immesse, è veramente irrisorio.

In particolare, in questa fase di produzione normativa, relativa alla "decarbonizzazione", l'impianto fotovoltaico è un produttore di "energia rinnovabile" che risponde pienamente ai

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

principi della "decarbonizzazione", presentando una "carbon footprint" del tutto positiva ed a beneficio di condizioni ambientali migliori.

L'impianto permetterebbe di evitare un'immissione in atmosfera di CO2 pari a 232.394,20 t eq. in 30 anni di produzione energetica ed un risparmio di combustibile fossile pari a 143.188,52 TEOP.

Al risparmio della CO2 immessa in atmosfera da "fonti fossili", vanno aggiunte le 3.692,21 tCO2 eq che la coltivazione del suolo libero dell'impianto, effettuato mediante "agricoltura conservativa" comporta nel totale "beneficio ambientale", riferito alla "carbon footprint".

In definitiva, la "impronta ecologica" di un impianto fotovoltaico è del tutto positiva nel considerare, sia la matrice "aria atmosfera" che, quella "suolo e sottosuolo".

6 Considerazioni conclusive.

Si è ritenuto opportuno sviluppare questa relazione in virtù del fatto che, erroneamente, è in uso il concetto che la realizzazione di un impianto fotovoltaico, **possa indurre ad una perdita della** "capacità di sequestro naturale della CO2 del suolo".

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Si è voluto, anche attraverso il riferimento alla normativa ed alla bibliografia di settore, evidenziare quanto le opere di "mitigazione" e "compensazione" previste nel progetto dell'impianto fotovoltaico proposto dalla Alpha Energie Srl, denominato AEPV03_B ed allocato nel territorio di Matera, in località "Masseria Sant'Agostino", sia tale da ottenere una "impronta ambientale" del tutto positiva, con evidenti benefici delle quantità massiche immesse in atmosfera.

In particolare, si è reso necessario approfondire considerazioni in merito alla capacità del "suolo" di immagazzinare "Carbonio organico" (carbon sink) che, con le introduzioni di nuove metodiche agricole previste dall'esperto Agronomo, rendono tale aspetto estremamente positivo, a differenza di quanto avviene nell'attuale condizione di coltivazione "agricola tradizionale".

L'utilizzo di una metodica di "coltivazione conservativa", a differenza della "coltivazione tradizionale", ha permesso di dimostrare, anche se ben nota da alcuni lustri, quanto la "coltivazione conservativa" sia molto più efficace nella funzione di contenimento del "carbonio" nel suolo.

Lo specialista Agronomo nella propria relazione tecnica del "Piano colturale" entra nel merito dell'utilizzo dei terreni non interessati direttamente dalle strutture impiantistiche, avanzando l'ipotesi si effettuare, su tali aree "libere", la "coltivazione conservativa" con la tecnica della "minimum tillage" e, quando possibile, la "no-tillage".

La "agricoltura conservativa" fa riferimento a tutte quelle pratiche che minimizzano l'alterazione della composizione, della struttura e della naturale biodiversità della matrice "suolo" salvaguardandolo dall'erosione e dalla degradazione e permettendo di amplificare la capacità di trattenere la i "gas serra" che, nelle politiche/norme derivanti dal Protocollo di Kyoto, sino espresse in CO2 equivalente, con l'applicazione dei coefficienti di GWP (Global Warming Potential) di ciascun composto.

In sostanza, la "agricoltura conservativa", rispetto a quella tradizionale, si differenzia per la non applicazione di tutte quelle pratiche che prevedono un rimescolamento degli strati del terreno che nel medio o lungo periodo portano a una riduzione della sostanza organica nei suoli ed alla immissione in atmosfera dei gas clima alteranti, presenti nel suolo.

In definitiva, la realizzazione delle metodiche della "agricoltura conservativa" sulle aree dell'impronta del parco fotovoltaico utili per la coltivazione, costituisce la giusta connessione fra la produzione di energia da fonte rinnovabile e la produzione da "agricoltura conservativa" che, congiuntamente, viene riconosciuta come tecnologia "agro-fotovoltaica" (agrivoltaic system).

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

Si è avuto modo di riportare che tale applicazione tecnologica viene a produrre notevoli benefici "ambientali" connessi, sostanzialmente: al trattenere nelle matrici suolo e sottosuolo la CO2 e gli altri gas clima alteranti, a migliorare le condizioni di "microclima" che inducono ad una migliore produzione agricola e ad un maggior rendimento degli stessi pannelli fotovoltaici.

Non è affatto vero, quindi, che sia valido l'assunto che il suolo di un impianto fotovoltaico induca ad una maggiore perdita di "carbonio organico" intrappolato; è il contrario ove si utilizzano, come previsto, metodiche di "agricoltura conservativa" che, per come riportato, incrementano lo "stock di C" nel suolo e nel sottosuolo.

Questa "mitigazione" prevista nel progetto risulta, quindi, del tutto positiva nel rapporto quantizzato della "carbon footprint"; infatti, la metodica applicata permette di ottenere una quantità di "Carbonio assorbito", per l'intera area "libera" dell'impianto e quindi non impegnata dalle strutture impiantistiche, pari a 3.692,21tCO2 eq

Nel mentre, il calcolo della "CO2 Assorbita" per tutta l'area dell'impianto, considerando anche le superfici occupate dalle strutture impiantistiche è pari a 3.810,56 tCO2 eq che, nel rapporto con quella reale dell'area utile per il lay-out è pari al 3,11 %

In definitiva, dall'analisi presentata, la riduzione della "CO2 stoccata nel terreno", con l'intero lotto d'imposta del lay-out e coltivato a "agrovoltaico" e con "minimun/no–tillage", sarebbe limitato solo al 3,11 % e la presenza dell'impianto porterebbe ad una riduzione dello stoccaggio pari a 118,35 tCO2 eq. che, in termini annuali equivale, (118,35/30) a: 3,95 tCO2 eq. /a.

E' del tutto evidente, però, che tale minima differenza di minore "CO2 stoccata nel terreno" è tale solo ove tutte le superfici delle particelle, costituenti l'impianto, fossero coltivate con la "agricoltura conservativa", come previsto.

Nella realtà, i terreni individuati per la realizzazione dell'impianto sono ad oggi, tutt'altro che coltivati con "agricoltura conservativa", per cui nell'attuale stato di abbandono colturale e/o di agricoltura tradizionale, la perdita di "Carbonio Organico" dal serbatoio "suolo e sottosuolo" è molto, ma molto maggiore, rispetto alla differenza calcolata per la superfice reale interessata dall'impianto fotovoltaico ed ipotizzata come se fosse coltivata con "minimun/no-tillage".

Fra le "compensazioni" previste per l'utilizzo di suolo vi è anche la realizzazione di un "bosco mediterranee; si è riportato che l'afforestazione e la riforestazione, o l'adozione di qualsivoglia modalità di gestione delle coltiva-zioni agricole e dei soprassuoli forestali, determinino un aumento degli "stock di C" nelle piante, nella lettiera e nel suolo, rimuovendo un'ulteriore porzione di CO2 dall'atmosfera. Ad esempio, se un'area agricola o pascoliva è convertita in bosco, una quota di CO2

COSTRUZIONE ED ESERCIZIO DI UN IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE FOTOVOLTAICA AVENTE POTENZA IN IMMISSIONE PARI A 14,993 MW E POTENZA MODULI PARI A 15,014 MWP CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA - IMPIANTO AEPV03_B UBICATO IN AGRO DEL COMUNE DI MATERA IN LOCALITA' MASSERIA SANT'AGOSTINO AL N.C.E.U. ED AI FOGLI N. 39-40. IMPIANTO AGROVOLTAICO.

RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

è rimossa dall'atmosfera e immagazzinata nella biomassa arborea; lo "stock di C" su quell'area aumenta, creando quindi un "sink" di carbonio.

In ogni modo, la foresta di nuova formazione funge da "sink di C" fino a quando lo "stock di C" continua a crescere; aumenta fintantoché non sia raggiunto il limite massimo (equilibrium), oltre al quale le perdite dovute alla respirazione e alla morte degli alberi, bilanciano l'aumento di "C" dovuto alla fotosintesi. Inoltre, il verificarsi di eventi esterni straordinari, quali ad esempio incendi, temporali o attacchi fitopatologici, rappresenta un rischio aggiuntivo per l'efficacia di fissazione del soprassuolo.

Anche il legno prelevato dal bosco e trasformato in prodotti legnosi costituisce uno stock di carbonio; questo stock (extraboschivo) aumenterà (agendo pertanto da sink) fino a quando il deperimento e la distruzione dei vecchi prodotti resterà inferiore alla fabbricazione di nuovi.

Quindi i prodotti dai boschi derivanti hanno una capacità finita di rimuovere CO2 dall'atmosfera e non agiscono come "sink" perpetuo di Carbonio.

Al contrario, un terreno che è destinato alla produzione di biomassa (maggese) consente di produrre materiali con effetto sostitutivo rispetto ai combustibili fossili e può potenzialmente ridurre indefinitamente le emissioni di gas serra.

Appare opportuno rilevare, quindi, che ai fini del bilancio connesso alla "cattura di Carbonio nel suolo" è più efficace un prato coltivato ad "agrovoltaico", posto al di sotto di un impianto fotovoltaico che, un'area boschiva.

Dalla tabella n. 15 e da quanto riportato precedentemente, risulta che <u>l'olivo è una specie</u> arbustiva altamente in grado di fissare e stoccare il carbonio, più di altre specie arbustive, per cui, nell'ambito del lay-out dell'impianto si è ritenuto più produttivo ripiantare una piantagione di olivi che, invece, prevedere un "bosco mediterraneo", come forma di compensazione dell'occupazione di suolo da parte dell'impianto fotovoltaico.

In definitiva, si ritiene di aver adeguatamente riportato che la "impronta ecologica" e, nel qual caso, la "Carbon footprint", di un impianto fotovoltaico gestito nelle "mitigazioni" e nelle "compensazioni", come quello previsto dalla Alpha Energie Srl, sia del tutto positiva, in merito all'attivazione dei processi di "decarbonizzazione"; altresì, con le medesime premesse, è possibile affermare che i terreni dell'impianto, liberi dalle strutture impiantistiche, se gestiti con "agricoltura conservativa", sono in grado: non solo di bloccare la perdita di "Carbonio Organico" dal suolo, che avviene allo stato attuale coltivazione con "agricoltura tradizionale", ma di incrementare

COMUNE DI MATERA RCF_03.04-RELAZIONE: "AGRO-FOTOVOLTAICO E CARBON FOOTPRINT-BENEFICIO AMBIENTALE"

notevolmente la capacità di intrappolamento e conservazione del "carbonio organico" nei suoli e sottosuoli, dei terreni liberi dalle strutture di "servizio" dell'impianto fotovoltaico.

Infine, è necessario riportare che l'applicazione della metodica dello "agro-fotovoltaico", oltre ad essere perfettamente in linea con il Piano Nazionale Integrato per l'Energia ed il Clima (PNIEC) e con i processi di "decarbonizzazione" previsti per il settore agricolo, con i "benefici ambientali" riportati, viene a costituire anche un "beneficio sociale ed economico" in quanto produce reddito e permette la formazione e l'integrazione di giovani professionisti in un settore innovativo dell'agricoltura.

Brindisi ottobre 2021

prof. dott. Francesco Magno geologo-consulente ambientale

