

MINISTERO DELLA TRANSIZIONE ECOLOGICA

REGIONE PUGLIA

COMUNE di San Marco in Lamis

	COMONE di Sail Mai co in Edinis											
Progettazione e Coordinamento	Ing. Giovanni Cis Tel. 349 0737323 E-Mail: giovanni.cis@ingpec.eu											
Studio Ambientale	Ing. Leo Baldo Petitti Tel. 329 1145542 E-Mail: leobaldo.petitti@ingpec.eu							***				
Studio Naturalistico	Dott. Forestale Lupo Corso Roma, 110 71121 Foggia E-Mail: luigilupo@libero.it			Studio) S						
Studio Geologico	Dott. Pasquale G. Longo Via Pescasseroli 13 66100 Chieti Dott. N. D'Errico Via Goito 8 71017 Torremaggiore (FG)					Studio Idraulico	Ing. A.L. Giord Tel. +39 346.63309 E-Mail: lauragiordano.ing@	966 -	Studio Acustico	Arch. Ma Via Savona 70022 Altai		
Proponente	DEVELOPMENT SRL Via Vittor Pisani, 16 - 20124 Milano (MI) - P.IVA 04300510718 Via Vittor Pisani, 16 - 20124 Milano (MI) - P.IVA 04300510718											
Opera	PROGETTO PER UN IMPIANTO DI PRODUZIONE AGRO-ENERGETICO INTEGRATO DA REALIZZARSI NEL COMUNE DI SAN MARCO IN LAMIS (FG) IN LOCALITA' "POSTA D'INNANZI"											
	Folder JLHWZY9_Progetto definitivo.zip											
Oggetto	Nome file JLHWZY9_PD_R18_Rev0_Relazione_producibilità_impianto											
	Descrizione elaborato Relazione di producibilità dell'impianto					ELABORATO D 10						
	Relazione di producibilità dell'impianto R 18											
D.		2-1-	0	allo service					Ing. G. CIS		G. CIS	Development Srl
Rev. Scala:												
Formato	:		Codice Pratica			JLHWZY	′ 9	J				

Sommario

1.	Strumento Utilizzato	3
	Dati Meteo Utilizzati	
	Stima di Produttività ad impianto nuovo	
	3.1 Produzione unitaria	
	3.2 Incremento di produzione per l'utilizzo di moduli bifacciali	
	3.3 Perdite di efficienza nel tempo dei pannelli solari	
4.	Stima di Produttività dell'impianto nel periodo di vita operativa	7

1. Strumento Utilizzato

Il calcolo della produzione fotovoltaica è stato realizzato con riferimento alla posizione geografica del sito utilizzando come strumento PVGIS (*Photovoltaic Geographical Information System*), software reso disponibile dal *Joint Research Centre* della Commissione Europea.

PVGIS è universalmente riconosciuto essere uno strumento attendibile e affidabile nella stima della produzione di energia da fonte fotovoltaica.

2. Dati Meteo Utilizzati

PVGIS simula la produzione di energia utilizzando dati meteo rielaborati su base statistica.

Come Base Dati Meteo si è utilizzato il Database CMSAF, reso disponibile da EUMETSAT che fornisce i dati medi di radiazione solare diretta e indiretta ottenuti da rilevazioni satellitari, umidità, temperatura e velocità del vento, rielaborati su dati statistici, parametrizzandoli con misure reali al suolo.

3. Stima di Produttività ad impianto nuovo

3.1 Produzione unitaria

Al fine di una immediata leggibilità e confronto, la producibilità fotovoltaica a Foggia è stata stimata per un impianto di potenza installata unitaria di 1 kW_p.

Tra i dati input (Tab. 1) inseriti al fine della stima di produttività dell'impianto, oltre alla localizzazione e al materiale dei moduli fotovoltaici, ci sono da considerare le perdite del sistema. Nel caso in analisi, le perdite di sistema considerate sono la somma dei seguenti contributi: Mismatching tra stringhe, inverter, cavi MT e trasformazione MT/AT, che per i grandi impianti *Utility Scale* sono mediamente stimabili nel 10% dell'energia prodotta.

	_
Valori inseriti:	
Luogo [Lat/Lon]:	41.578, 15.673
Orizzonte:	Calcolato
Database solare:	PVGIS-SARAH
	Silicio
Tecnologia FV:	cristallino
	asse inclinata
FV installato [kWp]:	1
Perdite di sistema [%]:	10

Tabella 1 - Dati input inseriti per la simulazione PVGIS.

Successivamente lo strumento PVGIS fornisce tra gli output (Tab. 2), oltre al valore di producibilità fotovoltaica, la stima delle perdite di cavi e inverter, causate da temperatura esterna locale e irradianza bassa, dagli effetti di riflessione e dall'angolo di incidenza.

L'applicazione di PVGIS con i dati CMSAF fornisce per il Sud Italia stime attendibili di produttività, che trovano puntuale riscontro negli impianti realizzati a partire dal 2006 fino ad oggi. Per quanto riguarda l'impianto oggetto della presente relazione l'analisi ha fornito come output una produzione unitaria annuale pari a 1841.13 kWh/kW_p.

Output del calcolo:	
Slope angle [°]:	0
Produzione annuale FV [kWh]:	1841,13
Irraggiamento annuale [kWh/m2]:	2261,69
Variazione interannuale [kWh]:	49,5
Variazione di produzione a causa di:	
Angolo d'incidenza [%]:	-1.75
Effetti spettrali [%]:	0,7
Temperatura e irradianza bassa [%]:	-8,58
Perdite totali [%]:	-18,59

Tabella 2 - Output simulazione PVGIS.

PVGIS fornisce anche l'output delle medie mensili (Tab. 3) della produzione elettrica per un impianto fotovoltaico di potenza installata unitaria di 1 kW_p (Fig. 1) e di irradiazione globale per metro quadrato del piano dei moduli fotovoltaici (Fig. 2).

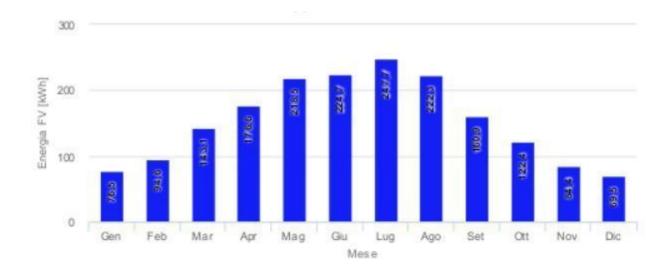


Figura 1 – Media mensile di produzione elettrica dell'impianto fotovoltaico.

Figura 2 - Media mensile di irradiazione globale per metro quadro sul piano dei pannelli fotovoltaici.

Mese	E_m	H(i)_m	SD_m
Gennaio	76.49	87.4	12.03
Febbraio	94.55	107.96	11.15
Marzo	143.11	167.48	15.36
Aprile	176.63	213.09	13.31
Maggio	218.5	270.86	15.01
Giugno	224.71	286.54	11.57
Luglio	247.68	320.11	10.9
Agosto	222.34	284.83	15.21
Settembre	160.85	199.22	9.9
Ottobre	122.37	146.13	13.41
Novembre	84.42	98.18	9.93
Dicembre	69.49	79.89	10.45

E_m: media mensile del rendimento energetico dal sistema scelto [kWh];

H_m: media mensile di irraggiamento al metro quadrato sui moduli del sistema scelto [kWh/m²];

SD_m: variazione standard del rendimento mensile di anno in anno [kWh].

Tabella 3 - Tabella di riepilogo delle medie mensili di produzione elettrica e di irradiazione globale sul piano dei pannelli fotovoltaici.

L'effetto dell'ombreggiamento reciproco nelle prime ore dopo l'alba e nelle ultime prima del tramonto, e gli effetti di mismatching tra i pannelli portano ad una riduzione di producibilità stimata del 5%.

La produzione fotovoltaica annuale unitaria è pertanto pari a 1841.13 kWh/kWp.

3.2 Incremento di produzione per l'utilizzo di moduli bifacciali

Nell'impianto in analisi, si utilizzeranno moduli fotovoltaici bifacciali. Significa che anche il retro del modulo, colpito dalla radiazione riflessa dal terreno e dall'atmosfera, contribuisce alla produzione fotovoltaica.

La stima è difficile, essendo questo contributo estremamente variabile in dipendenza della radiazione diretta che arriva al suolo e dall'albedo dello stesso. Dalla letteratura tecnica, riguardante questo argomento, si riscontra un aumento di produzione compreso nel range 5% - 20% della produzione della componente "Front".

L'albedo risulta estremamente variabile, anche a parità di superficie. Ad esempio, l'albedo assume un valore tipico di 0,20 per erba secca, mentre l'erba fresca ha un valore caratteristico di circa 0,26.

Nel caso analizzato, nel periodo di maggior produzione, considerata le specie agricole coltivata, si può ragionevolmente assumere il valore di albedo dell'erba secca pari a colture agricole, ovvero sia un valore di **albedo 0,20.**

L'applicazione di questo coefficiente di albedo comporta, per impianti fotovoltaici monoassiali, un incremento di produzione del 10%. Cautelativamente, nelle tabelle che seguono ci si riferisce ad un incremento dato dalla facciata "back" dei moduli fotovoltaici biassiali del 5%.

La Producibilità Fotovoltaica Unitaria Annua incrementata per l'utilizzo dei moduli bifacciali è pertanto pari a 1933,19 kWh/kWp.

3.3 Perdite di efficienza nel tempo dei pannelli solari

I dati forniti dagli stessi produttori di moduli indicano nello 0,5% la perdita di efficienza annua dei moduli solari. Questo valore coincide con il dato di letteratura e con i riscontri sperimentali degli impianti in esercizio ormai da numerosi anni.

4. Stima di Produttività dell'impianto nel periodo di vita operativa

La produzione effettiva del nuovo impianto (anno 1) si calcola tenendo conto del contributo dovuto all'impiego dei moduli bifacciali (punto 3.2) ovvero sommando alla produzione della parte frontale del pannello fotovoltaico (Produzione FRONT) l'incremento di produzione dovuto alla parte posteriore del pannello (Produzione BACK).

La produzione effettiva della parte frontale del pannello si calcola moltiplicando la produzione unitaria emersa dall'analisi di PVGIS (punto 3.1) per la potenza installata dell'impianto.

Per l'impianto di **52,398 MW**_p la produzione all'anno 1 è quindi pari a:

1.841,13 kWh × 52.398 kW_p ×
$$\frac{(1+5\%)}{1000}$$
 = 101.295 MWh/anno

La tabella che segue (Tab. 4) riporta la stima di produzione per ciascun anno di vita operativa (per un totale di 25 anni) dell'impianto fotovoltaico, riducendola delle perdite per vetustà (punto 3.3):

Produzione totale annua [kWh/y]	Contributo BACK [kWh/y]	Contributo FRONT [kWh/y]
101.295.106,23	5.064.755,31	96.230.350,92
100.839.278,25	5.041.963,91	95.797.314,34
100.385.501,50	5.019.275,07	95.366.226,42
99.933.766,74	4.996.688,34	94.937.078,40
99.484.064,79	4.974.203,24	94.509.861,55
99.036.386,50	4.951.819,32	94.084.567,17
98.590.722,76	4.929.536,14	93.661.186,62
98.147.064,51	4.907.353,23	93.239.711,28
97.705.402,72	4.885.270,14	92.820.132,58
97.265.728,40	4.863.286,42	92.402.441,98
	101.295.106,23 100.839.278,25 100.385.501,50 99.933.766,74 99.484.064,79 99.036.386,50 98.590.722,76 98.147.064,51 97.705.402,72	101.295.106,23 5.064.755,31 100.839.278,25 5.041.963,91 100.385.501,50 5.019.275,07 99.933.766,74 4.996.688,34 99.484.064,79 4.974.203,24 99.036.386,50 4.951.819,32 98.590.722,76 4.929.536,14 98.147.064,51 4.907.353,23 97.705.402,72 4.885.270,14

Anno	Produzione totale annua [kWh/y]	Contributo BACK [kWh/y]	Contributo FRONT [kWh/y]
11	96.828.032,63	4.841.401,63	91.986.630,99
12	96.392.306,48	4.819.615,32	91.572.691,16
13	95.958.541,10	4.797.927,06	91.160.614,05
14	95.526.727,67	4.776.336,38	90.750.391,28
15	95.096.857,39	4.754.842,87	90.342.014,52
16	94.668.921,53	4.733.446,08	89.935.475,46
17	94.242.911,39	4.712.145,57	89.530.765,82
18	93.818.818,28	4.690.940,91	89.127.877,37
19	93.396.633,60	4.669.831,68	88.726.801,92
20	92.976.348,75	4.648.817,44	88.327.531,31
21	92.557.955,18	4.627.897,76	87.930.057,42
22	92.141.444,38	4.607.072,22	87.534.372,16
23	91.726.807,88	4.586.340,39	87.140.467,49
24	91.314.037,25	4.565.701,86	86.748.335,39
25	90.903.124,08	4.545.156,20	86.357.967,88
тот.	2.400.232.489,98	120.011.624,50	2.280.220.865,48

Tabella 4 - Stima di produzione per 25 anni di vita operativa dell'impianto fotovoltaico.