

COMUNE DI ROTELLO (CB)

19LOCALITÀ COMMITTENTE

IBVI 3 S.R.L.

TIPO DOCUMENTO

RAPPORTO TECNICO INDAGINI GEOFISICHE E GEOGNOSTICHE CARATTERIZZAZIONE SISMICA DEL SOTTOSUOLO E CALCOLO DEL PARAMETRO VS,eq - D.M. 17.01.2018 -

OGGETTO

PROGETTO DI UN IMPIANTO FOTOVOLTAICO DA 120,16 MW

INDICE

1. I	Prem	IESSA	. 3
2. (TTERIZZAZIONE SISMICA DEL SOTTOSUOLO	. 4
2.1	Pro	ospezione MASW	4
2.2	Str	rumentazione utilizzata	5
2	.2.1	Bibliografia	6
2.3	Ris	sultati delle prospezioni	7
2	.3.1	Quadro sintetico dei risultati	41
3. I	Pros	PEZIONE SISMICA TOMOGRAFICA	44
3.1	Ce	enni Teorici	44
3.2	Str	rumentazione utilizzata	46
3.3	Ris	sultati delle prospezioni	47
3.4	De	escrizione dei risultati	67

Allegati: Rapporto Tecnico prove penetrometriche DPSH

1. PREMESSA

Nel presente documento sono illustrati i risultati di una campagna di indagini geognostiche e geofisiche effettuata su incarico della IBVI 3 s.r.l. a supporto dello studio geologico relativo al progetto di un impianto fotovoltaico da 120,16 MW da realizzare nel territorio del comune di Rotello (CB).

Sono state effettuate le seguenti indagini geofisiche,

- N. 34 prospezioni MASW per la definizione della sismostratigrafia e della categoria del sottosuolo, ai sensi del D.M. 17.01.18;
- N. 20 prospezioni sismiche tomografiche a rifrazione per la definizione di sezioni bidimensionali ad elevata risoluzione del sottosuolo;
- N. 8 prove penetrometriche DPSH per la valutazione della resistenza meccanica dei terreni.

Le prove sono ubicate nell'allegata cartografia in scala 1:10.000.

2. CARATTERIZZAZIONE SISMICA DEL SOTTOSUOLO

La nuova normativa tecnica sulle costruzioni, il D.M. 17.01.2018, a differenza delle precedente (D.M. 14.01.08), di cui recepisce gran parte dei contenuti, introduce il concetto di "*velocità equivalente Vs*", che viene calcolata attraverso l'espressione:

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

dove H rappresenta la profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore ad 800 m/s. Per terreni con profondità H del substrato superiore o pari a 30 m, la velocità equivalente delle onde di taglio Vs_{eq} è definita dal parametro Vs₃₀, ottenuto ponendo H=30 nella precedente espressione e considerando le proprietà degli strati del terreno fino a quella profondità.

2.1 Prospezione MASW

Il metodo MASW (Multichannel Analysis of Surface Waves) è una tecnica di indagine non invasiva che individua il profilo di velocità delle onde di taglio verticali Vs, basandosi sulla misura delle onde superficiali fatta in corrispondenza di diversi sensori (accelerometri o geofoni) posti sulla superficie del suolo. Il contributo predominante alle onde superficiali è dato dalle onde di Rayleigh, che viaggiano con una velocità correlata alla rigidezza della porzione di terreno interessata dalla propagazione delle onde. In un mezzo stratificato le onde di Rayleigh sono dispersive, cioè onde con diverse lunghezze d'onda si propagano con diverse velocità di fase e velocità di gruppo (Achenbach, J.D., 1999, Aki, K. and Richards, P.G., 1980) o detto in maniera equivalente la velocità di fase (o di gruppo) apparente delle onde di Rayleigh dipende dalla frequenza di propagazione. La natura dispersiva delle onde superficiali è correlabile al fatto che onde ad alta frequenza con lunghezza d'onda corta si propagano negli strati più superficiali e quindi danno informazioni sulla parte più superficiale del suolo, invece onde a bassa frequenza si propagano negli strati più profondi e guindi interessano gli strati più profondi del suolo Il metodo di indagine MASW si distingue in metodo attivo e metodo passivo (Zywicki, D.J. 1999) o in una combinazione di entrambi. Nel metodo attivo le onde superficiali generate in un punto sulla superficie del suolo sono misurate da uno stendimento lineare di sensori. Nel metodo passivo lo stendimento dei sensori può essere sia lineare, sia circolare e si misura il rumore ambientale di fondo esistente. Il metodo attivo generalmente consente di ottenere una velocità di fase (o curva di dispersione) sperimentale apparente nel range di frequenze compreso tra 5Hz e 70Hz, quindi dà informazioni sulla parte più superficiale del suolo, sui primi 30m-50m, in funzione della rigidezza del suolo. Il metodo passivo in genere consente di tracciare una velocità di fase apparente sperimentale compresa tra 0 Hz e

10Hz, quindi dà informazioni sugli strati più profondi del suolo, generalmente al di sotto dei 50 m, in funzione della rigidezza del suolo. Nella presente indagine si effettua il metodo MASW attivo che consente la classificazione sismica dei suoli, perché fornisce il profilo di velocità entro i primi 30m di profondità. Il metodo passivo è più usato quando si ha interesse ad avere informazioni, comunque meno precise, sugli strati più profondi. Il metodo MASW consiste in tre fasi (Roma, 2002):

1. calcolo della velocità di fase (o curva di dispersione) apparente sperimentale;

2. calcolo della velocità di fase apparente numerica;

3. individuazione del profilo di velocità delle onde di taglio verticali Vs, modificando opportunamente lo spessore h, le velocità delle onde di taglio Vs e di compressione Vp (o in maniera alternativa alle velocità Vp è possibile assegnare il coefficiente di Poisson u), la densità di massa r degli strati che costituiscono il modello del suolo, fino a raggiungere una sovrapposizione ottimale tra la velocità di fase (o curva di dispersione) sperimentale e la velocità di fase (o curva di dispersione) numerica corrispondente al modello di suolo assegnato.

Il modello di suolo e quindi il profilo di velocità delle onde di taglio verticali possono essere individuati con procedura manuale o con procedura automatica o con una combinazione delle due.

Generalmente si assegnano il numero di strati del modello, il coefficiente di Poisson u, la densità di massa r e si variano lo spessore h e la velocità Vs degli strati. Nella procedura manuale l'utente assegna per tentativi diversi valori delle velocità Vs e degli spessori h, cercando di avvicinare la curva di dispersione numerica alla curva di dispersione sperimentale. Nella procedura automatica (Roma, 2001-2, Joh, 1998) la ricerca del profilo di velocità ottimale è affidata ad un algoritmo di ricerca globale o locale che cerca di minimizzare l'errore tra la curva sperimentale e la curva numerica.

Per le prospezioni del presene lavoro è stata utilizzata una configurazione a 24 canali, step 1,5 m, offset 3 m, per una lunghezza totale

2.2 STRUMENTAZIONE UTILIZZATA

Per la realizzazione delle prospezioni sismiche in oggetto è stato utilizzato un sismografo a memoria incrementale per sismica a rifrazione e riflessione della MAE, modello A6000-S a 24 canali con risoluzione del segnale a 24 bit per canale.

Nella tabella seguente sono riassunte le caratteristiche tecniche dell'attrezzatura utilizzata.

DATI TECNICI DELLA STRUMENTAZIONE IMPIEGATA				
MODELLO SISMOGRAFO	N. CANALI			
M.A.E. A-6000-S	24 (differenziali)	and the second sec		
CONVERSIONE A/D	CAMPIONI PER CANALE			
24 bit a singolo canale	10.922			
CAMPIONAMENTO	LARGHEZZA DI BANDA			
50-50.000 camp./sec.	0-25 Khz			
BAND REJECT	AMPIEZZA MAX. IN INGRESSO			
110dB@50Hz	10Vpp,0dB			
FORMATO DATI	SISTEMA OPERATIVO			
SEG-2 standard	Windows XP Embedded			
IMPEDENZA D'INGRESSO	RUMORE			
220 kOhm@0dB	250nV/@2mS, 36dB			

Per le operazioni di campo, inerenti l'esecuzione dell'indagine geofisica, sono stati inoltre utilizzati i seguenti accessori

- N. 2 Cavi sismici multipolari in Purex da 60 metri, 12 take-out;
- N. 24 geofoni verticali, frequenza 4.5 Hz;
- N. 24 supporti in acciaio;
- Mazza battente strumentata con trigger e piastra di battuta in alufer;

2.2.1 Bibliografia

• Dorman, J., Ewing, M., 1962. Numerical inversion of seismic surface wave dispersion data and crust-mantle structure in the New York-Pennsylvania area. J.Geophys. Res. 67,5227-5241

• Louie, J., 2001. Faster, Better: Shear Wave Velocity to 100 meters Depth from Refraction Microtremor Arrays. Bullettin of the Seismological Society of America, 91, 2, 347-364 aprile

• Nakamura,Y.,1989. A method for dynamic characteristics extimation of subsurface using microtremor on ground surface. QR Raylw.Tech. Res.Inst.,30, 25-33.

• Nazarian, S. e Stokoe, K. H., 1984. In situ shear wave velocities from spectral analysis of surface waves in Proceedings of the World Conference on Earthquake Engineering, vol.8, San Francisco, 21-28 luglio

• Park, C. B.,R. D.Miller e Xia, J., 1999. Multi-channel analysis of surface waves, Geophys.64,800-808

• Rayleigh, W., 1885. On waves propagated along the plane surface of an elastic solid. London Mathematical Soc.Proc.,17:4-11

• Roma, V., 2006. Caratterizzazione sismica del sottosuolo con il metodo MASW.

• Romeo R.W., 2007. La risposta sismica locale per la progettazione strutturale. International Centre for Mechanical Sciences

• Dal Moro G., 2012. Onde di superficie nella Geofisica Applicata. Dario Flaccovio ed.

2.3 RISULTATI DELLE PROSPEZIONI

DENOMINAZIONE: Profilo MW1

Figura 1 – Curva di dispersione sperimentale (sn.); modello teorico (dx.)

Intervallo	Profondità (m)	(m) H	Vs (m/s)	H/Vs
1	0.0-2.0	2,0	328	0,006
2	2.0-5.0	3,0	284	0,011
3	5.0-8.0	3,0	262	0,011
4	8.0-12.0	4,0	235	0,017
5	12.0-16.0	4,0	217	0,018
6	16.0-21.0	5,0	224	0,022
7	21.0-26.0	5,0	231	0,022
8	26.0-30.0	4,0	250	0,016
Σ		30,0	Σ	0,124
Categoria sottosuolo: C			Vs _{,eq} =	242,85

Figura 2 – Profilo Vs (sn); tabella di calcolo Vs_{,eq} (dx)

Figura 3 – Curva di dispersione sperimentale (sn.); modello teorico (dx.)

Intervallo	Profondità (m)	(m) H	Vs (m/s)	H/Vs
1	0.0-2.0	2,0	145	0,014
2	2.0-5.0	3,0	159	0,019
3	5.0-8.0	3,0	219	0,014
4	8.0-12.0	4,0	278	0,014
5	12.0-16.0	4,0	300	0,013
6	16.0-21.0	5,0	307	0,016
7	21.0-26.0	5,0	315	0,016
8	26.0-30.0	4,0	320	0,013
Σ		30,0	Σ	0,119
Categoria sottosuolo: C			Vs _{,eq} =	325,65

Figura 4 – Profilo Vs (sn); tabella di calcolo Vs $_{,eq}$ (dx)

Figura 5 – Curva di dispersione sperimentale (sn.); modello teorico (dx.)

Intervallo	Profondità (m)	(m) H	Vs (m/s)	H/Vs
1	0.0-2.0	2,0	160	0,013
2	2.0-5.0	3,0	149	0,020
3	5.0-8.0	3,0	187	0,016
4	8.0-12.0	4,0	220	0,018
5	12.0-16.0	4,0	258	0,016
6	16.0-21.0	5,0	258	0,019
7	21.0-26.0	5,0	283	0,018
8	26.0-30.0	4,0	305	0,013
Σ		30,0	Σ	0,133
Categoria sottosuolo: C			Vs, _{eq} =	226,37

Figura 6 – Profilo Vs (sn); tabella di calcolo Vs_{,eq} (dx)

Figura 7 – Curva di dispersione sperimentale (sn); modello teorico (dx)

Figura 8 – Profilo Vs (sn); tabella di calcolo Vs,eq (dx)

Figura 9 – Curva di dispersione sperimentale (sn); modello teorico (dx)

Figura 10 – Profilo Vs (sn); tabella di calcolo Vs,eq (dx)

Figura 11 – Curva di dispersione sperimentale (sn.); modello teorico (dx.)

Intervallo	Profondità (m)	(m) H	Vs (m/s)	Я/Л
1	0.0-2.0	2,0	221	0,009
2	2.0-5.0	3,0	346	0,009
3	5.0-8.0	3,0	480	0,006
4	8.0-12.0	4,0	344	0,012
5	12.0-16.0	4,0	321	0,012
6	16.0-21.0	5,0	321	0,016
7	21.0-26.0	5,0	341	0,015
8	26.0-30.0	4,0	341	0,012
Σ		30,0	Σ	0,090
Categoria sottosuolo: C			Vs _{,eq} =	333,23

Figura 12 – Profilo Vs (sn); tabella di calcolo Vs $_{eq}$ (dx)

Figura 13 – Curva di dispersione sperimentale (sn.); modello teorico (dx.)

Intervallo	Profondità (m)	(m) H	Vs (m/s)	H/Vs
1	0.0-2.0	2,0	195	0,010
2	2.0-5.0	3,0	274	0,011
3	5.0-8.0	3,0	325	0,009
4	8.0-12.0	4,0	257	0,016
5	12.0-16.0	4,0	280	0,014
6	16.0-21.0	5,0	280	0,018
7	21.0-26.0	5,0	314	0,016
8	26.0-30.0	4,0	325	0,012
Σ		30,0	Σ	0,106
Categoria sottosuolo: C			Vs _{,eq} =	282,02

Figura 14 – Profilo Vs (sn); tabella di calcolo Vs_{,eq} (dx)

Figura 15 – Curva di dispersione sperimentale (sn.); modello teorico (dx.)

Intervallo	Profondità (m)	(m) H	Vs (m/s)	H/Vs
1	0.0-2.0	2,0	195	0,010
2	2.0-5.0	3,0	280	0,011
3	5.0-8.0	3,0	253	0,012
4	8.0-12.0	4,0	355	0,011
5	12.0-16.0	4,0	391	0,010
6	16.0-21.0	5,0	421	0,012
7	21.0-26.0	5,0	421	0,012
8	26.0-30.0	4,0	435	0,009
Σ		30,0	Σ	0,087
Cate	Categoria sottosuolo: C			343,74

Figura 16 – Profilo Vs (sn); tabella di calcolo Vs_{,eq} (dx)

Figura 17 – Curva di dispersione sperimentale (sn.); modello teorico (dx.)

Figura 18 – Profilo Vs (sn); tabella di calcolo Vs,eq (dx)

Figura 19 – Curva di dispersione sperimentale (sn.); modello teorico (dx.)

Intervallo	Profondità (m)	(m) H	(s/ɯ) sʌ	SV/H
1	0.0-2.0	2,0	444	0,005
2	2.0-5.0	3,0	471	0,006
3	5.0-8.0	3,0	489	0,006
4	8.0-12.0	4,0	439	0,009
5	12.0-16.0	4,0	318	0,013
6	16.0-21.0	5,0	322	0,016
7	21.0-26.0	5,0	316	0,016
8	26.0-30.0	4,0	330	0,012
Σ		30,0	Σ	0,082
Categoria sottosuolo: B			Vs _{,eq} =	365,09

Figura 20 – Profilo Vs (sn); tabella di calcolo Vs $_{,eq}$ (dx)

Figura 21 – Curva di dispersione sperimentale (sn); modello teorico (dx)

Intervallo	Profondità (m)	(m) H	Vs (m/s)	H/Vs
1	0.0-2.0	2,0	229	0,009
2	2.0-5.0	3,0	306	0,010
3	5.0-8.0	3,0	285	0,011
4	8.0-12.0	4,0	309	0,013
5	12.0-16.0	4,0	322	0,012
6	16.0-21.0	5,0	336	0,015
7	21.0-26.0	5,0	342	0,015
8	26.0-30.0	4,0	351	0,011
Σ		30,0	Σ	0,095
Categoria sottosuolo: C			Vs _{,eq} =	314,70

Figura 22 – Profilo Vs (sn); tabella di calcolo Vs $_{eq}$ (dx)

DENOMINAZIONE: Profilo MW12 Curva di dispersi • 800 1.6 x10^3 70 1.4 600 1.2 50 Velocità di fase [m/s] /elocità di fase [m/s] 400 0.8 300 0.6 200 0. 100 0.2 0 30 Frequenza [Hz] 30 40 Frequenza [Hz]

Figura 23 – Curva di dispersione sperimentale (sn); modello teorico (dx)

Intervallo	Profondità (m)	(m) H	(s/ɯ) sʌ	H/Vs
1	0.0-2.0	2,0	532	0,004
2	2.0-5.0	3,0	635	0,005
3	5.0-8.0	3,0	658	0,005
4	8.0-12.0	4,0	705	0,006
5	12.0-16.0	4,0	723	0,006
6	16.0-21.0	5,0	673	0,007
7	21.0-26.0	5,0	618	0,008
8	26.0-30.0	4,0	588	0,007
Σ		30,0	Σ	0,047
Categoria sottosuolo: B			Vs _{,eq} =	644,16

Figura 24 – Profilo Vs (sn); tabella di calcolo Vs $_{eq}$ (dx)

Figura 25 – Curva di dispersione sperimentale (sn); modello teorico (dx)

Intervallo	Profondità (m)	(m) H	Vs (m/s)	Я/Л
1	0.0-2.0	2,0	140	0,014
2	2.0-5.0	3,0	181	0,017
3	5.0-8.0	3,0	201	0,015
4	8.0-12.0	4,0	287	0,014
5	12.0-16.0	4,0	350	0,011
6	16.0-21.0	5,0	380	0,013
7	21.0-26.0	5,0	380	0,013
8	26.0-30.0	4,0	392	0,010
Σ		30,0	Σ	0,108
Categoria sottosuolo: C			Vs _{,eq} =	278,63

Figura 26 – Profilo Vs (sn); tabella di calcolo Vs $_{eq}$ (dx)

Figura 27 – Curva di dispersione sperimentale (sn); modello teorico (dx)

Intervallo	Profondità (m)	(ш) H	(s/ш) sA	SN/H
1	0.0-2.0	2,0	174	0,011
2	2.0-5.0	3,0	169	0,018
3	5.0-8.0	3,0	205	0,015
4	8.0-12.0	4,0	263	0,015
5	12.0-16.0	4,0	288	0,014
6	16.0-21.0	5,0	333	0,015
7167	21.0-26.0	5,0	386	0,013
8	26.0-30.0	4,0	402	0,010
Σ		30,0	Σ	0,111
Categoria sottosuolo: C			Vs _{,eq} =	270,52

Figura 28 – Profilo Vs (sn); tabella di calcolo Vs,_{eq} (dx)

Figura 29 – Curva di dispersione sperimentale (sn); modello teorico (dx)

Intervallo	Profondità (m)	(m) H	Vs (m/s)	N/Ns
1	0.0-2.0	2,0	230	0,009
2	2.0-5.0	3,0	175	0,017
3	5.0-8.0	3,0	214	0,014
4	8.0-12.0	4,0	261	0,015
5	12.0-16.0	4,0	308	0,013
6	16.0-21.0	5,0	340	0,015
7	21.0-26.0	5,0	382	0,013
8	26.0-30.0	4,0	425	0,009
Σ		30,0	Σ	0,105
Categoria sottosuolo: C			Vs _{,eq} =	284,69

Figura 30 – Profilo Vs (sn); tabella di calcolo Vs_{,eq} (dx)

Figura 31 – Curva di dispersione sperimentale (sn.); modello teorico (dx.)

Intervallo	Profondità (m)	(m) H	Vs (m/s)	s//H
1	0.0-2.0	2,0	211	0,009
2	2.0-5.0	3,0	221	0,014
3	5.0-8.0	3,0	238	0,013
4	8.0-12.0	4,0	336	0,012
5	12.0-16.0	4,0	380	0,011
6	16.0-21.0	5,0	380	0,013
7	21.0-26.0	5,0	431	0,012
8	26.0-30.0	4,0	431	0,009
Σ		30,0	Σ	0,092
Categoria sottosuolo: C		Vs _{,eq} =	325,63	

Figura 32 – Profilo Vs (sn); tabella di calcolo Vs,_{eq} (dx)

Figura 33 – Curva di dispersione sperimentale (sn.); modello teorico (dx.)

Figura 34 – Profilo Vs (sn); tabella di calcolo Vs_{,eq} (dx)

Figura 35 – Curva di dispersione sperimentale (sn.); modello teorico (dx.)

Intervallo	Profondità (m)	(m) H	(s/ɯ) sʌ	SVIH
1	0.0-2.0	2,0	228	0,009
2	2.0-5.0	3,0	155	0,019
3	5.0-8.0	3,0	211	0,014
4	8.0-12.0	4,0	253	0,016
5	12.0-16.0	4,0	283	0,014
6	16.0-21.0	5,0	374	0,013
7	21.0-26.0	5,0	401	0,012
8	26.0-30.0	4,0	447	0,009
Σ		30,0	Σ	0,107
Categoria sottosuolo: C			Vs _{,eq} =	280,18

Figura 36 – Profilo Vs (sn); tabella di calcolo Vs_{,eq} (dx)

Figura 37 – Curva di dispersione sperimentale (sn.); modello teorico (dx.)

Intervallo	Profondità (m)	(m) H	Vs (m/s)	H/Vs
1	0.0-2.0	2,0	332	0,006
2	2.0-5.0	3,0	368	0,008
3	5.0-8.0	3,0	345	0,009
4	8.0-12.0	4,0	302	0,013
5	12.0-16.0	4,0	318	0,013
6	16.0-21.0	5,0	329	0,015
7	21.0-26.0	5,0	338	0,015
8	26.0-30.0	4,0	345	0,012
Σ		30,0	Σ	0,090
Categoria sottosuolo: C		Vs _{,eq} =	332,30	

Figura 38 – Profilo Vs (sn); tabella di calcolo Vs,eq (dx)

Figura 39 - Curva di dispersione sperimentale (sn.); modello teorico (dx.)

Intervallo	Profondità (m)	(m) H	(s/ɯ) sʌ	Н/Vs
1	0.0-2.0	2,0	167	0,012
2	2.0-5.0	3,0	181	0,017
3	5.0-8.0	3,0	208	0,014
4	8.0-12.0	4,0	252	0,016
5	12.0-16.0	4,0	277	0,014
6	16.0-21.0	5,0	294	0,017
7	21.0-26.0	5,0	315	0,016
8	26.0-30.0	4,0	347	0,012
Σ		30,0	Σ	0,118
Categoria sottosuolo: C		Vs _{,eq} =	254,90	

Figura 40 – Profilo Vs (sn); tabella di calcolo Vs_{,eq} (dx)

Figura 41 - Curva di dispersione sperimentale (sn); modello teorico (dx)

Intervallo	Profondità (m)	(m) H	Vs (m/s)	s//H
1	0.0-2.0	2,0	241	0,008
2	2.0-5.0	3,0	231	0,013
3	5.0-8.0	3,0	249	0,012
4	8.0-12.0	4,0	271	0,015
5	12.0-16.0	4,0	297	0,013
6	16.0-21.0	5,0	316	0,016
7	21.0-26.0	5,0	335	0,015
8	26.0-30.0	4,0	348	0,011
Σ		30,0	Σ	0,104
Categoria sottosuolo: C			Vs _{,eq} =	289,00

Figura 42 – Profilo Vs (sn); tabella di calcolo Vs,_{eq} (dx)

Figura 43 – Curva di dispersione sperimentale (sn); modello teorico (dx)

Intervallo	Profondità (m)	(m) H	Vs (m/s)	H/Vs
1	0.0-2.0	2,0	201	0,010
2	2.0-5.0	3,0	214	0,014
3	5.0-8.0	3,0	240	0,013
4	8.0-12.0	4,0	298	0,013
5	12.0-16.0	4,0	331	0,012
6	16.0-21.0	5,0	347	0,014
7	21.0-26.0	5,0	353	0,014
8	26.0-30.0	4,0	360	0,011
Σ		30,0	Σ	0,102
Categoria sottosuolo: C			Vs _{,eq} =	295,10

Figura 44 – Profilo Vs (sn); tabella di calcolo Vs,eq (dx)

Figura 45 – Curva di dispersione sperimentale (sn); modello teorico (dx)

Intervallo	Profondità (m)	(m) H	Vs (m/s)	H/Vs
1	0.0-2.0	2,0	205	0,010
2	2.0-5.0	3,0	210	0,014
3	5.0-8.0	3,0	239	0,013
4	8.0-12.0	4,0	262	0,015
5	12.0-16.0	4,0	288	0,014
6	16.0-21.0	5,0	327	0,015
7	21.0-26.0	5,0	357	0,014
8	26.0-30.0	4,0	384	0,010
Σ		30,0	Σ	0,105
Categoria sottosuolo: C			Vs _{,eq} =	284,16

Figura 46 – Profilo Vs (sn); tabella di calcolo Vs,eq (dx)

Figura 47 – Curva di dispersione sperimentale (sn); modello teorico (dx)

Intervallo	Profondità (m)	(m) H	Vs (m/s)	H/Vs
1	0.0-2.0	2,0	151	0,013
2	2.0-5.0	3,0	183	0,016
3	5.0-8.0	3,0	259	0,012
4	8.0-12.0	4,0	350	0,011
5	12.0-16.0	4,0	376	0,011
6	16.0-21.0	5,0	395	0,013
7	21.0-26.0	5,0	421	0,012
8	26.0-30.0	4,0	439	0,009
Σ		30,0	Σ	0,097
Categoria sottosuolo: C			Vs _{,eq} =	309,49

Figura 48 – Profilo Vs (sn); tabella di calcolo Vs_{,eq} (dx)

Figura 49 - Curva di dispersione sperimentale (sn); modello teorico (dx)

Intervallo	Profondità (m)	(m) H	(s/ɯ) sʌ	H/Vs
1	0.0-2.0	2,0	127	0,016
2	2.0-5.0	3,0	153	0,020
3	5.0-8.0	3,0	171	0,018
4	8.0-12.0	4,0	281	0,014
5	12.0-16.0	4,0	308	0,013
6	16.0-21.0	5,0	349	0,014
7	21.0-26.0	5,0	388	0,013
8	26.0-30.0	4,0	425	0,009
Σ		30,0	Σ	0,117
Categoria sottosuolo: C			Vs _{,eq} =	256,97

Figura 50 – Profilo Vs (sn); tabella di calcolo Vs $_{eq}$ (dx)

Figura 51 – Curva di dispersione sperimentale (sn.); modello teorico (dx.)

Intervallo	Profondità (m)	(m) H	(s/ɯ) sʌ	SV/H
1	0.0-2.0	2,0	176	0,011
2	2.0-5.0	3,0	169	0,018
3	5.0-8.0	3,0	205	0,015
4	8.0-12.0	4,0	247	0,016
5	12.0-16.0	4,0	275	0,015
6	16.0-21.0	5,0	297	0,017
7	21.0-26.0	5,0	317	0,016
8	26.0-30.0	4,0	332	0,012
Σ		30,0	Σ	0,119
Categoria sottosuolo: C			Vs _{,eq} =	251,79

Figura 52 – Profilo Vs (sn); tabella di calcolo Vs_{,eq} (dx)

Figura 53 – Curva di dispersione sperimentale (sn.); modello teorico (dx.)

Intervallo	Profondità (m)	(m) H	(s/ɯ) sʌ	SVIH
1	0.0-2.0	2,0	290	0,007
2	2.0-5.0	3,0	356	0,008
3	5.0-8.0	3,0	271	0,011
4	8.0-12.0	4,0	255	0,016
5	12.0-16.0	4,0	278	0,014
6	16.0-21.0	5,0	285	0,018
7	21.0-26.0	5,0	285	0,018
8	26.0-30.0	4,0	298	0,013
Σ		30,0	Σ	0,105
Categoria sottosuolo: C		Vs _{,eq} =	285,77	

Figura 54 – Profilo Vs (sn); tabella di calcolo Vs_{,eq} (dx)

Figura 55 – Curva di dispersione sperimentale (sn.); modello teorico (dx.)

Intervallo	Profondità (m)	(m) H	Vs (m/s)	H/Vs
1	0.0-2.0	2,0	367	0,005
2	2.0-5.0	3,0	330	0,009
3	5.0-8.0	3,0	270	0,011
4	8.0-12.0	4,0	245	0,016
5	12.0-16.0	4,0	216	0,019
6	16.0-21.0	5,0	214	0,023
7	21.0-26.0	5,0	220	0,023
8	26.0-30.0	4,0	220	0,018
Σ		30,0	Σ	0,125
Categoria sottosuolo: C		Vs _{,eq} =	495,93	

Figura 56 – Profilo Vs (sn); tabella di calcolo Vs,eq (dx)

Figura 57 – Curva di dispersione sperimentale (sn.); modello teorico (dx.)

Intervallo	Profondità (m)	(m) H	Vs (m/s)	H/Vs
1	0.0-2.0	2,0	221	0,009
2	2.0-5.0	3,0	312	0,010
3	5.0-8.0	3,0	415	0,007
4	8.0-12.0	4,0	344	0,012
5	12.0-16.0	4,0	258	0,016
6	16.0-21.0	5,0	296	0,017
7	21.0-26.0	5,0	307	0,016
8	26.0-30.0	4,0	316	0,013
Σ		30,0	Σ	0,099
Categoria sottosuolo: C		Vs _{,eq} =	303,45	

Figura 58 – Profilo Vs (sn); tabella di calcolo Vs $_{eq}$ (dx)

Figura 59 – Curva di dispersione sperimentale (sn.); modello teorico (dx.)

Intervallo	Profondità (m)	(m) H	Vs (m/s)	SV/H
1	0.0-2.0	2,0	234	0,009
2	2.0-5.0	3,0	175	0,017
3	5.0-8.0	3,0	229	0,013
4	8.0-12.0	4,0	266	0,015
5	12.0-16.0	4,0	328	0,012
6	16.0-21.0	5,0	382	0,013
7	21.0-26.0	5,0	415	0,012
8	26.0-30.0	4,0	442	0,009
Σ		30,0	Σ	0,100
Categoria sottosuolo: C		Vs _{,eq} =	229,37	

Figura 60 – Profilo Vs (sn); tabella di calcolo Vs_{,eq} (dx)

Figura 61 – Curva di dispersione sperimentale (sn); modello teorico (dx)

Intervallo	Profondità (m)	(m) H	Vs (m/s)	H/Vs
1	0.0-2.0	2,0	212	0,009
2	2.0-5.0	3,0	243	0,012
3	5.0-8.0	3,0	266	0,011
4	8.0-12.0	4,0	324	0,012
5	12.0-16.0	4,0	400	0,010
6	16.0-21.0	5,0	458	0,011
7	21.0-26.0	5,0	492	0,010
8	26.0-30.0	4,0	492	0,008
Σ		30,0	Σ	0,085
Cate	goria sottosu	olo: C	Vs _{,eq} =	354,55

Figura 62 – Profilo Vs (sn); tabella di calcolo Vs_{,eq} (dx)

Figura 63 – Curva di dispersione sperimentale (sn); modello teorico (dx)

Intervallo	Profondità (m)	(m) H	(s/ɯ) sʌ	SVH
1	0.0-2.0	2,0	413	0,005
2	2.0-5.0	3,0	383	0,008
3	5.0-8.0	3,0	277	0,011
4	8.0-12.0	4,0	304	0,013
5	12.0-16.0	4,0	324	0,012
6	16.0-21.0	5,0	332	0,015
7	21.0-26.0	5,0	341	0,015
8	26.0-30.0	4,0	360	0,011
Σ		30,0	Σ	0,090
Categ	goria sottosu	Vs _{,eq} =	333,91	

Figura 64 – Profilo Vs (sn); tabella di calcolo Vs_{,eq} (dx)

Figura 65 – Curva di dispersione sperimentale (sn); modello teorico (dx)

Intervallo	Profondità (m)	H (m)	Vs (m/s)	SV/H
1	0.0-2.0	2,0	161	0,012
2	2.0-5.0	3,0	192	0,016
3	5.0-8.0	3,0	223	0,013
4	8.0-12.0	4,0	257	0,016
5	12.0-16.0	4,0	308	0,013
6	16.0-21.0	5,0	320	0,016
7	21.0-26.0	5,0	328	0,015
8	26.0-30.0	4,0	340	0,012
Σ		30,0	Σ	0,113
Cate	goria sottosu	Vs _{,eq} =	266,33	

Figura 66 – Profilo Vs (sn); tabella di calcolo Vs_{,eq} (dx)

Figura 67 – Curva di dispersione sperimentale (sn); modello teorico (dx)

Intervallo	Profondità (m)	(m) H	Vs (m/s)	s//H
1	0.0-2.0	2,0	277	0,007
2	2.0-5.0	3,0	377	0,008
3	5.0-8.0	3,0	419	0,007
4	8.0-12.0	4,0	401	0,010
5	12.0-16.0	4,0	375	0,011
6	16.0-21.0	5,0	354	0,014
7	21.0-26.0	5,0	323	0,015
8	26.0-30.0	4,0	335	0,012
Σ		30,0	Σ	0,085
Categ	goria sottosu	Vs _{,eq} =	354,93	

Figura 68 – Profilo Vs (sn); tabella di calcolo Vs_{,eq} (dx)

2.3.1 Quadro sintetico dei risultati

Di seguito viene mostrata una tabella riassuntiva dei valori di Vs_{eq} ottenuti attraverso le prospezioni MASW. Oltre al valore del Vs_{eq} e della categoria di sottosuolo (D.M. 17.01.18), vengono riportati i valori di velocità delle onde di taglio nei primi otto metri di profondità secondo gli intervalli 0-2 m, 2-5 m e 5-8 m; per questi intervalli è indicata una stima della consistenza e dei parametri elasto-dinamici, in particolare i moduli di rigidità e di volume, nonché il modulo di elasticità sia dinamico che statico:

Consistenza del terreno	Bassa	Media	Medio-Elevata
Velocità delle onde di taglio Vs	<180 m/s	180-300	>300
Modulo di Rigidità (Kg/cmq)	<526,0	526,0-1800,3	>1800,3
Modulo di Volume (Kg/cmq)	<1896,2	1896,2-26403,9	>26403,9
Modulo di elasticità dinamico (Kg/cmq)	<1444,44	1444,44-5280,8	>5280,8
Modulo di elasticità statico (Kg/cmq)	<37,38	37,38-282,5	>282,5

MASW n.	Vs, _{eq} (m/s)	Formazione geologica affiorante	Categoria sottosuolo (D.M. 17.01.18)	Vs (m/s) 0-2 m	Vs (m/s) 2-5 m	Vs (m/s) 5-8 m
1	242,85	Terrazzo alluvionale	С	328	284	262
2	325,65	Terrazzo alluvionale	С	145	159	219
3	226,37	Argille s.l.	С	160	149	187
4	267,90	Argille s.l.	С	247	288	215
5	258,85	Argille s.l.	С	289	421	269
6	333,23	Terrazzo alluvionale	С	221	346	480
7	282,02	Terrazzo alluvionale	С	195	274	325
8	343,74	Marne	С	195	280	253
9	299,83	Marne	С	263	198	233
10	365,09	Marne	В	444	471	489
11	314,60	Marne	С	229	306	285
12	644,16	Calcari marnosi	В	532	635	658
13	278,63	Marne	С	140	181	201
14	270,52	Argille s.l.	С	174	169	205
15	284,69	Argille s.l.	С	230	175	214
16	325,63	Argille s.l.	С	211	221	238
17	377,41	Terrazzo alluvionale	В	236	325	379
18	280,18	Terrazzo alluvionale	С	228	155	211
19	332,30	Argille s.l.	С	332	368	345
20	254,90	Argille s.l.	С	167	181	208

MASW n.	Vs, _{eq} (m/s)	Formazione geologica	Categoria sottosuolo (D.M.	Vs (m/s) 0-2 m	Vs (m/s) 2-5 m	Vs (m/s) 5-8 m
	. ,	amorante	17.01.18)			
21	289,00	Terrazzo alluvionale	С	241	231	249
22	295,10	Terrazzo alluvionale	С	201	214	240
23	284,16	Argille s.l.	С	205	210	239
24	309,49	Terrazzo alluvionale	С	151	183	259
25	256,97	Terrazzo alluvionale	С	127	153	171
26	251,79	Terrazzo alluvionale	С	176	169	205
27	285,77	Argille s.l.	С	290	356	271
28	240,44	Terrazzo alluvionale	С	367	330	270
29	303,45	Terrazzo alluvionale	С	221	312	415
30	229,37	Marne	С	234	175	229
31	354,55	Marne	С	212	243	266
32	333,91	Terrazzo alluvionale	С	413	383	277
33	266,33	Argille s.l.	С	161	192	223
34	354,93	Terrazzo alluvionale	С	277	377	419

Dalla tabella sopra esposta si evince che la gran parte dei terreni analizzati ricade nella Categoria C di cui alle N.T.C. 2018, mentre soltanto in tre prove si è riscontrato un sottosuolo di tipo B. Per le diverse prospezioni è stata indicata in tabella anche la tipologia della formazione affiorante, desunta dalla Carta Geologica del Molise (Vezzani L. Ghisetti F., Festa) in scala 1:100.000.

Essenzialmente il quadro geologico-stratigrafico può essere sintetizzato attraverso tre differenti formazioni:

- Terrazzi alluvionali
- Argille s.l.
- Marne della F.ne Faeto

Nei profili 1D non sono state evidenziate differenze significative sia in termini di valore dei Vs,_{eq} che di risposta sismica dei terreni entro la profondità di 8 m sintetizzata in tabella. Il valore più basso riscontrato del parametro Vs,_{eq} è stato di 226 m/s in corrispondenza di terreni argillosi correlabili con le Argille s.l., mentre il valore più alto è stato di 644 m/s in corrispondenza dei calcari marnosi litoidi della F.ne Faeto affioranti ad Ovest di Rotello; le altre prove effettuate in corrispondenza di questa formazione hanno comunque dato valori più bassi che fanno rientrare questi terreni nella Cat. C, da cui si presuppone uno spessore di copertura limoso-argillosa a scarsa consistenza cui segue una formazione in posto prevalentemente argilloso-marnosa. L'area a NE di Rotello, ove affiorano i terreni quaternari, è caratterizzata quasi esclusivamente da terreni di Categoria C, generalmente poco addensati o scarsamente consistenti nei primi metri superficiali.

Una situazione frequente è data da una tipica inversione di velocità nella parte apicale del sottosuolo, originata da una maggiore rigidezza dell'aerato di superficie in condizioni più asciutte e addensate, mentre lo strato immediatamente sottostante può mostrare frequentemente valori di velocità più bassi a causa di un maggior contenuto d'acqua. Si tratta di condizioni tuttavia variabili con le stagioni ed i periodi piovosi in quanto è proprio il contenuto d'acqua a condizionare le caratteristiche meccaniche di questi terreni, specialmente nei primi metri di sottosuolo ove si risente maggiormente delle variazioni di umidità stagionali. A partire da 5-8 m di profondità, infatti, si registra un progressivo incremento dei valori di velocità cui corrispondono migliori caratteristiche di compattezza e consistenza del sottosuolo.

Tabella 1 – Valori di Vs_{,eq}

3. PROSPEZIONE SISMICA TOMOGRAFICA

3.1 CENNI TEORICI

Per la ricostruzione geometrica e la caratterizzazione fisica (Vp) dei terreni interessati ai fini progettuali è stata eseguita una tomografia sismica assiale di superficie allo scopo di restituire la struttura del substrato come "immagine" bidimensionale di velocità delle onde sismiche longitudinali.

La tomografia sismica ha il compito di stabilire le proprietà dinamiche in sito dei terreni di fondazione, individuare eventuali discontinuità, cavità o strati particolarmente poco consistenti presenti nel sottosuolo, mediante la definizione della velocità e della direzione di propagazione delle onde elastiche generate da sorgenti artificiali.

La velocità di propagazione in un terreno è legata essenzialmente alle proprietà elastiche ed alla densità, che a sua volta dipende dalla porosità, dal grado di fratturazione, dal contenuto in acqua e dalla composizione chimica. Ogni variazione di questo fattore influenza il valore della densità provocandone, quindi, una corrispondente variazione della velocità di propagazione delle onde sismiche.

I dati sismici ottenuti (tempi d'arrivo delle onde longitudinali), sono stati trattati tomograficamente, al fine di ricostruire profili 2D lungo le sezioni sismiche investigate.

In fase di elaborazione dei dati è stato applicato il metodo di interpretazione dei dati noto come <u>Generalized Simulated-Annealing Optimization.</u>

Il G.S.A.O. è un modello di calcolo che consente una procedura **non lineare** dell'inversione dei tempi di primo arrivo delle fasi dirette e rifratte delle onde sismiche registrate durante una prospezione sismica superficiale a rifrazione.

Il vantaggio di tale tecnica è nell'assoluta indipendenza dal modello iniziale di velocità.

Le fasi di calcolo che vengono eseguite nel processo d'elaborazione dei dati, possono essere così sintetizzate:

• Calcolo dei travel - time attraverso un modello iniziale di velocità e determinazione dell'errore minimo quadrato (E_0 = least-square error), tra il travel – time calcolato e quello osservato.

Per ogni iterazione i è possibile definire il "least-square error" secondo la formula:

$$E_{i} = \frac{1}{N} \left[\sum_{j=1}^{N} (t_{j}^{obs} - t_{j}^{cal})^{2} \right]$$
(1)

dove **N** è il numero di campioni, j denota ogni osservazione, e **t**^{obs} e **t**^{cal} sono rispettivamente il tempo osservato e calcolato.

- Perturbazione del modello di velocità mediante l'inserimento di una costante di velocità casuale, mantenendo la non linearità del sistema, e calcolo del nuovo "least – square error" E1.
- Determinazione della probabilità P di ammettere il nuovo modello (cioè che il modello sia accettabile):

$$P = 1; \quad E_1 \le E_0$$
 (2)

$$P = P_c = \exp\left[\frac{(E_{\min} - E_1)^q \Delta E}{T}\right]; \quad E_1 > E_0$$
 (3)

dove \mathbf{P}_{c} è la probabilità di accettare la condizione, $\Delta E = E_{0} - E_{1}$, *q* è una costante d'integrazione (che si determina empiricamente), ed \mathbf{E}_{min} è il valore oggettivo della funzione dei minimi totali.

Teoricamente si ha $\mathbf{E}_{\min} = 0$.

L'equazione (2), media tutti i valori accettati dal nuovo modello, laddove l'errore minimo quadrato (least – square error) è minore nell'iterazione prevista.

Ciò consente, durante l'inversione dei dati, di sfuggire dall'intorno dei minimi locali, andando alla ricerca del minimo globale.

• Ripetizione delle inversioni fino al raggiungimento della convergenza richiesta tra la differenza dell'errore minimo quadrato ed il successivo modello e la probabilità di accettare nuovi modelli di velocità a minimo errore.

3.2 STRUMENTAZIONE UTILIZZATA

Per la realizzazione delle prospezioni sismiche in oggetto è stato utilizzato un sismografo a memoria incrementale per sismica a rifrazione e riflessione della MAE, modello A6000-S a 24 canali con risoluzione del segnale a 24 bit per canale.

Nella tabella seguente sono riassunte le caratteristiche tecniche dell'attrezzatura utilizzata.

DATI TECNICI DELLA STRUMENTAZIONE IMPIEGATA								
MODELLO SISMOGRAFO	N. CANALI							
M.A.E. A-6000-S	24 (differenziali)	the sector						
CONVERSIONE A/D	CAMPIONI PER CANALE							
24 bit a singolo canale	10.922							
CAMPIONAMENTO	LARGHEZZA DI BANDA							
50-50.000 camp./sec.	0-25 Khz							
BAND REJECT	AMPIEZZA MAX. IN INGRESSO							
110dB@50Hz	10Vpp,0dB							
FORMATO DATI	SISTEMA OPERATIVO							
SEG-2 standard	Windows XP Embedded							
IMPEDENZA D'INGRESSO	RUMORE							
220 kOhm@0dB	250nV/@2mS, 36dB	NA VALUE PAVE						

Per le operazioni di campo, inerenti l'esecuzione dell'indagine geofisica, sono stati inoltre utilizzati i seguenti accessori

- N. 2 Cavi sismici multipolari in Purex da 60 metri, 12 take-out, intervallo 5 metri;
- N. 12 geofoni verticali frequenza 14 Hz;
- Mazza battente strumentata con trigger e piastra di battuta in alufer;

3.3 RISULTATI DELLE PROSPEZIONI

Denominazione: Sezione sismica tomografica Ts1									
N. GEOFONI: 12		STEP IN	STEP INTERGEOFONICO N. SHOTS			LUNGHEZZA STENDIMENTO	PROFONDITÀ RAGGIUNTA		
			<u> </u>			02 111			
ы		0			0.04]				

Sismosti to	Velocità Vp medi (m/s)	Spessor (m)	Litologia presunta	
1	480	1,0 – 2,0	Sabbie limose scarsamente addensate	
2	750	3,0 - 4,0	Sabbie limose poco addensate	
3	1300		Argille mediamente consistenti	Black(square)>>Diserved""Blue(tri)=>Calculated::Source=Number: 2.0 Dromocrone osservate e calcolate

Dromocrone osservate e calcolate

Denominazione: Sezione sismica tomografica Ts2										
N. GEOFONI: 12		STEP INT	ergeofonico 2 m	N. SHOTS		LUNGHEZZA STENDIMENTO 32 m	Profondità Raggiunta 8 m			
stra	cità edia s)	ore (0.034		2			
Sismo to	Veloo Vp me (m/	(m) Spess	Litologia p	oresunta						
1	520	1 – 3	Sabbie limose addensate	e poco						
2	900	2,0 – 4,0	Argille limose mediamente d	consistenti						
3	1600		Argille a cons medio-elevata	iistenza a	0.011	Black(square)→Observed ^{~~} Blue(tr)→Calculat	ed::Source-Number: 2.0 26.0			

Figura 70 – Modello sismostratigrafico del sottosuolo

Denominazione: Sezione sismica tomografica Ts3									
N. GEOFONI: STEP INTERGED		RGEOFONICO N. SHOTS		LUNGHEZZA STENDIMENTO	Profondità Raggiunta 9 m				
	12		2	E		02 111			
Sismostra to	Velocità Vp media (m/s)	Spessore (m)	Litologia p	oresunta	0.041				
1	520	2 – 3	Limi sabbiosi addensati	Limi sabbiosi poco addensati					
2	900	3,0 – 4,0	Argille limose mediamente d	consistenti					
3	1600		Argille a cons medio-elevata	istenza a	0.012 	Black(square)=>Observed ^{~~~} Blue(tri)=>Calculat Dromocrone osservate	ed::Source-Number:20		

Figura 71 – Modello sismostratigrafico del sottosuolo

DENON Sez	Denominazione: Sezione sismica tomografica Ts4											
N. GEO	OFONI:	STEP INT	ERGEOFONICO	N. SHOTS		LUNGHEZZA STENDIMENTO	PROFONDITÀ RAGGIUNTA					
12			2 m 2			32 m	9 m					
Sismostra to	Velocità Vp media (m/s)	Spessore (m)	Litologia p	presunta	0.037							
1	550	1,5 – 2	Limi sabbiosi addensati	росо								
2	950	4,0 - 6,0	Argille limose mediamente o	Argille limose mediamente consistenti								
3	1600		Argille a cons medio-elevata	a	0.01	Black(square)=>0bserved ^{~~~} Blue(tri)=>Calculate	d=Source-Number: 2.0 e calcolate					

DENON Sez	Denominazione: Sezione sismica tomografica Ts5										
N. GEO	DFONI: 12	STEP INT	rergeofonico 2 m		LUNGHEZZA STENDIMENTO 32 m	Profondità Raggiunta 8 m					
Sismostra to	Velocità Vp media (m/s)	Spessore (m)	Litologia p	presunta	0.039						
1	500	2 – 3,5	Sabbie limose scarsamente	e addensate			*				
2	800	2,5 – 4,0	Sabbie limose addensate	e poco		Je					
3	1480		Argille media consistenti	mente	100001	Riart/cruiare)=>îheen.ed‴^Riueltri)=>î^alrulate Dromocrone osservate	e calcolate				

	Denominazione: Sezione sismica tomografica Ts6										
N. GEO	DFONI: 12	STEP INT	ERGEOFONICO 2 m		Lunghezza Stendimento 32 m	Profondità Raggiunta 9 m					
Sismostra to	Velocità Vp media (m/s)	Spessore (m)	Litologia p	presunta	0.046						
1	420	2-3	Aerato superf scarsamente consistente	iciale							
2	700	2,5-3	Marne poco c	consistenti							
3	1300		Marne a cons media	istenza	0.015 5.0	Black(square)+>Observed Blue(tr)+>Calculate	e calcolate				

Figura 74 – Modello sismostratigrafico del sottosuolo

DENO	MINAZIONE:	_										
Sez	Sezione sismica tomografica Ts7											
N. GEO	OFONI:	STEP INT	ERGEOFONICO		LUNGHEZZA STENDIMENTO	PROFONDITÀ RAGGIUNTA						
	12		2 m	2		32 metri	8 m					
		<u>.</u>				·	·					
Sismostra to	Velocità Vp media (m/s)	Spessore (m)	Litologia p	presunta	0.038							
1	430	1,5 – 3,0	Aerato superf scarsamente consistente	iciale								
2	750	2,0-3,0	Marne poco o	consistenti								
3	1350		Marne a cons media	istenza	J0000001 5.0	Black(square)=>Observed""Blue(hi)=>Calculat Dromocrone osservate	ed::Source+Number: 2.0 26.0 e calcolate					

Figura 75 – Modello sismostratigrafico del sottosuolo

DENON Sez	DENOMINAZIONE: Sezione sismica tomografica Ts8										
N. GEO	OFONI:	STEP IN	TERGEOFONICO	N. SHOTS		LUNGHEZZA STENDIMENTO	PROFONDITÀ RAGGIUNTA				
	12		2 m	2		32 metri	9 m				
Sismostra to	Velocità Vp media (m/s)	Spessore (m)	Litologia p	presunta	0.042						
1	450	2 – 3,5	Aerato superficiale scarsamente consistente								
2	800	3,0 - 5,0	Marne poco d	consistenti							
3	1400		Marne a cons media	sistenza	3000001	Black(square)->Observed ^{™®} Blue(tri)->Calculated Dromocrone osservate	Source-Number 20				

Figura 76 – Modello sismostratigrafico del sottosuolo

DENON Sez	Denominazione: Sezione sismica tomografica Ts9											
N. GEOFONI: STEP INTERGEOFONICO N. SHO			N. SHOTS		LUNGHEZZA STENDIMENTO							
	12		2 111	2		32 metri	0111					
Sismostra to	Velocità Vp media (m/s)	Spessore (m)	Litologia p	presunta	0.04	1.						
1	400	0,5 – 3,5	Limi argillosi scarsamente	addensati								
2	750	3,0 - 5,0	Argille limose consistenti	росо		The second secon						
3	1300		Argille a cons media	sistenza	0.02	Black(square)=>Observed""Blue(tti)=>Calculate	disource+Number 20 e calcolate					

Figura 77 – Modello sismostratigrafico del sottosuolo

DENON Sez	Denominazione: Sezione sismica tomografica Ts10										
N. GEO	N. GEOFONI: STEP INT		rergeofonico N. Shots		LUNGHEZZA STENDIMENTO 32 metri	PROFONDITÀ RAGGIUNTA 5.5 m					
12 2111 2						02	0,0				
Sismostra to	Velocità Vp media (m/s)	Spessore (m)	Litologia p	oresunta	0.034						
1	500	1,5 – 2,0	Limi argillosi addensati	Limi argillosi poco addensati							
2	900	2,0	Argille limose mediamente	consistenti							
3	1600		Argille a cons medio-elevata	iistenza a	0.01	Black(square)=>Observed ^{***} Blue(tri)=>Calculat Dromocrone osservate	e calcolate				

Figura 78 – Modello sismostratigrafico del sottosuolo

DENON Sez	DENOMINAZIONE: Sezione sismica tomografica Ts11										
N. GEO	DFONI:	STEP IN	TERGEOFONICO	N. SHOTS		LUNGHEZZA STENDIMENTO	PROFONDITÀ RAGGIUNTA				
12			2 m	2		32 metri	9 m				
Sismostra to	Velocità Vp media (m/s)	Spessore (m)	Litologia p	presunta	0.034						
1	490	2,5 – 3,5	Sabbie limos scarsamente	e addensate							
2	850	2 – 3,5	Sabbie limos addensate	e poco							
3	1500		Argille media consistenti	mente		Black(square)=>Observed***Blue(tri)=>Calculate	d::Source-Number 2.0 e calcolate				

Figura 79 – Modello sismostratigrafico del sottosuolo

DENON Sez	DENOMINAZIONE: Sezione sismica tomografica Ts12											
N. GEO	N. GEOFONI: STEP INTERGEOFONICO N. SHOTS 12 2 m			N. Shots		Lunghezza Stendimento 32 metri	Profondità Raggiunta 8 m					
Sismostra to	Velocità Vp media (m/s)	Spessore (m)	Litologia p	presunta	0.033							
1	500	1 – 3	Sabbie limose scarsamente	e addensate								
2	870	2 – 3	Sabbie limose addensate	е росо		1						
3	1500		Argille medial consistenti	mente	200000E	Black(square)→Observed ^{™®} Blue(m)→Calculat Dromocrone osservate	e calcolate					

Figura 80 – Modello sismostratigrafico del sottosuolo

DENON Sez	DENOMINAZIONE: Sezione sismica tomografica Ts13											
N. GEO	DFONI:		STEP INT	ERGEOFONICO	N. SHOTS		LUNGHEZZA STENDIMENTO	PROFONDITÀ RAGGIUNTA				
12			2 m	2		32 metri	8,5 m					
Sismostra to	Velocità Vp media (m/s)		Spessore (m)	Litologia p	oresunta	0.038						
1	420	0,5 -	- 2,5	Sabbie limose scarsamente	e addensate							
2	820	2,5	5 – 3	Sabbie limose addensate	е росо							
3	1500			Argille mediar consistenti	nente	100001	Black(square)=>0bserved ^{~~} Blue(m)=>Calculate	d:::Source-Number: 2.0 e calcolate				

Figura 81 – Modello sismostratigrafico del sottosuolo

Denom Sez	Denominazione: Sezione sismica tomografica Ts14											
N. GEO	N. GEOFONI: STEP INTERGEOFONICO N. SHOTS				I	LUNGHEZZA STENDIMENTO	Profondità Raggiunta 8 m					
	12		2			0111						
Sismostra to	Ap nedia (ش) (ش) (ش) (۲۰ (۲۰ (۲۰ (۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲				0.036							
1	460	2 – 3	Limi argillosi scarsamente	consistenti		J. C.	A CONTRACT					
2	800	1,5 – 2,5	Argille limose consistenza r	a nedia								
3	1350		Argille a cons medio-elevata	sistenza a	0.0111	Black(square)>>Observed***Blue(m)->Calculate	ec::Source-Number: 20 e calcolate					

Figura 82 – Modello sismostratigrafico del sottosuolo

DENON Sez	Denominazione: Sezione sismica tomografica Ts15											
N. GEO	N. GEOFONI: STEP INTERGEOFONICO N. SHOTS 12 2 m			N. Shots	2	Lunghezza Stendimento 32 metri	Profondità Raggiunta 6 m					
Sismostra to	Velocità Vp media (m/s)	Spessore (m)	Litologia p	presunta	0.028							
1	620	1-2	Limi argillosi addensati	росо			~ 					
2	940	1,8 – 2,5	Argille limose consistenza r bassa	Argille limose a consistenza medio- bassa								
3	1450		Argille a cons media	istenza	5.0	Black(square)=>Observed ^{~~~} Blue(tr)=>Calculat Dromocrone osservate	ed::Source-Number 2.0 26.0 e calcolate					

Figura 83 – Modello sismostratigrafico del sottosuolo

DENON Sez	MINAZIONE:	nica tomoç	grafica Ts16	6			
N. GEO	N. GEOFONI: STEP INTERGEOFONICO N. SHOTS			LUNGHEZZA STENDIMENTO	PROFONDITÀ RAGGIUNTA		
	12		2 m	2		32 metri	8 m
	[1		Γ		
Sismostra to	Velocità Vp media (m/s)	Spessore (m)	Litologia p	presunta	0.035		
1	520	0,5-2,5	Sabbie limose scarsamente	e addensate			
2	800	2,5 – 3,5	Sabbie limoso addensate	е росо		/	
3	1400		Argille a cons media	istenza	0.01 ¹	Black(square)=>Observad Blue(tri)=>Calculate	e calcolate

Figura 84 – Modello sismostratigrafico del sottosuolo

DENON Sez	Denominazione: Sezione sismica tomografica Ts17							
N. GEO	OFONI:	STEP INT	ERGEOFONICO	N. SHOTS		LUNGHEZZA STENDIMENTO	PROFONDITÀ RAGGIUNTA	
	12		2 m	2		32 metri	8 m	
Sismostra to	Velocità Vp media (m/s)	Spessore (m)	Litologia p	oresunta	0.041			
1	460	2,2 – 3	Limi argillosi consistenti	росо				
2	850	4,0 - 6,0	Argille limose consistenza r bassa	a nedio-				
3	1500		Argille a cons media	istenza	0.0111	Black(square)>>Dbserved***Blue(tri)=>Calculate	e calcolate	

Figura 85 – Modello sismostratigrafico del sottosuolo

DENON Sez	Denominazione: Sezione sismica tomografica Ts18							
N. GEO	N. GEOFONI: STEP INTERGEOFONICO N. SHOTS					LUNGHEZZA STENDIMENTO	PROFONDITÀ RAGGIUNTA	
	12		2 m	2		32 metri	8 m	
			I					
Sismostra to	Velocità Vp media (m/s)	Spessore (m)	Litologia p	presunta	0.04			
1	500	2-3	Sabbie limose scarsamente	e addensate				
2	780	2,5-3	Limi argillosi addensati	росо				
3	1450		Argille mediai consistenti	mente	0.011	Black(square)=>Observed***Blue(m)=>Calculate	d::Source-Number 2.0 26.0 e calcolate	

Figura 86 – Modello sismostratigrafico del sottosuolo

DENON Sez	Denominazione: Sezione sismica tomografica Ts19							
N. GEO	OFONI:	STEP INT	ERGEOFONICO	N. SHOTS		LUNGHEZZA STENDIMENTO	PROFONDITÀ RAGGIUNTA	
	12		2 m	2		32 metri	7,5 m	
Sismostra to	Velocità Vp media (m/s)	Spessore (m)	Litologia p	presunta	0.039			
1	450	2 – 3	Aerato superf scarsamente consistente	ficiale				
2	800	1,5 – 2,0	Marne poco o	consistenti				
3	1400		Marne a cons media	sistenza	0.011	Black(square)=>Observed ^{~~-} Blue(m)=>Calculan Dromocrone osservate	e calcolate	

Figura 87 – Modello sismostratigrafico del sottosuolo

DENON Sez	Denominazione: Sezione sismica tomografica Ts20							
N. GEO	N. GEOFONI: STEP INTERGEOFONICO N. SHOTS			LUNGHEZZA STENDIMENTO	PROFONDITÀ RAGGIUNTA			
	12		2 m 2		2	32 metri	8 m	
Sismostra to	Velocità Vp media (m/s)	Spessore (m)	Litologia p	oresunta	0.042			
1	460	3 – 4	Limi argillosi consistenti	росо				
2	780	3	Argille limose consistenza r bassa	a nedio-				
3	1400		Argille a cons media	sistenza	0.012 <u> </u> 5.0	Black(square)=>Observed ^{~~-Blue(tn)=>Calculat} Dromocrone osservate	ed::Source-Number: 20 260 e calcolate	

Figura 88 – Modello sismostratigrafico del sottosuolo

3.4 DESCRIZIONE DEI RISULTATI

Le prospezioni sismiche a rifrazione attraverso l'elaborazione tomografica ha fornito una sezione bidimensionale del sottosuolo maggiormente dettagliata rispetto alle tradizionali traverse sismiche.

Le sezioni sismiche sono state distribuite in maniera rappresentativa sul territorio, cercando di dare un quadro il più esaustivo possibile sulle varie formazioni indagate. Essenzialmente il quadro geologico-stratigrafico può essere sintetizzato attraverso tre differenti formazioni:

- Terrazzi alluvionali (tomografie 1,2,5,11,12,13,14,16);
- Argille s.l. (tomografie 3,4,10,15,17,18,20);
- Marne della F.ne Faeto (tomografie 6,7,8,9,19).

I modelli sismostratigrafici sono sempre stati sviluppati in un aerato di superficie, generalmente poco o scarsamente addensato, in un primo rifrattore (a basso grado di addensamento o consistenza), ed un secondo rifrattore, che generalmente rappresenta il substrato geologico a consistenza media o medio-elevata), evidenziando di volta in volta il range di spessore di ciascun sismostrato. La correlazione fra velocità sismiche e litologia è solo presuntiva, effettuata sulla base dei terreni affioranti e delle caratteristiche geologiche desunte dalla cartografia specializzata.

Il tecnico പ്പ്dott. Geol. Domen/റ്റെ Boso) ano lu

SETTORE GEOGNOSTICO Sede Legale: Via Monsignor Bologna, 18 - 86100 Campobasso Sede Operativa: C.da S.Maria delle Macchie, snc - 86019 Vinchiaturo (CB) Tel.+39.0874.340003/340016 P.IVA/C.F.: 007 176 307 01

COMMITTENTE: GEO Expert di Maria Rita Arcidiacono

PROGETTO : Indagini penetrometriche per un impianto fotovoltaico da 200 MW nel comune di Rotello (CB)

RT

INDAGINI GEOGNOSTICHE Rapporto Tecnico delle indagini

Rev.	Emissione	Redatto	Approvato	Responsabile di sito
00	31/08/2020	C. Brunelli	C. Scasserra	C. Brunelli

Ministero delle infrastrutture - Concessione Settore C Indagini geognostiche, prelievo di campioni e prove in sito Circolare LL.PP. n. 7619 del 08/09/2010 Decreto n. 156 del 19/04/2011

SOMMARIO

1	PREMESSA	2
2	AREA DI INDAGINE	3
3	PROVE PENETROMETRICHE DINAMICHE	4

Elaborati:

- A- Planimetria con ubicazione indagini
- B- Prove penetrometriche dinamiche DPSH
- C- Documentazione Fotografica

1 PREMESSA

Su richiesta del GEOL. DOTT. DOMENICO BOSO e per conto di GEO EXPERT DI MARIA RITA ARCIDIACONO con sede in Acireale (CT), nelle more del progetto di realizzazione di un *"Impianto fotovoltaico da 200 MW"*, la scrivente I.M.O.S. SRL ha eseguito la campagna di indagini geognostiche presso il comune di Rotello (CB).

Nella fattispecie, si fa riferimento alle seguenti indagini:

• n. 8 prove penetrometriche dinamiche del tipo DPSH

Le attività di indagine sono state svolte secondo indicazioni e sotto supervisione della Direzione Lavori rappresentata dal Consulente geologo della Committenza Dott. Domenico Boso.

Il presente rapporto comprende una breve relazione che illustra le procedure operative adottate per l'esecuzione delle indagini di cui sopra, in appendice alla quale si riportano i risultati, organizzati come segue:

- Elaborato A- Planimetria con ubicazione indagini
- Elaborato B- Prove penetrometriche Dinamiche DPSH
- Elaborato C- Documentazione fotografica

2 AREA DI INDAGINE

Le attività geognostiche hanno interessato le aree limitrofe al centro abitato de Comune di Rotello (CB), (Figura 1).

Figura 1: Immagine satellitare con individuazione dell'area di indagine (stampata da Google Earth).

L'ubicazione di dettaglio delle indagini eseguite è riportata nell'allegata "Planimetria con ubicazione indagini" (Elab. A).

3 PROVE PENETROMETRICHE DINAMICHE

Sono state eseguite n. 8 prove penetrometriche dinamiche del tipo DPSH con profondità di prova da 3.0 a 4.4 m; la tabella che segue riporta dati informativi generali delle prove, con coordinate acquisite da *Google Earth*:

Codice	Data	Profondità	Falda	COORD. GEO	OGRAFICHE*	New
Prova	esecuzione	(m dal p.c.)	(m dal p.c.)	Nord (°)	Est (°)	Note
DPSH 1	31/07/2020	4.2	Assente	41°45'29.6"	14°58'59.6"	
DPSH 2	31/07/2020	3.8	Assente	41°46'03.7"	15°00'29.4"	Rifiuto strumentale
DPSH 3	31/07/2020	3.2	Assente	41°44'58.9"	14°58'49.3"	Rifiuto strumentale
DPSH 4	31/07/2020	4.4	Assente	41°44'45.8"	15°01'28.6"	1010
DPSH 5	31/07/2020	3.0	Assente	41°46'11.4"	15°02'52.3"	Rifiuto strumentale
DPSH 6	31/07/2020	4.4	Assente	41°45'58.0"	15°01'33.3"	
DPSH 7	31/07/2020	4.4	Assente	41°46'55.9"	15°03'41.1"	
DPSH 8	31/07/2020	3.2	Assente	41°47'05.2"	15°01'15.5"	Rifiuto strumentale

Tabella 1: Dati generali delle prove penetrometriche	eseguite
--	----------

(*) Coordinate ricavata dal posizionamento del punti rilevati in campagna in ambiente Google Earth

In merito alla profondità di progetto delle prove si precisa che non è stata raggiunta a causa del rifiuto strumentale in avanzamento (avanzamento minore di 20 cm con 60 colpi); i rapporti di prova sono riportati nell'Elaborato "B", in appendice al presente documento.

Le prove dinamiche DPSH sono state condotte con penetrometro statico/dinamico TG63-200 PAGANI (Figura 2), in accordo con le normative internazionali (ASTM D-3441; Raccomandazione ISSMFE 1989).

Figura 2: Penetrometro e punta utilizzati (DPSH 6).

Rapporto Tecnico sulle Indagini: Codice GEO20_019

Nell'utilizzo per prove dinamiche, il penetrometro è classificato come Super Pesante (DPSH) in base alla classificazione riportata nella tabella che segue.

Classificazione ISSMFE (1988) dei penetrometri dinamici						
TIPO	Sigla riferimento	Peso Massa Battente M (kg)				
Leggero	DPL (Light)	M ≤ 10				
Medio	DPM (Medium)	10 < M < 40				
Pesante	DPH (Heavy)	$40 \le M \le 60$				
Super pesante	DPSH (Super Heavy)	M ≥ 60				

Classificazione ISSMFE (1988) dei penetrometri dinamici

La prova dinamica consiste nell'infiggere nel terreno una punta conica per tratti consecutivi di lunghezza δ, misurando il numero di colpi N necessari all'infissione richiesta.

Gli elementi caratteristici del penetrometro dinamico utilizzato sono i seguenti:

- peso massa battente M= 63.5 kg;
- altezza libera caduta H= 750 mm;
- punta conica:
 - diametro base cono D=50.5 mm,
 - area base A=20 cm²
 - angolo di apertura α 90°;
- avanzamento (penetrazione) δ 20 cm.

Dal numero di colpi N necessari per l'infissione della punta conica si può definire una correlazione con il valore di N_{SPT} attraverso il coefficiente teorico di energia βt .

dove:

$$\beta_t = \frac{Q}{Q_{SPT}}$$

in cui Q è l'energia specifica per colpo e Q_{SPT} è quella riferita alla prova SPT.

L'energia specifica per colpo viene calcolata come:

$$Q = \frac{M^2 \cdot H}{A \cdot \delta \cdot (M + M')}$$

in cui M'= peso aste.

La valutazione della resistenza dinamica alla punta R_{pd} viene effettuata attraverso la Formula Olandese:

$$Rpd = \frac{M^2 \cdot H}{\left[A \cdot e \cdot (M+P)\right]} = \frac{M^2 \cdot H \cdot N}{\left[A \cdot \delta \cdot (M+P)\right]}$$

dove

e = infissione media per colpo (δ / N);

P = peso totale aste e sistema battuta.

ELABORATI

 Committente:
 GEO EXPERT DI MARIA RITA ARCIDIACONO

 Luogo:
 ROTELLO (CB)

 Lavoro:
 Indagini penetrometriche per un impianto fotovoltaico da 200 MW

Elaborato A

Planimetria con ubicazione Indagini

Legenda *PSH*

Committente: GEO Expert di Maria Rita Arcidiacono Lavoro: Indagini penetrometriche per un impianto fotovoltaico da 200 MW

STAN S

Legenda

Legenda

Legenda *P*DPSH

Legenda

PDPSH

Legenda

DPSH 7

Committente: GEO Expert di Maria Rita Arcidiacono Lavoro: Indagini penetrometriche per un impianto fotovoltaico da 200 MW

Google Earth

Legenda PSH

> A N

100 m

Committente: GEO Expert di Maria Rita Arcidiacono Lavoro: Indagini penetrometriche per un impianto fotovoltaico da 200 MW Legenda *PSH*

Elaborato B

Prove penetrometriche dinamiche DPSH

PROVA PENETROMETRICA DINAMICA

Committente: GEO Expert di Maria Rita Arcidiacono Cantiere: Indagini penetrometriche per un impianto fotovoltaico da 200 MW Località: Rotello (CB)

Caratteristiche Tecniche-Strumentali Sonda: DPSH (Dinamic Probing Super Heavy)

Rif. Norme	DIN 4094
Peso Massa battente	63,5 Kg
Altezza di caduta libera	0,75 m
Peso sistema di battuta	8 Kg
Diametro punta conica	50,46 mm
Area di base punta	20 cm ²
Lunghezza delle aste	1 m
Peso aste a metro	6,3 Kg/m
Profondità giunzione prima asta	0,80 m
Avanzamento punta	0,20 m
Numero colpi per punta	N(20)
Coeff. Correlazione	1,504
Rivestimento/fanghi	No
Angolo di apertura punta	90°

OPERATORE Dott. Geologo Junior CARLO BRUNELLI RESPONSABILE Dott. Geologo DOMENICO BOSO

PROVE PENETROMETRICHE DINAMICHE CONTINUE (DYNAMIC PROBING) DPSH – DPM (... scpt ecc.)

Note illustrative - Diverse tipologie di penetrometri dinamici

La prova penetrometrica dinamica consiste nell'infiggere nel terreno una punta conica (per tratti consecutivi \Box) misurando il numero di colpi N necessari.

Le Prove Penetrometriche Dinamiche sono molto diffuse ed utilizzate nel territorio da geologi e geotecnici, data la loro semplicità esecutiva, economicità e rapidità di esecuzione.

La loro elaborazione, interpretazione e visualizzazione grafica consente di "catalogare e parametrizzare" il suolo attraversato con un'immagine in continuo, che permette anche di avere un raffronto sulle consistenze dei vari livelli attraversati e una correlazione diretta con sondaggi geognostici per la caratterizzazione stratigrafica.

La sonda penetrometrica permette inoltre di riconoscere abbastanza precisamente lo spessore delle coltri sul substrato, la quota di eventuali falde e superfici di rottura sui pendii, e la consistenza in generale del terreno.

L'utilizzo dei dati, ricavati da correlazioni indirette e facendo riferimento a vari autori, dovrà comunque essere trattato con le opportune cautele e, possibilmente, dopo esperienze geologiche acquisite in zona.

Elementi caratteristici del penetrometro dinamico sono i seguenti:

- peso massa battente M
- altezza libera caduta H
- punta conica: diametro base cono D, area base A (angolo di apertura \Box)
- avanzamento (penetrazione)
- presenza o meno del rivestimento esterno (fanghi bentonitici).

Con riferimento alla classificazione ISSMFE (1988) dei diversi tipi di penetrometri dinamici (vedi tabella sotto riportata) si rileva una prima suddivisione in quattro classi (in base al peso M della massa battente) :

- tipo LEGGERO (DPL)
- tipo MEDIO (DPM)
- tipo PESANTE (DPH)
- tipo SUPERPESANTE (DPSH)

Tipo	Sigla di	peso della massa	prof. max indagine battente
	riferimento	M (kg)	(m)
Leggero	DPL (Light)	M ≤10	8
Medio	DPM (Medium)	10 <m <40<="" td=""><td>20-25</td></m>	20-25
Pesante	DPH (Heavy)	40≤M <60	25
Super pesante (Super Heavy)	DPSH	M≥60	25

Classificazione ISSMFE dei penetrometri dinamici:

Penetrometri in uso in Italia

In Italia risultano attualmente in uso i seguenti tipi di penetrometri dinamici (non rientranti però nello Standard ISSMFE):

- DINAMICO LEGGERO ITALIANO (DL-30) (MEDIO secondo la classifica ISSMFE)

massa battente M = 30 kg, altezza di caduta H = 0.20 m, avanzamento \Box = 10 cm, punta conica

(α =60-90°), diametro D 35.7 mm, area base cono A=10 cm² rivestimento / fango bentonitico : talora

previsto;

- DINAMICO LEGGERO ITALIANO (DL-20) (MEDIO secondo la classifica ISSMFE)

massa battente M = 20 kg, altezza di caduta H=0.20 m, avanzamento \square = 10 cm, punta conica

(α = 60-90°), diametro D 35.7 mm, area base cono A=10 cm² rivestimento / fango bentonitico : talora

previsto;

- DINAMICO PESANTE ITALIANO (SUPERPESANTE secondo la classifica ISSMFE)

massa battente M = 73 kg, altezza di caduta H=0.75 m, avanzamento \Box =30 cm, punta conica (\Box = 60°),

diametro D = 50.8 mm, area base cono A= 20.27 cm^2 rivestimento: previsto secondo precise indicazioni;

- DINAMICO SUPERPESANTE (Tipo EMILIA)

massa battente M=63.5 kg, altezza caduta H=0.75 m, avanzamento \Box =20-30 cm, punta conica conica

 $(\alpha = 60^{\circ}-90^{\circ})$ diametro D = 50.5 mm, area base cono A = 20 cm², rivestimento / fango bentonitico:

talora previsto.

Correlazione con Nspt

Poiché la prova penetrometrica standard (SPT) rappresenta, ad oggi, uno dei mezzi più diffusi ed economici per ricavare informazioni dal sottosuolo, la maggior parte delle correlazioni esistenti riguardano i valori del numero di colpi Nspt ottenuto con la suddetta prova, pertanto si presenta la necessità di rapportare il numero di colpi di una prova dinamica con Nspt. Il passaggio viene dato da:

Dove:

$$\beta_t = \frac{Q}{Q_{SPT}}$$

in cui Q è l'energia specifica per colpo e Qspt è quella riferita alla prova SPT.

L'energia specifica per colpo viene calcolata come segue:

$$Q = \frac{M^2 \cdot H}{A \cdot \delta \cdot (M + M')}$$

in cui

- M = peso massa battente;
- M' = peso aste;
- H = altezza di caduta;
- A = area base punta conica;
- δ = passo di avanzamento.

Valutazione resistenza dinamica alla punta Rpd

Formula Olandesi

$$Rpd = \frac{M^2 \cdot H}{\left[A \cdot e \cdot (M+P)\right]} = \frac{M^2 \cdot H \cdot N}{\left[A \cdot \delta \cdot (M+P)\right]}$$

- Rpd = resistenza dinamica punta (area A);
- e = infissione media per colpo (\Box / N) ;
- M = peso massa battente (altezza caduta H);
- P = peso totale aste e sistema battuta.

Metodologia di Elaborazione.

Le elaborazioni sono state effettuate mediante un programma di calcolo automatico Dynamic Probing della GeoStru Software.

Il programma calcola il rapporto delle energie trasmesse (coefficiente di correlazione con SPT) tramite le elaborazioni proposte da Pasqualini 1983 - Meyerhof 1956 - Desai 1968 - Borowczyk-Frankowsky 1981.

Permette inoltre di utilizzare i dati ottenuti dall'effettuazione di prove penetrometriche per estrapolare utili informazioni geotecniche e geologiche.

Una vasta esperienza acquisita, unitamente ad una buona interpretazione e correlazione, permettono spesso di ottenere dati utili alla progettazione e frequentemente dati maggiormente attendibili di tanti dati bibliografici sulle litologie e di dati geotecnici determinati sulle verticali litologiche da poche prove di laboratorio eseguite come rappresentazione generale di una verticale eterogenea disuniforme e/o complessa.

In particolare consente di ottenere informazioni su:

- l'andamento verticale e orizzontale degli intervalli stratigrafici,
- la caratterizzazione litologica delle unità stratigrafiche,
- i parametri geotecnici suggeriti da vari autori in funzione dei valori del numero dei colpi e della resistenza alla punta.

Valutazioni statistiche e correlazioni

Elaborazione Statistica

Permette l'elaborazione statistica dei dati numerici di Dynamic Probing, utilizzando nel calcolo dei valori rappresentativi dello strato considerato un valore inferiore o maggiore della media aritmetica dello strato (dato comunque maggiormente utilizzato); i valori possibili in immissione sono :

Media

Media aritmetica dei valori del numero di colpi sullo strato considerato.

Media minima

Valore statistico inferiore alla media aritmetica dei valori del numero di colpi sullo strato considerato.

Massimo

Valore massimo dei valori del numero di colpi sullo strato considerato.

Minimo

Valore minimo dei valori del numero di colpi sullo strato considerato.

Scarto quadratico medio

Valore statistico di scarto dei valori del numero di colpi sullo strato considerato.

Media deviata

Valore statistico di media deviata dei valori del numero di colpi sullo strato considerato.

Media + s

Media + scarto (valore statistico) dei valori del numero di colpi sullo strato considerato. *Media - s*

Media - scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

Pressione ammissibile

Pressione ammissibile specifica sull'interstrato (con effetto di riduzione energia per svergolamento aste o no) calcolata secondo le note elaborazioni proposte da Herminier, applicando un coefficiente di sicurezza (generalmente = 20-22) che corrisponde ad un coefficiente di sicurezza standard delle fondazioni pari a 4, con una geometria fondale standard di larghezza pari a 1 mt. ed immorsamento d = 1 mt..

Correlazioni geotecniche terreni incoerenti:

Liquefazione

Permette di calcolare utilizzando dati Nspt il potenziale di liquefazione dei suoli (prevalentemente sabbiosi).

Attraverso la relazione di SHI-MING (1982), applicabile a terreni sabbiosi, la liquefazione risulta possibile solamente se Nspt dello strato considerato risulta inferiore a Nspt critico calcolato con l'elaborazione di SHI-MING.

Correzione Nspt in presenza di falda

Nspt corretto = $15 + 0.5 \times (Nspt - 15)$

Nspt è il valore medio nello strato

La correzione viene applicata in presenza di falda solo se il numero di colpi è maggiore di 15 (la correzione viene eseguita se tutto lo strato è in falda).

Angolo di Attrito

- Peck-Hanson-Thornburn-Meyerhof 1956 Correlazione valida per terreni non molli a prof. < 5 mt.; correlazione valida per sabbie e ghiaie rappresenta valori medi. - Correlazione storica molto usata, valevole per prof. < 5 mt. per terreni sopra falda e < 8 mt. per terreni in falda (tensioni < 8-10 t/mq)
- Meyerhof 1956 Correlazioni valide per terreni argillosi ed argillosi-marnosi fessurati, terreni di riporto sciolti e coltri detritiche (da modifica sperimentale di dati).
- Sowers 1961)- Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. < 4 mt. sopra falda e < 7 mt. per terreni in falda) □>5 t/mq.
- De Mello Correlazione valida per terreni prevalentemente sabbiosi e sabbioso-ghiaiosi (da modifica sperimentale di dati) con angolo di attrito < 38°.
- Malcev 1964 Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. > 2 m. e per valori di angolo di attrito < 38°).
- Schmertmann 1977- Angolo di attrito (gradi) per vari tipi litologici (valori massimi). N.B. valori spesso troppo ottimistici poiché desunti da correlazioni indirette da Dr %.
- Shioi-Fukuni 1982 (ROAD BRIDGE SPECIFICATION) Angolo di attrito in gradi valido per sabbie - sabbie fini o limose e limi siltosi (cond. ottimali per prof. di prova > 8 mt. sopra falda e > 15 mt. per terreni in falda) σ>15 t/mq.
- Shioi-Fukuni 1982 (JAPANESE NATIONALE RAILWAY) Angolo di attrito valido per sabbie medie e grossolane fino a ghiaiose.
- Angolo di attrito in gradi (Owasaki & Iwasaki) valido per sabbie sabbie medie e grossolaneghiaiose (cond. ottimali per prof. > 8 mt. sopra falda e > 15 mt. per terreni in falda) s>15 t/mq.
- Meyerhof 1965 Correlazione valida per terreni per sabbie con % di limo < 5% a profondità < 5 mt. e con % di limo > 5% a profondità < 3 mt.
- Mitchell e Katti (1965) Correlazione valida per sabbie e ghiaie.

Densità relativa (%)

• Gibbs & Holtz (1957) correlazione valida per qualunque pressione efficace, per ghiaie Dr viene sovrastimato, per limi sottostimato.

Skempton (1986) elaborazione valida per limi e sabbie e sabbie da fini a grossolane NC a qualunque pressione efficace, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.

Meyerhof (1957).

Schultze & Menzenbach (1961) per sabbie fini e ghiaiose NC, metodo valido per qualunque valore di pressione efficace in depositi NC, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.

Modulo Di Young (Ey)

- Terzaghi elaborazione valida per sabbia pulita e sabbia con ghiaia senza considerare la pressione efficace.
- Schmertmann (1978), correlazione valida per vari tipi litologici .
- Schultze-Menzenbach, correlazione valida per vari tipi litologici.
- D'Appollonia ed altri (1970), correlazione valida per sabbia, sabbia SC, sabbia NC e ghiaia
- Bowles (1982), correlazione valida per sabbia argillosa, sabbia limosa, limo sabbioso, sabbia media, sabbia e ghiaia.

Modulo Edometrico

- Begemann (1974) elaborazione desunta da esperienze in Grecia, correlazione valida per limo con sabbia, sabbia e ghiaia
- Buismann-Sanglerat, correlazione valida per sabbia e sabbia argillosa.
- Farrent (1963) valida per sabbie, talora anche per sabbie con ghiaia (da modifica sperimentale di dati).
- Menzenbach e Malcev valida per sabbia fine, sabbia ghiaiosa e sabbia e ghiaia.

Stato di consistenza

• Classificazione A.G.I. 1977

Peso di Volume Gamma

• Meyerhof ed altri, valida per sabbie, ghiaie, limo, limo sabbioso.

Peso di volume saturo

Bowles 1982, Terzaghi-Peck 1948-1967. Correlazione valida per peso specifico del materiale pari a circa γ = 2,65 t/mc e per peso di volume secco variabile da 1,33 (Nspt = 0) a 1,99 (Nspt = 95).

Modulo di poisson

• Classificazione A.G.I.

Potenziale di liquefazione (Stress Ratio)

Seed-Idriss 1978-1981. Tale correlazione è valida solamente per sabbie, ghiaie e limi sabbiosi, rappresenta il rapporto tra lo sforzo dinamico medio □ e la tensione verticale di consolidazione per la valutazione del potenziale di liquefazione delle sabbie e terreni sabbio-ghiaiosi attraverso grafici degli autori.

Velocità onde di taglio Vs (m/sec)

• Tale correlazione è valida solamente per terreni incoerenti sabbiosi e ghiaiosi.

Modulo di deformazione di taglio (G)

- Ohsaki & Iwasaki elaborazione valida per sabbie con fine plastico e sabbie pulite.
- Robertson e Campanella (1983) e Imai & Tonouchi (1982) elaborazione valida soprattutto per sabbie e per tensioni litostatiche comprese tra 0,5 4,0 kg/cmq.

Modulo di reazione (Ko)

• Navfac 1971-1982 - elaborazione valida per sabbie, ghiaie, limo, limo sabbioso.

Resistenza alla punta del Penetrometro Statico (Qc)

• Robertson 1983 Qc

Correlazioni geotecniche terreni coesivi

Coesione non drenata

- Benassi & Vannelli- correlazioni scaturite da esperienze ditta costruttrice Penetrometri SUNDA 1983.
- Terzaghi-Peck (1948-1967), correlazione valida per argille sabbiose-siltose NC con Nspt <8
 , argille limose-siltose mediamente plastiche, argille marnose alterate-fessurate.

Terzaghi-Peck (1948). Cu min-max.

- Sanglerat, da dati Penetr. Statico per terreni coesivi saturi, tale correlazione non è valida per argille sensitive con sensitività > 5, per argille sovraconsolidate fessurate e per i limi a bassa plasticità.
- Sanglerat, (per argille limose-sabbiose poco coerenti), valori validi per resistenze penetrometriche < 10 colpi, per resistenze penetrometriche > 10 l'elaborazione valida è comunque quella delle "argille plastiche " di Sanglerat.
- (U.S.D.M.S.M.) U.S. Design Manual Soil Mechanics Coesione non drenata per argille limose e argille di bassa media ed alta plasticità , (Cu-Nspt-grado di plasticità).
- Schmertmann 1975 Cu (Kg/cmq) (valori medi), valida per argille e limi argillosi con Nc=20 e Qc/Nspt=2.

Schmertmann 1975 Cu (Kg/cmq) (valori minimi), valida per argille NC .

Fletcher 1965 - (Argilla di Chicago). Coesione non drenata Cu (Kg/cmq), colonna valori validi per argille a medio-bassa plasticità.

Houston (1960) - argilla di media-alta plasticità.

- Shioi-Fukuni 1982, valida per suoli poco coerenti e plastici, argilla di media-alta plasticità.
- Begemann.
- De Beer.

Resistenza alla punta del Penetrometro Statico (Qc)

• Robertson 1983 Qc

Modulo Edometrico-Confinato (Mo)

- Stroud e Butler (1975) per litotipi a media plasticità, valida per litotipi argillosi a mediamedio-alta plasticità - da esperienze su argille glaciali.
- Stroud e Butler (1975), per litotipi a medio-bassa plasticità (IP< 20), valida per litotipi argillosi

a medio-bassa plasticità (IP<20) - da esperienze su argille glaciali.

- Vesic (1970) correlazione valida per argille molli (valori minimi e massimi).
- Trofimenkov (1974), Mitchell e Gardner Modulo Confinato -Mo (Eed) (Kg/cmq)-, valida per litotipi argillosi e limosi-argillosi (rapporto Qc/Nspt=1.5-2.0).
- Buismann- Sanglerat, valida per argille compatte (Nspt <30) medie e molli (Nspt <4) e argille sabbiose (Nspt=6-12).

Modulo di Young (EY)

 Schultze-Menzenbach - (Min. e Max.), correlazione valida per limi coerenti e limi argillosi con I.P. >15

D'Appollonia ed altri (1983) - correlazione valida per argille sature-argille fessurate.

Stato di consistenza

• Classificazione A.G.I. 1977

Peso di Volume Gamma

• Meyerhof ed altri, valida per argille, argille sabbiose e limose prevalentemente coerenti.

Peso di volume saturo

 Correlazione Bowles (1982), Terzaghi-Peck (1948-1967), valida per condizioni specifiche: peso specifico del materiale pari a circa G=2,70 (t/mc) e per indici dei vuoti variabili da 1,833 (Nspt=0) a 0,545 (Nspt=28)

PROVA ... DPSH 1

Strumento utilizzato ... Prova eseguita in data Profondità prova Falda non rilevata

DPSH (Dinamic Probing Super Heavy) 31/07/2020 4,20 mt

Profondità (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres. ammissibile	Pres. ammissibile
		riduzione sonda	ridotta	(Kg/cm ²)	con riduzione	Herminier -
		Chi	(Kg/cm ²)		Herminier -	Olandesi
					Olandesi	(Kg/cm ²)
					(Kg/cm ²)	
0,20	5	0,855	41,53	48,59	2,08	2,43
0,40	6	0,851	49,61	58,31	2,48	2,92
0,60	6	0,847	49,39	58,31	2,47	2,92
0,80	6	0,843	49,17	58,31	2,46	2,92
1,00	5	0,840	37,75	44,95	1,89	2,25
1,20	5	0,836	37,59	44,95	1,88	2,25
1,40	5	0,833	37,44	44,95	1,87	2,25
1,60	4	0,830	29,83	35,96	1,49	1,80
1,80	4	0,826	29,71	35,96	1,49	1,80
2,00	5	0,823	34,42	41,82	1,72	2,09
2,20	5	0,820	34,29	41,82	1,71	2,09
2,40	4	0,817	27,34	33,45	1,37	1,67
2,60	5	0,814	34,05	41,82	1,70	2,09
2,80	5	0,811	33,93	41,82	1,70	2,09
3,00	6	0,809	37,94	46,91	1,90	2,35
3,20	5	0,806	31,51	39,09	1,58	1,95
3,40	5	0,803	31,41	39,09	1,57	1,95
3,60	5	0,801	31,31	39,09	1,57	1,95
3,80	5	0,798	31,21	39,09	1,56	1,95
4,00	5	0,796	29,22	36,70	1,46	1,84
4,20	6	0,794	34,96	44,04	1,75	2,20

PROVA PENETROMETRICA DINAMICA DPSH 1 Strumento utilizzato... DPSH (Dinamic Probing Super Heavy) DIAGRAMMA NUMERO COLPI PUNTA-Rpd

STIMA PARAMETRI GEOTECNICI PROVA DPSH 1

TERRENI COESIVI

Coesione non drenata

	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm ²)
Strato 1	8,65	0,80	Terzaghi-Peck	0,58
Strato 2	7,43	4,20	Terzaghi-Peck	0,46

Modulo Edometrico

	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm ²)
Strato 1	8,65	0,80	Stroud e Butler (1975)	39,69
Strato 2	7,43	4,20	Stroud e Butler (1975)	34,09

Modulo di Young

	Nspt	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm ²)
Strato 1	8,65	0,80	Apollonia	86,50
Strato 2	7,43	4,20	Apollonia	74,30

Classificazione AGI

	Nspt	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato 1	8,65	0,80	Classificaz. A.G.I.	CONSISTENTE
			(1977)	
Strato 2	7,43	4,20	Classificaz. A.G.I.	MODERAT.
			(1977)	CONSISTENTE

Peso unità di volume

	Nspt	Prof. Strato Correlazione		Peso unità di volume
		(m)		(t/m ³)
Strato 1	8,65	0,80	Meyerhof ed altri	1,92
Strato 2	7,43	4,20	Meyerhof ed altri	1,88

TERRENI INCOERENTI

Densità relativa

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Densità relativa (%)
Strato 1	8,65	0,80	8,65	Meyerhof 1957	70,13
Strato 2	7,43	4,20	7,43	Meyerhof 1957	52,9

Angolo di resistenza al taglio

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Angolo d'attrito (°)
Strato 1	8,65	0,80	8,65	Meyerhof (1956)	22,47
Strato 2	7,43	4,20	7,43	Meyerhof (1956)	22,12

Modulo di Young

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo di Young
		(m)	presenza falda		(Kg/cm ²)
Strato 1	8,65	0,80	8,65	Bowles (1982)	
				Sabbia Media	
Strato 2	7,43	4,20	7,43	Bowles (1982)	
				Sabbia Media	

Classificazione AGI

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Classificazione
		(m)	presenza falda		AGI
Strato 1	8,65	0,80	8,65	Classificazione	РОСО
				A.G.I. 1977	ADDENSATO
Strato 2	7,43	4,20	7,43	Classificazione	РОСО
				A.G.I. 1977	ADDENSATO

Peso unità di volume

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma
		(m)	presenza falda		(t/m ³)
Strato 1	8,65	0,80	8,65	Meyerhof ed altri	1,68
Strato 2	7,43	4,20	7,43	Meyerhof ed altri	1,64

Modulo di Poisson

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Poisson
Strato 1	8,65	0,80	8,65	(A.G.I.)	0,34
Strato 2	7,43	4,20	7,43	(A.G.I.)	0,34

Modulo di deformazione a taglio

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	G
		(m)	presenza falda		(Kg/cm ²)
Strato 1	8,65	0,80	8,65	Ohsaki (Sabbie	493,98
				pulite)	
Strato 2	7,43	4,20	7,43	Ohsaki (Sabbie	428,20
				pulite)	

Modulo di reazione Ko

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Ko
Strato 1	8,65	0,80	8,65	Navfac 1971-1982	1,81
Strato 2	7,43	4,20	7,43	Navfac 1971-1982	1,54

PROVA ... DPSH 2

Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata DPSH (Dinamic Probing Super Heavy) 31/07/2020 4,00 mt

Profondità (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres.	Pres.
	_	riduzione sonda	ridotta	(Kg/cm ²)	ammissibile con	ammissibile
		Chi	(Kg/cm ²)		riduzione	Herminier -
					Herminier -	Olandesi
					Olandesi	(Kg/cm ²)
					(Kg/cm ²)	
0,20	4	0,855	33,22	38,87	1,66	1,94
0,40	6	0,851	49,61	58,31	2,48	2,92
0,60	9	0,847	74,08	87,46	3,70	4,37
0,80	8	0,843	65,56	77,74	3,28	3,89
1,00	7	0,840	52,84	62,93	2,64	3,15
1,20	6	0,836	45,11	53,94	2,26	2,70
1,40	6	0,833	44,92	53,94	2,25	2,70
1,60	5	0,830	37,29	44,95	1,86	2,25
1,80	7	0,826	52,00	62,93	2,60	3,15
2,00	7	0,823	48,19	58,54	2,41	2,93
2,20	8	0,820	54,87	66,91	2,74	3,35
2,40	5	0,817	34,17	41,82	1,71	2,09
2,60	9	0,814	61,29	75,27	3,06	3,76
2,80	8	0,811	54,29	66,91	2,71	3,35
3,00	7	0,809	44,26	54,73	2,21	2,74
3,20	6	0,806	37,81	46,91	1,89	2,35
3,40	9	0,803	56,53	70,37	2,83	3,52
3,60	9	0,801	56,35	70,37	2,82	3,52
3,80	11	0,798	68,67	86,00	3,43	4,30
4,00	50	0,596	218,75	367,01	10,94	18,35

PROVA PENETROMETRICA DINAMICA DPSH 2 Strumento utilizzato... DPSH (Dinamic Probing Super Heavy) DIAGRAMMA NUMERO COLPI PUNTA-Rpd

Comn Cantie Locali	ittente : re : tà :		GEO Expert di Maria Riza Arcidiacono Data i 31/07/ Indugini penetrometriche per un impianto fotovoltaico da 200 MW Rotello (CB)								7/2020				5-1-1-5											
	Nume	ro di c	colpi į	penet	trazi	one p	unta									Rpd (Kg)	(cm²)						Interpretazio	one Str	atigrafica	Scala 1:50
	0 5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	0	43,8		87,6	131,4	175,2	219,0				
		4										 											1	0.00 6 6 8	COPERTURA	
1-		18	9 												- 		+								SUB-STRATO	
•		6 6 5														• 										
2 —		7 7 8 5				-										2	+						2	340 cm		
3 —		7	9 													3		7								
_			9 9 11																					380,0		

STIMA PARAMETRI GEOTECNICI PROVA DPSH 2

TERRENI COESIVI

Coesione non drenata

	Nspt	Prof. Strato	Correlazione	Cu	
		(m)		(Kg/cm ²)	
Strato 1	7,52	0,40	Terzaghi-Peck	0,47	
Strato 2	11,23	3,80	Terzaghi-Peck	0,76	

Modulo Edometrico

	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm ²)
Strato 1	7,52	0,40	Stroud e Butler (1975)	34,50
Strato 2	11,23	3,80	Stroud e Butler (1975)	51,52

Modulo di Young

	Nspt	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm ²)
Strato 1	7,52	0,40	Apollonia	75,20
Strato 2	11,23	3,80	Apollonia	112,30

Classificazione AGI

	Nspt	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato 1	7,52	0,40	Classificaz. A.G.I.	MODERAT.
			(1977)	CONSISTENTE
Strato 2	11,23	3,80	Classificaz. A.G.I.	CONSISTENTE
			(1977)	

Peso unità di volume

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m ³)
Strato 1	7,52	0,40	Meyerhof ed altri	1,88
Strato 2	11,23	3,80	Meyerhof ed altri	2,00

TERRENI INCOERENTI

Densità relativa

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Densità relativa (%)
Strato 1	7,52	0,40	7,52	Meyerhof 1957	67,05
Strato 2	11,23	3,80	11,23	Meyerhof 1957	66,64

Angolo di resistenza al taglio

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Angolo d'attrito (°)
Strato 1	7,52	0,40	7,52	Meyerhof (1956)	22,15
Strato 2	11,23	3,80	11,23	Meyerhof (1956)	23,21

Modulo di Young

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo di Young
		(m)	presenza falda		(Kg/cm ²)
Strato 1	7,52	0,40	7,52	Bowles (1982)	
				Sabbia Media	
Strato 2	11,23	3,80	11,23	Bowles (1982)	131,15
				Sabbia Media	

Classificazione AGI

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Classificazione
		(m)	presenza falda		AGI
Strato 1	7,52	0,40	7,52	Classificazione	РОСО
				A.G.I. 1977	ADDENSATO
Strato 2	11,23	3,80	11,23	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO

Peso unità di volume

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Gamma (t/m ³)
Strato 1	7,52	0,40	7,52	Meyerhof ed altri	1,64
Strato 2	11,23	3,80	11,23	Meyerhof ed altri	1,77

Modulo di Poisson

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson
Strato 1	7,52	0,40	7,52	(A.G.I.)	0,34
Strato 2	11,23	3,80	11,23	(A.G.I.)	0,33

Modulo di deformazione a taglio

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	G
		(m)	presenza falda		(Kg/cm ²)
Strato 1	7,52	0,40	7,52	Ohsaki (Sabbie	433,07
				pulite)	
Strato 2	11,23	3,80	11,23	Ohsaki (Sabbie	631,35
				pulite)	

Modulo di reazione Ko

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Ko
Strato 1	7,52	0,40	7,52	Navfac 1971-1982	1,56
Strato 2	11,23	3,80	11,23	Navfac 1971-1982	2,36

PROVA ... DPSH 3

Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata DPSH (Dinamic Probing Super Heavy) 31/07/2020 3,40 mt

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm ²)	Res. dinamica (Kg/cm ²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm ²)	Pres. ammissibile Herminier - Olandesi (Kg/cm ²)
0,20	16	0,805	125,11	155,49	6,26	7,77
0,40	20	0,801	155,64	194,36	7,78	9,72
0,60	6	0,847	49,39	58,31	2,47	2,92
0,80	4	0,843	32,78	38,87	1,64	1,94
1,00	3	0,840	22,65	26,97	1,13	1,35
1,20	2	0,836	15,04	17,98	0,75	0,90
1,40	2	0,833	14,97	17,98	0,75	0,90
1,60	4	0,830	29,83	35,96	1,49	1,80
1,80	5	0,826	37,14	44,95	1,86	2,25
2,00	4	0,823	27,54	33,45	1,38	1,67
2,20	4	0,820	27,44	33,45	1,37	1,67
2,40	10	0,817	68,34	83,63	3,42	4,18
2,60	12	0,814	81,72	100,36	4,09	5,02
2,80	20	0,761	127,36	167,27	6,37	8,36
3,00	35	0,659	180,24	273,65	9,01	13,68
3,20	40	0,606	189,52	312,74	9,48	15,64
3,40	50	0,603	235,88	390,92	11,79	19,55

PROVA PENETROMETRICA DINAMICA DPSH 3 Strumento utilizzato... DPSH (Dinamic Probing Super Heavy) DIAGRAMMA NUMERO COLPI PUNTA-Rpd

GEO Expert di Maria Rita Arcidiacono Indagini penetrometriche per un impianto fotovoltaico da 200 MW Rotello (CB) Data :31/07/2020 Committente : Cantiere : Località : Scala 1:50 Numero di colpi penetrazione punta Rpd (Kg/cm²) Interpretazione Stratigrafica 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 47,2 94,4 141,6 188,8 236.0 COPERTURA A ARIDA 16 40 m 1 ARGILLE LIMOSE 6 4 180 cm 2 5 4 SABBIE LIMOSE 10 12 100 cm 3 35 40

STIMA PARAMETRI GEOTECNICI PROVA DPSH 3

TERRENI COESIVI

Coesione non drenata

	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm ²)
Strato 1	27,07	0,40	Terzaghi-Peck	1,83
Strato 2	5,69	2,20	Terzaghi-Peck	0,36
Strato 3	35,19	3,20	Terzaghi-Peck	2,38

Modulo Edometrico

	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm ²)
Strato 1	27,07	0,40	Stroud e Butler (1975)	124,20
Strato 2	5,69	2,20	Stroud e Butler (1975)	26,11
Strato 3	35,19	3,20	Stroud e Butler (1975)	161,45

Modulo di Young

	Nspt Prof. Strato		Correlazione	Ey
		(m)		(Kg/cm^2)
Strato 1	27,07	0,40	Apollonia	270,70
Strato 2	5,69	2,20	Apollonia	56,90
Strato 3	35,19	3,20	Apollonia	351,90

Classificazione AGI

	Nspt	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato 1	27,07	0,40	Classificaz. A.G.I.	MOLTO
			(1977)	CONSISTENTE
Strato 2	5,69	2,20	Classificaz. A.G.I.	MODERAT.
			(1977)	CONSISTENTE
Strato 3	35,19	3,20	Classificaz. A.G.I.	ESTREM.
			(1977)	CONSISTENTE

Peso unità di volume

	Nspt	Prof. Strato	Correlazione	Peso unità di volume	
		(m)		(t/m ³)	
Strato 1	27,07	0,40	Meyerhof ed altri	2,13	
Strato 2	5,69	2,20	Meyerhof ed altri	1,80	
Strato 3	35,19	3,20	Meyerhof ed altri	2,29	

TERRENI INCOERENTI

Densità relativa

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Densità relativa
		(m)	presenza falda		(%)
Strato 1	27,07	0,40	27,07	Meyerhof 1957	100
Strato 2	5,69	2,20	5,69	Meyerhof 1957	51,47
Strato 3	35,19	3,20	35,19	Meyerhof 1957	100

Angolo di resistenza al taglio

	Nspt	Nspt Prof. Strato		Correlazione	Angolo d'attrito
		(m)	presenza falda		(°)
Strato 1	27,07	0,40	27,07	De Mello	31,49
Strato 2	5,69	2,20	5,69	De Mello	25,52
Strato 3	35,19	3,20	35,19	De Mello	32,36

Modulo di Young

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo di Young
		(m)	presenza falda		(Kg/cm ²)
Strato 1	27,07	0,40	27,07	Bowles (1982)	210,35
				Sabbia Media	
Strato 2	5,69	2,20	5,69	Bowles (1982)	
				Sabbia Media	
Strato 3	35,19	3,20	35,19	Bowles (1982)	250,95
				Sabbia Media	

Classificazione AGI

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Classificazione
		(m)	presenza falda		AGI
Strato 1	27,07	0,40	27,07	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 2	5,69	2,20	5,69	Classificazione	РОСО
				A.G.I. 1977	ADDENSATO
Strato 3	35,19	3,20	35,19	Classificazione	ADDENSATO
				A.G.I. 1977	

Peso unità di volume

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma
		(m)	presenza falda		(t/m ³)
Strato 1	27,07	0,40	27,07	Meyerhof ed altri	2,10
Strato 2	5,69	2,20	5,69	Meyerhof ed altri	1,57
Strato 3	35,19	3,20	35,19	Meyerhof ed altri	2,18

Modulo di Poisson

	Nspt	Nspt Prof. Strato		Correlazione	Poisson
		(m)	presenza falda		
Strato 1	27,07	0,40	27,07	(A.G.I.)	0,3
Strato 2	5,69	2,20	5,69	(A.G.I.)	0,34
Strato 3	35,19	3,20	35,19	(A.G.I.)	0,28

Modulo di deformazione a taglio

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	G
		(m)	presenza falda		(Kg/cm ²)
Strato 1	27,07	0,40	27,07	Ohsaki (Sabbie	1443,62
				pulite)	
Strato 2	5,69	2,20	5,69	Ohsaki (Sabbie	333,21
				pulite)	
Strato 3	35,19	3,20	35,19	Ohsaki (Sabbie	1847,34
				pulite)	

Modulo di reazione Ko

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Ko
		(m)	presenza falda		
Strato 1	27,07	0,40	27,07	Navfac 1971-1982	5,19
Strato 2	5,69	2,20	5,69	Navfac 1971-1982	1,15
Strato 3	35,19	3,20	35,19	Navfac 1971-1982	6,30

PROVA ... DPSH 4

Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata

DPSH (Dinamic Probing Super Heavy) 31/07/2020 4,40 mt

Profondità (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres.	Pres.
		riduzione sonda	ridotta	(Kg/cm ²)	ammissibile con	ammissibile
		Chi	(Kg/cm ²)		riduzione	Herminier -
					Herminier -	Olandesi
					Olandesi	(Kg/cm ²)
					(Kg/cm ²)	
0,20	3	0,855	24,92	29,15	1,25	1,46
0,40	3	0,851	24,80	29,15	1,24	1,46
0,60	3	0,847	24,69	29,15	1,23	1,46
0,80	3	0,843	24,59	29,15	1,23	1,46
1,00	2	0,840	15,10	17,98	0,75	0,90
1,20	2	0,836	15,04	17,98	0,75	0,90
1,40	2	0,833	14,97	17,98	0,75	0,90
1,60	1	0,830	7,46	8,99	0,37	0,45
1,80	2	0,826	14,86	17,98	0,74	0,90
2,00	2	0,823	13,77	16,73	0,69	0,84
2,20	2	0,820	13,72	16,73	0,69	0,84
2,40	2	0,817	13,67	16,73	0,68	0,84
2,60	2	0,814	13,62	16,73	0,68	0,84
2,80	3	0,811	20,36	25,09	1,02	1,25
3,00	3	0,809	18,97	23,46	0,95	1,17
3,20	4	0,806	25,21	31,27	1,26	1,56
3,40	4	0,803	25,13	31,27	1,26	1,56
3,60	6	0,801	37,57	46,91	1,88	2,35
3,80	5	0,798	31,21	39,09	1,56	1,95
4,00	5	0,796	29,22	36,70	1,46	1,84
4,20	5	0,794	29,13	36,70	1,46	1,84
4,40	5	0,791	29,05	36,70	1,45	1,84

PROVA PENETROMETRICA DINAMICA DPSH 4 Strumento utilizzato... DPSH (Dinamic Probing Super Heavy) DIAGRAMMA NUMERO COLPI PUNTA-Rpd

GEO Expert di Maria Rita Arcidiacono Indagini penetrometriche per un impianto fotovoltaico da 200 MW Rotello (CB) Committer Cantiere : Località : Data :31/07/2020 Scala 1:50

STIMA PARAMETRI GEOTECNICI PROVA DPSH 4

TERRENI COESIVI

Coesione non drenata

	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm ²)
Strato 1	4,51	0,40	Terzaghi-Peck	0,28
Strato 2	3,71	3,40	Terzaghi-Peck	0,23
Strato 3	7,82	4,40	Terzaghi-Peck	0,49

Modulo Edometrico

	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm ²)
Strato 1	4,51	0,40	Stroud e Butler (1975)	20,69
Strato 2	3,71	3,40	Stroud e Butler (1975)	17,02
Strato 3	7,82	4,40	Stroud e Butler (1975)	35,88

Modulo di Young

	Nspt	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm ²)
Strato 1	4,51	0,40	Apollonia	45,10
Strato 2	3,71	3,40	Apollonia	37,10
Strato 3	7,82	4,40	Apollonia	78,20

Classificazione AGI

	Nspt	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato 1	4,51	0,40	Classificaz. A.G.I.	MODERAT.
			(1977)	CONSISTENTE
Strato 2	3,71	3,40	Classificaz. A.G.I.	РОСО
			(1977)	CONSISTENTE
Strato 3	7,82	4,40	Classificaz. A.G.I.	MODERAT.
			(1977)	CONSISTENTE

Peso unità di volume

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m ³)
Strato 1	4,51	0,40	Meyerhof ed altri	1,73
Strato 2	3,71	3,40	Meyerhof ed altri	1,68
Strato 3	7,82	4,40	Meyerhof ed altri	1,89

TERRENI INCOERENTI

Densità relativa

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Densità relativa
		(m)	presenza falda		(%)
Strato 1	4,51	0,40	4,51	Meyerhof 1957	52,03
Strato 2	3,71	3,40	3,71	Meyerhof 1957	40,03
Strato 3	7,82	4,40	7,82	Meyerhof 1957	50,21

Angolo di resistenza al taglio

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Angolo d'attrito
		(m)	presenza falda		(°)
Strato 1	4,51	0,40	4,51	Meyerhof (1956)	21,29
Strato 2	3,71	3,40	3,71	Meyerhof (1956)	21,06
Strato 3	7,82	4,40	7,82	Meyerhof (1956)	22,23

Modulo di Young

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo di Young
	-	(m)	presenza falda		(Kg/cm ²)
Strato 1	4,51	0,40	4,51	Bowles (1982)	
				Sabbia Media	
Strato 2	3,71	3,40	3,71	Bowles (1982)	
				Sabbia Media	
Strato 3	7,82	4,40	7,82	Bowles (1982)	
				Sabbia Media	

Classificazione AGI

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Classificazione
		(m)	presenza falda		AGI
Strato 1	4,51	0,40	4,51	Classificazione	РОСО
				A.G.I. 1977	ADDENSATO
Strato 2	3,71	3,40	3,71	Classificazione	SCIOLTO
				A.G.I. 1977	
Strato 3	7,82	4,40	7,82	Classificazione	РОСО
				A.G.I. 1977	ADDENSATO

Peso unità di volume

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma
		(m)	presenza falda		(t/m ³)
Strato 1	4,51	0,40	4,51	Meyerhof ed altri	1,52
Strato 2	3,71	3,40	3,71	Meyerhof ed altri	1,48
Strato 3	7,82	4,40	7,82	Meyerhof ed altri	1,65

Modulo di Poisson

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Poisson
		(m)	presenza falda		
Strato 1	4,51	0,40	4,51	(A.G.I.)	0,34
Strato 2	3,71	3,40	3,71	(A.G.I.)	0,35
Strato 3	7,82	4,40	7,82	(A.G.I.)	0,34

Modulo di deformazione a taglio

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	G
		(m)	presenza falda		(Kg/cm ²)
Strato 1	4,51	0,40	4,51	Ohsaki (Sabbie	267,82
				pulite)	
Strato 2	3,71	3,40	3,71	Ohsaki (Sabbie	222,91
				pulite)	
Strato 3	7,82	4,40	7,82	Ohsaki (Sabbie	449,29
				pulite)	

Modulo di reazione Ko

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Ko
		(m)	presenza falda		
Strato 1	4,51	0,40	4,51	Navfac 1971-1982	0,87
Strato 2	3,71	3,40	3,71	Navfac 1971-1982	0,68
Strato 3	7,82	4,40	7,82	Navfac 1971-1982	1,63

PROVA ... DPSH 5

Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata

DPSH (Dinamic Probing Super Heavy) 31/07/2020 3,00 mt

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm ²)	Res. dinamica (Kg/cm ²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm ²)	Pres. ammissibile Herminier - Olandesi (Kg/cm ²)
0,20	3	0,855	24,92	29,15	1,25	1,46
0,40	4	0,851	33,07	38,87	1,65	1,94
0,60	6	0,847	49,39	58,31	2,47	2,92
0,80	6	0,843	49,17	58,31	2,46	2,92
1,00	8	0,840	60,39	71,92	3,02	3,60
1,20	8	0,836	60,14	71,92	3,01	3,60
1,40	11	0,833	82,36	98,89	4,12	4,94
1,60	15	0,780	105,12	134,85	5,26	6,74
1,80	22	0,726	143,65	197,78	7,18	9,89
2,00	22	0,723	133,06	183,99	6,65	9,20
2,20	13	0,770	83,73	108,72	4,19	5,44
2,40	17	0,767	109,07	142,18	5,45	7,11
2,60	18	0,764	115,05	150,54	5,75	7,53
2,80	40	0,611	204,54	334,53	10,23	16,73
3,00	50	0,609	237,95	390,92	11,90	19,55

PROVA PENETROMETRICA DINAMICA DPSH 5 Strumento utilizzato... DPSH (Dinamic Probing Super Heavy) DIAGRAMMA NUMERO COLPI PUNTA-Rpd

TERRENI COESIVI

Coesione non drenata

	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm ²)
Strato 1	5,26	0,40	Terzaghi-Peck	0,33
Strato 2	10,03	1,00	Terzaghi-Peck	0,68
Strato 3	27,73	2,80	Terzaghi-Peck	1,87

Modulo Edometrico

	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm ²)
Strato 1	5,26	0,40	Stroud e Butler (1975)	24,13
Strato 2	10,03	1,00	Stroud e Butler (1975)	46,02
Strato 3	27,73	2,80	Stroud e Butler (1975)	127,23

Modulo di Young

	Nspt	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm ²)
Strato 1	5,26	0,40	Apollonia	52,60
Strato 2	10,03	1,00	Apollonia	100,30
Strato 3	27,73	2,80	Apollonia	277,30

Classificazione AGI

	Nspt	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato 1	5,26	0,40	Classificaz. A.G.I.	MODERAT.
			(1977)	CONSISTENTE
Strato 2	10,03	1,00	Classificaz. A.G.I.	CONSISTENTE
			(1977)	
Strato 3	27,73	2,80	Classificaz. A.G.I.	MOLTO
			(1977)	CONSISTENTE

Peso unità di volume

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m ³)
Strato 1	5,26	0,40	Meyerhof ed altri	1,77
Strato 2	10,03	1,00	Meyerhof ed altri	1,97
Strato 3	27,73	2,80	Meyerhof ed altri	2,14

TERRENI INCOERENTI

Densità relativa

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Densità relativa
		(m)	presenza falda		(%)
Strato 1	5,26	0,40	5,26	Meyerhof 1957	56,16
Strato 2	10,03	1,00	10,03	Meyerhof 1957	73,01
Strato 3	27,73	2,80	27,73	Meyerhof 1957	100

Angolo di resistenza al taglio

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Angolo d'attrito
Strato 1	5,26	0,40	5,26	De Mello	25,28
Strato 2	10,03	1,00	10,03	De Mello	27,7
Strato 3	27,73	2,80	27,73	De Mello	31,48

Modulo di Young

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo di Young
		(m)	presenza falda		(Kg/cm ²)
Strato 1	5,26	0,40	5,26	Bowles (1982)	
				Sabbia Media	
Strato 2	10,03	1,00	10,03	Bowles (1982)	125,15
				Sabbia Media	
Strato 3	27,73	2,80	27,73	Bowles (1982)	213,65
				Sabbia Media	

Classificazione AGI

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Classificazione
		(m)	presenza falda		AGI
Strato 1	5,26	0,40	5,26	Classificazione	РОСО
				A.G.I. 1977	ADDENSATO
Strato 2	10,03	1,00	10,03	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 3	27,73	2,80	27,73	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO

Peso unità di volume

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma
		(m)	presenza falda		(t/m ³)
Strato 1	5,26	0,40	5,26	Meyerhof ed altri	1,55
Strato 2	10,03	1,00	10,03	Meyerhof ed altri	1,73
Strato 3	27,73	2,80	27,73	Meyerhof ed altri	2,11

Modulo di Poisson

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson
Strato 1	5,26	0,40	5,26	(A.G.I.)	0,34
Strato 2	10,03	1,00	10,03	(A.G.I.)	0,33
Strato 3	27,73	2,80	27,73	(A.G.I.)	0,3

Modulo di deformazione a taglio

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	G
		(m)	presenza falda		(Kg/cm ²)
Strato 1	5,26	0,40	5,26	Ohsaki (Sabbie	309,49
				pulite)	
Strato 2	10,03	1,00	10,03	Ohsaki (Sabbie	567,72
				pulite)	
Strato 3	27,73	2,80	27,73	Ohsaki (Sabbie	1476,68
				pulite)	

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Ko
		(m)	presenza falda		
Strato 1	5,26	0,40	5,26	Navfac 1971-1982	1,05
Strato 2	10,03	1,00	10,03	Navfac 1971-1982	2,11
Strato 3	27,73	2,80	27,73	Navfac 1971-1982	5,29

PROVA ... DPSH 6

Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata DPSH (Dinamic Probing Super Heavy) 31/07/2020 4,40 mt

Profondità (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres.	Pres.
		riduzione sonda	ridotta	(Kg/cm ²)	ammissibile con	ammissibile
		Chi	(Kg/cm ²)		riduzione	Herminier -
					Herminier -	Olandesi
					Olandesi	(Kg/cm ²)
					(Kg/cm ²)	
0,20	5	0,855	41,53	48,59	2,08	2,43
0,40	5	0,851	41,34	48,59	2,07	2,43
0,60	5	0,847	41,16	48,59	2,06	2,43
0,80	6	0,843	49,17	58,31	2,46	2,92
1,00	7	0,840	52,84	62,93	2,64	3,15
1,20	5	0,836	37,59	44,95	1,88	2,25
1,40	3	0,833	22,46	26,97	1,12	1,35
1,60	4	0,830	29,83	35,96	1,49	1,80
1,80	5	0,826	37,14	44,95	1,86	2,25
2,00	6	0,823	41,31	50,18	2,07	2,51
2,20	5	0,820	34,29	41,82	1,71	2,09
2,40	6	0,817	41,00	50,18	2,05	2,51
2,60	7	0,814	47,67	58,54	2,38	2,93
2,80	8	0,811	54,29	66,91	2,71	3,35
3,00	7	0,809	44,26	54,73	2,21	2,74
3,20	7	0,806	44,11	54,73	2,21	2,74
3,40	7	0,803	43,97	54,73	2,20	2,74
3,60	7	0,801	43,83	54,73	2,19	2,74
3,80	7	0,798	43,70	54,73	2,18	2,74
4,00	8	0,796	46,74	58,72	2,34	2,94
4,20	8	0,794	46,61	58,72	2,33	2,94
4,40	8	0,791	46,47	58,72	2,32	2,94

PROVA PENETROMETRICA DINAMICA DPSH 6 Strumento utilizzato... DPSH (Dinamic Probing Super Heavy) <u>DIAGRAMMA NUMERO COLPI PUNTA-Rpd</u>

TERRENI COESIVI

Coesione non drenata

	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm ²)
Strato 1	7,52	0,60	Terzaghi-Peck	0,47
Strato 2	7,85	2,40	Terzaghi-Peck	0,49
Strato 3	11,13	4,40	Terzaghi-Peck	0,75

Modulo Edometrico

	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm ²)
Strato 1	7,52	0,60	Stroud e Butler (1975)	34,50
Strato 2	7,85	2,40	Stroud e Butler (1975)	36,02
Strato 3	11,13	4,40	Stroud e Butler (1975)	51,06

Modulo di Young

	Nspt	Nspt Prof. Strato		Ey
		(m)		(Kg/cm ²)
Strato 1	7,52	0,60	Apollonia	75,20
Strato 2	7,85	2,40	Apollonia	78,50
Strato 3	11,13	4,40	Apollonia	111,30

Classificazione AGI

	Nspt	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato 1	7,52	0,60	Classificaz. A.G.I.	MODERAT.
			(1977)	CONSISTENTE
Strato 2	7,85	2,40	Classificaz. A.G.I.	MODERAT.
			(1977)	CONSISTENTE
Strato 3	11,13	4,40	Classificaz. A.G.I.	CONSISTENTE
			(1977)	

Peso unità di volume

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m ³)
Strato 1	7,52	0,60	Meyerhof ed altri	1,88
Strato 2	7,85	2,40	Meyerhof ed altri	1,89
Strato 3	11,13	4,40	Meyerhof ed altri	2,00

TERRENI INCOERENTI

Densità relativa

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Densità relativa
		(m)	presenza falda		(%)
Strato 1	7,52	0,60	7,52	Meyerhof 1957	66,21
Strato 2	7,85	2,40	7,85	Meyerhof 1957	59,35
Strato 3	11,13	4,40	11,13	Meyerhof 1957	60,23

Angolo di resistenza al taglio

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Angolo d'attrito
		(m)	presenza falda		(°)
Strato 1	7,52	0,60	7,52	Meyerhof (1956)	22,15
Strato 2	7,85	2,40	7,85	Meyerhof (1956)	22,24
Strato 3	11,13	4,40	11,13	Meyerhof (1956)	23,18

Modulo di Young

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo di Young
		(m)	presenza falda		(Kg/cm ²)
Strato 1	7,52	0,60	7,52	Bowles (1982)	
				Sabbia Media	
Strato 2	7,85	2,40	7,85	Bowles (1982)	
				Sabbia Media	
Strato 3	11,13	4,40	11,13	Bowles (1982)	130,65
				Sabbia Media	

Classificazione AGI

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Classificazione
		(m)	presenza falda		AGI
Strato 1	7,52	0,60	7,52	Classificazione	РОСО
				A.G.I. 1977	ADDENSATO
Strato 2	7,85	2,40	7,85	Classificazione	РОСО
				A.G.I. 1977	ADDENSATO
Strato 3	11,13	4,40	11,13	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO

Peso unità di volume

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma
		(m)	presenza falda		(t/m ³)
Strato 1	7,52	0,60	7,52	Meyerhof ed altri	1,64
Strato 2	7,85	2,40	7,85	Meyerhof ed altri	1,65
Strato 3	11,13	4,40	11,13	Meyerhof ed altri	1,77

Modulo di Poisson

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Poisson
		(m)	presenza falda		
Strato 1	7,52	0,60	7,52	(A.G.I.)	0,34
Strato 2	7,85	2,40	7,85	(A.G.I.)	0,34
Strato 3	11,13	4,40	11,13	(A.G.I.)	0,33

Modulo di deformazione a taglio

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	G
		(m)	presenza falda		(Kg/cm ²)
Strato 1	7,52	0,60	7,52	Ohsaki (Sabbie	433,07
				pulite)	
Strato 2	7,85	2,40	7,85	Ohsaki (Sabbie	450,91
				pulite)	
Strato 3	11,13	4,40	11,13	Ohsaki (Sabbie	626,06
				pulite)	

	Nspt Prof. Strato Nspt c		Nspt corretto per	Correlazione	Ko
		(m)	presenza falda		
Strato 1	7,52	0,60	7,52	Navfac 1971-1982	1,56
Strato 2	7,85	2,40	7,85	Navfac 1971-1982	1,63
Strato 3	11,13	4,40	11,13	Navfac 1971-1982	2,34

PROVA ... DPSH 7

Strumento utilizzato ... Prova eseguita in data Profondità prova Falda non rilevata

DPSH (Dinamic Probing Super Heavy) 31/07/2020 4,40 mt

Profondità (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres.	Pres.
		riduzione sonda	ridotta	(Kg/cm ²)	ammissibile con	ammissibile
		Chi	(Kg/cm ²)		riduzione	Herminier -
					Herminier -	Olandesi
					Olandesi	(Kg/cm ²)
					(Kg/cm ²)	
0,20	2	0,855	16,61	19,44	0,83	0,97
0,40	7	0,851	57,87	68,02	2,89	3,40
0,60	36	0,697	243,84	349,84	12,19	17,49
0,80	38	0,693	256,03	369,28	12,80	18,46
1,00	9	0,840	67,94	80,91	3,40	4,05
1,20	5	0,836	37,59	44,95	1,88	2,25
1,40	17	0,783	119,64	152,83	5,98	7,64
1,60	20	0,780	140,16	179,80	7,01	8,99
1,80	9	0,826	66,86	80,91	3,34	4,05
2,00	9	0,823	61,96	75,27	3,10	3,76
2,20	9	0,820	61,73	75,27	3,09	3,76
2,40	9	0,817	61,51	75,27	3,08	3,76
2,60	8	0,814	54,48	66,91	2,72	3,35
2,80	8	0,811	54,29	66,91	2,71	3,35
3,00	8	0,809	50,58	62,55	2,53	3,13
3,20	5	0,806	31,51	39,09	1,58	1,95
3,40	7	0,803	43,97	54,73	2,20	2,74
3,60	6	0,801	37,57	46,91	1,88	2,35
3,80	6	0,798	37,45	46,91	1,87	2,35
4,00	7	0,796	40,90	51,38	2,05	2,57
4,20	7	0,794	40,78	51,38	2,04	2,57
4,40	7	0,791	40,67	51,38	2,03	2,57

PROVA PENETROMETRICA DINAMICA DPSH 7 Strumento utilizzato... DPSH (Dinamic Probing Super Heavy) DIAGRAMMA NUMERO COLPI PUNTA-Rpd

Numoro di c	colni n												Prd (Ka/am2						Internetar	iono 6*	rationation
0 5 10	0 15	20 25	30	35	40	45	50	55	60	65	70	5	0	51,4	102,8	154,2	205,6	257,0	Interpretaz	ione st	raugranca
2			-			1						-	-	-					1	40 cm	COPERTURA AGRARIA
					38	 													2	40 g	TROVANTE GHIAIE
5	9			1							_		1						3	40 g	LIMO ARGILLOSO
		17			į.								<				1		4	140.0	TROVANTE GHIAIE
	9 9 9 9 3 3 3												2						5	300 cm	LIMO ARGILLOSO SABBIOSO
													4								

TERRENI COESIVI

Coesione non drenata

	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm ²)
Strato 1	6,77	0,40	Terzaghi-Peck	0,42
Strato 2	55,65	0,80	Terzaghi-Peck	3,76
Strato 3	10,53	1,20	Terzaghi-Peck	0,71
Strato 4	25,57	1,40	Terzaghi-Peck	1,73
Strato 5	12,53	4,40	Terzaghi-Peck	0,85

Modulo Edometrico

	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm ²)
Strato 1	6,77	0,40	Stroud e Butler (1975)	31,06
Strato 2	55,65	0,80	Stroud e Butler (1975)	255,32
Strato 3	10,53	1,20	Stroud e Butler (1975)	48,31
Strato 4	25,57	1,40	Stroud e Butler (1975)	117,32
Strato 5	12,53	4,40	Stroud e Butler (1975)	57,49

Modulo di Young

	Nspt	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm ²)
Strato 1	6,77	0,40	Apollonia	67,70
Strato 2	55,65	0,80	Apollonia	556,50
Strato 3	10,53	1,20	Apollonia	105,30
Strato 4	25,57	1,40	Apollonia	255,70
Strato 5	12,53	4,40	Apollonia	125,30

Classificazione AGI

	Nspt	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato 1	6,77	0,40	Classificaz. A.G.I.	MODERAT.
			(1977)	CONSISTENTE
Strato 2	55,65	0,80	Classificaz. A.G.I.	ESTREM.
			(1977)	CONSISTENTE
Strato 3	10,53	1,20	Classificaz. A.G.I.	CONSISTENTE
			(1977)	
Strato 4	25,57	1,40	Classificaz. A.G.I.	MOLTO
			(1977)	CONSISTENTE
Strato 5	12,53	4,40	Classificaz. A.G.I.	CONSISTENTE
			(1977)	

Peso unità di volume

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m ³)
Strato 1	6,77	0,40	Meyerhof ed altri	1,85
Strato 2	55,65	0,80	Meyerhof ed altri	4,60
Strato 3	10,53	1,20	Meyerhof ed altri	1,98
Strato 4	25,57	1,40	Meyerhof ed altri	2,12
Strato 5	12,53	4,40	Meyerhof ed altri	2,03

TERRENI INCOERENTI Densità relativa

Densita i ciativa										
	Nspt	Nspt Prof. Strato		Correlazione	Densità relativa					
		(m)	presenza falda		(%)					
Strato 1	6,77	0,40	6,77	Meyerhof 1957	63,65					
Strato 2	55,65	0,80	55,65	Meyerhof 1957	100					
Strato 3	10,53	1,20	10,53	Meyerhof 1957	68,23					
Strato 4	25,57	1,40	25,57	Meyerhof 1957	100					
Strato 5	12,53	4,40	12,53	Meyerhof 1957	63,18					

Angolo di resistenza al taglio

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Angolo d'attrito
		(m)	presenza falda		(°)
Strato 1	6,77	0,40	6,77	De Mello	26,24
Strato 2	55,65	0,80	55,65	De Mello	34,17
Strato 3	10,53	1,20	10,53	De Mello	27,88
Strato 4	25,57	1,40	25,57	De Mello	31,23
Strato 5	12,53	4,40	12,53	De Mello	28,42

Modulo di Young

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo di Young
		(m)	presenza falda		(Kg/cm ²)
Strato 1	6,77	0,40	6,77	Bowles (1982)	
				Sabbia Media	
Strato 2	55,65	0,80	55,65	Bowles (1982)	353,25
				Sabbia Media	
Strato 3	10,53	1,20	10,53	Bowles (1982)	127,65
				Sabbia Media	
Strato 4	25,57	1,40	25,57	Bowles (1982)	202,85
				Sabbia Media	
Strato 5	12,53	4,40	12,53	Bowles (1982)	137,65
				Sabbia Media	

Classificazione AGI

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Classificazione
		(m)	presenza falda		AGI
Strato 1	6,77	0,40	6,77	Classificazione	POCO
				A.G.I. 1977	ADDENSATO
Strato 2	55,65	0,80	55,65	Classificazione	MOLTO
				A.G.I. 1977	ADDENSATO
Strato 3	10,53	1,20	10,53	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 4	25,57	1,40	25,57	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 5	12,53	4,40	12,53	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO

Peso unità di volume

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma
		(m)	presenza falda		(t/m ³)
Strato 1	6,77	0,40	6,77	Meyerhof ed altri	1,61
Strato 2	55,65	0,80	55,65	Meyerhof ed altri	2,26
Strato 3	10,53	1,20	10,53	Meyerhof ed altri	1,75
Strato 4	25,57	1,40	25,57	Meyerhof ed altri	2,08
Strato 5	12,53	4,40	12,53	Meyerhof ed altri	1,81

Modulo di Poisson

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Poisson
		(m)	presenza falda		
Strato 1	6,77	0,40	6,77	(A.G.I.)	0,34
Strato 2	55,65	0,80	55,65	(A.G.I.)	0,24
Strato 3	10,53	1,20	10,53	(A.G.I.)	0,33
Strato 4	25,57	1,40	25,57	(A.G.I.)	0,3
Strato 5	12,53	4,40	12,53	(A.G.I.)	0,33

Modulo di deformazione a taglio

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	G
		(m)	presenza falda		(Kg/cm ²)
Strato 1	6,77	0,40	6,77	Ohsaki (Sabbie	392,34
				pulite)	
Strato 2	55,65	0,80	55,65	Ohsaki (Sabbie	2842,17
				pulite)	
Strato 3	10,53	1,20	10,53	Ohsaki (Sabbie	594,29
				pulite)	
Strato 4	25,57	1,40	25,57	Ohsaki (Sabbie	1368,30
				pulite)	
Strato 5	12,53	4,40	12,53	Ohsaki (Sabbie	699,82
				pulite)	

	Nspt	Prof. Strato Nspt corretto per		Correlazione	Ko
		(m)	presenza falda		
Strato 1	6,77	0,40	6,77	Navfac 1971-1982	1,39
Strato 2	55,65	0,80	55,65	Navfac 1971-1982	9,07
Strato 3	10,53	1,20	10,53	Navfac 1971-1982	2,22
Strato 4	25,57	1,40	25,57	Navfac 1971-1982	4,96
Strato 5	12,53	4,40	12,53	Navfac 1971-1982	2,63

PROVA ... DPSH 8

Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata DPSH (Dinamic Probing Super Heavy) 31/07/2020 3,20 mt

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm ²)	Res. dinamica (Kg/cm ²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm ²)	Pres. ammissibile Herminier - Olandesi (Kg/cm ²)
0,20	8	0,855	66,44	77,74	3,32	3,89
0,40	9	0,851	74,41	87,46	3,72	4,37
0,60	7	0,847	57,62	68,02	2,88	3,40
0,80	8	0,843	65,56	77,74	3,28	3,89
1,00	10	0,840	75,49	89,90	3,77	4,49
1,20	9	0,836	67,66	80,91	3,38	4,05
1,40	9	0,833	67,39	80,91	3,37	4,05
1,60	15	0,780	105,12	134,85	5,26	6,74
1,80	16	0,776	111,67	143,84	5,58	7,19
2,00	24	0,723	145,16	200,72	7,26	10,04
2,20	16	0,770	103,05	133,81	5,15	6,69
2,40	18	0,767	115,49	150,54	5,77	7,53
2,60	18	0,764	115,05	150,54	5,75	7,53
2,80	24	0,711	142,80	200,72	7,14	10,04
3,00	36	0,659	185,39	281,47	9,27	14,07
3,20	50	0,606	236,90	390,92	11,85	19,55

PROVA PENETROMETRICA DINAMICA DPSH 8 Strumento utilizzato... DPSH (Dinamic Probing Super Heavy) DIAGRAMMA NUMERO COLPI PUNTA-Rpd

TERRENI COESIVI

Coesione non drenata

	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm ²)
Strato 1	12,89	1,40	Terzaghi-Peck	0,87
Strato 2	31,4	3,00	Terzaghi-Peck	2,12

Modulo Edometrico

	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm ²)
Strato 1	12,89	1,40	Stroud e Butler (1975)	59,14
Strato 2	31,4	3,00	Stroud e Butler (1975)	144,06

Modulo di Young

	Nspt	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm ²)
Strato 1	12,89	1,40	Apollonia	128,90
Strato 2	31,4	3,00	Apollonia	314,00

Classificazione AGI

	Nspt	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato 1	12,89	1,40	Classificaz. A.G.I.	CONSISTENTE
			(1977)	
Strato 2	31,4	3,00	Classificaz. A.G.I.	ESTREM.
			(1977)	CONSISTENTE

Peso unità di volume

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m ³)
Strato 1	12,89	1,40	Meyerhof ed altri	2,03
Strato 2	31,4	3,00	Meyerhof ed altri	2,19

TERRENI INCOERENTI

Densità relativa

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Densità relativa (%)
Strato 1	12,89	1,40	12,89	Meyerhof 1957	82,16
Strato 2	31,4	3,00	31,4	Meyerhof 1957	100

Angolo di resistenza al taglio

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Angolo d'attrito
		(m)	presenza falda		(°)
Strato 1	12,89	1,40	12,89	De Mello	28,64
Strato 2	31,4	3,00	31,4	De Mello	31,94

Modulo di Young

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Modulo di Young
		(m)	presenza falda		(Kg/cm ²)
Strato 1	12,89	1,40	12,89	Bowles (1982)	139,45
				Sabbia Media	
Strato 2	31,4	3,00	31,4	Bowles (1982)	232,00
				Sabbia Media	

Classificazione AGI

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Classificazione
		(m)	presenza falda		AGI
Strato 1	12,89	1,40	12,89	Classificazione	MODERATAME
				A.G.I. 1977	NTE
					ADDENSATO
Strato 2	31,4	3,00	31,4	Classificazione	ADDENSATO
				A.G.I. 1977	

Peso unità di volume

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Gamma
		(m)	presenza falda		(t/m ³)
Strato 1	12,89	1,40	12,89	Meyerhof ed altri	1,82
Strato 2	31,4	3,00	31,4	Meyerhof ed altri	2,15

Modulo di Poisson

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson
Strato 1	12,89	1,40	12,89	(A.G.I.)	0,33
Strato 2	31,4	3,00	31,4	(A.G.I.)	0,29

Modulo di deformazione a taglio

	Nspt	Prof. Strato	Nspt corretto per	Correlazione	G
		(m)	presenza falda		(Kg/cm ²)
Strato 1	12,89	1,40	12,89	Ohsaki (Sabbie	718,71
				pulite)	
Strato 2	31,4	3,00	31,4	Ohsaki (Sabbie	1659,69
				pulite)	

	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Ko
Strato 1	12,89	1,40	12,89	Navfac 1971-1982	2,70
Strato 2	31,4	3,00	31,4	Navfac 1971-1982	5,80

Elaborato C

Documentazione fotografica

POSTAZIONE DPSH 1

POSTAZIONE DPSH 2

 Committente:
 GEO EXPERT DI MARIA RITA ARCIDIACONO

 Luogo:
 ROTELLO (CB)

 Lavoro:
 Indagini penetrometriche per un impianto fotovoltaico da 200 MW

Documentazione Fotografica

POSTAZIONE DPSH 3

POSTAZIONE DPSH 4

 Committente:
 GEO EXPERT DI MARIA RITA ARCIDIACONO

 Luogo:
 ROTELLO (CB)

 Lavoro:
 Indagini penetrometriche per un impianto fotovoltaico da 200 MW

POSTAZIONE DPSH 5

POSTAZIONE DPSH 6

 Committente:
 GEO EXPERT DI MARIA RITA ARCIDIACONO

 Luogo:
 ROTELLO (CB)

 Lavoro:
 Indagini penetrometriche per un impianto fotovoltaico da 200 MW

Documentazione Fotografica

POSTAZIONE DPSH 7

POSTAZIONE DPSH 8

Committente: GEO EXPERT DI MARIA RITA ARCIDIACONO Luogo: ROTELLO (CB) Lavoro: Indagini penetrometriche per un impianto fotovoltaico da 200 MW