

EDPR SICILIA PV SRL

Sede Legale via Roberto Lepetit 8/10 - 90124 Milano P.IVA 11064600965

PROGETTO DI UN IMPIANTO AGRO-FOTOVOLTAICO CON POTENZA NOMINALE DI 38,3 MWp DA REALIZZARE IN CONTRADA ZAFFARANA NEL COMUNE DI TRAPANI (TP) DENOMINATO "ZAFFARANA 38"

REL.CE

Calcoli circuiti elettrici

Project Manager INGEGNERIA Soluzioni Tecniche Multidisciplinari

Piazza Diodoro Siculo, 4 90141 - Palermo Tel. 091-6818075

info@stmingegneria.it TEAM di Progettazione:

Ing. Davide Baldini Ing. Maurizio Savì Dott. Cristian Mancino Ing. Giovanni Termini

Ing. Vincenzo Chiarelli Ing. Andrea Garramone

Ing. Luca Argano

Ing. Giuseppe Meli Ordine degli Ingegneri della Provincia di Palermo N. 5355

Consulenze Specialistiche L'EFFICIENZA DEI MIGLIORI TecSolis S.p.A.

via Baraggino snc (Ex Cav) 10034 - Chivasso (TO) tel. 011-9173881 Email: info@tecsolis.com P.IVA 09657340015

Ing. V. Chiarelli Ing. A. Garramone

Green Future S.r.l.

Corso Calatafimi, 421 90129 - Palermo tel. 091 - 8776799

email: g.filiberto@greenfuture.it P.IVA e C.F. 06004500820

7isto Ente

Rev.	Data	Descrizione	Preparato	Controllato	Approvato
0	05/09/2021	Prima emissione per richiesta autorizzazione	D.Baldini	G.Termini	G. Meli

PROGETTO DI UN IMPIANTO FOTOVOLTAICO CON POTENZA NOMINALE 38,3 MWp DA REALIZZARE NEL COMUNE DI TRAPANI DENOMINATO "Zaffarana 38"

CALCOLI DEI CIRCUITI ELETTRICI
LINEE ELETTRICHE MT-BT

CALCOLI DEI CIRCUITI ELETTRICI

Codice: REL.CE

Rev.: 00

Pag.: 2 / 17

Sommario

Somr	nario	2
1.	SCOPO DEL DOCUMENTO – ABSTRACT	3
2.	PRESCRIZIONI NORMATIVE	4
SA	LUTE E SICUREZZA SUL LAVORO	4
AΝ	1BIENTE	5
3.	DESCRIZIONE DELL'IMPIANTO	6
RE	TE MT	9
4.	DIMENSIONAMENTO CAVI MT	. 10
5.	SCELTA DELLA SEZIONE DEI CAVI	. 11
6.	CONCLUSIONI	. 14
7	SPECIFICHE TECNICHE	15

CALCOLI DEI CIRCUITI ELETTRICI

Codice: REL.CE

Rev.: 00

Pag.: 3 / 17

SCOPO DEL DOCUMENTO – ABSTRACT

Scopo del presente documento è quello di analizzare i circuiti dell'impianto da fonte solare, individuare le soluzioni possibili e fornire i criteri adottati per il dimensionamento dei cavi ed i dispositivi di protezione. In particolare saranno valutati i cavi utilizzati MT e BT, le perdite per effetto Joule e le cadute di tensione associate.

L'impianto, di potenza di 38,3 MWp, da realizzare nel comune di TRAPANI è collegato alla RTN tramite la stazione elettrica TERNA "Partanna 2", destinata all'immissione in rete dell'energia elettrica prodotta.

CALCOLI DEI CIRCUITI ELETTRICI

Codice: REL.CE

Rev.: 00

Pag.: 4 / 17

2. PRESCRIZIONI NORMATIVE

Le apparecchiature, i componenti d'impianto e tutte le opere descritte sono progettate e saranno costruite e collaudate in conformità alle seguenti normative in vigore:

- norme CEI / IEC
- normative di unificazione UNI e UNEL
- prescrizioni ENPI prescrizioni INAIL (ex ISPESL)
- D.L. n. 81/2008

L'impianto in oggetto, ove non diversamente specificato, sarà realizzato conformemente alla Norma CEI 11-1. Le aziende realizzatrici saranno certificate e impegnate a migliorare il proprio Sistema di Gestione della Qualità al fine di assicurare che i propri processi interni siano conformi ai requisiti specificati dalla norma UNI EN ISO 9001:2008.

SALUTE E SICUREZZA SUL LAVORO

Norme applicabili

D.Lgs. 81/08 e s.m.i. – Testo unico sulla Salute e Sicurezza sul lavoro

- Accordo 21 Dicembre 2011 Formazione alla sicurezza di lavoratori, preposti, dirigenti e datori di lavoro RSPP. Accordo 22 febbraio 2012 Individuazione delle attrezzature di lavoro per le quali è richiesta una specifica abilitazione degli operatori.
 - D.Lgs. 276/03 e s.m.i. Attuazione delle deleghe in materia di occupazione e mercato del lavoro.
 - D.P.R. 177/11 Decreto Spazi Confinati
 - D.Lgs. 17/10 Direttiva Macchine
 - D.M. 11 aprile 2011 Disciplina delle verifiche periodiche di cui all'allegato VII del D.Lgs. 81/08.
 - D.Lgs. 475/92 e s.m.i. Dispositivi di Protezione Individuale
 - D.M. 2 maggio 2001 Criteri per l'individuazione e l'uso dei dpi.
 - Legge 136/10 Piano straordinario contro le mafie.
 - D.M. 37/08 e s.m.i. Norme per la sicurezza degli impianti.
 - D.P.R. 462/01 Organismi abilitati alle verifiche.
 - Legge 125/01 Legge quadro in materia di Alcool e problemi correlati.
 - D.Lgs. 624/96 Industrie estrattive
- D.M. 10 marzo 1998 Criteri generali di sicurezza antincendio e per la gestione dell'emergenza nei luoghi di lavoro.
 - D.P.R. 151/11 e s.m.i. Nuove attività soggette.
- D.M. del 20 dicembre 2012 Regola tecnica per la progettazione degli impianti antincendio di protezione attiva nelle attività soggette.
 - D.M. 388/03 Disposizione sul pronto soccorso aziendale.

CALCOLI DEI CIRCUITI ELETTRICI

Codice: REL.CE

Rev.: 00

Pag.: 5 / 17

AMBIENTE

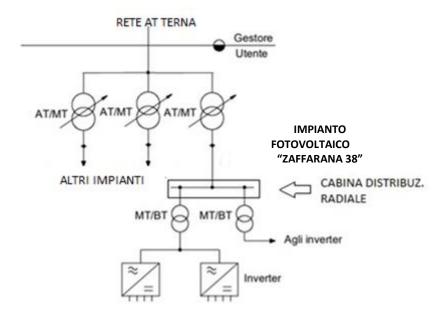
- D.Lgs. 152/06 Testo unico Ambiente.
- D.M. 161/12 Terre e rocce da scavo.
- DPCM 20 Dicembre 2012 Approvazione del modello unico di Dichiarazione ambientale.
- D.Lgs. 36/03 e s.m.i. Discariche di rifiuti.
- D.M. 27 Settembre 2010 Definizione dei criteri di ammissibilità dei rifiuti in discarica.
- D.Lgs. 151/05 Riduzione dell'uso di sostanze pericolose nelle apparecchiature elettriche ed elettroniche, nonché allo smaltimento dei rifiuti.
- D.M. 65/10 Modalità "semplificate" di gestione dei Rifiuti di Apparecchiature Elettriche ed Elettroniche (denominate RAEE) da parte dei distributori, degli installatori e dei centri di assistenza tecnica.
 - DPR 43/2012 Regolamento gas fluorurati effetto serra.
 - D.Lgs. 26/13 Sanzioni Gas fluorurati. –

Legge 447/95 - Legge quadro sull' inquinamento acustico.

- Regolamento (CE) n. 1907/2006 e s.m.i. Registrazione, valutazione, autorizzazione e restrizione delle sostanze chimiche (REACH).
- D.Lgs. 133/09 Sanzioni REACH Legge 10/91 e s.m.i. Norme per l'attuazione del piano energetico nazionale in materia di uso razionale dell'energia, di risparmio energetico e di sviluppo delle fonti rinnovabili di energia.
 - Allegati Terna applicabili
 - CEI 0-16
 - CEI 0-21

CALCOLI DEI CIRCUITI ELETTRICI

Codice: REL.CE


Rev.: 00

Pag.: 6 / 17

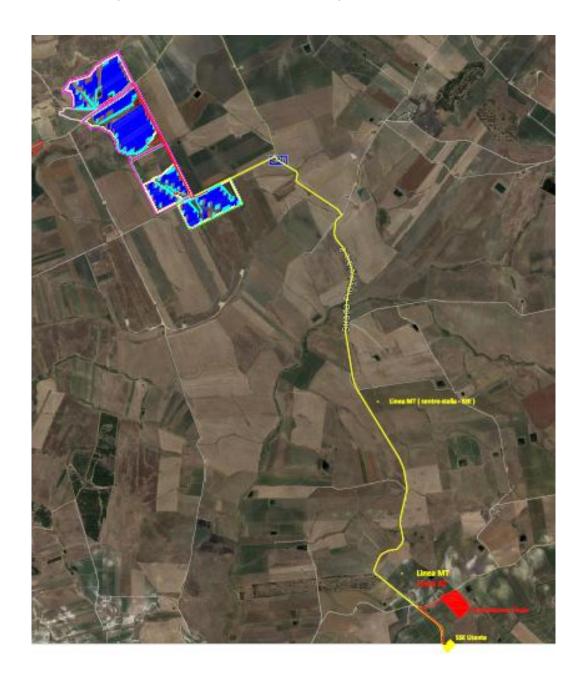
3. DESCRIZIONE DELL'IMPIANTO

4. L'impianto di produzione da fonte solare, è collegato alla stazione AT di Terna, denominata "Partanna 2". Il campo fotovoltaico è connesso alla sottostazione MT/AT utente tramite una terna di cavi MT. Le aree interessate dagli effetti dei campi elettromagnetici sono costituite dall'elettrodotto di collegamento (interrato) tra la sottostazione utente di trasformazione MT/AT (ubicata nei pressi della AT TERNA "Partanna 2") e la cabina di distribuzione radiale posta all'interno del campo di lunghezza complessiva di 6373 m. Una terna di cavi (interrata) AT completa l'impianto di trasporto dell'energia.

SCHEMA SEMPLIFICATO DELL'IMPIANTO

L'impianto di generazione è composto da 1 cabina di distribuzione radiale, contenente le celle MT di arrivo e protezione) e 6 cabine di trasformazione MT/BT, contenenti i trasformatori MT/BT ed i quadri di parallelo BT (da inverter).

CALCOLI DEI CIRCUITI ELETTRICI

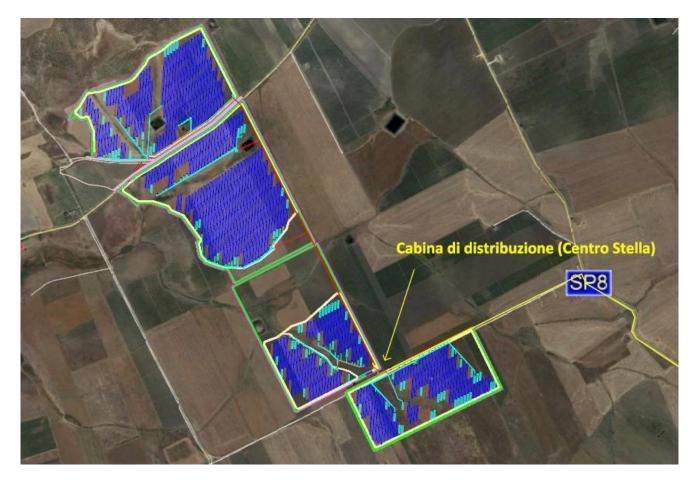

Codice: REL.CE

Rev.: 00

Pag.: 7 / 17

GEOLOCALIZZAZIONE DELL'IMPIANTO DI GENERAZIONE

PERCORSO DEL CAVO MT (SE "PARTANNA 2" - IMPIANTO FV)


CALCOLI DEI CIRCUITI ELETTRICI

Codice: REL.CE

Rev.: 00

Pag.: 8 / 17

DETTAGLIO POSIZIONE CABINA DI DISTRIBUZIONE MT E LAYOUT IMPIANTO FOTOVOLTAICO

CALCOLI DEI CIRCUITI ELETTRICI

Codice: REL.CE

Rev.: 00

Pag.: 9 / 17

VALORE DELLA CORRENTE NELLE SINGOLE SEZIONI DI IMPIANTO

MT1 - Il cavidotto MT (30 kV) che collega la sottostazione utente al campo fotovoltaico utilizza una singola terna di cavi MT da 800 mm2, (Inom. 806 A) prevede una corrente max 611 A

MT2 - Le terne dei cavi MT (30 kV) che collegano la cabina di distribuzione MT, alle 6 cabine di trasformazione MT/BT- possono essere rappresentate dal caso pessimo, ovvero da cabina di trasformazione avente potenza massima 6,5 MVA - (I nom 221 A); CORRENTE MAX 134,4 A

BT 1- La corrente BT (800V) massima prevista dai cavi BT, che alimentano un singolo inverter, è pari a 180 A

Per maggiori dettagli tecnici delle suddette opere si rimanda allo schema unifilare.

RETE MT

Il valore di tensione MT utilizzato è pari a 30 kV perché, a parità di potenza, le correnti sono ridotte rispetto alla tensione standard utilizzata dai distributori locali di rete di 20 kV, quindi è possibile utilizzare cavi di sezione minore. Un altro vantaggio che si ha con la rete a 30 kV è la riduzione della fascia di rispetto determinata ai sensi della L.36/01 e D.M. 29.05.2008 (l'induzione magnetica è proporzionale alla corrente, mentre il campo elettrico, proporzionale alla tensione, è nullo essendo tutti i componenti schermati (cavi e celle).

CALCOLI DEI CIRCUITI ELETTRICI

Codice: REL.CE

Rev.: 00

Pag.: 10 / 17

4. DIMENSIONAMENTO CAVI MT

Il trasporto dell'energia avviene mediante l'utilizzo di cavi interrati posati in trincea, sul letto di sabbia secondo quanto descritto dalla modalità M delle norme CEI 11-17. Per i cavi interrati le Norme CEI 11-17 prevedono una protezione meccanica che può essere intrinseca al cavo stesso oppure supplementare, a seconda del tipo di cavo e della profondità di posa. Nel caso specifico, nella posa di cavi in trincea a cielo aperto si esegue, quale protezione meccanica, la disposizione di un apposito tegolino in PVC posto ad almeno 20 cm rispetto al cavo stesso. Inoltre, sovrastante il sopradetto tegolino di protezione, viene sistemato un nastro di segnalazione di colore rosso con l'indicazione: CAVI ELETTRICI.

Per i calcoli seguenti si utilizza una resistività termica del terreno media ossia pari a 1,5°Cm/W.

Gli elementi essenziali che costituiscono un cavo sono il conduttore, il quale deve assolvere la funzione del trasporto della corrente elettrica, e l'isolamento, desinato ad isolare elettricamente la parte attiva (il conduttore) dall'ambiente di posa e sostenere, nel tempo, la tensione di esercizio. I cavi MT scelti per posa interrata sono unipolari.

I cavi utilizzati sono con conduttore in alluminio a corda rigida rotonda, isolati con una mescola isolante a base di polietilene reticolato, schermati per mezzo di materiale conduttore. Vedi fig. 1

La sezione dei cavi di ciascun tronco di linea è stata calcolata in modo da essere adeguata ai carichi da trasportare nelle condizioni di massima produzione di tutti i generatori e minimizzare le perdite. Tutti i cavi MT, sono stati dimensionati in modo tale che risultino soddisfatte le seguenti relazioni:

- a) lc ≤ l n
- b) ΔV%≤ 5%

Dove

- I c è la corrente di impiego del cavo;
- I n è la portata del cavo, calcolata tenendo conto del tipo di cavo e delle condizioni di posa;
- ΔV% è la massima caduta di tensione.

CALCOLI DEI CIRCUITI ELETTRICI

Codice: REL.CE

Rev.: 00

Pag.: 11 / 17

5. SCELTA DELLA SEZIONE DEI CAVI

CALCOLO DELLA CORRENTE NOMINALE E DELLA SEZIONE DEL CAVO

Data la potenza massima trasferita sul circuito viene calcolata la corrispondente corrente nominale massima (In), verficando se questo valore è inferiore al valore massimo ammissibile (vedi specifiche tecniche in allegato).

CALCOLO DELLA CADUTA DI TENSIONE

Nel caso di corrente alternata la caduta di tensione è calcolabile (in Volt) con la formula approssimata:

 $dV = (Ct \bullet I \bullet L)/1000$

ove: Ct (V/A km) = K • (R • $\cos \varphi + X • \sin \varphi$)

L (m) = lunghezza della linea

I (A) = corrente trasmessa

R (ohm/km)= resistenza a temperatura max. di servizio

X (ohm/km)= reattanza di fase della linea

 $\cos \phi$ = fattore di potenza

K = 2 per linee monofasi

K = 1,73 per linee trifasi

Coefficienti (Ct) per il calcolo della caduta di tensione in corrente alternata A 90 °C per cavi flessibili isolati

CALCOLI DEI CIRCUITI ELETTRICI

Codice: REL.CE

Rev.: 00

Pag.: 12 / 17

VALORE Ct

sezione nominale		unipolari n	nonofase			unipolar	i trifase		n	nultipolari	monofase	9		multipolari trifase			
cross- section	single-phase system single core				three	e-phase sys	tem single	e core	singl	e-phase sy	stem mult	i-core	three	-phase sys	tem multi-	core	
(mm²)	cos φ 0,7	cos φ 0,8	cos φ 0,9	cos φ 0,1	cos φ 0,7	cos φ 0,8	cos φ 0,9	cos φ 0,1	cos φ 0,7	cos φ 0,8	cos φ 0,9	cos φ 0,1	cos φ 0,7	cos φ 0,8	cos φ 0,9	cos φ 0,1	
1,5	23,95	27,31	30,65	33,92	20,71	23,62	26,51	29,340	23,88	27,25	30,61	33,92	20,66	23,57	26,48	29,34	
2,5	14,43	16,44	18,43	20,35	12,48	14,22	15,94	17,600	14,38	16,39	18,40	20,35	12,44	14,18	15,91	17,60	
4	9,01	10,24	11,47	12,62	7,79	8,86	9,92	10,920	8,96	10,20	11,44	12,62	7,75	8,83	9,89	10,92	
6	6,05	6,87	7,67	8,42	5,24	5,94	6,64	7,280	6,01	6,83	7,65	8,42	5,20	5,91	6,61	7,28	
10	3,56	4,02	4,48	4,87	3,08	3,48	3,87	4,210	3,52	3,99	4,45	4,87	3,05	3,45	3,85	4,21	
16	2,30	2,59	2,86	3,09	1,99	2,24	2,48	2,670	2,27	2,56	2,84	3,09	1,96	2,21	2,46	2,67	
25	1,53	1,70	1,87	1,99	1,32	1,47	1,62	1,720	1,50	1,68	1,85	1,99	1,30	1,45	1,60	1,72	
35	1,12	1,24	1,35	1,41	0,97	1,07	1,17	1,220	1,09	1,22	1,33	1,41	0,94	1,05	1,15	1,22	
50	0,81	0,89	0,96	0,99	0,70	0,77	0,83	0,850	0,79	0,87	0,95	0,99	0,68	0,76	0,82	0,85	
70	0,61	0,66	0,70	0,70	0,53	0,57	0,61	0,600	0,59	0,64	0,69	0,70	0,51	0,55	0,59	0,60	
95	0,49	0,52	0,55	0,53	0,42	0,45	0,47	0,460	0,47	0,51	0,54	0,53	0,40	0,44	0,46	0,46	
120	0,40	0,43	0,44	0,41	0,35	0,37	0,38	0,360	0,39	0,41	0,43	0,41	0,34	0,36	0,37	0,36	
150	0,35	0,36	0,37	0,33	0,30	0,31	0,32	0,290	0,33	0,35	0,36	0,33	0,29	0,30	0,31	0,29	
185	0,31	0,32	0,32	0,27	0,26	0,27	0,27	0,240	1.55	*			0,25	0,26	0,27	0,24	
240	0,26	0,26	0,26	0,21	0,22	0,23	0,22	0,180					0,21	0,22	0,22	0,18	
300	0,23	0,23	0,22	0,17	0,20	0,20	0,19	0,150					0,19	0,19	0,18	0,15	
400	0,20	0,20	0,19	0,13	0,18	0,17	0,16	0,120					0,17	0,16	0,16	0,12	
500	0,18	0,17	0,16	0,11	0,16	0,15	0,14	0,091				-				-	
630	0,16	0,16	0,14	0,09	0,14	0,14	0,12	0,075						1.7	*	- 21	

La caduta di tensione è calcolata considerando un cos φ (fattore di potenza) pari a 0.9

CAVO MT

TRATTO: TRASFORMATORE AT/MT <> CABINA DI DISTRIBUZIONE RADIALE

CAVO: MODELLO	PORTATA	IMPIEGO	LUNGHEZZA	ΔV	TENSIONE
	In [A]	Ic [A]	[m]	%	[kV]
AX5T101-B70 -800mmq	806	611	6373	<1.15	30

(*) nel calcolo è stato utilizzato il coefficiente Ct del cavo da 630 mmq (stima conservativa!)

CALCOLI DEI CIRCUITI ELETTRICI

Codice: REL.CE

Rev.: 00

Pag.: 13 / 17

CAVO MT

TRATTO INTERESSATO:

CABINA DI DISTRIBUZIONE RADIALE <> N. 6 CABINE INVERTER (TRASFORMAZIONE MT/BT)

CASO PESSIMO: LUNGHEZZA 718 m - CORRENTE MASSIMA: 134,4 A (valori combinati)

CABINE DI TRASFORM.	CAVO: MODELLO	PORTATA	IMPIEGO	LUNGHEZZA	ΔV	TENSIONE
		In [A]	Ic [A] max	[m] max	%	[kV]
1 - 6	ARP1H5(AR)E -95-	221	134,4	718	<0,2	30

Calcolo ΔV , Stima conservativa

CAVO BT

TRATTO INTERESSATO: CABINA DI TRASFORMAZIONE <> SINGOLO INVERTER

CORRENTE MASSIMA PER INVERTER: 180 A

CASI POSSIBILI IN FUNZIONE DELLA DISTANZA

CASI POSSIBILI	MODELLO E SEZIONE [mm2]	PORTATA	IMPIEGO	LUNGHEZZA	ΔV	TENSIONE
		In [A]	Ic [A]	[m]	%	[kV]
1-6	ARE4M1-95-	261	180	<175	<2	0,8
1-6	ARE4M1-185-	376	180	<250	<2	0,8
1-6	ARE4M1-240-	436	180	<380	<2	0,8

CALCOLI DEI CIRCUITI ELETTRICI

Codice: REL.CE

Rev.: 00

Pag.: 14 / 17

6. CONCLUSIONI

La somma delle cadute di tensione sui cavi -MT-BT è inferiore al 2%, misurata nel punto di massima potenza teorica di funzionamento dell'impianto.

Infatti un impianto fotovoltaico genera la potenza massima quando:

- l'irraggiamento è al valore massimo (1000W/mq)
- Il sole è perpendicolare al piano dei moduli
- la temperatura delle celle è pari a 25C
- Il rendimento del gruppo inverter/trasformatore è pari al 100%

Queste condizioni non sono mai verificate contemporaneamente. Ad esempio con temperatura ambiente di 35 °C, la temperatura dei moduli è di circa 65 °C, con una perdita di potenza vicina al

15%, rispetto al valore di targa dei moduli. Si raggiunge il valore nominale di potenza solo in giornate primaverili assolate, fredde, durante il passaggio delle nuvole e per pochi secondi.

CALCOLI DEI CIRCUITI ELETTRICI

Codice: REL.CE

Rev.: 00

Pag.: 15 / 17

7. SPECIFICHE TECNICHE

ARP1H5(AR)E ————— AIR BAG™ CABLE SYSTEM

Unipolare 12/20 kV e 18/30 kV Single core 12/20 kV and 18/30 kV

Conduttore di alluminio / Aluminium conductor - ADD1U5/ADIE

3640

sezione nominale	diametro conduttore	diametro sull'isolante	diametro esterno nominale	peso del cavo	raggio minimo di curvatura	sezione nominale	posa in aria a trifoglio	posa interra p=1 °C m/W	ata a trifoglio p=2 °C m/W
conductor ross-section	conductor diameter	diameter over insulation	nominal outer diameter	weight	minimum bending radius	conductor cross-section	open air installation trefoil	underground p=1°C m/W	l installation trefoil p=2°C m/W
(mm²)	(mm)	(mm)	(mm)	(kg/km)	(mm)	(mm²)	(A)	(A)	(A)
ati cost	ruttivi / (Construct	tion char	act 12	/20 kV	Caratt. el	lettriche / Elect	trical charact.	- 12/20 kV
50	8,2	18,0	31	720	440	50	193	173	129
70	9,7	19,1	32	810	450	70	240	213	157
95	11,4	20,6	34	920	480	95	292	255	190
120	12,9	22,1	35	1040	490	120	338	291	217
150	14,0	23,4	37	1150	520	150	381	325	243
185	15,8	25,6	39	1330	550	185	439	369	276
240	18,2	27,8	41	1570	580	240	520	430	321
300	20,8	31,0	45	1840	630	300	601	487	363
400	23,8	34,9	49	2310	690	400	703	558	417
500	26,7	37,1	52	2720	730	500	816	637	476
630	30,5	41,5	57	3300	800	630	949	726	542
ati cost	ruttivi / (Construct	tion chai	act 18	/30 kV	Caratt. el	lettriche / Elect	trical charact.	- 18/30 kV
50	8,2	24,8	38	1060	540	50	195	173	129
70	9,7	25,1	38	1110	550	70	242	212	158
95	11,4	26,0	39	1200	560	95	293	254	190
120	12,9	26,9	40	1300	580	120	339	290	217
150	14,0	27,6	41	1390	580	150	382	324	242
185	15,8	29,0	42	1540	610	185	439	368	275
240	18,2	31,4	45	1790	630	240	519	428	320
300	20,8	34,6	49	2160	690	300	599	486	363
400	23,8	37,8	53	2570	750	400	700	557	416

TAB 1

630

30,5

CALCOLI DEI CIRCUITI ELETTRICI

Codice: REL.CE

Rev.: 00

Pag.: 16 / 17

18/30 (36) KV Single Core ATA Cables

Single Core Cables, with stranded Circular copper or Aluminum conductors, XLPE insulated, aluminum tape armoured and PVC Sheath.

Description

- Stranded circular compacted copper or aluminum conductor, Semi-conducting layer as conductor screen, XLPE insulated, semi-conducting layer as non metallic insulation screen, copper tape or wire as metallic insulation screen, covered with a layer of PVC compound as bedding layer, aluminum tape armoured and PVC sheath.
- Cables are produced according to IEC 60502.

Application

• These cables are generally suitable for direct burial or for installation on trays or in ducts.

	Resisto		Max. Conductor Resistance		l= -l	Current Rating							
Product Code	Nominal Cross			Capacitance	induc	tance	Laid	in gro	ound		free air ded)	Approx. Overall	Approx.
	sectional area	DC at 20 °C	AC at 90 °C	itanc	Trefoil	Flat	Flat	Trefoil	Duct	Flat Touched	Trefoil Touched	Diameter	Weight
				(D	ileioii	nui	000	8	8	000	8		
	mm²	Ω/Km	Ω/Km	μf/km	mh	/km	Α	Α	Α	Α	Α	mm	Kg/Km
1 Core - AL/XLPE/ATA/PVC													
AX5-T101-B14	50	0.641	0.8220	0.1412	0.4761	0.5223	184	185	157	189	193	33.6	1220
AX5-T101-B15	70	0.443	0.5682	0.1567	0.4509	0.4971	225	223	196	235	241	35.4	1370
AX5-T101-B16	95	0.32	0.4106	0.1711	0.4307	0.4769	268	269	228	284	291	36.9	1510
AX5-T101-B17	120	0.253	0.3247	0.1844	0.4148	0.4610	307	303	255	328	334	38.3	1640
AX5-T101-B18	150	0.206	0.2646	0.1976	0.4021	0.4483	342	339	294	371	377	39.9	1805
AX5-T101-B19	185	0.164	0.2109	0.2135	0.3860	0.4322	388	384	336	427	433	41.8	2005
AX5-T101-B20	240	0.125	0.1611	0.2349	0.3704	0.4167	449	444	391	502	509	44.3	2290
AX5-T101-B30	300	0.1	0.1294	0.2571	0.3569	0.4032	509	498	414	577	579	46.9	2600
AX5-T101-B40	400	0.0778	0.1013	0.2820	0.3428	0.3890	582	568	510	670	673	49.8	2995
AX5-T101-B50	500	0.0605	0.0797	0.3142	0.3320	0.3782	667	642	586	780	775	53.9	3540
AX5-T101-B60	630	0.0469	0.0630	0.3462	0.3205	0.3667	758	721	699	903	889	57.6	4155
AX5-T101-B70	800	0.0367	0.0508	0.3900	0.3075	0.3537	852	806	769	1042	1013	62.6	4970

The above data is approximate and subjected to manufacturing tolerance this data is applicable also for $19/33~{\rm KV}$

TAB 2

CALCOLI DEI CIRCUITI ELETTRICI

Codice: REL.CE

Rev.: 00

Pag.: 17 / 17

BASSA TENSIONE - ENERGIA SOLARE / LOW VOLTAGE - SOLAR ENERGY

397

476

557

660

774

436

493

564

642

ARE4M1 0,6/1 kV

264

294

330

378

414

480

ARE4M1

sezione nominale	diametro conduttore	spessore nominale isolante	diametro esterno nominale	peso indicativo del cavo	resistenza massima a 20°C in c. c.		corrente (A) ıra ambiente di 20°C interrato	raggio minimo di curvatura
conductor	conductor	nominal	nominal	approximate	maximum DC	permissible curi	rent rating (A)	minimum
cross-section	diameter	insulation thickness	outer diameter	weight	resistance at 20 °C	in open air at 30 °C	buried at 20 °C	bending radius
(mm²)	(mm)	(mm)	(mm)	(kg/km)	(Ω/km)		ρ =1°C m/W	(mm)
	re / Single (
16	4,75	0,7	10,5	140	1,91	83	96	126
25	6,0	0,9	11,5	165	1,20	110	127	138
35	7,0	0,9	11,5	175	0,868	131	151	138
50	8,2	1,0	13,0	220	0,641	160	179	156
70	9,7	1,1	14,5	295	0,443	203	219	174
95	11,4	1,1	16,5	385	0,320	252	261	198
120	12,9	1,2	18,0	475	0,253	296	297	216
150	14,0	1,4	20,0	575	0,206	339	332	240

0,164

0,125 0,100

0,0778

0,0605

0,0469

720

905 1120 1455

1815

2350

TAB 3

240

300

400

500

15,8

20,8 23,8

30,5

22,0

24,5 27,5 31,5

34,5

1,4 1,6

1,8

2,0