

Comuni di CERIGNOLA, ASCOLI SATRIANO E MELFI

Province di Foggia e Potenza Regioni Puglia e Basilicata

PROGETTO DEFINITIVO

Codice pratica: ACCR_WQFVVF7

Nome progetto

IMPIANTO FOTOVOLTAICO DI 33 MW IN AC SITO IN CERIGNOLA

Titolo documento

CALCOLI PRELIMINARI DELLE STRUTTURE

Committente

GHELLA S.p.A.

VIA PIETRO BORSIERI, 2A - 00195 ROMA - ITALIA TEL. 06/456031, FAX. 06/45603040

Soggetto proponente

Virginia Energia S.r.I.

VIA PIETRO BORSIERI, 2A - 00195 ROMA - ITALIA TEL. 06/456031, FAX. 06/45603040

Progettato

GL Associates S.r.I. VIA GREGORIO VII 384, 00165 - ROMA TEL./FAX: 06-58303719 E MAIL mail.glassociates@gmail.com

N. ELABORATO **TIMBRO** ISTRUZIONI TECNICHE DA CODIFICA ISTRUZIONI TECNICHE ACCR_WQFVVF7_CALCOLIPRELSTRUTTURE.PDF N. FLABORATO COMMESSA ORIGINE FIN. PROG. TIPO DOC. ATT. DISC. INTERNO ALLA COMMESSA 2021-001 003 GHA RTD PROF. ING. RODOLFO ARANEO PROGETTISTA DI RIFERIMENTO SETTEMBRE 2021 GRUPPO DI PROGETTAZIONE ING. EMANUELE MARINUCCI INEGNERIA IDRAULICA ING. ROBERTO PANDOLFI INGEGNERIA CIVILE SCALA: AGR. STEFAND DI IELSI **PAESAGGISTICA** AGR. CHRISTIAN PANARELLA **PAESAGGISTICA** GEO., GIUSEPPE TRICARICO GEOLOGIA ING. GIANFRANCO DI LORENZO INGEGNERIA AMBIENTALE

Rev.	Data Emissione	Descrizione revisione	Preparato	Vagliato	Approvato
0	15/09/2021	PRIMA EMISSIONE	PANDOLFI	DI LORENZO	ARANEO

Del 15/01/2022

Account Code : C-003-RTD

Doc. : CALCOLI PRELIMINARI
: DELLE STRUTTURE

Rev. : **00**

Sommario

1.	PKE	WESSA	4
	1.1	DESCRIZIONE DELL'INTERVENTO	4
	1.2	DESCRIZIONE DELLA STRUTTURA DEI TRACKERS	4
	1.3	CRITERI GENERALI DI CALCOLO	5
	1.4	ANAGRAFICA DELL'INTERVENTO	7
	1.5	SCHEMI RAPPRESENTATIVI	7
2.	NOR	RMATIVA DI RIFERIMENTO	10
3.		ALITA' E DOSATURA DEI MATERIALI IMPIEGATI	
•	3.1	MATERIALE BASE	
	3.2	UNIONI BULLONATE	
	3.3	SALDATURE	
4.		LISI DEI CARICHI	
→.	4.1	AZIONI PERMANENTI – peso struttura e pannelli	
	4.1.1		
	4.2	AZIONI VARIABILI - neve	
	4.2.1		
	4.3	AZIONI VARIABILI - vento	
	4.3.1		
	4.3.2	G .	
	4.3.3	Coefficienti di forza	15
	4.3.4	Vento - Carichi sulla testa dei pali	16
	4.4	AZIONI SISMICHE	20
	4.4.1	Sisma - Carichi sulla testa dei pali	20
	4.4.2	P. Spettro di risposta SLV	21
	4.4.3	S Spettro di risposta SLD	21
5.	CON	IBINAZIONE DEI CARICHI	22
	5.1	COMBINAZIONI DI CARICO AGLI STATI LIMITE ULTIMI	22
	5.2	COMBINAZIONI DI CARICO AGLI STATI LIMITE DI ESERCIZIO	22
6.	CAL	COLO DELLE SOLLECITAZIONI	2 3
	6.1	SOLLECITAZIONI IN TESTA ALLE STRUTTURE VERTICALI	23
	6.2	SOLLECITAZIONI ALLA BASE DELLE STRUTTURE VERTICALI	24
7.	VER	IFICA DI RESISTENZA STRUTTURALE	2 5

Del 15/01/2022

Account Code : C-003-RTD

CALCOLI PRELIMINARI
DELLE STRUTTURE Doc.

Rev. : 00

7.	1	CARATTERISTICHE MECCANICHE DEL PROFILO UTILIZZATO	.25
7.	2	VERIFICHE	.26
8.	CON	VCLUSIONI	31

Del 15/01/2022

Account Code : C-003-RTD

Doc. CALCOLI PRELIMINARI

DELLE STRUTTURE

Rev. : **00**

1. PREMESSA

Scopo della presente relazione preliminare di calcolo è il predimensionamento e la verifica degli elementi costituenti la struttura portante verticale e le fondazioni profonde degli inseguitori meccanici mono-assiali, nel seguito denominati trackers, appartenenti all'impianto fotovoltaico "Cerignola". La relazione è nel novero dei documenti redatti per la stesura del progetto definitivo ed ha come scopo la dimostrazione che le strutture di cui sopra, così come predimensionate, sono pienamente compatibili, sotto l'aspetto statico e dinamico, con le prestazioni attese senza l'impiego di strutture fondali impattanti sull'ambiente quali opere in calcestruzzo armato.

1.1 DESCRIZIONE DELL'INTERVENTO

La realizzazione dell'impianto fotovoltaico denominato "Cerignola" è prevista nel comune di Cerignola (FG) in località Capacciotti nelle aree meglio identificate al NCT di Foggia al FG. 353, part. 1; 11; 43; 44; 45; 47; 48; 49; 50, per una superficie complessiva del lotto di circa 160 ha.

Il proponente è la società Virginia S.r.l., interamente di proprietà della Ghella S.p.A., operatore internazionale nel campo delle infrastrutture e da tempo attivo nel settore delle energie rinnovabili.

L'intervento proposto è finalizzato alla produzione di energia elettrica da fonte rinnovabile in accordo con la Strategia Energetica Nazionale (SEN) e sarà costituito da 86.400 pannelli dislocati su 2880 strutture ad inseguimento solare monoassiale con asse nord/sud, ciascuna composta da 30 moduli, per una potenza nominale di ogni stringa pari a 12,5 kWp e potenza complessiva quantificata in circa 34,992 MWp.

Il campo fotovoltaico sarà installato all'interno di un'area parco avente una superficie complessiva di circa 64 Ha, necessaria per garantire anche spazi di manovra e corridoi di movimento adeguati per il transito dei mezzi addetti alla manutenzione.

I moduli fotovoltaici saranno disposti su strutture dotate di sistemi ad inseguimento solare monoassiale a rollio del tipo tracker che consentiranno la rotazione dei pannelli intorno ad un unico asse orizzontale o, nel caso di terreno di sedime declive, suborizzontale con pendenza massima di 5°. In questo modo i moduli fotovoltaici avranno sempre nell'arco della giornata la migliore esposizione ai raggi solari con un aumento della produzione energetica rispetto ad un impianto tradizionale di tipo "fisso".

1.2 DESCRIZIONE DELLA STRUTTURA DEI TRACKERS

La struttura portante di ogni tracker sarà costituita da una trave orizzontale o suborizzontale in acciaio a sezione scatolare, asse di rotazione del sistema, sulla quale, ortogonalmente alla stessa, saranno posizionati i supporti di fissaggio dei pannelli fotovoltaici.

Del 15/01/2022

Account Code : C-003-RTD

Doc. CALCOLI PRELIMINARI

DELLE STRUTTURE

Rev. : **00**

Nell'insieme il sistema si presenterà come un "tavolato" di dimensioni pari a circa 30.21x2.275 m il quale, dipendentemente dalla pendenza del terreno in direzione N-S, presenterà un'inclinazione longitudinale variabile da 0° a ±5° e un'inclinazione trasversale variabile nell'arco della giornata tra -55° e +55° sull'orizzontale (angolo di tracking). Il dimensionamento e le verifiche secondo le NTC di cui al DM Infrastrutture del 17/01/2018 dell'intero meccanismo di movimentazione sarà eseguito in fase di progettazione esecutiva, quando ne sarà individuata l'esatta tipologia che, comunque, dovrà rispettare le dimensioni, il sistema di inseguimento solare e le prestazioni descritte nel presente documento.

Ciascuna struttura come sopra descritta sarà sostenuta da n. 5 pali in acciaio zincato ad asse verticale e sezione a " Ω " che saranno infissi nel terreno mediante apposita macchina battipalo o, nell'eventuale presenza di orizzonti litoidi puntuali, mediante macchina trivellatrice.

La parte fuori terra dei pali sarà di circa 1.55 m in modo di avere un franco di 0.50 m tra il terreno e il bordo dei pannelli quando posti in posizione di massimo angolo di tracking. La parte infissa sarà variabile secondo le zone da un minimo di 1.50 m a un massimo di 2.6 m.

La distanza tra le file dei trackers è pari ad un minimo di 5 metri.

1.3 CRITERI GENERALI DI CALCOLO

Le azioni capaci di indure stati limite nella struttura portante verticale sono essenzialmente il peso proprio della stessa e dei moduli fotovoltaici al quale si combinano, secondo opportuni coefficienti, le azioni ambientali della neve e del vento e, infine, del sisma. A tal riguardo si precisa che:

- 1. <u>NEVE</u> Il carico provocato dalla neve è valutato tenendo conto delle caratteristiche di esposizione del sito in cui sorgerà la struttura area pressoché pianeggiante, non ostruita, esposta su tutti i lati e senza costruzioni o alberi più alti e varierà nell'arco del giorno in funzione dell'inclinazione trasversale dei moduli fotovoltaici, assumendo valori massimi per angoli di tracking compresi tra -30°≤α≤30° e valori minimi per α=±55°.
- VENTO La struttura orizzontale dei trackers si presenta snella, dotata di una discreta flessibilità e di ridotte capacità dissipative e su di essa il vento può dar luogo a fenomeni dinamici ed azioni aeroelastiche i cui effetti possono causare fenomeni di instabilità. Nel caso specifico, presentandosi nel loro insieme i moduli fotovoltaici come una lastra molto sottile, l'effetto del secondo ordine più evidente è quello che nella letteratura tecnica è conosciuto con il nome di "divergenza torsionale".

Rimandando alla progettazione esecutiva lo studio di tali aspetti, per i quali esiste un discreto numero di pubblicazioni e studi specifici, ai fini del predimensionamento delle strutture verticali e fondali dei trackers si è fatto riferimento al DM Infrastrutture del 17/01/2018, schematizzando il sistema come una tettoia a singola falda con grado di bloccaggio $\varphi = 0$ che corrisponde all'assenza di ostruzioni al di sotto dei pannelli (tettoia libera).

Rispetto ad altre distribuzioni più sofisticate di pressioni agenti sulle superfici dei pannelli che sono reperibili nella letteratura tecnica specifica, i risultati ottenuti dall'applicazione del DM sono, tranne che in alcuni casi in cui l'angolo di tracking è piccolo, generalmente più conservativi e pertanto, ai fini del predimensionamento delle strutture verticali e fondali, appare giustificato l'adozione di tali campi di pressione.

Del 15/01/2022

Account Code : C-003-RTD

Doc. CALCOLI PRELIMINARI

DELLE STRUTTURE

Rev. : **00**

Per la scelta della velocità base di riferimento del vento con cui progettare le strutture ci si è basati sulle seguenti considerazioni:

- l'azione del vento è determinante per il dimensionamento delle fondazioni quando esso lavora in depressione (verso l'alto) ed fortemente condizionante in combinazione con la neve quando lavora in pressione (verso il basso);
- l'andamento dell'azione del vento sui pannelli è opposto a quello della neve, essendo i suoi effetti massimi per un angolo di tracking $\alpha = \pm 50^{\circ} \div 55^{\circ}$ e minimi per un angolo $\alpha = 0^{\circ}$;
- con l'ausilio di specifici software ed attrezzature in campo, è possibile monitorare costantemente i parametri ambientali dell'impianto fotovoltaico quali temperatura, umidità, vento, ed è anche possibile intervenire sulla rotazione del sistema quando qualcuno dei parametri ambientali raggiunge un prefissato valore limite.

Alla luce dei tre punti sopra esposti il predimensionamento è stato eseguito adottando una velocità del vento effettiva, misurata da anemometri installati ad hoc all'altezza degli inseguitori, pari 15m/s.

Al superamento del valore limite della velocità effettiva del vento misurata sul posto di 15 m/s, la struttura si porta in una posizione di sicurezza con il piano dei pannelli parallelo al terreno. In questa posizione la struttura deve resistere alla velocità del vento prescritta dal D.M. Infrastrutture del 17/01/2018.

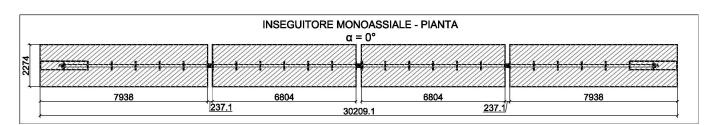
Di fatto il meccanismo sopra descritto limita la produttività dell'impianto nelle giornate dell'anno più "ventose" che, statisticamente, sono molto poche ma, al contempo, permette la realizzazione di strutture, e soprattutto, di fondazioni, assai meno impegnative del caso in cui si volessero garantire sempre i dovuti margini di sicurezza con velocità del vento quale quella prescritta nel succitato D.M.

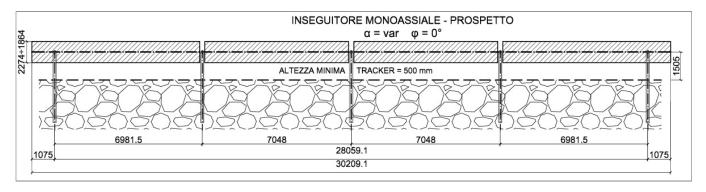
3. <u>SISMA</u> - Le sollecitazioni derivanti da dette azioni risultano secondarie rispetto alle azioni indotte dal vento, visto la trascurabile massa dei moduli che ricopre un ruolo determinante nelle verifiche statiche e dinamiche da sisma.

Del 15/01/2022

Account Code : C-003-RTD

. CALCOLI PRELIMINARI

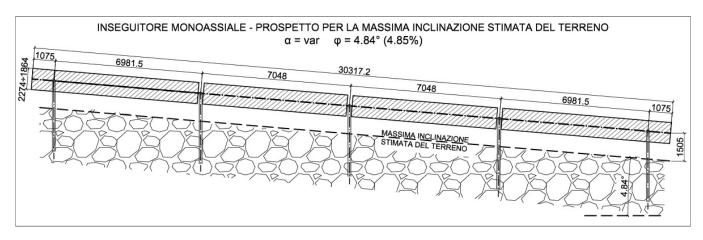

DELLE STRUTTURE

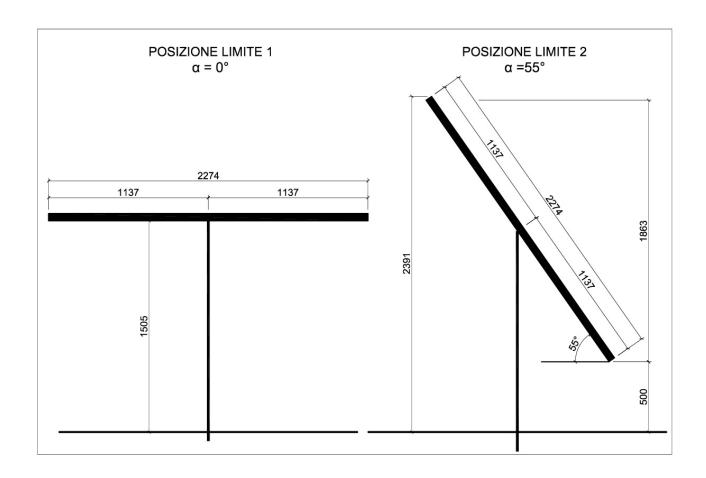

Rev. : **00**

1.4 ANAGRAFICA DELL'INTERVENTO

Progetto	Nome	Impianto fotovoltaio	o "Cerignola"
Progetto	Potenza nominale [MWp]	34,992	
Ubicazione:	Comune	Cerignola	
Obicazione.	Provincia	Foggia	
Coordinate	Latitudine	41,15562861	41° 9' 21,6" N
geografiche:	Longitudine	15,72831287	15° 43' 40,8" E
Altitudine	m s.l.m.	232≤ H ≤288	
Struttura	Tipologia del tracking	Sistema di inseguimento orizzontale a asse singolo con backtracking	
Tipo	Geometria tracker	Vederre schemi se	guenti
"TRJHT30'DP"	Altezza tracker	Vederre schemi seguenti	
della Convert Italia	Angolo di tracking	-55°≤α≤55°	
dona donvert italia	Massima inclinazione ammissibile dell'asse del tracker sull'orizzontale	φ = 5°	

1.5 SCHEMI RAPPRESENTATIVI




Del 15/01/2022

Account Code : C-003-RTD

Doc. CALCOLI PRELIMINARI
DELLE STRUTTURE

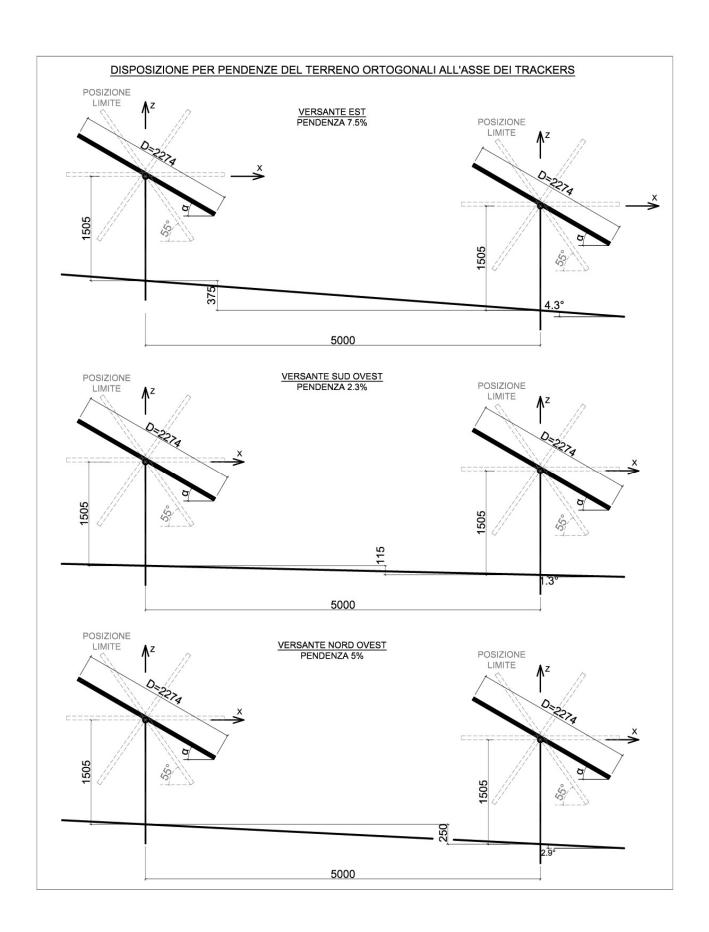
Rev. : 00

Note:

 α = angolo di tracking

 ϕ = inclinazione dell'asse del tracker sull'orizzontale

Dimensioni normalizzate per semplicità di calcolo


Del 15/01/2022

Account Code : C-003-RTD

Doc. CALCOLI PRELIMINARI

DELLE STRUTTURE

Rev. : **00**

Del 15/01/2022

Account Code : C-003-RTD

Doc. CALCOLI PRELIMINARI

DELLE STRUTTURE

Rev. : 00

2. NORMATIVA DI RIFERIMENTO

- a) <u>DPR 6 giugno 2001, n. 380</u> Testo unico delle disposizioni legislative e regolamentari in materia di edilizia
- b) <u>Decreto Ministero Infrastrutture del 17 gennaio 2018</u> Nuove norme tecniche per le costruzioni;
- c) <u>Circolare 21 gennaio 2019, n. 617</u> Istruzioni per l'applicazione dell'Aggiornamento delle "Nuove norme tecniche per le costruzioni" di cui al Decreto Ministero Infrastrutture del 17 gennaio 2018;
- d) <u>UNI EN 1991-1-1:2004 Eurocodice 1 Azioni sulle strutture Parte 1-1:</u> Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici
- e) <u>UNI EN 1991-1-3:2015 EUROCODICE 1 Azioni sulle strutture Parte 1-3</u>: Azioni in generale Carichi da neve;
- f) <u>UNI EN 1991-1-4:2010 EUROCODICE 1 Azioni sulle strutture Parte 1-4</u>: Azioni in generale Azioni del vento;
- g) <u>UNI EN 1993-1-1:2014 EUROCODICE 3 Progettazione delle strutture di acciaio Parte 1-1</u>: Regole generali e regole per gli edifici;
- h) <u>UNI EN 1993-1-8:2005 EUROCODICE 3 Progettazione delle strutture di acciaio Parte 1-8</u>: Progettazione dei collegamenti.

Del 15/01/2022

Account Code : C-003-RTD

CALCOLI PRELIMINARI

DELLE STRUTTURE

Rev. : 00

3. QUALITA' E DOSATURA DEI MATERIALI IMPIEGATI

Per la realizzazione delle strutture in acciaio è prevista l'adozione dei seguenti materiali conformi alle norme armonizzate della serie UNI EN 10025.

3.1 MATERIALE BASE

Acciaio zincato a caldo S235J2R secondo UNI EN 10025-2:

• Carico unitario di snervamento: $f_{vk} = 2350 \text{ daN/cm}^2$

• Carico unitario di rottura: $f_{tk} = 3600 \text{ daN/cm}^2$

Coefficiente di sovraresistenza: y_{Rd} = 1.25

Peso proprio: 7850 daN/cm²

Modulo elastico: $E = 2.100.000 \text{ daN/cm}^2$

Modulo di elasticità trasversali: G = 800.000 daN/cm²

v = 0.3

Coefficiente di espansione termica lineare: $\alpha = 1.2x10-5$

Rapporto tra i valori caratteristici della

tensione di rottura e la tensione di snervamento: $f_{tk}/f_{vk} > 1.1$

Allungamento: $A_5 > 20\%$

Tensione di snervamento media: $f_{v,media} < 1.2 f_{vk}$

3.2 UNIONI BULLONATE

Bulloneria classe 8:8 non a serraggio controllato (SB) secondo UNI EN 15048-1/2

• Carico unitario di snervamento: fyb = 6490 daN/cm²

• Carico unitario di rottura: ftb = 8000 daN/cm²

Rosette HV 100

3.3 SALDATURE

- Esecuzione secondo UNI EN 1011-1:2009 ed UNI EN 1011-2:2005
- Livello di qualità secondo UNI EN ISO 5817:2014, livello C
- Preparazione dei lembi secondo UNI EN ISO 9692-1:2013

Progetto per la realizzazione e l'esercizio di un impianto fotovoltaico

denominato "CERIGNOLA"

Del 15/01/2022

Account Code : C-003-RTD

CALCOLI PRELIMINARI
DELLE STRUTTURE Doc.

: **00** Rev.

4. ANALISI DEI CARICHI

AZIONI PERMANENTI – peso struttura e pannelli 4.1

G ₁) Peso struttura	9,0	daN/m²
G ₂) Peso pannelli	11,0	daN/m²

4.1.1 Risultanti sulla testa dei pali

Area d'influenza gravante su ciascun palo					
Posizione D L A					
Palo	[m]	[m]	[m²]		
laterale	2,275	4,57	10,4		
intermedio	2,275	7,02	16,0		
centrale	2,275	7,05	16,0		

Posizione	V _{G1}	V_{G2}	
Palo	[daN]	[daN]	
laterale	-93,6	-114,4	
intermedio	-143,7	-175,7	
centrale	-144,3	-176,4	

4.2 **AZIONI VARIABILI - neve**

,	Area d'influenza proiettata sull'orizzontale gravante su ciascun palo							
Posizione				A _h				
Palo	[m²]							
α [°] 0 10 20 30 40 50						50	55	
laterale	10,4	10,2	9,8	9,0	8,0	6,7	6,0	
intermedio	16,0	15,7	15,0	13,8	12,2	10,3	9,2	
centrale	16,0	15,8	15,1	13,9	12,3	10,3	9,2	

Del 15/01/2022

Account Code : C-003-RTD

CALCOLI PRELIMINARI
DELLE STRUTTURE Doc.

Rev. : **00**

Neve	ZONA 2				
Valore di riferimento del	a . =		a _s ≤200 m	$q_{sk} = 100$	daN/m²
carico della neve al suolo	q _{sk} =	- 115,5	a _{s >} 200 m	$q_{sk}=0.85*[1+(a_s/481)^2]*100$	uaiv/III
Altitudine	a _s =	288	m s.l.m.		
Periodo di ritorno	T _R =	50	anni		
Coefficiente di esposizion	C _e =	0,9		ante non ostruita esposta s struzioni o alberi più alti	u tutti i
Coefficiente termico	C _t =	1			
Coefficiente di forma per		μ=	0,8	0°≤a≤30°	
il carico della neve			$0.8*(60-\alpha)/30$	30° <a<60°< td=""><td></td></a<60°<>	
Carico della neve	q _s =	$\mu_i^* q_{sk}^* c_i^* c_t =$	- 103,9	*µ _i	
	α (°)	μ	q*s		
Carico della neve	0°≤a≤30°	0,8			
secondo l'inclinazione	40	0,53	- 55,4	daN/m ²	
del pannello	50	0,27	- 27,7		
	55	0,13	- 13,9		

4.2.1 Neve - Carichi sulla testa dei pali

V _N [daN]						
a (°)	Posizione Palo					
α (°)	laterale	intermedio	centrale			
0	- 864,4	- 1.327,8	-1.333,5			
10	- 851,3	- 1.307,6	-1.313,2			
20	- 812,3	- 1.247,7	-1.253,1			
30	- 748,6	- 1.149,9	-1.154,8			
40	- 441,4	- 678,1	- 681,0			
50	- 185,2	- 284,5	- 285,7			
55	- 82,6	- 126,9	- 127,5			

Del 15/01/2022

Account Code : C-003-RTD

Doc. CALCOLI PRELIMINARI

DELLE STRUTTURE

Rev. : 00

4.3 AZIONI VARIABILI - vento

La struttura dei trackers è dimensionata per due diverse velocità del vento associate a due diverse configurazioni geometriche individuate da altrettanti angoli di tracker. Più precisamente:

Configurazione 1 – di esercizio:

angolo di tracking variabile: -55°≤α≤ +55°

• velocità del vento effettiva, misurata da anemometri installati ad hoc all'altezza degli inseguitori

 $V_r = 15 \text{ m/s}$

Configurazione 2 – di sicurezza:

• angolo di tracking: $\alpha = 0^{\circ}$

• velocità del vento come da D.M. Infrastrutture del 17/01/2018

4.3.1 *Vento - configurazione 1*

Vento - configurazione 1		Zon	ıa 3
Angolo di tracking	-55°≤α≤ +55		
V _r =	15,00		[m/s]
C _e (z=H) =	1,00	[nota 1]	
Pressione del vento	$q_r = 0.5*\rho*V_{r^2}$		
ρ =	1,196	[nota 2]	[kg/m³]
$q_r =$	13,46		[kg/m³]
q* _V =	13,5	•	[kg/m³]
Nota 1	valore unitario p una velocità mis utte le peculiarit	surata effettiva	
Nota 2 Valore tratto da International Standard ISC 2533-1975 - "Standard atmosphere"			

Del 15/01/2022

Account Code : C-003-RTD

Doc. CALCOLI PRELIMINARI

DELLE STRUTTURE

Rev. : **00**

4.3.2 Vento - configurazione 2

Vento - configura	zione 2	Zona 3			
	$\alpha = 0^{\circ}$				
Angolo di tracking α = 0° Velocità base di riferimento al livello del mare					
		e i mare			
V _{b,0} =			[m/s]		
Velocita di riferimento	$V_b = C_a V_{b,0}$				
a ₀ =	500		[m]		
k _s =	0,37				
C _a =	1				
V _r =	27,00		[m/s]		
Periodo di ritorno					
T _R =	50		[anni]		
Classe di rugosità del ter	reno:	D			
Categoria di esposizione	del sito:	=			
ZO	Z _{MIN}	k _r			
0,05	4,00	0,19	[m]		
Coefficiente di topografia	a:				
C _t =	1,00				
Coefficiente di esposizio	ne:				
Z <z<sub>MIN</z<sub>	z = H =	2,20	[m]		
C _e (z=H) =	1,80				
Pressione del vento	$q_r = 0.5*\rho*V_{r^2}$				
ρ =	1,196	[nota 2]	[kg/m³]		
q _r =	43,59		[kg/m³]		
q* _V =	78,5	*C _F	[kg/m³]		

4.3.3 Coefficienti di forza

Per il calcolo delle azioni del vento agenti sui trackers, quest'ultimi vengono assimilati a delle tettoie a singola falda con grado di bloccaggio ϕ = 0 che corrisponde all'assenza di ostruzioni al di sotto della tettoia (tettoia libera).

In questo modo l'azione del vento è schematizzata attraverso le forze risultanti dal campo di pressioni agenti sulle superfici delle falde, dirette ortogonalmente ad esse. Tali forze sono quantificate dal prodotto dei coefficienti di forza cF sotto tabellati per la pressione del vento e per la superficie della falda e sono applicate secondo gli schemi della pagine seguenti.

Del 15/01/2022

Account Code : C-003-RTD

CALCOLI PRELIMINARI
DELLE STRUTTURE Doc.

Rev. : **00**

	α (°)	c _F (+)	C _F (-)
Tettoie a semplice falda	0	0,20	- 0,50
coefficiente di forza C _f	10	0,53	- 0,93
secondo l'inclinazione del	20	0,87	- 1,37
pannello	30	1,20	- 1,80
$ \phi = 0$	40	1,53	- 2,23
Ψ = 0	50	1,87	- 2,67
	55	2,03	- 2,88
	q* _V	[daN/m²]	
α (°)	c _F (+)	c _F (-)	
0	- 15,7	39,2	V _r = 15 m/s
40	- 20,6	30,0	
50	- 25,1	35,9	V _r = 27 m/s
55	- 27,4	38,8	

4.3.4 Vento - Carichi sulla testa dei pali

	•									
Area d'influenza gravante su ciascun palo										
Posizione	D	L	Α							
Palo	[m]	[m]	[m²]							
laterale	2,275	4,57	10,4							
intermedio	2,275	7,02	16,0							
centrale	2,275	7,05	16,0							

H _{V,X} =	q _V *A*sen⊖*cosφ	[kg]
H _{V,Y} =	q _V *A*sen⊖*senφ	[kg]
V =	q _V *A*cos⊖	[kg]
M _{V,Y} =	-q _V *A*D/4	[kg*m]
M _{V,X} =	-H _{V,Y} *D _X	[kg*m]
$M_{V,Z} =$	$H_{V,Y}^*D_Z$	[kg*m]
D _X =	D/4*cosα	[m]
D _Z =	D/4*senα	[m]
θ=	arcsen√(sen²α+sen²φ)	[°]

Progetto per la realizzazione e l'esercizio di un impianto fotovoltaico

denominato "CERIGNOLA"

Del 15/01/2022

Account Code : C-003-RTD

CALCOLI PRELIMINARI
DELLE STRUTTURE Doc.

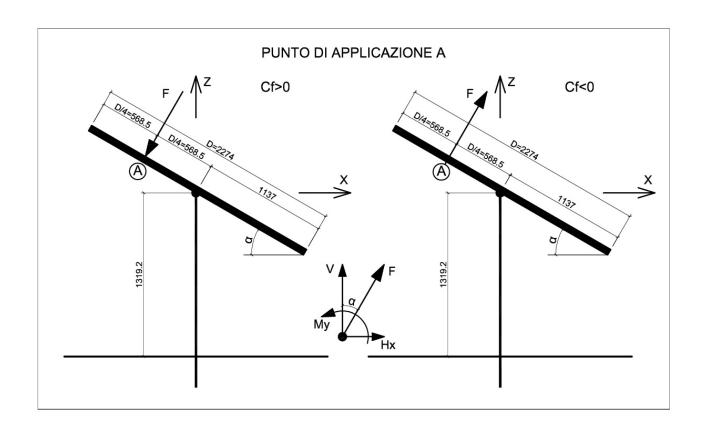
Rev. : 00

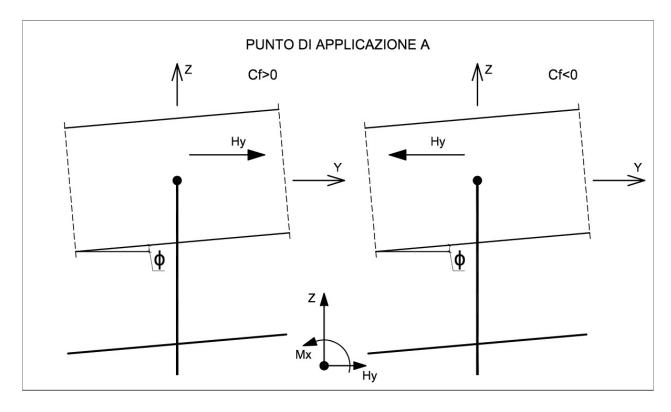
$\underline{4.3.4.1}$ Vento – carichi per tracker con asse longitudinale orizzontale: $\varphi = 0$

Po	s.Palo		Palo laterale												
α (°)	θ (°)	c _F (+)					C _F (-)					$ v_r $			
u ()	Θ()		V _V	$H_{V,X}$	$H_{V,Y}$	$M_{V,X}$	$M_{V,Y}$	$M_{V,Z}$	V _V	$H_{V,X}$	$H_{V,Y}$	$M_{V,X}$	$M_{V,Y}$	$M_{V,Z}$] " r
0	-	-	163,2	-	-	-	92,8	-	408,0	-	-	-	-232,1	-	27 m/s
40	40,0	-	164,3	-137,9	1	-	122,0	1	239,3	200,8	-	-	-177,7	-	
50	50,0	-	167,8	-200,0	1	-	148,5	1	239,8	285,8	-	-	-212,2	-	15 m/s
55	55,0	-	163,1	-233,0	-	-	161,8	-	231,3	330,4	-	-	-229,4	-	
Po	s.Palo							Palo	centra	le					
α (°)	Θ (°)				c _F (·	+)			C _F (-)					V _r	
u ()	0()		$\vee_{\mathbf{v}}$	$H_{V,X}$	$H_{\mathbf{V},\mathbf{Y}}$	$M_{V,X}$	$M_{V,Y}$	$M_{V,Z}$	$\vee_{\mathbf{v}}$	$H_{V,X}$	$H_{\mathbf{V},\mathbf{Y}}$	$M_{V,X}$	$M_{V,Y}$	$M_{V,Z}$	۷r
0	-	-	251,8	-	ı	1	143,2	ı	629,5	-	-	-	-358,0	-	27 m/s
40	40,0	-	253,5	-212,7	ı	ı	188,2	ı	369,2	309,8	-	-	-274,1	-	
50	50,0	-	258,9	-308,6	1	-	229,1	1	369,9	440,8	-	-	-327,3	-	15 m/s
55	55,0	-	251,7	-359,4	ı	1	249,6	ı	356,9	509,7	-	-	-353,9	-	

<u>4.3.4.2</u> <u>Vento – carichi per tracker con asse longitudinale inclinato: $\phi = 5^{\circ}$ </u>

Pos.	.Palo	Palo laterale												
α (°)	θ (°)			C _F	(+)					C _F	(-)			V _r
α()	θ()	V_V	$H_{V,X}$	$H_{V,Y}$	$M_{V,X}$	$M_{V,Y}$	$M_{V,Z}$	V _V	$H_{V,X}$	$H_{V,Y}$	$M_{V,X}$	$M_{V,Y}$	$M_{V,Z}$	V r
0	5,0	- 162,6	- 14,2	1,24	- 3,2	92,8	-	406,5	35,4	- 3,1	8,1	-232,1	-	27 m/s
40	40,4	- 163,2	-138,6	12,13	- 24,1	122,0	-20,26	237,8	201,9	- 17,7	35,2	-177,7	29,5	
50	50,4	- 166,3	-200,6	17,55	- 29,3	148,5	-34,94	237,6	286,5	- 25,1	41,9	-212,2	49,9	15 m/s
55	55,5	- 161,3	-233,4	20,42	- 30,4	161,8	-43,48	228,7	331,0	- 29,0	43,2	-229,4	61,7	
Pos.	Palo						Pal	o centr	ale					
α (°)	Θ (°)			C _F	(+)					C _F	(-)			V _r
u ())	V _V	$H_{V,X}$	$H_{V,Y}$	$M_{V,X}$	$M_{V,Y}$	$M_{V,Z}$	V _V	$H_{V,X}$	$H_{V,Y}$	$M_{V,X}$	$M_{V,Y}$	$M_{V,Z}$	۷r
0	5,0	- 250,8	- 21,9	1,91	- 4,97	143,2	-	627,1	54,7	- 4,8	19,2	-358,0	-	27 m/s
40	40,4	- 251,8	-213,8	18,71	-37,25	188,2	-31,25	366,8	311,4	- 27,2	83,7	-274,1	70,2	
50	50,4	- 256,5	-309,4	27,07	-45,22	229,1	-53,90	366,5	442,0	- 38,7	99,7	-327,3	118,8	15 m/s
55	55,5	- 248,8	-360,1	31,50	-46,97	249,6	-67,08	352,8	510,6	- 44,7	102,7	-353,9	146,7	1

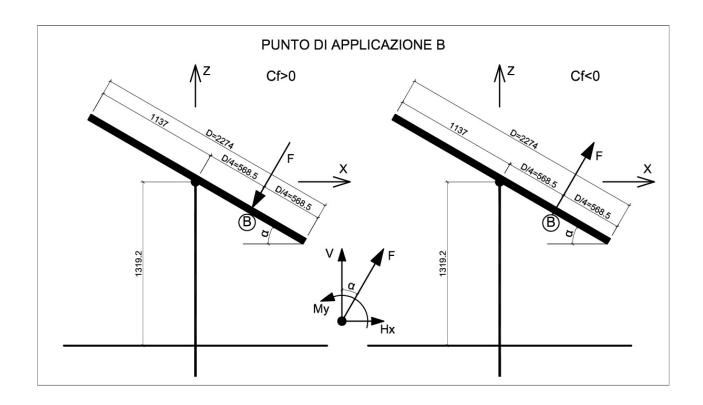


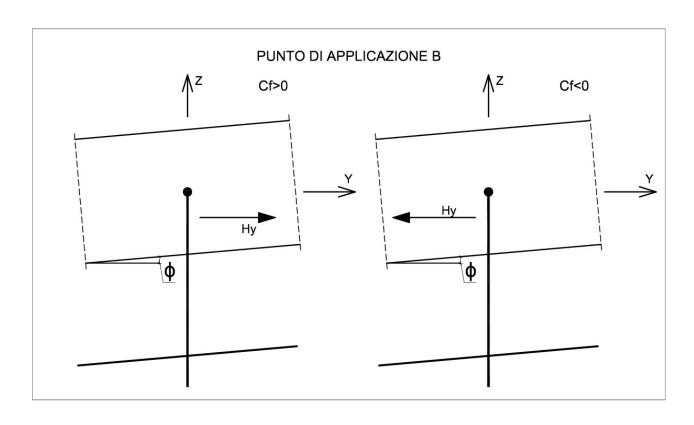

Del 15/01/2022

Account Code : C-003-RTD

CALCOLI PRELIMINARI
DELLE STRUTTURE Doc.

Rev. : **00**




Del 15/01/2022

Account Code : C-003-RTD

CALCOLI PRELIMINARI
DELLE STRUTTURE Doc.

Rev. : **00**

Progetto per la realizzazione e l'esercizio di un impianto fotovoltaico

denominato "CERIGNOLA"

Del 15/01/2022

Account Code : C-003-RTD

CALCOLI PRELIMINARI Doc.

DELLE STRUTTURE

: 00 Rev.

AZIONI SISMICHE 4.4

Tipo di analisi	Analisi	dinamica	a lineare
Categoria sismica	2	2	
V_N	≥ 50 anni		Vita nominale
Classe d'uso		l	
V_R	50 a	anni	Periodo di riferimento per azione sismica
Tipo di stato limite	SLV	SLD	
ag/g	0,2	0,06	
F ₀	2,49	2,51	
T _c *	0,38	0,29	
Categoria terreno		;	
C _c	1,44	1,58	1.05*(T* _C) ^{-0.33}
S _s	1,40	1,50	Amplificazione stratigrafica
O _S	1,40	1,50	$1,0 \le 1,7-0,6^*F_0^*a_g/g \le 1.5$
T _B	0,183	0,153	T _C /3
T _c	0,549	0,458	C _C *T _C *
T _D	2,400	1,840	4.0*a _g /g+1.6
Categoria topografica	T	1	
S _T	1		
S	1,40	1,50	
Classe di duttilità	N	.D	
q	,	1	Fattore di struttura

Per il calcolo delle azioni sismiche sulle strutture verticali, ciascun palo è schematizzato, in via semplificata, come un oscillatore semplice con una massa concentrata in testa pari al peso proprio e al sovraccarico permanente che gli compete diviso per l'accelerazione g.

I periodi propri di oscillazione sono:

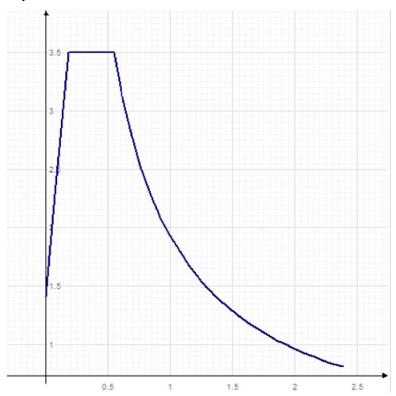
• Sisma X (S_{VX}, nel piano di massima rigidezza): T₁ = 0.099 s

Sisma Y (S_{VY} , nel piano di minore rigidezza): $T_2 = 0.132$ s

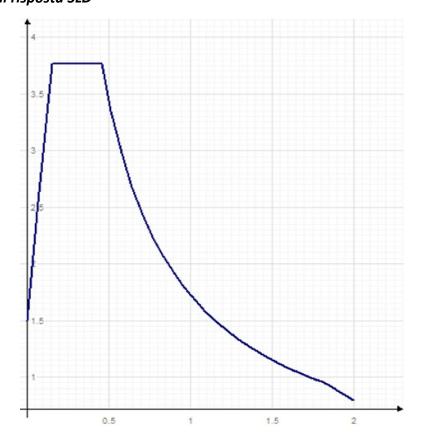
4.4.1 Sisma - Carichi sulla testa dei pali

[da	aN]	Posizione Palo			
α (°)	Direzione	centrale			
α()	Direzione	H _{S,X}	H _{S,Y}		
-55°≤α≤55°	Sisma X	283,7			
-55 20255	Sisma Y		325,0		

Del 15/01/2022


Account Code : C-003-RTD

Doc. CALCOLI PRELIMINARI


DELLE STRUTTURE

Rev. : 00

4.4.2 Spettro di risposta SLV

4.4.3 Spettro di risposta SLD

Pag. **21** di **31**

Progetto per la realizzazione e l'esercizio di un impianto fotovoltaico

denominato "CERIGNOLA"

Del 15/01/2022

Account Code : C-003-RTD

CALCOLI PRELIMINARI DELLE STRUTTURE

Rev. : 00

5. COMBINAZIONE DEI CARICHI

COMBINAZIONI DI CARICO AGLI STATI LIMITE ULTIMI 5.1

	g ₁	g ₂	\mathbf{q}_{N}	\mathbf{q}_{V1}	\mathbf{q}_{V2}	s _{vx}	S _{VY}
	P. proprio	P. pannelli	neve	vento +	vento -	sisma X	sisma Y
SLU 01	1	0,8			1,5		
SLU 02	1	0,8	0,75		1,5		
SLU 03	1	1,5	0,75	1,5			
SLU 04	1	1,5	1,5		0,9		
SLU 05	1	1,5	1,5	0,9			
SLU 06	1,3	1,5	0,75		1,5		
SLU 07	1,3	1,5	0,75	1,5			
SLU 08	1,3	1,5	1,5		0,9		
SLU 09	1,3	1,5	1,5	0,9			
SLU 10	1	1	0,2			1	0,3
SLU 11	1	1	0,2			0,3	1

5.2 COMBINAZIONI DI CARICO AGLI STATI LIMITE DI ESERCIZIO

	g ₁	g ₂	\mathbf{q}_{N}	q _{V1}	q _{V2}	S _{DX}	S _{DY}
	p. proprio+	P. pannelli	neve	vento +	vento -	sisma X	sisma Y
SLE 01	1	1	1		0,6		
SLE 02	1	1	1	0,6			
SLE 03	1	1	0,5		1		
SLE 04	1	1	0,5	1			
SLE 05	1	1	1		0,2		
SLE 06	1	1	1	0,2			
SLE 07	1	1	0,2		1		
SLE 08	1	1	0,2	1			
SLE 09	1	1	0,2			1	0,3
SLE 10	1	1	0,2			0,3	1

Del 15/01/2022

Account Code : C-003-RTD

Doc. CALCOLI PRELIMINARI

DELLE STRUTTURE

Rev. : **00**

6. CALCOLO DELLE SOLLECITAZIONI

6.1 SOLLECITAZIONI IN TESTA ALLE STRUTTURE VERTICALI

Nella tabella seguente sono riportate le sollecitazioni agenti in testa alle strutture verticali per le combinazioni e angoli di tracking che producono gli effetti più severi. Quelle evidenziate in giallo sono le situazioni per le quali sono state eseguite le verifiche strutturali dei sostegni verticali.

N	H _X	H _Y	M _X	M _Y	Mz		SLU 01 [c	daN; daN	lm]
655,1	82,0	- 7,2	28,8	- 537,0	-	α=0°		27 m/s	tracker
264,7	467,2	- 40,9	125,5	- 411,2	105,3	α=40°	prima fila	15 m/s	inclinato
243,6	765,9	- 67,0	154,1	- 530,8	220,1	α=55°		13 111/5	momato
658,7	-	-	-	- 537,0	-	α=0°		27 m/s	tracker
268,3	464,7	-	-	- 411,2	-	α=40°	prima fila	15 m/s	orizzontale
249,9	764,5	ı	ı	- 530,8	ı	α=55°		15 11/5	Onzzoniaic
N	H _X	H _Y	M _X	M_{Y}	Mz		SLU 07 [0	daN; daN	lm]
-1.828,6	- 32,8	2,9	- 7,5	214,8	1	α=0°		27 m/s	tracker
-1.340,8	- 320,7	28,1	- 55,9	282,3	- 46,9	α=40°	prima fila	15 m/s	inclinato
- 921,0	- 540,1	47,3	- 70,5	374,3	- 100,6	α=55°		13 111/5	momato
-1.830,1	-	-	-	214,8	-	α=0°		27 m/s	tracker
-1.343,3	- 319,0	-	-	282,3	-	α=40°	prima fila	15 m/s	orizzontale
- 925,4	- 539,2	-	-	374,3	-	α=55°		13 111/5	
N	H _X	H _Y	M _X	M_{Y}	Mz		SLU 09 [0	daN; daN	lm]
-2.678,2	- 19,7	1,7	- 4,5	128,9	ı	α=0°		27 m/s	tracker
-1.700,4	- 192,4	16,8	- 33,5	169,4	- 28,1	α=40°	prima fila	15 m/s	inclinato
- 867,4	- 324,1	28,4	- 42,3	224,6	- 60,4	α=55°		10 11// 3	
-2.679,1	ı	ı	ı	128,9	ı	α=0°		27 m/s	tracker
-1.473,8	- 191,4	ı	ı	169,4	ı	α=40°	prima fila	15 m/s	orizzontale
- 870,0	- 323,5	-	-	224,6	-	α=55°		15 11// 5	on Ezon dio
N	H _X	H _Y	M _X	M_{Y}	Mz		SLU 10 [0	daN; daN	lm]
- 587,5	283,7	97,5				α=tutti			
N	H _X	H _Y	M _X	M_{Y}	M _Z		SLU 11 [c	daN; daN	lm]
- 587,5	85,1	325,0				α=tutti			

Del 15/01/2022

Account Code : C-003-RTD

. CALCOLI PRELIMINARI

DELLE STRUTTURE

Rev. : **00**

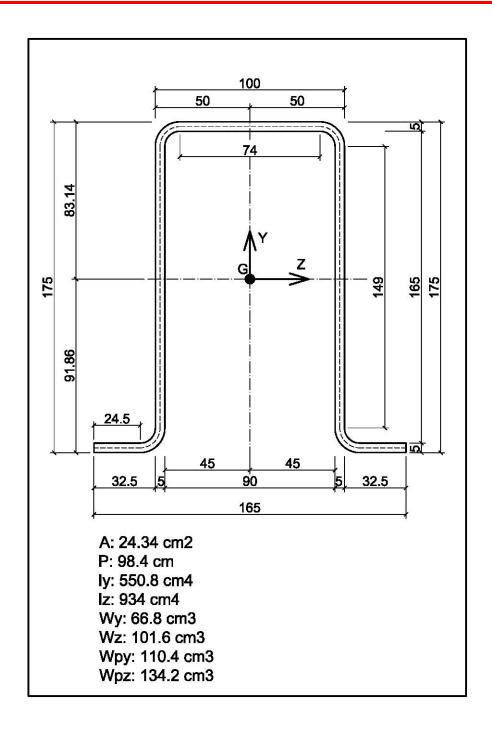
6.2 SOLLECITAZIONI ALLA BASE DELLE STRUTTURE VERTICALI

Nella tabella seguente sono riportate le sollecitazioni agenti alla base delle strutture verticali per le combinazioni e angoli di tracking che producono gli effetti più severi.

	5	SOLLECI	ΓΑΖΙΟΝΙ	ALLA B	ASE DEL	LE STF	RUTTURE VERTIC	ALI	
N	Hx	H _Y	Mx	MY	Mz	α	Combinazione di	Vr	
[daN]	[daN]	[daN]	[daNm]	[daNm]	[daNm]	[°]	carico	[m/s]	
- 655,1	- 82,0	7,2	- 38,8	- 651,8	-		SLU 01		
1.828,6	32,8	2,9	11,6	260,7	-	α=0°	SLU 07	27 m/s	
2.678,2	19,7	- 1,7	6,9	156,5	-		SLU 09		
- 264,7	- 467,2	40,9	- 182,8	-1.065,3	- 105,3	α=40°	SLU 01		*** - 1 **
1.340,8	320,7	- 28,1	95,2	731,3	- 46,9	α-40	SLU 07	15 m/s	tracker inclinato
- 243,6	- 765,0	67,0	- 247,9	-1.603,1	- 220,1	α=55°	SLU 01	15 m/s	IIICIIIIato
921,0	540,,1	- 47,3	136,7	1.130,4	- 100,6	α-55	SLU 07		
567,7	- 283,7	- 97,5	136,5	- 397,2	-	a-+++i	SLU 10		
567,7	- 85,1	- 325,0	455,0	- 119,1	-	α=tutti	SLU 11		

Del 15/01/2022

Account Code : C-003-RTD


CALCOLI PRELIMINARI

DELLE STRUTTURE

Rev. : **00**

7. VERIFICA DI RESISTENZA STRUTTURALE

7.1 CARATTERISTICHE MECCANICHE DEL PROFILO UTILIZZATO

Del 15/01/2022

Account Code : C-003-RTD

CALCOLI PRELIMINARI
DELLE STRUTTURE

Rev. : **00**

7.2 **VERIFICHE**

Combinazione SLU 11 - S_{VY}

		-RESISTENZA -				
		Taglio y	Taglio z	Presso-flessione	Assiale	Torsione
Combinazi	one	1	1	1	1	
Ascissa		52.500000	140.00000	0.00000000	140.00000	
Azioni	Nx	567,70000	567,70000	567.70000	567.70000	
	Mx					0.00000000
	Mz	-7446.2500	0.00000000	-11914.000	0.000000000	
	My	-28437,500	0.00000000	-45500.000	0.00000000	
	Ту	85.100000	85.100000	85,100000	85.100000	
	Tz	325.00000	325.00000	325.00000	325,00000	
Resistenze	e Nx	55419.247	55419,247	55419.247	55419.247	
	Mx					1.#INF000
	Mz	239864.10	239864.10	239864.10	239864.10	
	Му	151931.82	151931.82	151931.82	151931.82	
	Ty	6304.7970	6304.7970	6304.7970	6304.7970	
	Tz	17876.493	17876.493	17876,493	17876.493	
Taglio sisn	nico	0.00000000	0.00000000			
Coef. sicurezza		>10.0	>10.0	2.7824929	>10.0	>10.0
Limite norr	mativa	1.0	1.0	1.0	1.0	1.0

-INSTABILITA'		
Taglio	Flessionale F	lesso-torsionale
1	1	1
140.00000	0.00000000	0.00000000
567,70000	567.70000	567.70000
0.00000000	-11914.000	-11914.000
0.00000000	-45500.000	-45500.000
85.100000	85,100000	85,100000
325.00000	325,00000	325.00000
55419.247	52218.635	52218.635
239864.10	239638.59	239864.10
151931.82	151734.81	151734.81
3230.4122	6304.7970	6304.7970
3230.4122	17876.493	17876.493
>10.0	2.7742837	2.7746435
1.0	1.0	1.0
7 20.0		2.77

Classe massima profilo 3

Verificato

Combinazione SLU 10 - S_{VX}

		-RESISTENZA -				
		Taglio y	Taglio z	Presso-flessione	Assiale	Torsione
Combinazio	one	2	2	2	2	
Ascissa		105.00000	140.00000	0.00000000	140.00000	
Azioni	Nx	567.70000	567.70000	567.70000	567.70000	
	Mx					0.00000000
	Mz	-9929.5000	-0.000000000	-39718.000	-0.000000000	ı
	Му	-3412,5000	0.000000000	-13650.000	0.00000000	
	Ту	283.70000	283,70000	283,70000	283.70000	
	Tz	97.500000	97.500000	97,500000	97.500000	
Resistenze	Nx	55419.247	55419.247	55419.247	55419.247	
	Mx					1.#INF000
	Mz	239864.10	239864.10	239864.10	239864.10	
	My	151931.82	151931.82	151931.82	151931.82	
	Ту	6304.7970	6304.7970	6304.7970	6304.7970	
	Tz	17876.493	17876.493	17876.493	17876.493	
Taglio sisn	nico	0.00000000	0.00000000			
Coef. sicur	rezza	>10.0	>10.0	3.7640386	>10.0	>10.0
Limite norn	nativa	1.0	1.0	1.0	1.0	1.0

INSTABILITA'			
Taglio	Flessionale F	lesso-torsionale	
2	2	2	
140.00000	0.00000000	0.00000000	
567.70000	567.70000	567.70000	
-0.000000000	-39718.000	-39718.000	
0.000000000	-13650.000	-13650.000	
283.70000	283,70000	283,70000	
97.500000	97.500000	97.500000	
55419.247	52218.635	52218.635	
	239638.59		
151931.82	151734.81	151734.81	
3230.4122	6304.7970	6304.7970	
3230.4122	17876.493	17876.493	
>10.0	3.7513257	3.7535198	
1.0	1.0	1.0	

Del 15/01/2022

Account Code : C-003-RTD

CALCOLI PRELIMINARI
DELLE STRUTTURE Doc.

Rev. : **00**

Combinazione SLU 07; 15 m/s; $\alpha = 55^{\circ}$

	RESISTENZA					-INSTABILITA		
	Taglio y	Taglio z	Presso-flessione	Assiale	Torsione	Taglio	Flessionale F	lesso-torsionale
Combinazione	3	3	3	3		3	3	3
Ascissa	0.00000000	140.00000	0.00000000	140.00000		140.00000	0.00000000	0.00000000
Azioni Nx	890.10000	890.10000	890.10000	890.10000		890.10000	890.10000	890.10000
Mx					-9120.0000			
Mz	104880.00	31800.000	104880.00	31800.000		31800,000	104880.00	104880.00
Му	-12778.000	-6380,0000	-12778.000	-6380,0000		-6380,0000	-12778.000	-12778.000
Ту	522.00000	522.00000	522.00000	522.00000		522.00000	522,00000	522.00000
Tz	45.700000	45.700000	45.700000	45.700000		45.700000	45.700000	45.700000
Resistenze Nx	55419.247	55419.247	55419.247	55419.247		55419.247	52218.635	52218.635
Mx					1. #INF000			
Mz	239864.10	239864.10	239864.10	239864.10		239864.10	239136.83	239864.10
Му	151931.82	151931.82	151931.82	151931.82		151931.82	151086.75	151086.75
Ту	6304.7970	6304.7970	6304.7970	6304.7970		3230.4122	6304.7970	6304.7970
Tz	17876.493	17876.493	17876,493	17876.493		3230.4122	17876.493	17876,493
Taglio sismico	0.00000000	0.00000000						
Coef. sicurezza	>10.0	>10.0	1.8607687	>10.0	>10.0	>10.0	1.8511767	1.8557449
Limite normativa	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Classe massima profilo 3

Verificato

Combinazione SLU 01; 15 m/s; $\alpha = 55^{\circ}$

		RESISTENZA					-INSTABILITA'		
		Taglio y	Taglio z	Presso-flessione	Assiale	Torsione	Taglio	Flessionale F	lesso-torsionale
Combinazio	ne	4	4	4	4		4	4	4
Ascissa		140.00000	0.00000000	0.00000000	140.00000		140.00000	0.00000000	0.00000000
Azioni	Nx	-235,50000	-235,50000	-235.50000	-235.50000		-235,50000	-235.50000	-235.50000
	Mx					-20560.000			
	Mz	-45100.000	-148728.00	-148728.00	-45100.000		-45100.000	-148728.00	-148728.00
	Му	14390.000	23462,000	23462.000	14390.000		14390.000	23462,000	23462.000
	Ту	740.20000	740.20000	740.20000	740.20000		740.20000	740.20000	740.20000
	Tz	64.800000	64.800000	64.800000	64.800000		64.800000	64.800000	64.800000
Resistenze	Nx	55419.247	55419.247	55419.247	55419.247		55419.247	55419.247	55419.247
	Mx					1.#INF000			
	Mz	239864.10	239864.10	239864.10	239864.10		239864.10	239864.10	239864.10
	Му	151931.82	151931.82	151931.82	151931.82		151931.82	151931.82	151931.82
	Ту	6304.7970	6304.7970	6304.7970	6304.7970		3230.4122	6304.7970	6304.7970
	Tz	17876.493	17876.493	17876.493	17876.493		3230.4122	17876.493	17876.493
Taglio sism	ico	0.00000000	0.00000000						
Coef. sicur	ezza	8.5176939	>10.0	1.2841503	>10.0	>10.0	>10.0	1.2841503	1.3026320
Limite norm	ativa	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Classe massima profilo 3

Del 15/01/2022

Account Code : C-003-RTD

CALCOLI PRELIMINARI
DELLE STRUTTURE Doc.

Rev. : **00**

Combinazione SLU 07; 15 m/s; $\alpha = 40^{\circ}$

	RESISTENZA					-INSTABILITA'		
	Taglio y	Taglio z	Presso-flessione	Assiale	Torsione	Taglio	Flessionale F	lesso-torsionale
Combinazione	5	5	5	5		5	5	5
Ascissa	140.00000	140.00000	0.00000000	140.00000		140.00000	0.00000000	0.00000000
Azioni Nx	1295.8000	1295,8000	1295.8000	1295.8000		1295.8000	1295.8000	1295.8000
Mx					-4250.0000			
Mz	23980.000	23980.000	67380.000	23980.000		23980,000	67380.000	67380.000
My	-5060,0000	-5060,0000	-8854.0000	-5060,0000		-5060,0000	-8854.0000	-8854.0000
Ту	310.00000	310.00000	310.00000	310.00000		310.00000	310.00000	310.00000
Tz	27.100000	27.100000	27.100000	27.100000		27.100000	27.100000	27.100000
Resistenze Nx	55419.247	55419.247	55419.247	55419.247		55419.247	52218.635	52218.635
Mx					1.#INF000			
Mz	239864.10	239864.10	239864.10	239864.10		239864.10	238712.66	239864.10
My	151931.82	151931.82	151931.82	151931.82		151931.82	150592.81	150592.81
Ту	6304.7970	6304.7970	6304.7970	6304.7970		3230.4122	6304.7970	6304.7970
Tz	17876.493	17876.493	17876.493	17876.493		3230.4122	17876.493	17876.493
Taglio sismico	0.00000000	0.00000000						
Coef. sicurezza	>10.0	>10.0	2.7581112	>10.0	>10.0	>10.0	2.7331870	2.7433468
Limite normativa	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Classe massima profilo 3

Verificato

Combinazione SLU 01; 15 m/s; $\alpha = 40^{\circ}$

		RESISTENZA					-INSTABILITA'		
		Taglio y	Taglio z	Presso-flessione	Assiale	Torsione	Taglio	Flessionale F	lesso-torsionale
Combinazio	one	6	6	6	6		6	6	6
Ascissa		70.000000	140.00000	0.00000000	140.00000		140.00000	0.00000000	0.00000000
Azioni	Nx	-255,80000	-255,80000	-255.80000	-255.80000		-255,80000	-255.80000	-255.80000
	Mx					-9840.0000			
	Mz	-71035,000	-39430.000	-102640.00	-39430,000		-39430.000	-102640.00	-102640.00
	Му	14485.000	11720.000	17250.000	11720.000		11720.000	17250.000	17250.000
	Ту	451.50000	451.50000	451.50000	451.50000		451.50000	451.50000	451.50000
	Tz	39.500000	39.500000	39.500000	39.500000		39.500000	39,500000	39.500000
Resistenze	Nx	55419.247	55419.247	55419.247	55419.247		55419.247	55419.247	55419.247
	Mx					1.#INF000			
	Mz	239864.10	239864.10	239864.10	239864.10		239864.10	239864.10	239864.10
	Му	151931.82	151931.82	151931.82	151931.82		151931.82	151931.82	151931.82
	Ту	6304.7970	6304.7970	6304.7970	6304.7970		3230.4122	6304.7970	6304.7970
	Tz	17876.493	17876.493	17876.493	17876.493		3230.4122	17876,493	17876.493
Taglio sism	nico	0.00000000	0.00000000						
Coef. sicur	ezza	>10.0	>10.0	1.8312923	>10.0	>10.0	>10.0	1.8312923	1.8724433
Limite norm	nativa	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Classe massima profilo 3

Del 15/01/2022

Account Code : C-003-RTD

CALCOLI PRELIMINARI
DELLE STRUTTURE Doc.

Rev. : **00**

Combinazione SLU 09; 27 m/s; $\alpha = 0$

		RESISTENZA					-INSTABILITA'		
		Taglio y	Taglio z	Presso-flessione	Assiale	Torsione	Taglio	Flessionale F	Flesso-torsionale
Combinazio	ne	7	7	7	7		7	7	7
Ascissa		70.000000	0.00000000	0.00000000	140.00000		140.00000	0.00000000	0.00000000
Azioni	Nx	2588,3000	2588,3000	2588.3000	2588.3000		2588,3000	2588.3000	2588.3000
	Mx					0.00000000			
	Mz	12280,000	13610.000	13610.000	10950.000		10950.000	13610.000	13610.000
	Му	-529.00000	-648.00000	-648.00000	-410.00000		-410.00000	-648.00000	-648.00000
	Ту	19.000000	19,000000	19,000000	19,000000		19.000000	19.000000	19.000000
	Tz	1.7000000	1.7000000	1.7000000	1.7000000		1.7000000	1.7000000	1.7000000
Resistenze	Nx	55419.247	55419.247	55419.247	55419.247		55419.247	52218.635	52218.635
	Mx					1.#INF000			
	Mz	239864.10	239864.10	239864.10	239864.10		239864.10	236000.24	239864.10
	Му	151931.82	151931.82	151931.82	151931.82		151931.82	149094.70	149094.70
	Ту	6304.7970	6304.7970	6304.7970	6304.7970		3230.4122	6304.7970	6304.7970
	Tz	17876.493	17876.493	17876.493	17876.493		3230.4122	17876.493	17876,493
Taglio sism	ico	0.00000000	0.00000000						
Coef. sicure	ezza	>10.0	>10.0	9.2842301	>10.0	>10.0	>10.0	8.9619981	9.0372370
Limite norm	ativa	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Classe massima profilo 3

Verificato

Combinazione SLU 07; 27 m/s; $\alpha = 0$

		RESISTENZA					-INSTABILITA'		
		Taglio y	Taglio z	Presso-flessione	Assiale	Torsione	Taglio	Flessionale F	Flesso-torsionale
Combinazi	ione	8	8	8	8		8	8	8
Ascissa		70.000000	140.00000	0.00000000	140.00000		140.00000	0.00000000	0.00000000
Azioni	Nx	1767.2000	1767.2000	1767.2000	1767.2000		1767.2000	1767.2000	1767.2000
	Mx					0.00000000			
	Mz	20469.000	18250.000	22688.000	18250.000		18250,000	22688.000	22688.000
	Му	-876.00000	-680,00000	-1072.0000	-680,00000		-680,00000	-1072.0000	-1072.0000
	Ту	31.700000	31.700000	31.700000	31.700000		31.700000	31.700000	31.700000
	Tz	2.8000000	2.8000000	2,8000000	2.8000000		2.8000000	2.8000000	2.8000000
Resistenz	e Nx	55419.247	55419.247	55419.247	55419.247		55419.247	52218.635	52218.635
	Mx					1.#INF000			
	Mz	239864.10	239864.10	239864.10	239864.10		239864.10	237212.84	239864.10
	My	151931.82	151931.82	151931.82	151931.82		151931.82	149979.81	149979.81
	Ту	6304.7970	6304.7970	6304.7970	6304.7970		3230.4122	6304.7970	6304.7970
	Tz	17876.493	17876.493	17876,493	17876.493		3230.4122	17876.493	17876.493
Taglio sisi	mico	0.00000000	0.00000000						
Coef. sicu	ırezza	>10.0	>10.0	7.4889243	>10.0	>10.0	>10.0	7.3188217	7.3758908
Limite non	mativa	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Classe massima profilo 3

Del 15/01/2022

Account Code : C-003-RTD

CALCOLI PRELIMINARI
DELLE STRUTTURE Doc.

Rev. : **00**

Combinazione SLU 01; 27 m/s; $\alpha = 0$

		RESISTENZA					-INSTABILITA		
		Taglio y	Taglio z	Presso-flessione	Assiale	Torsione	Taglio	Flessionale F	lesso-torsionale
Combina	zione	9	9	9	9		9	9	9
Ascissa		140.00000	0.00000000	0.00000000	140.00000		140.00000	0.00000000	0.00000000
Azioni	Nx	-633,10000	-633,10000	-633.10000	-633.10000		-633,10000	-633.10000	-633.10000
	Mx					0.00000000			
	Mz	-45620.000	-56708.000	-56708.000	-45620,000		-45620.000	-56708.000	-56708.000
	My	2690.0000	3656,0000	3656.0000	2690,0000		2690.0000	3656.0000	3656.0000
	Ту	79.200000	79,200000	79.200000	79.200000		79.200000	79.200000	79.200000
	Tz	6.9000000	6.9000000	6.9000000	6.9000000		6.9000000	6.9000000	6.9000000
Resistenz	ze Nx	55419.247	55419.247	55419.247	55419.247		55419.247	55419.247	55419.247
	Mx					1.#INF000			
	Mz	239864.10	239864.10	239864.10	239864.10		239864.10	239864.10	239864.10
	My	151931.82	151931.82	151931.82	151931.82		151931.82	151931.82	151931.82
	Ту	6304.7970	6304.7970	6304.7970	6304.7970		3230.4122	6304.7970	6304.7970
	Tz	17876.493	17876.493	17876.493	17876.493		3230.4122	17876.493	17876.493
Taglio sis	smico	0.00000000	0.00000000						
Coef. sic	urezza	>10.0	>10.0	3.6777625	>10.0	>10.0	>10.0	3.6777625	4.1287765
Limite no	rmativa	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Classe massima profilo 3

Del 15/01/2022

Account Code : C-003-RTD

, CALCOLI PRELIMINARI

DELLE STRUTTURE

Rev. : 00

8. CONCLUSIONI

Dall'analisi svolta e dalle risultanze dei calcoli effettuati risulta che la struttura portante verticale degli inseguitori meccanici mono-assiali come sopra descritta, appartenente all'impianto fotovoltaico "Cerignola", è pienamente compatibile, sotto l'aspetto statico e dinamico, con le prestazioni attese come descritte al punto 1.3, senza l'impiego di strutture fondali impattanti sull'ambiente quali opere in calcestruzzo armato.