

Rev: 00

REGIONE CAMPANIA PROVINCIA DI CASERTA COMUNE DI CANCELLO ED ARNONE

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO FOTOVOLTAICO DENOMINATO "LA FOSSA" DELLA POTENZA DI 43.410 kWp -40.000 kVA

Data: 22/03/2022

StarEnergia srl sede legale Via Francesco Giordani n. 42 800122 NapoliP.IVA 05769401216 PEC: starenergia@pec.it

Struttura Tracker Relazione illustrativa e di calcolo

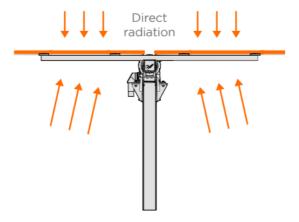
PROGETTISTA	PROPONENTE	SCALA
ING. EZO PASQUALE	Nova Energia s.r.l. sede legale Via F. Giordani n. 42	varie
Applando Diaz n. 58 84018 Scalati Salemo Italia Email: ing izzopasquale@gmail.com	800122 Napoli Tel.+39 081 060 7743 Fax +39 081 060 7876	TAVOLA
PEC: pasquale.izzo@ordingnd.it Telefono: 139.0813440827 - Cell.: 139 338 4804 869	C.F. e P.IVA 09898841219 PEC: novaenergia@pecditta.com	RDS - 07
*		
Revisioni e coordinamento:		

Note: Prima emissione

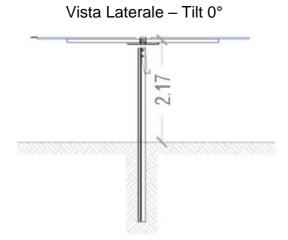
Sommario

RELAZIONE ILLUSTRATIVA E DI CALCOLO – STRUTTURA TRACKER

1. DESCRIZIONE	2
2. NORMATIVA DI RIFERIMENTO	
3. CARATTERISTICHE DEI MATERIALI UTILIZZATI	4
4. SCHEMA GEOMETRICO E MODELLO CON ELEMENTI FINITI	5
5. COMBINAZIONE DEI CARICHI E CRITERI DI VERIFICA	5
6. ANALISI DEI CARICHI	7
7. ANALISI DEI CARICHI	22
8. VERIFICA A SFILAMENTO DEL SOSTEGNO	34
9. GIUDIZIO MOTIVATO DI ACCETTABILITÀ DEI RISULTATI	35
10. CONCLUSIONI	36

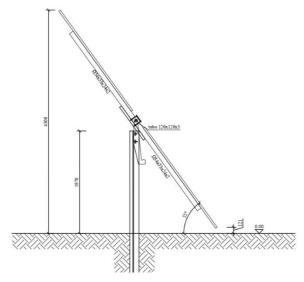


RELAZIONE ILLUSTRATIVA E DI CALCOLO STRUTTURA TRACKER


1. DESCRIZIONE

L'obiettivo della presente relazione è quello di fornire un'analisi dei carichi e delle sollecitazioni a cui sono sottoposte le strutture del generatore fotovoltaico in campo aperto, nonché effettuare delle verifiche di stabilità degli elementi portanti delle strutture di sostegno e di ancoraggio a terra.

Le strutture di supporto dei moduli fotovoltaici saranno ad inseguimento meccanico monoasse denominato "tracker", ad infissione nel terreno con macchina operatrice battipalo.



Si tratta di un sistema strutturale innovativo sviluppato in base a conoscenze scientifiche e normative: i moduli bifacciali poggiano su dei profili metallici "arcarecci" (della forma a Omega capovolta) a loro volta ancorati ad uno scatolare monoassiale "traversa" capace di ruotare ed orientare i moduli all'irraggiamento solare (strutture ad inseguimento solare).

Vista Laterale - Tilt Massimo

La struttura meccanica è costituita da elementi verticali costituiti da profili $\Omega 101x108x40x4$ mm infissi mediante battitura direttamente nel terreno. Detti elementi rappresentano al contempo sia i montanti verticali fuori terra che le fondazioni profonde.

Gli elementi orizzontali principali sono costituiti da tubolari 120x120x3 mm che sono ancorati ai montanti $\Omega 101x108x40x4$ mm mediante degli elementi pressopiegati speciali. Il tubolare 120x120x3 mm rappresenta l'asse di rotazione della struttura.

Sull'orditura principale sono ancorati i profili $\Omega 34x33x24x2mm$ che sorreggono i pannelli fotovoltaici mediante ancoranti meccanici.

2. NORMATIVA DI RIFERIMENTO

Disciplina delle opere

- Legge n. 1086 del 5 Novembre 1971. "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica".
- Circolare del 14 febbraio 1974 n. 11951. "Istruzioni per l'applicazione delle «Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica» di cui alla Legge n. 1086 del 5 Novembre 1971".

Azioni

- D.M. 17 Gennaio 2018 "Aggiornamento delle Norme Tecniche per le Costruzioni".
- Eurocodice 1. "Basi della progettazione ed azioni sulle strutture".

Strutture in acciaio e c.a.

D.M. 17 Gennaio 2018 "Aggiornamento delle Norme Tecniche per le Costruzioni".

- Eurocodice 2. "Progettazione delle strutture di calcestruzzo".
- Eurocodice 3. "Progettazione delle strutture di acciaio".

Zone sismiche

- Legge n. 64 del 2 febbraio 1974. "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- D.M. 17 Gennaio 2018 "Aggiornamento delle Norme Tecniche per le Costruzioni".
- Eurocodice 8. "Regole progettuali per le strutture antisismiche".

Opere di fondazione

- D.M. 17 Gennaio 2018 "Aggiornamento delle Norme Tecniche per le Costruzioni".
- Eurocodice 7. "Progettazione geotecnica".

3. CARATTERISTICHE DEI MATERIALI UTILIZZATI

ACCIAIO S275JR

Gli elementi che sono progettati con l'acciaio S275 JR sono i seguenti

- Tubolare principale 120x120x3mm;
- profili per fissaggio pannelli Ω34x33x24x2mm;
- profili per fissaggio pannelli Z30x24x3mm;
- piastrame;
- Palo verticale Ω101x108x40x4mm;

Caratteristiche meccaniche:

f_y≥ 275 N/mm² Limite di snervamento;

f_t≥ 430 N/mm² Limite di rottura;

A_%≥ 25 %
 Allungamento minimo;

R ≤ 27J
 Resilienza a 20°C;

E=210000 N/mm² Modulo Elastico;

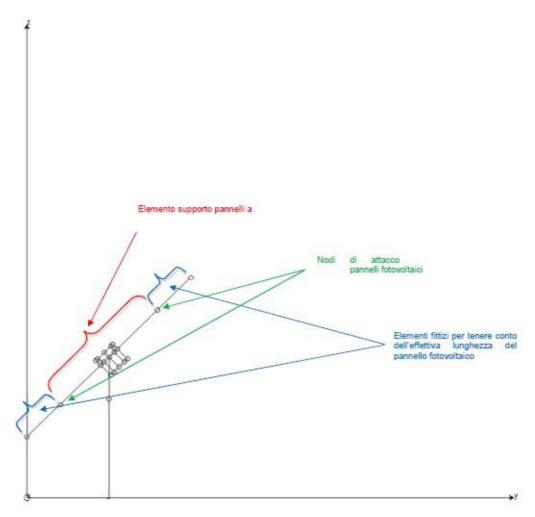
• $G=E/[2(1+v)] = 80769 \text{ N/mm}^2$ Modulo Tangenziale;

• α =12x10⁻⁶per °C⁻¹ Coefficiente di espansione termica lineare.

BULLONI

I bulloni - conformi per le caratteristiche dimensionali alle norme UNI EN ISO 4016:2002 e UNI 5592:1968 devono appartenere alle sotto indicate classi della norma UNI EN ISO 898-1:2001.

Vite 8.8 - Dado 8	f _{yb} =649 N/mm²	f _{tb} =800 N/mm ²	
---------------------------------	----------------------------	--	--



SALDATURE

Eventuali saldature dell'acciaio dovrà avvenire con uno dei procedimenti all'arco elettrico codificati secondo la norma UNI EN ISO 4063:2001. È ammesso l'uso di procedimenti diversi purché sostenuti da adeguata documentazione teorica e sperimentale.

4. SCHEMA GEOMETRICO E MODELLO CON ELEMENTI FINITI

Schema Sezione Strutturale

Non si prende in considerazione il calcolo per la configurazione del tracker con inclinazione dell'asse longitudinale pari a +- 2°, in quanto tale inclinazione rappresenta un valore compatibile con quello di errore di montaggio.

5. COMBINAZIONE DEI CARICHI E CRITERI DI VERIFICA

La combinazione dei carichi agenti sulla struttura e la conseguente verifica strutturale viene fatta

in accordo con quanto prescritto dal DM 14/01/08. La relazione fondamentale per la verifica è data dalla seguente espressione

$$Ed \le Rd = \frac{R_k}{y_{NO}}$$

In accordo con l'Eurocodice 3 per le verifiche è stato considerato: $R_k \rightarrow Valore$ caratteristico di Resistenza;

γ_{m0}=1,05→ Coefficiente parziale di resistenza di Resistenza per acciaio;

Il criterio utilizzato per la progettazione è l'<u>Approccio 1</u> in accordo al cap. 02 del DM 14/01/08 che considera per le verifiche strutturali i valori dei coefficienti parziali riportati in Tabella 2.6.I colonna A1 STR, come pure per le verifiche geotecniche sono considerati i coefficienti parziali riportati in Tabella A1.2(C).

Combinazione per le verifiche allo STATO LIMITE ULTIMO di resistenza:

$$E_{d} = \sum_{i \le 1} y_{G,j} \cdot G_{k,j} + y_{Q} \cdot Q_{k,1} + \sum_{i \ge 1} y_{Q,i} \cdot f_{O,i} \cdot Q_{k,i}$$

Combinazione per le verifiche per azioni dovute al SISMA:

$$E_{d} = \sum_{j \in I} y_{G,j} \cdot G_{k,j} + E + \sum_{i \in I} y_{Q,i} \cdot f_{2,i} \cdot Q_{k,i}$$

In cui i parametri sono:

Gk,j→ Valore caratteristico dei Carichi Permanenti;

gG=gG,j={1,30; 1,00}→ Coefficiente parziale per i Carichi Permanenti;

Qk,1→ Valore caratteristico del Carico Accidentale principale;

Qk,i→ Valore caratteristico dei Carichi Accidentali secondarie;

E→ Valore caratteristico dell'azione Sismica:

gQ=gQ,i={1,50; 0}→ Coefficiente parziale per i Carichi Accidentali;

 $y0,1=0,6 \rightarrow \text{Coefficiente parziale per il vento};$

 $y1,1=0,2 \rightarrow \text{Coefficiente parziale per il vento};$

 $y2,1=0 \rightarrow \text{Coefficiente parziale per il vento};$

 $y0,2=0,7 \rightarrow \text{Coefficiente parziale per la neve}$;

 $y1,2=0,5 \rightarrow Coefficiente parziale per la neve;$

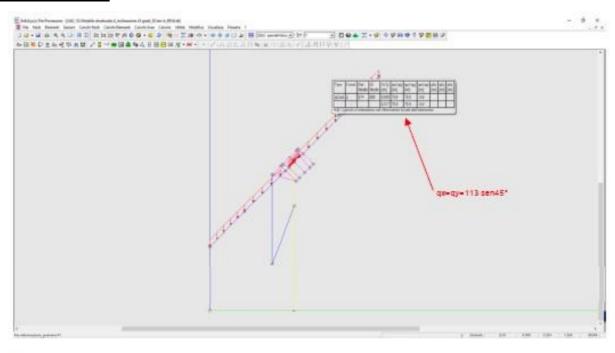
 $y2,2=0,2 \rightarrow \text{Coefficiente parziale per la neve.}$

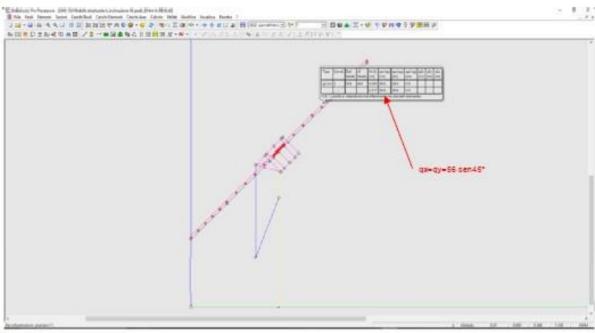
6. ANALISI DEI CARICHI

Carichi permanenti portanti definiti - G1:

I carichi permanenti del peso proprio è inserito nella Condizione (1) ed è generato in automatico dal programma di carichi:

•	Palo Ω101x108x40x4mm	114 N/m
•	Traverso Tubolare 120x120x3mm	108 N/m
•	Elementi di supporto pannelli centrali – Ω34x33x24x2mm	21 N/m
-	Elementi di supporto pannelli laterali – Z30x24x3mm	16 N/m


Nel modello di calcolo i carichi sono generati in automatico tramite le caratteristiche geometriche degli elementi e la definizione del materiale acciaio.


<u>Carichi permanenti portati pienamente definiti – G2:</u>

- cond.2 \rightarrow G2 pannelli fotovoltaici elemento $\Omega \Upsilon P_z = 220/1,954 = 113 N/m$


Modello A – α =45°

Modello B – $\alpha=0^{\circ}$

Carichi accidentali - vento - Qkd, vento

La determinazione del carico accidentale vento è ricavata in base alla Normativa italiana DM 17/01/2018 e in base alle indicazioni contenuto della Circolare esplicativa n°7 del 21/01/2019. Il carico statico equivalente dato dal vento viene determinato in base a dove:

$$p = q_b c_e c_p c_d$$

- q_b è la pressione cinetica di riferimento come indicata di seguito;
- c_e è il coefficiente di esposizione come indicato di seguito;

- c_p è il coefficiente di forma come indicato di seguito;
- c_d è il coefficiente dinamico che per la struttura in esame può essere assunto pari a1;

Pressione cinetica - qb

La pressione cinetica è calcolata con la seguente formula

$$q_b = \frac{1}{2}\rho v_b^2$$

dove

v_s è la velocità di riferimento del vento (in m/s),

p è la densità dell'aria assunta convenzionalmente costante e pari a 1,25 kg/m³.

Per il calcolo di v_b si tiene conto del periodo di ritorno T_r =20anni, come richiamato al punto C3.3.2 della Circolare esplicativa n°7 del 21/01/2019, mediante la seguente espressione: dove:

$$\begin{array}{c} v_b(T_R) = \alpha_R \ v_b \\ \alpha_R \ \dot{\mathbf{e}} \ \text{un coefficiente che ha la seguente espressione:} \\ \alpha = 0.75 \ \mathbf{J} \ \overline{1 - 0.20 \cdot \ln\left[-\ln\left(1 - \frac{1}{2}\right)\right]} = 0.75 \ \mathbf{J} \ \overline{1 - 0.20 \cdot \ln\left[-\ln\left(1 - \frac{1}{2}\right)\right]} = 0.947 \\ T_R \end{array}$$

• v_b è la velocità di riferimento del vento associata a un periodo di ritorno di 50 anni; La determinazione della velocità di riferimento dipende dall'ubicazione geografica è dall'altezza del sito sul livello del mare in base alla seguente tabella:

Tabella 3.3.I - Valori dei parametri Vb,0, a0, ka

Zona	Descrizione	V _{b,0} [m/s]	a ₀ [m]	ka [1/s]
1	Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia (con l'eccezione della provincia di Trieste)	25	1000	0,010
2	Emilia Romagna	25	750	0,015
3	Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata. Calabria (esclusa la provincia di Reggio Calabria)	27	500	0,020
4	Sicilia e provincia di Reggio Calabria	28	500	0,020
5	Sardegna (zona a oriente della retta congiungente Capo Teulada con l'Isola di Maddalena)		750	0,015
6	Sardegna (zona a occidente della retta congiungente Capo Teulada con l'Isola di Maddalena)		500	0,020
7	Liguria	28	1000	0,015
8	Provincia di Trieste	30	1500	0,010
9	Isole (con l'eccezione di Sicilia e Sardegna) e mare aperto	31	500	0,020
				100

con

$$v_b = v_{b,0}$$
 per $a_s \le a_0$
 $v_b = v_{b,0} + k_a (a_s - a_0)$ per $a_0 < a_s \le 1500$ m

Il sito ricade in zona 3 essendo nel Comune di Cancello ed Arnone (CE) ad una quota di circa $a_s=2$ m s.l.m., pertanto $v_{b,0}=27$ m/sec, quindi:

• $v_b = v_{b,0} \cdot \alpha_R = 27 \cdot 0,947 = 25,6 \text{ m/sec.}$

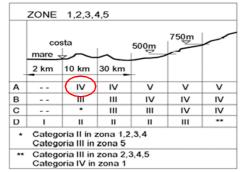
Pertanto la Pressione cinetica del vento è pari a:

$$q_b = \frac{1}{2} q \cdot v_b = \frac{1}{2} \cdot \frac{1}{1,25 \cdot 25,6}^2 = 409 N/NQ$$

In realtà la struttura è dotata di un anemometro che posiziona i pannelli con inclinazione di α =0°, una volta rilevata una velocità pari a v_b '=50Km/h=13,89m/sec., quindi il calcolo con la massima velocità di progetto pari a v_b =25,6 sarà effettuato soltanto per la configurazione che vede i pannelli perfettamente orizzontali.

Coefficiente di esposizione - ce

Il coefficiente di esposizione c_e dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno, e dalla categoria di esposizione del sito ove sorge la costruzione. In assenza di analisi specifiche che tengano in conto la direzione di provenienza del vento e l'effettiva scabrezza e topografia del terreno che circonda la costruzione, per altezze sul suolo non maggiori di z = 200 m, esso è dato dalla formula:


$$c_{e}(z) = k_{r}^{2} c_{t} \ln(z/z_{0}) [7 + c_{t} \ln(z/z_{0})]$$
 per $z \ge z_{min}$

$$c_{e}(z) = c_{e}(z_{min})$$
 per $z < z_{min}$

Il sito è ubicato a meno di 10Km dalla costa, la classe di rugosità complessiva dell'intervento può essere considerata la A, in quanto i trackers sono molto fitti formando una schermatura tra loro molto elevata maggiore di una zona urbanizzata.

Tabella 3.3 III - Classi di ruposità del terreno

I parametri per il calcolo del ce, per sito con categoria di esposizione IV e avendo un

Classe di rugosità del terreno	Descrizione			
A	Aree urbane in cui almeno il 15% della superficie sia coperto da edifici la cui altezza media superi i 15m			
В	Aree urbane (non di classe A), suburbane, industriali e boschive			
С	Aree con ostacoli diffusi (alberi, case, muri, recinzioni,); aree con rugosità non riconducibile alle classi A, B, D			
D	Aree prive di ostacoli (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,)			

L'assegnazione della classe di rugosità non dipende dalla conformazione orografica e topografica del terreno. Affinché una costruzione possa dirsi ubicata in classe A o B è necessario che la situazione che contraddistingue la classe permanga intorno alla costruzione per non meno di 1 km e comunque non meno di 20 volte l'altezza della costruzione. Laddove sussistano dubbi sulla scelta della classe di rugosità, a meno di analisi dettagliate, verrà assegnata la classe più sfavorevole.

coefficiente topografico pari a c_t=1, sono dati dalla seguente tabella:

Tabella 3.3.II - Parametri per la definizione del coefficiente di esposizione

Categoria di esposizione del sito	k _r	z_0 [m]	z _{min} [m]
Ī	0,17	0,01	2
II	0,19	0,05	- 4
Ш	0,20	0,10	5
(IV)	0,22	0,30	8
V	0,23	0,70	12

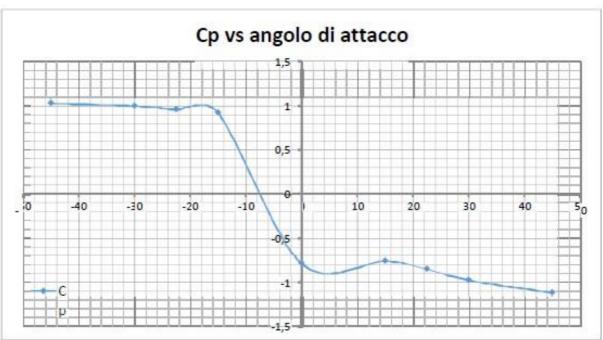
Pertanto il calcolo del coefficiente di esposizione è pari a:

$$c_{e} = k_{r}^{2} c_{t} \ln \left(\frac{z}{z_{0}}\right) \left[7 + c_{t} \ln \left(\frac{z}{z_{0}}\right)\right] = 0.22^{2} \ln \left(\frac{8}{0.30}\right) \left[7 + \ln \left(\frac{8}{0.30}\right)\right] = 1.634$$

Coefficiente di forma - cp

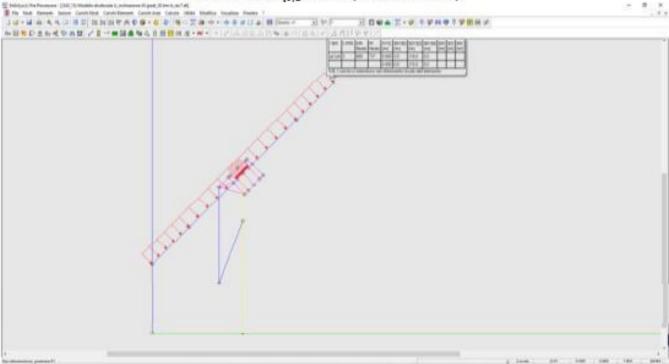
Il coefficiente di esposizione c_pè stato determinato in via analitica con il software Fluent dell'ANSYS, come proposto al punto C.3.3.10 della Circolare esplicativa n°7 del 21/01/2019.

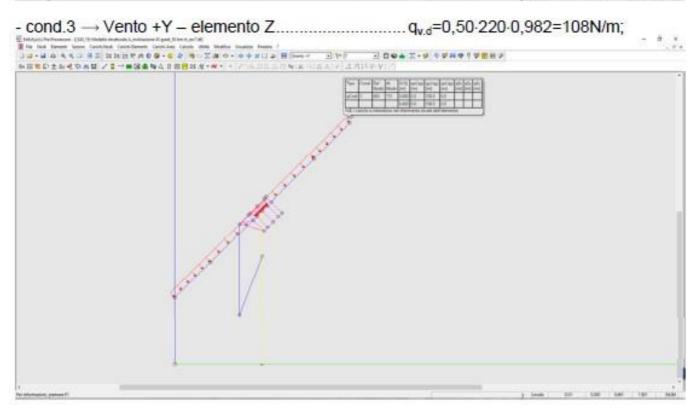
È stata scelta questa strada in quanto la tipologia costruttiva in esame è molto particolare e si allontana dalle costruzioni civili per le quali la norma propone i vari cp.


Si riporta uno stralcio delle elaborazioni:

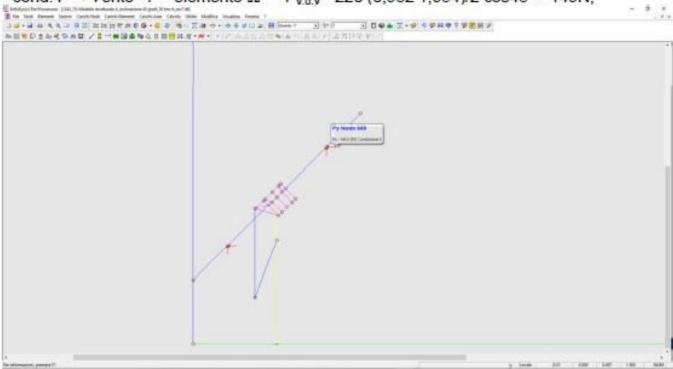
Raw data

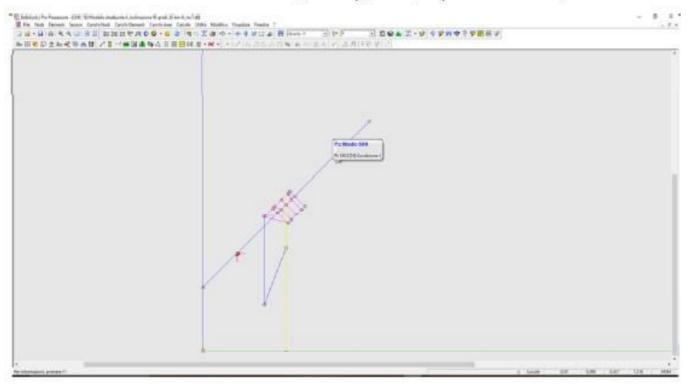
Output				
α (°)	M [N m]	Ecc [m]	Ср	
-45	322,7	0,185	1,034	
-30	456,4	0,270	1,001	
-22,5	496,7	0,306	0,963	
-15	568,8	0,364	0,926	
0	-332,8	0,251	-0,785	
15	-437,6	0,342	-0,758	
22,5	-389,6	0,272	-0,849	
30	-369,1	0,225	-0,974	
45	-242,3	0,129	-1,115	


Carichi da vento agenti sulla struttura


Modello A (α=45°), vb=13,89m/sec

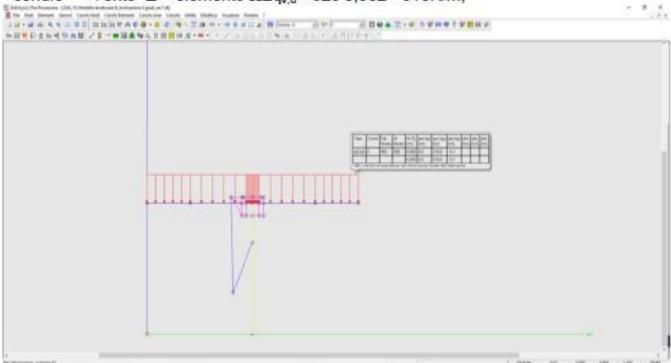
 $P_{vento,A} = q_p \cdot c_e \cdot c_p \cdot c_d = 1/2 \rho v_b^2 \cdot 1,634 \cdot 1,115 \cdot 1 = 1/2 \cdot 1,25 \cdot 13,89^2 \cdot 1,634 \cdot 1,115 \cdot 1 = 220 \text{ N/mq}$


cond.3 → Vento +Y – elemento Ω□q_{v,d}=220·0,982=216N/m;

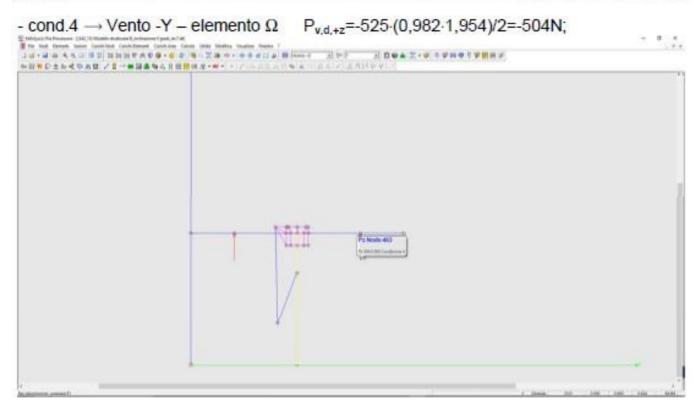


- cond.4 \rightarrow Vento -Y - elemento Ω P_{v.d.v}=-220·(0,982·1,954)/2·cos45°=-149N;

- cond.4 \rightarrow Vento -Y - elemento Ω P_{v,d,z}=220·(0,982·1,954)/2·cos45°=149N;


- cond.4 → Vento -Y - elemento Z

| Pv,d,y=-0,5-220·(0,982-1,954)/2·cos45°=-75N; | Pv,d,y=-0,5-220°=-75N; | Pv,d,y=-0,5-220°=-75


Modello B (α=0°), vb=25,60m/sec

 $P_{vento,A} = q_p \cdot c_e \cdot c_p \cdot c_d = 1/2 \rho v_b^2 \cdot 1,634 \cdot 0,785 \cdot 1 = 1/2 \cdot 1,25 \cdot 25,60^2 \cdot 1,634 \cdot 0,785 \cdot 1 = 525 \text{ N/mq}$

cond.3 → Vento -Z – elemento Ω□q_{v,d}=-525·0,982=-516N/m;

Carichi accidentali - neve - Qkd,neve

La determinazione del carico accidentale neve è ricavata in base alla Normativa italiana DM 17/01/2018 e in base alle indicazioni contenuto della Circolare esplicativa n°7 del 21/01/2019. Il carico statico viene determinato in base alla seguente espressione:

$$q_s = \mu_i \cdot q_{sk} \cdot C_E \cdot C_t$$

dove:

- μ_i è il coefficiente di forma sulla copertura;
- q_{sk}è il valore caratteristico di riferimento del carico neve al suolo [kN/m2], per un periodo di ritorno Tr di 50 anni;
- C_E è il coefficiente di esposizione;
- C_t è il coefficiente termico;

Coefficiente di forma - µi

Il coefficiente di forma viene calcolato in base alla seguente tabella:

Tabella 3.4.II - Valori del coefficiente di forma

Coefficiente di forma	$0^{\circ} \le \alpha \le 30^{\circ}$	30° ≤ α ≤ 60°	α≥ 60°
μί	0,8	$0.8 \cdot \frac{(60 - \alpha)}{30}$	0,0

Nel caso specifico si ha:

- per la configurazione di $a=45^{\circ}$ $\mu = 0.80 \times (60-a)/30 = 0.80 \times (60-45)/30 = 0.40$;
- per la configurazione di a=0°......µi= 0,80.

Valore caratteristico del carico neve - qsk

Il valore caratteristico del carico neve è dato dalla normativa DM 14/01/08 nel cap.3.4.2 e dipende dalla zona climatica. Nel caso specifico il sito ricade nella Zona III e per un'altezza sul livello del mare pari ad $a_s=2$ m s.l.m, pertanto si ha

$$q_{sk} = 600 \text{ N/m}^2$$

In realtà tale valore dovrebbe essere ridotto come per il vento di un coefficiente che tiene conto del reale periodo di ritorno della struttura Tr=20anni. Non si procede in tal senso soltanto perché la norma italiana non specifica, a differenza del carico vento, il fattore di riduzione con una formula specifica.

Coefficiente di esposizione - CE

Il coefficiente di esposizione CE è utilizzato per modificare il valore del carico neve in copertura in funzione delle caratteristiche specifiche dell'area in cui sorge l'opera.

La tabella da considerare è la 3.4.1 da cui risulta CE=1.

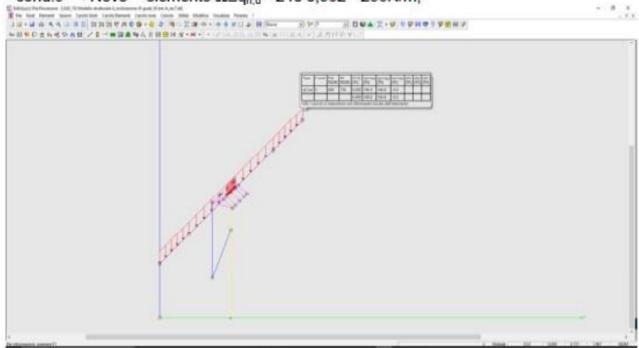
Tabella 3.4.1 - Valori di C_E per diverse classi di topografia

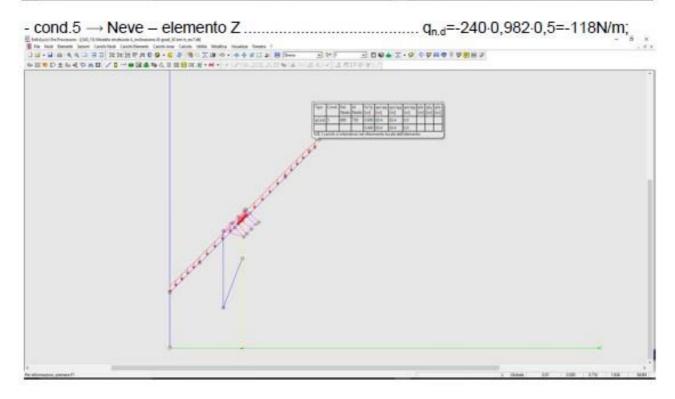
Topografia	Descrizione	Cg
Battuta dai venti	Arce pianeggianti non ostruite esposte su tutti i lati, senza costruzioni o alberi più alti.	0,9
Normale	Aree in cui non è presente una significativa rimozione di neve sulla costruzione prodotta dal vento, a causa del terreno, altre costruzioni o alberi.	1,0
Riparata	Aree in cui la costruzione considerata è sensibilmente più bassa del circostante terreno o circondata da costruzioni o alberi più alti	1,1

Coefficiente di esposizione - Ct

Il coefficiente termico Ct può essere utilizzato per tener conto della riduzione del carico neve a causa dello scioglimento della stessa, causata dalla perdita di calore della costruzione. Tale coefficiente tiene conto delle proprietà di isolamento termico del materiale utilizzato in copertura. In assenza di uno specifico e documentato studio, deve essere utilizzato Ct = 1.

Carichi da neve agenti sulla struttura


Per i modelli si considerano i seguenti carichi neve:



Modello A (α=45°), μ=0,40;

 $P_{neve,A} = \mu_i \cdot q_{sk} \cdot C_E \cdot C_t = 0,40.600.1,00.1,00 = 240 \text{ N/mq}$

- cond.5 → Neve − elemento $\Omega\Box q_{n,d}$ =-240·0,982=-236N/m;

- Modello B ($\alpha=0^{\circ}$), $\mu_t=0.80$; $P_{\text{neve.A}} = \mu_t \cdot q_{sk} \cdot C_t \cdot C_t = 0.80 \cdot 600 \cdot 1.00 \cdot 1.00 = 480 \text{ N/mq}$

cond.5 → Neve – elemento Ω□q_{n,d}=-480·0,982=-471N/m;

7. ANALISI DEI CARICHI

Si riporta il documento di sintesi dei dati utilizzati nel modello di calcolo.

Parametri di calcolo Analisi Dinamica

INTESTAZIONE E DATI CARATTERISTICI DELLA STRUTTURA

Tipo di struttura Nello Spazio
Tipo di analisi Statica e Dinamica

Tipo di soluzione Lineare
Unita' di misura delle forze daN
Unita' di misura delle lunghezze cm
Normativa NTC-2018

NORMATIVA

Vita nominale costruzione 50 anni
Classe d'uso costruzione IV
Vita di riferimento 100 anni

Luogo Santa Maria la Fossa (CE) – Grazzanise (CE)

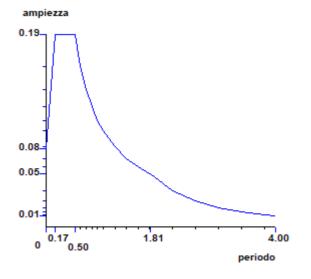
Categoria del suolo C Fattore topografico 1

PARAMETRI SISMICI

	TR	ag/g	FO	TC*	CC	Ss	Pga (ag/g*S)
SLO	60	0.053	2.43	0.33	1.51	1.50	0.079
SLD	101	0.063	2.50	0.35	1.48	1.50	0.095
SLV	949	0.126	2.69	0.47	1.35	1.50	0.189
SLC	1950	0.150	2.78	0.51	1.31	1.45	0.217

0

Comportamento strutturale NON Dissipativo


PARAMETRI SISMICI

Angolo del sisma nel piano orizzontale

Sisma verticale Assente
Combinazione dei modi CQC

Combinazione componenti azioni sismiche NTC - Eurocodice 8

 $\begin{array}{ccc} \lambda & & & 0.3 \\ \mu & & & & 0.3 \end{array}$

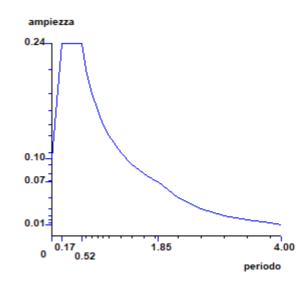
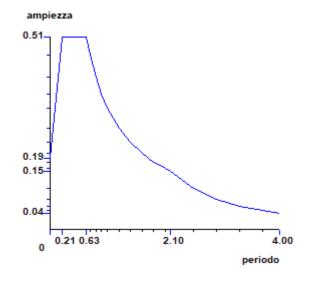



Grafico spettro SLO

Grafico spettro SLD

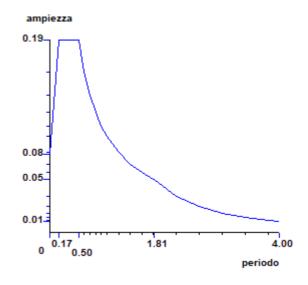


Grafico spettro SLV

Grafico spettro SLC

Fattori di partecipazione per il calcolo delle masse:

Condizione	Commento	Fattore di Partecipazione
		Break Sales Colleges - March

1	G1 - peso proprio	1.000000
2	G2 - pannelli fotovoltaici	1.000000
3	vento +Y	0.000000
4	vento -Y	0.000000
5	neve	0.000000

Direzioni d'ingresso del Sisma

- SLV Direzione 1 Angolo in pianta 0.000 [rad]
- SLV Direzione 2 Angolo in pianta 1.571 [rad]
- SLV Direzione 3 Angolo in pianta 3.142 [rad]
- SLV Direzione 4 Angolo in pianta 4.712 [rad]
- SLC Direzione 5 Angolo in pianta 0.000 [rad]
- SLC Direzione 6 Angolo in pianta 1.571 [rad]
- SLC Direzione 7 Angolo in pianta 3.142 [rad]
- SLC Direzione 8 Angolo in pianta 4.712 [rad]
- SLD Direzione 9 Angolo in pianta 0.000 [rad]
- SLD Direzione 10 Angolo in pianta 1.571 [rad]
- SLD Direzione 11 Angolo in pianta 3.142 [rad]
- SLD Direzione 12 Angolo in pianta 4.712 [rad]
- SLO Direzione 13 Angolo in pianta 0.000 [rad]

- SLO Direzione 14 Angolo in pianta 1.571 [rad]
- SLO Direzione 15 Angolo in pianta 3.142 [rad]
- SLO Direzione 16 Angolo in pianta 4.712 [rad]

RISULTATI DELL'ANALISI DINAMICA

l _s raggio d'inerzia polare di piano l _s = sqrt(.	l _s
Z _g coordinate centro di massaM	X _g , Y _g , Z _g
Dy eccentricità centro di massa-centro delle rigio	Dx, Dy
nax rigidezze traslanti e to	Kr _{zz} , Kt _{tmin} , Kt _{max}
r_2 raggi giratori d'inerzia $(r_1 = (Kr_{zz}/Kt_{min})^{1/2}r_2 = (Kr_{zz}/Kt_{min})^{1/2}r_3 = (Kr_{zz}/Kt_{min})^{1/2}r_$	r ₁ , r ₂
incrementi percentuali di rigidezza ($\square K = (K_i - K_i)$	$\Box K_{x_r} \Box K_y \Box K_{\Theta z}$
ozi rigidezze traslanti e torsionali del piano i-esimo rispetto agli assi g	K_{xi} , K_{yi} , $K_{\Theta zi}$
R ordinata dello sp	R
rt. coefficienti di partecipazione (in letteratu	Coeff.di Part.
rapporto percentuale fra i fattori di partecipazione del modo i-esimo e del primo r	L _i / L ₁
ot percentuale massa modale efficacie dell'i-esimo r	Mmi/Mmtot
ot percentuale cumulativa delle masse modali e	Sum Mmi/Mmtot
spostamenti modali del nodo m	$\phi_{i,Ux'} \; \phi_{i,Uy'} \; \phi_{i,\theta z}$

Sintesi dei risultati per direzione d'ingresso del sisma.

SLV

Direzione d'ingresso	Modo Principale	Periodo [s]	% Massa Modale Modo Principale	% Massa Modale Totale	
0.000 [rad]	5	0.08	81	98	
1.571 [rad]	9	0.21	38	97	
3.142 [rad]	17	0.08	81	98	
4.712 [rad]	21	0.21	38	97	

SLC

Direzione d'ingresso	Modo Principale	Periodo [s]	% Massa Modale Modo Principale	% Massa Modale Totale	
0.000 [rad]	29	0.08	81	98	
1.571 [rad]	33	0.21	38	97	
3.142 [rad]	41	0.08	81	98	
4.712 [rad]	45	0.21	38	97	

SLD

Direzione d'ingresso	Modo Principale	Periodo [s]	% Massa Modale Modo Principale		
0.000 [rad]	53	0.08	81	98	
1.571 [rad]	57	0.21	38	97	
3.142 [rad]	65	0.08	81	98	
4.712 [rad]	69	0.21	38	97	

SLO

Direzione d'ingresso	Modo Principale	Periodo [s]	% Massa Modale Modo Principale	% Massa Modale Totale
0.000 [rad]	77	0.08	81	98
1.571 [rad]	81	0.21	38	97
3.142 [rad]	89	0.08	81	98
4.712 [rad]	93	0.21	38	97

Autovalori e Periodi

Analisi Modale via Vettori di Ritz

Direzione d'ingresso 1 angolo 0.000 [rad] SLV

Modo	Modo Autovalore [rad/s]^2		Periodo [s]	R
1	207.1105	14.391	0.44	0.3866
2	233.6340	15.285	0.41	0.3866
3	854.8961	29.239	0.21	0.3866
4	2844.2849	53.332	0.12	0.3245
5	6290.3394	79.312	0.08	0.2646
6	20584.7617	143.474	0.04	0.2096

Direzione d'ingresso 2 angolo 1.571 [rad] SLV

Modo	Autovalore [rad/s]^2	Pulsazione [rad/s]	Periodo [s]	R
7	207.1168	14.392	0.44	0.3866
8	234.0438	15.298	0.41	0.3866
9	875.9941	29.597	0.21	0.3866
10	1413.0552	37.591	0.17	0.3866
11	1970.1119	44.386	0.14	0.3613
12	9313.0020	96.504	0.07	0.2427

Direzione d'ingresso 3 angolo 3.142 [rad] SLV

Modo	Autovalore [rad/s]^2	Pulsazione [rad/s]	Periodo [s]	R
13	207.1105	14.391	0.44	0.3866
14	233.6340	15.285	0.41	0.3866
15	854.8962	29.239	0.21	0.3866
16	2844.2544	53.332	0.12	0.3245
17	6290.3384	79.312	0.08	0.2646
18	20584.7246	143.474	0.04	0.2096

Direzione d'ingresso 4 angolo 4.712 [rad] SLV

Modo	Autovalore [rad/s]^2	Pulsazione [rad/s]	Periodo [s]	R
19	207.1168	14.392	0.44	0.3866
20	234.0438	15.298	0.41	0.3866
21	875.9941	29.597	0.21	0.3866
22	1413.0552	37.591	0.17	0.3866
23	1970.1119	44.386	0.14	0.3613
24	9313.0020	96.504	0.07	0.2427

Direzione d'ingresso 5 angolo 0.000 [rad] SLC

Modo	Autovalore [rad/s]^2	Pulsazione [rad/s]	Periodo [s]	R
25	207.1105	14.391	0.44	0.3866
26	233.6340	15.285	0.41	0.3866
27	854.8961	29.239	0.21	0.3866
28	2844.2849	53.332	0.12	0.3245
29	6290.3394	79.312	0.08	0.2646
30	20584.7617	143.474	0.04	0.2096

Direzione d'ingresso 6 angolo 1.571 [rad] SLC

Modo	Autovalore [rad/s]^2	Pulsazione [rad/s]	Periodo [s]	R
31	207.1168	14.392	0.44	0.3866
32	234.0438	15.298	0.41	0.3866
33	875.9941	29.597	0.21	0.3866
34	1413.0552	37.591	0.17	0.3866
35	1970.1119	44.386	0.14	0.3613
36	9313.0020	96.504	0.07	0.2427

Direzione d'ingresso 7 angolo 3.142 [rad] SLC

Autovalore [rad/s]^2	Autovalore Fulsazione		R	
207.1105	14.391	0.44	0.3866	
233.6340	15.285	0.41	0.3866	
854.8962	29.239	0.21	0.3866	
2844.2544	53.332	0.12	0.3245	
6290.3384	79.312	0.08	0.2646	
20584.7246	143.474	0.04	0.2096	
	[rad/s]^2 207.1105 233.6340 854.8962 2844.2544 6290.3384	[rad/s]^2 [rad/s] 207.1105 14.391 233.6340 15.285 854.8962 29.239 2844.2544 53.332 6290.3384 79.312	[rad/s]^2 [rad/s] [s] 207.1105 14.391 0.44 233.6340 15.285 0.41 854.8962 29.239 0.21 2844.2544 53.332 0.12 6290.3384 79.312 0.08	

Direzione d'ingresso 8 angolo 4.712 [rad] SLC

Modo	Autovalore [rad/s]^2			R	
43	207.1168	14.392	0.44	0.3866	
44	234.0438	15.298	0.41	0.3866	
45	875.9941	29.597	0.21	0.3866	
46	1413.0552	37.591	0.17	0.3866	
47	1970.1119	44.386	0.14	0.3613	
48	9313.0020	96.504	0.07	0.2427	

Direzione d'ingresso 9 angolo 0.000 [rad] SLD

Modo	odo Autovalore Pulsazione [rad/s]^2 [rad/s]		Periodo [s]	R	
49	207.1105	14.391	0.44	0.3866	
50	233.6340	15.285	0.41	0.3866	
51	854.8961	29.239	0.21	0.3866	
52	2844.2849	53.332	0.12	0.3245	
53	6290.3394	79.312	0.08	0.2646	
54	20584.7617	143.474	0.04	0.2096	

Direzione d'ingresso 10 angolo 1.571 [rad] SLD

Modo	Autovalore [rad/s]^2			R	
55	207.1168	14.392	0.44	0.3866	
56	234.0438	15.298	0.41	0.3866	
57	875.9941	29.597	0.21	0.3866	
58	1413.0552	37.591	0.17	0.3866	
59	1970.1119	44.386	0.14	0.3613	
60	9313.0020	96.504	0.07	0.2427	

Direzione d'ingresso 11 angolo 3.142 [rad] SLD

Modo	Autovalore [rad/s]^2	Pulsazione [rad/s]	Periodo [s]	R	
61	207.1105	14.391	0.44	0.3866	
62	233.6340	15.285	0.41	0.3866	
63	854.8962	29.239	0.21	0.3866	
64	2844.2544	53.332	0.12	0.3245	
65	6290.3384	79.312	0.08	0.2646	
66	20584.7246	143.474	0.04	0.2096	

Direzione d'ingresso 12 angolo 4.712 [rad] SLD

Modo	Autovalore Pulsazione [rad/s]^2 [rad/s]		Periodo [s]	R	
67	207.1168	14.392	0.44	0.3866	
68	234.0438	15.298	0.41	0.3866	
69	875.9941	29.597	0.21	0.3866	
70	1413.0552	37.591	0.17	0.3866	
71	1970.1119	44.386	0.14	0.3613	
72	9313.0020	96.504	0.07	0.2427	

Direzione d'ingresso 13 angolo 0.000 [rad] SLO

Modo	Autovalore [rad/s]^2	Pulsazione [rad/s]	Periodo [s]	R
73	207.1105	14.391	0.44	0.3866
74	233.6340	15.285	0.41	0.3866
75	854.8961	29.239	0.21	0.3866
76	2844.2849	53.332	0.12	0.3245
77	6290.3394	79.312	0.08	0.2646
78	20584.7617	143.474	0.04	0.2096

Direzione d'ingresso 14 angolo 1.571 [rad] SLO

Modo	Autovalore [rad/s]^2			R	
79	207.1168	14.392	0.44	0.3866	
80	234.0438	15.298	0.41	0.3866	
81	875.9941	29.597	0.21	0.3866	
82	1413.0552	37.591	0.17	0.3866	
83	1970.1119	44.386	0.14	0.3613	
84	9313.0020	96.504	0.07	0.2427	

Direzione d'ingresso 15 angolo 3.142 [rad] SLO

Modo	Autovalore [rad/s]^2	Pulsazione [rad/s]	Periodo [s]	R
85	207.1105	14.391	0.44	0.3866
86	233.6340	15.285	0.41	0.3866
87	854.8962	29.239	0.21	0.3866
88	2844.2544	53.332	0.12	0.3245
89	6290.3384	79.312	80.0	0.2646
20				
90	20584.7246	143.474	0.04	0.2096

Direzione d'ingresso 16 angolo 4.712 [rad] SLO

Modo	Autovalore [rad/s]^2	Pulsazione [rad/s]	Periodo [s]	R	
91	207.1168	14.392	0.44	0.3866	
92	234.0438	15.298	0.41	0.3866	
93	875.9941	29.597	0.21	0.3866	
94	1413.0552	37.591	0.17	0.3866	
95	1970.1119	44.386	0.14	0.3613	
96	9313.0020	96.504	0.07	0.2427	

Risultati angolo di ingresso del sisma: 0.000 [rad] SLV

Modo	Periodo [s]	Coeff.di Part.	Li / L1	MassaModale	Mmi/Mmtot	Sum Mmi/Mmtot	R
5	0.08	-1.14616e+001	100	1.3e+003	81	81	0.2646
6	0.04	5.21711e+000	46	2.7e+002	17	98	0.2096
4	0.12	-3.74933e-001	3	1.4e+000	0	98	0.3245
3	0.21	1.45671e-001	1	2.1e-001	0	98	0.3866
2	0.41	9.05344e-002	1	8.2e-002	0	98	0.3866
1	0.44	2.77320e-002	0	7.7e-003	0	98	0.3866

Risultati angolo di ingresso del sisma: 1.571 [rad] SLV

Modo	Periodo [s]	Coeff.di Part.	Li / L1	MassaModale	Mmi/Mmtot	Sum Mmi/Mmtot	R
9	0.21	7.84644e+000	100	6.2e+002	38	38	0.3866
10	0.17	-6.30120e+000	80	4.0e+002	25	63	0.3866
11	0.14	5.91216e+000	75	3.5e+002	22	84	0.3613
12	0.07	4.50576e+000	57	2.0e+002	13	97	0.2427
7	0.44	9.06603e-002	1	8.2e-002	0	97	0.3866
8	0.41	-2.57969e-002	0	6.7e-003	0	97	0.3866

Risultati angolo di ingresso del sisma: 3.142 [rad] SLV

Modo	Periodo [s]	Coeff.di Part.	Li / L1	MassaModale	Mmi/Mmtot	Sum Mmi/Mmtot	R
17	0.08	-1.14616e+001	100	1.3e+003	81	81	0.2646
18	0.04	5.21712e+000	46	2.7e+002	17	98	0.2096
16	0.12	-3.74924e-001	3	1.4e+000	0	98	0.3245
15	0.21	1.45671e-001	1	2.1e-001	0	98	0.3866
14	0.41	9.05344e-002	1	8.2e-002	0	98	0.3866
13	0.44	2.77319e-002	0	7.7e-003	0	98	0.3866

Risultati angolo di ingresso del sisma: 4.712 [rad] SLV

Modo	Periodo [s]	Coeff.di Part.	Li / L1	MassaModale	Mmi/Mmtot	Sum Mmi/Mmtot	R
21	0.21	7.84644e+000	100	6.2e+002	38	38	0.3866
22	0.17	-6.30120e+000	80	4.0e+002	25	63	0.3866
23	0.14	5.91216e+000	75	3.5e+002	22	84	0.3613
24	0.07	4.50576e+000	57	2.0e+002	13	97	0.2427
19	0.44	9.06603e-002	1	8.2e-002	0	97	0.3866
20	0.41	-2.57969e-002	0	6.7e-003	0	97	0.3866

Risultati angolo di ingresso del sisma: 0.000 [rad] SLC

Modo	Periodo [s]	Coeff.di Part.		MassaModale	Mmi/Mmtot	Sum Mmi/Mmtot	K
29	0.08	-1.14616e+001	100	1.3e+003	81	81	0.3186
30	0.04	5.21711e+000	46	2.7e+002	17	98	0.2520
28	0.12	-3.74933e-001	3	1.4e+000	0	98	0.3911
27	0.21	1.45671e-001	1	2.1e-001	0	98	0.4714
26	0.41	9.05344e-002	1	8.2e-002	0	98	0.4714
25	0.44	2.77320e-002	0	7.7e-003	0	98	0.4714

Risultati angolo di ingresso del sisma: 1.571 [rad] SLC

Modo	Periodo [s]	Coeff.di Part.	Li / L1	MassaModale	Mmi/Mmtot	Sum Mmi/Mmtot	R
33	0.21	7.84644e+000	100	6.2e+002	38	38	0.4714
34	0.17	-6.30120e+000	80	4.0e+002	25	63	0.4714
35	0.14	5.91216e+000	75	3.5e+002	22	84	0.4357
36	0.07	4.50576e+000	57	2.0e+002	13	97	0.2921
31	0.44	9.06603e-002	1	8.2e-002	0	97	0.4714
32	0.41	-2.57969e-002	0	6.7e-003	0	97	0.4714

Risultati angolo di ingresso del sisma: 3.142 [rad] SLC

	Modo	Periodo [s]	Coeff.di Part.	Li / L1	MassaModale	Mmi/Mmtot	Sum Mmi/Mmtot	R
ľ	41	0.08	-1.14616e+001	100	1.3e+003	81	81	0.3186
Ī	42	0.04	5.21712e+000	46	2.7e+002	17	98	0.2520

41	0.08	-1.14616e+001	100	1.3e+003	81	81	0.3186
42	0.04	5.21712e+000	46	2.7e+002	17	98	0.2520
40	0.12	-3.74924e-001	3	1.4e+000	0	98	0.3911
39	0.21	1.45671e-001	1	2.1e-001	0	98	0.4714
38	0.41	9.05344e-002	1	8.2e-002	0	98	0.4714
37	0.44	2.77319e-002	0	7.7e-003	0	98	0.4714

Risultati angolo di ingresso del sisma: 4.712 [rad] SLC

Modo	Periodo [s]	Coeff.di Part.	Li / L1	MassaModale	Mmi/Mmtot	Sum Mmi/Mmtot	R
45	0.21	7.84644e+000	100	6.2e+002	38	38	0.4714
46	0.17	-6.30120e+000	80	4.0e+002	25	63	0.4714
47	0.14	5.91216e+000	75	3.5e+002	22	84	0.4357
48	0.07	4.50576e+000	57	2.0e+002	13	97	0.2921
43	0.44	9.06603e-002	1	8.2e-002	0	97	0.4714
44	0.41	-2.57969e-002	0	6.7e-003	0	97	0.4714

Risultati angolo di ingresso del sisma: 0.000 [rad] SLD

Modo	Periodo [s]	Coeff.di Part.	Li / L1	MassaModale	Mmi/Mmtot	Sum Mmi/Mmtot	R
53	0.08	-1.14616e+001	100	1.3e+003	81	81	0.1403
54	0.04	5.21711e+000	46	2.7e+002	17	98	0.1108
52	0.12	-3.74933e-001	3	1.4e+000	0	98	0.1725
51	0.21	1.45671e-001	1	2.1e-001	0	98	0.1932
50	0.41	9.05344e-002	1	8.2e-002	0	98	0.1932
40	0.44	2 773 200 .002	0	7.70.003	0	0.0	0.1902

Risultati angolo di ingresso del sisma: 1.571 [rad] SLD

Modo	Periodo [s]	Coeff.di Part.	Li / L1	MassaModale	Mmi/Mmtot	Sum Mmi/Mmtot	R
57	0.21	7.84644e+000	100	6.2e+002	38	38	0.1932
58	0.17	-6.30120e+000	80	4.0e+002	25	63	0.1932
59	0.14	5.91216e+000	75	3.5e+002	22	84	0.1924
60	0.07	4.50576e+000	57	2.0e+002	13	97	0.1286
55	0.44	9.06603e-002	1	8.2e-002	0	97	0.1892
56	0.41	-2.57969e-002	0	6.7e-003	0	97	0.1932

Risultati angolo di ingresso del sisma: 3.142 [rad] SLD

Modo Per	odo [s]	Coeff.di Part.	Li / L1	MassaModale	Mmi/Mmtot	Sum Mmi/Mmtot	R
----------	---------	----------------	---------	-------------	-----------	---------------	---

65	0.08	-1.14616e+001	100	1.3e+003	81	81	0.1403
66	0.04	5.21712e+000	46	2.7e+002	17	98	0.1108
64	0.12	-3.74924e-001	3	1.4e+000	0	98	0.1725
63	0.21	1.45671e-001	1	2.1e-001	0	98	0.1932
62	0.41	9.05344e-002	1	8.2e-002	0	98	0.1932
61	0.44	2.77319e-002	0	7.7e-003	0	98	0.1892

Risultati angolo di ingresso del sisma: 4.712 [rad] SLD

		- " " - "	10 11 410 - 1				-
Modo	Periodo [s]	Coeff.di Part.	LI / L1	MassaModale	Mmi/Mmtot	Sum Mmi/Mmtot	R

69	0.21	7.84644e+000	100	6.2e+002	38	38	0.1932
70	0.17	-6.30120e+000	80	4.0e+002	25	63	0.1932
71	0.14	5.91216e+000	75	3.5e+002	22	84	0.1924
72	0.07	4.50576e+000	57	2.0e+002	13	97	0.1286
67	0.44	9.06603e-002	1	8.2e-002	0	97	0.1892
68	0.41	-2.57969e-002	0	6.7e-003	0	97	0.1932

Risultati angolo di ingresso del sisma: 0.000 [rad] SLO

Modo Periodo [s] Coeff.di Part. |Li|/|L1| MassaModale Mmi/Mmtot Sum Mmi/Mmtot R

77	0.08	-1.14616e+001	100	1.3e+003	81	81	0.1188
78	0.04	5.21711e+000	46	2.7e+002	17	98	0.0933
76	0.12	-3.74933e-001	3	1.4e+000	0	98	0.1465
75	0.21	1.45671e-001	1	2.1e-001	0	98	0.1606
74	0.41	9.05344e-002	1	8.2e-002	0	98	0.1606
73	0.44	2.77320e-002	0	7.7e-003	0	98	0.1517

Risultati angolo di ingresso del sisma: 1.571 [rad] SLO

Modo Periodo [s] Coeff.di Part. |Li|/|L1| MassaModale Mmi/Mmtot Sum Mmi/Mmtot R

81	0.21	7.84644e+000	100	6.2e+002	38	38	0.1606
82	0.17	-6.30120e+000	80	4.0e+002	25	63	0.1606
83	0.14	5.91216e+000	75	3.5e+002	22	84	0.1606
84	0.07	4.50576e+000	57	2.0e+002	13	97	0.1086
79	0.44	9.06603e-002	1	8.2e-002	0	97	0.1517
80	0.41	-2.57969e-002	0	6.7e-003	0	97	0.1606

Risultati angolo di ingresso del sisma: 3.142 [rad] SLO

			15-4-15-51			***************************************	
89	0.08	-1.14616e+001	100	1.3e+003	81	81	0.1188
90	0.04	5.21712e+000	46	2.7e+002	17	98	0.0933
88	0.12	-3.74924e-001	3	1.4e+000	0	98	0.1465
87	0.21	1.45671e-001	1	2.1e-001	0	98	0.1606
86	0.41	9.05344e-002	1	8.2e-002	0	98	0.1606
85	0.44	2.77319e-002	0	7.7e-003	0	98	0.1517

Modo Periodo [s] Coeff.di Part. |Li]/|L1| MassaModale Mmi/Mmtot Sum Mmi/Mmtot

Risultati angolo di ingresso del sisma: 4.712 [rad] SLO

Modo	Periodo [s]	Coeff.di Part.	Li / L1	MassaModale	Mmi/Mmtot	Sum Mmi/Mmtot	R
93	0.21	7.84644e+000	100	6.2e+002	38	38	0.1606
94	0.17	-6.30120e+000	80	4.0e+002	25	63	0.1606
95	0.14	5.91216e+000	75	3.5e+002	22	84	0.1606
96	0.07	4.50576e+000	57	2.0e+002	13	97	0.1086
91	0.44	9.06603e-002	1	8.2e-002	0	97	0.1517
92	0.41	-2.57969e-002	0	6.7e-003	0	97	0.1606

8. VERIFICA A SFILAMENTO DEL SOSTEGNO

Nota la stratigrafia del terreno della relazione geologica, si confrontano la forza dovuta al vento che potrebbe causare lo sfilamento del montante e la forza reagente dovuta all'attrito tra terreno e metallo valutata col metodo Das e Seeley (1982).

Nel caso di pali soggetti a sforzi di trazione (dovuti principalmente all'azione del vento), il calcolo della resistenza allo sfilamento può essere valutata con il metodo proposto da Das e Seeley (1982).

L'equazione da utilizzare è la seguente:

Tu=TI+Tb+W

dove:

- Tu= resistenza ultima allo sfilamento del palo;
- Tl= resistenza allo sfilamento lungo il fusto;
- Tb= resistenza allo sfilamento dovuto all'eventuale svasamento della base;
- W= peso del palo.

La componente della resistenza allo sfilamento dovuta all'attrito e all'adesione lungo il fusto si può calcolare con le seguenti relazioni per **i terreni coesivi** (i terreni che, nel sito analizzato,

presentano i peggiori parametri geotecnici):

 $TI = AI \alpha C_{II}$

dove:

- Al = area laterale del fusto:
- α = fattore di adesione (uguale a α =0,9-0,0625 C_u, se C_u <0,8 kg/cm² e a α =0,4 se C_u≥0,8 kg/cm²);
- C_u= coesione non drenata del terreno.

Quindi:

- Al: Area laterale del montante (cm²) =92.4*200=18480 cm².
- α : Fattore di adesione, uguale a α = 0,9 0,0625*Cu se Cu < 0,8 daN/cm² =0.881.
- *Cu*: Coesione non drenata del terreno = 0,33 daN/cm² (media dei primi 2,5 metri)

 $TI = 4884 \, daN$

Tb = 0

W = peso del palo = 26.2 daN/m*4.08 m=106.9 daN.

 $W = 106.9 \, daN$

Tu=TI+Tb+W = 4991.2 daN

Lo sforzo massimo di trazione a cui sono sollecitati i sostegni è pari a F = 4238 daN

Tu > F → Verifica soddisfatta

Nella verifica, a vantaggio di sicurezza, si sono trascurati i pesi propri della struttura sovrastante. Si consiglia, tuttavia, di verificare la forza di sfilamento del sostegno in situ, mediante idonea prova.

9. GIUDIZIO MOTIVATO DI ACCETTABILITÀ DEI RISULTATI

I risultati delle elaborazioni sono stati sottoposti a controlli che ne comprovano l'attendibilità. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali e adottati, anche in fase di primo proporzionamento della struttura. Inoltre, sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni. Si allega al termine della presente relazione elenco sintetico dei controlli svolti (verifiche di equilibrio tra reazioni vincolari e carichi applicati, comparazioni tra i risultati delle analisi e quelli di valutazioni semplificate, etc.).

In base a quando detto, si può asserire che l'elaborazione è corretta ed idonea al caso specifico,

pertanto i risultati di calcolo sono da ritenersi validi ed accettabili.

10. CONCLUSIONI

La struttura in tutte le sue componenti è idonea a sostenere le sollecitazioni trasmesse dai carichi e dall'effetto sismico.

Sono state rispettate le "Norme Tecniche per le Costruzioni" di cui al D.M. Infrastrutture 17 Gennaio 2018, nonché la Circolare 21 Gennaio 2019 n. 7 del Consiglio Superiore dei LL.PP. – Istruzioni per l'applicazione dell'"Aggiornamento delle "Norme Tecniche per le Costruzioni" di cui D.M. Infrastrutture 17 Gennaio 2018".

Lì, 22/03/2022

II Tecnico

Dott. Ing. Pasquale IZZO