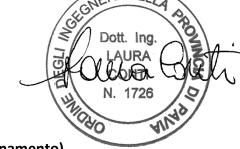


NOVEMBRE 2022

TS ENERGY 2 S.r.L

IMPIANTO INTEGRATO AGRIVOLTAICO COLLEGATO ALLA RTN POTENZA NOMINALE 90 MW


COMUNE DI SAN GIOVANNI ROTONDO

PROGETTO DEFINITIVO IMPIANTO AGRIVOLTAICO

Risposta alle Integrazioni della
Commissione Tecnica PNRR -PNIECMinistero della Transazione
Ecologica
18 Ottobre 2022

Relazione Tecnica Verifica Abbagliamento

Progettisti (o coordinamento)

Ing. Laura Maria Conti n. ordine Ing. Pavia 1726

Codice elaborato

2748_4499_SG_INT_R04_Rev0_Abbagliamento

Memorandum delle revisioni

Cod. Documento	Data	Tipo revisione	Redatto	Verificato	Approvato
2748_4499_SG_INT_R04_Rev0_Abbagl iamento	11/2022	Prima emissione	AMA	RF	L.Conti

Gruppo di lavoro

Nome e cognome	Ruolo nel gruppo di lavoro	N° ordine
Laura Maria Conti	Direzione Tecnica	Ordine degli Ingegneri della Provincia di Pavia al n. 1726
Corrado Pluchino	Project Manager	Ordine degli Ingegneri della Provincia di Milano n. A27174
Riccardo Festante	Progettazione Elettrica, Rumore e Comunicazioni	Tecnico competente in acustica ambientale n. 71
Daniele Crespi	Coordinamento SIA	
Francesca Jasparro	Esperto Ambientale	
Elena Comi	Esperto Ambientale	Ordine Nazionale dei Biologi n. 60746
Marco Corrù	Architetto	
Lia Buvoli	Biologa	
Massimo Busnelli	Geologo	
Mauro Aires	Ingegnere strutturista	Ordine degli Ingegneri della Provincia di Torino n. 9583J
Sergio Alifano	Architetto	
Andrea Fronteddu	Ingegnere Elettrico	Ordine degli Ingegneri di Cagliari n. 8788
Matteo Lana	Ingegnere Ambientale	
Vincenzo Gionti	Ingegnere Ambientale	

Impianto Agrivoltaico Collegato alla RTN 90 MW Relazione Tecnica Verifica di Abbagliamento

Lorenzo Griso	Geologo	
Nazzario d'Errico	Agronomo	Ordine professionale Degli Agronomi di Foggia n. 382
Marianna Denora	Studio Previsionale Impatto Acustico	Ordine degli Architetti della Provincia di Bari, Sez. A n. 2521
Giovanni Cis	Progetto di Connessione	Ordine degli Ingegneri della Provincia di Milano n. 28287
Antonio Acito	Rilievo Topografico	
Antonio Bruscella	Archeologo	Elenco dei professionisti abilitati alla redazione del documento di valutazione archeologica n. 4124
Giovanna Amedei	Geologo – Indagini Geotecniche	Ordine dei Geologi della Regione Puglia n. 438
Giuseppe La Gioia	Biologo	Ordine Nazionale dei biologi AA_039956
Andrea Mastio	Ingegnere Ambientale	

Impianto Agrivoltaico Collegato alla RTN 90 MW Relazione Tecnica Verifica di Abbagliamento

INDICE

1.	PREMESSA	5
1.1	Dati generali di progetto	6
1.2	LOCALIZZAZIONE AREA D'INTERVENTO	6
2.	DESCRIZIONE DELL'OPERA IN PROGETTO	8
3.	ANALISI DEL FENOMENO	.13
4.	VERIFICA ABBAGLIAMENTO	.15
5.	CONCLUSIONI	.16
ALLE	EGATO	.17

ELABORATI GRAFICI

TAVOLA 01 2748_4499_SG_INT_R04_T01_Rev0: Inquadramento CTR procedura ENAC

TAVOLA 02 2748_4499_SG_INT_R04_T02_Rev0: Rilievo planoaltimetrico procedura ENAC

TAVOLA 03 2748_4499_SG_INT_R04_T03_Rev0: Profilo altimetrico procedura ENAC

ALLEGATO/APPENDICE

ALLEGATO 01 Report Forge Solar

1. PREMESSA

Il proponente del progetto in esame, è la società TS ENERGY 2 S.r.l., società italiana con sede legale in Italia, a Milano (MI) e facente parte del gruppo Electric Utilities Industry. Tra le attività principali del gruppo vi sono lo sviluppo, la progettazione e la realizzazione di impianti di medie e grandi dimensioni per la produzione di energia da fonti rinnovabili.

Il progetto analizzato prevede la realizzazione di un impianto agri-voltaico, costituito dall'integrazione tra impianto fotovoltaico e impianto olivicolo super intensivo, localizzato nel comune di San Giovanni Rotondo (FG), di potenza complessiva pari a 90 MW su un'area di proprietà pari a circa 191.95 ettari, di cui circa 115.62 ettari recintati per l'installazione dell'impianto.

Il progetto in questione è in linea con quanto previsto dal: "Pacchetto per l'energia pulita (Clean Energy Package)" presentato dalla Commissione europea nel novembre 2016 contenente gli obiettivi al 2030 in materia di emissioni di gas serra, fonti rinnovabili ed efficienza energetica e da quanto previsto dal Decreto 10 novembre 2017 di approvazione della Strategia energetica nazionale emanato dal Ministro dello sviluppo economico, di concerto con il Ministro dell'ambiente e della tutela del territorio e del mare.

Il progetto nel suo complesso ha contenuti economico-sociali importanti e tutti i potenziali impatti sono stati sottoposti a mitigazione.

L'indice di copertura del suolo è stato contenuto nell'ordine del 38% calcolato sulla superficie utile di impianto. Le strutture saranno infatti posizionate in maniera da consentire lo sfruttamento agricolo ottimale del terreno. I pali di sostegno sono distanti tra loro 8,30 metri per consentire la coltivazione e garantire la giusta illuminazione al terreno, mentre i pannelli sono distribuiti in maniera da limitare al massimo l'ombreggiamento.

La tecnologia impiantistica prevede l'installazione di moduli fotovoltaici bi-facciali che saranno installati su strutture mobili (tracker) di tipo monoassiale mediante palo infisso nel terreno. Le strutture a tracker saranno poste a una quota media di circa 2,7 metri da terra la cui proiezione sul terreno è complessivamente pari a circa 43.9 ha.

L'idea progettuale prevede che la superficie tra le file dei moduli fotovoltaici sia destinata alla coltivazione di un impianto olivicolo super-intensivo, costituito da olivi posizionati ad una distanza di circa 1.1 m l'uno dall'altro con un rapporto di numero di elementi arborei pari a circa 926 per ettaro. Data la forte ambizione agricola del progetto sono stati considerati gli spazi per la movimentazione delle macchine agricole all'interno del Sito.

Infine, l'impianto fotovoltaico sarà connesso in antenna a 150 kV alla sottostazione di trasformazione della RTN 380/150 kV di Manfredonia, mediante una linea di connessione interrata in AT della lunghezza di circa 13.5 km fino dalla nuova Stazione Utente, interna al campo, fino alla SSE.

In virtù del procedimento di valutazione di impatto ambientale VIA in corso, facendo riferimento alla richiesta di integrazioni promossa dal Ministero della Transizione Ecologica e in aderenza alle linee guida e regolamenti ENAC, il presente documento ha lo scopo di fornire uno studio dettagliato sull'assenza di potenziali ostacoli e pericoli per la navigazione e di fenomeni di riflessione e/o di abbagliamento ai piloti e operatori del traffico aereo dovuti dall'impianto agri-voltaico di progetto, localizzato in un'area posta a sud dell'Aeroporto Militare di Amendola – 32° Stormo Aeronautica Militare ad una distanza di circa 1,919 km.

L'abbagliamento è la sensazione negativa percepita da chi guarda, generata dalla presenza di una zona significativamente più luminosa con valori eccessivi di luminanza nel contesto del campo visivo. La risposta dell'occhio alle variazioni di intensità luminosa dell'ambiente, tramite i riflessi pupillari e meccanismi fotochimici retinici, può portare alla riduzione delle prestazioni visive (acuità visiva, percezione del contrasto, velocità di percezione) e disturbi astenopeici (affaticamento, stanchezza, disagio).

La valutazione dell'abbagliamento è eseguita con l'ausilio di un software di simulazione specifico, riconosciuto dall'Autorità degli Stati Uniti FAA, "Glare Gauge/Forge Solar" basato sull'algoritmo SGHAT v.3 (Solar Glare Hazard Analysis Tool) e sviluppato dal Sandia National Laboratory.

1.1 DATI GENERALI DI PROGETTO

Nella tabella sono riepilogate in forma sintetica le principali caratteristiche tecniche dell'impianto di progetto.

Tabella 1.1: Dati di progetto

ITEM	DESCRIZIONE
Richiedente	TS ENERGY 2 S.r.L.
Luogo di installazione:	Località Villaggio Amendola – San Giovanni Rotondo (FG)
Denominazione impianto:	Placentino
Potenza di picco (MW _p):	90 MWp
Informazioni generali del sito:	Sito ben raggiungibile, caratterizzato da strade esistenti, idonee alle esigenze legate alla realizzazione dell'impianto e di facile accesso. La morfologia è piuttosto regolare.
Connessione:	Interfacciamento alla rete mediante soggetto privato nel rispetto delle norme CEI
Tipo strutture di sostegno:	Strutture metalliche in acciaio zincato tipo Tracker fissate a terra su pali
Inclinazione piano dei moduli:	+55° - 55°
Azimut di installazione:	0°
Caratterizzazione urbanistico	Il PRG del Comune di San Giovanni rotondo colloca l'area di
vincolistica:	intervento in zona E – aree agricole
Cabine PS:	n. 24 cabine distribuite in campo
Cabina elettrica di smistamento:	n. 1 cabina interna al campo FV da cui esce linea MT
Stazione Utenza:	n.1 cabina di trasformazione MT/AT interna al campo
Rete di collegamento:	Alta tensione 150 kV
	41.526882° N
Coordinate:	15.704842° E
	Altitudine media 35 m s.l.m.

1.2 LOCALIZZAZIONE AREA D'INTERVENTO

Il progetto in esame è ubicato nel territorio comunale di San Giovanni Rotondo (FG) immediatamente a sud dell'aeroporto dell'Aeronautica Militare Amendola in prossimità della frazione di Villaggio Amendola. L'area, principalmente utilizzata attualmente per la coltivazione agricola, è compresa tra la Strada Provinciale 74 a nord, la Strada Provinciale 76 a est, la SP 73 a sud e la Strada Comunale 17 e la strada Statale 89 a ovest.

L'area impianto di intervento lorda contrattualizzata, suddivisa in 14 sotto aree, risulta essere pari a circa 191.95 ettari, di cui circa 115.62 ha recintati per l'installazione dell'impianto.

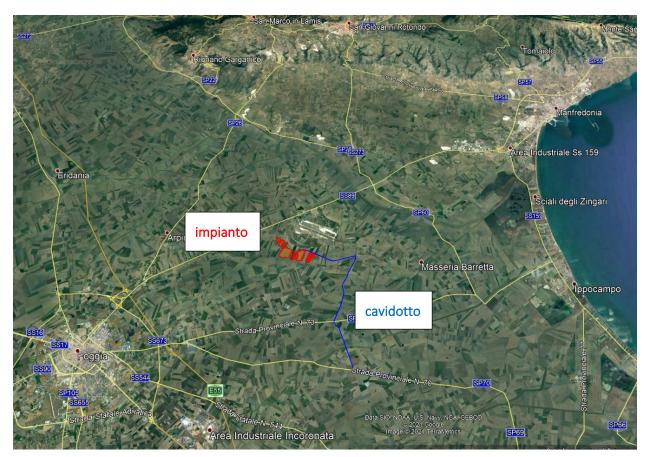


Figura 1.1: Localizzazione dell'area di intervento (rosso) e tracciato cavidotto MT (blu)

Il sito è ubicato nella parte meridionale della zona garganica della piana di Capitanata e presenta una morfologia prevalentemente pianeggiante o sub-pianeggiante con quote comprese tra i 16 e i 50 m sul livello del mare.

La connessione dell'impianto è costituita da cavo interrato in MT dalla cabina di smistamento, posta all'interno del campo, fino alla stazione di utenza MT/AT 30/150 kV posta sempre internamente al campo. Da quest'ultima, con un cavo interrato in AT si raggiunge la sottostazione di trasformazione della RTN 380/150 kV di Manfredonia. Il tracciato del cavidotto si svolge, ad eccezione dell'ultimo segmento in prossimità della SSE dove percorre la strada sterrata di accesso alla stessa, interamente lungo strade pubbliche (SP74, SP76 e SP70). Complessivamente il cavidotto ha una lunghezza pari a circa 13.5 km.

2. DESCRIZIONE DELL'OPERA IN PROGETTO

I moduli fotovoltaici utilizzati per la progettazione dell'impianto, saranno di prima scelta, del tipo silicio monocristallino a 120 celle, indicativamente della potenza di 585 W_p , dotati di scatola di giunzione (Junction Box) installata sul lato posteriore del modulo, con cavetti di connessione muniti di connettori ad innesto rapido, al fine di garantire la massima sicurezza per gli operatori e rapidità in fase di installazione.

I componenti elettrici e meccanici installati saranno conformi alle normative tecniche e tali da garantire le performance complessive d'impianto.

La tecnologia di moduli fotovoltaici utilizzata è progettata appositamente per impianti di grande taglia connessi alla rete elettrica ed è realizzata assemblando in sequenza diversi strati racchiusi da una cornice in alluminio anodizzato.

- vetro temperato con trattamento anti-riflesso;
- EVA (etilene vinil acetato) trasparente;
- celle FV in silicio monocristallino;

Il progetto prevede l'impiego di una struttura metallica di tipo tracker con fondazione su pali infissi nel terreno ed in grado di esporre il piano ad un angolo di tilt pari a +55° -55°.

Le peculiarità delle strutture di sostegno sono:

- riduzione dei tempi di montaggio alla prima installazione;
- facilità di montaggio e smontaggio dei moduli fotovoltaici in caso di manutenzione;
- meccanizzazione della posa;
- ottimizzazione dei pesi;
- miglioramento della trasportabilità in sito;
- possibilità di utilizzo di bulloni anti furto.
- Le caratteristiche generali della struttura sono:
- materiale: acciaio zincato a caldo
- tipo di struttura: Tracker fissata su pali
- inclinazione sull'orizzontale +55° -55°
- Esposizione (azimut): 0°
- Altezza min: 0,85 m (rispetto al piano di campagna)
- Altezza max: 4,765 m (rispetto al piano di campagna)

SEZIONE 2 (TRASVERSALE)

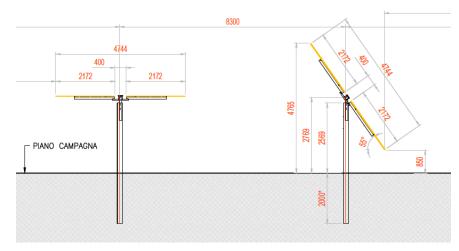


Figura 2.1: Particolare strutture di sostegno moduli

Figura 2.2 Esempio di struttura a tracker monoassiale

In via preliminare sono previste due tipologie di portale: uno costituito da 30 moduli e uno costituito da 15 moduli, montati con una disposizione su due file in posizione verticale. Tale configurazione potrà variare in conseguenza della scelta del tipo di modulo fotovoltaico.

I materiali delle singole parti saranno armonizzati tra loro per quanto riguarda la stabilità, la resistenza alla corrosione e la durata nel tempo.

<u>Durante la fase esecutiva, sulla base della struttura tracker scelta saranno definite le fondazioni e scelta la soluzione tecnologica di fondazione più adatta.</u>

In riferimento all'area di impianto fotovoltaico sono state identificate le coordinate dei vertici e le relative quote slm, quale oggetto della presente verifica.

Tabella 2: Coordinate vertici aree di progetto

VERTICE	LATITUDINE (°)	LONGITUDINE (°)	QUOTA (M) AMSL
1	41,51853	15,71588	40,755
2	41,51771	15,71569	29,898
3	41,5179	15,71387	26,803
4	41,51802	15,71387	28,078
5	41,51802	15,71378	27,927
6	41,51845	15,71406	33,277
7	41,51853	15,71588	40,755
8	41,51867	15,71881	37,942
9	41,5173	15,71848	34,099
10	41,51749	15,71722	32,668
11	41,51862	15,71749	38,673
12	41,51867	15,71881	37,942
13	41,5211	15,71731	40,575
14	41,51875	15,71676	40,313
15	41,51863	15,71418	35,066
16	41,5208	15,716	41,542

VERTICE	LATITUDINE (°)	LONGITUDINE	QUOTA (M)
		(°)	AMSL
17 18	41,52077	15,71627	41,338
19	41,5209 41,52111	15,71689	40,707
20		15,71723	40,643
21	41,5211 41,51886	15,71731 15,71887	40,575
	41,5188	15,71753	38,115
22	-		38,736
24	41,5218	15,71826 15,71947	40,211
25	41,52139	·	38,739
26	41,51886 41,52392	15,71887 15,70715	38,115 48,978
27	41,5191	15,7051	
28	41,5191	15,70456	19,333
	<u> </u>		19,358
29	41,52343	15,70625	43,711
30	41,52335	15,7066	44,894
31	41,52404	15,70694	49,294
32	41,52392	15,70715	48,978
33	41,52349	15,7139	44,525
34	41,52157	15,71213	46,757
35	41,52181	15,7116	47,093
36	41,52421	15,71295	45,143
37	41,52382	15,7141	43,98
38	41,52349	15,7139	44,525
39	41,52432	15,71262	45,486
40	41,51838	15,70932	19,044
41	41,51848	15,70903	19,523
42	41,52446	15,71223	46,01
43	41,52432	15,71262	45,486
44	41,52479	15,71125	47,454
45	41,51863	15,70822	19,626
46	41,51872	15,7077	19,45
47	41,525	15,71064	48,349
48	41,52479	15,71125	47,454
49	41,52508	15,7104	48,623
50	41,51876	15,70746	19,494
51	41,51881	15,70715	19,342
52	41,5252	15,71004	49,196
53	41,52508	15,7104	48,623
54	41,52562	15,69907	41,021
55	41,52006	15,69712	18,64
56	41,52023	15,69597	19,107
57	41,52563	15,69787	40,189
58	41,52562	15,69907	41,021
59	41,52702	15,70469	52,84
60	41,5266	15,70462	52,707
61	41,52661	15,70459	52,707
62	41,52619	15,70445	51,218
63	41,52607	15,70499	52,28

VERTICE	LATITUDINE (°)	LONGITUDINE	QUOTA (M)
64		(°)	AMSL
65	41,52649 41,52659	15,70514 15,70468	52,488 52,749
66	41,52039	15,70475	52,749
67	41,52654	15,70609	52,248
68	41,5195	15,70347	19,831
69	41,51966	15,70123	19,141
70	41,51966	15,69977	· · · · · · · · · · · · · · · · · · ·
71	41,52001		19,384
72	41,52384	15,6993 15,70062	19,272
73	41,524	15,69981	37,762
74	41,52604	15,70051	37,827
75			43,459
	41,52598	15,70149 15,70181	43,54
76	41,52558	·	42,835
77	41,5261	15,70199	44,731
78	41,52623	15,70242	45,606
79	41,5262	15,70282	45,982
80	41,52633	15,70333	48,154
81	41,52632	15,70341	48,154
82	41,52637	15,70343	48,701
83	41,52663	15,70375	51,245
84	41,52724	15,70405	53,242
85	41,52702	15,70469	52,84
86	41,52817	15,68907	40,024
87	41,5278	15,69012	41,563
88	41,52839	15,69047	42,821
89	41,5265	15,69565	40,966
90	41,52134	15,69342	19,945
91	41,52211	15,69116	21,488
92	41,52158	15,68864	19,622
93	41,52287	15,68573	21,215
94	41,52302	15,68518	21,258
95	41,53183	15,69088	50,087
96	41,53167	15,69127	50,19
97	41,52817	15,68907	40,024
98	41,53282	15,68843	47,482
99	41,52929	15,68647	39,602
100	41,52951	15,68579	39,544
101	41,5291	15,68556	38,684
102	41,52948	15,6844	38,965
103	41,53353	15,6867	45,606
104	41,53282	15,68843	47,482
105	41,53402	15,68549	45,985
106	41,53219	15,68445	42,529
107	41,53246	15,6827	43,251
108	41,53287	15,68281	44,116
109	41,5329	15,68257	44,383
110	41,53441	15,68298	46,904

VERTICE	LATITUDINE (°)	LONGITUDINE (°)	QUOTA (M) AMSL
111	41,53402	15,68549	45,985



Figura 2.3: Vertici aree di progetto su ortofoto

L'impianto è caratterizzato da una quota terreno variabile da circa 18.6 m fino a 53.2 m slm, una altezza massima dei manufatti AGL di circa 4,8 m ed una elevazione al top nel punto quotato massimo di circa 58 m slm.

3. ANALISI DEL FENOMENO

Il fenomeno dell'abbagliamento generato da moduli fotovoltaici dipende dalla quantità di luce solare che colpisce la superficie e dalla riflettanza superficiale e dall'orientamento del pannello solare.

Il primo di questi parametri risulta direttamente connesso alla posizione geografica, al periodo dell'anno e dalla copertura nuvolosa caratteristica del luogo in cui sarà ubicato l'impianto. Infatti nell'arco della giornata il disco solare sorge ad est e tramonta ad ovest a causa della rotazione del globo terrestre attorno al proprio asse e alla contemporanea rivoluzione attorno al sole; tale condizione è in realtà variabile nei diversi periodi dell'anno. In questo movimento apparente il disco solare raggiunge il punto più alto nel cielo al mezzogiorno locale e descrive un semicerchio inclinato verso la linea dell'orizzonte tanto più in direzione sud quanto più ci si avvicina al solstizio d'inverno (21 Dicembre) e tanto più in direzione nord quanto più ci si avvicina al solstizio d'estate (21 Giugno).

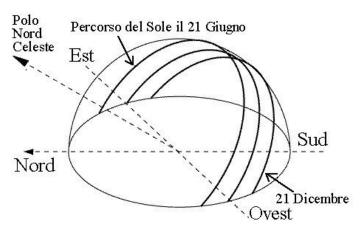


Figura 3.1:Movimento apparente del disco solare per un osservatore situato ad una latitudine nord attorno ai 45°. Per tutte le località situate tra il Tropico del Cancro e il Polo Nord Geografico il disco solare non raggiunge mai lo zenit.

Inoltre il fenomeno di abbagliamento è strettamente connesso alla tecnologia, struttura e orientazione dei pannelli utilizzati che determinano la loro riflettanza. L'angolo di incidenza del raggio solare determina la quantità di luce che viene riflessa da un modulo solare che aumenta con angoli di incidenza inferiori Figura 3.2.

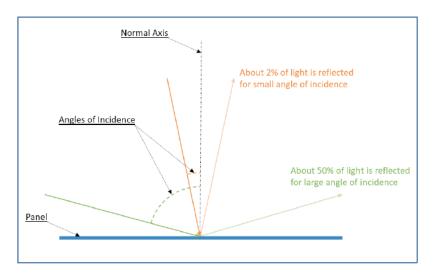


Figura 3.2: Impatto dell'angolo di incidenza sui raggi riflessi da un modulo fotovoltaico

In generale esistono due tipi di riflessione che possono verificarsi su una superficie; speculare e diffusa. La riflessione speculare è una riflessione diretta che produce un tipo di luce più "concentrato". Si verifica quando la luce riflette su una superficie liscia o lucida (come il vetro o l'acqua). La riflessione diffusa, invece, produce un tipo di luce meno "focalizzata" e si verifica a causa della luce che si riflette su una superficie ruvida (come vegetazione o cemento). Il principale tipo di riflettanza dei pannelli solari fotovoltaici è speculare a causa della trama simile al vetro dello strato esterno dei pannelli. Tuttavia, in realtà, come tutte le superfici, ci sarà una combinazione di riflessione sia speculare che diffusa.

Nei pannelli fotovoltaici Il fenomeno della riflessione rappresenta una perdita ed è un importante fattore nel determinare l'efficienza di un modulo fotovoltaico, di conseguenza oggi la tecnologia fotovoltaica ha individuato soluzioni in grado di minimizzare un tale fenomeno. Con l'espressione "perdite di riflesso" si intende l'irraggiamento che viene riflesso dalla superficie di un collettore o di un pannello oppure dalla superficie di una cella solare e che quindi non può più contribuire alla produzione di calore e/o di corrente elettrica.

Strutturalmente il componente di un modulo fotovoltaico a carico del quale è principalmente imputabile tale fenomeno è il rivestimento anteriore del modulo e delle celle solari.

L'insieme delle celle solari costituenti i moduli fotovoltaici di ultima generazione è protetto frontalmente da uno strato antiriflesso ad alta trasmittanza. Inoltre, le singole celle in silicio cristallino sono coperte esteriormente da un rivestimento trasparente antiriflesso grazie al quale penetra più luce nella cella, altrimenti la sola superficie in silicio rifletterebbe circa il 30% della luce solare.

Al fine di massimizzare il rendimento del campo, inteso come energia prodotta, e di minimizzare la quantità di radiazioni luminose riflesse, sono stati individuati dei pannelli di ultima generazione, con caratteristiche antiriflettenti, tali da non produrre effetti negativi nelle aree circostanti.

4. VERIFICA ABBAGLIAMENTO

Il presente progetto ricade in un'area posta ad una distanza di circa 1,919 km dall'Aeroporto Militare di Amendola, identificato con il punto ARP (Aerodrome Reference Point) di coordinate WGS84 41°32'29.01"N e 15°43'05.10"E e relativa elevazione pari a circa 56 m slm. L'aeroporto è caratterizzato da traffico aereo di tipo strumentale "instrument flight rules" IFR e visuale "visual flight rules" VFR.

L'impianto in oggetto è ubicato all'interno della proiezione a terra della superficie conica di conseguenza è soggetto ad interesse aeronautico, inoltre viste le caratteristiche di potenza (maggiore di 1000 kW), risulta necessaria la valutazione dell'impatto visivo al fine di verificare l'assenza di potenziali ostacoli e pericoli per la navigazione e di fenomeni di riflessione e/o di abbagliamento ai piloti e operatori del traffico aereo.

La verifica dell'abbagliamento è stata condotta mediante l'ausilio della utility "Glare Gauge - Forge Solar" che utilizza la tecnologia Solar Glare Hazard Analysis Tool sviluppata da Sandia National Laboratories, quale metodo di studio già adottato dal FAA statunitense. Il tool impiegato è in grado di simulare e verificare i fenomeni di abbagliamento dovuti all'esercizio di impianti fotovoltaici anche dotati di sistemi tracker monoassiali come per il caso in esame. Vengono così analizzate le riflessioni su superfici riflettenti, come nel caso di impianti fotovoltaici rispetto ai i percorsi di volo e al punto di osservazione della torre di controllo, successivamente identificati nel calcolo in FP1, FP2, FP3, FP4 e 1-ATCT. L'analisi è condotta verificando l'abbagliamento nei vari periodi dell'anno. Tale studio non tiene conto dell'eventuale impatto cumulativo con altre sorgenti di riflessione. Vengono pertanto simulate geometrie semplificate, quali impianto, sistema osservatore, permettendo la determinazione del rischio di abbagliamento. Data la complessità del calcolo, sebbene caratterizzato da varie approssimazioni, il risultato tiene conto delle caratteristiche dell'occhio dell'osservatore, dell'angolo di visione e il tipico tempo di risposta dell'ammiccamento. Il calcolo dell'output presuppone cieli sereni e soleggiati tutto l'anno. In allegato si riportano i risultati dell'analisi estratta dal portale Forge Solar.

5. CONCLUSIONI

Dai risultati ottenuti attraverso il tool "Glare Gauge-Forge Solar" che utilizza la tecnologia Solar Glare Hazard Analysis Tool sviluppata da Sandia National Laboratories, emerge che l'opera in oggetto per la sua dimensione, caratteristica e posizione, non genererà fenomeni di abbagliamento e disturbo dei piloti e operatori interessati dal traffico aereo di cui all'Aeroporto Militare di Amendola; soltanto per il PV array 14 è stato riscontrato un basso potenziale di immagine residua ("green" glare with low potential to cause temporary after-image) per quanto riguarda l' FP3 con tempo di esposizione di 52 minuti. Vista l'entità e la durata dell'abbagliamento generato e considerando che il calcolo presuppone cieli sereni e soleggiati tutto l'anno, l'impatto oculare risulta trascurabile.

ALLEGATO

ForgeSolar

IMPIANTO INTEGRATO AGRIVOLTAICO PLACENTINO

Placentino San Giovanni Rotondo

Created Nov. 2, 2022 Updated Nov. 2, 2022 Time-step 1 minute Timezone offset UTC1 Site ID 78671.13943

Project type Advanced Project status: active Category 10 MW to 100 MW

Misc. Analysis Settings

DNI: varies (1,000.0 W/m^2 peak) Ocular transmission coefficient: 0.5 Pupil diameter: 0.002 m

Pupil diameter: 0.002 m
Eye focal length: 0.017 m
Sun subtended angle: 9.3 mrad

Analysis Methodology: **Version 2**Enhanced subtended angle calculation: **On**

Summary of Results Glare with low potential for temporary after-image predicted

PV Name	Tilt	Orientation	"Green" Glare	"Yellow" Glare	Energy Produced
	deg	deg	min	min	kWh
PV array 1	SA tracking	SA tracking	0	0	-
PV array 10	SA tracking	SA tracking	0	0	-
PV array 11	SA tracking	SA tracking	0	0	-
PV array 12	SA tracking	SA tracking	0	0	-
PV array 13	SA tracking	SA tracking	0	0	-
PV array 14	SA tracking	SA tracking	52	0	-
PV array 2	SA tracking	SA tracking	0	0	-
PV array 3	SA tracking	SA tracking	0	0	-
PV array 4	SA tracking	SA tracking	0	0	-
PV array 5	SA tracking	SA tracking	0	0	-
PV array 6	SA tracking	SA tracking	0	0	-
PV array 7	SA tracking	SA tracking	0	0	-
PV array 8	SA tracking	SA tracking	0	0	-
PV array 9	SA tracking	SA tracking	0	0	-

Component Data

PV Array(s)

Total PV footprint area: 1,183,545 m^2

Name: PV array 1 Footprint area: 39,331 m^2 Axis tracking: Single-axis rotation
Backtracking: Shade

Tracking axis orientation: 0.0 deg Maximum tracking angle: 55.0 deg Resting angle: 55.0 deg Ground Coverage Ratio: 0.38

Rated power: -

Panel material: Smooth glass with AR coating Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes Slope error: 8.43 mrad

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	41.534410	15.682980	53.64	2.70	56.34
2	41.534020	15.685490	53.97	2.70	56.67
3	41.532190	15.684450	54.52	2.70	57.22
4	41.532460	15.682700	51.89	2.70	54.59

Name: PV array 10 Footprint area: 33,667 m^2 Axis tracking: Single-axis rotation Backtracking: Shade

Tracking axis orientation: 0.0 deg Maximum tracking angle: 55.0 deg Resting angle: 55.0 deg **Ground Coverage Ratio: 0.38**

Rated power:

Panel material: Smooth glass with AR coating Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes

Slope error: 8.43 mrad

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	41.521800	15.718260	39.92	2.70	42.62
2	41.518795	15.717544	39.33	2.70	42.03
3	41.518869	15.718883	38.33	2.70	41.03
4	41.521390	15.719470	37.89	2.70	40.59

Name: PV array 11 Footprint area: 15,327 m^2 Axis tracking: Single-axis rotation Backtracking: Shade Tracking axis orientation: 0.0 deg Maximum tracking angle: 55.0 deg Resting angle: 55.0 deg **Ground Coverage Ratio**: 0.38

Rated power: -

Panel material: Smooth glass with AR coating Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes

Slope error: 8.43 mrad

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	41.518622	15.717523	39.38	2.70	42.08
2	41.517513	15.717204	32.33	2.70	35.03
3	41.517314	15.718509	34.52	2.70	37.22
4	41.518690	15.718844	38.31	2.70	41.01

Name: PV array 12 Name: PV array 12
Footprint area: 461,960 m^2
Axis tracking: Single-axis rotation
Backtracking: Shade
Tracking axis orientation: 0.0 deg
Maximum tracking angle: 55.0 deg
Resting angle: 55.0 deg
Ground Coverage Ratio: 0.38

Rated power: -

Panel material: Smooth glass with AR coating Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes

Slope error: 8.43 mrad

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	41.531876	15.690928	49.94	2.70	52.64
2	41.531723	15.691293	51.29	2.70	53.99
3	41.528197	15.689131	39.37	2.70	42.07
4	41.527812	15.690075	39.57	2.70	42.27
5	41.528326	15.690386	41.39	2.70	44.09
6	41.526634	15.695669	39.90	2.70	42.60
7	41.521340	15.693420	19.25	2.70	21.95
8	41.522123	15.691160	19.46	2.70	22.16
9	41.521336	15.688545	18.25	2.70	20.95
10	41.523039	15.685262	20.87	2.70	23.57

Name: PV array 13 Footprint area: 21,415 m^2 Axis tracking: Single-axis rotation Backtracking: Shade

Tracking axis orientation: 0.0 deg Maximum tracking angle: 55.0 deg Resting angle: 55.0 deg **Ground Coverage Ratio**: 0.38

Rated power: -

Panel material: Smooth glass with AR coating Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes

Slope error: 8.43 mrad

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	41.525274	15.710101	47.74	2.70	50.44
2	41.525113	15.710508	47.15	2.70	49.85
3	41.518760	15.707460	20.01	2.70	22.71
4	41.518810	15.707150	19.98	2.70	22.68
5	41.524964	15.709958	47.77	2.70	50.47

Name: PV array 14 Footprint area: 301,404 m^2

Axis tracking: Single-axis rotation Backtracking: Shade Tracking axis orientation: 0.0 deg Maximum tracking angle: 55.0 deg Resting angle: 55.0 deg Ground Coverage Ratio: 0.37

Rated power: -

Panel material: Smooth glass with AR coating Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes

Slope error: 8.43 mrad

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	41.524025	15.699828	37.81	2.70	40.51
2	41.526022	15.700525	41.80	2.70	44.50
3	41.525966	15.701427	41.81	2.70	44.51
4	41.525605	15.701845	41.03	2.70	43.73
5	41.526095	15.702006	43.01	2.70	45.71
6	41.526255	15.702392	43.91	2.70	46.61
7	41.526368	15.703422	46.71	2.70	49.41
8	41.526668	15.703752	50.23	2.70	52.93
9	41.527202	15.704021	51.21	2.70	53.91
10	41.527009	15.704702	50.58	2.70	53.28
11	41.526640	15.704659	51.01	2.70	53.71
12	41.526640	15.704605	51.04	2.70	53.74
13	41.526205	15.704463	49.80	2.70	52.50
14	41.526055	15.705029	50.78	2.70	53.48
15	41.526527	15.705144	50.58	2.70	53.28
16	41.526622	15.704710	50.99	2.70	53.69
17	41.526993	15.704774	50.58	2.70	53.28
18	41.526603	15.706092	50.83	2.70	53.53
19	41.519431	15.703609	19.72	2.70	22.42
20	41.519543	15.701334	19.64	2.70	22.34
21	41.520057	15.699296	19.29	2.70	21.99
22	41.523833	15.700540	37.38	2.70	40.08

Name: PV array 2
Footprint area: 83,218 m^2 Axis tracking: Single-axis rotation
Backtracking: Shade Tracking axis orientation: 0.0 deg
Maximum tracking angle: 55.0 deg
Resting angle: 55.0 deg
Ground Coverage Ratio: 0.38

Rated power: -

Panel material: Smooth glass with AR coating Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes

Slope error: 8.43 mrad

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	41.533684	15.686704	46.87	2.70	49.57
2	41.532881	15.688527	47.60	2.70	50.30
3	41.529330	15.686474	38.60	2.70	41.30
4	41.529502	15.685970	38.13	2.70	40.83
5	41.528972	15.685669	37.36	2.70	40.06
6	41.529442	15.684344	36.86	2.70	39.56

Name: PV array 3 Footprint area: 65,157 m^2 Axis tracking: Single-axis rotation Backtracking: Shade Tracking axis orientation: 0.0 deg Maximum tracking angle: 55.0 deg Resting angle: 55.0 deg Ground Coverage Ratio: 0.38

Rated power: -

Panel material: Smooth glass with AR coating Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes

Slope error: 8.43 mrad

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	41.525523	15.697802	39.09	2.70	41.79
2	41.525572	15.699089	39.64	2.70	42.34
3	41.520009	15.697176	18.40	2.70	21.10
4	41.520202	15.695931	18.77	2.70	21.47

Name: PV array 4 Footprint area: 25,826 m^2 Axis tracking: Single-axis rotation Backtracking: Shade Tracking axis orientation: 0.0 deg Maximum tracking angle: 55.0 deg Resting angle: 55.0 deg

Ground Coverage Ratio: 0.38

Rated power: -

Panel material: Smooth glass with AR coating Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes

Slope error: 8.43 mrad

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	41.524090	15.706900	48.37	2.70	51.07
2	41.523913	15.707112	47.98	2.70	50.68
3	41.519100	15.705100	20.78	2.70	23.48
4	41.519170	15.704560	21.18	2.70	23.88
5	41.523430	15.706250	43.73	2.70	46.43
6	41.523350	15.706600	44.16	2.70	46.86
О	41.523350	15.706600	44.16	2.70	46.86

Name: PV array 5 Footprint area: 39,766 m^2 Axis tracking: Single-axis rotation Backtracking: Shade

Tracking axis orientation: 0.0 deg Maximum tracking angle: 55.0 deg Resting angle: 55.0 deg Ground Coverage Ratio: 0.38

Rated power: -

Panel material: Smooth glass with AR coating Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes Slope error: 8.43 mrad

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	41.525044	15.710612	47.16	2.70	49.86
2	41.524835	15.711256	46.33	2.70	49.03
3	41.518636	15.708194	19.24	2.70	21.94
4	41.518733	15.707615	18.95	2.70	21.65

Ground elevation

m

45.36

Height above ground

m

2.70

Total elevation

m

48.06

47.19

26.84

26.67

Longitude

deg

15.712264

Name: PV array 6 Footprint area: 21,965 m^2 Axis tracking: Single-axis rotation Backtracking: Shade

Tracking axis orientation: 0.0 deg Maximum tracking angle: 55.0 deg Resting angle: 55.0 deg Ground Coverage Ratio: 0.38

Panel material: Smooth glass with AR coating Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes

Vertex

1

Latitude

deg

41.524506

Name: PV array 7

Footprint area: 23,873 m^2 Axis tracking: Single-axis rotation

Backtracking: Shade

Tracking axis orientation: 0.0 deg Maximum tracking angle: 55.0 deg

Resting angle: 55.0 deg **Ground Coverage Ratio**: 0.38

Rated power: -

Panel material: Smooth glass with AR coating Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes

Slope error: 8.43 mrad

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	41.524210	15.712950	44.34	2.70	47.04
2	41.523821	15.714100	43.46	2.70	46.16
3	41.523490	15.713900	44.22	2.70	46.92
4	41.521570	15.712130	45.79	2.70	48.49
5	41.521810	15.711600	46.11	2.70	48.81

Name: PV array 8 Footprint area: 37,678 m^2 Axis tracking: Single-axis rotation Backtracking: Shade Tracking axis orientation: 0.0 deg Maximum tracking angle: 55.0 deg Resting angle: 55.0 deg

Ground Coverage Ratio: 0.38

Rated power: -

Panel material: Smooth glass with AR coating Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes Slope error: 8.43 mrad

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	41.518613	15.714181	34.10	2.70	36.80
2	41.518750	15.716760	39.43	2.70	42.13
3	41.521100	15.717310	39.95	2.70	42.65
4	41.521110	15.717230	40.08	2.70	42.78
5	41.520900	15.716890	40.29	2.70	42.99
6	41.520770	15.716270	40.83	2.70	43.53
7	41.520800	15.716000	41.02	2.70	43.72

Name: PV array 9
Footprint area: 12,958 m^2
Axis tracking: Single-axis rotation
Backtracking: Shade
Tracking axis orientation: 0.0 deg
Maximum tracking angle: 55.0 deg
Resting angle: 55.0 deg
Ground Coverage Ratio: 0.38

Rated power: Panel material: Smooth glass with AR coating Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes Slope error: 8.43 mrad

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	41.518453	15.713891	30.99	2.70	33.69
2	41.517912	15.713729	25.28	2.70	27.98
3	41.517719	15.715697	28.75	2.70	31.45
4	41.518551	15.715946	40.14	2.70	42.84

2-Mile Flight Path Receptor(s)

Name: FP 1 Description: Threshold height : 15 m $\,$ Direction: 112.0 deg
Glide slope: 3.0 deg
Pilot view restricted? Yes
Vertical view restriction: 30.0 deg Azimuthal view restriction: 50.0 deg

Point	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
Threshold	41.544308	15.699528	53.18	15.24	68.42
2-mile point	41.555139	15.663668	47.22	189.88	237.10

Name: FP 2
Description:
Threshold height: 15 m
Direction: 290.0 deg
Glide slope: 3.0 deg
Pilot view restricted? Yes
Vertical view restriction: 30.0 deg
Azimuthal view restriction: 50.0 deg

Point	Latitude	Latitude Longitude Ground elevation		Height above ground	Total elevation	
	deg	deg	m	m	m	
Threshold	41.534829	15.728244	54.64	15.24	69.88	
2-mile point	41.524940	15.764582	35.15	203.42	238.57	

Name: FP 3 Description: Threshold height : 15 m Direction: 24.0 deg Glide slope: 3.0 deg Pilot view restricted? Yes Vertical view restriction: 30.0 deg
Azimuthal view restriction: 50.0 deg

Point	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
Threshold	41.533187	15.705728	54.21	15.24	69.45
2-mile point	41.506774	15.689999	34.20	203.94	238.14

Name: FP 4
Description:
Threshold height: 15 m
Direction: 202.0 deg
Glide slope: 3.0 deg
Pilot view restricted? Yes
Vertical view restriction: 30.0 deg
Azimuthal view restriction: 50.0 deg

Point	Latitude	Longitude Ground elevation		Height above ground	Total elevation	
	deg	deg	m	m	m	
Threshold	41.540378	15.709936	56.05	15.24	71.29	
2-mile point	41.567186	15.724423	26.91	213.07	239.98	

Discrete Observation Receptors

Number	Latitude	Longitude	Ground elevation	Height above ground	Total Elevation
	deg	deg	m	m	m
1-ATCT	41.542440	15.717415	56.95	40.00	96.95

1-ATCT map image

Summary of PV Glare Analysis

PV configuration and total predicted glare

PV Name	Tilt	Orientation	"Green" Glare	"Yellow" Glare	Energy Produced	Data File
	deg	deg	min	min	kWh	
PV array 1	SA tracking	SA tracking	0	0	-	
PV array 10	SA tracking	SA tracking	0	0	-	
PV array 11	SA tracking	SA tracking	0	0	-	
PV array 12	SA tracking	SA tracking	0	0	-	
PV array 13	SA tracking	SA tracking	0	0	-	
PV array 14	SA tracking	SA tracking	52	0	-	-
PV array 2	SA tracking	SA tracking	0	0	-	
PV array 3	SA tracking	SA tracking	0	0	-	
PV array 4	SA tracking	SA tracking	0	0	-	
PV array 5	SA tracking	SA tracking	0	0	-	
PV array 6	SA tracking	SA tracking	0	0	-	
PV array 7	SA tracking	SA tracking	0	0	-	
PV array 8	SA tracking	SA tracking	0	0	-	
PV array 9	SA tracking	SA tracking	0	0	-	

Distinct glare per month

Excludes overlapping glare from PV array for multiple receptors at matching time(s)

PV	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
pv-array-14 (green)	0	0	0	0	0	52	0	0	0	0	0	0
pv-array-14 (yellow)	0	0	0	0	0	0	0	0	0	0	0	0

PV & Receptor Analysis Results

Results for each PV array and receptor

PV array 1 no glare found

Component	Green glare (min)	Yellow glare (min)
FP: FP 1	0	0
FP: FP 2	0	0
FP: FP 3	0	0
FP: FP 4	0	0
OP: 1-ATCT	0	0

No glare found

PV array 10 no glare found

Component	Green glare (min)	Yellow glare (min)
FP: FP 1	0	0
FP: FP 2	0	0
FP: FP 3	0	0
FP: FP 4	0	0
OP: 1-ATCT	0	0

No glare found

PV array 11 no glare found

Component	Green glare (min)	Yellow glare (min)
FP: FP 1	0	0
FP: FP 2	0	0
FP: FP 3	0	0
FP: FP 4	0	0
OP: 1-ATCT	0	0

No glare found

PV array 12 no glare found

Component	Green glare (min)	Yellow glare (min)
FP: FP 1	0	0
FP: FP 2	0	0
FP: FP 3	0	0
FP: FP 4	0	0
OP: 1-ATCT	0	0

No glare found

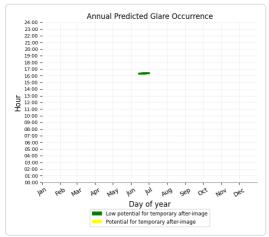
PV array 13 no glare found

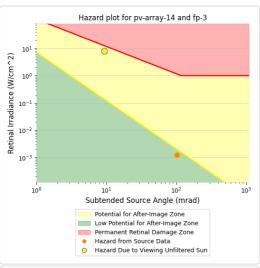
Component	Green glare (min)	Yellow glare (min)
FP: FP 1	0	0
FP: FP 2	0	0
FP: FP 3	0	0
FP: FP 4	0	0
OP: 1-ATCT	0	0

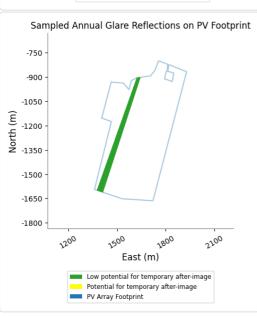
No glare found

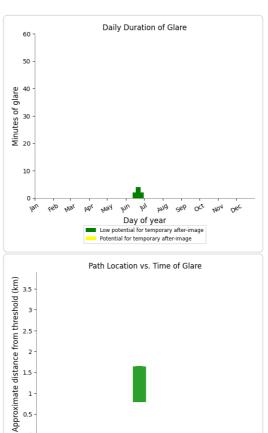
PV array 14 low potential for temporary after-image

Component	Green glare (min)	Yellow glare (min)
FP: FP 1	0	0
FP: FP 2	0	0
FP: FP 3	52	0
FP: FP 4	0	0
OP: 1-ATCT	0	0

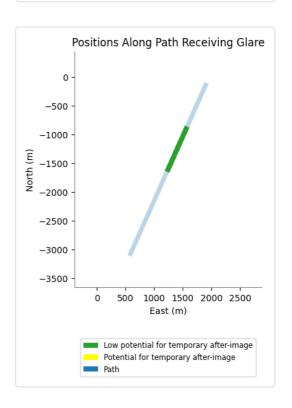

PV array 14 - Receptor (FP 1)


No glare found


PV array 14 - Receptor (FP 2)


No glare found

PV array 14 - Receptor (FP 3)



oct

Date

Potential for temporary after-image

Low potential for temporary after-image

PV array 14 - Receptor (FP 4)

No glare found

PV array 14 - OP Receptor (1-ATCT)

No glare found

PV array 2 no glare found

Component	Green glare (min)	Yellow glare (min)
FP: FP 1	0	0
FP: FP 2	0	0
FP: FP 3	0	0
FP: FP 4	0	0
OP: 1-ATCT	0	0

No glare found

PV array 3 no glare found

Component	Green glare (min)	Yellow glare (min)
FP: FP 1	0	0
FP: FP 2	0	0
FP: FP 3	0	0
FP: FP 4	0	0
OP: 1-ATCT	0	0

No glare found

PV array 4 no glare found

Component	Green glare (min)	Yellow glare (min)
FP: FP 1	0	0
FP: FP 2	0	0
FP: FP 3	0	0
FP: FP 4	0	0
OP: 1-ATCT	0	0

No glare found

PV array 5 no glare found

Component	Green glare (min)	Yellow glare (min)
FP: FP 1	0	0
FP: FP 2	0	0
FP: FP 3	0	0
FP: FP 4	0	0
OP: 1-ATCT	0	0

No glare found

PV array 6 no glare found

Component	Green glare (min)	Yellow glare (min)
FP: FP 1	0	0
FP: FP 2	0	0
FP: FP 3	0	0
FP: FP 4	0	0
OP: 1-ATCT	0	0

No glare found

PV array 7 no glare found

Component	Green glare (min)	Yellow glare (min)
FP: FP 1	0	0
FP: FP 2	0	0
FP: FP 3	0	0
FP: FP 4	0	0
OP: 1-ATCT	0	0

No glare found

PV array 8 no glare found

Component	Green glare (min)	Yellow glare (min)
FP: FP 1	0	0
FP: FP 2	0	0
FP: FP 3	0	0
FP: FP 4	0	0
OP: 1-ATCT	0	0

No glare found

PV array 9 no glare found

Component	Green glare (min)	Yellow glare (min)
FP: FP 1	0	0
FP: FP 2	0	0
FP: FP 3	0	0
FP: FP 4	0	0
OP: 1-ATCT	0	0

No glare found

Assumptions

- Times associated with glare are denoted in Standard time. For Daylight Savings, add one hour.
- Glare analyses do not automatically account for physical obstructions between reflectors and receptors. This includes buildings, tree cover and geographic obstructions.

 Detailed system geometry is not rigorously simulated.
- The glare hazard determination relies on several approximations including observer eye characteristics, angle of view, and typical blink response time. Actual values and results may vary
- The system output calculation is a DNI-based approximation that assumes clear, sunny skies year-round. It should not be used in place of more rigorous modeling methods.
- Several V1 calculations utilize the PV array centroid, rather than the actual glare spot location, due to algorithm limitations. This may affect results fo large PV footprints. Additional analyses of array sub-sections can provide additional information on expected glare.
- The subtended source angle (glare spot size) is constrained by the PV array footprint size. Partitioning large arrays into smaller sections will reduce the maximum potential subtended angle, potentially impacting results if actual glare spots are larger than the sub-array size. Additional analyses of the combined area of adjacent sub-arrays can provide more information on potential glare hazards. (See previous point on related limitations.)
- Hazard zone boundaries shown in the Glare Hazard plot are an approximation and visual aid. Actual ocular impact outcomes encompass a continuous, not discrete, spectrum.
- Glare locations displayed on receptor plots are approximate. Actual glare-spot locations may differ.
- Refer to the Help page for detailed assumptions and limitations not listed here.