

Laboratorio autorizzato dal Ministero Infrastrutture e Trasporti DPR 380/01 Art. 59 Circolare 7619/STC del 08/09/2010 Concessione per l'esecuzione e certificazione di indagini geognostiche prelievo di campioni e prove in situ Decreto n° 4894 del 28/04/12

COMUNE DI MANDELA

PROVINCIA DI ROMA

PROVINCIA DI ROMA				
COMMITTENTE: ACEA ELABORI S.P.A.				
OGGETTO: Indagini geognostiche e geofisiche finalizzate alla progettazione del Nuovo Acquedotto Marcio				
LOCALITA': Manufatto di Interconnessione Nuovo A	Acquedotto Marcio - Mandela			
TECNOGEO GROUP SRL	Data: Aprile 2022			

TECNOGEO GROUP srl - Via Case Palmerini 85, Veroli (Fr) e-mail: info@tecnogeo.net website: www.tecnogeo.net P.I. 03053690602

INDICE

PREMESSA	3
PROVA PENETROMETRICA DPSH	5
PROVA PENETROMETRICA CPTu	58
SISMICA A RIFRAZIONE	94
PROSPEZIONE SISMICA MASW	104
INDAGINE HVSR	123

PREMESSA

Nell'ambito del contratto quadro (n.3900006745 per le prestazioni finalizzate alla caratterizzazione e modellazione geologica e geotecnica per la progettazione di opere idriche, fognarie ed elettriche, e sulla base dell' OdS n°n 87/22 emesso da Acea Elabori Spa sono state realizzate le seguenti indagini:

- N.6 Prove Penetrometriche Pesanti tipo DPSH
- N. 2 Prove Penetrometriche Statiche CPTu, con 2 prove di dissipazione
- N. 3 prospezioni sismiche a rifrazione con interspazio di 5m, per una estensione totale di 180 ml
- N. 2 prospezioni sismiche MASW
- N. 1 misura di rumore ambientale HVSR

Per le prove penetrometriche è stato utilizzato il penetrometro dinamico DPSH Deep Drill SP200-SM.

Le prospezioni sismiche a rifrazione e MASW sono state realizzate utilizzando il sismografo DoReMi della SARA electronic instruments.

Per l'indagine HVSR è stato utilizzato il sismografo SR04 GeoBox della SARA electronic instruments.

Si allegano i seguenti elaborati:

- 1. Prove penetrometriche DPSH
- 2. Prove penetrometriche CPTu
- 3. Prospezioni sismiche a rifrazione
- 4. Prospezioni sismiche MASW
- 5. Indagine HVSR

UBICAZIONE INDAGINI GEOGNOSTICHE

UBICAZIONE INDAGINI GEOFISICHE

ALLEGATO 1

Prova Penetrometrica – DPSH

Caratteristiche tecniche generali "Penetrometro SP200SM":

<u>Gruppo motore</u>: Centralina oleodinamica dotata di motore a scoppio bicilindrico, 4 tempi, 16Hp di potenza ed avviamento elettrico.

<u>Sistema di infissione</u>: In acciaio, è costituito da due cilindri oleodinamici a doppio effetto e da un trave in acciaio di collegamento e contrasto

Chiavi idrauliche

<u>ed automatiche</u>: Potenziate, scorrenti su guida in acciaio, permettono l'infissione e l'estrazione delle coclee senza

nessuno sforzo da parte dell'operatore, in quanto sono dotate di un sistema idraulico automatico,

spingente in fase di ancoraggio e di recupero a fine prova

<u>Sistema di misura</u>: Idraulico con lettura diretta dei valori di Rp-RI-Rt su due manometri ad alta precisione ed a scala

differenziata

Forniture opzionali: Campione in fustella in PVC

	Centralina oleodinamica	Kg 065
¥	Apparato d'infissione	Kg 190
	Sistema di misura	Kg 005
The state of the s	Asta completa Ø 36x1000 mm	Kg 007,5
	Chiave idraulica automatica completa	Kg 032
	Coclea d'ancoraggio Ø 200x1300 mm	Kg 022
1830	Gruppo DPSH asta Ø 32x900 mm	Kg 130 Kg 005,5
- (Gruppo penetrometro dinamico asta Ø 22x700 mm	Kg 30+13 Kg 002,1
	Gruppo sonda coclea Ø 70x800 mm prolunga Ø 34x800 mm	Kg 026 Kg 004,5 Kg 003,0
	Peso complessivo SP200 SM	Kg 1010
1100	Peso complessivo SP200 SM con gruppo DPSH	Kg 1140

PROVA PENETROMETRICA DINAMICA

Committente: Acea Elabori spa

Descrizione: Manufatto di Interconnessione Nuovo Acquedotto Marcio

Localita': Comune di Mandela (RM)

Operatore prova: Tecnogeo Group srl

Certificati allegati: 6

Caratteristiche Tecniche-Strumentali Sonda: Deep Drill SP200-SM

intali solida. Deep Diili si 200 sivi		
Rif. Norme	DIN 4094	
Peso Massa battente	73 Kg	
Altezza di caduta libera	0.75 m	
Peso sistema di battuta	5 Kg	
Diametro punta conica	50.46 mm	
Area di base punta	20 cm²	
Lunghezza delle aste	0.9 m	
Peso aste a metro	5 Kg/m	
Profondita' giunzione prima asta	0.80 m	
Avanzamento punta	0.30 m	
Numero colpi per punta	N(30)	
Coeff. Correlazione	1.199	
Rivestimento/fanghi	No	
Angolo di apertura punta	60 °	

PROVE PENETROMETRICHE DINAMICHE CONTINUE (DYNAMIC PROBING)

DPSH – DPM (... scpt ecc.)

Note illustrative - Diverse tipologie di penetrometri dinamici

La prova penetrometrica dinamica consiste nell'infiggere nel terreno una punta conica (per tratti consecutivi 2) misurando il numero di colpi N necessari.

Le Prove Penetrometriche Dinamiche sono molto diffuse ed utilizzate nel territorio da geologi e geotecnici, data la loro semplicità esecutiva, economicità e rapidità di esecuzione.

La loro elaborazione, interpretazione e visualizzazione grafica consente di "catalogare e parametrizzare" il suolo attraversato con un'immagine in continuo, che permette anche di avere un raffronto sulle consistenze dei vari livelli attraversati e una correlazione diretta con sondaggi geognostici per la caratterizzazione stratigrafica.

La sonda penetrometrica permette inoltre di riconoscere abbastanza precisamente lo spessore delle coltri sul substrato, la quota di eventuali falde e superfici di rottura sui pendii, e la consistenza in generale del terreno.

L'utilizzo dei dati, ricavati da correlazioni indirette e facendo riferimento a vari autori, dovrà comunque essere trattato con le opportune cautele e, possibilmente, dopo esperienze geologiche acquisite in zona.

Elementi caratteristici del penetrometro dinamico sono i seguenti:

- peso massa battente M;
- altezza libera caduta H;
- punta conica: diametro base cono D, area base A (angolo di apertura 2);
- avanzamento (penetrazione) 2;
- presenza o meno del rivestimento esterno (fanghi bentonitici).

Con riferimento alla classificazione ISSMFE (1988) dei diversi tipi di penetrometri dinamici (vedi tabella sotto riportata) si rileva una prima suddivisione in quattro classi (in base al peso M della massa battente):

- tipo LEGGERO (DPL);
- tipo MEDIO (DPM);
- tipo PESANTE (DPH);
- tipo SUPERPESANTE (DPSH).

Classificazione ISSMFE dei penetrometri dinamici:

Tipo	Sigla di riferimento	peso della massa M (kg)	prof. max indagine battente (m)
Leggero	DPL (Light)	M ? 10	8
Medio	DPM (Medium)	10 < M < 40	20-25
Pesante	DPH (Heavy)	40 2 M < 60	25
Super pesante (Super Heavy)	DPSH	M 2 60	25

penetrometri in uso in Italia

In Italia risultano attualmente in uso i seguenti tipi di penetrometri dinamici (non rientranti però nello Standard ISSMFE):

- DINAMICO LEGGERO ITALIANO (DL-30) (MEDIO secondo la classifica ISSMFE) massa battente M = 30 kg, altezza di caduta H = 0.20 m, avanzamento ② = 10 cm, punta conica (②=60-90°), diametro D 35.7 mm, area base cono A=10 cm² rivestimento / fango bentonitico : talora previsto;
- DINAMICO LEGGERO ITALIANO (DL-20) (MEDIO secondo la classifica ISSMFE) massa battente M = 20 kg, altezza di caduta H=0.20 m, avanzamento ② = 10 cm, punta conica (□= 60-90°), diametro D 35.7 mm, area base cono A=10 cm² rivestimento / fango bentonitico : talora previsto;
- DINAMICO PESANTE ITALIANO (SUPERPESANTE secondo la classifica ISSMFE) massa battente M = 73 kg, altezza di caduta H=0.75 m, avanzamento ②=30 cm, punta conica (② = 60°), diametro D = 50.8 mm, area base cono A=20.27 cm² rivestimento: previsto secondo precise indicazioni;
- DINAMICO SUPERPESANTE (Tipo EMILIA) massa battente M=63.5 kg, altezza caduta H=0.75 m, avanzamento 2=20-30 cm, punta conica conica (2 = 60°-90°) diametro D = 50.5 mm, area base cono A = 20 cm², rivestimento / fango bentonitico : talora previsto.

Correlazione con Nspt

Poiché la prova penetrometrica standard (SPT) rappresenta, ad oggi, uno dei mezzi più diffusi ed economici per ricavare informazioni dal sottosuolo, la maggior parte delle correlazioni esistenti riguardano i valori del numero di colpi Nspt ottenuto con la suddetta prova, pertanto si presenta la necessità di rapportare il numero di colpi di una prova dinamica con Nspt. Il passaggio viene dato da:

$$NSPT = \beta_t \cdot N$$

Dove:

$$\beta_t = \frac{Q}{Q_{SPT}}$$

in cui Q è l'energia specifica per colpo e Qspt è quella riferita alla prova SPT.

L'energia specifica per colpo viene calcolata come segue:

$$Q = \frac{M^2 \cdot H}{A \cdot \delta \cdot (M + M')}$$

in cui

M peso massa battente.

M' peso aste.

Haltezza di caduta.

A area base punta conica.

passo di avanzamento.

Valutazione resistenza dinamica alla punta Rpd

Formula Olandesi

$$Rpd = \frac{M^2 \cdot H}{\left[A \cdot e \cdot (M+P)\right]} = \frac{M^2 \cdot H \cdot N}{\left[A \cdot \delta \cdot (M+P)\right]}$$

Rpd resistenza dinamica punta (area A). e infissione media per colpo (☑/ N).

M peso massa battente (altezza caduta H).

P peso totale aste e sistema battuta.

Calcolo di (N₁)₆₀

 $(N_1)_{60}$ è il numero di colpi normalizzato definito come segue:

 $(N_1)_{60} = \text{CN} \cdot \text{N60 con CN} = \sqrt{(Pa'\sigma_{vo})}$ CN < 1.7 Pa = 101.32 kPa (Liao e Whitman 1986)

 $N_{60} = N_{SPT} \cdot (ER/60) \cdot C_S \cdot C_r \cdot C_d$

ER/60 rendimento del sistema di infissione normalizzato al 60%.

C_S parametro funzione della controcamicia (1.2 se assente).

C_d funzione del diametro del foro (1 se compreso tra 65-115mm).

C_r parametro di correzione funzione della lunghezza delle aste.

Metodologia di Elaborazione.

Le elaborazioni sono state effettuate mediante un programma di calcolo automatico Dynamic Probing della *GeoStru Software*.

Il programma calcola il rapporto delle energie trasmesse (coefficiente di correlazione con SPT) tramite le elaborazioni proposte da Pasqualini (1983) - Meyerhof (1956) - Desai (1968) - Borowczyk-Frankowsky (1981).

Permette inoltre di utilizzare i dati ottenuti dall'effettuazione di prove penetrometriche per estrapolare utili informazioni geotecniche e geologiche.

Una vasta esperienza acquisita, unitamente ad una buona interpretazione e correlazione, permettono spesso di ottenere dati utili alla progettazione e frequentemente dati maggiormente attendibili di tanti dati bibliografici sulle litologie e di dati geotecnici determinati sulle verticali litologiche da poche prove di laboratorio eseguite come rappresentazione generale di una verticale eterogenea disuniforme e/o complessa.

In particolare consente di ottenere informazioni su:

- l'andamento verticale e orizzontale degli intervalli stratigrafici,
- la caratterizzazione litologica delle unità stratigrafiche,
- i parametri geotecnici suggeriti da vari autori in funzione dei valori del numero dei colpi e delle resistenza alla punta.

Valutazioni statistiche e correlazioni

Elaborazione Statistica

Permette l'elaborazione statistica dei dati numerici di Dynamic Probing, utilizzando nel calcolo dei valori rappresentativi dello strato considerato un valore inferiore o maggiore della media aritmetica dello strato (dato comunque maggiormente utilizzato); i valori possibili in immissione sono :

Media

Media aritmetica dei valori del numero di colpi sullo strato considerato.

Media minima

Valore statistico inferiore alla media aritmetica dei valori del numero di colpi sullo strato considerato.

Massimo

Valore massimo dei valori del numero di colpi sullo strato considerato.

Minimo

Valore minimo dei valori del numero di colpi sullo strato considerato.

Scarto quadratico medio

Valore statistico di scarto dei valori del numero di colpi sullo strato considerato.

Media deviata

Valore statistico di media deviata dei valori del numero di colpi sullo strato considerato.

Media (+ s)

Media + scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

Media (- s)

Media - scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

Distribuzione normale R.C.

Il valore di N_{spt,k} viene calcolato sulla base di una distribuzione normale o gaussiana, fissata una probabilità di non superamento del 5%, secondo la seguente relazione:

$$Nspt_{,k} = Nspt_{,medio} - 1.645 \cdot (\sigma_{Nspt})$$

dove Nspt è la deviazione standard di Nspt

Distribuzione normale R.N.C.

Il valore di Nspt,k viene calcolato sulla base di una distribuzione normale o gaussiana, fissata una probabilità di non superamento del 5%, trattando i valori medi di Nspt distribuiti normalmente:

$$Nspt_{,k} = Nspt_{,medio} - 1.645 \cdot \left(\sigma_{Nspt}\right) / \sqrt{n}$$

dove n è il numero di letture.

Pressione ammissibile

Pressione ammissibile specifica sull'interstrato (con effetto di riduzione energia per svergolamento aste o no) calcolata secondo le note elaborazioni proposte da Herminier, applicando un coefficiente di sicurezza (generalmente = 20-22) che

corrisponde ad un coefficiente di sicurezza standard delle fondazioni pari a 4, con una geometria fondale standard di larghezza pari a 1 m ed immorsamento d = 1 m.

Correlazioni geotecniche terreni incoerenti

Liquefazione

Permette di calcolare utilizzando dati Nspt il potenziale di liquefazione dei suoli (prevalentemente sabbiosi).

Attraverso la relazione di *SHI-MING* (1982), applicabile a terreni sabbiosi, la liquefazione risulta possibile solamente se Nspt dello strato considerato risulta inferiore a Nspt critico calcolato con l'elaborazione di *SHI-MING*.

Correzione Nspt in presenza di falda

 $Nsptcorretto = 15 + 0.5 \cdot (Nspt - 15)$

Nspt<u>è il valore medio nello strato</u>

La correzione viene applicata in presenza di falda solo se il numero di colpi è maggiore di 15 (la correzione viene eseguita se tutto lo strato è in falda).

Angolo di Attrito

- Peck-Hanson-Thornburn-Meyerhof (1956) Correlazione valida per terreni non molli a prof. < 5 m; correlazione valida per sabbie e ghiaie rappresenta valori medi. Correlazione storica molto usata, valevole per prof. < 5 m per terreni sopra falda e < 8 m per terreni in falda (tensioni < 8-10 t/mq)
- Meyerhof (1956) Correlazioni valide per terreni argillosi ed argillosi-marnosi fessurati, terreni di riporto sciolti e coltri detritiche (da modifica sperimentale di dati).
- Sowers (1961)- Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. < 4 m. sopra falda e < 7 m per terreni in falda) 2 >5 t/mq.
- De Mello Correlazione valida per terreni prevalentemente sabbiosi e sabbioso-ghiaiosi (da modifica sperimentale di dati) con angolo di attrito < 38°.
- Malcev (1964) Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. > 2 m e per valori di angolo di attrito < 38°).
- Schmertmann (1977)- Angolo di attrito (gradi) per vari tipi litologici (valori massimi). N.B. valori spesso troppo ottimistici poiché desunti da correlazioni indirette da Dr %.
- Shioi-Fukuni (1982) ROAD BRIDGE SPECIFICATION, Angolo di attrito in gradi valido per sabbie sabbie fini o limose e limi siltosi (cond. ottimali per prof. di prova > 8 m sopra falda e > 15 m per terreni in falda) 2 > 15 t/mq.
- Shioi-Fukuni (1982) JAPANESE NATIONALE RAILWAY, Angolo di attrito valido per sabbie medie e grossolane fino a ghiaiose.

- Angolo di attrito in gradi (Owasaki & Iwasaki) valido per sabbie sabbie medie e grossolane-ghiaiose (cond. ottimali per prof. > 8 m sopra falda e > 15 m per terreni in falda) s>15 t/mq.
- Meyerhof (1965) Correlazione valida per terreni per sabbie con % di limo < 5% a profondità < 5 m e con
 (%) di limo > 5% a profondità < 3 m.
- Mitchell e Katti (1965) Correlazione valida per sabbie e ghiaie.

Densità relativa (%)

- Gibbs & Holtz (1957) correlazione valida per qualunque pressione efficace, per ghiaie Dr viene sovrastimato, per limi sottostimato.
- Skempton (1986) elaborazione valida per limi e sabbie e sabbie da fini a grossolane NC a qualunque pressione efficace, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.
- Meyerhof (1957).
- Schultze & Menzenbach (1961) per sabbie fini e ghiaiose NC, metodo valido per qualunque valore di pressione efficace in depositi NC, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.

Modulo Di Young (E_V)

- Terzaghi elaborazione valida per sabbia pulita e sabbia con ghiaia senza considerare la pressione efficace.
- Schmertmann (1978), correlazione valida per vari tipi litologici.
- Schultze-Menzenbach, correlazione valida per vari tipi litologici.
- D'Appollonia ed altri (1970), correlazione valida per sabbia, sabbia SC, sabbia NC e ghiaia.
- Bowles (1982), correlazione valida per sabbia argillosa, sabbia limosa, limo sabbioso, sabbia media, sabbia e ghiaia.

Modulo Edometrico

Begemann (1974) elaborazione desunta da esperienze in Grecia, correlazione valida per limo con sabbia, sabbia e ghiaia

- Buismann-Sanglerat, correlazione valida per sabbia e sabbia argillosa.
- Farrent (1963) valida per sabbie, talora anche per sabbie con ghiaia (da modifica sperimentale di dati).
- Menzenbach e Malcev valida per sabbia fine, sabbia ghiaiosa e sabbia e ghiaia.

Stato di consistenza

Classificazione A.G.I. 1977

Peso di Volume

• Meyerhof ed altri, valida per sabbie, ghiaie, limo, limo sabbioso.

Peso di volume saturo

• Terzaghi-Peck (1948-1967)

Modulo di poisson

Classificazione A.G.I.

Potenziale di liquefazione (Stress Ratio)

• Seed-Idriss (1978-1981) . Tale correlazione è valida solamente per sabbie, ghiaie e limi sabbiosi, rappresenta il rapporto tra lo sforzo dinamico medio 2 e la tensione verticale di consolidazione per la valutazione del potenziale di liquefazione delle sabbie e terreni sabbio-ghiaiosi attraverso grafici degli autori.

Velocità onde di taglio Vs (m/s)

• Tale correlazione è valida solamente per terreni incoerenti sabbiosi e ghiaiosi.

Modulo di deformazione di taglio (G)

- Ohsaki & Iwasaki elaborazione valida per sabbie con fine plastico e sabbie pulite.
- Robertson e Campanella (1983) e Imai & Tonouchi (1982) elaborazione valida soprattutto per sabbie e per tensioni litostatiche comprese tra 0,5 4,0 kg/cmq.

Modulo di reazione (Ko)

• Navfac (1971-1982) - elaborazione valida per sabbie, ghiaie, limo, limo sabbioso.

Resistenza alla punta del Penetrometro Statico (Qc)

• Robertson (1983) - Qc

Correlazioni geotecniche terreni coesivi

Coesione non drenata

- Benassi & Vannelli- correlazioni scaturite da esperienze ditta costruttrice Penetrometri SUNDA (1983).
- Terzaghi-Peck (1948-1967), correlazione valida per argille sabbiose-siltose NC con Nspt < 8 , argille limose-siltose mediamente plastiche, argille marnose alterate-fessurate.
- Terzaghi-Peck (1948). Cu (min-max).
- Sanglerat , da dati Penetr. Statico per terreni coesivi saturi , tale correlazione non è valida per argille sensitive con sensitività > 5, per argille sovraconsolidate fessurate e per i limi a bassa plasticità.
- Sanglerat , (per argille limose-sabbiose poco coerenti), valori validi per resistenze penetrometriche
 < 10 colpi, per resistenze penetrometriche > 10 l'elaborazione valida è comunque quella delle "argille plastiche"
 di Sanglerat.
- (U.S.D.M.S.M.) U.S. Design Manual Soil Mechanics Coesione non drenata per argille limose e argille di bassa media ed alta plasticità , (Cu-Nspt-grado di plasticità).
- Schmertmann (1975), Cu (Kg/cmq) (valori medi), valida per argille e limi argillosi con Nc = 20 e Qc/Nspt = 2.

- Schmertmann (1975), Cu (Kg/cmq) (valori minimi), valida per argille NC.
- Fletcher (1965), (Argilla di Chicago) . Coesione non drenata Cu (Kg/cmq), colonna valori validi per argille a medio-bassa plasticità.
- Houston (1960) argilla di media-alta plasticità.
- Shioi-Fukuni (1982), valida per suoli poco coerenti e plastici, argilla di media-alta plasticità.
- Begemann.
- De Beer.

Resistenza alla punta del Penetrometro Statico (Qc)

Robertson (1983) - Qc

Modulo Edometrico-Confinato (Mo)

- Stroud e Butler (1975),- per litotipi a media plasticità, valida per litotipi argillosi a media-medio-alta plasticità da esperienze su argille glaciali.
- Stroud e Butler (1975), per litotipi a medio-bassa plasticità (IP < 20), valida per litotipi argillosi a medio-bassa plasticità (IP < 20) da esperienze su argille glaciali .
- Vesic (1970), correlazione valida per argille molli (valori minimi e massimi).
- Trofimenkov (1974), Mitchell e Gardner Modulo Confinato -Mo (Eed) (Kg/cmq)-, valida per litotipi argillosi e limosi-argillosi (rapporto Qc/Nspt=1.5-2.0).
- Buismann- Sanglerat, valida per argille compatte (Nspt < 30) medie e molli (Nspt < 4) e argille sabbiose (Nspt = 6-12).

Modulo Di Young (E_Y)

- Schultze-Menzenbach (Min. e Max.), correlazione valida per limi coerenti e limi argillosi con I.P. > 15.
- D'Appollonia ed altri (1983), correlazione valida per argille sature-argille fessurate.

Stato di consistenza

Classificazione A.G.I. 1977.

Peso di Volume

• Meyerhof ed altri, valida per argille, argille sabbiose e limose prevalentemente coerenti.

Peso di volume saturo

Meyerhof ed altri.

PROVA ... DPSH 1

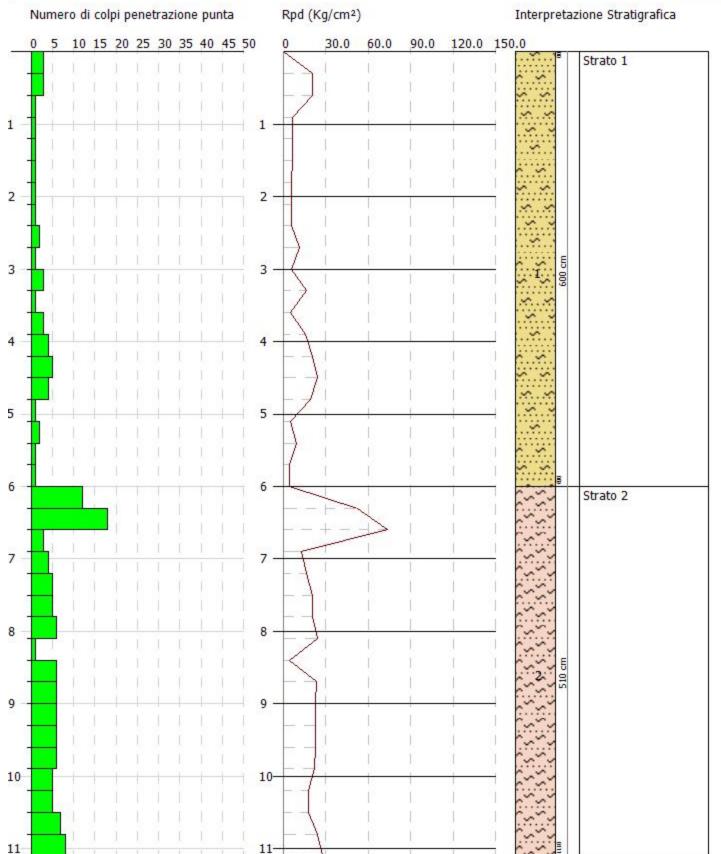
Strumento utilizzato... Deep Drill SP200-SM
Prova eseguita in data 03-03-2022
Profondita' prova 11.10 mt
Falda rilevata
Certificato Nr.40 del 2022
Verbale di accettazione nr. 87/22
Codice commessa nr. 01089

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres.	Pres.
		riduzione sonda	ridotta	(Kg/cm²)	ammissibile con	ammissibile
		Chi	(Kg/cm²)		riduzione	Herminier -
					Herminier -	Olandesi
					Olandesi	(Kg/cm²)
					(Kg/cm²)	
0.30	3	0.853	20.53	24.08	1.03	1.20
0.60	3	0.847	20.39	24.08	1.02	1.20
0.90	1	0.842	6.37	7.57	0.32	0.38
1.20	1	0.836	6.33	7.57	0.32	0.38
1.50	1	0.831	6.29	7.57	0.31	0.38
1.80	1	0.826	5.92	7.16	0.30	0.36
2.10	1	0.822	5.89	7.16	0.29	0.36
2.40	1	0.817	5.85	7.16	0.29	0.36
2.70	2	0.813	11.05	13.59	0.55	0.68
3.00	1	0.809	5.50	6.80	0.27	0.34
3.30	3	0.805	16.41	20.39	0.82	1.02
3.60	1	0.801	5.18	6.47	0.26	0.32
3.90	3	0.797	15.47	19.40	0.77	0.97
4.20	4	0.794	20.53	25.87	1.03	1.29
4.50	5	0.790	24.37	30.84	1.22	1.54
4.80	4	0.787	19.42	24.67	0.97	1.23
5.10	1	0.784	4.84	6.17	0.24	0.31
5.40	2	0.781	9.21	11.79	0.46	0.59
5.70	1	0.778	4.59	5.89	0.23	0.29
6.00	1	0.775	4.57	5.89	0.23	0.29
6.30	12	0.773	52.35	67.74	2.62	3.39
6.60	18	0.720	73.20	101.61	3.66	5.08
6.90	3	0.768	13.01	16.94	0.65	0.85
7.20	4	0.766	16.59	21.66	0.83	1.08
7.50	5	0.763	20.67	27.08	1.03	1.35
7.80	5	0.761	20.61	27.08	1.03	1.35
8.10	6	0.759	23.71	31.22	1.19	1.56
8.40	1	0.757	3.94	5.20	0.20	0.26
8.70	6	0.755	23.59	31.22	1.18	1.56
9.00	6	0.753	22.64	30.05	1.13	1.50
9.30	6	0.752	22.59	30.05	1.13	1.50
9.60	6	0.750	22.54	30.05	1.13	1.50
9.90	6	0.748	21.67	28.96	1.08	1.45
10.20	5	0.747	18.02	24.13	0.90	1.21

10.50	5	0.745	17.98	24.13	0.90	1.21
10.80	7	0.743	24.24	32.61	1.21	1.63
11.10	8	0.742	27.64	37.27	1.38	1.86

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tensione	Coeff. di	NSPT	Descrizio
Strato		(Kg/cm ²)		Fraction	unita' di	unita' di	efficace	correlaz.		ne
(m)				(%)	volume	volume	(Kg/cm ²)	con Nspt		
					(t/m³)	saturo				
						(t/m³)				
6	2	13.51	Incoerent	0	1.56	1.85	0.47	1.2	2	Strato 1
			e -							
			coesivo							
11.1	6.41	33.35	Incoerent	0	1.86	1.9	1.41	1.2	6	Strato 2
			e -							
			coesivo							



PROVA PENETROMETRICA DINAMICA DPSH 1 Strumento utilizzato... Deep Drill SP200-SM

Certificato Nr.40 del 2022 Verbale di accettazione nr. 87/22 Codice commessa nr. 01089

Committente: Acea Elabori spa Descrizione: Manufatto di Interconnessione Nuovo Acquedotto Marcio Localita': Comune di Mandela (RM) 03-03-2022

Scala 1:55

STIMA PARAMETRI GEOTECNICI PROVA DPSH 1

TERRENI COESIVI

Coesione non drenata

Descrizione	NSPT	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm²)
Strato (1)	2.00	0.00-6.00	Terzaghi-Peck	0.13
Strato 1				
Strato (2)	6.00	6.00-11.10	Terzaghi-Peck	0.38
Strato 2				

Qc (Resistenza punta Penetrometro Statico)

· · · · · · · · · · · · · · · · · · ·	•			
Descrizione	NSPT	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm²)
Strato (1)	2.00	0.00-6.00	Robertson (1983)	3.00
Strato 1				
Strato (2)	6.00	6.00-11.10	Robertson (1983)	9.00
Strato 2				

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm²)
Strato (1)	2.00	0.00-6.00	Stroud e Butler (1975)	12.24
Strato 1				
Strato (2)	6.00	6.00-11.10	Stroud e Butler (1975)	36.71
Strato 2				

Modulo di Young

modalo di roding				
Descrizione	NSPT	Prof. Strato	Correlazione	Еу
		(m)		(Kg/cm²)
Strato (1)	2.00	0.00-6.00	Apollonia	20.00
Strato 1				
Strato (2)	6.00	6.00-11.10	Apollonia	60.00
Strato 2				

Classificazione AGI

Descrizione	NSPT	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato (1)	2.00	0.00-6.00	A.G.I. (1977)	PRIVO DI CONSISTENZA
Strato 1				
Strato (2)	6.00	6.00-11.10	A.G.I. (1977)	MODERAT.
Strato 2				CONSISTENTE

Peso unita' di volume

r coo annea an volunie				
Descrizione NSPT		Prof. Strato Correlazione		Peso unita' di volume
		(m)		(t/m³)
Strato (1)	2.00	0.00-6.00	Meyerhof	1.56
Strato 1				
Strato (2)	6.00	6.00-11.10	Meyerhof	1.81
Strato 2				

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo (t/m³)	
Strato (1)		0.00-6.00	Meyerhof	1.85	
Strato 1					
Strato (2)	6.00	6.00-11.10	Meyerhof	1.89	
Strato 2					

TERRENI INCOERENTI

Densita' relativa

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densita' relativa
		(m)			(%)
Strato (1)	2.00	0.00-6.00	2.00	Meyerhof 1957	27.48
Strato 1					
Strato (2)	6.00	6.00-11.10	6.00	Meyerhof 1957	35.41
Strato 2					

Angolo di resistenza al taglio

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Angolo d'attrito
		(m)			(°)
Strato (1)	2.00	0.00-6.00	2.00	Shioi-Fukuni (1982)	20.48
Strato 1					
Strato (2)	6.00	6.00-11.10	6.00	Shioi-Fukuni (1982)	24.49
Strato 2					

Modulo di Young

Widdelig at Tourig					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo di Young
		(m)			(Kg/cm²)
Strato (1)	2.00	0.00-6.00	2.00	Bowles (1982)	24.00
Strato 1					
Strato (2)	6.00	6.00-11.10	6.00	Bowles (1982)	36.00
Strato 2					

Modulo Edometrico

Wiodalo Edollictrict	,				
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo
		(m)			Edometrico
					(Kg/cm²)
Strato (1)	2.00	0.00-6.00	2.00	Begemann (1974)	31.57
Strato 1					
Strato (2)	6.00	6.00-11.10	6.00	Begemann (1974)	39.79
Strato 2					

Classificazione AGI

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Classificazione AGI
		(m)			
Strato (1)	2.00	0.00-6.00	2.00	Classificazione	SCIOLTO
Strato 1				A.G.I	
Strato (2)	6.00	6.00-11.10	6.00	Classificazione	POCO ADDENSATO
Strato 2				A.G.I	

Peso unita' di volume

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita' di
		(m)			Volume
					(t/m³)
Strato (1)	2.00	0.00-6.00	2.00	Terzaghi-Peck 1948	1.37
Strato 1					
Strato (2)	6.00	6.00-11.10	6.00	Terzaghi-Peck 1948	1.43
Strato 2					

Peso unita' di volume saturo

i coo ainta ai voian	ic sataro				
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita'
		(m)			Volume Saturo
					(t/m³)
Strato (1)	2.00	0.00-6.00	2.00	Terzaghi-Peck 1948	1.85
Strato 1					
Strato (2)	6.00	6.00-11.10	6.00	Terzaghi-Peck 1948	1.89
Strato 2					

Modulo di deformazione a taglio dinamico

	<u> </u>				
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G
		(m)			(Kg/cm²)
Strato (1)	2.00	0.00-6.00	2.00	Ohsaki & Iwasaki	200.17
Strato 1					
Strato (2)	6.00	6.00-11.10	6.00	Ohsaki & Iwasaki	461.33
Strato 2					

Coefficiente spinta a Riposo

oo om oromeo op mea	ap 000				
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	K0
		(m)			
Strato (1)	2.00	0.00-6.00	2.00	Navfac 1971-1982	0.27
Strato 1					
Strato (2)	6.00	6.00-11.10	6.00	Navfac 1971-1982	1.22
Strato 2					

Qc (Resistenza punta Penetrometro Statico)

de (resistenza parta i enetrometro statico)							
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Qc		
		(m)			(Kg/cm²)		
Strato (1)	2.00	0.00-6.00	2.00	Robertson 1983	4.00		
Strato 1							
Strato (2)	6.00	6.00-11.10	6.00	Robertson 1983	12.00		
Strato 2							

PROVA ...DPSH 2

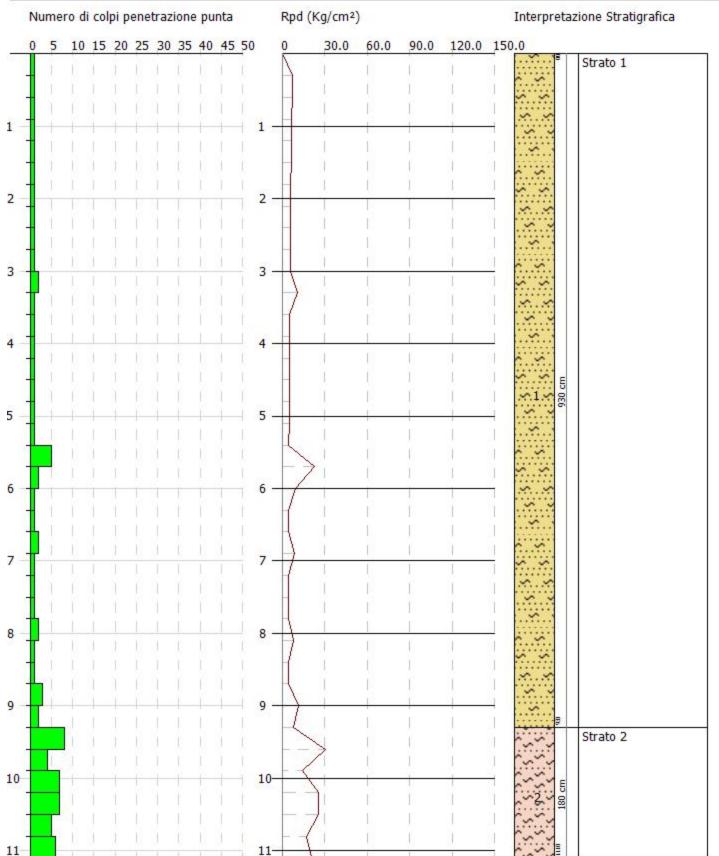
Strumento utilizzato... Deep Drill SP200-SM
Prova eseguita in data 03-03-2022
Profondita' prova 11.10 mt
Falda rilevata
Certificato Nr.40 del 2022
Verbale di accettazione nr. 87/22
Codice commessa nr. 01089

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres.	Pres.
		riduzione sonda	ridotta	(Kg/cm²)	ammissibile con	ammissibile
		Chi	(Kg/cm²)		riduzione	Herminier -
					Herminier -	Olandesi
					Olandesi	(Kg/cm²)
					(Kg/cm²)	
0.30	1	0.853	6.84	8.03	0.34	0.40
0.60	1	0.847	6.80	8.03	0.34	0.40
0.90	1	0.842	6.37	7.57	0.32	0.38
1.20	1	0.836	6.33	7.57	0.32	0.38
1.50	1	0.831	6.29	7.57	0.31	0.38
1.80	1	0.826	5.92	7.16	0.30	0.36
2.10	1	0.822	5.89	7.16	0.29	0.36
2.40	1	0.817	5.85	7.16	0.29	0.36
2.70	1	0.813	5.52	6.80	0.28	0.34
3.00	1	0.809	5.50	6.80	0.27	0.34
3.30	2	0.805	10.94	13.59	0.55	0.68
3.60	1	0.801	5.18	6.47	0.26	0.32
3.90	1	0.797	5.16	6.47	0.26	0.32
4.20	1	0.794	5.13	6.47	0.26	0.32
4.50	1	0.790	4.87	6.17	0.24	0.31
4.80	1	0.787	4.85	6.17	0.24	0.31
5.10	1	0.784	4.84	6.17	0.24	0.31
5.40	1	0.781	4.60	5.89	0.23	0.29
5.70	5	0.778	22.94	29.47	1.15	1.47
6.00	2	0.775	9.14	11.79	0.46	0.59
6.30	1	0.773	4.36	5.65	0.22	0.28
6.60	1	0.770	4.35	5.65	0.22	0.28
6.90	2	0.768	8.67	11.29	0.43	0.56
7.20	1	0.766	4.15	5.42	0.21	0.27
7.50	1	0.763	4.13	5.42	0.21	0.27
7.80	1	0.761	4.12	5.42	0.21	0.27
8.10	2	0.759	7.90	10.41	0.40	0.52
8.40	1	0.757	3.94	5.20	0.20	0.26
8.70	1	0.755	3.93	5.20	0.20	0.26
9.00	3	0.753	11.32	15.03	0.57	0.75
9.30	2	0.752	7.53	10.02	0.38	0.50
9.60	8	0.750	30.05	40.07	1.50	2.00
9.90	4	0.748	14.45	19.31	0.72	0.97
10.20	7	0.747	25.23	33.79	1.26	1.69

10.50	7	0.745	25.17	33.79	1.26	1.69
10.80	5	0.743	17.31	23.29	0.87	1.16
11.10	6	0.742	20.73	27.95	1.04	1.40

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tensione	Coeff. di	NSPT	Descrizio
Strato		(Kg/cm ²)		Fraction	unita' di	unita' di	efficace	correlaz.		ne
(m)				(%)	volume	volume	(Kg/cm ²)	con Nspt		
					(t/m³)	saturo				
						(t/m³)				
9.3	1.35	8.3	Incoerent	0	1.48	1.84	0.69	1.2	1	Strato 1
			e -							
			coesivo							
11.1	6.17	29.7	Incoerent	0	1.86	1.9	1.54	1.2	7	Strato 2
			e -							
			coesivo							



PROVA PENETROMETRICA DINAMICA DPSH 2 Strumento utilizzato... Deep Drill SP200-SM

Certificato Nr.40 del 2022 Verbale di accettazione nr. 87/22 Codice commessa nr. 01089

Committente: Acea Elabori spa Descrizione: Manufatto di Interconnessione Nuovo Acquedotto Marcio Localita': Comune di Mandela (RM) 03-03-2022

Scala 1:55

STIMA PARAMETRI GEOTECNICI PROVA DPSH 2

TERRENI COESIVI

Coesione non drenata

Descrizione	NSPT	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm²)
Strato (1)	1.00	0.00-9.30	Terzaghi-Peck	0.06
Strato 1				
Strato (2)	7.00	9.30-11.10	Terzaghi-Peck	0.44
Strato 2				

Qc (Resistenza punta Penetrometro Statico)

-		•			
	Descrizione	NSPT	Prof. Strato	Correlazione	Qc
			(m)		(Kg/cm²)
	Strato (1)	1.00	0.00-9.30	Robertson (1983)	1.50
	Strato 1				
	Strato (2)	7.00	9.30-11.10	Robertson (1983)	10.50
	Strato 2				

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm²)
Strato (1)	1.00	0.00-9.30	Stroud e Butler (1975)	6.12
Strato 1				
Strato (2)	7.00	9.30-11.10	Stroud e Butler (1975)	42.83
Strato 2				

Modulo di Young

modalo di roding				
Descrizione	NSPT	Prof. Strato	Correlazione	Еу
		(m)		(Kg/cm²)
Strato (1)	1.00	0.00-9.30	Apollonia	10.00
Strato 1				
Strato (2)	7.00	9.30-11.10	Apollonia	70.00
Strato 2				

Classificazione AGI

Descrizione	NSPT	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato (1)	1.00	0.00-9.30	A.G.I. (1977)	PRIVO DI CONSISTENZA
Strato 1				
Strato (2)	7.00	9.30-11.10	A.G.I. (1977)	MODERAT.
Strato 2				CONSISTENTE

Peso unita' di volume

Descrizione	NSPT	Prof. Strato	Correlazione	Peso unita' di volume
		(m)		(t/m³)
Strato (1)	1.00	0.00-9.30	Meyerhof	1.48
Strato 1				
Strato (2)	7.00	9.30-11.10	Meyerhof	1.86
Strato 2				

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo (t/m³)	
Strato (1)	1.00	0.00-9.30	Meyerhof		
Strato 1					
Strato (2)	7.00	9.30-11.10	Meyerhof	1.90	
Strato 2					

TERRENI INCOERENTI

Densita' relativa

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densita' relativa
		(m)			(%)
Strato (1)	1.00	0.00-9.30	1.00	Meyerhof 1957	17.82
Strato 1					
Strato (2)	7.00	9.30-11.10	7.00	Meyerhof 1957	37.09
Strato 2					

Angolo di resistenza al taglio

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Angolo d'attrito	
		(m)			(°)	
Strato (1)	1.00	0.00-9.30	1.00	Shioi-Fukuni (1982)	18.87	
Strato 1						
Strato (2)	7.00	9.30-11.10	7.00	Shioi-Fukuni (1982)	25.25	
Strato 2						

Modulo di Young

modulo di roding					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo di Young
			(m)		(Kg/cm²)
Strato (1)	1.00	0.00-9.30	1.00	Bowles (1982)	21.00
Strato 1					
Strato (2)	7.00	9.30-11.10	7.00	Bowles (1982)	39.00
Strato 2					

Modulo Edometrico

Wioddio Edometrico							
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo		
		(m)	(m)		Edometrico		
					(Kg/cm²)		
Strato (1)	1.00	0.00-9.30	1.00	Begemann (1974)	29.52		
Strato 1							
Strato (2)	7.00	9.30-11.10	7.00	Begemann (1974)	41.84		
Strato 2							

Classificazione AGI

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Classificazione AGI
		(m)			
Strato (1)	1.00	0.00-9.30	1.00	Classificazione	SCIOLTO
Strato 1				A.G.I	
Strato (2)	7.00	9.30-11.10	7.00	Classificazione	POCO ADDENSATO
Strato 2				A.G.I	

Peso unita' di volume

Descrizione	(m)		Correlazione	Peso Unita' di Volume (t/m³)	
Strato (1)		0.00-9.30	1.00	Terzaghi-Peck 1948	1.36
Strato 1 Strato (2)		9.30-11.10	7 00	Terzaghi-Peck 1948	1.44
Strato 2		5.50 11.10	7.00	Terzagiii i eek 1340	1.77

Peso unita' di volume saturo

i coo ainta ai voian	eso unita ai volume sataro								
Descrizione	NSPT	Prof. Strato N. Calcolo		Correlazione	Peso Unita'				
			(m)		Volume Saturo				
					(t/m³)				
Strato (1)	1.00	0.00-9.30	1.00	Terzaghi-Peck 1948	1.85				
Strato 1									
Strato (2)	7.00	9.30-11.10	7.00	Terzaghi-Peck 1948	1.90				
Strato 2									

Modulo di deformazione a taglio dinamico

Descrizione	Descrizione NSPT		N. Calcolo	Correlazione	G	
		(m)			(Kg/cm²)	
Strato (1)	1.00	0.00-9.30	1.00	Ohsaki & Iwasaki	118.20	
Strato 1						
Strato (2)	7.00	9.30-11.10	7.00	Ohsaki & Iwasaki	518.67	
Strato 2						

Coefficiente spinta a Riposo

oo oo. opta									
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	K0				
		(m)							
Strato (1)	1.00	0.00-9.30	1.00	Navfac 1971-1982	0.02				
Strato 1									
Strato (2)	7.00	9.30-11.10	7.00	Navfac 1971-1982	1.44				
Strato 2									

Qc (Resistenza punta Penetrometro Statico)

ac (nesistenza par	e (nesistenza panta i enetrometro statico)										
Descrizione	Descrizione NSPT		N. Calcolo	Correlazione	Qc						
		(m)			(Kg/cm²)						
Strato (1)	1.00	0.00-9.30	1.00	Robertson 1983	2.00						
Strato 1											
Strato (2)	7.00	9.30-11.10	7.00	Robertson 1983	14.00						
Strato 2											

PROVA ...DPSH 3

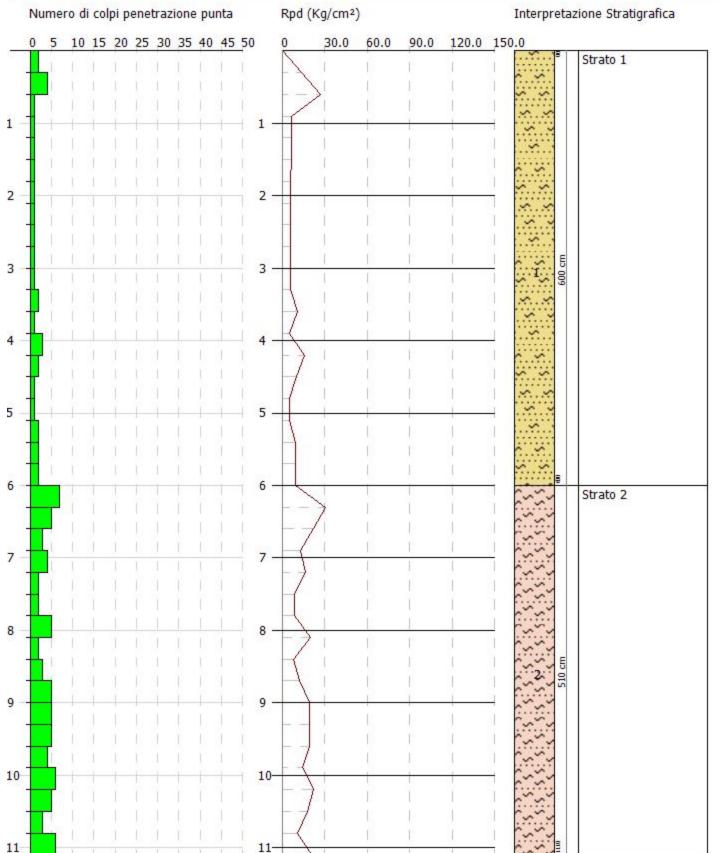
Strumento utilizzato... Deep Drill SP200-SM
Prova eseguita in data 03-03-2022
Profondita' prova 11.10 mt
Falda rilevata
Certificato Nr.40 del 2022
Verbale di accettazione nr. 87/22
Codice commessa nr. 01089

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres.	Pres.
	·	riduzione sonda	ridotta	(Kg/cm²)	ammissibile con	ammissibile
		Chi	(Kg/cm²)	, 5. ,	riduzione	Herminier -
			, 0, ,		Herminier -	Olandesi
					Olandesi	(Kg/cm²)
					(Kg/cm²)	,
0.30	2	0.853	13.69	16.05	0.68	0.80
0.60	4	0.847	27.19	32.10	1.36	1.61
0.90	1	0.842	6.37	7.57	0.32	0.38
1.20	1	0.836	6.33	7.57	0.32	0.38
1.50	1	0.831	6.29	7.57	0.31	0.38
1.80	1	0.826	5.92	7.16	0.30	0.36
2.10	1	0.822	5.89	7.16	0.29	0.36
2.40	1	0.817	5.85	7.16	0.29	0.36
2.70	1	0.813	5.52	6.80	0.28	0.34
3.00	1	0.809	5.50	6.80	0.27	0.34
3.30	1	0.805	5.47	6.80	0.27	0.34
3.60	2	0.801	10.36	12.93	0.52	0.65
3.90	1	0.797	5.16	6.47	0.26	0.32
4.20	3	0.794	15.40	19.40	0.77	0.97
4.50	2	0.790	9.75	12.34	0.49	0.62
4.80	1	0.787	4.85	6.17	0.24	0.31
5.10	1	0.784	4.84	6.17	0.24	0.31
5.40	2	0.781	9.21	11.79	0.46	0.59
5.70	2	0.778	9.17	11.79	0.46	0.59
6.00	2	0.775	9.14	11.79	0.46	0.59
6.30	7	0.773	30.54	39.52	1.53	1.98
6.60	5	0.770	21.74	28.23	1.09	1.41
6.90	3	0.768	13.01	16.94	0.65	0.85
7.20	4	0.766	16.59	21.66	0.83	1.08
7.50	2	0.763	8.27	10.83	0.41	0.54
7.80	2	0.761	8.25	10.83	0.41	0.54
8.10	5	0.759	19.76	26.02	0.99	1.30
8.40	2	0.757	7.88	10.41	0.39	0.52
8.70	3	0.755	11.79	15.61	0.59	0.78
9.00	5	0.753	18.87	25.04	0.94	1.25
9.30	5	0.752	18.82	25.04	0.94	1.25
9.60	5	0.750	18.78	25.04	0.94	1.25
9.90	4	0.748	14.45	19.31	0.72	0.97
10.20	6	0.747	21.62	28.96	1.08	1.45

10.50	5	0.745	17.98	24.13	0.90	1.21
10.80	3	0.743	10.39	13.97	0.52	0.70
11.10	6	0.742	20.73	27.95	1.04	1.40

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tensione	Coeff. di	NSPT	Descrizio
Strato		(Kg/cm ²)		Fraction	unita' di	unita' di	efficace	correlaz.		ne
(m)				(%)	volume	volume	(Kg/cm ²)	con Nspt		
					(t/m^3)	saturo				
						(t/m^3)				
6	1.55	10.58	Incoerent	0	1.48	1.84	0.44	1.2	1	Strato 1
			e -							
			coesivo							
11.1	4.24	21.74	Incoerent	0	1.76	1.88	1.34	1.2	5	Strato 2
			e -							
			coesivo							


PROVA PENETROMETRICA DINAMICA DPSH 3 Strumento utilizzato... Deep Drill SP200-SM

Certificato Nr.40 del 2022 Verbale di accettazione nr. 87/22 Codice commessa nr. 01089

Committente: Acea Elabori spa Descrizione: Manufatto di Interconnessione Nuovo Acquedotto Marcio Localita': Comune di Mandela (RM)

Scala 1:55

03-03-2022

STIMA PARAMETRI GEOTECNICI PROVA DPSH 3

TERRENI COESIVI

Coesione non drenata

Descrizione	NSPT	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm²)
Strato (1)	1.00	0.00-6.00	Terzaghi-Peck	0.06
Strato 1				
Strato (2)	5.00	6.00-11.10	Terzaghi-Peck	0.31
Strato 2				

Qc (Resistenza punta Penetrometro Statico)

-	• • •	•			
	Descrizione	NSPT	Prof. Strato	Correlazione	Qc
			(m)		(Kg/cm²)
	Strato (1)	1.00	0.00-6.00	Robertson (1983)	1.50
	Strato 1				
	Strato (2)	5.00	6.00-11.10	Robertson (1983)	7.50
	Strato 2				

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm²)
Strato (1)	1.00	0.00-6.00	Stroud e Butler (1975)	6.12
Strato 1				
Strato (2)	5.00	6.00-11.10	Stroud e Butler (1975)	30.59
Strato 2				

Modulo di Young

Widdio ai Tourig				
Descrizione	NSPT	Prof. Strato	Correlazione	Еу
		(m)		(Kg/cm²)
Strato (1)	1.00	0.00-6.00	Apollonia	10.00
Strato 1				
Strato (2)	5.00	6.00-11.10	Apollonia	50.00
Strato 2				

Classificazione AGI

Descrizione	NSPT	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato (1)	1.00	0.00-6.00	A.G.I. (1977)	PRIVO DI CONSISTENZA
Strato 1				
Strato (2)	5.00	6.00-11.10	A.G.I. (1977)	MODERAT.
Strato 2				CONSISTENTE

Peso unita' di volume

Descrizione	NSPT	Prof. Strato	Correlazione	Peso unita' di volume
		(m)		(t/m^3)
Strato (1)	1.00	0.00-6.00	Meyerhof	1.48
Strato 1				
Strato (2)	5.00	6.00-11.10	Meyerhof	1.76
Strato 2				

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo (t/m³)	
Strato (1)	1.00	0.00-6.00	Meyerhof	1.84	
Strato 1					
Strato (2)	5.00	6.00-11.10	Meyerhof	1.88	
Strato 2					

TERRENI INCOERENTI

Densita' relativa

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densita' relativa
		(m)			(%)
Strato (1)	1.00	0.00-6.00	1.00	Meyerhof 1957	19.63
Strato 1					
Strato (2)	5.00	6.00-11.10	5.00	Meyerhof 1957	32.9
Strato 2					

Angolo di resistenza al taglio

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Angolo d'attrito
		(m)			(°)
Strato (1)	1.00	0.00-6.00	1.00	Shioi-Fukuni (1982)	18.87
Strato 1					
Strato (2)	5.00	6.00-11.10	5.00	Shioi-Fukuni (1982)	23.66
Strato 2					

Modulo di Young

Widdelig at Tourig					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo di Young
		(m)			(Kg/cm²)
Strato (1)	1.00	0.00-6.00	1.00	Bowles (1982)	21.00
Strato 1					
Strato (2)	5.00	6.00-11.10	5.00	Bowles (1982)	33.00
Strato 2					

Modulo Edometrico

Wiodalo Edollictric					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo
		(m)			Edometrico
					(Kg/cm²)
Strato (1)	1.00	0.00-6.00	1.00	Begemann (1974)	29.52
Strato 1					
Strato (2)	5.00	6.00-11.10	5.00	Begemann (1974)	37.73
Strato 2					

Classificazione AGI

Classificationic / (C)					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Classificazione AGI
		(m)			
Strato (1)	1.00	0.00-6.00	1.00	Classificazione	SCIOLTO
Strato 1				A.G.I	
Strato (2)	5.00	6.00-11.10	5.00	Classificazione	POCO ADDENSATO
Strato 2				A.G.I	

Peso unita' di volume

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Peso Unita' di Volume (t/m³)
Strato (1)	1.00	0.00-6.00	1.00	Terzaghi-Peck 1948	1.36
Strato 1					
Strato (2)	5.00	6.00-11.10	5.00	Terzaghi-Peck 1948	1.41
Strato 2					

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Peso Unita' Volume Saturo (t/m³)
Strato (1) Strato 1		0.00-6.00	1.00	Terzaghi-Peck 1948	, ,
Strato (2) Strato 2		6.00-11.10	5.00	Terzaghi-Peck 1948	1.88

Modulo di deformazione a taglio dinamico

	Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G
			(m)			(Kg/cm²)
Ī	Strato (1)	1.00	0.00-6.00	1.00	Ohsaki & Iwasaki	118.20
	Strato 1					
Ī	Strato (2)	5.00	6.00-11.10	5.00	Ohsaki & Iwasaki	401.64
	Strato 2					

Coefficiente spinta a Riposo

oo om one op mad	ap 000				
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	K0
		(m)			
Strato (1)	1.00	0.00-6.00	1.00	Navfac 1971-1982	0.02
Strato 1					
Strato (2)	5.00	6.00-11.10	5.00	Navfac 1971-1982	0.99
Strato 2					

Qc (Resistenza punta Penetrometro Statico)

_	de (Resistenza panta i enetrometro statico)							
	Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Qc		
			(m)			(Kg/cm²)		
	Strato (1)	1.00	0.00-6.00	1.00	Robertson 1983	2.00		
	Strato 1							
	Strato (2)	5.00	6.00-11.10	5.00	Robertson 1983	10.00		
	Strato 2							

PROVA ...DPSH 4

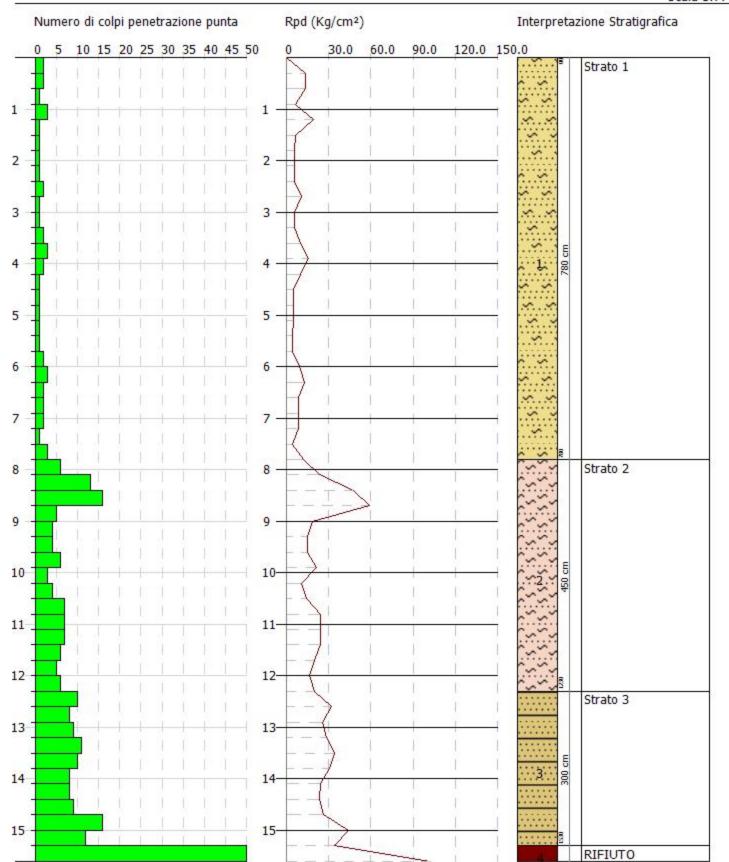
Strumento utilizzato... Deep Drill SP200-SM
Prova eseguita in data 23-03-2022
Profondita' prova 15.60 mt
Falda rilevata
Certificato Nr.40 del 2022
Verbale di accettazione nr. 87/22
Codice commessa nr. 01089

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres.	Pres.
, ,	·	riduzione sonda	ridotta	(Kg/cm²)	ammissibile con	ammissibile
		Chi	(Kg/cm²)	, 5. ,	riduzione	Herminier -
					Herminier -	Olandesi
					Olandesi	(Kg/cm²)
					(Kg/cm²)	,,
0.30	2	0.853	13.69	16.05	0.68	0.80
0.60	2	0.847	13.60	16.05	0.68	0.80
0.90	1	0.842	6.37	7.57	0.32	0.38
1.20	3	0.836	18.99	22.71	0.95	1.14
1.50	1	0.831	6.29	7.57	0.31	0.38
1.80	1	0.826	5.92	7.16	0.30	0.36
2.10	1	0.822	5.89	7.16	0.29	0.36
2.40	1	0.817	5.85	7.16	0.29	0.36
2.70	2	0.813	11.05	13.59	0.55	0.68
3.00	1	0.809	5.50	6.80	0.27	0.34
3.30	1	0.805	5.47	6.80	0.27	0.34
3.60	2	0.801	10.36	12.93	0.52	0.65
3.90	3	0.797	15.47	19.40	0.77	0.97
4.20	2	0.794	10.27	12.93	0.51	0.65
4.50	1	0.790	4.87	6.17	0.24	0.31
4.80	1	0.787	4.85	6.17	0.24	0.31
5.10	1	0.784	4.84	6.17	0.24	0.31
5.40	1	0.781	4.60	5.89	0.23	0.29
5.70	1	0.778	4.59	5.89	0.23	0.29
6.00	2	0.775	9.14	11.79	0.46	0.59
6.30	3	0.773	13.09	16.94	0.65	0.85
6.60	2	0.770	8.70	11.29	0.43	0.56
6.90	2	0.768	8.67	11.29	0.43	0.56
7.20	2	0.766	8.29	10.83	0.41	0.54
7.50	1	0.763	4.13	5.42	0.21	0.27
7.80	3	0.761	12.37	16.25	0.62	0.81
8.10	6	0.759	23.71	31.22	1.19	1.56
8.40	13	0.707	47.85	67.65	2.39	3.38
8.70	16	0.705	58.73	83.27	2.94	4.16
9.00	5	0.753	18.87	25.04	0.94	1.25
9.30	4	0.752	15.06	20.03	0.75	1.00
9.60	4	0.750	15.02	20.03	0.75	1.00
9.90	6	0.748	21.67	28.96	1.08	1.45
10.20	3	0.747	10.81	14.48	0.54	0.72

10.50	4	0.745	14.38	19.31	0.72	0.97
10.80	7	0.743	24.24	32.61	1.21	1.63
11.10	7	0.742	24.19	32.61	1.21	1.63
11.40	7	0.740	24.14	32.61	1.21	1.63
11.70	6	0.739	19.95	27.01	1.00	1.35
12.00	5	0.737	16.59	22.50	0.83	1.13
12.30	6	0.736	19.87	27.01	0.99	1.35
12.60	10	0.734	31.96	43.54	1.60	2.18
12.90	8	0.733	25.52	34.83	1.28	1.74
13.20	9	0.731	28.65	39.18	1.43	1.96
13.50	11	0.729	33.83	46.38	1.69	2.32
13.80	10	0.728	30.69	42.16	1.53	2.11
14.10	8	0.726	24.50	33.73	1.22	1.69
14.40	8	0.725	23.69	32.69	1.18	1.63
14.70	9	0.723	26.59	36.78	1.33	1.84
15.00	16	0.671	43.88	65.39	2.19	3.27
15.30	12	0.719	34.23	47.58	1.71	2.38
15.60	RIFIUTO	-	-	-	-	-

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tensione	Coeff. di	NSPT	Descrizio
Strato		(Kg/cm ²)		Fraction	unita' di	unita' di	efficace	correlaz.		ne
(m)				(%)	volume	volume	(Kg/cm²)	con Nspt		
					(t/m³)	saturo				
						(t/m³)				
7.8	1.65	10.69	Incoerent	0	1.48	1.84	0.58	1.2	1	Strato 1
			e -							
			coesivo							
12.3	6.6	32.29	Incoerent	0	1.86	1.9	1.57	1.2	7	Strato 2
			e -							
			coesivo							
15.3	10.1	42.23	Incoerent	0	2.02	2.22	2.29	1.2	12	Strato 3
			e -							
			coesivo							


PROVA PENETROMETRICA DINAMICA DPSH 4 Strumento utilizzato... Deep Drill SP200-SM

Certificato Nr.40 del 2022 Verbale di accettazione nr. 87/22 Codice commessa nr. 01089

23-03-2022

Committente: Acea Elabori spa Descrizione: Manufatto di Interconnessione Nuovo Acquedotto Marcio Localita': Comune di Mandela (RM)

Scala 1:77

STIMA PARAMETRI GEOTECNICI PROVA DPSH 4

TERRENI COESIVI

Coesione non drenata

Descrizione	NSPT	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm²)
Strato (1)	1.00	0.00-7.80	Terzaghi-Peck	0.06
Strato 1				
Strato (2)	7.00	7.80-12.30	Terzaghi-Peck	0.44
Strato 2				
Strato (3)	12.00	12.30-15.30	Terzaghi-Peck	0.81
Strato 3				

Qc (Resistenza punta Penetrometro Statico)

Descrizione	NSPT	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm²)
Strato (1)	1.00	0.00-7.80	Robertson (1983)	1.50
Strato 1				
Strato (2)	7.00	7.80-12.30	Robertson (1983)	10.50
Strato 2				
Strato (3)	12.00	12.30-15.30	Robertson (1983)	18.00
Strato 3				

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm²)
Strato (1)	1.00	0.00-7.80	Stroud e Butler (1975)	6.12
Strato 1				
Strato (2)	7.00	7.80-12.30	Stroud e Butler (1975)	42.83
Strato 2				
Strato (3)	12.00	12.30-15.30	Stroud e Butler (1975)	73.42
Strato 3				

Modulo di Young

Descrizione	NSPT	Prof. Strato	Correlazione	Еу				
		(m)		(Kg/cm²)				
Strato (1)	1.00	0.00-7.80	Apollonia	10.00				
Strato 1								
Strato (2)	7.00	7.80-12.30	Apollonia	70.00				
Strato 2								
Strato (3)	12.00	12.30-15.30	Apollonia	120.00				
Strato 3								

Classificazione AGI

Classifications Adi				
Descrizione	NSPT	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato (1)	1.00	0.00-7.80	A.G.I. (1977)	PRIVO DI CONSISTENZA
Strato 1				
Strato (2)	7.00	7.80-12.30	A.G.I. (1977)	MODERAT.
Strato 2				CONSISTENTE
Strato (3)	12.00	12.30-15.30	A.G.I. (1977)	CONSISTENTE
Strato 3				

Peso unita' di volume

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume (t/m³)
Strato (1)	1.00	0.00-7.80	Meyerhof	1.48
Strato 1				
Strato (2)	7.00	7.80-12.30	Meyerhof	1.86
Strato 2				
Strato (3)	12.00	12.30-15.30	Meyerhof	2.02
Strato 3				

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo (t/m³)	
Strato (1) Strato 1		0.00-7.80	Meyerhof	1.84	
Strato (2) Strato 2		7.80-12.30	Meyerhof	1.90	
Strato (3) Strato 3		12.30-15.30	Meyerhof	2.22	

TERRENI INCOERENTI

Densita' relativa

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densita' relativa		
		(m)			(%)		
Strato (1)	1.00	0.00-7.80	1.00	Meyerhof 1957	18.58		
Strato 1							
Strato (2)	7.00	7.80-12.30	7.00	Meyerhof 1957	36.85		
Strato 2							
Strato (3)	12.00	12.30-15.30	12.00	Meyerhof 1957	42.04		
Strato 3							

Angolo di resistenza al taglio

7 11 100 01 1 1 1 1 1 1 1 1 1 1 1					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Angolo d'attrito
		(m)			(°)
Strato (1)	1.00	0.00-7.80	1.00	Shioi-Fukuni (1982)	18.87
Strato 1					
Strato (2)	7.00	7.80-12.30	7.00	Shioi-Fukuni (1982)	25.25
Strato 2					
Strato (3)	12.00	12.30-15.30	12.00	Shioi-Fukuni (1982)	28.42
Strato 3					

Modulo di Young

Widdie di Toding	Trouble at Touring					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo di Young	
		(m)			(Kg/cm²)	
Strato (1)	1.00	0.00-7.80	1.00	Bowles (1982)	21.00	
Strato 1						
Strato (2)	7.00	7.80-12.30	7.00	Bowles (1982)	39.00	
Strato 2						
Strato (3)	12.00	12.30-15.30	12.00	Bowles (1982)	54.00	
Strato 3						

Modulo Edometrico

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Modulo Edometrico (Kg/cm²)
Strato (1) Strato 1		0.00-7.80	1.00	Begemann (1974)	29.52
Strato (2) Strato 2		7.80-12.30	7.00	Begemann 1974 (Ghiaia con sabbia)	
Strato (3) Strato 3		12.30-15.30	12.00	Begemann (1974)	52.11

Classificazione AGI

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Classificazione AGI
		(m)			
Strato (1)	1.00	0.00-7.80	1.00	Classificazione	SCIOLTO
Strato 1				A.G.I	
Strato (2)	7.00	7.80-12.30	7.00	Classificazione	POCO ADDENSATO
Strato 2				A.G.I	
Strato (3)	12.00	12.30-15.30	12.00	Classificazione	MODERATAMENTE
Strato 3				A.G.I	ADDENSATO

Peso unita' di volume

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Peso Unita' di Volume (t/m³)
Strato (1) Strato 1		0.00-7.80	1.00	Terzaghi-Peck 1948	1.36
Strato (2) Strato 2		7.80-12.30	7.00	Terzaghi-Peck 1948	1.44
Strato (3) Strato 3		12.30-15.30	12.00	Terzaghi-Peck 1948	1.50

Peso unita' di volume saturo

r coo annea an volun					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita'
		(m)			Volume Saturo
					(t/m³)
Strato (1)	1.00	0.00-7.80	1.00	Terzaghi-Peck 1948	1.85
Strato 1					
Strato (2)	7.00	7.80-12.30	7.00	Terzaghi-Peck 1948	1.90
Strato 2					
Strato (3)	12.00	12.30-15.30	12.00	Terzaghi-Peck 1948	1.94
Strato 3					

Modulo di deformazione a taglio dinamico

_	module at acterma	zione a tagno amami	100			
	Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G
			(m)			(Kg/cm²)
	Strato (1)	1.00	0.00-7.80	1.00	Ohsaki & Iwasaki	118.20
	Strato 1					
	Strato (2)	7.00	7.80-12.30	7.00	Ohsaki & Iwasaki	518.67
	Strato 2					
	Strato (3)	12.00	12.30-15.30	12.00	Ohsaki & Iwasaki	781.26
	Strato 3					

Coefficiente spinta a Riposo

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	КО
Strato (1) Strato 1		0.00-7.80	1.00	Navfac 1971-1982	0.02
Strato (2) Strato 2		7.80-12.30	7.00	Navfac 1971-1982	1.44
Strato (3) Strato 3		12.30-15.30	12.00	Navfac 1971-1982	2.52

Qc (Resistenza punta Penetrometro Statico)

Q0 (
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Qc
		(m)			(Kg/cm²)
Strato (1)	1.00	0.00-7.80	1.00	Robertson 1983	2.00
Strato 1					
Strato (2)	7.00	7.80-12.30	7.00	Robertson 1983	14.00
Strato 2					
Strato (3)	12.00	12.30-15.30	12.00	Robertson 1983	24.00
Strato 3					

PROVA ...DPSH 5

Strumento utilizzato... Deep Drill SP200-SM
Prova eseguita in data 23-03-2022
Profondita' prova 15.00 mt
Falda rilevata
Certificato Nr.40 del 2022
Verbale di accettazione nr. 87/22
Codice commessa nr. 01089

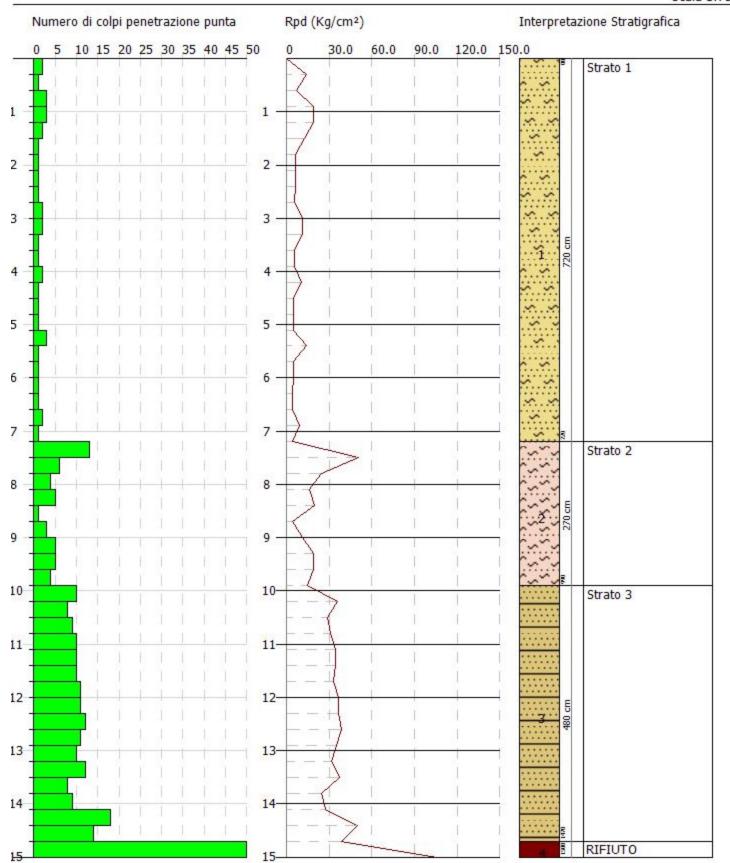
Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres.	Pres.
(,		riduzione sonda	ridotta	(Kg/cm²)	ammissibile con	ammissibile
		Chi	(Kg/cm²)	(0/ - /	riduzione	Herminier -
			(6/ - /		Herminier -	Olandesi
					Olandesi	(Kg/cm²)
					(Kg/cm²)	(6,
0.30	2	0.853	13.69	16.05	0.68	0.80
0.60	1	0.847	6.80	8.03	0.34	0.40
0.90	3	0.842	19.11	22.71	0.96	1.14
1.20	3	0.836	18.99	22.71	0.95	1.14
1.50	2	0.831	12.58	15.14	0.63	0.76
1.80	1	0.826	5.92	7.16	0.30	0.36
2.10	1	0.822	5.89	7.16	0.29	0.36
2.40	1	0.817	5.85	7.16	0.29	0.36
2.70	1	0.813	5.52	6.80	0.28	0.34
3.00	2	0.809	10.99	13.59	0.55	0.68
3.30	2	0.805	10.94	13.59	0.55	0.68
3.60	1	0.801	5.18	6.47	0.26	0.32
3.90	1	0.797	5.16	6.47	0.26	0.32
4.20	2	0.794	10.27	12.93	0.51	0.65
4.50	1	0.790	4.87	6.17	0.24	0.31
4.80	1	0.787	4.85	6.17	0.24	0.31
5.10	1	0.784	4.84	6.17	0.24	0.31
5.40	3	0.781	13.81	17.68	0.69	0.88
5.70	1	0.778	4.59	5.89	0.23	0.29
6.00	1	0.775	4.57	5.89	0.23	0.29
6.30	1	0.773	4.36	5.65	0.22	0.28
6.60	1	0.770	4.35	5.65	0.22	0.28
6.90	2	0.768	8.67	11.29	0.43	0.56
7.20	1	0.766	4.15	5.42	0.21	0.27
7.50	13	0.713	50.23	70.40	2.51	3.52
7.80	6	0.761	24.74	32.49	1.24	1.62
8.10	4	0.759	15.80	20.82	0.79	1.04
8.40	5	0.757	19.70	26.02	0.99	1.30
8.70	1	0.755	3.93	5.20	0.20	0.26
9.00	3	0.753	11.32	15.03	0.57	0.75
9.30	5	0.752	18.82	25.04	0.94	1.25
9.60	5	0.750	18.78	25.04	0.94	1.25
9.90	4	0.748	14.45	19.31	0.72	0.97
10.20	10	0.747	36.04	48.27	1.80	2.41

10.50	8	0.745	28.77	38.62	1.44	1.93
10.80	9	0.743	31.17	41.92	1.56	2.10
11.10	10	0.742	34.56	46.58	1.73	2.33
11.40	10	0.740	34.48	46.58	1.72	2.33
11.70	10	0.739	33.25	45.01	1.66	2.25
12.00	11	0.737	36.50	49.51	1.82	2.48
12.30	11	0.736	36.42	49.51	1.82	2.48
12.60	12	0.734	38.36	52.25	1.92	2.61
12.90	11	0.733	35.09	47.89	1.75	2.39
13.20	10	0.731	31.83	43.54	1.59	2.18
13.50	12	0.729	36.91	50.59	1.85	2.53
13.80	8	0.728	24.55	33.73	1.23	1.69
14.10	9	0.726	27.56	37.94	1.38	1.90
14.40	18	0.675	49.62	73.56	2.48	3.68
14.70	14	0.673	38.50	57.21	1.92	2.86
15.00	RIFIUTO	-	-	-	-	-

Prof. Strato (m)	NPDM	Rd (Kg/cm²)	Tipo	Clay Fraction (%)	Peso unita' di volume (t/m³)	Peso unita' di volume saturo (t/m³)	Tensione efficace (Kg/cm²)	Coeff. di correlaz. con Nspt	NSPT	Descrizio ne
7.2	1.5	10.08	Incoerent e - coesivo	0	1.48	1.84	0.53	1.2	1	Strato 1
9.9	5.11	26.59	Incoerent e - coesivo	0	1.81	1.89	1.31	1.2	6	Strato 2
14.7	10.81	47.67	Incoerent e - coesivo	0	2.02	2.22	2.04	1.2	13	Strato 3

PROVA PENETROMETRICA DINAMICA DPSH 5 Strumento utilizzato... Deep Drill SP200-SM


Certificato Nr.40 del 2022 Verbale di accettazione nr. 87/22 Codice commessa nr. 01089

23-03-2022

Committente: Acea Elabori spa Descrizione: Manufatto di Interconnessione Nuovo Acquedotto Marcio

Localita': Comune di Mandela (RM)

Scala 1:75

STIMA PARAMETRI GEOTECNICI PROVA DPSH 5

TERRENI COESIVI

Coesione non drenata

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Cu (Kg/cm²)
Strato (1)	1.00	0.00-7.20	Terzaghi-Peck	0.06
Strato 1				
Strato (2)	6.00	7.20-9.90	Terzaghi-Peck	0.38
Strato 2				
Strato (3)	13.00	9.90-14.70	Terzaghi-Peck	0.88
Strato 3				

Qc (Resistenza punta Penetrometro Statico)

		,			
Descrizione		NSPT	Prof. Strato	Correlazione	Qc
			(m)		(Kg/cm²)
	Strato (1)	1.00	0.00-7.20	Robertson (1983)	1.50
	Strato 1				
	Strato (2)	6.00	7.20-9.90	Robertson (1983)	9.00
	Strato 2				
	Strato (3)	13.00	9.90-14.70	Robertson (1983)	19.50
	Strato 3				

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm²)
Strato (1)	1.00	0.00-7.20	Stroud e Butler (1975)	6.12
Strato 1				
Strato (2)	6.00	7.20-9.90	Stroud e Butler (1975)	36.71
Strato 2				
Strato (3)	13.00	9.90-14.70	Stroud e Butler (1975)	79.53
Strato 3				

Modulo di Young

Descrizione		NSPT	Prof. Strato	Correlazione	Еу
			(m)		(Kg/cm²)
	Strato (1)	1.00	0.00-7.20	Apollonia	10.00
	Strato 1				
	Strato (2)	6.00	7.20-9.90	Apollonia	60.00
	Strato 2				
	Strato (3)	13.00	9.90-14.70	Apollonia	130.00
	Strato 3				

Classificazione AGI

Classificazio	7110 7 101				•
Descri	Descrizione NSPT		Prof. Strato	Correlazione	Classificazione
			(m)		
	Strato (1)	1.00	0.00-7.20	A.G.I. (1977)	PRIVO DI CONSISTENZA
	Strato 1				
	Strato (2)	6.00	7.20-9.90	A.G.I. (1977)	MODERAT.
	Strato 2				CONSISTENTE
	Strato (3)	13.00	9.90-14.70	A.G.I. (1977)	CONSISTENTE
	Strato 3				

Peso unita' di volume

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume (t/m³)
Strato (1)	1.00	0.00-7.20	Meyerhof	1.48
Strato 1				
Strato (2)	6.00	7.20-9.90	Meyerhof	1.81
Strato 2				
Strato (3)	13.00	9.90-14.70	Meyerhof	2.04
Strato 3				

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo (t/m³)	
Strato (1) Strato 1		0.00-7.20	Meyerhof	1.84	
Strato (2) Strato 2		7.20-9.90	Meyerhof	1.89	
Strato (3) Strato 3		9.90-14.70	Meyerhof	2.24	

TERRENI INCOERENTI

Densita' relativa

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densita' relativa
		(m)			(%)
Strato (1)	1.00	0.00-7.20	1.00	Meyerhof 1957	18.91
Strato 1					
Strato (2)	6.00	7.20-9.90	6.00	Meyerhof 1957	36.28
Strato 2					
Strato (3)	13.00	9.90-14.70	13.00	Meyerhof 1957	45.75
Strato 3					

Angolo di resistenza al taglio

0					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Angolo d'attrito
		(m)			(°)
Strato (1)	1.00	0.00-7.20	1.00	Shioi-Fukuni (1982)	18.87
Strato 1					
Strato (2)	6.00	7.20-9.90	6.00	Shioi-Fukuni (1982)	24.49
Strato 2					
Strato (3)	13.00	9.90-14.70	13.00	Shioi-Fukuni (1982)	28.96
Strato 3					

Modulo di Young

	Widdle of Touris								
Descrizione		NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo di Young			
			(m)			(Kg/cm²)			
	Strato (1)	1.00	0.00-7.20	1.00	Bowles (1982)	21.00			
	Strato 1								
	Strato (2)	6.00	7.20-9.90	6.00	Bowles (1982)	36.00			
	Strato 2								
	Strato (3)	13.00	9.90-14.70	13.00	Bowles (1982)	57.00			
	Strato 3								

Modulo Edometrico

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Modulo Edometrico (Kg/cm²)
Strato (1) Strato 1		0.00-7.20	1.00	Begemann (1974)	29.52
Strato (2) Strato 2		7.20-9.90	6.00	Begemann (1974)	39.79
Strato (3) Strato 3		9.90-14.70	13.00	Begemann (1974)	54.17

Classificazione AGI

-	Classification (7 to)							
	Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Classificazione AGI		
			(m)					
	Strato (1)	1.00	0.00-7.20	1.00	Classificazione	SCIOLTO		
	Strato 1				A.G.I			
	Strato (2)	6.00	7.20-9.90	6.00	Classificazione	POCO ADDENSATO		
	Strato 2				A.G.I			
	Strato (3)	13.00	9.90-14.70	13.00	Classificazione	MODERATAMENTE		
	Strato 3				A.G.I	ADDENSATO		

Peso unita' di volume

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Peso Unita' di Volume (t/m³)
Strato (1) Strato 1		0.00-7.20	1.00	Terzaghi-Peck 1948	1.36
Strato (2) Strato 2		7.20-9.90	6.00	Terzaghi-Peck 1948	1.43
Strato (3) Strato 3		9.90-14.70	13.00	Terzaghi-Peck 1948	1.51

Peso unita' di volume saturo

1 eso unita di volune saturo									
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita'				
		(m)			Volume Saturo				
					(t/m³)				
Strato (1)	1.00	0.00-7.20	1.00	Terzaghi-Peck 1948	1.85				
Strato 1									
Strato (2)	6.00	7.20-9.90	6.00	Terzaghi-Peck 1948	1.89				
Strato 2									
Strato (3)	13.00	9.90-14.70	13.00	Terzaghi-Peck 1948	1.94				
Strato 3									

Modulo di deformazione a taglio dinamico

11100	Woodilo di deformazione a tagno dinamico								
	Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G			
			(m)			(Kg/cm²)			
	Strato (1)	1.00	0.00-7.20	1.00	Ohsaki & Iwasaki	118.20			
	Strato 1								
	Strato (2)	6.00	7.20-9.90	6.00	Ohsaki & Iwasaki	461.33			
	Strato 2								
	Strato (3)	13.00	9.90-14.70	13.00	Ohsaki & Iwasaki	830.26			
	Strato 3								

Coefficiente spinta a Riposo

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	КО
Strato (1) Strato 1		0.00-7.20	1.00	Navfac 1971-1982	0.02
Strato (2)	6.00	7.20-9.90	6.00	Navfac 1971-1982	1.22
Strato 2					
Strato (3)	13.00	9.90-14.70	13.00	Navfac 1971-1982	2.73
Strato 3					

Qc (Resistenza punta Penetrometro Statico)

as (necessaria partia) circulation of a control of									
Strato N.	. Calcolo	Correlazione	Qc						
(m)			(Kg/cm²)						
0.00-7.20	1.00	Robertson 1983	2.00						
7.20-9.90	6.00	Robertson 1983	12.00						
9.90-14.70	13.00	Robertson 1983	26.00						

PROVA ...DPSH 6

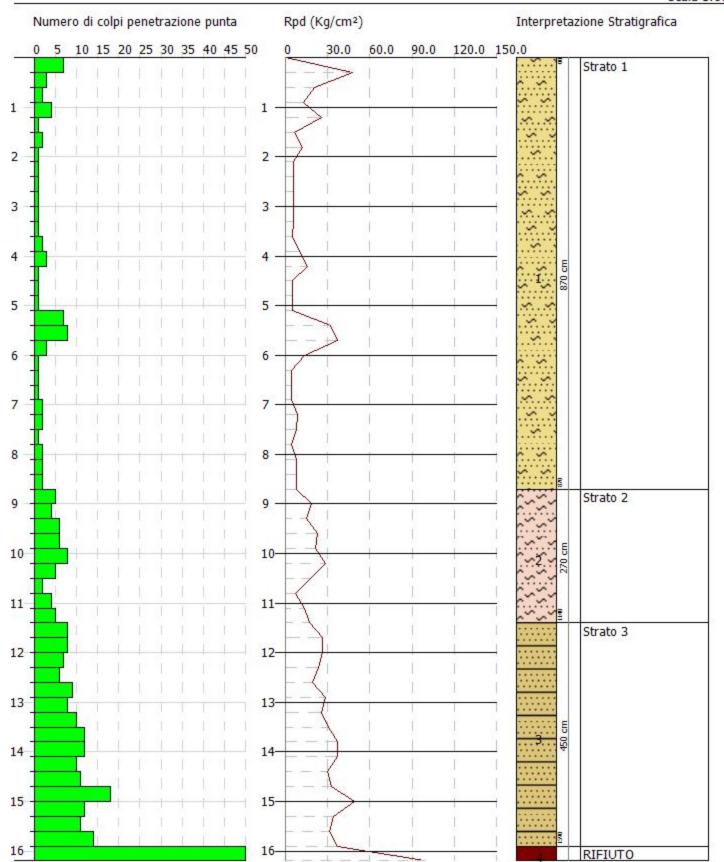
Strumento utilizzato... Deep Drill SP200-SM
Prova eseguita in data 23-03-2022
Profondita' prova 16.20 mt
Falda non rilevata
Certificato Nr.40 del 2022
Verbale di accettazione nr. 87/22
Codice commessa nr. 01089

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres.	Pres.
		riduzione sonda	ridotta	(Kg/cm²)	ammissibile con	ammissibile
		Chi	(Kg/cm²)		riduzione	Herminier -
					Herminier -	Olandesi
					Olandesi	(Kg/cm²)
0.20		0.053	47.00	FC 40	(Kg/cm²)	2.04
0.30	7	0.853	47.90	56.18	2.40	2.81
0.60	3	0.847	20.39	24.08	1.02	1.20
0.90 1.20	4	0.842	12.74	15.14 30.28	0.64 1.27	0.76 1.51
1.50	1	0.836	25.32 6.29	7.57		0.38
1.80	2	0.831 0.826	11.84	14.33	0.31 0.59	0.38
2.10	1	0.822	5.89	7.16	0.29	0.36
2.40 2.70	1	0.817 0.813	5.85 5.52	7.16 6.80	0.29 0.28	0.36 0.34
3.00	1	0.813	5.50	6.80	0.28	0.34
3.30	1	0.805	5.47	6.80	0.27	0.34
3.60	1	0.801	5.18	6.47	0.27	0.34
3.90	2	0.797	10.31	12.93	0.52	0.65
4.20	3	0.794	15.40	19.40	0.32	0.03
4.50	1	0.790	4.87	6.17	0.24	0.31
4.80	1	0.787	4.85	6.17	0.24	0.31
5.10	1	0.784	4.84	6.17	0.24	0.31
5.40	7	0.781	32.23	41.26	1.61	2.06
5.70	8	0.778	36.70	47.16	1.83	2.36
6.00	3	0.775	13.71	17.68	0.69	0.88
6.30	1	0.773	4.36	5.65	0.22	0.28
6.60	1	0.770	4.35	5.65	0.22	0.28
6.90	1	0.768	4.34	5.65	0.22	0.28
7.20	2	0.766	8.29	10.83	0.41	0.54
7.50	2	0.763	8.27	10.83	0.41	0.54
7.80	1	0.761	4.12	5.42	0.21	0.27
8.10	2	0.759	7.90	10.41	0.40	0.52
8.40	2	0.757	7.88	10.41	0.39	0.52
8.70	2	0.755	7.86	10.41	0.39	0.52
9.00	5	0.753	18.87	25.04	0.94	1.25
9.30	4	0.752	15.06	20.03	0.75	1.00
9.60	6	0.750	22.54	30.05	1.13	1.50
9.90	6	0.748	21.67	28.96	1.08	1.45
10.20	8	0.747	28.83	38.62	1.44	1.93

10.50	5	0.745	17.98	24.13	0.90	1.21
10.80	2	0.743	6.93	9.32	0.35	0.47
11.10	4	0.742	13.82	18.63	0.69	0.93
11.40	5	0.740	17.24	23.29	0.86	1.16
11.70	8	0.739	26.60	36.01	1.33	1.80
12.00	8	0.737	26.54	36.01	1.33	1.80
12.30	7	0.736	23.18	31.51	1.16	1.58
12.60	6	0.734	19.18	26.12	0.96	1.31
12.90	9	0.733	28.71	39.18	1.44	1.96
13.20	8	0.731	25.46	34.83	1.27	1.74
13.50	10	0.729	30.76	42.16	1.54	2.11
13.80	12	0.728	36.83	50.59	1.84	2.53
14.10	12	0.726	36.74	50.59	1.84	2.53
14.40	10	0.725	29.61	40.87	1.48	2.04
14.70	11	0.723	32.50	44.95	1.62	2.25
15.00	18	0.671	49.37	73.56	2.47	3.68
15.30	12	0.719	34.23	47.58	1.71	2.38
15.60	11	0.717	31.29	43.62	1.56	2.18
15.90	14	0.666	36.94	55.51	1.85	2.78
16.20	RIFIUTO	-	-	-	-	-

Prof. Strato	NPDM	Rd (Kg/cm²)	Tipo	Clay Fraction	Peso unita' di	Peso unita' di	Tensione efficace	Coeff. di correlaz.	NSPT	Descrizio ne
(m)		(3) - 1		(%)	volume (t/m³)	volume saturo (t/m³)	(Kg/cm²)	con Nspt		
8.7	2.24	14.52	Incoerent	0	1.56	1.85	0.68	1.2	2	Strato 1
			e - coesivo		2.00	2.00	0.00		_	00.000 =
11.4	5	24.23		0	1.76	1.88	1.59	1.2	5	Strato 2
			coesivo							
15.9	10.4	43.54	Incoerent	0	2.02	2.22	2.29	1.2	13	Strato 3
			e -							
			coesivo							


PROVA PENETROMETRICA DINAMICA DPSH 6 Strumento utilizzato... Deep Drill SP200-SM

Certificato Nr.40 del 2022 Verbale di accettazione nr. 87/22 Codice commessa nr. 01089

Committente: Acea Elabori spa Descrizione: Manufatto di Interconnessione Nuovo Acquedotto Marcio Localita': Comune di Mandela (RM)

23-03-2022

Scala 1:80

STIMA PARAMETRI GEOTECNICI PROVA DPSH 6

TERRENI COESIVI

Coesione non drenata

Descrizione	NSPT	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm²)
Strato (1)	2.00	0.00-8.70	Terzaghi-Peck	0.13
Strato 1				
Strato (2)	5.00	8.70-11.40	Terzaghi-Peck	0.31
Strato 2				
Strato (3)	13.00	11.40-15.90	Terzaghi-Peck	0.88
Strato 3				

Qc (Resistenza punta Penetrometro Statico)

		,			
Descrizione		NSPT	Prof. Strato	Correlazione	Qc
			(m)		(Kg/cm²)
	Strato (1)	2.00	0.00-8.70	Robertson (1983)	3.00
	Strato 1				
	Strato (2)	5.00	8.70-11.40	Robertson (1983)	7.50
	Strato 2				
	Strato (3)	13.00	11.40-15.90	Robertson (1983)	19.50
	Strato 3				

Modulo Edometrico

Descrizione	Descrizione NSPT		Correlazione	Eed
		(m)		(Kg/cm²)
Strato (1)	2.00	0.00-8.70	Stroud e Butler (1975)	12.24
Strato 1				
Strato (2)	5.00	8.70-11.40	Stroud e Butler (1975)	30.59
Strato 2				
Strato (3)	13.00	11.40-15.90	Stroud e Butler (1975)	79.53
Strato 3				

Modulo di Young

D	Descrizione NSPT		Prof. Strato	Correlazione	Еу			
			(m)		(Kg/cm²)			
	Strato (1)	2.00	0.00-8.70	Apollonia	20.00			
	Strato 1							
	Strato (2)	5.00	8.70-11.40	Apollonia	50.00			
	Strato 2							
	Strato (3)	13.00	11.40-15.90	Apollonia	130.00			
	Strato 3							

Classificazione AGI

 Classification (Not						
Descrizione	NSPT	Prof. Strato	Correlazione	Classificazione		
		(m)				
Strato (1)	2.00	0.00-8.70	A.G.I. (1977)	PRIVO DI CONSISTENZA		
Strato 1						
Strato (2)	5.00	8.70-11.40	A.G.I. (1977)	MODERAT.		
Strato 2				CONSISTENTE		
Strato (3)	13.00	11.40-15.90	A.G.I. (1977)	CONSISTENTE		
Strato 3						

Peso unita' di volume

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume (t/m³)
Strato (1)	2.00	0.00-8.70	Meyerhof	1.56
Strato 1				
Strato (2)	5.00	8.70-11.40	Meyerhof	1.76
Strato 2				
Strato (3)	13.00	11.40-15.90	Meyerhof	2.04
Strato 3				

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo (t/m³)	
Strato (1) Strato 1		0.00-8.70	Meyerhof	1.85	
Strato (2) Strato 2		8.70-11.40	Meyerhof	1.88	
Strato (3) Strato 3		11.40-15.90	Meyerhof	2.24	

TERRENI INCOERENTI

Densita' relativa

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densita' relativa				
		(m)			(%)				
Strato (1)	2.00	0.00-8.70	2.00	Meyerhof 1957	25.29				
Strato 1									
Strato (2)	5.00	8.70-11.40	5.00	Meyerhof 1957	31				
Strato 2									
Strato (3)	13.00	11.40-15.90	13.00	Meyerhof 1957	43.81				
Strato 3									

Angolo di resistenza al taglio

7 11 10 10 11 1 10 10 10 11 11 11 11 11 1								
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Angolo d'attrito			
		(m)			(°)			
Strato (1)	2.00	0.00-8.70	2.00	Shioi-Fukuni (1982)	20.48			
Strato 1								
Strato (2)	5.00	8.70-11.40	5.00	Shioi-Fukuni (1982)	23.66			
Strato 2								
Strato (3)	13.00	11.40-15.90	13.00	Shioi-Fukuni (1982)	28.96			
Strato 3								

Modulo di Young

Widdulo di Toding					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo di Young
		(m)			(Kg/cm²)
Strato (1)	2.00	0.00-8.70	2.00	Bowles (1982)	24.00
Strato 1					
Strato (2)	5.00	8.70-11.40	5.00	Bowles (1982)	33.00
Strato 2					
Strato (3)	13.00	11.40-15.90	13.00	Bowles (1982)	57.00
Strato 3					

Modulo Edometrico

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Modulo Edometrico (Kg/cm²)
Strato (1)	2.00	0.00-8.70	2.00	Begemann (1974)	31.57
Strato 1					
Strato (2)	5.00	8.70-11.40	5.00	Begemann (1974)	37.73
Strato 2					
Strato (3)	13.00	11.40-15.90	13.00	Begemann (1974)	54.17
Strato 3					

Classificazione AGI

 assimoarione / tor					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Classificazione AGI
		(m)			
Strato (1)	2.00	0.00-8.70	2.00	Classificazione	SCIOLTO
Strato 1				A.G.I	
Strato (2)	5.00	8.70-11.40	5.00	Classificazione	POCO ADDENSATO
Strato 2				A.G.I	
Strato (3)	13.00	11.40-15.90	13.00	Classificazione	MODERATAMENTE
Strato 3				A.G.I	ADDENSATO

Peso unita' di volume

 C30 dilita di voluli					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita' di
		(m)			Volume
					(t/m³)
Strato (1)	2.00	0.00-8.70	2.00	Terzaghi-Peck 1948	1.37
Strato 1					
Strato (2)	5.00	8.70-11.40	5.00	Terzaghi-Peck 1948	1.41
Strato 2					
Strato (3)	13.00	11.40-15.90	13.00	Terzaghi-Peck 1948	1.51
Strato 3					

Peso unita' di volume saturo

reso diffica di volume sactaro					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita'
		(m)			Volume Saturo
					(t/m³)
Strato (1)	2.00	0.00-8.70	2.00	Terzaghi-Peck 1948	1.85
Strato 1					
Strato (2)	5.00	8.70-11.40	5.00	Terzaghi-Peck 1948	1.88
Strato 2					
Strato (3)	13.00	11.40-15.90	13.00	Terzaghi-Peck 1948	1.94
Strato 3					

Modulo di deformazione a taglio dinamico

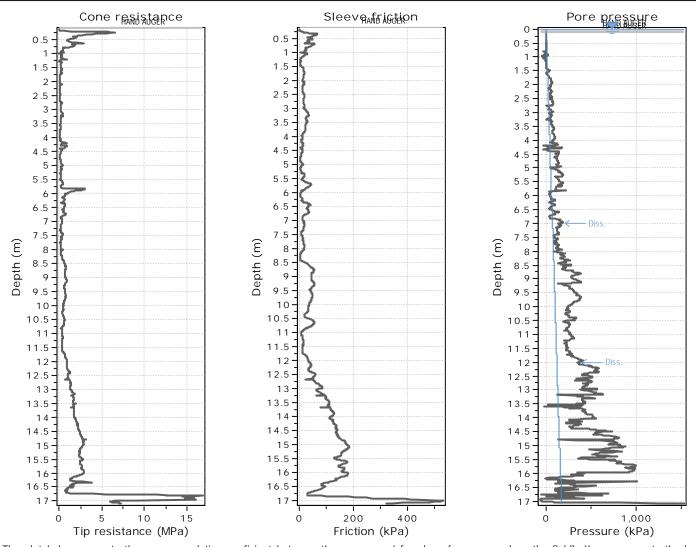
Modulo di delormazione a tagno dinamico					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G
		(m)			(Kg/cm²)
Strato (1)	2.00	0.00-8.70	2.00	Ohsaki & Iwasaki	200.17
Strato 1					
Strato (2)	5.00	8.70-11.40	5.00	Ohsaki & Iwasaki	401.64
Strato 2					
Strato (3)	13.00	11.40-15.90	13.00	Ohsaki & Iwasaki	830.26
Strato 3					

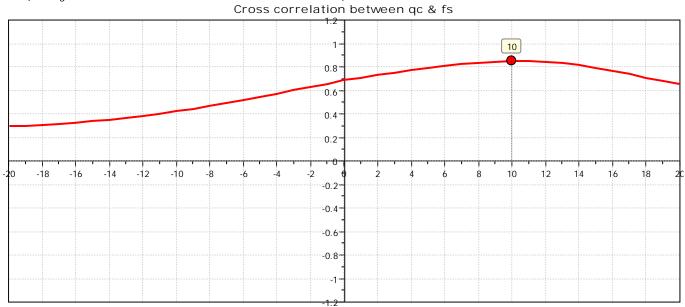
Coefficiente spinta a Riposo

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	КО
Strato (1)		0.00-8.70	2.00	Navfac 1971-1982	0.27
Strato 1					
Strato (2)	5.00	8.70-11.40	5.00	Navfac 1971-1982	0.99
Strato 2					
Strato (3)	13.00	11.40-15.90	13.00	Navfac 1971-1982	2.73
Strato 3					

Qc (Resistenza punta Penetrometro Statico)

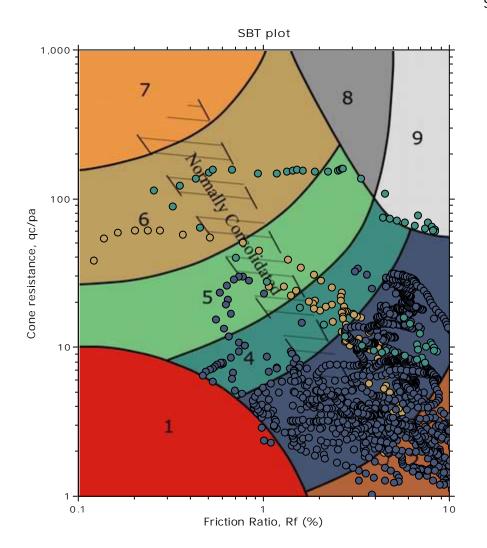
as (resistance parties of status)						
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Qc	
		(m)			(Kg/cm²)	
Strato (1)	2.00	0.00-8.70	2.00	Robertson 1983	4.00	
Strato 1						
Strato (2)	5.00	8.70-11.40	5.00	Robertson 1983	10.00	
Strato 2						
Strato (3)	13.00	11.40-15.90	13.00	Robertson 1983	26.00	
Strato 3						



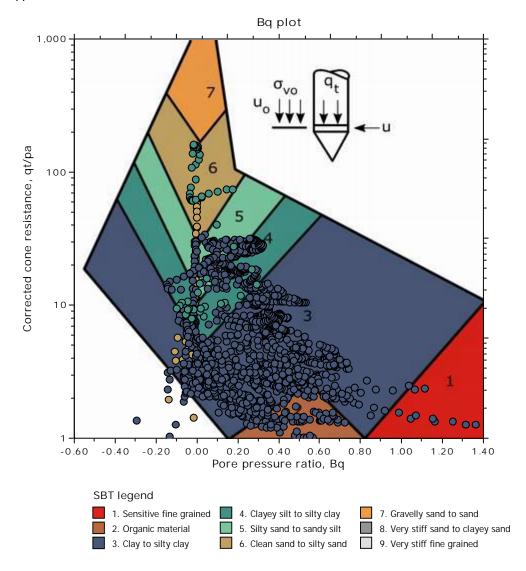

ALLEGATO 2

Prova Penetrometrica Statica CPTu

Project: Tecnogeo CPT: cptu1
Location: Mandela Total depth: 17.09 m

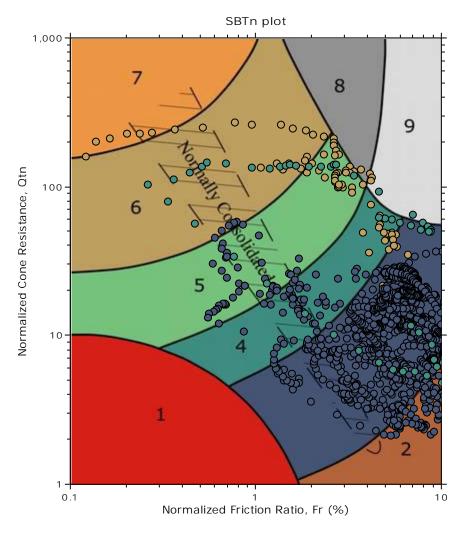


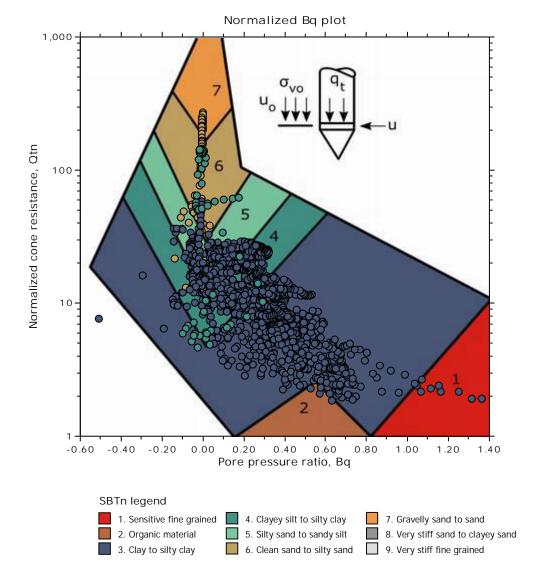
The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two sucessive CPT measurements).



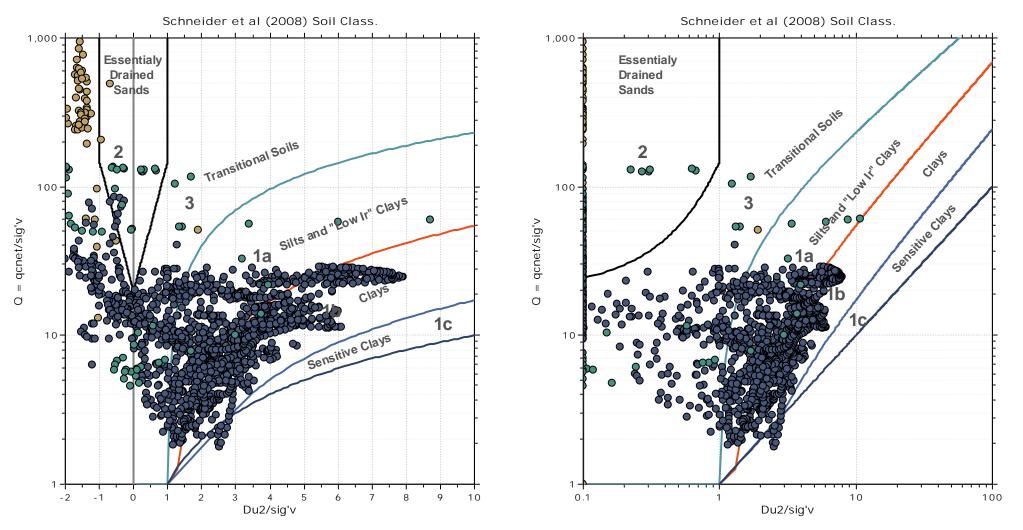
CPT: cptu1 Project: Tecnogeo Total depth: 17.09 m

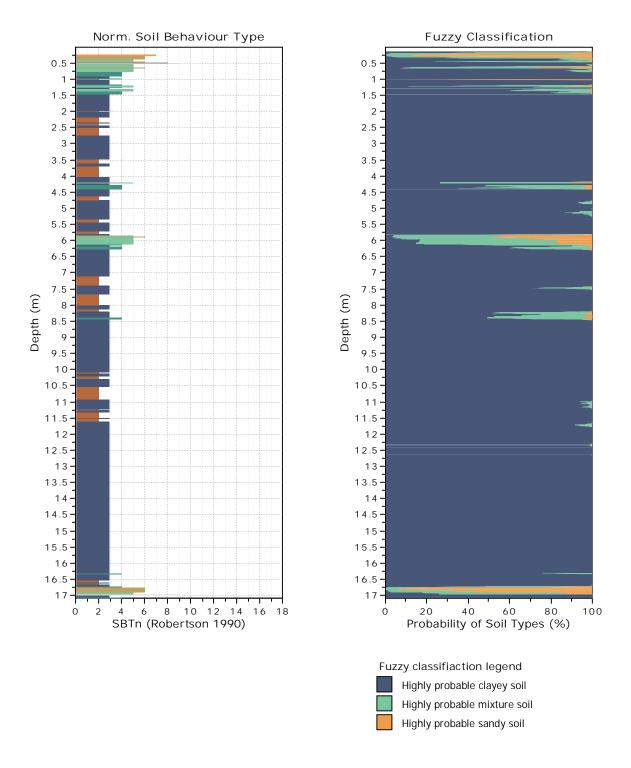
Location: Mandela

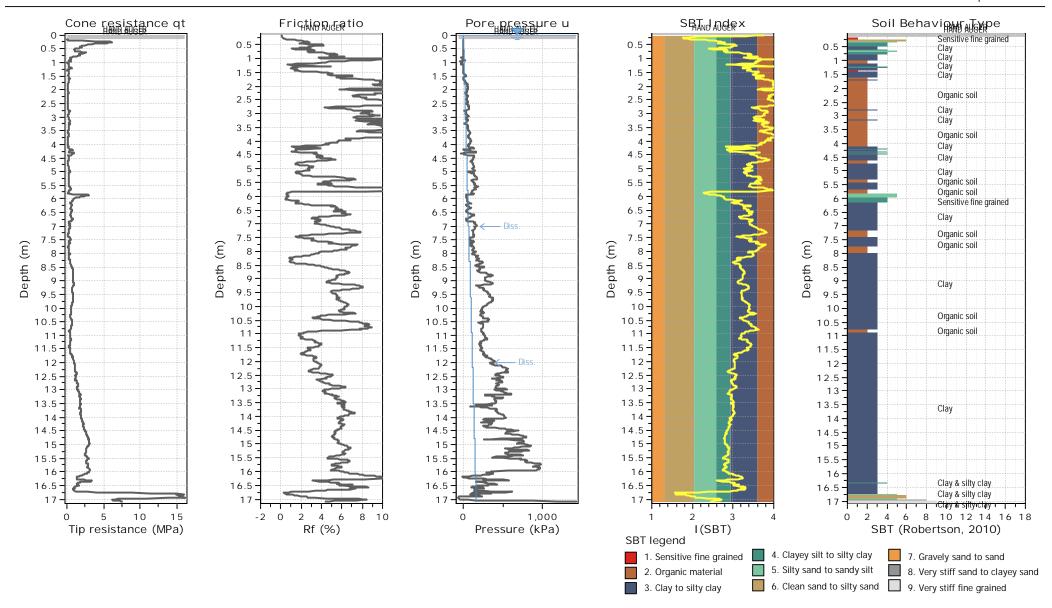


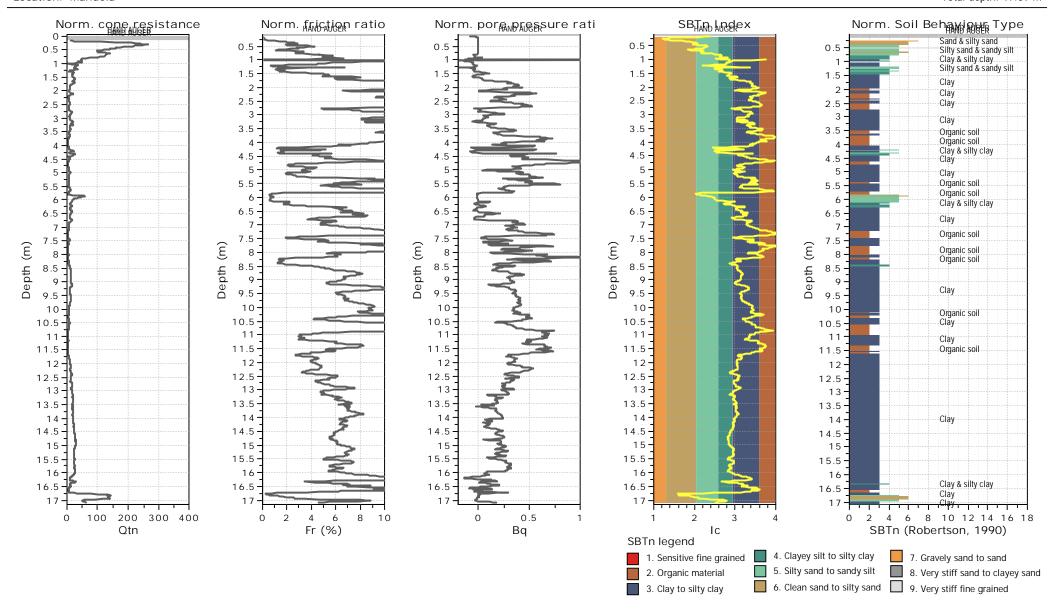

SBT - Bq plots

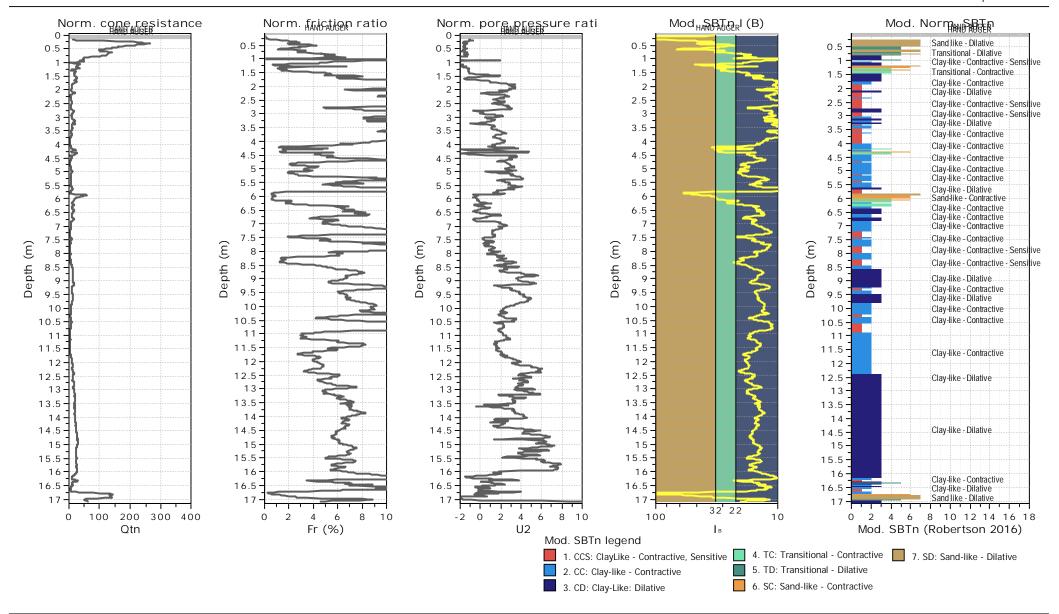
Location: Mandeia



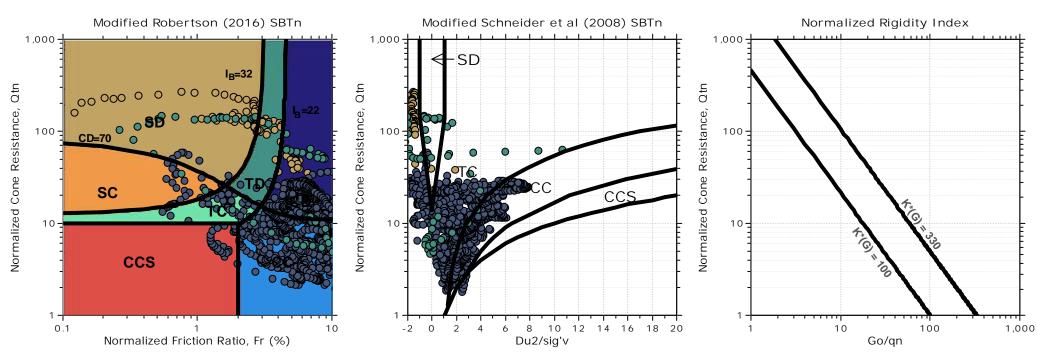



Project: Tecnogeo CPT: cptu1
Location: Mandela Total depth: 17.09 m


Bq plots (Schneider)

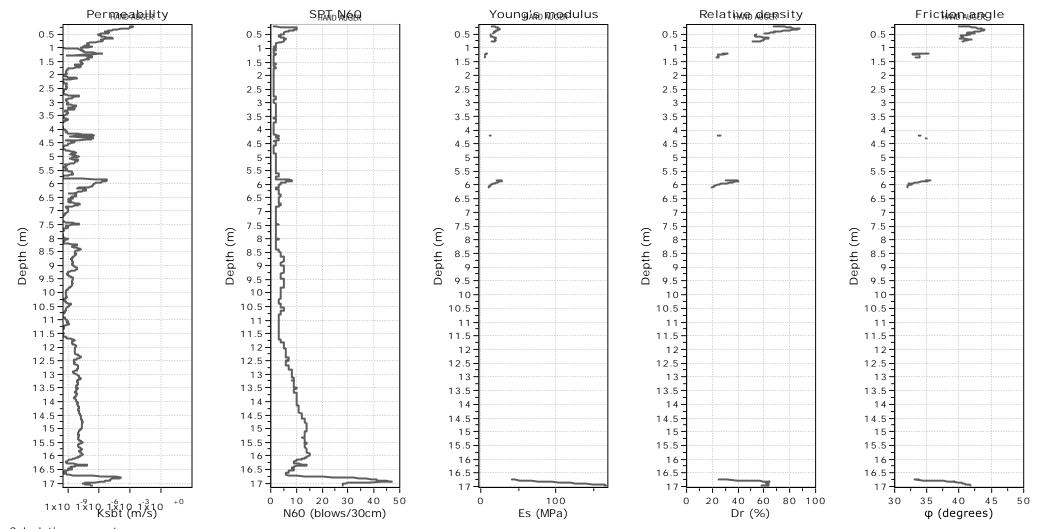


Project: Tecnogeo CPT: cptu1
Location: Mandela Total depth: 17.09 m



Project: Tecnogeo CPT: cptu1
Location: Mandela Total depth: 17.09 m

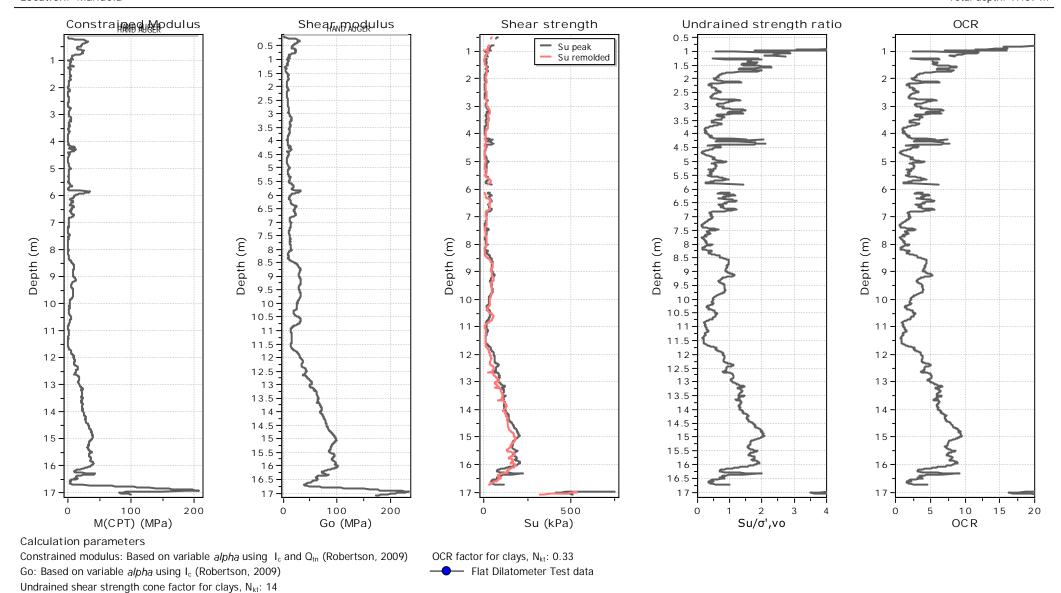
Updated SBTn plots



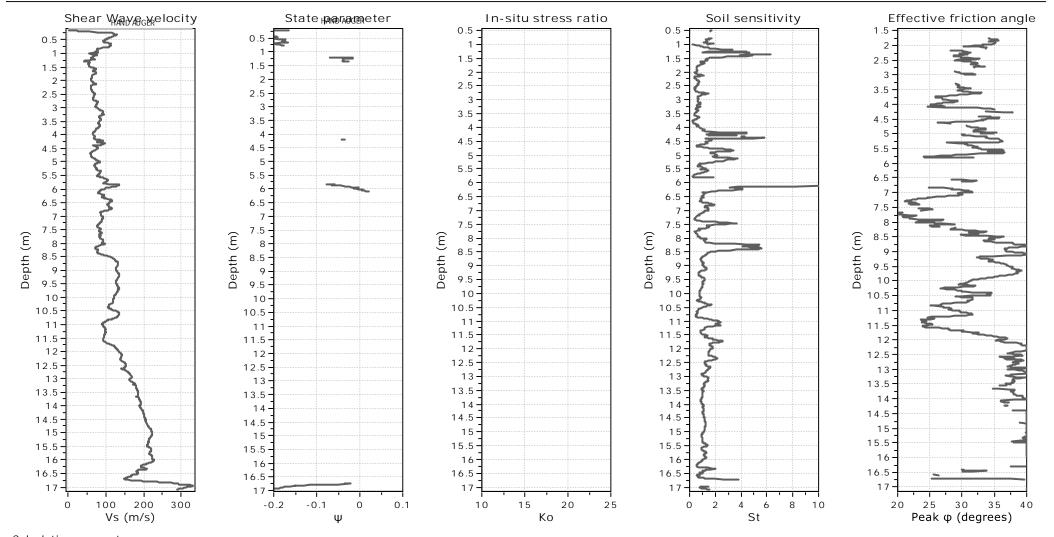
CCS: Clay-like - Contractive - Sensitive

CC: Clay-like - Contractive
CD: Clay-like - Dilative
TC: Transitional - Contractive
TD: Transitional - Dilative
SC: Sand-like - Contractive

Sand-like - Dilative

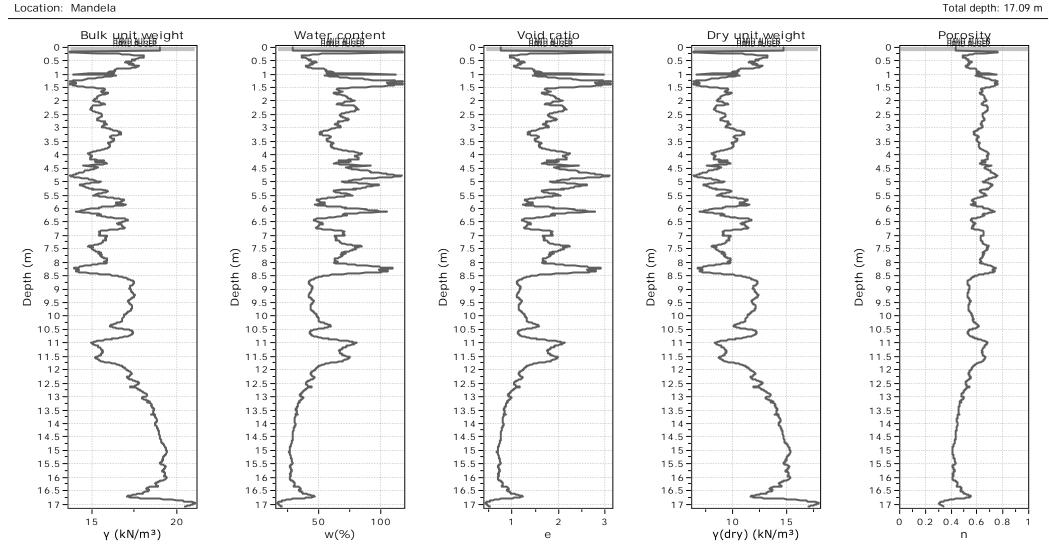

K(G) > 330: Soils with significant microstructure (e.g. age/cementation)

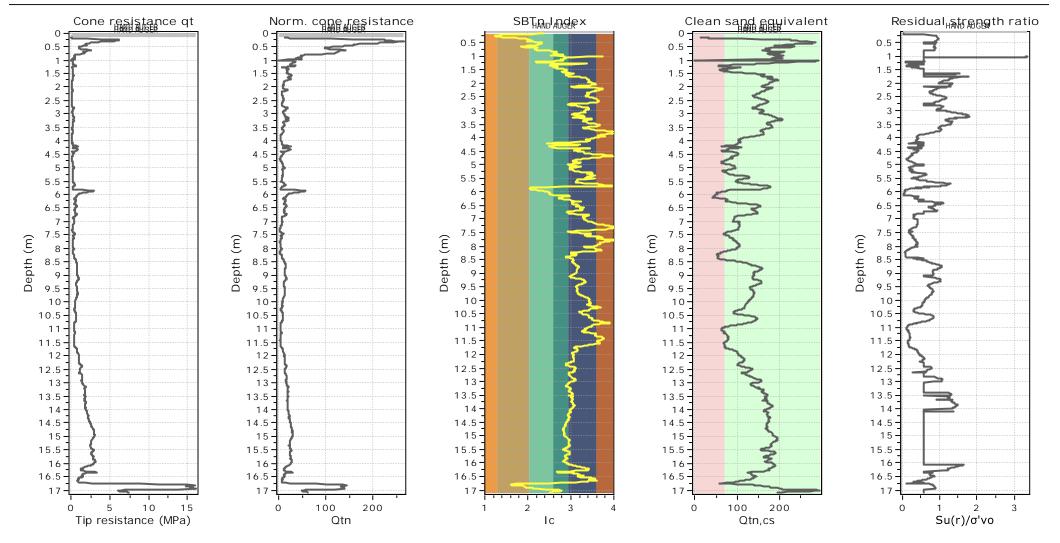
Calculation parameters Permeability: Based on SBT_n SPT N₆₀: Based on I_c and q_t


Relative density constant, C_{Dr}: 350.0 Phi: Based on Kulhawy & Mayne (1990)

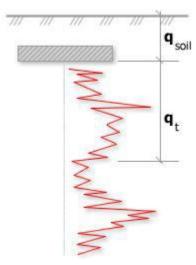
Young's modulus: Based on variable alpha using I_c (Robertson, 2009)

Project: Tecnogeo


Location: Mandela

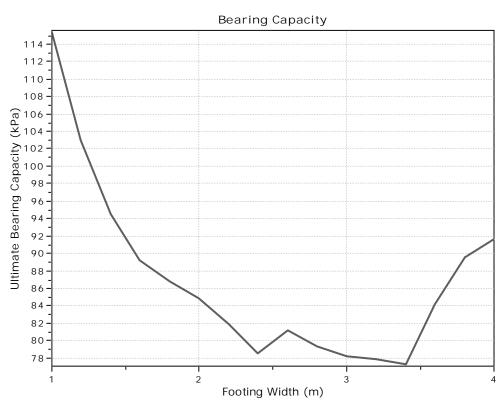

Calculation parameters Soil Sensitivity factor, N_S: 7.00 CPT: cptu1

Total depth: 17.09 m


Project: Tecnogeo
Location: Mandela

Project: Tecnogeo CPT: cptu1
Location: Mandela Total depth: 17.09 m

Project: Tecnogeo CPT: cptu1
Location: Mandela Total depth: 17.09 m


Bearing Capacity calculation is perfromed based on the formula:

$$Q_{ult} = R_k \times q_t + q_{soil}$$

where:

$$\begin{split} R_k: & \text{ Bearing capacity factor} \\ q_t: & \text{ Average corrected cone} \\ & \text{ resistance over calculation depth} \\ & q_{soil}: & \text{ Pressure applied by soil} \end{split}$$

above footing

:: Tabı	ular results ::						
No	B (m)	Start Depth (m)	End Depth (m)	Ave. q _t (MPa)	R_k	Soil Press. (kPa)	Ult. bearing cap. (kPa)
1	1.00	0.50	2.00	0.53	0.20	9.50	115.37
2	1.20	0.50	2.30	0.47	0.20	9.50	102.96
3	1.40	0.50	2.60	0.42	0.20	9.50	94.49
4	1.60	0.50	2.90	0.40	0.20	9.50	89.22
5	1.80	0.50	3.20	0.39	0.20	9.50	86.82
6	2.00	0.50	3.50	0.38	0.20	9.50	84.84
7	2.20	0.50	3.80	0.36	0.20	9.50	81.84
8	2.40	0.50	4.10	0.35	0.20	9.50	78.53
9	2.60	0.50	4.40	0.36	0.20	9.50	81.21
10	2.80	0.50	4.70	0.35	0.20	9.50	79.33
11	3.00	0.50	5.00	0.34	0.20	9.50	78.17
12	3.20	0.50	5.30	0.34	0.20	9.50	77.81
13	3.40	0.50	5.60	0.34	0.20	9.50	77.27
14	3.60	0.50	5.90	0.37	0.20	9.50	84.17
15	3.80	0.50	6.20	0.40	0.20	9.50	89.60
16	4.00	0.50	6.50	0.41	0.20	9.50	91.67

Project: Tecnogeo CPT: cptu1
Location: Mandela Total depth: 17.09 m

Dissipation Tests Results

Dissipation tests

Dissipation tests consists of stopping the piezocone penetration and observing porepressures (u) with elapsed time (t). The data are automatic recorded by the field computer and should take place until a minimum of 50% dissipation.

The porepressures are plotted as a function of square root of (t). The graphical technique suggested by Robertson and Campanella (1989), yields a value for t_{50} , which corresponds to the time for 50% consolidation.

The value of the coefficient of consolidation in the radial or horizontal direction c_h was then calculated by Houlsby and Teh's (1988) theory using the following equation:

$$c_h = \frac{T \times r^2 \times I_r^{0.5}}{t_{50}}$$

where:

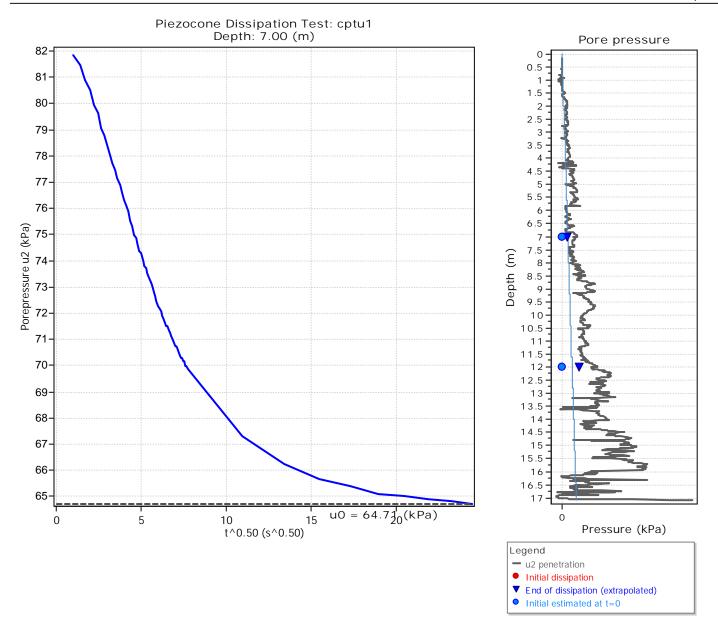
T: time factor given by Houlsby and Teh's (1988) theory corresponding to the porepressure position

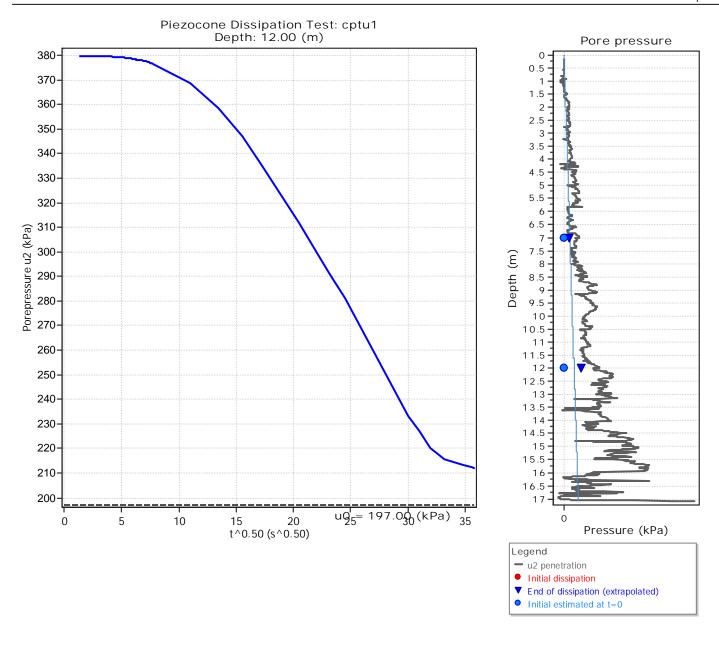
r: piezocone radius

 I_r : stiffness index, equal to shear modulus G divided by the undrained strength of clay (S_u) .

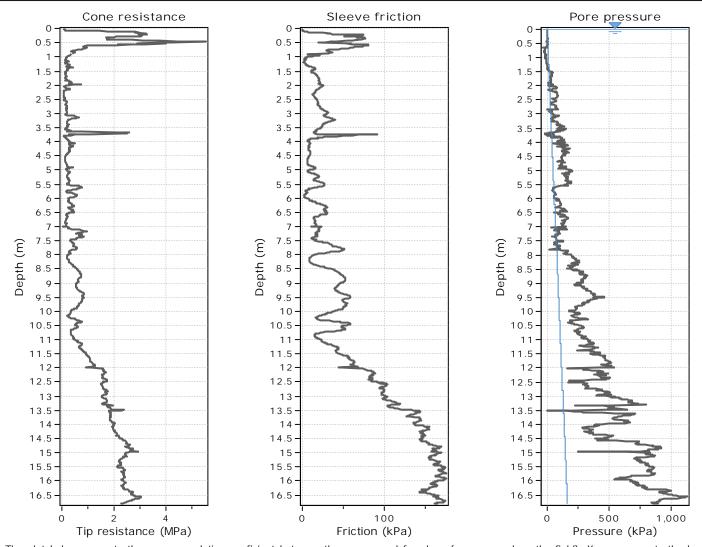
t₅₀: time corresponding to 50% consolidation

Permeability estimates based on dissipation test

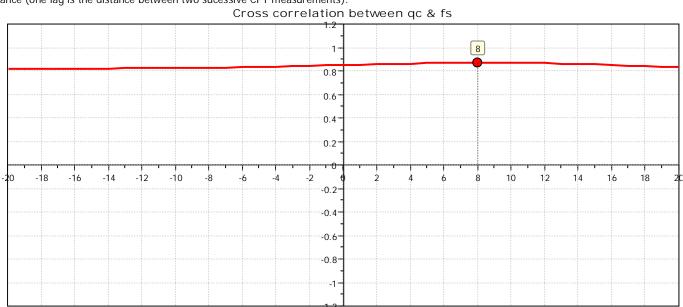

The dissipation of pore pressures during a CPTu dissipation test is controlled by the coefficient of consolidation in the horizontal direction (c_h) which is influenced by a combination of the soil permeability (k_h) and compressibility (M), as defined by the following:


$$k_h = c_h \times \gamma_w / M$$

where: M is the 1-D constrained modulus and γ_w is the unit weight of water, in compatible units.

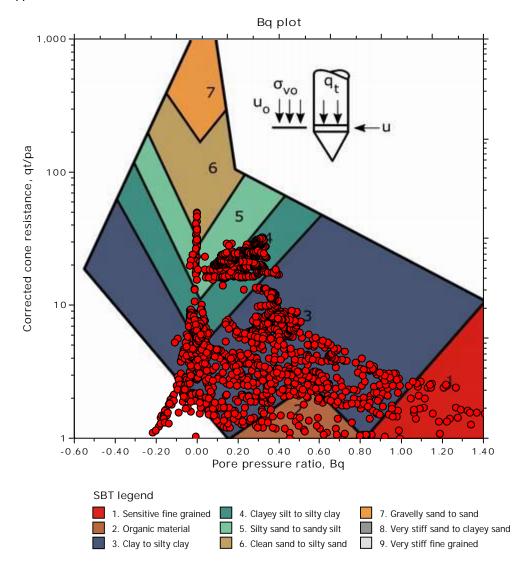

Tabular results

CPTU Borehole	Depth (m)	$(t_{50})^{0.50}$	t ₅₀ (s)	t ₅₀ (years)	G/S _u	C _h (m²/s)	c _h (m²/year)	M (MPa)	k _h (m/s)
cptu1	7.00	0.0	0	0.00E+000	1095.32	0.00E+000	0	0.87	-1.00E+004
cptu1	12.00	0.0	0	0.00E+000	550.53	0.00E+000	0	5.28	-1.00E+004

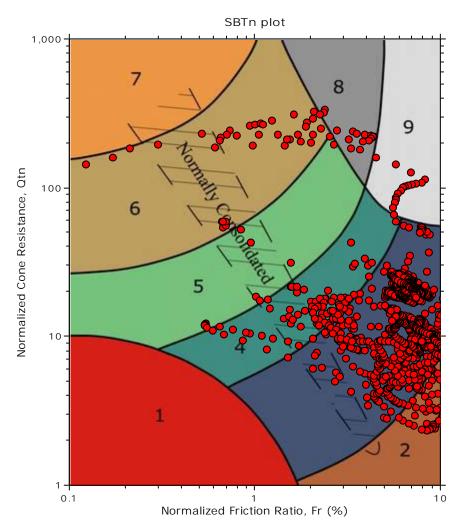


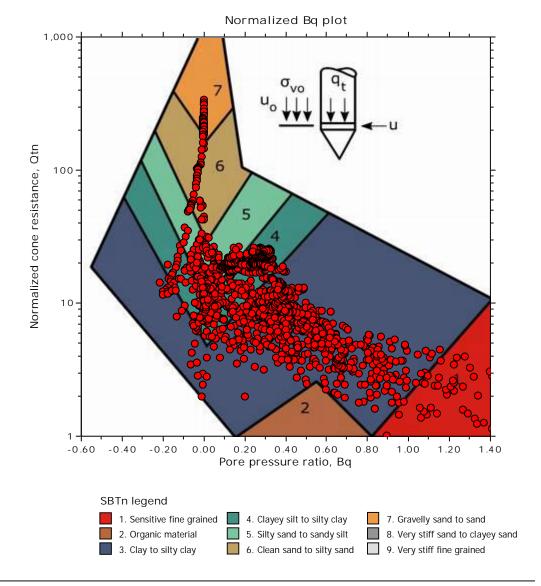
Project: Tecnogeo CPT: cptu2
Location: Mandela Total depth: 16.80 m

The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two sucessive CPT measurements).

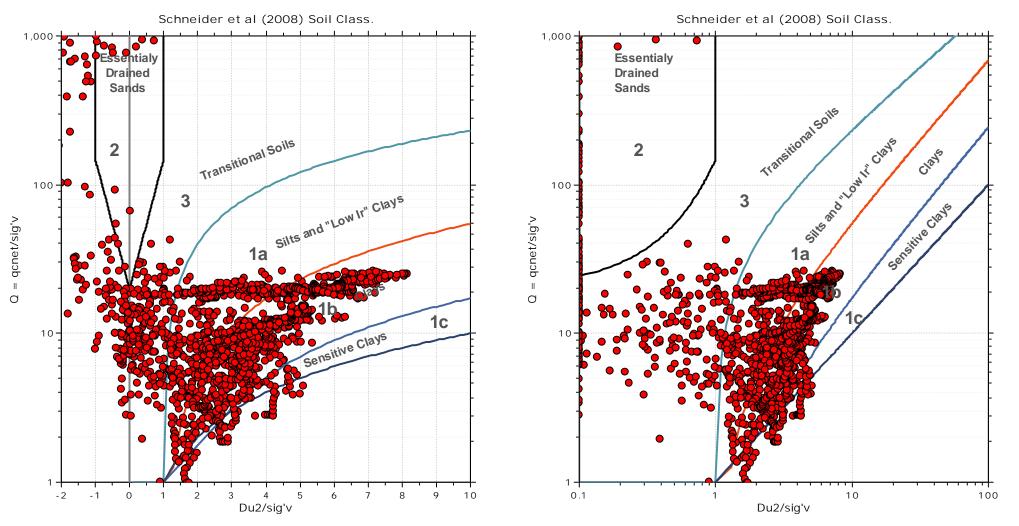


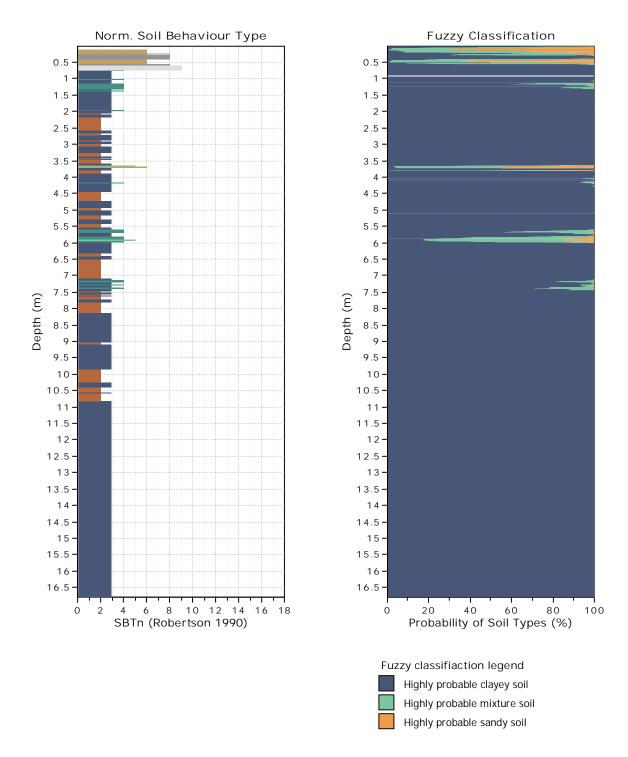
CPT: cptu2 Project: Tecnogeo Total depth: 16.80 m

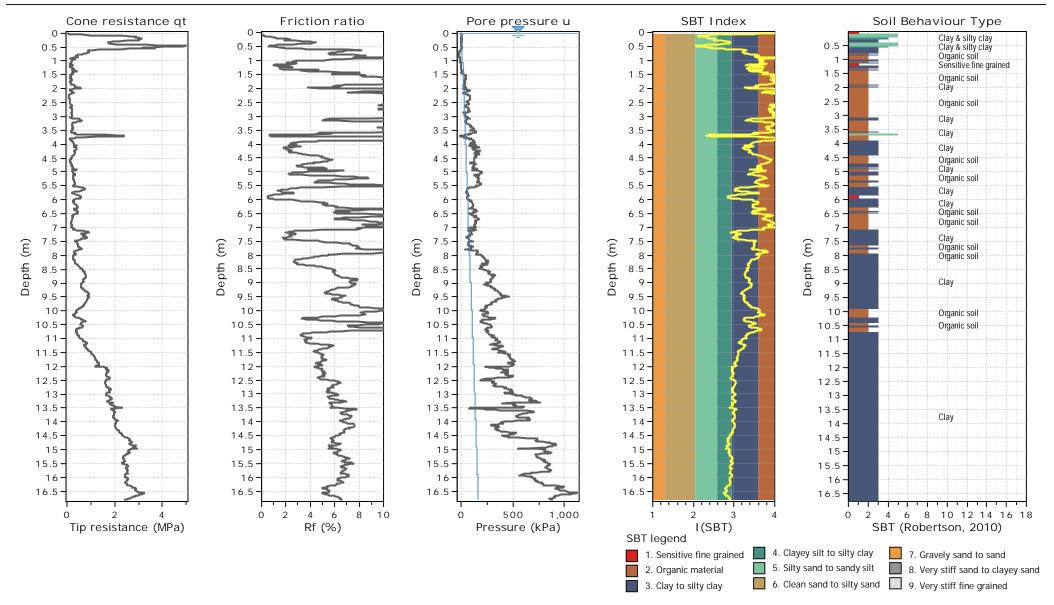

Location: Mandela

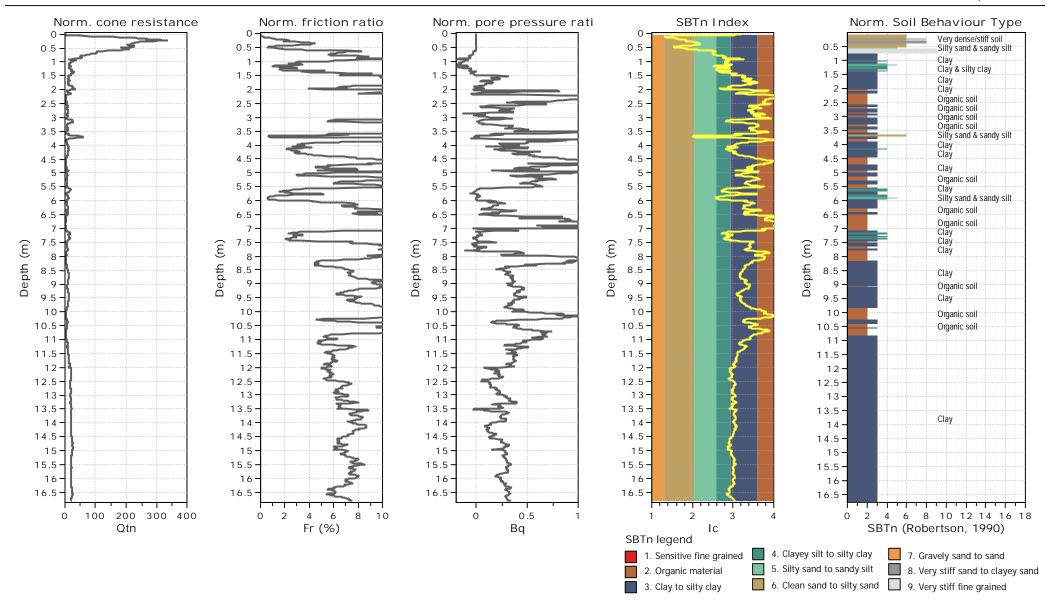

SBT plot 1,000 8 9 100-Cone resistance, qc/pa 10 1 - 0.1 10 Friction Ratio, Rf (%)

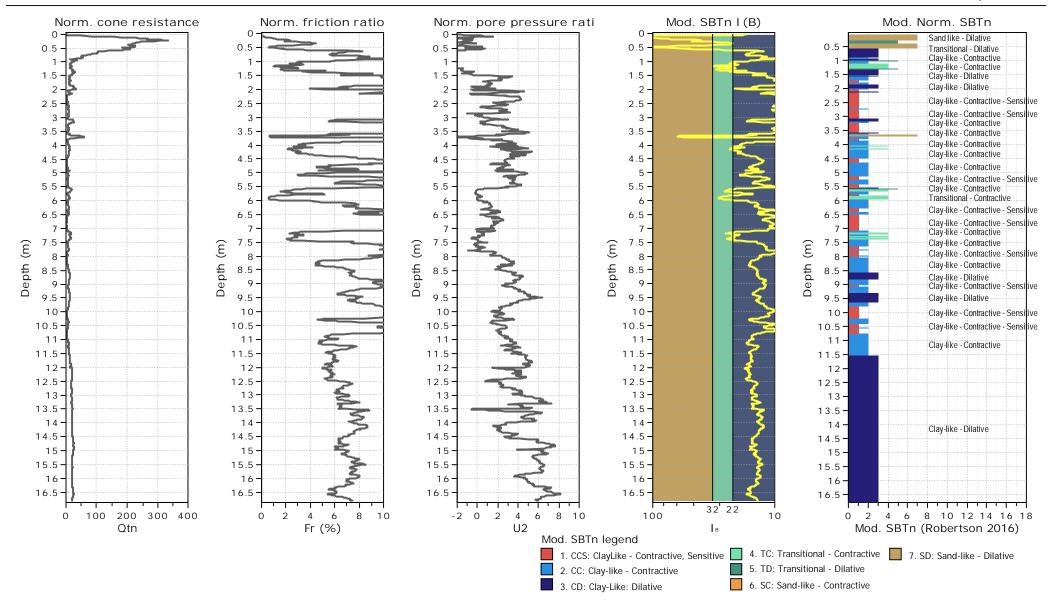
SBT - Bq plots


SBT - Bq plots (normalized)

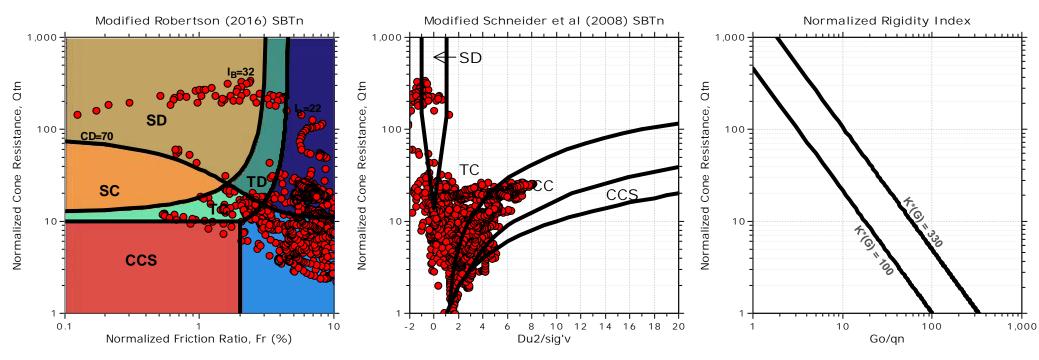



Project: Tecnogeo CPT: cptu2
Location: Mandela Total depth: 16.80 m


Bq plots (Schneider)

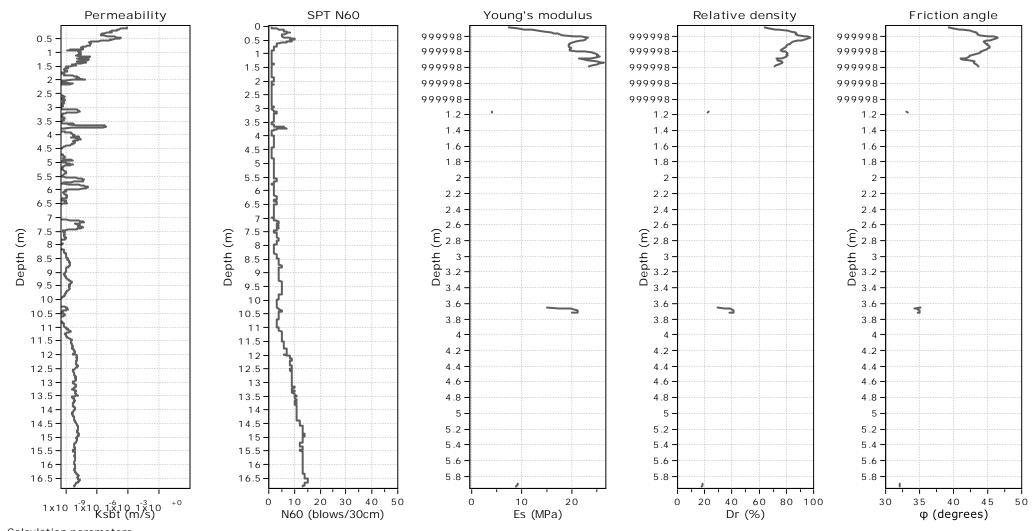


Project: Tecnogeo CPT: cptu2
Location: Mandela Total depth: 16.80 m



Project: Tecnogeo CPT: cptu2
Location: Mandela Total depth: 16.80 m

Updated SBTn plots

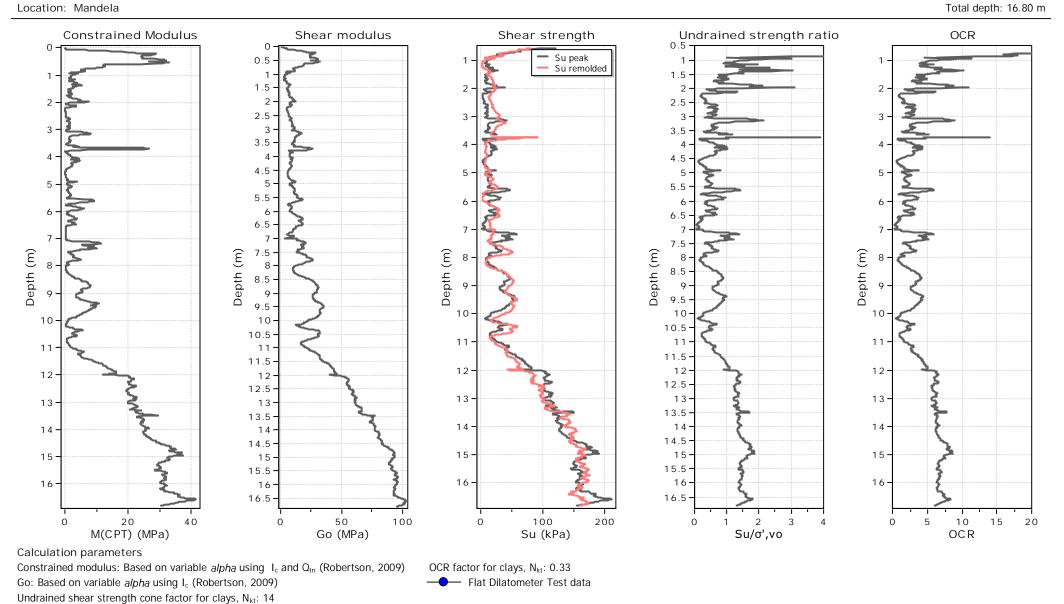

CCS: Clay-like - Contractive - Sensitive

CC: Clay-like - Contractive
CD: Clay-like - Dilative
TC: Transitional - Contractive
TD: Transitional - Dilative
SC: Sand-like - Contractive

Sand-like - Dilative

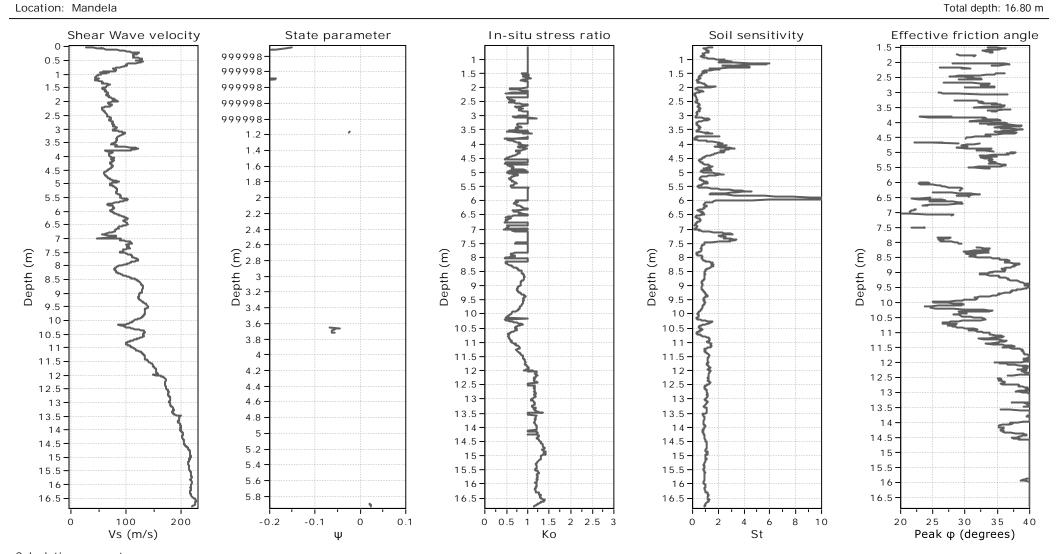
SD:

K(G) > 330: Soils with significant microstructure (e.g. age/cementation)


Calculation parameters Permeability: Based on SBT_n SPT N₆₀: Based on I_c and q_t

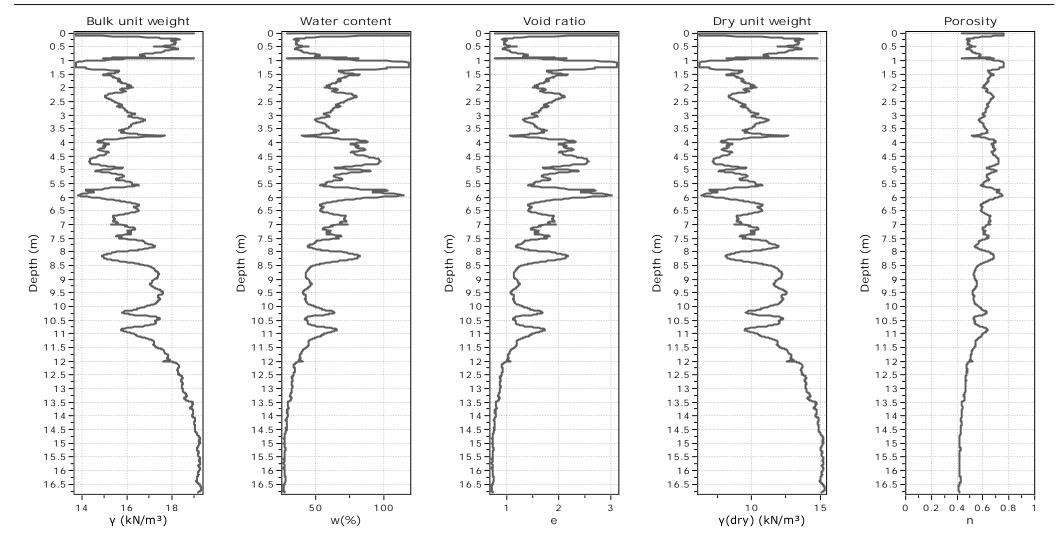
Relative density constant, C_{Dr}: 350.0 Phi: Based on Kulhawy & Mayne (1990)

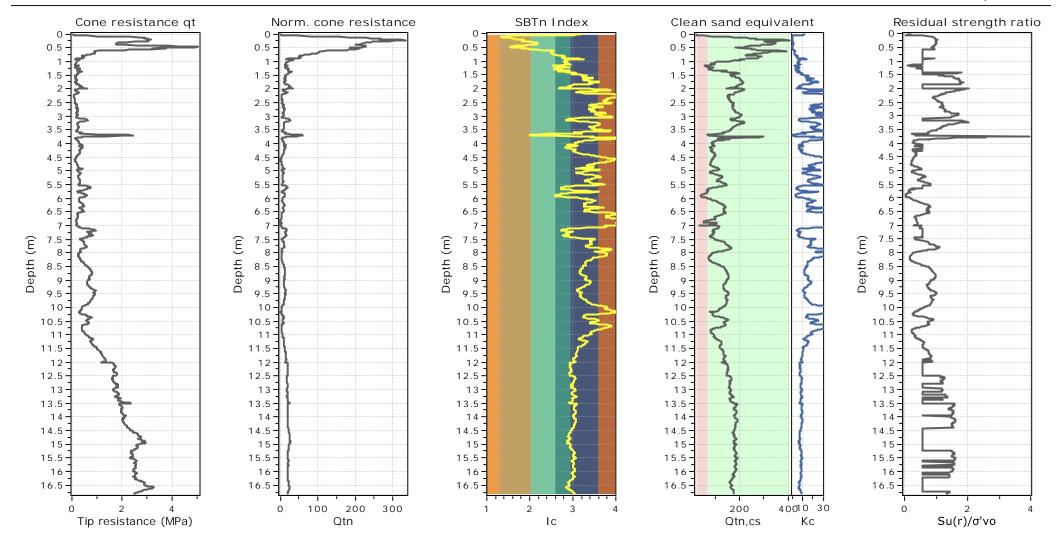
Young's modulus: Based on variable alpha using I_c (Robertson, 2009)


Project: Tecnogeo

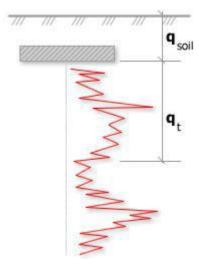
Location: Mandela

Project: Tecnogeo


Location: Mandela

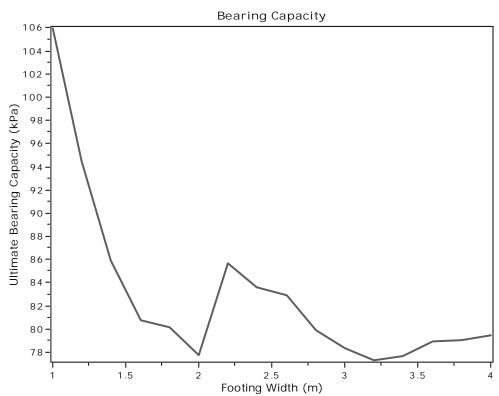

Calculation parameters Soil Sensitivity factor, N_S: 7.00

Project: Tecnogeo Location: Mandela


eo CPT: cptu2 a Total depth: 16.80 m

Project: Tecnogeo CPT: cptu2
Location: Mandela Total depth: 16.80 m

Project: Tecnogeo CPT: cptu2
Location: Mandela Total depth: 16.80 m



Bearing Capacity calculation is perfromed based on the formula:

$$Q_{ult} = R_k \times q_t + q_{soil}$$

where:

 $R_k\colon$ Bearing capacity factor $q_t\colon$ Average corrected cone resistance over calculation depth $q_{soil}\colon$ Pressure applied by soil above footing

:: Tabu	ılar results ::						
No	B (m)	Start Depth (m)	End Depth (m)	Ave. q _t (MPa)	R_k	Soil Press. (kPa)	Ult. bearing cap. (kPa)
1	1.00	0.50	2.00	0.48	0.20	9.50	105.95
2	1.20	0.50	2.30	0.42	0.20	9.50	94.45
3	1.40	0.50	2.60	0.38	0.20	9.50	85.90
4	1.60	0.50	2.90	0.36	0.20	9.50	80.78
5	1.80	0.50	3.20	0.35	0.20	9.50	80.19
6	2.00	0.50	3.50	0.34	0.20	9.50	77.74
7	2.20	0.50	3.80	0.38	0.20	9.50	85.68
8	2.40	0.50	4.10	0.37	0.20	9.50	83.57
9	2.60	0.50	4.40	0.37	0.20	9.50	82.92
10	2.80	0.50	4.70	0.35	0.20	9.50	79.91
11	3.00	0.50	5.00	0.34	0.20	9.50	78.31
12	3.20	0.50	5.30	0.34	0.20	9.50	77.31
13	3.40	0.50	5.60	0.34	0.20	9.50	77.67
14	3.60	0.50	5.90	0.35	0.20	9.50	78.97
15	3.80	0.50	6.20	0.35	0.20	9.50	79.00
16	4.00	0.50	6.50	0.35	0.20	9.50	79.50

Presented below is a list of formulas used for the estimation of various soil properties. The formulas are presented in SI unit system and assume that all components are expressed in the same units.

:: Unit Weight, g (kN/m³) ::

$$g = g_w \cdot \left(0.27 \cdot log(R_f) + 0.36 \cdot log(\frac{q_t}{p_a}) + 1.236\right)$$

where $g_w =$ water unit weight

:: Permeability, k (m/s) ::

$$I_c < 3.27$$
 and $I_c > 1.00$ then $k = 10^{0.952 \cdot 3.04 \cdot I_c}$

$$I_c \le 4.00$$
 and $I_c > 3.27$ then $k = 10^{-4.52 - 1.37 \cdot I_c}$

 $:: N_{SPT}$ (blows per 30 cm) ::

$$N_{60} = \left(\frac{q_c}{P_a}\right) \cdot \frac{1}{10^{1.1268 - 0.2817 \cdot I_c}}$$

$$N_{1(60)} = Q_{tn} \cdot \frac{1}{10^{1.1268 - 0.2817 \cdot I_c}}$$

:: Young's Modulus, Es (MPa) ::

$$(q_t - \sigma_{v_t}) \cdot 0.015 \cdot 10^{0.55 \cdot l_c + 1.68}$$

(applicable only to $I_c < I_{c_cutoff}$)

:: Relative Density, Dr (%) ::

$$100 \cdot \sqrt{\frac{Q_{tn}}{k_{DR}}}$$
 (applicable only to SBT_n: 5, 6, 7 and 8 or I_c < I_{c_cutoff})

:: State Parameter, ψ ::

$$\Psi = 0.56 - 0.33 \cdot \log(Q_{tn.cs})$$

:: Drained Friction Angle, ϕ (°) ::

$$\phi = \dot{\phi_{cv}} + 15.94 \cdot log(Q_{tn,cs}) - 26.88$$
 (applicable only to SBT_n: 5, 6, 7 and 8 or I_c < I_{c_cutoff})

:: 1-D constrained modulus, M (MPa) ::

If
$$I_c > 2.20$$

$$a = 14 \text{ for } Q_{tn} > 14$$

$$a = Q_{tn}$$
 for $Q_{tn} \le 14$

$$M_{CPT} = a \cdot (q_t - \sigma_v)$$

If $I_c \ge 2.20$

$$M_{CPT} = 0.03 \cdot (q_t - \sigma_v) \cdot 10^{0.55 \cdot I_c + 1.68}$$

:: Small strain shear Modulus, Go (MPa) ::

$$G_0 = (q_t - \sigma_v) \cdot 0.0188 \cdot 10^{0.55 \cdot I_c + 1.68}$$

:: Shear Wave Velocity, Vs (m/s) ::

$$V_s = \left(\frac{G_0}{\rho}\right)^{0.50}$$

:: Undrained peak shear strength, Su (kPa) ::

 $N_{kt} = 10.50 + 7 \cdot log(F_r)$ or user defined

$$S_{u} = \frac{\left(q_{t} - \sigma_{v}\right)}{N_{kt}}$$

(applicable only to SBT_n: 1, 2, 3, 4 and 9 or $I_c > I_{c_cutoff}$)

:: Remolded undrained shear strength, Su(rem) (kPa) ::

$$S_{u(rem)} = f_s$$
 (applicable only to SBT_n: 1, 2, 3, 4 and 9 or $I_c > I_{c_cutoff}$)

:: Overconsolidation Ratio, OCR:

$$k_{OCR} = \left[\frac{Q_{tn}^{0.20}}{0.25 \cdot (10.50 \cdot +7 \cdot log(F_r))} \right]^{1.25} \text{ or user defined}$$

$$OCR = k_{OCR} \cdot Q_{tn}$$

(applicable only to SBT_n: 1, 2, 3, 4 and 9 or $I_c > I_{c \text{ cutoff}}$)

:: In situ Stress Ratio, Ko ::

$$K_{\Omega} = (1 - \sin \varphi') \cdot OCR^{\sin \varphi'}$$

(applicable only to SBT_n: 1, 2, 3, 4 and 9 or $I_c > I_{c_cutoff}$)

:: Soil Sensitivity, $S_t::$

$$S_t = \frac{N_S}{F_c}$$

(applicable only to SBT_n: 1, 2, 3, 4 and 9 or $I_c > I_{c_cutoff}$)

:: Peak Friction Angle, φ (°) ::

$$\begin{split} \phi^{'} = & 29.5^{\circ} \cdot B_{\,q}^{0.121} \cdot \left(0.256 + 0.336 \cdot B_{\,q} + logQ_{\,t}\right) \\ \text{(applicable for } 0.10 < B_{\,q} < 1.00) \end{split}$$

References

- Robertson, P.K., Cabal K.L., Guide to Cone Penetration Testing for Geotechnical Engineering, Gregg Drilling & Testing, Inc., 5th Edition, November 2012
- Robertson, P.K., Interpretation of Cone Penetration Tests a unified approach., Can. Geotech. J. 46(11): 1337–1355 (2009)
- N Barounis, J Philpot, Estimation of in-situ water content, void ratio, dry unit weight and porosity using CPT for saturated sands, Proc. 20th NZGS Geotechnical Symposium

DOCUMENTAZIONE FOTOGRAFICA

ALLEGATO 3

Indagine sismica a rifrazione

Caratteristiche tecniche generali "Sismografo DoReMi":

Classe strumentale: sismografo multicanale per geofisica

Topologia: rete differenziale RS485 half-duplex multipunto Lunghezza max rete: virtualmente illimitata con l'uso di ripetitori

N. max canali per tratta: 255

Dimensioni elemento: 80x55x18 mm

Peso: 250 g (per elemento con cavo di 5 metri)

Cavo: per geofisica 1x2x0.5 + 1x2x0.25 twisted pair schermato

Memoria: 60 kBytes (30000 campioni)

Frequenze selezionabili: da 500 a 20000 Hz (passi di campionamento da 2 a 0.05 ms)

Convertitore: tipo SAR a 16 bit (96 dB)

Amplificatore: ultra-low noise con ingresso differenziale

Banda passante: 2Hz - 200Hz Reiezione modo comune: >80dB

Diafonia (crosstalk): zero, la trasmissione è digitale

Dinamica del sistema:

Risoluzione: 7.6 μ V @ 27dB; 0.076 μ V @ 60dB

Dinamica di base: 96dB (16 bit)

S/N ratio fra 0.5 e 30Hz: >94dB (> 150dB con l'uso del PGA)

Alimentazione:

Alimentazione: batteria ricaricabile interna operativa 10-15Vdc

Consumo di energia: Interfaccia 80 mA, canale 30mA per una stringa da 12 canali: < 500mA

REGIONE LAZIO PROVINCIA DI ROMA

RELAZIONE GEOFISICA

PROSPEZIONE SISMICA A RIFRAZIONE

RIFERIMENTO: Manufatto di Interconnessione Nuovo Acquedotto Marcio

Aprile 2022

PROSPEZIONE DI SISMICA A RIFRAZIONE CON ONDE P

Premessa

È stata eseguita nel comune di Mandela un' indagine di sismica a rifrazione 2D acquisita con tecnica tomografica, al fine di determinare la velocità delle onde sismiche.

L'indagine è consistita nella realizzazione di n.3 sezioni sismiche a 12 canali con interspazio di 5m per una estensione totale di 180 ml (60 m x 3), con acquisizione dei dati consentendo la determinazione delle Vp dell'area in esame.

Metodologia d'indagine tomografia sismica 2D

Nella prospezione sismica a rifrazione, si sfrutta la diversa velocità di propagazione delle onde longitudinali (onde P o "di compressione e dilatazione"), che sono le più veloci fra le diverse onde elastiche, o trasversali (onde SH o "di taglio") per determinare spessori e andamento dei livelli presenti.

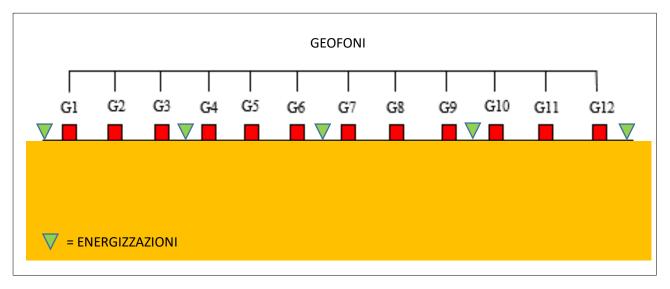
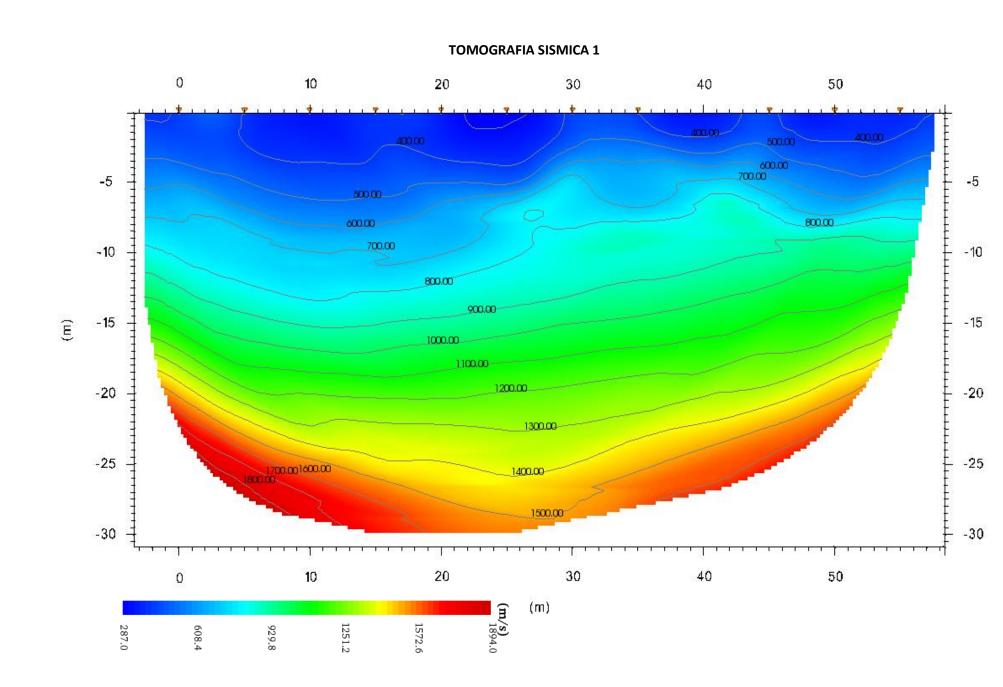
La prospezione consiste nel generare un'onda sismica di compressione o di taglio nel terreno attraverso una determinata sorgente di energia (colpo di mazza o di maglio, esplosivo etc.) e nel misurare il tempo impiegato da questa a compiere il percorso nel sottosuolo dal punto di energizzazione fino agli apparecchi di ricezione (geofoni) seguendo le leggi di rifrazione dell'ottica (Legge di Snell), cioè rifrangendosi sulle superfici di separazione tra due strati sovrapposti di densità (o meglio di modulo elastico) crescente.

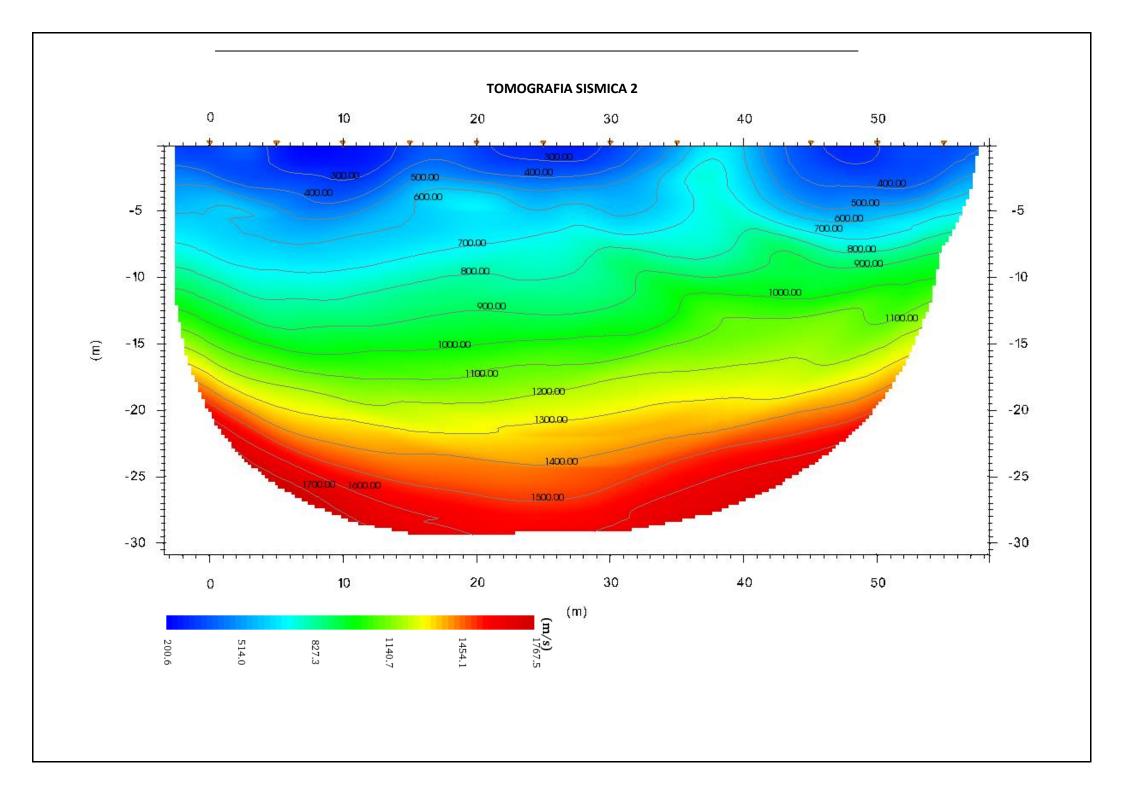
Così, osservando i primi arrivi su punti posti a distanze diverse dalla sorgente energizzante, è possibile costruire una curva tempo-distanza (dromocrona) rappresentante la variazione del minimo percorso in funzione del tempo. La velocità di propagazione delle onde elastiche nel suolo è compresa tra larghi limiti; per lo stesso tipo di roccia essa diminuisce col grado di alterazione, di fessurazione e/o di fratturazione; aumenta per contro con la profondità e l'età geologica.

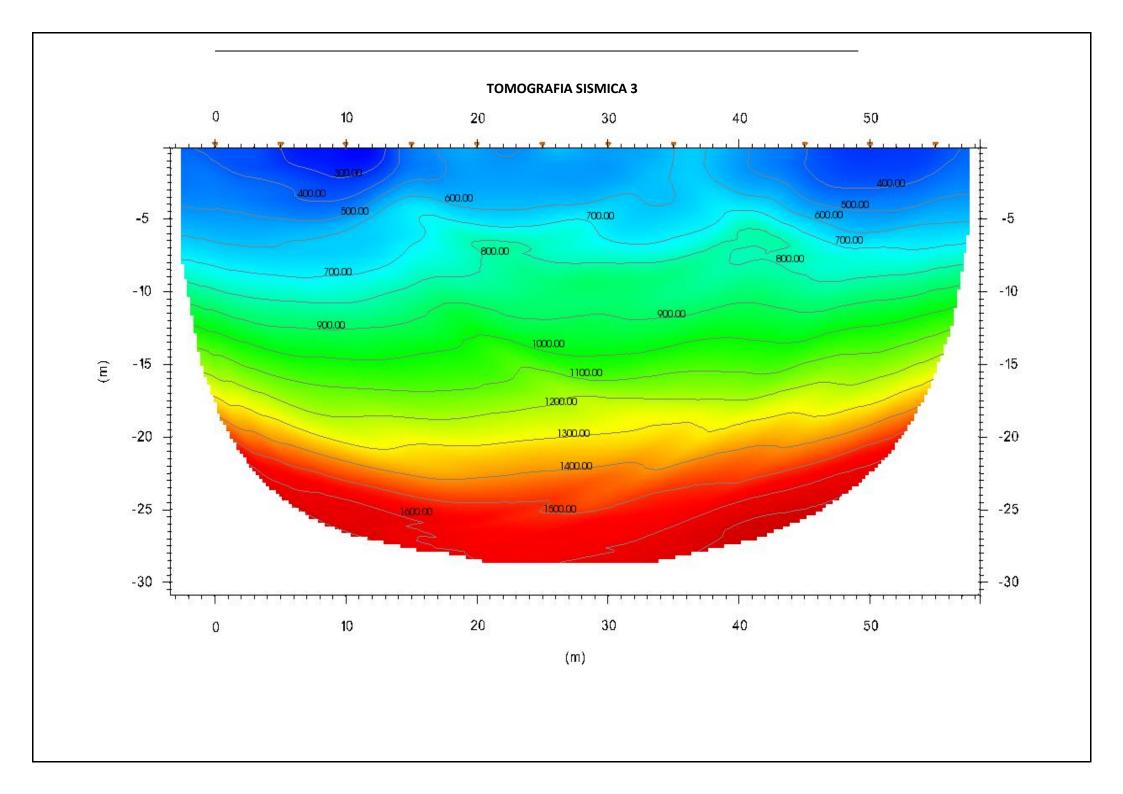
Sensibili differenze si possono avere, in rocce stratificate, tra le velocità rilevate lungo i piani di strato e quelle rilevate perpendicolarmente a questi. La velocità delle onde compressionali, diversamente da quelle trasversali che non si trasmettono nell'acqua, è fortemente influenzata dalla presenza della falda acquifera e dal grado di saturazione. Questo comporta che anche litotipi differenti possano avere uguali velocità delle onde sismiche compressionali (ad esempio roccia fortemente fratturata e materiale detritico saturo con velocità Vp dell'ordine di 1400÷1700 m/sec), per cui non necessariamente l'interpretazione sismostratigrafica corrisponderà con la reale situazione geologico-stratigrafica.

La prospezione geofisica è stata realizzata con sismografo DOREMI 12 canali, strumento compatto e versatile progettato e realizzato appositamente per eseguire indagini di prospezione sismica convenzionali (rifrazione, riflessione) e non convenzionali M.A.S.W. (Multichannel Analysis of Surface Waves).

La sorgente delle onde sismiche è costituita da un martello da 10 kg, collegato ad un geofono starter, che genera un treno di onde di cui risulta esaltata la componente verticale, i cui tempi di arrivo e l'intensità delle stesse vengono registrate dai geofoni ed inviate al sismografo di acquisizione. L'energizzazione per la generazione delle onde è stata ripetuta 5 volte all'interno della traversa sismica per permettere l'interpretazione tomografica dei dati. Il sismografo registra i tempi di arrivo delle onde di compressione P.


Fig. 1 – Configurazione di acquisizione utilizzata nelle indagini sismiche


L'elaborazione dei dati prevede l'esecuzione del picking manuale dei primi arrivi delle onde, il cui risultato è generalmente visualizzato sotto forma di dromocrone (grafici rappresentanti i tempi di primo arrivo in funzione della distanza dalla sorgente). Ciò ha permesso la ricostruzione della stratigrafia sismica con l'attribuzione delle velocità caratteristiche dei terreni, la profondità e la giacitura dei rifrattori nel sottosuolo. I dati del picking dei primi arrivi sono stati inseriti, insieme alle informazioni topografiche dei vari punti di posizionamento dei geofoni e dei tiri, in specifici files di input per il software di ricostruzione tomografica SMART TOMO (Geostudi Astier, 2019) che porta alla rappresentazione della evoluzione della velocità sismica per le onde nel sottosuolo.

UBICAZIONE INDAGINI

CONCLUSIONI

Dalle indagini eseguite nel comune di Mandela, è stato possibile restituire dei modelli sismo-stratigrafici "compatibili" della zona investigata.

L'indagine è consistita nella realizzazione di n.3 sezioni sismiche a 12 canali con interspazio 5m per una estensione totale di 180 ml (60 m x 3).

Dall'analisi delle prospezioni sismiche con tecnica tomografica sono emerse le seguenti conclusioni:

RIFRAZIONE 1

- In funzione della tipologia dei terreni presenti nell'area d'indagine e della configurazione d'acquisizione utilizzata, le prospezioni sismiche hanno raggiunto una profondità massima d'esplorazione di circa 30m con qualità delle registrazioni ottenute generalmente medio-bassa. La ripetizione di 5 energizzazioni lungo la stesa ha permesso di ottenere un dato soddisfacente per l'elaborazione tomografica.
- è stato registrato un primo sismo-strato caratterizzato da velocità delle onde P inferiori a 1000 m/s avente spessori compresi tra 10 e 16 metri da p.c.;
- al di sotto di queste profondità le velocità delle onde P crescono gradualmente fino alla profondità massima indagata di 30 m da p.c.

RIFRAZIONE 2

- In funzione della tipologia dei terreni presenti nell'area d'indagine e della configurazione d'acquisizione utilizzata, le prospezioni sismiche hanno raggiunto una profondità massima d'esplorazione di circa 28m con qualità delle registrazioni ottenute generalmente medio-bassa. La ripetizione di 5 energizzazioni lungo la stesa ha permesso di ottenere un dato soddisfacente per l'elaborazione tomografica.
- è stato registrato un primo sismo-strato caratterizzato da velocità delle onde P inferiori a 1000 m/s avente spessori compresi tra 10 e 15 metri da p.c.;
- al di sotto di queste profondità le velocità delle onde P crescono gradualmente fino alla profondità massima indagata di 28 m da p.c.

RIFRAZIONE 3

- In funzione della tipologia dei terreni presenti nell'area d'indagine e della configurazione d'acquisizione utilizzata, le prospezioni sismiche hanno raggiunto una profondità massima d'esplorazione di circa 28m con qualità delle registrazioni ottenute generalmente medio-bassa. La ripetizione di 5 energizzazioni lungo la stesa ha permesso di ottenere un dato soddisfacente per l'elaborazione tomografica.
- è stato registrato un primo sismo-strato caratterizzato da velocità delle onde P inferiori a 1000 m/s
 avente spessori compresi tra 11 e 15 metri da p.c.;
- al di sotto di queste profondità le velocità delle onde P crescono gradualmente fino alla profondità massima indagata di 28 m da p.c.

ALLEGATO 4

Indagine Geofisica - MASW

Caratteristiche tecniche generali "Sismografo DoReMi":

Classe strumentale: sismografo multicanale per geofisica

Topologia: rete differenziale RS485 half-duplex multipunto Lunghezza max rete: virtualmente illimitata con l'uso di ripetitori

N. max canali per tratta: 255

Dimensioni elemento: 80x55x18 mm

Peso: 250 g (per elemento con cavo di 5 metri)

Cavo: per geofisica 1x2x0.5 + 1x2x0.25 twisted pair schermato

Memoria: 60 kBytes (30000 campioni)

Frequenze selezionabili: da 500 a 20000 Hz (passi di campionamento da 2 a 0.05 ms)

Convertitore: tipo SAR a 16 bit (96 dB)

Amplificatore: ultra-low noise con ingresso differenziale

Banda passante: 2Hz - 200Hz Reiezione modo comune: >80dB

Diafonia (crosstalk): zero, la trasmissione è digitale

Dinamica del sistema:

Risoluzione: 7.6 μV @ 27dB; 0.076 μV @ 60dB

Dinamica di base: 96dB (16 bit)

S/N ratio fra 0.5 e 30Hz: >94dB (> 150dB con l'uso del PGA)

Alimentazione:

Alimentazione: batteria ricaricabile interna operativa 10-15Vdc

Consumo di energia: Interfaccia 80 mA, canale 30mA per una stringa da 12 canali: < 500mA

REGIONE LAZIO PROVINCIA DI ROMA

RELAZIONE GEOFISICA

DETERMINAZIONE Vsh CON METODOLOGIA MASW

RIFERIMENTO: Manufatto di Interconnessione Nuovo Acquedotto Marcio

RELAZIONE GEOFISICA

Premessa

È stata eseguita un'indagine geofisica nel comune di Mandela (RM) al fine di determinare la velocità

delle onde sismiche Vs.

L'indagine è consistita nella realizzazione di n.2 sezioni sismiche a 12 canali con acquisizione dei dati ottimizzata per elaborazione mediante analisi "MASW", ovvero Multichannel Analysis of Surface

Waves, consentendo la determinazione delle Vsh dell'area in esame.

Metodologia d'indagine

Al fine di effettuare la caratterizzazione microsismica del sito, come previsto dalla normativa vigente, sono state eseguite n.2 sezioni sismiche con acquisizione dei dati finalizzata all'analisi "Masw",

ovvero Multichannel Analysis of Surface Waves.

Il sistema Masw consiste nel misurare le velocità delle onde superficiali a differenti frequenze, la

variazione delle quali viene chiamata dispersione, dovuta alla stratificazione delle velocità delle onde S nella determinazione dello spettro di velocità. Grazie ad un metodo di inversione della curva di dispersione con software Easy Masw, le misure permettono di determinare il profilo verticale delle

Vsh che rappresenta un valore medio della velocità delle onde S fino alla profondità del substrato

Lo strumento è composto da una sorgente di onde sismiche, da 12 geofoni con frequenza 4,5 Hz per

la misurazione dell'intensità e dei tempi di arrivo del treno di onde e da un dispositivo hardware di

registrazione dei dati.

La sorgente delle onde sismiche è costituita dall'impatto di un martello di 8 Kg su una piastra posizionata perpendicolarmente al terreno, in grado di generare un treno di onde sismiche, i cui

tempi di arrivo e l'intensità delle stesse vengono registrate dai geofoni ed inviate al sismografo

centrale di acquisizione.

Si eseguono diverse energizzazioni e si misura l'attenuazione del segnale sismico lungo la stessa.

I risultati delle prove consistono in una curva di dispersione ed in uno spettro di velocità, con un

profilo verticale delle onde S.

La velocità di propagazione media delle onde di taglio o "S" calcolata fino alla profondità del

substrato rigido, dei terreni in oggetto è stata determinata utilizzando i dati del modello medio

ottenuto dall'inversione delle curve di dispersione e risulta pari a:

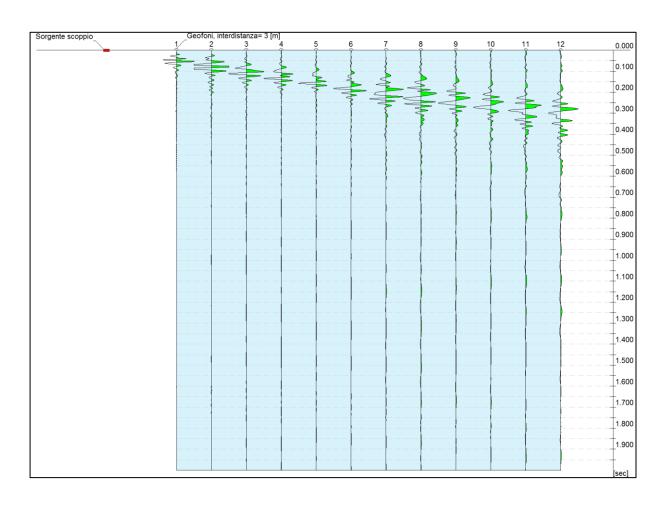
MASW 1 - VSh del modello medio: 182.78 m/sec

MASW 2 – VSh del modello medio: 184.38 m/sec

Dai dati ottenuti si può affermare che la categoria di suolo di fondazione del sito esaminato è:

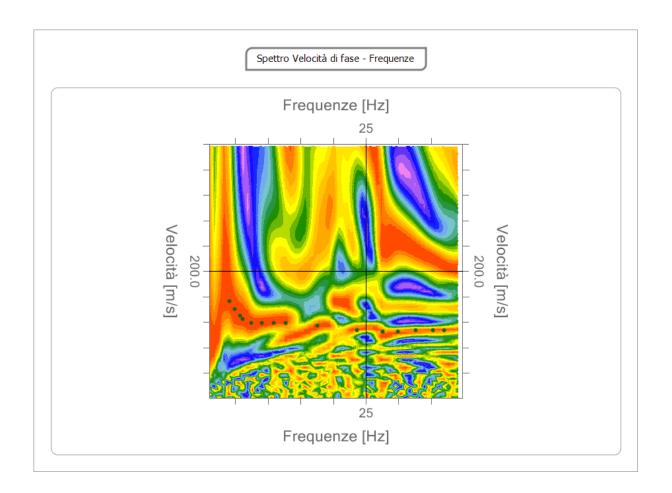
Tipo di suolo: C

(sulla base del modello medio)

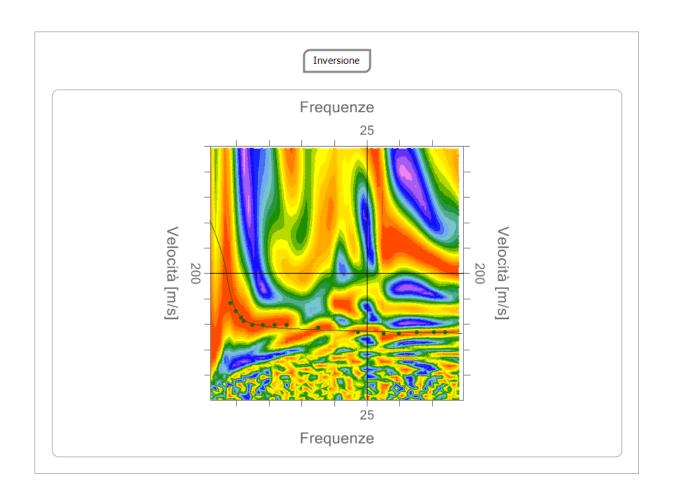

Dalla normativa (modifiche del D.M. 14/09/2005 Norme Tecniche per le Costruzioni, emanate con D.M. Infrastrutture del 14/01/2008, pubblicato su Gazzetta Ufficiale Supplemento ordinario n° 29 del 04/02/2008; successivo aggiornamento approvato con Decreto Ministeriale del 17/01/2018 pubblicato su Gazzetta Ufficiale Serie Generale n.42 del 20-02-2018 - Suppl. Ordinario n. 8).

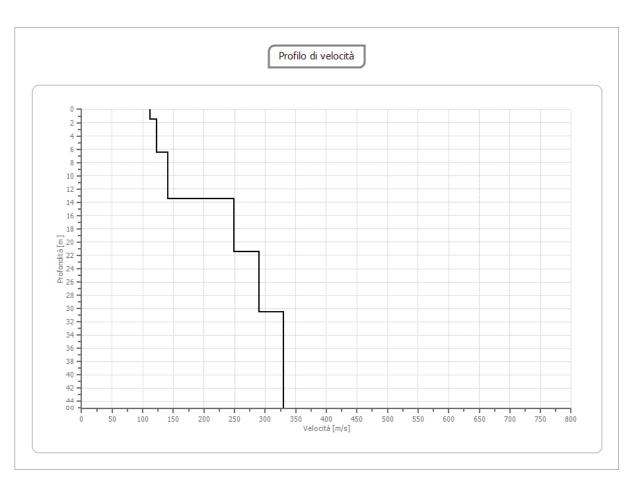
- A Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
- B Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s).
- C Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
- D Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s
- E Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

Risultati analisi


ELABORAZIONE ANALISI MASW - 1

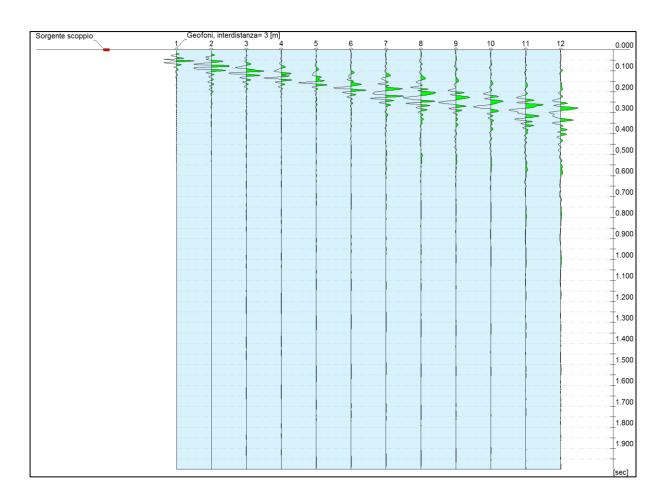
Tracce


Curva di dispersione


n.	Frequenza	Velocità	Modo
	[Hz]	[m/sec]	
1	4.1	152.7	0
2	4.9	140.6	0
3	5.7	130.7	0
4	6.1	125.2	0
5	7.4	118.6	0
6	9.0	118.6	0
7	10.9	118.6	0
8	12.7	118.6	0
9	17.6	114.2	0
10	23.6	107.6	0
11	27.6	105.4	0
12	29.9	105.4	0
13	32.6	107.6	0
14	35.3	107.6	0
15	37.0	107.6	0

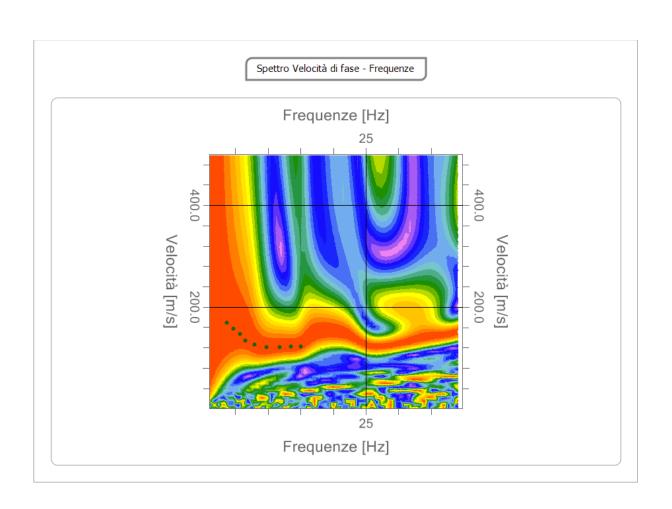
Inversione

n.	Descrizio ne	Profondit à [m]	Spessore [m]	Peso unità volume [kg/mc]	Coefficie nte Poisson	Falda	Vp [m/sec]	Vs [m/sec]
1		1.50	1.50	1800.0	0.3	No	208.5	111.5
2		6.50	5.00	1800.0	0.3	No	230.1	123.0
3		13.50	7.00	1800.0	0.3	No	264.6	141.4
4		21.50	8.00	1800.0	0.3	No	465.5	248.8
5		30.50	9.00	1800.0	0.3	No	543.0	290.3
6		00	00	1800.0	0.3	No	617.5	330.1

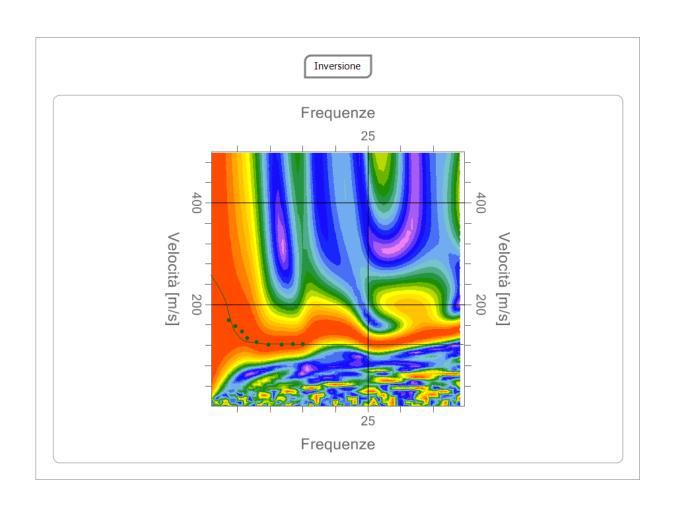


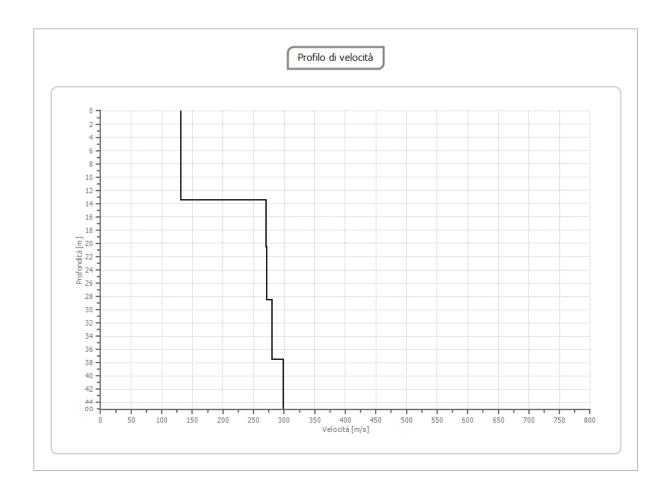
Risultati

Suolo C - Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.


ELABORAZIONE ANALISI MASW – 2

Tracce


Curva di dispersione


n.	Frequenza	Velocità	Modo
	[Hz]	[m/sec]	
1	3.7	168.7	0
2	4.8	157.7	0
3	5.7	146.7	0
4	6.6	134.3	0
5	8.0	126.1	0
6	9.8	120.6	0
7	11.8	120.6	0
8	13.5	122.0	0
9	15.0	122.0	0

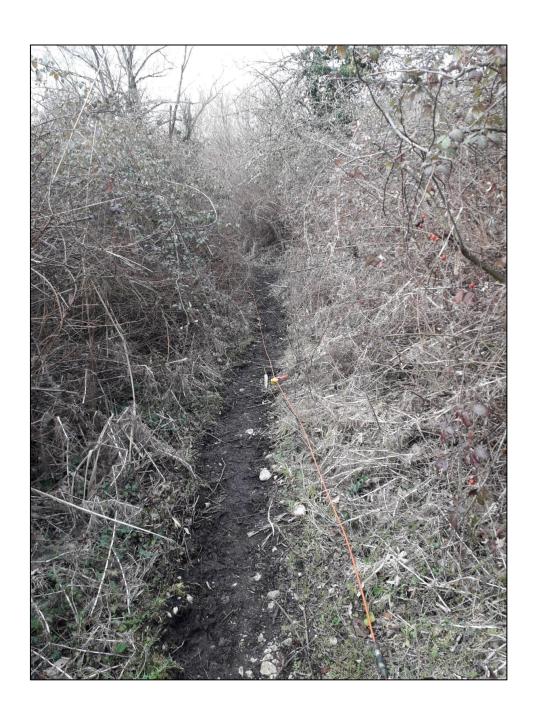
Inversione

n.	Descrizio ne	Profondit à [m]	Spessore [m]	Peso unità volume [kg/mc]	Coefficie nte Poisson	Falda	Vp [m/sec]	Vs [m/sec]
1		7.51	7.51	1800.0	0.3	No	245.0	130.9
2		13.51	6.00	1800.0	0.3	No	246.1	131.6
3		20.51	7.00	1800.0	0.3	No	505.8	270.4
4		28.51	8.00	1800.0	0.3	No	508.4	271.8
5		37.51	9.00	1800.0	0.3	No	524.4	280.3
6		00	00	1800.0	0.3	No	558.3	298.4

Risultati

Suolo C - Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.

DOCUMENTAZIONE FOTOGRAFICA INDAGINI GEOFISICHE (RIFRAZIONE E MASW)



ALLEGATO 5

Misura di frequenza fondamentale del terreno HVSR

Caratteristiche tecniche generali "Sismografo GEOBOX":

Alimentazione: batteria interna ricaricabile, consumo minore di 1W

Numero canali ed a/d converter: 3 (SD) dinamica di 144dB (24 bit effettivi fra 0.1 e 10Hz, ENOB)

Sensibilità: con velocimetri da 4.5Hz: < 1 nanometro/secondo per count

Campionamento: simultaneo sui tre canali a 10,20,50,100,200,300,400,480,600Hz

Real Time Clock: Sincronizzato da GPS via PPS modulato (su richiesta)
Precisione RTC: +/-10ppm fra -20/+50°C (+/-40ms rispetto ad UTC)

Antenna GPS: esterna con 10mt di cavo e connettore BNC

Interfaccia dati: RS232 con cavo da 8 metri e adattatore USB in dotazione

Contenitore: Monoblocco in alluminio IP66

Dimensioni e peso: 155x140x110 mm 3.1kg con sensori da 4.5Hz

Temperatura operativa: -20/+50°C Conformità: CE

REGIONE LAZIO PROVINCIA DI ROMA

RELAZIONE GEOFISICA

MISURA DI FREQUENZA FONDAMENTALE DEL TERRENO HVSR

RIFERIMENTO: Manufatto di Interconnessione Nuovo Acquedotto Marcio

RELAZIONE GEOFISICA

Premessa

È stata eseguita un'indagine geofisica nel comune di Mandela, al fine di determinare le frequenze caratteristiche di risonanza di sito mediante lo spettro H/V.

La caratterizzazione sismica dei terreni è avvenuta tramite la tecnica di indagine sismica passiva HVSR (Horizzontal to Vertical Spectral Rario – Metodo di Nakamura).

L'indagine ha previsto la realizzazione di:

n. 1 analisi HVSR

Cenni sulla teoria della tecnica HVSR

La tecnica HVSR permette in primo luogo di valutare la frequenza di vibrazione naturale di un sito. Successivamente, come ulteriore sviluppo, la stima del parametro normativo Vsh attraverso un processo di inversione del problema iniziale. Le ipotesi alla base della tecnica sono: una concentrazione del contenuto in frequenza localizzato maggiormente in quelle basse (tipicamente al di sotto dei 20 Hz); assenza di sorgenti periodiche e/o con contenuto in alte frequenze; le sorgenti di rumore sono uniformemente distribuite intorno alla stazione di registrazione. Se queste sono soddisfatte, la tecnica può essere suddivisa nelle fasi che vengono di seguito illustrate. Si esegue una registrazione del rumore ambientale lungo tre direzioni ortogonali tra loro (x,y,z) con una singola stazione. Tale registrazione deve essere effettuate, secondo le indicazioni del progetto SESAME, per una durata non inferiore ai 20 minuti. Si esegue un'operazione detta di windowing, in cui le tre tracce registrate vengono suddivise in finestre temporali di prefissata durata. Secondo le indicazioni del succitato progetto SESAME tale dimensione, detta Long Period, deve essere almeno pari ai 20 secondi. Si ottiene così un insieme di finestre "long", che sono sincronizzate fra le tracce.

Queste finestre vengono filtrate in base a dei criteri che permettono di individuare l'eventuale presenza di transienti (disturbi temporanei con grandi contributi nelle frequenze alte) o di fenomeni di saturazione.

Per ciascuna delle finestre rimanenti, quindi ritenute valide, viene valutato lo spettro di Fourier. Quest'ultimo viene sottoposto a tapering e/o lisciamento secondo una delle varie tecniche note in letteratura e ritenute all'uopo idonee. Successivamente si prendono in considerazione gli spettri delle finestre relative alle tracce orizzontali in coppia. Ovvero, ogni spettro di una finestra per esempio della direzione X, ha il suo corrispettivo per le finestre nella direzione Y, vale a dire che sono relative a finestre temporali sincrone. Per ognuna di queste coppie viene eseguita una somma tra le componenti in frequenza secondo un determinato criterio che può essere, ad esempio, una semplice media aritmetica o una somma euclidea.

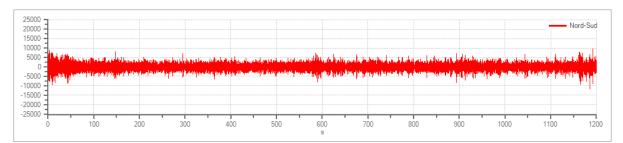
Per ciascuna coppia di cui sopra, esiste lo spettro nella direzione verticale Z, ovvero relativo alla finestra temporale sincrona a quelle della coppia. Ogni componente in frequenza di questo spettro viene usato come denominatore nel rapporto con quello della suddetta coppia. Questo permette quindi di ottenere il ricercato rapporto spettrale H/V per tutti gli intervalli temporali in cui viene suddivisa la registrazione durante l'operazione di windowing. Eseguendo per ciascuna frequenza di tali rapporti spettrali una media sulle varie finestre, si ottiene il rapporto spettrale H/V medio, la cui frequenza di picco (frequenza in cui è localizzato il massimo valore assunto dal rapporto medio stesso) rappresenta la deducibile stima della frequenza naturale di vibrazione del sito. L'ulteriore ipotesi che questo rapporto spettrale possa ritenersi una buona approssimazione dell'ellitticità del modo fondamentale della propagazione delle onde di Rayleigh, permette di confrontare questi due al fine di ottenere una stima del profilo stratigrafico. Tale procedura, detta di inversione, consente di definire il profilo sostanzialmente in termini di spessore e velocità delle onde di taglio. Avendo quindi una stima del profilo della velocità delle onde di taglio, è possibile valutarne il parametro normativo Vsh.

ELABORAZIONE ANALISI HVSR-1

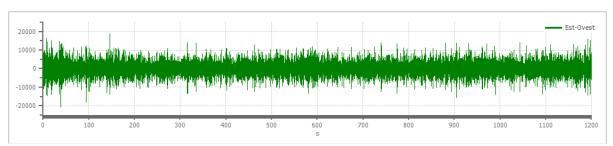
Tracce in input

Dati riepilogativi:

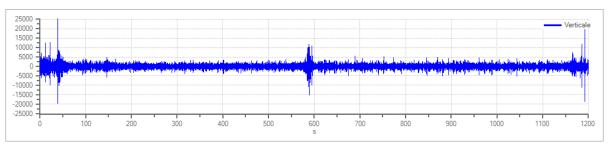
Numero tracce: 3


Durata registrazione: 1200 s

Frequenza di campionamento: 300.00 Hz


Numero campioni: 360000

Direzioni tracce: Nord-Sud; Est-Ovest; Verticale.


Grafici tracce:

Traccia in direzione Nord-Sud

Traccia in direzione Est-Ovest

Traccia in direzione Verticale

Finestre selezionate

Dati riepilogativi:

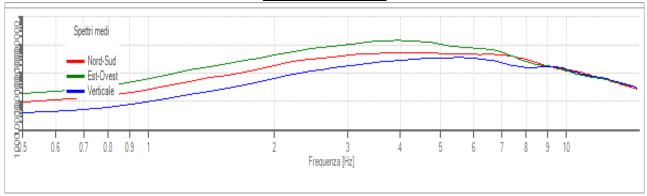

Numero totale finestre selezionate: 56 Numero finestre incluse nel calcolo: 56 Dimensione temporale finestre: 20.000 s Tipo di lisciamento: Triangolare costante Percentuale di lisciamento: 10.00 %

Tabella finestre:

Numero finestra	Istante iniziale	Istante finale	Selezione
1	0	20	Inclusa
2	40	60	Inclusa
3	60	80	Inclusa
4	80	100	Inclusa
5	100	120	Inclusa
6	120	140	Inclusa
7	140	160	Inclusa
8	160	180	Inclusa
9	180	200	Inclusa
10	200	220	Inclusa
11	220	240	Inclusa
12	240	260	Inclusa
13	260	280	Inclusa
14	280	300	Inclusa
15	300	320	Inclusa
16	320	340	Inclusa
17	340	360	Inclusa
18	360	380	Inclusa
19	380	400	Inclusa
20	400	420	Inclusa
21	420	440	Inclusa
22	440	460	Inclusa
23	460	480	Inclusa
24	480	500	Inclusa
25	500	520	Inclusa
26	520	540	Inclusa
27	560	580	Inclusa
28	600	620	Inclusa
29	620	640	Inclusa
30	640	660	Inclusa
31	660	680	Inclusa
32	680	700	Inclusa
33	700	720	Inclusa
34	720	740	Inclusa
		L.	-

35	740	760	Inclusa
36	760	780	Inclusa
37	780	800	Inclusa
38	800	820	Inclusa
39	820	840	Inclusa
40	840	860	Inclusa
41	860	880	Inclusa
42	880	900	Inclusa
43	900	920	Inclusa
44	920	940	Inclusa
45	940	960	Inclusa
46	960	980	Inclusa
47	980	1000	Inclusa
48	1000	1020	Inclusa
49	1020	1040	Inclusa
50	1040	1060	Inclusa
51	1060	1080	Inclusa
52	1080	1100	Inclusa
53	1100	1120	Inclusa
54	1120	1140	Inclusa
55	1140	1160	Inclusa
56	1160	1180	Inclusa

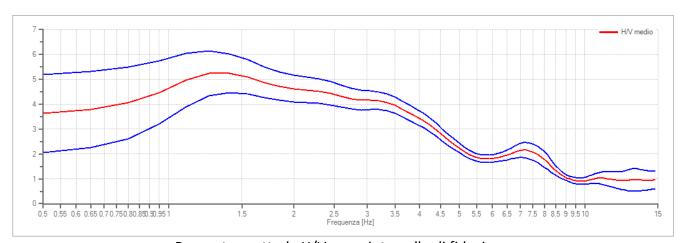
Spettri medi nelle tre direzioni

Rapporto spettrale H/V

Dati riepilogativi:

Frequenza massima: 15.00 Hz Frequenza minima: 0.50 Hz Passo frequenze: 0.15 Hz

Tipo lisciamento:: Triangolare costante


Percentuale di lisciamento: 10.00 %

Tipo di somma direzionale: Media aritmetica

Risultati:

Frequenza del picco del rapporto H/V: 1.25 Hz ±0.17 Hz

Grafico rapporto spettrale H/V

Rapporto spettrale H/V e suo intervallo di fiducia

Verifiche SESAME:

Verifica	Esito
$f_0 > 10/l_w$	Ok
$n_c(f_0) > 200$	Ok
$\sigma_A(f) < 2$ per $0.5 \cdot f_0 < f < 2 \cdot f_0$ se $f_0 > 0.5H_2$ $\sigma_A(f) < 3$ per $0.5 \cdot f_0 < f < 2 \cdot f_0$ se $f_0 < 0.5H_2$	Ok
$\exists f^- \in [f_0/4, f_0] \mid A_{H/V}(f^-) < A_0/2$	Non superato
$\exists f^+ \in [f_0, 4 \cdot f_0] \mid A_{H/V}(f^+) < A_0/2$	Ok
$A_0 > 2$	Ok
$f_{picco}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	Non superato
$\sigma_f < \varepsilon(f)$	Non superato
$\sigma_A(f_0) < \theta(f_0)$	Ok

DOCUMENTAZIONE FOTOGRAFICA

