PROGETTO DI ALLACCIAMENTO ALLA RTN DELL'IMPIANTO DI REGOLAZIONE SUL BACINO DI CAMPOLATTARO (BN)

MARZO 2011

COMMITTENTE

R.E.C. S.r.l. Via Uberti 37-20129 Milano

PROGETTAZIONE OPERE ELETTRICHE PER LA CONNESSIONE ALLA RTN:

INSE S.r.I. Ingegneria&Servizi Via San Giacomo dei Capri, 38 - 80128 Napoli Tel. 081 5797998 Fax 081 3777286 mail: inse.srl@virgilio.it

TITOLO ELABORATO:

ELETTRODOTTI 380 kV RELAZIONE TECNICA DESCRITTIVA

Revisione	Data	Descrizione	Redazione	Verifica	Approvazione	
A	31/03/2011	EMISSIONE PER VALUTAZIONE DI IMPAT	INSE S.R.L.	L.MALAFARINA	F.DI MASO	
В	31/05/2012	REVISIONE PER ITER AUTORIZZATIVO	INSE S.R.L.	L.MALAFARINA	F.DI MASO	
С				- C		
D						
	TIPOLO	OGIA DELL'ELABORATO		NUMERO DEL	L'ELABORATO	
DOCUMENTO				L-R-S129	9-A4-01-B	

NOME DEL FILE	SCALA CAD	FORMATO	SCALA	FOGLIO
LRS129A401B.PDF		A4		1 / 34

Relazione Tecnica Descrittiva

L-R-S129-A4-01-B

Rev. A

Del 31/05/2012

Codifica

Pag. **2** di 33

INDICE

1	PREMESSA E MOTIVAZIONI DELL'OPERA	3
2	UBICAZIONE DELL'INTERVENTO	4
3	DESCRIZIONE DELLE OPERE	5
3.1	1 Vincoli	5
	2 Distanze di sicurezza rispetto all'attività soggetta al controllo prevenzione incendi	
	CRONOPROGRAMMA	
5	CARATTERISTICHE TECNICHE DELLE OPERE	6
5.1		6
5.2		
5.3		
5.4		
5.5	5.4.1 Stato di tensione meccanica	
5.6 5.6		
	olamento	
	5.6.1 Caratteristiche geometriche	
:	5.6.2 Caratteristiche elettriche	
5.7		
5.8		
5.9		19
5.1	10 Caratteristiche dei componenti	20
	11 Terre e rocce da scavo	
6	RUMORE	24
7	INQUADRAMENTO GEOLOGICO PRELIMINARE	25
8	CAMPI ELETTRICI E MAGNETICI	25
8.1	1 Richiami normativi	25
_	2 Fasce di rispetto	
8.3		
9	NORMATIVA DI RIFERIMENTO	28
Le	eggi 28	
	orme tecniche	
	Norme CEI	
10		
11		
12		

Relazione Tecnica Descrittiva

Codifica L-R-S129-A4-01-B Pag. **3** di 33 Del 31/05/2012

1 PREMESSA E MOTIVAZIONI DELL'OPERA

La società REC S.r.L. ha predisposto un progetto relativo alla realizzazione di un impianto idroelettrico di regolazione sul bacino di Campolattaro (BN)

Il nuovo impianto avrà una potenza installata di 698 MVA e sarà allacciato alla Rete di Trasmissione Nazionale (RTN) secondo la modalità prevista da Terna S.p.A., in qualità di Gestore della Rete, e descritta nella STMG TE/P20100018614 del 28.12.2010.

Poiché la potenza richiesta o fornita dall'impianto alla RTN non è supportata da collegamenti a 150 kV, la soluzione di connessione prevede di potenziare la rete 380 kV a Nord della città di Benevento utilizzando la capacità di trasporto offerta dal rifacimento e potenziamento dell'esistente elettrodotto 380 kV "Benevento 2-Foggia" in corso di realizzazione, a seguito di Decreto autorizzativo emesso dal Ministero dello Sviluppo Economico (MSE). Tale elettrodotto transita a circa 25 km dal sito della Centrale.

La connessione dell'impianto idroelettrico in progetto alla Rete di Trasmissione Nazionale (RTN) prevede, quindi, la realizzazione delle seguenti opere elettriche:

- 1. Collegamento, mediante elettrodotto aereo a 380 kV, dell'impianto REC in una nuova stazione elettrica 380 kV da realizzare nel Comune di antenna su Pontelandolfo (BN)
 - 2. Nuova stazione elettrica 380 kV da ubicare nel comune di Pontelandolfo
 - 3. Nuova stazione elettrica 380 kV da ubicare nel comune di Benevento
 - 4. Collegamento mediante elettrodotto aereo a 380 kV tra le stazioni di Pontelandolfo e di Benevento
 - 5. Raccordi della stazione di Benevento all'elettrodotto 380 kV "Benevento 2-Foggia" in fase di autorizzazione realizzazione.

La presente relazione illustra le caratteristiche edili, elettriche e meccaniche delle opere relative ai punti 1, 4 e 5. Le opere relative ai punti 2, 3, 4, e 5 rimarranno di proprietà di Terna mentre le opere relative al punto 1 rimarranno di proprietà del proponente. Le opere relative ai punti 2 e 3 sono descritte nella relazione S-R-S129-A4-B

Le opere di competenza della Terna, a seguito di autorizzazione, saranno trasferite dalla REC S.r.l. alla Terna S.p.A. in quanto costituiranno opere di rete

L-R-S129-A4-01-B

Rev. A
Del 31/05/2012

Pag. 4 di 33

Relazione Tecnica Descrittiva

2 UBICAZIONE DELL'INTERVENTO

Tra le possibili soluzioni è stato individuato il tracciato più funzionale, che tenga conto di tutte le esigenze e delle possibili ripercussioni sull'ambiente, con riferimento alla legislazione nazionale e regionale vigente in materia.

I comuni interessati dal passaggio dell'elettrodotto sono elencati nella seguente tabella:

a) Collegamento in linea aerea 380 kV Semplice Terna binata tra la centrale REC e la S.E. Pontelandolfo

REGIONE	PROVINCIA	COMUNE	PERCORRENZA
CAMPANIA	BENEVENTO	PONTALANDOLFO	circa 7,5 km

b) Collegamento in linea aerea 380 kV Semplice Terna trinata tra la S.E. Pontelandolfo e la nuova S.E. Benevento

REGIONE	PROVINCIA	COMUNE	PERCORRENZA
	BENEVENTO	PONTELANDOLFO	circa 0,66 km
		CAMPOLATTARO	circa 2,4 km
CAMPANIA		FRAGNETO MONFORTE	circa 7,0 km
		BENEVENTO	circa 4,65km
	circa 14,71 km		

c) Raccordi in linea aerea 380 kV Semplice Terna sdoppiata e ottimizzata (su palificazione D.T.) dalla nuova S.E. Benevento alla linea 380 kV DT Benevento-Foggia

Lato Benevento

REGIONE	PROVINCIA	COMUNE	PERCORRENZA
CAMPANIA	BENEVENTO	BENEVENTO	circa 0,3 km

Lato Foggia

REGIONE PROVINCIA		COMUNE	PERCORRENZA
CAMPANIA	BENEVENTO	BENEVENTO	circa 0,4 km

Relazione Tecnica Descrittiva

L-R-S129-A4-01-B

Rev. A

Pag. 5 di 33

Del 31/05/2012

3 DESCRIZIONE DELLE OPERE

L'intervento consiste nella realizzazione di:

- a) Collegamento in linea aerea 380 kV Semplice Terna binata tra la centrale REC e la S.E. Pontelandolfo
- b) Collegamento in linea aerea 380 kV Semplice Terna trinata tra la S.E. Pontelandolfo e la nuova S.E. Benevento
- c) Raccordi in linea aerea 380 kV Semplice Terna sdoppiata e ottimizzata (su palificazione D.T.) dalla nuova S.E. Benevento alla linea 380 kV DT "Benevento 2-Foggia"
- a) Il tracciato dell'elettrodotto di cui al punto a), parte dalla nuova Centrale elettrica e arriva alla nuova stazione 380 kV di Pontelandolfo:
- b) Il tracciato dell'elettrodotto di cui al punto b), parte dalla nuova stazione elettrica di Pontelandolfo e arriva alla nuova stazione elettrica di Benevento in località Masseria Sabatini.
- c) Il tracciato dei Raccordi di cui al punto c) si sviluppa lato Benevento dal sostegno n° 31 della linea 380 kV DT "Benevento 2-Foggia" e attraverso la realizzazione di 1 sostegno arriva al portale della nuova stazione di Benevento; il tracciato lato Foggia si sviluppa dal portale della nuova stazione di Benevento e attraverso la realizzazione di 1 sostegno arriva al sostegno n° 32 della linea 380 kV DT "Ben evento 2-Foggia".
 - Le caratteristiche delle aree impegnate sono rilevabili dagli eleborati di progetto allegati (corografie, planimetrie catastali, profili).

La lunghezza totale degli interventi su indicati è di 23,2 km.

3.1 Vincoli

Il tracciato dell'elettrodotto non ricade in zone sottoposte a vincoli aeroportuali.

3.2 Distanze di sicurezza rispetto all'attività soggetta al controllo prevenzione incendi

Recependo quanto richiesto dal Ministero dell'Interno, Dipartimento Vigili del Fuoco, Soccorso Pubblico e Difesa Civile, si è prestata particolare attenzione al rispetto delle distanze di sicurezza tra il tracciato dei collegamenti in progetto e le attività soggette al controllo dei Vigili del Fuoco o a rischio di incidente rilevante di cui al D. Lgs. 334/99; in particolare in occasione dei sopralluoghi non sono state rilevate attività soggette al controllo dei Vigili del Fuoco nelle vicinanze del tracciato dell'elettrodotto in progetto.

Relazione Tecnica Descrittiva

Codifica				
L-R-S129-A4-01-B				
Rev. A	,	6 11 00		
Del 31/05/2012	Pag.	6 di 33		

Si resta a disposizione dei Comandi Provinciali dei Vigili del Fuoco per la compiuta verifica del rispetto delle distanze di sicurezza nei confronti di eventuali ulteriori attività di cui non sia possibile rilevare diretta evidenza.

4 CRONOPROGRAMMA

Il programma cronologico dei lavori è riportato nell'elaborato G-E-S129-A3-02-A

5 CARATTERISTICHE TECNICHE DELLE OPERE

5.1 Premessa

I calcoli delle frecce e delle sollecitazioni dei conduttori di energia, delle corde di guardia, dell'armamento, dei sostegni e delle fondazioni, sono rispondenti alla Legge n. 339 del 28/06/1986 ed alle norme contenute nei Decreti del Ministero dei LL.PP. del 21/03/1988 e del 16/01/1991 con particolare riguardo agli elettrodotti di classe terza, così come definiti dall'art. 1.2.07 del Decreto del 21/03/1988 suddetto; per quanto concerne le distanze tra conduttori di energia e fabbricati adibiti ad abitazione o ad altra attività che comporta tempi di permanenza prolungati, queste sono conformi anche al dettato del D.P.C.M. 08/07/2003.

Il progetto dell'opera è conforme al Progetto Unificato per gli elettrodotti elaborato fin dalla prima metà degli anni '70 a cura della Direzione delle Costruzioni di ENEL, aggiornato nel pieno rispetto della normativa prevista dal DM 21-10-2003 (Presidenza del Consiglio di Ministri Dipartimento Protezione Civile) e tenendo conto delle Norme Tecniche per le Costruzioni, Decreto 14/09/2005.

Per quanto attiene gli elettrodotti, nel Progetto Unificato ENEL, sono inseriti tutti i componenti (sostegni e fondazioni, conduttori, morsetteria, isolatori, ecc.) con le relative modalità di impiego.

Le tavole grafiche dei componenti impiegati con le loro caratteristiche è riportato nel Doc. n°L-E-S129-FF-04-B "Caratteristiche Component i" allegato.

Gli elettrodotti oggetto dell'intervento sono costituiti:

 Il collegamento in linea aerea 380 kV Semplice Terna binata tra la centrale REC e la S.E. Pontelandolfo, da una palificazione a semplice terna armata con tre fasi ciascuna composta da un fascio di 2 conduttori di energia e due corde di guardia, fino al

Relazione Tecnica Descrittiva

L-R-S129-A4-01-B

Rev. A

Del 31/05/2012

Pag. 7 di 33

Codifica

raggiungimento dei sostegni capolinea; lo stesso assetto, con fascio di conduttori binato, si ha tra il sostegno capolinea e i portali di stazione.

- O Il collegamento in linea aerea 380 kV Semplice Terna trinata tra la S.E. Pontelandolfo e la nuova S.E. Benevento, da una palificazione a semplice terna armata con tre fasi ciascuna composta da un fascio di 3 conduttori di energia e due corde di guardia, fino al raggiungimento dei sostegni capolinea; lo stesso assetto, ma con fascio di conduttori binato, si ha tra il sostegno capolinea e i portali di stazione.
- O I Raccordi in linea aerea 380 kV Semplice Terna sdoppiata e ottimizzata (su palificazione D.T.) dalla nuova S.E. Benevento alla linea 380 kV DT Benevento-Foggia, da una palificazione a doppia terna armata con sei fasi sdoppiate e ottimizzate (per minimizzare gli effetti dei campi elettromagnetici), ciascuna composta da un fascio di 3 conduttori di energia e una corda di guardia, dai sostegni capolinea fino all'inserimento sulla linea 380 kV DT Benevento-Foggia. I raccordi sono stati realizzati su palificazione doppia terna per mantenere lo stesso assetto della linea Benevento-Foggia dalla quale derivano.

5.2 Caratteristiche elettriche degli elettrodotti

Le caratteristiche elettriche degli elettrodotti sono le seguenti:

Tensione nominale 380 kV in corrente alternata

Frequenza nominale
 50 Hz

Portata in corrente in servizio normale 2955 A (linee: "SE Pontelandolfo-SE

Benevento" e raccordi

Portata in corrente in servizio normale 1970 A (linea: "C.le REC-SE Pontelandolfo"

Potenza nominale
 1942 MVA(linee: "SE Pontelandolfo-SE

Benevento" e raccordi

Potenza nominale
 1.295 MVA (linea: "C.le REC-SE Pontelandolfo"

La portata in corrente in servizio normale del conduttore è conforme a quanto prescritto dalla norma CEI 11-60, per elettrodotti a 380 kV in zona A.

Relazione Tecnica Descrittiva

L-R-S129-A4-01-B

Rev. A

Pag. 8 di 33

Del 31/05/2012

5.3 Distanza tra i sostegni

La distanza tra due sostegni consecutivi dipende dall'orografia del terreno e dall'altezza utile dei sostegni impiegati; mediamente in condizioni normali, si ritiene possa essere pari a 400m.

5.4 Conduttori e corde di guardia

Collegamento in linea aerea 380 kV Semplice Terna binata tra la centrale GB2 e la S.E. Pontelandolfo:

Fino al raggiungimento dei sostegni capolinea, ciascuna fase elettrica sarà costituita da un fascio di 2 conduttori (binato). Ciascun conduttore di energia sarà costituito da una corda di alluminio-acciaio della sezione complessiva di 585,3 mm2 composta da n. 19 fili di acciaio del diametro 2,10 mm e da n. 54 fili di alluminio del diametro di 3,50 mm, con un diametro complessivo di 31,50 mm.

Collegamento in linea aerea 380 kV Semplice Terna trinata tra la S.E. Pontelandolfo e la nuova S.E. Benevento:

Fino al raggiungimento dei sostegni capolinea, ciascuna fase elettrica sarà costituita da un fascio di 3 conduttori (trinato). Ciascun conduttore di energia sarà costituito da una corda di alluminio-acciaio della sezione complessiva di 585,3 mm2 composta da n. 19 fili di acciaio del diametro 2,10 mm e da n. 54 fili di alluminio del diametro di 3,50 mm, con un diametro complessivo di 31,50 mm.

Raccordi in linea aerea 380 kV Semplice Terna sdoppiata e ottimizzata (su palificazione D.T.) dalla nuova S.E. Benevento alla linea 380 kV DT Benevento-Foggia:

Nel tratto compreso dai pali capolinea esterni alla s/ne di Benevento e i pali di derivazione dalla linea Benevento-Foggia, l'assetto della linea sarà in Semplice Terna ma il carico elettrico sarà distribuito su sei fasi trinate ottimizzate al duplice scopo di mantenere la stessa palificazione in DT della linea Benevento-Foggia e nel contempo ridurre i campi elettromagnetici.

Il carico di rottura teorico del conduttore sarà di 16852 daN.

Per zone ad alto inquinamento salino può essere impiegato in alternativa il conduttore con l'anima a "zincatura maggiorata" ed ingrassato fino al secondo mantello di alluminio. Le caratteristiche tecniche del conduttore sono riportate nella tavola RQUT0000C2 rev. 01 (Doc. L-E-S129-FF-04-A).

Relazione Tecnica Descrittiva

L-R-S129-A4-01-B

Del 31/05/2012

Codifica

Pag. **9** di 33

Nelle campate comprese tra i sostegni capolinea ed i portali della stazione elettrica ciascuna fase sarà costituita da un fascio di 2 conduttori collegati fra loro da distanziatori (fascio binato). I conduttori di energia saranno in corda di alluminio di sezione complessiva di 999,70 mm2, composti da n. 91 fili di alluminio del diametro di 3,74 mm, con un diametro complessivo di 41,1 mm (tavola LC8 rev. 00, Doc. L-E-S129-FF-04-B).

Il carico di rottura teorico di tale conduttore sarà di 14486 daN.

I conduttori avranno un'altezza da terra non inferiore a metri 11,50, arrotondamento per accesso di quella minima prevista dall'art. 2.1.05 del D.M. 16/01/1991.

L'elettrodotto sarà inoltre equipaggiato con due corde di guardia destinate, oltre che a proteggere l'elettrodotto stesso dalle scariche atmosferiche, a migliorare la messa a terra dei sostegni. Ciascuna corda di guardia, in acciaio zincato del diametro di 11,50 mm e sezione di 78,94 mm2, sarà costituita da n. 19 fili del diametro di 2,30 mm (tavola LC 23, Doc. L-E-S129-FF-04-A).

Il carico di rottura teorico della corda di guardia sarà di12231 daN.

In alternativa è possibile l'impiego di una o di due corde di guardia in alluminio-acciaio con fibre ottiche, del diametro di 17,9 mm (tavola UXLC60, Doc. L-E-S129-FF-04-A), da utilizzarsi per il sistema di protezione, controllo e conduzione degli impianti.

5.4.1 Stato di tensione meccanica

Il tiro dei conduttori e delle corde di guardia è stato fissato in modo che risulti costante, in funzione della campata equivalente, nella condizione "normale" di esercizio linea, cioè alla temperatura di 15℃ ed in assenza di sovraccarichi (EDS - "every day stress"). Ciò assicura una uniformità di comportamento nei riguardi delle sollecitazioni prodotte dal fenomeno delle vibrazioni.

Nelle altre condizioni o "stati" il tiro varia in funzione della campata equivalente di ciascuna tratta e delle condizioni atmosferiche (vento, temperatura ed eventuale presenza di ghiaccio). La norma vigente divide il territorio italiano in due zone, A e B, in relazione alla quota e alla disposizione geografica.

Gli "stati" che interessano, da diversi punti di vista, il progetto delle linee sono riportati nello schema seguente:

- EDS Condizione di tutti i giorni: +15℃, in assenza di vento e ghiaccio
- MSA Condizione di massima sollecitazione (zona A): -5℃, vento a 130 km/h

L-R-S129-A4-01-B Pag. **10** di Del 31/05/2012

Codifica

D - / '	T	D '//'
REISTIONE	<i>i ecnica</i>	Descrittiva

- MSB -Condizione di massima sollecitazione (zona B): -20°C, manicotto di ghiaccio di 12 mm, vento a 65 km/h
- MPA -Condizione di massimo parametro (zona A): -5℃, in assenza di vento e ghiaccio
- Condizione di massimo parametro (zona B): -20°C, in assenza di vento e ghiaccio MPB -
- MFA -Condizione di massima freccia (Zona A): +55℃, in assenza di vento e ghiaccio
- MFB -Condizione di massima freccia (Zona B): +40℃, in assenza di vento e ghiaccio
- CVS1 -Condizione di verifica sbandamento catene : 0°C, vento a 26 km/h
- CVS2 -Condizione di verifica sbandamento catene: +15℃, vento a 130 km/h
- CVS3 -Condizione di verifica sbandamento catene: 0° (Zona A) - 10° (Zona B), vento a 65 km/h
- CVS4 -Condizione di verifica sbandamento catene: +20℃, vento a 65 km/h

Nel seguente prospetto sono riportati i valori dei tiri in EDS per i conduttori, in valore percentuale rispetto al carico di rottura:

ZONA A EDS=21% per il conduttore tipo alluminio-acciaio, Ø 31,5 mm

ZONA B EDS=20% per il conduttore tipo alluminio-acciaio, Ø 31,5 mm

Il corrispondente valore di EDS per la corda di guardia è stato fissato con il criterio di avere un parametro del 15% più elevato, rispetto a quello del conduttore, nella stessa condizione di EDS, come riportato di seguito:

ZONA A EDS=10.6% per corda di guardia in acciaio Ø 11,5 mm a "zincatura normale" EDS=12.18 % per corda di guardia in acciaio Ø 11,5 mm a "zincatura maggiorata"

ZONA B EDS=9.1% per corda di guardia in acciaio Ø 11,5 mm a "zincatura normale" EDS=10.46 % per corda di guardia in acciaio Ø 11,5 mm a "zincatura maggiorata"

Per fronteggiare le conseguenze dell'assestamento dei conduttori, si rende necessario maggiorare il tiro all'atto della posa. Ciò si ottiene introducendo un decremento fittizio di temperatura ($\Delta\theta$ nel calcolo delle tabelle di tesatura:

- -16℃ in zona A
- -25℃ in zona B.

La linea in oggetto è situata in "ZONA A"

Relazione Tecnica Descrittiva

L-R-S129-A4-01-B

Rev. A Pag. 11 di

Del 31/05/2012

Codifica

5.5 Capacità di trasporto

La capacità di trasporto dell'elettrodotto è funzione lineare della corrente di fase. Il conduttore in oggetto corrisponde al "conduttore standard" preso in considerazione dalla Norma CEI 11-60, nella quale sono definite anche le portate nei periodi caldo e freddo.

Il progetto dell'elettrodotto in oggetto è stato sviluppato nell'osservanza delle distanze di rispetto previste dalle Norme vigenti, sopra richiamate, pertanto le portate in corrente da considerare sono le stesse indicate nella Norma CEI 11-60.

5.6 Sostegni

Per i collegamenti:

In linea aerea 380 kV Semplice Terna binata tra la centrale GB2 e la S.E. Pontelandolfo e in linea aerea 380 kV Semplice Terna trinata tra la S.E. Pontelandolfo e la nuova S.E. Benevento, i sostegni saranno del tipo a delta rovescio a semplice terna, di varie altezze secondo le caratteristiche altimetriche del terreno, in angolari di acciaio ad elementi zincati a caldo e bullonati. Gli angolari di acciaio sono raggruppati in elementi strutturali. Il calcolo delle sollecitazioni meccaniche ed il dimensionamento delle membrature è stato eseguito conformemente a quanto disposto dal D.M. 21/03/1988 e le verifiche sono state effettuate per l'impiego sia in zona "A" che in zona "B".

Essi avranno un'altezza tale da garantire, anche in caso di massima freccia del conduttore, il franco minimo prescritto dalle vigenti norme; l'altezza totale fuori terra sarà di norma inferiore a 61 m. Nei casi in cui ci sia l'esigenza tecnica di superare tale limite, si provvederà, in conformità alla normativa sulla segnalazione degli ostacoli per il volo a bassa quota, alla verniciatura del terzo superiore dei sostegni e all'installazione delle sfere di segnalazione sulle corde di guardia.

I sostegni saranno provvisti di difese parasalita.

La tipologia dei sostegni con testa a delta rovesciato, proprio in virtù della disposizione orizzontale dei conduttori, consente una drastica riduzione dell'ingombro verticale e quindi dell'impatto visivo.

Per quanto concerne detti sostegni, fondazioni e relativi calcoli di verifica, TERNA si riserva di apportare nel progetto esecutivo modifiche di dettaglio dettate da esigenze tecniche ed economiche, ricorrendo, se necessario, all'impiego di opere di sottofondazione.

Relazione Tecnica Descrittiva

Codifica L-R-S129-A4-01-B Pag. **12** di Del 31/05/2012

Ciascun sostegno si può considerare composto dai piedi, dalla base, da un tronco e dalla testa, della quale fanno parte le mensole. Ad esse sono applicati gli armamenti (cioè l'insieme di elementi che consente di ancorare meccanicamente i conduttori al sostegno pur mantenendoli elettricamente isolati da esso) che possono essere di sospensione o di amarro. Vi sono infine i cimini, atti a sorreggere le corde di guardia.

I piedi del sostegno, che sono l'elemento di congiunzione con il terreno, possono essere, in accordo allo standard TERNA, di lunghezza diversa, consentendo un migliore adattamento, in caso di terreni acclivi.

L'elettrodotto a 380 kV semplice terna e' realizzato utilizzando una serie unificata di tipi di sostegno, tutti diversi tra loro (a seconda delle sollecitazioni meccaniche per le quali sono progettati) e tutti disponibili in varie altezze (H), denominate 'altezze utili (di norma vanno da 15 a 42 m).

I tipi di sostegno standard utilizzati e le loro prestazioni nominali, con riferimento al conduttore utilizzato alluminio-acciaio Ø 31,5 mm, in termini di campata media (Cm), angolo di deviazione (δ) e costante altimetrica (K) sono i seguenti:

ZONA A EDS 21 %

TIPO	ALTEZZA	CAMPATA MEDIA	ANGOLO DEVIAZIONE	COSTANTE ALTIMETRICA
"L" Leggero	18 ÷ 42 m	400 m	043'	0,1647
"N" Normale	18 ÷ 42 m	400 m	4°	0,2183
"M" Medio	18 ÷ 54 m	400 m	8°	0,2762
"P" Pesante	18 ÷ 42 m	400 m	16°	0,3849
"V"Vertice	18 ÷ 54 m	400 m	32°	0,3849
"C"Capolinea	18 ÷ 42 m	400 m	60°	0,3849
"E" Eccezionale	18 ÷ 42 m	400 m	100°	0,3849

Ogni tipo di sostegno ha un campo di impiego rappresentato da un diagramma di utilizzazione (vedere ad esempio, il diagramma di utilizzazione nel Doc. n. L-E-S129-FF-04-A) nel quale sono rappresentate le prestazioni lineari (campate media), trasversali (angolo di deviazione) e verticali (costante altimetrica K).

Il diagramma di utilizzazione di ciascun sostegno è costruito secondo il seguente criterio:

Partendo dai valori di Cm, δ e K relativi alle prestazioni nominali, si calcolano le forze (azione trasversale e azione verticale) che i conduttori trasferiscono all'armamento.

Relazione Tecnica Descrittiva

Codifica	
L-R-S129-A	4-01-B
Rev. A	Pag. 13 di 33
Del 31/05/2012	33

- Successivamente con i valori delle azioni così calcolate, per ogni valore di campata media, si vanno a determinare i valori di δ e K che determinano azioni di pari intensità.
- In ragione di tale criterio, all'aumentare della campata media diminuisce sia il valore dell'angolo di deviazione sia la costante altimetrica con cui è possibile impiegare il sostegno. La disponibilità dei diagrammi di utilizzazione agevola la progettazione, in quanto consente di individuare rapidamente se il punto di lavoro di un sostegno, di cui si siano determinate la posizione lungo il profilo della linea e l'altezza utile, e quindi i valori a picchetto di Cm, δ e K, ricade o meno all'interno dell'area delimitata dal diagramma di utilizzazione stesso.

Per i raccordi in linea aerea 380 kV Semplice Terna sdoppiata e ottimizzata (su palificazione D.T.) dalla nuova S.E. Benevento alla linea 380 kV DT Benevento-Foggia, si utilizzeranno sostegni a doppia terna a basi strette di tipo tradizionale.

I tipi di sostegno standard utilizzati e le loro prestazioni nominali, con riferimento al conduttore utilizzato alluminio-acciaio Φ 31,5 mm, in termini di campata media (Cm), angolo di deviazione (δ) e costante altimetrica (K) sono i seguenti:

SOSTEGNI 380 kV Doppia Terna tronco piramidale - ZONA A EDS 21 %

TIPO	ALTEZZA	CAMPATA MEDIA	ANGOLO DEVIAZIONE	COSTANTE ALTIMETRICA
"N" Normale	15 ÷ 54 m	400 m	4°	0.2183
"M" Medio	15 ÷ 54 m	400 m	8°	0.2762
"V" Vertice	15 ÷ 54 m	400 m	32°	0.3849
"C" Capolinea	15 ÷ 54 m	400 m	60°	0.3849
"E" Eccezionale	15 ÷ 54 m	400 m	75°	0.3849

Isolamento

L'isolamento degli elettrodotti, previsto per una tensione massima di esercizio di 420 kV, sarà realizzato con isolatori a cappa e perno in vetro temprato, con carico di rottura di 160 e 210 kN nei due tipi "normale" e "antisale", connessi tra loro a formare catene di almeno 19 elementi negli amarri e 21 nelle sospensioni, come indicato nel grafico riportato al successivo paragrafo 5.6.2. Le catene di sospensione saranno del tipo a V o ad L (semplici o doppie per ciascuno dei rami) mentre le catene in amarro saranno tre in parallelo.

Le caratteristiche degli isolatori rispondono a quanto previsto dalle norme CEI.

Relazione Tecnica Descrittiva

Codifica	
L-R-S129-A	4-01-B
Rev. A	Pag. 14 di 33
Del 31/05/2012	33

5.6.1 Caratteristiche geometriche

Nelle tabelle LJ1 e LJ2 allegate sono riportate le caratteristiche geometriche tradizionali ed inoltre le due distanze "dh" e "dv" (vedi figura) atte a caratterizzare il comportamento a sovratensione di manovra sotto pioggia.

Relazione Tecnica Descrittiva

Codifica

L-R-S129-A4-01-B

Rev. A
Del 31/05/2012

Pag. 15 di
33

5.6.2 Caratteristiche elettriche

Le caratteristiche geometriche di cui sopra sono sufficienti a garantire il corretto comportamento delle catene di isolatori a sollecitazioni impulsive dovute a fulminazione o a sovratensioni di manovra.

Per quanto riguarda il comportamento degli isolatori in presenza di inquinamento superficiale, nelle tabelle LJ1 e LJ2 allegate sono riportate, per ciascun tipo di isolatore, le condizioni di prova in nebbia salina, scelte in modo da porre ciascuno di essi in una situazione il più possibile vicina a quella di effettivo impiego.

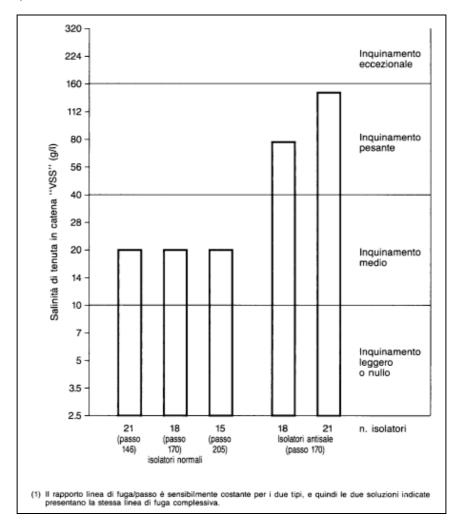
Nella tabella che segue è poi indicato il criterio per individuare il tipo di isolatore ed il numero di elementi da impiegare con riferimento ad una scala empirica dei livelli di inquinamento.

LIVELLO DI INQUINAMENTO	DEFINIZIONE	MINIMA SALINITA' DI TENUTA (kg/m²)
	Zone prive di industrie e con scarsa densità di abitazioni dotate di impianto di riscaldamento	
I – Nullo o leggero	• Zone con scarsa densità di industrie e abitazioni, ma frequentemente soggette a piogge e/o venti.	
(1)	• Zone agricole (2)	10
	Zone montagnose	
	Occorre che tali zone distino almeno 10-20 km dal mare e non siano direttamente esposte a venti marini (3)	
	 Zone con industrie non particolarmente inquinanti e con media densità di abitazioni dotate di impianto di riscaldamento 	
II – Medio	• Zone ad alta densità di industrie e/o abitazioni, ma frequentemente soggette a piogge e/o venti.	40
	• Zone esposte ai venti marini, ma non troppo vicine alla costa (distanti almeno alcuni chilometri) (3)	
III - Pesante	 Zone ad alta densità industriale e periferie di grandi agglomerati urbani ad alta densità di impianti di riscaldamento producenti sostanze inquinanti 	160
	Zone prossime al mare e comunque esposte a venti marini di entità relativamente forte	
	 Zone di estensione relativamente modesta, soggette a polveri o fumi industriali che causano depositi particolarmente conduttivi 	
IV – Eccezionale	Zone di estensione relativamente modesta molto vicine a coste marine e battute da venti inquinanti molto forti	(*)
	 Zone desertiche, caratterizzate da assenza di pioggia per lunghi periodi, esposte a tempeste di sabbia e sali, e soggette a intensi fenomeni di condensazione 	

⁽¹⁾ Nelle zone con inquinamento nullo o leggero una prestazione dell'isolamento inferiore a quella indicata può essere utilizzata in funzione dell'esperienza acquisita in servizio.

⁽²⁾ Alcune pratiche agricole quali la fertirrigazione o la combustione dei residui, possono produrre un incremento del livello di inquinamento a causa della dispersione via vento delle particelle inquinanti.

Relazione Tecnica Descrittiva


L-R-S129-A4-01-B

Rev. A Pag. **16** di Del 31/05/2012

Del 31/05/2012 33

Codifica

- (3) Le distanze dal mare sono strettamente legate alle caratteristiche topografiche della zona eda alle condizioni di vento più severe.
- (4) (*) per tale livello di inquinamento non viene dato un livello di salinità di tenuta, in quanto risulterebbe più elevato del massimo valore ottenibile in prove di salinità in laboratorio. Si rammenta inoltre che l'utilizzo di catene di isolatori antisale di lunghezze superiori a quelle indicate nelle tabelle di unificazione (criteri per la scelta del numero e del tipo degli isolatori) implicherebbe una linea di fuga specifica superiore a 33 mm/kV fase-fase oltre la quale interviene una non linearità nel comportamento in ambiente inquinato.

Il numero degli elementi può essere aumentato fino a 21 (sempre per ciò che riguarda gli armamenti VSS) coprendo così quasi completamente le zone ad inquinamento "pesante". In casi eccezionali si potranno adottare soluzioni che permettono l'impiego fino a 25 isolatori "antisale" da montare su speciali sostegni detti a"a isolamento rinforzato". Con tale soluzione, se adottata in zona ad inquinamento eccezionale, si dovrà comunque ricorrere ad accorgimenti particolari quali lavaggi periodici, ingrassaggio, ecc.

Le considerazioni fin qui esposte vanno pertanto integrate con l'osservazione che gli armamenti di sospensione diversi da VSS hanno prestazioni minori a parità di isolatori. E precisamente:

- gli armamenti VDD, LSS, LDS presentano prestazioni inferiori di mezzo gradino della scla di salinità
- gli armamenti LSD, LDD (di impiego molto eccezionale) presentano prestazioni di inferiori di 1 gradino della scala di salinità.
- gli armamenti di amarro, invece, presentano le stesse prestazioni dei VSS.

Tenendo presente, d'altra parte, il carattere probabilistico del fenomeno della scarica superficiale, la riduzione complessiva dei margini di sicurezza sull'intera linea potrà essere trascurata se gli ermamaenti indicati sono relativamente pochi rispetto ai VSS (per esempio 1 su 10). Diversamente se ne terrà conto nello stabilire la soluzione prescelta (ad esempio si passerà agli "antisale" prima di quanto si sarebe fatto in presenza dei soli armamenti VSS.

Relazione Tecnica Descrittiva

L-R-S129-A4-01-B Pag. **17** di Del 31/05/2012

Codifica

Le caratteristiche della zona interessata dall'elettrodotto in esame sono di inquinamento atmosferico medio e quindi si è scelta la soluzione dei 21 isolatori (passo 146) tipo J 1/3 (normale) per tutti gli armamenti in sospensione e quella dei 18 isolatori (passo 170) tipo J1/4 (normale) per gli armamenti in amarro.

Morsetteria ed armamenti 5.7

Gli elementi di morsetteria per linee a 380 kV sono stati dimensionati in modo da poter sopportare gli sforzi massimi trasmessi dai conduttori al sostegno.

A seconda dell'impiego previsto sono stati individuati diversi carichi di rottura per gli elementi di morsetteria che compongono gli armamenti in sospensione:

- 120 kN utilizzato per le morse di sospensione.
- 210 kN utilizzato per i rami semplici degli armamenti di sospensione e dispositivo di amarro di un singolo conduttore.
- 360 kN utilizzato nei rami doppi degli armamenti di sospensione.

Le morse di amarro sono invece state dimensionate in base al carico di rottura del conduttore.

Per equipaggiamento si intende il complesso degli elementi di morsetteria che collegano le morse di sospensione o di amarro agli isolatori e questi ultimi al sostegno.

Per le linee a 380 kV si distinguono i tipi di equipaggiamento riportati nella tabella seguente.

		CARICO DI (ki		
EQUIPAGGIAMENTO	TIPO	Ramo 1	ramo 2	SIGLA
a "V" semplice	380/1	210	210	VSS
a "V" doppio	380/2	360	360	VDD
a "L" semplice-	380/3	210	210	LSS
a "L" semplice-doppio	380/4	210	360	LSD
a "L" doppio-semplice	380/5	360	210	LDS
a "L" doppio	380/6	360	360	LDD
triplo per amarro	385/1	3 x 210		TA
triplo per amarro rovescio	385/2	3 x 210		TAR

Relazione Tecnica Descrittiva

L-R-S129-A4-01-B

Rev. A

Del 31/05/2012

Pag. 18 di 33

Codifica

elazione recinca Descrittiva	R
	_

doppio per amarro	387/2	2 x 120		DA
doppio per amarro rovescio 387/3 2 x 120		120	DAR	
ad "I" per richiamo collo morto	392/1	30		IR
a "V" semplice per richiamo collo morto	392/1	210	210	VR

La scelta degli equipaggiamenti viene effettuata, per ogni singolo sostegno, fra quelli disponibili nel progetto unificato, in funzione delle azioni (trasversale, verticale e longitudinale) determinate dal tiro dei conduttori e dalle caratteristiche di impiego del sostegno esaminato (campata media, dislivello a monte e a valle, ed angolo di deviazione).

5.8 Fondazioni

Ciascun sostegno è dotato di quattro piedi e delle relative fondazioni.

La fondazione è la struttura interrata atta a trasferire i carichi strutturali (compressione, trazione e momenti) dal sostegno al sottosuolo.

Le fondazioni unificate sono utilizzabili su terreni normali, di buona o media consistenza.

Ciascun piedino di fondazione è composto di tre parti:

- a) un plinto di fondazione in c.a., che appoggia sul fondo dello scavo, simmetrico rispetto al proprio asse verticale;
- b) un colonnino in c.a. a sezione circolare, inclinato secondo la pendenza del montante del sostegno;
- c) un "moncone" metallico annegato nel calcestruzzo al momento del getto, collegato al montante del "piede" del sostegno. Il moncone è costituito da un angolare, completo di squadrette di ritenuta, che si collega con il montante del piede del sostegno mediante un giunto a sovrapposizione. I monconi sono raggruppati in tipi, caratterizzati dalla dimensione dell'angolare, ciascuno articolato in un certo numero di lunghezze.

Dal punto di vista del calcolo dimensionale è stata seguita la normativa di riferimento per le opere in cemento armato di seguito elencata:

- D.M. 9 gennaio 1996, "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche";
- D.M. 14 febbraio 1992: "Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche";
- D.M. 16 Gennaio 1996: Norme tecniche relative ai "Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi;

Relazione Tecnica Descrittiva

L-R-S129-A4-01-B

Rev. A

Del 31/05/2012

Pag. 19 di
33

Codifica

- Circolare Ministero LL.PP. 14 Febbraio 1974 n.11951: Applicazione delle norme sul cemento armato L. 5/11/71 n. 1086;
- Circolare Min. LL.PP. 4 Luglio 1996 n.156AA.GG./STC.: Istruzioni per l'applicazione delle "Norme tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi" di cui al Decreto Ministeriale 16 gennaio 1996.
- Nuove Norme Tecniche per le Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008.

Sono inoltre osservate le prescrizioni della normativa specifica per elettrodotti, costituita dal D.M. 21/3/1988; in particolare per la verifica a strappamento delle fondazioni, viene considerato anche il contributo del terreno circostante come previsto dall'articolo 2.5.06 dello stesso D.M. 21/3/1988.

L'articolo 2.5.08 dello stesso D.M., prescrive che le fondazioni verificate sulla base degli articoli sopramenzionati, siano idonee ad essere impiegate anche nelle zone sismiche per qualunque grado di sismicità.

I sostegno utilizzati sono tuttavia stati verificati anche secondo le disposizioni date dal D.M. 9/01/96 (Norme tecniche per le costruzioni in zone sismiche).

L'abbinamento tra ciascun sostegno e la relativa fondazione è determinato nel progetto unificato mediante le "Tabelle delle corrispondenze" che sono le seguenti:

- Tabella delle corrispondenze tra sostegni, monconi e fondazioni;
- Tabella delle corrispondenze tra fondazioni ed armature colonnino

Con la prima tabella si definisce il tipo di fondazione corrispondente al sostegno impiegato mentre con la seconda si individua la dimensione ed armatura del colonnino corrispondente.

Come già detto le fondazioni unificate sono utilizzabili solo su terreni normali di buona e media consistenza, pertanto le fondazioni per sostegni posizionati su terreni con scarse caratteristiche geomeccaniche, su terreni instabili o su terreni allagabili sono oggetto di indagini geologiche e sondaggi mirati, sulla base dei quali vengono, di volta in volta, progettate ad hoc.

5.9 Messa a terra dei sostegni

Per ogni sostegno, in funzione della resistività del terreno misurata in sito, viene scelto, in base alle indicazioni riportate nel Progetto Unificato, anche il tipo di messa a terra da utilizzare.

Il Progetto Unificato ne prevede di 6 tipologie, adatti ad ogni tipo di terreno.

Relazione Tecnica Descrittiva

L-R-S129-A4-01-B

Rev. A

Del 31/05/2012

Pag. 20 di
33

Codifica

5.10 Caratteristiche dei componenti

Si rimanda alla consultazione dell'elaborato Doc. n L-E-S129-FF-04-A "Caratteristiche Tecniche dei Componenti".

5.11 Terre e rocce da scavo

La realizzazione di un elettrodotto è suddivisibile in tre fasi principali:

- 1. esecuzione delle fondazioni dei sostegni;
- 2. montaggio dei sostegni;
- 3. messa in opera dei conduttori e delle corde di guardia.

Solo la prima fase comporta movimenti di terra, come descritto nel seguito.

Ciascun sostegno è dotato di quattro piedini separati e delle relative fondazioni, strutture interrate atte a trasferire i carichi strutturali (compressione e trazione) dal sostegno al sottosuolo.

Ciascun piedino di fondazione è composto di tre parti:

- un blocco di calcestruzzo armato costituito da una base, che appoggia sul fondo dello scavo, formata da una serie di platee (parallelepipedi a pianta quadrata) sovrapposte; detta base è simmetrica rispetto al proprio asse verticale;
- un colonnino a sezione circolare, inclinato secondo la pendenza del montante del sostegno;
- un "moncone" annegato nel calcestruzzo al momento del getto, collegato al montante del "piede" del sostegno. Il moncone è costituito da un angolare, completo di squadrette di ritenuta, che si collega con il montante del piede del sostegno mediante un giunto a sovrapposizione. I monconi sono raggruppati in tipi, caratterizzati dalla dimensione dell'angolare, ciascuno articolato in un certo numero di lunghezze.

Saranno inoltre realizzati dei piccoli scavi in prossimità del sostegno per la posa dei dispersori di terra con successivo reinterro e costipamento.

L'abbinamento tra ciascun sostegno e la relativa fondazione è determinato nel Progetto Unificato Terna mediante apposite "tabelle delle corrispondenze" tra sostegni, monconi e fondazioni.

Poiché le fondazioni unificate sono utilizzabili solo su terreni normali di buona e media consistenza, per sostegni posizionati su terreni con scarse caratteristiche

Relazione Tecnica Descrittiva

L-R-S129-A4-01-B

Rev. A
Del 31/05/2012

Pag. 21 di
33

Codifica

geomeccaniche, su terreni instabili o su terreni allagabili, sono progettate fondazioni speciali (pali trivellati, micropali, tiranti in roccia), sulla base di apposite indagini geotecniche.

La realizzazione delle fondazioni di un sostegno prende avvio con l'allestimento dei cosiddetti "microcantieri" relativi alle zone localizzate da ciascun sostegno. Essi sono destinati alle operazioni di scavo, getto in cemento armato delle fondazioni, reinterro ed infine all'assemblaggio degli elementi costituenti la tralicciatura del sostegno. Normalmente interessano un'area circostante di dimensioni inferiori a 25x25 m e sono immuni da ogni emissione dannosa.

Durante la realizzazione delle opere, il criterio di gestione del materiale scavato prevede il suo deposito temporaneo presso ciascun "microcantiere" e successivamente il suo utilizzo per il reinterro degli scavi, previo accertamento, durante la fase esecutiva, dell'idoneità di detto materiale per il riutilizzo in sito. In caso contrario, saranno eseguiti appositi campionamenti e il materiale scavato sarà destinato ad idonea discarica, con le modalità previste dalla normativa vigente.

In particolare, poiché per l'esecuzione dei lavori non sono utilizzate tecnologie di scavo con impiego di prodotti tali da contaminare le rocce e terre, nelle aree a verde, boschive, agricole, residenziali, aste fluviali o canali in cui sono assenti scarichi, vale a dire nelle aree in cui non sia accertata e non si sospetti potenziale contaminazione, nemmeno dovuto a fonti inquinanti diffuse, il materiale scavato sarà considerato idoneo al riutilizzo in sito.

Per tutte le tipologie di fondazioni, l'operazione successiva consiste nel montaggio dei sostegni, ove possibile sollevando con una gru elementi premontati a terra a tronchi, a fiancate o anche ad aste sciolte.

Ove richiesto, si procede alla verniciatura dei sostegni.

Infine una volta realizzato il sostegno si procederà alla risistemazione dei "microcantieri", previo minuzioso sgombero da ogni materiale di risulta, rimessa in pristino delle pendenze del terreno costipato ed idonea piantumazione e ripristino del manto erboso.

In complesso i tempi necessari per la realizzazione di un sostegno non superano il mese e mezzo, tenuto conto anche della sosta necessaria per la stagionatura dei getti.

Relazione Tecnica Descrittiva

L-R-S129-A4-01-B

Rev. A

Pag. 22 di

33

Del 31/05/2012

Codifica

Di seguito sono descritte le principali attività delle varie di tipologie di fondazione utilizzate.

Fondazioni a plinto con riseghe

Predisposti gli accessi alle piazzole per la realizzazione dei sostegni, si procede alla pulizia del terreno e allo scavo delle fondazioni. Queste saranno in genere di tipo diretto e dunque si limitano alla realizzazione di 4 plinti agli angoli dei tralicci (fondazioni a piedini separati).

Ognuna delle quattro buche di alloggiamento della fondazione è realizzata utilizzando un escavatore e avrà dimensioni di circa 3x3 m con una profondità non superiore a 4 m, per un volume medio di scavo pari a circa 30 mc; una volta realizzata l'opera, la parte che resterà in vista sarà costituita dalla parte fuori terra dei colonnini di diametro di circa 1 m.

Pulita la superficie di fondo scavo si getta, se ritenuto necessario per un migliore livellamento, un sottile strato di "magrone". Nel caso di terreni con falda superficiale, si procederà all'aggottamento della fossa con una pompa di esaurimento.

In seguito si procede con il montaggio dei raccordi di fondazione e dei piedi, il loro accurato livellamento, la posa dell'armatura di ferro e delle casserature, il getto del calcestruzzo.

Trascorso il periodo di stagionatura dei getti, si procede al disarmo delle casserature. Si esegue quindi il reinterro con il materiale proveniente dagli scavi, se ritenuto idoneo, ripristinando il preesistente andamento naturale del terreno. Il materiale di risulta, mediamente meno del 10% di quello scavato, può essere utilizzato in loco per la successiva sistemazione del sito o allocato in discarica.

Pali trivellati

La realizzazione delle fondazioni con pali trivellati avviene come segue.

Pulizia del terreno; posizionamento della macchina operatrice; realizzazione di un fittone
per ogni piedino mediante trivellazione fino alla quota prevista in funzione della litologia
del terreno desunta dalle prove geognostiche eseguite in fase esecutiva (mediamente
15 m) con diametri che variano da 1,5 a 1,0 m, per complessivi 27mc circa per ogni
fondazione; posa dell'armatura; getto del calcestruzzo fino alla quota di imposta del
traliccio.

Relazione Tecnica Descrittiva

L-R-S129-	A4-01-B
Rev. A	Pag. 23 di 33
Del 31/05/2012	33

Codifica

A fine stagionatura del calcestruzzo del trivellato si procederà al montaggio e
posizionamento della base del traliccio; alla posa dei ferri d'armatura ed al getto di
calcestruzzo per realizzare il raccordo di fondazione al trivellato; ed infine al ripristino del
piano campagna ed all'eventuale rinverdimento.

Durante la realizzazione dei trivellati, per limitare gli inconvenienti dovuti alla presenza di falda, verrà utilizzata, in alternativa al tubo forma metallico, della bentonite che a fine operazioni dovrà essere recuperata e smaltita secondo le vigenti disposizioni di legge. Anche in questo caso il materiale di risulta può essere riutilizzato per la sistemazione del sito o smaltito in discarica autorizzata.

Micropali

La realizzazione delle fondazioni con micropali avviene come segue.

- Pulizia del terreno; posizionamento della macchina operatrice; realizzazione di una serie di micropali per ogni piedino con trivellazione fino alla quota prevista; posa dell'armatura; iniezione malta cementizia.
- Scavo per la realizzazione dei dadi di raccordo micropali-traliccio; messa a nudo e
 pulizia delle armature dei micropali; montaggio e posizionamento della base del traliccio;
 posa in opera delle armature del dado di collegamento; getto del calcestruzzo.

Il volume di scavo complessivo per ogni piedino è circa 4 mc.

A fine stagionatura del calcestruzzo si procederà al disarmo dei dadi di collegamento; al ripristino del piano campagna ed all'eventuale rinverdimento.

Durante la realizzazione dei micropali, per limitare gli inconvenienti dovuti alla presenza di falda, verrà utilizzato un tubo forma metallico, per contenere le pareti di scavo, che contemporaneamente alla fase di getto sarà recuperato. Anche in questo caso il materiale di risulta può essere riutilizzato per la sistemazione del sito o smaltito in discarica autorizzata.

Tiranti in roccia

La realizzazione delle fondazioni con tiranti in roccia avviene come segue.

 Pulizia del banco di roccia con asportazione del "cappellaccio" superficiale degradato (circa 30 cm) nella posizione del piedino, fino a trovare la parte di roccia più consistente; posizionamento della macchina operatrice per realizzare una serie di ancoraggi per ogni piedino; trivellazione fino alla quota prevista; posa delle barre in acciaio; iniezione di resina sigillante (biacca) fino alla quota prevista;

Relazione Tecnica Descrittiva

L-R-S129-A4-01-B

Rev. A

Pag. 24 di

Codifica

Del 31/05/2012

Scavo, tramite demolitore, di un dado di collegamento tiranti-traliccio delle dimensioni
 1,5 x 1,5 x 1 m; montaggio e posizionamento della base del traliccio; posa in opera dei ferri d'armatura del dado di collegamento; getto del calcestruzzo.

Trascorso il periodo di stagionatura dei getti, si procede al disarmo delle casserature. Si esegue quindi il reinterro con il materiale proveniente dagli scavi, se ritenuto idoneo. Il materiale di risulta, mediamente meno del 10% di quello scavato, può essere utilizzato in loco per la successiva sistemazione del sito o allocato in discarica.

6 RUMORE

La produzione di rumore da parte di un elettrodotto in esercizio è dovuta essenzialmente a due fenomeni fisici: il vento e l'effetto corona. Il vento, se particolarmente intenso, può provocare il "fischio" dei conduttori, fenomeno peraltro locale e di modesta entità. L'effetto corona, invece, è responsabile del leggero ronzio che viene talvolta percepito nelle immediate vicinanze dell'elettrodotto.

Per quanto riguarda l'emissione acustica di una linea a 380 kV di configurazione standard, misure sperimentali effettuate in condizioni controllate, alla distanza di 15 m dal conduttore più esterno, in condizioni di simulazione di pioggia, hanno fornito valori pari a 40 dB(A).

Occorre rilevare che il rumore si attenua con la distanza in ragione di 3 dB(A) al raddoppiare della distanza stessa e che, a detta attenuazione, va aggiunta quella provocata dalla vegetazione e/o dai manufatti. In queste condizioni, tenendo conto dell'attenuazione con la distanza, si riconosce che già a poche decine di metri dalla linea risultano rispettati anche i limiti più severi tra quelli di cui al D.P.C.M. marzo 1991, e alla Legge quadro sull'inquinamento acustico (Legge n. 447 del 26/10/1995).

Confrontando i valori acustici relativi alla rumorosità di alcuni ambienti tipici (rurale, residenziale senza strade di comunicazione, suburbano con traffico, urbano con traffico) si constata che tale rumorosità ambientale è dello stesso ordine di grandezza, quando non superiore, dei valori indicati per una linea a 380 kV. Considerazioni analoghe valgono per il rumore di origine eolica.

Per una corretta analisi dell'esposizione della popolazione al rumore prodotto dall'elettrodotto in fase di esercizio, si deve infine tenere conto del fatto che il livello del fenomeno è sempre modesto e che l'intensità massima è legata a cattive condizioni meteorologiche (vento forte e pioggia battente) alle quali corrispondono una minore propensione della popolazione alla vita all'aperto e l'aumento del naturale rumore di fondo

Relazione Tecnica Descrittiva

Codifica L-R-S129-A4-01-B Pag. **25** di

Del 31/05/2012

(sibilo del vento, scroscio della pioggia, tuoni). Fattori, questi ultimi, che riducono sia la percezione del fenomeno che il numero delle persone interessate.

7 INQUADRAMENTO GEOLOGICO PRELIMINARE

Si rimanda alla Relazione allegata (Doc. n. G-R-S129-A4-03-B).

8 CAMPI ELETTRICI E MAGNETICI

8.1 Richiami normativi

Le linee guida per la limitazione dell'esposizione ai campi elettrici e magnetici variabili nel tempo ed ai campi elettromagnetici sono state indicate nel 1998 dalla ICNIRP.

Il 12-7-99 il Consiglio dell'Unione Europea ha emesso una Raccomandazione agli Stati Membri volta alla creazione di un quadro di protezione della popolazione dai campi elettromagnetici, che si basa sui migliori dati scientifici esistenti; a tale proposito, il Consiglio ha avallato proprio le linee guida dell'ICNIRP. Successivamente nel 2001, a seguito di un'ultima analisi condotta sulla letteratura scientifica, un Comitato di esperti della Commissione Europea ha raccomandato alla CE di continuare ad adottare tali linee guida.

Successivamente è intervenuta, con finalità di riordino e miglioramento della normativa allora vigente in materia, la Legge quadro 36/2001, che ha individuato ben tre livelli di esposizione ed ha affidato allo Stato il compito di determinare e di aggiornare periodicamente i limiti di esposizione, i valori di attenzione e gli obiettivi di qualità, in relazione agli impianti suscettibili di provocare inquinamento elettromagnetico.

L'art. 3 della Legge 36/2001 ha definito:

- limite di esposizione il valore di campo elettromagnetico da osservare ai fini della tutela della salute da effetti acuti;
- valore di attenzione, come quel valore del campo elettromagnetico da osservare quale misura di cautela ai fini della protezione da possibili effetti a lungo termine;
- l'obiettivo di qualità come criterio localizzativo e standard urbanistico, oltre che come valore di campo elettromagnetico ai fini della progressiva minimizzazione dell'esposizione.

Tale legge quadro italiana (36/2001), come ricordato sempre dal citato Comitato, è stata emanata nonostante che le raccomandazioni del Consiglio della Comunità Europea del 12-7-99 sollecitassero gli Stati membri ad utilizzare le linee guida internazionali stabilite dall'ICNIRP; tutti i paesi dell'Unione Europea, hanno accettato il parere del

Organismi internazionali.

Linee elettriche aeree 380 kV

Relazione Tecnica Descrittiva

L-R-S129-A4-01-B

Rev. A

Del 31/05/2012

Pag. 26 di
33

Codifica

Consiglio della CE, mentre l'Italia ha adottato misure più restrittive di quelle indicate dagli

In esecuzione della predetta Legge, è stato infatti emanato il D.P.C.M. 08.07.2003, che ha fissato il limite di esposizione in 100 microtesla per l'induzione magnetica e 5 kV/m per il campo elettrico; ha stabilito il valore di attenzione di 10 microtesla, a titolo di cautela per la protezione da possibili effetti a lungo termine nelle aree gioco per l'infanzia, in ambienti abitativi, in ambienti scolastici e nei luoghi adibiti a permanenze non inferiori a quattro ore giornaliere; ha fissato, quale obiettivo di qualità, da osservare nella progettazione di nuovi elettrodotti, il valore di 3 microtesla. È stato altresì esplicitamente chiarito che tali valori sono da intendersi come mediana di valori nell'arco delle 24 ore, in condizioni normali di esercizio. Non si deve dunque fare riferimento al valore massimo di corrente eventualmente sopportabile da parte della linea.

Al riguardo è opportuno anche ricordare che, in relazione ai campi elettromagnetici, la tutela della salute viene attuata – nell'intero territorio nazionale – esclusivamente attraverso il rispetto dei limiti prescritti dal D.P.C.M. 08.07.2003, al quale soltanto può farsi utile riferimento.

In tal senso, con sentenza n. 307 del 7.10.2003 la Corte Costituzionale ha dichiarato l'illegittimità di alcune leggi regionali in materia di tutela dai campi elettromagnetici, per violazione dei criteri in tema di ripartizione di competenze fra Stato e Regione stabiliti dal nuovo Titolo V della Costituzione1. Come emerge dal testo della sentenza, una volta

¹ Nella sentenza (pagg. 51 e segg.) si legge testualmente: "L'esame di alcune delle censure proposte nei ricorsi presuppone che si risponda all'interrogativo se i valori-soglia (limiti di esposizione, valori di attenzione, obiettivi di qualità definiti come valori di campo), la cui fissazione è rimessa allo Stato, possano essere modificati dalla Regione, fissando valori–soglia più bassi, o regole più rigorose o tempi più ravvicinati per la loro adozione. La risposta richiede che si chiarisca la ratio di tale fissazione. Se essa consistesse esclusivamente nella tutela della salute dai rischi dell'inquinamento elettromagnetico, potrebbe invero essere lecito considerare ammissibile un intervento delle Regioni che stabilisse limiti più rigorosi rispetto a quelli fissati dallo Stato, in coerenza con il principio, proprio anche del diritto comunitario, che ammette deroghe alla disciplina comune, in specifici territori, con effetti di maggiore protezione dei valori tutelati (cfr. sentenze n. 382 del 1999 e n. 407 del 2002). Ma in realtà, nella specie, la fissazione di valori-soglia risponde ad una ratio più complessa e articolata. Da un lato, infatti, si tratta effettivamente di proteggere la salute della popolazione dagli effetti negativi delle emissioni elettromagnetiche (e da questo punto di vista la determinazione delle soglie deve risultare fondata sulle conoscenze scientifiche ed essere tale da non pregiudicare il valore protetto); dall'altro, si tratta di consentire, anche attraverso la fissazione di soglie diverse in relazione ai tipi di esposizione, ma uniformi sul territorio nazionale, e la graduazione nel tempo degli obiettivi di qualità espressi come valori di campo, la realizzazione degli impianti e delle reti rispondenti a rilevanti interessi nazionali, sottesi alle competenze concorrenti di cui all'art. 117, terzo comma, della Costituzione, come quelli che fanno capo alla distribuzione dell'energia e allo sviluppo dei sistemi di telecomunicazione. Tali interessi, ancorché non resi espliciti nel dettato della legge quadro in esame, sono indubbiamente sottesi alla considerazione del "preminente interesse nazionale alla definizione di criteri unitari e di normative omogenee" che, secondo l'art. 4, comma 1, lettera a, della legge quadro, fonda l'attribuzione allo Stato della funzione di determinare detti valori-soglia. In sostanza, la fissazione a livello nazionale dei valori-soglia, non derogabili dalle Regioni nemmeno in senso più restrittivo, rappresenta il punto di equilibrio fra le esigenze contrapposte di evitare al massimo l'impatto delle emissioni elettromagnetiche, e di realizzare impianti necessari al paese, nella logica per cui la competenza delle Regioni in materia di trasporto dell'energia e di ordinamento della comunicazione è di tipo concorrente, vincolata ai principi

Relazione Tecnica Descrittiva

L-R-S129-A4-01-B

Rev. A Pag. 27 di

Del 31/05/2012

fissati i valori-soglia di cautela per la salute, a livello nazionale, non è consentito alla legislazione regionale derogarli neanche in melius.

8.2 Fasce di rispetto

Per "fasce di rispetto" si intendono quelle definite dalla Legge 22 febbraio 2001 n° 36, all'interno delle quali non è consentita alcuna destinazione di edifici ad uso residenziale, scolastico, sanitario, ovvero un uso che comporti una permanenza superiore a 4 ore, da determinare in conformità alla metodologia di cui al D.P.C.M. 08/07/2003.

Tale DPCM prevede (art. 6 comma 2) che l'APAT, sentite le ARPA, definisca la metodologia di calcolo per la determinazione delle fasce di rispetto con l'approvazione del Ministero dell'Ambiente e della Tutela del Territorio e del Mare.

Con Decreto 29 maggio 2008 (pubblicato in G.U. n. 156 del 05/07/2008 – Supplemento Ordinario n. 160) il Ministero dell'Ambiente e della Tutela del Territorio e del Mare ha approvato la metodologia di calcolo per la determinazione delle fasce di rispetto degli elettrodotti, tale metodologia prevede, che il gestore debba calcolare la distanza di prima approssimazione, definita come "la distanza in pianta sul livello del suolo, dalla proiezione del centro linea, che garantisce che ogni punto la cui proiezione al suolo disti dalla proiezione del centro linea più di Dpa si trovi all'esterno delle fasce di rispetto".

Per il calcolo delle fasce di rispetto, calcolate in ottemperanza a quanto disposto con tale decreto, si rimanda al documento DOC. GRS129A405A "Relazione campi magnetici"

8.3 Calcolo dei campi elettrici e magnetici

La linea elettrica durante il suo normale funzionamento genera un campo elettrico ed un campo magnetico. Il primo dipende dalla tensione di esercizio della linea stessa, mentre il secondo è funzione della corrente che vi circola, ed entrambi decrescono molto rapidamente con la distanza.

I calcoli relativi all'andamento del campo elettrico, la valutazione del campo di induzione magnetica ai fini della definizione della DPA e l'analisi delle strutture

Relazione Tecnica Descrittiva

L-R-S129-A4-01-B Pag. **28** di Del 31/05/2012

Codifica

potenzialmente sensibili ricadenti all'interno della stessa DPA, sono contenuti all'interno del documento GRS129A405A "Relazione campi magnetici"

9 **NORMATIVA DI RIFERIMENTO**

Leggi

- Regio Decreto 11 dicembre 1933 nº 1775 "Testo Unic o delle disposizioni di legge in merito alle acque ed agli impianti elettrici.
- Legge 22 febbraio 2001, n. 36, "Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici", (G.U. n. 55 del 7 marzo 2001)
- Decreto Del Presidente Del Consiglio Dei Ministri 8 luglio 2003, "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti", (GU n. 200 del 29-8-2003)
- Decreto Del Presidente Del Consiglio Dei Ministri 8 giugno 2001 nº327 "Testo unico delle disposizioni legislative e regolamentari in materia di Pubblica Utilità.
- Legge 24 luglio 1990 n° 241, "Norme sul procedimen to amministrativo in materia di conferenza dei servizi".
- Decreto Legislativo 22 gennaio 2004 nº 42 "Codice dei Beni Ambientali e del Paesaggio".
- Decreto Del Presidente Del Consiglio Dei Ministri 12 dicembre 2005 "Verifica Compatibilità Paesaggistica ai sensi dell' art 146 del Codice dei Beni Ambientali e Culturali".
- Decreto Ministeriale del 21 marzo 1988 ,"Disciplina per la costruzione delle linee elettriche aeree esterne" e successive modifiche ed integrazioni.

Norme tecniche

Norme CEI

- CEI 11-4, "Esecuzione delle linee elettriche esterne", quinta edizione, maggio 1989
- CEI 11-60, "Portata al limite termico delle linee elettriche aeree esterne", prima edizione, 2000-07
- CEI 211-4, "Guida ai metodi di calcolo dei campi elettrici e magnetici generati da linee elettriche", prima edizione, 1996-07
- CEI 211-6, "Guida per la misura e per la valutazione dei campi elettrici e magnetici nell'intervallo di frequenza 0 Hz - 10 kHz, con riferimento all'esposizione umana", prima edizione, 2001-01

Relazione Tecnica Descrittiva

L-R-S129-A	4-01-B
Rev. A	Pag. 29 di

Codifica

Del 31/05/2012 33

 CEI 106-11, "Guida per la determinazione della fascia di rispetto per gli elettrodotti secondo le disposizioni del DPCM 8 luglio 2003 (Art.6)

Norme tecniche diverse

Unificazione TERNA, "Linee a 380 kV - Semplice Terna conduttori Ø 31.5 mm

10 AREE IMPEGNATE

In merito all'attraversamento di aree da parte dell'elettrodotto, si possono individuare, con riferimento al Testo Unico 327/01 sugli espropri, le Aree Impegnate, cioè le aree necessarie per la sicurezza dell'esercizio e manutenzione dell'elettrodotto (circa 25 m dall'asse linea per elettrodotti a 380 kV). Il vincolo preordinato all'esproprio sarà invece apposto sulle "aree potenzialmente impegnate" (previste dalla L. 239/04), che si ritiene equivalgano alle "zone di rispetto" di cui all'articolo 52 quater, comma 6, del Decreto Legislativo 27 dicembre 2004, n. 330, all'interno delle quali poter inserire eventuali modeste varianti al tracciato dell'elettrodotto senza che le stesse comportino la necessità di nuove autorizzazioni. L'ampiezza delle zone di rispetto (ovvero aree potenzialmente impegnate) varierà in relazione a ciascun progetto ed al livello di tensione dell'elettrodotto; nella fattispecie per elettrodotti a 380 kV l'estensione delle zone di rispetto sarà di circa 50 m dall'asse linea: la planimetria catastale 1:2.000 (vedi allegato A DOC. n. L-E-S129-FF-10-A) riporta l'asse indicativo del tracciato ed una ipotesi di posizionamento preliminare dei sostegni e la fascia delle aree potenzialmente impegnate sulle quali sarà apposto il vincolo preordinato all'esproprio.

In fase di progetto esecutivo dell'opera si procederà alla delimitazione delle aree impegnate dalla stessa con conseguente riduzioni di porzioni di territorio soggette ad asservimento.

Per le opere ricadenti in "Legge obiettivo" (procedura ai sensi del D. Lgs. 190/02) le aree impegnate si intendono estendersi al concetto di aree potenzialmente impegnate, alla luce delle successive norme sopra richiamate.

11 ACCESSI AI SOSTEGNI

Le aree dove saranno realizzati i sostegni degli elettrodotti in progetto costituiscono dei minicantieri di norma inferiori a 25x25 metri dove saranno svolte tutte le attività per la messa in opera degli stessi. In sintesi le attività sono: scavi, getti di cls per le fondazioni, montaggio dei tralicci.

Per poter accedere a tali aree si utilizzeranno strade quanto più vicine ai minicantieri per limitare gli attraversamenti di aree private e coltivazioni di pregio. Allo scopo si farà

Relazione Tecnica Descrittiva

L-R-S129-A4-01-B

Rev. A Pag. 30 di

Del 31/05/2012

Codifica

uso di piste non più larghe di 4-5 metri tali da consentire il transito degli automezzi per il trasporto del calcestruzzo e delle strutture metalliche che saranno assemblate nell'area del minicantiere.

Solo per pochi sostegni, laddove risulta poco accessibile l'area individuata per la ubicazione, si farà uso dell'elicottero per il trasporto di quanto occorre.

Nelle tabelle che seguono, per ciascun sostegno in progetto, sono riportate le coordinate piane in WGS84 fuso 33N, la lunghezza della pista per l'accesso ai sostegni, la coltivazione dell'area del minicantiere e la strada alla quale si innesterà la pista.

Inoltre, sono stati indicati i sostegni per i quali sarà necessario l'uso dell'elicottero per la loro realizzazione.

LINEA 380 kV "CENTRALE REC-SE PONTELANDOLFO"

PROVINCIA	COMUNE	Identificativo TRALICCIO / PALO	Lunghezza pista m.	Tipologia strada di innesto pista	Coltura area sostegno
BENEVENTO	PONTELANDOLFO	1	36	strada comunale del lupo	seminativo
BENEVENTO	PONTELANDOLFO	2	110	dal sostegno 1	bosco misto
BENEVENTO	PONTELANDOLFO	3	254	strada comunale Cetrao	uliveto
BENEVENTO	PONTELANDOLFO	4		utilizzo elicottero	bosco misto
BENEVENTO	PONTELANDOLFO	5	15	strada comunale delle tre fontane	frutteto
BENEVENTO	PONTELANDOLFO	6	12	strada comunale dei fossi	seminativo
BENEVENTO	PONTELANDOLFO	7		utilizzo elicottero	bosco misto
BENEVENTO	PONTELANDOLFO	8		utilizzo elicottero	bosco misto
BENEVENTO	PONTELANDOLFO	9		utilizzo elicottero	frutteto
BENEVENTO	PONTELANDOLFO	10	13	strada interpoderale	frutteto
BENEVENTO	PONTELANDOLFO	11	130	strada statale Sannitica	uliveto
BENEVENTO	PONTELANDOLFO	12	63	strada comunale mezzoculo	uliveto
BENEVENTO	PONTELANDOLFO	13	95	strada comunale Giallonardi	uliveto
BENEVENTO	PONTELANDOLFO	14		utilizzo elicottero	bosco misto
BENEVENTO	PONTELANDOLFO	15	85	strada interpoderale	seminativo irriguo
BENEVENTO	PONTELANDOLFO	16	20	strada comunale sanrucci	seminativo irriguo
BENEVENTO	PONTELANDOLFO	17	18	strada comunale selve n 2	uliveto

L-R-S129-A4-01-B Pag. **31** di

Codifica

Del 31/05/2012

Relazione i	ecnica	Descrittiva	

BENEVENTO	PONTELANDOLFO	18	24	strada comunale mattei	bosco misto
BENEVENTO	PONTELANDOLFO	19	111	strada comunale macchie	pascolo cespugliato
BENEVENTO	PONTELANDOLFO	20		utilizzo elicottero	bosco misto
				strada comunale	
BENEVENTO	PONTELANDOLFO	21	26	cerqueto	bosco misto
				strada comunale	
BENEVENTO	PONTELANDOLFO	22	292	cerqueto	bosco misto

LINEA 380 kV "SE PONTELANDOLFO-SE BENEVENTO"

PROVINCIA	COMUNE	Identificativo TRALICCIO / PALO	Lunghezza pista m.	Tipologia strada di innesto pista	Coltura area sostegno
				dalla stazione di	
BENEVENTO	PONTELANDOLFO	1	73	Pontelandolfo	seminativo
				strada comunale	
BENEVENTO	PONTELANDOLFO	2	107	mandrone	seminativo
				strada comunale	
BENEVENTO	PONTELANDOLFO	3	89	mandrone	seminativo arborato
BENEVENTO	CAMPOLATTARO	4	140	ss 87 dei due principati	seminativo arborato
BENEVENTO	CAMPOLATTARO	5	46	strada statale molise	seminativo
				strada comunale bosco	
BENEVENTO	CAMPOLATTARO	6	142	del marchese	seminativo arborato
				strada comunale bosco	
BENEVENTO	CAMPOLATTARO	7	79	del marchese	seminativo
				strada comunale del	
BENEVENTO	CAMPOLATTARO	8	53	bosco	seminativo
BENEVENTO	CAMPOLATTARO	9	283	strada vicinale del bosco	seminativo
				strada comunale pescone	
BENEVENTO	CAMPOLATTARO	10	13	sant'elia o castellone	seminativo
				strada comunale vallone	
BENEVENTO	CAMPOLATTARO	11	373	san leonardo	seminativo
				strada comunale vallone	
BENEVENTO	CAMPOLATTARO	12	351	san leonardo	bosco
	FRAGNETO			strada comunale piana	
BENEVENTO	MONFORTE	13	18	del mulino	seminativo
	FRAGNETO			strada comunale piana	
BENEVENTO	MONFORTE	14	285	del mulino	seminativo
	FRAGNETO			strada comunale	
BENEVENTO	MONFORTE	15	30	peschere tammaro IA	seminativo
	FRAGNETO			strada comunale	
BENEVENTO	MONFORTE	16	72	prudenza coste	seminativo
	FRAGNETO	_	_		
BENEVENTO	MONFORTE	17	96	strada interpoderale	seminativo
DENEY (STITE	FRAGNETO	40		strada comunale	
BENEVENTO	MONFORTE	18	64	prudenza battalia	seminativo

Relazione Tecnica Descrittiva

Codifica

L-R-S129-A4-01-B

Del 31/05/2012

Pag. **32** di

	FRAGNETO			strada comunale	
BENEVENTO	MONFORTE	19	130	sant'angelo battaglia	seminativo
	FRAGNETO			strada comunale	
BENEVENTO	MONFORTE	20	58	sant'angelo battaglia	seminativo
	FRAGNETO				
BENEVENTO	MONFORTE	21	26	strada consortile	seminativo
251515150	FRAGNETO		270		
BENEVENTO	MONFORTE	22	270	strada interpoderale	seminativo
DENEVENITO	FRAGNETO	22	477	stor de interne edenale	
BENEVENTO	MONFORTE FRAGNETO	23	177	strada interpoderale	seminativo
BENEVENTO	MONFORTE	24	188	strada interpoderale	seminativo
DEINEVENTO	FRAGNETO	24	100	strada interpoderale	Schillativo
BENEVENTO	MONFORTE	25	173	strada interpoderale	seminativo
52.1212.11.0	FRAGNETO		2.0	strada comunale santa	oonacro
BENEVENTO	MONFORTE	26	207	maria masseria sgagliera	seminativo
	FRAGNETO	_	_	strada comunale santa	seminativo con ulivi
BENEVENTO	MONFORTE	27	128	maria masseria sgagliera	sparsi
BEIVEVEIVIO	FRAGNETO	27	120	strada comunale le piante	394131
BENEVENTO	MONFORTE	28	97	san giovanni	seminativo
52.1212.11.0	FRAGNETO		3.	strada comunale le piante	John Marine
BENEVENTO	MONFORTE	29	121	san giovanni	macchia
BEIVEVEIVIO		23	121		macema
BENEVENTO	FRAGNETO MONFORTE	30	35	strada comunale le piante	uliveto
DEINEVENTO	FRAGNETO	30	33	san giovanni	unveto
BENEVENTO	MONFORTE	31	108	strada vicinale delle cese	seminativo
BEIVEVEIVIO	WONTONIE	31	100	Strada vicinaie dene eese	Schillativo
BENEVENTO	BENEVENTO	32	33	strada vicinale delle cese	seminativo
BENEVENTO	BENEVENTO	33	86	strada vicinale francavilla	seminativo
BENEVENTO	BENEVENTO	34	104	strada vicinale francavilla	vigneto
BENEVENTO	BENEVENTO	35	358	strada interpoderale	seminativo
BENEVENTO	BENEVENTO	36	55	strada interpoderale	seminativo
				strada comunale detta	
BENEVENTO	BENEVENTO	37	20	regio tratturo del cierro	seminativo
BENEVENTO	BENEVENTO	38	52	strada vicnale panelli	seminativo
				strada comunale detta	
BENEVENTO	BENEVENTO	39	35	regio tratturo del cierro	seminativo
				strada comunale detta	
BENEVENTO	BENEVENTO	40	76	regio tratturo del cierro	seminativo
BLIVEVEIVIO	DEIVEVENTO	40	70	strada comunale detta	Schillativo
BENEVENTO	BENEVENTO	41	123	regio tratturo del cierro	seminativo
BEIVEVEIVIO	BEIVEVEIVIO	71	123	regio trattaro del cierro	Schillacivo
BENEVENTO	BENEVENTO	42	245	strada interpoderale	seminativo
BENEVENTO	BENEVENTO	43	128	stazione di benevento	seminativo
BENEVENTO	BENEVENTO	32/1	30	strada interpoderale	seminativo irriguo
BENEVENTO	BENEVENTO	32	59	strada interpoderale	seminativo irriguo
BENEVENTO	BENEVENTO	31/1	25	strada interpoderale	seminativo irriguo
BENEVENTO	BENEVENTO	31	38	strada interpoderale	seminativo irriguo

Relazione Tecnica Descrittiva

L-R-S129-A4-01-B

Codifica

Rev. A Pag. **33** di Del 31/05/2012

12 SICUREZZA NEI CANTIERI

I lavori si svolgeranno in ossequio alla normativa del D.Lgs. n.81 del 09 aprile 2008, come modificato dal D.Lgs. n. 106 del 03 agosto 2009. Pertanto, in fase di progettazione si provvederà a nominare IL Coordinatore per la sicurezza in fase di progettazione, abilitato ai sensi della predetta normativa, che redigerà il Piano di Sicurezza e Coordinamento. Successivamente, in fase di realizazione dell'opera, sarà nominato IL Coordinatore per la esecuzione dei lavori, anch'esso abilitato, che vigilerà durante tutta la durata dei lavori sul rispetto da parte delle ditte appaltatrici delle norme di legge in materia di sicurezza e delle disposizioni previste nel Piano di Sicurezza e Coordinamento.