REGIONE LAZIO

Provincia di Viterbo (VT)

COMUNE DI TUSCANIA

1	EMISSIONE PER ENTI ESTERNI	30/06/22	SIGNORELLO A.	SIGNORELLO A.	NASTASI A.
0	EMISSIONE PER COMMENTI	04/04/21	BASSO G.	FURNO C.	NASTASI A.
REV.	DESCRIZIONE	DATA	REDATTO	CONTROL.	APPROV.

Committente:

IBERDROLA RENOVABLES ITALIA S.p.A.

Sede legale in Piazzale dell'Industria, 40, 00144, Roma Partita I.V.A. 06977481008 — PEC: iberdrolarenovablesitalia@pec.it

Società di Progettazione:

Ingegneria & Innovazione

Via Jonica, 16 - Loc. Belvedere - 96100 Siracusa (SR) Tel. 0931.1663409 Web: www.antexgroup.it e-mail: info@antexgroup.it

IMPIANTO FOTOVOLTAICO "TUSCANIA 2"

Progettista/Resp. Tecnico

Dott. Ing. Antonino Signorello Ordine degli Ingegneri della Provincia di Catania n° 6105 sez. A

Elaborato:

Progetto:

RELAZIONE TECNICA CALCOLI ELETTRICI RETE MT IMPIANTO FOTOVOLTAICO

Scala: Nome DIS/FILE: Allegato: F.to: Livello:

NA C20022S05-PD-RT-05-01 1/1 A4 **DEFINITIVO**

ll presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

RELAZIONE TECNICA CALCOLI ELETTRICI RETE MT IMPIANTO FOTOVOLTAICO

30/06/22 REV: 1 Pag.2

INDICE

1.	PREMESSA	3
2.	SCOPO	3
3.	PROPONENTE	4
4.	DIMENSIONAMENTO DEI CAVI IN FUNZIONE DELLE CONDIZIONI DI POSA	4
5.	SPECIFICHE TECNICHE CAVI IN ALLUMINIO MT - ARG7H1RNR – 18/30 kV	6
6.	DETERMINAZIONE DELLA POTENZA/CORRENTE DI CORTOCIRCUITO	.10
7.	DIMENSIONAMENTO DEI CAVI IN FUNZIONE DELLE SOLLECITAZIONI TERMICHE DI CORTOCIRCUITO	.11
8.	RETE INTERNA MT CON DISTRIBUZIONE A SEMPLICE ANELLO	.12
9.	DIMENSIONAMENTO DEI CAVI IN FUNZIONE DELLA CADUTA DI TENSIONE	.13
10.	DIMENSIONAMENTO DEI CAVI IN FUNZIONE DELLA TEMPERATURA DI FUNZIONAMENTO	.14

RELAZIONE TECNICA CALCOLI ELETTRICI RETE MT IMPIANTO FOTOVOLTAICO

REV: 1 Pag.3

1. PREMESSA

Su incarico di Iberdrola Renovables Italia S.p.A., la società ANTEX GROUP Srl ha redatto il progetto definitivo per la realizzazione di un impianto di produzione di energia elettrica da fonte solare, denominato Impianto Fotovoltaico "Tuscania-2", da realizzarsi nei territori del Comune di Tuscania (VT) – Regione Lazio.

Il progetto per il quale si richiede la connessione in rete è un impianto di produzione di energia elettrica da fonte solare che prevede di installare 41.730 moduli fotovoltaici monofacciali in silicio monocristallino da 540 Wp ciascuno, su strutture fisse in acciaio zincato a caldo. Tutta l'energia elettrica prodotta verrà ceduta alla rete.

Le attività di progettazione definitiva sono state sviluppate dalla società di ingegneria ANTEX Group Srl.

ANTEX Group Srl è una società che fornisce servizi globali di consulenza e management ad Aziende private ed Enti pubblici che intendono realizzare opere ed investimenti su scala nazionale ed internazionale.

È costituita da selezionati e qualificati professionisti uniti dalla comune esperienza professionale nell'ambito delle consulenze ingegneristiche, tecniche, ambientali, gestionali, legali e di finanza agevolata.

Sia ANTEX che IBERDROLA pongono a fondamento delle attività e delle proprie iniziative, i principi della qualità, dell'ambiente e della sicurezza come espressi dalle norme ISO 9001, ISO 14001 e ISO 18001 nelle loro ultime edizioni. Difatti, le Aziende citate, in un'ottica di sviluppo sostenibile proprio e per i propri clienti e fornitori, posseggono un proprio Sistema di Gestione Integrato Qualità-Sicurezza-Ambiente.

2. SCOPO

Scopo della presente relazione tecnica è il dimensionamento dei cavi in media tensione da utilizzare nell'impianto di produzione di energia elettrica da fonte solare, denominato Impianto Fotovoltaico "Tuscania-2" che Iberdrola Renovables Italia S.p.A. intende realizzare nei territori dei Comune di Tuscania (VT) – Regione Lazio. L'impianto fotovoltaico è di tipo ad inseguimento monoasssiale, connesso alla RTN in AT ed installato a terra tramite strutture in acciaio zincato a caldo. L'impianto è caratterizzato da una potenza nominale pari a 22.534,2 kWp (@STC) ed utilizza moduli monofacciali in silicio monocristallino.

La potenza in immissione richiesta per l'impianto in esame è pari a 21,06 MW. Codice Pratica: 202001417.

La potenza nominale AC degli inverters dell'impianto è pari a 19.680 kVA.

La potenza nominale DC dell'impianto è pari a 22.534,2 kW.

La potenza in prelievo richiesta dell'impianto è pari a 100 kW.

N.B.: Tutti i materiali, le apparecchiature, i manufatti ed i componenti utilizzati per la progettazione, sono indicativi e potranno essere soggetti a variazioni dovute all'evoluzione tecnologica degli stessi ed alle disponibilità di mercato, pur mantenendo le loro caratteristiche funzionali indicate nel progetto.

RELAZIONE TECNICA CALCOLI ELETTRICI RETE MT IMPIANTO FOTOVOLTAICO

3. PROPONENTE

Il proponente del progetto è Iberdrola Renovables Italia S.p.A., con sede in Piazzale dell'Industria 40, 00144 Roma (RM).

4. DIMENSIONAMENTO DEI CAVI IN FUNZIONE DELLE CONDIZIONI DI POSA

La Norma CEI UNEL 35027 - "Cavi di energia per tensione nominale U da 1 kV a 30 kV - Portate di corrente in regime permanente - Posa in aria ed interrata", fornisce le portate in corrente dei cavi unificati MT in funzione delle condizioni di posa in terra ed in aria.

Per cavi interrati di queste categorie di tensioni viene fornita la portata in corrente di riferimento I₀ nelle seguenti condizioni:

- Ta temperatura ambiente 20 °C;
- Profondità di posa 0,8 m;
- Rt resistività termica media radiale del terreno 1,5 k*m/W;
- Connessione schermi metallici in cortocircuito e a terra ad entrambe le estremità (solid bonding).

Per condizioni diverse viene fornita poi la seguente formula correttiva:

$$I_z = I_0 * K_1 * K_2 * K_3 * K_4$$

Dove:

- I_z portata in corrente nelle condizioni in esame;
- I₀ portata in corrente nelle condizioni di riferimento;
- K₁ fattore di correzione per temperature del terreno diverse da 20°C;
- K₂ fattore di correzione per gruppi di più circuiti installati sullo stesso piano;
- K₃ fattore di correzione per profondità di interramento diverse da 0,8 m;
- K₄ fattore di correzione per resistività termica del terreno diversa da 1,5 k*m/W.

Le condizioni di posa dei cavi MT impiegati nel progetto in oggetto differiscono dalle condizioni di riferimento poiché:

La profondità di interramento è pari a 1,0 m: $K_3 = 0.98$

Tab. IV Fattori di correzione per differenti valori di profondità di posa

Profondità di posa (m)	0,5	0,8	1,0	1,2	1,5
Fattore di correzione	1,02	1,00	0,98	0,96	0,94

E' stata considerato un valore di resistività termica del terreno pari a 2 k*m/W (terreno secco): $K_4 = 0.9$

30/06/22

REV: 1

Pag.5

RELAZIONE TECNICA CALCOLI ELETTRICI RETE MT IMPIANTO FOTOVOLTAICO

Tab. V Fattori di correzione per differenti valori di resistività termica del terreno

Cavi unipolari Resistività del 1,5 2,0 2,5 terreno 1,0 1,2 $(K \cdot m/W)$ Fattore 1,08 1,05 1,00 0,90 0,82 correzione

È stato considerato il caso peggiore di raggruppamento dei circuiti presenti nello stesso strato (in questo progetto) 4 circuiti nello stesso strato distanziati tra loro 25 cm: $K_2 = 0.8$

Tab. III Fattori di correzione per gruppi di più circuiti installati sullo stesso piano

Numero di	DISTAN	DISTANZA FRA I CIRCUITI(a)							
cavi	a contatto	0,25	0,5	1					
2	0,85	0,90	0,95	0,95					
3	0,75	0,85	0,90	0,95					
4	0,70	0,80	0,85	0,90					
5	0,65	0,80	0,85	0,90					
6	0.60	0,80	0,80	0,90					

Resta invariata la temperatura del terreno pari a 20 °C: $K_1 = 1$

Pertanto la formula diventa:

$$I_z = I_0 * 1 * 0.8 * 0.98 * 0.9 = I_0 * 0.7056$$

Si riporta di seguito la tabella delle portate in corrente dei cavi scelti alle condizioni di riferimento e alle condizioni operative impiegate nel progetto.

Valori di I₀ alle condizioni di riferimento:

Sezione nominale [mm²]	Portata [A] (Trifoglio)	Resistenza apparente a 90°C e 50 Hz [Ohm/km]	Reattanza di fase [Ohm/km]	Impedenza a 90°C e 50 Hz [Ohm/km]
120	281	0,3250	0,13	0,35
150	318	0,2650	0,12	0,29
185	361	0,2110	0,12	0,24
240	418	0,161	0,11	0,19
300	472	0,13	0,11	0,17
400	543	0,102	0,11	0,15
500	621	0,0801	0,1	0,13
630	706	0,0635	0,099	0,12

Valori di I_z alle condizioni operative, (applicando i coefficienti correttivi):

RELAZIONE TECNICA CALCOLI ELETTRICI RETE MT IMPIANTO FOTOVOLTAICO

30/06/22 REV: 1 Pag.6

Sezione nominale [mm²]	Portata [A] (Trifoglio)	Resistenza apparente a 90°C e 50 Hz [Ohm/km]	Reattanza di fase [Ohm/km]	Impedenza a 90°C e 50 Hz [Ohm/km]
120	198,27	0,3250	0,13	0,35
150	224,38	0,2650	0,12	0,29
185	254,72	0,2110	0,12	0,24
240	294,94	0,1610	0,11	0,19
300	333,04	0,1300	0,11	0,17
400	383,14	0,1020	0,11	0,15
500	438,18	0,0801	0,1	0,13
630	498,15	0,0635	0,099	0,12

5. SPECIFICHE TECNICHE CAVI IN ALLUMINIO MT - ARG7H1RNR - 18/30 kV

La Norma CEI 20-13 "Cavi con isolamento estruso in gomma per tensioni nominali da 1 a 30 kV" definisce le principali regole costruttive per i cavi isolati con gomme di qualità G5 e G7 a base di elastomeri etilenpropilenici e stabilisce le prescrizioni di prova a cui devono rispondere nel collaudo. Il paragrafo 4.1.02 "Portate di corrente" afferma che per le portate in regime permanente si deve fare riferimento alla Norma CEI 20-21 "Calcolo delle portate dei cavi elettrici in regime permanente (fattore di carico 100%)" e alle tabelle CEI-UNEL 35027 (nel nostro caso). La Norma CEI-UNEL 35027 è ricavata dalla serie di Norme CEI 20-21 (recepimento della Norma IEC 60287 - serie) ed incorpora la revisione dei valori delle portate in corrente citate nelle Norme CEI. Poiché la sezione massime dei conduttori citata in questa Norma è di 300 mm² (cavi in Cu e Al), per i valori di portata in corrente in regime permanente di cavi di dimensioni superiori rimanda alle specifiche tecniche rilasciate dai costruttori per i cavi costruiti in conformità alla CEI 20-13.

RELAZIONE TECNICA CALCOLI ELETTRICI RETE MT IMPIANTO FOTOVOLTAICO

30/06/22

REV: 1

Pag.7

ARG7H1RNR-12/20 kV ÷ 18/30 kV ARG7H1RNRX-12/20 kV ÷ 18/30 kV

Costruzione, requisiti elettrici, fisici e meccanici:

elettrici, CEI 20-13

IEC 60502

EN 60228

Non propagazione della flamma: EN 60332-1-2

Non propagazione dell'incendio: CEI 20-22 III

IBERDROLA

IMPIANTO FOTOVOLTAICO "TUSCANIA-2"

RELAZIONE TECNICA CALCOLI ELETTRICI RETE MT IMPIANTO FOTOVOLTAICO

REV: 1

30/06/22

Pag.8

ARG7H1RNR / Descrizione

- Cavi unipolari isolati in gomma HEPR di qualità G7, sotto quaina di PVC.
- Conduttore: alluminio, formazione rigida compatta, classe 2
- · Strato semiconduttore interno: estruso
- Isolamento: gomma HEPR, qualità G7 senza piombo
- Strato semiconduttore: estruso, pelabile a freddo
- Schermo: fili di rame rosso con nastro di rame in controspirale
- Guainetta: PVC
- Armatura: due nastri di alluminio, avvolti a coprigiunto
- Guaina: mescola a base di PVC, qualità Rz
- Colore: rosso

ARG7H1RNRX / Descrizione

- Cavi tripolari precordati, isolati in gomma HEPR di qualità G7, sotto guaina di PVC.
- Conduttore: alluminio, formazione rigida compatta, classe 2
- · Strato semiconduttore interno: estruso
- Isolamento: gomma HEPR, qualità G7 senza piombo
- · Strato semiconduttore: estruso, pelabile a freddo
- Schermo: fili di rame rosso con nastro di rame in controspirale
- Guainetta: PVC
- Armatura: due nastri di alluminio, avvolti a coprigiunto
- Guaina: mescola a base di PVC, qualità Rz
- Colore: rosso

Caratteristiche funzionali

- Tensione nominale di esercizio
 ARG7H1RNR(X) -1220 kV: Uo/U 12/20 kV
 ARG7H1RNR(X)-1830 w: Uo/U 18/30 kV
- Tensione U max: ARG7H1RNR(X)-1220 w: Um 24 kV ARG7H1RNR(X)-1830 w: Um 36 kV
- Temperatura massima di esercizio: 90°C
- Temperatura minima di esercizio: -15°C (in assenza di sollecitazioni meccaniche)
- Temperatura massima di corto circuito: 250°C

ARG7H1RNR / Condizioni di posa

- Temperatura minima di posa: 0°C
- Raggio minimo di curvatura consigliato: 14 volte il diametro del cavo
- Massimo sforzo di trazione consigliato: 50 N/mm² di sezione del conduttore

ARG7H1RNRX / Condizioni di posa

- Temperatura minima di posa: 0°C
- Raggio minimo di curvatura consigliato: 10 volte il diametro del cavo
- Massimo sforzo di trazione consigliato: 50 N/mm² di sezione del rame

Impiego e tipo di posa

Adatto per il trasporto di energia tra le cabine di trasformazione e le grandi utenze. Per posa in aria libera, in tubo o canale.

Ammessa la posa interrata anche non protetta, in conformità all'art. 4.3.11 della norma CEI 11-17.

Marcatura

Pb free LA TRIVENETA CAVI ARG7H1RNR [tens. nominale] [form.] [anno] [ordine] [metrica]
Pb free LA TRIVENETA CAVI ARG7H1RNRX [tens. nominale] [form.] [anno] [ordine] [metrica] FASE 1/2/3

RELAZIONE TECNICA CALCOLI ELETTRICI RETE MT IMPIANTO FOTOVOLTAICO

30/06/22

REV: 1

Pag.9

ARG7H1RNR - 18/30 kV

Uo/U: 18/30 kV U max: 36 kV

Caratteristiche tecniche

Fortrazione	Ø indicativo	Spessore medio	Ø	Peso indicativo		Porteta di A		
	conduttore	isolante	Max	CINO	ina	rin.	inter	ato ^t
n'x mm²	mm	mm	mm	kg/km	a trifoglio	in piano	a triloglio	in piano
1 x 50	8,2	8,0	36,1	1000	174	183	188	177
1 x 70	9,8	8,0	38,2	1795	218	229	207	218
1 x 95	11,45	8,0	39,7	1960	268	280	247	260
1 x 120	12,9	8,0	42,4	2245	309	325	281	296
1 x 150	14,2	8,0	43,7	2405	352	371	318	395
1 x 185	16,0	8,0	45,7	2025	40E	427	361	380
1 x 240	18,4	8,0	48,3	2985	483	508	418	440
1 x 300	20,5	8,0	51,8	3945	547	576	472	407
1 x 400	23,6	8,0	55,2	4005	640	674	543	572
1 x 500	28,55	8,0	58,95	4440	740	779	621	654
1 x 630	30,1	8,0	62,8	5135	882	907	706	743

^(*) I valori di portata si rilariscono alle seguenti condizioni:

- Plasistività termica del terruno: 1 K-mW

- Temperatura ambiente 20°C

- profindità di poss: 0,8 m

Caratteristiche elettriche

Formazione	Resistenza elettrica a 20°C	e 5	parente a 90°C OHz km	Restarca di fase g/Km		Capacità a 50Hz
n" x Imin ²	g/Km	a triloglio	in piano	a trifoglio	in piano	µF/km
1 x 50	0,641	0,822	0,822	0,15	0,20	0,15
1 x 70	0,443	0,568	0,568	0,14	0,20	0,16
1 x 95	0,320	0,411	0,411	0,13	0,19	0,18
1 x 120	0,253	0,325	0,325	0,13	0,18	0,19
1 x 150	0,206	0,265	0,265	0,12	0,18	0,20
1 x 185	0,164	0,211	0,211	0,12	0,12	0,22
1 x 240	0,125	0,161	0,161	0,11	0,17	0,24
1 x 300	0,100	0,130	0,129	0,11	0,17	0,27
1 × 400	0,0778	0,102	0,101	0,11	0,16	0,29
1 x 5000	0,0605	0,0801	0,0794	0,10	0,16	0,32
1 x 630	0,0489	0,0835	0,0825	0,000	0,16	0,36

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

RELAZIONE TECNICA CALCOLI ELETTRICI RETE MT IMPIANTO FOTOVOLTAICO

30/06/22

REV: 1

Pag.10

ARG7H1RNRX - 18/30 kV

Uo/U: 18/30 kV U max: 36 kV

Caratteristiche tecniche

Formazione	Ø indicativo	Spessore	Spessore	circoscritto indicativo		Portata di corrente A		
	conduttore	isolante	guaina	indicativo	CMAD	in aris	interruto [®]	
n" x inin ²	mm	mm	mm	mm	kg/km	A	A	
3 x 1 x 50	B,2	8,0	2,1	77,7	4810	174	168	
3 x 1 x 70	8,0	8,0	2,2	82,2	5400	218	207	
3 x 1 x 95	11,45	8,0	2,2	85,4	5895	288	247	
3 x 1 x 120	12,9	8,0	2,3	91,2	Ø5	309	281	
3 x 1 x 150	14,2	8,0	2,4	94,0	7235	352	318	
3 x 1 x 185	16,0	8,0	2,4	98,3	7910	40B	361	
3 x 1 x 240	18,4	8,0	2,5	103,9	8980	483	418	

^(*) I valori di portata si rilariscono alle seguenti condizioni: - Resistività termica del terreno: 1 K-m/W - Temperatura ambiente 20°C - profindità di pose: 0,8 m

Caratteristiche elettriche

Fortnazione	Resisters a elettrica a 20°C	Resistenza apparente a 90°C e 50Hz	Reatterus di fase	Capacità a 50Hz	Corrente termica di circuito [®]
n' x mm²	g/Km	ω/Kin	a/Km	µF/km	l _A A
3 x 1 x 50	0,641	0,822	0,15	0,15	6,5
3×1×70	0,443	0,588	0,14	0,16	9,1
3 x 1 x 95	0,320	0,411	0,13	0,18	12,3
3x 1 x 120	0,253	0,325	0,13	0,19	15,6
3 x 1 x 150	0,206	0,265	0,12	0,22	19,5
3x1x185	0,164	0,211	0,12	0,22	24,1
3 x 1 x 240	0,125	0,161	011	0,24	31,2

^(*) Durata del corto circuito 0,5 secondi

6. DETERMINAZIONE DELLA POTENZA/CORRENTE DI CORTOCIRCUITO

Considerata l'entità dell'impianto, è stato scelto un valore della corrente di cortocircuito pari a 12,5 kA. Questo è il valore di riferimento per il dimensionamento dei cavi (e delle apparecchiature MT).

Si fa presente che valori tipici del potere d'interruzione delle apparecchiature MT sono: 12,5, 16, 20, 25 kA.

RELAZIONE TECNICA CALCOLI ELETTRICI RETE MT IMPIANTO FOTOVOLTAICO

7. DIMENSIONAMENTO DEI CAVI IN FUNZIONE DELLE SOLLECITAZIONI TERMICHE DI **CORTOCIRCUITO**

La Norma CEI 11-17 al paragrafo 2.2.02 definisce le modalità di calcolo per la scelta del conduttore in relazioni a condizioni di sovracorrente. La scelta è fatta in modo tale che la temperatura del conduttore per effetto della sovracorrente non sia dannosa, come entità e durata, per l'isolamento o per gli altri materiali con cui il conduttore è in contatto o in prossimità.

Considerata la sovracorrente praticamente costante e il fenomeno termico sia di breve durata (cortocircuito) in modo da potersi considerare di puro accumulo (regime adiabatico), la sezione del conduttore può determinarsi mediante la seguente relazione:

$$K^2S^2 \ge (I^2t)$$

Dove:

- S è la sezione del conduttore in mm²;
- I è la corrente di cortocircuito, pari a 12,5 kA (valore precedentemente calcolato);
- t è la durata della corrente di cortocircuito, pari a 0,5 s (coincide con il tempo di eliminazione del guasto stabilito dal progettista)
- K costante termica del cavo scelto, (K = 92).

I valori del coefficiente K sono riportati nella seguente tabella per conduttori di rame e di alluminio in funzione delle temperature iniziali e finali di cortocircuito.

Tab. 2.2.02 Valori del coefficiente K in funzione delle temperature iniziali e finali di cortocircuito per conduttori di rame e di alluminio

		1	2	3	4	5	6
				Temperatura 1	finale θ _{cc} (°C)		
	Temperatura iniziale θ _o (°C) 130 120 110 100 90 85 80 75 70 65 60 50 40 30 20 130 120 110 100 90 85 80 75 70 665 66 60 65 60 60	140	160	180	200	220	250
		37	64	81	95	106	120
		53	74	89	102	113	126
		65	83	97	109	119	132
•	100	76	92	105	116	125	138
Ĕ		86	100	112	122	131	143
22	85	90	104	115	125	134	146
- E	80	94	108	119	129	137	149
Ë	75	99	111	122	132	140	151
Conduttori di rame	70	103	115	125	135	143	154
ᅙ	65	107	119	129	138	146	157
ō	60	111	122	132	141	149	160
0	50	118	129	139	147	155	165
	40	126	136	145	153	161	170
	30	133	143	152	159	166	176
	20	141	150	158	165	172	181
	130	24	41	52	61	68	78
	120	34	48	58	66	73	81
	110	42	54	63	70	77	85
잁	100	49	59	67	75	81	89
Ė	90	55	64	72	79	85	92
₫	85	58	67	74	81	86	94
ਰ	80	61	69	77	83	88	96
₩	75	64	72	79	85	90	98
Ö	70	66	74	81	87	92	99
THE STATE	65	69	76	83	89	94	101
Conduttori di alluminio	60	72	79	85	91	96	103
8	50	77	83	90	95	100	105
-	40	81	88	94	99	104	110
	30	86	92	98	103	107	114
	20	91	97	102	107	111	117

RELAZIONE TECNICA CALCOLI ELETTRICI RETE MT IMPIANTO FOTOVOLTAICO

Così come indicato nella Norma CEI 11-17, la temperatura iniziale del conduttore si assume uguale a quella massima ammissibile in regime permanente (massima temperatura di servizio) e la temperatura finale di cortocircuito si assume uguale a quella massima di cortocircuito per i diversi isolanti.

Nel nostro caso verranno impiegati cavi in Alluminio ARG7H1RNR – 12/20 kV con isolante in gomma HEPR di qualità G7 aventi massima temperatura di servizio pari a 90 °C e massima temperatura di cortocircuito pari a 250 °C. Pertanto con tali valori di temperatura si ricava il valore della costante termica K che è pari a 92. Risolvendo la relazione precedente per S:

$$S = (Icc * \sqrt{t}) / K = [12.5 * \sqrt{(0.5)}] / 92 = 96.1 \text{ mm}^2$$

La sezione minima scelta è pari a 120 mm².

8. RETE INTERNA MT CON DISTRIBUZIONE A SEMPLICE ANELLO

Le cabine di sottocampo sono collegate da una rete MT a semplice anello. Una rete di distribuzione a semplice anello può essere ricondotta ad una linea aperta alimentata da entrambe le due estremità, con tensioni identiche. Tale linea aperta si può scomporre in due linee con carichi di estremità, o nel nostro caso, in due linee con carichi concentrati lungo il percorso, equivalenti fra loro ai fini del calcolo dell'unica sezione S da assegnare alla rete ad anello. Applichiamo prima il principio di sovrapposizione degli effetti, individuiamo il carico che "effettivamente" richiede di essere alimentato da entrambi i lati e poi procediamo con la scomposizione della linea. Infine dimensioniamo la rete (sezione della linea) in funzione della massima corrente circolante su uno dei due rami equivalenti mediante il criterio elettrico (massima caduta di tensione) ed il criterio termico (massima sovratemperatura).

	CAB.SOT.	1, 2		CAB.SOT.	3				
Condizioni di									
esercizio									
	cos φ=	0,980		cos φ=	0,980	Pt	ot_anello_MT=	22,534	[MW]
	sen φ=	0,199		sen φ=	0,199				
	Vn=	30000	[V]	Vn=	30000	[V]			
	Pn=	7497,36	[KW]	Pn=	7539,48	[KW]	Ptot=	22,534	[MW]
	In=	147,23	[A]	In=	148,06	[A]			

30/06/22

REV: 1

Pag.13

RELAZIONE TECNICA CALCOLI ELETTRICI RETE MT IMPIANTO FOTOVOLTAICO

		ANELL	O MT - RETE	MT AD ANE	LLO (LINEA	P-Q, CON V	/P=VQ)		
Leq_ [m]	Р				2810		-		Q
Cabine	CCE		CS1		CS2		CS3		CCE
L_ [m]		358		520		974		958	
In_ [A]			147,23		147,23		148,06		
In_P [A]			128,47		101,23		50,48		
In_Q [A]			18,76		46,00		97,58		
LP [A]					280,18				
I_Q [A]					162,34				
ΔP [A]			132,95		-14,28				
ΔQ [A]					-132,95		14,28		
LINEA (P-A)	MT EQUIVALE	ENTE CON CARI	CHI CONCENTRA	ATI LUNGO IL P	ERCORSO				
Leq_ [m]	Р		878		Α				
Cabine	CCE		CS1		CS2				
L_ [m]		358		520					
In_ [A]			147,23		132,95				
I_Peq [A]			280,18						
				LINEA (A-Q	MT EQUIVALE	ENTE CON CARI	CHI CONCENTR	ATI LUNGO IL P	ERCORSO
				LINEA (A-Q	MT EQUIVALE	ENTE CON CARI	CHI CONCENTR 1932	ATI LUNGO IL P	ERCORSO Q
				,		ENTE CON CARI		ATI LUNGO IL P	
				Leq_ [m]	A	ENTE CON CARI	1932	ATI LUNGO IL P	Q
				Leq_ [m] Cabine	A		1932		Q

9. DIMENSIONAMENTO DEI CAVI IN FUNZIONE DELLA CADUTA DI TENSIONE

Il fenomeno di abbassamento di tensione tra due punti, uno a monte e l'altro a valle, in una rete elettrica di distribuzione, viene denominato caduta di tensione. In tutti gli impianti elettrici occorre valutare che la differenza tra la tensione del punto d'origine dell'alimentazione e la tensione all'utilizzatore d'energia sia adeguatamente contenuta, nei limiti normativi e nei limiti di funzionamento delle apparecchiature utilizzatrici.

Un'eccessiva differenza tra i due valori nuoce al funzionamento ed al rendimento degli impianti, inoltre elevate differenze di tensione tra monte e valle è sinonimo di perdite sulla linea elettrica, con conseguente cattivo dimensionamento e non ottimizzazione dell'impianto di trasmissione dell'energia.

La caduta di tensione sarà contenuta mediante un corretto calcolo dimensionale delle linee. Il valore della caduta di tensione può essere determinato mediante la formula:

$$\Delta V = I^*L^*\sqrt{3} (R^*\cos\varphi + X^*\sin\varphi)$$

Dove:

- ΔV è la caduta di tensione in V;
- I è la corrente nominale della linea in A;
- R è la resistenza della linea (rif. 90 °C 50 Hz) in Ω /km;
- X è la reattanza della linea (rif. 90 °C 50 Hz) in Ω /km;
- L è la lunghezza della linea in km.

La caduta di tensione percentuale sarà quindi:

RELAZIONE TECNICA CALCOLI ELETTRICI RETE MT IMPIANTO FOTOVOLTAICO

30/06/22 REV: 1

Pag.14

 $\Delta V\% = 100 * \Delta V/V$

Dove:

V è la tensione ad inizio linea in V.

La perdita di potenza è calcolata tramite la relazione:

$$P_{loss} = 3 * R * L * I_n^2$$

La perdita di potenza percentuale è calcolata tramite la relazione:

$$P_{loss}\% = 100 * P_{loss} / N_{SC} * P_{SC}$$

Dove:

- N_{SC} è il numero di sottocampi fotovoltaici considerati nella linea
- P_{SC} è la potenza nominale del singolo sottocampo fotovoltaico

Si riportano di seguito i dimensionamenti per le linee elettriche MT dell'impianto:

Condizioni di esercizio	CAB.SOT.	1, 2		CAB.SOT.	3					
	COS φ=	0,980		COS φ=	0,980		Ptot_	_anello_MT=	22,534	[MW]
	sen φ=	0,199		sen φ=	0,199					
	Vn=	30000	[V]	Vn=	30000	[V]				
	Pn=	7497,36	[KW]	Pn=	7539,48	[KW]		Ptot=	22,534	[MW]
	In=	147,23	[A]	In=	148,06	[A]				_

RETE MT AD ANELLO (LINEA P-Q, CON VP=VQ) - Linee MT in cavo unipolare posato a trifoglio (Impianto Utente)										
Linea	TRATTA	In [A]	Lunghezza [m]	Sez. cavo [mmq]	C.d.t. [V]	C.d.t. [%]	Ploss [kW]	Ploss [%]	Posa	
P-A	CCE>>CS2	280,18	878	300	63,6	0,212	26,9	0,000	ST - Trifoglio	
A-Q	CS2>>CCE	162,34	1932	300	81,1	0,270	19,9	0,000	ST - Trifoglio	
	Linea MT - in cavo cordato unipolare posato a trifoglio (Impianto Utente)									
n° Sottocampi	TRATTA	In [A]	Lunghezza [m]	Sez. cavo [mmq]	C.d.t. [V]	C.d.t. [%]	Ploss [kW]	Ploss [%]	Posa	
3	CCE>>SSEU	442,52	6458	630	405,5	1,352	240,9	0,001	ST - Trifoglio	
	TOTALE		9268		550	1,83	288	0,001		

10. DIMENSIONAMENTO DEI CAVI IN FUNZIONE DELLA TEMPERATURA DI FUNZIONAMENTO

Per il dimensionamento alla temperatura di funzionamento si è utilizzata la seguente relazione:

$$T_r = T_a + [(T_e - T_a) * (I_n / (N * I_z))^2]$$

Dove:

- T_r temperatura di regime (o di funzionamento) in °C;
- T_a temperatura ambiente del terreno, 20 °C;
- T_e temperatura massima di esercizio, 90 °C;
- I_n è la corrente nominale di linea in A;
- I_z è la portata nominale di linea (corretta dai coefficienti) in A;
- N è il numero di conduttori per fase.

Si riportano di seguito i valori delle temperature di regime per le quattro linee dell'impianto:

RELAZIONE TECNICA CALCOLI ELETTRICI RETE MT IMPIANTO FOTOVOLTAICO

30/06/22 REV: 1 Pag.15

RETE MT AD ANELLO (LINEA P-Q, CON VP=VQ) - Linee MT in cavo unipolare posato a trifoglio (Impianto Utente)									
LINEA	TRATTA	In [A]	Sez. cavo [mmq]	Tr [°C]	Posa				
P-A	CCE>>CS2	280,2	300	69,5	ST - Trifoglio				
A-Q	CS2>>CCE	162,3	300	36,6	ST - Trifoglio				
Linea MT - in cavo cordato unipolare posato a trifoglio (Impianto Utente)									
LINEA	TRATTA	In [A]	Sez. cavo [mmq]	Tr [°C]	Posa				
	CCE>>SSEU	442,5	630	75,2	ST - Trifoglio				