REGIONE: PUGLIA

PROVINCIA: CITTA' METROPOLITANA DI BARI

Comuni di Cassano delle murge e Acquaviva delle fonti

ELABORATO:

OGGETTO:

S.6

PARCO EOLICO DA 8 WTG da 6 MW/CAD E SISTEMA DI ACCUMULO DELL'ENERGIA.

PROGETTO DEFINITIVO

ANALISI DELLO SHADOW FLICKERING

PROPONENTE:

SCS 07 SOCIETA' A RESPONSABILITA' LIMITATA

Via Gen. Antonelli, 3 70043 Monopoli (BA)

PROGETTISTI:

STIM ENGINEERING S.r.l.

VIA GARRUBA, 3 - 70121 BARI Tel. 080.5210232 - Fax 080.5234353 www.stimeng.it - segreteria@stimeng.it

ing. Massimo CANDEO

Ordine Ing. Bari n° 3755 Via Cancello Rotto, 3 70125 Bari Mobile 328.9569922 m.candeo@pec.it

ing. Gabriele CONVERSANO

Ordine Ing. Bari n° 8884 Via Garruba, 3 70122 Bari Mobile 328 6739206 gabrieleconversano@pec.it

Note:

Collaborazione:

Ing. Antonio CAMPANALE

Ordine Ing. Bari nº 11123

Novembre			Ing. Antonio Campanale	
2021	0	Emissione	ing. Gabriele Conversano	ing. Massimo Candeo
DATA	REV	DESCRIZIONE	ELABORATO da:	APPROVATO da:

PROPRIETÀ ESCLUSIVA DELLE SOCIETÀ SOPRA INDICATE UTILIZZO E DUPLICAZIONE VIETATE SENZA AUTORIZZAZIONE SCRITTA

SOMMARIO

1	DESCRIZIONE DELL'INTERVENTO	3
2	SHADOW FLICKERING	3
	ANALISI DELL'EVOLUZIONE DELL'OMBRA DI UN AEROGENERATORE	-
_	CALCOLO DELL'EVOLUZIONE DELL'OMBRA PER GLI AEROGENERATORI IN PROGETTO	

1 DESCRIZIONE DELL'INTERVENTO

La presente proposta progettuale è finalizzata alla realizzazione di un impianto eolico per la produzione industriale di energia elettrica da fonte rinnovabile eolica, costituito da:

- **8** aerogeneratori tripala (WTG) ad asse orizzontale, ciascuno di potenza nominale pari a **6 MW**, per una potenza elettrica complessiva pari a **48 MW**,

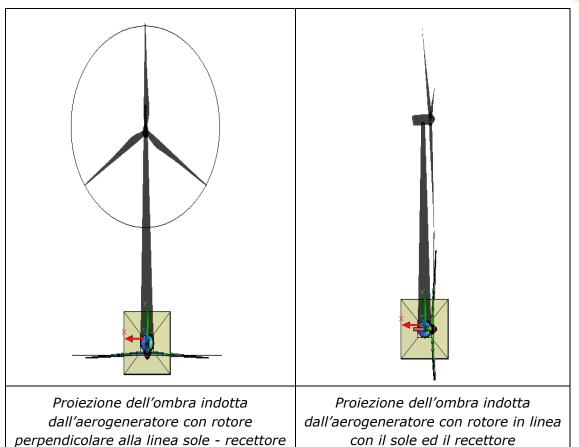
da realizzarsi in agro dei Comuni di Cassano delle murge (BA) e Acquaviva delle fonti (BA).

La società proponente è la SCS 07 SOCIETA' A RESPONSABILITA' LIMITATA, con sede in Via Gen. Antonelli, 3, 70043 Monopoli (BA).

La presente relazione riguarda lo **studio dell'evoluzione dell'ombra** per l'impianto eolico in questione.

2 SHADOW FLICKERING

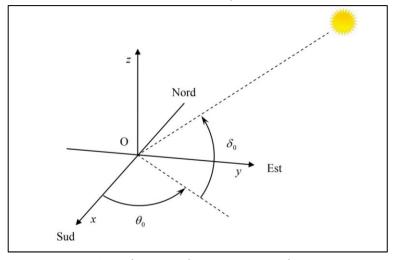
Lo *shadow flickering* consiste in una variazione periodica dell'intensità luminosa solare causata dalla proiezione, su una superficie, dell'ombra indotta da oggetti in movimento.


Per un impianto eolico tale fenomeno è generato dalla proiezione dell'ombra prodotta dalle pale in rotazione degli aerogeneratori.

Dal punto di vista di un recettore, lo *shadow flickering* si manifesta in una variazione ciclica dell'intensità luminosa: in presenza di luce solare diretta, un recettore localizzato nella zona d'ombra indotta dal rotore, sarà investito da un continuo alternarsi di luce diretta ed ombra, causato dalla proiezione delle ombre dalle pale in movimento.

Tale fenomeno, se vissuto dal recettore per periodi di tempo non trascurabile, può generare un disturbo quando:

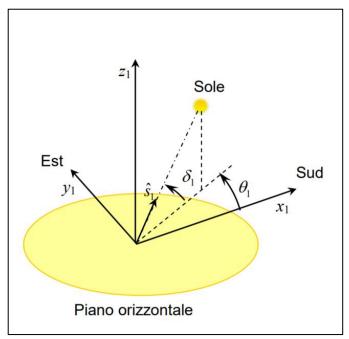
- si sia in presenza di un livello sufficiente di intensità luminosa, ossia in condizioni di cielo sereno sgombro da nubi ed in assenza di nebbia e con sole alto rispetto all'orizzonte;
- la linea recettore-aerogeneratore non incontri ostacoli: in presenza di vegetazione o edifici interposti l'ombra generata da quest'ultimi annulla il fenomeno. Pertanto, ad esempio, qualora il recettore sia un'abitazione, perché si generi lo shadow flickering le finestre dovrebbero essere orientate perpendicolarmente alla linea recettoreaerogeneratore e non affacciarsi su ostacoli (alberi, altri edifici, ecc.);
- il rotore sia orientato verso la provenienza del sole: come mostrato nelle figure seguenti
- quando il piano del rotore è perpendicolare alla linea sole-recettore, l'ombra proiettata dalle pale risulta muoversi all'interno di un "ellisse" (proiezione della circonferenza del rotore) inducendo uno *shadow flickering* non trascurabile;
- quando il piano del rotore è allineato con il sole ed il recettore, l'ombra proiettata è sottile, di bassa intensità ed è caratterizzata da un rapido movimento, risultando pertanto lo shadow flickering di entità trascurabile.



3 ANALISI DELL'EVOLUZIONE DELL'OMBRA DI UN AEROGENERATORE

Come è noto, in ciascun momento del tempo la posizione del sole rispetto alla terra può essere definita per mezzo di due angoli, detti anche Coordinate angolari "astronomiche" δ_0 e θ_0 , rispetto ad un riferimento cartesiano:

- il cui asse z è parallelo all'asse terrestre
- il cui piano (x.y) è parallelo al piano equatoriale;
- la direzione x punta da Nord verso Sud e la direzione y da Ovest verso Est.



Coordinate solari astronomiche

Ovviamente, assegnata la latitudine di un sito, la posizione del sole in ciascun istante può anche essere definita (per mezzo dei due angoli δ_1 e θ_1 illustrati in figura seguente) rispetto ad un riferimento cartesiano:

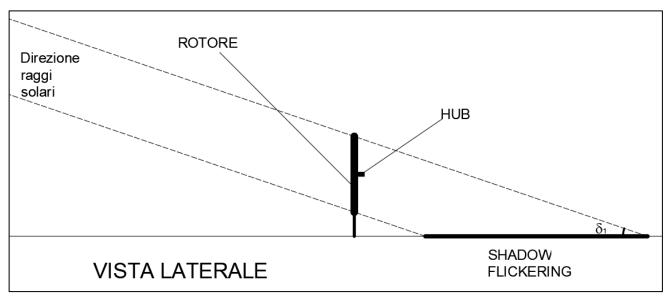
- il cui asse z1 è perpendicolare al suolo nella località considerata
- il cui piano (x1,y1) è il piano orizzontale della località considerata;
- la direzione x1 punta da Nord verso Sud e la direzione y1 da Ovest verso Est.

Coordinate solari locali

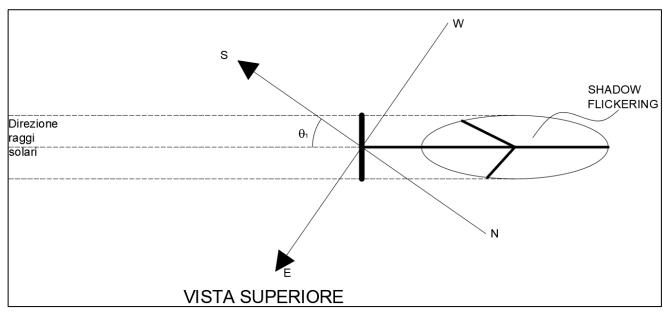
Maggiori dettagli sul calcolo analitico della posizione del sole sono disponibili, fra i tanti riferimenti, nella pubblicazione ENEA "CALCOLO ANALITICO DELLA POSIZIONE DEL SOLE PER L'ALLINEAMENTO DI IMPIANTI SOLARI ED ALTRE APPLICAZIONI", cui si rimanda per maggiori dettagli.

Pertanto, avendo fissato giorno dell'anno, ora (rispetto all'ora solare del luogo considerato) e latitudine, in ogni istante, è possibile calcolare i due angoli δ_1 e θ_1 che definiscono la posizione del sole rispetto al riferimento locale.

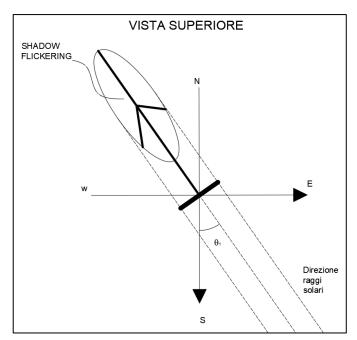
Nota la posizione del sole e le caratteristiche geometriche dell'aerogeneratore (altezza all'HUB, diametro del rotore), è possibile definire l'area in cui si osserverà il fenomeno dello shadow flickering, che è coincidente con la proiezione al suolo del rotore secondo la direzione di origine dei raggi solari.


Per comprendere meglio il fenomeno, si consideri che nelle ipotesi di:

- rotore perfettamente perpendicolare alla direzione di provenienza dei raggi solari e
- terreno orizzontale,

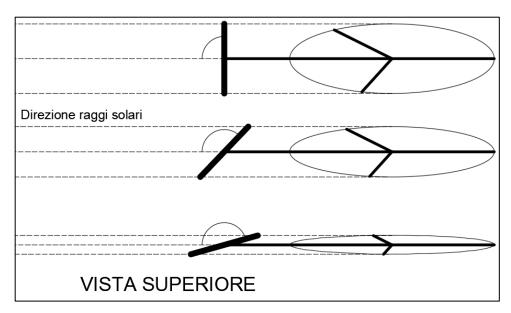

l'area su cui avviene il fenomeno di shadow flickering è data dall'ellisse i cui estremi si ricavano, mediante semplici considerazioni geometriche, dalle immagini seguenti. In particolare l'ellisse di shadow flickering ha:

- semiasse maggiore pari alla metà della lunghezza indicata con "SHADOW FLICKERING" nella vista laterale seguente;
- semiasse minore pari al raggio del rotore, come evidente dalla vista superiore seguente;
- posizione nel riferimento cartesiano avente assi coincidenti con il SUD dipendente dall'angolo θ_1

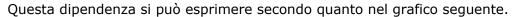

Vista laterale (rispetto al rotore) del fenomeno di shadow flickering

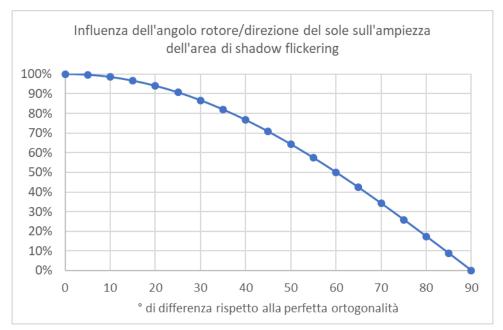
Vista superiore del fenomeno di shadow flickering

Ovviamente la vista precedente può anche essere resa, per sola chiarezza grafica e senza che nulla cambi nella sostanza, con gli assi cartesiani locali orientati secondo le direzioni orizzontale e verticale



Vista superiore del fenomeno di shadow flickering – rotazione con asse SUD verticale


Si consideri adesso che l'ipotesi di perfetta perpendicolarità del rotore con la direzione di provenienza dei raggi solari è una ipotesi fortemente cautelativa, dal momento che, come è noto, il rotore è orientato rispetto alla direzione di provenienza del vento che non coincide, se non casualmente, con la direzione di provenienza dei raggi solari.


Facendo riferimento agli schemi nelle figure seguenti, si può osservare che ruotando di 45° il rotore rispetto alla direzione ortogonale ai raggi solari, l'area spazzata dallo Shadow flickering si riduce del 30°, e ruotandolo di ulteriori 30° l'area spazzata è appena il 25° circa di quella originaria.

Effetto dell'angolo tra direzione dei raggi solari e rotore sull'ampiezza dello shadow flickering

Assumendo, per semplicità, che la direzione del sole e la direzione del vento siano completamente scorrelate, e quindi qualunque angolo tra le due direzioni può osservarsi con uguale frequenza, si ottiene un'area media dell'ellisse di shadow flickering pari al 63% circa dell'area di shadow flickering massima.

Per ottenere stime in vantaggio di sicurezza si utilizzerà comunque sempre, nei calcoli seguenti, l'area massima di shadow flickering.

4 CALCOLO DELL'EVOLUZIONE DELL'OMBRA PER GLI AEROGENERATORI IN PROGETTO

Alla luce di quanto sopra, si è proceduto ad effettuare il calcolo dell'area di shadow flickering in ogni istante temporale di ogni giorno dell'anno (con passo di ¼ ora), secondo la procedura sequente:

Determinazione della posizione del sole (angoli δ_1 e θ_1) in funzione della latitudine del luogo, del giorno e dell'ora;

Calcolo, nel sistema di riferimento locale (N-S; W-E) avente centro nell'asse della WTG:

- della posizione degli estremi dell'ellisse di shadow flickering;
- dei fuochi di tale ellisse;

Verifica, per ciascun punto del dominio di calcolo, dell'appartenenza o meno del punto all'ellisse di flickering. (L'appartenenza all'ellisse può essere verificata semplicemente sommando le distanze del punto considerato dai due fuochi dell'ellisse e confrontandola con il doppio del semiasse maggiore dell'ellisse)

In caso di verifica positiva, aggiunta di un quarto d'ora al conteggio del tempo annuale di flickering per il punto considerato.

Con passo temporale di un quarto d'ora questa verifica è stata effettuata, per l'intero anno, a passi spaziali di 10 metri nell'intorno della WTG, ottenendo i risultati mostrati nelle figure seguenti.

Le ipotesi di calcolo adottate sono state:

Latitudine: 40,9°

Altezza HUB: 115 m

Diametro rotore: 170 m

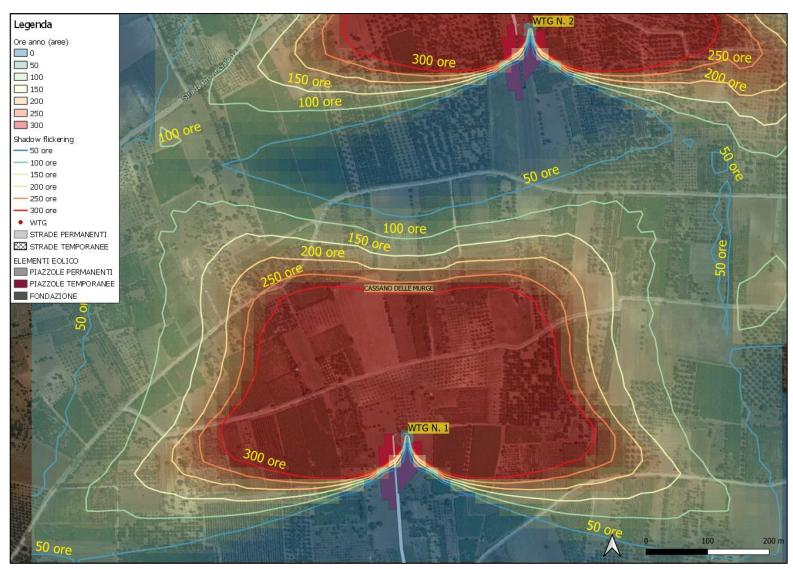
I risultati del calcolo sono mostrati, per ciascuna WTG, negli stralci cartografici su ortofoto alle pagine seguenti, con un commento esplicativo per ciascuno stralcio cartografico.

Dall'analisi delle immagini si conclude che:

- Non sono presenti edifici abitabili in corrispondenza delle aree di shadow flickering indotte dalle WTGs n: 1, 2, 3, 5, 6, 7, 8;
- Nell'area di shadow flickering della WTG 4 sono presenti due edifici da considerarsi come ricettori:
 a) categoria catastale A/7 villino Comune di Cassano delle murge Fg 31 P.lla 302) che tuttavia sarà interessato dal fenomeno, al massimo, per 84 ore l'anno;

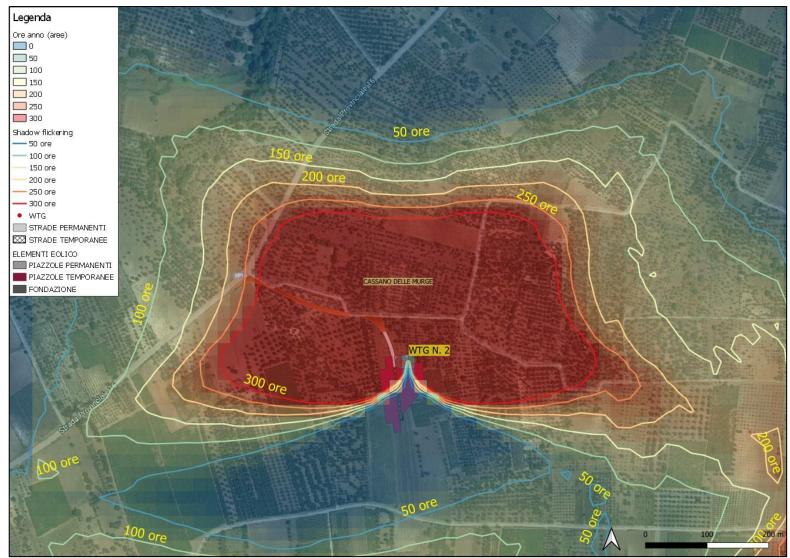
- b) la struttura ricettiva "Templum Salutaris" (categoria D/2 e D/8 Cassano delle murge Fg 31 P.lla 571) che tuttavia sarà interessata dal fenomeno per un massimo di 54 ore/anno e nelle quali adiacenze esiste già un aerogeneratore minieolico.
- c) La presenza di un impianto fotovoltaico (identificato al catasto FER della Regione Puglia con il codice F/CS/B998/6) di potenza pari a 190 kWp, sul quale vi sarà un ombreggiamento per un massimo di 150 ore/anno.
- Per intervalli orari contenuti comunque al massimo nelle 90 ore l'anno si potrà osservare un fenomeno di shadow flickering della SP48 (da WTG 4).
- Per intervalli orari contenuti comunque, nelle 300 ore l'anno si potrà osservare un fenomeno di shadow flickering della SP16 (da WTG 3). La WTG 2 invece proietta ombre sulla SP 16 per un massimo di 250 ore anno.
- Per intervalli orari contenuti comunque, nelle 300 ore l'anno si potrà osservare un fenomeno di shadow flickering della SP178 (da WTG 7).

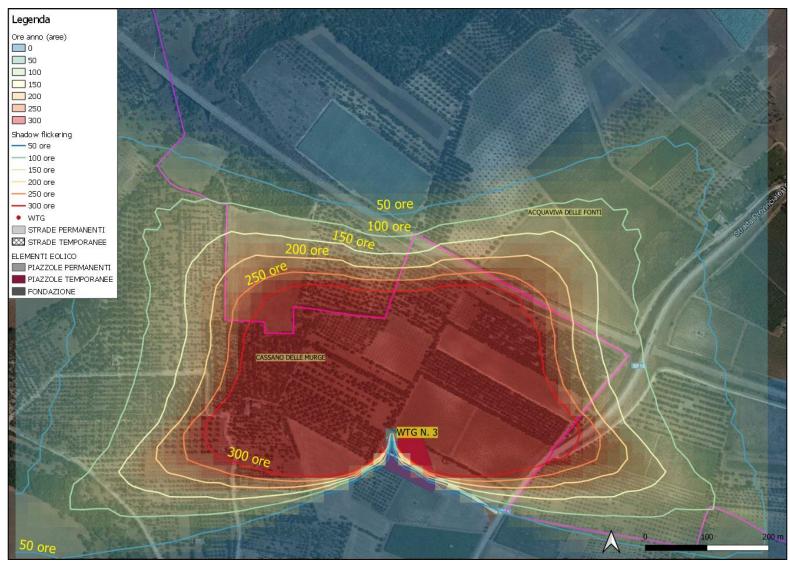
Nel valutare l'entità di questo fenomeno, tuttavia, si deve considerare che:

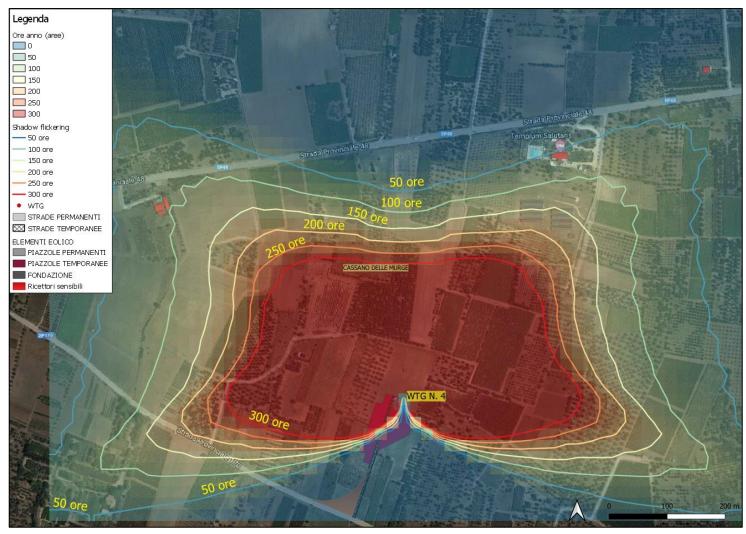

- Un anno ha 8760 ore, delle quali circa 4380 ore di luce ed altrettante di buio;
- 120 ore di flickering su un tratto di strada significa circa il 2,7% appena delle ore di luce;
- Con riferimento agli edifici poi, 60 ore di flickering equivalgono ad appena l'1,3% delle ore di luce annuali, 30 ore ad appena lo 0,7% circa delle ore di luce annuali

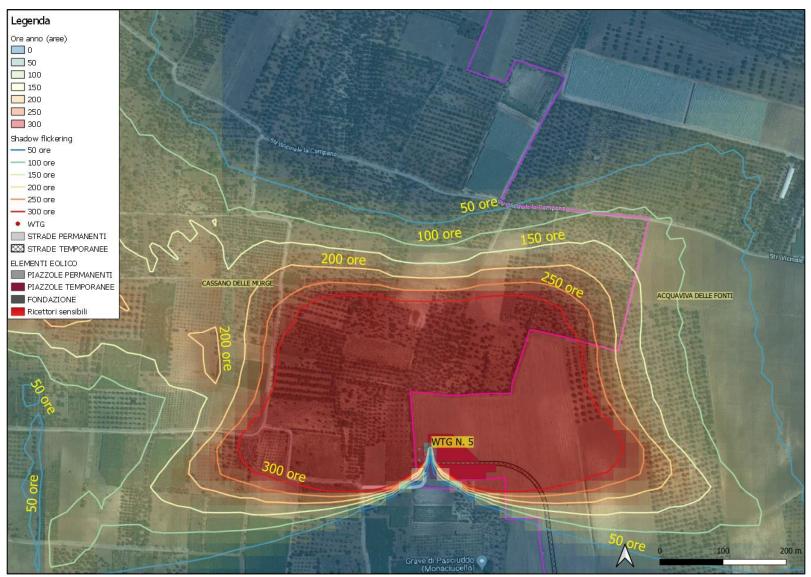
Dalla stima effettuata tramite i calcoli sono da detrarre:

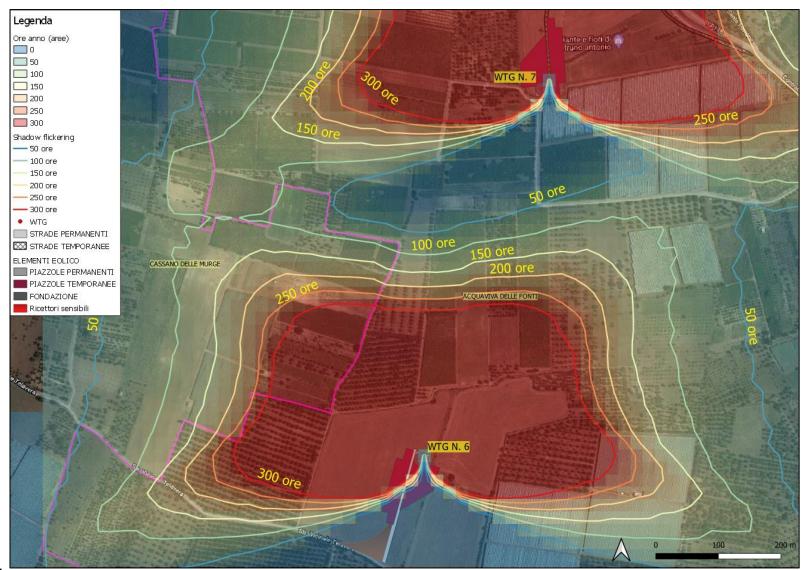
- Le ore in cui non c'è vento e le macchine sono ferme;
- Le ore in cui non c'è sole, e pertanto non si genera il fenomeno di flickering;
- Le ore in cui il rotore è disallineato rispetto alla perpendicolare alla direzione dei raggi solari e, quindi, l'area di flickering è ridotta

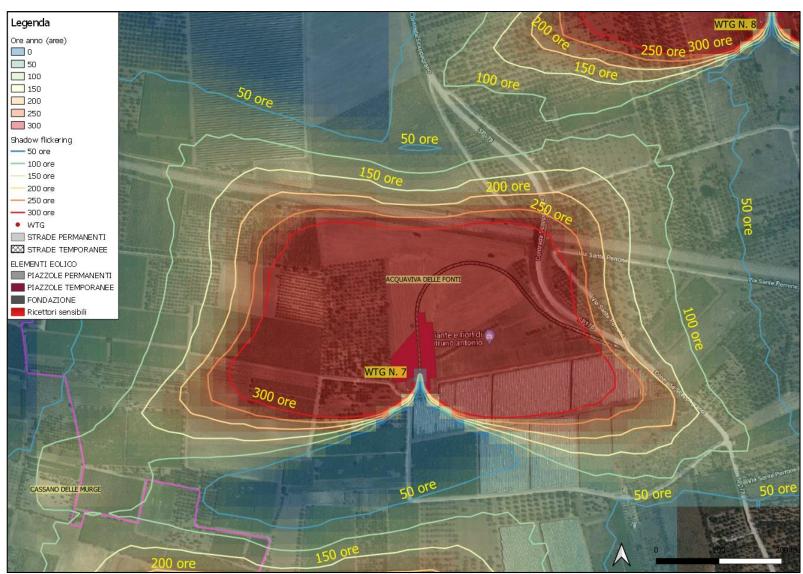

Per tutti i motivi appena elencati, quindi, si può escludere che le opere in progetto possano apportare un significativo disturbo da shadow flickering sia alla viabilità che agli edifici individuati come ricettori.

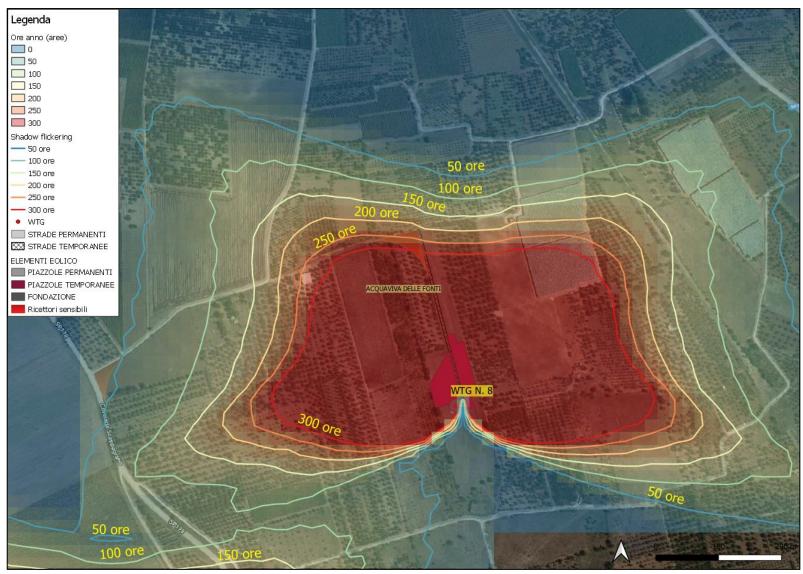

Non ci sono edifici nell'area di shadow flickering indotta dalla WTG1.


Non ci sono edifici nell'area di shadow flickering indotta dalla WTG2.


Non ci sono edifici nell'area di shadow flickering indotta dalla WTG3.


Nell'area di shadow flickering indotta dalla WTG4 vi è la presenza di un edificio residenziale (classe A/7) e di una struttura ricettiva (Classe D/2-D/8) con una presenza del cono d'ombra, rispettivamente di 84 e 54 ore/anno. Si denota inoltre la presenza di un impianto fotovoltaico di piccola taglia, sul quale vi è un ombreggiamento per un massimo di 150 ore anno.


Non ci sono edifici nell'area di shadow flickering indotta dalla WTG5


Non ci sono edifici nell'area di shadow flickering indotta dalla WTG6

Non ci sono edifici nell'area di shadow flickering indotta dalla WTG7.

Non ci sono edifici nell'area di shadow flickering indotta dalla WTG8.