

GRE.EEC.R.11.IT.W.15067.00.026.00

PAGE

1 di/of 22

TITLE: Valutazione risorsa eolica e analisi di producibilità

without the previous written consent by Enel Green PowerS.p.A.

AVAILABLE LANGUAGE: IT

MACOMER 2

Valutazione risorsa eolica e analisi di producibilità

II Tecnico

Ing. Leonardo Sblendido

File: GRE.EEC.R.11.IT.W.15067.00.026.00 Valutazione risorsa eolica e analisi di producibilità

00 15/12/2021 PRIMA EMISSIONE					A. De Guzzis G. A			G. A	Alfano			L. Sblendido										
REV.	DATE				DESCRIPTION				PREPARED			VERIFIED		APPROVED								
						E	GP V	'ALI	DATI	ON												
							N	1. Bo	occi							Α	. P	uos	i			
	COLL	ABOR	ATORS				VE	RIFIE	D BY							VAL	.IDA	TED I	3Y			
PROGET	TO / IMPIANTO								EG	P C	OD	E										
Macomer 2			GROUP	FUNCION	TYPE	ISS	SUER	CO	UNTRY	TEC			PLANT			SYST	ЕМ	PRC	GRES	SIVE	REV	ISION
			GRE	EEC	R	1	1	I	Т	W	1	5	0	6	7	0	0	0	2	6	0	0
CLASSIFICATION CO		mpany				UTIL	LIZATI	ON SC	OPE	Pre	elimi	nary										

EGP CODE

GRE.EEC.R.11.IT.W.15067.00.026.00

PAGE

2 di/of 22

SOMMARIO

1	INTRODUZIONE	3
	1.1 CONTENUTI DELLA RELAZIONE	
2	INQUADRAMENTO TERRITORIALE	4
3	CARATTERIZZAZIONE ANEMOLOGICA	7
4	AEROGENERATORE DI RIFERIMENTO1-	4
5	MODELLO DI VALUTAZIONE RISORSA EOLICA1	6
6	PISHITATI 2	ว

EGP CODE

GRE.EEC.R.11.IT.W.15067.00.026.00

PAGE 3 di/of 22

1 INTRODUZIONE

La presente relazione costituisce relazione sulla valutazione della risorsa eolica ed analisi della producibilità della centrale per la produzione di energia da fonte eolica proposta da Enel Green Power Italia S.r.I., e riferita al Parco Eolico costituito da n.8 aerogeneratori, ricadenti nei territori comunali di Macomer (NU), Borore (NU), Santu Lussurgiu (OR), di potenza nominale complessiva pari a 48 MW. La finalità di questo report è quella di caratterizzare le condizioni anemologiche e determinare la stima del rendimento energetico dell'impianto su base annuale.

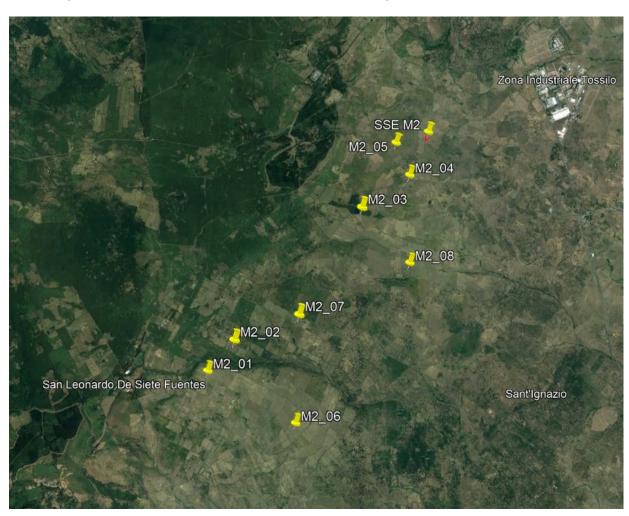


Figura 1-1: Inquadramento su ortofoto delle WTG di impianto

In sintesi, il presente progetto prevede:

- l'installazione di 8 nuovi aerogeneratori per una potenza installata pari a 48 MW;
- la realizzazione delle fondazioni per gli aerogeneratori in progetto;
- la realizzazione di piazzole di montaggio degli aerogeneratori, di nuovi tratti di viabilità

EGP CODE

GRE.EEC.R.11.IT.W.15067.00.026.00

PAGE

4 di/of 22

e l'adeguamento della viabilità esistente, al fine di garantire l'accesso per il trasporto degli aerogeneratori;

- la realizzazione del cavidotto di media tensione e della sottostazione SSE con stallo trasforamtore AT/MT da collegare in antenna alla futura Stazione Elettrica (SE) di Trasformazione 380/150 kV della RTN da inserire in entra – esce alla linea RTN a 380 kV "Ittiri - Selargius".
- l'utilizzo temporaneo, attraverso opportuni adeguamenti, di aree per il Site Camp.

Il progetto è in linea con gli obbiettivi nazionali ed europei per la riduzione delle emissioni di CO₂ legate a processi di produzione di energia elettrica.

L'impianto sarà destinato a funzionare in parallelo alla rete elettrica nazionale in modo da immettere energia da fonte rinnovabile in rete.

Ciascun aerogeneratore è montato su una torre tubolare di altezza pari a 115m. All'interno del tubolare sono ubicate le apparecchiature per il sezionamento e la protezione dell'impianto ed i relativi quadri elettrici. L'energia elettrica prodotta sarà convogliata, dall'impianto, mediante cavi interrati di tensione 33 kV fino alla Sottostazione utente SSE con stallo di trasformazione 150/33 kV, ubicata nel Comune di Macomer.

1.1 CONTENUTI DELLA RELAZIONE

La presente relazione costituisce il documento sulla valutazione della risorsa eolica e sull'analisi di producibilità riguardante i nuovi aerogeneratori che sono previsti in sito.

Il capitolo 2 descrive in generale il sito e il layout degli aerogeneratori di nuova costruzione.

Nel capitolo 3 vengono descritte le caratteristiche anemologiche del sito.

Il capitolo 4 illustra le caratteristiche tecniche dell'aerogeneratore di riferimento e il capitolo 5 tratta del modello di analisi di producibilità.

Infine, il capitolo 6 riporta i risultati dell'analisi di producibilità.

2 INQUADRAMENTO TERRITORIALE

Il sito oggetto di studio è ubicato a circa 4km a Nord dal centro abitato di Macomer, circa 7km ad Est dal centro abitato di Borore, circa 5km a Sud dal centro abitato di Santu Lussurgiu e a 8km ad Ovest dal centro abitato di Scano di Montiferro

La morfologia dell'area e delle zone limitrofe è contraddistinta da un territorio collinare.

EGP CODE

GRE.EEC.R.11.IT.W.15067.00.026.00

PAGE 5 di/of 22

Il progetto risulta ubicato nelle provincie di Nuoro, Oristano.

Di seguito è riportato l'inquadramento territoriale dell'area di progetto e la configurazione proposta su ortofoto.

Figura 2-1: Inquadramento generale dell'area di progetto

EGP CODE

GRE.EEC.R.11.IT.W.15067.00.026.00

PAGE 6 di/of 22

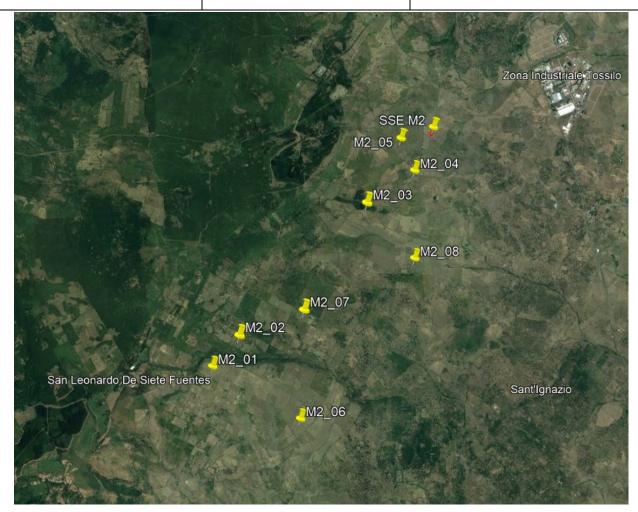


Figura 2-2: Configurazione proposta su ortofoto

Per l'identificazione univoca di ogni singolo aerogeneratore e per una più dettagliata descrizione del progetto, si riportano in tabella le coordinate relative all'ubicazione di ognuno di essi nel sistema di riferimento WGS84 in proiezione UTM.

Tabella 2-1: Posizione Aerogeneratori

WTG	Comune	Est [m]	Nord [m]	Altitudine [m s.l.m.]	
M2_01	Santu Lussurgiu	473225.00	4447459.00	611	
M2_02	Santu Lussurgiu	473812.00	4448119.00	623	
M2_03	Borore	476666.00	4451082.00	522	
M2_04	Borore	477751.00	4451841.00	468	

GRE.EEC.R.11.IT.W.15067.00.026.00

PAGE

7 di/of 22

WTG	Comune	Est [m]	Nord [m]	Altitudine [m s.l.m.]	
M2_05	Macomer	477447.00	4452566.00	507	
M2_06 Santu Lussurgiu		475168.00	4446298.00	518	
M2_07 Santu Lussurgiu		475200.90	4448685.59	582	
M2_08 Santu Lussurgiu		477735.00	4449856.00	473	

Dalla tabella si evince che l'altezza delle posizioni interessate dagli aerogeneratori varia fra 468 e 623 m.s.l.m.

3 CARATTERIZZAZIONE ANEMOLOGICA

La società pubblica di ricerca RSE (Ricerca Sistema Energetico), società per azioni il cui unico socio è la società Gse (Gestore dei Servizi Energetici), controllata dal ministero Sviluppo Economico specializzata nella ricerca nel settore elettrico-energetico, ha implementato l'Atlante eolico d'Italia nell'ambito della Ricerca di Sistema (http://atlanteeolico.rse-web.it/), che consiste in una serie di mappe di velocità del vento: le mappe di velocità del vento sono state redatte su tre serie di 27 tavole, con scala a nove colori. Ciascun colore identifica una classe di velocità i cui estremi, in m/s, sono indicati in calce alla tavola stessa. Ad esempio il colore giallo indica aree con valori stimati di velocità del vento comprese tra 5 e 6 m/s; l'assenza di colore indica velocità medie inferiori a 3 m/s.

Secondo quanto emerge dallo studio della RSE, l'Italia risulta una nazione con buone potenzialità in termini di risorsa per lo sviluppo dell'eolico. La risorsa eolica in Italia è prevalentemente concentrata nel Centro-Sud e nelle isole maggiori.

GRE.EEC.R.11.IT.W.15067.00.026.00

PAGE 8 di/of 22

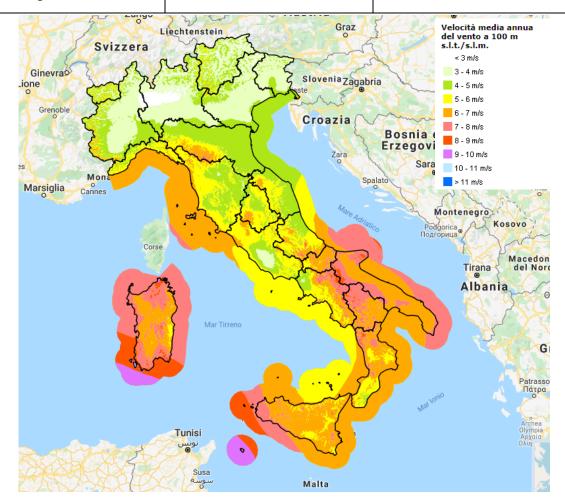


Figura 3-1: Atlante Eolico d'Italia -Velocità media annua del vento a 100 m s.l.t./s.l.m. Fonte: RSE-Web

EGP CODE

GRE.EEC.R.11.IT.W.15067.00.026.00

PAGE

9 di/of 22

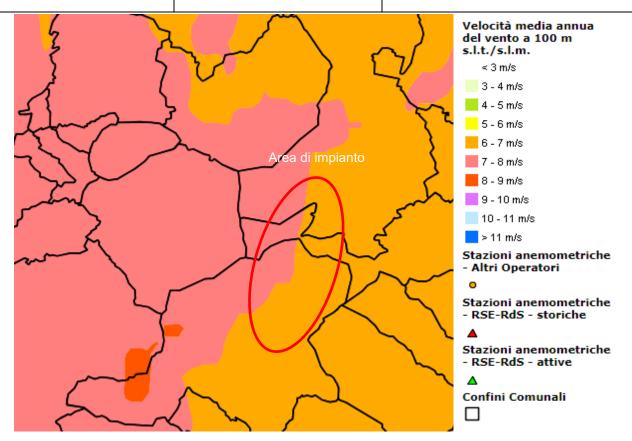


Figura 3-2: Localizzazione sito di intervento (in rosso) sull'Atlante Eolico d'Italia – Velocità media annua del vento a 100 m s.l.t./s.l.m. Fonte: RSE-Web

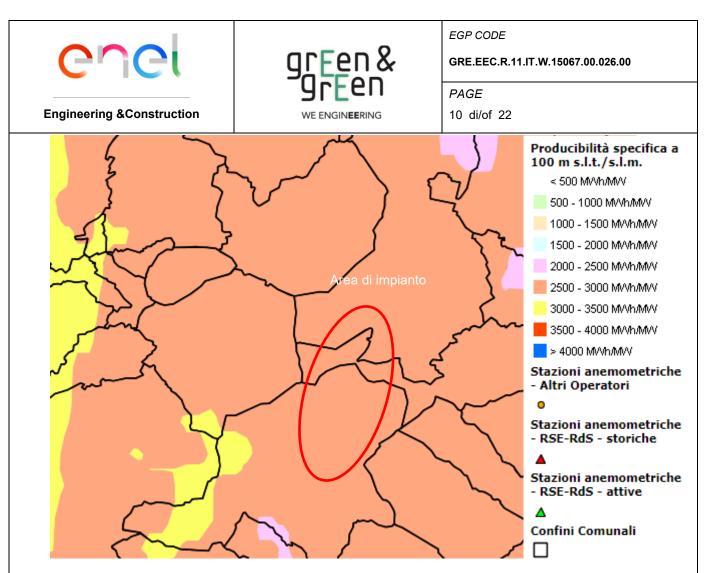


Figura 3-3: Localizzazione sito di intervento (in rosso) sull'Atlante Eolico d'Italia – Producibilità specifica a 100 m s.l.t./s.l.m. Fonte: RSE-Web

L'impianto ricade in un'area caratterizzata da differenti velocità media annue: 6-7 m/s e 7-8 m/s (valori rilevati a 100 m di altezza). Tuttavia, il potenziale eolico della zona di impianto risulta il medesimo, compreso tra 2500 e 3000 ore equivalenti. Questi dati, individuati considerando l'Atlante eolico, vengono approfonditi nei paragrafi a seguire attraverso l'analisi anemologica in sito, riportando le analisi effettuate sulla base di rilevazioni anemologiche effettuate da alcuni anemometri nella zona di interesse. Pertanto, l'impianto sfrutterebbe appieno la risorsa eolica e garantirebbe elevati valori di producibilità.

La velocità e la direzione del vento sono misurate in sito tramite la stazione anemometrica esistente di "Funtana su Marrubiu", situata a circa 6 km a Nord dell'impianto, ad un'altitudine pari a 722 m s.l.m. come mostrato in figura:

EGP CODE

GRE.EEC.R.11.IT.W.15067.00.026.00

PAGE 11 di/of 22

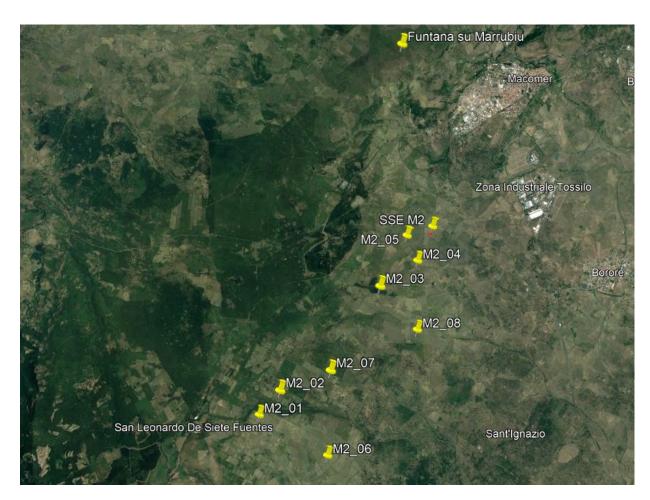


Figura 3-4: Inquadramento stazione anemometrica "Funtana su Marrubiu"

Tabella 3-1: Dati stazione anemometrica "Funtana su Marrubiu"

Variable	Value	Variable	Value
Latitude	40.272843	Mean temperature	12.71 °C
Longitude	8.733166	Mean pressure	
Elevation	722 m	Mean air density	1.130 kg/m3
Start date	01/08/2004 00:00	Power density at 50m	311 W/m ²
End date	01/08/2013 00:00	Wind power class	3 (Fair)
Duration	9 years	Power law exponent	0.163
Length of time step	10 minutes	Surface roughness	0.0576 m
Calm threshold	0 m/s	Roughness class	1.54

La stazione anemometrica misura la direzione del vento e la sua velocità, necessaria per il calcolo della stima di producibilità. La stazione misura, inoltre, la temperatura ambiente che determina la densità dell'aria, altra variabile nella stima di producibilità.

EGP CODE

GRE.EEC.R.11.IT.W.15067.00.026.00

PAGE 12 di/of 22

La velocità media mensile e la direzione del vento misurate dalla stazione anemometrica sono riportate nelle figure sottostanti per il periodo di 9 anni (inizio rilevazione 01/08/2004, fine rilevazione 01/08/2013). Gli esiti della caratterizzazione sono riportati sotto forma di diagrammi e tabelle.

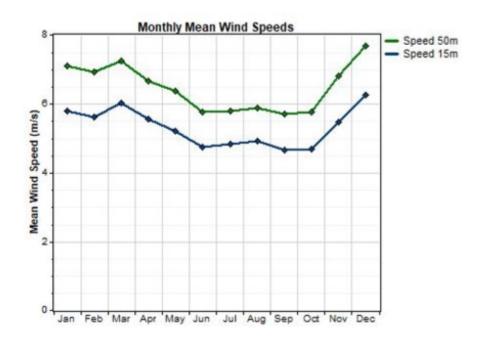


Figura 3-5: Profilo medio mensile di velocità del vento alla stazione anemometrica

Figura 3-6: Direzione prevalente vento alla stazione anemometrica

EGP CODE

GRE.EEC.R.11.IT.W.15067.00.026.00

PAGE 13 di/of 22

Come visibile dalle figure precedenti, la velocità del vento è misurata ad altezze diverse della stazione anemometrica, a 50 e 15 metri da terra. La doppia misura di velocità è necessaria al fine di individuare quale sia la variazione della velocità del vento in funzione dell'altezza, per poi modellare la velocità del vento all'altezza del mozzo dell'aerogeneratore, come illustrato con maggiore dettaglio nel successivo capitolo.

La direzione del vento è prevalente nella direzione Ovest. Questo fattore è molto importante nell'ambito della progettazione di impianti eolici, al fine di individuare il migliore posizionamento degli aerogeneratori ed evitare effetti di scia tra essi.

Nelle figure seguenti si evidenziano i profili diurni ed il profilo verticale della velocità, da cui si può valutare quale sia la variazione della velocità del vento in funzione dell'altezza dal suolo:

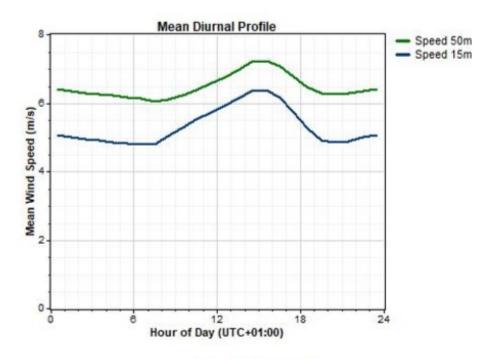


Figura 3-7: Profilo medio giornaliero di velocità del vento alla stazione anemometrica

EGP CODE

GRE.EEC.R.11.IT.W.15067.00.026.00

PAGE 14 di/of 22

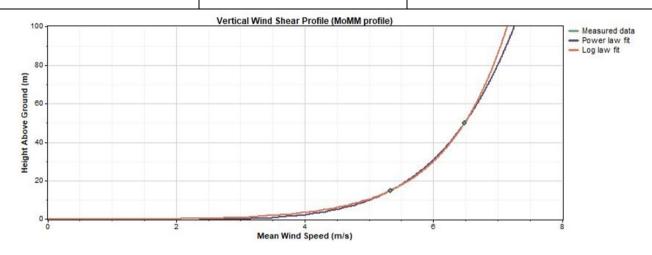


Figura 3-8: Profilo verticale del vento alla stazione anemometrica

Il sito è caratterizzato da ottimi valori di velocità del vento, che garantiscono un'elevata producibilità del sito.

4 AEROGENERATORE DI RIFERIMENTO

Gli aerogeneratori che verranno installati nel nuovo impianto di Macomer_2 saranno selezionati sulla base delle più innovative tecnologie disponibili sul mercato. La potenza nominale delle turbine previste sarà pari a massimo 6,0 MW. Il tipo e la taglia esatta dell'aerogeneratore saranno comunque individuati in seguito della fase di acquisto della macchina e verranno descritti in dettaglio in fase di progettazione esecutiva.

Si riportano di seguito le principali caratteristiche tecniche di un aerogeneratore con potenza nominale pari a 6,0 MW:

Tabella 4-1: Caratteristiche tecniche aerogeneratore

Potenza nominale	6,0 MW		
Diametro del rotore	170 m		
Lunghezza della pala	83,5 m		
Corda massima della pala	4,5 m		
Area spazzata	22.698 m²		
Altezza al mozzo	115 m		

GRE.EEC.R.11.IT.W.15067.00.026.00

PAGE 15 di/of 22

Classe di vento IEC	IIIA		
Velocità cut-in	3 m/s		
V nominale	10 m/s		
V cut-out	25 m/s		

Nell'immagine seguente è rappresentata una turbina con rotore di diametro pari a 170 m e potenza fino a 6,0 MW:

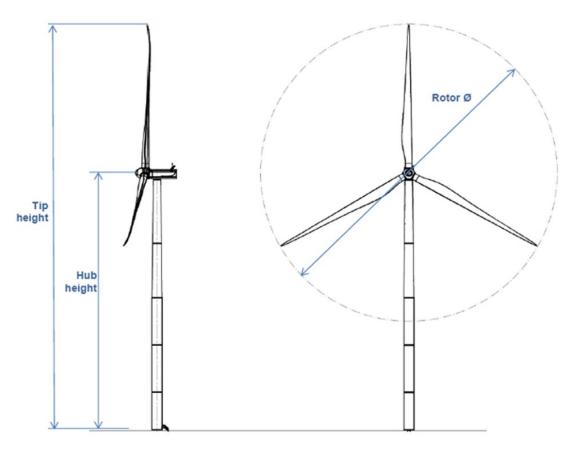


Figura 4-1: Vista e caratteristiche di un aerogeneratore da 6,0 MW

Tabella 4-2 - Dimensioni aerogeneratore

Altezza della punta (Tip height)	200 m
Altezza del mozzo (Hub height)	115 m
Diametro del rotore (Rotor ∅)	170 m

GRE.EEC.R.11.IT.W.15067.00.026.00

PAGE 16 di/of 22

Engineering &Construction

Ogni aerogeneratore è equipaggiato di generatore elettrico asincrono, di tipo DFIG (Directly Fed Induced Generator) che converte l'energia cinetica in energia elettrica ad una tensione nominale di 690 V. È inoltre presente su ogni macchina il trasformatore MT/bt per innalzare la tensione di esercizio da 690 V a 33000 V.

5 MODELLO DI VALUTAZIONE RISORSA EOLICA

In questo capitolo si affronta lo studio del modello per la valutazione della risorsa eolica e per l'analisi di producibilità riferito all'aerogeneratore di riferimento descritto al capitolo precedente.

Il primo passo per la valutazione della risorsa è lo studio della velocità del vento all'altezza del mozzo dell'aerogeneratore. La velocità del vento è strettamente legata alla quota a cui essa è registrata, secondo la legge seguente:

$$\frac{v}{v_0} = \left(\frac{z}{z_0}\right)^{\alpha}$$

Dove:

- v_0 è la velocità del vento misurata alla quota z_0 ;
- v è la velocità che vuole essere identificata alla quota z (ad esempio all'altezza del mozzo);
- α è un coefficiente che correla la differenza di quota alla differenza di velocità del vento.

Come visibile dalla formula, il calcolo della velocità del vento all'altezza del mozzo può essere determinata a partire da una misura di velocità ad una quota conosciuta e dall'individuazione del coefficiente α .

Le misure del vento alle quote di riferimento sono quelle riportate al capitolo 3, registrate presso la stazione anemometrica "Funtana su Marrubiu". Come già evidenziato, la stazione misura la velocità del vento a quote differenti: 50 e 15 metri. Questo permette di poter identificare il coefficiente α tra queste tre quote e applicarlo poi per l'identificazione della velocità del vento all'altezza del mozzo dell'aerogeneratore.

GRE.EEC.R.11.IT.W.15067.00.026.00

PAGE 17 di/of 22

Dall'analisi effettuata per l'altezza di mozzo pari a 115 metri, sono ottenuti i seguenti grafici di velocità e direzione del vento all'altezza del mozzo:

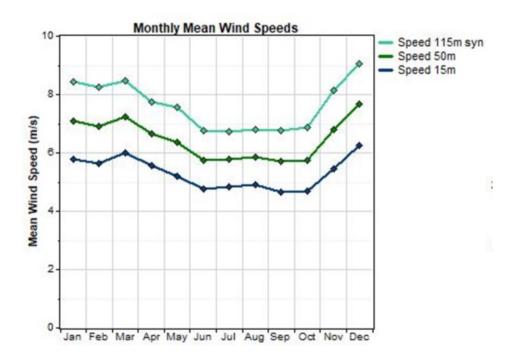


Figura 5-1: Profilo medio mensile di velocità del vento all'altezza del mozzo

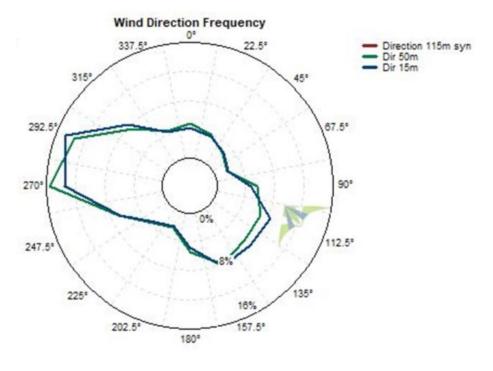


Figura 5-2: Direzione prevalente vento all'altezza di mozzo

EGP CODE

GRE.EEC.R.11.IT.W.15067.00.026.00

PAGE 18 di/of 22

Sono riportati di seguito anche il grafico del profilo medio diurno di velocità del vento ed il profilo verticale esteso all'altezza di mozzo:

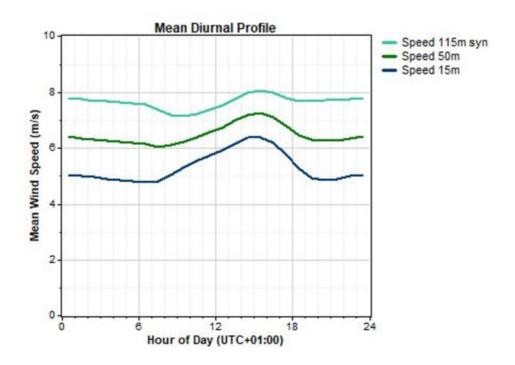


Figura 5-3: Profilo medio giornaliero di velocità del vento all'altezza del mozzo

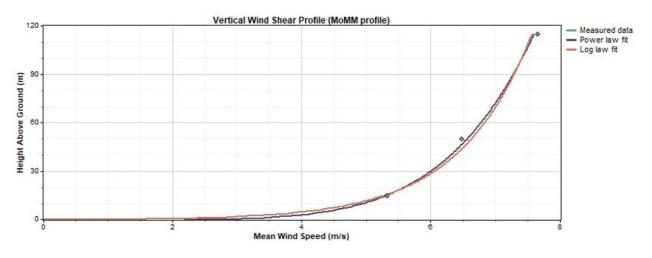


Figura 5-4: Profilo verticale di velocità fino all'altezza di mozzo

Dal profilo di velocità del vento è possibile ottenere una distribuzione di frequenza della velocità del vento per il calcolo della producibilità. La distribuzione di frequenza consente di identificare

GRE.EEC.R.11.IT.W.15067.00.026.00

PAGE

19 di/of 22

Engineering &Construction WE ENG

il numero di ore all'anno in cui si registra ciascun range di velocità del vento e calcolare quindi la relativa energia prodotta.

La distribuzione ideale che meglio descrive il comportamento della velocità del vento in un dato sito è la distribuzione probabilistica di Weibull, di cui è riportata la funzione di densità di probabilità sotto:

$$f(v) = \left(\frac{k}{A}\right) \cdot \left(\frac{v}{A}\right)^{k-1} \cdot e^{\left(-\frac{v}{A}\right)^k}$$

Dove:

- v è la velocità del vento;
- f(v) è la distribuzione di frequenza che indica la probabilità di avere una data velocità del vento;
- *k* e *A* rappresentano rispettivamente il parametro di forma e il parametro di scala.

k è un parametro adimensionale che indica la distribuzione utilizzata ed è minore di 2 quando si tratta di una distribuzione di tipo Weibull. A è un parametro con unità dimensionale di m/s, così come la velocità del vento: solitamente il parametro A è stimabile sapendo che la velocità media del vento è circa pari a 0.9*A. I valori di k e k sono stimabili, in modo più preciso, attraverso una serie di modelli: modello grafico, modello MOM (methods of moments), modello empirico o modello energetico equivalente.

GRE.EEC.R.11.IT.W.15067.00.026.00

PAGE 20 di/of 22

Attraverso lo studio dei dati misurati in sito è possibile ottenere quale sia la distribuzione Weibull che meglio descrive l'andamento della velocità del vento. La distribuzione di Weibull è identificata in figura seguente:

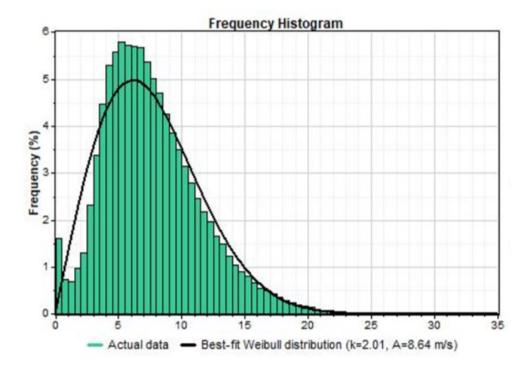
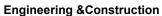



Figura 5-5: Distribuzione di Weibull

Si ottiene quindi una distribuzione probabilistica di velocità durante l'anno. È dunque possibile calcolare l'energia prodotta dall'aerogeneratore moltiplicando, per ogni classe di vento, la potenza prodotta dall'aerogeneratore in quella condizione di vento, ricavata dalla curva di potenza, ed il numero di ore all'anno in cui si verifica quella condizione di vento, ottenibili come il prodotto tra le ore totali in un anno (8760h/anno) e la probabilità che vi sia quella condizione di vento (f(v) da distribuzione Weibull).

GRE.EEC.R.11.IT.W.15067.00.026.00

PAGE 21 di/of 22

L'energia specifica del flusso d'aria e la sua direzione sono riportate nella figura seguente:

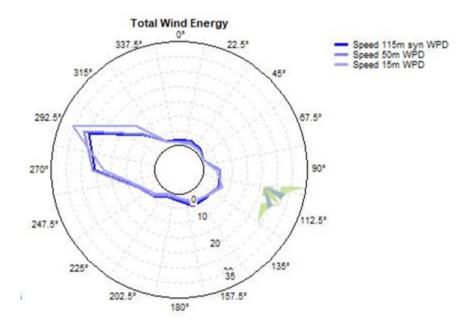


Figura 5-6: Energia dal vento

Non è possibile, tuttavia, calcolare l'energia prodotta da tutto il parco eolico come l'energia prodotta da un aerogeneratore moltiplicata per il numero di aerogeneratori. Infatti, vi sono diverse interazioni tra gli aerogeneratori, che riducono il valore di energia prodotta totale dal campo: effetti di scia e effetti di "schiera", dovuti alla presenza di numerose turbine che condizionano il vento, anche fuori dall'area di scia.

La modellazione ed il calcolo della producibilità per l'intero parco eolico sono stati effettuati attraverso il software di progettazione e di ottimizzazione di impianti eolici "Openwind", tramite l'impiego del modello "Deep Array Eddy Viscosity Model".

L'utilizzo di un modello di tipo "wake" (scia) è necessario poiché per impianti eolici composti da numerose turbine non è possibile ipotizzare che non via sia correlazione tra i vari aerogeneratori e che la presenza di un aerogeneratore non possa influenzare il vento circostante e le prestazioni degli altri aerogeneratori. La presenza di numerose turbine eoliche in un'area limitata può alterare il profilo del vento anche al di fuori della zona di scia, riducendo così il valore totale di energia prodotta.

EGP CODE

GRE.EEC.R.11.IT.W.15067.00.026.00

PAGE 22 di/of 22

6 RISULTATI

La modellazione illustrata al capitolo precedente ha condotto ai seguenti risultati:

Tabella 6-1: Risultati stima di producibilità

Caratteristica	Valore		
Potenza Installata	48 MW		
Potenza nominale WTG	6,0 MW		
N° di WTG	8		
Classe IEC	IIIa		
Diametro del rotore	170 m		
Altezza del mozzo	115 m		
Velocità media del vento all'altezza del mozzo (free)	6,3 m/s		
Energia prodotta annua P50	111619 MWh/anno		
Ore equivalenti P50	2300		

È stato riportato il percentile P50. Esso rappresenta il valore a cui corrisponde il 50% di probabilità di ottenere, nella realtà, un valore maggiore o uguale a quello riportato.

Al percentile riportato, si stima che l'impianto eolico potrà produrre 111,6 GWh all'anno, per un totale di 2300 ore equivalenti. Come già evidenziato, il sito è caratterizzato da ottimi valori di ventosità che garantiscono un'elevata producibilità.