

AMBIENTE IDRAULICA STRUTTURE

Dott. Ing. Orazio Tricarico Via della Resistenza, 48/B1 - 70125 Bari (BA) +39 080 3219948 info@atechsrl net www.atechsrl.net

STUDI ARCHEOLOGICI

Dott.ssa Paola Iacovazzo via del Tratturello Tarantino n. 6 - 74123 Taranto (TA)

museion-archeologia@libero.it

RILIEVI TOPOGRAFICI E STUDI GEOLOGICI GEOSECURE Geological & Geophysical Services
Via Tuscolana, 1003 - 00174 Roma (RM) SEDE LEGALE
Via Barcellona, 18 - 86021 Bojano (CB) SEDE OPERATIVA
t.+ 39 0874783120 info@geosecure.it

OGGETTO:

RELAZIONE TECNICA

HEPV30 S.R.L. via Alto Adige, 160/A - 38121 Trento (TN) hepv30srl@legalmail.it

MANAGEMENT:

PROPONENTE:

EHM.Solar

Via della Rena, 20 39100 Bolzano - Italy tel. +39 0461 1732700 fax. +39 0461 1732799 info@ehm.solar

c.fiscale, p.iva e R.I. 03033000211

NOME COMMESSA:

COSTRUZIONE ED ESERCIZIO IMPIANTO AGROVOLTAICO AVENTE POTENZA NOMINALE PARI A 7.500kW E POTENZA MODULI PARI A 10.124,4kWp, CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA, SITO IN BRINDISI (BR) AL FG.187 PART.N.9-128-182-184-246 -38-176-177-44-63-124-127 IMPIANTO 13B

STATO DI AVANZAMENTO COMMESSA:

PROGETTO DEFINITIVO PER AUTORIZZAZIONE UNICA CODICE COMMESSA:

HE.19.0092

PROGETTAZIONE INGEGNERISTICA:

Galleria Passarella, 1 20122 Milano - Italy tel. +39 02 37905900 via Alto Adige, 160/A 38121 Trento - Italy tel. +39 0461 1732700 fax. +39 0461 1732799

www.heliopolis.eu info@heliopolis.eu

c.fiscale, p.iva e R.I. Milano 08345510963

PROGETTISTA:

COLLABORATORE:

STUDI PEDO-AGRONOMICI

Dott. Agr. Matteo Sorrenti

STUDI FAUNISTICI

Dott. Nat. Maria Grazia Fraccalvieri

CONSULENZA LEGALE

QEL3745_RelazioneTecnica.pdf

STUDIO LEGALE PATRUNO Via Argiro, 33 Bari t.f. +39 080 8693336

SCALA:

NOME FILE:

DATA:

SETTEMBRE 2021

TAVOLA:

DGE.RE 02

N RFV REVISIONE DATA

> 09.2021 Emissione

ELABORATO

VERIFICATO responsabile commessa

VALIDATO direttore tecnico N.Zuech

O.Tricarico

A.Albuzzi

Consulenza: **Atech srl** Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Progetto	Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4kWp, con relativo collegamento alla rete elettrica, sito in Brindisi (BR)- IMPIANTO 13B						
Regione	Puglia						
Comune	Brindisi (BR)						
Proponente	HEPV30 s.r.l						
	Sede Legale via Alto Adige, I	1 <i>60/A</i>					
	38121 Trento (TN)						
Redazione SIA	ATECH S.R.L. – Società di In		∕izi di Ingeg	neria			
	Sede Legale Via della Resiste	enza 48					
	70125 Bari (BA)						
Documento	Relazione tecnica						
Revisione	00						
Emissione	Settembre 2021			1			
Redatto	B.B M.G.F. – ed altri	Verificato	A.A.	Approvato	O.T.		
	(vedi sotto)						
Redatto:	Ing. Alessandro Antezza						
Gruppo di lavoro	Arch. Berardina Boccuzzi						
	Ing. Alessandrina Ester Calab	rese					
	Arch. Claudia Cascella						
	Geol. Anna Castro						
	Arch. Valentina De Paolis						
	Dott. Naturalista Maria Grazia Fraccalvieri						
	Ing. Emanuela Palazzotto						
\/:: f :	Ing. Orazio Tricarico						
Verificato:	Ing. Alessandro Antezza (Socio di Atech srl)						
Approvato:	Ing. Orazio Tricarico (Ammin	istratore Unico	e Direttore	Tecnico di Ate	ech srl)		

Questo rapporto è stato preparato da Atech Srl secondo le modalità concordate con il Cliente, ed esercitando il proprio giudizio professionale sulla base delle conoscenze disponibili, utilizzando personale di adeguata competenza, prestando la massima cura e l'attenzione possibili in funzione delle risorse umane e finanziarie allocate al progetto.

Il quadro di riferimento per la redazione del presente documento è definito al momento e alle condizioni in cui il servizio è fornito e pertanto non potrà essere valutato secondo standard applicabili in momenti successivi. Le stime dei costi, le raccomandazioni e le opinioni presentate in questo rapporto sono fornite sulla base della nostra esperienza e del nostro giudizio professionale e non costituiscono garanzie e/o certificazioni. Atech Srl non fornisce altre garanzie, esplicite o implicite, rispetto ai propri servizi.

Questo rapporto è destinato ad uso esclusivo di HEPV30 S.r.l., Atech Srl non si assume responsabilità alcuna nei confronti di terzi a cui venga consegnato, in tutto o in parte, questo rapporto, ad esclusione dei casi in cui la diffusione a terzi sia stata preliminarmente concordata formalmente con Atech Srl.

I terzi sopra citati che utilizzino per qualsivoglia scopo i contenuti di questo rapporto lo fanno a loro esclusivo rischio e pericolo.

Atech Srl non si assume alcuna responsabilità nei confronti del Cliente e nei confronti di terzi in relazione a qualsiasi elemento non incluso nello scopo del lavoro preventivamente concordato con il Cliente stesso.

Consulenza: Atech srl

Proponente: HEPV30 Srl

STUDIO DI IMPATTO AMBIENTALE

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

1. PRE	MES	SA	4
2. IL SI	то		6
2.1.	DE	SCRIZIONE DEL SITO	6
2.2.	A R	EE NON IDONEE	9
2.2	2.1.	PIANO DI INDIVIDUAZIONE AREE NON IDONEE FER – COMUNE DI BRINDISI 12	
3. FON	TI EI	NERGETICHE RINNOVABILI 1	L 4
3.1.	L'E	ENERGIA SOLARE IN ITALIA	L6
3.2.	L'E	NERGIA SOLARE IN PUGLIA	L7
3.3.	ST	UDIO DEL POTENZIALE SOLARE	21
3.4.	CA	RBON FOOTPRINT E COSTO ENERGETICO DEL FOTOVOLTAICO	23
3.5.	VA	NTAGGI AMBIENTALI	24
3.6.	VA	NTAGGI SOCIO-ECONOMICI	25
4. IMPI	ANT	O FOTOVOLTAICO2	26
4.1.	Sc	HEDA IDENTIFICATIVA DELL'IMPIANTO	26
4.2.	DE	SCRIZIONE GENERALE	26
4.3.	Co	MPONENTI PRINCIPALI	28
4	3.1.	GENERATORE FOTOVOLTAICO 29	
4	<i>3.2.</i>	ARCHITETTURA DEL GENERATORE FOTOVOLTAICO 32	
4	3.3.	PANNELLI FOTOVOLTAICI 33	
4	<i>3.4.</i>	STRUTTURE DI SOSTEGNO 36	
4	3.5.	INVERTER 38	
4	3.6.	CAVI IN MT 41	
4	3.7.	VIABILITÀ INTERNA 42	
4	3.8.	RECINZIONE PERIMETRALE E MITIGAZIONE VISIVA 42	
4	3.9.	ILLUMINAZIONE PERIMETRALE 43	
4	3.10.	SISTEMI AUSILIARI 43	
4	3.11.	MANUTENZIONE 43	
4	3.12.	LAVAGGIO DEI MODULI FOTOVOLTAICI 44	
4.	<i>3.13.</i>	CONTROLLO DELLE PIANTE INFESTANTI 44	

Elaborato: Relazione tecnica

Rev. 0 – Settembre 2021

Pag. 2 a 74

Consulenza: Atech srl

Proponente: **HEPV30 Srl**

STUDIO DI IMPATTO AMBIENTALE

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

5.	IMPIA	NTO DI RETE PER LA CONNESSIONE	. 44
6.	FASE	DI CANTIERE	. 59
7.	FASE	DI ESERCIZIO	. 60
8.	FASE	DI DISMISSIONE IMPIANTO E FINE VITA	. 60
	8.1.	RIMOZIONE DEI PANNELLI FOTOVOLTAICI	63
	8.2.	RIMOZIONE DELLE STRUTTURE DI SOSTEGNO	64
	8.3.	IMPIANTO E APPARECCHIATURE ELETTRICHE	64
	8.4.	LOCALI PREFABBRICATI, CABINE DI TRASFORMAZIONE E CABINA DI IMPIANTO	65
	8.5.	RECINZIONE AREA	65
	8.6.	VIABILITÀ INTERNA	65
	8.7.	DETTAGLI RIGUARDANTI LO SMALTIMENTO DEI COMPONENTI	66
9.	ANAL	ISI DELLE POSSIBILI RICADUTE SOCIALI, OCCUPAZIONALI ED ECONOMICHE	
	DELL	INTERVENTO A LIVELLO LOCALE	. 67
	9.1.	IMPATTO OCCUPAZIONALE	67
	9.2.	SENSIBILIZZAZIONE DELLA POPOLAZIONE	68
1(). EL	ENCO DELLE AUTORIZZAZIONI, INTESE, CONCESSIONI, LICENZE, PARERI, NULLA	A
	OSTA	E ASSENSI	. 69
1.	l CE	RTIFICAZIONE DI IMPRESA	74

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

1. PREMESSA

Il presente documento costituisce la Relazione tecnica redatta nell'ambito del Provvedimento Unico in materia ambientale (PUA), ai sensi dell'art. 27 del D.Lgs. 152/06 e ss.mm.ii., avente in oggetto la realizzazione di un impianto di generazione energetica alimentato da Fonti Rinnovabili e nello specifico da fonte solare.

La società proponente è la **HEPV30 s.r.l,** con sede legale in via Alto Adige, 160/A - 38121 Trento (TN), C.F./P.I. 02557820228.

Il progetto prevede la realizzazione di un <u>impianto agrovoltaico avente potenza nominale</u> pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp sito in Brindisi (BR), con relativo collegamento alla rete elettricada ubicarsi nel territorio comunale di Brindisi (BR) e Cellino San Marco (BR).

In realtà il presente intervento consiste in un **progetto integrato** di un **impianto agro-ovi- fotovoltaico** in quanto rientra in un intervento più vasto, esteso su un'area di circa 17,5 ettari (tutti ricadenti in agro di Brindisi), occupati sia dall'impianto fotovoltaico che da un progetto di **agricoltura biologica**, con **aree dedicate all'apicoltura** e a **diversi tipi di colture**, tra cui le **colture cerealicole dedicate all'alimentazione animale** ed **aree dedicate al pascolo**, come descritto in seguito.

Si precisa sin da subito che il progetto è da intendersi integrato e unico, quindi la società proponente si impegna a realizzarlo per intero nelle parti su descritte.

La società proponente si occuperà direttamente della gestione della parte relativa all'impianto fotovoltaico e concederà in gestione a società agricole la gestione della parte agricola e di pascolo.

Allo scopo di fornire evidenza della effettiva realizzazione del progetto nella sua interezza, la società *HEPV30 s.r.l.* si impegna, in caso di esito favorevole della procedura autorizzativa, a rispettare i contenuti del Piano di Monitoraggio Ambientale (allegato alla presente), nell'ambito del quale si darà evidenza alle autorità competenti dell'effettivo andamento del progetto, con la consegna di report (descrittivi e fotografici) con i risultati di:

Elaborato: Relazione tecnica

Consulenza: Atech srl
Proponente: HEPV30 Srl

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

producibilità di energia da fonte fotovoltaica;

ightharpoonup stato e consistenza delle colture agricole;

stato e consistenza dell'allevamento di ovini;

prodotti conseguiti dalla pratica agricola e allevamento;

messa in atto delle misure di mitigazione previste in progetto;

© evoluzione del territorio rispetto alla situazione ante operam.

L'impianto fotovoltaico si inserisce nel quadro istituzionale di cui al *D.Lgs 29 dicembre 2003, n. 387* "Attuazione della direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità" le cui finalità sono:

• promuovere un maggior contributo delle fonti energetiche rinnovabili alla produzione di elettricità nel relativo mercato italiano e comunitario;

promuovere misure per il perseguimento degli obiettivi indicativi nazionali;

• concorrere alla creazione delle basi per un futuro quadro comunitario in materia;

• favorire lo sviluppo di impianti di microgenerazione elettrica alimentati da fonti rinnovabili, in particolare per gli impieghi agricoli e per le aree montane.

La società proponente, e con essa chi scrive, è convinta della validità della proposta formulata e della sua compatibilità ambientale del progetto integrato, e pertanto vede nella redazione del presente documento e degli approfondimenti ad esso allegati un'occasione per approfondire le tematiche specifiche delle opere che si andranno a realizzare.

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

2. IL SITO

2.1. Descrizione del sito

Il sito interessato alla realizzazione dell'impianto si sviluppa nel territorio del **Comune di Brindisi (BR)** ed è raggiungibile da Sud-Ovest attraverso le strade provinciali SP80 e SP51 e da Sud-Est/ Nord-Est dalle strade SP79 e SP82.

Figura 2-1: Inquadramento territoriale

La superficie lorda dell'area di intervento è di circa 17,5 ha destinata complessivamente ad un progetto agro-energetico.

Il terreno agricolo, a meno della viabilità di accesso, sarà interessato da colture dedicate e pascolo vagante controllato. Nello specifico sulle aree tra le strutture di sostegno dei pannelli fotovoltaici sarà piantumato un *prato permanente polifita di leguminose* adatto alle caratteristiche pedoclimatiche della superficie di progetto.

Elaborato: Relazione tecnica

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

L'intero progetto ricade nel Catasto Terreni ai seguenti fogli e particelle:

FOGLIO	PARTICELLA
187	9
187	128
187	182
187	184
187	246
187	38
187	176
187	177
187	176
187	44
187	63
187	124
187	127

L'area in oggetto si trova ad un'altitudine media di m 64 s.l.m. e le coordinate geografiche sono le seguenti:

40°30'19.41"N 17°54'39.94"E

Elaborato: Relazione tecnica

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

STUDIO DI IMPATTO AMBIENTALE

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Figura 2-2: Inquadramento su base catastale

L'intervento nel suo complesso prevede, oltre alla realizzazione dell'impianto di produzione, la realizzazione di tutte le opere accessorie necessarie per la connessione alla rete elettrica esistente di proprietà E-DISTRIBUZIONE S.P.A.

Il progetto prevede la connessione dell'impianto tramite due nuovi punti di connessioni derivati in antenna dalla nuova Cabina Primaria di Cellino anch'essa derivata in antenna dalla nuova Stazione Elettrica 380/150kV di Cellino. La proponente HEPV30srl ha demandato alla società HEPV02srl la progettazione e la realizzazione delle Stazione Elettrica 380/150kV di Terna e della Cabina Primaria di E-Distribuzione.

Elaborato: Relazione tecnica

Rev. 0 - Settembre 2021

Pag. 8 a 74

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

2.2. Aree non Idonee

Come già accennato in precedenza, il Proponente preliminarmente alla progettazione dell'impianto fotovoltaico, si è preoccupato di verificare la compatibilità della scelta localizzativa con le Aree non Idonee, così come individuate dal **Regolamento Regionale 24/2010**, Regolamento attuativo del *Decreto del Ministero per lo Sviluppo Economico del 10 settembre* 2010, "Linee Guida per l'autorizzazione degli impianti alimentati da fonti rinnovabili".

La sovrapposizione del layout di impianto con la cartografia disponibile delle suddette aree, ha rivelato la piena coerenza dell'impianto con le perimetrazioni a vincolo esistenti.

Attraverso le suddette Linee guida, sono stati analizzati tutti gli strumenti di programmazione e valutata la coerenza del progetto rispetto ai vincoli presenti sul territorio di interesse, secondo lo stesso ordine individuato nel Regolamento 24/2010 e di seguito riportato:

Aree non idonee all'istallazione di FER ai sensi delle Linee Guida, art. 17 e allegato 3, lettera F	Status dell'area in esame
Aree naturali protette nazionali	Non presente
Aree naturali protette regionali	Non presente
Zone umide ramsar	Non presente
Siti di importanza Comunitaria	Non presente
ZPS	Non presente
IBA	Non presente
Altre aree ai fini della conservazione della biodiversità	Non presente
Siti Unesco	Non presente
Beni Culturali	Non presente
Immobili e aree dichiarate di notevole interesse pubblico	Non presente
Aree tutelate per legge	Non presente
Aree a pericolosità idraulica e geomorfologica	Non presente
Piano Urbanistico Territoriale Tematico per il Paesaggio	Non presente
Area Edificabile urbana	Non presente
Segnalazione carta dei beni con buffer	Non presente
Coni visuali	Non presente
Grotte	Non presente
Lame e gravine	Non presente
Versanti	Non presente
Aree agricole interessate da produzioni agro-alimentati di qualità	Non presente

Come si evince dalla tabella riassuntiva sopra riportata, l'intervento non interferisce con aree ritenute non idonee ad ospitare lo stesso.

Elaborato: Relazione tecnica

Consulenza: **Atech srl** Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Del resto le stesse Linee Guida, all'art. 17.1 e successivamente nell' Allegato 3, sottolineano come l'individuazione di aree e siti non idonei all'installazione di specifiche tipologie di impianti, venga effettuata da Regioni e Province autonome al fine di *accelerare l'iter autorizzativo alla costruzione e all'esercizio degli impianti alimentati da fonti rinnovabili*.

La stessa "Strategia Energetica Nazionale" del Ministero dello Sviluppo Economico, tra gli obiettivi principali da perseguire nei prossimi anni nel settore energetico al fine di favorire uno sviluppo economico sostenibile del Paese, suggerisce di "attivare forme di coordinamento tra Stato e Regioni in materia di funzioni legislative e tra Stato, Regioni ed Enti Locali per quelle amministrative, con l'obiettivo di offrire una significativa semplificazione e accelerazione delle procedure autorizzative".

L'inidoneità delle singole aree o tipologie di aree è definita tenendo conto degli specifici valori dell'ambiente, del paesaggio, del patrimonio storico e artistico, delle tradizioni agroalimentari locali, della biodiversità e del paesaggio rurale. Inoltre l'Allegato 3 specifica che l'individuazione di tali aree deve essere basata esclusivamente su criteri tecnici oggettivi legati alle caratteristiche intrinseche del territorio e del sito.

Pertanto, si comprende come l'intervento sia inserito in un'area idonea alla sua realizzazione.

Elaborato: Relazione tecnica

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

STUDIO DI IMPATTO AMBIENTALE

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)



Figura 2-3: Aree non idonee- Sovrapposizione dell'area di impianto e del cavidotto esterno (fonte: SIT Puglia, 2020)

Elaborato: Relazione tecnica

Rev. 0 – Settembre 2021

Pag. **11** a **74**

Consulenza: **Atech srl** Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

2.2.1. Piano di individuazione aree non idonee FER – Comune di Brindisi

Il Comune di Brindisi ha previsto tra i propri strumenti urbanistico territoriali di tutela e vincolo un **Piano di Individuazione di aree NON idonee all'installazione di impianti da fonte rinnovabile**, in conformità a quanto previsto dal R.R. n. 24 del 30/12/2010, adottato con Deliberazione del Commissario Straordinario n.01 del 31/01/2012.

A tal proposito sono individuate aree NON IDONEE risultato dalla ricognizione delle "Disposizioni Regionali" volte alla tutela dell'ambiente, del paesaggio, del patrimonio storico e artistico, delle tradizioni agroalimentari locali, della biodiversità e del paesaggio rurale identificano obiettivi di protezione non compatibili con l'insediamento, in determinate aree, di specifiche tipologie e/o dimensioni di impianti, i quali determinerebbero, pertanto, una elevata probabilità di esito negativo delle valutazioni, in sede di autorizzazione unica.

I risultati di questa analisi sono poi riassunti in una tavola finale che individua le aree non idonee FER, aree idonee a condizione di attivazione di procedure paesaggistiche, aree semplicemente idonee.

È stata quindi effettuata una più minuziosa ricognizione delle aree non idonee individuate dal piano mediante consultazione di elaborati cartografici e schede ad esso allegati.

Come si evince dall'immagine di seguito riportata, una parte dell'area di impianto si sovrappone ad una zona verde corrispondente ad "aree idonee a condizione che venga attivata la procedura di autorizzazione paesaggistica", mentre alcuni tratti sono compresi in una fascia definita "WON idonea all'istallazione di impianti FER".

L'area, così come perimetrata nell'elaborato grafico consultabile sul portale BRINDISI WEB GIS, presenta delle difformità rispetto agli elaborati grafici relativi alle aree non idonee FER presenti sul portale SIT Puglia.

Difatti, dalla sovrapposizione del layout di impianto con la cartografia disponibile nel suddetto portale, si riscontra la piena coerenza con le perimetrazioni a vincolo esistenti.

L'impianto occupa un'area ritenuta **idonea all'installazione di impianti fotovoltaici**, così come individuata dal *Regolamento Regionale 24/2010*, Regolamento attuativo del *Decreto del Ministero per lo Sviluppo Economico del 10 settembre* 2010, "Linee Guida per l'autorizzazione degli

Elaborato: Relazione tecnica

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

impianti alimentati da fonti rinnovabili". Infine, si evidenzia che "l'individuazione delle tipologie di impianti idonei, per ciascuna area e sito, per la produzione di fonti energetiche rinnovabili è di esclusiva competenza Regionale".

Non vi è quindi incompatibilità con la eventuale realizzazione della tipologia di FER in esame.

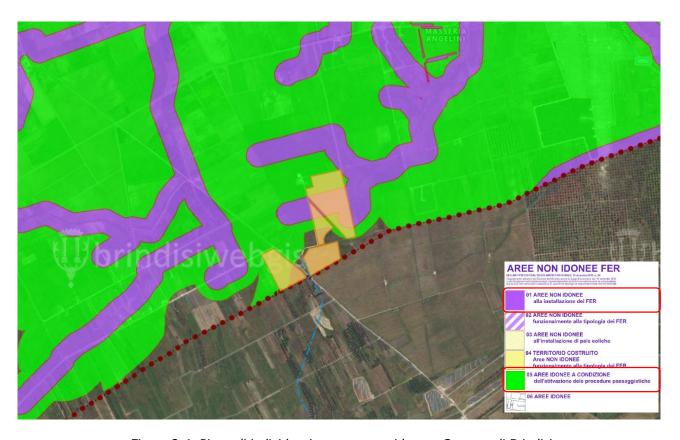


Figura 2-4: Piano di individuazione aree non idonee- Comune di Brindisi

Elaborato: Relazione tecnica

Consulenza: **Atech srl** Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

3. FONTI ENERGETICHE RINNOVABILI

Le "fonti rinnovabili" di energia sono così definite perché, a differenza dei combustibili fossili e nucleari destinati ad esaurirsi in un tempo definito, possono essere considerate inesauribili.

Sono fonti rinnovabili l'energia solare e quelle che da essa derivano, l'energia eolica, idraulica, delle biomasse, delle onde e delle correnti, ma anche l'energia geotermica, l'energia dissipata sulle coste dalle maree ed i rifiuti industriali e urbani.

La transizione verso basse emissioni di carbonio intende creare un settore energetico sostenibile che stimoli la crescita, l'innovazione e l'occupazione, migliorando, nel contempo, la qualità della vita, offrendo una scelta più ampia, rafforzando i diritti dei consumatori e, in ultima analisi, permettendo alle famiglie di risparmiare sulle bollette.

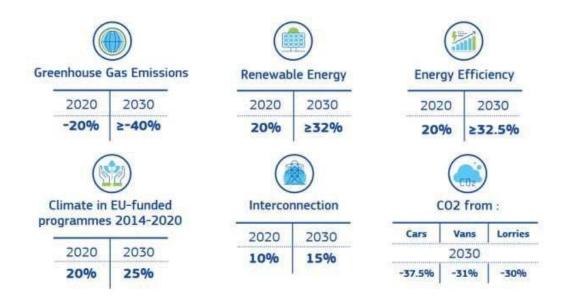
Un approccio razionalizzato e coordinato dell'UE garantisce un impatto per tutto il continente nella lotta contro i cambiamenti climatici. Per ridurre le emissioni di gas a effetto serra prodotte dall'Europa e soddisfare gli impegni assunti nell'ambito dell'accordo di Parigi sono essenziali iniziative volte a promuovere le energie rinnovabile migliorare l'efficienza energetica.

La direttiva originale sulle energie rinnovabili (2009/28/CE) stabilisce una politica generale per la produzione e la promozione di energia da fonti rinnovabili nell'UE. Richiede che l'UE soddisfi almeno il 20% del suo fabbisogno energetico totale con le rinnovabili entro il 2020, da realizzarsi attraverso il raggiungimento di singoli obiettivi nazionali. Tutti i paesi dell'UE devono inoltre garantire che almeno il 10% dei loro carburanti per il trasporto provenga da fonti rinnovabili entro il 2020.

Nel dicembre 2018 è entrata in vigore la direttiva riveduta sulle energie rinnovabili 2018/2001/UE, come parte del pacchetto Energia pulita per tutti gli europei, volto a mantenere l'UE un leader globale nelle energie rinnovabili e, più in generale, aiutare l'UE a soddisfare i suoi impegni di riduzione delle emissioni previsti dall'accordo di Parigi.

La nuova direttiva stabilisce un nuovo obiettivo vincolante per l'energia rinnovabile per l'UE per il 2030 di almeno il 32%, con una clausola per una possibile revisione al rialzo entro il 2023.

In base al nuovo regolamento sulla *governance*, che fa anche parte del pacchetto Energia pulita per tutti gli europei, i paesi dell'UE sono tenuti a redigere piani nazionali per l'energia e il clima (NECP) decennali per il 2021-2030, delineando il modo in cui faranno fronte ai nuovi obiettivi del



Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

2030 per le energie rinnovabili e per l'efficienza energetica. Gli Stati membri dovevano presentare un progetto di NECP entro il 31 dicembre 2018 e dovrebbero essere pronti a presentare i piani definitivi alla Commissione europea entro il 31 dicembre 2019.

La maggior parte degli altri nuovi elementi della nuova direttiva devono essere recepiti negli Stati membri dalla legislazione nazionale entro il 30 giugno 2021.

Finalmente, dunque, l'Unione energetica europea dispone di un quadro normativo aggiornato in grado di dare certezza degli investitori e con cui è stato introdotto un meccanismo di cooperazione tra gli Stati membri, basato sulla solidarietà, per rispondere alle potenziali crisi energetiche. Gli Stati membri hanno investito in nuove infrastrutture intelligenti (anche transfrontaliere) e ad oggi 26 paesi UE – che rappresentano oltre il 90% del consumo di elettricità europeo e più di 400 milioni di persone – hanno accoppiato i loro mercati giornalieri dell'elettricità. Oltre al nuovo quadro legislativo, la Commissione Europea ha introdotto una serie di misure di sostegno per garantire che tutte le regioni e i cittadini possano beneficiare in egual misura della transizione energetica, ovvero il passaggio dall'utilizzo di fonti energetiche non rinnovabili a fonti rinnovabili.

Gli obiettivi riportati sono obiettivi *minimi* e non dei target massimi da raggiungere, perché l'obiettivo principe è il 100% rinnovabile.

Obiettivi che stante il trend degli ultimi anni, ricavabile anche da pubblicazioni specialistiche del GSE, dimostrano come in realtà siamo lontani dal raggiungimento anche dei valori minimi imposti.

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

La sola installazione a tetto non permetterebbe di raggiungere questi obiettivi, pertanto una importante % di impianti è inevitabile che debba essere prevista a terra. Il progetto fotovoltaico è stato infatti localizzato su aree prive di vincoli ed idonee all'installazione di impianti fotovoltaici a terra di grossa taglia.

L'energia solare in Italia

Secondo la Strategia Energetica Nazionale la fonte rinnovabile solare sarà uno dei pilastri su cui si reggerà la transizione energetica del nostro Paese, prevedendo il raggiungimento al 2030 di 70 TWh di energia elettrica da impianti fotovoltaici (+180% rispetto al 2017), ovvero il 39% dell'intera produzione lorda di energia elettrica da fonti rinnovabili (pari a 184 TWh). Questo ambizioso obiettivo, che sarà probabilmente rivisto al rialzo per effetto del nuovo target europeo del 32%, dovrebbe tradursi nella realizzazione di circa 35-40 GW di nuovi impianti e richiederà una crescita delle installazioni fotovoltaiche pari a oltre 3 GW/anno, un cambio di marcia totale rispetto ai ritmi ai quali si è assistito negli ultimi anni. In quest'ottica sarà fondamentale adottare quanto prima nuovi strumenti di policy che da un lato sostengano lo sviluppo di nuovi impianti e dall'altro mantengano in esercizio l'attuale parco impianti garantendone il mantenimento di elevati standard di performance, rivedendo l'attuale quadro normativo e regolatorio, che dovrà svilupparsi in modo tale da permettere il massimo sfruttamento del potenziale oggi disponibile.

Fra le misure più importanti, necessarie per avviare questo percorso, un ruolo rilevante lo ricopre il nuovo Decreto Ministeriale che regolamenterà lo sviluppo delle fonti rinnovabili (compresa quella solare) in Italia nel periodo 2018-2020 tramite meccanismi di registri e aste al ribasso (cd. DM FER 1).

L'installazione di nuovi impianti fotovoltaici dovrà riguardare non solo impianti utility scale, ma anche impianti di piccola/media dimensione presumibilmente in autoconsumo. Per tali installazioni sarà necessario monitorare lo sviluppo dei Sistemi Efficienti di Utenza (SEU) e adottare una chiara regolamentazione anche per i Sistemi di Distribuzione Chiusa (SDC). In un'ottica cost reflective l'implementazione del fotovoltaico in combinazione con lo storage permetterà anche il miglioramento dell'efficienza del sistema.

Sarà inoltre necessario implementare strumenti per valorizzare i siti attualmente in uso e promuovere gli interventi di repowering/revamping, semplificando ad esempio i relativi iter

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

amministrativi, proseguendo nella corretta linea individuata dal GSE con l'approvazione delle procedure per gli interventi di manutenzione e ammodernamento tecnologico degli impianti fotovoltaici in esercizio.

Infine, molto importante sarà anche il contesto di mercato. Si dovrà completare un nuovo disegno, che garantisca una maggiore integrazione delle FER nel sistema elettrico, attraverso misure come la riduzione del *timing* tra programmazione e immissione in rete, l'estensione delle possibilità di aggregazione tra impianti e tra settori, la partecipazione delle fonti rinnovabili ai mercati dei servizi di dispacciamento e, ultimo ma non per importanza, la promozione dei contratti a lungo termine (PPA) che potranno garantire benefici sia all'offerta sia alla domanda in termini di stabilizzazione dei flussi e riduzione del rischio di investimento.

L'energia solare in Puglia

Al 31 dicembre 2019 gli impianti fotovoltaici installati in Italia risultavano 880.090.

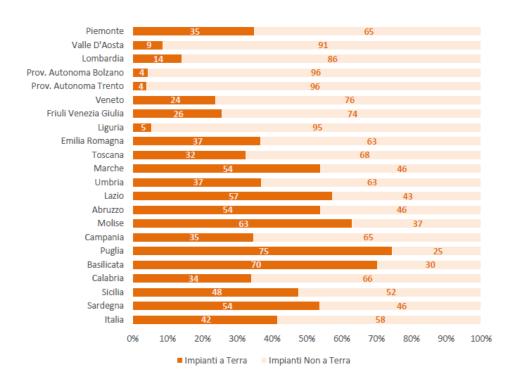
Numero impianti fotovoltaici: 880.090 Trento 2,0% Lembardis 15,4% Lembardis 1,1% Toscana 5,2% Lumbria 2,2% Abruzzo 2,4% 6,7% Abruzzo 2,4% 6,7% Sardegna 4,0% Basilicata 1,0% Sardegna 5,4%

Distribuzione regionale del numero degli impianti a fine 2019

Fonte: GSE Distribuzione Regionale della potenza a fine 2019

Elaborato: Relazione tecnica

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**


Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Le installazioni realizzate nel corso del 2019 non hanno provocato variazioni significative nella distribuzione regionale degli impianti, che rimane pressoché invariata rispetto all'anno precedente. A fine anno nelle regioni del Nord sono stati installati il 55% degli impianti complessivamente in esercizio in Italia, al Centro il 17% e al Sud il restante 28%. Le regioni con il maggior numero di impianti sono Lombardia, Veneto, Emilia Romagna, Piemonte e Lazio.

Tra le regioni italiane si rileva una notevole eterogeneità in termini di numerosità e potenza installata degli impianti fotovoltaici.

I 58.190 impianti fotovoltaici installati in Italia nel corso del 2019 (circa 10.000 in più rispetto all'analogo dato rilevato nel 2018) sono così distribuiti tra le ripartizioni territoriali: Nord 58,8%, Centro 17,1%, Sud 24,1%. Le concentrazioni maggiori si rilevano in Lombardia, Veneto, Emilia Romagna e Lazio.

Distribuzione dei pannelli fotovoltaici per collocazione nelle regioni a fine 2019

I fattori che determinano l'incidenza delle installazioni di impianti fotovoltaici a terra sono molteplici; tra questi la posizione geografica, le caratteristiche morfologiche del territorio, le

Consulenza: **Atech srl** Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

condizioni climatiche, la disponibilità di aree idonee. Ne segue che la distribuzione della potenza installata dei pannelli fotovoltaici per collocazione, tra le diverse regioni, risulta molto eterogenea.

Relativamente a tale tematica la Regione Puglia si è dotata di uno strumento programmatico, il Piano Energetico Ambientale Regionale (PEAR), adottato con Delibera di G.R. n.827 del 08-06-07, che contiene indirizzi e obiettivi strategici in campo energetico in un orizzonte temporale di dieci anni.

Il PEAR concorre pertanto a costituire il quadro di riferimento per i soggetti pubblici e privati che, in tale campo, hanno assunto ed assumono iniziative nel territorio della Regione Puglia.

Con Deliberazione della Giunta Regionale 28 marzo 2012, n. 602 sono state individuate le modalità operate per l'aggiornamento del Piano Energetico Ambientale Regionale affidando le attività ad una struttura tecnica costituita dai servizi Ecologia, Assetto del Territorio, Energia, Reti ed Infrastrutture materiali per lo sviluppo e Agricoltura.

Con medesima DGR la Giunta Regionale, in qualità di autorità procedente, ha demandato all'Assessorato alla Qualità dell'Ambiente, Servizio Ecologia – Autorità Ambientale, il coordinamento dei lavori per la redazione del documento di aggiornamento del PEAR e del Rapporto Ambientale finalizzato alla Valutazione Ambientale Strategica.

La revisione del PEAR è stata disposta anche dalla Legge Regionale n. 25 del 24 settembre 2012 che ha disciplinato agli artt. 2 e 3 le modalità per l'adeguamento e l'aggiornamento del Piano e ne ha previsto l'adozione da parte della Giunta Regionale e la successiva approvazione da parte del Consiglio Regionale.

La DGR n. 1181 del 27.05.2015 ha, in ultimo, disposto l'adozione del documento di aggiornamento del Piano nonché avviato le consultazioni della procedura di Valutazione Ambientale Strategica (VAS), ai sensi dell'art. 14 del D.Lgs. 152/2006 e ss.mm.ii.

La programmazione regionale in campo energetico costituisce un elemento strategico per il corretto sviluppo del territorio regionale e richiede un'attenta analisi per la valutazione degli impatti di carattere generale determinabili a seconda dei vari scenari programmatici. La presenza di un importante polo energetico basato sui combustibili tradizionali del carbone e del gasolio, lo sviluppo di iniziative finalizzate alla realizzazione di impianti turbogas, le potenzialità di sviluppo delle fonti energetiche alternative (biomasse) e rinnovabili (eolico e solare termico e fotovoltaico), le opportunità offerte dalla cogenerazione a servizio dei distretti industriali e lo sviluppo della ricerca in

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

materia di nuove fonti energetiche (idrogeno), fanno sì che l'attenta analisi ambientale dei diversi scenari che si possono configurare attorno al tema energetico in Puglia, non risulta ulteriormente rinviabile.

Per far fronte alla richiesta sempre crescente di energia nel rispetto dell'ambiente e nell'ottica di uno sviluppo energetico che sia coscientemente sostenibile non si può evitare di far ricorso all'energia solare. Il primo aspetto da considerare è quello della disponibilità di energia. È noto che l'entità dell'energia solare che ogni giorno arriva sulla Terra è enorme ma, quello che interessa è l'energia o la potenza specifica cioè per unità di superficie captante. Ovviamente la situazione cambia notevolmente quando la radiazione solare arriva al livello del suolo a causa dell'assorbimento atmosferico, in funzione del tipo di atmosfera attraversata e del cammino percorso a seconda della posizione del sole ma resta il fatto che senza un sistema di captazione di tale energia (quali i pannelli fotovoltaici), essa andrebbe persa.

Ricapitolando, quindi, più in generale i motivi ed i criteri che hanno dettato le scelte in fase di progetto, sia relativamente alla localizzazione dell'impianto che in merito alla scelta della tecnologia costruttiva dei moduli e delle strutture, sono i seguenti:

- rispetto delle normative di buona tecnica vigenti (Best Available Practice);
- 😊 rispetto delle normative di settore e delle normative di pianificazione territoriale paesistica;
- © conseguimento della massima economia di gestione e manutenzione degli impianti progettati;
- ottimizzazione del rapporto costi/benefici ed impiego di materiali e componenti di elevata qualità, efficienza e durata, facilmente reperibili sul mercato;
- © riduzione delle perdite energetiche connesse al funzionamento dell'impianto, al fine di massimizzare la quantità di energia elettrica immessa in rete.

Elaborato: Relazione tecnica

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

3.3. Studio del potenziale solare

La disponibilità della fonte solare e la stima di produzione di energia per il sito di installazione è verificata utilizzando il software "PVsyst V7.2.6", basato sulla banca dati meteo PVGIS (Photovoltaic Geographical Information System).

La tabella di seguito riporta i valori di irradiazione solare mensile, le temperature medie giornaliere mensili e la stima della produzione energetica. La radiazione solare è il flusso radiante della radiazione elettromagnetica emessa dal sole che colpisce una superficie per unità di area espressa in kWh/m².

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	ratio
January	62.1	28.70	10.20	82.9	78.0	770	745	0.888
February	75.4	36.20	10.20	98.0	92.9	916	888	0.894
March	124.1	53.10	12.10	160.8	154.3	1470	1425	0.875
April	161.9	64.90	14.80	210.7	203.1	1846	1791	0.839
May	205.1	70.50	18.60	268.1	259.2	2262	2195	0.809
June	221.2	70.80	22.60	291.4	282.2	2427	2354	0.798
July	237.9	62.70	25.70	319.0	309.4	2577	2499	0.774
August	208.7	59.70	25.70	281.3	272.5	2328	2256	0.792
September	145.4	54.80	22.40	193.1	186.0	1676	1625	0.831
October	102.9	45.00	18.40	135.4	129.3	1222	1184	0.863
November	66.5	31.40	14.70	88.9	83.7	811	785	0.872
December	56.1	25.50	11.10	75.9	71.0	700	677	0.881
Year	1667.3	603.30	17.25	2205.5	2121.8	19004	18423	0.825

Legends

GlobHor Global horizontal irradiation EArray Effective energy at the output of the array

DiffHor Horizontal diffuse irradiation E_Grid Energy injected into grid T_Amb Ambient Temperature PR Performance Ratio

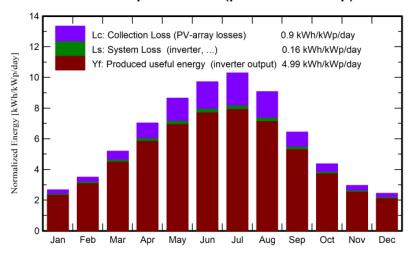
Globlnc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings

Tabella 1: Irradiazione solare, temperature e stima energia prodotta

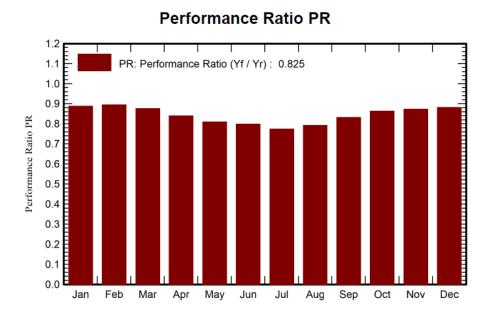
Il grafico sottostante analizza invece la stima produzione di energia elettrica dell'impianto per ogni mese espressa in [kWh/(kWp*giorno)].

Elaborato: Relazione tecnica


Rev. 0 – Settembre 2021

Pag. 21 a 74

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**


Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Normalized productions (per installed kWp)

Istogramma energia normalizzata prodotta e perdite durante anno solare per kWp installato

Infine, è riportato l'andamento mensile dell'indice di rendimento PR che definisce il rapporto tra il rendimento energetico effettivo e il possibile rendimento teorico.

Tutti i risultati di calcolo del sono riassunti nell'elaborato "QEL3745_AnalisiRisorsaSolare" che

riporta l'analisi della risorsa solare e stima di produzione energia.

Indice di rendimento (Performance Ratio)

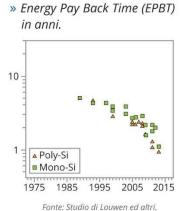
Elaborato: Relazione tecnica

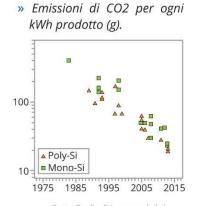
Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

3.4. Carbon footprint e costo energetico del fotovoltaico

È noto che la generazione di energia fotovoltaica è completamente esente da emissioni e che un impianto fotovoltaico ha una vita attesa anche di 30anni.


Oltre a queste informazioni è importante conoscere anche le emissioni di CO2 e il consumo di energia nel ciclo di vita completo, dalla produzione al riciclo, in particolare per i pannelli fotovoltaici.



La fabbricazione implica l'utilizzo di risorse energetiche ed un impatto ambientale, così come il trasporto ed il montaggio di un impianto. Va sottolineato che, grazie all'avanzamento tecnologico e con nuovi stabilimenti produttivi di capacità crescente, l'impatto ambientale si è via via ridotto nel tempo.

Grazie ai continui sforzi in ricerca e sviluppo dell'industria solare, il costo energetico per la produzione dei pannelli fotovoltaici si è ridotto di circa il 15% ad ogni raddoppio di capacità di produzione.

Oggi si stima che un impianto fotovoltaico ripaghi l'energia utilizzata per produrlo in circa 1 anno, ciò significa che **viene prodotta 30 volte l'energia necessaria per produrlo**.

Studio di Louwen ed altri. Fonte: Studio di Louwen ed altri.

La **carbon footprint** è definita come il totale gas serra prodotto direttamente o indirettamente per l'intero ciclo di vita di un prodotto, si esprime di solito in tonnellate di CO2.

Elaborato: Relazione tecnica

Rev. 0 – Settembre 2021

Pag. 23 a 74

Consulenza: **Atech srl** Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

L'impronta ambientale della produzione di energia fotovoltaica è notevolmente più limitata rispetto a quella delle fonti tradizionali.

IMPIANTO FOTOVOLTAICO

c.a.10-20 gCO2/kWh

IMPIANTO A CARBONE

c.a 1.000 gCO2/kWh

Quando si parla di impronta di carbonio, dunque, le migliori soluzioni sono eolico e fotovoltaico perché, non solo non richiedono energia aggiuntiva per produrre elettricità né per il trasporto dei carburanti, ma anche perché grazie alla rapida evoluzione tecnologica potranno essere fabbricati con processi sempre più efficienti sotto il profilo dei consumi.

Se a ciò si sommano i benefici derivanti dalla messa a dimora di specie vegetali ed aree boscate, descritte nei capitoli successivi, si ottiene un risultato sicuramente ed ampiamente positivo in termini di minori emissioni di CO2 e gas serra nel caso di realizzazione di un impianto fotovoltaico rispetto alla alternativa generazione della medesima energia da impianti convenzionali. Il vantaggio ambientale di tale produzione pulita andrebbe a superare ampiamente la perdita di stoccaggio di carbonio organico nel suolo anche nel caso di ipotetica ed alternativa coltivazione del medesimo suolo a prato stabile.

3.5. Vantaggi ambientali

Gli impianti fotovoltaici riducono la domanda di energia da altre fonti tradizionali contribuendo alla riduzione dell'inquinamento atmosferico (emissioni di anidride carbonica generate altrimenti dalle centrali termoelettriche). L'emissione di anidride carbonica "evitata" ogni anno è facilmente calcolabile. È sufficiente moltiplicare il valore di energia elettrica prodotta dall'impianto fotovoltaico per il fattore del mix elettrico italiano (0,466 Kg CO₂/kWhel).

Es. 1000 kWhel x 0,466 Kg = 466 Kg CO_2

Moltiplicando poi l'anidride carbonica "evitata" ogni anno per l'intera vita dell'impianto fotovoltaico, ovvero per 30 anni, si ottiene il vantaggio sociale complessivo.

Se la produzione di energia da fonte fotovoltaica presenta un impatto sull'ambiente molto basso e che è limitato agli aspetti di occupazione del territorio o di impatto visivo, la fase di produzione dei

Elaborato: Relazione tecnica

Rev. 0 - Settembre 2021

Pag. 24 a 74

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

pannelli fotovoltaici comporta un certo consumo energetico e l'uso di prodotti chimici. Va considerato però che la maggior parte delle aziende produttrici di componenti fotovoltaici è certificata ISO14000, quindi impegnata a recuperare e riciclare tutti i propri effluenti e residui industriali sotto un attento controllo.

Nella fase di dismissione dell'impianto, i materiali di base quali l'alluminio, il silicio o il vetro, possono essere riciclati e riutilizzati sotto altre fonti. Per quanto riguarda il consumo energetico necessario alla produzione di pannelli, quello che viene chiamato energy pay-back time, ovvero il tempo richiesto dall'impianto per produrre altrettanta energia di quanta ne sia necessaria durante le fasi della loro produzione industriale, è sceso drasticamente negli ultimi anni ed è pari attualmente a circa 3 anni. Questo significa che, considerando una vita utile dei pannelli fotovoltaici di circa 30 anni, per i rimanenti 27 anni l'impianto produrrà energia pulita.

3.6. Vantaggi socio-economici

I vantaggi del fotovoltaico sono evidenti: i moderni impianti offrono grosse possibilità tecnologiche ed industriali per l'Italia. I vantaggi principali di questa tecnologia sono:

- il fotovoltaico è un affare sicuro e senza rischi. Gli investimenti e le rese sono chiari e calcolabili a lungo termine;
- la facilità di installazione dei sistemi fotovoltaici e l'interdisciplinarietà delle competenze necessarie alla messa in opera di un impianto rendono questo campo di applicazione un mercato con interessanti prospettive di sviluppo. Il risultato è quello di ottenere il consolidamento del settore e la creazione di nuovi posti di lavoro;
- la tecnologia solare è molto richiesta e beneficia di un vasto consenso sociale. Nessun'altra tecnologia dispone al momento di una tale popolarità;
- la tecnologia solare ha strutture con dimensioni ridotte che, nel caso specifico, non necessitano di opere di fondazione poiché i pannelli saranno infissi direttamente nel terreno.

Tra i vantaggi legati allo sviluppo del fotovoltaico troviamo senza dubbio grandi ricadute positive in ambito occupazionale attraverso la definizione di una strategia trasversale per innovare il settore industriale e quello edilizio nonché il tessuto delle piccole e medie imprese italiane. Guardando oltre i nostri confini è possibile trovare 240 mila occupati in Germania nelle fonti rinnovabili; la prospettiva

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

italiana è che ci siano almeno 65 mila occupati nell'eolico (secondo le stime dell'Anev al 2020) e magari altrettanti nel solare termico, nel fotovoltaico, nelle biomasse.

4. IMPIANTO FOTOVOLTAICO

4.1. Scheda identificativa dell'impianto

Impianto Fotovoltaico					
Comune	BRINDISI				
Identificativi Catastali	Foglio 187 p.lle 79-128-182-184- 246- 38 176- 177-44-63-124-127				
Coordinate geografiche impianto	40°30'19.41"N 17°54'39.94"E				
Potenza Modulo PV	550 W				
Potenza massima di immissione	7.500 kW				
Potenza istallata	10.124,4 kWp				
Tipologia strutture	Tracker monoassiali				
Lunghezza cavidotto di connessione	6,5 km				
Punto di connessione	CP Cellino				

4.2. Descrizione generale

L'intervento consiste in un di impianto fotovoltaico a terra, suddiviso in n. 2 campi da 4.118,40 kWp e da 6.006,00 kWp.

La potenza nominale totale del generatore fotovoltaico, pari a 10.124,40 kWp, è intesa come somma delle potenze di targa o nominali di ciascun modulo misurata in condizioni standard (STC). Considerazioni inerenti l'affidabilità e, di conseguenza, la producibilità dell'intero impianto hanno indotto alla scelta della conversione decentralizzata basata su più convertitori anziché uno solo. In questo modo l'eventuale guasto di un convertitore non coinvolgerà la produzione di tutto l'impianto ma solo quella del sub-campo corrispondente.

Elaborato: Relazione tecnica

Consulenza: Atech srl
Proponente: HEPV30 Srl

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

L'impianto come previsto nella soluzione tecnica di connessione sarà derivato con due linee indipendenti in media tensione dalla nuova cabina primaria denominata CP Cellino alla tensione 20kV 3F con neutro isolato o compensato.

Il progetto dell'Impianto si inquadra nell'ambito della produzione di energia da fonti rinnovabili (fonti di energia di «pubblico interesse e di pubblica utilità»).

Si riassumono di seguito i dati caratteristici dell'impianto:

Potenza installata moduli fotovoltaici: 10.124,40 kWp

• Potenza immessa in rete: 7.120 kW

• Potenza al fine della connessione: 7.120kW

• Potenza nominale: 7.500kW

L'impianto sarà allacciato alla rete di distribuzione tramite realizzazione di due nuove linee in media tensione. Come previsto dalla soluzione tecnica le linee a partire dalla Cabina Primaria Cellino saranno posate in tubazione interrata fino al punto di installazione dell'IMS da palo da cui poi saranno derivate le linee aeree fino alle nuove cabine di consegna. Le cabine di consegna saranno collegate in antenna alla cabina primaria AT/MT CP Cellino, inoltre ai sensi della deliberazione dell'Autorità ARG/elt 99/08 e s.m.i. nel presente progetto sono ricomprese le opere relative all'impianto di rete per la connessione così come definite dalla norma CEI 0-16:2019

Per il layout di dettaglio si rimanda agli elaborati progettuali allegati alla presente relazione.

La produzione di energia da fonte rinnovabile attesa è pari a 18.374 MWh/anno.

Per l'intervento sono stati previsti le seguenti componenti principali:

- Impianto fotovoltaico (generatore fotovoltaico, gruppo di conversione e sezione di consegna);
- Impianto di rete per la connessione (linee di connessione sino alla CP Cellino).

Elaborato: Relazione tecnica

Consulenza: Atech srl Proponente: HEPV30 Srl

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

4.3. Componenti principali

L'impianto fotovoltaico sarà realizzato posando i pannelli su strutture di sostegno ancorate al suolo e appositamente realizzate. L'impianto è costituito dalle parti seguenti:

- n. 708 stringhe collegate ai 22 inverter posizionati in prossimità del lato posteriore di moduli, e fissate alle strutture metalliche che costituiscono il sistema di ancoraggio a terra dei pannelli fotovoltaici;
- N. 3 Cabine di campo (due cabine per la parte NORD e una cabina per la parte SUD), sono
 costituite da strutture prefabbricate, posate su platea di fondazione precedentemente gettata.
 I n. 3 trasformatori MT/BT, uno per ogni cabina di campo, avranno potenza di 2.000-25003000 kVA, per elevare la tensione dell'energia elettrica prodotta a 20 kV;
- N. 2 Cabine di raccolta, costituite da una struttura prefabbricata posata su platea di fondazione separatamente predisposta, atta a contenere i locali utente, dove saranno posizionate i Quadri di Media Tensione, a cui si attesteranno le dorsali in Media Tensione dei diversi campi, i Locali Misure e i Locali Enel, a cui avrà accesso il distributore di rete. Nei quadri di media tensione di utente, che alimentano tutto l'impianto fotovoltaico, saranno installati i sistemi di protezione di interfaccia, SPI, rappresentato da un relè con le protezioni di minima e massima frequenza (<81 e >81) e minima e massima tensione (27 e 59) e se necessario la protezione di massima tensione omopolare (59N) per gli impianti in grado di sostenere la tensione di rete. I dispositivi agiranno direttamente sul comando di apertura dell'interruttore generale del Generatore Fotovoltaico;
- la Distribuzione elettrica c.c./a.c., che è garantita dall'utilizzo di cavi solari unipolari del tipo H1Z2Z2-K per la distribuzione delle singole stringhe fino al collegamento con i Convertitori, mentre i cavi a partire da questi fino alle cabine di campo saranno del tipo ARE4R 0.6/1kV. La distribuzione elettrica sarà realizzata mediante la posa dei cavi su letto di sabbia.
- la distribuzione di media tensione, interna al lotto, avverrà con cavi ARG7H1R posati su letto di sabbia;
- Collegamento alla CP Cellino tramite cavi MT in parte interrati ed in parte aerei;
- Opere accessorie, quali lievi sbancamenti, recinzione dell'area e Impianto di sorveglianza. Al fine di prevedere il rispetto dei requisiti tecnici che possano garantire la massima efficienza del generatore fotovoltaico, sono stati attuati i seguenti accorgimenti:

Elaborato: Relazione tecnica

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

- il posizionamento dei moduli è stato effettuato in maniera da favorire la dissipazione del calore al fine di limitare le perdite per temperatura;

- i cavi sono stati dimensionati in modo da limitare le cadute di tensione per perdite resistive al 2%; in particolare i cavi in cc tra i moduli di testa della stringa e le relative cassette di parallelo stringhe saranno inferiori all'1%;
- i moduli di ciascuna stringa saranno selezionati in modo da minimizzare le perdite per disaccoppiamento (mismatching);
- la massima tensione del generatore fotovoltaico è stata scelta molto prossima al limite superiore del campo di bassa tensione in modo da ridurre, a parità di potenza, le perdite proporzionali alla corrente del generatore fotovoltaico.

4.3.1. Generatore fotovoltaico

Il generatore fotovoltaico ha potenza nominale ai sensi della norma CEI 0-16 pari a 7.500 kW, mentre la potenza dei moduli è pari a 10.124,40 kWp.

Le linee elettriche di potenza in corrente continua hanno origine dai moduli fotovoltaici presenti sul sito oggetto dell'intervento; ciascun modulo sarà composto da n. 144 celle al silicio policristallino, collegate in serie tra loro e con caratteristiche elettriche e di efficienza tra le migliori attualmente disponibili in commercio, al fine di minimizzare i costi proporzionali all'area dell'impianto.

I moduli fotovoltaici sono rispondenti alle norme IEC 61215 ed. 2 e sono accompagnati da un data-sheet che riporta le principali caratteristiche del modulo stesso (Isc, Voc, Im, Pm, ecc.); i moduli saranno collegati in serie in modo da realizzare le stringhe che presentano delle caratteristiche elettriche compatibili con il sistema di conversione.

La disposizione delle stringhe in ogni campo fotovoltaico è stata progettata in modo da facilitare i collegamenti e le future ispezioni.

Ciascun modulo è dotato di:

- diodi di by-pass per garantire la continuità elettrica della stringa anche con danneggiamento o ombreggiamenti di una o più celle;
 - cassetta di terminazione con un livello di protezione adeguato all'installazione da esterno;

Consulenza: Atech srl

Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete

elettrica, sito in Brindisi (BR)

• cornice, in alluminio anodizzato, che oltre a facilitare le operazioni di montaggio e a

permettere una migliore distribuzione degli sforzi sui bordi del vetro, costituirà una ulteriore barriera

all'infiltrazione di acqua.

Inoltre, il decadimento delle prestazioni dei moduli sarà non superiore al 3% della potenza

nominale nel primo anno, all'8% nell'arco dei primi 10 anni e non superiore al 17% nell'arco di 25

anni.

Il numero di serie e il costruttore del modulo stesso saranno apposti in modo indelebile.

Il sistema di conversione cc/ca costituirà l'interfaccia tra il campo fotovoltaico e la rete in

corrente alternata.

Le cabine di campo saranno nº 3 in totale; ciascuna cabina ospiterà n. 1 trasformatore MT/BT

avente potenza compresa tra 2.000 kVA e 3.500 kVA, per elevare la tensione dell'energia elettrica

prodotta a 20 kV. LA cabina sarà opportunamente ventilata al fine di smaltire velocemente il calore

prodotto.

L'impianto di generazione sarà dotato di idonei apparecchi di connessione e protezione e

regolazione, rispondenti alle norme tecniche ed antinfortunistiche; il soggetto responsabile si

impegna, altresì, a mantenerli in efficienza.

La connessione alla rete di distribuzione avverrà in MT secondo le prescrizioni tecniche del

Gestore di Rete.

Tutti i componenti delle apparecchiature di misura, inclusi i cablaggi e le morsettiere, saranno

dotati di sistemi meccanici di sigillatura (piombatura o similari) che garantiranno da manomissioni o

alterazione dei dati di misura; il soggetto responsabile si impegnerà, altresì, a non alterare le

caratteristiche di targa delle apparecchiature di misura e a non modificare i dati di misura registrati

dalle medesime.

La sezione dei cavi utilizzati varierà a seconda delle distanze relative tra i moduli e le scatole di

giunzione, tra queste e gli inverter, tra inverter e trasformatori, tra sezione di conversione e quella

di misura e consegna. Ad ogni loro estremità i cavi saranno contrassegnati mediante fascetta

identificativa numerata. I colori dei conduttori saranno quelli normalizzati UNI.

Elaborato: Relazione tecnica

Consulenza: **Atech srl** Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Ai fini della messa in opera dell'impianto fotovoltaico sono stati considerati, per tutti i circuiti della porzione di impianto in BT, cavi solari H1Z2Z2-K e del tipo ARG7, direttamente interrati.

Le sezioni dei conduttori impiegati sono tali da non causare una caduta di tensione superiore al 2% totale.

I cavi di alimentazione in media tensione sono stati dimensionati (lunghezza, sezione, ecc.) dal Gestore di Rete, così come l'ubicazione del punto di consegna.

Per quanto riguarda le vie cavo (di comando/segnalazione e di trasporto dell'energia prodotta), sono essenzialmente di due tipi: aeree ancorate alle strutture di sostegno, ed interrate.

Le vie cavo aeree seguiranno percorsi prestabiliti lungo le strutture di supporto dei moduli fotovoltaici onde collegare gli stessi in serie per formare le stringhe, e per collegare le stringhe così ottenute ai quadri di stringa. Analoga tipologia di percorso seguiranno i cavi per il collegamento dei quadri di stringa con gli inverter, salvo che per brevi tratti interrati verso il locale di conversione, così come mostrato nella planimetria allegata.

Per quanto riguarda le vie cavo interrate, esse seguiranno percorsi disposti lungo o ai margini della viabilità interna all'impianto, generalmente in terreno vegetale. Le vie cavo saranno realizzate in un'unica trincea della profondità di circa 0,80 m, facendo attenzione alle interferenze con quelli esistenti. I cavi di potenza in media tensione (20 kV) sono posati su letto di sabbia vagliata a circa 80 cm di profondità. Il ricoprimento della trincea sarà effettuato con materiale misto granulometrico e posa di tegolino di protezione e nastro segnalatore.

Il fissaggio dei moduli fotovoltaici alla struttura di sostegno sarà eseguito utilizzando il telaio di alluminio di cui sono provvisti i moduli stessi.

I quadri di protezione, misura, parallelo e consegna sono messi a terra mediante conduttore equipotenziale in rame con guaina giallo-verde. La sezione del cavo di protezione rispetterà la normativa CEI 64-8.

Per la stima di producibilità dell'impianto, è stato calcolato che è pari a 18.423 MWh/annui. Per i dettagli si rimanda alla "Analisi della risorsa solare e stima di produzione energia" allegata al progetto.

Consulenza: **Atech srl** Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

4.3.2. Architettura del Generatore fotovoltaico

Il progetto prevede la realizzazione di 2 campi IMPIANTO 13B NORD e IMPIANTO 13B SUD. L'impianto 13B nord sarà diviso in due ulteriori sottocampi, o generatori fotovoltaici, ciascuno dei quali farà capo ad una cabina MT/BT da cui avranno origine le linee MT che collegheranno ciascuno campo alla cabina di consegna e da cui partirà la linea in MT che collegherà la centrale alla CP di Cellino. L'impianto 13B sud sarà composto da una unica cabina MT/BT da cui avrà origine la linea di collegamento MT con la cabina di consegna da cui partirà la linea MT che collegherà la centrale con la CP di Cellino.

L'architettura di ciascun campo è sinteticamente riportata nel seguito:

IMPIANTO 13B NORD

Composto da n. 10.920 pannelli fotovoltaici da 550 Wp, per una potenza complessiva di 6.006,00 kWp circa. I pannelli saranno montati su delle strutture che permettono la rotazione del modulo, in modo da essere perfettamente perpendicolari alla radiazione incidente (angolo di tilt (inclinazione max del modulo) pari a 60° rispetto all'orizzontale).

IMPIANTO 13B SUD

Composto da n. 7488 pannelli fotovoltaici da 550 Wp, per una potenza complessiva di 4118,40 kWp circa. I pannelli saranno montati su delle strutture che permettono la rotazione del modulo, in modo da essere perfettamente perpendicolari alla radiazione incidente (angolo di tilt (inclinazione max del modulo) pari a 60° rispetto all'orizzontale).

In conclusione, la <u>potenza complessivamente installata del Parco Solare in progetto è pari a</u> <u>10.124,40 kWp.</u>

Esso costituisce, essenzialmente, un esempio di generazione centralizzata, destinata ad operare in collegamento alla rete elettrica in media tensione (II categoria) in corrente alternata di tipo trifase.

L'impianto sarà individuato da un unico punto di connessione alla rete elettrica in uscita dal gruppo di conversione, rispetto al quale è stata presentata domanda al gestore di rete per la connessione.

Consulenza: **Atech srl** Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Inoltre, i sistemi di misura dell'energia elettrica prodotta saranno collocati all'uscita del gruppo di conversione della corrente continua in alternata; l'energia prodotta sarà immessa integralmente (al netto delle perdite di impianto) nella rete elettrica.

4.3.3. Pannelli fotovoltaici

Per la scelta del pannello fotovoltaico, in fase di progettazione, si è fatto riferimento alle migliori caratteristiche in termini di efficienza delle celle fotovoltaiche; sono stati individuati moduli ad alta potenza, dimensioni standard, che uniscono alla caratteristica della migliore tecnologia disponibile, la facilità di reperibilità sul mercato un costo accessibile.

PHONO SOLAR

I moduli individuati avranno le seguenti caratteristiche:

Warca	THONG SOLAR
Modello	PS550M6-24/TH
Tipo materiale	Si monocristallino
CARATTERISTICHE ELETTRICHE IN CONDIZIONI STC	
Potenza di picco [W]	550.0 W
Im [A]	13.24
Isc [A]	13.82
Efficienza [%]	21.28
Vm [V]	41.55
Voc [V]	49.59
ALTRE CARATTERISTICHE ELETTRICHE	
Coeff. Termico Voc [%/°C]	-0.2800
Coeff. Termico Isc [%/°C]	0.050
NOCT [°C]	45.0
Vmax [V]	1 500.00
CARATTERISTICHE MECCANICHE	
Lunghezza [mm]	2 279.00

Marca

Elaborato: Relazione tecnica

Consulenza: Atech srl

Proponente: HEPV30 Srl

STUDIO DI IMPATTO AMBIENTALE

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Larghezza [mm]	1 134.00
Superficie [m ²]	2.584
Spessore [mm]	35.00
Peso [kg]	29.00
Numero celle	144

I moduli dovranno essere approvati e verificati da laboratori di accreditamento (laboratori accreditati EA, European Accreditation Agreement, o che abbiano stabilito con EA accordi di mutuo riconoscimento), per le specifiche prove necessarie alla verifica dei moduli, in conformità alla norma UNI CEI EN ISO/IEC 17025.

Elaborato: Relazione tecnica

Rev. 0 – Settembre 2021

Pag. **34** a **74**

Consulenza: Atech srl

Proponente: HEPV30 Srl

STUDIO DI IMPATTO AMBIENTALE

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

ELECTRICAL TYPICAL VALUES										
Model		6-24/TH 5H-24/TH		16-24/TH 6H - 24/TH	PS540M PS540M	6-24/TH SH-24/TH		16-24/TH 6H-24/TH		16-24/TH 6H-24/TH
Testing Condition	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT
Rated Power (Pmpp)	530	394	535	378	540	402	545	405	550	409
Rated Current (Impp)	12.88	10,41	12,97	10.48	13.06	10,55	13.15	10,63	13,24	10.70
Rated Voltage (Vmpp)	41.15	37.89	41.25	37.98	41.35	38.07	41.45	38.16	41.55	38,25
Short Circuit Current (Isc)	13-42	10.84	13.52	10.92	13.62	11.00	13.72	11.09	13.82	11.17
Open Circuit Voltage (Voc)	49.19	46,44	49,29	46.53	49,39	46,62	49,49	46.72	49.59	46,81
Module Efficency (%)	20	.51	20,	70	20.	89	21	.09	21	.28

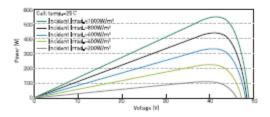
NOCT (Nominal Operation Cell Temperature): Irradiance 800W/m², Ambient Temperature 20°C, Spectra at AM1.5, Wind at 1m/S

MECHANICAL CHARACTERISTICS

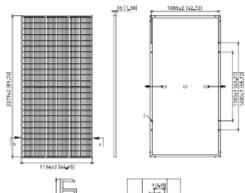
Cell Type	Monocrystalline 182mm x 91mm
	Length: 2279mm [89,72 inch]
Dimension (L× W × H)	Width: 1134mm (44.65 inch)
	Height: 35mm (1,38 inch)
Weight	29.0kg (63.93 lbs)
Front Glass	3.2mm Toughened Glass
Frame	Anodized Aluminium Alloy
Cable (Including Connector)	4mm² (IEC), + :450mm,l- :250mm or Customized Length
Junction Box	IP 68 Rated

TEMPERATURE RATINGS

Voltage Temperature Coefficient	-0.28%/°C
Current Temperature Coefficient	+0.05%/°C
Power Temperature Coefficient	-0.35%/°C
Tolerance	0-+5w
NOCT	45±2°C


ABSOLUTE MAXIMUM RATING Operating Temperature

Operating Temperature	From -40 to +85°C	
Hail Diameter @ 80km/h	Up to 25mm	
Front Side Maximum Static Loading	5400Pa	
Rear Side Maximum Static Loading	2400Pa	
Maximum Series Fuse Rating	25A	
PV Module Classification	П	
Fire Rating (IEC 61730)	c	
Module Fire Performance (UL 1703)	Type 4	
Maximum System Voltage	DC 1000V/1500V	

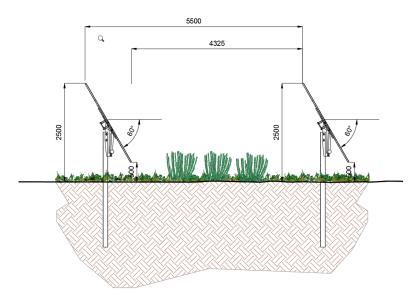

PACKING CONFIGURATION

Container	20° GP	40" HQ
Pleces/Container	155	620

ELECTRICAL CHARACTERISTICS

Consulenza: **Atech srl** Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)


4.3.4. Strutture di sostegno

L'impianto fotovoltaico sarà realizzato posando i pannelli su strutture di sostegno ancorate al suolo e appositamente realizzate. La configurazione del generatore fotovoltaico sarà a file parallele, installate in direzione nord-sud, su delle strutture mobili che permetteranno ai moduli fotovoltaici di ruotare durante il giorno, in modo da mantenere sempre la perpendicolarità al sole incidente. La distanza tra le file è pari a circa 5,5 m; distanza tra file e l'angolo di tilt sono stati scelti al fine di incrementare la produttività dell'impianto e limitare i fenomeni di ombreggiamento tra le file.

Definiti i confini fisici dell'area la soluzione individuata coniuga la necessità di massimizzare la produzione (ottimizzando l'angolo di tilt e l'orientamento del generatore) con quella di massimizzare la potenza installata, al fine di garantire la massima redditività dell'investimento, contenendo al contempo i costi di installazione e futura manutenzione, puntando su soluzioni semplici e collaudate.

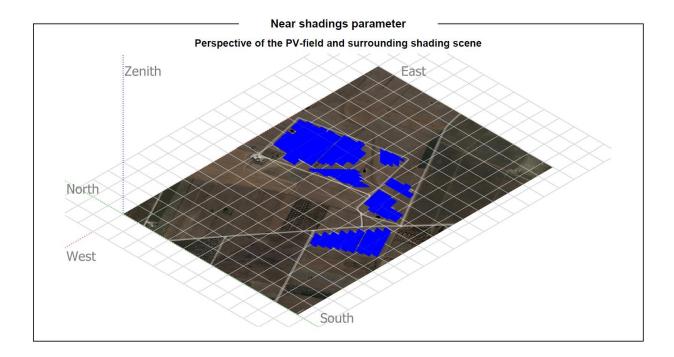
Sempre nell'ottica di massimizzare la produzione di energia, le file di moduli saranno disposte in direzione nord-sud.

Le strutture destinate all'installazione dei pannelli fotovoltaici saranno interamente rimovibili; si tratterà infatti di sistemi in acciaio e alluminio, con piantoni infissi nel terreno tramite macchine battipalo.

Sezioni trasversale delle strutture di sostegno

Elaborato: Relazione tecnica

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

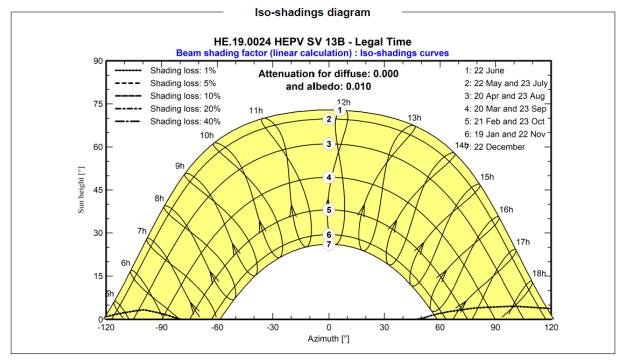

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Le strutture saranno progettate per ospitare 1 fila di moduli per contenere l'altezza complessiva dell'installazione. Tale altezza è circa 2,5 m sulla base dei calcoli preliminari effettuati.

Questa configurazione è determinata anche da considerazioni relative allo studio delle ombre, infatti in tal modo si eliminano gli ombreggiamenti sui moduli della fila più alta sui moduli della fila più bassa, aumentando la resa complessiva; inoltre le stringhe saranno per lo più cablate in senso orizzontale (salvo quelle costituite dai moduli nelle parti terminali delle strutture), al fine di avere in ogni istante il medesimo irraggiamento su ogni stringa, massimizzando ulteriormente la produzione.

La distanza tra le file è infine determinata ipotizzando di accettare un ombreggiamento tra le file quando l'elevazione del sole è inferiore a 21°.

Dall'analisi della carta del sole relativa alla latitudine in esame si evince chiaramente che in tali condizioni la mancata produzione è minima.



Elaborato: Relazione tecnica

Consulenza: **Atech srl** Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Istogramma dell'energia normalizzata prodotta e delle perdite durante un anno solare

Sulla base di questi dati di base è stata calcolata la produzione dell'impianto e i vantaggi economici che ne derivano, riportata in un distino elaborato.

4.3.5. Inverter

La scelta degli Inverter per sistemi Fotovoltaici è avvenuta in funzione del migliore compromesso raggiungibile nell'accoppiamento tra pannelli ed il dispositivo di conversione della c.c. in c.a. Tali componenti rappresentano infatti il cuore di un generatore fotovoltaico. Le esigenze da soddisfare al fine di realizzare un impianto a regola d'arte sono:

- Adeguata suddivisione dei pannelli FV in stringhe ed in campi fotovoltaici al fine di garantire una equilibrata ripartizione su più inverter;
- Dimensionamento delle singole stringhe e dei campi FV in modo da garantire il funzionamento sempre all'interno del range di MPPT dell'inverter.
- Ottenere un sufficiente equilibrio tra i vari campi fotovoltaici;
- Raggiungere un sufficiente grado di sfruttamento delle potenzialità dell'inverter.

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

In ragione delle considerazioni e scelte sopra descritte, la scelta progettuale è stata indirizzata verso inverter di stringa, al fine di ridurre le perdite.

Gli inverter avranno le seguenti caratteristiche:

DATI GENERALI

Marca	SUNGROW
Modello	SG350HX
Tipo fase	Trifase

INGRESSI MPPT

N	VMppt min [V]	VMppt max [V]	V max [V]	I max [A]
1	500.00	1 500.00	1 500.00	60.00
2	500.00	1 500.00	1 500.00	60.00
3	500.00	1 500.00	1 500.00	60.00
4	500.00	1 500.00	1 500.00	60.00
5	500.00	1 500.00	1 500.00	60.00
6	500.00	1 500.00	1 500.00	60.00
7	500.00	1 500.00	1 500.00	60.00
8	500.00	1 500.00	1 500.00	60.00
9	500.00	1 500.00	1 500.00	60.00
10	500.00	1 500.00	1 500.00	60.00
11	500.00	1 500.00	1 500.00	60.00
12	500.00	1 500.00	1 500.00	60.00

Max pot. FV [W] 490 000

Elaborato: Relazione tecnica

Rev. 0 - Settembre 2021

Pag. **39** a **74**

Consulenza: Atech srl
Proponente: HEPV30 Srl

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

PARAMETRI ELETTRICI IN USCITA

Potenza nominale [W]	352 000
Tensione nominale [V]	800
Rendimento max [%]	99.01
Distorsione corrente [%]	3
Frequenza [Hz]	50
Rendimento europeo [%]	98.80

DATI GENERALI

Marca	SUNGROW
Modello	SG250HX
Tipo fase	Trifase

INGRESSI MPPT

N	VMppt min [V]	VMppt max [V]	V max [V]	I max [A]
1	500.00	1 500.00	1 500.00	50.00
2	500.00	1 500.00	1 500.00	50.00
3	500.00	1 500.00	1 500.00	50.00
4	500.00	1 500.00	1 500.00	50.00
5	500.00	1 500.00	1 500.00	50.00
6	500.00	1 500.00	1 500.00	50.00
7	500.00	1 500.00	1 500.00	50.00
8	500.00	1 500.00	1 500.00	50.00
9	500.00	1 500.00	1 500.00	50.00
10	500.00	1 500.00	1 500.00	50.00
11	500.00	1 500.00	1 500.00	50.00
12	500.00	1 500.00	1 500.00	50.00

Max pot. FV [W] 350 000

Elaborato: Relazione tecnica

Rev. 0 – Settembre 2021

Pag. **40** a **74**

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

PARAMETRI ELETTRICI IN USCITA

Potenza nominale [W]	250 000
Tensione nominale [V]	800
Rendimento max [%]	99.00
Distorsione corrente [%]	3
Frequenza [Hz]	50
Rendimento europeo [%]	98.80

La composizione dei campi fotovoltaici è stata progettata al fine di garantire nelle varie condizioni di funzionamento, una tensione del sistema c.c. perfettamente all'interno del range del MPPT degli inverter.

Per maggiori dettagli su tali aspetti si rimanda alla relazione di calcolo riportante il dimensionamento.

4.3.6. Cavi in MT

I cavi saranno del tipo ARG7H1RX 12/20 kV le cui caratteristiche sono conformi alla norma CEI 20-13 con la seguente composizione: anima costituita da conduttore a corda rotonda compatta di alluminio, semiconduttore interno in materiale elastomerico estruso, isolante ottenuto con mescola a base di gomma EPR (o polietilene reticolato) ad alto modulo, semiconduttore esterno in materiale elastomerico estruso pelabile a freddo, schermatura a nastri o piattine di rame rosso e guaina in PVC. I cavi sopra descritti hanno una temperatura massima di funzionamento in condizioni ordinarie di 90°C ed una temperatura massima ammissibile in corto circuito di 250°C.

I cavi verranno posati in tubazioni polietilene ad alta densità del tipo corrugato, diametro in funzione della tipologia e sezione dei cavi. La profondità di posa sarà non inferiore ai 0,6 m, come stabilito dalla norma CEI 11-17 in quanto posti su terreno privato.

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Negli elaborati grafici allegati vengono date indicazioni: del tracciato, della tipologia di cavo e modalità di posa comprese le sezioni tipo di scavo da realizzare.

4.3.7. Viabilità interna

Per muoversi agevolmente all'interno dell'area ai fini delle manutenzioni e per raggiungere le cabine di campo verranno realizzate le strade interne strettamente necessarie a raggiungere in maniera agevole tutti i punti dell'impianto. La viabilità interna verrà realizzata solo con materiali naturali (pietrisco di cava) che consentono l'infiltrazione e il drenaggio delle acque meteoriche nel sottosuolo, pertanto non sarà ridotta la permeabilità del suolo. Per quanto concerne l'andamento plano-altimetrico dei tratti costituenti la viabilità interna, si sottolinea che quest'ultima verrà realizzata seguendo, come criterio progettuale, quello di limitare le movimentazioni di terra nel rispetto dell'ambiente circostante. Questo è possibile realizzarlo in quanto le livellette stradali seguiranno l'andamento naturale del terreno stesso.

4.3.8. Recinzione perimetrale e mitigazione visiva

Le varie aree dell'impianto saranno dotate di recinzione in rete metallica galvanizzata e da un cancello carrabile. La rete metallica come recinzione è stata scelta al fine di ridurre gli impatti; inoltre sarà posta, nelle zone dove l'impianto risulta visibile da infrastrutture e fabbricati, anche in disuso e in completo stato di abbandono, una fascia arborea autoctona di mitigazione. La posa in opera della recinzione a maglia rettangolare sarà a pali infissi direttamente nel terreno in modo da ridurre al minimo l'impatto sull'ambiente circostante ed evitare l'utilizzo di calcestruzzo, tranne nel caso in cui la geologia del terreno non permetta l'infissione dei pali.

I cancelli d'ingresso saranno realizzati in acciaio zincato, sorretto da pilastri in scatolare metallico. Le dimensioni saranno tali da permettere un agevole ingresso dei mezzi pesanti impiegati in fase di realizzazione e manutenzione. In fase esecutiva sarà considerata la possibilità di dotare il cancello di azionamento elettrico.

Al fine di attenuare, se non del tutto eliminare, l'impatto visivo prodotto dall'impianto fotovoltaico sono previsti interventi di mitigazione visiva mediante messa a dimora lungo il perimetro dell'impianto di una **schermatura arborea con funzione di mitigazione visiva**. Tale schermatura sarà realizzata mediante la messa a dimora di un **doppio filare di uliveto intensivo** (con piante disposte su file distanti m 2,00) e fichi d'india lungo i perimetri prossimi alla viabilità principale, mentre tale mitigazione visiva sarà costituita da un **filare di uliveto intensivo in**

Elaborato: Relazione tecnica

Consulenza: Atech srl

Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

prossimità dei terreni agricoli e lungo la viabilità adiacente alla porzione nord dell'impianto.

4.3.9. Illuminazione perimetrale

L'impianto di illuminazione perimetrale del campo sarà realizzata da apparecchi di illuminazione distribuiti uniformemente lungo il perimetro seguendo il percorso delle strade perimetrali ed eventualmente la sola recinzione. Gli apparecchi saranno dotati di fonte Luminosa a LED con emissione pari 5865lm e emissione dell'apparecchio pari a 4460lm. La potenza assorbita dall'

apparecchio sarà pari a 46W con potenza massima assorbita dai LED pari a 39W.

Il suo funzionamento sarà esclusivamente legato alla sicurezza dell'impianto, gli apparecchi saranno installati sugli stessi pali montanti le telecamere dell'impianto di videosorveglianza. La direzione di proiezione del raggio luminoso, sarà verso il basso, senza quindi oltrepassare la linea

dell'orizzonte o proiettare la luce verso l'altro.

4.3.10. Sistemi ausiliari

L'accesso all'area recintata sarà sorvegliata automaticamente da un sistema di Sistema integrato Anti-intrusione composto da: telecamere TVCC tipo fisso Day-Night, per visione diurna e notturna, con illuminatore a IR. Queste saranno installate su pali in acciaio zincato di altezza pari a m 5,00 nei

pressi delle cabine di campo e smistamento.

Ogni cabina di campo e la cabina di consegna saranno dotate di illuminazione perimetrale che si attiverà nelle ore notturne secondo la presenza del personale di manutenzione e gestione dell'impianto.

•

4.3.11.

I pannelli fotovoltaici non hanno bisogno di molta manutenzione. Può capitare che le loro

superfici si sporchino o si ricoprano di polvere, generalmente basta l'acqua e il vento per ripulirli ma

e buona norma eseguire ispezioni periodiche dei moduli per verificare la presenza di danni a vetro,

telaio, scatola di giunzione o connessioni elettriche esterne. La manutenzione va effettuata da

personale specializzato e competente che effettui i controlli periodici.

Manutenzione

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

4.3.12. Lavaggio dei moduli fotovoltaici

Benché il vetro dei pannelli fotovoltaici tendenzialmente si dovrebbe sporcare poco, di fatto può succedere che i pannelli si sporchino a causa di polveri presenti nell'aria, inquinamento, terra portata da vento, pioggia, etc. Tutto questo accumulo di sporcizia influisce negativamente sulle prestazioni dei pannelli solari, diminuendone sensibilmente l'efficacia. Per ovviare a questo problema per tutta la vita utile dell'impianto sono previsti dei lavaggi periodici della superficie captante dei moduli fotovoltaici. Per il lavaggio dei moduli non e previsto l'uso di sostanze e prodotti chimici.

4.3.13. Controllo delle piante infestanti

L'area sottostante i pannelli continuerà ad essere occupata da terreno vegetale allo stato naturale e pertanto soggetta al periodico accrescimento della vegetazione spontanea. Fanno eccezione ovviamente le aree utilizzate per la realizzazione di piazzali interni all'area dell'impianto.

Allo scopo di mantenere un'adeguata "pulizia" dell'area, peraltro necessaria per evitare ombreggiamenti sui pannelli, saranno effettuate delle operazioni con tagliaerba al fine di eliminare eventuali piante infestanti. Tale attività avverrà con particolare cura, da parte di impresa specializzata, allo scopo di evitare il danneggiamento delle strutture e di altri componenti dell'impianto. In particolare, lo sfalcio meccanico verrà utilizzato per eliminare la vegetazione spontanea infestante al fine di prevenire la proliferazione dei parassiti e, durante la stagione estiva, al fine di evitare la propagazione degli incendi di erbe disseccate sia agli impianti sia ai poderi confinanti.

In nessun caso saranno utilizzati diserbanti o altri prodotti chimici atti a ridurre o eliminare la presenza di vegetazione spontanea sul campo.

5. IMPIANTO DI RETE PER LA CONNESSIONE

L'impianto di produzione sarà allacciato in MT a 20 kV 3F mediante realizzazione di due nuove linee in cavo aereo e interrato, costituente ai sensi della Norma CEI 0-16 l'impianto di rete per la connessione, direttamente alla cabina primaria AT/MT CP Cellino.

Dal lato CP Cellino le linee si attesteranno al quadro di MT bipiano in edificio. Più in dettaglio le linea di connessione saranno posate in esecuzione interrata a partire dalle sbarre di MT della CP

Consulenza: **Atech srl** Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Cellino sino a raggiungere i dispositivi di sezionamento da palo IMS, dopodiché le linee saranno posate in esecuzione aerea, sempre però della tipologia in cavo e non conduttore nudo, ed i cui tracciati sono indicati negli elaborati grafici allegati.

A partire dai dispositivi di sezionamento IMS le linee saranno sospese su un'unica palificazione fino a raggiungere la cabina di consegna. La palificazione sarà dimensionata per poter ospitare due linee in cavo aeree.

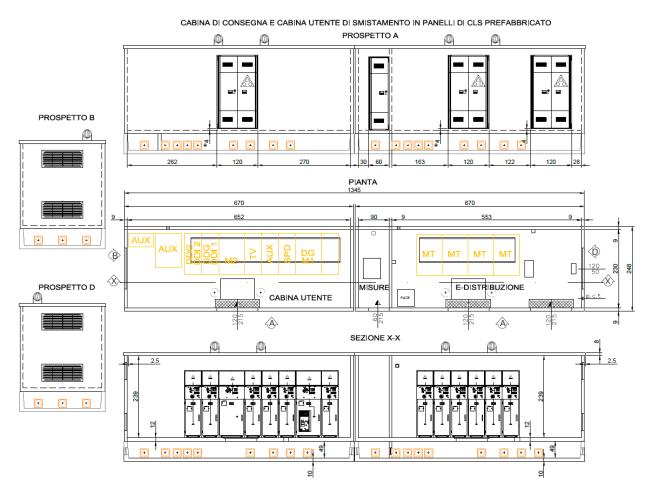
Il dimensionamento dei sostegni e dei componenti di amarro è stato condotto secondo le norme tecniche CEI EN 50341-2-13 "Linee elettriche aeree con tensione superiore a 1 kV in c.a".

Si specifica che alla fine dei lavori di realizzazione dell'impianto di rete per la connessione dell'impianto, ancorché realizzato dal produttore, lo stesso sarà ceduto ad E-Distribuzione e pertanto sarà ricompreso negli impianti del gestore di rete e sarà quindi utilizzato per l'espletamento del servizio pubblico di distribuzione. Conseguentemente il titolare dell'autorizzazione alla realizzazione delle opere sarà HEPV30 SRL, mentre il titolare dell'autorizzazione all'esercizio sarà E-Distribuzione.

Come sopra descritto, l'impianto sarà collegato alla rete elettrica in MT a 20 kV 3F mediante realizzazione di due nuove cabine di consegna da posizionare secondo gli elaborati grafici di progetto.

Le cabine di consegna saranno realizzate e fornite secondo lo standard ED DG2092 ed ospiteranno le apparecchiature per la connessione dell'impianto alla rete del distributore come previsto da preventivo di connessione TICA. Nel posizionamento delle cabine saranno rispettate le fasce di rispetto dalle strade e dai fondi confinanti previste rispettivamente dal Codice della Strada e dal Regolamento Urbano Comunale. All'interno della singola cabina si possono distinguere due locali:

Locale E-DISTRIBUZIONE: alloggia i quadri elettrici di MT, i quadri BT, le apparecchiature di controllo, oltre a tutte le apparecchiature di protezione e di controllo richieste dalle normative vigenti e necessarie a garantire la corretta connessione dell'impianto fotovoltaico alla CP Cellino;


Locale misure (per le eventuali apparecchiature di misura) con accesso indipendente.

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

A fianco della cabina di consegna sarà collocato un altro manufatto che ospiterà le apparecchiature di protezione e controllo lato UTENTE.

Anche se l'onere economico della costruzione di questa opera è a cura del produttore, alla fine dei lavori e prima di mettere in esercizio l'impianto, saranno stipulati dei contratti di servitù di elettrodotto, passaggio e cabina limitatamente agli spazi che contengono le apparecchiature di consegna.

La cabina sarà dotata di impianto di terra a cui saranno collegate tutte le masse delle apparecchiature, il cui dimensionamento sarà effettuato sia in base alla corrente monofase a terra ed al suo tempo di eliminazione come verranno comunicate da e- distribuzione.

Inoltre, nel lato Utente troveranno alloggiamento anche le apparecchiature ed i sistemi per la remotizzazione ed il controllo dell'intero impianto.

La cabina sarà completata di impianto d'illuminazione ed FM.

Elaborato: Relazione tecnica

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Nella cabina di consegna lato Utente troveranno ubicazione le apparecchiature di Media Tensione destinate alla protezione e comando delle linee elettriche di distribuzione così come indicato negli elaborati grafici di progetto, ed in conformità alla Norma CEI 0-16, "Impianto di utenza per la connessione".

La distribuzione dell'energia elettrica all'interno dell'impianto verrà eseguita mediante cavi di MT posati secondi gli elaborati grafici allegati.

È prevista la realizzazione di un unico impianto di terra costituito da corda di rame nuda posata nello scavo di posa dei cavidotti di campo. All'impianto di terra di campo saranno collegati gli impianti di terra delle cabine di consegna e di trasformazione e le strutture di sostegno e movimentazione dei moduli fotovoltaici.

L'esercizio e la manutenzione saranno effettuati secondo la regola d'arte e saranno condotte in conformità alla normativa vigente e a quanto indicato nel manuale d'uso e manutenzione. Le operazioni di manutenzione e la loro cadenza temporale saranno quelle indicate nelle norme tecniche di riferimento e nel manuale d'uso e manutenzione. La manutenzione sarà effettuata da personale esperto in materia sulla base della regola d'arte che garantisce la corretta esecuzione delle operazioni. I locali tecnici saranno dotati di impianto di illuminazione di emergenza.

Allo scopo di garantire una corretta gestione dell'impianto è necessario avere un monitoraggio dei principali parametri che caratterizzano l'impianto ed avere un controllo sugli stessi. Tale sistema SCADA garantirà in ogni istante:

- controllo in tempo reale della potenza attiva e reattiva degli impianti fotovoltaici;
- report di produttività degli impianti in modalità scritta e grafica;
- relazione completa sul funzionamento dei generatori;
- calcolo della disponibilità;
- informazioni on-line di ogni inverter: stato, potenza, voltaggio, temperature e allarmi attivi;
- dati disponibili su intervalli di 10 minuti, inclusi i valori medi, massimi e minimi, le deviazioni standard;

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

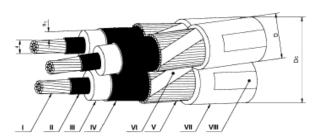
- interfaccia grafica di semplice utilizzo basata su standard di Windows;
- connessione Client per l'accesso a più impianti di produzione;
- login di sicurezza con profili di accesso personalizzati.

5.1.1.1. Cavi in MT

In conformità a quanto previsto sulla guida per le connessioni alla rete elettrica di e - distribuzione per linee interrate i cavi da utilizzare saranno del tipo tripolare ad elica con conduttori in alluminio, aventi isolamento estruso (HEPR o XLPE) e con schermo in rame avvolto a nastro sulle singole fasi.

I cavi da utilizzare per la realizzazione dell'impianto di rete per la connessione saranno del tipo ARG7H1RX 12/20 kV per la parte interrata ed ARG7H5EXY 12/20 kV per la parte aerea.

Elaborato: Relazione tecnica


Consulenza: Atech srl STUDIO DI IMPATTO AMBIENTALE

Proponente: HEPV30 Srl

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Porzione interrata

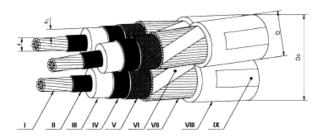
Cavi tripolari ad elica visibile con conduttori in alluminio

I - Conduttore

II - Strato semiconduttore

III - Isolante

IV - Strato semiconduttore estruso sull'isolante


V - Schermo

VI - Nastro equalizzatore (eventuale)

VII - Guaina di PVC

VIII - Stampigliatura

1. Cavo isolato con HEPR (ARG7H1RX-12/20 kV)

Conduttore

II - Strato semiconduttore

III - Isolante

IV - Strato semiconduttore estruso sull'isolante

V - Nastri semiconduttori

VI - Nastro equalizzatore (eventuale)

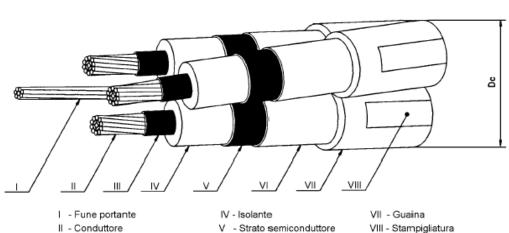
VII - Schermo

VIII - Guaina di PVC

IX - Stampigliatura

2. Cavo isolato con XLPE (ARE4H1RX-12/20 kV)

Matricola	Numero dei conduttori per sez. nominale [n° x mm²]	Diametro sul conduttore d [mm]	Isolamento	Diametro sull'isolante d+s ₁ [mm]	Diametro esterno D [mm]	Diametro circoscritto Dc max [mm]	Massa nominale [kg/km]	Tabella
33 22 72	2v (4v70)	0.7 . 10.1	HEPR	21,5 ÷ 23,3	27,7 ÷ 31,0	67	3000	
33 22 12	33 22 72 3x (1x70) 9,7 ÷ 10,1	9,7 ÷ 10,1	XLPE	21,9 ÷ 23,4	30,0 ÷ 35,0	75	3100	
33 22 73	3x(1x120)	40.0 40.4	HEPR	24,7 ÷ 26,6	30,9 ÷ 34,3	74	4000	DC 4379
33 22 13	3X(1X12U)	12,9 ÷ 13,4	XLPE	25,0 ÷ 27,0	33,0 ÷ 38,0	82	3800	DC 4379
22 22 74	2v/4v40E)	4E 0 46 E	HEPR	27,7 ÷ 29,8	33,9 ÷ 37,3	81	4800	
33 22 74	3x(1x185)	15,9 ÷ 16,5	XLPE	27,7 ÷ 30,1	36,0 ÷ 41,0	89	4600	


Elaborato: Relazione tecnica

Consulenza: Atech srl Proponente: HEPV30 Srl

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Porzione aerea

Cavi tripolari ad elica visibile isolati con gomma etilenpropilenica (HEPR) o con polietilene reticolato (XLPE) e fune portante di acciaio rivestito di alluminio diametro 9 mm

III - Strato semiconduttore

V - Strato semiconduttore

VIII - Stampigliatura

VI - Schermo

Matricola	Conduttori	Isolante	Formazione [n° x mm²]	Diametro circoscritto nominale Dc [mm]	Massa nominale [kg/km]	Tabella					
33 22 92			3x35+1x50	59,3	2100						
33 22 95		HEPR	HEPR	LIEDD	3x50+1x50	61,4	2300				
33 22 93				3x95+1x50	67,8	3000					
33 22 94	Alluminio		3x150+1x50	73,3	3700	DC 4389					
33 22 92	Allumino		3x35+1x50	59,3	2000	(3322 G)					
33 22 95		XLPE	VIDE	VIDE	VIDE	VIDE	VIDE	3x50+1x50	61,4	2200	
33 22 93		ALPE	3x95+1x50	67,8	2800						
33 22 94			3x150+1x50	73,3	3500						

Porzione interrata

Internamente alla CP Cellino e sino a raggiungere la cabina di sezionamento, i cavi verranno posati tubazioni polietilene ad alta densità del tipo corrugato del diametro di 160 mm.

La profondità minima di posa per le strade di uso pubblico è fissata dal Nuovo Codice della Strada ad 1 m dall'estradosso della protezione; per tutti gli altri suoli e le strade di uso privato

Elaborato: Relazione tecnica

Rev. 0 - Settembre 2021

Pag. 50 a 74

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

valgono i seguenti valori, dal piano di appoggio del cavo, stabiliti dalla norma CEI 11-17: 0,6 m (su terreno privato) e 0,8 m (su terreno pubblico).

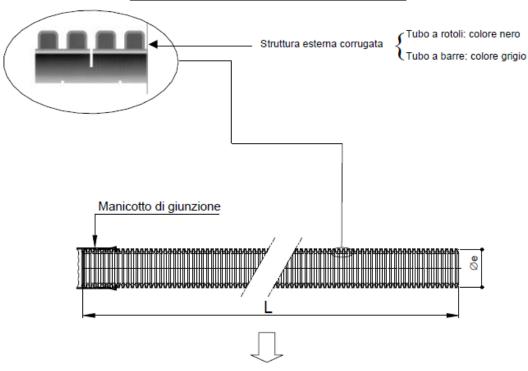
I tubi impiegati risponderanno alle caratteristiche riportate nelle tabelle di unificazione.

Durante l'esecuzione dei lavori sarà prestata particolare attenzione ai sottoservizi presenti sul posto (condotte fognarie, idriche, linee elettriche, telefoniche, ecc.). Qualunque interferenza riscontrabile durante la posa del cavo, sarà sottopassata.

Saranno ripristinate tutte le pavimentazioni preesistenti fino alla completa ricomposizione dello stato di fatto. A lavoro ultimato tutti i ripristini verranno eseguiti alla stessa quota del piano preesistente, privo di eventuali dossi o avvallamenti.

Negli elaborati grafici allegati vengono date indicazioni: del tracciato, della tipologia di cavo e modalità di posa comprese le sezioni tipo di scavo da realizzare.

Elaborato: Relazione tecnica


Consulenza: Atech srl

Proponente: **HEPV30 Srl**

STUDIO DI IMPATTO AMBIENTALE

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

PROTEZIONI MECCANICHE: TUBI IN POLIETILENE

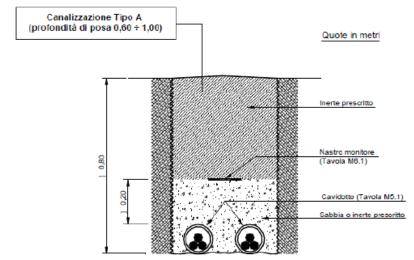
Conformi alle Norme CEI EN 50086-2-4 (23-46) (tubo "N" normale)

resistenza all'urto: - tubo Øe 25450 mm: 15 J;
 tubo Øe 63 mm: 20 J;

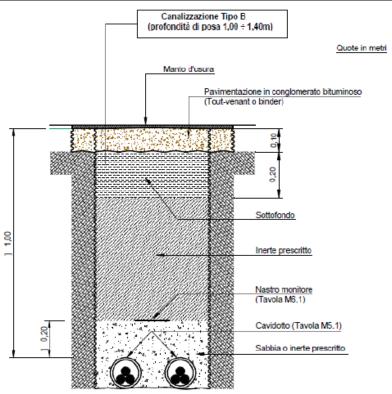
- tubo ⊘e 63 mm: 20 J; - tubo ⊘e 125 mm: 28 J; - tubo ⊘e 160 mm: 40 J.

Tipo	Diametro esterno [mm]	L [m]	Marcature	Matricola ⁽¹⁾	Tabella
	25	50		295510	
	32	50	(da applicare alle estremità del tubo)	295511	
Tubo "corrugato" in rotoli	50	50	sigla o marchio del costruttore materiale impiegato	295512	DS 4247
	63	50	anno di fabbricazione CEI EN 50086-2-2 CEI EN 50086-2-4/tipo	295513	
	125	50	"N"	295514	
	160	25		295515	
Tubo "corrugato"	125	6	(da applicare sulla superficie esterna con passo = 1 m) • sigla o marchio del costruttore • diametro nominale esterno in mm	295526	DS 4235
ili balle	160		ENEL anno di fabbricazione 295527 marchio IMQ		

Elaborato: Relazione tecnica


Rev. 0 - Settembre 2021

Pag. **52** a **74**


Consulenza: **Atech srl** Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

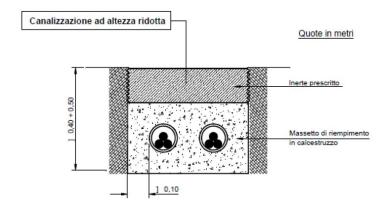
Posa n° 2 cavi MT su strada o trreno agricolo (Norme CEI 11-17)

Posa n° 2 cavi MT su strada asfaltata pubblica (Nuovo codice della strada)

NB. Per la posa su strada asfaltata in proprietà privata deve essere prevista la canalizzazione tipo A. In questo caso, infatti, valgono le prescrizioni delle Norme CEI 11-17 (art. 2.3.11.e) che stabiliscono una profondità minima, tra il piano di appoggio del cavo e la superficie del suolo, di 0,60 m

Elaborato: Relazione tecnica

Rev. 0 - Settembre 2021


Pag. **53** a **74**

Consulenza: Atech srl STUDIO DI IMPATTO AMBIENTALE

Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

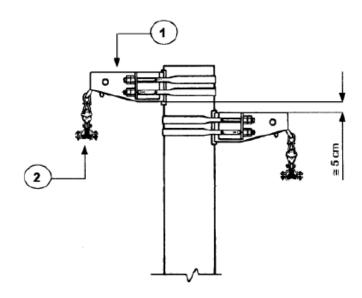
Posa n° 2 cavi MT a profondità ridotta (Norme CEI 11-17)

Porzione aerea

A partire dal dispositivo di sezionamento fino a raggiungere la cabina di consegna l'impianto di rete per la connessione sarà del tipo in cavo aereo sostituto da una nuova palificazione da realizzarsi in terreno agricolo.

La nuova palificazione sarà realizzata con pali in lamiera saldata ottagonale aventi altezza fuori terra indicativa di 10 metri, sostenuti da una fondazione interrata in calcestruzzo avente dimensioni indicative pari a 2x2x2 m.

Elaborato: Relazione tecnica


Consulenza: Atech srl

Proponente: **HEPV30 Srl**

STUDIO DI IMPATTO AMBIENTALE

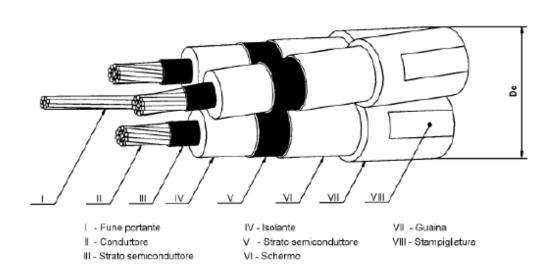
Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Armamento in sospensione per n° 2 linee sulla stessa palificazione

ELENCO MATERIALI						
Rif.	Rif. Descrizione					
1	Supporto di sospensione	M2.1				
2	Morsetto di sospensione	M3.1				

Elaborato: Relazione tecnica

Rev. 0 – Settembre 2021


Pag. **55** a **74**

Consulenza: Atech srl STUDIO DI IMPATTO AMBIENTALE

Proponente: **HEPV30 Srl**

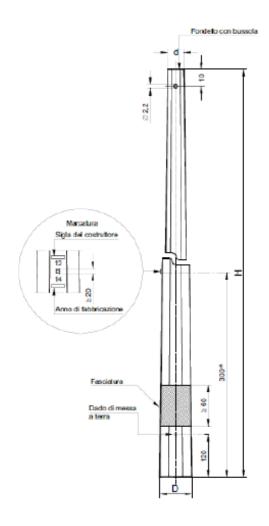
Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Cavi tripolari ad elica visibile isolati con gomma etilenpropilenica (HEPR) o con polietilene reticolato (XLPE) e fune portante di acciaio rivestito di alluminio diametro 9 mm

Matricola	Conduttori	Isolante	Formazione [n° x mm²]	Diametro circoscritto nominale Dc [mm]	Massa nominale [kg/km]	Tabella
33 22 92			3x35+1x50	59,3	2100	
33 22 95		HEPR	3x50+1x50	61,4	2300	
33 22 93			3x95+1x50	67,8	3000	
33 22 94	Alluminia			3x150+1x50	73,3	3700
33 22 92	Alluminio		3x35+1x50	59,3	2000	(3322 G)
33 22 95		XLPE	3x50+1x50	61,4	2200	
33 22 93		XLPE -	3x95+1x50	67,8	2800	
33 22 94			3x150+1x50	73,3	3500	

Elaborato: Relazione tecnica

Rev. 0 - Settembre 2021


Pag. **56** a **74**

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

STUDIO DI IMPATTO AMBIENTALE

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

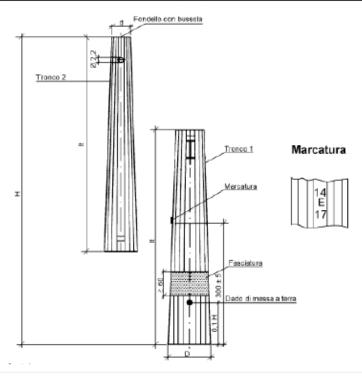
Sostegni in lamiera saldata a sezione ottagonale

N.B.; In sede di emissione della specifica può essere opportuno richiedere al fornitore l'estensione della fasciatura fino a 1,0 m.

Palo tipo	Matricola	Sigla H/tipo/d	н [m]	d [cm]	D [cm]	Massa [kg]	Tabella
В	23 72 13	12/8/14	12	14	26	180	
С	23 72 23	12/C/15	12	15	30,0	234	
D	23 72 33	12/D/15	12	15	33,5	253	
E	23 72 43	12/E/17	12	17	42,5	311	DS 3010 (2372 A)
F	23 72 53	12/F/17	12	17	45,5	371	(====,
G	23 72 63	12/G/24	12	24	52,5	509	
н	23 72 73	12/H/24	12	24	62,0	754	

Quote in an

Elaborato: Relazione tecnica


Rev. 0 - Settembre 2021

Pag. **57** a **74**

Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Sostegni in lamiera saldata a sezione poligonale in due tronchi innestabili

N.B.: In sede di emissione della specifica può essere opportuno richie dere al fomitore l'estensione della fasciatura fino a 1,0 m.

Palo tipo	Matric ola	Sigla H/tipo/d	H [m]	d [cm]	D [cm]	It [cm]	Massa [kg]	Tabella
D	23 73 44	14/D/14	14	14	36,0	728	323	DS 3012 (2373 B)
	23 73 45	16/D/14	16	14	39,5	830	394	
E	23 73 54	14/E/17	14	17	41,2	730	428	
	23 73 55	16/E/17	16	17	44,8	833	520	
F	23 73 64	14/F/17	14	17	47,5	735	478	
	23 73 65	16/F/17	16	17	47,9	835	611	
	23 73 66	18/F/17	18	17	53,7	938	748	
	23 73 67	21/F/17	21	17	61,0	1.090	960	
	23 73 74	14/G/24	14	24	54,5	740	657	
G	23 73 75	16/G/24	16	24	59,6	843	797	
	23 73 76	18/G/24	18	24	60,0	943	990	
	23 73 77	21/G/24	21	24	67,6	1.095	1.208	
н	23 73 84	14/H/24	14	24	64,0	745	977	
	23 73 85	16/H/24	16	24	70,5	848	1.195	
	23 73 86	18/H/24	18	24	77,0	950	1.431	
	23 73 87	21/H/24	21	24	0,88	1.103	1.845	
J	23 73 93	12/J/28	12	26	66,8	648	1.209	
	23 73 94	14/J/28	14	28	73,5	750	1.499	
	23 73 95	16/J/28	16	28	80,1	853	1.817	

Quote in cm

Elaborato: Relazione tecnica

Rev. 0 – Settembre 2021

Pag. **58** a **74**

Consulenza: **Atech srl** Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

6. FASE DI CANTIERE

Considerata la tipologia dell'intervento da realizzare, si può affermare che le lavorazioni in fase di cantiere avverranno senza la produzione di particolari rifiuti da conferire alle pubbliche discariche. Questo e dovuto all'esiguità degli scavi necessari alla realizzazione dei cavidotti interrati ed al fatto che la viabilità interna verrà realizzata seguendo come criterio progettuale quello di limitare il più possibile le movimentazioni di terra nel rispetto dell'ambiente circostante e seguendo il più possibile l'andamento del terreno.

Tali operazioni, riguardando solo la parte più superficiale del terreno vegetale, produrranno come residuo delle lavorazioni solamente lo stesso terreno vegetale che verrà ridistribuito uniformemente all'interno delle aree di pertinenza dell'impianto.

Per quanto riguarda gli imballaggi dei moduli fotovoltaici e dei quadri elettrici questi saranno costituti da cartone e plastica, materiali che verranno trasferiti ai circuiti classici di riciclo che sono stati analizzati nei paragrafi successivi.

È prevista un'attività di regolarizzazione superficiale del terreno per la realizzazione della viabilità interna. Non vi sono quindi movimenti di terra in quanto trattasi di regolarizzazione superficiale compensativa. È evidente che in caso di situazioni climatiche sfavorevoli (pioggia e vento) le attività non viene svolta.

Inoltre, per l'installazione dei pannelli non è previsto scavo in quanto i pannelli saranno fissati su strutture leggere zincate che saranno semplicemente infisse nel terreno. Saranno realizzate solo semplici basi di appoggio in c.a. delle strutture prefabbricate delle cabine.

I materiali di scavo saranno riutilizzati per i livellamenti.

A valle di quanto esposto non si esclude il fatto che, se in fase di cantiere si dovesse produrre materiale di rifiuto, tale materiale prodotto sarà differenziato e conferito nella più vicina discarica pubblica autorizzata.

Le fasi di realizzazione delle opere previste in progetto determinano quindi un impatto in termini di produzione di polveri. <u>Tale impatto è stato valutato di lieve entità, reversibile e di breve durata compatibilmente con i tempi di conclusione del cantiere.</u>

Consulenza: **Atech srl** Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

I mezzi impiegati nella fase di cantiere potranno produrre, con le loro emissioni, microinquinanti (metalli pesanti, IPA, PM10) in atmosfera. Trattandosi tuttavia di particelle sedimentabili, nella maggior parte dei casi la dispersione è minima e circoscritta alla sola zona circostante a quella di emissione, situata lontano dalla popolazione e da insediamenti civili. In ogni caso si tratta di attività a impatto minimo (oltre che di tipo temporaneo) legate alla sola fase di realizzazione dell'impianto.

In ultimo, a seguito delle lavorazioni di installazione degli impianti non verranno arrecati danni permanenti alla viabilità pubblica e privata, e qualora dovessero accidentalmente verificarsi tali episodi, vi verrà tempestivamente posto rimedio in quanto sia nelle convenzioni con gli Enti, sia nei contratti con i privati sono riportati gli obblighi e le modalità per il ripristino.

7. FASE DI ESERCIZIO

Analizzando i componenti e la tipologia di operazioni che avvengono per la produzione di energia fotovoltaica e ben evidente che l'impianto in questione, in fase di esercizio, non produce materiali di rifiuto.

8. FASE DI DISMISSIONE IMPIANTO E FINE VITA

Per quanto concerne le opere di dismissione di seguito si farà un breve accenno in quanto le stesse sono relazionata all'interno dell'elaborato "QEL3745_RelazioneDismissione", come anche le azioni di ripristino dei stati dei luoghi.

Lo smantellamento dell'impianto alla fine della sua vita utile avverrà nel rispetto delle norme di sicurezza presenti e future, attraverso una sequenza di fasi operative che sinteticamente sono qui di seguito riportate:

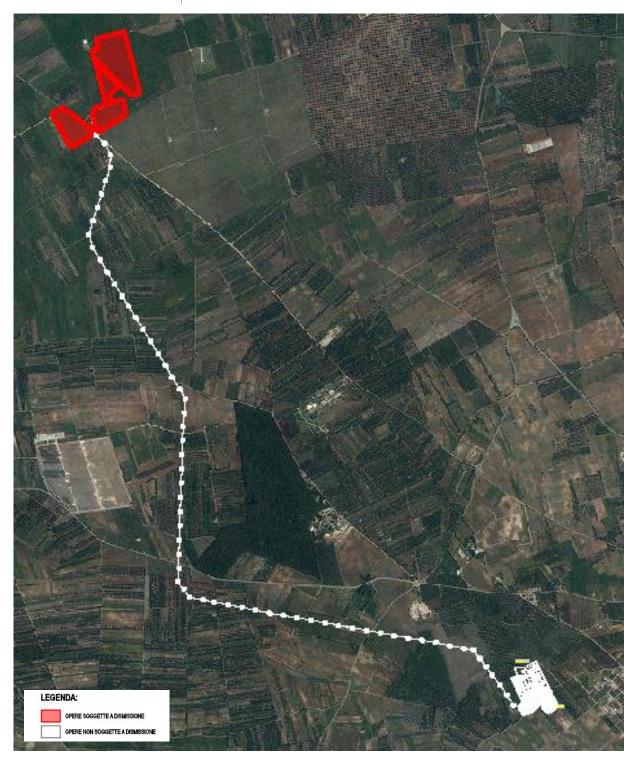
- √ disconnessione dell'intero impianto dalla rete elettrica;
- ✓ messa in sicurezza dei generatori PV;
- ✓ smontaggio delle apparecchiature elettriche in campo;
- ✓ smontaggio dei quadri di parallelo, delle cabine di trasformazione e della cabina di campo;
- ✓ smontaggio dei moduli PV nell'ordine seguente, ovvero:
 - smontaggio dei pannelli;

Consulenza: **Atech srl** Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

- smontaggio delle strutture di supporto e dei pali di fondazione;
- ✓ recupero dei cavi elettrici BT ed MT di collegamento tra i moduli, i quadri parallelo stringa e
 la cabina di campo;
- √ demolizione delle platee in cls a servizio dell'impianto per l'alloggio delle cabine;
- ✓ ripristino dell'area generatori PV piazzole piste cavidotto.
- ✓ la viabilità a servizio dell'impianto sarà smantellata e rinaturalizzata solo limitatamente alla porzione di approfondimento nel terreno vegetale costituente il "cassonetto" di fondazione sul quale sarà posato TNT (Tessuto Non Tessuto).

Si precisa che le opere di connessione aerea, cedute a e-distribuzione, non saranno oggetto del presente piano di dismissione. Di seguito si riporta lo schema di sintesi delle opere oggetto di rimozione.



Consulenza: Atech srl

Proponente: HEPV30 Srl

STUDIO DI IMPATTO AMBIENTALE

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Elaborato: Relazione tecnica

Rev. 0 – Settembre 2021

Pag. **62** a **74**

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Le azioni da effettuare per la completa dismissione dell'impianto sono, al momento come di seguito programmate. E' evidente che nel ciclo di vita dell'impianto possono migliorare le tecniche di intervento e, nel qual caso, saranno debitamente applicate. Per ora si riportano quelle in uso che sono, in termini generali, le seguenti.

8.1. Rimozione dei pannelli fotovoltaici

Per quanto riguarda lo smaltimento dei pannelli fotovoltaici montati sulle strutture fuori terra l'obiettivo è quello di riciclare pressoché totalmente i materiali impiegati.

Infatti circa il 90 – 95 % del peso del modulo è composto da materiali che possono essere riciclati attraverso operazioni di separazione e lavaggio; i principali componenti di un pannello fotovoltaico sono:

- > Silicio:
- Componenti elettrici;
- Metalli;
- Vetro.

Le operazioni previste per la demolizione e successivo recupero/smaltimento dei pannelli fotovoltaici consisteranno nello smontaggio dei moduli ed invio degli stessi ad idonea piattaforma che effettuerà le seguenti operazioni di recupero:

- > recupero cornice di alluminio;
- recupero vetro;
- recupero integrale della cella di silicio o recupero del solo wafer;
- > invio a discarica delle modeste quantità di polimero di rivestimento della cella e/o ad impianto di recupero e/o riutilizzo dei polimeri.

La tecnologia per il recupero e riciclo dei materiali, valida per i pannelli a silicio cristallino è una realtà industriale che va consolidandosi sempre più. A titolo di esempio l'Associazione PV CYCLE,

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

che raccoglie il 70% dei produttori europei di moduli fotovoltaici (circa 40 aziende) ha un programma per il recupero dei moduli ed hanno attivato un impianto di riciclo già dal 2017, i produttori First Solar e Solar World hanno già in funzione due impianti per il trattamento dei moduli con recupero del 90% dei materiali ed IBM ha già messo a punto e sperimentato una tecnologia per il recupero del silicio dai moduli difettosi.

8.2. Rimozione delle strutture di sostegno

Le strutture di sostegno dei pannelli saranno rimosse tramite smontaggio meccanico, per quanto riguarda la parte aerea e tramite estrazione dal terreno dei pali di fondazione infissi; appare opportuno riportare che essendo i terreni di fondazione costituiti da sabbie limose ed argillose, le travi di fondazione saranno semplicemente "infisse" con la tecnica del "battipalo" e potranno essere facilmente estratti.

Non è necessario fissare le travi di fondazione con "boiacca "cementizia e/o calcestruzzo, in quanto le tensioni orizzontali dei terreni tenderanno a farsi che si si abbiano vuoi fra terreno e struttura di fondazione.

I materiali ferrosi ricavati verranno inviati ad appositi centri di recupero e riciclaggio istituiti a norma di legge.

Per quanto attiene al ripristino del terreno non sarà necessario procedere a nessuna demolizione di fondazioni in quanto non si utilizzano elementi in calcestruzzo gettati in opera.

8.3. Impianto e apparecchiature elettriche

Le linee elettriche e gli apparati elettrici e meccanici delle cabine di trasformazione MT/BT saranno rimosse, conferendo il materiale di risulta agli impianti all'uopo deputati dalla normativa di settore.

Per gli inverter e i trasformatori è previsto il ritiro e smaltimento a cura del produttore.

Il rame degli avvolgimenti e dei cavi elettrici e le parti metalliche verranno inviati ad aziende specializzate nel loro recupero e riciclaggio mentre le guaine verranno recuperate in mescole di gomme e plastiche.

Le polifere ed i pozzetti elettrici verranno rimossi tramite scavo a sezione obbligata che verrà poi nuovamente riempito con il materiale naturale.

Consulenza: **Atech srl** Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Le colonnine prefabbricate di distribuzione elettrica saranno smantellate ed inviate anch'esse ad aziende specializzate nel loro recupero e riciclaggio.

8.4. Locali prefabbricati, cabine di trasformazione e cabina di impianto

Per quanto attiene alle strutture prefabbricate alloggianti le cabine elettriche si procederà alla demolizione ed allo smaltimento dei materiali presso impianti di recupero e riciclaggio inerti da demolizione (rifiuti speciali non pericolosi).

Per le platee delle cabine elettriche previste in calcestruzzo si prevede la loro frantumazione, con asportazione e conferimento dei detriti a ditte specializzate per il recupero degli inerti.

Appare opportuno riportare che gli scavi effettuati per alloggiare il cassonetto di fondazione delle cabine, saranno isolati con la stesa di un Tessuto Non Tessuto (TNT) da 300- 400 g/mq che permetterà di non lasciare alcun elemento della sottofondazione in "misto granulare calcareo" (tipo Aia-CNR Uni 1006).

8.5. Recinzione area

La recinzione in maglia metallica di perimetrazione del sito, compresi i paletti di sostegno ed i cancelli di accesso, sarà rimossa tramite smontaggio ed inviata a centri di recupero per il riciclaggio delle componenti metalliche.

I pilastri in c.a. di supporto ai cancelli verranno demoliti ed inviati presso impianti di recupero e riciclaggio inerti da demolizione (rifiuti speciali non pericolosi).

8.6. Viabilità interna

La pavimentazione stradale permeabile (materiale stabilizzato) verrà rimossa per tutto il cassonetto che, come riferito, sarà isolato dal terreno naturale, da un manto di TNT che, fra l'altro, eviterà in questa fase di asportazione, che nessuna porzione di "misto granulare calcareo" resti a contatto con il terreno vegetale.

Il "misto" sarà recuperato, mentre il TNT potrà anche questo essere recuperato in impianti di Re.Mat.

In cassonetto di fondazione (di 15-20 cm) sarà ricolmato da terreno vegetale al fine del ripristino dello stato dei luoghi.

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

8.7. Dettagli riguardanti lo smaltimento dei componenti

Nell'ambito del presente progetto lo smaltimento dei componenti verrà gestito secondo i seguenti dettagli:

Materiale	Destinazione finale		
Acciaio	Riciclo in appositi impianti		
Materiali	Riciclo in appositi impianti		
Rame	Riciclo e vendita		
Inerti da costruzione	Conferimento ad impianto di recupero		
Materiali provenienti dalla demolizione delle strade	Conferimento ad impianto di recupero		
Materiali compositi in fibre di vetro	Riciclo		
Materiali elettrici e component elettromeccanici	Separazione dei materiali pregiati da quelli meno pregiati. Ciascun materiale verrà riciclato/venduto in funzione delle esigenze del mercato alla data di dismissione del parco eolico		

L'importo relativo alle opere di dismissione dell'impianto è pari a 321.552,64 € meglio dettagliate nell'elaborato "Computo Metrico di Dismissione".

Elaborato: Relazione tecnica

Consulenza: **Atech srl** Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

9. ANALISI DELLE POSSIBILI RICADUTE SOCIALI, OCCUPAZIONALI ED ECONOMICHE DELL'INTERVENTO A LIVELLO LOCALE

Gli impatti derivanti dalla realizzazione dell'impianto fotovoltaico sul sistema socioeconomico sono indubbiamente positivi, in quanto si prevede l'utilizzo di risorse e maestranze locali sia per le attività di realizzazione che per quelle di manutenzione durante l'esercizio dell'impianto, che garantirà uno sbocco occupazionale per le imprese locali.

L'opera infatti si integra con la struttura economica della zona ed apporta benefici dal punto di vista:

- occupazionale: si cercherà di impiegare maestranze e imprese locali sia durante la fase di costruzione che nelle operazioni di gestione e manutenzione dell'impianto;
- economico: aumenta la redditività dei terreni sui quali sono collocati i moduli fotovoltaici;
- ambientale: si incrementa la quota di energia pulita prodotta all'interno del territorio interessato dalla realizzazione dell'impianto fotovoltaico.

9.1. Impatto occupazionale

Secondo alcune stime dell'industria del solare, si calcola che il fotovoltaico crei 10 posti di lavoro per ogni MW in fase di produzione, e ben 33 per ogni MW in fase di installazione.

Inoltre, la vendita e la fornitura di un MW occupano 6-8 persone, mentre la ricerca e lo sviluppo impegnano altre 1-2 persone per MW.

L'occupazione nel settore fotovoltaico è associata alle seguenti principali tipologie di attività:

- costruzione (pannelli di silicio, strutture portanti, ecc.);
- *installazione* (consulenza, installazioni elettriche, fondazioni, cavi e connessioni alla rete, trasformatori, sistemi di controllo remoto, percorsi pedonali e carrabili, potenziamento della rete elettrica);
- gestione/manutenzione.

Non solo la presenza di un impianto di questo tipo comporta la necessità di personale specializzato nella sua gestione e manutenzione, ma, allo stesso tempo, permette di dare un buon contributo al fabbisogno energetico dell'intero comune.

L'impatto occupazionale previsto durante le diverse fasi dei progetti può essere stimato come segue:

- Fase progettuale: lavoro per geometri, architetti, ingegneri, consulenti legali, commercialisti, ecc.;
- Fase realizzativa: lavoro per imprese locali, quali ditte di costruzione, movimento terra, impianti, sicurezza, ecc.;

Elaborato: Relazione tecnica

Consulenza: **Atech srl** Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

- Fase operativa: lavoro per personale addetto alla sicurezza e manutenzione degli impianti;
 Attività di coordinamento: lavoro per personale specializzato in gestione di progetti e personale amministrativo;
- Fase di gestione: addetti alla manutenzione ordinaria e straordinaria, elettricisti specializzati per inverter e trasformatori, addetti alla pulizia periodica dei pannelli e dei terreni del sito;

9.2. Sensibilizzazione della popolazione

Si può concludere che l'installazione dell'impianto fotovoltaico produce un chiaro effetto positivo nello sviluppo del settore terziario, industriale e artigianale della zona.

Effetti Socioeconomici

In media, un parco fotovoltaico in Europa rimborserà l'energia usata per la costruzione in un periodo di tempo che va dai 2 ai 3 anni, e nell'arco di tutto il suo ciclo di durata un pannello produrrà più di 10 volte l'energia usata nella sua costruzione.

Ciò è favorevole se paragonato con centrali elettriche alimentate a carbone, oppure a petrolio, che distribuiscono solo un terzo dell'energia totale usata nella loro costruzione e nel rifornimento di combustibile. Così se il combustibile fosse incluso nel calcolo, le centrali elettriche a combustibile fossile non raggiungerebbero mai un rimborso energetico. L'energia ricavata dal sole non solo raggiunge un rimborso in pochi anni dal momento dell'installazione, ma fa anche uso di un combustibile inesauribile e senza costi.

Pertanto considerando le diverse variabili in gioco si può concludere che l'impianto genera un impatto positivo dal punto di vista della redditività economica.

Elaborato: Relazione tecnica

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

10. ELENCO DELLE AUTORIZZAZIONI, INTESE, CONCESSIONI, LICENZE, PARERI, NULLA OSTA E ASSENSI

Regione Puglia

Area Politiche per lo Sviluppo Economico, il Lavoro e l'Innovazione Servizio Attività estrattive Corso Sonnino n.177 – BARI

Regione Puglia

Area Politiche per la Riqualificazione, la Tutela e la Sicurezza Ambientale e per l'Attuazione delle Opere Pubbliche – Servizio Ecologia Ufficio Programmazione, Politiche Energetiche, VIA e VAS VIA DELLE MAGNOLIE, 6 - 70026 MODUGNO (BA)

Regione Puglia

Servizio Attività estrattive
VIA DELLE MAGNOLIE, 6 70026 MODUGNO (BA)
attivitaestrattive@pec.rupar.puglia.it

Regione Puglia

Area Politiche per l'Ambiente, le Reti e la Qualità Urbana Servizio Tutela delle Acque VIA DELLE MAGNOLIE, 6 70026 MODUGNO (BA) servizio.tutelacque@pec.rupar.puglia.it

Regione Puglia

Area Politiche per lo Sviluppo Rurale Ufficio Provinciale Agricoltura di Lecce VIA ALDO MORO 73100 LECCE upa.lecce@pec.rupar.puglia.it

Regione Puglia

Area Politiche per l'Ambiente, le Reti e la Qualità Urbana Servizio LL. PP. - Ufficio Espropri VIA DELLE MAGNOLIE, 6 70026 MODUGNO (BA) ufficioespropri.regionepuglia@pec.rupar.puglia.it

Elaborato: Relazione tecnica

Rev. 0 - Settembre 2021

Pag. **69** a **74**

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Ministero Sviluppo Economico

Dipartimento per le Comunicazioni Ispettorato Territoriale Puglia - Basilicata VIA AMENDOLA, 116 70125 BARI (BA)

Regione Puglia

Area Politiche per la Mobilità e la Qualità Urbana Servizio Assetto del Territorio Ufficio Attuazione Pianificazione Paesaggistica

VIA DELLE MAGNOLIE, 6 70026 MODUGNO (BA)

servizio.assettoterritorio@pec.rupar.puglia.it

Regione Puglia

Area Politiche per la Riqualificazione, la Tutela e la Sicurezza Ambientale e per l'Attuazione delle Opere Pubbliche - Servizio Tutela delle Acque Via delle Magnolie, 6 - 70026 Modugno (Ba)

Regione Puglia Avvocatura Regionale

Lungomare Nazario Sauro, 33 - 70121 Bari

Comando Provinciale Vigili del Fuoco di Brindisi

VIA NICOLA BRANDI sn 72100 Brindisi com.brindisi@cert.vigilfuoco.it

Regione Puglia

Area Politiche per l'Ambiente, le Reti e la Qualità Urbana Servizio LL. PP. Ufficio Struttura Tecnica Provinciale di Brindisi

PIAZZA SANTA TERESA, 2 72100 BRINDISI

ufficio.coord.stp.br@pec.rupar.puglia.it

Comando in Capo del Dipartimento Militare Marittimo dello Jonio e del Canale d'Otranto

CORSO DUE MARI, 38 74100 TARANTO

maridipart.taranto@postacert.difesa.it

Elaborato: Relazione tecnica

Rev. 0 - Settembre 2021

Pag. **70** a **74**

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Provincia di Brindisi

PIAZZA SANTA TERESA, 2 72100 BRINDISI provincia@pec.provincia.brindisi.it

Aeronautica Militare Comando III Regione Aerea

LUNGOMARE NAZARIO SAURO, 39 70100 BARI aeroscuoleaeroregione3@postacert.difesa.it

ASL Brindisi

Via Napoli, 8 72100 Brindisi BR protocollo.asl.brindisi@pec.rupar.puglia.it

Terna S.p.A.

VIA EGIDIO GALBANI, 70 00196 ROMA

ARPA Puglia Direzione Regionale

CORSO TRIESTE, 27 70126 BARI dir.generale.arpapuglia@pec.rupar.puglia.it

ARPA Puglia - DAP di Brindisi

VIA GALANTI, 16 72100 BRINDISI dap.br.arpapuglia@pec.rupar.puglia.it

Ministero della Difesa Direzione Generale dei Lavori e del Demanio

PIAZZA DELLA MARINA, 4 00196 ROMA

Comando Militare Esercito "Puglia"

PZZA LUIGI DI SAVOIA, 3 70121 BARI

Autorità di Bacino della Puglia

STR PROV PER CASAMASSIMA KM 3 c/o INNOVAPUGLIA S.p.A. 70010 VALENZANO (BA) segreteria@pec.adb.puglia.it

Elaborato: Relazione tecnica

Rev. 0 – Settembre 2021

Pag. **71** a **74**

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

ENAC - Ente Nazionale per l'Aviazione Civile

VIA DI VILLA RICOTTI, 42 00144 ROMA operazioni.napoli@postacert.enac.gov.it

C.I.G.A.

Aeroporto "M. De Bernanrdi" VIA DI PRATICA DI MARE, 45 00040 POMEZIA (RM)

ENAV - Ente Nazionale Assistenza al Volo

VIA SALARIA, 716 00138 ROMA

Comune di Brindisi

Piazza Matteotti, 1 72100 – Brindisi ufficioprotocollo@pec.comune.brindisi.it

Ministero per i Beni e le Attività Culturali

Sovrintendenza per i Beni Architettonici e Paesaggistici per le Provincie di Lecce, Brindisi e Taranto VIA FOSCARINI, 2/b 73100 LECCE mbac-sbap-le@mailcert.beniculturali.it

Ministero per i Beni e le Attività Culturali Sovrintendenza per i Beni Archeologici per la Puglia VIA DUOMO, 33 EX CONVENTO S DOMENICO 74100 TARANTO mbac-sba-pug@mailcert.beniculturali.it

Ministero dei Trasporti

Direzione Generale Territoriale Sud e Sicilia Strada Prov.le Modugno-Palese 70026 Modugno (Ba)

Ministero dello Sviluppo Economico Dipartimento per le Comunicazioni Ispettorato Territoriale Puglia – Basilicata

Via Amendola 116 - 70125 - Bari (Ba)

Elaborato: Relazione tecnica

Rev. 0 – Settembre 2021

Pag. **72** a **74**

Consulenza: **Atech srl**Proponente: **HEPV30 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

RFI - Direzione Compartimentale Infrastrutture

Piazza A. Moro, Tratto Strada int. FS,57 70126 - Bari

Direzione Genio Militare

Ministero Difesa

Piazza della Marina, 4 00184 Roma (RM)

Acquedotto Pugliese S.p.A.

Via Leonardo Da Vinci, 12/Bis, 72100 Brindisi BR

AQP S.p.A.

Via Cognetti, 36 - 70121 Bari

SNAM Rete Gas Spa

Via G. Amendola, 162/1 70126 - Bari

ANAS S.p.A.

Compartimento Regionale

Viale Luigi Einaudi, 15 70125 Bariù

Direzione Regionale per i Beni Culturali e Paesaggistici della Puglia

Strada Dottula Isolato 49 70122 Bari

Elaborato: Relazione tecnica

Rev. 0 – Settembre 2021

Pag. **73** a **74**

Consulenza: Atech srl

Proponente: **HEPV30 Srl**

STUDIO DI IMPATTO AMBIENTALE

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 7.500 kW e potenza moduli pari a 10.124,4 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

11. CERTIFICAZIONE DI IMPRESA

Elaborato: Relazione tecnica

Rev. 0 – Settembre 2021

Pag. **74** a **74**

Pronti all'impresa

Camera di Commercio Industria Artigianato e Agricoltura di TRENTO

Registro Imprese - Archivio ufficiale della CCIAA

In questa pagina viene esposto un estratto delle informazioni presenti in visura che non può essere considerato esaustivo, ma che ha puramente scopo di sintesi

VISURA ORDINARIA SOCIETA' DI CAPITALE

HEPV30 S.R.L.

PBBDZB

Il QR Code consente di verificare la corrispondenza tra questo documento e quello archiviato al momento dell'estrazione. Per la verifica utilizzare l'App RI QR Code o visitare il sito ufficiale del Registro Imprese.

DATI ANAGRAFICI

Indirizzo Sede legale TRENTO (TN) VIA ALTO ADIGE 160/A CAP 38121
Indirizzo PEC hepv30srl@legalmail.it

Numero REA TN - 233417 Codice fiscale e n.iscr. al 02557820228

Registro Imprese

Partita IVA 02557820228

Forma giuridica societa' a responsabilita' limitata

Data atto di costituzione 16/07/2019
Data iscrizione 19/07/2019
Data ultimo protocollo 28/05/2020

Amministratore RICCI RICCARDO
Rappresentante dell'Impresa

Amministratore BOSIN GIANNI

Rappresentante dell'Impresa

ATTIVITA'

Stato attività attiva

Data inizio attività 06/11/2019

Attività prevalente sviluppo e r

sviluppo e realizzazione di impianti di produzione di

energia elettrica

Codice ATECO 35.11
Codice NACE 35.11
Attività import export

Contratto di rete Albi ruoli e licenze Albi e registri ambientali -

L'IMPRESA IN CIFRE

Capitale sociale 10.000,00 Soci 1 2 Amministratori 1 Titolari di cariche Sindaci, organi di 0 controllo Unità locali 0 Pratiche inviate negli 1 ultimi 12 mesi 0 Trasferimenti di quote Trasferimenti di sede 0 Partecipazioni (1)

CERTIFICAZIONE D'IMPRESA

Attestazioni SOA Certificazioni di QUALITA'

DOCUMENTI CONSULTABILI

Bilanci 2019
Fascicolo sì
Statuto sì
Altri atti 4

(1) Indica se l'impresa detiene partecipazioni in altre società, desunte da elenchi soci o trasferimenti di quote

Indice

1	Sede	2
2	Informazioni da statuto/atto costitutivo	2
3	Capitale e strumenti finanziari	4
4	Soci e titolari di diritti su azioni e quote	5
5	Amministratori	5
6	Titolari di altre cariche o qualifiche	6
7	Attività, albi ruoli e licenze	7
_	Aggiornamento impresa	

1 Sede

Indirizzo Sede legale TRENTO (TN)

VIA ALTO ADIGE 160/A CAP 38121

Indirizzo PEC hepv30srl@legalmail.it

Partita IVA 02557820228 Numero repertorio economico TN - 233417

amministrativo (REA)

2 Informazioni da statuto/atto costitutivo

Registro Imprese Codice fiscale e numero di iscrizione: 02557820228

Data di iscrizione: 19/07/2019

Sezioni: Iscritta nella sezione ORDINARIA

Estremi di costituzione Data atto di costituzione: 16/07/2019

Sistema di amministrazione

piu' amministratori (in carica)

Oggetto sociale LA SOCIETA' HA PER OGGETTO:

A) LO SVILUPPO, LA PROGETTAZIONE, LA REALIZZAZIONE, LA GESTIONE, LA

VENDITA E

LA MANUTENZIONE DI IMPIANTI PER LA PRODUZIONE DI ENERGIA ELETTRICA DA

FONTI

Altri riferimenti statutari Gruppi societari

Estremi di costituzione

iscrizione Registro Imprese Codice fiscale e numero d'iscrizione: 02557820228

del Registro delle Imprese di TRENTO

Data iscrizione: 19/07/2019

sezioni Iscritta nella sezione ORDINARIA il 19/07/2019

di **7**

informazioni costitutive Data atto di costituzione: 16/07/2019

Sistema di amministrazione e controllo

durata della società

scadenza esercizi

sistema di amministrazione e controllo contabile

organi amministrativi

Oggetto sociale

Data termine: 31/12/2060

Scadenza primo esercizio: 31/12/2019

Giorni di proroga dei termini di approvazione del bilancio: 60

Sistema di amministrazione adottato: amministrazione pluripersonale individuale disgiuntiva

piu' amministratori (in carica)

LA SOCIETA' HA PER OGGETTO:

- A) LO SVILUPPO, LA PROGETTAZIONE, LA REALIZZAZIONE, LA GESTIONE, LA VENDITA E LA MANUTENZIONE DI IMPIANTI PER LA PRODUZIONE DI ENERGIA ELETTRICA DA FONTI RINNOVABILI:
- B) LA REALIZZAZIONE E LA GESTIONE DI IMPIANTI PER IL TRASPORTO E LA DISTRIBUZIONE DELL'ENERGIA ELETTRICA DESTINATA AD ESSERE UTILIZZATA NEI LIMITI CONCESSI DALLE DISPOSIZIONI DI LEGGE;
- C) LA PRODUZIONE, L'ACQUISTO, L'UTILIZZO E LA DISTRIBUZIONE DI ENERGIA ELETTRICA, SIA PER SCOPI PUBBLICI CHE PRIVATI;
- D) LA MESSA IN OPERA E LA MANUTENZIONE DI RETI DI DISTRIBUZIONE E DI CAVI PER
- IL TRASPORTO DELL'ENERGIA ELETTRICA, DI IMPIANTI E MACCHINARI CONNESSI;
- E) L'ACQUISTO E LA VENDITA DI IMPIANTI PER LA PRODUZIONE DI ENERGIA ELETTRICA E RELATIVI COMPONENTI E MATERIE DI PRODUZIONE, DI COLLETTORI, APPARECCHIATURE TERMICHE ED ELETTRICHE E PARTI DI ESSI, NONCHE' DI MATERIALI, PEZZI DI RICAMBIO E MATERIALI DI CONSUMO PER LA REALIZZAZIONE, MONTAGGIO, MANUTENZIONE E RIPARAZIONE DI IMPIANTI PER LA PRODUZIONE DI ENERGIA ELETTRICA;
- F) L'ASSUNZIONE DI MANDATI E DI AGENZIE PER LA VENDITA DI MATERIALI E COMPONENTI DI IMPIANTI PER LA PRODUZIONE DI ENERGIA ELETTRICA;
- G) L'ACQUISTO, LA VENDITA E LO SCAMBIO DI ENERGIA ELETTRICA, DI GAS E DI PRODOTTI ENERGETICI PER SE' E PER TERZI, ALL'INGROSSO O A CLIENTI FINALI NEI LIMITI E NEL RISPETTO DELLA NORMATIVA VIGENTE;
- H) L'ACQUISTO, LA VENDITA E LO SCAMBIO DI CERTIFICATI PREVISTI E DISCIPLINATI DALLA NORMATIVA DEL SETTORE DELL'ENERGIA, QUALI, AD ESEMPIO, CERTIFICATI BIANCHI, DIRITTI DI EMISSIONE, TITOLI DI EFFICIENZA ENERGETICA E SIMILI;

 I) L'ACQUISTO E LA VENDITA DEI DIRITTI DI CAPACITA' DI TRASPORTO DI ELETTRICITA', PER SE' E PER TERZI;
- J) L'ACQUISTO, LA COSTRUZIONE, LA RISTRUTTURAZIONE, LA GESTIONE, L'AFFITTO, LA LOCAZIONE, LA VENDITA E LA PERMUTA DI BENI IMMOBILI E COMPLESSI COMMERCIALI, TURISTICI, AGRICOLI, ENERGETICI E SPORTIVI, NONCHE' LA PROGETTAZIONE E LA REALIZZAZIONE IN PROPRIO E PER CONTO DI TERZI DI INIZIATIVE IMMOBILIARI, TURISTICHE, AGRICOLE, ENERGETICHE, COMMERCIALI E SPORTIVE IN GENERE;

 K) LA PRESTAZIONE DI SERVIZI DI CONSULENZA NEI SETTORI DI CUI SOPRA, CON ESCLUSIONE DELLE ATTIVITA' PER LE QUALI E' RICHIESTA L'ISCRIZIONE IN ALBI PROFESSIONALI;
- L) LA REALIZZAZIONE DI STUDI DI FATTIBILITA' NONCHE' LO SVILUPPO E L'IMPLEMENTAZIONE DI PROGETTI IMPRENDITORIALI NEL SETTORE DELL'ENERGIA IN

CON RIFERIMENTO ALLE SUDDETTE ATTIVITA' COSTITUENTI L'OGGETTO SOCIALE LA SOCIETA' PUO' INOLTRE COMPIERE TUTTE LE OPERAZIONI FINANZIARIE, INDUSTRIALI, COMMERCIALI, MOBILIARI ED IMMOBILIARI NECESSARIE OD UTILI PER IL CONSEGUIMENTO DELL'OGGETTO SOCIALE OPPURE AD ESSO DIRETTAMENTE O INDIRETTAMENTE CONNESSE. ESSA PUO' ASSUMERE PARTECIPAZIONI O INTERESSENZE IN ALTRE IMPRESE O SOCIETA' AVENTI OGGETTO ANALOGO O CONNESSO AL PROPRIO, O ANCHE DIVERSO DAL PROPRIO, MA NEI LIMITI DI CUI ALL'ART. 2361 C.C..

LA SOCIETA' POTRA' PRESTARE FIDEIUSSIONI O ALTRE GARANZIE EQUIVALENTI A FAVORE DI TERZI, COMPRESE GARANZIE REALI, PURCHE' NON NEI CONFRONTI DEL PUBBLICO E PURCHE' TALI ATTIVITA' NON VENGANO SVOLTE IN MISURA PREVALENTE RISPETTO A QUELLE CHE COSTITUISCONO L'OGGETTO SOCIALE.

LA SOCIETA' PUO' INOLTRE ACQUISTARE E CEDERE MARCHI, LICENZE, BREVETTI INDUSTRIALI E SIMILI ED ESERCITARE DIRITTI DI PROPRIETA' INDUSTRIALE E COMMERCIALE

Poteri

poteri associati alla carica di Piu' Amministratori

VENGONO NOMINATI DUE AMMINISTRATORI NELLE PERSONE DEI SIGNORI RICCI RICCARDO E BOSIN GIANNI CON POTERI DI ORDINARIA E STRAORDINARIA AMMINISTRAZIONE DA ESERCITARSI IN VIA DISGIUNTIVA.

L'ORGANO AMMINISTRATIVO HA TUTTI I POTERI DI ORDINARIA E STRAORDINARIA AMMINISTRAZIONE, ESCLUSI QUELLI CHE LA LEGGE O LO STATUTO RISERVANO ESPRESSAMENTE AI SOCI.

L'ORGANO AMMINISTRATIVO PUO' NOMINARE DIRETTORI, INSTITORI O PROCURATORI PER IL COMPIMENTO DI DETERMINATI ATTI O CATEGORIE DI ATTI, DETERMINANDONE I POTERI.

ALL'AMMINISTRATORE UNICO OVVERO AL PRESIDENTE ED AL VICEPRESIDENTE (SE NOMINATO) DEL CONSIGLIO DI AMMINISTRAZIONE, NONCHE' AGLI AMMINISTRATORI DELEGATI NEI LIMITI DELLA DELEGA CONFERITA, E' ATTRIBUITA LA RAPPRESENTANZA DELLA SOCIETA'; NEL CASO DI NOMINA DI UN ORGANO AMMINISTRATIVO COMPOSTO DA DUE O PIU' AMMINISTRATORI NON COSTITUENTI UN CONSIGLIO DI AMMINISTRAZIONE, LA RAPPRESENTANZA DELLA SOCIETA' SPETTA AGLI STESSI CONGIUNTAMENTE E/O DISGIUNTAMENTE NEI LIMITI DEI POTERI DI AMMINISTRAZIONE ATTRIBUITI IN SEDE DI NOMINA.

LA RAPPRESENTANZA SOCIALE SPETTA ANCHE AI DIRETTORI, AGLI INSTITORI ED AI PROCURATORI DI CUI ALL'ARTICOLO 25 NEI LIMITI DEI POTERI DETERMINATI DALL'ORGANO AMMINISTRATIVO NELL'ATTO DI NOMINA.

ripartizione degli utili e delle perdite tra i soci

VEDASI ART. 30 DELLO STATUTO SOCIALE

Altri riferimenti statutari

clausole di recesso

Informazione presente nello statuto/atto costitutivo

clausole di esclusione

Informazione presente nello statuto/atto costitutivo

clausole di gradimento

Informazione presente nello statuto/atto costitutivo

clausole di prelazione

Informazione presente nello statuto/atto costitutivo

gruppi societari

SOCIETA' SOTTOPOSTA AD ALTRUI ATTIVITA' DI DIREZIONE E COORDINAMENTO DA PARTE DI EHM.SOLAR S.R.L.

3 Capitale e strumenti finanziari

Capitale sociale in Euro

Deliberato: 10.000,00

Sottoscritto: 10.000,00

Versato: 10.000,00

Conferimenti in denaro

Conferimenti e benefici

INFORMAZIONE PRESENTE NELLO STATUTO/ATTO COSTITUTIVO


strumenti finanziari previsti dallo statuto

Titoli di debito:

VEDASI ART. 11 DELLO STATUTO SOCIALE

4 Soci e titolari di diritti su azioni e quote

Sintesi della composizione societaria e degli altri titolari di diritti su azioni o quote sociali al 16/07/2019

Il grafico e la sottostante tabella sono una sintesi degli assetti proprietari dell'impresa relativa ai soli diritti di proprietà, che non sostituisce l'effettiva pubblicità legale fornita dall'elenco soci a seguire, dove sono riportati anche eventuali vincoli sulle quote.

cio	Valore	%	Tipo diritto
M.SOLAR S.R.L. 33000211	10.000,00	100 %	proprieta'

Elenco dei soci e degli altri titolari di diritti su azioni o quote sociali al 16/07/2019

pratica con atto del 16/07/2019

Data deposito: 16/07/2019 Data protocollo: 16/07/2019

Numero protocollo: TN-2019-30997

Capitale sociale dichiarato sul modello con cui è stato depositato l'elenco dei soci:

10.000,00 Euro

di **7**

Proprieta'

capitale sociale

EHM.SOLAR S.R.L.

Quota di nominali: 10.000,00 Euro

Di cui versati: 10.000,00 Codice fiscale: 03033000211

Denominazione del soggetto alla data della denuncia: EHM.SOLAR S.R.L.

Tipo di diritto: proprieta'

Domicilio del titolare o rappresentante comune BOLZANO (BZ) VIA DELLA RENA 20 CAP 39100

5 Amministratori

AmministratoreRICCI RICCARDORappresentante dell'impresaAmministratoreBOSIN GIANNIRappresentante dell'impresa

Organi amministrativi in carica

piu' amministratori

Numero amministratori in carica: 2

Elenco amministratori

Amministratore

domicilio

RICCI RICCARDO

Rappresentante dell'impresa

Nato a ROVERETO (TN) il 15/03/1984 Codice fiscale: RCCRCR84C15H612U

TRENTO (TN)

VIA ALTO ADIGE 160/A CAP 38121

carica amministratore

Nominato con atto del 16/07/2019 Data iscrizione: 19/07/2019

Durata in carica: a tempo indeterminato Data presentazione carica: 16/07/2019

Amministratore

BOSIN GIANNI

domicilio

Rappresentante dell'impresa Nato a TRENTO (TN) il 29/11/1972 Codice fiscale: BSNGNN72S29L378T

TRENTO (TN)

VIA ALTO ADIGE 160/A CAP 38121

carica amministratore

Nominato con atto del 16/07/2019 Data iscrizione: 19/07/2019

Durata in carica: a tempo indeterminato Data presentazione carica: 16/07/2019

6 Titolari di altre cariche o qualifiche

Socio Unico

EHM.SOLAR S.R.L.

Socio Unico

EHM.SOLAR S.R.L.

Codice fiscale 03033000211

sede BOLZANO (BZ)

VIA DELLA RENA 20 CAP 39100

carica socio unico

Nominato con atto del 16/07/2019 Data iscrizione: 19/07/2019

7 Attività, albi ruoli e licenze

Data d'inizio dell'attività dell'impresa 06/11/2019

Attività prevalente SVILUPPO E REALIZZAZIONE DI IMPIANTI DI PRODUZIONE DI ENERGIA ELETTRICA

Attività

inizio attività

(informazione storica)

attività prevalente esercitata dall'impresa

SVILUPPO E REALIZZAZIONE DI IMPIANTI DI PRODUZIONE DI ENERGIA ELETTRICA

Classificazione ATECORI 2007 dell'attività prevalente

(fonte Agenzia delle Entrate)

Codice: 35.11 - produzione di energia elettrica Importanza: prevalente svolta dall'impresa

Data inizio dell'attività dell'impresa: 06/11/2019

attivita' esercitata nella sede

legale

SVILUPPO E REALIZZAZIONE DI IMPIANTI DI PRODUZIONE DI ENERGIA ELETTRICA (DAL 06/11/2019)

classificazione ATECORI 2007 dell'attività

(fonte Agenzia delle Entrate)

Codice: 35.11 - produzione di energia elettrica Importanza: primaria Registro Imprese

8 Aggiornamento impresa

Data ultimo protocollo

28/05/2020