

Direzione Progettazione e Realizzazione Lavori

ITINERARIO CAIANELLO (A1) - BENEVENTO ADEGUAMENTO A 4 CORSIE DELLA S.S. 372 "TELESINA" DAL KM 0+000 AL KM 60+900

LOTTO 2: DAL KM 0+000 (SVINCOLO CAIANELLO (A1))
AL KM 37+000 (SVINCOLO DI S. SALVATORE TELESINO)

PROGETTO DEFINITIVO

cod. NA280

PROGETTAZIONE: A.T.L. S.T.E. - ROCKSOIL - EDIN - KARRER

RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Francesco M. La Camera

COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE

Ing. Francesco M. La Camera

IL GEOLOGO

Dott. Geol. Fiorenza Pennino

L'ARCHEOLOGA:

Dott.ssa Grazia Savino

Elenco MIBACT n.3856 — archeologa di 1°fascia ai sensi del D.M. 244/2019

IL RESPONSABILE DEL PROCEDIMENTO

Ing. Pompeo Vallario

GRUPPO DI PROGETTAZIONE

S.T.E. s.r.l.

Structure and Transport Engineering

S.p.A.

Direttore Tecnico Ing. E. Moroni

Direttore Tecnico Ing. G. Cassani

E.D.IN. s.r.l. Società di Ingegneria

Direttore Tecnico Ing. G. Grimaldi

Prof. Arch. F. KARRER

Ordine Arch. Roma N. 12097

IDROLOGIA E IDRAULICA

Relazione idrologica

CODICE PR	NOME FILE TOO_IDOO_IDR_RE01_B PROGETTO					SCALA
L071					В	_
D						
С						
В	EMISSIONE A SEGUITO IS	STRUTTORIA	Apr.2022	MANCINI	DI RENZO	LA CAMERA
Α	EMISSIONE PER VERIFICA	DI OTTEMPERANZA	Feb.2022	MANCINI	DI RENZO	LA CAMERA
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

Itinerario Caianello (A1) - Benevento. Adeguamento a 4 corsie della S.S. 372 "Telesina" dal km 0+000 al km 60+900. Lotto 2: dal km 0+000 (Svincolo di Caianello) al km 37+00

(Svincolo di S. Salvatore Telesino).

Progetto Definitivo

000_T00_ID00_IDR_RE01_B Relazione idrologica

Sommario

1	PRI	EMESSA	3
2	INC	QUADRAMENTO TERRITORIALE	3
3	AN	ALISI IDROLOGICA	5
	3.1	Piano Gestione Rischio Alluvioni	5
	3.2	Pluviometria 6	
	3.2.1	Regionalizzazione delle piogge VAPI	8
	3.2.1.1	l Verifica della regionalizzazione delle piogge VAPI: bacino del Fiume Volturno	11
	3.2.1.2	P. Verifica della regionalizzazione delle piogge VAPI: bacini secondari	16
	3.2.2	Stima locale delle relazioni IDF	20
	3.2.2.1	! Legge intensità – Durata – Frequenza	20
	3.2.2.2	? Distribuzione di probabilità dell'intensità di pioggia oraria	23
	3.2.2.3	B Risultati della stima locale	23
4	CA	LCOLO DELLE PORTATE DI PIENA DEL FIUME VOLTURNO	35
	4.1	Modello idrologico afflussi-deflussi	35
	4.1.1	Obiettivi e struttura del modello	35
	4.1.2	Trasformazione afflussi-deflussi	36
	4.1.3	Idrogramma unitario istantaneo (IUH) geomorfologico	36
	4.1.4	Intensità di pioggia	37
	4.1.4.1	! Curve Number 38	
	4.1.5	Caratteristiche idrologiche dei bacini	40
	4.1.6	Determinazione dell'WFIUH	41
	4.1.7	Eventi pluviometrici di progetto	41
	4.1.8	Determinazione del CN	43
	4.2	Stima delle piene di progetto	50
	4.2.1	Portate di piena stimate con il coefficiente di deflusso	51
	4.2.2	Onde di piena stimate con il metodo del CN	52
	4.3	Verifica del modello idrologico	53
5	IDR	OLOGIA DELLE INTERFERENZE SECONDARIE	55
	5.1	Bacini del Torrente Titerno e del Rio delle Starze (San Felice)	55
	5.2	Portate di progetto del Torrente Titerno	55
	5.2.1	Modello afflussi-deflussi	55
	523	Portate di progetto	56

Itinerario Caianello (A1) - Benevento. Adeguamento a 4 corsie della S.S. 372 "Telesina" dal km 0+000 al km 60+900. Lotto 2: dal km 0+000 (Svincolo di Caianello) al km 37+00

(Svincolo di S. Salvatore Telesino).

Progetto Definitivo

000_T00_ID00_IDR_RE01_B Relazione idrologica

	5.3	Portate di progetto del Rio delle Starze	58
	5.3.1	Modello afflussi-deflussi	58
	5.3.2	Portate di progetto	59
	5.3.3	Onda di progetto duecentennale	59
6	IDR	OLOGIA DELLE INTERFERENZE MINORI	61
	6.1	Bacini degli attraversamenti minori	61
	6.1.1	Modello afflussi-deflussi	61
	6.1.1.1	. Tempo di concentrazione	62
	6.1.1.2	? Coefficienti di deflusso	64
	6.1.1.3	Intensità di pioggia	66
	6.2	Bacini dei fossi di guardia	68
	6.2.1	Fossi di Guardia	68
7	API	PENDICE	70
	7.1	APPENDICE 1 – Onde di piena per il bacino del F. Volturno alla confluenza del T. Torano	70
	7.2	APPENDICE 2 – Onde di piena per il bacino del F. Volturno alla S.S.372	73
	7.3	APPENDICE 3 – Onde di piena per il bacino del F. Volturno alla confluenza del T. Titerno	76
	7.4	APPENDICE 4 – Onde di piena per il bacino del F. Volturno alla stazione idrometrica di Amorosi	79
	7.5	APPENDICE 5 – Onde di piena dell'evento di piena del 16-19 dicembre 1968 del F. Volturno alla stat	zione
		idrometrica di Amorosi	82
	7.6	APPENDICE 6 – Onda di piena duecentennale per il bacino del Rio delle Starze (o Rio San Felice)	89

1 PREMESSA

La presente relazione si riferisce allo studio eseguito per la definizione dei caratteri idrologici dei bacini idrografici sottesi dalle interferenze degli assi stradali con il reticolo idrografico superficiale nel Progetto Definitivo: Itinerario Caianello (A1) – Benevento – Adeguamento in sede della S.S. N. 372 "Telesina" – Lotto 2, dal Km 0+000 al Km 37+000".

Oggetto dello studio è la definizione dei valori di colmo delle massime portate di piena necessarie per lo studio idraulico, con riferimento sia al dimensionamento idraulico delle opere di attraversamento stradale dei corsi d'acqua, sia alla verifica della compatibilità idraulica delle opere proposte con l'assetto idrogeologico delle aste fluviali, così come definito nell'ambito delle vigenti norme, direttive e strumenti di pianificazione di bacino.

Lo studio idrologico è propedeutico, quindi, alle analisi di compatibilità idraulica delle opere di attraversamento dei corsi d'acqua e al dimensionamento e verifica delle opere medesime, temi trattati nella Relazione Idraulica.

2 INQUADRAMENTO TERRITORIALE

L'opera in progetto ricade nel territorio di competenza del Distretto Idrografico dell'Appennino Meridionale (DIAM) e in particolare nel bacino del Fiume Volturno, come mostrato nella figura 2.1.

Figura 2.1 - Ubicazione dell'opera in progetto: bacino del Fiume Volturno (DIAM)

Da un punto di vista amministrativo (figura 2.2) l'opera in progetto ricade nel territorio di diversi comuni delle provincie di Caserta e Benevento e percorre, per gran parte della sua lunghezza, la valle del Fiume Volturno, principale interferenza idraulica della strada in progetto. In questo tratto il fiume scorre in una depressione tettonica (Piana di Alife) compresa tra le pendici meridionali del complesso del Matese, a nord, e il massiccio del Monte Maggiore, a sud. L'insieme fa parte della catena dell'Appenino Meridionale e, in particolare, dell'arco Campano.

Le interferenze idrauliche secondarie sono numerose, le principali sono: nel versante sud tra i comuni di Caianello (CE), Vairano Paternora (CE), Pietravairano (CE), Baia e Latina (CE), Dragoni (CE), Alife (CE) e Alvignano (CE), il Rio delle Starze, il Fosso San Pietro, i valloni Rava, Ponte Murato e Castelluccio e il Rio Tella; nel versante nord, tra i comuni di Gioia Sannitica (CE), Ruviano (CE), Faicchio (BN), Puglianello (BN) e San Salvatore Telesino (BN), i valloni Erba Bianca e Possente, il Torrente Titerno e il Fosso Marafi.

Nella figura 2.2 sono evidenziati in giallo i quattro pluviometri registratori con maggiore disponibilità di dati storici, Caiazzo, Letino, Morcone e Roccamonfina, che si posizionano rispettivamente a sud, a nord, a est ed a ovest dall'infrastruttura in progetto.

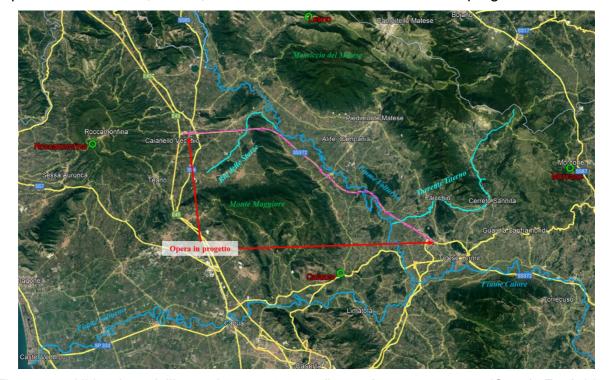


Figura 2.2 - Ubicazione dell'opera in progetto su un'immagine aerea recente (Google Earth 2020)

3 ANALISI IDROLOGICA

3.1 PIANO GESTIONE RISCHIO ALLUVIONI

L'area interessata dall'infrastruttura ricade interamente all'interno del bacino idrografico del Fiume Volturno. Tra i principali corsi d'acqua indagati nell'ambito del Piano di Gestione del Rischio Alluvioni (PGRA) dell'Autorità di Bacino Distrettuale dell'Appennino Meridionale (AdB-DAM, 2021) figurano il Fiume Volturno e il Torrente Titerno, le cui aste fluviali sono state modellate da un punto di vista idrologico ed idraulico (per il Volturno a partire dal Piano Stralcio Difesa Alluvioni – PSDA ex Autorità di Bacino dei Fiumi Liri-Garigliano e Volturno, 1999). Conseguentemente il Piano ha prodotto, lungo le aste dei corsi d'acqua citati, la mappatura delle aree di pericolosità e di rischio idraulico e i valori delle portate per assegnati tempi di ritorno a cui fare riferimento nella progettazione (tabella 3.1). Il tracciato della viabilità in progetto interseca anche aree classificate a "Rischio molto elevato – R4".

Tabella 3.1a – PSDA 1999 – Portate per assegnati tempi di ritorno del Fiume Volturno alle confluenze con i torrenti Torano e Titerno e con il Fiume Calore Irpino

PSDA 1999 Q_c (m ³ /s)							
Tempo di ritorno (anni)	30	50	100	200	300	500	1000
Volturno alla confluenza Torrente Torano	1195	1380	1630	1869	2020	2197	2455
Volturno alla confluenza Torrente Titerno	1295	1494	1764	2022	2192	2377	2662
Volturno alla confluenza Fiume Calore Irpino	1370	1580	1860	2134	2315	2509	2810

Tabella 3.1b – PGRA 2021 – Portate per assegnati tempi di ritorno del Fiume Volturno alle confluenze con i torrenti Torano e Titerno e con il Fiume Calore Irpino e del Torrente Titerno alla confluenza con il Fiume Volturno

PGRA 2021 Q _c (m ³ /s)							
Tempo di ritorno (anni)	30	100	300				
Volturno alla confluenza Torrente Torano	1175	1590	1990				
Volturno alla confluenza Torrente Titerno	1280	1740	2170				
Volturno alla confluenza Fiume Calore Irpino	1355	1840	2300				
Titerno alla confluenza Fiume Volturno	274	371	452				

Anas/Direzione Progettazione e Realizzazione Lavori Itinerario Caianello (A1) - Benevento. Adeguamento a 4 corsie della S.S. 372 "Telesina" dal km 0+000 al km 60+900. Lotto 2: dal km 0+000 (Svincolo di Caianello) al km 37+00 (Svincolo di S. Salvatore Telesino).

Progetto Definitivo 000_T00_ID00_IDR_RE01_B Relazione idrologica

3.2 PLUVIOMETRIA

Per lo studio delle piene del Fiume Volturno e dei corsi d'acqua secondari che in esso affluiscono si è fatto riferimento alla regionalizzazione delle piogge intense riportata nel "Rapporto sulla Valutazione delle Piene (VAPI) in Italia" relativo alla regione Campania – Compartimento di Napoli del Servizio Idrografico e Mareografico Nazionale (SIMN) del GNDCI (Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche) del Consiglio Nazionale delle Ricerche (CNR). Sono stati inoltre acquisiti i dati pertinenti registrati dalle stazioni pluviografiche del Centro Funzionale e Ufficio Idrografico della Regione Campania che ricadono nel bacino del Fiume Volturno o in prossimità di esso.

Sono state considerate rappresentative le quattro stazioni di Caiazzo, Letino, Morcone e Roccamonfina, ubicate nella figura 3.1, le cui quote sono rispettivamente pari a 205, 907, 630 e 815 m s.m., per le quali si dispone di lunghi record di registrazioni, sia delle serie dei massimi annuali giornalieri di precipitazione, sia delle registrazioni dei massimi annuali per le durate inferiori al giorno, di particolare interesse per lo studio dei bacini secondari. I numeri dei dati disponibili per le stazioni pluviometriche considerate sono indicati nella tabella 3.2. Si dispone infine delle registrazioni di pioggia relative all'evento pluviometrico intenso occorso nel dicembre del 1968 per il quale si sono verificati ingenti effetti al suolo. Per questo l'evento la precipitazione media alla risoluzione temporale di 2 ore sul bacino del Fiume Volturno, chiuso alla stazione di Amorosi (immediatamente a monte della confluenza del Fiume Calore Irpino), è stata dedotta dall'annale del 1968, parte II.

Figura 3.1 – Stazioni pluviometriche della rete di monitoraggio della Regione Campania: evidenziate in blu le quattro stazioni ricadenti nel bacino idrografico del Fiume Volturno o in prossimità di esso, prese in considerazione nello studio idrologico ai fini della verifica della regionalizzazione VAPI (Centro Funzionale della Regione Campania).

Tabella 3.2 - Elenco delle quattro stazioni pluviometriche considerate nello studio idrologico del Fiume Volturno e dei suoi affluenti secondari: nome stazione, lunghezza (in anni) della serie delle osservazioni massime annuali per la durata giornaliera e per le durate inferiori al giorno. Le quattro stazioni considerate furono già utilizzate per la redazione della regionalizzazione delle precipitazioni VAPI (anno 1988).

	Massimi giornalieri	Massimi giornalieri	Massimi 1-3-6-12-24 ore
Stazione	(1916 - 1988)	(1916 - 2020)	(1916 - 2020)
Caiazzo	66	91	37
Letino	66	88	32
Morcone	54	74	35
Roccamonfina	57	84	38

3.2.1 REGIONALIZZAZIONE DELLE PIOGGE VAPI

La regionalizzazione delle piogge del Compartimento di Napoli, sviluppata nell'ambito del Progetto VAPI, copre un'ampia fascia di territorio comprendente i bacini dei fiumi della Regione Campania che sfociano nel Mar Tirreno e che vanno dal Fiume Liri-Garigliano al Fiume Bussento. La regionalizzazione fu redatta utilizzando i dati di precipitazione relativi al periodo 1921-1980.

La procedura VAPI fornisce la distribuzione di probabilità del massimo annuale dell'intensità di durata t (h), i_t (mm/h), secondo una distribuzione TCEV (Two Component Extreme Value)

$$P(k) = e^{-\Lambda_1 e^{-\eta k} - \Lambda_* \Lambda_1^{1/\Theta_*} e^{-\eta k/\Theta_*}}$$
 (3.1)

dove k è il coefficiente di crescita della precipitazione, tale per cui l'intensità di precipitazione relativa alla durata t (h) e con tempo di ritorno T (anni) si esprime come $i_t(T) = \mu(i_t)k(T)$, dove $\mu(i_t)$ (mm/h) è la media della distribuzione di probabilità di i_t . Nella relazione (3.1) Λ_* e θ_* sono i parametri al primo livello di regionalizzazione (la vasta area in cui si può considerare costante il coefficiente di asimmetria) mentre Λ_1 e η sono i parametri al secondo livello di regionalizzazione (le aree più limitate, incluse nelle prime, in cui si può considerare costante anche il coefficiente di variazione). Nella regione Campania si è assunta un'unica zona coincidente con la regione omogenea, i cui parametri caratteristici sono riportati nella tabella 3.3.

Tabella 3.3 – Primo e secondo livello di regionalizzazione: parametri per la zona unica, coincidente con la regione

Zona = Regione	$arLambda_*$	$oldsymbol{ heta}_*$	Λ_1	η
Unica	0.224	2.136	41	4.688

Più utile dal punto di vista pratico è la forma inversa della (3.1) per cui, fissato un valore del tempo di ritorno T, si ricava il corrispondente valore del coefficiente di crescita k_T . La distribuzione TCEV non è analiticamente invertibile, pertanto i valori di k corrispondenti

000_T00_ID00_IDR_RE01_B Relazione idrologica

a diversi valori del tempo di ritorno sono riportati nella tabella 3.4; tali valori sono ben approssimati dalla relazione semplificata

$$k_T = \frac{1}{n} (\Theta^* \ln \Lambda^* + \ln \Lambda_1 \, \Theta^* \ln t \,) \tag{3.2}$$

Tabella 3.4 - Valori del coefficiente probabilistico di crescita, k_T , per alcuni valori del tempo di ritorno T

T (anni)	2	5	10	20	25	40	50	100	200	300	500	1000
k_T	0.93	1.22	1.43	1.65	1.73	1.90	1.98	2.26	2.55	2.71	2.95	3.26

Per le curve Intensità-Durata-Frequenza (IDF) si adotta la relazione a tre parametri:

$$i_t(T) = \frac{i_0(T)}{\left(1 + \frac{t}{d_C}\right)^{\beta}} \tag{3.3}$$

dove $d_{\mathcal{C}}$ (1/h) è un parametro di deformazione della scala temporale e β è un parametro adimensionale; entrambi sono indipendenti sia dalla durata della pioggia t sia dal tempo di ritorno T. Il parametro i_0 (mm/h) rappresenta l'intensità di precipitazione istantanea ed è l'unico parametro che dipende dal tempo di ritorno. Il parametro β è assunto variabile linearmente dalla quota del terreno z (m s.m.)

$$\beta = D - C z \tag{3.4}$$

dove C (1/m) e D sono ambedue parametri. Dalla relazione (3.3) si ricava

$$\mu(i_t) = \frac{\mu(i_0)}{\left(1 + \frac{t}{d_C}\right)^{\beta}} \tag{3.5}$$

dove $\mu(i_0)$ (mm/h) è la media della distribuzione di probabilità dell'intensità di precipitazione istantanea. I parametri delle relazioni (3.4) e (3.5), assunti costanti all'interno delle singole sottozone omogenee (terzo livello di regionalizzazione), sono riportati nella tabella 3.5 per ciascuna delle 6 sottozone individuate dalla procedura VAPI Campania. La suddivisione del territorio del Compartimento di Napoli in sottozone omogenee è riportata nella successiva figura 3.2.

Tabella 3.5 - Terzo livello di regionalizzazione: parametri delle curve IDF e della relazione di regressione sulla quota per tutte le sottozone individuate

Sottozona	$\mu(i_0)$ (mm/h)	d_c (h)	C (1/h)	$10^{-5} D$
1	77.08	0.3661	0.7995	8.6077
2	83.75	0.3312	0.7031	7.7381
3	116.7	0.0976	0.7360	9.7300
4	78.61	0.3846	0.8100	24.874
5	231.8	0.0508	0.8351	10.800
6	87.87	0.2205	0.7265	8.8476

Nello specifico (figura 3.2 alto) l'area oggetto dell'infrastruttura stradale in progetto ricade nella sottozona omogenea 6, mentre il bacino del Fiume Volturno chiuso alla stazione idrometrica di Amorosi ricade nelle sottozone 3 e 6 (figura 3.2 basso).

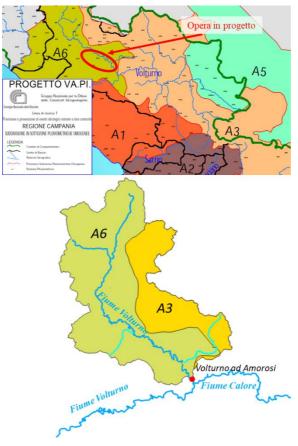


Figura 3.2 – Sottozone omogenee (VAPI Campania, alto); dettaglio del bacino del Fiume Volturno ad Amorosi

3.2.1.1 VERIFICA DELLA REGIONALIZZAZIONE DELLE PIOGGE VAPI: BACINO DEL FIUME VOL-TURNO


L'affidabilità della regionalizzazione delle precipitazioni elaborata nell'ambito del Progetto VAPI è stata verificata aggiornando i campioni dei dati in base alle registrazioni più recenti, e verificando la rispondenza della distribuzione regionalizzata rispetto ai campioni aggiornati nelle quattro stazioni significative individuate (tabella 3.2). I dati di pioggia utilizzati nell'ambito del progetto VAPI interessano, infatti, soltanto il periodo 1921-1980. Si ricorda inoltre che le zone e sottozone omogenee sono state determinate nell'ambito della procedura VAPI tramite la regionalizzazione dei massimi annuali delle altezze di pioggia giornaliere, in modo da utilizzare anche i dati forniti dai pluviometri ordinari. Per questo motivo la verifica dell'adattamento della distribuzione TCEV-VAPI è stata effettuata valutando il comportamento statistico delle piogge giornaliere. È importante notare che la durata critica delle precipitazioni per il Fiume Volturno ad Amorosi (immediatamente a monte della confluenza del Fiume Calore) è dell'ordine del giorno. La verifica è stata effettuata anche per le durate inferiori al giorno (1 e 3 ore), significative per lo studio idrologico dei bacini secondari; per tale verifica si rimanda al paragrafo successivo. Le percentuali di area del bacino del Volturno ricadenti in ciascuna delle sottozone 3 e 6 sono riportate nella tabella 3.6.

Tabella 3.6 - Percentuale di area del bacino del Fiume Volturno chiuso ad Amorosi ricadente in ciascuna sottozona VAPI.

Sottozona	A (%)
3	27
6	73

Nel seguito si indica con F a la frequenza empirica , dell'elemento i-esimo del campione di lunghezza N ordinato in senso decrescente, che vale:

$$F_i = 1 - \frac{i}{N+1}, i = 1, 2, \dots N$$
 (3.6)

Il corrispondente tempo di ritorno è calcolato a partire dalla probabilità di non superamento P, o dal suo stimatore campionario F tramite la relazione

$$T = \frac{1}{1 - P} \tag{3.7}$$

Per le quattro stazioni significative della tabella 3.2 si mostra nella figura 3.3 l'adattamento della distribuzione VAPI alla serie dei massimi annuali delle piogge giornaliere utilizzata nel Rapporto Regionale (anno 1988), confrontato con l'adattamento della serie dei massimi annuali delle piogge giornaliere aggiornato al 2020. Le rispettive serie numeriche sono riportate nella tabella 3.7.

Per i quattro pluviografi in esame l'aggiornamento al 2020 ha comportato un incremento della numerosità *N* del campione giornaliero di circa il 50% (tabella 3.2). Dall'analisi della figura 3.3 si può desumere un buon adattamento per le stazioni analizzate anche a seguito dell'inclusione degli eventi più recenti (campione aggiornato al 2020).

La regionalizzazione VAPI viene pertanto assunta come rappresentativa del comportamento statistico delle precipitazioni giornaliere nell'area in esame.

Tabella 3.7a – Massimi annuali piogge giornaliere (in mm) registrate ai pluviografi (in corsivo dati VAPI)

Caiazzo						Morcone				
Anno	Altezze (mm)	Anno	Altezze (mm)	Anno	Altezze (mm)	Anno	Altezze (mm)	Anno	Altezze (mm)	
1920	49.5	1964	89	2016	61	1920	60.0	1975	42.0	
1921	35.8	1966	65	2017	123.6	1921	60.0	1976	100.0	
1922	47	1967	37.6	2018	140.2	1922	95.0	1977	67.4	
1923	111	1968	50	2019	72.4	1923	70.0	1978	88.0	
1924	43	1969	25.2	2020	65.8	1924	70.0	1979	97.8	
1925	80	1971	81			1925	70.0	1980	72.2	
1926	125	1972	36			1926	58.0	1981	91.0	
1927	45	1973	150			1927	67.0	1982	65.4	
1928	76	1974	45			1928	65.0	1983	63.0	
1929	90	1975	39.6			1929	115.0	1984	69.4	
1930	53.6	1976	58			1930	90.0	1985	100.0	
1931	56	1977	34			1931	75.0	1986	66.2	
1932	35	1978	68.4			1932	40.0	1987	37.6	
1933	80	1979	54.2			1933	70.0	1988	55.4	
1934	180	1980	76.6			1934	75.0	1989	129.0	
1935	82.2	1981	47			1935	90.0	1990	55.6	
1936	55	1982	31.6			1936	67.0	1991	59.0	
1937	60	1983	44			1937	70.0	1992	55.4	
1938	93	1984	55.6			1938	68.0	1993	90.2	
1939	53.8	1985	62.6			1939	60.0	1994	60.4	
1940	55	1986	40			1940	58.0	1998	75.8	
1941	38.1	1987	84.8			1941	40.7	1999	127.0	
1942	40.3	1988	84.2			1942	48.2	2000	57.4	
1943	36	1989	49.8			1954	56.2	2009	94.0	
1945	47	1990	62.2			1955	73.8	2010	84.6	
1946	61	1991	80			1956	59.7	2011	148.6	
1947	65	1992	75			1957	74.0	2012	72.8	
1948	50	1993	44			1958	45.0	2013	82.4	
1949	135	2001	55.4			1959	97.0	2014	56.8	
1950	82.4	2002	59			1960	51.0	2015	87.0	
1951	96	2003	38.6			1961	35.0	2016	75.2	
1952	48.5	2004	53.4			1962	40.0			
1953	128	2005	114.4			1964	90.2			
1954	90.6	2006	76.2			1965	73.0			
1955	61.1	2007	44.8			1966	132.6			
1956	46.4	2008	38.2			1967	53.0			
1957	165.5	2009	97.4			1968	102.2			
1958	63.4	2010	72.2			1969	53.0			
1959	44	2011	72			1970	65.2			
1960	52.3	2012	46			1971	94.0			
1961	139.2	2013	52			1972	91.8			
1962	40	2014	85.8			1973	48.0			
1963	91.6	2015	63.8			1974	64.2			

Tabella 3.7b – Massimi annuali piogge giornaliere (in mm) registrate ai pluviografi (in corsivo dati VAPI)

	Letino						Roccamonfina					
Anno	Altezze (mm)											
1920	87	1965	85	2019	182.4	1921	55	1972	106.2			
1921	94	1966	188.2	2020	70.8	1922	61.1	1975	86			
1922	83	1967	102.2			1923	57.3	1976	114.6			
1923	59	1968	108			1924	130.7	1977	56			
1924	64	1969	75			1925	98	1978	92			
1925	112	1970	63.2			1926	185	1979	94.8			
1926	211	1971	54			1927	90	1980	107.8			
1927	174	1972	71			1928	87	1982	81			
1928	77	1973	63.4			1929	74.7	1983	51			
1929	84	1974	47			1930	131	1984	130.8			
1930	122	1975	114.2			1931	60.2	1985	109.4			
1931	96	1976	95.2			1932	49	1986	81.6			
1932	67	1977	78.6			1933	94.7	1987	68			
1933	84	1978	203.4			1934	88	1988	101.6			
1934	114	1979	137			1935	94.7	1989	49.2			
1935	207	1980	114.4			1936	53	1990	82.6			
1936	88	1981	43.4			1937	60	1992	45.4			
1937	87	1982	91.4			1938	68	1993	74.8			
1938	126	1983	112			1939	65	1994	46.4			
1939	81	1984	98.6			1940	64	1995	47.8			
1940	112	1986	154.2			1941	100	1996	61.6			
1941	76	1987	58			1942	58	1997	43.2			
1942	104	1988	98			1947	105	1998	63			
1943	38	1989	92.2			1948	92	2003	61.2			
1946	54	1990	65			1949	223	2004	72.8			
1947	93	1991	140.8			1950	76	2005	54			
1948	122	1992	88.4			1951	118.8	2006	46			
1949	181	1993	135.6			1952	59	2007	45.8			
1950	127	1994	73.6			1953	75	2008	85.4			
1951	103	1995	45.2			1954	118	2009	74			
1952	134	1996	83.8			1955	88	2010	87.6			
1953	51	1997	49.6			1956	65.6	2011	116			
1954	46	1998	60.4			1957	95.3	2012	84.2			
1955	137	2009	75.2			1958	90	2013	75.4			
1956	95	2010	80			1959	87	2014	67.6			
1957	111	2011	133.4			1960	96	2015	59.2			
1958	100	2012	78.4			1961	65	2016	46.4			
1959	65	2013	78			1962	173	2017	86.6			
1960	86	2014	59.4			1963	307	2018	74.4			
1961	108	2015	96.6			1964	129	2019	152.2			
1962	67.2	2016	46.8			1969	92.2	2020	72.2			
1963	93	2017	109.6			1970	90		·			
1964	113.6	2018	66.4			1971	104.2					

Itinerario Caianello (A1) - Benevento. Adeguamento a 4 corsie della S.S. 372 "Telesina" dal km 0+000 al km 60+900. Lotto 2: dal km 0+000 (Svincolo di Caianello) al km 37+00 (Svincolo di S. Salvatore Telesino).

Progetto Definitivo
000_T00_ID00_IDR_RE01_B
Relazione idrologica

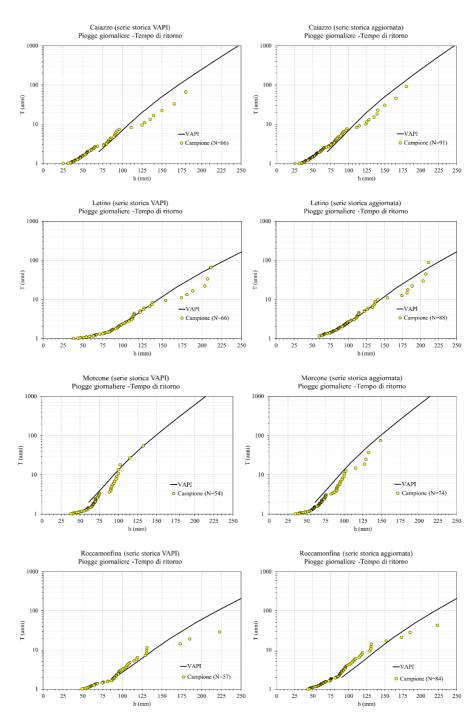


Figura 3.3 – Confronto in termini di tempo di ritorno fra le distribuzioni di probabilità VAPI (linea continua) dei massimi giornalieri e le corrispondenti frequenze empiriche (punti) per le stazioni ricadenti nelle sottozone VAPI 3 (Letino e Morcone), e 6 (Caiazzo e Roccamonfina); a sinistra il campione originario aggiornato al 1988, a destra il campione aggiornato al 2020.

3.2.1.2 VERIFICA DELLA REGIONALIZZAZIONE DELLE PIOGGE VAPI: BACINI SECONDARI

Dato che la durata delle precipitazioni che mette in crisi i bacini secondari di limitata estensione che affluiscono nel Fiume Volturno a monte della stazione idrometrografica di Amorosi è generalmente inferiore all'ora, e quindi decisamente inferiore quella, prossima alla giornaliera, che mette in crisi il bacino del F. Volturno in quella sezione, è di fondamentale importanza verificare il buon adattamento del modello di precipitazione intensa VAPI rispetto alle osservazioni pluviometriche di breve durata, aggiornate per tenere conto degli eventi più recenti (fino al 2020).

Nelle figure 3.4 e 3.5 si mostra, rispettivamente per le stazioni di Letino e Morcone (Sottozona 3 VAPI) e Caiazzo e Roccamonfina (Sottozona 6 VAPI), l'adattamento della distribuzione VAPI per le durate di un'ora e di tre ore, significative per i bacini secondari, con riferimento alle registrazioni aggiornate al 2020 delle altezze di pioggia di massima intensità e breve durata, riportate rispettivamente nelle tabelle 3.8 e 3.9.

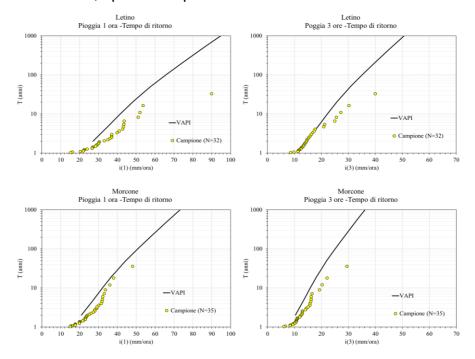


Figura 3.4: Pluviografi di Letino (in alto) e Morcone (in basso): adattamento della distribuzione regionale (Sottozona 3 VAPI Campania) ai campioni empirici aggiornati delle massime intensità oraria e trioraria

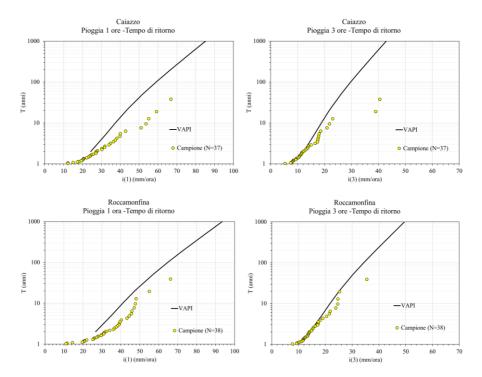


Figura 3.5: Pluviografi di Caiazzo (in alto) e Roccamonfina (in basso): adattamento della distribuzione regionale (Sottozona 6 VAPI Campania) ai campioni empirici aggiornati delle massime intensità oraria e trioraria

Dalle figure si evince come la distribuzione VAPI perda di affidabilità per le durate oraria e trioraria rispetto al campione aggiornato, per tutte la stazioni le stazioni e maggiormente per la durata oraria. Infatti le distribuzioni sottovalutando sistematicamente le intensità per tutti i tempi di ritorno e in maggior misura per i valori estremi.

Tabella 3.8 – Altezze di pioggia (in mm) di massima intensità e breve durata registrate ai pluviografi di Letino e Morcone (Sottozona 3 VAPI)

		Let	tino					Mor	cone		
Anno	1 ora	3 ore	6 ore	12 ore	24 ore	Anno	1 ora	3 ore	6 ore	12 ore	24 ore
1970	22.0	37.0	53.0	61.8	105.0	1954	23.0	32.0	32.0	32.0	56.2
1971	15.2	25.6	45.0	48.4	92.0	1955	36.0	37.0	43.0	69.0	73.8
1972	43.6	43.6	51.4	93.2	93.2	1956	15.0	28.0	36.5	43.0	69.7
1973	26.8	38.2	38.2	59.6	59.6	1957	19.8	19.8	32.0	52.0	76.0
1974	20.4	34.0	34.8	48.0	65.0	1958	22.0	32.6	32.6	38.6	48.5
1975	52.0	81.6	102.0	114.0	138.8	1959	32.0	43.0	45.0	56.5	97.0
1976	28.4	37.0	47.0	78.0	106.0	1966	48.0	88.2	101.0	131.0	135.4
1977	24.0	50.0	59.0	74.0	83.6	1968	31.4	31.4	50.0	75.4	126.4
1979	90.0	120.0	131.0	137.0	137.0	1971	28.0	47.0	60.0	90.0	107.8
1980	27.0	40.0	61.0	74.0	133.4	1972	28.0	42.0	50.0	91.8	118.8
1981	37.0	40.0	40.0	54.0	58.0	1973	25.0	28.0	29.8	29.8	48.0
1982	37.0	42.0	75.6	128.0	141.0	1974	17.6	32.0	32.0	46.0	68.2
1983	41.0	45.0	51.0	85.0	112.0	1975	15.2	18.0	29.0	40.0	58.6
1984	36.0	43.0	52.0	66.0	106.0	1976	17.6	38.6	47.6	77.0	113.4
1987	30.2	34.6	40.0	49.0	79.0	1977	30.0	33.0	53.0	58.4	74.8
1990	29.2	34.0	47.0	53.2	68.2	1978	38.0	66.0	66.6	70.0	97.8
1991	43.4	62.4	91.6	122.0	140.8	1979	29.0	47.0	67.0	97.6	101.8
1992	26.6	38.2	40.8	67.0	100.4	1980	20.0	38.6	39.0	66.0	81.6
1993	33.0	74.8	96.8	129.6	136.2	1981	24.0	48.0	78.0	91.0	91.6
1994	30.0	41.2	65.0	67.0	87.2	1982	23.6	25.0	45.0	64.0	68.6
2009	35.0	48.8	55.2	75.2	91.2	1983	23.0	33.0	48.0	62.0	105.0
2010	16.2	29.4	42.2	65.0	89.2	1984	20.0	36.0	44.0	64.4	70.4
2011	51.0	76.6	115.0	119.0	138.6	1989	26.0	25.0	75.6	92.2	136.6
2012	28.8	47.4	55.0	56.6	83.4	1990	33.0	35.6	35.6	35.6	55.6
2013	22.4	46.0	58.4	73.4	94.2	1992	23.0	31.4	39.8	45.6	55.4
2014	22.2	40.6	48.4	54.0	67.4	1993	17.6	45.0	63.6	75.0	109.6
2015	53.6	90.6	96.4	96.6	97.2	1999	16.0	38.0	68.6	100.4	127.0
2016	30.4	35.2	44.4	48.0	80.2	2009	21.6	38.6	63.0	84.6	94.0
2017	37.0	53.0	67.6	85.6	110.0	2010	23.4	30.2	49.8	65.8	104.8
2018	43.2	43.8	48.4	89.4	98.4	2011	27.2	57.6	89.4	142.8	149.0
2019	39.8	63.6	91.8	138.6	182.4	2012	19.8	30.2	42.4	52.0	78.4
2020	42.8	51.8	52.6	56.6	76.0	2013	32.2	49.4	76.6	84.4	104.0
						2014	33.6	48.4	51.0	53.2	70.0
						2015	29.2	60.6	79.8	82.8	125.6
						2016	31.8	48.4	65.0	74.6	76.8

Tabella 3.9 – Altezze di pioggia (in mm) di massima intensità e breve durata registrate ai pluviografi di Caiazzo e Roccamonfina (Sottozona 6 VAPI)

		Cai	azzo					Roccan	nonfina		
Anno	1 ora	3 ore	6 ore	12 ore	24 ore	Anno	1 ora	3 ore	6 ore	12 ore	24 ore
1973	12.2	15.8	17.2	18.2	32.0	1971	31.0	51.2	69.4	76.0	136.0
1974	23.0	39.0	45.0	45.0	49.2	1972	32.2	42.0	66.0	71.6	106.0
1975	18.0	30.2	35.6	35.6	41.0	1975	34.0	52.0	59.0	69.4	112.0
1976	34.0	55.6	56.6	58.6	59.0	1976	31.0	34.6	51.0	66.0	117.0
1977	30.2	33.0	33.2	33.8	66.6	1977	25.8	31.2	36.0	46.6	58.4
1978	24.0	28.0	51.6	68.0	99.0	1978	29.6	57.0	64.0	88.0	109.0
1979	40.0	52.0	54.0	54.0	59.0	1979	31.4	52.0	74.0	81.0	95.6
1980	27.0	34.6	42.6	63.0	79.0	1980	44.4	54.0	59.0	73.4	107.8
1981	28.0	31.4	31.4	41.4	60.0	1982	20.0	39.0	56.0	74.0	97.4
1983	20.0	24.0	24.0	30.0	48.0	1983	22.0	35.0	36.6	36.6	66.4
1984	19.2	25.0	25.8	40.0	70.0	1984	27.0	46.0	54.0	93.0	152.4
1985	12.2	22.6	38.0	54.2	72.0	1985	39.6	44.4	67.0	90.2	110.2
1988	31.6	53.2	58.6	69.0	94.0	1986	20.8	32.8	49.2	76.0	88.4
1990	37.4	37.6	38.2	55.2	62.2	1987	20.8	29.8	51.8	62.4	111.2
1991	39.8	41.4	61.4	74.4	85.4	1988	48.0	73.8	91.8	92.4	101.6
1992	27.2	45.0	51.0	69.2	75.0	1990	36.0	74.0	80.0	82.6	82.6
1993	20.6	28.6	37.8	38.0	57.2	1993	19.6	37.4	47.8	65.8	79.6
2001	17.2	25.2	39.0	44.0	59.0	1995	39.2	41.0	41.4	47.6	61.0
2002	27.2	27.8	47.0	54.0	68.4	1996	11.0	23.0	37.0	55.4	61.6
2003	19.8	22.2	28.0	30.0	39.2	1997	11.6	28.0	43.0	57.2	58.0
2004	20.4	31.6	35.4	57.8	62.2	2003	39.0	41.6	41.8	56.2	65.0
2005	34.8	40.6	57.6	77.6	117.2	2004	25.6	48.4	51.8	68.6	75.0
2006	31.8	52.8	75.6	76.0	76.2	2005	27.6	34.4	37.4	54.0	54.8
2007	24.6	34.6	42.8	45.2	47.8	2006	29.8	40.4	44.8	45.8	48.4
2008	15.0	24.4	29.4	34.4	53.0	2007	14.4	27.6	40.2	53.2	53.6
2009	59.2	69.0	88.6	96.6	120.0	2008	47.6	61.2	67.8	79.0	88.8
2010	38.2	62.6	62.8	67.8	72.6	2009	45.6	46.4	53.2	71.8	122.2
2011	25.6	34.0	53.0	66.4	72.2	2010	38.2	40.0	49.2	72.0	92.6
2012	22.2	32.2	32.4	32.8	50.8	2011	66.2	106.4	115.2	116.0	121.2
2013	36.4	42.0	42.2	42.2	55.2	2012	55.0	64.4	68.0	87.6	93.4
2014	42.8	52.4	58.6	75.0	98.2	2013	25.2	36.0	44.8	49.2	75.4
2015	23.8	36.2	37.8	53.4	74.0	2014	37.4	40.4	61.4	67.4	68.4
2016	51.0	53.8	54.4	54.4	62.8	2015	43.2	44.8	44.8	50.4	77.4
2017	66.8	121.4	130.6	141.2	152.8	2016	28.0	35.0	39.0	46.4	51.4
2018	53.6	116.8	133.0	139.8	140.4	2017	47.0	75.8	87.2	103.4	109.6
2019	30.2	49.4	63.2	78.8	78.8	2018	36.6	36.8	65.2	86.2	90.0
2020	55	65.4	65.4	65.6	75.6	2019	40.2	71.6	130.6	151.2	158.8
						2020	45.8	65.2	72.6	75.2	77.4

3.2.2 STIMA LOCALE DELLE RELAZIONI IDF

Il confronto mostrato nel paragrafo precedente (figure 3.4 e 3.5) induce alla cautela. Conseguentemente si è operato stimando anche localmente, nelle quattro stazioni pluviometriche considerate, un modello di distribuzione di probabilità alternativo a quello proposto nella regionalizzazione VAPI. I modelli stimati nelle quattro stazioni appartengono alla famiglia delle distribuzioni asintotiche dei valori estremi, di tipo I o di Gumbel e di tipo II o di Fréchet, caratterizzate entrambe da due parametri. L'assunzione di un modello a due parametri, che presenta una minore flessibilità (accuratezza) rispetto a modelli più complessi (tipo GEV, a tre parametri, o TCEV, a quattro parametri), è giustificato dalla limitata numerosità campionaria localmente disponibile; in tal modo si è voluto favorire la robustezza della stima nei confronti di eventi al di fuori dell'intervallo di osservazione (estrapolazione per i tempi di ritorno assunti nel progetto).

3.2.2.1 LEGGE INTENSITÀ – DURATA – FREQUENZA

Per poter rappresentare bene le piogge di forte intensità e brevi durate si è adottata una legge intensità-durata-frequenza a tre parametri (con una legge a due parametri infatti il valore di intensità di pioggia tende a infinito per una durata che tende a zero, sovrastimando notevolmente le intensità di pioggia di breve durata) del tipo già espresso dalla relazione (3.3). La legge (3.3) può essere scritta nella forma

$$i_t(T) = \frac{a(T)}{(b+t)^m}$$
(3.3')

assumendo che $b=d_C$, $m=\beta$ e $a(T)=i_0(T)$ d_C^{β} .

I parametri b, m e a(T) sono stimati a partire dal campione di registrazione di N anni regolarizzando i casi critici registrati ai quattro pluviografi in esame e adattando un modello probabilistico alle intensità di precipitazione orarie regolarizzate. Per piogge di durata inferiore a un'ora Bell (1969) ha osservato che i rapporti r_t tra le piogge di durata t molto breve e la pioggia oraria sono relativamente poco dipendenti dalla località. Quindi

l'estrapolazione della regolarizzazione verso tali durate può essere determinata imponendo il passaggio della (3.3') per le altezze di breve durata ricavate dai rapporti r_t di letteratura ($r_5 = h_5/h_{60} = 0.29$, $r_{15} = h_{15}/h_{60} = 0.57$, $r_{30} = h_{30}/h_{60} = 0.79$, dove h_t indica l'altezza di pioggia relativa alla durata di t minuti), oppure mediante la determinazione di tale rapporto dai dati registrati ai pluviografi con osservazioni delle piogge di massima intensità per durate inferiori a un'ora, o, ancora ottenuti in zone pluviometricamente affini tramite tecniche di regionalizzazione. In questo modo risulta fissato il parametro b della trasformazione temporale.

Nel caso specifico si è adottato il valore stimato nella stazione pluviometrica di Benevento imponendo il passaggio delle curve interpolanti per il rapporto $r_{30'}$ tra l'altezza di 30' e l'altezza oraria, registrato alla stazione pluviometrica di Benevento, calcolato su 35 anni di osservazioni (tabella 3.10) e pari a 0.767. Il valore di $r_{30'}$ ottenuto risulta molto simile a quello di letteratura (pari a 0.79) fornito dalla curva di inviluppo delle massime piogge osservate nel mondo, tracciata da Hershfield e Engman (1981) e confermato dalle osservazioni di Bell (1969).

Per la (3.3') deve essere quindi

$$r_{30'} = \left(\frac{b+1}{b+0.5}\right)^m \tag{3.8}$$

che si può porre nella forma

$$r_{30'} - \left(\frac{b+1}{b+0.5}\right)^m = 0 {(3.8')}$$

I parametri della (3.3') sono stati determinati imponendo che sia minima la somma dei quadrati degli scarti tra i logaritmi dei valori calcolati con la (3.3) e quelli dei valori osservati ai pluviografi in esame per tutti i casi critici registrati. Indicando con j = 1, ... 5 le durate t = 1, 3, 6, 12, 24 (h), la funzione da minimizzare risulta dall'adattamento del modello IDF a tutti i casi critici assieme

$$S = \sum_{i=1}^{N} \sum_{j=1}^{5} \left[\ln a_i + m \ln(b + t_j) - \ln(i_{i,j}) \right]^2$$
 (3.9)

dove l'indice i si riferisce al singolo i-esimo caso critico, i=1,...N. Annullando la derivata della (3.9) rispetto a m, si ottiene

Itinerario Caianello (A1) - Benevento. Adeguamento a 4 corsie della S.S. 372 "Telesina" dal km 0+000 al km 60+900. Lotto 2: dal km 0+000 (Svincolo di Caianello) al km 37+00

(Svincolo di S. Salvatore Telesino).

Progetto Definitivo

000_T00_ID00_IDR_RE01_B

Relazione idrologica

$$m = -\frac{\sum_{i=1}^{N} \sum_{j=1}^{5} \left| \overline{ln(b+t_{j})} - ln(b+t_{j}) \right| ln(i_{i,j})}{N \sum_{j=1}^{5} \left| \overline{ln(b+t_{j})} - ln(b+t_{j}) \right|^{2}}$$
(3.10)

dove

$$\frac{\ln(b+t_j)}{\ln(b+t_j)} = \frac{\sum_{j=1}^{5} \ln(b+t_j)}{5}$$
(3.11)

e b è dato dalla soluzione della (3.8'). Annullando infine le derivate della (9) rispetto ai a_i con i valori definitivi di m dato dalla (3.10) e b dalla (3.8') si ottiene

$$\ln a_i = \overline{\ln(\iota_{i,l})} + m \overline{\ln(b+t_l)}$$
 (3.12)

da cui si ricavano i parametri a_i dei singoli casi critici.

Tabella 3.10 – Altezze di pioggia di massima intensità per le durate di 30' e 1 ora registrate al pluviografo di Benevento

		Bene	vento		
Anno	h _{30'}	h _{1 ora}	Anno	h 30'	h _{1 ora}
1936	13.0	21.5	2000	10.2	14.6
1949	9.0	14.9	2001	12.4	18.2
1952	18.5	18.7	2002	10.0	14.4
1954	26.0	31.0	2003	12.2	16.0
1955	28.0	32.0	2004	9.4	11.4
1957	14.0	15.0	2005	13.6	16.0
1958	11.0	19.0	2006	11.6	16.6
1971	12.4	14.4	2007	5.8	9.4
1972	20.0	25.8	2008	11.0	16.4
1973	16.8	20.2	2009	15.4	22.6
1976	30.0	44.0	2010	17.4	23.4
1985	12.2	14.0	2011	27.8	30.6
1989	40.0	54.4	2012	21.2	24.8
1990	20.8	24.8	2013	36.0	48.0
1996	8.4	10.8	2014	14.6	23.6
1997	20.6	26.2	2015	29.0	55.8
1998	9.8	10.2	2016	22.0	23.0
1999	25.6	32.8			

000_T00_ID00_IDR_RE01_B Relazione idrologica

3.2.2.2 DISTRIBUZIONE DI PROBABILITÀ DELL'INTENSITÀ DI PIOGGIA ORARIA

Per determinare la legge IDF, all'intensità di pioggia oraria stimata con la procedura mostrata nel paragrafo precedente e rappresentata dai rapporto $i_{1,i} = a_i/(b+1)^m$ per i = 1,...N, si sono adattata due distribuzioni di probabilità:

 la distribuzione di Gumbel, o dei valori estremi di tipo I, la cui probabilità cumulata si esprime come

$$P(x) = e^{-e^{[-\alpha(x-\varepsilon)]}}$$
(3.13)

dove i due parametri valgono

$$\alpha = 1.2825/\sigma \tag{3.14}$$

$$\varepsilon = \mu - 0.45006 \,\sigma \tag{3.15}$$

in cui μ e σ sono rispettivamente la media e la deviazione standard della generica variabile casuale x (in questo caso l'intensità di pioggia oraria i_1).

 la distribuzione di Fréchet, o dei valori estremi di tipo II, la cui probabilità cumulata si esprime come

$$P(\mathbf{x}) = e^{-\left(\frac{\mathbf{x}}{\delta}\right)^{-\kappa}} \tag{3.16}$$

dove i due parametri valgono

$$\kappa = 1.2825/\sigma_{ln} \tag{3.17}$$

$$\delta = \mu_{ln} - 0.45006 \,\sigma_{ln} \tag{3.18}$$

in cui μ_{ln} e σ_{ln} sono rispettivamente la media e la deviazione standard del logaritmi della variabile x.

I parametri delle distribuzioni (3.13) e (3.16) sono stati stimati con il metodo dei momenti, ossia sostituendo ai momenti teorici i corrispondenti momenti campionari nelle (3.14) - (3.15) e (3.17) - (3.18).

3.2.2.3 RISULTATI DELLA STIMA LOCALE

Per i quattro pluviografi in esame, Caiazzo, Letino, Morcone e Roccamonfina, nelle tabelle dalla 3.11 alla 3.16 si riportano rispettivamente i valori dei parametri a_i , b ed m

stimati con la regolarizzazione dei casi critici empirici e i valori dei parametri della $P(i_1)$ assieme ai valori a(T) e $i_1(T)$ per prefissati tempi di ritorno.

Tabella 3.11 - Regolarizzazione dei casi critici ai pluviografi di Letino e Morcone

	_			1							
	Le	etino		Morcone							
b = 0	.052	m = ().664	b = ().071	m = 0	0.618				
i-esimo C.C.			a_i	i-esimo C.C.	a_i						
1	73.48	27	24.13	1	51.81	27	20.52				
2	57.82	28	23.26	2	43.98	28	19.51				
3	54.32	29	22.62	3	39.57	29	19.35				
4	52.59	30	22.06	4	37.76	30	17.54				
5	50.19	31	19.90	5	35.91	31	17.08				
6	47.72	32	18.65	6	35.42	32	16.54				
7	47.01			7	34.25	33	15.96				
8	42.11			8	33.60	34	14.17				
9	38.96			9	32.70	35	13.57				
10	37.70			10	32.12						
11	35.93			11	31.25						
12	35.43			12	30.41						
13	34.48			13	29.59						
14	33.22			14	28.23						
15	32.59			15	27.60						
16	31.86			16	26.86						
17	30.97			17	26.32						
18	30.09			18	25.59						
19	29.79			19	24.58						
20	29.35			20	24.15						
21	28.67			21	23.31						
22	28.17			22	23.12						
23	27.04			23	22.61						
24	26.71			24	22.02						
25	26.07			25	21.41						
26	25.16			26	20.62						

Tabella 3.12 - Regolarizzazione dei casi critici ai pluviografi di Caiazzo e Roccamonfina

	Cai	azzo			Roccan	nonfina	
$\mathbf{b} = 0$	0.163	m = (0.762	b = ().114	m = 0	0.701
i-esimo C.C.	a_i	i-esimo C.C.	a_i	i-esimo C.C.	a_i	i-esimo C.C.	a_i
1	81.86	27	25.10	1	72.05	27	27.86
2	77.53	28	23.93	2	59.51	28	26.89
3	57.27	29	23.43	3	52.61	29	26.46
4	52.18	30	22.58	4	49.79	30	25.92
5	47.95	31	21.52	5	48.38	31	24.68
6	44.64	32	20.94	6	45.96	32	24.03
7	43.20	33	20.14	7	45.01	33	23.34
8	41.99	34	19.56	8	43.81	34	22.61
9	39.98	35	17.62	9	42.57	35	21.78
10	39.70	36	16.46	10	41.09	36	20.08
11	38.92	37	12.50	11	40.36	37	18.92
12	37.96			12	39.87	38	17.00
13	36.58			13	39.17		
14	35.36			14	38.10		
15	34.67			15	36.92		
16	33.52			16	36.15		
17	33.06			17	35.62		
18	31.33			18	34.59		
19	30.42			19	33.39		
20	29.66			20	32.95		
21	29.23			21	32.36		
22	28.71			22	31.76		
23	27.80			23	31.07		
24	26.33			24	30.44		
25	26.05			25	29.94		
26	25.69			26	28.97		

Tabella 3.13 - Parametri delle distribuzioni di probabilità (Gumbel e Fréchet) e valori di i1 (mm/h) e a(T) (mm) per prefissati tempi di ritorno T nella stazione pluviometrica di Caiazzo

			Cai	azzo				
	Gur	nbel			Fré	chet		
$\alpha = 0$.09569	$\epsilon = 24$.21386	$\kappa = 3$.17435	$\delta = 23.22654$		
T	P[i(1)]	a(T)	i(1)	T	P[i(1)]	a(T)	i(1)	
anni				anni				
1.1	0.091	16.91	15.07	1.1	0.091	19.78	17.63	
3	0.667	37.75	33.65	3	0.667	34.63	30.87	
5	0.800	44.75	39.89	5	0.800	41.79	37.26	
10	0.900	53.54	47.73	10	0.900	52.94	47.19	
15	0.933	58.51	52.16	15	0.933	60.49	53.92	
20	0.950	61.98	55.26	20	0.950	66.41	59.20	
25	0.960	64.66	57.64	25	0.960	71.37	63.62	
30	0.967	66.84	59.58	30	0.967	75.67	67.45	
35	0.971	68.67	61.22	35	0.971	79.49	70.86	
40	0.975	70.26	62.63	40	0.975	82.96	73.95	
45	0.978	71.66	63.88	45	0.978	86.13	76.78	
50	0.980	72.91	64.99	50	0.980	89.07	79.40	
60	0.983	75.06	66.92	60	0.983	94.38	84.14	
70	0.986	76.89	68.54	70	0.986	99.12	88.36	
80	0.988	78.46	69.94	80	0.988	103.41	92.18	
90	0.989	79.85	71.18	90	0.989	107.34	95.69	
100	0.990	81.09	72.29	100	0.990	110.98	98.93	
150	0.993	85.87	76.54	150	0.993	126.17	112.47	
200	0.995	89.25	79.56	200	0.995	138.17	123.18	
300	0.997	94.01	83.81	300	0.997	157.04	139.99	
400	0.998	97.39	86.82	400	0.998	171.96	153.29	
500	0.998	100.01	89.15	500	0.998	184.50	164.47	
1000	0.999	108.14	96.40	1000	0.999	229.56	204.64	

Tabella 3.14 - Parametri delle distribuzioni di probabilità (Gumbel e Fréchet) e valori di i1 (mm/h) e a(T) (mm) per prefissati tempi di ritorno T nella stazione pluviometrica di Letino

	Letino												
	Gur	nbel			Fré	chet							
$\alpha = 0$.10572	$\epsilon = 28$.31730	$\kappa = 3$.	.88400	$\delta = 27.54677$							
T	P[i(1)]	a(T)	i(1)	T	T P[i(1)]		i(1)						
anni				anni									
1.1	0.091	20.73	20.04	1.1	0.091	22.75	21.99						
3	0.667	38.12	36.86	3	0.667	35.95	34.75						
5	0.800	43.97	42.50	5	0.800	41.92	40.53						
10	0.900	51.31	49.60	10	0.900	50.86	49.17						
15	0.933	55.45	53.61	15	0.933	56.72	54.83						
20	0.950	58.35	56.41	20	0.950	61.22	59.18						
25	0.960	60.59	58.57	25	0.960	64.92	62.77						
30	0.967	62.40	60.33	30	0.967	68.10	65.84						
35	0.971	63.94	61.81	35	0.971	70.91	68.55						
40	0.975	65.26	63.09	40	0.975	73.42	70.98						
45	0.978	66.43	64.22	45	0.978	75.71	73.19						
50	0.980	67.47	65.22	50	0.980	77.81	75.23						
60	0.983	69.27	66.97	60	0.983	81.59	78.88						
70	0.986	70.79	68.43	70	0.986	84.92	82.10						
80	0.988	72.10	69.71	80	0.988	87.91	84.99						
90	0.989	73.26	70.83	90	0.989	90.63	87.62						
100	0.990	74.30	71.83	100	0.990	93.14	90.04						
150	0.993	78.28	75.68	150	0.993	103.43	99.99						
200	0.995	81.11	78.41	200	0.995	111.41	107.70						
300	0.997	85.08	82.25	300	0.997	123.69	119.58						
400	0.998	87.90	84.98	400	0.998	133.22	128.79						
500	0.998	90.09	87.09	500	0.998	141.10	136.41						
1000	0.999	96.87	93.65	1000	0.999	168.69	163.09						

Tabella 3.15 – Parametri delle distribuzioni di probabilità (Gumbel e Fréchet) e valori di i1 (mm/h) e a(T) (mm) per prefissati tempi di ritorno T nella stazione pluviometrica di Morcone

	Morcone												
	Gur	nbel			Fré	chet							
$\alpha = 0$.15300	$\epsilon = 21$.93692	$\kappa = 3$.97215	$\delta = 21$.13940						
T	P[i(1)]	a(T)	i(1)	T	T P[i(1)]		i(1)						
anni				anni									
1.1	0.091	16.93	16.22	1.1	0.091	17.70	16.96						
3	0.667	29.05	27.84	3	0.667	27.69	26.53						
5	0.800	33.12	31.74	5	0.800	32.18	30.84						
10	0.900	38.24	36.64	10	0.900	38.87	37.25						
15	0.933	41.13	39.41	15	0.933	43.25	41.44						
20	0.950	43.15	41.35	20	0.950	46.60	44.65						
25	0.960	44.71	42.84	25	0.960	49.35	47.29						
30	0.967	45.98	44.06	30	0.967	51.72	49.56						
35	0.971	47.04	45.08	35	35 0.971		51.55						
40	0.975	47.97	45.96	40	0.975	55.66	53.34						
45	0.978	48.78	46.74	45	0.978	57.36	54.96						
50	0.980	49.51	47.44	50	0.980	58.92	56.46						
60	0.983	50.76	48.64	60	0.983	61.71	59.13						
70	0.986	51.82	49.66	70	0.986	64.17	61.49						
80	0.988	52.74	50.54	80	0.988	66.38	63.61						
90	0.989	53.55	51.31	90	0.989	68.39	65.53						
100	0.990	54.27	52.00	100	0.990	70.24	67.31						
150	0.993	57.05	54.66	150	0.993	77.82	74.57						
200	0.995	59.01	56.55	200	0.995	83.68	80.19						
300	0.997	61.79	59.20	300	0.997	92.70	88.82						
400	0.998	63.75	61.09	400	0.998	99.67	95.51						
500	0.998	65.27	62.55	500	0.998	105.43	101.03						
1000	0.999	70.00	67.08	1000	0.999	125.55	120.31						

Tabella 3.16 – Parametri delle distribuzioni di probabilità (Gumbel e Fréchet) e valori di i1 (mm/h) e a(T) (mm) per prefissati tempi di ritorno T nella stazione pluviometrica di Roccamonfina

	Roccamonfina												
	Gur	nbel			Fré	chet							
$\alpha = 0$.11845	$\epsilon = 27$.61492	$\kappa = 3$.96285	$\delta = 26$.68086						
T	P[i(1)]	a(T)	i(1)	T	P[i(1)]	a(T)	i(1)						
anni				anni									
1.1	0.091	21.83	20.23	1.1	0.091	23.09	21.40						
3	0.667	38.02	35.24	3	0.667	36.15	33.51						
5	0.800	43.46	40.28	5	0.800	42.03	38.96						
10	0.900	50.29	46.61	10	0.900	50.80	47.08						
15	0.933	54.15	50.19	15	0.933	56.52	52.39						
20	0.950	56.85	52.69	20	0.950	60.91	56.46						
25	0.960	58.93	54.62	25	0.960	64.53	59.80						
30	0.967	60.62	56.19	30	0.967	67.62	62.67						
35	0.971	62.05	57.51	35	0.971	70.35	65.20						
40	0.975	63.28	58.65	40	0.975	72.79	67.47						
45	0.978	64.37	59.66	45	0.978	75.02	69.53						
50	0.980	65.34	60.56	50	0.980	77.06	71.42						
60	0.983	67.01	62.11	60	0.983	80.72	74.81						
70	0.986	68.43	63.42	70	0.986	83.95	77.81						
80	0.988	69.65	64.56	80	0.988	86.85	80.49						
90	0.989	70.73	65.56	90	0.989	89.48	82.93						
100	0.990	71.70	66.45	100	0.990	91.90	85.18						
150	0.993	75.40	69.89	150	0.993	101.85	94.40						
200	0.995	78.03	72.32	200	0.995	109.54	101.53						
300	0.997	81.73	75.75	300	0.997	121.37	112.49						
400	0.998	84.36	78.19	400	0.998	130.52	120.97						
500	0.998	86.39	80.07	500	0.998	138.09	127.98						
1000	0.999	92.71	85.93	1000	0.999	164.50	152.47						

Per i quattro pluviografi, nelle figure 3.6 e 3.7 si riportano rispettivamente l'adattamento della regolarizzazione dei casi critici al campione empirico e il confronto tra le P di Gumbel e Fréchet e la frequenza cumulata F. Nella figura 3.7 il confronto è mostrato in carta probabilistica di Gumbel, dove sull'asse delle ordinate è rappresentata la variabile standardizzata $y = \alpha(i1 - \varepsilon)$.

Itinerario Caianello (A1) - Benevento. Adeguamento a 4 corsie della S.S. 372 "Telesina" dal km 0+000 al km 60+900. Lotto 2: dal km 0+000 (Svincolo di Caianello) al km 37+00

(Svincolo di S. Salvatore Telesino).

Progetto Definitivo

000_T00_ID00_IDR_RE01_B Relazione idrologica

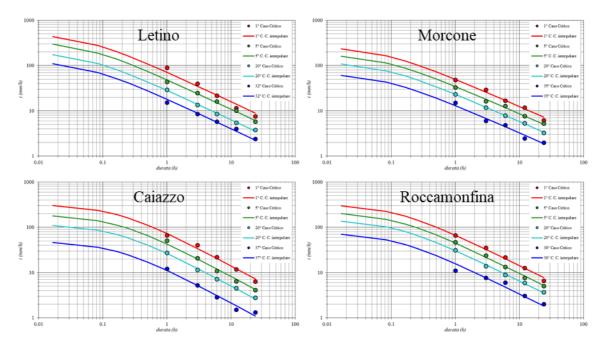


Figura 3.6 - Casi critici regolarizzati e valori empirici

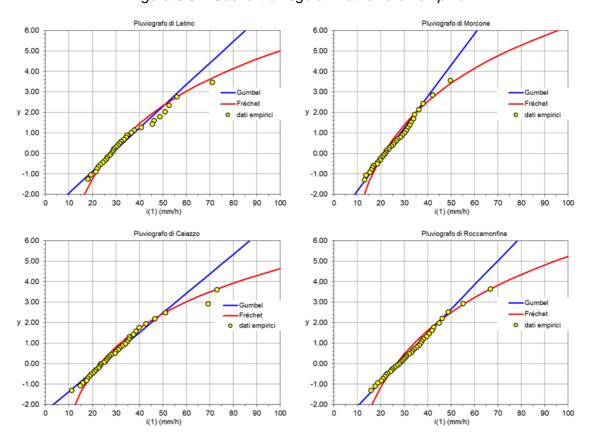
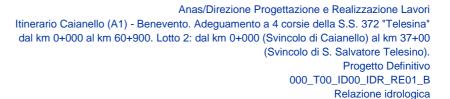



Figura 3.7 – Distribuzioni di probabilità di Gumbel e Fréchet e frequenze empiriche dell'intensità oraria regolarizzata

Nella figura 3.8 si mostrano, per i quattro pluviografi in esame, gli adattamenti ai valori registrati delle piogge oraria e trioraria delle distribuzioni regionale (VAPI) e locali (Gumbel e Fréchet), stimate come precedentemente esposto.

Fermo restando quanto già espresso sulla distribuzione regionale VAPI, la figura mostra un buon adattamento della distribuzione locale di Gumbel per le piogge orarie (con una leggera sottostima) ad esclusione della stazione di Letino, dove il maggiore evento del 1979 sembra avere le caratteristiche di un *outlier*. In estrapolazione al tempo di progetto di 200 anni, poi, essa fornisce per le stazioni di Letino e Caiazzo un incremento variabile dal 10% al 20% rispetto alla stima VAPI, mentre è pressoché coincidente alla stima VAPI per le stazioni di Morcone e Roccamonfina. Anche la distribuzione di Fréchet si adatta bene al campione, ma tende a sovrastimare le piogge sui valori estremi, principalmente alle stazioni di Morcone e Caiazzo.

Diversamente per le piogge triorarie la distribuzione locale di Gumbel sottostima il campione empirico in tutte le stazioni, mentre la distribuzione di Fréchet si adatta abbastanza bene al campione. Tuttavia è noto che nella estrapolazione per tempi di ritorno molto elevati la distribuzione di Fréchet tende a una forte sovrastima. Conseguentemente per il dimensionamento dei fossi di guardia, dei tombini e dei viadotti di attraversamento, sono state utilizzate le piogge di progetto derivanti dalla curva di possibilità pluviometrica desunta dalla distribuzione di Gumbel, ma si è cautelativamente verificata la compatibilità delle opere idrauliche anche con le piogge di progetto desunte dalla distribuzione di Fréchet, sensibilmente più consistenti delle prime (con il tempo di ritorno di 200 anni la Fréchet fornisce stime percentualmente superiori alla Gumbel variabili dal 30% al 50%).

Itinerario Caianello (A1) - Benevento. Adeguamento a 4 corsie della S.S. 372 "Telesina" dal km 0+000 al km 60+900. Lotto 2: dal km 0+000 (Svincolo di Caianello) al km 37+00

(Svincolo di S. Salvatore Telesino).
Progetto Definitivo

000_T00_ID00_IDR_RE01_B

Relazione idrologica

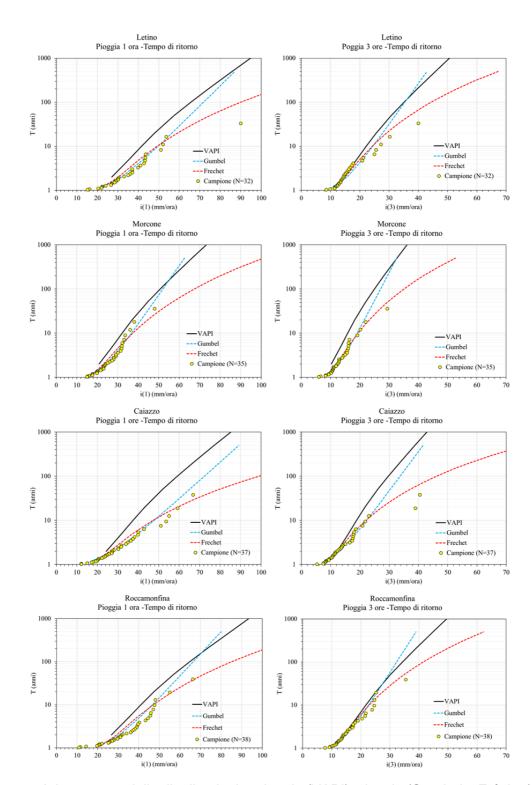


Figura 3.8 – Adattamento delle distribuzioni regionale (VAPI) e locale (Gumbel e Fréchet) ai campioni osservati (i₁ e i₃).

Nella figura 3.9 sono riportati i topoieti tracciati per l'area di interesse e si osserva come l'opera in progetto interessa nel suo percorso tre diversi topoieti: il primo tratto ricade sotto l'influenza della stazione pluviometrica di Roccamonfina, il secondo tratto ricade nell'area sottesa dalla stazione pluviometrica di Letino e il terzo tratto ricade nell'area di competenza di Caiazzo. Il pluviografo di Morcone ha influenza solamente sulle pendici più elevate del Vallone Possente e del Torrente Titerno.

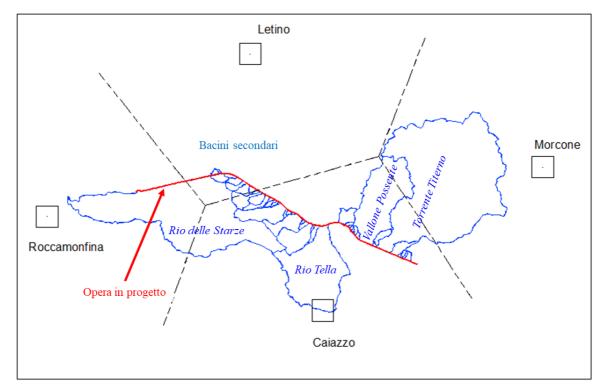


Figura 3.9 – Topoieti delle stazioni pluviometriche ubicate attorno all'area d'interesse

Nella tabella 3.17 si riportano i parametri della curva intensità-durata-frequenza di progetto, espressa dalla relazione (3.3'), per i tempi di ritorno utilizzati nelle verifiche idrauliche di progetto. I tempi di ritorno per il dimensionamento e la verifica idraulica di tutte le opere e gli elementi costituenti gli schemi idraulici di drenaggio e presidio dell'infrastruttura sono ricavati dalle prescrizioni del capitolato d'oneri ANAS.

Tabella 3.17 – Parametri delle curve di possibilità pluviometrica di progetto: infrastruttura viaria

	Let	ino			Mor	cone					
	b (ore)	= 0.052			b (ore)	= 0.071		T			
	m = 0	0.664		m = 0.618					Idraulica di	Fossi di	Tombini e via- dotti di attra-
Gui	mbel	Fré	chet	Gumbel Fréchet			piattaforma	guardia	versamento		
a (mm)	i ₀ (mm/ora)	a (mm)	i ₀ (mm/ora)	a (mm)	i ₀ (mm/ora)	a (mm)	i₀ (mm/ora)	anni			
60.59	430.82	64.92	461.67					25	X		
67.47	479.76	77.81	553.32					50		X	
74.30	528.33	93.14	662.29					100	X (trincea)		
81.11	576.73	111.41	792.20	59.01	301.85	83.68	428.03	200			X
	Caia	azzo			Roccan	nonfina					
	b (ore)	= 0.163			b (ore)	= 0.114		T			
	m = 0	0.762			m = 0	0.701			Idraulica di	Fossi di	Tombini e via- dotti di attra-
Gui	mbel	Fré	chet	Gu	mbel	Fré	chet		piattaforma	guardia	versamento
a (mm)	i ₀ (mm/ora)	a (mm)	i ₀ (mm/ora)	a (mm)	i ₀ (mm/ora)	a (mm)	i₀ (mm/ora)	anni			
64.66	257.86	71.37	284.60	58.93	269.26	64.53	294.83	25	X		
72.91	290.75	89.07	355.20	65.34	298.54	77.06	352.10	50		X	
81.09	323.39	110.98	442.59	71.70	327.60	91.90	419.93	100	X (trincea)		
89.25	355.92	138.17	551.03	78.03	356.55	109.54	500.52	200			X

Anas/Direzione Progettazione e Realizzazione Lavori Itinerario Caianello (A1) - Benevento. Adeguamento a 4 corsie della S.S. 372 "Telesina" dal km 0+000 al km 60+900. Lotto 2: dal km 0+000 (Svincolo di Caianello) al km 37+00 (Svincolo di S. Salvatore Telesino).

Progetto Definitivo 000_T00_ID00_IDR_RE01_B

Relazione idrologica

4 CALCOLO DELLE PORTATE DI PIENA DEL FIUME VOLTURNO

4.1 MODELLO IDROLOGICO AFFLUSSI-DEFLUSSI

4.1.1 OBIETTIVI E STRUTTURA DEL MODELLO

L'analisi idrologica, propedeutica per la modellazione bidimensionale, prevede la determinazione delle onde di piena di progetto del Fiume Volturno alle confluenze dei torrenti Torano e Titerno e alla confluenza con il Fiume Calore Irpino (corrispondente circa alla stazione idrometrografica di Amorosi) per i tempi di ritorno stabiliti: T=30,50,100,200,300,500 e 1000 (anni). L'analisi statistica delle portate al colmo massime annuali consente di determinare solamente la relazione fra portate al colmo e tempo di ritorno. Per stabilire la forma dell'onda di piena da fornire in ingresso al modello idraulico si applica un modello idrologico di trasformazione afflussi-deflussi. Il modello è descritto nei paragrafi che seguono.

Le precipitazioni intense che insistono sul bacino per i tempi di ritorno assegnati sono descritte dalle curve IDF derivate nell'ambito del progetto VAPI e già illustrate nel capitolo 3. Utilizzando queste curve, per ogni tempo di ritorno viene definito uno ietogramma di progetto che determina, in base alla trasformazione afflussi-deflussi, un idrogramma di piena nelle sezioni di chiusura dei sottobacini da dare in ingresso al modello idraulico di dettaglio.

La trasformazione piogge-portate viene determinata mediante un modello idrologico basato sulla geomorfologia. La determinazione degli scenari di precipitazione (ietogrammi sintetici) dipende dal tempo di ritorno assegnato e dalla durata della pioggia di progetto. Questa deve essere assunta pari alla durata critica, intesa come la durata della pioggia che rende massima la portata nelle sezioni d'interesse. La procedura di ricerca della pioggia critica è riportata con maggiore dettaglio più avanti.

4.1.2 TRASFORMAZIONE AFFLUSSI-DEFLUSSI

Le onde di piena dei bacini esaminati sono state calcolate utilizzando un modello di trasformazione afflussi-deflussi concentrato, basato sulla teoria dell'idrogramma unitario istantaneo (IUH). L'IUH rappresenta la risposta del sistema (cioè l'idrogramma di piena) conseguente ad una precipitazione netta di volume unitario e impulsiva.

La relazione tra la precipitazione netta, p(t) e la portata q(t) che attraversa la sezione di chiusura del bacino, è espressa tramite l'espressione seguente

$$q(t) = A_b \int_0^t p(\theta)u(t - \theta)d\theta$$
 (4.1)

in cui q(t) è la portata nell'istante di tempo t (m³/s), A_b è l'area del bacino in esame (km²), $p(\theta)$ è l'intensità di precipitazione netta al tempo θ (mm/h), $u(t-\theta)$ è l'idrogramma unitario istantaneo (IUH), coincidente con la densità di probabilità dei tempi di residenza delle particelle fluide all'interno del bacino.

4.1.3 IDROGRAMMA UNITARIO ISTANTANEO (IUH) GEOMORFOLOGICO

Per la determinazione delle caratteristiche della concentrazione dei deflussi si è fatto riferimento all'idrogramma unitario istantaneo (IUH) di tipo geomorfologico. La determinazione del IUH geomorfologico richiede (i) di schematizzare la rete di drenaggio in versanti (di lunghezza L_h) e canali (di lunghezza L_c) e (ii) di stabilire le velocità dell'acqua nelle due componenti del sistema (rispettivamente u_h e u_c). Il tempo di percorrenza di ciascun percorso idraulico è dato allora da $\theta = L_c/u_c + L_h/u_h$.

L'individuazione dei percorsi idraulici e la separazione di tali percorsi in versante e canale vengono effettuate in base a un Modello Digitale del Terreno (DEM) in grado di tener conto della reale conformazione e della struttura di aggregazione spaziale del bacino.

La mappa dei percorsi idraulici per ciascun bacino è stata elaborata a partire da una cartografia digitalizzata articolata in una griglia di celle quadrate di lato pari a 20 m (DEM), fornita dall'ISPRA. La separazione versanti-canali è stata effettuata attraverso l'utilizzo di

Anas/Direzione Progettazione e Realizzazione Lavori Itinerario Caianello (A1) - Benevento. Adeguamento a 4 corsie della S.S. 372 "Telesina" dal km 0+000 al km 60+900. Lotto 2: dal km 0+000 (Svincolo di Caianello) al km 37+00 (Svincolo di S. Salvatore Telesino).

Progetto Definitivo 000_T00_ID00_IDR_RE01_B

Relazione idrologica

una funzione discriminante data da una combinazione dell'area drenata A_s e della pendenza J_s , secondo l'espressione $A_s J_s^2 \ge C$ con C = 5000 m².

Ai fini della determinazione delle velocità di versante e di canale, nel presente lavoro si sono seguite le indicazioni fornite nell'approccio di regionalizzazione proposto da Di Lazzaro¹. La velocità di canale u_c (m/s) è stata calcolata utilizzando la seguente espressione

$$u_c = 5.83 J^{0,275} (4.2)$$

dove J è la pendenza media del bacino, stimata come la differenza fra la quota media del bacino e quella della sezione di chiusura rapportata alla semi-lunghezza dell'asta principale. La velocità di versante u_h è assunta costante per i bacini in cui la componente carbonatica è ridotta o trascurabile e diminuisce all'aumentare di tale frazione. Sui bacini d'interesse di questo studio la componente carbonatica risulta generalmente bassa, per cui si è adottata una velocità di versante costante, pari a $u_h = 0.03$ m/s.

4.1.4 INTENSITÀ DI PIOGGIA

L'ingresso al modello afflussi-deflussi è costituito dalla precipitazione netta calcolata a partire dagli ietogrammi sintetici ricavati dalle curve di possibilità pluviometrica con assegnato tempo di ritorno ottenute con la procedura VAPI.

La precipitazione netta è stata determinata tramite due distinte procedure sottraendo le perdite idrologiche per infiltrazione dalla precipitazione lorda mediante:

- 1) i coefficienti di deflusso determinati nelle sezioni d'interesse dal PGRA dell'AdB-DAM (2021),
- 2) il metodo del Curve Number del Soil Conservation Service (SCS-CN).

¹ Di Lazzaro, M. (2009). Regional analysis of storm hydrographs in the rescaled width function framework. Journal of Hydrology, 373(3-4), 352-365.

4.1.4.1 CURVE NUMBER

Il SCS-CN fornisce, anche nel caso di input pluviometrici a intensità costante nel tempo, una pioggia netta variabile; l'altezza di precipitazione cumulata netta $H_p(t)$ si ricava a partire dalla corrispondente pioggia lorda H(t) tramite la seguente relazione

$$H_p(t) = \frac{(H(t) - I_a)^2}{(H(t) - I_a + S)}$$
(4.3)

in cui S è la massima ritenzione potenziale successiva all'inizio del deflusso (mm) e I_a la capacità di assorbimento iniziale (mm). L'intensità di pioggia netta si ricava dall'altezza di pioggia cumulata derivando rispetto al tempo.

La capacità di assorbimento iniziale, I_a , rappresenta tutte le perdite precedenti all'inizio del deflusso, la trattenuta nelle depressioni superficiali, l'intercettazione della vegetazione, l'evaporazione e l'infiltrazione. I_a è fortemente variabile, ma in genere è correlata ai parametri che descrivono il suolo e la copertura. In generale² si assume $I_a = 0.2 \, S$, dove S dipende dalla combinazione di due fattori: la natura del terreno e l'uso del suolo. L'effetto combinato di questi due fattori è rappresentato dal parametro adimensionale CN attraverso la relazione

$$S = 25.4 (100/CN + 1) \tag{4.4}$$

Il parametro *CN* varia tra 0 e 100 ed è essenzialmente legato alla natura del suolo, al tipo di copertura del terreno e alle condizioni di umidità del suolo precedenti l'evento di pioggia.

Laddove non siano disponibili osservazioni di portata per effettuate una calibrazione del modello, il parametro *CN* può essere stabilito in base a valori di letteratura che dipendono dalla classe idrologica, funzione sia del tipo di suolo (geolitologia), sia dell'uso del suolo. Il metodo SCS classifica le tipologie di suolo in quattro gruppi idrologici (A, B, C e D) in funzione della minima capacità di infiltrazione che si ottiene per un suolo asciutto dopo imbibizione prolungata. Per il bacino del F. Volturno la natura del terreno è stata ricavata dalla carta geolitologica della Regione Campania. La classificazione in gruppi idrologici,

² Si ricorda che il metodo SCS-CN è stato calibrato sulle osservazioni nei piccoli bacini rurali statunitensi.

combinata con la tipologia di uso del suolo (Corine Land Cover) consente di ottenere il valore del parametro *CN* corrispondente a ciascuna porzione omogenea in cui è suddivisa la superficie di bacino considerato. Il valore globale per l'intero bacino si ottiene dalla media dei singoli valori attribuiti a ciascuna porzione di bacino, pesati ciascuno in funzione dell'area di pertinenza.

Il valore del CN così calcolato viene infine modificato in funzione delle condizioni di umidità antecedente (Antecedent Moisture Conditions, AMC), ossia dalle piogge precedenti l'evento, ripartite in tre categorie (I, II e III) come indicato nella tabella 4.1.

Classe AMC Altezza di pioggia nei 5 giorni precedenti (mm)

Stagione di riposo Stagione di crescita

I – asciutta < 12,7 < 35,5II – media $12,7 \div 28,0$ $35,5 \div 53,3$ III - umida > 28,0 > 53,3

Tabella 4.1 - Classi AMC per il calcolo del CN

Alla luce delle numerosissime applicazioni del metodo SCS su bacini di medie e grandi dimensioni, al di fuori del campo di applicazione del metodo originario, è stato suggerito³ (Hawkins et al., 2010) di adottare un valore dell'infiltrazione iniziale pari al 5% di *S* (in sostituzione del 20% tipicamente adottato per bacini di limitata estensione). La modifica della formula per la capacità di assorbimento iniziale richiede un opportuno aggiornamento dei valori del CN ottenuti dall'analisi delle carte geolitologiche e dell'uso del suolo; tale aggiornamento è espresso dalla relazione

$$S_{5\%} = 1.33 \, S_{20\%}^{1.15} \tag{4.5}$$

L'aggiornamento del valore di *S* può essere svolto congiuntamente alla calibrazione del fattore di scala del CN efficace, qualora si disponga di osservazioni congiunte di precipitazione e portata.

La pioggia netta calcolata con il metodo SCS è quindi trasformata in portata nella sezione di chiusura del bacino.

³ Hawkins R.H., T.J. Ward, D.E. Woodward e J.A. Van Mullem (2010). Continuing evolution of rainfall-runoff and the Curve Number precedent. Second Joint Federal Interagency Conference, Las Vegas

4.1.5 CARATTERISTICHE IDROLOGICHE DEI BACINI

Si è suddiviso il bacino complessivo del Volturno ad Amorosi (immediatamente a monte della confluenza del Fiume Calore Irpino) in quattro diversi sottobacini. I bacini intermedi alla confluenza del Torrente Torano, alla sezione dell'attraversamento della S.S. n. 372 "Telesina", alla confluenza del Torrente Titerno, e il bacino fino alla sezione di chiusura di Amorosi. La suddivisione in sottobacini è rappresentata nella figura 4.1.

Per ciascun sottobacino sono state determinate le caratteristiche pluviometriche, geomorfologiche, geolitologiche e di uso del suolo necessarie alla determinazione delle portate alle rispettive sezioni di chiusura.

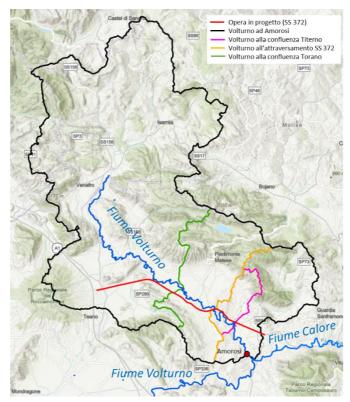


Figura 4.1 – Bacino del F. Volturno ad Amorosi (in nero) e suoi sottobacini principali d'interesse nel presente studio: il bacino chiuso alla confluenza del T. Torano (in verde), il bacino chiuso all'attraversamento della SS 372 "Telesina" (in arancio), il bacino chiuso alla confluenza del T. Titerno (in magenta). Il tratto della SS 372 in progetto è evidenziato in rosso.

4.1.6 DETERMINAZIONE DELL'WFIUH

Gli idrogrammi unitari istantanei (IUH) dei sottobacini del Fiume Volturno sono riportati nella figura 4.2. Per chiarezza gli IUH dei sottobacini sono stati riscalati proporzionalmente in base all'area di pertinenza e opportunamente traslati della distanza temporale dalla sezione di chiusura del F. Volturno ad Amorosi. La distanza temporale della sezione di chiusura di ciascun sottobacino è calcolata come il rapporto fra la distanza lungo il reticolo idrografico e la velocità di trasferimento, assunta costante per tutti i sottobacini e coerente con l'IUH complessivo del bacino del F. Volturno ad Amorosi.

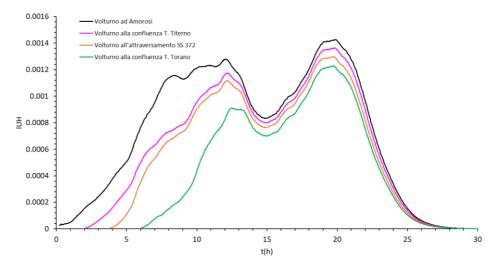


Figura 4.2 – Idrogramma unitario istantaneo (IUH) per ciascun sottobacino e per l'intero bacino del F. Volturno chiuso alla stazione idrometrica di Amorosi.

4.1.7 EVENTI PLUVIOMETRICI DI PROGETTO

Per ciascun sottobacino e per l'intero bacino del F. Volturno ad Amorosi, le curve di possibilità pluviometrica di bacino sono state ottenute come media, pesata in base all'area, delle curve caratteristiche VAPI stimate per ciascuna porzione di sottobacino ricadente in ciascuna sottozona VAPI. Quest'ultime sono state determinate in base alla quota media di quella parte di sottobacino o del bacino complessivo. I coefficienti di crescita per i

tempi di ritorno adottati sono quelli stimati per il VAPI Campania e riportati nella tabella 3.4. Nella tabella seguente (tabella 4.2) sono indicate i relativi parametri caratteristici, per ciascuno dei bacini oggetto di studio.

Tabella 4.2 – Area A (km^2) e quota media z (m s.l.m.) e parametri della pioggia di progetto secondo la procedura VAPI per ciascun bacino

Bacini	Area	Z _{media}	i_0	d_c	В
Васт	km^2	m s.l.m.	mm/ora	ore	ρ
Volturno confluenza Torano	1439	603	92.97	0.1835	0.6683
Volturno alla SS 372	1740	596	95.00	0.1781	0.6677
Volturno confluenza Titerno	1804	587	95.07	0.1711	0.6678
Volturno ad Amorosi	2018	584	95.46	0.1690	0.6686

Come precedentemente illustrato si sono utilizzati ietogrammi di progetto sia rettangolari, sia triangolari.

Gli ietogrammi rettangolari sono stati utilizzati per confrontare i risultati con i valori delle portate al colmo di piena stimati nel PSDA (1999) e nel PGRA (2021) dell'AdBDAC (tabella 3.1), facendo variare la durata della pioggia in modo da massimizzare la portata al colmo di piena per assegnato tempo di ritorno. I coefficienti di deflusso per la stima delle perdite idrologiche, costanti per tutti i tempi di ritorno, sono i medesimi di quelli adottati nel PGRA, riportati nella tabella 4.3.

Per il calcolo del ragguaglio delle piogge all'area dei bacini considerati si è utilizzata la seguente formula di Eagleson (1972).

$$r(A,\delta) = 1 - e^{(-1.1\delta^{0.25})} + e^{(-1.1\delta^{0.25} - 0.00386A)}$$
(4.7)

Tabella 4.3 – Coefficienti di deflusso per ciascun bacino considerato (PRGA dell'AdBDAC)

Bacini	φ
Volturno confluenza Torano	0.456
Volturno alla SS 372	0.455
Volturno confluenza Titerno	0.454
Volturno ad Amorosi	0.450

Per la stima delle perdite idrologiche con il CN si sono utilizzati ietogrammi di progetto di forma triangolare simmetrica e durata tale da massimizzare la portata al colmo di piena per assegnato tempo di ritorno. L'espressione dell'andamento temporale dell'intensità di pioggia con assegnato tempo di ritorno i(t) (mm/h) è riportata a seguire:

$$i(t) = \begin{cases} 4\frac{i_{t_p}(T)}{t_p}t & 0 \le t \le \frac{t_p}{2} \\ 4i_{t_p}(T) - 4\frac{i_{t_p}(T)}{t_p}t & \frac{t_p}{2} < t \le t_p \\ 0 & t > t_p \end{cases}$$
(4.8)

dove t_p (h) è la durata dell'evento di pioggia che massimizza la portata al colmo di piena e $i_{t_p}(T)$ (mm/h) è l'intensità di pioggia estratta dalla curva IDF corrispondente al tempo di ritorno T per la durata t_p .

4.1.8 DETERMINAZIONE DEL CN

Nella figura 4.3 sono rappresentate le classi geolitologiche affioranti nel bacino del Fiume Volturno. Le aree di ciascuna classe geolitologica ricadenti nei sottobacini e nel bacino complessivo sono indicate nella tabella 4.4.

Tabella 4.4 - Aree (km²) delle classi delle formazioni geologiche ricadenti nel bacino del F. Volturno

	Classe Geolitologica		Are	a (km²)	
Codice	Descrizione complesso	confluenza T. Torano	SS 372	confluenza T. Titerno	ad Amorosi
1	Complesso alluvionale-costiero	230.20	295.94	302.60	324.68
3	Complesso dei depositi epiclastici conti- nentali	52.93	86.04	93.86	99.53
4	Complesso dei travertini	16.83	16.90	16.93	16.93
5	Complesso delle piroclastiti da caduta	54.92	58.66	60.16	65.40
6	Complesso delle piroclastiti da flusso	67.99	85.05	92.20	114.34
7	Complesso delle lave	1.21	1.21	1.22	1.22
8	Complesso sabbioso-conglomeratico	0.00	1.94	1.94	1.94
9	Complesso molassico	21.68	21.77	21.82	21.82
10	Complesso arenaceo-conglomeratico	185.33	201.15	224.36	238.20
11	Complesso delle successioni arenaceo-cal- careo-pelitiche	0.00	0.00	0.00	18.79
12	Complesso delle successioni pelitico-cal- caree	74.51	91.66	92.66	137.96
14	Complesso calcareo dell'Unita' Matese- Monte Maggiore e Monte Alpi	172.77	273.53	285.43	337.35
16	Complesso dolomitico dell'Unita' Monti della Maddalena e Monte Foraporta	110.46	150.88	153.51	156.73
17	Complesso calcareo dell'Unita' Picentino- Taburno	1.66	1.73	1.73	1.73
25	Complesso calcareo-marnoso delle Unita' molisane	437.63	439.44	440.58	466.37
27	Complesso argilloso-calcareo delle Unita' Sicilidi	10.06	10.49	11.39	11.43
99	Corpi Idrici	0.83	3.60	3.60	3.60

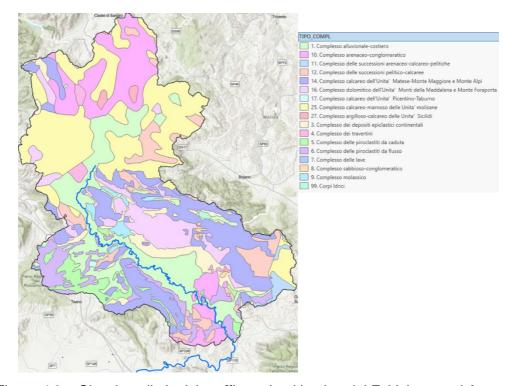


Figura 4.3 – Classi geolitologiche affioranti nel bacino del F. Volturno ad Amorosi.

Nella tabella 4.5 sono riportate le classi idrologiche dei vari suoli fornite dal Soil Conservation Service, cui sono state attribuite nella tabella 4.6 le classi geolitologiche che compaiono nei bacini in oggetto.

Tabella 4.5 – Classi Idrologiche (Soil Conservation Service)

Classe Idrolo- gica	Caratteristiche dei gruppi di suolo
A	Suoli che hanno alti tassi d'infiltrazione, anche quando completamente bagnati. Princi- palmente costituiti da strati drenanti profondi o da sabbie o ghiaie molto drenanti. Suoli con tasso di filtrazione elevato.
В	Suoli che hanno tassi d'infiltrazione moderati quando completamente bagnati. Principalmente costituiti da strati drenanti, da moderatamente profondi a profondi. Suoli con tessitura da moderatamente fine a moderatamente grossolana. Suoli con tasso di filtrazione moderato.
С	Suoli che hanno bassi tassi d'infiltrazione quando completamente bagnati. Principalmente costituiti da uno strato che impedisce il movimento verso il basso dell'acqua. Suoli con tessitura moderatamente fine. Suoli con basso tasso di filtrazione.
D	Suoli che hanno tassi d'infiltrazione molto bassi quando completamente bagnati. Principalmente costituiti da terreni argillosi con un alto potenziale di rigonfiamento o da terreni in cui il livello della falda si mantiene permanentemente alto. Suoli costituiti da uno strato argilloso, oppure con argille in corrispondenza o in prossimità della superficie. Suoli poco profondi con substrato quasi impermeabile. Suoli con un bassissimo tasso di filtrazione.

Tabella 4.6 - Classi idrologiche attribuite alle classi geolitologiche del bacino del F. Volturno

	Classe Geolitologica	Classe
Codice	Descrizione	Idrologica
1	Complesso alluvionale-costiero	В
3	Complesso dei depositi epiclastici continentali	В
4	Complesso dei travertini	A
5	Complesso delle piroclastiti da caduta	В
6	Complesso delle piroclastiti da flusso	В
7	Complesso delle lave	В
8	Complesso sabbioso-conglomeratico	В
9	Complesso molassico	С
10	Complesso arenaceo-conglomeratico	С
11	Complesso delle successioni arenaceo-calcareo-pelitiche	В
12	Complesso delle successioni pelitico-calcaree	С
14	Complesso calcareo dell'Unità Matese-Monte Maggiore e Monte Alpi	A
16	Complesso dolomitico dell'Unita' Monti della Maddalena e Monte Foraporta	A
17	Complesso calcareo dell'Unità Picentino-Taburno	A
25	Complesso calcareo-marnoso delle Unità molisane	В
27	Complesso argilloso-calcareo delle Unità Sicilidi	С
99	Corpi Idrici	D

I valori di CN attribuiti a ciascuna classe idrologica dipendono dall'uso del suolo. L'intersezione delle aree delle classi di uso del suolo (Corine Land Cover) con i diversi sottobacini sono rappresentate nella figura 4.4. Le aree di ciascuna classe d'uso del suolo ricadenti nei diversi sottobacini sono indicate nella tabella 4.7. Per le classi di uso del suolo presenti nei bacini d'interesse, in funzione della classe idrologica, sono stati assunti i valori di CN indicati nella tabella 4.8.

Tabella 4.7 - Aree (km²) delle classi di uso del suolo ricadenti nel bacino del F. Volturno

	Uso suolo		Area	$a(km^2)$	
Codice	Descrizione	confluenza T. Torano	SS 372	confluenza T. Titerno	Amorosi
111	Tessuto Urbano continuo	2.55	4.31	4.32	4.63
112	Tessuto Urbano discontinuo	18.71	22.21	22.57	26.31
121	Aree industriali o commerciali	5.35	5.37	5.37	5.37
122	Reti stradali e ferroviarie e spazi accessori	0.52	0.52	0.52	0.52
131	Aree estrattive	0.37	0.37	0.38	0.38
211	Seminativi in aree non irrigue	204.97	296.99	319.45	360.43
221	Vigneti	0.99	0.99	0.99	0.99
222	Frutteti e frutti minori	7.84	15.43	15.46	15.46
223	Oliveti	34.05	36.21	36.30	39.04
231	Pascoli	14.57	26.15	26.22	28.57
241	Colture annuali associate a colture permanenti	1.24	2.67	2.79	9.10
242	Sistemi colturali e particellari complessi	121.78	141.48	150.28	186.07
243	Aree prevalentemente occupate da colture agrarie con presenza di spazi naturali	131.14	140.82	144.37	153.23
244	Aree agroforestali	0.00	0.61	0.61	0.61
311	Boschi di latifoglie	689.66	809.79	837.19	906.69
312	Boschi di conifere	4.87	4.89	4.90	6.86
313	Boschi misti	1.46	3.16	3.17	4.16
321	Aree a pascolo naturale e praterie d'alta quota	80.75	99.36	99.78	118.73
323	Aree a vegetazione sclerofilla	3.32	3.34	3.34	3.34
324	Area a vegetazione boschiva e arbustiva in evoluzione	101.21	106.36	106.98	125.91
331	Spiagge, dune, sabbie (più larghe di 100m)	0.62	0.62	0.62	1.15
332	Rocce nude, falesie, rupi, affioramenti	0.77	0.77	0.78	2.12
333	Aree con vegetazione rada	8.90	10.11	10.14	10.84
334	Aree percorse da incendi	0.94	1.71	1.71	1.71
411	Paludi interne	0.00	1.96	1.96	1.96
512	Bacini d'acqua	2.44	3.80	3.81	3.81

Tabella 4.8 - Valori del CN per gruppi idrologici e di uso del suolo

Uso suolo			CN			
Codice	Descrizione	A	В	C	D	
111	Tessuto Urbano continuo	77	85	90	92	
112	Tessuto Urbano discontinuo	57	72	81	86	
121	Aree industriali o commerciali	57	72	81	86	
122	Reti stradali e ferroviarie e spazi accessori	98	98	98	98	
131	Aree estrattive	46	69	79	84	
211	Seminativi in aree non irrigue	70	80	86	90	
221	Vigneti	45	66	77	83	
222	Frutteti e frutti minori	45	66	77	83	
223	Oliveti	45	66	77	83	
231	Pascoli	30	58	71	78	
241	Colture annuali associate a colture permanenti	58	73	82	87	
242	Sistemi colturali e particellari complessi	58	73	82	87	
243	Aree prevalentemente occupate da colture agrarie con pre-	52	70	80	85	
	senza di spazi naturali					
244	Aree agroforestali	45	66	77	83	
311	Boschi di latifoglie	36	60	73	79	
312	Boschi di conifere	36	60	73	79	
313	Boschi misti	36	60	73	79	
321	Aree a pascolo naturale e praterie d'alta quota	49	69	79	84	
323	Aree a vegetazione sclerofilla	49	69	79	84	
324	Area a vegetazione boschiva e arbustiva in evoluzione	36	60	73	79	
331	Spiagge, dune, sabbie (più larghe di 100m)	76	85	89	91	
332	Rocce nude, falesie, rupi, affioramenti	77	86	91	94	
333	Aree con vegetazione rada	49	69	79	84	
334	Aree percorse da incendi	77	86	91	94	
411	Paludi interne	100	100	100	100	
512	Bacini d'acqua	100	100	100	100	

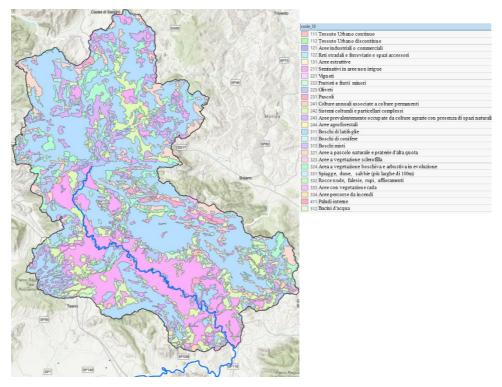


Figura 4.4 – Classi di uso del suolo nel bacino F. Volturno ad Amorosi

I valori medi del *CN* nei sottobacini del F. Volturno sono indicati nella tabella 4.9. Si rammenta che tali valori sono stati determinati applicando l'aggiornamento espresso dalla relazione (4.4) per tenere conto dell'assunzione di un valore di infiltrazione iniziale pari al 5% della capacità *S*; pertanto tali valori sono decisamente ridotti rispetto ai valori nominali che si ottengono dalle tabelle sopra riportate.

Tabella 4.9 - CN per i diversi bacini di studio

Sattabasini/Dasina	Geolitologia e uso suolo ($I_a = 0.05S$)
Sottobacini/Bacino	CN
Volturno confluenza Torano	41.28
Volturno alla SS 372	40.81
Volturno confluenza Titerno	41.07
Volturno ad Amorosi	41.38

Anas/Direzione Progettazione e Realizzazione Lavori Itinerario Caianello (A1) - Benevento. Adeguamento a 4 corsie della S.S. 372 "Telesina" dal km 0+000 al km 60+900. Lotto 2: dal km 0+000 (Svincolo di Caianello) al km 37+00 (Svincolo di S. Salvatore Telesino).

Progetto Definitivo 000_T00_ID00_IDR_RE01_B

Relazione idrologica

Sanas

4.2 STIMA DELLE PIENE DI PROGETTO

La metodologia descritta nei paragrafi precedenti è stata utilizzata per la determinazione delle onde di piena sintetiche caratterizzate da assegnato tempo di ritorno (30, 50, 100, 200, 300, 500 e 1000 anni) e calcolate con le curve di possibilità pluviometrica VAPI.

Le onde di piena, utilizzate nel modello idraulico descritto nella Relazione Idraulica, sono state stimate nei tre sottobacini considerati e nel bacino complessivo del Volturno ad Amorosi secondo la seguente procedura:

- si sono calcolate le portate al colmo adottando ietogrammi di pioggia rettangolari in cui la pioggia netta è stata desunta dai coefficienti di deflusso calcolati nel PGRA dell'AdBDAM (tabella 4.3). Le portate al colmo di piena sono state calcolate facendo variare la durata della pioggia in modo da massimizzare la portata al colmo di piena per assegnato tempo di ritorno. Infatti, al contrario di quanto avviene nell'applicazione del modello cinematico con una funzione di forma lineare (in cui la portata è massima quando lo ietogramma estratto dalle curve di possibilità pluviometrica ha durata pari al tempo di concentrazione del bacino), per il modello geomorfologico non è definibile a priori quale sia la durata della precipitazione che massimizza la portata al colmo;
- 2 si sono confrontati i valori al colmo di piena ottenuti con quelli stimati nel PSDA e nel PRGA dell'AdBDAM (tabella 3.1);
- alle sezioni di chiusura dei bacini considerati, facendo variare la durata critica della pioggia e assumendo ietogrammi di tipo triangolare in cui la precipitazione è stimata con il metodo SCS, si sono calcolati i valori del *CN* per ciascun bacino in modo da riottenere la portata al colmo già stimata al punto precedente;
- 4 per tutti i tempi di ritorno considerati, si sono infine adottate in ciascun sottobacino considerato le onde di piena calcolate con il *CN*, poiché tale metodo fornisce, a parità di portata al colmo, onde con volume complessivo maggiore e, quindi, più cautelative nei confronti delle verifiche idrauliche dell'opera in progetto, come illustrato nella Relazione Idraulica.

4.2.1 PORTATE DI PIENA STIMATE CON IL COEFFICIENTE DI DEFLUSSO

Nella tabella 4.10 si riportano, per i tempi di ritorno considerati, le portate al colmo di progetto stimate con i coefficienti di deflusso desunti dal PGRA (2021) dell'AdBDAM (tabella 4.3).

Tabella 4.10 – Portate al colmo di progetto dei sottobacini del Fiume Volturno

Sottobacini/Bacino	Durata critica		Tempo di ritorno (anni)					
Souobachii/Bachio	(ore)	30	50	100	200	300	500	1000
Volturno confluenza Torano	12,5	1275	1520	1735	1958	2080	2265	2503
Volturno alla SS 372	15,5	1349	1609	1837	2072	2202	2397	2649
Volturno confluenza Titerno	16,5	1353	1614	1842	2078	2208	2404	2657
Volturno ad Amorosi	17,5	1431	1707	1949	2199	2336	2543	2811

Dal confronto tra le portate al colmo stimate nel PSDA e PRGA dell'AdBDAM (tabella 3.1) e le portate al colmo di progetto (tabella 4.10) si evince che queste ultime risultano leggermente cautelative (con un incremento massimo di circa l'8% per l'evento cinquantennale), come mostrato nella figura 4.5 per il F. Volturno alla sezione idrometrografica di Amorosi.

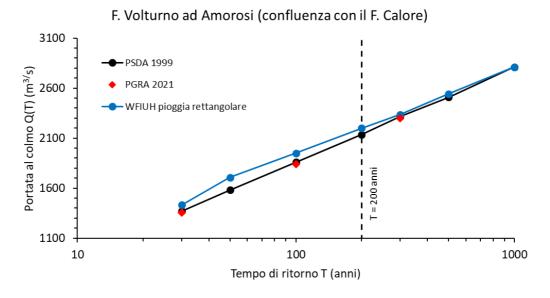


Figura 4.5 – Portate al colmo di piena del F. Volturno ad Amorosi

4.2.2 ONDE DI PIENA STIMATE CON IL METODO DEL CN

Essendo il valore della portata al colmo di progetto già determinato in base a quanto illustrato nel paragrafo precedente, i valori di *CN* da utilizzare in ogni singolo sottobacino per la simulazione delle onde di progetto è stato fissato per ciascun tempo di ritorno in modo tale da riottenere la portata al colmo già stimata alle sezioni di chiusura dei bacini considerati. I valori così ottenuti di *CN* sono stati utilizzati per la simulazione delle onde di progetto; i corrispondenti valori alla sezione di chiusura del Volturno ad Amorosi sono riportati nella tabella 4.11.

Le onde di piena per i tempi di ritorno di 30,50,100,200,300,500 e 1000 anni per ciascun sottobacino e per il bacino complessivo sono state calcolate massimizzando la portata al colmo al variare della durata dell'evento (tempo di pioggia).

Tabella 4.11 - CN stimati per riprodurre le portate al colmo con assegnato tempo di ritorno

T (anni)	Onde di progetto
T (anni)	CN Volturno ad Amorosi
30	54.65
50	50.26
100	46.96
200	43.96
300	42.48
500	40.41
1000	38.03

Assunto uno ietogramma di tipo triangolare, equazione (4.8), per ciascuna durata di pioggia prescelta, si è calcolata prima la precipitazione netta con il metodo SCS e successivamente l'idrogramma di piena, risolvendo numericamente la convoluzione espressa dalla relazione (4.1). La pioggia critica è risultata quella la cui durata produce l'idrogramma con portata al colmo maggiore. Le onde di piena sintetiche ottenute per tutti i valori del tempo di ritorno considerato e in tutti i sottobacini considerati sono riportate nelle tabelle dell'Appendice e rappresentate graficamente nella figura che segue (figura 4.6) per l'intero bacino del F. Volturno ad Amorosi e per il bacino del Volturno alla confluenza del T. Torano. Come specificato nella Relazione idraulica tali onde sono state utilizzate per determinare l'onda in ingresso al modello idraulico e per simulare gli scenari di inondazione con assegnato tempo di ritorno.

000_T00_ID00_IDR_RE01_B Relazione idrologica

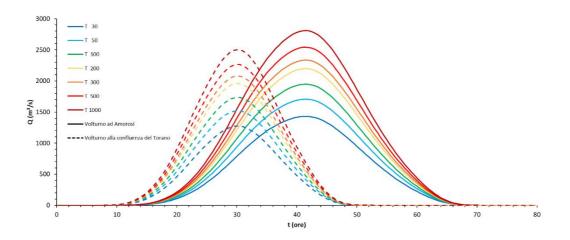


Figura 4.6 – Onde di piena sintetiche con un tempo di ritorno variabile fra 30 anni e 1000 per il bacino del F. Volturno alla stazione idrometrica di Amorosi e alla confluenza del Torrente Torano.

4.3 VERIFICA DEL MODELLO IDROLOGICO

Il modello idrologico è stato verificato simulando l'evento di precipitazione intensa verificatisi fra il 16 e il 19 dicembre del 1968 per il quale si dispone delle osservazioni pluviometriche medie sul bacino del Fiume Volturno ad Amorosi alla risoluzione temporale di 2 ore e della mappa delle isoiete della precipitazione cumulata sull'intero evento, illustrate nell'Annale del 1968 parte II. Per tale evento non è possibile pertanto attribuire ai singoli sottobacini un andamento differente della precipitazione.

L'andamento delle precipitazioni medie (*i* lorde e *p* nette) a scala di bacino e delle corrispondenti portate osservate alla stazione di Amorosi è riportato nelle figure seguenti. La portata al colmo dell'evento fu stimata in 1460 m³/s (scala di deflusso del 1968), corrispondente ad un evento a cui è possibile attribuire un tempo di ritorno compreso tra 30 e 50 anni (tabella 4.10).

La figura 4.7 mostra come il modello idrologico precedentemente descritto, adottando per le perdite idrologiche il coefficiente di deflusso osservato durante l'evento (Annale 1968 parte II), riesca a riprodurre correttamente la fase del colmo di piena osservato.

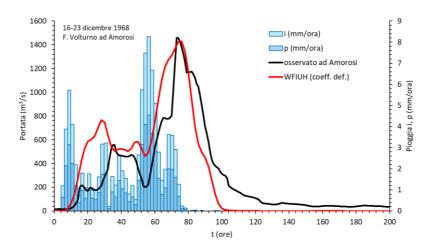


Figura 4.7 – Evento di piena del 16-19 dicembre 1968: confronto fra la precipitazione osservata media a scala di bacino e la precipitazione netta calcolata con il coefficiente di deflusso osservato (pari a 0,55) e tra l'idrogramma di piena osservato (scala di deflusso del 1968) e quello simulato con il modello idrologico per l'intero bacino alla sezione di chiusura del F. Volturno ad Amorosi.

La figura 4.8 mostra inoltre come il modello idrologico, adottando un CN coerente con quelli riportati nella tabella 4.11, riesca a riprodurre molto bene la fase del colmo di piena osservato.

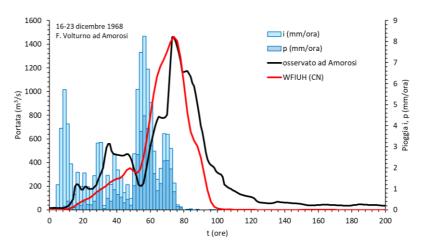


Figura 4.8 – Evento di piena del 16-19 dicembre 1968: confronto fra la precipitazione osservata media a scala di bacino e la precipitazione netta calcolata con il metodo del SCS basato sui valori di CN riportati nella tabella 4.11 (CN pari a 51), e tra l'idrogramma di piena osservato (scala di deflusso del 1968) e quello simulato con il modello idrologico per l'intero bacino alla sezione di chiusura del F. Volturno ad Amorosi.

5 IDROLOGIA DELLE INTERFERENZE SECONDARIE

5.1 BACINI DEL TORRENTE TITERNO E DEL RIO DELLE STARZE (SAN FELICE)

Le interferenze secondarie con l'opera in progetto riguardano gli attraversamenti del Torrente Titerno e del Rio delle Starze (denominato anche Rio San Felice), mostrati nella figura 5.1.

Figura 5.1 – Bacini del T. Titerno e del Rio delle Starze (in magenta). Il tratto della SS 372 in progetto è evidenziato in rosso.

5.2 PORTATE DI PROGETTO DEL TORRENTE TITERNO

5.2.1 MODELLO AFFLUSSI-DEFLUSSI

Per la determinazione delle portate di progetto del Titerno, caratterizzate da assegnato tempo di ritorno (30, 50, 100, 200, 300, 500 e 1000 anni), è stata utilizzata la medesima metodologia descritta nel capitolo precedente.

Le portate di progetto sono state calcolate con le curve di possibilità pluviometrica VAPI, tramite ietogrammi rettangolari di pioggia netta facendo variare la durata della pioggia in

modo da massimizzare la portata al colmo di piena per assegnato tempo di ritorno. Nella tabella seguente (tabella 5.1) sono indicate i relativi parametri caratteristici.

Tabella 5.1 – Area A (km²) e quota media z (m s.l.m.) e parametri della pioggia di progetto secondo la procedura VAPI.

Bacini	Area	Z_{media}	i_0	d_c	ρ
Басіпі	km^2	m $s.l.m.$	mm/ora	ore	ρ
Torrente Titerno	162	697	107.41	0.1370	0.6720

Il coefficiente di deflusso assunto (pari a 0,55) è stato stimato in base alle formazioni geolitologiche del bacino, come descritto nel capitolo successivo (figura 6.2).

Per il calcolo del ragguaglio delle piogge all'area del bacino considerati si è utilizzata la formula (4.7) di Eagleson (1972).

L'idrogramma unitario istantaneo (IUH) del Torrente Titerno è mostrato nella figura 5.2.

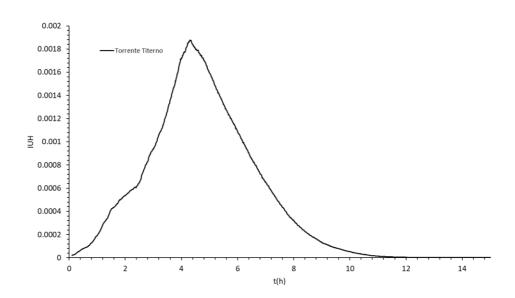


Figura 5.2 – Idrogramma unitario istantaneo (IUH) per il bacino del Torrente Titerno.

5.2.3 PORTATE DI PROGETTO

Le portate di progetto per i tempi di ritorno adottati sono indicate nella tabella 5.2

Tabella 5.2 – Portate al colmo di progetto del bacino del Torrente Titerno

Sottobacini/Bacino	Durata critica		Tempo di ritorno (anni)						
	(ore)	30	50	100	200	300	500	1000	
Torrente Titerno	3,8	296	353	403	455	483	526	581	

Dal confronto tra le portate al colmo stimate nel PRGA dell'AdBDAM (tabella 3.1b) e le portate al colmo di progetto (tabella 5.2) si evince che queste ultime risultano leggermente cautelative (con un incremento massimo di circa il 9% per l'evento centennale), come mostrato nella figura 5.3.

Figura 5.3 – Portate al colmo di piena del Torrente Titerno

000_T00_ID00_IDR_RE01_B Relazione idrologica

5.3 PORTATE DI PROGETTO DEL RIO DELLE STARZE

5.3.1 MODELLO AFFLUSSI-DEFLUSSI

Per la determinazione delle portate di progetto del Rio delle Starze si è utilizzato un modello afflussi-deflussi di tipo cinematico, in cui la portata al colmo di piena Q(T) è calcolata con la formula razionale:

$$Q(T) = 278 \cdot \phi(T) \cdot A_b \cdot i(\tau_b, T) \cdot r(A_b, \tau_b)$$
(5.1)

in cui:

T è il tempo di ritorno medio, in anni;

Q(T) è la massima portata al colmo dell'anno relativa al tempo di ritorno T, in m³/s;

 A_b è l'area del bacino, in km²;

 τ_b è il tempo di concentrazione, in ore, parametro che regola la concentrazione dei deflussi; $i(\tau_b, T)$ è l'intensità di pioggia di durata τb con tempo di ritorno T, in m/ora;

 ϕ è il coefficiente di deflusso relativo al tempo di ritorno T, parametro che rappresenta le perdite idrologiche;

 $r(A_b, \tau_b)$ è il coefficiente di ragguaglio delle piogge all'area (posto cautelativamente pari a 1).

Per il calcolo del tempo di concentrazione si è adottata la formula di Giandotti, essendo l'area del bacino superiore a 75 km²:

$$\tau_b = \tau_{bG} = \frac{5\sqrt{A_b} + 1,875 L_b}{\sqrt{y_m}} \tag{5.2}$$

con:

 A_b area del bacino, in km²;

 L_b lunghezza dell'asta principale del bacino, in km;

 y_m altezza media del bacino rispetto alla sezione di chiusura, in m;

Nella tabella 5.3 si riportano i tempi di concentrazione del bacino e le sue caratteristiche.

Tabella 5.3 – Caratteristiche idrologiche del bacino del Rio delle Starze

A _b (km ²)	L _b (km)	z media (m s.m.)	z max (m s.m.)	z min (m s.m.)	τ _b (ore)
115.26	18	250	1038	104	7.24

Il coefficiente di deflusso assunto (pari a 0,59) è stato stimato in base alle formazioni geolitologiche del bacino, come descritto nel capitolo successivo (figura 6.2).

5.3.2 PORTATE DI PROGETTO

Il calcolo dell'intensità di pioggia di progetto è stato realizzato con la curva intensità-durata-frequenza espressa dalla formula (3.3'), i cui parametri sono riportati nella tabella 3.17, valutando se il bacino ricade totalmente o parzialmente nell'area di influenza di Roccamonfina, Letino o Caiazzo.

Nella tabella 5.4 si riportano le piogge e le portate di progetto del bacino del Rio delle Starze.

Tabella 5.4 – Piogge e portate di progetto del bacino del Rio delle Starze

- (om	. I	I	Pluviome	tro %		Gum	bel	Fréchet	
τ_b (ore) ϕ		Roccamonfina	Letino	Caiazzo	Morcone	i ₂₀₀ (mm/ora)	$Q_{200} (m^3/s)$	i ₂₀₀ (mm/ora)	$Q_{200} \ (m^3/s)$
7.24	0.59	56%	10%	34%	0%	20.2	378.5	29.2	547.4

5.3.3 ONDA DI PROGETTO DUECENTENNALE

Per la determinazione della compatibilità idraulica del nuovo attraversamento del Rio delle Starze (dove a valle è presente l'abitato di Pietravairano, figura 5.1) si è determinata la forma dell'onda di piena duecentennale con la medesima metodologia esposta nel capitolo precedente, tramite un modello afflussi-deflussi di tipo geomorfologico, sollecitato con uno ietogramma rettangolare di pioggia netta facendo variare la durata della pioggia in modo da massimizzare la portata al colmo di piena duecentennale (portata duecentennale di Gumbel nella tabella 5.4).

L'onda di piena sintetica ottenuta è riportata nelle tabelle dell'Appendice e rappresentate graficamente nella figura che segue (figura 5.4), assieme all'idrogramma unitario istantaneo (IUH) del bacino del Rio delle Starze.

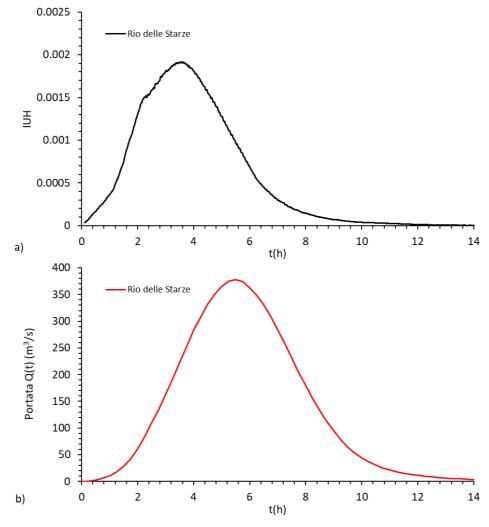


Figura 5.4 – Rio delle Starze: a) idrogramma unitario istantaneo (IUH; b) onda di piena duecentennale.

6 IDROLOGIA DELLE INTERFERENZE MINORI

6.1 BACINI DEGLI ATTRAVERSAMENTI MINORI

I bacini minori afferenti ai tombini idraulici e ai ponti disposti lungo l'infrastruttura viaria in progetto, dimensionati per eventi con tempi di ritorno di 200 anni, sono mostrati nella figura 6.1.

Figura 6.1 - Corografia dei bacini secondari

6.1.1 MODELLO AFFLUSSI-DEFLUSSI

Il modello afflussi-deflussi utilizzato per la stima delle portate di progetto è il modello cinematico, in cui la portata al colmo di piena Q(T) è calcolata con la formula razionale:

$$Q(T) = 278 \cdot \phi(T) \cdot A_b \cdot i(\tau_b, T) \cdot r(A_b, \tau_b)$$
(6.1)

in cui:

T è il tempo di ritorno medio, in anni;

Q(T) è la massima portata al colmo dell'anno relativa al tempo di ritorno T, in m³/s;

 A_b è l'area del bacino, in km²;

 τ_b è il tempo di concentrazione, in ore, parametro che regola la concentrazione dei deflussi; $i(\tau_b, T)$ è l'intensità di pioggia di durata τb con tempo di ritorno T, in m/ora;

 ϕ è il coefficiente di deflusso relativo al tempo di ritorno T, parametro che rappresenta le perdite idrologiche;

 $r(A_b, \tau_b)$ è il coefficiente di ragguaglio delle piogge all'area (posto cautelativamente pari a 1).

6.1.1.1 TEMPO DI CONCENTRAZIONE

Per il calcolo del tempo di concentrazione, ritenendo valide per bacini superiori a 75 km² la formula di Giandotti e per bacini inferiori a 1 km² la formula di Kirpich, nel caso di bacini di estensione compresa tra questi due valori, si è adottata un'interpolazione lineare tra le due formule, come mostrato in seguito:

· per $A_b \ge 75$:

$$\tau_b = \tau_{bG} = \frac{5\sqrt{A_b} + 1,875 L_b}{\sqrt{y_m}} \tag{6.2}$$

· per $A_b \leq 1$:

$$\tau_b = \tau_{bK} = 0.93 \left(\frac{L_b}{\sqrt{y_{max}/L_b}} \right)^{0.77}$$
 (6.3)

• per $1 < A_b < 75$:

$$\tau_b = \tau_{bG} \frac{(A_b - 1)}{74} + \tau_{bG} \frac{(75 - A_b)}{74} \tag{6.4}$$

con:

 A_b area del bacino, in km²;

L_b lunghezza dell'asta principale del bacino, in km;

 y_m altezza media del bacino rispetto alla sezione di chiusura, in m;

 y_{max} altezza del punto più elevato del bacino rispetto alla sezione di chiusura, in m.

In tabella 6.1 si riportano i tempi di concentrazione dei singoli bacini e le loro caratteristiche.

Tabella 6.1 – Caratteristiche idrologiche dei bacini secondari

	l .		z media	z max	z min	
Bacino	$A_b (km^2)$	$L_{b}\left(km\right)$	(m s.m.)	(m s.m.)	(m s.m.)	τ _b (ore)
2	0.41	1.15	175	293	119	0.15
3	0.01	0.10	120	124	115	0.03
4	0.12	0.70	167	293	114	0.08
5	2.02	2.00	188	417	106	0.24
6	0.50	1.90	126	200	94	0.32
7	1.18	1.95	138	373	92	0.23
8	1.45	2.85	200	437	95	0.33
9	1.55	2.90	143	388	94	0.37
10	0.51	1.00	103	118	94	0.27
11	0.08	0.80	105	117	96	0.22
12	0.22	1.00	103	115	96	0.30
13	3.55	4.50	238	478	93	0.57
14	1.81	2.80	127	313	91	0.40
15	1.68	4.10	231	466	92	0.49
16	0.32	1.96	102	125	96	0.55
17	0.63	2.70	115	349	89	0.34
18	0.31	1.20	100	110	93	0.39
19	0.08	0.52	96	98	94	0.26
20	8.98	6.90	235	530	80	0.98
21	0.29	1.20	109	122	96	0.33
22	0.25	0.78	106	119	95	0.21
23	0.11	0.66	107	112	96	0.20
24	6.05	5.80	205	518	76	0.77
25	0.19	0.76	94	106	87	0.22
26	0.54	1.50	95	114	82	0.39
27	8.90	5.54	255	570	75	0.75
28	0.16	0.88	87	92	83	0.34
29	1.14	2.83	96	142	77	0.62
30	50.35	18.70	224	671	68	4.54
31	2.99	2.90	124	237	67	0.48
32	0.37	1.10	127	225	61	0.15
33	0.09	0.48	120	202	62	0.06
34	0.16	0.63	131	212	64	0.08
35	0.10	0.60	113	193	63	0.08
36	0.05	0.40	91	142	64	0.06
37	0.40	1.50	114	205	61	0.22
38	0.30	0.90	84	128	64	0.17
39	41.08	13.50	426	1385	52	2.15
40	0.16	0.80	69	78	59	0.23
41	1.72	3.70	95	189	61	0.67
43	2.60	4.30	117	456	73	0.55
44	0.13	0.70	90	109	83	0.18
45	0.35	1.20	120	187	85	0.19
46	0.23	1.05	119	185	85	0.17
47	0.61	1.60	123	181	88	0.28

6.1.1.2 COEFFICIENTI DI DEFLUSSO

In figura 6.2 sono riportati i bacini idrografici secondari sovrapposti alla carta dei complessi idrogeologici della Regione Campania. Considerata la forte pendenza dei versanti si è cautelativamente adottato un coefficiente di deflusso pari a 0,65 per tutti i complessi idrogeologici (valore indicativamente desunto dalla tabella 6.2 – Chow et al., 1988), ad esclusione dei complessi calcarei e del complesso sabbioso conglomeratico (evidenziati in rosso in figura 6.2) dove si è assunto un coefficiente di deflusso pari a 0,45, comunque cautelativo considerata l'elevata permeabilità di tali complessi in generale.

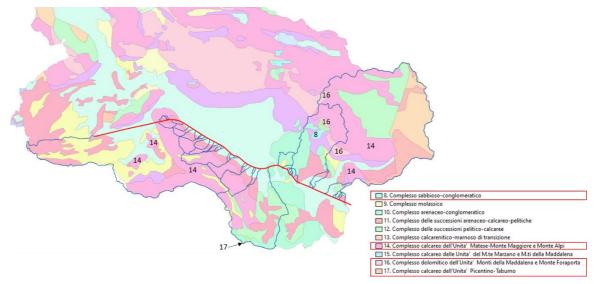


Figura 6.2 – Coefficienti di deflusso: Corografia dei bacini secondari sovrapposta alla Carta dei complessi idrogeologici

In tabella 6.3 si riportano i coefficienti di deflusso calcolati in base alla percentuale del complesso calcareo presente nel singolo bacino rispetto alla sua area totale.

Tabella 6.2 – Valori del coefficiente di deflusso ϕ in funzione della pendenza J del bacino e del tempo di ritorno di progetto (Chow et al., 1988)

Superficie	J	Tempo di ritorno (anni)							
		2	5	10	25	50	100	500	
	Are	e urbani	zzate						
bitumate		0,75	0,77	0,81	0,86	0,90	0,95	1,00	
calcestruzzo/tetti		0,75	0,80	0,83	0,88	0,92	0,97	1,00	
	A	ree a ve	rde						
in cattive condizioni	0+2%	0,32	0,34	0,37	0,40	0,44	0,47	0,58	
(copertura erbacea inferiore al 50%	2+7%	0,37	0,40	0,43	0,46	0,49	0,53	0,61	
dell'area)	>7%	0,40	0,43	0,45	0,49	0,52	0,55	0,62	
in discrete condizioni	0÷2%	0,25	0,28	0,30	0,34	0,37	0,41	0,53	
(copertura erbacea tra il 50% e il 75%	2+7%	0,33	0,36	0,38	0,42	0,45	0,49	0,58	
dell'area)	>7%	0,37	0,40	0,42	0,46	0,49	0,53	0,60	
in buone condizioni	0+2%	0,21	0,23	0,25	0,29	0,32	0,36	0,49	
(copertura erbacea superiore al 75%	2+7%	0,29	0,32	0,35	0,39	0,42	0,46	0,56	
dell'area)	>7%	0,34	0,37	0,40	0,44	0,47	0,51	0,58	
		Aree rur	ali						
	0+2%	0,31	0,34	0,36	0,40	0,43	0,47	0,57	
coltivazioni	2+7%	0,35	0,38	0,41	0,44	0,48	0,51	0,60	
	>7%	0,39	0,42	0,44	0,48	0,51	0,54	0,61	
	0÷2%	0,25	0,28	0,30	0,34	0,37	0,41	0,53	
pascoli	2+7%	0,33	0,36	0,38	0,42	0,45	0,49	0,58	
	>7%	0,37	0,40	0,42	0,46	0,49	0,53	0,60	
	0+2%	0,22	0,25	0,28	0,31	0,35	0,39	0,48	
foreste	2+7%	0,31	0,34	0,36	0,40	0,43	0,47	0,56	
	>7%	0.35	0.39	0.41	0.45	0.48	0.52	0.58	

Tabella 6.3 – Coefficienti di deflusso dei bacini secondari

Bacino	$A_b (km^2)$	% complesso calcareo	ф	Bacino	$A_b (km^2)$	% complesso calcareo	ф
2	0.41	66%	0.52	25	0.19	0%	0.65
3	0.01	0%	0.65	26	0.54	0%	0.65
4	0.12	80%	0.49	27	8.90	68%	0.51
5	2.02	92%	0.47	28	0.16	0%	0.65
6	0.50	51%	0.55	29	1.14	0%	0.65
7	1.18	56%	0.54	30	50.35	25%	0.60
8	1.45	71%	0.51	31	2.99	0%	0.65
9	1.55	40%	0.57	32	0.37	0%	0.65
10	0.51	0%	0.65	33	0.09	0%	0.65
11	0.08	0%	0.65	34	0.16	0%	0.65
12	0.22	0%	0.65	35	0.10	0%	0.65
13	3.55	86%	0.48	36	0.05	0%	0.65
14	1.81	27%	0.60	37	0.40	0%	0.65
15	1.68	64%	0.52	38	0.30	0%	0.65
16	0.32	3%	0.64	39	41.08	33%	0.58
17	0.63	15%	0.62	40	0.16	0%	0.65
18	0.31	0%	0.65	41	1.72	0%	0.65
19	0.08	0%	0.65	43	2.60	3%	0.64
20	8.98	60%	0.53	44	0.13	0%	0.65
21	0.29	0%	0.65	45	0.35	0%	0.65
22	0.25	0%	0.65	46	0.23	0%	0.65
23	0.11	0%	0.65	47	0.61	0%	0.65
24	6.05	63%	0.52				

6.1.1.3 INTENSITÀ DI PIOGGIA

Il calcolo dell'intensità di pioggia di progetto è stato realizzato con la curva intensità-durata-frequenza espressa dalla formula (3.3'), i cui parametri sono riportati nella tabella 3.17, valutando se il singolo bacino ricade totalmente o parzialmente nell'area di influenza di Roccamonfina, Letino o Caiazzo.

Nella tabella 6.4 si riportano le piogge e le portate di progetto dei singoli bacini.

Tabella 6.4 – Piogge e portate di progetto dei bacini secondari

D	- ()		F	luviome	tro %		Gum	bel	Fréchet		
Bacino	τ _b (ore)	ф	Roccamonfina	Letino	Caiazzo	Morcone	i ₂₀₀ (mm/ora)	$Q_{200} (m^3/s)$	i ₂₀₀ (mm/ora)	$Q_{200} (m^3/s)$	
2	0.15	0.52	0%	100%	0%	0%	234.6	13.8	322.2	18.9	
3	0.03	0.65	0%	100%	0%	0%	433.8	0.8	595.9	1.2	
4	0.08	0.49	0%	100%	0%	0%	305.6	5.1	419.7	7.0	
5	0.24	0.47	0%	100%	0%	0%	183.4	48.0	251.9	66.0	
6	0.32	0.55	0%	100%	0%	0%	155.3	11.8	213.3	16.2	
7	0.23	0.54	0%	100%	0%	0%	187.0	32.9	256.9	45.2	
8	0.33	0.51	0%	100%	0%	0%	152.5	31.1	209.4	42.7	
9	0.37	0.57	0%	88%	12%	0%	153.5	37.6	212.9	52.2	
10	0.27	0.65	0%	86%	14%	0%	182.3	16.6	253.3	23.1	
11	0.22	0.65	0%	60%	40%	0%	210.5	3.2	299.9	4.6	
12	0.30	0.65	0%	7%	93%	0%	164.8	6.6	252.0	10.1	
13	0.57	0.48	0%	15%	85%	0%	119.0	56.1	179.7	84.7	
14	0.40	0.60	0%	0%	100%	0%	138.4	41.5	214.3	64.3	
15	0.49	0.52	0%	0%	100%	0%	123.3	30.0	190.9	46.4	
16	0.55	0.64	0%	0%	100%	0%	115.1	6.6	178.2	10.2	
17	0.34	0.62	0%	0%	100%	0%	149.7	16.1	231.8	24.9	
18	0.39	0.65	0%	0%	100%	0%	141.0	8.0	218.4	12.4	
19	0.26	0.65	0%	0%	100%	0%	173.2	2.4	268.1	3.8	
20	0.98	0.53	0%	0%	100%	0%	80.8	106.8	125.1	165.3	
21	0.33	0.65	0%	0%	100%	0%	153.6	8.0	237.9	12.4	
22	0.21 0.20	0.65 0.65	0% 0%	0% 0%	100%	0% 0%	191.1 194.1	8.7 3.8	295.9	13.5 6.0	
23	0.20	0.63	0%	0%	100% 100%	0%	94.0	3.8 82.7	300.5 145.5	128.1	
24	0.77	0.52	0%	0%	100%	0%	186.2	6.3	288.4	9.8	
25	0.22	0.65	0%	0%	100%	0%	140.0	13.7	216.7	21.1	
26 27	0.39	0.63	0%	0%	100%	0%	95.5	121.3	147.9	187.8	
28	0.73	0.65	0%	0%	100%	0%	149.7	4.4	231.8	6.8	
29	0.62	0.65	0%	0%	100%	0%	107.2	22.0	166.0	34.0	
30	4.54	0.60	0%	0%	100%	0%	27.4	230.0	42.5	356.1	
31	0.48	0.65	0%	0%	100%	0%	125.2	67.5	193.8	104.6	
32	0.15	0.65	0%	0%	100%	0%	218.7	14.5	338.5	22.4	
33	0.06	0.65	0%	0%	100%	0%	280.8	4.5	434.7	7.0	
34	0.08	0.65	0%	0%	100%	0%	262.7	7.5	406.8	11.6	
35	0.08	0.65	0%	0%	100%	0%	263.2	4.7	407.4	7.3	
36	0.06	0.65	0%	0%	100%	0%	279.9	2.6	433.4	3.9	
37	0.22	0.65	0%	0%	100%	0%	185.8	13.4	287.7	20.8	
38	0.17	0.65	0%	0%	100%	0%	208.3	11.1	322.5	17.3	
39	2.15	0.58	0%	0%	77%	23%	45.2	301.0	68.8	458.0	
40	0.23	0.65	0%	0%	100%	0%	181.4	5.3	280.9	8.2	
41	0.67	0.65	0%	0%	100%	0%	102.9	31.9	159.3	49.5	
43	0.55	0.64	0%	0%	100%	0%	115.6	53.7	179.0	83.2	
44	0.18	0.65	0%	0%	100%	0%	203.7	4.7	315.4	7.2	
45	0.19	0.65	0%	0%	100%	0%	196.0	12.4	303.4	19.2	
46	0.17	0.65	0%	0%	100%	0%	207.8	8.6	321.7	13.3	
47	0.28	0.65	0%	0%	100%	0%	166.2	18.2	257.3	28.1	

6.2 BACINI DEI FOSSI DI GUARDIA

Le acque provenienti dai versanti e dalle scarpate dei rilevati sono di regola raccolte con continuità dai fossi di guardia paralleli all'asse stradale. I fossi di guardia rappresentano un'importante opera a difesa del corpo stradale; essi servono per convogliare ai tombini idraulici e agli impluvi naturali le acque superficiali che, per la naturale conformazione del terreno, verrebbero altrimenti a raccogliersi ai piedi del rilevato od a invadere le trincee provocando, così, cedimenti dei rilevati o delle scarpate delle trincee.

Il calcolo dell'intensità di pioggia di progetto è stato realizzato con la curva intensità-durata-frequenza espressa dalla formula (3.3'), i cui parametri sono riportati nella tabella 3.17.

Le verifiche sono realizzate con l'equazione di Chezy,

$$Q = \frac{1}{n} A R^{2/3} i_f^{1/2} \tag{6.5}$$

ipotizzando il moto della corrente uniforme e a superficie libera, con n coefficiente di scabrezza di Manning (assunto pari a 0,023 per i fossi rivestiti e 0,030 per quelli in terra) e con A, R e i_f rispettivamente area bagnata, raggio idraulico e pendenza fondo del tratto di fosso considerato.

6.2.1 FOSSI DI GUARDIA

I fossi di guardia sono dimensionati considerando nel computo del bacino, oltre alla larghezza della scarpata del rilevato posta pari a 10 m, una fascia di competenza per le acque provenienti dal bacino esterno dominante pari ad almeno 100 m.

Nella figura 6.3 è rappresentato schematicamente un bacino sotteso al fosso di guardia.

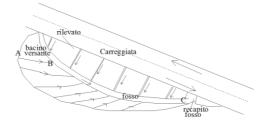


Figura 6.3 – Schema dell'area contribuente sottesa ad un fosso di guardia minore

Per i fossi di guardia si considera un tempo di ritorno di 50 anni con un tempo medio di concentrazione costante pari a 5'.

Il coefficiente di deflusso adottato è anch'esso costante, pari a 0,50 per il tratto ricadente nell'area di influenza di Roccamonfina e Letino e pari a 0,60 per il tratto restante ricadente nell'area di influenza di Caiazzo. Tali valori sono in accordo con quanto indicato nella tabella 6.2 (Chow et al., 1988).

La tipologia di fosso di guardia adottata per l'asse principale è a forma trapezia con rivestimento in cls (indicati con la dicitura FR) o in terra (indicati con la dicitura FT) ed ha le dimensioni riportate in tabella 6.5,

P.C. B

Tabella 6.5 – Dimensioni dei fossi di guardia (m)

Tipologico Fosso	b (m)	B (m)	H (m)	s (m)
F1	0,50	1,50	0,50	0,15
F3	0,80	2,40	0,80	0,15
F4	1,00	3,00	1,00	0,20

La portata massima ammissibile di progetto, stimata con la distribuzione delle piogge di Gumbel, è stata determinata imponendo un grado di riempimento massimo del fosso pari al 70%, verificando che con le portate stimate dalla distribuzione di Fréchet (portate di verifica) il grado di riempimento si mantenga attorno all'80 %.

dal km 0+000 al km 60+900. Lotto 2: dal km 0+000 (Svincolo di Caianello) al km 37+00

(Svincolo di S. Salvatore Telesino). Progetto Definitivo 000_T00_ID00_IDR_RE01_B

Relazione idrologica

7 APPENDICE

APPENDICE 1 – ONDE DI PIENA PER IL BACINO DEL F. VOLTURNO ALLA CONFLUENZA 7.1

DEL T. TORANO

Tempo		Onde di piena	idrologiche del F.	Volturno alla co	onfluenza del T. 1	Torano Q (m3/s)	
(ore)	T=30	T=50	T=100	T=200	T=300	T=500	T=1000
0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7.00	0.1	0.1	0.1	0.2	0.2	0.2	0.2
7.50	0.3	0.3	0.4	0.4	0.5	0.5	0.6
8.00	0.6	0.8	0.9	1.0	1.0	1.1	1.2
8.50	1.2	1.4	1.7	1.9	2.0	2.2	2.4
9.00	2.1	2.5	2.9	3.2	3.4	3.8	4.1
9.50	3.4	4.1	4.7	5.3	5.6	6.1	6.7
10.00	5.3	6.4	7.3	8.2	8.7	9.5	10.5
10.50	8.0	9.6	10.9	12.3	13.1	14.3	15.8
11.00	11.7	14.0	16.0	18.0	19.1	20.8	23.0
11.50	16.7	19.9	22.7	25.6	27.2	29.7	32.8
12.00	23.1	27.6	31.5	35.5	37.7	41.1	45.4
12.50	31.3	37.3	42.6	48.1	51.1	55.6	61.5
13.00	41.4	49.4	56.4	63.6	67.6	73.6	81.4
13.50	53.7	64.0	73.1	82.5	87.6	95.4	105.4
14.00	68.2	81.4	92.9	104.8	111.4	121.3	134.0
14.50	85.1	101.5	115.9	130.8	138.9	151.3	167.2
15.00	104.5	124.6	142.3	160.5	170.5	185.7	205.2
15.50	126.5	150.9	172.2	194.3	206.5	224.8	248.4
16.00	151.3	180.4	206.0	232.4	246.9	268.8	297.1
16.50	179.0	213.5	243.7	275.0	292.2	318.1	351.6
17.00	209.8	250.2	285.6	322.2	342.3	372.8	411.9
17.50	243.5	290.4	331.5	374.0	397.4	432.7	478.2
18.00	280.3	334.3	381.6	430.6	457.5	498.1	550.5
18.50	320.2	381.9	435.9	491.8	522.6	569.0	628.8
19.00	363.2	433.2	494.5	557.9	592.8	645.4	713.3
19.50	409.3	488.2	557.2	628.7	668.0	727.3	803.8
20.00	458.2	546.5	623.7	703.8	747.7	814.2	899.7
20.50	509.4	607.5	693.4	782.4	831.2	905.1	1000.2
21.00	562.2	670.5	765.3	863.5	917.5	999.0	1104.0
21.50	616.1	734.8	838.7	946.4	1005.5	1094.8	1209.8

(Svincolo di S. Salvatore Telesino).

Progetto Definitivo

Tempo		Onde di piena i	drologiche del F.	. Volturno alla co	nfluenza del T.	Forano Q (m3/s)	
(ore)	T=30	T=50	T=100	T=200	T=300	T=500	T=1000
22.00	670.6	799.8	912.9	1030.1	1094.4	1191.6	1316.9
22.50	724.8	864.4	986.7	1113.3	1182.8	1287.9	1423.2
23.00	778.2	928.1	1059.4	1195.3	1270.0	1382.8	1528.1
23.50	830.4	990.4	1130.5	1275.5	1355.2	1475.6	1630.7
24.00	881.2	1051.0	1199.6	1353.6	1438.1	1565.9	1730.4
24.50	930.7	1110.0	1267.0	1429.6	1518.9	1653.8	1827.6
25.00	978.7	1167.2	1332.3	1503.3	1597.2	1739.1	1921.8
25.50	1024.8	1222.3	1395.1	1574.1	1672.5	1821.0	2012.4
26.00	1068.8	1274.7	1455.0	1641.7	1744.3	1899.2	2098.8
26.50	1110.1	1323.9	1511.2	1705.1	1811.6	1972.5	2179.8
27.00	1148.2	1369.4	1563.0	1763.6	1873.7	2040.2	2254.6
27.50	1182.6	1410.4	1609.8	1816.4	1929.9	2101.3	2322.2
28.00	1212.5	1446.1	1650.6	1862.4	1978.7	2154.5	2381.0
28.50	1237.4	1475.8	1684.5	1900.6	2019.4	2198.8	2429.8
29.00	1256.5	1498.5	1710.4	1929.9	2050.5	2232.7	2467.3
29.50	1269.0	1513.4	1710.4	1949.1	2070.9	2254.9	2491.8
30.00	1274.6	1520.2	1735.2	1957.8	2080.1	2264.9	2503.0
30.50	1273.1	1518.4	1733.1	1955.5	2077.6	2262.2	2499.9
31.00	1264.4	1508.0	1721.2	1942.1	2063.4	2246.7	2482.8
31.50	1248.7	1489.2	1699.8	1918.0	2037.8	2218.8	2452.0
32.00	1226.2	1462.5	1669.3	1883.5	2001.2	2179.0	2407.9
32.50	1197.8	1428.6	1630.6	1839.9	1954.8	2128.5	2352.1
33.00	1164.1	1388.4	1584.7	1788.1	1899.8	2068.5	2285.9
33.50	1125.7	1342.6	1532.5	1729.1	1837.1	2000.4	2210.6
34.00	1083.4	1292.2	1474.9	1664.1	1768.1	1925.2	2127.5
34.50	1037.8	1237.7	1412.8	1594.1	1693.6	1844.1	2037.9
35.00	989.5	1180.1	1347.0	1519.8	1614.8	1758.2	1943.0
35.50	939.0	1119.9	1278.3	1442.3	1532.4	1668.6	1843.9
36.00	887.0	1057.9	1207.5	1362.4	1447.5	1576.2	1741.8
36.50	834.1	994.8	1135.5	1281.2	1361.3	1482.2	1638.0
37.00	781.0	931.5	1063.2	1199.6	1274.6	1387.8	1533.6
37.50	728.2	868.4	991.3	1118.5	1188.3	1293.9	1429.9
38.00	675.9	806.2	920.2	1038.2	1103.1	1201.1	1327.3
38.50	624.9	745.2	850.6	959.8	1019.7	1110.3	1227.0
39.00	575.2	686.0	783.0	883.4	938.6	1022.0	1129.4
39.50	526.9	628.4	717.3	809.4	859.9	936.3	1034.7
40.00	480.2	572.7	653.7	737.6	783.7	853.3	943.0
40.50	434.8	518.6	591.9	667.8	709.6	772.6	853.8
41.00	390.6	465.9	531.8	600.0	637.5	694.1	767.1
41.50	347.9	415.0	473.6	534.4	567.8	618.2	683.2
42.00	306.7	365.8	417.6	471.1	500.6	545.1	602.3
42.50	267.4	318.9	364.0	410.7	436.4	475.2	525.1
43.00	230.1	274.4	313.2	353.4	375.5	408.8	451.8
43.50	195.0	232.5	265.4	299.5	318.2	346.5	382.9
44.00	162.5	193.8	221.2	249.6	265.2	288.7	319.1
44.50	132.8	158.4	180.8	204.0	216.8	236.0	260.8
45.00	106.3	126.8	144.8	163.3	173.5	189.0	208.8
45.50	83.3	99.4	113.4	128.0	136.0	148.0	163.6
46.00	63.7	76.0	86.7	97.8	103.9	113.2	125.1
46.50	47.5	56.7	64.7	73.0	77.5	84.4	93.3
47.00	34.5	41.2	47.0	53.0	56.4	61.4	67.8
47.50	24.5	29.2	33.3	37.6	39.9	43.5	48.0
47.50	۷٦.٦	23.2	JJ.J	57.0	33.3	40.0	+0.0

(Svincolo di S. Salvatore Telesino).

Progetto Definitivo

000_T00_ID00_IDR_RE01_B

Relazione idrologica

Tempo			idrologiche del F				
(ore)	T=30	T=50	T=100	T=200	T=300	T=500	T=1000
48.00	17.0	20.2	23.1	26.1	27.7	30.2	33.3
48.50	11.5	13.7	15.6	17.6	18.7	20.4	22.6
49.00	7.6	9.0	10.3	11.6	12.4	13.5	14.9
49.50	4.9	5.8	6.7	7.5	8.0	8.7	9.6
50.00	3.1	3.7	4.2	4.8	5.1	5.5	6.1
50.50	2.0	2.4	2.7	3.0	3.2	3.5	3.9
51.00	1.3	1.5	1.7	1.9	2.0	2.2	2.5
51.50	0.8	0.9	1.1	1.2	1.3	1.4	1.6
52.00	0.5	0.6	0.7	0.8	0.8	0.9	1.0
52.50	0.3	0.4	0.4	0.5	0.5	0.6	0.6
53.00	0.2	0.2	0.3	0.3	0.3	0.4	0.4
53.50	0.1	0.2	0.2	0.2	0.2	0.2	0.3
54.00	0.1	0.1	0.1	0.1	0.1	0.2	0.2
54.50	0.1	0.1	0.1	0.1	0.1	0.1	0.1
55.00	0.0	0.0	0.0	0.1	0.1	0.1	0.1
55.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
56.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
56.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
57.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
57.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
58.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
58.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
59.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
59.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
61.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
61.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
62.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
62.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
63.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
63.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
64.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
64.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
65.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
65.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
66.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
66.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
67.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
67.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
68.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
68.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
69.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
69.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0

7.2 APPENDICE 2 – ONDE DI PIENA PER IL BACINO DEL F. VOLTURNO ALLA S.S.372

Tempo		Onde	di piena idrologio	che del F. Volturn	o alla S.S.372 Q	(m3/s)	
(ore)	T=30	T=50	T=100	T=200	T=300	T=500	T=1000
0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8.00	0.0	0.0	0.1	0.1	0.1	0.1	0.1
8.50	0.1	0.1	0.2	0.2	0.2	0.3	0.3
9.00	0.3	0.3	0.5	0.6	0.6	0.7	0.8
9.50	0.7	0.8	1.2	1.3	1.4	1.6	1.7
10.00	1.4	1.6	2.4	2.7	2.8	3.1	3.4
10.50	2.5	3.0	4.2	4.7	5.0	5.5	6.1
11.00	4.2	5.0	6.8	7.7	8.2	8.9	9.9
11.50	6.5	7.7	10.4	11.8	12.5	13.6	15.1
12.00	9.5	11.4	15.2	17.1	18.2	19.8	21.9
12.50	13.4	16.0	21.2	23.9	25.4	27.6	30.5
13.00	18.3	21.9	28.6	32.3	34.3	37.4	41.3
13.50	24.3	29.0	37.8	42.6	45.3	49.3	54.5
14.00	31.6	37.7	48.8	55.1	58.5	63.7	70.4
14.50	40.3	48.1	61.9	69.9	74.3	80.9	89.3
15.00	50.6	60.3	77.4	87.3	92.8	101.0	111.6
15.50	62.5	74.6	95.4	107.6	114.3	124.5	137.5
16.00	76.3	91.0	116.0	130.9	139.1	151.5	167.4
16.50	92.1	109.9	139.6	157.5	167.4	182.2	201.4
17.00	110.0	131.1	166.1	187.4	199.2	216.8	239.6
17.50	129.9	154.9	195.7	220.8	234.6	255.4	282.2
18.00	151.9	181.2	228.3	257.6	273.7	298.0	329.3
18.50	176.1	210.1	264.1	298.0	316.6	344.7	380.9
19.00	202.6	241.6	303.1	342.0	363.4	395.7	437.3
19.50	231.4	276.0	345.6	390.0	414.3	451.1	498.6
20.00	262.7	313.3	391.6	441.8	469.4	511.1	564.8
20.50	296.5	353.6	440.9	497.5	528.5	575.5	636.0
21.00	332.6	396.7	493.4	556.7	591.5	644.0	711.7
21.50	371.1	442.6	548.7	619.1	657.8	716.3	791.5
22.00	411.6	490.9	606.5	684.4	727.1	791.7	874.9
22.50	454.0	541.5	666.5	752.0	799.0	870.0	961.4
23.00	497.9	593.8	728.4	821.8	873.2	950.8	1050.7
23.50	543.2	647.9	791.9	893.5	949.3	1033.7	1142.3

(Svincolo di S. Salvatore Telesino).

Progetto Definitivo

000_	_T00_	_ID00_	_IDR_	_RE01 __	_B
		Relazi	one i	drologi	ca

Tempo		Onde	di piena idrologic	he del F. Volturn	o alla S.S.372 Q	(m3/s)	
(ore)	T=30	T=50	T=100	T=200	T=300	T=500	T=1000
24.00	589.7	703.3	856.9	966.8	1027.2	1118.5	1236.0
24.50	637.2	759.9	922.8	1041.2	1106.3	1204.6	1331.2
25.00	685.3	817.4	989.5	1116.5	1186.3	1291.6	1427.4
25.50	734.0	875.4	1056.3	1191.9	1266.3	1378.9	1523.8
26.00	782.6	933.4	1122.7	1266.7	1345.8	1465.4	1619.4
26.50	830.8	990.9	1187.8	1340.2	1423.9	1550.4	1713.3
27.00	878.1	1047.2	1251.3	1411.9	1500.1	1633.4	1805.0
27.50	924.2	1102.2	1312.8	1481.2	1573.8	1713.6	1893.7
28.00	968.7	1155.3	1371.6	1547.6	1644.3	1790.4	1978.6
28.50	1011.3	1206.1	1427.5	1610.7	1711.3	1863.4	2059.2
29.00	1051.8	1254.4	1480.6	1670.6	1774.9	1932.6	2135.7
29.50	1090.1	1300.2	1530.9	1727.4	1835.3	1998.3	2208.3
30.00	1126.5	1343.6	1578.6	1781.1	1892.4	2060.5	2277.1
30.50	1161.0	1384.7	1623.4	1831.7	1946.1	2119.0	2341.7
31.00	1193.4	1423.3	1665.1	1878.8	1996.2	2173.5	2401.9
31.50	1223.6	1459.3	1703.5	1922.1	2042.2	2223.6	2457.3
32.00	1251.4	1492.5	1738.0	1961.0	2083.5	2268.6	2507.0
32.50	1276.4	1522.3	1768.2	1995.1	2119.7	2308.1	2550.6
33.00	1298.3	1548.4	1793.8	2023.9	2150.4	2341.4	2587.5
33.50	1316.9	1570.6	1814.1	2046.8	2174.7	2367.9	2616.7
34.00	1331.8	1588.3	1828.2	2062.8	2191.7	2386.4	2637.2
34.50	1342.3	1600.9	1835.9	2071.5	2200.9	2396.4	2648.2
35.00	1348.2	1607.9	1836.6	2072.3	2201.8	2397.4	2649.3
35.50	1349.2	1609.1	1830.2	2065.0	2194.0	2388.9	2640.0
36.00	1345.0	1604.2	1816.2	2049.3	2177.3	2370.8	2619.9
36.50	1335.7	1593.0	1795.1	2025.4	2151.9	2343.1	2589.3
37.00	1321.1	1575.7	1766.9	1993.6	2118.2	2306.3	2548.7
37.50	1301.7	1552.5	1732.2	1954.5	2076.6	2261.1	2498.7
38.00	1277.6	1523.8	1691.5	1908.6	2027.8	2208.0	2440.0
38.50	1249.4	1490.1	1645.6	1856.7	1972.7	2148.0	2373.7
39.00	1217.3	1451.9	1595.0	1799.6	1912.1	2081.9	2300.7
39.50	1182.0	1409.7	1540.4	1738.0	1846.6	2010.6	2221.9
40.00	1143.7	1364.0	1482.5	1672.7	1777.2	1935.1	2138.4
40.50	1102.9	1315.4	1422.1	1604.6	1704.8	1856.3	2051.3
41.00	1060.2	1264.4	1360.0	1534.5	1630.3	1775.2	1961.7
41.50	1015.9	1211.6	1296.7	1463.1	1554.4	1692.5	1870.4
42.00	970.6	1157.6	1232.6	1390.7	1477.6	1608.9	1778.0
42.50	924.7	1102.8	1168.1	1318.0	1400.3	1524.8	1685.0
43.00	878.3	1047.5	1103.6	1245.2	1323.0	1440.5	1591.9
43.50	831.8	992.1	1039.3	1172.7	1246.0	1356.7	1499.2
44.00	785.4	936.7	975.6	1100.8	1169.6	1273.5	1407.3
44.50	739.3	881.7	912.8	1029.9	1094.3	1191.5	1316.7
45.00	693.6	827.2	851.2	960.5	1020.5	1111.1	1227.9
45.50	648.6	773.6	791.3	892.8	948.6	1032.9	1141.4
46.00	604.7	721.1	733.1	827.2	878.8	956.9	1057.5
46.50	561.9	670.1	676.8	763.7	811.4	883.5	976.3
47.00	520.3	620.6	622.7	702.6	746.5	812.8	898.2
47.50	480.2	572.8	570.8	644.0	684.2	745.0	823.3
48.00	441.7	526.8	520.8	587.6	624.3	679.8	751.2
48.50	404.7	482.7	472.5	533.1	566.5	616.8	681.6
49.00	369.2	440.3	425.8	480.5	510.5	555.9	614.3
49.50	334.9	399.4	380.8	429.7	456.5	497.1	549.3

(Svincolo di S. Salvatore Telesino).

Progetto Definitivo 000_T00_ID00_IDR_RE01_B

Tempo		Onde	di piena idrologio	che del F. Volturi	no alla S.S.372 C	(m3/s)	
(ore)	T=30	T=50	T=100	T=200	T=300	T=500	T=1000
50.00	301.8	359.9	337.5	380.8	404.6	440.5	486.8
50.50	269.8	321.8	296.0	334.0	354.9	386.4	427.0
51.00	239.1	285.1	256.7	289.7	307.7	335.1	370.3
51.50	209.7	250.0	219.6	247.8	263.3	286.7	316.8
52.00	181.8	216.8	185.1	208.8	221.9	241.6	267.0
52.50	155.5	185.5	153.2	172.9	183.7	200.0	221.0
53.00	131.0	156.3	124.6	140.5	149.3	162.6	179.7
53.50	108.5	129.4	99.2	111.9	118.9	129.5	143.1
54.00	88.2	105.2	77.3	87.2	92.6	100.8	111.4
54.50	70.2	83.8	58.7	66.2	70.4	76.6	84.7
55.00	54.7	65.2	43.6	49.2	52.2	56.9	62.8
55.50	41.5	49.6	31.5	35.6	37.8	41.1	45.5
56.00	30.8	36.8	22.3	25.1	26.7	29.1	32.1
56.50	22.3	26.6	15.3	17.3	18.4	20.0	22.1
57.00	15.7	18.8	10.4	11.7	12.4	13.5	14.9
57.50	10.9	12.9	6.8	7.7	8.2	8.9	9.8
58.00	7.3	8.7	4.4	5.0	5.3	5.8	6.4
58.50	4.8	5.8	2.8	3.2	3.4	3.7	4.0
59.00	3.1	3.7	1.8	2.0	2.1	2.3	2.6
59.50	2.0	2.4	1.1	1.3	1.4	1.5	1.6
60.00	1.3	1.5	0.7	0.8	0.9	0.9	1.0
60.50	0.8	1.0	0.5	0.5	0.5	0.6	0.7
61.00	0.5	0.6	0.3	0.3	0.3	0.4	0.4
61.50	0.3	0.4	0.2	0.2	0.2	0.2	0.3
62.00	0.2	0.2	0.1	0.1	0.1	0.2	0.2
62.50	0.1	0.2	0.1	0.1	0.1	0.1	0.1
63.00	0.1	0.1	0.0	0.1	0.1	0.1	0.1
63.50	0.1	0.1	0.0	0.0	0.0	0.0	0.0
64.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
64.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
65.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
65.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
66.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
66.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
67.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
67.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
68.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
68.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
69.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
69.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0

7.3 APPENDICE 3 – ONDE DI PIENA PER IL BACINO DEL F. VOLTURNO ALLA CONFLUENZA

DEL T. TITERNO

Tempo		Onde di piena	idrologiche del F	. Volturno alla co	onfluenza del T. T	iterno Q (m3/s)	
(ore)	T=30	T=50	T=100	T=200	T=300	T=500	T=1000
0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8.50	0.0	0.0	0.0	0.1	0.1	0.1	0.1
9.00	0.1	0.1	0.1	0.2	0.2	0.2	0.2
9.50	0.3	0.3	0.4	0.4	0.4	0.5	0.5
10.00	0.5	0.6	0.7	0.8	0.9	1.0	1.1
10.50	1.0	1.2	1.3	1.5	1.6	1.8	1.9
11.00	1.7	2.0	2.3	2.6	2.7	3.0	3.3
11.50	2.7	3.2	3.7	4.2	4.4	4.8	5.3
12.00	4.2	5.0	5.7	6.4	6.8	7.4	8.2
12.50	6.1	7.3	8.4	9.4	10.0	10.9	12.1
13.00	8.7	10.4	11.9	13.4	14.3	15.5	17.2
13.50	12.1	14.4	16.4	18.5	19.7	21.4	23.7
14.00	16.1	19.3	22.0	24.8	26.4	28.7	31.7
14.50	21.1	25.2	28.8	32.5	34.5	37.6	41.5
15.00	27.1	32.3	36.9	41.7	44.3	48.2	53.2
15.50	34.2	40.8	46.6	52.5	55.8	60.8	67.2
16.00	42.6	50.8	57.9	65.4	69.4	75.6	83.6
16.50	52.3	62.3	71.1	80.3	85.3	92.9	102.6
17.00	63.5	75.7	86.4	97.5	103.6	112.8	124.6
17.50	76.3	91.0	103.9	117.2	124.5	135.6	149.8
18.00	90.9	108.4	123.7	139.6	148.3	161.5	178.5
18.50	107.3	128.0	146.1	164.8	175.1	190.7	210.7
19.00	125.7	149.9	171.1	193.0	205.1	223.3	246.7
19.50	146.0	174.1	198.7	224.2	238.2	259.3	286.6
20.00	168.2	200.6	229.0	258.4	274.5	298.9	330.3
20.50	192.5	229.6	262.1	295.7	314.2	342.1	378.1
21.00	218.9	261.1	298.0	336.2	357.2	389.0	429.9
21.50	247.4	295.0	336.7	380.0	403.7	439.6	485.7
22.00	277.9	331.4	378.3	426.8	453.5	493.8	545.7
22.50	310.4	370.2	422.6	476.8	506.6	551.6	609.6

(Svincolo di S. Salvatore Telesino).

Progetto Definitivo 000_T00_ID00_IDR_RE01_B

Tempo		Onde di niena i	drologiche del F.	Volturno alla co	nfluenza del T	Titerno () (m3/s)	
(ore)	T=30	T=50	T=100	T=200	T=300	T=500	T=1000
23.00	345.0	411.4	469.6	529.9	563.0	613.0	677.4
23.50	381.4	454.9	519.2	585.8	622.4	677.7	748.9
24.00	419.7	500.5	571.3	644.6	684.9	745.7	824.1
24.50	459.5	548.1	625.6	705.9	750.0	816.6	902.4
25.00	500.9	597.3	681.8	769.3	817.4		983.5
25.50	543.4	648.1	739.7	834.7	886.8	890.0 965.6	1067.1
					ł	+	
26.00 26.50	587.1 631.6	700.2 753.3	799.2 859.8	901.7 970.2	958.1 1030.8	1043.2 1122.3	1152.8 1240.3
			921.6		1104.8	1202.9	
27.00	677.0	807.4		1039.8			1329.3
27.50	722.8	862.1	984.0	1110.2	1179.6	1284.4	1419.4
28.00	768.9	917.1	1046.8	1181.1	1254.9	1366.4	1510.0
28.50	815.0	972.0	1109.4	1251.8	1330.0	1448.2	1600.3
29.00	860.5	1026.3	1171.4	1321.7	1404.3	1529.0	1689.7
29.50	905.2	1079.6	1232.3	1390.4	1477.2	1608.5	1777.5
30.00	948.7	1131.5	1291.5	1457.2	1548.3	1685.8	1863.0
30.50	990.8	1181.6	1348.7	1521.8	1616.9	1760.5	1945.5
31.00	1030.9	1229.5	1403.4	1583.5	1682.4	1831.8	2024.3
31.50	1069.0	1275.0	1455.3	1642.0	1744.6	1899.6	2099.2
32.00	1105.1	1318.0	1504.4	1697.5	1803.5	1963.8	2170.1
32.50	1139.3	1358.7	1550.9	1749.9	1859.2	2024.4	2237.1
33.00	1171.5	1397.1	1594.7	1799.3	1911.7	2081.6	2300.3
33.50	1201.7	1433.2	1635.9	1845.8	1961.2	2135.4	2359.8
34.00	1230.0	1466.9	1674.4	1889.2	2007.2	2185.6	2415.2
34.50	1256.0	1497.9	1709.8	1929.2	2049.7	2231.8	2466.3
35.00	1279.6	1526.1	1741.9	1965.4	2088.2	2273.8	2512.7
35.50	1300.5	1551.0	1770.3	1997.5	2122.3	2310.9	2553.7
36.00	1318.4	1572.3	1794.7	2025.0	2151.5	2342.6	2588.8
36.50	1332.9	1589.7	1814.5	2047.3	2175.2	2368.5	2617.4
37.00	1343.7	1602.6	1829.2	2064.0	2192.9	2387.7	2638.6
37.50	1350.5	1610.7	1838.5	2074.4	2204.0	2399.8	2652.0
38.00	1352.9	1613.5	1841.7	2078.0	2207.8	2404.0	2656.6
38.50	1350.6	1610.8	1838.6	2074.5	2204.1	2399.9	2652.1
39.00	1343.5	1602.4	1829.0	2063.7	2192.6	2387.4	2638.2
39.50	1331.7	1588.3	1812.9	2045.5	2173.3	2366.3	2615.0
40.00	1315.2	1568.5	1790.4	2020.1	2146.3	2337.0	2582.6
40.50	1294.3	1543.6	1761.9	1988.0	2112.2	2299.9	2541.6
41.00	1269.3	1513.9	1728.0	1949.7	2071.5	2255.5	2492.6
41.50	1240.7	1479.8	1689.0	1905.7	2024.8	2204.7	2436.4
42.00	1208.9	1441.8	1645.6	1856.8	1972.8	2148.1	2373.8
42.50	1174.2	1400.4	1598.4	1803.5	1916.2	2086.4	2305.7
43.00	1137.1	1356.1	1547.9	1746.6	1855.7	2020.5	2232.9
43.50	1098.0	1309.5	1494.7	1686.5	1791.8	1951.0	2156.1
44.00	1057.2	1260.9	1439.2	1623.9	1725.3	1878.6	2076.0
44.50	1015.1	1210.7	1381.9	1559.2	1656.6	1803.8	1993.4
45.00	972.1	1159.4	1323.3	1493.1	1586.4	1727.4	1908.9
45.50	928.4	1107.3	1263.9	1426.1	1515.2	1649.8	1823.2
46.00	884.4	1054.8	1204.0	1358.5	1443.4	1571.6	1736.7
46.50	840.3	1002.2	1143.9	1290.7	1371.3	1493.1	1650.0
47.00	796.2	949.6	1083.8	1222.9	1299.3	1414.7	1563.4
47.50	752.2	897.1	1024.0	1155.4	1227.6	1336.6	1477.1
48.00	708.6	845.1	964.7	1088.4	1156.4	1259.2	1391.5
48.50	665.5	793.7	906.0	1022.2	1086.1	1182.6	1306.8

dal km 0+000 al km 60+900. Lotto 2: dal km 0+000 (Svincolo di Caianello) al km 37+00

(Svincolo di S. Salvatore Telesino). Progetto Definitivo 000_T00_ID00_IDR_RE01_B Relazione idrologica

Tempo		Onde di piena i	drologiche del F.	. Volturno alla co	onfluenza del T. 1	iterno Q (m3/s)	
(ore)	T=30	T=50	T=100	T=200	T=300	T=500	T=1000
49.00	623.1	743.1	848.2	957.1	1016.8	1107.2	1223.5
49.50	581.6	693.6	791.7	893.3	949.1	1033.5	1142.1
50.00	541.1	645.4	736.6	831.2	883.1	961.6	1062.6
50.50	501.9	598.6	683.2	770.9	819.0	891.8	985.5
51.00	464.0	553.3	631.6	712.6	757.2	824.4	911.1
51.50	427.5	509.9	582.0	656.7	697.7	759.7	839.5
52.00	392.6	468.2	534.4	603.0	640.7	697.6	770.9
52.50	359.0	428.1	488.7	551.4	585.8	637.9	704.9
53.00	326.6	389.6	444.7	501.7	533.1	580.4	641.4
53.50	295.4	352.3	402.2	453.8	482.1	525.0	580.1
54.00	265.3	316.4	361.2	407.5	433.0	471.4	521.0
54.50	236.3	281.8	321.7	363.0	385.6	419.9	464.0
55.00	208.5	248.7	283.8	320.3	340.3	370.5	409.4
55.50	182.0	217.0	247.7	279.5	297.0	323.3	357.3
56.00	156.9	187.1	213.6	241.0	256.0	278.8	308.1
56.50	133.4	159.1	181.6	204.9	217.7	237.0	261.9
57.00	111.6	133.1	151.9	171.4	182.1	198.3	219.1
57.50	91.7	109.4	124.9	140.9	149.7	163.0	180.2
58.00	73.9	88.2	100.6	113.6	120.6	131.4	145.2
58.50	58.3	69.6	79.4	89.6	95.2	103.7	114.6
59.00	45.0	53.7	61.3	69.1	73.4	80.0	88.4
59.50	33.9	40.4	46.1	52.0	55.3	60.2	66.5
60.00	24.9	29.7	33.9	38.2	40.6	44.2	48.9
60.50	17.9	21.3	24.3	27.4	29.1	31.7	35.1
61.00	12.5	14.9	17.0	19.2	20.4	22.2	24.5
61.50	8.5	10.2	11.6	13.1	13.9	15.2	16.8
62.00	5.7	6.8	7.8	8.7	9.3	10.1	11.2
62.50	3.7	4.4	5.1	5.7	6.1	6.6	7.3
63.00	2.4	2.9	3.3	3.7	3.9	4.3	4.7
63.50	1.5	1.8	2.1	2.3	2.5	2.7	3.0
64.00	1.0	1.1	1.3	1.5	1.6	1.7	1.9
64.50	0.6	0.7	0.8	0.9	1.0	1.1	1.2
65.00	0.4	0.5	0.5	0.6	0.6	0.7	0.8
65.50	0.2	0.3	0.3	0.4	0.4	0.4	0.5
66.00	0.2	0.2	0.2	0.2	0.3	0.3	0.3
66.50	0.1	0.1	0.1	0.2	0.2	0.2	0.2
67.00	0.1	0.1	0.1	0.1	0.1	0.1	0.1
67.50	0.0	0.0	0.1	0.1	0.1	0.1	0.1
68.00	0.0	0.0	0.0	0.0	0.0	0.0	0.1
68.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
69.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
69.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0

7.4 APPENDICE 4 – ONDE DI PIENA PER IL BACINO DEL F. VOLTURNO ALLA STAZIONE IDRO-

METRICA DI AMOROSI

Tempo		·	_	olturno alla Stazi	1		
(ore)	T=30	T=50	T=100	T=200	T=300	T=500	T=1000
0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9.00	0.0	0.0	0.0	0.1	0.1	0.1	0.1
9.50	0.1	0.1	0.1	0.1	0.1	0.2	0.2
10.00	0.2	0.2	0.3	0.3	0.3	0.4	0.4
10.50	0.4	0.5	0.5	0.6	0.7	0.7	0.8
11.00	0.7	0.9	1.0	1.1	1.2	1.3	1.4
11.50	1.2	1.4	1.6	1.8	1.9	2.1	2.3
12.00	1.9	2.2	2.5	2.9	3.0	3.3	3.7
12.50	2.8	3.3	3.8	4.3	4.6	5.0	5.5
13.00	4.0	4.8	5.5	6.2	6.6	7.2	7.9
13.50	5.7	6.8	7.7	8.7	9.3	10.1	11.1
14.00	7.8	9.3	10.6	12.0	12.7	13.8	15.3
14.50	10.5	12.5	14.3	16.1	17.1	18.6	20.6
15.00	13.8	16.5	18.8	21.3	22.6	24.6	27.2
15.50	18.0	21.5	24.5	27.7	29.4	32.0	35.4
16.00	23.1	27.5	31.4	35.4	37.7	41.0	45.3
16.50	29.2	34.8	39.7	44.8	47.6	51.8	57.3
17.00	36.3	43.3	49.5	55.8	59.3	64.6	71.4
17.50	44.7	53.3	60.9	68.7	73.0	79.5	87.8
18.00	54.4	64.9	74.0	83.5	88.7	96.6	106.8
18.50	65.4	78.0	89.0	100.5	106.8	116.2	128.5
19.00	77.9	92.9	106.1	119.7	127.2	138.5	153.0
19.50	92.0	109.7	125.3	141.3	150.2	163.5	180.7
20.00	107.7	128.5	146.7	165.5	175.8	191.5	211.6
20.50	125.2	149.4	170.5	192.4	204.4	222.5	245.9
21.00	144.5	172.4	196.8	222.0	235.9	256.8	283.8
21.50	165.7	197.6	225.6	254.5	270.4	294.4	325.4
22.00	188.7	225.1	256.9	289.9	308.0	335.4	370.6
22.50	213.7	254.8	290.9	328.2	348.7	379.7	419.6

(Svincolo di Calariello) al Kili 37+00 (Svincolo di S. Salvatore Telesino).

Progetto Definitivo 000_T00_ID00_IDR_RE01_B

Tempo	0	nde di piena idro	logiche del F. Vo	lturno alla Stazio	one idrometrica d	i Amorosi Q (m3/	s)
(ore)	T=30	T=50	T=100	T=200	T=300	T=500	T=1000
23.00	240.5	286.8	327.3	369.4	392.4	427.3	472.2
23.50	269.1	321.0	366.4	413.4	439.2	478.3	528.5
24.00	299.7	357.4	408.0	460.3	489.1	532.5	588.5
24.50	332.1	396.0	452.0	510.0	541.9	590.1	652.1
25.00	366.2	436.7	498.5	562.5	597.6	650.7	719.1
25.50	402.1	479.5	547.4	617.6	656.2	714.5	789.6
26.00	439.6	524.3	598.5	675.3	717.5	781.2	863.3
26.50	478.8	571.1	651.9	735.5	781.4	850.9	940.3
27.00	519.6	619.7	707.3	798.1	847.9	923.2	1020.3
27.50	561.7	669.9	764.7	862.8	916.7	998.1	1103.0
28.00	605.2	721.8	823.9	929.6	987.7	1075.4	1188.4
28.50	649.7	774.8	884.4	997.9	1060.2	1154.4	1275.8
29.00	694.9	828.8	946.0	1067.4	1134.1	1234.8	1364.6
29.50	740.6	883.2	1008.2	1137.5	1208.6	1316.0	1454.2
30.00	786.4	937.9	1070.6	1207.9	1283.4	1397.4	1544.3
30.50		992.4	1132.7			1478.6	
	832.1			1278.1	1357.9		1633.9
31.00	877.2	1046.2	1194.2	1347.4	1431.6	1558.8	1722.6
31.50	921.7	1099.3	1254.8	1415.8	1504.2	1637.9	1810.0
32.00	965.3	1151.3	1314.1	1482.8	1575.4	1715.4	1895.6
32.50	1007.9	1202.0	1372.0	1548.1	1644.8	1790.9	1979.1
33.00	1049.0	1251.1	1428.1	1611.3	1712.0	1864.1	2059.9
33.50	1088.6	1298.3	1481.9	1672.0	1776.5	1934.3	2137.6
34.00	1126.4	1343.4	1533.4	1730.1	1838.2	2001.5	2211.9
34.50	1162.2	1386.1	1582.1	1785.1	1896.6	2065.2	2282.2
35.00	1195.9	1426.3	1628.0	1836.9	1951.6	2125.0	2348.3
35.50	1227.4	1463.9	1670.9	1885.3	2003.1	2181.1	2410.3
36.00	1256.8	1498.9	1710.9	1930.4	2051.0	2233.2	2467.9
36.50	1284.1	1531.5	1748.1	1972.4	2095.6	2281.8	2521.6
37.00	1309.5	1561.8	1782.7	2011.4	2137.1	2326.9	2571.5
37.50	1333.0	1589.8	1814.6	2047.5	2175.4	2368.6	2617.5
38.00	1354.4	1615.3	1843.7	2080.3	2210.3	2406.7	2659.6
38.50	1373.6	1638.3	1870.0	2109.9	2241.7	2440.9	2697.4
39.00	1390.5	1658.4	1893.0	2135.9	2269.3	2470.9	2730.6
39.50	1404.8	1675.5	1912.4	2157.8	2292.6	2496.3	2758.6
40.00	1416.4	1689.2	1928.1	2175.5	2311.4	2516.8	2781.2
40.50	1424.8	1699.3	1939.6	2188.5	2325.2	2531.8	2797.8
41.00	1429.9	1705.4	1946.5	2196.3	2333.5	2540.8	2807.8
41.50	1431.4	1707.1	1948.5	2198.6	2335.9	2543.4	2810.7
42.00	1428.9	1704.1	1945.1	2194.7	2331.8	2539.0	2805.8
42.50	1422.3	1696.4	1936.3	2184.7	2321.2	2527.4	2793.0
43.00	1411.7	1683.6	1921.7	2168.3	2303.7	2508.4	2772.0
43.50	1396.9	1666.0	1901.6	2145.6	2279.7	2482.2	2743.0
44.00	1378.2	1643.7	1876.1	2116.8	2249.1	2448.9	2706.2
44.50	1355.6	1616.7	1845.4	2082.2	2212.2	2408.8	2661.9
45.00	1329.6	1585.7	1809.9	2042.2	2169.8	2362.5	2610.8
45.50	1300.4	1550.9	1770.3	1997.4	2122.2	2310.7	2553.6
46.00	1268.5	1512.9	1726.8	1948.4	2070.1	2254.1	2490.9
46.50	1234.2	1472.0	1680.1	1895.7	2014.1	2193.1	2423.6
47.00	1197.8	1428.5	1630.6	1839.8	1954.7	2128.4	2352.0
47.50	1159.6	1383.0	1578.6	1781.2	1892.4	2060.6	2277.1
48.00	1120.0	1335.7	1524.6	1701.2	1827.7	1990.1	2199.2
10.00	1079.1	1287.0	1469.0	1657.5	1761.0	1917.5	2118.9

(Svincolo di S. Salvatore Telesino).

Progetto Definitivo

Tempo	Oı	nde di piena idro	logiche del F. Vo	lturno alla Stazio	one idrometrica d	li Amorosi Q (m3	/s)
(ore)	T=30	T=50	T=100	T=200	T=300	T=500	T=1000
49.00	1037.2	1237.0	1411.9	1593.1	1692.6	1843.0	2036.7
49.50	994.5	1186.1	1353.9	1527.6	1623.0	1767.2	1952.9
50.00	951.3	1134.6	1295.0	1461.2	1552.5	1690.4	1868.0
50.50	907.7	1082.6	1235.7	1394.2	1481.3	1612.9	1782.4
51.00	864.0	1030.5	1176.2	1327.2	1410.1	1535.3	1696.7
51.50	820.5	978.6	1117.0	1260.3	1339.1	1458.0	1611.2
52.00	777.4	927.2	1058.3	1194.1	1268.7	1381.4	1526.6
52.50	734.8	876.4	1000.3	1128.7	1199.2	1305.8	1443.0
53.00	693.0	826.5	943.4	1064.5	1131.0	1231.4	1360.8
53.50	652.1	777.8	887.7	1001.7	1064.2	1158.8	1280.5
54.00	612.1	730.1	833.3	940.2	999.0	1087.7	1202.0
54.50	573.2	683.6	780.3	880.4	935.4	1018.5	1125.5
55.00	535.3	638.4	728.7	822.2	873.6	951.2	1051.1
55.50	498.6	594.6	678.7	765.8	813.6	885.9	979.0
56.00	463.1	552.3	630.5	711.4	755.8	822.9	909.4
56.50	428.9	511.6	583.9	658.8	700.0	762.2	842.3
57.00	396.1	472.4	539.2	608.4	646.4	703.9	777.8
57.50	364.7	434.9	496.4	560.1	595.1	648.0	716.1
58.00	334.5	399.0	455.4	513.8	545.9	594.4	656.9
58.50	305.7	364.6	416.1	469.5	498.9	543.2	600.3
59.00	277.9	331.4	378.3	426.8	453.5	493.8	545.7
59.50	251.1	299.5	341.8	385.7	409.8	446.2	493.1
60.00	225.3	268.6	306.6	346.0	367.6	400.3	442.3
60.50	200.4	239.0	272.8	307.8	327.1	356.1	393.5
61.00	176.6	210.6	240.4	271.3	288.2	313.8	346.8
61.50	154.0	183.6	209.6	236.5	251.3	273.6	302.3
62.00	132.6	158.2	180.5	203.7	216.4	235.6	260.4
62.50	112.6	134.3	153.3	172.9	183.8	200.1	221.1
63.00	94.1	112.3	128.1	144.6	153.6	167.2	184.8
63.50	77.3	92.2	105.2	118.7	126.1	137.3	151.7
64.00	62.2	74.2	84.7	95.6	101.5	110.6	122.2
64.50	49.1	58.5	66.8	75.4	80.1	87.2	96.4
65.00	37.8	45.1	51.5	58.1	61.7	67.2	74.3
65.50	28.5	34.0	38.8	43.8	46.5	50.6	56.0
66.00	20.9	24.9	28.5	32.1	34.1	37.2	41.1
66.50	15.0	17.8	20.4	23.0	24.4	26.6	29.4
67.00	10.5	12.5	14.3	16.1	17.1	18.6	20.6
67.50	7.1	8.5	9.7	11.0	11.7	12.7	14.0
68.00	4.8	5.7	6.5	7.3	7.8	8.5	9.4
68.50	3.1	3.7	4.2	4.8	5.1	5.5	6.1
69.00	2.0	2.4	2.7	3.1	3.2	3.5	3.9
69.50	1.3	1.5	1.7	1.9	2.1	2.2	2.5
70.00	0.8	0.9	1.1	1.2	1.3	1.4	1.6

7.5 APPENDICE 5 – ONDE DI PIENA DELL'EVENTO DI PIENA DEL 16-19 DICEMBRE 1968 DEL

F. VOLTURNO ALLA STAZIONE IDROMETRICA DI AMOROSI

Tempo (ore)	Onda di piena registrata alla stazione idrometrica di Amorosi (m3/s)	Tempo (ore)	Onda di piena registrata alla stazione idrometrica di Amo- rosi (m3/s)
0	15.4	162	42.8
1	15.4	163	43.1
2	15.3	164	43.9
3	15.2	165	43.7
4	15.6	166	43.0
5	15.4	167	42.4
6	15.0	168	42.3
7	15.0	169	41.6
8	15.8	170	40.1
9	19.4	171	39.1
10	24.9	172	38.3
11	33.3	173	37.6
12	45.8	174	37.1
13	68.5	175	36.6
14	93.1	176	36.2
15	194.7	177	36.1
16	216.1	178	36.2
17	214.2	179	36.8
18	193.1	180	38.3
19	172.7	181	39.9
20	171.8	182	41.7
21	194.5	183	44.1
22	197.0	184	45.9
23	180.4	185	47.1
24	177.4	186	46.3
25	177.6	187	44.6
26	181.0	188	43.6
27	197.3	189	43.1
28	211.8	190	42.5
29	254.5	191	42.0
30	289.1	192	41.7
31	318.8	193	41.8
32	355.2	194	41.1
33	448.0	195	40.1
34	525.3	196	39.2
35	558.0	197	37.5
36	557.8	198	36.7
37	496.8	199	36.5
38	475.5	200	36.3
39	470.7	201	35.8
40	466.9	202	33.6
41	463.6	203	31.9
42	460.3	204	32.0
43	458.9	205	31.8

(Svincolo di S. Salvatore Telesino).

Progetto Definitivo

000_T00_ID00_IDR_RE01_B

Relazione idrologica

Tempo (ore)	Onda di piena registrata alla stazione idrometrica di Amorosi (m3/s)	Tempo (ore)	Onda di piena registrata alla stazione idrometrica di Amo- rosi (m3/s)
44	458.8	206	31.0
45	464.2	207	30.9
46	471.9	208	30.4
47	469.6	209	30.3
48	449.1	210	30.0
49	416.3	211	29.8
50	361.2	212	30.6
51	317.1	213	31.5
52	273.5	214	31.9
53	213.1	215	34.4
54	201.7	216	37.3
55	206.4	217	40.6
56	225.6	218	41.4
57	299.3	219	41.4
58	377.1	220	40.0
59	454.5	221	37.9
60	535.7	222	36.1
61	595.9	223	35.7
62	653.8	224	35.6
63	710.3	225	36.0
64	757.0	226	36.8
65	786.2	227	37.1
66	782.5	228	36.9
67	777.0	229	35.9
68	776.9	230	34.5
69	784.2	231	34.1
70	804.3	232	34.3
71	1020.7	233	34.6
72	1246.7	234	35.3
73	1460.0	235	35.7
74	1455.8	236	35.8
75	1427.1	237	36.2
76	1378.3	238	37.4
77	1323.2	239	38.0
78 79	1258.8	240	38.1
80	1165.7 1165.0	241 242	38.1 37.9
81	1170.6	242	38.0
82	1173.3	243	37.4
83	1173.3	244	36.4
84	1124.2	246	35.5
85	1071.1	247	34.3
86	1046.6	248	32.5
87	975.4	249	31.0
88	892.3	250	30.0
89	807.0	251	29.0
90	710.6	252	28.3
91	654.6	253	27.0
92	573.6	254	26.2
93	486.4	255	25.8

000_T00_ID00_IDR_RE01_B

Tempo (ore)	Onda di piena registrata alla stazione idrometrica di Amo- rosi (m3/s)	Tempo (ore)	Onda di piena registrata alla stazione idrometrica di Amo- rosi (m3/s)
94	427.6	256	25.5
95	395.8	257	25.4
96	378.8	258	25.4
97	369.1	259	25.5
98	357.0	260	25.2
99	327.5	261	25.2
100	312.6	262	25.2
101	304.4	263	25.4
102	298.6	264	25.4
103	278.4	265	25.4
104	213.7	266	25.2
105	202.4	267	25.0
106	191.6	268	25.0
107	183.0	269	25.1
108	176.4	270	24.6
109	167.5	271	24.3
110	160.0	272	24.2
111	152.4	273	23.6
112	142.2	274	23.1
113	134.2	275	22.7
114	128.5	276	22.5
115	125.1	277	22.3
116	121.6	278	22.2
117	118.9	279	21.9
118	115.9	280	21.8
119	113.4	281	21.8
120	109.5	282	21.8
121	104.3	283	21.8
122	96.2	284	21.8
123	81.3	285	21.8
124	68.4	286	21.7
125	64.4	287	21.7
126	62.5	288	21.3
127	60.7	289	21.1
128	59.5	290	20.8
129	58.2	291	20.5
130	56.4	292	20.1
131	56.1	293	19.9
132	55.9	294	19.9
133	57.6	295	20.0
134	60.8	296	20.5
135	67.1	297	20.9
136	68.5	298	20.9
137	66.7	299	20.6
138	64.2	300	20.3
139	63.2	301	20.1
140	61.4	302	19.9
141	60.6	303	19.9
142	59.9	304	19.7
143	59.0	305	19.5

(Svincolo di S. Salvatore Telesino).

Progetto Definitivo

Tempo (ore)	Onda di piena registrata alla stazione idrometrica di Amo- rosi (m3/s)	Tempo (ore)	Onda di piena registrata alla stazione idrometrica di Amo- rosi (m3/s)
144	57.8	306	19.3
145	56.6	307	19.1
146	55.1	308	18.9
147	54.1	309	18.8
148	53.4	310	18.7
149	52.0	311	18.3
150	49.5	312	18.3
151	46.9	313	18.0
152	43.1	314	17.6
153	40.7	315	17.5
154	39.0	316	17.1
155	38.2	317	17.1
156	37.5	318	16.9
157	38.1	319	16.7
158	38.2	320	16.6
159	40.3	321	16.5
160	41.6	322	16.4
161	42.5		

Tempo	Onde di piena del modello idrologico calcolata alla stazione idrome-			
(ore)	trica di Amo	trica di Amorosi Q (m3/s)		
(010)	con coeff. di defl.	con CN		
0	0.0	0.0		
2	0.0	0.0		
4	0.2	0.0		
6	3.2	0.0		
8	17.9	0.6		
10	60.8	3.8		
12	146.3	11.8		
14	273.5	25.7		
16	414.6	44.0		
18	527.0	62.0		
20	587.5	77.0		
22	602.6	89.5		
24	629.0	101.3		
26	698.5	122.8		
28	765.9	149.4		
30	747.1	169.3		
32	639.9	185.0		
34	541.8	205.6		
36	506.1	232.4		
38	519.7	249.1		
40	524.1	261.2		
42	518.7	268.4		
44	503.4	294.7		
46	526.2	337.5		

Itinerario Caianello (A1) - Benevento. Adeguamento a 4 corsie della S.S. 372 "Telesina" dal km 0+000 al km 60+900. Lotto 2: dal km 0+000 (Svincolo di Caianello) al km 37+00 (Svincolo di S. Salvatore Telesino).

Progetto Definitivo

F			
Onde di piena del modello id			
Tempo	gico calcolata alla stazione idrome- trica di Amorosi Q (m3/s)		
(ore)	con coeff. di		
	defl.	con CN	
48	580.1	353.0	
50	585.1	331.6	
52	525.5	309.7	
54	465.0	343.4	
56	488.1	445.1	
58	595.8	604.8	
60	760.7	789.6	
62	934.7	979.0	
64	1100.7	1125.1	
66	1214.6	1213.6	
68	1272.2	1270.0	
70	1310.1	1336.9	
72	1367.3	1416.4	
74	1425.6	1461.9	
76	1428.2	1425.2	
78	1342.0	1284.8	
80	1167.8	1061.4	
82	937.7	823.5	
84	712.6	660.6	
86	564.0	585.3	
88	495.9	537.2	
90	452.3	445.5	
92	372.2	305.6	
94	253.4	165.6	
96	136.5	71.0	
98	58.3	27.0	
100	22.1	11.6	
102	9.4	7.2	
104	5.8	5.7	
106	4.7	4.4	
108	3.6	3.3	
110	2.7	2.1	
112	1.7	1.4	
114	1.2	1.6	
116	1.3	1.7	
118	1.4	1.3	
120	1.0	0.6	
122	0.5	0.1	
124	0.1	0.0	
126	0.0	0.0	
128	0.0	0.0	
130	0.0	0.0	
132	0.0	0.0	
134	0.0	0.0	
136	0.0	0.0	
138	0.0	0.0	
140	0.0	0.0	
142	0.0	0.0	
144	0.0	0.0	
L		<u> </u>	

Itinerario Caianello (A1) - Benevento. Adeguamento a 4 corsie della S.S. 372 "Telesina" dal km 0+000 al km 60+900. Lotto 2: dal km 0+000 (Svincolo di Caianello) al km 37+00 (Svincolo di S. Salvatore Telesino).

Progetto Definitivo

000_T00_ID00_IDR_RE01_B

Tempo	Onde di piena de gico calcolata alla trica di Amor	a stazione idrome-
(ore)	con coeff. di defl.	con CN
146	0.0	0.0
148	0.0	0.0
150	0.0	0.2
152	0.1	0.3
154	0.3	0.6
156	0.5	0.7
158	0.6	0.8
160	0.6	0.7
162	0.6	0.5
164	0.4	0.7
166	0.5	0.8
168	0.7	0.8
170	0.6	0.4
172	0.3	0.1
174	0.1	0.0
176	0.0	0.0
178	0.0	0.0
180	0.0	0.0
182	0.0	0.0
184	0.0	0.0
186	0.0	0.0
188	0.0	0.0
190	0.0	0.0
192	0.0	0.0
194	0.0	0.0
196	0.0	0.0
198	0.0	0.0
200	0.0	0.2
202	0.2	0.6
204	0.5	1.1
206	0.9	1.5
208	1.2	1.7
210	1.4	1.6
212	1.3	1.4
214	1.1	1.3
216	1.1	1.7
218	1.4	1.8
220	1.5	1.3
222	1.0	0.5
224	0.4	0.1
226	0.1	0.0
228	0.0	0.0
230	0.0	0.0
232	0.0	0.0
234	0.0	0.0
236	0.0	0.1
238	0.0	0.5
240	0.4	2.0
242	1.6	5.3

(Svincolo di S. Salvatore Telesino).

Progetto Definitivo

Onde di piena del modello id gico calcolata alla stazione id			
Tempo	trica di Amorosi Q (m3/s)		
(ore)	con coeff. di		
	defl.	con CN	
244	4.3	10.4	
246	8.5	16.5	
248	13.4	21.4	
250	17.3	24.3	
252	19.7	25.0	
254	20.3	24.6	
256	20.0	26.6	
258	21.6	27.7	
260	22.5	24.2	
262	19.6	18.6	
264	15.1	14.2	
266	11.5	11.0	
268	8.9	8.1	
270	6.6	6.5	
272	5.3	6.1	
274	5.0	5.4	
276	4.4	4.8	
278	3.9	5.8	
280	4.7	6.5	
282	5.3	5.4	
284	4.4	2.9	
286	2.4	1.2	
288	1.0	0.4	
290	0.3	0.1	
292	0.1	0.0	
294	0.0	0.0	
296	0.0	0.0	
298	0.0	0.0	
300	0.0	0.0	
302	0.0	0.0	
304	0.0	0.0	
306	0.0	0.0	
308	0.0	0.0	
310	0.0	0.0	
312	0.0	0.0	
314	0.0	0.0	
316	0.0	0.0	
318	0.0	0.0	
320	0.0	0.0	
322	0.0	0.0	

7.6 APPENDICE 6 – ONDA DI PIENA DUECENTENNALE PER IL BACINO DEL RIO DELLE STARZE (O RIO SAN FELICE)

_	Onda di piena idrologica
Tempo	Rio delle Starze Q (m³/s)
(ore)	T=200
0.00	0.00
0.25	0.60
0.50	2.61
0.75	6.13
1.00	10.90
1.25	17.67
1.50	28.00
1.75	42.04
2.00	60.79
2.25	83.97
2.50	108.90
2.75	134.41
3.00	162.95
3.25	192.70
3.50	222.31
3.75	253.51
4.00	283.07
4.25	308.44
4.50	331.58
4.75	351.15
5.00	365.55
5.25	374.83
5.50	378.08
5.75	374.08
6.00	362.73
6.25	347.91
6.50	330.48
6.75	308.39
7.00	284.12
7.25	259.05
7.50	231.42
7.75	204.35
8.00	179.54
8.25	155.00
8.50	132.45
8.75	112.81
9.00	94.46
9.25	78.24
9.50	64.42
9.75	53.39
10.00	43.92
10.25	36.44
10.50	30.57
10.75	25.58
11.00	21.47

Itinerario Caianello (A1) - Benevento. Adeguamento a 4 corsie della S.S. 372 "Telesina" dal km 0+000 al km 60+900. Lotto 2: dal km 0+000 (Svincolo di Caianello) al km 37+00 (Svincolo di S. Salvatore Telesino).

Progetto Definitivo 000_T00_ID00_IDR_RE01_B

Tempo	Onda di piena idrologica
(ore)	Rio delle Starze Q (m³/s)
	T=200
11.25	18.29
11.50	15.56
11.75	13.30
12.00	11.43
12.25	9.83
12.50	8.48
12.75	7.35
13.00	6.40
13.25	5.57
13.50	4.84
13.75	4.26
14.00	3.72
14.25	3.19
14.50	2.74
14.75	2.33
	1.96
15.00	
15.25	1.62
15.50	1.33
15.75	1.09
16.00	0.90
16.25	0.73
16.50	0.61
16.75	0.50
17.00	0.41
17.25	0.34
17.50	0.28
17.75	0.23
18.00	0.18
18.25	0.15
18.50	0.12
18.75	0.10
19.00	0.08
19.25	0.07
19.50	0.05
19.75	0.04
20.00	0.04
20.25	0.03
20.50	0.02
20.75	0.02
21.00	0.01
21.25	0.00
21.50	0.00
21.75	0.00
22.00	0.00
22.25	0.00
22.50	0.00
22.75	0.00
23.00	0.00
23.25	0.00
23.50	0.00
23.75	0.00
23.73	1 2.00

Itinerario Caianello (A1) - Benevento. Adeguamento a 4 corsie della S.S. 372 "Telesina" dal km 0+000 al km 60+900. Lotto 2: dal km 0+000 (Svincolo di Caianello) al km 37+00 (Svincolo di S. Salvatore Telesino).

Progetto Definitivo
000_T00_ID00_IDR_RE01_B
Relazione idrologica

Tempo (ore)	Onda di piena idrologica Rio delle Starze Q (m³/s) T=200
24.00	0.00
24.25	0.00
24.50	0.00
24.75	0.00
25.00	0.00