COMMITTENTE:							
		į	GRUPPO FE	RETE FE	ERROVIARI DELLO STA	<i>IA ITALIA</i> TO ITALI <i>I</i>	
PROGETTAZIONE:							LFERR O STATO ITALIANE
U. O. Progettazione	Integrata	Nord					
PROGETTO DEFI	NITIVO						
AGEGUAMENTO ZONA INDUSTRIA 2^ FASE BINARIO AMBIENTAL Vasche di cattura e lai Relazione Opere Prov	ALE LE / MERCI minazione			IMPIA	NTO DI	VADO	LIGURE
							SCALA:
COMMESSA LOTTO FAS		C L	C. OPERA/I	DISCIPLIN	0 0 0	GR. RE	v.
Rev. Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
A Emissione per commenti	C. Soave	Marzo 2022	M. Andreani M. M. Seawi	Marzo 2022	G. Fadda	Marzo 2022	A. Perego Marzo 2022 DOTT. ING. PEREGO ANDREA Sez A Settori picturia e ambientale pict
File: IV0H02D26CLIN0300002A	1		I		I		n. Elab.:

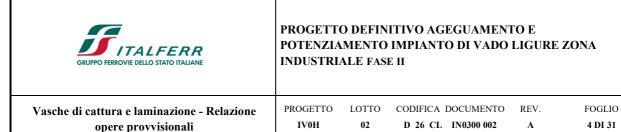
Vasche di cattura e laminazione - Relazione opere provvisionali

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IV0H 02 D 26 CL IN0300 002 A 2 DI 31

Sommario

1	PREMESSA	4
	1.1 Generale	4
2	DOCUMENTAZIONE, NORMATIVE E BIBLIOGRAFIA DI RIFERIMENTO	7
	2.1 NORMATIVE E RACCOMANDAZIONI	7
	2.2 DOCUMENTI DI PROGETTO	8
	2.3 Bibliografia	8
3	MATERIALI	9
	3.1 Acciaio	9
4	SOFTWARE DI CALCOLO	10
5	INQUADRAMENTO GEOTENICO	11
6	DESCRIZIONE DELL'OPERA	12
7	ANALISI DEI CARICHI	13
	7.1 CARICHI PERMANENTI	13
	7.2 CARICHI DA CANTIERE	13
	7.3 AZIONE SISMICA	13
8	SPINTA DEL TERRENO	14
9	VERIFICHE PARATIE DI MICROPALI	15
	9.1 VERIFICHE SLU	15
	9.2 VERIFICHE SLE	15
10	COMBINAZIONE DI CARICO	16
11	ANALISI NUMERICHE	18



Vasche di cattura e laminazione - Relazione opere provvisionali

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IV0H 02 D 26 CL IN0300 002 A 3 DI 31

12	CONCLUSIONE	21
12	ARMATURA DEL CORDOLO	30
	11.1.5 Verifica di stabilità dell'opera alla rototraslazione	29
	11.1.4 Verifica dei cedimenti sotto il binario esistente	
	11.1.3 Verifiche allo stato limite di esercizio (SLE)	26
	11.1.2 Verifiche degli elementi strutturali	23
	11.1.1 Sollecitazioni allo stato limite ultimo (SLU)	22
	11.1 Risultati	22

1 PREMESSA

1.1 Generale

Il presente documento ha per oggetto il dimensionamento e la verifica delle opere di sostegno in prossimità delle vasche di cattura e laminazione nell'ambito dell'adeguamento e al potenziamento dell'impianto di Vado Ligure zona Industriale, vedi Figura 1-1.

Essendo la linea Genova – Ventimiglia, appartenente alla rete TEN-T Core, e dal Porto di Savona-Vado, appartenente alla rete TEN-T Comprehensive, coerentemente al piano di adeguamento prestazionale di RFI, è stato previsto l'adeguamento a modulo 750 metri.

Il progetto prevede complessivamente la realizzazione di un nuovo ACC, in luogo dell'attuale Apparato Centrale Idrodinamico, con centralizzazione ed elettrificazione di tutti i 6 binari del piazzale, e la rivisitazione del PRG della stazione, con adeguamento di un binario a modulo 750 metri. All'interno del perimetro saranno compresi anche la soppressione del PL di Via Sabazia, l'adeguamento per la gestione delle merci pericolose, la progettazione dell'indipendenza della radice dei raccordi Porto ed Esso/Infineum e l'adeguamento stradale di via Leopardi, necessario nell'ambito dei lavori di PRG a regime.

Di seguito si illustrano le assunzioni strutturali di progetto prese a base di calcolo, la normativa di riferimento, i materiali utilizzati, la caratterizzazione geotecnica prevista, i carichi di progetto e le relative condizioni e combinazioni, lo schema strutturale adottato e le verifiche effettuate.

Le azioni applicate alla struttura seguono i criteri generali riportati nel D.M. 17/01/2018, "Aggiornamento delle Norme Tecniche per le Costruzioni" e le relative specifiche ferroviarie:

azioni permanenti (pesi propri, etc.);

azioni variabili (cantiere).

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		MENTO	ITIVO AGEGUAMENT IMPIANTO DI VADO E II	_	ZONA
Vasche di cattura e laminazione - Relazione opere provvisionali	PROGETTO IV0H	LOTTO 02	CODIFICA DOCUMENTO D 26 CL IN0300 002	REV.	FOGLIO 5 DI 31

Figura 1-1 - Inquadramento dell'area di intervento (Fonte: Google Earth)

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		MENTO	ITIVO AGEGUAMENT IMPIANTO DI VADO E II		ZONA
Vasche di cattura e laminazione - Relazione opere provvisionali	PROGETTO IV0H	LOTTO 02	CODIFICA DOCUMENTO D 26 CL IN0300 002	REV.	FOGLIO 6 DI 31

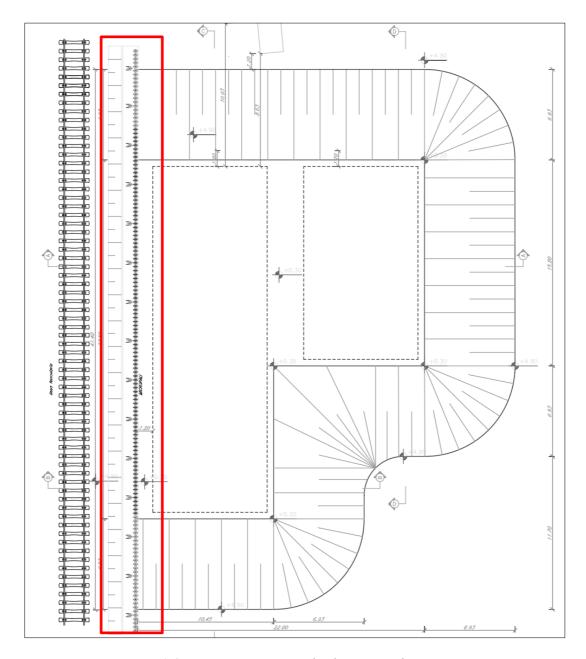


Figura 1-2 – Pianta scavi – Vasche di cattura e laminazione

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		MENTO	ITIVO AGEGUAMENT IMPIANTO DI VADO E II	_	E ZONA
Vasche di cattura e laminazione - Relazione opere provvisionali	PROGETTO IV0H	LOTTO 02	CODIFICA DOCUMENTO D 26 CL IN0300 002	REV.	FOGLIO 7 DI 31

2 DOCUMENTAZIONE, NORMATIVE E BIBLIOGRAFIA DI RIFERIMENTO

2.1 Normative e raccomandazioni

- [1] Decreto Ministeriale del 17 gennaio 2018: "Aggiornamento delle Norme Tecniche per le Costruzioni", Supplemento Ordinario alla G.U. n.42 del 20.2.2018.
- [2] Circolare 21 gennaio 2019 n.7 " Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018"
- [3] RFI DTC SI CS SP IFS 004 E del 31/12/20: "Capitolato Generale Tecnico di Appalto delle Opere Civili Parte II Parte II Sezione 5: Opere in Terra e scavi";
- [4] RFI TCAR ST AR 01 001 D: "Standard di qualità geometrica del binario con velocità fino a 300 km/h";
- [5] UNI EN 1997-1 Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali.
- [6] UNI EN 1997-2 Eurocodice 7 Progettazione geotecnica Parte 2: Indagini e prove nel sottosuolo.
- [7] UNI EN del 1998 "Eurocodice 8 Progettazione delle strutture per la resistenza sismica";
- [8] Regione Calabria, Legge regionale del 12 ottobre 2012, n. 46, Modifiche ed integrazioni alla legge regionale del 16 ottobre 2009, n. 35, recante: «Procedure per la denuncia, il deposito e l'autorizzazione di interventi di carattere strutturale e per la pianificazione territoriale in prospettiva antisismica), (BUR n. 19 del 16 ottobre 2012, supplemento straordinario n. 2 del 20 ottobre 2012);
- [9] Regione Calabria, Regolamento regionale n. 7 del 28 giugno 2012 s.m.i. "procedure per la denuncia, il deposito e l'autorizzazione di interventi di carattere strutturale e per la pianificazione territoriale in prospettiva sismica di cui alla legge regionale n. 35 del 19 ottobre 2009 s.m.i." (Testo coordinato con le modifiche ed integrazioni di cui al R.R. n. 3 del 24.02.2014, approvato con Delibera G.R. n° 51 del 20.02.2014 pubblicato sul BURC Parte I n. 9 del 03.03.2014 ripubblicato con avviso di errata corrige sul BURC Parte I n. 10 del 5.03.2014);
- [10] Regione Calabria, Deliberazione della Giunta Regionale del 10 febbraio 2004 n. 47, Prime disposizioni per l'attuazione dell'Ordinanza della Presidenza del Consiglio dei Ministri n. 3274 del 20 marzo 2003 «Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per la costruzione in zona sismica»;
- [11] Ordinanza del Presidente del Consiglio dei Ministri n. 3316 del 02.10.2003 «Modifiche ed integrazioni all'Ordinanza del Presidente del Consiglio dei Ministri»;
- [12] Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20.03.2003 «Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per la costruzione in zona sismica»;
- [13] D.P.R. 380 del 06/06/2001 "Testo unico delle disposizioni legislative e regolamentari in materia edilizia";
- [14] Circolare n. 218/24/3 del 09.01.1996 «Istruzioni applicative per la redazione della Relazione Geologica e della Relazione Geotecnica»;

- [15] D.M. LL.PP. 11.03.1988 «Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione»;
- [16] Circ. Min. LL.PP. n. 30483 del 24.09.1988 che prevede l'obbligo di sottoporre tutte le opere civili pubbliche e private da realizzare nel territorio della Repubblica, alle verifiche per garantire la sicurezza e la funzionalità del complesso opereterreni ed assicurare la stabilità complessiva del territorio nel quale si inseriscono»;
- [17] Legge n. 64 del 02.02.1974 «Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche», che prevede l'obbligatorietà dell'applicazione per tutte le opere, pubbliche e private, delle norme tecniche che saranno fissate con successivi decreti del Ministero per il Lavori Pubblici";
- [18] D.lgs. 18 aprile 2016, n. 50 «Codice dei contratti pubblici»;
- [19] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea, modificato dal Regolamento di esecuzione (UE) N°2019/776 della Commissione del 16 Maggio 2019;

2.2 Documenti di progetto

- [20] IV0HD26GEGE0000002A Relazione geotecnica generale
- [21] IV0H02D26F7GE0000001A Profilo geotecnico
- [22] IV0H02D26WBIN0300001A Vasche di cattura e laminazione Carpenteria tav 1 di 2
- [23] IV0H02D26WBIN0300002A Vasche di cattura e laminazione Carpenteria tav 2 di 2
- [24] IV0H02D26P9IN0300001A Vasche di cattura e laminazione Pianta scavi e Opere Provvisionali
- [25] IV0H02D26CLIN0300001A Vasche di cattura e laminazione Relazione di calcolo
- [26] IV0H02D26CLIN0300002A Vasche di cattura e laminazione Relazione Opere Provvisionali

2.3 Bibliografia

[27] Geotecnica, R. Lancellotta; Quarta edizione, 2012, Zanichelli.

Vasche di cattura e laminazione - Relazione opere provvisionali

PROGETTO

02

IV0H

LOTTO CODIFICA DOCUMENTO D 26 CL IN0300 002

REV.

FOGLIO 9 DI 31

3 **MATERIALI**

Paratia di micropali:

La classe minima dovrà essere C25/30

Resistenza caratteristica cubica a 28 giorni di maturazione $Rck = 30 \text{ N/mm}^2$

Ecm=22000·((fck+8)/10)^{0.3}=31447 N/mm² Modulo di elasticità normale

Peso dell'unità di volume $\gamma c = 24 \; kN/m^3$

Caratteristiche meccaniche calcestruzzo $fck = 0.83 \cdot Rck = 25 \text{ N/mm}2$

 $fcd = \alpha_{cc} fck / \gamma c = 0.85 \cdot fck / 1.5 = 14.11$ N/mm2

 $fetm = 0.30 \cdot (fek)(2/3) = 2.56$ N/mm2

 $fctk = 0.7 \cdot fctm = 1.79$ N/mm2

 $fcfm = 1.2 \cdot fctm = 3.07$ N/mm2

Classe di esposizione XC2

3.1 Acciaio

Armature:

Si adotta un acciaio tipo B450C con:

fyk = 450 N/mm2Snervamento

Rottura ftk = 540 N/mm2

Modulo elastico E = 210000 N/mm2.

Tubolare dei micropali

Tipo di acciaio S275

Tensione caratteristica di snervamento fyk \geq 275 MPa

Tensione caratteristica di rottura ftk \geq 430 MPa

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		MENTO	ITIVO AGEGUAMENT IMPIANTO DI VADO E II		E ZONA
Vasche di cattura e laminazione - Relazione opere provvisionali	PROGETTO IV0H	LOTTO 02	CODIFICA DOCUMENTO D 26 CL IN0300 002	REV.	FOGLIO 10 DI 31

4 SOFTWARE DI CALCOLO

-ParatiePlus ver. 21.1 della Harpaceas per l'analisi di opere di sostegno flessibili in interazione col terreno.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		MENTO	ITIVO AGEGUAMENT IMPIANTO DI VADO E II	_	ZONA
Vasche di cattura e laminazione - Relazione opere provvisionali	PROGETTO IV0H	LOTTO 02	CODIFICA DOCUMENTO D 26 CL IN0300 002	REV.	FOGLIO 11 DI 31

5 INQUADRAMENTO GEOTENICO

Dall'esame dei parametri geotecnici (rif. Doc. [20]), è stato possibile determinare il modello più conservativo, con riferimento al sondaggio S3 al fine delle verifiche richieste dalle NTC 2018. La tabella seguente riassume i parametri geotecnici da implementare nei modelli di calcolo.

Tabella 1: Modello geotecnico di calcolo

Unità	Descrizione	z iniziale (m da p.c.)	z finale (m da p.c.)	spessore (m)	Peso di volume (kN/m³)	Densità relativa (%)	Angolo di resistenza al taglio ф' (°)	c' (kPa)	Cu (kPa)	Modulo elastico Eop (MPa)	Modulo non drenato Eu (MPa)	K media (m/s)
R	Riporto antropico	0	1.5	1.5	18	-	-	-	-	-	-	-
UG-b	Sabbia con ghiaia, talvolta limosa da sciolta a poco addensata	1.5	12	10.5	19	30-40	28-30	-	-	10-20	-	1.68E-06
UG-f	Limo sabbioso debolmente argilloso, talora ghiaioso consistente	12	15	3	19	-	28-30	0	80 - 100	20-30	60 - 80	-
UG-b	Sabbia con ghiaia, talvolta limosa da sciolta a poco addensata	15	18	3	19	30-40	28-30	-	-	10-20	-	-
UG-c	Alternanza di ghiaia con sabbia limosa e limo con sabbia addensata	18	30	12	18	40-50	32	-	-	20-40	-	-

L'opera di progetto è ubicata tra i sondaggi S2 e S3 e pertanto si assume cautelativamente una quota di falda a +0.8 m.sl.m.

GRUPPO FERROVIE DELLO STATO ITALIANE		MENTO	ITIVO AGEGUAMENT IMPIANTO DI VADO E II	_	E ZONA
Vasche di cattura e laminazione - Relazione opere provvisionali	PROGETTO IV0H	LOTTO 02	CODIFICA DOCUMENTO D 26 CL IN0300 002	REV.	FOGLIO 12 DI 31

6 DESCRIZIONE DELL'OPERA

Al fine di sostenere lo scavo necessario per realizzare le vasche di cattura e laminazione si prevede la realizzazione di un'opera di sostegno provvisionale costituita da micropali Φ 250 di lunghezza pari a 10m posti ad interasse di 0.3m, sostenuti da micropali in calcestruzzo Φ 250 di 10m, ad interasse 3m, inclinati a 55° rispetto al piano campagna. I micropali inclinati, connessi alla testa della paratia, sostengono la paratia di micropali verticali. All'interno dei micropali sarà inserita un'armatura tubolare del dimetro di 168.3 mm con spessore di 8 mm. Si incrementa l'altezza di scavo di 10% secondo quanto riportato al cap.6.5.2.2 delle NTC (3.6m+10%= 4.0m).

Per il calcolo e il dimensionamento dei pali si è fatto riferimento alla seguente sezione di calcolo, Figura 6-1.

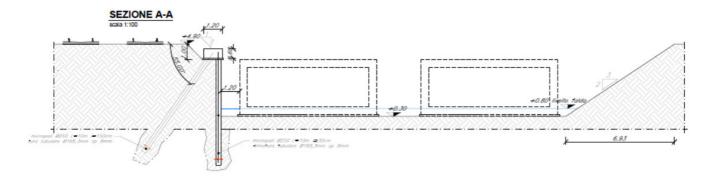
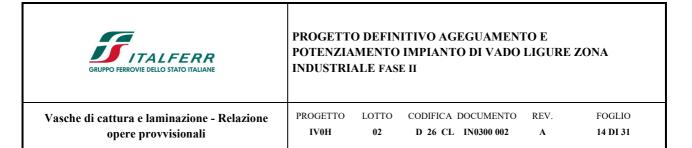


Figura 6-1 - Sezione trasversale di calcolo

7 ANALISI DEI CARICHI

7.1 Carichi permanenti

- Peso proprio cls


 $\gamma c = 25 \text{ kN/m}^3$

7.2 Carichi da cantiere

Durante le fasi di costruzione viene considerato un sovraccarico accidentale di 20 kPa dovuto alla presenza dei mezzi di cantiere.

7.3 Azione sismica

L'azione sismica è stata omessa nelle analisi in quanto le opere sono provvisorie, con una durata minore di 2 anni.

8 SPINTA DEL TERRENO

Nel modello di calcolo impiegato dal software adottato PARATIE, la spinta del terreno viene determinata investigando l'interazione statica tra terreno e la struttura deformabile a partire da uno stato di spinta a riposo del terreno sulla paratia. I parametri che identificano il tipo di legge costitutiva possono essere distinti in due sottoclassi: parametri di spinta e parametri di deformabilità del terreno.

I parametri di spinta sono il coefficiente di spinta a riposo K_0 , il coefficiente di spinta attiva K_a e il coefficiente di spinta passiva K_p .

Il coefficiente di spinta a riposo fornisce lo stato tensionale presente in sito prima delle operazioni di scavo. Esso lega la tensione orizzontale efficace σ'_h a quella verticale σ'_v attraverso la relazione:

$$\sigma'_h = K_0 \cdot \sigma'_v$$

 K_0 dipende dalla resistenza del terreno, attraverso il suo angolo di attrito efficace ϕ' e dalla sua storia geologica. Si può assumere che:

$$K_0 = K_0^{NC} \cdot (OCR)^m$$

dove:

$$K_0^{NC} = 1 - \operatorname{sen} \phi$$

è il coefficiente di spinta a riposo per un terreno normalconsolidato (OCR=1).

I coefficienti di spinta attiva e passiva sono forniti dalla teoria di Rankine per una parete liscia dalle seguenti espressioni:

$$K_a = \tan^2(45 - \phi'/2)$$

$$K_p = tan^2(45 + \phi'/2)$$

Attraverso valori opportuni di Ka e Kp si può tener conto dell'angolo di attrito d tra paratia e terreno e della pendenza del terreno a monte ed entro la luce di scavo; si possono usare a questo scopo i valori desunti da NAVFAC (1986) o quelle elaborate da Caquot e Kerisel (1948). Per maggiori dettagli si rimanda al manuale del software PARATIE.

9 VERIFICHE PARATIE DI MICROPALI

9.1 Verifiche SLU

In accordo alle prescrizioni normative NTC 2018 al paragrafo 6.5.3.1.2, le verifiche sono state condotte secondo l'Approccio 1 considerando le seguenti combinazioni:

• Combinazione 1: (A1+M1+R1);

• Combinazione 2: (A2+M2+R1).

9.2 Verifiche SLE

In esercizio sono stati valutati gli spostamenti orizzontali in maniera tale da confrontarli con i requisiti prestazionali dell'opera.

Le combinazioni di calcolo in esercizio vengono formulate ponendo pari all'unità i coefficienti parziali sulle azioni e utilizzando i parametri geotecnici caratteristici.

10 COMBINAZIONE DI CARICO

Le combinazioni di carico prese in considerazione nelle verifiche sono state definite in base a quanto prescritto dalle NTC2018 al par.2.5.3.

Combinazione fondamentale, impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica rara, impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche delle tensioni d'esercizio:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica frequente, impiegata per gli stati limite di esercizio (SLE) reversibili, da utilizzarsi nelle verifiche a fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

I valori dei coefficienti parziali di sicurezza γ_F , γ_M e γ_R , nonché i coefficienti di combinazione ψ delle azioni sono dati dalle tabelle NTC2018 5.2.V, 5.2.VI, 6.2.II e 6.4.II che vengono riportate nel seguito.

Tab. 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

Coefficie	nte		EQU ⁽¹⁾	A1	A2
Azioni permanenti	favorevoli	YG1	0,90	1,00	1,00
	sfavorevoli	500000000	1,10	1,35	1,00
Azioni permanenti non	favorevoli	YG2	0,00	0,00	0,00
strutturali ⁽²⁾	sfavorevoli		1,50	1,50	1,30
Ballast ⁽³⁾	favorevoli	γв	0,90	1,00	1,00
	sfavorevoli		1,50	1,50	1,30
Azioni variabili da traffi-	favorevoli	γQ	0,00	0,00	0,00
CO ⁽⁴⁾	sfavorevoli		1,45	1,45	1,25
Azioni variabili	favorevoli	γQi	0,00	0,00	0,00
	sfavorevoli	11	1,50	1,50	1,30
Precompressione	favorevole	γP	0,90	1,00	1,00
	sfavorevo-	20000	1,00(5)	1,00(6)	1,00
	le				
Ritiro, viscosità e cedi-	favorevole	γCe	0,00	0,00	0,00
menti non imposti appo-	sfavorevo-	d	1,20	1,20	1,00
sitamente	le				

⁽i) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

Vasche di cattura e laminazione - Relazione opere provvisionali

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IV0H 02 D 26 CL IN0300 002 A 17 DI 31

Tab. 5.2.VI - Coefficienti di combinazione Ψ delle azioni

Azioni		Ψ_0	Ψ_1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr_1	0,80(2)	0,80(1)	0,0
Gruppi di	gr_2	0,80(2)	0,80(1)	-0
carico	gr_3	0,80(2)	0,80(1)	0,0
	gr_4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

 $^{^{(1)}}$ 0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	$\begin{array}{c} \text{Coefficiente} \\ \text{parziale} \gamma_M \end{array}$	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	Ye	1,0	1,25
Resistenza non drenata	c_{uk}	γ_{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

 $^{^{(2)}}$ Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

11 ANALISI NUMERICHE

Di seguito sono riportate le analisi effettuate per definire il dimensionamento della paratia di micropali. Il modello di calcolo è stato realizzato con il programma ParatiePlus, al fine di valutare gli spostamenti allo SLE e le sollecitazioni negli elementi strutturali allo stato limite ultimo (SLU).


Nella seguente tabella si riassumono i parametri geotecnici di progetto:

Terreni	c' [kPa]	[°] ø'	Moduli Elastici [kPa] or [kN/m³l
Ug-b Sabbia / Ghiaia	0	28	E _{vc} = 10000 E _{ur} = 18000
Ug-f Sabbia / Ghiaia	0	28	E _{VC} = 20000 E _{UF} = 32000
Ug-b Sabbia / Ghiaia	0	28	E _{vc} = 10000 E _{ur} = 18000
Ug-c Sabbia / Ghiaia	0	32	E _{VC} = 20000 E _{UF} = 32000

Figura 11-1 – Modello geotecnico

Le fasi esecutive per l'analisi della sezione di calcolo sono le seguenti:

- 1. Stato geostatico iniziale.
- 2. Prescavo di 1.0 m al fine di realizzare i micropali.
- 3. Realizzazione dei micropali con il diametro pari a 250 mm ad interasse di 0.30 m, ed applicazione del carico da cantiere.
- 4. Scavo di 1.0 m al fine della realizzazione micropalo inclinato.
- 5. Installazione il micropalo inclinato a 55° rispetto al piano campagna.
- 6. Raggiungimento quota di fondo scavo (-5.0 m dal p.c.).

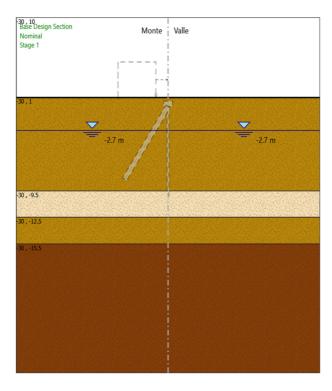


Figura 11**-**2 – Fase 1

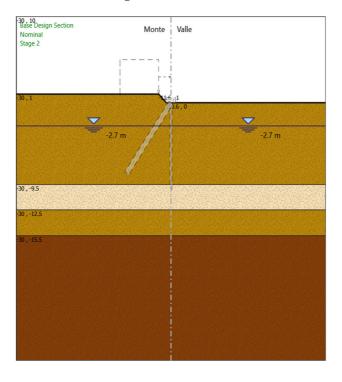



Figura 11-3 – Fase 2

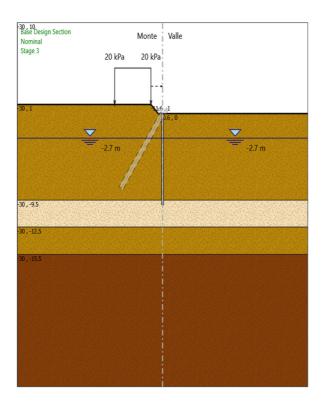


Figura 11-4 – Fase 3

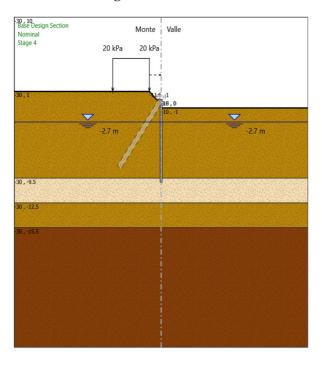
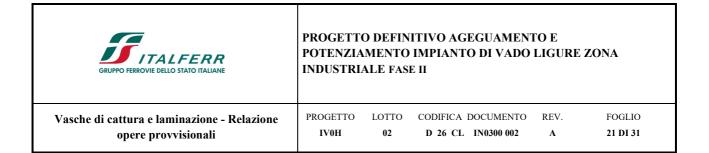
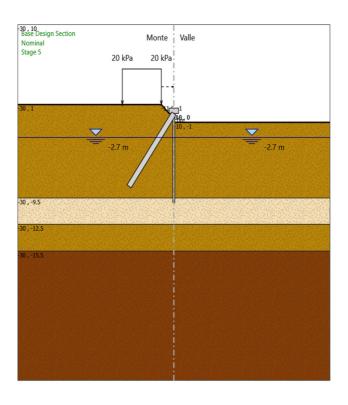




Figura 11-5 – Fase 4

Figura 11-6 – Fase 5

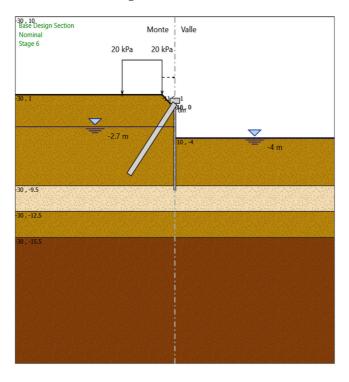


Figura 11-7 – Fase 6

GRUPPO FERROVIE DELLO STATO ITALIANE		MENTO	ITIVO AGEGUAMENT IMPIANTO DI VADO E II	_	E ZONA
Vasche di cattura e laminazione - Relazione opere provvisionali	PROGETTO IV0H	LOTTO 02	CODIFICA DOCUMENTO D 26 CL IN0300 002	REV.	FOGLIO 22 DI 31

11.1 Risultati

Nei paragrafi seguenti si riportano i risultati delle analisi condotte per il modello implementato, con le indicazioni dei valori massimi e minimi delle caratteristiche della sollecitazione e gli spostamenti massimi attesi.

I valori delle caratteristiche della sollecitazione sono per metro lineare di profondità.

11.1.1 Sollecitazioni allo stato limite ultimo (SLU)

Si riportano di seguito gli inviluppi delle sollecitazioni dell'analisi condotta per quanto riguarda la combinazione strutturale SLU (A1+M1+R1).

Il diagramma del momento flettente:

Mmax = 159.57 kN*m/m; momento flettente massimo

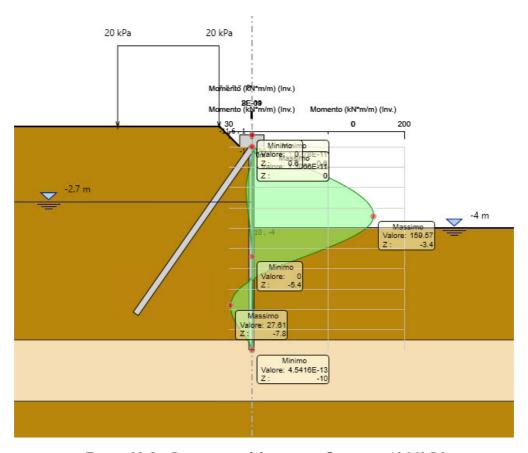


Figura 11-8 – Diagramma del momento flettente – A1 M1 R1

GRUPPO FERROVIE DELLO STATO ITALIANE		MENTO	ITIVO AGEGUAMENT IMPIANTO DI VADO E II	_	E ZONA
Vasche di cattura e laminazione - Relazione opere provvisionali	PROGETTO IV0H	LOTTO 02	CODIFICA DOCUMENTO D 26 CL IN0300 002	REV.	FOGLIO 23 DI 31

Il diagramma del Taglio:

Tmax = 71.07 kN/m; taglio massimo

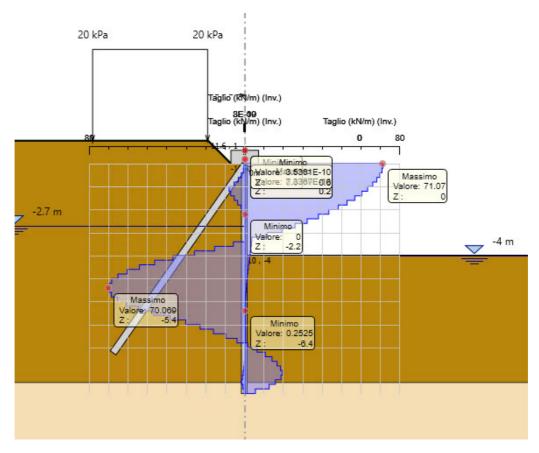


Figura 11-9 – Diagramma del taglio – Al M1 R1

11.1.2 Verifiche degli elementi strutturali

11.1.2.1 Tubolare dei micropali

Di seguito si riportano le verifiche strutturali per i tubolari 168.3 mm con spessore di 8 mm secondo la NTC 2018. Le sollecitazioni massime ottenute dalle analisi vengono moltiplicate per l'interasse di micropali pari a 0.30 m:

	VERIFICHE DI RESISTENZA E STABILITA' PER PROFILI CAVI A SEZIONE CIRCOLARE												
	Dati INPUT						Da	ti OUTPUT					
Ca	aratteristiche acc	iaio					Dat	Dati geometrici					
Qualità acciaio:	UNI EN 10 S 275 NH		Diametro esterno	Spessore	Classe della sezione	Area sezione trasversale	Momento inerzia	Raggio giratore inerzia	Modulo resistente elastico	Modulo resistente plastico	massa per unità di lunghezza	Superf. per unità di lunghezza	Lunghezza per tonnellata
f _{yk} =	275	[Mpa]	D	Т		Α	ı	i	Wel	Wpl	М	As	L/1t
f _{tk} =	430	[Mpa]	[mm]	[mm]	1	[cm ²]	[cm ⁴]	[cm]	[cm ³]	[cm ³]	[kg/m]	[m²/m]	[m]
			168.3	8.0		40.29	1297.27	5.67	154.16	205.74	31.63	0.53	31.62
	Geometria sezior	ne					Verifiche se	condo NTC201	8 - §4.2				
D = t =	168.3 8.0	[mm] [mm]	Ve	Verifica a trazione (4.2.4.1.2.1)			N _{pl,Rd} =	1055.16		N_{Ed} / $N_{pl,R}$ =	0.00	verifica s	oddisfatta
Lu L =	nghezza e vincoli 10.00	asta [m]	Verif	ica a compre	ssione (4.2.4.2	1.2.2)	N _{c,Rd} =	1055.16		N_{Ed} / $N_{c,Rd}$ =	0.00	verifica s	oddisfatta
β =	1.00 Sollecitazioni agei	[-]	Verifica a f	lessione retta	(4.2.4.1.2.3 -	4.2.4.1.2.6)	M _{c,Rd} =	53.88		M _{y,Ed} / M _{c,Rd} =	0.89	verifica s	oddisfatta
N _{Ed} =	0.00 21.35	[kN] [kN]	V	/erifica a tagl	io (4.2.4.1.2.4	1)	V _{c,Rd} =	387.83		V _{Ed} / V _{c,Rd} =	0.06	verifica s	oddisfatta
M _{y,Ed} =	48.00	[kNm]	Verifica a pr	esso/tenso-fl	essione retta	Sez. Classe 1-2	M _{N,Rd} =	53.88		$M_{Ed} / M_{N,Rd} =$	0.89	verifica s	oddisfatta
ψ =	0.00		(4.2.4	1.1.2.7 - 4.2.4.	1.2.9)	Sez. Classe 3	σ _{x,Ed} =			f _{yd} =			
	Λ		Verifica stabi	ilità membrat	ure compress	e (4.2.4.1.3.1)	N _{b,Rd} =	201.78		N_{Ed} / $N_{b,Rd}$ =	0.00	verifica s	oddisfatta
	mozione Acc EL'ACCIAIO, CRESCE IL		Verifica s		brature presso .1.3.3)	o-inflesse	$\frac{N_{Ed} \cdot \gamma_{M1}}{\chi_{min} \cdot f_{yk} \cdot A} + \frac{1}{f_{s}}$	$M_{yeq,Ed} \cdot \gamma_{Ml}$ $_{yk} \cdot W_{y} \cdot \left(1 - \frac{N}{N_{c}}\right)$	$\frac{1}{\frac{Ed}{r,y}} + \frac{M_{zeq}}{f_{yk} \cdot W_z}$	$\frac{1}{\left(1 - \frac{N_{Ed}}{N_{cr,z}}\right)} =$	0.67	verifica s	oddisfatta

11.1.2.2 Micropali inclinati

Si riportano i risultati della verifica del micropalo inclinato:

La sollecitazione ottenuta nella combinazione A1+M1+R1 pari a 124.05 kN/m viene moltiplicato per interasse dei micropali inclinati: 124.05 x 1.5 = 186.075 kN

GRUPPO FERROVIE DELLO STATO ITALIANE		ITIVO AGEGUAMENT IMPIANTO DI VADO E II	-	ZONA
Vasche di cattura e laminazione - Relazione opere provvisionali	PROGETTO LOTTO IV0H 02	CODIFICA DOCUMENTO D 26 CL IN0300 002	REV.	FOGLIO 25 DI 31

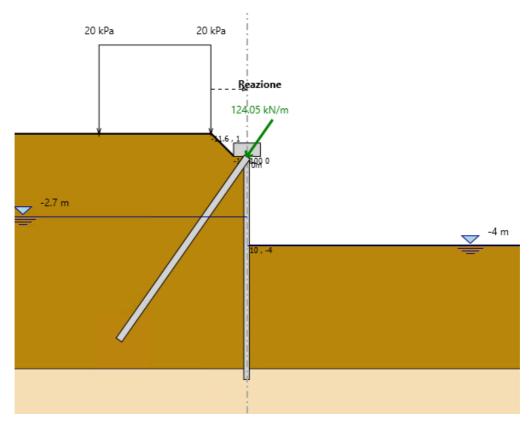


Figura 11-10 - Sollecitazione massima - micropalo inclinato

Si riporta la verifica dei micropali verticali allo stato limite ultimo (SLU):

	VERIFICHE DI RESISTENZA E STABILITA' PER PROFILI CAVI A SEZIONE CIRCOLARE												
	Dati INPUT						Di	ati OUTPUT					
Ca	aratteristiche acc	iaio		Dati geometrici									
Qualità acciaio:	UNI EN 1 S 275 NH		Diametro esterno	Spessore	Classe della sezione	Area sezione trasversale	Momento inerzia	Raggio giratore inerzia	Modulo resistente elastico	Modulo resistente plastico	massa per unità di lunghezza	Superf. per unità di lunghezza	Lunghezza per tonnellata
f _{yk} =	275	[Mpa]	D	Т		Α	ı	i	Wel	Wpl	М	As	L/1t
f _{tk} =	430	[Mpa]	[mm]	[mm]	1	[cm ²]	[cm ⁴]	[cm]	[cm ³]	[cm ³]	[kg/m]	[m²/m]	[m]
			168.3	8.0		40.29	1297.27	5.67	154.16	205.74	31.63	0.53	31.62
(Geometria sezio	ne					Verifiche se	condo NTC201	8 - §4.2				
D = t =	168.3 8.0	[mm]	Ve	Verifica a trazione (4.2.4.1.2.1)			N _{pl,Rd} =	1055.16		N_{Ed} / $N_{pl,R}$ =			
Lui	nghezza e vincoli	asta	Verifica a compressione (4.2.4.1.2.2)			N	1055.16		N - / N	0.18	ifian a	oddisfatta	
L =	10.00	[m]	verii	тса а сотрге	ssione (4.2.4.)	2.2)	N _{c,Rd} =	1055.16		$N_{Ed} / N_{c,Rd} =$	0.18	verifica si	oddistatta
β =	1.00 Sollecitazioni age	[-]	Verifica a f	flessione retta	a (4.2.4.1.2.3 -	4.2.4.1.2.6)	M _{c,Rd} =	53.88		M _{y,Ed} / M _{c,Rd} =	0.00	verifica s	oddisfatta
N _{Ed} = V _{Ed} =	-187.00 0.00	[kN]	\	/erifica a tagl	io (4.2.4.1.2.4	.)	V _{c,Rd} =	387.83		V _{Ed} / V _{c,Rd} =	0.00	verifica s	oddisfatta
M _{y,Ed} =	0.00	[kNm]	Verifica a pr	esso/tenso-fl	essione retta	Sez. Classe 1-2	M _{N,Rd} =	53.08		$M_{Ed} / M_{N,Rd} =$	0.00	verifica s	oddisfatta
ψ =	0.00		(4.2.4	1.1.2.7 - 4.2.4.	1.2.9)	Sez. Classe 3	σ _{x,Ed} =			f _{yd} =			
	Λ		Verifica stab	ilità membrat	ure compress	e (4.2.4.1.3.1)	N _{b,Rd} =	201.78		N _{Ed} / N _{b,Rd} =	0.93	verifica s	oddisfatta
	ione mozione Acc		Verifica s		brature presso .1.3.3)	o-inflesse	$\frac{N_{Ed} \cdot \gamma_{M1}}{\chi_{min} \cdot f_{yk} \cdot A} + \frac{1}{f}$	$M_{\text{yeq,Ed}} \cdot \gamma_{\text{M1}}$ $f_{\text{yk}} \cdot W_{\text{y}} \cdot \left(1 - \frac{N}{N_{\text{o}}}\right)$	$\frac{1}{\frac{Ed}{r,y}} + \frac{M_{zeq}}{f_{yk} \cdot W_z}$	$\frac{1}{1 \cdot \left(1 - \frac{N_{Ed}}{N_{cr,z}}\right)} =$	0.93	verifica s	oddisfatta

GRUPPO FERROVIE DELLO STATO ITALIANE		MENTO	ITIVO AGEGUAMENT IMPIANTO DI VADO E II	_	ZONA
Vasche di cattura e laminazione - Relazione opere provvisionali	PROGETTO IV0H	LOTTO 02	CODIFICA DOCUMENTO D 26 CL IN0300 002	REV.	FOGLIO 26 DI 31

11.1.3 Verifiche allo stato limite di esercizio (SLE)

11.1.3.1 Verifica nei confronti delle deformazioni

Gli spostamenti orizzontali massimi allo stato limite di esercizio (SLE) sono di circa 2.85 cm.

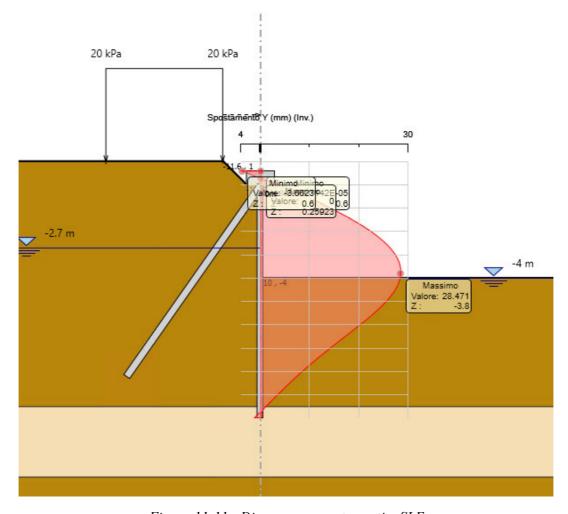


Figura 11-11 - Diagramma spostamenti – SLE

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO AGEGUAMENTO E POTENZIAMENTO IMPIANTO DI VADO LIGURE ZONA INDUSTRIALE FASE II						
Vasche di cattura e laminazione - Relazione opere provvisionali	PROGETTO IV0H	LOTTO 02	CODIFICA DOCUMENTO D 26 CL IN0300 002	REV.	FOGLIO 27 DI 31		

11.1.4 Verifica dei cedimenti sotto il binario esistente

Deve essere verificato, mediante analisi effettuate impiegando i valori caratteristici delle azioni e dei parametri geotecnici dei materiali (Par. 6.5.3.2 del Doc. Rif. [1]), che gli spostamenti/cedimenti dell'opera in esame e del terreno circostante siano compatibili con la funzionalità della struttura e con la sicurezza e la funzionalità di manufatti adiacenti.

Nel caso di rilevato da realizzarsi in affiancamento ad un rilevato esistente e mantenendo quest'ultimo in esercizio durante i lavori, si richiede che una stima del cedimento delle due rotaie in una stessa sezione verticale del rilevato. Inoltre, con riferimento alla tabella che segue, è necessario verificare che gli spostamenti indotti sui binari in esercizio durante la costruzione rispettino i valori riportati in Tabella 1, ovvero inferiori ai valori limite dei difetti riferiti al secondo livello di qualità. Laddove si superino i limiti riferiti al primo livello di qualità, è richiesto il monitoraggio del binario durante la costruzione.

Tabella 1 – Valori limite dei difetti in direzione trasversale (in mm) – (Doc.[4])

	V ≤ 160 km/h	160 < V ≤ 300 km/h
1° livello di qualità	$\Delta H \le 10$ SCARTXL ≤ 6	$\Delta H \le 10$ SCARTXL ≤ 4
2º livello di qualità	$10 < \Delta H \le 15$ $6 < SCARTXL \le 10$	10 < ΔH ≤ 15 4 < SCARTXL ≤ 8
3º livello di qualità esecuzione a breve termine anche in rela- zione ai limiti di sghembo (2)	$15 < \Delta H \le 20 (1)$ $10 < SCARTXL \le 14$	$15 < \Delta H \le 20 (1)$ 8 < SCARTXL \le 12

⁽¹⁾ il valore di ΔH può essere ammesso solo a seguito di una verifica di assenza di problemi di sagoma (gallerie, interasse, posizione linea di contatto ecc.)

La figura seguente mostra un SCARTXL pari a 0.8 mm e pertanto la verifica risulta soddisfatta.

⁽²⁾ ATTENZIONE al rispetto delle condizioni di lavorabilità del binario previste dalla Norma sulla l.r.s.

GRUPPO FERROVIE DELLO STATO ITALIANE		MENTO	ITIVO AGEGUAMENT IMPIANTO DI VADO E II	_	E ZONA
Vasche di cattura e laminazione - Relazione opere provvisionali	PROGETTO IV0H	LOTTO 02	CODIFICA DOCUMENTO D 26 CL IN0300 002	REV.	FOGLIO 28 DI 31

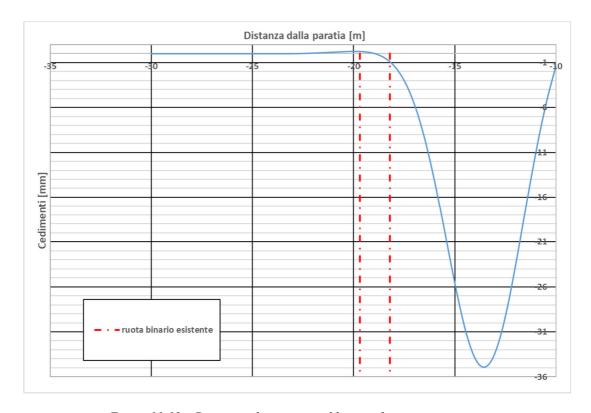


Figura 11-12 - Contour cedimenti sotto il binario ferroviario esistente

GRUPPO FERROVIE DELLO STATO ITALIANE		MENTO	ITIVO AGEGUAMENT IMPIANTO DI VADO E II		E ZONA
Vasche di cattura e laminazione - Relazione opere provvisionali	PROGETTO IV0H	LOTTO 02	CODIFICA DOCUMENTO D 26 CL IN0300 002	REV.	FOGLIO 29 DI 31

11.1.5 Verifica di stabilità dell'opera alla rototraslazione

Per quanto riguarda le verifiche geotecniche (combinazione A2+M2+R1), la percentuale di spinta passiva mobilitata, pari al 84%, è tale da garantire la stabilità dell'opera alla rototraslazione.

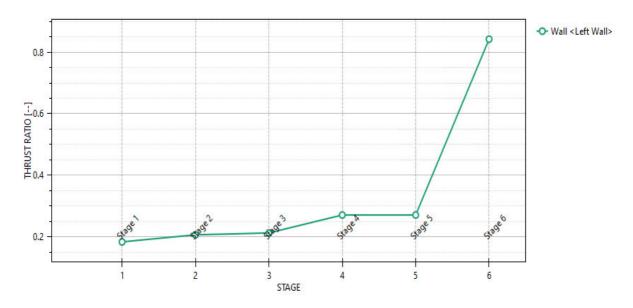


Figura 11-13 – Massimi rapporti di mobilizzazione spinta passiva

12 ARMATURA DEL CORDOLO

La struttura di supporto non risulta sollecitata in testa, come si evince nei risultati riportati in Figura 11-8 e Figura 11-9. Alla luce di questo risulta necessario inserire l'armatura minima prescritta da normativa al capitolo 4.1.6.1.1.

$$A_{_{s,min}} = 0.26 \frac{f_{_{tim}}}{f_{_{tim}}} b_{_t} \cdot d \qquad \text{e comunque non minore di } 0.0013 \cdot b_t \cdot d$$

Sezione trasversale verticale di dimensioni 1.20m x 0.6m

$$A_{s,min}$$
' = 0.26 x 2.56/450 x 1200x600 = 1064.96 mm²

$$A_{s,min}$$
" = 0.0013 x1200x600 = 936 mm²

Questa condizione risulta soddisfatta assumendo 5 Φ 18 (As=1272.35 mm²) ambo i lati, con una staffatura costituita da 2 bracci, barre Φ 12 con passo 10 cm (Ast=0.226 cm2/cm > Ast,min=1.5 b mm²/m).

Si giunge pertanto ad un'incidenza di 80 kg/m³.

Vasche di cattura e laminazione - Relazione opere provvisionali

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IV0H 02 D 26 CL IN0300 002 A 31 DI 31

13 CONCLUSIONE

Dalle verifiche effettuate si può concludere che la struttura risulta rispondere a tutti i requisiti di resistenza e funzionalità previsti allo SLU e SLE, con opportuno margine di sicurezza.

La quota di falda è posta circa 1.3m più alta rispetto alla quota di scavo. Data l'entità della differenza di quota l'abbattimento della stessa potrà avvenire attraverso pompe o con il ricorso all'attrezzatura standard di cantiere.

Dovrà essere posta attenzione alle effettive misure dello stato di fatto in modo da posizionare la struttura in oggetto in maniera conforme alle indicazioni di progetto.

Dai calcoli eseguiti si determinano le seguenti caratteristiche dell'opera:

Micropalo verticale:

- Lunghezza micropali = 10 m;
- Dmicropalo = 250 mm; diametro del palo
- interasse = 0.30 cm;
- Dtubolare = 168.3 mm; diametro del tubolare
- Spessore = 8 mm;

Micropalo inclinato:

- Dmicropalo = 250 mm; diametro del palo
- interasse = 1.5 m;
- Dtubolare = 168.3 mm; diametro del tubolare
- Spessore = 8 mm
- Inclinazione rispetto al p.c. = 55°

Cordolo (1.2m x 0.6m):

- Incidenza = 80 kg/m^3