REGIONE LAZIO

Provincia di Viterbo (VT)

COMUNE DI MONTALTO DI CASTRO

1	EMISSIONE PER ENTI ESTERNI	31/03/21	BASSO G.	FURNO C.	NASTASI A.
0	EMISSIONE PER COMMENTI	09/03/21	BASSO G.	FURNO C.	NASTASI A.
REV.	DESCRIZIONE	DATA	REDATTO	CONTROL.	APPROV.

Committente:

IBERDROLA RENOVABLES ITALIA S.p.A.

Sede legale in Piazzale dell'Industria, 40, 00144, Roma Partita I.V.A. 06977481008 – PEC: iberdrolarenovablesitalia@pec.it

Via Jonica, 16 — Loc. Belvedere — 96100 Siracusa (SR) Tel. 0931.1663409 Web: www.antexgroup.it e-mail: info@antexgroup.it

IMPIANTO FOTOVOLTAICO "MONTALTO-PESCIA"

Dott. Ing. Giuseppe Basso Ordine degli Ingegneri

Progettista/Resp. Tecnico

Ingegneria & Innovazione

della Provincia di Siracusa

n° 1860 sez. A

Elaborato:

Progetto:

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Scala: Nome DIS/FILE: Allegato: F.to:

Α4 DEFINITIVO NA C20032S05-PD-RT-10-01 1/1

presente documento è di proprietà della ANTEX GROUP srl. Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. a società tutela i propri diritti a rigore di Legge.

Documento informatico firmato digitalmente ai sensi dell'art. 24 D.Lgs. 82/2005 e ss.mm.ii

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Sommario

PREMESSA	3
1 - DESCRIZIONE GENERALE DELL'OPERA	3
2 - NORMATIVA DI RIFERIMENTO	4
3 - MATERIALI IMPIEGATI E RESISTENZE DI CALCOLO	5
4 - TERRENO DI FONDAZIONE	7
5 - ANALISI DEI CARICHI	8
6 - VALUTAZIONE DELL'AZIONE SISMICA	9
7 - AZIONI SULLA STRUTTURA	15
8 - CODICE DI CALCOLO IMPIEGATO	21
9 PROGETTO E VERIFICA DEGLI ELEMENTI STRUTTURALI	26
10 - TABULATI DI CALCOLO	34
11 – PRESCRIZIONI	80

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

PREMESSA

Su incarico di **Iberdrola Renovables Italia S.p.A.**, la società ANTEX GROUP Srl ha redatto il progetto definitivo per la realizzazione di un impianto di produzione di energia elettrica da fonte solare, denominato *Impianto Fotovoltaico "Montalto-Pescia"*, da realizzarsi nei territori del comune di Montalto di Castro (VT) – Regione Lazio.

Il progetto per il quale si richiede la connessione in rete è un impianto di produzione di energia elettrica da fonte solare che prevede di installare 120.900 moduli fotovoltaici bifacciali in silicio monocristallino da 540 Wp ciascuno, su strutture ad inseguimento monoassiale in acciaio zincato a caldo. Tutta l'energia elettrica prodotta verrà ceduta alla rete.

Le attività di progettazione definitiva sono state sviluppate dalla società di ingegneria ANTEX Group Srl.

ANTEX Group Srl è una società che fornisce servizi globali di consulenza e management ad Aziende private ed Enti pubblici che intendono realizzare opere ed investimenti su scala nazionale ed internazionale.

È costituita da selezionati e qualificati professionisti uniti dalla comune esperienza professionale nell'ambito delle consulenze ingegneristiche, tecniche, ambientali, gestionali, legali e di finanza agevolata.

Sia ANTEX che IBERDROLA pongono a fondamento delle attività e delle proprie iniziative, i principi della qualità, dell'ambiente e della sicurezza come espressi dalle norme ISO 9001, ISO 14001 e OHSAS 18001 nelle loro ultime edizioni.

Difatti, le Aziende citate, in un'ottica di sviluppo sostenibile proprio e per i propri clienti e fornitori, posseggono un proprio Sistema di Gestione Integrato Qualità-Sicurezza-Ambiente.

1 - DESCRIZIONE GENERALE DELL'OPERA

I sistemi ad inseguimento solare monoassiale saranno del tipo SOLTEC SF7, con pali infissi nel terreno per circa 1700mm senza utilizzo di cls, una parte fuori terra di 2180mm su cui verranno montate delle cerniere bullonate che sono attraversate da una trave scatolare a sezione quadrata che ruota intorno al proprio asse, configurando i pannelli in posizione orizzontale dal terreno a una quota di 2595mm.

La cerniera nella parte di montaggio con il palo è costituita da asole che permettono l'allineamento della trave di torsione sia in verticale sia in orizzontale per una tolleranza di 40 mm e, raggiunge una quota di 2400mm il centro di rotazione.

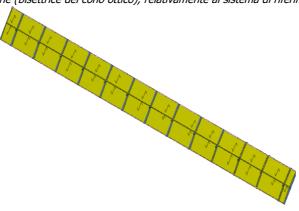
La rotazione si aziona per mezzo meccanico da un motore montato sulla colonna centrale che apre un varco di 15cm nella superficie fotovoltaica.

Il motore è dotato di un sistema di Tracker control che permette di inclinare i pannelli fino a 60° in funzione alla posizione sul terreno e l'angolo zenitale del sole.

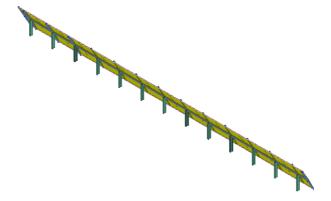
Le colonne, la trave soggetta a torsione e le staffe di montaggio saranno in acciaio S355 galvanizzato ASTM A123/ISO 1461, mentre i moduli di supporto saranno in acciaio S275 galvanizzato ASTM A123/ISO 1461.

Le strutture di inseguitori identificate "Soltec SF7 2x39P-78", sono state calcolate con una struttura di 13 pali per ogni tracker, distribuiti in 44750mm, mantenendo un interasse di 3500mm tra palo - palo e lembi laterali di 1945mm e 802mm.

Il modulo fotovoltaico ha una dimensione di 1134x2274 mm, la stringa sarà composta da due serie di 38 moduli per la struttura Soltec SF7 2x39P-78 , quando i pannelli raggiungono una configurazione inclinata del zenitale massimo di 60° l'altezza dal lembo più alto del pannello rispetto al terreno sarà di ciraca 4531mm, mentre il lembo più basso arriverà ai 500mm.


RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Vengono riportate di seguito due viste assonometriche contrapposte, allo scopo di consentire una migliore comprensione della struttura oggetto della presente relazione:


Vista Anteriore

La direzione di visualizzazione (bisettrice del cono ottico), relativamente al sistema di riferimento globale 0,X,Y, Z, ha versore (1;1;-1)

Vista Posteriore

La direzione di visualizzazione (bisettrice del cono ottico), relativamente al sistema di riferimento globale 0,X,Y, Z, ha versore (-1;-1;-1)

2 - NORMATIVA DI RIFERIMENTO

Le fasi di analisi e verifica della struttura sono state condotte in accordo alle seguenti disposizioni normative, per quanto applicabili in relazione al criterio di calcolo adottato dal progettista, evidenziato nel prosieguo della presente relazione:

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Legge 5 novembre 1971 n. 1086 (G.U. 21 dicembre 1971 n. 321)

"Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica".

Legge 2 febbraio 1974 n. 64 (G.U. 21 marzo 1974 n. 76)

"Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".

Indicazioni progettive per le nuove costruzioni in zone sismiche a cura del Ministero per la Ricerca scientifica -Roma 1981.

D. M. Infrastrutture Trasporti 17/01/2018 (G.U. 20/02/2018 n. 42 - Suppl. Ord. n. 8)

"Aggiornamento delle Norme tecniche per le Costruzioni".

Inoltre, in mancanza di specifiche indicazioni, ad integrazione della norma precedente e per quanto con esse non in contrasto, sono state utilizzate le indicazioni contenute nelle seguenti norme:

Circolare 21 gennaio 2019, n. 7 C.S.LL.PP. (G.U. Serie Generale n. 35 del 11/02/2019 - Suppl. Ord. n. 5) Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018.

Eurocodice 3 - "Progettazione delle strutture in acciaio" - EN 1993-1-1.

3 - MATERIALI IMPIEGATI E RESISTENZE DI CALCOLO

Tutti i materiali strutturali impiegati devono essere muniti di marcatura "CE", ed essere conformi alle prescrizioni del "REGOLAMENTO (UE) N. 305/2011 DEL PARLAMENTO EUROPEO E DEL CONSIGLIO del 9 marzo 2011", in merito ai prodotti da costruzione.

Per la realizzazione dell'opera in oggetto saranno impiegati i seguenti materiali:

MATERIALI ACCIAIO

														aratteri	Suche	acciaio
						£ /	£/	£ /							γ	M7
Nid	γk	αт, і	E	G	Stz	f _{yk,2}	f _{tk,1} / f _{tk,2}	f _{yd,1} / f _{yd,2}	f _{td}	γs	γм1	γм2	γмз,slv	γмз,sle	NCn t	Cnt
	[N/m ³]	[1/°C]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]							
S35!	- (S355))														
001	70 E00	0,000012	210.000	80.769	P	355,00	510	338,10		1.05	1 OF	1,25	_	_	_	_
001	78.500 0,00003	0,000012	210.000	210.000 80.769	' P	335,00	470	319,05	- -	1,05	1,05	1,25	-	_	-	-
S275 - (S275)																
002	70 E00	0.000013	210 000	80.769	P	275,00	430	261,90		1.05	1 OF	1 25				
002	78.500	0,000012	12 210.000	10.000 80.769	9 P	255,00	410	242,86	-	1,05	1,05	1,25	-	-	-	-

LEGENDA:

Numero identificativo del materiale, nella relativa tabella dei materiali. N_{id}

Peso specifico. γk

Coefficiente di dilatazione termica. αт, і

Modulo elastico normale. Ε

G Modulo elastico tangenziale.

Stz Tipo di situazione: [F] = di Fatto (Esistente); [P] = di Progetto (Nuovo).

Resistenza caratteristica a Rottura (per profili con t \leq 40 mm). f_{tk,1}

Resistenza caratteristica a Rottura (per profili con 40 mm $< t \le 80$ mm). ftk,2

Resistenza di calcolo a Rottura (Bulloni). ftd

Coefficiente parziale di sicurezza allo SLV del materiale. γs

Coefficiente parziale di sicurezza per instabilità. γ**м**1

Coefficiente parziale di sicurezza per sezioni tese indebolite. γм2

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

La società tutela i propri diritti a rigore di Legge.

Carattoristisko assiais

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Caratteristiche acciaio

						£ /	5 /	£ /							γ	M7
Nid	γk	αт, і	E	G	Stz	f _{yk,1} / f _{yk,2}	f _{tk,1} / f _{tk,2}	f _{yd,1} / f _{yd,2}	f _{td}	γs	γм1	γм2	γмз,slv	γмз,sle	NCn t	Cnt
	[N/m ³]	[1/°C]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]							

Coefficiente parziale di sicurezza per scorrimento allo SLV (Bulloni). YM3,SLV

Coefficiente parziale di sicurezza per scorrimento allo SLE (Bulloni). γмз,sle

Coefficiente parziale di sicurezza precarico di bulloni ad alta resistenza (Bulloni - NCnt = con serraggio NON controllato; Cnt = con 7м7 serraggio controllato). [-] = parametro NON significativo per il materiale.

Resistenza caratteristica allo snervamento (per profili con $t \le 40$ mm). fyk,1

Resistenza caratteristica allo snervamento (per profili con 40 mm $< t \le 80$ mm). $f_{yk,2}$

Resistenza di calcolo (per profili con $t \le 40$ mm). fyd,1

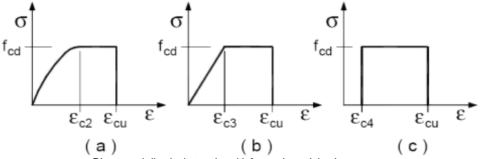
Resistenza di calcolo (per profili con 40 mm $< t \le 80$ mm). f_{vd,2}

NOTE [-] = Parametro non significativo per il materiale.

TENSIONI AMMISSIBILI ALLO SLE DEI VARI MATERIALI

		Tensioni ammissibili allo SLE dei vari materiali		
Materiale	SL	Tensione di verifica	∕ Od,amm	
			[N/mm ²]	

LEGENDA:


SL Stato limite di esercizio per cui si esegue la verifica.

Tensione ammissibile per la verifica. **O**d,amn

I valori dei parametri caratteristici dei suddetti materiali sono riportati anche nei "Tabulati di calcold", nella relativa sezione.

Tutti i materiali impiegati dovranno essere comunque verificati con opportune prove di laboratorio secondo le prescrizioni della vigente Normativa.

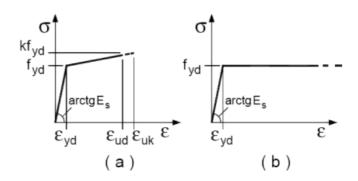
I diagrammi costitutivi degli elementi in calcestruzzo sono stati adottati in conformità alle indicazioni riportate al §4.1.2.1.2.1 del D.M. 2018; in particolare per le verifiche effettuate a pressoflessione retta e pressoflessione deviata è adottato il modello (a) riportato nella seguente figura.

Diagrammi di calcolo tensione/deformazione del calcestruzzo.

I valori di deformazione assunti sono:

$$\varepsilon_{c2} = 0,0020;$$

 $\varepsilon_{cu2} = 0,0035.$


Comm.: C20-032-S05

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

I diagrammi costitutivi dell'acciaio sono stati adottati in conformità alle indicazioni riportate al §4.1.2.1.2.2 del D.M. 2018; in particolare è adottato il modello elastico plastico perfettamente tipo rappresentato nella figura sulla destra. La resistenza di calcolo è data da fyk/ys. Il coefficiente di sicurezza γ_s si assume pari a 1,15.

4 - TERRENO DI FONDAZIONE

Le proprietà meccaniche dei terreni sono state investigate mediante specifiche prove mirate alla misurazione della velocità delle onde di taglio negli strati del sottosuolo. In particolare, è stata calcolata una velocità di propagazione equivalente delle onde di taglio con la seguente relazione (eq. [3.2.1] D.M. 2018):

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

dove:

- h_i è lo spessore dell'i-simo strato;
- V_{S,i} è la velocità delle onde di taglio nell'i-simo strato;
- N è il numero totale di strati investigati;
- H è la profondità del substrato con $V_S \ge 800$ m/s.

Le proprietà dei terreni sono, quindi, state ricondotte a quelle individuate nella sequente tabella, ponendo H = 30 m nella relazione precedente ed ottenendo il parametro V_{S,30}.

Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato (Tab. 3.2.II D.M. 2018)

Categoria	Caratteristiche della superficie topografica
Α	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

Le indagini effettuate, mirate alla valutazione della velocità delle onde di taglio (Vs.30), permettono di classificare

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

il profilo stratigrafico, ai fini della determinazione dell'azione sismica, di categoria **B [B - Rocce tenere e** depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti].

Le costanti di sottofondo (alla Winkler) del terreno sono state corrette secondo la seguente espressione:

$$K = c \cdot K_1$$
:

dove:

 K_1 = costante di Winkler del terreno riferita alla piastra standard di lato b = 30 cm;

c = coefficiente di correzione, funzione del comportamento del terreno e della particolare geometria degli elementi di fondazione. Nel caso di "*Riduzione Automatica*" è dato dalle successive espressioni (*Rif. Evaluation of coefficients of subgrade reaction K. Terzaghi, 1955 p. 315*):

$$c = \left[\frac{\left(B+b\right)}{2 \cdot B}\right]^{2}$$
 per terreni incoerenti
$$c = \left(\frac{L/B+0.5}{1.5 \cdot L/B}\right) \cdot \frac{b}{B}$$
 per terreni coerenti

Essendo:

b = 0.30 m, dimensione della piastra standard;

L = lato maggiore della fondazione;

B = lato minore della fondazione.

Nel caso di stratigrafia la costante di sottofondo utilizzata nel calcolo delle **sollecitazioni** è quella del terreno a contatto con la fondazione, mentre nel calcolo dei **cedimenti** la costante di sottofondo utilizzata è calcolata come media pesata delle costanti di sottofondo presenti nel volume significativo della fondazione.

Tutti i parametri che caratterizzano i terreni di fondazione sono riportati nei "<u>Tabulati di calcolo</u>", nella relativa sezione. Per ulteriori dettagli si rimanda alle relazioni geologica e geotecnica.

5 - ANALISI DEI CARICHI

Un'accurata valutazione dei carichi è un requisito imprescindibile di una corretta progettazione, in particolare per le costruzioni realizzate in zona sismica. Essa, infatti, è fondamentale ai fini della determinazione delle forze sismiche, in quanto incide sulla valutazione delle masse e dei periodi propri della struttura dai quali dipendono i valori delle accelerazioni (ordinate degli spettri di progetto).

La valutazione dei carichi e dei sovraccarichi è stata effettuata in accordo con le disposizioni del punto 3.1 del **D.M. 2018**. In particolare, è stato fatto utile riferimento alle Tabelle 3.1.I e 3.1.II del D.M. 2018, per i pesi propri dei materiali e per la quantificazione e classificazione dei sovraccarichi, rispettivamente.

La valutazione dei carichi permanenti è effettuata sulle dimensioni definitive.

Le analisi effettuate, corredate da dettagliate descrizioni, oltre che nei "*Tabulati di calcolo*" nella relativa sezione, sono di seguito riportate:

ANALISI CARICHI

								A	ınalisi	carichi
Nid	T. C.	Descrizione del Carico	Tipologie di Carico	Peso Proprio	Peso Proprio		N	Sovraccarico Accide	entale	Caric o
		Carico	Carico	Descrizione	PP	Descrizione	PNS	Descrizione	SA	Neve
										[N/m ²]
001	S	Modulo fotovoltaico 195x100 cm compreso i mosuli di	Autorimessa <= 30kN	Modulo fotovoltaico compreso i mosuli di supporto	400		0		0	0

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

E Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Analisi carichi

Nid	T. C.	Descrizione del Carico		Peso Proprio		Permanente NO Strutturale	ON	Sovraccarico Accide	Caric o	
		Carico	Carico	Descrizione	PP	Descrizione	PNS	Descrizione	SA	Neve
										[N/m ²]
		supporto per il collegamento sul telaio di sostegno.								

LEGENDA:

N_{id} Numero identificativo dell'analisi di carico.

T. C. Identificativo del tipo di carico: [S] = Superficiale - [L] = Lineare - [C] = Concentrato.

PP, PNS, Valori, rispettivamente, del Peso Proprio, del Sovraccarico Permanente NON strutturale, del Sovraccarico Accidentale. Secondo il tipo di carico indicato nella colonna "T.C." ("S" - "L" - "C"), i valori riportati nelle colonne "PP", "PNS" e "SA", sono espressi in [N/m²] per carichi Superficiali, [N/m] per carichi Lineari, [N] per carichi Concentrati.

6 - VALUTAZIONE DELL'AZIONE SISMICA

L'azione sismica è stata valutata in conformità alle indicazioni riportate al §3.2 del D.M. 2018.particolare il procedimento per la definizione degli spettri di progetto per i vari Stati Limite per cui sono state effettuate le verifiche è stato il seguente:

- definizione della Vita Nominale e della Classe d'Uso della struttura, il cui uso combinato ha portato alla definizione del Periodo di Riferimento dell'azione sismica;
- individuazione, tramite latitudine e longitudine, dei parametri sismici di base a_g, F₀ e T*_c per tutti e quattro gli Stati Limite previsti (SLO, SLD, SLV e SLC); l'individuazione è stata effettuata interpolando tra i 4 punti più vicini al punto di riferimento dell'edificio;
- determinazione dei coefficienti di amplificazione stratigrafica e topografica;
- calcolo del periodo T_c corrispondente all'inizio del tratto a velocità costante dello Spettro.

I dati così calcolati sono stati utilizzati per determinare gli Spettri di Progetto nelle verifiche agli Stati Limite considerate.

Si riportano di seguito le coordinate geografiche del sito rispetto al Datum **ED50**:

Latitudine	Longitudine	Altitudine
[°]	[°]	[m]
42.419558	11.541804	53

6.1 Verifiche di regolarità

Sia per la scelta del metodo di calcolo, sia per la valutazione del fattore di comportamento adottato, deve essere effettuato il controllo della regolarità della struttura. tabella seguente riepiloga, per la struttura in esame, le condizioni di regolarità in pianta ed in altezza soddisfatte.

REGOLARITÀ DELLA STRUTTURA IN PIANTA	
La distribuzione di masse e rigidezze è approssimativamente simmetrica rispetto a due direzioni ortogonali e la forma in pianta è compatta, ossia il contorno di ogni orizzontamento è convesso; il requisito può ritenersi soddisfatto, anche in presenza di rientranze in pianta, quando esse non influenzano significativamente la rigidezza nel piano dell'orizzontamento e, per ogni rientranza, l'area compresa tra il perimetro dell'orizzontamento e la linea convessa circoscritta all'orizzontamento non supera il 5% dell'area dell'orizzontamento	NO
Il rapporto tra i lati di un rettangolo in cui la costruzione risulta inscritta è inferiore a 4	NO

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Ciascun orizzontamento ha una rigidezza nel proprio piano tanto maggiore della corrispondente rigidezza degli elementi strutturali verticali da potersi assumere che la sua deformazione in pianta influenzi in modo trascurabile la distribuzione delle azioni sismiche tra questi ultimi e ha resistenza sufficiente a garantire l'efficacia di tale distribuzione

REGOLARITÀ DELLA STRUTTURA IN ALTEZZA	
Tutti i sistemi resistenti alle azioni orizzontali si estendono per tutta l'altezza della costruzione o, se sono presenti parti aventi differenti altezze, fino alla sommità della rispettiva parte dell'edificio	SI
Massa e rigidezza rimangono costanti o variano gradualmente, senza bruschi cambiamenti, dalla base alla sommità della costruzione (le variazioni di massa da un orizzontamento all'altro non superano il 25 %, la rigidezza non si riduce da un orizzontamento a quello sovrastante più del 30% e non aumenta più del 10%); ai fini della rigidezza si possono considerare regolari in altezza strutture dotate di pareti o nuclei in c.a. o pareti e nuclei in muratura di sezione costante sull'altezza o di telai controventati in acciaio, ai quali sia affidato almeno il 50% dell'azione sismica alla base	NO
Il rapporto tra la capacità e la domanda allo SLV non è significativamente diverso, in termini di resistenza, per orizzontamenti successivi (tale rapporto, calcolato per un generico orizzontamento, non deve differire più del 30% dall'analogo rapporto calcolato per l'orizzontamento adiacente); può fare eccezione l'ultimo orizzontamento di strutture intelaiate di almeno tre orizzontamenti	NO
Eventuali restringimenti della sezione orizzontale della costruzione avvengano con continuità da un orizzontamento al successivo; oppure avvengano in modo che il rientro di un orizzontamento non superi il 10% della dimensione corrispondente all'orizzontamento immediatamente sottostante, né il 30% della dimensione corrispondente al primo orizzontamento. Fa eccezione l'ultimo orizzontamento di costruzioni di almeno quattro orizzontamenti, per il quale non sono previste limitazioni di restringimento	SI

La rigidezza è calcolata come rapporto fra il taglio complessivamente agente al piano e δ , spostamento relativo di piano (il taglio di piano è la sommatoria delle azioni orizzontali agenti al di sopra del piano considerato). i valori calcolati ed utilizzati per le verifiche sono riportati nei "*Tabulati di calcolo*" nella relativa sezione. La struttura è pertanto:

in pianta	in altezza
NON REGOLARE	REGOLARE

6.2 Classe di duttilità

La classe di duttilità è rappresentativa della capacità dell'edificio di dissipare energia in campo anelastico per azioni cicliche ripetute. deformazioni anelastiche devono essere distribuite nel maggior numero di elementi duttili, in particolare le travi, salvaguardando in tal modo i pilastri e soprattutto i nodi travi pilastro che sono gli elementi più fragili. D.M. 2018 definisce due tipi di comportamento strutturale:

- a) comportamento strutturale non-dissipativo;
- b) comportamento strutturale dissipativo.

Per strutture con comportamento strutturale dissipativo si distinguono due livelli di Capacità Dissipativa o Classi di Duttilità (CD).

- CD "A" (Alta);
- CD "B" (Media).

La differenza tra le due classi risiede nell'entità delle plasticizzazioni cui ci si riconduce in fase di progettazione; per ambedue le classi, onde assicurare alla struttura un comportamento dissipativo e duttile evitando rotture fragili e la formazione di meccanismi instabili imprevisti, si fa ricorso ai procedimenti tipici della gerarchia delle resistenze

La struttura in esame è stata progettata in classe di duttilità "MEDIA" (CD"B").

6.3 Spettri di Progetto per S.L.U. e S.L.D.

Comm.: C20-032-S05

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

L'edificio è stato progettato per una Vita Nominale pari a 50 e per Classe d'Uso pari a 1.

In base alle indagini geognostiche effettuate si è classificato il **suolo** di fondazione di **categoria B**, cui corrispondono i seguenti valori per i parametri necessari alla costruzione degli spettri di risposta orizzontale e verticale:

	Paramet							olosità sismica
Stato Limite	a _g /g	Fo	T * _c	Cc	T _B	Tc	T _D	Ss
			[s]		[s]	[s]	[s]	
SLO	0.0313	2.577	0.205	1.51	0.103	0.309	1.725	1.20
SLD	0.0331	2.585	0.213	1.50	0.106	0.319	1.732	1.20
SLV	0.0680	2.688	0.286	1.41	0.135	0.404	1.872	1.20
SLC	0.0827	2.729	0.297	1.40	0.139	0.417	1.931	1.20

Per la definizione degli spettri di risposta, oltre all'accelerazione (a_g) al suolo (dipendente dalla classificazione sismica del Comune) occorre determinare il Fattore di Comportamento (q).

Il Fattore di comportamento q è un fattore riduttivo delle forze elastiche introdotto per tenere conto delle capacità dissipative della struttura che dipende dal sistema costruttivo adottato, dalla Classe di Duttilità e dalla regolarità in altezza.

Si è inoltre assunto il Coefficiente di Amplificazione Topografica (S_T) pari a 1.00.

Tali succitate caratteristiche sono riportate negli allegati "<u>Tabulati di calcolo</u>" al punto "DATI GENERALI ANALISI SISMICA".

Per la struttura in esame sono stati utilizzati i seguenti valori:

Stato Limite di Danno

Fattore di Comportamento (q_X) per sisma orizzontale in direzione X: **1.00**; Fattore di Comportamento (q_Y) per sisma orizzontale in direzione Y: **1.00**;

Fattore di Comportamento (qz) per sisma verticale: **1.00** (se richiesto).

Stato Limite di salvaguardia della Vita

Fattore di Comportamento (qx) per sisma orizzontale in direzione X: **1.500**; Fattore di Comportamento (qy) per sisma orizzontale in direzione Y: **1.500**;

Fattore di Comportamento (qz) per sisma verticale: **1.50** (se richiesto).

Di seguito si esplicita il calcolo del fattore di comportamento per il sisma orizzontale:

	Dir. X	Dir. Y			
Tipologia	A pendolo inverso	A pendolo inverso			
(§7.4.3.2 D.M. 2018)	A pelidolo lilveiso	A pelidolo lilveiso			
Tipologia strutturale	-	-			
$\alpha_{\sf u}/\alpha_1$	1	1			
k _w	-	-			
q_o	1.500	1.500			
k _R	1.00				

Il fattore di comportamento è calcolato secondo la relazione (7.3.1) del §7.3.1 del D.M. 2018:

 $q = q_0 \cdot k_R$;

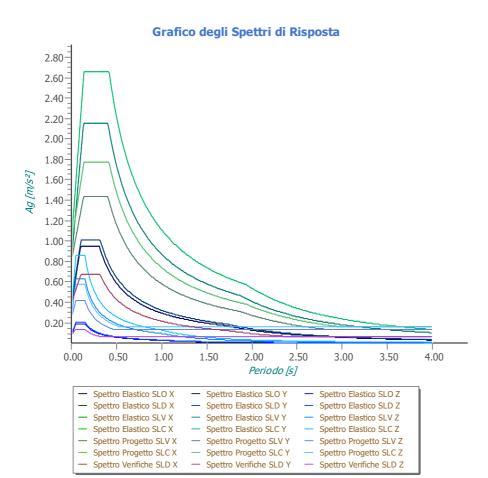
RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

dove:

- kw è il coefficiente che riflette la modalità di collasso prevalente in sistemi strutturali con pareti.
- q_0 è il valore massimo del fattore di comportamento che dipende dal livello di duttilità attesa, dalla tipologia strutturale e dal rapporto α_u/α_1 tra il valore dell'azione sismica per il quale si verifica la formazione di un numero di cerniere plastiche tali da rendere la struttura labile e quello per il quale il primo elemento strutturale raggiunge la plasticizzazione a flessione. **NOTA:** il valore proposto di q_0 è già ridotto dell'eventuale coefficiente k_{w} ;
- k_R è un fattore riduttivo che dipende dalle caratteristiche di regolarità in altezza della costruzione, con valore pari ad 1 per costruzioni regolari in altezza e pari a 0,8 per costruzioni non regolari in altezza.
- **N.B.1:** Per le costruzioni *regolari in pianta*, qualora non si proceda ad un'analisi non lineare finalizzata alla valutazione del rapporto $\alpha_{\rm u}/\alpha_{\rm 1}$, per esso possono essere adottati i valori indicati nel §7.4.3.2 del D.M. 2018 per le diverse tipologie costruttive. Per le costruzioni *non regolari in pianta*, si possono adottare valori di $\alpha_{\rm u}/\alpha_{\rm 1}$ pari alla media tra 1,0 ed i valori di volta in volta forniti per le diverse tipologie costruttive.

Valori massimi del valore di base q_0 del fattore di comportamento allo SLV per costruzioni di calcestruzzo (§ 7.4.3.2 D.M. 2018)(cfr. Tabella 7.3.II D.M. 2018)

Tipe leading through the same		q _o			
Tipologia strutturale	CD"A"	CD"B"			
Strutture a telaio, a pareti accoppiate, miste (v. §7.4.3.1)	4,5 α _u /α ₁	3,0 αμ/α1			
Strutture a pareti non accoppiate (v. §7.4.3.1)	4,0 α _u /α ₁	3,0			
Strutture deformabili torsionalmente (v. §7.4.3.1)	3,0	2,0			
Strutture a pendolo inverso (v. §7.4.3.1)	2,0	1,5			
Strutture a pendolo inverso intelaiate monopiano (v. §7.4.3.1)	3,5	2,5			


Gli spettri utilizzati sono riportati nella successiva figura.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

6.4 Metodo di Analisi

Gli effetti del sisma sono stati valutati convenzionalmente mediante analisi statica della struttura soggetta a:

- un sistema di forze orizzontali parallele alle direzioni ipotizzate per il sisma, distribuite (sia planimetricamente che altimetricamente) in modo da simulare gli effetti dinamici del sisma.
- un sistema di forze verticali, distribuite sulla struttura proporzionalmente alle masse presenti.

Le sollecitazioni derivanti da tali azioni sono state composte poi con quelle derivanti da carichi verticali, orizzontali non sismici secondo le varie combinazioni di carico probabilistiche. Il calcolo è stato effettuato mediante un programma agli elementi finiti le cui caratteristiche verranno descritte nel seguito.

Il calcolo degli effetti dell'azione sismica è stato eseguito con riferimento alla struttura spaziale, tenendo cioè conto degli elementi interagenti fra loro secondo l'effettiva realizzazione escludendo i tamponamenti. Non ci

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

sono approssimazioni su tetti inclinati, piani sfalsati o scale, solette, pareti irrigidenti e nuclei.

Si è tenuto conto delle deformabilità taglianti e flessionali degli elementi monodimensionali; muri, pareti, setti, solette sono stati correttamente schematizzati tramite elementi finiti a tre/quattro nodi con comportamento a quscio (sia a piastra che a lastra).

Sono stati considerati sei gradi di libertà per nodo; in ogni nodo della struttura sono state applicate le forze sismiche derivanti dalle masse circostanti.

Le sollecitazioni derivanti da tali forze sono state poi combinate con quelle derivanti dagli altri carichi come prima specificato.

6.5 Valutazione degli spostamenti

Gli spostamenti d_E della struttura sotto l'azione sismica di progetto allo SLV sono stati ottenuti moltiplicando per il fattore μ_d i valori d_{Ee} ottenuti dall'analisi lineare, dinamica o statica, secondo l'espressione seguente:

$$d_E = \pm \mu_d \cdot d_{Ee}$$

dove

$$\mu_d = q$$
 se $T_1 \ge T_C$;
 $\mu_d = 1 + (q-1) \cdot T_C / T_1$ se $T_1 < T_C$.

In ogni caso $\mu d \leq 5q - 4$.

6.6 Combinazione delle componenti dell'azione sismica

Le azioni orizzontali dovute al sisma sulla struttura vengono convenzionalmente determinate come agenti separatamente in due direzioni tra loro ortogonali prefissate. In generale, però, le componenti orizzontali del sisma devono essere considerate come agenti simultaneamente. A tale scopo, la combinazione delle componenti orizzontali dell'azione sismica è stata tenuta in conto come segue:

• gli effetti delle azioni dovuti alla combinazione delle componenti orizzontali dell'azione sismica sono stati valutati mediante le seguenti combinazioni:

$$E_{EdX} \pm 0.30E_{EdY}$$
 $E_{EdY} \pm 0.30E_{EdX}$

dove:

E_{EdX} rappresenta gli effetti dell'azione dovuti all'applicazione dell'azione sismica lungo l'asse orizzontale X scelto della struttura;

E_{EdY} rappresenta gli effetti dell'azione dovuti all'applicazione dell'azione sismica lungo l'asse orizzontale Y scelto della struttura.

L'azione sismica verticale deve essere considerata in presenza di: elementi pressoché orizzontali con luce superiore a 20 m, elementi pressoché orizzontali precompressi, elementi a sbalzo pressoché orizzontali con luce maggiore di 5 m, travi che sostengono colonne, strutture isolate.

La combinazione della componente verticale del sisma, qualora portata in conto, con quelle orizzontali è stata tenuta in conto come segue:

• gli effetti delle azioni dovuti alla combinazione delle componenti orizzontali e verticali del sisma sono stati valutati mediante le seguenti combinazioni:

 $E_{EdX} \pm 0.30E_{EdY} \pm 0.30E_{EdZ}$ $E_{EdY} \pm 0.30E_{EdX} \pm 0.30E_{EdX}$ $E_{EdZ} \pm 0.30E_{EdX} \pm 0.30E_{EdX}$

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

dove:

E_{EdX} e E_{EdY} sono gli effetti dell'azione sismica nelle direzioni orizzontali prima definite;

E_{EdZ} rappresenta gli effetti dell'azione dovuti all'applicazione della componente verticale dell'azione sismica di progetto.

6.7 Eccentricità accidentali

Per valutare le eccentricità accidentali, previste in aggiunta all'eccentricità effettivaInoltre, sono state amplificate le forze agenti tramite il fattore δ =1+0,6·x/Le, dove (cfr. § 4.3.3.2.4 UNI EN 1998-1:2005):

- **x** è la distanza dell'elemento resistente verticale dal baricentro geometrico dell'edificio, misurata perpendicolarmente alla direzione dell'azione sismica considerata;
- Le è la distanza tra i due elementi resistenti più lontani, misurata allo stesso modo.

7 - AZIONI SULLA STRUTTURA

I calcoli e le verifiche sono condotti con il metodo semiprobabilistico degli stati limite secondo le indicazioni del D.M. 2018. I carichi agenti sui solai, derivanti dall'analisi dei carichi, vengono ripartiti dal programma di calcolo in modo automatico sulle membrature (travi, pilastri, pareti, solette, platee, ecc.).

I carichi dovuti ai tamponamenti, sia sulle travi di fondazione che su quelle di piano, sono schematizzati come carichi lineari agenti esclusivamente sulle aste.

Su tutti gli elementi strutturali è inoltre possibile applicare direttamente ulteriori azioni concentrate e/o distribuite (variabili con legge lineare ed agenti lungo tutta l'asta o su tratti limitati di essa).

Le azioni introdotte direttamente sono combinate con le altre (carichi permanenti, accidentali e sisma) mediante le combinazioni di carico di seguito descritte; da esse si ottengono i valori probabilistici da impiegare successivamente nelle verifiche.

7.1 Stato Limite di Salvaguardia della Vita

Le azioni sulla costruzione sono state cumulate in modo da determinare condizioni di carico tali da risultare più sfavorevoli ai fini delle singole verifiche, tenendo conto della probabilità ridotta di intervento simultaneo di tutte le azioni con i rispettivi valori più sfavorevoli, come consentito dalle norme vigenti.

Per gli stati limite ultimi sono state adottate le combinazioni del tipo:

 $\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{K1} + \gamma_{Q2} \cdot \psi_{O2} \cdot Q_{K2} + \gamma_{Q3} \cdot \psi_{O3} \cdot Q_{K3} + \dots$ $\tag{1}$

dove:

G₁ rappresenta il peso proprio di tutti gli elementi strutturali; peso proprio del terreno, quando pertinente; forze indotte dal terreno (esclusi gli effetti di carichi variabili applicati al terreno); forze risultanti dalla pressione dell'acqua (quando si configurino costanti nel tempo);

G₂ rappresenta il peso proprio di tutti gli elementi non strutturali;

P rappresenta l'azione di pretensione e/o precompressione;

Q azioni sulla struttura o sull'elemento strutturale con valori istantanei che possono risultare

Comm.: C20-032-S05

ISO 901
BUREAU VERITAS
Certification

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

sensibilmente diversi fra loro nel tempo:

- di lunga durata: agiscono con un'intensità significativa, anche non continuativamente, per un tempo non trascurabile rispetto alla vita nominale della struttura;
- di breve durata: azioni che agiscono per un periodo di tempo breve rispetto alla vita nominale della struttura;

 Q_{ki} rappresenta il valore caratteristico della i-esima azione variabile; coefficienti parziali come definiti nella Tab. 2.6.I del D.M. 2018;

γοι sono i coefficienti di combinazione per tenere conto della ridotta probabilità di concomitanza delle azioni variabili con i rispettivi valori caratteristici.

Le **10 combinazioni** risultanti sono state costruite a partire dalle sollecitazioni caratteristiche calcolate per ogni condizione di carico elementare: ciascuna condizione di carico accidentale, a rotazione, è stata considerata sollecitazione di base (Q_{k1} nella formula precedente).

I coefficienti relativi a tali combinazioni di carico sono riportati negli allegati "Tabulati di calcolo".

In zona sismica, oltre alle sollecitazioni derivanti dalle generiche condizioni di carico statiche, devono essere considerate anche le sollecitazioni derivanti dal sisma. L'azione sismica è stata combinata con le altre azioni secondo la seguente relazione:

 $G_1+G_2+P+E+\Sigma_i\psi_{2i}\cdot Q_{ki}$;

dove:

 $\begin{array}{lll} E & \text{rappresenta l'azione sismica per lo stato limite in esame;} \\ G_1 & \text{rappresenta peso proprio di tutti gli elementi strutturali;} \\ G_2 & \text{rappresenta il peso proprio di tutti gli elementi non strutturali;} \\ P & \text{rappresenta l'azione di pretensione e/o precompressione;} \\ \psi_{2i} & \text{coefficiente di combinazione delle azioni variabili } Q_i; \\ Q_{ki} & \text{valore caratteristico dell'azione variabile } Q_i. \end{array}$

Gli effetti dell'azione sismica sono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_K+\Sigma_i(\psi_{2i}'Q_{ki}).$$

I valori dei coefficienti ψ_{2i} sono riportati nella seguente tabella:

Categoria/Azione	ψ 2i
Categoria A - Ambienti ad uso residenziale	0,3
Categoria B - Uffici	0,3
Categoria C - Ambienti suscettibili di affollamento	0,6
Categoria D - Ambienti ad uso commerciale	0,6
Categoria E - Biblioteche, archivi, magazzini e ambienti ad uso industriale	0,8
Categoria F - Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,6
Categoria G - Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,3
Categoria H - Coperture	0,0
Categoria I - Coperture praticabili	*
Categoria K - Coperture per usi speciali (impianti, eliporti,)	*
Vento	0,0
Neve (a quota ≤ 1000 m s.l.m.)	0,0
Neve (a quota > 1000 m s.l.m.)	0,2
Variazioni termiche	0,0
* "Da valutarsi caso per caso"	

Comm.: C20-032-S05

ISO 9001
BUREAU VERITAS
Cerdification

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Le verifiche strutturali e geotecniche delle fondazioni, sono state effettuate con l'Approccio 2 come definito al §2.6.1 del D.M. 2018, attraverso la combinazione A1+M1+R3. Le azioni sono state amplificate tramite i coefficienti della colonna A1 definiti nella Tab. 6.2.I del D.M. 2018.

I valori di resistenza del terreno sono stati ridotti tramite i coefficienti della colonna M1 definiti nella Tab. 6.2.II del D.M. 2018.

Si è quindi provveduto a progettare le armature di ogni elemento strutturale per ciascuno dei valori ottenuti secondo le modalità precedentemente illustrate. Nella sezione relativa alle verifiche dei "Tabulati di calcolo" in allegato sono riportati, per brevità, i valori della sollecitazione relativi alla combinazione cui corrisponde il minimo valore del coefficiente di sicurezza.

7.2 Stato Limite di Danno

L'azione sismica, ottenuta dallo spettro di progetto per lo Stato Limite di Danno, è stata combinata con le altre azioni mediante una relazione del tutto analoga alla precedente:

$$G_1+G_2+P+E+\Sigma_i\psi_{2i}Q_{ki}$$
;

dove:

Ε rappresenta l'azione sismica per lo stato limite in esame;

 G_1 rappresenta peso proprio di tutti gli elementi strutturali;

 G_2 rappresenta il peso proprio di tutti gli elementi non strutturali;

Ρ rappresenta l'azione di pretensione e/o precompressione;

coefficiente di combinazione delle azioni variabili Qi; W2i

valore caratteristico dell'azione variabile Qi. Oki

Gli effetti dell'azione sismica sono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_K+\Sigma_i(\psi_{2i}'Q_{ki}).$$

I valori dei coefficienti ψ_{2i} sono riportati nella tabella di cui allo SLV.

7.3 Stati Limite di Esercizio

Allo Stato Limite di Esercizio le sollecitazioni con cui sono state semiprogettate le aste in c.a. sono state ricavate applicando le formule riportate nel D.M. 2018 al §2.5.3. Per le verifiche agli stati limite di esercizio, a seconda dei casi, si fa riferimento alle sequenti combinazioni di carico:

rara	frequente	quasi permanente
$\sum_{j\geq 1} \boldsymbol{G}_{kj} + \boldsymbol{P} + \boldsymbol{Q}_{k1} + \sum_{i>1} \boldsymbol{\psi}_{0i} \cdot \boldsymbol{Q}_{ki}$	$\sum_{j\geq 1} \boldsymbol{G}_{kj} + \boldsymbol{P} + \boldsymbol{\psi}_{11} \cdot \boldsymbol{Q}_{k1} + \sum_{i>1} \boldsymbol{\psi}_{2i} \cdot \boldsymbol{Q}_{ki}$	$\sum_{j\geq 1} \boldsymbol{G}_{kj} + \boldsymbol{P} + \sum_{i>1} \boldsymbol{\psi}_{2i} \cdot \boldsymbol{Q}_{ki}$

dove:

G_{ki}: valore caratteristico della j-esima azione permanente;

P_{kh}: valore caratteristico della h-esima deformazione impressa;

valore caratteristico dell'azione variabile di base di ogni combinazione; Q_{kl}:

valore caratteristico della i-esima azione variabile; Oki:

coefficiente atto a definire i valori delle azioni ammissibili di durata breve ma ancora significativi nei Ψ0i:

Comm.: C20-032-S05

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

riguardi della possibile concomitanza con altre azioni variabili;

 ψ_{1i} : coefficiente atto a definire i valori delle azioni ammissibili ai frattili di ordine 0,95 delle distribuzioni dei valori istantanei;

ψ_{2i}: coefficiente atto a definire i valori quasi permanenti delle azioni ammissibili ai valori medi delle distribuzioni dei valori istantanei.

Ai coefficienti ψ_{0i} , ψ_{1i} , ψ_{2i} sono attribuiti i seguenti valori:

Azione	Ψ0i	ψ 1i	ψ 2i
Categoria A – Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B – Uffici	0,7	0,5	0,3
Categoria C – Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D – Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E – Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F – Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6
Categoria G – Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H – Coperture	0,0	0,0	0,0
Vento	0,6	0,2	0,0
Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

In maniera analoga a quanto illustrato nel caso dello SLU le combinazioni risultanti sono state costruite a partire dalle sollecitazioni caratteristiche calcolate per ogni condizione di carico; a turno ogni condizione di carico accidentale è stata considerata sollecitazione di base $[Q_{k1}$ nella formula (1)], con ciò dando origine a tanti valori combinati. Per ognuna delle combinazioni ottenute, in funzione dell'elemento (trave, pilastro, etc...) sono state effettuate le verifiche allo SLE (tensioni, deformazioni e fessurazione).

Negli allegati "<u>Tabulati Di Calcolo"</u> sono riportanti i coefficienti relativi alle combinazioni di calcolo generate relativamente alle combinazioni di azioni "**Quasi Permanente**" (1), "**Frequente**" (4) e "**Rara**" (4). Nelle sezioni relative alle verifiche allo SLE dei citati tabulati, inoltre, sono riportati i valori delle sollecitazioni relativi alle combinazioni che hanno originato i risultati più gravosi.

7.4 Azione del Vento

L'applicazione dell'azione del vento sulla struttura si articola in due fasi:

- 1. calcolo della pressione Normale e Tangenziale lungo l'altezza dell'edificio;
- 2. trasformazione delle pressioni in forze (lineari/concentrate) sugli elementi (strutturali/non strutturali) dell'edificio.

7.4.1 Calcolo pressione normale e tangenziale

Pressione Normale

La pressione del vento è data dall'espressione:

 $p = q_r \cdot c_e \cdot c_p \cdot c_d$ (relazione 3.3.4 - D.M. 2018);

dove

- q_r: la pressione cinetica di riferimento data dall'espressione:

Comm.: C20-032-S05

ISO 9001
BUREAU VERITAS
Certification

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

$$q_b = \frac{1}{2} \cdot \rho \cdot v_r^2$$
 (relazione 3.3.6 - D.M. 2018);

con:

ρ: densità dell'aria (assunta pari a 1,25 kg/m³);

v_r: velocità di riferimento del vento (in m/s), data da (Eq. 3.3.2 - D.M. 2018):

$$v_r = v_b \cdot c_r$$
, con:

 α_R : coefficiente dato dalla seguente relazione:

$$c_r = 0.75 \cdot \sqrt{1 - 0.2 \cdot \ln \left[-\ln \left(1 - \frac{1}{T_R} \right) \right]}$$
 (relazione 3.3.3 - D.M. 2018);

 v_b : velocità di riferimento del vento associata ad un periodo di ritorno di 50 anni, data da: $v_b = v_{b,0} \cdot c_a$

dove:

c₃ è il coefficiente di altitudine fornito dalla relazione:

 $c_a = 1$ per $a_s \le a_0$.

 $c_a = 1 + k_s (a_s/a_0 - 1)$ per $a_0 < a_s \le 1500$ m.

 $v_{b,0}$, a_0 , k_s : parametri forniti dalla Tab. 3.3.I del §3.3.2 D.M. 2018;

as: altitudine sul livello del mare (m.s.l.m) del sito ove sorge la costruzione;

T_R: periodo di ritorno espresso in anni [10 anni; 500 anni].

- C_e: coefficiente di esposizione, che per altezza sul suolo (z) non maggiori di 200 m è dato dalla formula:

$$\begin{array}{ll} C_{e}(z) = k_{r}^{2} \cdot C_{t} \cdot \ln{(z/z_{0})} \cdot [7 + c_{t} \cdot \ln{(z/z_{0})}] & \text{per } z \geq z_{min} \\ C_{e}(z) = C_{e}(z_{min}) & \text{per } z < z_{min} \end{array} \tag{relazione 3.3.7 - D.M. 2018};$$

dove:

k_r , z₀ , z_{min}: parametri forniti dalla Tab. 3.3.II del par. 3.3.7 D.M. 2018 (*funzione della categoria di esposizione del sito e della classe di rugosità del terreno*);

 c_t : coefficiente di topografia (assunto pari ad 1).

- c_p: coefficiente di forma (o coefficiente aerodinamico), funzione della tipologia e della geometria della costruzione e del suo orientamento rispetto alla direzione del vento (cfr. § 3.3.8 D.M. 2018).
- c_d: coefficiente dinamico (assunto pari ad 1; par. 3.3.9 D.M. 2018).

Pressione Tangenziale

L'azione tangente per unità di superficie parallela alla direzione del vento è data dall'espressione

$$p_f = q_r \cdot C_e \cdot C_f$$
 (relazione 3.3.5 - D.M. 2018);

dove

- q_r, c_e: definiti in precedenza;
- c_f: coefficiente d'attrito, funzione della scabrezza della superficie sulla quale il vento esercita l'azione tangente funzione (valori presi dalla Tab. C3.3.I della Circolare 2018).

Per il caso in esame:

VENTO - CALCOLO PRESSIONE CINETICA DI RIFERIMENTO

						Vento	- calcolo pr	essione c	inetica di 1	riferimento
α	DIR	as	Zona	$V_{b,0}$	\mathbf{a}_0	k _s	V _b	T _R	αr	qь
[°]		[m]		[m/s]	[m]		[m/s]	[anni]		[N/m ²]
0,00	+X; -X; +Y; -Y	1	3	27	500	0,370	27,00	50	1,00	456

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Vento - calcolo pressione cinetica di riferimento

α	DIR	as	Zona	$V_{b,0}$	\mathbf{a}_0	k _s	V _b	T _R	α_{R}	qь
[°]		[m]		[m/s]	[m]		[m/s]	[anni]		[N/m ²]

LEGENDA:

Angolo di inclinazione del vento rispetto all'asse x

DIR Direzioni locali di calcolo del vento

Altitudine sul livello del mare (m.s.l.m) del sito ove sorge la costruzione;

Zona Zona di riferimento per il calcolo del vento;

Parametri per la definizione della velocità base di riferimento $V_{b,0}$, a_0 , k_s

Velocità di riferimento del vento associata ad un periodo di ritorno di 50 anni; V_b

Periodo di ritorno; T_R

Coefficiente per il calcolo della pressione cinetica di riferimento; ŒR

Pressione cinetica di riferimento.

VENTO - CALCOLO COEFFICIENTE DI ESPOSIZIONE

					Vei	ito - calcolo c	coefficiente di	esposizione
Z	\mathbf{d}_{ct}	CIRg	Cat exp	k _r	Z _G	Zmin	Ct	C _e
[m]	[km]				[m]	[m]		
0,00	sulla costa,	_	тт	0.10	0.05	4.00	1 00	1,80
2,16	entro 10 Km	ט	11	0,19	0,05	4,00	1,00	1,80

LEGENDA:

Altezza dell'edifico a cui viene calcolata la pressione del vento;

Distanza dalla costa; dat

CIR Classe di rugosità del terreno (A, B, C, D);

Categoria di esposizione del sito (I, II, III, IV, V); Cat

exp

Parametri per la definizione del coefficiente di esposizione; k_r,

Z₀, \mathbf{Z}_{min}

 \mathbf{C}_{t} Coefficiente di topografia; Coefficiente di esposizione;

VENTO - CALCOLO PRESSIONE DEL VENTO

						Vento -	calcolo pressi	one del vento
Z	qь	Ce	Cp	Cd	р	Scz	Cf	p f
[m]	[N/m ²]				[N/m ²]			[N/m ²]
0,00	456	1,80	1,00	1.00	820	_	_	-
2,16	430	1,80	1,00	1,00	820	-	_	-

LEGENDA:

- Altezza dell'edifico a cui viene calcolata la pressione del vento;
- Pressione cinetica di riferimento. $\mathbf{q}_{\mathbf{b}}$
- Coefficiente di esposizione; C_{e}
- Coefficiente di forma/aerodinamico.
 - (*) Valorizzato al momento del calcolo della pressione agente sul singolo elemento strutturale ed è funzione della posizione dello stesso (sopravento/sottovento);
- $\mathbf{C}_{\mathbf{d}}$ Coefficiente dinamico;
- Pressione normale (senza il contributo di C_p);
- Scabrezza della superficie (liscia, scabra, molto scabra); Scz
- C_f Coefficiente d'attrito;
- Pressione tangenziale (senza il contributo di C_p).

7.4.2 Applicazione delle forze sulla struttura

presente documento è di proprietà della ANTEX GROUP srl. Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

La società tutela i propri diritti a rigore di Legge.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Per ogni superficie esposta all'azione del vento si individua la posizione del baricentro e in corrispondenza di esso, dal diagramma delle pressioni dell'edificio, si ricava la pressione per unità di superficie. Per gli elementi **strutturali** la pressione è trasformata in:

- forze lineari per i beam (*pilastri e travi*);
- forze nodali per le shell (pareti, muri e solette).

Per gli elementi **non strutturali** (*tamponature, solai e balconi*) la forza totale (pressione nel baricentro x superficie) viene divisa per il perimetro in modo da ottenere una forza per unità di lunghezza che viene applicata sugli elementi strutturali confinanti.

8 - CODICE DI CALCOLO IMPIEGATO

8.1 Denominazione

Nome del Software	EdiLus
Versione	BIM 2(a)
Caratteristiche del Software	Software per il calcolo di strutture agli elementi finiti per Windows
Numero di serie	ACCA EDILUS CA-AC V.32
Intestatario Licenza	licenza 16100990
Produzione e Distribuzione	ACCA software S.p.A.
	Contrada Rosole 13 83043 BAGNOLI IRPINO (AV) - Italy Tel. 0827/69504 r.a Fax 0827/601235 e-mail: info@acca.it - Internet: www.acca.it

8.2 Sintesi delle funzionalità generali

Il pacchetto consente di modellare la struttura, di effettuare il dimensionamento e le verifiche di tutti gli elementi strutturali e di generare gli elaborati grafici esecutivi.

È una procedura integrata dotata di tutte le funzionalità necessarie per consentire il calcolo completo di una struttura mediante il metodo degli elementi finiti (FEM); la modellazione della struttura è realizzata tramite elementi Beam (travi e pilastri) e Shell (platee, pareti, solette, setti, travi-parete).

L'input della struttura avviene per oggetti (travi, pilastri, solai, solette, pareti, etc.) in un ambiente grafico integrato; il modello di calcolo agli elementi finiti, che può essere visualizzato in qualsiasi momento in una apposita finestra, viene generato dinamicamente dal software.

Apposite funzioni consentono la creazione e la manutenzione di archivi Sezioni, Materiali e Carichi; tali archivi sono generali, nel senso che sono creati una tantum e sono pronti per ogni calcolo, potendoli comunque integrare/modificare in ogni momento.

L'utente non può modificare il codice ma soltanto eseguire delle scelte come:

- definire i vincoli di estremità per ciascuna asta (vincoli interni) e gli eventuali vincoli nei nodi (vincoli esterni);
- modificare i parametri necessari alla definizione dell'azione sismica;
- · definire condizioni di carico;
- · definire gli impalcati come rigidi o meno.

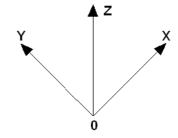
Comm.: C20-032-S05

ISO 9001
BUREAU VERITAS
Certification

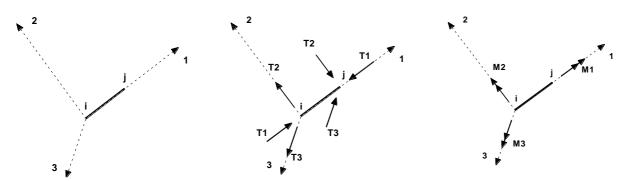
RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Il programma è dotato di un manuale tecnico ed operativo. L'assistenza è effettuata direttamente dalla casa produttrice, mediante linea telefonica o e-mail.

Il calcolo si basa sul solutore agli elementi finiti **MICROSAP** prodotto dalla società **TESYS srl**. La scelta di tale codice è motivata dall'elevata affidabilità dimostrata e dall'ampia documentazione a disposizione, dalla quale risulta la sostanziale uniformità dei risultati ottenuti su strutture standard con i risultati internazionalmente accettati ed utilizzati come riferimento.


Tutti i risultati del calcolo sono forniti, oltre che in formato numerico, anche in formato grafico permettendo così di evidenziare agevolmente eventuali incongruenze.

Il programma consente la stampa di tutti i dati di input, dei dati del modello strutturale utilizzato, dei risultati del calcolo e delle verifiche dei diagrammi delle sollecitazioni e delle deformate.


8.3 Sistemi di Riferimento

8.3.1 Riferimento globale

Il sistema di riferimento globale, rispetto al quale va riferita l'intera struttura, è costituito da una terna di assi cartesiani sinistrorsa O, X, Y, Z (X, Y, e Z sono disposti e orientati rispettivamente secondo il pollice, l'indice ed il medio della mano destra, una volta posizionati questi ultimi a 90° tra loro).

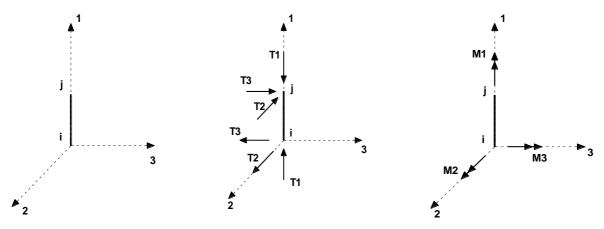
8.3.2 Riferimento locale per travi

L'elemento Trave è un classico elemento strutturale in grado di ricevere Carichi distribuiti e Carichi Nodali applicati ai due nodi di estremità; per effetto di tali carichi nascono, negli estremi, sollecitazioni di taglio, sforzo normale, momenti flettenti e torcenti.

Definiti i e j (nodi iniziale e finale della Trave) viene individuato un sistema di assi cartesiani 1-2-3 locale all'elemento, con origine nel Nodo i così composto:

- asse 1 orientato dal nodo i al nodo j;
- assi 2 e 3 appartenenti alla sezione dell'elemento e coincidenti con gli assi principali d'inerzia della sezione stessa.

Le sollecitazioni verranno fornite in riferimento a tale sistema di riferimento:



RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

- 1. Sollecitazione di Trazione o Compressione T₁ (agente nella direzione i-j);
- 2. Sollecitazioni taglianti T₂ e T₃, agenti nei due piani 1-2 e 1-3, rispettivamente secondo l'asse 2 e l'asse 3;
- 3. Sollecitazioni che inducono flessione nei piani 1-3 e 1-2 (M₂ e M₃);
- 4. Sollecitazione torcente M₁.

8.3.3 Riferimento locale per pilastri

Definiti i e j come i due nodi iniziale e finale del pilastro, viene individuato un sistema di assi cartesiani 1-2-3 locale all'elemento, con origine nel Nodo i così composto:

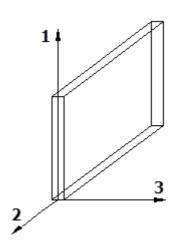
- asse 1 orientato dal nodo i al nodo j;
- asse 2 perpendicolare all' asse 1, parallelo e discorde all'asse globale Y;
- asse 3 che completa la terna destrorsa, parallelo e concorde all'asse globale X.

Tale sistema di riferimento è valido per Pilastri con angolo di rotazione pari a '0' gradi; una rotazione del pilastro nel piano XY ha l'effetto di ruotare anche tale sistema (ad es. una rotazione di '90' gradi porterebbe l'asse 2 a essere parallelo e concorde all'asse X, mentre l'asse 3 sarebbe parallelo e concorde all'asse globale Y). La rotazione non ha alcun effetto sull'asse 1 che coinciderà sempre e comunque con l'asse globale Z.

Per quanto riguarda le sollecitazioni si ha:

- una forza di trazione o compressione T₁, agente lungo l'asse locale 1;
- due forze taglianti T₂ e T₃ agenti lungo i due assi locali 2 e 3;
- due vettori momento (flettente) M2 e M3 agenti lungo i due assi locali 2 e 3;
- un vettore momento (torcente) M₁ agente lungo l'asse locale nel piano 1.

8.3.4 Riferimento locale per pareti


RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Una parete è costituita da una sequenza di setti; ciascun setto è caratterizzato da un sistema di riferimento locale 1-2-3 così individuato:

- asse 1, coincidente con l'asse globale Z;
- asse 2, parallelo e discorde alla linea d'asse della traccia del setto in pianta:
- asse 3, ortogonale al piano della parete, che completa la terna levogira.

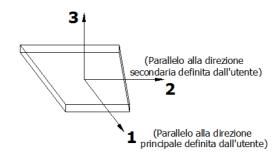
Su ciascun setto l'utente ha la possibilità di applicare uno o più carichi uniformemente distribuiti comunque orientati nello spazio; le componenti di tali carichi possono essere fornite, a discrezione dell'utente, rispetto al riferimento globale X,Y,Z oppure rispetto al riferimento locale 1,2,3 appena definito.

Si rende necessario, a questo punto, meglio precisare le modalità con cui EdiLus restituisce i risultati di calcolo. Nel modello di calcolo agli elementi finiti ciascun setto è discretizzato in una serie di elementi tipo "shell" interconnessi; il solutore agli elementi finiti integrato nel programma EdiLus, definisce un riferimento locale per ciascun elemento shell e restituisce i valori delle tensioni esclusivamente rispetto a tali riferimenti.

Il software EdiLus provvede ad omogeneizzare tutti i valori riferendoli alla terna 1-2-3. Tale operazione consente, in fase di input, di ridurre al mimino gli errori dovuti alla complessità d'immissione dei dati stessi ed allo stesso tempo di restituire all'utente dei risultati facilmente interpretabili.

Tutti i dati cioè, sia in fase di input che in fase di output, sono organizzati secondo un criterio razionale vicino al modo di operare del tecnico e svincolato dal procedimento seguito dall'elaboratore elettronico.

In tal modo ad esempio, il significato dei valori delle tensioni può essere compreso con immediatezza non solo dal progettista che ha operato con il programma ma anche da un tecnico terzo non coinvolto nell'elaborazione; entrambi, così, potranno controllare con facilità dal tabulato di calcolo, la congruità dei valori riportati.


Un'ultima notazione deve essere riservata alla modalità con cui il programma fornisce le armature delle pareti, con riferimento alla faccia anteriore e posteriore.

La faccia anteriore è quella di normale uscente concorde all'asse 3 come prima definito o, identicamente, quella posta alla destra dell'osservatore che percorresse il bordo superiore della parete concordemente al verso di tracciamento.

8.3.5 Riferimento locale per solette e platee

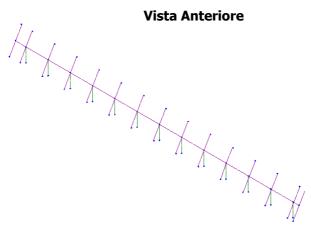
Ciascuna soletta e platea è caratterizzata da un sistema di riferimento locale 1,2,3 così definito:

- asse 1, coincidente con la direzione principale di armatura;
- asse 2, coincidente con la direzione secondaria di armatura;
- asse 3, ortogonale al piano della parete, che completa la terna levogira.

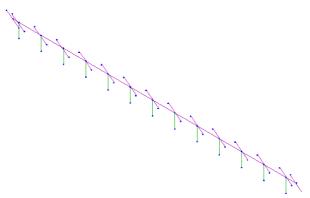
8.4 Modello di Calcolo

Il modello della struttura viene creato automaticamente dal codice di calcolo, individuando i vari elementi

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV



strutturali e fornendo le loro caratteristiche geometriche e meccaniche.


Viene definita un'opportuna numerazione degli elementi (nodi, aste, shell) costituenti il modello, al fine di individuare celermente ed univocamente ciascun elemento nei "Tabulati di calcolo".

Qui di seguito è fornita una rappresentazione grafica dettagliata della discretizzazione operata con evidenziazione dei nodi e degli elementi.

Vista Posteriore

Le aste in c.a., in acciaio, sia travi che pilastri, sono schematizzate con un tratto flessibile centrale e da due tratti (braccetti) rigidi alle estremità. I nodi vengono posizionati sull'asse verticale dei pilastri, in corrispondenza dell'estradosso della trave più alta che in esso si collega. Tramite i braccetti i tratti flessibili sono quindi collegati ad esso. In questa maniera il nodo risulta perfettamente aderente alla realtà poiché vengono presi in conto tutti gli eventuali disassamenti degli elementi con gli effetti che si possono determinare, quali momenti flettenti/torcenti aggiuntivi.

Le sollecitazioni vengono determinate solo per il tratto flessibile. Sui tratti rigidi, infatti, essendo (teoricamente)

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

nulle le deformazioni, le sollecitazioni risultano indeterminate.

Questa schematizzazione dei nodi viene automaticamente realizzata dal programma anche quando il nodo sia determinato dall'incontro di più travi senza il pilastro, o all'attacco di travi/pilastri con elementi shell.

La modellazione del materiale degli elementi in c.a., acciaio e legno segue la classica teoria dell'elasticità lineare; per cui il materiale è caratterizzato oltre che dal peso specifico, da un modulo elastico (E) e un modulo tagliante (G).

La possibile fessurazione degli elementi in c.a. è stata tenuta in conto nel modello considerando un opportuno decremento del modulo di elasticità e del modulo di taglio, nei limiti di quanto previsto dalla normativa vigente per ciascuno stato limite.

Gli eventuali elementi di **fondazione** (travi, platee, plinti, plinti su pali e pali) sono modellati assumendo un comportamento elastico-lineare sia a trazione che a compressione.

9 PROGETTO E VERIFICA DEGLI ELEMENTI STRUTTURALI

La verifica degli elementi allo SLU avviene col seguente procedimento:

- si costruiscono le combinazioni non sismiche in base al D.M. 2018, ottenendo un insieme di sollecitazioni;
- si combinano tali sollecitazioni con quelle dovute all'azione del sisma secondo quanto indicato nel §2.5.3, relazione (2.5.5) del D.M. 2018;
- per sollecitazioni semplici (flessione retta, taglio, etc.) si individuano i valori minimo e massimo con cui progettare o verificare l'elemento considerato; per sollecitazioni composte (pressoflessione retta/deviata) vengono eseguite le verifiche per tutte le possibili combinazioni e solo a seguito di ciò si individua quella che ha originato il minimo coefficiente di sicurezza.

9.1 Verifiche di Resistenza

9.1.1 Elementi in C.A.

Illustriamo, in dettaglio, il procedimento seguito in presenza di pressoflessione deviata (pilastri e trave di sezione generica):

• per tutte le terne Mx, My, N, individuate secondo la modalità precedentemente illustrata, si calcola il coefficiente di sicurezza in base alla formula 4.1.19 del D.M. 2018, effettuando due verifiche a pressoflessione retta con la seguente formula:

$$\left(\frac{M_{Ex}}{M_{Rx}}\right)^{\alpha} + \left(\frac{M_{Ey}}{M_{Ry}}\right)^{\alpha} \leq 1$$

dove:

M_{Ex}, M_{Ey} sono i valori di calcolo delle due componenti di flessione retta dell'azione attorno agli assi di flessione X ed Y del sistema di riferimento locale;

M_{Rx}, M_{Ry} sono i valori di calcolo dei momenti resistenti di pressoflessione retta corrispondenti allo sforzo assiale N_{Ed} valutati separatamente attorno agli assi di flessione.

L'esponente α può dedursi in funzione della geometria della sezione, della percentuale meccanica dell'armatura

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

e della sollecitazione di sforzo normale agente.

• se per almeno una di queste terne la relazione 4.1.19 non è rispettata, si incrementa l'armatura variando il diametro delle barre utilizzate e/o il numero delle stesse in maniera iterativa fino a quando la suddetta relazione è rispettata per tutte le terne considerate.

Sempre quanto concerne il progetto degli elementi in c.a. illustriamo in dettaglio il procedimento seguito per le travi verificate/semiprogettate a pressoflessione retta:

- per tutte le coppie M_x, N, individuate secondo la modalità precedentemente illustrata, si calcola il coefficiente di sicurezza in base all'armatura adottata;
- se per almeno una di queste coppie esso è inferiore all'unità, si incrementa l'armatura variando il diametro delle barre utilizzate e/o il numero delle stesse in maniera iterativa fino a quando il coefficiente di sicurezza risulta maggiore o al più uguale all'unità per tutte le coppie considerate.

Nei "<u>Tabulati di calcolo</u>", per brevità, non potendo riportare una così grossa mole di dati, si riporta la terna Mx, My, N, o la coppia Mx, N che ha dato luogo al minimo coefficiente di sicurezza.

Una volta semiprogettate le armature allo SLU, si procede alla verifica delle sezioni allo Stato Limite di Esercizio con le sollecitazioni derivanti dalle combinazioni rare, frequenti e quasi permanenti; se necessario, le armature vengono integrate per far rientrare le tensioni entro i massimi valori previsti.si procede alle verifiche alla deformazione, quando richiesto, ed alla fessurazione che, come è noto, sono tese ad assicurare la durabilità dell'opera nel tempo.

9.1.2 Elementi in Acciaio

Per quanto concerne la verifica degli elementi in **acciaio**, le verifiche effettuate per ogni elemento dipendono dalla funzione dell'elemento nella struttura. Ad esempio, elementi con prevalente comportamento assiale (controventi o appartenenti a travature reticolari) sono verificate a trazione e/o compressione; elementi con funzioni portanti nei confronti dei carichi verticali sono verificati a Pressoflessione retta e Taglio; elementi con funzioni resistenti nei confronti di azioni orizzontali sono verificati a pressoflessione deviata e taglio oppure a sforzo normale se hanno la funzione di controventi.

Le verifiche allo SLU sono effettuate sempre controllando il soddisfacimento della relazione:

 $R_d \geq S_d$

dove R_d è la resistenza calcolata come rapporto tra R_k (resistenza caratteristica del materiale) e γ (coefficiente di sicurezza), mentre S_d è la generica sollecitazione di progetto calcolata considerando tutte le Combinazioni di

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Carico per lo Stato Limite esaminato.

La resistenza viene determinata, in funzione della Classe di appartenenza della Sezione metallica, col metodo Elastico o Plastico (vedi §4.2.3.2 del D.M. 2018).

Viene portato in conto l'indebolimento causato dall'eventuale presenza di fori.

Le verifiche effettuate sono quelle previste al §4.2.4.1.2 D.M. 2018 ed in particolare:

- Verifiche di Trazione
- Verifiche di Compressione
- Verifiche di Flessione Monoassiale
- Verifiche di Taglio (considerando l'influenza della Torsione) assiale e biassiale.
- Verifiche per contemporanea presenza di Flessione e Taglio
- Verifiche per PressoFlessione retta e biassiale

Nei "<u>Tabulati di calcolo</u>", per ogni tipo di Verifica e per ogni elemento interessato dalla Verifica, sono riportati i valori delle resistenze e delle sollecitazioni che hanno dato il minimo coefficiente di sicurezza, calcolato generalmente come:

 $CS = R_d/S_d$.

9.1.2.1 Verifiche di Instabilità

Per tutti gli elementi strutturali sono state condotte verifiche di stabilità delle membrature secondo le indicazioni del §4.2.4.1.3 del D.M. 2018; in particolare sono state effettuate le seguenti verifiche:

- Verifiche di stabilità per compressione semplice, con controllo della snellezza.
- Verifiche di stabilità per elementi inflessi.
- Verifiche di stabilità per elementi inflessi e compressi.

Le verifiche sono effettuate considerando la possibilità di instabilizzazione flessotorsionale.

Nei "Tabulati di calcolo", per ogni tipo di verifica e per ogni elemento strutturale, sono riportati i risultati di tali verifiche.

9.1.2.2 Verifiche di Deformabilità

Sono state condotte le verifiche definite al §4.2.4.2 del D.M. 2018 e in particolare si citano:

- Verifiche agli spostamenti verticali per i singoli elementi (§4.2.4.2.1 D.M. 2018).
- Verifiche agli spostamenti laterali per i singoli elementi (§4.2.4.2.2 D.M. 2018).
- Verifiche agli spostamenti per il piano e per l'edificio (§4.2.4.2.2 D.M. 2018).

I relativi risultati sono riportati nei "Tabulati di calcolo".

9.2 Gerarchia delle Resistenze

9.2.1 Elementi in C.A.

Relativamente agli elementi in c.a., sono state applicate le disposizioni contenute al §7.4.4 del D.M. 2018. Più in particolare:

per le **travi**, al fine di escludere la formazione di meccanismi inelastici dovuti al **taglio**, le sollecitazioni di calcolo si ottengono sommando il contributo dovuto ai carichi gravitazionali agenti sulla trave, considerata incernierata agli estremi, alle sollecitazioni di taglio corrispondenti alla formazione delle cerniere plastiche nella trave e prodotte dai momenti resistenti delle due sezioni di estremità, amplificati del fattore di

Comm.: C20-032-S05

ISO 9001
BUREAU VERITAS
Certification

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

sovraresistenza γ_{Rd} assunto pari, rispettivamente, ad 1,20 per strutture in CD"A", ad 1,10 per strutture in CD"B". La verifica di resistenza è esequita secondo le indicazioni del par. 7.4.4.1.1 D.M. 2018.

- per i **pilastri**, al fine di scongiurare l'attivazione di meccanismi fragili globali, come il meccanismo di "piano debole" che comporta la plasticizzazione, anticipata rispetto alle travi, di gran parte dei pilastri di un piano, il progetto a *flessione* delle zone dissipative dei pilastri è effettuato considerando le sollecitazioni corrispondenti alla resistenza delle zone dissipative delle travi amplificata mediante il coefficiente γRd che vale 1,3 in CD"A" e 1,3 per CD"B". In tali casi, generalmente, il meccanismo dissipativo prevede la localizzazione delle cerniere alle estremità delle travi e le sollecitazioni di progetto dei pilastri possono essere ottenute a partire dalle resistenze d'estremità delle travi che su di essi convergono, facendo in modo che, per ogni nodo trave-pilastro ed ogni direzione e verso dell'azione sismica, la resistenza complessiva dei pilastri sia maggiore della resistenza complessiva delle travi amplificata del coefficiente γRd, in accordo con la formula (7.4.4) del D.M. 2018. Le verifiche di resistenza sono eseguite secondo le indicazioni del par. 7.4.4.2.1 D.M. 2018.

Al fine di escludere la formazione di meccanismi inelastici dovuti al **taglio**, le sollecitazioni di calcolo da utilizzare per le verifiche ed il dimensionamento delle armature si ottengono dalla condizione di equilibrio del pilastro soggetto all'azione dei momenti resistenti nelle sezioni di estremità superiore ed inferiore secondo l'espressione (7.4.5). Le verifiche di resistenza sono esequite secondo le indicazioni del par. 7.4.4.2.1.

- per i **nodi trave-pilastro**, si deve verificare che la resistenza del nodo sia tale da assicurare che non pervenga a rottura prima delle zone della trave e del pilastro ad esso adiacente. L'azione di taglio, agente in direzione orizzontale per le varie direzioni del sisma, nel nucleo di calcestruzzo del nodo è calcolata secondo l'espressione (7.4.6) per i nodi interni e (7.4.7) per quelli esterni. Le verifiche di resistenza sono eseguite invece secondo le indicazioni del §7.4.4.3.1 D.M. 2018.
- per i **setti** sismo resistenti, le sollecitazioni di calcolo sono determinate secondo quanto indicato nel par. 7.4.4.5 D.M. 2018 Le verifiche di resistenza sono eseguite invece secondo le indicazioni del par. 7.4.4.5.1 D.M. 2018.

9.2.2 Elementi in Acciaio

Per quanto riguarda le aste in acciaio, sono state applicate le disposizioni contenute al §7.5.3 del D.M. 2018. Più in particolare:

- per gli elementi travi e pilastri sono state effettuate le verifiche definite al §7.5.4 D.M. 2018 e relativi sotto paragrafi;
- per gli elementi di controventamento sono state effettuate le verifiche definite al §7.5.5 D.M. 2018; più specificatamente, per gli elementi dissipativi (aste tese di controventi a X o aste di controventi a V) sono state effettuate le relative verifiche di resistenza; per gli elementi in acciaio (travi o colonne) ad essi collegati le sollecitazioni di progetto sono state ricavate considerando come agenti le resistenze degli elementi dissipativi, opportunamente amplificate dal minimo coefficiente Ω tra tutti gli elementi dissipativi collegati alla trave o colonna.

Le relative verifiche sono riportate nei " $\underline{Tabulati\ di\ calcolo}$ ", con l'indicazione del coefficiente Ω utilizzato per la singola verifica.

9.2.3 Fondazioni

Per quanto riguarda la struttura di fondazione sono applicate le disposizioni contenute al §7.2.5 del D.M. 2018. Più in particolare:

- le azioni trasmesse in fondazione derivano dall'analisi del comportamento dell'intera struttura, condotta esaminando la sola struttura in elevazione alla quale sono applicate le azioni statiche e sismiche;

Comm.: C20-032-S05

ISO 3001
BUREAU VERITAS
Certification

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

- il dimensionamento della struttura di fondazione e la verifica di sicurezza del complesso fondazione-terreno sono eseguite, nell'ipotesi di comportamento strutturale dissipativo, assumendo come azioni in fondazione quelle trasferite dagli elementi soprastanti amplificate di un coefficiente γ_{Rd} pari a 1,1 in CD"B" e 1,3 in CD"A".

I risultati delle suddette verifiche sono riportate nei "Tabulati di calcold".

9.3 DETTAGLI STRUTTURALI

Il progetto delle strutture è stato condotto rispettando i dettagli strutturali previsti dal D.M. 2018, nel seguito illustrati. Il rispetto dei dettagli può essere evinto, oltreché dagli elaborati grafici, anche dalle verifiche riportate nei tabulati allegati alla presente relazione.

9.3.1 Travi in c.a.

Le armature degli elementi trave sono state dimensionati seguendo i dettagli strutturali previsti al punto 4.1.6.1.1 del D.M. 2018:

$A_s \ge A_{s,\min} = \max \left\{ 0.26 \frac{f_{ctm}}{f_{yk}} b_t d; 0.0013 b_t d \right\}$	[TR-C4-A]
$\max\{A_s; A_s'\} \le A_{s,\max} = 0.04A_c$	[TR-C4-B]
$A_{st} \ge A_{st,\min} = 1,5b mm^2 / m$	[TR-C4-C]
$p_{st} \ge p_{st,\min} = \min\{33,3cm;0,8d\}$	[TR-C4-D]
$A_{st} \ge 0.5 A_{sw}$	[TR-C4-E]
$p_{st} \ge 15\Phi$	[TR-C4-F]

dove:

- A_s e A'_s sono le aree di armature tese e compresse;
- f_{ctm} è la resistenza a trazione media del cls;
- f_{yk} è la resistenza caratteristica allo snervamento;
- bt è la larghezza media della zona tesa della trave (pari alla larghezza della trave o dell'anima nel caso di sezioni a T);
- d è l'altezza utile della trave;
- b è lo spessore minimo dell'anima in mm;
- p_{st} è il passo delle staffe;
- A_c è l'area della sezione di cls;
- A_{st} è l'area delle staffe;
- A_{SW} è l'area totale delle armature a taglio (area delle staffe più area dei ferri piegati);
- dove Φ è il diametro delle armature longitudinali compresse.

Ai fini di un buon comportamento sismico, sono rispettate le seguenti limitazioni geometriche, ai sensi del § 7.4.6.1.1 del D.M. 2018:

$b_t \ge b_{t,min} = 20 \text{ cm}$	[TR-LG-A]
$b_t \le b_{t,max} = min\{b_c + h_t; b_c\}$	[TR-LG-B]
$b_t/h_t \ge (b_t/h_t)_{min} = 0.25$	[TR-LG-C]
$L_{zc} = 1.5 h_t (CD-A); L_{zc} = 1.0 h_t (CD-B)$	[TR-LG-D]

Comm.: C20-032-S05

ISO 9001
BUREAU VERITAS
Certification

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

dove:

- bt e ht sono la base e l'altezza delle travi, rispettivamente;
- b_c è la larghezza della colonna;
- L_{zc} è la larghezza della zona dissipativa.

Inoltre, per il dimensionamento delle armature, vengono rispettate le prescrizioni del § 7.4.6.2.1 del D.M. 2018, illustrate nel seguito.

Armature longitudinali

$$n_{\phi l} > n_{\phi l, min} = 2$$
 [TR-AL-A]

$$\rho_{\min} = \frac{1.4}{f_{yk}} < \rho = \frac{A_s}{bh} < \rho_{\max} = \rho_{cmp} + \frac{3.5}{f_{yk}}$$
[TR-AL-B]

$$\rho_{cmp} \ge \rho_{cmp,min}$$
 [TR-AL-C]

dove:

- n_∅ è il numero di barre al lembo inferiore o superiore, di diametro almeno pari a 14 mm;
- n_{φl,min} è il minimo numero possibile di barre al lembo inferiore o superiore, di diametro almeno pari a 14 mm;
- ρ è il rapporto geometrico relativo all'armatura tesa (rapporto tra le aree delle armature, As, e l'area della sezione rettangolare, b x h);
- ρ_{cmp} è il rapporto geometrico relativo all'armatura compressa;
- $\rho_{cmp,min} = 0.25 \rho$ per zone non dissipative, oppure $\frac{1}{2} \rho$ per zone dissipative.
- f_{yk} è la resistenza di snervamento caratteristica dell'acciaio in MPa.

Armature trasversali

$$p_{st} \le p_{st,\text{max}} = \min \begin{cases} \left[\frac{d}{4}; & 175 \, mm; & 6\Phi_l; & 24\Phi_{st} \right] & (CD - A) \\ \left[\frac{d}{4}; & 225 \, mm; & 8\Phi_l; & 24\Phi_{st} \right] & (CD - B) \end{cases}$$
[TR-AT-A]

 $\Phi_{\text{st}} \ge \Phi_{\text{st.min}} = 6 \text{ mm}$ [TR-AT-B]

dove:

- d è l'altezza utile della sezione;
- Φ_I è il diametro più piccolo delle barre longitudinali utilizzate;
- Φ_{st} è il diametro più piccolo delle armature trasversali utilizzate;
- Φ_{st,min} è il minimo diametro delle staffe da normativa.

9.3.2 Pilastri in c.a.

Le armature degli elementi pilastri sono state dimensionati seguendo i dettagli strutturali previsti al punto 4.1.6.1.2 del D.M. 2018, nel seguito indicati:

$$\Phi_l \ge \Phi_{l,min} = 12 \text{ mm}$$
 [PL-C4-A]
 $i \le i_{max} = 300 \text{ mm}$ [PL-C4-B]

Comm.: C20-032-S05

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

$$A_{sl} \ge A_{sl, \min} = \max \left\{ 0.10 \frac{N_{Ed}}{f_{yd}}; 0.003 A_c \right\}$$
 [PL-C4-C]

$$p_{st} \le p_{st,\text{max}} = \min \left\{ 12\Phi_l, 250 \, mm \right\}$$
 [PL-C4-D]

$$\Phi_{st} \ge \Phi_{st,\min} = \max \left\{ 6 \, mm; \frac{\Phi_{l,\max}}{4} \right\}$$
[PL-C4-E]

$$A_{sl} \le A_{sl,\text{max}} = 0.04A_c$$
 [PL-C4-F]

dove:

- Φ_I e Φ_{I,min} sono, rispettivamente, il diametro più piccolo utilizzato ed il diametro minimo da norma delle barre longitudinali;
- i e i_{max} sono, rispettivamente, l'interasse massimo utilizzato e l'interasse massimo consentito da norma delle barre longitudinali;
- A_{si} è l'area totale delle armature longitudinali;
- N_{Ed} è la forza di compressione di progetto;
- f_{yd} è la tensione di calcolo dell'acciaio;
- Ac è l'area di cls;
- p_{st} e p_{st,max} sono, rispettivamente, il passo massimo utilizzato ed il passo massimo consentito da norma per le staffe;
- Φ_{st} e Φ_{st,min} sono, rispettivamente, il diametro minimo utilizzato ed il diametro minimo consentito da norma delle staffe;
- Φ_{I,max} è il diametro massimo delle armature longitudinali utilizzate;
- A_{sl,max} è l'area massima da norma dei ferri longitudinali;
- A_c è l'area di cls.

Ai fini di un buon comportamento sismico, sono rispettate le seguenti limitazioni geometriche, ai sensi del § 7.4.6.1.2 del D.M. 2018:

$$b_c \ge b_{c,min} = 25 \text{ cm}$$
 [PL-LG-A]
 $L_{zc} \ge L_{zc,min} = \max\{h_c, 1/6 L_i, 45 \text{ cm}\} \text{ se } L_i \ge 3 h_{czc} \ge L_{zc,min} = \max\{h_c, L_i, 45 \text{ cm}\} \text{ se } L_i < 3 h_c$ [PL-LG-B]

dove:

- b_c è la dimensione minima della sezione trasversale del pilastro;
- b_{c,min} è la dimensione minima consentita della sezione trasversale del pilastro;
- Lzc è la lunghezza della zona critica;
- Lzc,min è la lunghezza minima consentita della zona critica;
- h_c è l'altezza del pilastro;
- L_i è la luce libera del pilastro.

Inoltre, per il dimensionamento delle armature, vengono rispettate le prescrizioni del § 7.4.6.2.2 del D.M. 2018:

Armature longitudinali

$$i \le i_{\text{max}} = 25 \text{ cm}$$
 [PL-AL-A]
$$\rho_{\text{min}} = 1\% \le \rho \le \rho_{\text{max}} = 4\%$$
 [PL-AL-B]

dove:

- i e i_{max} sono, rispettivamente, l'interasse massimo utilizzato e l'interasse massimo consentito da norma delle barre longitudinali;
- ρ è il rapporto tra l'area totale di armatura longitudinale e l'area della sezione retta.

Comm.: C20-032-S05

ISO 9001
BUREAU VERITAS
Certification

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Armature trasversali

$$\begin{split} \Phi_{st} > \Phi_{st, \min} &= \begin{cases} \max \left[6mm; \left(0, 4\Phi_{l, \max} \sqrt{\frac{f_{yd, l}}{f_{yd, st}}} \right) \right] & \text{CD-A} \\ 6mm & \text{CD-B} \end{cases} \\ p_{st} \leq p_{st, \max} &= \min \begin{cases} \left[1/3b_{c, \min}; 12,5 cm; 6d_{bl, \min} \right] & \text{CD-A} \\ \left[1/2b_{c, \min}; 17,5 cm; 8d_{bl, \min} \right] & \text{CD-B} \end{cases} \end{aligned} \quad \text{[PL-AT-B]} \end{split}$$

dove:

- Φ_{st} è il più piccolo diametro delle staffe utilizzato;
- Φ_{st,min} è il minimo diametro delle staffe utilizzabile;
- Φ_{l.max} è il diametro massimo delle barre longitudinali utilizzate;
- f_{yd,l} e f_{yd,st} sono le tensioni di snervamento di progetto delle barre longitudinali e delle staffe.
- p_{st} e p_{st,max} sono, rispettivamente, il passo massimo utilizzato ed il passo massimo consentito da norma per le staffe;
- b_{c,min} è la dimensione minore del pilastro;
- d_{bl,min} è il diametro minimo delle armature longitudinali.

Inoltre, è stato effettuato il seguente controllo sulla duttilità minima dei pilastri:

$$\omega_{wd} = \frac{V_{st}}{V_{nc}} \frac{f_{yd}}{f_{cd}} \ge \omega_{wd, \min} = 0.08$$
 [PL-AT-C]

dove:

- V_{st} = A_{st} L_{st} è il volume delle staffe di contenimento;
- V_{nc} è il volume del nucleo confinato (= b_0 h_0 s per sezioni rettangolari; = $\pi(D_0/2)^2$ nel caso di sezioni circolari);
- A_{st} è l'area delle staffe;
- Lst è il perimetro delle staffe;
- b₀ e h₀ sono le dimensioni del nucleo confinato, misurate con riferimento agli assi delle staffe;
- D₀ è il diametro del nucleo confinato misurato rispetto all'asse delle staffe;
- s è il passo delle staffe;
- f_{vd} è la tensione di snervamento di progetto delle staffe;
- f_{cd} è la tensione di progetto a compressione del cls.

9.3.3 Nodi in c.a.

Il dimensionamento degli elementi trave e pilastro confluenti nel nodo è stato effettuato assicurando che le eccentricità delle travi rispetto ai pilastri siano inferiori ad 1/4 della larghezza del pilastro, per la direzione considerata (§ 7.4.6.1.3 D.M. 2018).staffe progettate nel nodo sono almeno pari alle staffe presenti nelle zone adiacenti al nodo del pilastro inferiore e superiore. Nel caso di nodi interamente confinati il passo minimo delle staffe nel nodo è pari al doppio di quello nelle zone adiacenti al nodo del pilastro inferiore e superiore, fino ad

Comm.: C20-032-S05

ISO 9001
BUREAU VERITAS
Certification

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

un massimo di 15 cm.

10 - TABULATI DI CALCOLO

Per quanto non espressamente sopra riportato, ed in particolar modo per ciò che concerne i dati numerici di calcolo, si riportano i "Tabulati di calcolo" costituente parte integrante della presente relazione.

INFORMAZIONI GENERALI

Edificio Cemento Armato Costruzione Nuova Situazione Intervento Comune Montalto di Castro Provincia Viterbo Oggetto Parte d'opera D.M. 17/01/2018 Normativa di riferimento Calcolo semplificato per siti a bassa sismicità (§ 7.0) **Analisi sismica** Statica equivalente

MATERIALI ACCIAIO

														Caratt	eristich	e acciaio
Nid			_	_	Stz	f yk,1/	f _{tk,1} /	6.16	e .						γм7	
Nid	γk	αт, і		G		1 1	f _{tk,2}	f _{yd,1} / f _{yd,2}	ftd	γs	γм1	γм2	γM3,SLV	γM3,SLE	NCnt	Cnt
	[N/m ³]	[1/°C]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]							
S355	- (S355)															
001	70 500	0.000013	210.000	80.769	D	355,00	510	338,10		1.05	1.05	1 25				
001	78.500	0,000012	210.000	80.769	Р	335,00	470	319,05	-	1,05	5 1,05	1,25	-	-	-	- 1

LEGENDA:

Nid Numero identificativo del materiale, nella relativa tabella dei materiali.

γk Peso specifico.

Coefficiente di dilatazione termica. αт, і Modulo elastico normale G Modulo elastico tangenziale.

Stz Tipo di situazione: [F] = di Fatto (Esistente); [P] = di Progetto (Nuovo). Resistenza caratteristica a Rottura (per profili con $t \le 40$ mm). ftk,1 Resistenza caratteristica a Rottura (per profili con 40 mm $< t \le 80$ mm). ftk,2

Resistenza di calcolo a Rottura (Bulloni). f_{td}

Coefficiente parziale di sicurezza allo SLV del materiale. γs Coefficiente parziale di sicurezza per instabilità. γ**M**1 Coefficiente parziale di sicurezza per sezioni tese indebolite. **γ**м2 Coefficiente parziale di sicurezza per scorrimento allo SLV (Bulloni). YM3,SLV Coefficiente parziale di sicurezza per scorrimento allo SLE (Bulloni). YM3.SLE

Coefficiente parziale di sicurezza precarico di bulloni ad alta resistenza (Bulloni - NCnt = con serraggio NON controllato; Cnt = con serraggio controllato). [-] = γм7

parametro NON significativo per il materiale.

Resistenza caratteristica allo snervamento (per profili con $t \le 40$ mm). fyk,1 Resistenza caratteristica allo snervamento (per profili con 40 mm $< t \le 80$ mm). fvk.2

Resistenza di calcolo (per profili con $t \le 40$ mm). f_{yd,1}

Resistenza di calcolo (per profili con 40 mm $< t \le 80$ mm).

[-] = Parametro non significativo per il materiale. NOTE

SEZIONI PROFILATI IN ACCIAIO

														Sezi	oni proi	riiati in a	acciaio ·	· parte 1
Nid	Тр	Label	b	b ₁	h	t _f	t _{f1}	tw	t _p	rw	ľf	r _{w/f}	hi	d	pw	рf	$d_{sp,w}$	$d_{sp,f}$
			[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[%]	[%]	[mm]	[mm]
001	Ω	150x150x4	150	-	150	4	-	-	-	-	-	-	-	-	-	-	-	-
001	Ω	150x150x4	150	-	150	4	-	-	-	-	-	-	-	-	-	-	-	-
002	A	IPE 330	160	-	330	12	-	8	-	-	-	18	307	271	-	-	-	-

LEGENDA:

Numero identificativo del profilato.

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

Cantani madilaki in aasiala manta T

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

	Sezioni profilati in acciaio - parte I																	
Nid	Тр	Label	b	b ₁	h	tf	t _{f1}	tw	t _p	rw	rf	r _{w/f}	hi	d	pw	pf	d _{sp,w}	$\mathbf{d}_{sp,f}$
			[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[%]	[%]	[mm]	[mm]

Тp Tipo di profilato.

Identificativo del profilato come indicato nelle carpenterie. Label

b Base del profilato.

Seconda base (per profilati composti). b_1

h Altezza.

Spessore ala. tr

Spessore seconda ala (per profilati composti). t_{f1}

tw Spessore anima.

Spessore piatto (per profilati composti).

t_p Raggio anima. Raggio ala. rf Raggio anima/ala. r_{w/f} h Altezza anima. ď Altezza netta raccordi. Pendenza anima. pν p_f d_{sp,w} Pendenza ala.

Distanza spessore anima. $d_{sp,f}$ Distanza spessore ala.

SEZIONI PROFILATI IN ACCIAIO

													Sezio	ni profila	ati in ac	ciaio - p	arte II
Nid	Тр	Label	Dir	TC	d _{x/y}	Pabb	A	Av	I	W _{el,sup/dx}	Wel,inf/sx	W _{pl}	i	Iw	Ιτ	Ixy	α_{xy}
					[mm]	[mm]	[cm ²]	[cm ²]	[cm ⁴]	[cm ³]	[cm³]	[cm ³]	[cm]	[cm ⁴]	[cm ⁴]	[cm ⁴]	[°]
001		150x150x4	X		-	0	23	12	820,5	109,4	109,4	126,6	5,9	0.0	0	_	0.0
001	001 Ω 150x150	150X150X4	† Y	_	-	0	23	12	820,5	109,4	109,4	126,6	5,9	0,0	U	U	0,0
001		150x150x4	X		-	_	23	12	820,5	109,4	109,4	126,6	5,9	0.0		_	0.0
001	22	150X150X4	Υ	_	-	U	23	12	820,5	109,4	109,4	126,6	5,9	0,0	U	U	0,0
002		TDE 220	X		-	0	63	31	11770,0	713,1	713,1	804,3	13,7	19910	20	_	0.0
002 A	A	IPE 330	Υ	1 -	-	0	63	42	788.1	98.5	98.5	153.7	3.6	0.0	28	U	0,0

LEGENDA:

Numero identificativo del profilato. Nid

Тр Tipo di profilato.

Identificativo del profilato come indicato nelle carpenterie. Label

Dir Direzione.

TC Tipo collegamenti (per profilati composti). A = Abbottonati; R = Ravvicinati.

 $d_{x/y}$ Distanza profilati lungo X/Y (per profilati composti). Pabb Passo abbottonatura (per profilati composti).

A Area della sezione. $\mathbf{A}_{\mathbf{v}}$ Area resistente a taglio.

Ι Inerzia.

Modulo di resistenza elastica superiore/destra. Wel,sup/dx $W_{el,inf/sx}$ Modulo di resistenza elastica inferiore/sinistra.

 \mathbf{W}_{pl} Modulo resistenza plastica. Raggio inerzia

 $\mathbf{I}_{\mathbf{W}}$ Inerzia settoriale. \mathbf{I}_{T} Inerzia torsionale. $\boldsymbol{I}_{\boldsymbol{XY}}$ Inerzia in XY. Rotazione assi inerzia. αху

ANALISI CARICHI

									Analis	i carichi
NI.	т с	Descrizione del	Tipologie di	Peso Proprio		Permanente NON Strutturale		Sovraccarico Accidentale		Carico
Nid	T. C.	Carico	Carico	Descrizione	PP	Descrizione	PNS	Descrizione	SA	Neve
										[N/m ²]
001	S	2274x1134 mm compreso i mosuli di supporto per il collegamento sul telaio di sostegno.	Autorimessa <= 30kN	Modulo fotovoltaico compreso i mosuli di supporto	400		0		0	0

LEGENDA:

Nid Numero identificativo dell'analisi di carico.

T. C. Identificativo del tipo di carico: [S] = Superficiale - [L] = Lineare - [C] = Concentrato.

PP, PNS, SA Valori, rispettivamente, del Peso Proprio, del Sovraccarico Permanente NON strutturale, del Sovraccarico Accidentale. Secondo il tipo di carico indicato nella

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

La società tutela i propri diritti a rigore di Legge.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

									Analis	si carichi
Nid T. C.	Descrizione del Carico	Tipologie di	Peso Proprio		Permanente NON Str	utturale	Sovraccarico Accide	Carico		
Nid I. C.		Carico	Descrizione	PP	Descrizione	PNS	Descrizione	SA	Neve	
										[N/m ²]

colonna "T.C." ("S" - "L" - "C"), i valori riportati nelle colonne "PP", "PNS" e "SA", sono espressi in [N/m²] per carichi Superficiali, [N/m] per carichi Lineari, [N] per carichi Concentrati.

TIPOLOGIE DI CARICO

						Ti	pologie di carico
Nid	Descrizione	F+E	+/- F	CDC	Ψο	Ψ1	Ψ2
0001	Carico Permanente	SI	NO	Permanente	1,00	1,00	1,00
0002	Pressione del Vento (+X)	NO	NO	Istantanea	0,60	0,20	0,00
0003	Pressione del Vento (-X)	NO	NO	Istantanea	0,60	0,20	0,00
0004	Pressione del Vento (+Y)	NO	NO	Istantanea	0,60	0,20	0,00
0005	Pressione del Vento (-Y)	NO	NO	Istantanea	0,60	0,20	0,00
0006	Sisma X	-	-	-	,	, -	-
0007	Sisma Y	-	-	-	-	-	-
0008	Sisma Z	-	-	-	_	-	_
0009	Sisma Ecc.X	_	-	-	-	-	-
0010	Sisma Ecc.Y	_	_	-	_	_	_

LEGENDA:

Numero identificativo della Tipologia di Carico.

F+E Indica se la tipologia di carico considerata è AGENTE con il sisma.

+/- F Indica se la tipologia di carico è ALTERNATA (cioè considerata due volte con segno opposto) o meno.

CDC Indica la classe di durata del carico.

NOTA: dato significativo solo per elementi in materiale legnoso.

Coefficiente riduttivo dei carichi allo SLU e SLE (carichi rari). Ψο

Coefficiente riduttivo dei carichi allo SLE (carichi frequenti). W1

Coefficiente riduttivo dei carichi allo SLE (carichi frequenti e quasi permanenti). Ψ2

SLU: Sismica - Strutturale senza azioni geotecniche

			SLU: Sis	SLU: Sismica - Strutturale senza azioni geotecnich							
	CC 01	CC 02	CC 03	CC 04	CC 05						
Id Comb	Carico Permanente	Pressione del Vento	Pressione del Vento (-X)	Pressione del Vento	Pressione del Vento (-Y)						
		(+X)		(+Y)							
01	1,00	0,00	0,00	0,00	0,00						

LEGENDA:

 Id_{Comb} CC

Numero identificativo della Combinazione di Carico.

Identificativo della tipologia di carico nella relativa tabella.

CC 01= Carico Permanente

CC 02= Pressione del Vento (+X)

CC 03= Pressione del Vento (-X)

CC 04= Pressione del Vento (+Y)

CC 05= Pressione del Vento (-Y)

COMBINAZIONI SISMICHE

Alle combinazioni riportate nella precedente tabella è stato aggiunto l'effetto del sisma. L'azione sismica è stata considerata come caratterizzata da tre componenti traslazionali lungo i tre assi globali X, Y e Z; la risposta della struttura è stata calcolata separatamente per i tre effetti e quindi combinata secondo la seguente espressione simbolica:

 $\alpha = \alpha_i + 0.3 \cdot \alpha_{ii} + 0.3 \cdot \alpha_{iii}$

 $con \alpha$ effetto totale dell'azione sismica, α $_{i}$, α $_{ii}$ e α $_{iii}$ azioni sismiche nelle tre direzioni. E' stata effettuata una rotazione degli indici e dei segni, per cui le combinazioni totali generate sono le:

(con α'_p sollecitazione dovuta alla combinazione delle condizioni statiche e α sollecitazione dovuta al sisma; in particolare α_{x_r} α_{y_r} α_{z_r} α_{ex_r} α_{ey} sono rispettivamente le sollecitazioni dovute al sisma agente in direzione x, in direzioni y, in direzione z, per eccentricità accidentale positiva in direzione x e per eccentricità accidentale positiva in direzione y)

3) $\alpha'_p + (\alpha_x + \alpha_{ex}) + 0.3 \bullet (\alpha_y + \alpha_{ey}) - 0.3 \bullet \alpha_z$; **4)** $\alpha'_p + (\alpha_x + \alpha_{ex}) - 0.3 \bullet (\alpha_y + \alpha_{ey}) - 0.3 \bullet \alpha_z$;

5) $\alpha'_p + (\alpha_x + \alpha_{ex}) + 0, 3 \bullet (\alpha_y - \alpha_{ey}) + 0, 3 \bullet \alpha_z;$ **6)** $\alpha'_p + (\alpha_x + \alpha_{ex}) - 0, 3 \bullet (\alpha_y - \alpha_{ey}) + 0, 3 \bullet \alpha_z;$ **7)** $\alpha'_p + (\alpha_x + \alpha_{ex}) + 0, 3 \bullet (\alpha_y - \alpha_{ey}) - 0, 3 \bullet \alpha_z;$ **8)** $\alpha'_p + (\alpha_x + \alpha_{ex}) - 0, 3 \bullet (\alpha_y - \alpha_{ey}) - 0, 3 \bullet \alpha_z;$

9) $\alpha'_p + (\alpha_x - \alpha_{ex}) + 0.3 \bullet (\alpha_y + \alpha_{ey}) + 0.3 \bullet \alpha_z$; **10)** $\alpha'_p + (\alpha_x - \alpha_{ex}) - 0.3 \bullet (\alpha_y + \alpha_{ey}) + 0.3 \bullet \alpha_z$;

presente documento è di proprietà della ANTEX GROUP srl. Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

La società tutela i propri diritti a rigore di Legge.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 37

11) $\alpha'_p + (\alpha_x - \alpha_{ex}) + 0, 3 \bullet (\alpha_y + \alpha_{ey}) - 0, 3 \bullet \alpha_z;$ 12) $\alpha'_p + (\alpha_x - \alpha_{ex}) - 0, 3 \bullet (\alpha_y + \alpha_{ey}) - 0, 3 \bullet \alpha_z;$
13) $\alpha'_p + (\alpha_x - \alpha_{ex}) + 0, 3 \bullet (\alpha_y - \alpha_{ey}) + 0, 3 \bullet \alpha_z;$ 14) $\alpha'_p + (\alpha_x - \alpha_{ex}) - 0, 3 \bullet (\alpha_y - \alpha_{ey}) + 0, 3 \bullet \alpha_z;$
15) $\alpha'_p + (\alpha_x - \alpha_{ex}) + 0, 3 \bullet (\alpha_y - \alpha_{ey}) - 0, 3 \bullet \alpha_z$; 16) $\alpha'_p + (\alpha_x - \alpha_{ex}) - 0, 3 \bullet (\alpha_y - \alpha_{ey}) - 0, 3 \bullet \alpha_z$;
17) $\alpha'_p + (\alpha_y + \alpha_{ey}) + 0.3 \bullet (\alpha_x + \alpha_{ex} + 0.3 \bullet \alpha_z; 18) \alpha'_p + (\alpha_y + \alpha_{ey}) - 0.3 \bullet (\alpha_x + \alpha_{ex}) + 0.3 \bullet \alpha_z;$
19) $\alpha'_p + (\alpha_y + \alpha_{ey}) + 0, 3 \bullet (\alpha_x + \alpha_{ex}) - 0, 3 \bullet \alpha_z;$ 20) $\alpha'_p + (\alpha_y + \alpha_{ey}) - 0, 3 \bullet (\alpha_x + \alpha_{ex}) - 0, 3 \bullet \alpha_z;$
21) $\alpha'_p + (\alpha_y + \alpha_{ey}) + 0.3 \bullet (\alpha_x - \alpha_{ex}) + 0.3 \bullet \alpha_z$; 22) $\alpha'_p + (\alpha_y + \alpha_{ey}) - 0.3 \bullet (\alpha_x - \alpha_{ex}) + 0.3 \bullet \alpha_z$;
23) $\alpha'_p + (\alpha_y + \alpha_{ey}) + 0.3 \bullet (\alpha_x - \alpha_{ex}) - 0.3 \bullet \alpha_z$; 24) $\alpha'_p + (\alpha_y + \alpha_{ey}) - 0.3 \bullet (\alpha_x - \alpha_{ex}) - 0.3 \bullet \alpha_z$;
25) $\alpha'_p + (\alpha_y - \alpha_{ey}) + 0, 3 \bullet (\alpha_x + \alpha_{ex}) + 0, 3 \bullet \alpha_z;$ 26) $\alpha'_p + (\alpha_y - \alpha_{ey}) - 0, 3 \bullet (\alpha_x + \alpha_{ex}) + 0, 3 \bullet \alpha_z;$
27) $\alpha'_p + (\alpha_y - \alpha_{ey}) + 0, 3 \bullet (\alpha_x + \alpha_{ex}) - 0, 3 \bullet \alpha_z;$ 28) $\alpha'_p + (\alpha_y - \alpha_{ey}) - 0, 3 \bullet (\alpha_x + \alpha_{ex}) - 0, 3 \bullet \alpha_z;$
29) $\alpha'_p + (\alpha_y - \alpha_{ey}) + 0, 3 \bullet (\alpha_x - \alpha_{ex}) + 0, 3 \bullet \alpha_z$; 30) $\alpha'_p + (\alpha_y - \alpha_{ey}) - 0, 3 \bullet (\alpha_x - \alpha_{ex}) + 0, 3 \bullet \alpha_z$;
31) $\alpha'_p + (\alpha_y - \alpha_{ey}) + 0, 3 \bullet (\alpha_x - \alpha_{ex}) - 0, 3 \bullet \alpha_z;$ 32) $\alpha'_p + (\alpha_y - \alpha_{ey}) - 0, 3 \bullet (\alpha_x - \alpha_{ex}) - 0, 3 \bullet \alpha_z;$
33) $\alpha'_p + \alpha_z + 0, 3 \bullet (\alpha_x + \alpha_{ex}) + 0, 3 \bullet (\alpha_y + \alpha_{ey});$ 34) $\alpha'_p + \alpha_z - 0, 3 \bullet (\alpha_x + \alpha_{ex}) + 0, 3 \bullet (\alpha_y + \alpha_{ey});$
35) $\alpha'_p + \alpha_z + 0, 3 \bullet (\alpha_x + \alpha_{ex}) - 0, 3 \bullet (\alpha_y + \alpha_{ey});$ 36) $\alpha'_p + \alpha_z - 0, 3 \bullet (\alpha_x + \alpha_{ex}) - 0, 3 \bullet (\alpha_y + \alpha_{ey});$
37) $\alpha'_p + \alpha_z + 0, 3 \bullet (\alpha_x + \alpha_{ex}) + 0, 3 \bullet (\alpha_y - \alpha_{ey});$ 38) $\alpha'_p + \alpha_z - 0, 3 \bullet (\alpha_x + \alpha_{ex}) + 0, 3 \bullet (\alpha_y - \alpha_{ey});$
39) $\alpha'_p + \alpha_z + 0, 3 \bullet (\alpha_x + \alpha_{ex}) - 0, 3 \bullet (\alpha_y - \alpha_{ey});$ 40) $\alpha'_p + \alpha_z - 0, 3 \bullet (\alpha_x + \alpha_{ex}) - 0, 3 \bullet (\alpha_y - \alpha_{ey});$
41) $\alpha'_p + \alpha_z + 0, 3 \bullet (\alpha_x - \alpha_{ex}) + 0, 3 \bullet (\alpha_y + \alpha_{ey});$ 42) $\alpha'_p + \alpha_z - 0, 3 \bullet (\alpha_x - \alpha_{ex}) + 0, 3 \bullet (\alpha_y + \alpha_{ey});$
43) $\alpha'_p + \alpha_z + 0, 3 \bullet (\alpha_x - \alpha_{ex}) - 0, 3 \bullet (\alpha_y + \alpha_{ey});$ 44) $\alpha'_p + \alpha_z - 0, 3 \bullet (\alpha_x - \alpha_{ex}) - 0, 3 \bullet (\alpha_y + \alpha_{ey});$
45) $\alpha'_p + \alpha_z + 0.3 \bullet (\alpha_x - \alpha_{ex}) + 0.3 \bullet (\alpha_y - \alpha_{ey})$; 46) $\alpha'_p + \alpha_z - 0.3 \bullet (\alpha_x - \alpha_{ex}) + 0.3 \bullet (\alpha_y - \alpha_{ey})$;
47) $\alpha'_p + \alpha_z + 0, 3 \bullet (\alpha_x - \alpha_{ex}) - 0, 3 \bullet (\alpha_y - \alpha_{ey});$ 48) $\alpha'_p + \alpha_z - 0, 3 \bullet (\alpha_x - \alpha_{ex}) - 0, 3 \bullet (\alpha_y - \alpha_{ey}).$
Nel caso di verifiche effettuate con sollecitazioni composte, per tenere conto del fatto che le sollecitazioni sismiche sono state ricavate come CQC

delle sollecitazioni derivanti dai modi di vibrazione, dette N, Mx, My, Tx e Ty le sollecitazioni dovute al sisma, per ognuna delle combinazioni precedenti, sono state ricavate 32 combinazioni di carico permutando nel seguente modo i segni delle sollecitazioni derivanti dal sisma:

1) N, Mx, My, Tx e Ty; 2) N, Mx, -My, Tx e Ty; 3) N, -Mx, My, Tx e Ty; 4) N, -Mx, -My, Tx e Ty; 5) -N, Mx, My, Tx e Ty; 6) -N, Mx, -My, Tx e Ty; 7) -N, -Mx, My, Tx e Ty; 8) -N, -Mx, -My, Tx e Ty; 9) N, Mx, My, Tx e -Ty; 10) N, Mx, -My, Tx e -Ty; 11) N, -Mx, My, Tx e -Ty; 12) N, -Mx, -My, Tx e -Ty; 13) -N, Mx, My, Tx e -Ty; 14) -N, Mx, -My, Tx e -Ty; 15) -N, -Mx, My, Tx e -Ty; 16) -N, -Mx, -My, Tx e -Ty; 17) N, Mx, My, -Tx e Ty; 18) N, Mx, -My, -Tx e Ty; 19) N, -Mx, My, -Tx e Ty; 20) N, -Mx, -My, -Tx e Ty; 21) -N, Mx, My, -Tx e Ty; 22) -N, Mx, -My, -Tx e Ty; 22) -N, Mx, -My, -Tx e -Ty; 26) N, Mx, -My, -Tx e -Ty; 27) N, -Mx, My, -Tx e -Ty; 28) N, -Mx, -My, -Tx e -Ty; 29) -N, Mx, My, -Tx e -Ty; 30) -N, Mx, -My, -Tx e -Ty; 31) -N, -Mx, My, -Tx e -Ty; 32) -N, -Mx, -My, -Tx e -Ty.

SERVIZIO(SLE): Caratteristica(RARA)

				SERVIZIO(SLE)): Caratteristica(RARA)
	CC 01	CC 02	CC 03	CC 04	CC 05
Id _{Comb}	Carico Permanente	Pressione del Vento	Pressione del Vento (-X)	Pressione del Vento	Pressione del Vento (-Y)
		(+X)		(+Y)	
01	1,00	1,00	0,00	0,00	0,00
02	1,00	0,00	1,00	0,00	0,00
03	1,00	0,00	0,00	1,00	0,00
04	1,00	0,00	0,00	0,00	1,00

LEGENDA:

IdComb CC

Numero identificativo della Combinazione di Carico. Identificativo della tipologia di carico nella relativa tabella.

CC 01= Carico Permanente

CC 02= Pressione del Vento (+X)

CC 03= Pressione del Vento (-X)

CC 04= Pressione del Vento (+Y)

CC 05= Pressione del Vento (-Y)

SERVIZIO(SLE): Frequente

				SER	V1Z1O(SLE): Frequente
	CC 01	CC 02	CC 03	CC 04	CC 05
Id _{Comb}	Carico Permanente	Pressione del Vento	Pressione del Vento (-X)	Pressione del Vento	Pressione del Vento (-Y)
		(+X)		(+Y)	
01	1,00	0,20	0,00	0,00	0,00
02	1,00	0,00	0,20	0,00	0,00
03	1,00	0,00	0,00	0,20	0,00
04	1,00	0,00	0,00	0,00	0,20

LEGENDA:

Numero identificativo della Combinazione di Carico. **Id**Comb Identificativo della tipologia di carico nella relativa tabella. CC 01= Carico Permanente

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

SERVIZIO(SLE): Frequente

CC 01 CC 02 CC 03 CC 04 CC 05 **Id**Comb Carico Permanente Pressione del Vento Pressione del Vento (-X) Pressione del Vento Pressione del Vento (-Y) (+X)(+Y)

> CC 02= Pressione del Vento (+X) CC 03= Pressione del Vento (-X) CC 04= Pressione del Vento (+Y) CC 05= Pressione del Vento (-Y)

SERVIZIO(SLE): Quasi permanente

SERVIZIO(SLE): Quasi permanente CC 01 CC 03 **CC 04** CC 05 **Id**_{Comb} Carico Permanente Pressione del Vento Pressione del Vento (-X) Pressione del Vento Pressione del Vento (-Y) (+X)(+Y) 01 1,00 0.00 0,00 0,00 0,00

LEGENDA:

Id_{Comb} Numero identificativo della Combinazione di Carico. Identificativo della tipologia di carico nella relativa tabella.

CC 01= Carico Permanente CC 02= Pressione del Vento (+X) CC 03= Pressione del Vento (-X) CC 04= Pressione del Vento (+Y) CC 05= Pressione del Vento (-Y)

DATI GENERALI ANALISI SISMICA

									Dati	generali ana	alisi sismica
Ang	NV	CD	MP	Dir	TS	EcA	Ir _{Tmp}	C.S.T.	RP	RH	ξ
[°]											[%]
0		ь	62	X	[PI]	N	N	D	NO	СТ	
0	_	Ь	Са	Y	[PI]	IN	IN IN	ь	NO	31)

LEGENDA:

Ang Direzione di una componente dell'azione sismica rispetto all'asse X (sistema di riferimento globale); la seconda componente dell'azione sismica e' assunta con direzione ruotata di 90 gradi rispetto alla prima.

NV Nel caso di analisi dinamica, indica il numero di modi di vibrazione considerati.

CD Classe di duttilità: [A] = Alta - [B] = Media - [ND] = Non Dissipativa - [-] = Nessuna.

MP Tipo di struttura sismo-resistente prevalente: [ca] = calcestruzzo armato - [caOld] = calcestruzzo armato esistente - [muOld] = muratura esistente - [muNew] = muratura nuova - [muArm] = muratura armata - [ac] = acciaio.

Dir Direzione del sisma.

TS Tipologia della struttura:

Cemento armato: [T 1C] = Telai ad una sola campata - [T+C] = Telai a più campate - [P] = Pareti accoppiate o miste equivalenti a pareti- [2P NC] = Due pareti per direzione non accoppiate - [P NC] = Pareti non accoppiate - [DT] = Deformabili torsionalmente - [PI] = Pendolo inverso - [PM] = Pendolo inverso intelaiate

Muratura: [P] = un solo piano - [PP] = più di un piano - [C-P/MP] = muratura in pietra e/o mattoni pieni - [C-BAS] = muratura in blocchi artificiali con percentuale di foratura > 15%;

Acciaio: [T 1C] = Telai ad una sola campata - [T+C] = Telai a più campate - [CT] = controventi concentrici diagonale tesa - [CV] = controventi concentrici a V - [M] = mensola o pendolo inverso - [TT] = telaio con tamponature.

EcA Eccentricità accidentale: [S] = considerata come condizione di carico statica aggiuntiva - [N] = Considerata come incremento delle sollecitazioni.

Per piani con distribuzione dei tamponamenti in pianta fortemente irregolare, l'eccentricità accidentale è stata incrementata di un fattore pari a 2: [SI] = Distribuzione Ir_{Tmp} tamponamenti irregolare fortemente - [NO] = Distribuzione tamponamenti regolare.

C.S.T. Categoria di sottosuolo: [A] = Ammassi rocciosi affioranti o terreni molto rigidi - [B] = Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti - [C] = Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti - [D] = Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti - [E] = Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D.

RP Regolarità in pianta: [SI] = Struttura regolare - [NO] = Struttura non regolare.

RH Regolarità in altezza: [SI] = Struttura regolare - [NO] = Struttura non regolare.

Coefficiente viscoso equivalente.

NOTE [-] = Parametro non significativo per il tipo di calcolo effettuato.

FATTORI DI COMPORTAMENTO

					Fattori	di comportamento
Dir	q'	q	q o	K _R	α _u /α ₁	kw
X	-	1,500	1,50	1,00	1,00	-
Y	-	1,500	1,50	1,00	1,00	-

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Fattori di comportamento

Dir	q'	q	q o	K _R	α _u /α ₁	k _w
Z	-	1,500	-	-	-	-

LEGENDA:

Fattore di riduzione dello spettro di risposta sismico allo SLU ridotto (Fattore di comportamento ridotto - relazione C7.3.1 circolare NTC) q'

Fattore di riduzione dello spettro di risposta sismico allo SLU (Fattore di comportamento). a

Valore di base (comprensivo di kw). q٥

 \mathbf{K}_{R} Fattore riduttivo funzione della regolarità in altezza: pari ad 1 per costruzioni regolari in altezza, 0,8 per costruzioni non regolari in altezza, e 0,75 per

costruzioni in muratura esistenti non regolari in altezza (§ C8.5.5.1)...

 α_u/α_1 Rapporto di sovraresistenza. Fattore di riduzione di q₀.

PARAMETRI PER LA DEFINIZIONE DELL'AZIONE SISMICA

Parametri per la definizione dell'azione sismica

Stato Limite	Tr	a _g /g	Amplif. St	ratigrafica	Fo	T*c	Тв	Tc	T _D
	[t] 30		S	Cc					
	[t]					[s]	[s]	[s]	[s]
SLO	30	0,0313	1,200	1,511	2,577	0,205	0,103	0,309	1,725
SLD	35	0,0331	1,200	1,499	2,585	0,213	0,106	0,319	1,732
SLV	332	0,0680	1,200	1,413	2,688	0,286	0,135	0,404	1,872
SLC	682	0,0827	1,200	1,402	2,729	0,297	0,139	0,417	1,931

LEGENDA:

Periodo di ritorno dell'azione sismica. [t] = anni.

a_g/g Coefficiente di accelerazione al suolo.

Coefficienti di Amplificazione Stratigrafica allo SLO/SLD/SLV/SLC.

 $\mathbf{C}_{\mathbf{C}}$ Coefficienti di Amplificazione di Tc allo SLO/SLD/SLV/SLC.

F₀ T*c Valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale.

Periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

 $\boldsymbol{\mathsf{T}_{\mathsf{B}}}$ Periodo di inizio del tratto accelerazione costante dello spettro di progetto.

Tc Periodo di inizio del tratto a velocità costante dello spettro di progetto.

Periodo di inizio del tratto a spostamento costante dello spettro di progetto.

DATI DEL SITO E DELL'OPERA

						Dati del si	to e dell'opera
CI Ed	V _N	V_R	Lat.	Long.	\mathbf{Q}_{g}	СТор	S _T
	[t]	[t]	[°ssdc]	[°ssdc]	[m]		
1	50	35	42.419558	11.541804	1	T1	1,00

LEGENDA:

CI Ed Classe dell'edificio

Vita nominale ([t] = anni). V_N Periodo di riferimento. [t] = anni. V_R Lat. Latitudine geografica del sito. Longitudine geografica del sito. Long. Q_g CTop Altitudine geografica del sito. Categoria topografica (Vedi NOTE). Coefficiente di amplificazione topografica.

NOTE [-] = Parametro non significativo per il tipo di calcolo effettuato.

Categoria topografica.

T1: Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i <= 15°.

T2: Pendii con inclinazione media $i > 15^{\circ}$.

T3: Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° <= i <= 30°.

T4: Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $i > 30^{\circ}$.

PRINCIPALI ELEMENTI ANALISI SISMICA

Dir	M _{Str}	M _{SLU}	M _{Ecc,SLU}	M _{SLD}	M _{Ecc,SLD}	%T.M _{Ecc}	$\Sigma V_{Ed,SLU}$
	[N·s²/m]	[N·s²/m]	[N·s²/m]	[N·s²/m]	[N·s²/m]	[%]	[N]
X	20.537	9.790	0	9.790	0	0,00	11.945
Υ	20.537	9.790	0	9.790	0	0,00	11.945
7	20.537	0	0	0	0	0.00	0

LEGENDA:

Dir Direzione del sisma.

Mst Massa complessiva della struttura.

presente documento è di proprietà della ANTEX GROUP srl. Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Dir	M _{Str}	M _{SLU}	M _{Ecc,SLU}	M _{SLD}	M _{Ecc,SLD}	%T.M _{Ecc}	$\Sigma V_{Ed,SLU}$
	[N·s²/m]	[N·s²/m]	[N·s²/m]	[N·s²/m]	[N·s²/m]	[%]	[N]
14	Manage and the letter of	II. CLU					

Massa eccitabile allo SLU. Mslu

Massa Eccitata dal sisma allo SLU. $M_{\text{Ecc,SLU}}$

 M_{SLD} Massa eccitabile della struttura allo SLD, nelle direzioni X, Y, Z.

Massa Eccitata dal sisma allo SLD. M_{Ecc.SLD}

Percentuale Totale di Masse Eccitate dal sisma. %T.M_{Ecc} $\Sigma \textbf{V}_{\text{Ed,SLU}}$ Tagliante totale, alla base, per sisma allo SLU.

TRAVI IN ELEVAZIONE

															_	ravi in	eleva	zione
Id _{Tr}	Lu			Sezione		V. 1	Int.	Stz	Note	Mt	AA /C	Nd	Nd	Dis _{i-}	Q Iniz	LLI	Clc	Pr/
IUIF		Idsz	Тр	Label	Rtz	Iniz.	Fin.	312	Note	rl	is	i	f	j		Fin.	Fnd	Sc
Piano Terra	[m]				[°ssdc] Travat	a: Piano Teri	ra							[m]	[m]	[m]		
Trave Acciaio 13-31a	0,97	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 06	00 02	0,97	2,16	2,16	NO	-
Trave Acciaio 31a-32a	1,91	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00 2	-	00 02	00 04	1,91	2,17	3,83	NO	-
Trave Acciaio 30a-31a	1,96	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00 2	-	00 05	00 02	1,96	0,47	2,17	NO	-
Trave Acciaio 12-13	3,50	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 11	00 06	3,50	2,16	2,16	NO	-
Trave Acciaio 3a-1a	1,91	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 08	00 10	1,91	2,19	3,85	NO	-
Trave Acciaio 3a-2a	2,00	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 08	00 09	2,00	2,18	0,45	NO	-
Trave Acciaio 11-12	3,50	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 12	00 11	3,50	2,16	2,16	NO	-
Trave Acciaio 10-11	3,50	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 14	00 12	3,50	2,16	2,16	NO	-
Trave Acciaio 9-10	3,50	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 16	00 14	3,50	2,16	2,16	NO	-
Trave Acciaio 8-9	3,50	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 18	00 16	3,50	2,16	2,16	NO	-
Trave Acciaio 7-8	3,51	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 20	00 18	3,51	2,16	2,16	NO	-
Trave Acciaio 6-7	3,51	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 22	00 20	3,51	2,16	2,16	NO	-
Trave Acciaio 5-6	3,50	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 24	00 22	3,50	2,16	2,16	NO	-
Trave Acciaio 4-5	3,49	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 26	00 24	3,49	2,16	2,16	NO	-
Trave Acciaio 3-4	3,52	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 28	00 26	3,52	2,16	2,16	NO	-
Trave Acciaio 2-3	3,50	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 30	00 28	3,50	2,16	2,16	NO	-
Trave Acciaio 1-2	3,49	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 32	00 30	3,49	2,16	2,16	NO	-
Trave Acciaio 3a-1	1,63	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 08	00 32	1,63	2,16	2,16	NO	-
Trave Acciaio 1-5a	1,95	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	32	00 35	1,95	2,20	3,90	NO	-
Trave Acciaio 1-4a	1,88	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 32	00 34	1,88	2,20	0,57	NO	-
Trave Acciaio 2-7a	1,95	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 30	00 37	1,95	2,20	3,90	NO	-
Trave Acciaio 2-6a	1,95	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	30	36	1,95	2,20	0,51	NO	-
Trave Acciaio 3-9a	1,96	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 28	38	1,96	2,20	3,90	NO	-
Trave Acciaio 3-8a	1,96	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 28	00	1,96	2,20	0,50	NO	-
Trave Acciaio 4-11a	1,96	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 26	00 40	1,96	2,20	3,91	NO	-
Trave Acciaio 4-10a	1,95	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 26	00 39	1,96	2,20	0,50	NO	-

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 41

																ravi in	eleva	zione
				Sezione		V. 1	Int.			Mt	AA	Nd	Nd	Dis _{i-}	_	LLI	Clc	Pr/
Id _{Tr}	L _{LI}	Idsz	Тр	Label	Rtz	Iniz.	Fin.	Stz	Note	rl	/C	i	f	j	Iniz	Fin.	Fnd	Sc
	[m]				[°ssdc]						13			[m]	[m]	[m]		
Trave Acciaio 5-13a	1,96	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 24	00 42	1,96	2,20	3,91	NO	-
Trave Acciaio 5-12a	1,95	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00 2	-	00 24	00 41	1,96	2,20	0,50	NO	-
Trave Acciaio 6-15a	1,96	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 22	00 44	1,96	2,20	3,91	NO	-
Trave Acciaio 6-14a	1,95	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 22	00 43	1,95	2,20	0,51	NO	-
Trave Acciaio 7-17a	1,96	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 20	00 46	1,97	2,20	3,91	NO	-
Trave Acciaio 7-16a	1,95	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 20	00 45	1,95	2,20	0,51	NO	-
Trave Acciaio 8-19a	1,97	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 18	00 48	1,97	2,20	3,91	NO	-
Trave Acciaio 8-18a	1,94	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 18	00 47	1,95	2,20	0,51	NO	-
Trave Acciaio 9-21a	1,97	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 16	00 50	1,97	2,20	3,92	NO	-
Trave Acciaio 9-20a	1,94	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00 2	-	00 16	00 49	1,94	2,20	0,52	NO	-
Trave Acciaio 10-23a	1,92	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00 2	-	00 14	00 51	1,91	2,20	3,84	NO	_
Trave Acciaio 22a-10	1,93	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00 2	-	00 52	00 14	1,93	0,46	2,20	NO	_
Trave Acciaio 11-25a	1,90	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 12	00 53	1,90	2,12	3,75	NO	-
Trave Acciaio 24a-11	1,93	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 54	00 12	1,94	0,43	2,12	NO	-
Trave Acciaio 12-27a	1,90	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 11	00 56	1,91	2,12	3,75	NO	-
Trave Acciaio 26a-12	1,98	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 55	00 11	1,98	0,40	2,12	NO	-
Trave Acciaio 13-29a	1,90	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 06	00 58	1,90	2,12	3,75	NO	-
Trave Acciaio 28a-13	1,93	001	Ω	150x150x4	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 57	00 06	1,93	0,44	2,12	NO	_

LEGENDA:

 Id_{Tr} Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato.

Lunghezza libera d'Inflessione. LLI

Idsz Identificativo della sezione, nella relativa tabella.

Tipo di sezione Тp

Label Identificativo della sezione, come indicato nelle carpenterie.

Rtz Angolo di rotazione della sezione.

V. Int. Identificativo delle condizioni di vincolo agli estremi inferiore e superiore del pilastro, costituito da sei caratteri. I primi tre, sono relativi alla traslazione rispettivamente lungo gli assi 1, 2 e 3, mentre i secondi tre sono relativi rispettivamente alla rotazione intorno agli assi 1, 2 e 3 (Assi 1, 2, 3: riferimento locale). Il carattere " S " o " N " indica se il vincolo allo spostamento/rotazione è presente o assente.

Tipo di situazione: [F] = di Fatto (Esistente); [P] = di Progetto (Nuovo). Stz

Note Nota relativa alla verifica di deformabilità delle travi in acciaio e in legno.

Se presente "elemento a sbalzo" = la freccia viene valutata nell'ipotesi di trave a mensola; altrimenti la freccia viene valutata nell'ipotesi di trave appoggiata-appoggiata.

Mtrl Identificativo del materiale.

AA/CIS Identificativo dell'aggressività dell'ambiente o della classe di servizio:

Aggressività dell'ambiente: [PCA] = "Ordinario"; [MDA] = "Aggressivo"; [MLA] = "Molto aggressivo";

Classe di servizio: [1] = Ambiente con umidità bassa - [2] = Ambiente con umidità media - [3] = Ambiente con umidità alta.

Ndi Identificativo del nodo iniziale, nella relativa tabella.

Identificativo del nodo finale, nella relativa tabella. Ndf

 Dis_{i-j} Distanza tra il nodo iniziale e finale.

Quota agli estremi iniziale e finale del tratto di trave libero d'inflettersi (Lunghezza Libera d'Inflessione), valutata rispetto al livello (piano) di appartenenza. QLLI

Clc Fnd [Si] = elemento progettato attraverso una modalità di rispetto della Gerarchia delle Resistenze per le Fondazioni. [No] = elemento progettato con le sollecitazioni ottenute dall'analisi (senza nessuna modalità di rispetto della Gerarchia delle Resistenze per le Fondazioni).

Pr/Sc Indica se l'elemento strutturale è incluso nel modello per il calcolo delle azioni sismiche. [1] = non incluso; [-] = incluso.

PILASTRI

presente documento è di proprietà della ANTEX GROUP srl. Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 42

																	Pilastri
Nid	Lv	Lu			Sezione		V. 1	Int.	Mtri	AA/CI	N	od	Dis _{i-i}	Q	LLI	Clc	Pr/Sc
IVIG	LV	-L1	Idsz	Тр	Label	Rtz	Inf.	Sup.	PICIT	S	Inf.	Sup.	D131-j	Inf.	Sup.	Fnd	FI/SC
		[m]				[°ssdc							[m]	[m]	[m]		
013	01	2,16	002	A	IPE 330	90,0	S;S;S;S;S;S	S;S;S;S;S	001	-	0001	0006	2,16	0,00	2,16	NO	-
12 (a)	01	2,16	002	A	IPE 330	90,0	S;S;S;S;S;S	S;S;S;S;S	001	-	0007	0011	2,16	0,00	2,16	NO	-
011	01	2,16	002	A	IPE 330	90,0	S;S;S;S;S	S;S;S;S;S;S	001	-	0013	0012	2,16	0,00	2,16	NO	-
010	01	2,16	002	A	IPE 330	90,0	S;S;S;S;S	S;S;S;S;S;S	001	-	0015	0014	2,16	0,00	2,16	NO	-
009	01	2,16	002	A	IPE 330	90,0	S;S;S;S;S;S	S;S;S;S;S;S	001	-	0017	0016	2,16	0,00	2,16	NO	-
008	01	2,16	002	A	IPE 330	90,0	S;S;S;S;S;S	S;S;S;S;S;S	001	-	0019	0018	2,16	0,00	2,16	NO	-
007	01	2,16	002	A	IPE 330	90,0	S;S;S;S;S;S	S;S;S;S;S;S	001	-	0021	0020	2,16	0,00	2,16	NO	-
006	01	2,16	002	A	IPE 330	90,0	S;S;S;S;S;S	S;S;S;S;S	001	-	0023	0022	2,16	0,00	2,16	NO	-
005	01	2,16	002	A	IPE 330	90,0	S;S;S;S;S;S	S;S;S;S;S	001	-	0025	0024	2,16	0,00	2,16	NO	-
004	01	2,16	002	A	IPE 330	90,0	S;S;S;S;S	S;S;S;S;S	001	-	0027	0026	2,16	0,00	2,16	NO	-
003	01	2,16	002	A	IPE 330	90,0	S;S;S;S;S;S	S;S;S;S;S	001	-	0029	0028	2,16	0,00	2,16	NO	-
002	01	2,16	002	A	IPE 330	90,0	S;S;S;S;S;S	S;S;S;S;S	001	-	0031	0030	2,16	0,00	2,16	NO	-
001	01	2,16	002	A	IPE 330	90,0	S;S;S;S;S;S	S;S;S;S;S	001	-	0033	0032	2,16	0,00	2,16	NO	-

LEGENDA:

Nid Numero identificativo della pilastrata. L'eventuale lettera tra parentesi distingue i diversi tratti della pilastrata al livello considerato.

Lv Identificativo del livello, nella relativa tabella.

Lunghezza libera d'Inflessione. L_{LI}

Idsz Identificativo della sezione, nella relativa tabella.

Tipo di sezione.

Label Identificativo della sezione, come indicato nelle carpenterie.

Angolo di rotazione della sezione. Rtz

V. Int. Identificativo delle condizioni di vincolo agli estremi inferiore e superiore del pilastro, costituito da sei caratteri. I primi tre, sono relativi alla traslazione rispettivamente lungo gli assi 1, 2 e 3, mentre i secondi tre sono relativi rispettivamente alla rotazione intorno agli assi 1, 2 e 3 (Assi 1, 2, 3: riferimento locale). Il

carattere "S" o "N" indica se il vincolo allo spostamento/rotazione è presente o assente.

Mtrl Identificativo del materiale.

AA/CIS Identificativo dell'aggressività dell'ambiente o della classe di servizio:

Aggressività dell'ambiente: [PCA] = "Ordinario"; [MDA] = "Aggressivo"; [MLA] = "Molto aggressivo";

Classe di servizio: [1] = Ambiente con umidità bassa - [2] = Ambiente con umidità media - [3] = Ambiente con umidità alta.

Nod Identificativo del nodo nella relativa tabella.

Dis_{i-j} Distanza tra il nodo iniziale e finale.

Quota agli estremi inferiore e superiore del tratto di elemento libero d'inflettersi (Lunghezza Libera d'Inflessione), valutata rispetto al livello (piano) di appartenenza. QLLI Clc Fnd [Si] = elemento progettato attraverso una modalità di rispetto della Gerarchia delle Resistenze per le Fondazioni. [No] = elemento progettato con le sollecitazioni

ottenute dall'analisi (senza nessuna modalità di rispetto della Gerarchia delle Resistenze per le Fondazioni).

Pr/Sc Indica se l'elemento strutturale è incluso nel modello per il calcolo delle azioni sismiche. [1] = non incluso; [-] = incluso.

NODI - SPOSTAMENTI PER CONDIZIONI DI CARICO NON SISMICHE

					Nodi - Sp	ostamenti per condizion	i di carico non sismiche
Nodo	CC	S _X	S _Y	Sz	Θx	ΘΥ	⊛z
		[cm]	[cm]	[cm]	[rad]	[rad]	[rad]
00001	001	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	002	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	003	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	004	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	005	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00002	001	-0,0009	0,0035	-0,0386	-4,8282 E-04	-5,9713 E-05	-5,5521 E-07
	002	0,0210	-0,0020	0,0015	2,111 E-05	1,8641 E-04	1,2146 E-04
	003	-0,0413	0,0041	-0,0033	-4,5293 E-05	-3,3861 E-04	-2,1102 E-04
	004	-0,0282	0,0030	-0,0122	-1,4207 E-04	6,8277 E-05	4,9494 E-04
	005	0,0422	-0,0010	0,0053	6,2712 E-05	1,938 E-04	-2,1426 E-04
00003	001	-0,1034	-0,0062	-0,0581	-3,5113 E-05	8,6627 E-04	3,3438 E-07

presente documento è di proprietà della ANTEX GROUP srl. Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 43

N. d.						amenti per condizioni di d	
Nodo	CC	Sx	Sy	Sz	Θ _X	Θ _Y	Θ z
	003	[cm] 0,1355	[cm] -0,0026	[cm] 0,0373	[rad]	[rad]	[rad]
	002				2,037 E-05	-7,8153 E-04	-4,03 E-05
	003	-0,2714	0,0057	-0,0770	-3,6752 E-05	1,586 E-03	7,9311 E-05
	004	-0,2628	-0,0176	-0,1169	2,5825 E-05	1,9277 E-03	-2,4294 E-04
00004	005	0,1205	-0,0057	0,0288	2,2803 E-05	-6,6506 E-04	-8,6646 E-05
00004	001	-0,0282	0,0828	-0,0554	-4,8477 E-04	-2,0952 E-04	-5,5071 E-07
	002	0,0557	-0,0174	0,0223	2,1545 E-05	2,2078 E-04	1,2145 E-04
	003	-0,1051	0,0323	-0,0416	-4,6163 E-05	-4,0749 E-04	-2,11 E-04
	004	-0,0263	-0,0222	-0,0107	-1,4294 E-04	-6,076 E-07	4,9496 E-04
	005	0,0785	0,0097	0,0269	6,3147 E-05	2,2818 E-04	-2,1426 E-04
00005	001	-0,0096	-0,0796	-0,0432	-4,8081 E-04	9,5672 E-05	-5,5521 E-07
	002	-0,0054	0,0128	-0,0127	2,0656 E-05	1,4314 E-04	1,215 E-04
	003	0,0056	-0,0231	0,0218	-4,4369 E-05	-2,5083 E-04	-2,1111 E-04
	004	-0,0481	0,0242	-0,0231	-1,4113 E-04	1,3457 E-04	4,9498 E-04
	005	0,0141	-0,0100	-0,0096	6,2258 E-05	1,5054 E-04	-2,1421 E-04
00006	001	-0,0008	0,0022	-0,0011	-1,2952 E-04	-7,0766 E-06	-3,6164 E-07
00000	001	0,0337	-0,0019	0,0002	-4,8594 E-06	2,1781 E-04	
			,				1,7335 E-04
	003	-0,0637	0,0040	-0,0004	6,8783 E-06	-4,069 E-04	-3,1599 E-04
	004	0,0172	0,0026	0,0001	-8,9902 E-05	1,0896 E-04	4,0989 E-04
	005	0,0223	-0,0008	0,0000	3,6743 E-05	2,2521 E-04	-1,6236 E-04
00007	001	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	002	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	003	0,000	0,000	0,0000	0 E+00	0 E+00	0 E+00
	004	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	005	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00008	001	-0,0008	-0,0175	-0,2586		-1,9379 E-04	-1,6185 E-06
00008					2,0398 E-03		
	002	0,0246	-0,0018	0,0040	-4,6597 E-05	2,2064 E-04	-9,0752 E-06
	003	-0,0487	0,0038	-0,0084	9,6389 E-05	-4,474 E-04	1,3908 E-05
	004	0,0314	0,0035	0,0105	-5,7887 E-05	-1,7579 E-03	5,7875 E-04
	005	-0,0337	-0,0020	-0,0154	1,1078 E-04	1,5721 E-03	-4,7131 E-04
00009	001	-0,0014	0,3409	-0,2670	2,036 E-03	1,0522 E-04	-1,606 E-06
	002	-0,0092	-0,0108	-0,0137	-4,5887 E-05	1,8199 E-04	-8,9513 E-06
	003	0,0202	0,0220	0,0278	9,5613 E-05	-3,7166 E-04	1,4019 E-05
	004	0,3472	0,0483	0,1807	-5,7177 E-05	-1,7965 E-03	5,7888 E-04
	005	-0,3214	-0,0273	-0,1710	1,1001 E-04	1,6479 E-03	-4,7119 E-04
00010	001	-0,0597	-0,3533	-0,3066	2,0746 E-03	-4,1702 E-04	-3,5586 E-05
00010			0,0066				
	002	0,0650		0,0280	-4,6018 E-05	2,5352 E-04	-8,9921 E-06
	003	-0,1305	-0,0133	-0,0570	9,5814 E-05	-5,1313 E-04	1,4067 E-05
	004	-0,2611	-0,0432	-0,1643	-5,8462 E-05	-1,8236 E-03	5,7891 E-04
	005	0,2249	0,0256	0,1388	1,1136 E-04	1,605 E-03	-4,7122 E-04
00011	001	-0,0006	0,0020	-0,0012	-2,1586 E-05	-5,6673 E-06	5,7823 E-07
	002	0,0581	-0,0020	0,0004	2,0623 E-05	3,7389 E-04	-3,4852 E-05
	003	-0,1089	0,0040	-0,0007	-3.9647 E-05	-6,9154 E-04	6,5006 E-05
	004	-0,0115	0,0025	0,0001	5,2779 E-05	-1,5606 E-04	-4,2928 E-04
	005	0,0312	-0,0008	-0,0001	-6,1696 E-06	3,6503 E-04	8,3473 E-05
00012	001	-0,0005	0,0018	-0,0012	-3,7256 E-05	-4,3553 E-06	-3,1021 E-08
00012	001	0,0576	-0,0020	0,0004	1,6871 E-05	3,7169 E-04	-3,6301 E-05
	003	-0,1083	0,0041	-0,0007	-3,4038 E-05	-6,9005 E-04	6,853 E-05
	004	-0,0773	0,0026	-0,0002	-2,4426 E-05	-6,5774 E-04	-1,6344 E-05
	005	0,0338	-0,0008	-0,0001	-9,6413 E-07	3,8049 E-04	-1,9505 E-07
00013	001	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	002	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	003	0,000	0,000	0,0000	0 E+00	0 E+00	0 E+00
	004	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E+00
	005	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00014	001	-0,0004	0,0016	-0,0012	-3,2775 E-05	-3,3118 E-06	1,3503 E-06
00014							
	002	0,0580	-0,0021	0,0004	1,7072 E-05	3,7476 E-04	-3,1416 E-0!
	003	-0,1093	0,0042	-0,0007	-3,4007 E-05	-6,9852 E-04	5,8246 E-0
	004	-0,0775	0,0027	-0,0002	-1,3752 E-05	-6,6181 E-04	2,6643 E-0
	005	0,0329	-0,0008	-0,0001	-1,4389 E-06	3,7448 E-04	1,0351 E-0
00015	001	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	002	0,000	0,000	0,0000	0 E+00	0 E+00	0 E+0
	003	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	004	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	005	0,000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
		0,0004	0,000			3,2697 E-06	
00016	001			-0,0012	-3,8931 E-05		2,5094 E-06

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 44

		-	_		-	amenti per condizioni di c	
Nodo	CC	Sx	Sy	Sz	Θ χ	Θ γ	Θz
	003	[cm] -0,1101	[cm]	[cm]	[rad]	[rad]	[rad]
			0,0042	-0,0007	-4,04 E-05	-7,0499 E-04	7,6562 E-0
	004 005	-0,0772	0,0027	-0,0002	-1,5544 E-05	-6,6938 E-04	9,2187 E-0
00017		0,0326	-0,0008	-0,0002	-3,6567 E-06	3,8077 E-04	2,2407 E-0
00017	001	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	002	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	003	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	004	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
22212	005	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00018	001	0,0011	0,0011	-0,0012	-3,7284 E-05	1,031 E-05	1,3433 E-0
	002	0,0579	-0,0021	0,0004	1,9799 E-05	3,74 E-04	-3,862 E-0
	003	-0,1099	0,0042	-0,0007	-3,913 E-05	-7,0286 E-04	7,3627 E-
	004	-0,0778	0,0027	-0,0002	-1,5033 E-05	-6,7369 E-04	1,1315 E-(
	005	0,0330	-0,0008	-0,0002	-3,6125 E-06	3,8397 E-04	2,113 E-
00019	001	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+(
	002	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	003	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	004	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+(
	005	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00020	001	0,0014	0,0008	-0,0012	-3,671 E-05	1,2462 E-05	4,3959 E-
	002	0,0579	-0,0021	0,0004	1,9871 E-05	3,7367 E-04	-3,8254 E-
	003	-0,1102	0,0043	-0,0007	-3,8804 E-05	-7,0501 E-04	7,309 E-
	004	-0,0782	0,0027	-0,0002	-1,4535 E-05	-6,765 E-04	1,4566 E-
	005	0,0331	-0,0008	-0,0002	-3,6196 E-06	3,854 E-04	2,0679 E-
00021	001	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	002	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	003	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	004	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	005	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
00022	001	0,0016	0,0005	-0,0012	-3,6929 E-05	1,4516 E-05	6,3676 E-
	002	0,0577	-0,0021	0,0004	1,966 E-05	3,7219 E-04	-4,0628 E-
	003	-0,1104	0,0044	-0,0007	-4,0063 E-05	-7,0585 E-04	7,5778 E-
	004	-0,0795	0,0028	-0,0002	-1,5146 E-05	-6,8569 E-04	-7,3617 E-
	005	0,0334	-0,0008	-0,0002	-5,3214 E-06	3,8716 E-04	2,276 E-
00023	001	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	002	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	003	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	004	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	005	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
00024	001	0,0018	0,0001	-0,0012	-3,598 E-05	1,6543 E-05	6,1447 E-
	002	0,0573	-0,0022	0,0004	2,0358 E-05	3,695 E-04	-4,0286 E-
	003	-0,1101	0,0044	-0,0007	-4,0107 E-05	-7,0425 E-04	7,7131 E-
	004	-0,0768	0,0028	-0,0002	-1,3737 E-05	-6,667 E-04	1,0566 E-
	005	0,0322	-0,0009	-0,0002	2,2927 E-07	3,7905 E-04	1,8648 E-
00025	001	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	002	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E+
	003	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	004	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	005	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
00026	001	0,0020	-0,0004	-0,0012	-3,2408 E-05	1,8635 E-05	6,4245 E-
00020	002	0,0574	-0,0022	0,0004	1,9026 E-05	3,7058 E-04	-3,53 E-
	003	-0,1106	0,0045	-0,0007	-3,7922 E-05	-7,0999 E-04	6,7182 E-
	004	-0,0259	0,0029	-0,0002	-1,8787 E-05	-1.7459 E-04	1,2674 E-
	005	0,0464	-0,0010	0,0001	-3,96 E-05	3,896 E-04	2,0516 E-
00027	001	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
00027	001	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	002	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	003	0,000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	004	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
00028	005	0,0022	-0,0009	-0,0012	-2,4269 E-05	2,0275 E-05	1,6235 E-
00020			,				
	002	0,0577 -0,1119	-0,0022	0,0004 -0,0007	2,0372 E-05	3,7276 E-04	-3,517 E-
	003		0,0045		-3,9743 E-05	-7,1801 E-04	6,8037 E-
	004	-0,0401	0,0030	-0,0004	2,1395 E-05	-1,841 E-04	-2,5398 E-
	005	0,0581	-0,0011	0,0003	2,437 E-05 0 E+00	3,8242 E-04 0 E+00	-8,1405 E-
00000				O OOO	0 ⊨±00 □	U ►±00	0 E+
00029	001 002	0,0000 0,000	0,0000 0,0000	0,0000 0,0000	0 E+00	0 E+00	0 E+

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 45

	nenti per condizioni di c	-		_	_		
Θz [rad]	⊕ Y [rad]	⊕ x [rad]	Sz [cm]	S _Y	S _X	CC	Nodo
0 E	0 E+00	0 E+00	0,0000	0,0000	0,0000	004	
0 E	0 E+00	0 E+00	0,0000	0,0000	0,0000	005	
-2,1121 E	1,7864 E-05	-1,0816 E-04	-0,0011	-0,0014	0,0019	001	00030
-6,3971 F	3,676 E-04	1,8163 E-05	0,0004	-0,0022	0,0571	002	00030
1,2539 8	-7,1064 E-04	-3,521 E-05	-0,0007	0,0046	-0,1110	003	
-8,7348 I	-6,8532 E-04	-3,1374 E-05	-0,0007	0,0032	-0,1051	004	
6,9846 I	3,8248 E-04	6,4698 E-06	0,0003	-0,0012	0,0583	005	
0 E	0 E+00	0 E+00	0,0000	0,0000	0,0000	001	00031
0 E	0 E+00	0 E+00	0,0000	0,0000	0,0000	002	
0 E	0 E+00	0 E+00	0,0000	0,0000	0,000	003	
0 E	0 E+00	0 E+00	0,0000	0,0000	0,0000	004	
0 E	0 E+00	0 E+00	0,0000	0,0000	0,0000	005	
-2,3441 E	8,8959 E-06	5,109 E-04	-0,0014	-0,0022	0,0010	001	00032
-1,6464 F	2,1042 E-04	2,7065 E-05	0,0002	-0,0022	0,0324	002	
3,2048 F	-4,09 E-04	-5,2342 E-05	-0,0004	0,0045	-0,0633	003	
6,257 E	-3,5721 E-04	-9,2392 E-05	-0,0003	0,0032	-0,0526	004	
-4,2484 E	1,9963 E-04	7,022 E-05	0,0001	-0,0013	0,0286	005	
0 E	0 E+00	0 E+00	0,0000	0,0000	0,0000	001	00033
0 E	0 E+00	0 E+00	0,0000	0,0000	0,0000	002	
0 E	0 E+00	0 E+00	0,0000	0,0000	0,0000	003	
0 E	0 E+00	0 E+00	0,0000	0,0000	0,0000	004	
0 E	0 E+00	0 E+00	0,0000	0,0000	0,0000	005	
-2,2829 [5,9083 E-04	5,0332 E-04	-0,0339	0,0794	-0,0684	001	00034
-1,675 [-3,5548 E-04	2,5657 E-05	0,0149	-0,0139	0,0660	002	
3,2683 I	7,2295 E-04	-4,7849 E-05	-0,0310	0,0277	-0,1322	003	
6,3162 I	5,8945 E-04	-8,6942 E-05	-0,0246	0,0493	-0,1103	004	
-4,2758 I	-2,5987 E-04	6,7729 E-05	0,0092	-0,0311	0,0527	005	00005
-2,4078 E	-6,7996 E-04	5,0161 E-04	-0,0435	-0,0885	-0,0742	001	00035
-1,6837 E	7,579 E-04	3,0052 E-05	0,0591	0,0084	0,1343	002	
3,2727 E	-1,4699 E-03	-5,8266 E-05	-0,1147	-0,0161	-0,2609 -0,2439	003 004	
6,3249 I	-1,4181 E-03	-9,8317 E-05	-0,1102 0,0585	-0,0389 0,0261	0,1308	004	
-4,2857 E	7,4712 E-04	7,3207 E-05					00036
-2,0281 F	8,2491 E-04	-1,1855 E-04	-0,0550 0,0369	-0,0211 -0,0061	-0,0996 0,1372	001 002	00036
-6,8712 F 1,3673 F	-7,9548 E-04 1,6129 E-03	1,4969 E-05 -2,3993 E-05	-0,0759	0,0130	-0,2749	002	
2,3225 E	1,3616 E-03	-2,3993 E-05 -1,88 E-05	-0,0610	-0,0007	-0,2382	003	
2,0503 E	-6,7466 E-04	1,5789 E-06	0,0280	-0,0004	0,1212	005	
-2,1573 E	-9,0585 E-04	-1,2051 E-04	-0,0641	0,0187	-0,0973	001	00037
-7,1828 E	1,4322 E-03	2,3377 E-05	0,1112	0,0006	0,2453	002	00037
1,3902	-2,766 E-03	-4,6679 E-05	-0,2148	-0,0007	-0,4746	003	
4,8968 I	-2,7406 E-03	-4,2842 E-05	-0,2124	0,0097	-0,4632	004	
-8,7278 E	1,447 E-03	1,1684 E-05	0,1125	-0,0030	0,2484	005	
1,2122 [-9,1556 E-04	-3,6742 E-05	-0,0644	0,0047	-0,0978	001	00038
-4,329 I	1,4455 E-03	2,5602 E-05	0,1129	-0,0024	0,2474	002	00000
8,2619	-2,7793 E-03	-5,0888 E-05	-0,2172	0,0052	-0,4768	003	
-2,5125 I	-7,2913 E-04	1,7247 E-05	-0,0572	0,0234	-0,1338	004	
-8,9526 I	1,4551 E-03	2,96 E-05	0,1139	0,0023	0,2499	005	
7,8046 I	8,4957 E-04	-4,3078 E-05	-0,0566	-0,0071	-0,1020	001	00039
-3,899 I	-7,7715 E-04	2,1831 E-05	0,0365	-0,0023	0,1349	002	
7,4999 I	1,5812 E-03	-4,2734 E-05	-0,0758	0,0046	-0,2704	003	
1,2915 F	3,0994 E-04	-1,7711 E-05	-0,0135	0,0125	-0,0562	004	
2,0659 E	9,6303 E-04	-4,2829 E-05	-0,0757	0,0124	-0,0917	005	
6,0026 I	-9,241 E-04	-4,4935 E-05	-0,0653	0,0065	-0,0988	001	00040
-4,3627 I	1,4442 E-03	2,4228 E-05	0,1134	-0,0021	0,2467	002	
8,2162 [-2,7627 E-03	-4,8761 E-05	-0,2170	0,0048	-0,4730	003	
1,2955 [-7,0743 E-04	-2,2644 E-05	-0,0558	-0,0056	-0,1199	004	
1,9684 [1,4632 E-03	-3,4398 E-05	0,1144	-0,0135	0,2369	005	
7,111 [8,2969 E-04	-4,6435 E-05	-0,0548	-0,0072	-0,1003	001	00041
-4,3598 I	-7,9884 E-04	2,3014 E-05	0,0372	-0,0025	0,1376	002	
8,4084	1,6289 E-03	-4,6359 E-05	-0,0776	0,0049	-0,2761	003	
1,0235 [-1,835 E-03	-1,1081 E-05	0,1383	0,0110	0,1771	004	
8,317 [2,541 E-03	-6,3558 E-06	-0,1731	-0,0011	-0,2960	005	
5,7086 I	-9,3174 E-04	-4,854 E-05	-0,0663	0,0076	-0,0997	001	00042
-4,8779 I	1,4439 E-03	2,5582 E-05	0,1140	-0,0018	0,2466	002	
9,1567 E	-2,7482 E-03	-5,1465 E-05	-0,2171	0,0042	-0,4705	003	
	-2,7106 E-03	-2,5096 E-05	-0,2128	-0,0046	-0,4310	004	

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 46

		_				menti per condizioni di c	
Nodo	CC	Sx	Sy	Sz	Θχ	Θγ	⊙ z
	005	[cm] 0,2227	[cm] -0,0011	[cm] 0,1142	[rad] 5,4536 E-06	[rad] 1,4535 E-03	[rad] -6,6287 E-0
00043	001	-0,0992	-0,0070	-0,0535	-4,7233 E-05	8,1526 E-04	6,8516 E-0
000-13	001	0,1377	-0,0027	0,0363	2,1659 E-05	-7,961 E-04	-4,3798 E-0
	003	-0,2762	0,0046	-0,0762	-4,6256 E-05	1,6266 E-03	8,1823 E-0
	004	0,1788	-0,0004	0,1386	-1,3146 E-05	-1,854 E-03	-1,0531 E-0
	005	-0,2965	0,0000	-0,1718	-1,1893 E-05	2,5472 E-03	2,8399 E-0
00044	001	-0,1014	0,0082	-0,0676	-4,9609 E-05	-9,4609 E-04	5,8988 E-0
	002	0,2482	-0,0016	0,1154	2,494 E-05	1,4539 E-03	-4,9345 E-0
	003	-0,4714	0,0044	-0,2188	-5,2521 E-05	-2,7545 E-03	8,9931 E-0
	004	-0,4363	0,0065	-0,2161	-2,7604 E-05	-2,7344 E-03	6,7917 E-0
	005	0,2259	-0,0021	0,1161	-4,098 E-08	1,4689 E-03	1,4043 E-0
00045	001	-0,0979	-0,0066	-0,0520	-4,6832 E-05	7,9886 E-04	4,3192 E-0
	002	0,1374	-0,0025	0,0354	2,1209 E-05	-7,9165 E-04	-4,126 E-0
	003	-0,2758	0,0045	-0,0746	-4,4213 E-05	1,6215 E-03	7,8595 E-0
	004	0,1784	0,0017	0,1361	-1,3198 E-05	-1,8418 E-03	1,156 E-(
00046	005	-0,2960	0,0002	-0,1692	-9,4523 E-06	2,5384 E-03	2,5873 E-0
00046	001	-0,1029	0,0085	-0,0689	-4,9485 E-05	-9,5872 E-04	3,8746 E-0
	002 003	0,2491 -0,4708	-0,0020 0,0043	0,1166 -0,2198	2,6399 E-05 -5,0982 E-05	1,4603 E-03 -2,7525 E-03	-4,6508 E-0 8,7664 E-0
	003	-0,4333	0,0043	-0,2164	-2,6713 E-05	-2,7323 E-03 -2,724 E-03	2,914 E-
	004	0,2259	-0,0023	0,1170	2,9076 E-06	1,4721 E-03	1,2426 E-
00047	001	-0,0964	-0,0063	-0,0505	-4,7202 E-05	7,8103 E-04	1,2725 E-
000-17	002	0,1368	-0,0024	0,0344	2,1037 E-05	-7,8568 E-04	-4,1122 E-(
	003	-0,2749	0,0024	-0,0729	-4,3871 E-05	1,6129 E-03	7,8509 E-
	004	0,1779	0,0012	0,1340	-1,3796 E-05	-1,8334 E-03	8,8125 E-
	005	-0,2952	0,0003	-0,1664	-8,819 E-06	2,5269 E-03	2,5802 E-
00048	001	-0,1042	0,0088	-0,0699	-5,0114 E-05	-9,6837 E-04	1,2841 E-
	002	0,2494	-0,0019	0,1175	2,6311 E-05	1,4633 E-03	-4,708 E-
	003	-0,4693	0,0041	-0,2204	-5,1009 E-05	-2,7448 E-03	8,8566 E-
	004	-0,4317	0,0044	-0,2169	-2,6912 E-05	-2,7157 E-03	2,6254 E-
	005	0,2257	-0,0023	0,1177	2,8999 E-06	1,4732 E-03	1,267 E-0
00049	001	-0,0945	-0,0062	-0,0484	-4,8625 E-05	7,5708 E-04	2,301 E-0
	002	0,1360	-0,0023	0,0335	2,1997 E-05	-7,7627 E-04	-4,205 E-0
	003	-0,2732	0,0043	-0,0712	-4,4869 E-05	1,5961 E-03	8,0441 E-0
	004	0,1771	0,0010	0,1312	-1,4213 E-05	-1,822 E-03	7,4073 E-
	005	-0,2938	0,0004	-0,1630	-8,6386 E-06	2,5098 E-03	2,6188 E-
00050	001	-0,1068	0,0092	-0,0715	-5,1738 E-05	-9,8346 E-04	2,4348 E-
	002	0,2502	-0,0018	0,1187	2,6915 E-05	1,4666 E-03	-4,8975 E-
	003 004	-0,4690	0,0041 0,0048	-0,2219 -0,2177	-5,2836 E-05	-2,7404 E-03	9,1274 E-
	004	-0,4295 0,2248	-0,0024	0,1184	-2,798 E-05 2,5923 E-06	-2,7048 E-03 1,4711 E-03	2,3931 E- 1,3671 E-
00051	003	-0,1024	0,0075	-0,0719	-3,8373 E-05	-9,7161 E-04	1,2785 E-
00031	001	0,2369	-0,0017	0,1171	1,9204 E-05	1,4279 E-03	-3,5459 E-
	002	-0,4423	0,0043	-0,2180	-3,9797 E-05	-2,6565 E-03	6,3647 E-
	004	-0,4042	0,0025	-0,2137	-1,9542 E-05	-2,6198 E-03	3,2045 E-
	005	0,2115	-0,0015	0,1165	6,9369 E-07	1,4276 E-03	6,3077 E-
00052	001	-0,0936	-0,0032	-0,0487	-2,8051 E-05	7,9622 E-04	1,4322 E-
00002	002	0,1326	-0,0020	0,0346	1,6164 E-05	-7,6254 E-04	-2,8501 E-
	003	-0,2669	0,0035	-0,0738	-3,3429 E-05	1,5735 E-03	5,1718 E-
	004	0,1584	0,0029	0,1232	-1,4287 E-05	-1,6937 E-03	2,9453 E-
	005	-0,2726	-0,0004	-0,1560	-1,2522 E-06	2,3745 E-03	4,4354 E-
00053	001	-0,0893	0,0084	-0,0491	-4,1666 E-05	-7,4735 E-04	-9,0411 E-
	002	0,2402	-0,0012	0,1010	1,7723 E-05	1,406 E-03	-3,7644 E-
	003	-0,4466	0,0032	-0,1873	-3,8159 E-05	-2,6048 E-03	7,0492 E-
	004	-0,4096	0,0085	-0,1836	-2,8547 E-05	-2,5725 E-03	-1,4381 E-
	005	0,2175	-0,0006	0,1013	-1,1185 E-07	1,4148 E-03	-1,5376 E-
00054	001	-0,1046	-0,0039	-0,0674	-3,1868 E-05	9,6082 E-04	-7,7545 E-
	002	0,1257	-0,0024	0,0471	1,5079 E-05	-7,6275 E-04	-3,1968 E-
	003	-0,2534	0,0042	-0,0991	-3,2054 E-05	1,5778 E-03	5,8101 E-
	004	0,1509	-0,0030	0,1336	-2,6415 E-05	-1,6782 E-03	-1,2504 E-
	005	-0,2604	-0,0014	-0,1786	1,0695 E-06	2,3777 E-03	-9,2863 E-
00055	001	-0,1090	-0,0011	-0,0660	-1,6419 E-05	9,5122 E-04	5,4366 E-
	002	0,1331	-0,0014	0,0483	1,9557 E-05	-7,9838 E-04	-3,0979 E-
	003	-0,2683	0,0028	-0,1015	-3,7507 E-05	1,6497 E-03	5,6835 E-
	004	0,1441	-0,0278	0,0886	5,2011 E-05	-1,2144 E-03	-4,2561 E-

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Nodi - Spostamenti i	per condizioni di carico noi	ı sismiche
----------------------	------------------------------	------------

Nodo	CC	Sx	Sy	Sz	Θx	Θ _Y	⊛z
		[cm]	[cm]	[cm]	[rad]	[rad]	[rad]
00056	001	-0,0910	0,0060	-0,0498	-2,6026 E-05	-7,5658 E-04	5,276 E-07
	002	0,2429	-0,0019	0,1023	2,1411 E-05	1,4171 E-03	-3,6261 E-05
	003	-0,4501	0,0043	-0,1890	-4,2465 E-05	-2,6156 E-03	6,7295 E-05
	004	-0,0928	0,0362	-0,0461	5,1092 E-05	-6,5267 E-04	-4,2882 E-04
	005	0,2137	-0,0080	0,1008	-5,3824 E-06	1,4083 E-03	8,2064 E-05
00057	001	-0,0659	-0,0195	-0,0425	-1,2628 E-04	5,9544 E-04	-4,2453 E-07
	002	0,0640	0,0133	0,0219	-5,4758 E-06	-3,7302 E-04	1,756 E-04
	003	-0,1291	-0,0242	-0,0463	8,5573 E-06	7,721 E-04	-3,2059 E-04
	004	0,0501	0,0253	0,0227	-9,0203 E-05	-3,6841 E-04	4,1193 E-04
	005	-0,1261	-0,0097	-0,0887	3,8032 E-05	1,1921 E-03	-1,6627 E-04
00058	001	-0,0598	0,0237	-0,0338	-1,3243 E-04	-4,9134 E-04	-4,2264 E-07
	002	0,1317	-0,0182	0,0552	-4,3061 E-06	7,5664 E-04	1,7269 E-04
	003	-0,2455	0,0338	-0,1025	6,1002 E-06	-1,4014 E-03	-3,1461 E-04
	004	0,0818	-0,0229	0,0364	-8,9536 E-05	5,3912 E-04	4,0945 E-04
	005	0,1243	0,0090	0,0560	3,7296 E-05	7,6403 E-04	-1,6303 E-04

LEGENDA:

CC Identificativo della tipologia di carico nella relativa tabella.

Sx, Sy, Le componenti dello spostamento sono relative al sistema di riferimento globale $X,\,Y,\,Z.$

Sz, ⊗x, Θ_Y , Θ_Z

NODI - SPOSTAMENTI PER EFFETTO DEL SISMA

												stamenti per eff	etto del sisma
Nodo	Di	_		_	Stato Limite U						Stato Limite di		
	r	Sx	Sy	Sz	Θx	Θ Υ	Θz	Sx	Sy	Sz	Θx	Θ Υ	Θz [rad]
00001	Х	0,000 0	0,000 0	0,000 0	[rad] 0 E+00	[rad] 0 E+00	[rad] 0 E+00	0,000 0	0,000 0	0,000 0	[rad] 0 E+00	[rad] 0 E+00	0 E+00
00001	Y	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00001	Z	0,000 0	0,000 0	0,000 0	0 E+00	0 E+00	0 E+00	0,000 0	0,000	0,000 0	0 E+00	0 E+00	0 E+00
00002	Х	0,106 3	0,000 0	0,000	-9,2002 E-08	1,4837 E-03	-5,306 E-04	0,024 2	0,000	0,000 0	-2,0918 E-08	3,3734 E-04	-1,2064 E-04
00002	Y	0,052 8	0,248 9	-0,125 7	-1,3976 E-03	3,9078 E-05	-5,4206 E-04	0,012 0	0,056 6	-0,028 6	-3,1777 E-04	8,8851 E-06	-1,2325 E-04
00002	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00
00003	X	0,003	0,000	-0,037 3	3,1238 E-07	3,1364 E-04	6,7612 E-06	0,000	0,000	-0,008 5	7,1026 E-08	7,1312 E-05	1,5373 E-06
00003	Y	0,001	0,116	3	-6,309 E-04	-4,3555 E-06	-1,359 E-04	0,000	0,026	-0,001 4	-1,4345 E-04	-9,903 E-07	-3,0898 E-05
00003	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00004	X	0,375	0,052	0,160	-4,6776 E-11	1,7107 E-03	-5,3249 E-04	0,085	0,011	0,036	-1,0785 E-11	3,8896 E-04	-1,2107 E-04
00004	Y	0,060	0,564	-0,123 8	-1,6181 E-03	3,8993 E-05	-6,8646 E-04	0,013	0,128	-0,028 2	-3,679 E-04	8,8659 E-06	-1,5608 E-04
00004	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00005	X	-0,146 9	-0,048 9	8	-7,1439 E-08	1,4534 E-03	-5,3042 E-04	-0,033 4	-0,011	-0,030 7	-1,6243 E-08	3,3046 E-04	-1,206 E-04
00005	Y	0,045	-0,037 7	-0,127 6	-1,3657 E-03	3,9057 E-05	-5,285 E-04	0,010	-0,008 6	-0,029 0	-3,1053 E-04	8,8805 E-06	-1,2016 E-04
00005	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00006	X	0,055	0,000	0,000	-9,2653 E-08	3,9848 E-04	-3,6818 E-04	0,012	0,000	0,000	-2,1067 E-08	9,0602 E-05	-8,3713 E-05
00006	Y	0,006	0,244	-0,000 3	-1,1889 E-03	3,9079 E-05	-4,2051 E-04	0,001	0,055	-0,000 1	-2,7032 E-04	8,8853 E-06	-9,561 E-05
00006	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00007	Х	0,000	0,000 0	0,000	0 E+00	0 E+00	0 E+00	0,000 0	0,000	0,000 0	0 E+00	0 E+00	0 E+00
00007	Y	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Nodi - Spostamenti per effetto del sisma

00007 Z 00008 X 00008 Y	Di r	S _X	Sy	Sz	Stato Limite U	ltimo					Stato Limite di	Danno	
00007 Z		[cm]		- Jz	63	Ω	ο_	C	Sy	Sz	ο		ω_
00008 X			[cm]	[cm]	Θx [rad]	Θ _Y [rad]	⊕z [rad]	S _X [cm]	[cm]	[cm]	⊕x [rad]	Θ γ [rad]	⊙z [rad]
00008 X		0	0	0				0	0	0			
	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00008 Y	x	0,305 9	-0,000 5	0,000 5	3,7912 E-06	3,5234 E-03	1,4986 E-03	0,069 6	-0,000 1	0,000 1	8,6202 E-07	8,0112 E-04	3,4073 E-04
	Υ .	-0,121 4	0,262 8	0,260 2	-1,8837 E-03	-4,7719 E-05	-8,5749 E-04	-0,027 6	0,059 8	0,059 2	-4,2829 E-04	-1,085 E-05	-1,9497 E-04
00008 Z		0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00009 X	^	-0,305 0	0,142 4	-0,330 7	3,8634 E-06	3,4751 E-03	1,498 E-03	-0,069 4	0,032 4	-0,075 2	8,7841 E-07	7,9013 E-04	3,4061 E-04
00009 Y	Y	-0,115 0	-0,142 3	0,269 3	-1,8412 E-03	-4,7794 E-05	-8,1636 E-04	-0,026 2	-0,032 4	0,061	-4,1863 E-04	-1,0867 E-05	-1,8562 E-04
00009 Z	z	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00010 X		0,937 4	-0,147 1	0,364 4	-3,4178 E-05	3,8929 E-03	1,5852 E-03	0,213 1	-0,033 5	0,082 8	-7,771 E-06	8,8514 E-04	3,6042 E-04
00010 Y	Υ .	-0,135 8	0,708 6	0,271 2	-2,2987 E-03	-4,7118 E-05	-9,5535 E-04	-0,030 9	0,161 1	0,061 7	-5,2265 E-04	-1,0713 E-05	-2,1722 E-04
00010 Z	Z	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00
00011 X	х	0,055	0,000	0,000	3,4153 E-07	4,0358 E-04	7,8514 E-05	0,012 5	0,000	0,000	7,7655 E-08	9,1761 E-05	1,7852 E-05
00011 Y	Υ .	-0,002 1	0,244 5	0,000 1	-7,1471 E-04	-1,391 E-05	-1,2933 E-04	-0,000 5	0,055 6	0,000	-1,625 E-04	-3,1627 E-06	-2,9406 E-05
00011 Z	z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00
00012 X	х	0,058	0,000	0,000	-1,7176 E-07	4,2571 E-04	-3,0289 E-05	0,013 3	0,000	0,000	-3,9053 E-08	9,6794 E-05	-6,8869 E-06
00012 Y	Y	0,000	0,244 5	0,000	-7,7596 E-04	1,7473 E-06	-1,7909 E-04	0,000 1	0,055 6	0,000	-1,7643 E-04	3,9728 E-07	-4,0719 E-05
00012 Z	z	0,000	0,000 0	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00
00013 X	х	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00013 Y	Y	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00013 Z	z	0,000	0,000 0	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00
00014 X	х	0,061	-0,000 1	0,000	1,2098 E-07	4,4136 E-04	-1,4603 E-05	0,013 9	0,000	0,000	2,7507 E-08	1,0035 E-04	-3,3204 E-06
00014 Y	Y	0,000	0,244 3	0,000	-7,6771 E-04	-3,6504 E-07	-1,7474 E-04	0,000	0,055 5	0,000	-1,7455 E-04	-8,2975 E-08	-3,9732 E-05
00014 Z	z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00015 X	х	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00015 Y	Y	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00015 Z	z	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00016 X	х	0,058	-0,000 1	0,000	1,2524 E-06	4,3108 E-04	-1,8142 E-05	0,013 4	0,000	0,000	2,8476 E-07	9,8015 E-05	-4,1251 E-06
00016 Y	Υ .	-0,000 1	0,244	0,000	-7,8855 E-04	-6,7768 E-07	-1,7981 E-04	0,000	0,055	0,000	-1,7929 E-04	-1,541 E-07	-4,0883 E-05
00016 Z	z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00017 X	x	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00017 Y	Y	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00017 Z	z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00018 X	x	0,062	-0,000 1	0,000	8,4263 E-07	4,555 E-04	-2,0891 E-05	0,014 2	0,000	0,000	1,9159 E-07	1,0357 E-04	-4,75 E-06

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 49

	Di				Stato Limite U	Iltimo		Nodi - Spostamenti per effetto del sisma Stato Limite di Danno						
Nodo	r	Sx	Sy	Sz	Θх	Θγ	Θz	Sx	Sy	Sz	Θx	Θγ	Θz	
00018	Y	-0,000	[cm] 0,244	0,000	[rad] -7,87 E-04	[rad] -1,0501 E-06	[rad] -1,7308 E-04	0,000	0,055	0,000	[rad] -1,7894 E-04	[rad] -2,3875 E-07	[rad] -3,9354 E-05	
00018	z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00019	X	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00019	Y	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00019	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00020	X	0,058	0,000	0,000	4,4598 E-07	4,313 E-04	-2.0348 E-05	0,013	0,000	0,000	1,014 E-07	9,8064 E-05	-4,6266 E-06	
00020	Y	-0,000	0,245	0,000	-7,8831 E-04	-6,5225 E-07	-1,7331 E-04	0,000	0,055	0,000	-1,7924 E-04	-1,483 E-07	-3,9405 E-05	
00020	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00021	X	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00021	Y	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00021	z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00021	X	0,062	-0,000	0,000	5,2913 E-07	4,5547 E-04	-2,036 E-05	0,014	0,000	0,000	1,2031 E-07	1,0356 E-04	-4,6292 E-06	
00022	Y	-0,000	1 0,245	0,000	-7,8898 E-04	-7,6386 E-07	-1,7222 E-04	0,000	0 0,055	0,000	-1,7939 E-04	-1,7367 E-07	-3,9157 E-05	
00022	Z	0,000	5 0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
		0,000	0,000	0,000				0,000	0,000	0,000				
00023	X	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00023	Y _	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00023	Z	0,058	0,000	0,000	0 E+00	0 E+00	0 E+00	0,013	0,000	0,000	0 E+00	0 E+00	0 E+00	
00024	X	6 -0,000	0 0,245	0,000	4,8784 E-07	4,2858 E-04	-2,3973 E-05	0,000	0,055	0,000	1,1092 E-07	9,7446 E-05	-5,4509 E-06	
00024	Y	0,000	0,000	0,000	-7,8545 E-04	-6,8398 E-07	-1,6811 E-04	0,000	0,000	0,000	-1,7859 E-04	-1,5551 E-07	-3,8223 E-05	
00024	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00025	X	0	0	0	0 E+00	0 E+00	0 E+00	0	0	0	0 E+00	0 E+00	0 E+00	
00025	Y	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00025	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00026	X	0,061	-0,000 1	0,000	5,1581 E-07	4,4885 E-04	-1,3517 E-05	0,014	0,000	0,000	1,1728 E-07	1,0206 E-04	-3,0735 E-06	
00026	Υ	0,000	0,246 4	0,000 0	-7,8909 E-04	-2,7444 E-07	-1,6725 E-04	0,000	0,056 0	0,000 0	-1,7942 E-04	-6,2431 E-08	-3,8028 E-05	
00026	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00027	Х	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00	
00027	Y	0,000	0,000 0	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000 0	0,000 0	0 E+00	0 E+00	0 E+00	
00027	Z	0,000 0	0,000 0	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000 0	0,000 0	0 E+00	0 E+00	0 E+00	
00028	Х	0,064 6	-0,000 1	0,000	5,3849 E-07	4,6778 E-04	7,3822 E-06	0,014 7	0,000	0,000	1,2244 E-07	1,0636 E-04	1,6785 E-06	
00028	Υ	-0,000 7	0,246 9	0,000	-8,0338 E-04	-4,5912 E-06	-1,8252 E-04	-0,000 2	0,056	0,000	-1,8266 E-04	-1,0439 E-06	-4,1498 E-05	
00028	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00029	Х	0,000		0,000	0 E+00	0 E+00	0 E+00				0 E+00	0 E+00	0 E+00	

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 50

	Di				Stato Limite U	lltima		Nodi - Spostamenti per effetto del sisma Stato Limite di Danno						
Nodo	r	Sx	Sy	Sz	Θ _X	ΘΥ	Θz	Sx	Sy	Sz	Θ _X	ΘΥ	Θz	
		[cm]	[cm]	[cm]	[rad]	[rad]	[rad]	[cm]	[cm]	[cm]	[rad]	[rad]	[rad]	
00029	Υ	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00029	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00030	Х	0,051 7	0,000	0,000	4,3802 E-07	3,84 E-04	-2,266 E-04	0,011 7	0,000	0,000	9,9593 E-08	8,731 E-05	-5,1522 E-05	
00030	Υ	0,003	0,247 4	-0,000 1	-7,1826 E-04	2,0765 E-05	-8,2579 E-05	0,000	0,056	0,000	-1,6331 E-04	4,7213 E-06	-1,8776 E-05	
00030	Z	0,000 0	0,000	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00031	X	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00031	Υ	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00031	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00032	Х	0,070	-0,000 1	0,000	5,4336 E-07	5,0871 E-04	8,3963 E-04	0,016 0	0,000	0,000	1,2355 E-07	1,1567 E-04	1,9091 E-04	
00032	Υ	-0,006 8	0,248 2	0,000	-1,3039 E-03	-4,4471 E-05	-5,4219 E-04	-0,001 6	0,056	0,000	-2,9647 E-04	-1,0112 E-05	-1,2328 E-04	
00032	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00033	Х	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00033	Υ	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00033	Z	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00034	Х	-0,005 6	0,080	-0,041 6	3,4935 E-07	3,8597 E-04	8,3917 E-04	-0,001 3	0,018	-0,009 5	7,9432 E-08	8,7758 E-05	1,908 E-04	
00034	Υ	0,005 0	0,002 8	-0,006 5	-1,1654 E-03	-4,4269 E-05	-5,077 E-04	0,001	0,000	-0,001 5	-2,6498 E-04	-1,0065 E-05	-1,1544 E-04	
00034	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00035	Х	0,247 6	-0,077 7	0,106 5	2,0202 E-06	1,3654 E-03	8,2987 E-04	0,056	-0,017 7	0,024 2	4,5934 E-07	3,1044 E-04	1,8869 E-04	
00035	Υ	-0,009 2	0,657 1	-0,016 0	-2,0508 E-03	-4,5914 E-05	-1,2783 E-03	-0,002 1	0,149 4	-0,003 6	-4,663 E-04	-1,044 E-05	-2,9066 E-04	
00035	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00036	Х	0,006	-0,022 2	-0,028 6	1,3182 E-07	2,3068 E-04	-2,2703 E-04	0,001 5	-0,005 1	-0,006 5	2,9972 E-08	5,245 E-05	-5,162 E-05	
00036	Υ	0,000 4	0,141 1	-0,008 2	-5,4062 E-04	2,1077 E-05	-5,0133 E-05	0,000	0,032	-0,001 9	-1,2292 E-04	4,7923 E-06	-1,1399 E-05	
00036	Z	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00037	X	0,246 9	0,021 7	0,113 8	2,5113 E-06	1,5037 E-03	-2,3969 E-04	0,056 1	0,004	0,025 9	5,7099 E-07	3,4189 E-04	-5,4498 E-05	
00037	Υ	0,008	0,555 5	-0,005 4	-1,6831 E-03	1,8728 E-05	-1,0717 E-03	0,001	3	-0,001 2	-3,8268 E-04	4,2583 E-06	-2,4367 E-04	
00037	Z	0,000 0	0,000 0	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	
00038	Х	0,272 9	-0,000 2	0,122 9	2,7671 E-06	1,5942 E-03	-6,1205 E-06	0,062 0	0	0,027 9	6,2915 E-07	3,6246 E-04	-1,3916 E-06	
00038	Υ	0,000 8	0,581 0	-0,008 5	-1,7624 E-03	-6,7916 E-06	-1,2048 E-03	0,000	0,132	-0,001 9	-4,0071 E-04	-1,5442 E-06	-2,7393 E-04	
00038	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000 0	0	0,000	0 E+00	0 E+00	0 E+00	
00039	Х	0,004 0	-0,001 4	-0,035 2	2,5309 E-07	2,9489 E-04	-1,4053 E-05	0,000	-0,000 3	-0,008 0	5,7545 E-08	6,7051 E-05	-3,1952 E-06	
00039	Υ	0,001 4	0,119 7	-0,006 6	-6,1404 E-04	-3,3705 E-09	-1,2708 E-04	0,000	2	-0,001 5	-1,3961 E-04	-7,9724 E-10	-2,8894 E-05	
00039	Z	0,000 0	0,000 0	0,000 0	0 E+00	0 E+00	0 E+00	0,000 0	0,000	0,000 0	0 E+00	0 E+00	0 E+00	

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

Pag. 51

									Nodi - Spor	stamenti per eff	iatto dal ciema		
	Di				Stato Limite U	Iltimo					Stato Limite di		etto dei Sisilia
Nodo	r	Sx	Sy	Sz	Θx	Θγ	Θz	Sx	SY	Sz	Θx	Θγ	Θz
		[cm]	[cm]	[cm]	[rad]	[rad]	[rad]	[cm]	[cm]	[cm]	[rad]	[rad]	[rad]
00040	X	0,266	0,001	0,121	2,8868 E-06	1,5752 E-03	-2,7354 E-05	0,060	0,000	0,027	6,5638 E-07	3,5815 E-04	-6,2195 E-06
00040	Y	0,002	0,577	-0,008	-1,7364 E-03	-2,6278 E-06	-1,2169 E-03	0,000	0,131	-0,001 8	-3,948 E-04	-5,9751 E-07	-2,7669 E-04
00040	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00041	X	0,004	-0,002 4	-0,033 0	1,9021 E-07	2,7568 E-04	-2,442 E-05	0,001	-0,000 5	-0,007 5	4,3248 E-08	6,2682 E-05	-5,5525 E-06
00041	Y	0,001 4	0,119 5	-0,006 6	-6,0888 E-04	-3,7992 E-07	-1,3444 E-04	0,000	0,027 2	-0,001 5	-1,3844 E-04	-8,6378 E-08	-3,0569 E-05
00041	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000 0	0,000 0	0 E+00	0 E+00	0 E+00
00042	Х	0,259 6	0,002 8	0,120 2	2,9838 E-06	1,5481 E-03	-3,8053 E-05	0,059 0	0,000 6	0,027 3	6,7843 E-07	3,52 E-04	-8,6521 E-06
00042	Y	0,002	0,576 5	-0,008 0	-1,7155 E-03	-3,1742 E-06	-1,2385 E-03	0,000	0,131	-0,001 8	-3,9006 E-04	-7,2172 E-07	-2,816 E-04
00042	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00043	Х	0,003 7	-0,002 0	-0,035 5	1,9452 E-07	3,0275 E-04	-2,0721 E-05	0,000 9	-0,000 5	-0,008 1	4,4229 E-08	6,8838 E-05	-4,7112 E-06
00043	Υ	0,001 5	0,118 2	-0,006 6	-6,0991 E-04	-4,2542 E-07	-1,4481 E-04	0,000	0,026 9	-0,001 5	-1,3868 E-04	-9,6715 E-08	-3,2925 E-05
00043	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00
00044	Х	0,269 1	0,002 5	0,123 9	3,1795 E-06	1,5817 E-03	-3,4852 E-05	0,061	0,000 6	0,028 2	7,2292 E-07	3,5963 E-04	-7,9242 E-06
00044	Y	0,002 0	0,579 4	-0,008 0	-1,713 E-03	-3,4219 E-06	-1,2764 E-03	0,000 5	0,131 7	-0,001 8	-3,8948 E-04	-7,7804 E-07	-2,9021 E-04
00044	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00045	Х	0,004 0	-0,002 0	-0,032 9	7,3811 E-08	2,7877 E-04	-2,0622 E-05	0,000 9	-0,000 5	-0,007 5	1,6782 E-08	6,3384 E-05	-4,6887 E-06
00045	Y	0,001 5	0,117 8	-0,006 6	-6,0675 E-04	-2,7954 E-07	-1,5212 E-04	0,000	0,026 8	-0,001 5	-1,3796 E-04	-6,3556 E-08	-3,4588 E-05
00045	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00046	Х	0,261 2	0,002 5	0,122 4	3,2351 E-06	1,5575 E-03	-3,5166 E-05	0,059 4	0,000 6	0,027 8	7,3557 E-07	3,5412 E-04	-7,9957 E-06
00046	Υ	0,002	0,580 1	-0,008 0	-1,7005 E-03	-3,4642 E-06	-1,305 E-03	0,000 5	0,131	-0,001 8	-3,8665 E-04	-7,8765 E-07	-2,9671 E-04
00046	Z	0,000 0	0,000 0	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00
00047	Х	0,003 6	-0,002 0	-0,035 0	4,3245 E-07	3,0317 E-04	-2,1076 E-05	0,000	-0,000 4	-0,008 0	9,8326 E-08	6,8931 E-05	-4,792 E-06
00047	Υ	0,001 5	0,117 8	-0,006 5	-6,0298 E-04	-6,4333 E-07	-1,5806 E-04	0,000	0,026 8	-0,001 5	-1,371 E-04	-1,4627 E-07	-3,5939 E-05
00047	Z	0,000 0	0,000 0	0,000 0	0 E+00	0 E+00	0 E+00	0,000 0	0,000		0 E+00	0 E+00	0 E+00
00048	Х	0,269 1	0,002 5	0,125 4	3,7694 E-06	1,5816 E-03	-3,6032 E-05	0,061 2	0,000	0,028 5	8,5705 E-07	3,5961 E-04	-8,1927 E-06
00048	Y	0,001 9	0,580 8	1	-1,6874 E-03	-4,0162 E-06	-1,3323 E-03	0,000 4	1	8	-3,8368 E-04	-9,1316 E-07	-3,0292 E-04
00048	Z	0,000 0	0,000	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00
00049	Х	0,003	-0,001 6	-0,032 1	8,0206 E-07	2,798 E-04	-1,8228 E-05	0,000 9	-0,000 4	-0,007 3	1,8236 E-07	6,3619 E-05	-4,1446 E-06
00049	Y	0,001 5	0,116 6	-0,006 6	-6,0317 E-04	-2,3948 E-07	-1,7095 E-04	0,000	0,026 5	-0,001 5	-1,3714 E-04	-5,4467 E-08	-3,8869 E-05
00049	Z	0,000 0	0,000	0,000 0	0 E+00	0 E+00	0 E+00	0,000 0	0,000	0,000 0	0 E+00	0 E+00	0 E+00
00050	Х	0,261 1	0,002 2	0,124 1	4,2889 E-06	1,5571 E-03	-3,3545 E-05	0,059 4	0,000 5	0,028 2	9,7518 E-07	3,5405 E-04	-7,6272 E-06
00050	Y	0,002 1	0,582 7	-0,008 1	-1,6772 E-03	-3,7993 E-06	-1,3665 E-03	0,000 5	0,132 5	-0,001 8	-3,8135 E-04	-8,6387 E-07	-3,1071 E-04
00050	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

	Di				Stato Limite U	Iltimo					Nodi - Spos Stato Limite di	stamenti per eff	etto del sisma
Nodo	r	Sx	Sy	Sz	Θx	Θγ	Θz	Sx	Sy	Sz	Θx	Θ _Υ	⊛z
		[cm]	[cm]	[cm]	[rad]	[rad]	[rad]	[cm]	[cm]	[cm]	[rad]	[rad]	[rad]
		0	0	0				0	0	0			
00051	X	0,245 1	0,001 7	0,119 3	1,3221 E-06	1,4676 E-03	-2,0776 E-05	0,055 7	0,000 4	0,027 1	3,006 E-07	3,3368 E-04	-4,7237 E-06
00051	Υ	0,001 6	0,554 1	-0,006 6	-1,581 E-03	-1,5823 E-06	-1,2608 E-03	0,000 4	0,126 0	-0,001 5	-3,5946 E-04	-3,5975 E-07	-2,8667 E-04
00051	Z	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00
00052	Х	0,003 5	-0,001 4	-0,032 4	1,0483 E-07	2,9517 E-04	-1,416 E-05	0,000 8	-0,000 3	-0,007 4	2,3836 E-08	6,7113 E-05	-3,2195 E-06
00052	Υ	0,001	0,119 5	-0,005 3	-6,2378 E-04	-3,5244 E-07	-9,6638 E-05	0,000	0,027	-0,001 2	-1,4183 E-04	-8,011 E-08	-2,1973 E-05
00052	z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00
00053	Х	0,251 9	0,003 2	0,106 1	-1,3527 E-06	1,5253 E-03	-3,1468 E-05	0,057 3	0,000 7	0,024 1	-3,0756 E-07	3,4681 E-04	-7,1549 E-06
00053	Υ	0,002	0,548 8	-0,006 5	-2,0854 E-03	2,9466 E-06	-3,7819 E-04	0,000 5	0,124 8	-0,001 5	-4,7415 E-04	6,6998 E-07	-8,599 E-05
00053	z	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00
00054	Х	0,002 1	-0,002 9	-0,030 2	-2,9992 E-07	2,8862 E-04	-2,9551 E-05	0,000 5	-0,000 7	-0,006 9	-6,8195 E-08	6,5624 E-05	-6,7191 E-06
00054	Υ	0,001	0,117 9	-0,005 6	-6,6156 E-04	1,877 E-06	-4,9275 E-05	0,000	0,026 8	-0,001 3	-1,5042 E-04	4,2678 E-07	-1,1203 E-05
00054	z	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00055	Х	-0,000 9	0,007 3	-0,028 5	2,8997 E-07	2,7356 E-04	7,9047 E-05	-0,000 2	0,001 7	-0,006 5	6,5931 E-08	6,22 E-05	1,7973 E-05
00055	Υ	0,001 2	0,127 9	-0,003 7	-5,9487 E-04	-1,3852 E-05	-3,2933 E-05	0,000	0,029 1	-0,000 8	-1,3526 E-04	-3,1496 E-06	-7,4884 E-06
00055	Z	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00
00056	Х	0,246 2	-0,007 6	0,105 2	-8,4772 E-07	1,5157 E-03	7,7311 E-05	0,056 0	-0,001 7	0,023 9	-1,9275 E-07	3,4464 E-04	1,7578 E-05
00056	Υ	-0,003 2	0,537 3	-0,007 4	-2,0381 E-03	-1,2702 E-05	-3,3284 E-04	-0,000 7	0,122 2	-0,001 7	-4,6341 E-04	-2,8881 E-06	-7,5677 E-05
00056	Z	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00
00057	Х	0,000	-0,034 0	-0,030 6	-1,6027 E-07	3,0885 E-04	-3,6773 E-04	0,000 1	-0,007 7	-0,007 0	-3,6441 E-08	7,0223 E-05	-8,3612 E-05
00057	Υ	0,002	0,018 2	-0,012 2	-1,1116 E-03	3,9149 E-05	-3,414 E-04	0,000 5	0,004 1	-0,002 8	-2,5275 E-04	8,9014 E-06	-7,7624 E-05
00057	Z	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00058	Х	0,205 1	0,036 2	0,081	-8,6789 E-07	1,1229 E-03	-3,6896 E-04	0,046 6	0,008 2	0,018 6	-1,9733 E-07	2,5531 E-04	-8,3891 E-05
00058	Υ	0,015	0,586	-0,006 3	-2,051 E-03	3,9866 E-05	-5,5281 E-04	0,003	0,133	-0,001 4	-4,6634 E-04	9,0643 E-06	-1,2569 E-04
00058	z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00

LEGENDA:

Direzione del sisma. Dir

Sx, Sy, Le componenti dello spostamento sono relative al sistema di riferimento globale X, Y, Z.

Sz, ⊗x, Θγ, Θz

NODI - SPOSTAMENTI PER ECCENTRICITÀ ACCIDENTALE

Nodi - Spostamenti per eccentricità accidentale Θγ Nodo Dir Θz 0,0000 0,0000 0,0000 0 E+00 0 E+00 0 E+00 X Y 00001 0,0000 0,0000 0,0000 0 E+00 0 E+00 0 E+00 + 0,0000 0,0000 0,0000 0 E+00 0 E+00 0 E+00 0,0000 0,0000 0,0000 0 E+00 0 E+00 0 E+00 0,0000 0,0000 0,0000 0 E+00 0 E+00

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 53

Made	D						Nodi - Spostamenti per	
Nodo	Dir	е	S _X	S _Y	Sz [cm]	Θχ [rad]	⊕ Y [rad]	Oz [rad]
00002	Х	-	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E+00
00002	Y	+	0,0000	0,000	0,000	0 E+00	0 E+00	0 E+00
	Ϋ́		0,0000	0,000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00003	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00004	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00005	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00006	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00007	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00007	X	-	0,0000 0,0000	0,0000 0,0000	0,0000 0,0000	0 E+00 0 E+00	0 E+00 0 E+00	0 E+0 0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
80000	X	<u>-</u>	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E+0
00000	Y	+	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E+0
	Ϋ́		0,0000	0,000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00009	X	_	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Х	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00010	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00011	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00010	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00012	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
		-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00013	X	+	0,0000 0,0000	0,0000	0,0000	0 E+00 0 E+00	0 E+00 0 E+00	0 E+0 0 E+0
00013	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Ϋ́	<u>-</u>	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00014	X		0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E+0
	Y	_	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Х	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00015	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00016	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00017	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00018	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 54

						NC.	di - Spostamenti per ecc	entricita accidentale
Nodo	Dir	е	Sx	Sy	Sz	Θx	Θ _Y	Θz
			[cm]	[cm]	[cm]	[rad]	[rad]	[rad]
	Υ	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00019	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00020	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Υ	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00021	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Х	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00022	X	-	0,000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Υ	+	0,000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Υ	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Х	+	0,000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00023	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00025	Ϋ́	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Ϋ́	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00024	X	<u> </u>	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00021	Ŷ	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Ý	<u> </u>	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00025	X	<u> </u>	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00023	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Ϋ́	<u> </u>	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00026		-		0,0000			0 E+00	0 E+00
00020	X		0,0000		0,0000	0 E+00		
	Y	+	0,0000 0,0000	0,0000	0,0000	0 E+00 0 E+00	0 E+00 0 E+00	0 E+00
		-		0,0000	0,0000			0 E+00
00027	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00027	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00028	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00029	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Υ	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00030	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Υ	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00031	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Х	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00032	X	-	0,000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Ý	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00033	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
50033	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Ϋ́	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00034		_	0,000		0,0000	0 E+00	0 E+00	
00034	X	-		0,0000				0 E+00
	1 Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y		0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 55

						No	di - Spostamenti per ecc	entricità accidentale
Nodo	Dir	е	Sx	Sy	Sz	Θχ	Θγ	Θz
00005	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		[cm]	[cm]	[cm]	[rad]	[rad]	[rad]
00035	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	+	0,0000 0,0000	0,0000 0,0000	0,0000 0,0000	0 E+00 0 E+00	0 E+00 0 E+00	0 E+00 0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00036	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00030	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Ϋ́	<u> </u>	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00037	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-	0,000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Х	+	0,000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00038	X	-	0,000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Υ	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00039	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00040	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00041	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00042	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Υ	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00043	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00044	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00045	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00046	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00046	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	+	0,0000 0,0000	0,0000 0,0000	0,0000	0 E+00	0 E+00 0 E+00	0 E+0
		-			0,0000	0 E+00		0 E+0
00047	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00 0 E+00	0 E+0
00047	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00 0 E+00	0 E+0
	Y	+	0,0000 0,0000	0,0000 0,0000	0,0000 0,0000	0 E+00	0 E+00 0 E+00	0 E+00 0 E+00
		-				0 E+00		
00048	X	+	0,0000 0,0000	0,0000 0,0000	0,0000 0,0000	0 E+00 0 E+00	0 E+00 0 E+00	0 E+0 0 E+0
00040	Ŷ	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	Y	-						
	X		0,0000	0,0000	0,0000	0 E+00 0 E+00	0 E+00 0 E+00	0 E+0 0 E+0
00049		+	0,000	0,000	0,0000	0 E+00	0 E+00 0 E+00	0 E+0 0 E+0
000 1 3	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0 0 E+0
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+0
00050	X	-	0,000	0,000	0,0000	0 E+00	0 E+00	0 E+0
UCUJU	Y	+	0,000	0,000	0,0000	0 E+00	0 E+00 0 E+00	0 E+0
	Y	_	0,000	0,0000	0,0000	0 E+00	0 E+00	0 E+0 0 E+0
		_				0 E+00	0 E+00	0 E+0
	X	+	0,0000 0,0000	0,0000 0,0000	0,0000 0,0000	0 E+00 0 E+00	0 E+00 0 E+00	0 E+0
00051								

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 56

						No	odi - Spostamenti per ecc	entricità accidentale
Nodo	Dir	е	Sx	Sy	Sz	Θx	Θ _Y	Θz
			[cm]	[cm]	[cm]	[rad]	[rad]	[rad]
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00052	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00053	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00054	X	-	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E+00
		+	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E+00
	Y	-	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E+00
	Х	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00055	X	-	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E+00
	Y	+	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E+00
	Y	-	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E+00
	Х	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00056	X	-	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E+00
	Y	+	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E+00
	Y	-	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00057	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	+	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E+00
	Y	-	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E+00
	Х	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00058	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00

LEGENDA:

Dir Direzione del sisma.

S_X, S_Y, Le componenti dello spostamento sono relative al sistema di riferimento globale X, Y, Z.

Sz, ⊗x, Θγ, Θz

TRAVI - SOLLECITAZIONI PER CONDIZIONI DI CARICO NON SISMICHE Travi - Sollecitazioni per condizioni di carico non sismiche Estr. Inz. Estr. Fin. Id_{Tr} CC M_1 M_2 M_2 [N·m] [N·m] [N·m] [N] [N·m] [N·m] [N·m] [N] [N] [N] Piano Terra Travata: Piano Terra Trave Acciaio 13-31a 1.393 1.045 -1 -1 1.784 -174 -222 -92 -95 -95 -4 -389 -23 -4 -23 -4 -4 -294 -92 -95 -222 -95 -174 Trave Acciaio 31a-32a -92 -95 -1 -92 -95 -1 Trave Acciaio 30a-31a -3 -148 -84 -460 -261 -4 -107 -4 -14 -206 -4 -4 -186 -4 -107 -4 Trave Acciaio 12-13 -230 1.409 1.236 -230 -1.777 -47 -642 -159 -296 -210 -47 -27 1.234 -27 -604 -678 -1.346 -576 -25 -180 -144 -341 -762 -25 -218 -73 -144 -216 -106 -151 Trave Acciaio 3a-1a -26 -16 -15 -13 -7 -89 -93 -13 -13

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 57

					-			Travi - S	ollecitazi			carico non	sismiche
Id _{Tr}	СС				r. Inz.						r. Fin.		
		M ₁	M ₂ [N·m]	M ₃ [N·m]	N [N]	T₂ [N]	T ₃	M ₁	M₂ [N·m]	M ₃ [N·m]	N [N]	T₂ [N]	T ₃
	005	0	-7	-89	0	-93	8	0	0	0	0	0	[]
Trave Acciaio 3a-2a	001	0	19	561	-634	364	-12	0	1	15	-316	181	-6
	002	0	-4	-100	0	-98	4	0	0	0	0	0	(
	003	0	6	196	0	191	-6	0	0	0	0	0	C
	004	0	-4	-100	0	-98	4	0	0	0	0	0	C
	005	0	6	196	0	191	-6	0	0	0	0	0	C
Trave Acciaio 11-12	001	0	-1	864	-236	1.488	0	0	0	1.043	-236	-1.702	750
	002	0	301 -586	-145 275	-42 78	-280 536	-585 1.135	0	503 -971	-253 487	-42 78	370 -711	750 -1.451
	003	-47	25	106	12	186	1.133	-47	227	26	12	-156	-1.431
	005	1	-91	68	34	115	173	1	-292	92	34	-140	-316
Frave Acciaio 10-11	001	0	2	856	-279	1.479	-1	0	0	1.067	-279	-1.710	-1
	002	0	302	-145	-45	-282	-583	0	507	-251	-45	371	750
	003	-1	-588	274	83	539	1.132	-1	-979	485	83	-713	-1.451
	004	0	-39	47	9	127	106	0	-75	168	9	-211	-145
	005	-1	-121	78	19	124	215	-1	-167	80	19	-137	-270
Trave Acciaio 9-10	001	1	0	848	-317	1.475	0	1	1	1.065	-317	-1.712	
	002	0	291	-144	-49	-283	-581	0	505	-249	-49	371	753
	003	-1	-567	273	90	542	1.130	-1	-978	482	90	-714	-1.460
	004	-1 1	-38 -92	63 69	28	139 122	91 199	-1 1	-139 -194	138 91	28	-196 -146	-167 -286
Trave Acciaio 8-9	001	1	-1	847	-370	1.473	0	1	0	1.076	-370	-1.716	-200
Trave Acciaio 0-3	001	0	290	-143	-44	-281	-577	0	518	-254	-44	373	757
	003	0	-565	274	84	542	1.124	0	-1.005	494	84	-721	-1.471
	004	0	-45	64	41	139	101	Ö	-115	140	41	-196	-159
	005	0	-89	68	-14	123	194	0	-211	98	-14	-152	-292
Trave Acciaio 7-8	001	0	0	852	-426	1.476	0	0	-1	1.075	-426	-1.717	C
	002	0	291	-143	-38	-282	-579	0	517	-257	-38	375	757
	003	0	-568	273	82	543	1.128	0	-1.005	497	82	-725	-1.474
	004	0	-41	60	58	136	101	0	-123	142	58	-196	-166
	005	0	-89	72	-31	126	193	0	-209	97	-31	-152	-290
Trave Acciaio 6-7	001	0	0 290	854 -143	-487	1.478	0	0	0 519	1.075	-487	-1.717 376	760
	002	0	-568	275	-33 80	-283 548	-580 1.132	0	-1.008	-257 502	-33 80	-732	-1.479
	003	-1	-74	60	75	136	1115	-1	-119	142	75	-196	-159
	005	0	-85	72	-48	130	191	0	-208	102	-48	-159	-289
Trave Acciaio 5-6	001	0	0	849	-556	1.473	0	0	0	1.069	-556	-1.713	
	002	0	286	-142	-32	-283	-575	0	518	-257	-32	377	758
	003	0	-561	273	77	548	1.127	0	-1.008	504	77	-735	-1.479
	004	2	88	60	91	134	63	2	-153	140	91	-194	-220
	005	-1	-109	83	-71	136	197	-1	-203	101	-71	-159	-278
Trave Acciaio 4-5	001	0	0	850	-630	1.471	_0	0	0	1.058	-630	-1.703	
	002	0	289	-141	-32	-280	-574	0	513	-255	-32	374	752
	003	-1 47	-567 -164	274 49	76 112	547 128	1.125 183	-1 47	-1.003 8	500 141	76 112	-731 -195	-1.472 -103
	005	1	139	14	-85	111	117	1	-228	128	-85	-189	-356
Trave Acciaio 3-4	001	0	-1	889	-706	1.498	0	0	0	1.061	-706	-1.709	0
	002	0	300	-146	-34	-287	-586	0	514	-259	-34	380	756
	003	-1	-590	284	79	560	1.151	-1	-1.008	507	79	-741	-1.485
	004	-1	-400	116	120	149	263	-1	-268	112	120	-161	-215
	005	-1	348	-192	-182	-331	-692	-1	186	-152	-182	336	650
Trave Acciaio 2-3	001	0	-2	723	-775	1.423	0	0	0	1.114	-775	-1.762	C
	002	0	248	-145	-26	-283	-562	0	529	-256	-29	374	772
	003	1	-487	285	58	555	1.106	1	-1.041	500	68	-733	-1.520
	004	-47 0	-361 335	348 -164	195 -140	606 -289	915 -579	-47 0	-682 558	382 -252	205 -143	-681 368	-1.196 756
Trave Acciaio 1-2	005	-1	333	1.838	-1.031	1.861	-5/9	-1	-2	680	-1.031	-1.311	-1
THATC ACCIDIO 1 Z	001	-15	223	-128	-20	-274	-568	-15	480	-256	-23	375	764
	002	29	-440	253	35	539	1.117	29	-948	501	45	-735	-1.506
	004	31	136	179	150	509	741	31	-791	532	160	-765	-1.369
	005	-17	-173	-55	-134	-248	-434	-17	550	-274	-137	401	898
Trave Acciaio 3a-1	001	-41	0	57	1	-1.433	1	-41	2	3.590	1	-2.933	1
	002	2	7	0	0	95	168	2	344	-156	0	95	247
	003	-8	-11	3	-1	-189	-333	-8	-680	311	-1	-189	-490
	004	-285	-2	2	3	-45	-83	-285	-75	75	3	-45	-5

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1 Pag. 58

				Fet	tr. Inz.			Γravi - S	onecitazio		ondizioni di tr. Fin.	carico non	sismiche
Id _{Tr}	CC	M ₁	M ₂	M ₃	N	T ₂	T ₃	M ₁	M ₂	M ₃	N	T ₂	T ₃
	005	[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	[N·m]	[N·m]	[N·m]	[N]	[N]	[N]
Trave Acciaio 1-5a	005	279	-2 -86	1.223	-3 1.239	-49 689	-82 48	279 0	-74 -3	81 48	-3 926	-49 515	-4 36
Trave Accidio 1 3a	001	0	90	-1.116	-21	-789	-63	0	0	-1	-10	-338	-28
	003	0	-174	2.164	42	1.530	123	0	0	1	20	654	53
	004	0	-174	2.164	42	1.530	123	0	0	1	20	654	53
	005	0	90	-1.116	-21	-789	-63	0	0	-1	-10	-338	-28
Trave Acciaio 1-4a	001	0	-77 96	1.169 -1.181	-1.282 -44	735 -864	48 -70	0 0	3 0	-50 -1	-980 -29	562 -390	37 -32
	002	-1	-196	2.360	88	1.726	142	-1	0	3	58	782	65
	004	-1	-165	1.937	46	1.362	117	-1	0	1	16	697	59
	005	0	77	-899	-45	-575	-50	0	0	-2	-30	-380	-31
Trave Acciaio 2-7a	001	0	-113	1.612	1.576	876	61	0	-5	70	1.262	702	49
	002	0	174	-2.147	-44	-1.485	-120	0	0	-1	-22	-677	-55
	003 004	-1 -1	-333 -333	4.146 4.146	85 85	2.869 2.869	230 230	-1 -1	0 0	2 2	41 41	1.307 1.307	105 105
	005	0	174	-2.147	-44	-1.485	-120	0	0	-1	-22	-677	-55
Trave Acciaio 2-6a	001	0	-101	1.571	-1.643	942	61	0	6	-88	-1.329	763	49
	002	1	186	-2.335	-82	-1.640	-130	1	0	-4	-55	-759	-62
	003	-2	-384	4.664	168	3.275	269	-2	0	7	110	1.516	125
	004 005	-2 1	-343 169	4.088	82 -82	2.838	239 -112	-2 1	0	2 -4	24 -55	1.367 -759	114 -62
Trave Acciaio 3-9a	003	0	-113	-2.055 1.626	1.582	-1.352 880	61	0	-5	76	1.268	706	49
Trave Accidio 5 3a	001	0	174	-2.159	-47	-1.490	-120	0	0	-1	-24	-682	-55
	003	-1	-332	4.152	90	2.868	229	-1	0	3	44	1.309	105
	004	0	-87	1.133	18	831	64	0	0	1	9	311	24
	005	0	174	-2.159	-47	-1.490	-120	0	0	-1	-24	-682	-55
Trave Acciaio 3-8a	001	0	-102	1.611	-1.650	947	60	0	4	-66	-1.336	767	48
	002	0 -1	176 -358	-2.316 4.621	-60 123	-1.629 3.250	-123 250	0 -1	0	-2 4	-36 73	-739 1.476	-57 116
	003	-1	-329	4.192	80	2.887	227	-1	0	1	30	1.402	110
	005	0	159	-2.034	-60	-1.340	-106	0	0	-2	-36	-739	-57
Trave Acciaio 4-11a	001	0	-113	1.632	1.581	879	61	0	-6	81	1.266	705	49
	002	0	174	-2.159	-50	-1.489	-120	0	0	-2	-25	-680	-55
	003	-1 0	-330	4.131	94	2.852	228	-1 0	0 0	3	46	1.298	104
	004	0	-85 174	1.108 -2.159	22 -50	814 -1.489	63 -120	0	0	1 -2	11 -25	301 -680	23 -55
Trave Acciaio 4-10a	001	0	-102	1.597	-1.650	946	60	0	5	-76	-1.335	766	49
	002	0	171	-2.307	-62	-1.626	-119	0	0	-2	-37	-737	-55
	003	-1	-343	4.603	121	3.242	241	-1	0	4	72	1.472	111
	004	0	-76	950	4	637	51	0	0	0	-6	338	26
Tuessa Appieia E 12a	005	0	-85	1.199	12	906	64	0	0	0	-2	323	23
Trave Acciaio 5-13a	001	0 1	-113 173	1.635 -2.160	1.578 -54	877 -1.489	60 -119	0 1	-6 0	86 -2	1.263 -26	703 -678	49 -54
	002	-1	-326	4.110	100	2.838	226	-1	0	3	49	1.288	101
	004	-1	-326	4.110	100	2.838	226	-1	0	3	49	1.288	101
	005	1	173	-2.160	-54	-1.489	-119	1	0	-2	-26	-678	-54
Trave Acciaio 5-12a	001	0	-101	1.577	-1.642	942	61	0	6	-86	-1.329	763	49
	002	1	175	-2.343	-81	-1.644	-122	1	0	-4	-54	-758	-58
	003	-1 1	-349 175	4.678 -2.343	161 -81	3.280 -1.644	245 -122	-1 1	0	-4	106 -54	1.515 -758	113 -58
	005	-1	-326	4.382	75	3.132	233	-1	0	i	21	1.366	101
Trave Acciaio 6-15a	001	0	-113	1.649	1.584	881	60	0	-6	91	1.269	706	48
	002	1	173	-2.171	-57	-1.495	-119	1	0	-2	-28	-681	-54
	003	-1	-322	4.114	109	2.836	221	-1	0	4	52	1.288	101
	004	-1 1	-322 173	4.114	109 -57	2.836 -1.495	221 -119	-1 1	0 0	4 -2	52 -28	1.288 -681	101 -54
Trave Acciaio 6-14a	005	0	173 -102	-2.171 1.568	-1.645	944	-119	0	6	-2 -97	-1.332	765	-5 4 50
	002	1	178	-2.344	-88	-1.645	-124	1	0	-4	-57	-761	-58
	003	-1	-351	4.680	175	3.283	246	-1	-1	8	113	1.520	114
	004	1	178	-2.344	-88	-1.645	-124	1	0	-4	-57	-761	-58
	005	-1	-328	4.383	89	3.134	234	-1	0	2	27	1.371	102
Trave Acciaio 7-17a	001	0	-113	1.660	1.588	883	60	0	-7	97	1.272	708	48
	002	1 -1	169 -321	-2.178 4.106	-60 113	-1.498 2.827	-115 221	1 -1	0 0	-2 4	-29 54	-683 1.285	-54 100
	003	-1 -1	-321	4.106	113	2.827	221	-1	0	4	54	1.285	100

CC

M₁

M₂

IdTr

Trave Acciaio 12-27a

Trave Acciaio 26a-12

Trave Acciaio 13-29a

Trave Acciaio 28a-13

IMPIANTO FOTOVOLTAICO "MONTALTO -PESCIA"

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

T₃

M₁

[N·m]

M₂

[N·m]

Estr. Inz.

Мз

30/03/2021

Travi - Sollecitazioni per condizioni di carico non sismiche

Estr. Fin.

REV: 1

Pag. 59

	005	1	169	-2.178	-60	-1.498	-115	1	0	-2	-29	-683	-54
Frave Acciaio 7-16a	001	0	-102	1.555	-1.645	944	62	0	7	-107	-1.332	765	50
	002	1	180	-2.341	-97	-1.644	-127	1	0	-5	-61	-761	-59
	003	-1	-355	4.671	189	3.278	249	-1	-1	10	120	1.522	116
	004	1	180	-2.341	-97	-1.644	-127	1	0	-5	-61	-761	-59
	005	-1	-331	4.372	103	3.128	237	-1	0	3	33	1.372	104
rave Acciaio 8-19a	001	0	-113	1.666	1.588	883	60	0	-7	102	1.271	708	48
	002	1	169	-2.181	-64	-1.498	-115	1	0	-2	-30	-682	-54
	003	-1	-319	4.091	118	2.813	220	-1	0	5	57	1.277	99
	004	-1	-319	4.091	118	2.813	220	-1	0	5	57	1.277	99
	005	1	169	-2.181	-64	-1.498	-115	1	0	-2	-30	-682	-54
Frave Acciaio 8-18a	001	0	-102	1.539	-1.641	942	62	0	8	-117	-1.330	763	51
Trave recials o 1sa	002	1	181	-2.332	-102	-1.639	-127	1	0	-6	-63	-760	-59
	003	-1	-358	4.655	200	3.272	252	-1	-1	11	125	1.518	116
	004	1	181	-2.332	-102	-1.639	-127	1	0	-6	-63	-760	-59
	005	-1	-334	4.357	114	3.122	240	-1	0	3	38	1.369	104
Frave Acciaio 9-21a	001	0	-112	1.674	1.588	883	59	0	-7	107	1.271	708	47
Trave Accidio 5 21a	002	1	168	-2.181	-65	-1.497	-114	1	0	-3	-31	-681	-53
	003	-1	-311	4.075	122	2.800	214	-1	0	5	60	1.269	97
	003	-1	-311	4.075	122	2.800	214	-1	0	5	60	1.269	97
	005	1	168	-2.181	-65	-1.497	-114	1	0	-3	-31	-681	-53
Trave Acciaio 9-20a	001	0	-103	1.521	-1.635	938	63	0	9	-126	-1.325	760	52
Trave Accidio 5 200	002	1	182	-2.320	-105	-1.633	-128	1	0	-6	-66	-757	-60
	003	-2	-362	4.632	210	3.261	255	-2	-1	12	129	1.510	118
	003	1	182	-2.320	-105	-1.633	-128	1	0	-6	-66	-757	-60
	005	-1	-338	4.336	125	3.113	243	-1	0	4	44	1.362	106
Trave Acciaio 10-23a	001	0	-110	1.703	1.549	931	60	0	-6	93	1.249	749	48
Tave Accidio 10 25a	002	0	151	-2.155	-23	-1.502	-105	0	0	-1	-10	-706	-49
	003	0	-275	4.008	41	2.794	193	0	0	2	21	1.311	89
	004	0	-275	4.008	41	2.794	193	0	0	2	21	1.311	89
	005	0	151	-2.155	-23	-1.502	-105	0	0	-1	-10	-706	-49
Trave Acciaio 22a-10	001	0	1	10	-1.368	-674	47	0	103	1.462	-1.685	-828	59
Trave Accidio 22a 10	002	0	0	0	-21	759	-49	0	-149	-2.306	-15	1.632	-105
	002	0	0	0	38	-1.516	97	0	296	4.607	25	-3.260	210
	003	0	0	0	-21	757	-49	0	-130	-2.027	-15	1.345	-86
	005	0	0	0	-38	-1.360	87	0	258	4.031	-51	-2.820	181
Frave Acciaio 11-25a	003	0	-98	1.499	1.548	930	61	0	6	-94	1.250	750	49
Trave Acciaio 11-23a	001	0	151	-2.138	-26	-1.505	-106	0	0	1	-12	-714	-50
	002	0	-275	3.959	47	2.789	194	0	0	-2	23	1.320	91
	003	0	-275	3.959		2.789		0	0	-2 -2	23		- 1
	004	0			47		194	0	0	1	-12	1.320	91 -50
Ai-i- 24- 11	_		151	-2.138	-26	-1.505	-106					-714	
Trave Acciaio 24a-11	001 002	0	6	88 4	-1.334	-741 762	52 50	0	118	1.684	-1.643 -95	-911	64
		0	0		-60 120	762 1 E21	-50	0 -1	-149	-2.304		1.631	-105
	003	-1	-1	-8	120	-1.521	97	_	294	4.608	189	-3.264	208
	004 005	0 -1	0	4 -2	-60	751	-49 87	0 -1	-131 258	-2.010	-95	1.337 -2.820	-87 101
	005	-1	U	-2	36	-1.361	87	-1	258	4.029	105	-2.020	181

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

001

002

003

004

005

001

002

003

004

005

001

002

003

004

005

001

002

003

004

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

1.507

-2.148

3.963

1.053

-2.148

43

2

-4

2

990

-1.120

2.069

-1.120

-838

45

2

-4 2

-98

151

-276

-72

151

3

0

0

0

0

-64

78

-146

59

78

3

0

0

0

1.549

-27

50

11

-27

-62

125

-62

41

1.066

-13

25

-14

-13

-816

-35

71

-35

-1.334

931

-1.506

2.782

-1.506

-741

759

756

641

-801

1.482

-517

-801

-453

388

-775

378

-1.515

-1.362

783

60

-106

194

-106

54

53

-50

98

-50

88

42

-56

105

-36

-56

32

-26

50

-25

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

6

0

0

0

0

119

-153

307

-133

268

0

0

0

0

77

-79

159

-59

-94

1

-2

0

1

1.679

-2.336

4.667

-2.042

4.079

-57

0

-1

1

0

1.083

-1.211

2.416

-917

1.250

-12

25

5

-12

-99

199

-99

116

767

-6

13

-7

-6

-1.125

-54

109

-54

-1.650

750

-712

1.310

307

-712

-915

1.630

-3.258

1.336

-2.814

460

-358

658

-345

-358

-623

871

577

-1.738

49

-50

91

21

-50

65

-106

216

-86

186

30

-25

46

-24

-25

44

-56

116

-36

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Travi - Sollecitazioni per condizioni di carico non sismiche

T.4	CC			Est	r. Inz.					Est	r. Fin.		
Iα _{Tr}	CC	M ₁	M ₂	M ₃	N	T ₂	T ₃	M ₁	M ₂	M ₃	N	T ₂	T ₃
		[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	[N·m]	[N·m]	[N·m]	[N]	[N]	[N]
	005	0	0	-1	18	-671	43	0	128	1.944	57	-1.350	89

LEGENDA:

 Id_{Tr} Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato.

CC Identificativo della tipologia di carico nella relativa tabella. Estr.

Sollecitazione caratteristiche relative al sistema di riferimento locale 1, 2, 3 (N > 0: compressione).

Inz./Fin.

PILASTRI - SOLLECITAZIONI PER CONDIZIONI DI CARICO NON SISMICHE

								FIIC	35011 - 50110		er condizio	in ar caric	J 11011 313111	ICHE
Id _{Pil}	CC				. Inf.					Estr.	_			Lv
-4.11		M ₁	M ₂	M ₃	N	T ₂	T ₃	M ₁	M ₂	Mз	N	T ₂	T ₃	
		[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	_
						a: Piano			2.12					
Pilastro Acciaio 13	001	0	-149	79	7.152	-2	230	0	348	83	6.092	-2	230	
	002	-2	-48	-5.077	-1.254	-2.393	48	-2	55	92	-1.254	-2.393	48	
	003	3	94	9.668	2.414	4.640	-92	3	-104	-355	2.414	4.640	-92	
	004	-4	-81	-2.617	-633	-1.269	138	-4	218	123	-633	-1.269	138	01
	005	2	38	-2.072	200	468	-61	2	-94	-3.082	200	468	-61	01
Pilastro Acciaio 12	001	0	10	65	7.868	0	6	0	23	65	6.808	0	6	01
	002	0	-10	-8.770	-2.182	-4.159	-5	0	-22	213	-2.182	-4.159	-5	01
	003	-1	24	16.578	4.182	8.023	6	-1	36	-751	4.182	8.023	6	01
	004	5	133	436	-343	-1.250	-160	5	-213	3.136	-343	-1.250	-160	01
	005	-1	-26	-2.107	767	1.917	29	-1	36	-6.247	767	1.917	29	
Pilastro Acciaio 11	001	0	-17	50	7.945	1	43	0	74	49	6.885	1	43	_
	002	0	-16	-8.682	-2.170	-4.100	3	0	-10	175	-2.170	-4.100	3	
	003	-1	34	16.460	4.168	7.929	-7	-1	18	-667	4.168	7.929	-7	
	003	0	18	9.104	1.303	1.460	Ó	0	19	5.949	1.303	1.460	0	1 -
	005	0	-18	-2.512	747	1.705	17	0	20	-6.195	747	1.705	17	1 -
Pilastro Acciaio 10	001	0	-15	37	7.939	-1	37	0	65	39	6.879	-1	37	
Pliastro Acciaio 10														
	002	0	-18	-8.718	-2.164	-4.101	4	0	-9	141	-2.164	-4.101	4	1 -
	003	-1	37	16.567	4.169	7.938	-10	-1	15	-580	4.169	7.938	-10	
	004	0	35	9.109	1.212	1.422	-23	0	-14	6.037	1.212	1.422	-23	
	005	0	-18	-2.385	786	1.760	18	0	20	-6.186	786	1.760	18	
Pilastro Acciaio 9	001	0	-29	-38	7.956	-1	54	0	89	-36	6.895	-1	54	
	002	0	-13	-8.735	-2.175	-4.101	-3	0	-19	122	-2.175	-4.101	-3	
	003	-1	28	16.660	4.197	7.956	2	-1	34	-526	4.197	7.956	2	01
	004	0	33	8.914	1.079	1.161	-19	0	-9	6.406	1.079	1.161	-19	01
	005	0	-21	-2.196	944	2.001	22	0	27	-6.518	944	2.001	22	01
Pilastro Acciaio 8	001	0	-32	-118	7.961	0	56	0	89	-118	6.900	0	56	01
	002	0	-14	-8.710	-2.182	-4.102	-1	0	-16	151	-2.182	-4.102	-1	01
	003	-1	30	16.651	4.219	7.970	0	-1	30	-565	4.219	7.970	0	01
	004	0	34	8.992	1.076	1.188	-21	0	-11	6.426	1.076	1.188	-21	01
	005	0	-22	-2.240	961	1.995	23	0	27	-6.548	961	1.995	23	
Pilastro Acciaio 7	001	0	-38	-144	7.969	-2	61	0	94	-141	6.909	-2	61	_
Tildoti o Atecidio 7	002	0	-14	-8.715	-2.186	-4.110	-1	0	-16	163	-2.186	-4.110	-1	
	003	-1	32	16.701	4.241	7.994	-2	-1	28	-566	4.241	7.994	-2	
	004	0	35	9.030	1.069	1.194	-23	0	-13	6.452	1.069	1.194	-23	
	005	0	-22	-2.260	986	1.991	23	0	28	-6.561	986	1.991	23	
Pilastro Acciaio 6	001	0	-45	-167	7.963	-1	68	0	102	-165	6.902	-1	68	
Pilastro Acciaio o		- 1						- 1						
	002	0	-15	-8.692	-2.193	-4.104	0	0	-15	174	-2.193	-4.104	0	
	003	-1	31	16.722	4.264	8.004	-1	-1	30	-568	4.264	8.004	-1	
	004	0	36	9.231	1.059	1.282	-22	0	-12	6.461	1.059	1.282	-22	
	005	0	-26	-2.296	1.008	1.976	28	0	34	-6.564	1.008	1.976	28	
Pilastro Acciaio 5	001	0	-52	-191	7.937	-1	74	0	107	-188	6.876	-1	74	1 -
	002	0	-15	-8.640	-2.188	-4.085	-1	0	-17	184	-2.188	-4.085	-1	
	003	-1	32	16.686	4.265	7.988	-2	-1	29	-569	4.265	7.988	-2	
	004	-1	39	8.843	1.047	1.124	-26	-1	-18	6.415	1.047	1.124	-26	01
	005	0	-18	-2.118	1.061	2.055	17	0	18	-6.557	1.061	2.055	17	01
Pilastro Acciaio 4	001	0	-56	-215	7.954	-2	75	0	106	-211	6.893	-2	75	01
	002	0	-17	-8.630	-2.196	-4.064	2	0	-12	149	-2.196	-4.064	2	01
	003	-1	37	16.725	4.291	7.963	-7	-1	21	-476	4.291	7.963	-7	
	004	-1	32	3.793	1.025	1.662	-16	-1	-3	203	1.025	1.662	-16	1 -
	005	-2	-80	-5.554	-553	-1.015	102	-2	141	-3.362	-553	-1.015	102	
Pilastro Acciaio 3	001	0	-55	-233	8.036	-1	68	0	92	-231	6.975	-1		01

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Pilastri - Sollecitazioni per condizioni di carico non sismiche

Id _{Pil}	СС			Estr.	Inf.					Estr.	Sup.			Lv
IUPil	CC	M ₁	M ₂	M ₃	N	T ₂	T 3	M ₁	M ₂	Mз	N	T ₂	T ₃	LV
		[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	
	002	0	-16	-8.690	-2.200	-4.097	0	0	-16	159	-2.200	-4.097	0	01
	003	-1	35	16.907	4.303	8.048	-4	-1	26	-475	4.303	8.048	-4	01
	004	3	94	7.235	2.638	4.748	-103	3	-127	-3.021	2.638	4.748	-103	01
	005	1	13	-8.627	-2.093	-3.936	-29	1	-51	-125	-2.093	-3.936	-29	01
Pilastro Acciaio 2	001	0	-193	-205	7.494	0	255	0	359	-204	6.433	0	255	01
	002	1	-19	-8.617	-2.177	-4.083	5	1	-8	204	-2.177	-4.083	5	01
	003	-1	43	16.812	4.270	8.037	-15	-1	11	-548	4.270	8.037	-15	01
	004	0	20	15.712	4.208	7.287	4	0	28	-28	4.208	7.287	4	01
	005	0	-16	-8.678	-2.066	-3.983	10	0	6	-75	-2.066	-3.983	10	01
Pilastro Acciaio 1	001	0	723	-107	8.752	-5	-1.032	0	-1.506	-96	7.691	-5	-1.032	01
	002	2	-6	-4.863	-1.170	-2.273	-14	2	-36	47	-1.170	-2.273	-14	01
	003	-3	17	9.521	2.304	4.482	22	-3	64	-161	2.304	4.482	22	01
	004	-7	-71	7.635	1.985	3.284	131	-7	213	541	1.985	3.284	131	01
	005	4	79	-4.054	-855	-1.639	-123	4	-186	-514	-855	-1.639	-123	01

LEGENDA:

 $\boldsymbol{Id_{Pil}}$ Identificativo del Pilastro.

CC Identificativo della tipologia di carico nella relativa tabella.

Lv Identificativo del livello, nella relativa tabella.

Estr. Sollecitazione caratteristiche relative al sistema di riferimento locale 1, 2, 3 (N > 0: compressione).

Inf./Sup.

PILASTRI - SOLLECITAZIONI PER EFFETTO DEL SISMA

										Pila			i per effe	tto del si	sma
Id _{Pil}	Dir	Dist			Estr.	Inf.					Estr.	Sup.			Lv
IUPII	Dii	r	M ₁	M ₂	M ₃	N	T ₂	T ₃	M ₁	M ₂	M ₃	N	T ₂	T 3	LV
			[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	
						a: Piano 1									
Pilastro Acciaio 13	X	-	1	0	-2.346	0	-879	0	1	0	-446	0	-879	0	1 -
	Y	-	1	1.028	-275	483	-128	-694	1	-470	1	483	-128	-694	1 -
	Z	-	0	0	0	0	0	0	0	0	0	0	0	0	01
Pilastro Acciaio 12	X	-	0	0	-2.310	0	-830	0	0	0	-517	0	-830	0	01
	Y	-	0	1.244	99	-105	46	-997	0	-909	-1	-105	46	-997	01
	Z	-	0	0	0	0	0	0	0	0	0	0	0	0	01
Pilastro Acciaio 11	X	-	0	0	-2.476	-1	-912	0	0	0	-506	-1	-912	0	01
	Y	-	1	1.216	-15	14	-8	-957	1	-852	2	14	-8	-957	01
	Z	-	0	0	0	0	0	0	0	0	0	0	0	0	01
Pilastro Acciaio 10	X	-	0	0	-2.579	1	-956	0	0	0	-513	1	-956	0	01
	Y	-	1	1.219	1	3	0	-962	1	-859	2	3	0	-962	01
	Z	-	0	0	0	0	0	0	0	0	0	0	0	0	01
Pilastro Acciaio 9	X	-	0	0	-2.466	0	-885	0	0	-1	-554	0	-885	0	01
	Υ	-	1	1.210	3	4	0	-949	1	-840	2	4	0	-949	01
	Z	-	0	0	0	0	0	0	0	0	0	0	0	0	01
Pilastro Acciaio 8	X	-	0	0	-2.640	0	-967	0	0	0	-551	0	-967	0	01
	Υ	-	1	1.214	6	-1	2	-953	1	-844	2	-1	2	-953	01
	Z	-	0	0	0	0	0	0	0	0	0	0	0	0	01
Pilastro Acciaio 7	X	-	0	0	-2.467	0	-886	0	0	0	-554	0	-886	0	01
	Υ	-	1	1.214	3	0	0	-953	1	-844	2	0	0	-953	01
	Z	-	0	0	0	0	0	0	0	0	0	0	0	0	01
Pilastro Acciaio 6	X	-	0	0	-2.640	0	-967	0	0	0	-551	0	-967	0	01
	Υ	-	1	1.216	3	2	1	-955	1	-846	2	2	1	-955	01
	Z	-	0	0	0	0	0	0	0	0	0	0	0	0	01
Pilastro Acciaio 5	X	-	0	0	-2.453	0	-881	0	0	0	-550	0	-881	0	01
	Υ	-	1	1.220	3	3	0	-959	1	-852	2	3	0	-959	01
	Z	-	0	0	0	0	0	0	0	0	0	0	0	0	01
Pilastro Acciaio 4	X	-	0	0	-2.593	0	-945	0	0	0	-552	0	-945	0	01
	Υ	-	1	1.222	0	-3	-1	-960	1	-852	2	-3	-1	-960	01
	Z	-	0	0	0	0	0	0	0	0	0	0	0	0	01
Pilastro Acciaio 3	X	-	0	0	-2.728	0	-1.009	0	0	0	-549	0	-1.009	0	01
	Υ	-	1	1.219	31	-14	14	-954	1	-842	1	-14	14	-954	01
	Z	-	0	0	0	0	0	0	0	0	0	0	0	0	01
Pilastro Acciaio 2	X	-	1	0	-2.136	0	-732	0	1	0	-554	0	-732	0	01
	Υ	-	0	1.261	-150	128	-72	-1.012	0	-925	5	128	-72	-1.012	01
	Z	-	0	0	0	0	0	0	0	0	0	0	0	0	01

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Pilastri - Sollecitazioni per effetto del sisma

Dilactri - Callacitazioni nor accontricità accidentale

Id _{Pil}	Dir	Dist			Estr.	Inf.			Estr. Sup.					1	
IUPil	DIF	r	M ₁	M ₂	M ₃	N	T ₂	T ₃	M ₁	M ₂	M ₃	N	T ₂	T 3	Lv
			[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	
Pilastro Acciaio 1	X	-	-3	0	-2.966	0	-1.096	0	-3	0	-598	0	-1.096	0	01
	Y	-	2	997	312	-514	145	-640	2	-385	-1	-514	145	-640	01
	Z	-	0	0	0	0	0	0	0	0	0	0	0	0	01

LEGENDA:

 Id_{Pil} Identificativo del Pilastro. Dir Direzione del sisma.

Distribuzione delle forze (OP = Principale non richiesta; 1P = Principale proporzionale alle forze statiche; 2P = Proporzionale I Modo vibrazione; 3P = Principale proporzionale ai taglianti; 0S = Secondaria non richiesta; 1S = Secondaria proporzionale alle masse; 2S = secondaria multimodale). Distr

Identificativo del livello, nella relativa tabella. Lv

Sollecitazione caratteristiche relative al sistema di riferimento locale 1, 2, 3 (N > 0: compressione). Estr.

Inf./Sup.

PILASTRI - SOLLECITAZIONI PER ECCENTRICITÀ ACCIDENTALE

Main	T ₂ [N] -261 261 -38 38 -206 206 14 -14 -182 182 -2 2 -144	T ₃ [N] 0 0 0 -208 208 0 0 -299 299 0 0 0	0 0 3 0 3 0 0 0 0 0 0 0
No. No.	-261 261 -38 38 -206 206 14 -14 -182 182 -2	0 0 -208 208 0 0 -299 299	0 0 0 0 3 0 3 0 0 0 0 0 0 0
Pilastro Acciaio 13	-261 261 -38 38 -206 206 14 -14 -182 182 -2 2	0 0 -208 208 0 0 -299 299	0 0 3 0 3 0 0 0 0 0 0 0
Pilastro Acciaio 13	261 -38 38 -206 206 14 -14 -182 182 -2 2	0 -208 208 0 -299 299	0 0 3 0 3 0 0 0 0 0 0 0
X	261 -38 38 -206 206 14 -14 -182 182 -2 2	0 -208 208 0 -299 299	0 0 3 0 3 0 0 0 0 0 0 0
Y	-38 38 -206 206 14 -14 -182 182 -2 2	-208 208 0 0 -299 299	3 0 3 0 0 0 0 0 9 0
Pilastro Acciaio 12	38 -206 206 14 -14 -182 182 -2 2	208 0 0 -299 299	3 0 0 0 0 0 9 0
Pilastro Acciaio 12	-206 206 14 -14 -182 182 -2 2	0 0 -299 299 0	0 0 0 0 0 0 0
X	206 14 -14 -182 182 -2 2	0 -299 299 0	0 9 0 9 0
Y	14 -14 -182 182 -2 2	-299 299 0	9 0
Pilastro Acciaio 11	-14 -182 182 -2 2	299 0	9 0
Pilastro Acciaio 11	-182 182 -2 2	0	
Pilastro Acciaio 11	-182 182 -2 2	0	
X	182 -2 2		, 1 U
Y + 0 365 b -4 b 4 b -2 b -287 b 0 -256 b 1 b 4 b Pilastro Acciaio 10 X + 0 -365 b 4 b -4 b 2 b 287 b 0 b 256 b -1 b -4 b Pilastro Acciaio 10 X + 0 0 b -388 b 0 b -144 b 0 b 0 b 0 b -77 b 0 b X - 0 0 b 388 b 0 b 144 b 0 b 0 b 0 b 77 b 0 b Y + 0 b 366 b 0 b 1 b 0 b -289 b 0 c -258 b 1 b 1 b Y - 0 c -366 b 0 c -1 c 0 c 289 c 0 c 258 c -1 c -1 c Pilastro Acciaio 9 X + 0 c 0 c -250 c 0 c -90 c 0 c 0 c 0 c -56 c 0 c	-2 2	_	
Pilastro Acciaio 10	2	-287	
Pilastro Acciaio 10		287	1 -
X		0	_
Y + 0 366 0 1 0 -289 0 -258 1 1 Y - 0 -366 0 -1 0 289 0 258 -1 -1 Pilastro Acciaio 9 X + 0 0 -250 0 -90 0 0 0 0 -56 0 X - 0 0 250 0 90 0 0 0 56 0 Y + 0 363 1 1 0 -285 0 -252 1 1 Y - 0 -363 -1 -1 0 285 0 252 -1 -1	144	0	. .
Y - 0 -366 0 -1 0 289 0 258 -1 -1 Pilastro Acciaio 9 X + 0 0 -250 0 -90 0 0 0 0 -56 0 X - 0 0 250 0 90 0 0 0 56 0 Y + 0 363 1 1 0 -285 0 -252 1 1 Y - 0 -363 -1 -1 0 285 0 252 -1 -1	0	-289	
Pilastro Acciaio 9	0	289	
X - 0 0 250 0 90 0 0 0 56 0 Y + 0 363 1 1 0 -285 0 -252 1 1 Y - 0 -363 -1 -1 0 285 0 252 -1 -1			
Y + 0 363 1 1 0 -285 0 -252 1 1 Y - 0 -363 -1 -1 0 285 0 252 -1 -1	-90	0	
Y - 0 -363 -1 -1 0 285 0 252 -1 -1	90	0	
	0	-285	
	0	285	
Pilastro Acciaio 8 X + 0 0 -139 0 -51 0 0 0 -29 0	-51	0	
X - 0 0 139 0 51 0 0 29 0	51	0	
Y + 0 364 2 0 1 -286 0 -253 1 0	1	-286	
Y - 0 -364 -2 0 -1 286 0 253 -1 0	-1	286	_
Pilastro Acciaio 7 X + 0 0 -9 0 -3 0 0 0 -2 0	-3	0	
X - 0 0 9 0 3 0 0 2 0	3	0	
Y + 0 364 1 0 0 -286 0 -253 1 0	0	-286	
Y - 0 -364 -1 0 0 286 0 253 -1 0	0	286	5 0
Pilastro Acciaio 6 X + 0 0 -120 0 -44 0 0 0 -25 0	-44	0	0 0
X - 0 0 120 0 44 0 0 0 25 0	44	0	0 0
Y + 0 365 1 1 0 -286 0 -254 1 1	0	-286	5 0
Y - 0 -365 -1 -1 0 286 0 254 -1 -1	0	286	5 0
Pilastro Acciaio 5 X + 0 0 -231 0 -83 0 0 0 -52 0	-83	0	0 0
X - 0 0 231 0 83 0 0 52 0	83	0	0 0
Y + 0 366 1 1 0 -288 0 -256 1 1	0	-288	3 0
Y - 0 -366 -1 -1 0 288 0 256 -1 -1	0	288	
Pilastro Acciaio 4 X + 0 0 -370 0 -135 0 0 0 -79 0	-135	0	0 0
X - 0 0 370 0 135 0 0 79 0	135	0	
Y + 0 367 0 -1 0 -288 0 -256 1 -1	0	-288	
Y - 0 -367 0 1 0 288 0 256 -1 1	0	288	
Pilastro Acciaio 3 X + 0 0 -524 0 -194 0 0 0 -105 0	-194	0	
X - 0 0 524 0 194 0 0 0 105 0	194	0	
X	4	-286	
Y - 0 -366 -9 4 -4 286 0 253 0 4	-4	286	
	-176	∠00	$\overline{}$
Pilastro Acciaio 2 X + 0 0 -514 0 -176 0 0 0 -133 0 0 0 514 0 176 0 0 0 133 0		0	0 0

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Pilastri - Sollecitazioni per eccentricità accidentale

Id _{Pil}	Di			Estr. Inf.					Estr. Sup.						1.4
IUPil	r	е	M ₁	M ₂	M ₃	N	T ₂	T 3	M ₁	M ₂	M ₃	N	T ₂	T ₃	LV
			[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	
	Y	+	0	378	-45	38	-22	-304	0	-277	1	38	-22	-304	01
	Y	-	0	-378	45	-38	22	304	0	277	-1	-38	22	304	01
Pilastro Acciaio 1	X	+	-1	0	-859	0	-317	0	-1	0	-173	0	-317	0	01
	X	-	1	0	859	0	317	0	1	0	173	0	317	0	01
	Y	+	1	299	94	-154	43	-192	1	-115	0	-154	43	-192	01
	Y	-	-1	-299	-94	154	-43	192	-1	115	0	154	-43	192	01

LEGENDA:

Identificativo del Pilastro. **Id**_{Pil}

Dir Direzione del sisma.

Segno dell'eccentricità accidentale.

Lv Identificativo del livello, nella relativa tabella.

Sollecitazione caratteristiche relative al sistema di riferimento locale 1, 2, 3 (N > 0: compressione). Estr.

Inf./Sup.

NODI - REAZIONI VINCOLARI ESTERNE PER TIPOLOGIE DI CARICO NON SISMICHE

Nodi - Reazioni vincolari esterne per tipologie di carico non sismiche											
Id _{Nd}	CC	Fx	F _Y	Fz	M _X	M _Y	Mz				
		[N]	[N]	[N]	[N·m]	[N·m]	[N·m]				
00001	001	-2	230	7.152	-149	79	0				
00001	002	-2.393	48	-1.254	-48	-5.077	-2 3				
00001	003	4.640	-92	2.414	94	9.668	3				
00001	004	-1.269	138	-633	-81	-2.617	-4				
00001	005	468	-61	200	38	-2.072	2				
00007	001	0	6	7.868	10	65	0				
00007	002	-4.159	-5	-2.182	-10	-8.770	0				
00007	003	8.023	6	4.182	24	16.578	-1				
00007	004	-1.250	-160	-343	133	436	5				
00007	005	1.917	29	767	-26	-2.107	-1				
00013	001	1	43	7.945	-17	50	0				
00013	001	-4.100	3	-2.170	-16	-8.682	0				
00013	002	7.929	-7	4.168	34	16.460	-1				
00013	003	1.460	0	1.303	18	9.104	0				
00013	004	1.705	17	747	-18	-2.512	0				
00015	001	-1	37	7.939	-15	37	0				
00015	002	-4.101	4	-2.164	-18	-8.718	0				
00015	003	7.938	-10	4.169	37	16.567	-1				
00015	004	1.422	-23	1.212	35	9.109	0				
00015	005	1.760	18	786	-18	-2.385	0				
00017	001	-1	54	7.956	-29	-38	0				
00017	002	-4.101	-3	-2.175	-13	-8.735	0				
00017	003	7.956	2	4.197	28	16.660	-1				
00017	004	1.161	-19	1.079	33	8.914	0				
00017	005	2.001	22	944	-21	-2.196	0				
00019	001	0	56	7.961	-32	-118	0				
00019	002	-4.102	-1	-2.182	-14	-8.710	0				
00019	003	7.970	0	4.219	30	16.651	-1				
00019	004	1.188	-21	1.076	34	8.992	0				
00019	005	1.995	23	961	-22	-2.240	0				
00021	001	-2	61	7.969	-38	-144	0				
00021	002	-4.110	-1	-2.186	-14	-8.715	0 0				
00021	003	7.994	-2	4.241	32	16.701	-1				
00021	004	1.194	-23	1.069	35	9.030	0				
00021	005	1.991	23	986	-22	-2.260	0				
00021	003	-1	68	7.963	-45	-167	0				
00023	001	-1 -4.104	0	-2.193	-45 -15	-8.692	0				
00023	002		-1	4.264	31	16.722					
00023	003	8.004 1.282	-1 -22	1.059	36	9.231	-1 0				
00023	004	1.282	-22 28	1.059	-26	-2.296	0				
							-				
00025	001	-1	74	7.937	-52	-191	0				
00025	002	-4.085	-1	-2.188	-15	-8.640	0				
00025	003	7.988	-2	4.265	32	16.686	-1				
00025	004	1.124	-26	1.047	39	8.843	-1				
00025	005	2.055	17	1.061	-18	-2.118	0				
00027	001	-2	75	7.954	-56	-215	0				

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 64

Nodi - Reazioni vincolari esterne per tipologie di carico non sismiche											
Id _{Nd}	CC	Fx	Fy	Fz	Mx	M _Y	Mz				
		[N]	[N]	[N]	[N·m]	[N·m]	[N·m]				
00027	002	-4.064	2	-2.196	-17	-8.630	0				
00027	003	7.963	-7	4.291	37	16.725	-1				
00027	004	1.662	-16	1.025	32	3.793	-1				
00027	005	-1.015	102	-553	-80	-5.554	-2				
00029	001	-1	68	8.036	-55	-233	0				
00029	002	-4.097	0	-2.200	-16	-8.690	0				
00029	003	8.048	-4	4.303	35	16.907	-1				
00029	004	4.748	-103	2.638	94	7.235	3				
00029	005	-3.936	-29	-2.093	13	-8.627	1				
00031	001	0	255	7.494	-193	-205	0				
00031	002	-4.083	5	-2.177	-19	-8.617	1				
00031	003	8.037	-15	4.270	43	16.812	-1				
00031	004	7.287	4	4.208	20	15.712	0				
00031	005	-3.983	10	-2.066	-16	-8.678	0				
00033	001	-5	-1.032	8.752	723	-107	0				
00033	002	-2.273	-14	-1.170	-6	-4.863	2				
00033	003	4.482	22	2.304	17	9.521	-3				
00033	004	3.284	131	1.985	-71	7.635	-7				
00033	005	-1 639	-123	-855	79	-4 054	4				

LEGENDA:

 Id_{Nd} Identificativo del nodo.

Identificativo della tipologia di carico nella relativa tabella.

Reazioni vincolari relative al sistema di riferimento globale X, Y, Z.

CC F_x, F_y, F_z, M_x, M_Y, M_z

NODI - REAZIONI VINCOLARI ESTERNE PER EFFETTO DEL SISMA

Nodi - Reazioni vincolari esterne per effetto del sisma											
Id _{Nd}	Dir	Fx	F _Y	Fz	M _X	M _Y	Mz				
		[N]	[N]	[N]	[N·m]	[N·m]	[N·m]				
00001	X	-879	0	0	0	-2.346	1				
00001	Y	-128	-694	483	1.028	-275	1				
00001	Z	0	0	0	0	0	0				
00007	X	-830	0	0	0	-2.310	0				
00007	Y	46	-997	-105	1.244	99	0				
00007	Z	0	0	0	0	0	0				
00013	Х	-912	0	-1	0	-2.476	0				
00013	Y	-8	-957	14	1.216	-15	1				
00013	Z	0	0	0	0	0	0				
00015	Х	-956	0	1	0	-2.579	0				
00015	Ŷ	0	-962	3	1.219	1	l i				
00015	Z	0	0	0	0	0	0				
00017	X	-885	0	0	0	-2.466	0				
00017	Y	0	-949	4	1.210	3	1				
00017	Z	0	0	0	0	0	0				
00019	X	-967	0	0	0	-2.640	0				
00019	Ŷ	2	-953	-1	1.214	6	1				
00019	Z	0	0	0	0	0	0				
00021	X	-886	0	0	0	-2.467	0				
00021	Ŷ	0	-953	0	1.214	3	1				
00021	Z	0	0	0	0	0	0				
00023	X	-967	0	0	0	-2.640	0				
00023	Ŷ	1	-955	2	1.216	3	1				
00023	Ż	0	0	0	0	0	0				
00025	X	-881	0	0	0	-2.453	0				
00025	Y	0	-959	3	1.220	3	1				
00025	Ż	0	0	0	0	0	0				
00023	X	-945	0	0	0	-2.593	0				
00027	Y	-1	-960	-3	1.222	0	1				
00027	Z	0	0	0	0	0	0				
00027	X	-1.009	0	0	0	-2.728	0				
00029	Ŷ	14	-954	-14	1.219	31	1				
00029	Z	0	0	0	0	0	0				
00029	X	-732	0	0	0	-2.136	1				
00031	Y	-732 -72		128	-		0				
00031	Y	-/2	-1.012	128	1.261	-150	0				

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 65

	Nodi - Reazioni vincolari esterne per effetto del sisma												
Id _{Nd}	Dir	Fx	F _Y	Fz	Mx	My	Mz						
		[N]	[N]	[N]	[N·m]	[N·m]	[N·m]						
00031	Z	0	0	0	0	0	0						
00033	X	-1.096	0	0	0	-2.966	-3						
00033	Y	145	-640	-514	997	312	2						
00033	Z	0	0	0	0	0	0						

LEGENDA:

Identificativo del nodo. $\textbf{Id}_{\textbf{Nd}}$ Dir Direzione del sisma.

Reazioni vincolari relative al sistema di riferimento globale X, Y, Z.

F_x, F_y, F_z, M_x, M_y, M_z

NODI - REAZIONI VINCOLARI ESTERNE PER ECCENTRICITÀ ACCIDENTALE

Nodi - Reazioni vincolari esterne per eccentricità accidentale											
Id _{Nd}	Dir	е	Fx	Fy	Fz	Mx	M _Y	Mz			
			[N]	[N]	[N]	[N·m]	[N·m]	[N·m]			
00001	X	+	0	0	0	0	0	0			
00001	X	-	0	0	0	0	0	0			
00001	Y	+	0	0	0	0	0	0			
00001	Y	-	0	0	0	0	0	0			
00007	Х	+	0	0	0	0	0	0			
00007	Х	-	0	0	0	0	0	0			
00007	Y	+	0	0	0	0	0	0			
00007	Ϋ́		Ö	Ö	Ö	o o	Ö	Ö			
00013	X	+	0	0	0	0	0	0			
00013	X		Ŏ	0	Ŏ	ŏ	ŏ	Ö			
00013	Ŷ	+	o o	0	o o	ő	o o	0			
00013	Ϋ́	'_	0	0	0	0	0	0			
00015	X	_	0	0	0	0	0	0			
00015		+	0	0	0	0	0	0			
	X										
00015	Y	+	0	0	0	0	0	0			
00015	Y	-	0	0	0	0					
00017	X	+	0	0	0	0	0	0			
00017	X	-	0	0	0	0	0	0			
00017	Y	+	0	0	0	0	0	0			
00017	Υ	-	0	0	0	0	0	0			
00019	Х	+	0	0	0	0	0	0			
00019	X	-	0	0	0	0	0	0			
00019	Y	+	0	0	0	0	0	0			
00019	Y	-	0	0	0	0	0	0			
00021	X	+	0	0	0	0	0	0			
00021	X	-	0	0	0	0	0	0			
00021	Y	+	0	0	0	0	0	0			
00021	Y	-	0	0	0	0	0	0			
00023	Х	+	0	0	0	0	0	0			
00023	Х	-	0	0	0	0	0	0			
00023	Y	+	0	0	0	0	0	0			
00023	Ϋ́	-	Ö	Ö	0	o o	Ö	Ö			
00025	X	+	0	0	0	0	0	0			
00025	X	'_	Ö	0	0	o o	ŏ	Ö			
00025	Ϋ́	+	Ö	0	o o	ő	o o	o o			
00025	Ϋ́	'	0	0	0	0	0	0			
00023	X	_	0	0	0	0	0	0			
	X	+	0	0	0	0	0	0			
00027 00027	Y	-	0	0	0	0	0	0			
		+	0	0	0	0					
00027	Y	ļ-					0	0			
00029	X	+	0	0	0	0	0	0			
00029	X	-	0	0	0	0	0	0			
00029	Y	+	0	0	0	0	0	0			
00029	Y	-	0	0	0	0	0	0			
00031	X	+	0	0	0	0	0	0			
00031	X	-	0	0	0	0	0	0			
00031	Υ	+	0	0	0	0	0	0			
00031	Υ	-	0	0	0	0	0	0			
00033	X	+	0	0	0	0	0	0			
00033	X	-	0	0	0	0	0	0			

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Nodi - Reazioni vincolari esterne per eccentricità accidentale

Id _{Nd}	Dir	е	Fx	Fy	Fz	Mx	M _Y	Mz
			[N]	[N]	[N]	[N·m]	[N·m]	[N·m]
00033	Υ	+	0	0	0	0	0	0
00033	Υ	-	0	0	0	0	0	0

LEGENDA:

Identificativo del nodo. \boldsymbol{Id}_{Nd} Dir Direzione del sisma.

Segno dell'eccentricità accidentale.

Fx, Fy, Reazioni vincolari relative al sistema di riferimento globale X, Y, Z.

Fz, Mx, M_Y, M_z

EDIFICIO - VERIFICHE DI RIPARTIZIONE DELLE FORZE SISMICHE

Edificio - Verifiche di ripartizione delle forze sism									
Dir	V _{T,tot}	V _{T,Pil}	%T,Pil	V _{T,Set}	%T,Set	V _{T,atr}	% _{T,atr}		
	[N]	[N]	[%]	[N]	[%]	[N]	[%]		
X	0	0	100,0	0	100,0	0	100,0		
Y	0	0	100,0	0	100,0	0	100,0		

LEGENDA:

 $\mathbf{V}_{\mathsf{T},\mathsf{tot}}$ Taglio totale alla quota Zero Sismico (nella direzione X o Y).

Taglio totale alla quota Zero Sismico assorbito dai pilastri (nella direzione X o Y). V_{T,Pil}

Percentuale del Taglio totale alla quota Zero Sismico assorbito dai pilastri (nella direzione X o Y). **%**т,Ріі

 $\mathbf{V}_{\mathsf{T},\mathsf{Set}}$ Taglio totale alla quota Zero Sismico assorbito dai setti (nella direzione X o Y).

Percentuale del Taglio totale alla quota Zero Sismico assorbito dai setti (nella direzione X o Y). %T,Set $\textbf{V}_{\text{T,atr}}$ Taglio totale alla quota Zero Sismico NON assorbito dai pilastri e dai setti (nella direzione X o Y).

Percentuale del Taglio totale alla quota Zero Sismico NON assorbito dai pilastri e dai setti (nella direzione X o Y). %_{T,atı}

EDIFICIO - VERIFICA PER ANALISI STATICA

			Edificio - Verifi	ica per analisi statica
Id _{sm}	Т	T _{c,cf}	$T_{d,confr}$	T _{Nrm}
	[s]	[s]	[s]	[s]
Sisma in direzione X	0,12	1,01	1,87	0,09
Sisma in direzione Y	0,17	1,01	1,87	0,09

LEGENDA:

 Id_{sm} Descrizione del sisma.

Periodo della Struttura calcolato con la formula di Rayleigh.

 $\textbf{T}_{\text{c,cf}}$ 2.5 · Tc (Periodo di inizio del tratto a velocità costante dello spettro di progetto). $T_{d,confr}$ Td (Periodo di inizio del tratto a spostamento costante dello spettro di progetto).

Periodo stimato con la (4.6) UNI EN 1998-1:2013 T_{Nrm}

TRAVI (AC) - VERIFICHE A PRESSOFLESSIONE (Elevazione) allo SLU

									Trav	/i (AC) - Verif	iche a pre	essoflessione
Id _{Tr}	%L _{LI}	N _{Ed}	V _{Ed}	M _{Ed,3}	CS	Tp Vr	M _{c,Rd}	V _{c,Rd}	ρ	Av	tw	N _{pl,Rd}
	[%]	[N]	[N]	[N·m]			[N·m]	[N]		[mm²]	[mm]	[N]
Piano Terra							Piano Terra					
Trave Acciaio 13-31a	0%	-6	2.605	2.089	17,70	ELA	36.988	226.317	0,000	1.159	8,00	784.010
	25,0%	-6	2.460	1.466	25,23	ELA	36.988	226.317	0,000	1.159	8,00	784.010
	50,0%	-6	2.162	906	40,81	ELA	36.988	226.317	0,000	1.159	8,00	784.010
	75,0%	-6	1.864	419	88,22	ELA	36.988	226.317	0,000	1.159	8,00	784.010
	100%	-180	1.045	114	NS	ELA	36.988	226.317	0,000	1.159	8,00	784.010
Trave Acciaio 31a-32a	0%	582	617	697	47,58	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	25,0%	484	492	432	76,76	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	50,0%	385	364	229	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	75,0%	286	236	86	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	100,0	188	107	3	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.332
T 4 i - i - 20 - 21 -	%	100	100		NC	DI C	22.464	175 216	0.000	1 150	0.00	607.212
Trave Acciaio 30a-31a	0%	-192	-109	4	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	25,0%	-284	-259	92	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	50,0%	-385	-391	251	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	75,0%	-488	-520	473	70,11	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	100%	-588	-647	758	43,75	PLS	33.161	175.316	0,000	1.159	8,00	607.313
Trave Acciaio 12-13	0%	-118	1.892	1.561	23,61	ELA	36.988	226.317	0,000	1.159	8,00	783.986
	25,0%	-515	-699	536	66,01	ELA	36.988	226.317	0,000	1.159	8,00	783.986
	50,0%	-515	-179	919	39,21	ELA	36.988	226.317	0,000	1.159	8,00	783.986

presente documento è di proprietà della ANTEX GROUP srl. Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 67

									T	i (AC) - Veri	Eicho o nuc	
Id⊤r	%L _{LI}	N _{Ed}	V _{Ed}	M _{Ed,3}	CS	Tp Vr	M _{c,Rd}	V _{c,Rd}	ρ	Av (AC) - Veri	ricne a pre t _w	SSOTIESSION N _{pl,Rd}
-WII	[%]	[N]	[N]	[N·m]		10 11	[N·m]	[N]		[mm²]	[mm]	[N]
	75,0%	-515	343	848	42,40	ELA	36.988	226.317	0,000	1.159	8,00	783.986
	100%	-169	-3.326	2.214	16,65	ELA	36.988	226.317	0,000	1.159	8,00	783.986
Trave Acciaio 3a-1a	0%	797	722	882	37,60	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	25,0%	698	597	567	58,48	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	50,0%	601	474	312	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	75,0%	327	319	130	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	100,0	400	222	20	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	%	400	222	20	INS	PLS	33.101	1/3.310	0,000	1.139	8,00	007.332
Trave Acciaio 3a-2a	0%	-824	759	1.023	32,42	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	25,0%	-721	635	673	49,27	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	50,0%	-617	502	389	85,25	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	75,0%	-513	369	172	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	100%	-409	235	23	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.313
Trave Acciaio 11-12	0%	-210	1.866	1.535	23,94	ELA	36.988	226.317	0,000	1.159	8,00	783.986
	25,0%	-262	400	510	70,81		36.988	226.317	0,000	1.159	8,00	783.986
	50,0%	-190	-152	917	39,95		36.988	226.317	0,000	1.159	8,00	783.986
	75,0%	-210	-497	406	88,93	ELA	36.988	226.317	0,000	1.159	8,00	783.986
	100%	-190	-3.280	2.089	17,63		36.988	226.317	0,000	1.159	8,00	783.986
Trave Acciaio 10-11	0%	-320	1.871	1.541	23,77	ELA	36.988	226.317	0,000	1.159	8,00	783.986
Trave Accidio 10 11	25,0%	-238	377	510	70,96		36.988	226.317	0,000	1.159	8,00	783.986
	50,0%	-239	-163	908	40,24		36.988	226.317	0,000	1.159	8,00	783.986
								226.317				
	75,0%	-320	-492	411	86,81	ELA	36.988	220.317	0,000	1.159	8,00	783.986
	100,0	-239	-3.293	2.116	17,39	ELA	36.988	226.317	0,000	1.159	8,00	783.986
Torres Arrivin 0 10	%	254	1 070	1 542		_ , ,	26 000	226 247	1	1 150		702.006
Trave Acciaio 9-10	0%	-354	1.870	1.542	23,73	ELA	36.988	226.317	0,000	1.159	8,00	783.986
	25,0%	-280	374	523	68,98		36.988	226.317	0,000	1.159	8,00	783.986
	50,0%	-277	-162	924	39,47	ELA	36.988	226.317	0,000	1.159	8,00	783.986
	75,0%	-354	-490	415	85,68	ELA	36.988	226.317	0,000	1.159	8,00	783.986
	100,0	-277	-3.295	2.103	17,48	ELA	36.988	226.317	0,000	1.159	8,00	783.986
	%			2.103	•				1			
Trave Acciaio 8-9	0%	-482	1.872	1.546	23,58	ELA	36.988	226.317	0,000	1.159	8,00	783.986
	25,0%	-258	367	524	68,99	ELA	36.988	226.317	0,000	1.159	8,00	783.986
	50,0%	-355	-174	913	39,78	ELA	36.988	226.317	0,000	1.159	8,00	783.986
	75,0%	-482	-490	415	84,50	ELA	36.988	226.317	0,000	1.159	8,00	783.986
	100,0	255	2 212	2 127	1717	F. A	26 000	226 217	0.000	1 150	0.00	702.006
	%	-355	-3.312	2.137	17,17	ELA	36.988	226.317	0,000	1.159	8,00	783.986
Trave Acciaio 7-8	0%	-513	1.874	1.551	23,48	ELA	36.988	226.317	0,000	1.159	8,00	783.986
	25,0%	-339	369	524	68,50	ELA	36.988	226.317	0,000	1.159	8,00	783.986
	50,0%	-431	-172	918	39,42		36.988	226.317	0,000	1.159	8,00	783.986
	75,0%	-513	-491	417	83,83		36.988	226.317	0,000	1.159	8,00	783.986
	100,0				•							
	%	-431	-3.319	2.144	17,09	ELA	36.988	226.317	0,000	1.159	8,00	783.986
Trave Acciaio 6-7	0%	-652	1.876	1.553	23,35	ELA	36.988	226.317	0,000	1.159	8,00	783.986
Have Acciaio 0-7	25,0%	-322	370	522	68,85		36.988	226.317	0,000	1.159	8,00	783.986
			-174				36.988					
	50,0% 75,0%	-513 -652	-174 -491	922 417	39,09 82,61		36.988	226.317 226.317	0,000	1.159 1.159	8,00	783.986 783.986
		-032	-491	41/	02,01	LLA	30.300	220.317	0,000	1.159	8,00	703.900
	100,0	-513	-3.330	2.152	17,00	ELA	36.988	226.317	0,000	1.159	8,00	783.986
Trovo Accinin F.C	%	600			•	E1 A	26 000		1			
Trave Acciaio 5-6	0%	-699	1.873	1.548	23,40		36.988	226.317	0,000	1.159	8,00	783.986
	25,0%	-413	366	520	68,56		36.988	226.317	0,000	1.159	8,00	783.986
	50,0%	-607	-175	919	39,03		36.988	226.317	0,000	1.159	8,00	783.986
	75,0%	-699	-485	419	81,84		36.988	226.317	0,000	1.159	8,00	783.986
	100%	-607	-3.327	2.142	17,04		36.988	226.317	0,000	1.159	8,00	783.986
Trave Acciaio 4-5	0%	-860	1.874	1.553	23,21	ELA	36.988	226.317	0,000	1.159	8,00	783.986
	25,0%	-400	364	519	68,77	ELA	36.988	226.317	0,000	1.159	8,00	783.986
	50,0%	-705	-167	910	39,21	ELA	36.988	226.317	0,000	1.159	8,00	783.986
	75,0%	-860	-477	418	80,66		36.988	226.317	0,000	1.159	8,00	783.986
	100,0	705	2 200	2 122			26 000					702.006
	%	-705	-3.309	2.122	17,16	ELA	36.988	226.317	0,000	1.159	8,00	783.986
Trave Acciaio 3-4	0%	-943	1.898	1.595	22,56	ELA	36.988	226.317	0,000	1.159	8,00	783.986
	25,0%	-469	385	512	69,25		36.988	226.317	0,000	1.159	8,00	783.986
	50,0%	-800	-153	932	38,14		36.988	226.317	0,000	1.159	8,00	783.986
	75,0%	-943	-477	426	78,62		36.988	226.317	0,000	1.159	8,00	783.986
	100%	-800	-3.333	2.137	17,01		36.988	226.317	0,000	1.159	8,00	783.986 783.986
Travo Acciaio 2.2												
Trave Acciaio 2-3	0% 25,0%	-715 F61	2.759	1.462	24,73		36.988	226.317	0,000	1.159	8,00	783.986 783.986
	1 / 2 H//6	-561	331	580	60,99	LLA	36.988	226.317	0,000	1.159	8,00	783.986
	50,0%	-707	-157	1.010			36.988	226.317	0,000	1.159	8,00	783.986

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

REV: 1

30/03/2021

Pag. 68

									Trav	ri (AC) - Veri	fiche a pre	essoflessi
Id₁r	%L _{LI}	N _{Ed}	V _{Ed}	M _{Ed,3}	CS	Tp Vr	M _{c,Rd}	V _{c,Rd}	ρ	Av	tw	N _{pl,Rd}
	[%]	[N]	[N]	[N·m]			[N·m]	[N]		[mm²]	[mm]	[N]
	75,0%	-989	-550	415	80,12	ELA	36.988	226.317	0,000	1.159	8,00	783.98
	100%	-905	-3.389	2.199	16,50	ELA	36.988	226.317	0,000	1.159	8,00	783.98
Trave Acciaio 1-2	0%	-1.359	2.375	2.825	12,80	ELA	36.988	226.317	0,000	1.159	8,00	783.98
	25,0%	-1.359	1.670	1.015	34,28	ELA	36.988	226.317	0,000	1.159	8,00	783.98
	50,0%	-1.108	-395	953	36,79		36.988	226.317	0,000	1.159	8,00	783.98
	75,0%	-1.359	26	469	69,38		36.988	226.317	0,000	1.159	8,00	783.98
	100%	-1.100	-2.855	1.677	21,39	ELA	36.988	226.317	0,000	1.159	8,00	783.98
Frave Acciaio 3a-1	0%	-249	-1.433	244	NS	ELA	36.988	226.317	0,000	1.159	8,00	783.98
Tave Acciaio 3a-1												
	25,0%	-1	-2.601	1.039	35,60		36.988	226.317	0,000	1.159	8,00	783.98
	50,0%	-1	-3.100	2.202	16,80		36.988	226.317	0,000	1.159	8,00	783.98
	75,0%	-1	-3.599	3.566	10,37	ELA	36.988	226.317	0,000	1.159	8,00	783.98
	100,0	-1	-4.097	5.132	7,21	ELA	36.988	226.317	0,000	1.159	8,00	783.98
	%	-1	-4.057	3.132	7,21	LLA	30.300	220.317	0,000	1.139	0,00	705.50
Trave Acciaio 1-5a	0%	1.674	3.191	4.836	6,86	PLS	33.161	175.316	0,000	1.159	8,00	607.33
	25,0%	1.564	2.850	3.352	9,89		33.161	175.316	0,000	1.159	8,00	607.33
	50,0%	1.456	2.447	2.059	16,11		33.161	175.316	0,000	1.159	8,00	607.33
	75,0%	1.343	2.045	964	34,40	PLS	33.161	175.316	0,000	1.159	8,00	607.33
	100,0	1.232	1.650	65	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.33
	%								1			
Frave Acciaio 1-4a	0%	-1.535	3.544	5.060	6,55	PLS	33.161	175.316	0,000	1.159	8,00	607.31
	25,0%	-1.449	3.135	3.492	9,50		33.161	175.316	0,000	1.159	8,00	607.31
	50,0%	-1.359	2.723	2.111	15,71		33.161	175.316	0,000	1.159	8,00	607.31
	75,0%	-1.272	2.313	929	35,70		33.161	175.316	0,000	1.159	8,00	607.31
		-1.2/2	2.515	323	33,70	r L3	33.101	173.310	0,000	1.139	0,00	007.51
	100,0	-1.317	146	68	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.31
	%										'	
Trave Acciaio 2-7a	0%	2.177	5.443	8.315	3,99	PLS	33.161	175.316	0,000	1.159	8,00	607.33
	25,0%	2.058	4.887	5.768	5,75	PLS	33.161	175.316	0,000	1.159	8,00	607.33
	50,0%	1.944	4.210	3.548	9,35	PLS	33.161	175.316	0,000	1.159	8,00	607.33
	75,0%	1.822	3.533	1.657	20,01		33.161	175.316	0,000	1.159	8,00	607.33
	100,0	1.022	3.333	1.037	20,01		33.101	175.510	0,000	11133	0,00	007.55
	%	1.701	2.875	96	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.33
A		1 004	C 127	0.020	2.67	DI C	22.464	175 216	0.000	1 150	0.00	607.01
Trave Acciaio 2-6a	0%	-1.884	6.137	9.038	3,67	PLS	33.161	175.316	0,000	1.159	8,00	607.31
	25,0%	-1.804	5.415	6.226	5,33	PLS	33.161	175.316	0,000	1.159	8,00	607.31
	50,0%	-1.725	4.696	3.765	8,81	PLS	33.161	175.316	0,000	1.159	8,00	607.31
	75,0%	-1.641	3.973	1.655	20,04	PLS	33.161	175.316	0,000	1.159	8,00	607.31
	100%	-1.810	-146	122	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.31
Trave Acciaio 3-9a	0%	2.192	5.446	8.342	3,98		33.161	175.316	0,000	1.159	8,00	607.33
. ave / leciale 5 5a	25,0%	2.074	4.890	5.793	5,72		33.161	175.316	0,000	1.159	8,00	607.33
										1.159		
	50,0%	1.958	4.215	3.567	9,30	PLS	33.161	175.316	0,000		8,00	607.33
	75,0%	1.834	3.540	1.670	19,86		33.161	175.316	0,000	1.159	8,00	607.33
	100%	1.713	2.880	101	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.33
Trave Acciaio 3-8a	0%	-1.961	6.106	9.026	3,67	PLS	33.161	175.316	0,000	1.159	8,00	607.31
	25,0%	-1.879	5.379	6.215	5,34	PLS	33.161	175.316	0,000	1.159	8,00	607.31
	50,0%	-1.795	4.652	3.760	8,82		33.161	175.316	0,000	1.159	8,00	607.31
	75,0%	-1.712	3.922	1.661	19,96		33.161	175.316	0,000	1.159	8,00	607.31
	100%	-1.712	-111	90	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.31
rava Acciaio 4 11c												
rave Acciaio 4-11a	0%	2.196	5.421	8.318	3,99	PLS	33.161	175.316	0,000	1.159	8,00	607.33
	25,0%	2.079	4.867	5.779	5,74		33.161	175.316	0,000	1.159	8,00	607.33
	50,0%	1.959	4.194	3.560	9,31		33.161	175.316	0,000	1.159	8,00	607.33
	75,0%	1.835	3.520	1.672	19,83	PLS	33.161	175.316	0,000	1.159	8,00	607.33
	100%	1.715	2.863	115	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.33
rave Acciaio 4-10a	0%	-1.963	6.093	8.980	3,69		33.161	175.316	0,000	1.159	8,00	607.31
Tave Accidio 1 100	25,0%	-1.880	5.369	6.182	5,36		33.161	175.316	0,000	1.159	8,00	
												607.31
	50,0%	-1.797	4.641	3.731	8,89		33.161	175.316	0,000	1.159	8,00	607.31
	75,0%	-1.711	3.914	1.642	20,20		33.161	175.316	0,000	1.159	8,00	607.31
	100%	-1.789	-110	102	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.31
rave Acciaio 5-13a	0%	2.201	5.397	8.290	4,00	PLS	33.161	175.316	0,000	1.159	8,00	607.33
	25,0%	2.083	4.846	5.759	5,76		33.161	175.316	0,000	1.159	8,00	607.33
	50,0%	1.961	4.174	3.548	9,35		33.161	175.316	0,000	1.159	8,00	607.33
	75,0%	1.836	3.502	1.669	19,87		33.161	175.316	0,000	1.159	8,00	607.33
		1.030	5.502	1.009	19,0/	i L	33.101	1/3.310	0,000	1.133	0,00	007.33
	100,0	1.713	2.846	116	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.33
	%											
rave Acciaio 5-12a	0%	-1.893	6.145	9.067	3,66		33.161	175.316	0,000	1.159	8,00	607.31
	25,0%	-1.811	5.421	6.244	5,31	PLS	33.161	175.316	0,000	1.159	8,00	607.31
	50,0%	-1.732	4.698	3.776	8,78		33.161	175.316	0,000	1.159	8,00	607.31
				2.,,0	٥,, ٥				-,000			
	75,0%	-1.649	3.974	1.661	19,96	PIS	33.161	175.316	0,000	1.159	8,00	607.31

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 69

									Trav	/i (AC) - Veri	fiche a pre	essoflessione
Id _{Tr}	%L _{LI}	N _{Ed}	V _{Ed}	M _{Ed,3}	CS	Tp Vr	M _{c,Rd}	V _{c,Rd}	ρ	Av	tw	N _{pl,Rd}
Trave Acciaio 6-15a	[%] 0%	[N] 2.223	[N] 5.399	[N·m] 8.315	3,99	PLS	[N·m] 33.161	[N] 175.316	0,000	[mm²] 1.159	[mm] 8,00	[N] 607.332
Trave Accidio o 13a	25,0%	2.102	4.848	5.780	5,74		33.161	175.316	0,000	1.159	8,00	607.332
	50,0%	1.978	4.178	3.563	9,31		33.161	175.316	0,000	1.159	8,00	607.332
	75,0%	1.851	3.506	1.678	19,76		33.161	175.316	0,000	1.159	8,00	607.332
	100,0	1.726	2.850	124	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.332
Turus Arriais C 14s	%											
Trave Acciaio 6-14a	0% 25,0%	-1.876 -1.797	6.151 5.430	9.058 6.239	3,66 5,32	PLS PLS	33.161 33.161	175.316 175.316	0,000	1.159 1.159	8,00 8,00	607.313 607.313
	50,0%	-1.722	4.706	3.768	8,80	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	75,0%	-1.641	3.984	1.653	20,06		33.161	175.316	0,000	1.159	8,00	607.313
	100%	-1.818	-148	130	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.313
Trave Acciaio 7-17a	0%	2.234	5.388	8.317	3,99		33.161	175.316	0,000	1.159	8,00	607.332
	25,0%	2.114	4.839	5.782	5,74		33.161	175.316	0,000	1.159	8,00	607.332
	50,0%	1.988	4.171	3.569	9,29	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	75,0%	1.860	3.502	1.687	19,66	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	100%	1.734	2.848	130	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.332
Trave Acciaio 7-16a	0%	-1.854	6.144	9.027	3,67	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	25,0%	-1.779	5.424	6.215	5,34		33.161	175.316	0,000	1.159	8,00	607.313
	50,0%	-1.705	4.704	3.750	8,84	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	75,0%	-1.629	3.983	1.635	20,28		33.161	175.316	0,000	1.159	8,00	607.313
Torres Arrivin 0 10-	100%	-1.825	-148	148	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.313
Trave Acciaio 8-19a	0%	2.241	5.368	8.302	3,99	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	25,0% 50,0%	2.120 1.994	4.821 4.151	5.777	5,74 9,29	PLS PLS	33.161 33.161	175.316	0,000	1.159 1.159	8,00 8,00	607.332
	75,0%	1.865	3.486	3.568 1.690	19,62		33.161	175.316 175.316	0,000	1.159	8,00	607.332 607.332
	100%	1.738	2.836	140	19,02 NS	PLS	33.161	175.316	0,000	1.159	8,00	607.332
Trave Acciaio 8-18a	0%	-1.833	6.133	8.983	3,69	PLS	33.161	175.316	0,000	1.159	8,00	607.313
Trave recials o 10a	25,0%	-1.760	5.413	6.182	5,36		33.161	175.316	0,000	1.159	8,00	607.313
	50,0%	-1.689	4.697	3.725	8,90		33.161	175.316	0,000	1.159	8,00	607.313
	75,0%	-1.616	3.974	1.620	20,47	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	100%	-1.825	-148	161	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.313
Trave Acciaio 9-21a	0%	2.247	5.348	8.288	4,00	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	25,0%	2.124	4.802	5.769	5,75	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	50,0%	1.997	4.137	3.570	9,29	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	75,0%	1.869	3.470	1.696	19,55	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	100,0	1.742	2.822	149	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.332
T A	%								1			
Trave Acciaio 9-20a	0%	-1.810	6.111	8.925	3,72		33.161	175.316	0,000	1.159	8,00	607.313
	25,0% 50,0%	-1.740	5.394	6.137	5,40 8,98	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	75,0%	-1.670 -1.599	4.676 3.957	3.694 1.602	20,70		33.161 33.161	175.316 175.316	0,000	1.159 1.159	8,00 8,00	607.313 607.313
	100%	-1.822	-147	172	20,70 NS	PLS	33.161	175.316	0,000	1.159	8,00	607.313
Frave Acciaio 10-23a	0%	2.076	5.401	8.226	4,03		33.161	175.316	0,000	1.159	8,00	607.332
Trave Accidio 10 25a	25,0%	1.972	4.881	5.742	5,78		33.161	175.316	0,000	1.159	8,00	607.332
	50,0%	1.867	4.233	3.558	9,32	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	75,0%	1.760	3.586	1.686	19,67	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	100%	1.654	2.939	125	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.332
Trave Acciaio 22a-10	0%	-1.778	-876	13	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	25,0%	-1.829	-3.845	1.699	19,52	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	50,0%	-1.939		3.727	8,90		33.161	175.316	0,000	1.159	8,00	607.313
	75,0%	-2.046	-5.260	6.099	5,44	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	100,0	-2.154	-5.966	8.813	3,76	PLS	33.161	175.316	0,000	1.159	8,00	607.313
Franco Acciaio 11 2Ea	%	2 002	E 202	7 007	4,20		22 161		1	1.159	8,00	607 222
Trave Acciaio 11-25a	0% 25,0%	2.082 1.979	5.393 4.867	7.887 5.437	6,10		33.161 33.161	175.316 175.316	0,000	1.159	8,00	607.332 607.332
	50,0%	1.873	4.232	3.279	10,11		33.161	175.316	0,000	1.159	8,00	607.332
	75,0%	1.767	3.592	1.427	23,24		33.161	175.316	0,000	1.159	8,00	607.332
	100,0											
	%	1.659	2.957	124	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.332
Trave Acciaio 24a-11	0%	-1.824	180	120	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	25,0%	-1.628	-3.944	1.835	18,07		33.161	175.316	0,000	1.159	8,00	607.313
	50,0%	-1.705	-4.656	3.915	8,47		33.161	175.316	0,000	1.159	8,00	607.313
	75,0%	-1.780	-5.369	6.332	5,24	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	100,0	-1.851	-6.080	9.099	3,64	PLS	33.161	175.316	0,000	1.159	8,00	607.313
Frave Acciaio 12-27a	% 0%	2.089	5.383	7.903	4,20		33.161	175.316	0,000	1.159	8,00	607.332
	U70	2.009	3.303	7.903	4.70	LLTP	101.00	11/0.010	TO COOL	1.	LO UU	007.332

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 70

									Trav	/i (AC) - Veri	fiche a pre	essoflessione
Id₁r	%L _{LI}	N _{Ed}	V _{Ed}	M _{Ed,3}	CS	Tp Vr	M _{c,Rd}	V _{c,Rd}	ρ	Av	tw	N _{pl,Rd}
	[%]	[N]	[N]	[N·m]			[N·m]	[N]		[mm²]	[mm]	[N]
	50,0%	1.876	4.219	3.285	10,09	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	75,0%	1.770	3.581	1.428	23,22	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	100,0	1.661	2.939	125	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.332
Trave Acciaio 26a-12	0%	-1.827	175	59	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	25,0%	-1.624	-3.893	1.797	18,45	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	50,0%	-1.697	-4.620	3.898	8,51	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	75,0%	-1.772	-5.347	6.363	5,21	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	100,0	-1.847	-6.076	9.182	3,61	PLS	33.161	175.316	0,000	1.159	8,00	607.313
Trave Acciaio 13-29a	0%	1.424	3.056	4.391	7,55	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	25,0%	1.323	2.731	3.005	11,04	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	50,0%	1.220	2.350	1.796	18,46	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	75,0%	1.119	1.968	770	43,07	PLS	33.161	175.316	0,000	1.159	8,00	607.332
	100,0	997	598	74	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.332
Trave Acciaio 28a-13	0%	-1.113	-7	61	NS	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	25,0%	-1.041	-2.161	994	33,36	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	50,0%	-1.126	-2.581	2.141	15,49	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	75,0%	-1.212	-2.998	3.484	9,52	PLS	33.161	175.316	0,000	1.159	8,00	607.313
	100,0	-1.298	-3.417	5.030	6,59	PLS	33.161	175.316	0,000	1.159	8,00	607.313

LEGENDA:

IdTr Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato.

%L_{LI} Posizione della sezione per la quale vengono forniti i valori di verifica, valutata come % della lunghezza libera d'inflessione (Lu), a partire dall'estremo iniziale.

 N_{Ed} Sforzo normale di progetto.

Taglio di progetto utilizzato per il calcolo di ρ . VEd Momento flettente di progetto intorno a 3. M_{Ed,3}

Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR] = Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] = CS

eccezionale; [S] = sismica; [N] = sismica non lineare).

Tp Vr Tipo di verifica considerata: "PLS" = con Modulo di resistenza plastico; "ELA" = con modulo di resistenza elastico; "EFF" = con modulo di resistenza efficace.

Momento resistente. $M_{c,Rd}$

 $V_{c,Rd}$ Taglio resistente.

Coefficiente riduttivo per presenza di taglio.

Area resistente a taglio.

t_w Spessore anima resistente a taglio. Resistenza plastica a Sforzo Normale. $N_{pl,Rd}$

TRAVI (AC) - VERIFICHE A TAGLIO (Elevazione) per pressoflessione retta allo SLU

Travi (AC) - Verifiche a taglio $V_{\text{c,Rd}}$ P. Vrf. ττ,Ed [N] Piano Terra Piano Terra Trave Acciaio 13-31a 0% 1.159 0,26 2.605 226.018 86,76 25,0% 91,88 1.159 0,26 2.460 226.018 50,0% 1.159 0,26 2.162 226.018 75,0% 226.018 NS 1.159 0,26 1.864 100% NS 1.159 0,26 226.018 1.644 Trave Acciaio 31a-32a NS 1.159 617 0% 0,00 175.316 25,0% NS 0,00 492 175.316 1.159 50,0% NS 175.316 1.159 0,00 364 75,0% NS 0,00 175.316 1.159 236 100,0% NS 175.316 1.159 0,00 148 Trave Acciaio 30a-31a 0% NS 1.159 0,00 -130 175.316 25,0% NS 1.159 0,00 -259 175.316 50,0% NS 1.159 0,00 -391 175.316 75,0% NS 1.159 0,00 -520 175.316 100% NS 1.159 0,00 -647 175.316 Trave Acciaio 12-13 0% 84,35 1.159 0,23 2.680 226.045 25,0% NS 1.159 0,23 1.354 226.045 50,0% NS 1.159 0,01 -608 226.303 75,0% NS 1.159 0,23 -1.768 226.045 100% 67,96 0,23 -3.326 226.045 1.159 Trave Acciaio 3a-1a NS 1.159 0,06 722 175.248 0% 25,0% NS 1.159 0,06 597 175.248

presente documento è di proprietà della ANTEX GROUP srl. Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 71

						Travi (AC) - Vo	erifiche a tagl
Idτr	%L _{LI}	CS	Av	ττ,Ed	V _{Ed}	V _{c,Rd}	P. Vrf.
	[%]		[mm²]	[N/mm²]	[N]	[N]	
	50,0%	NS	1.159	0,06	474	175.248	-
	75,0%	NS	1.159	0,06	347	175.248	-
	100,0%	NS	1.159	0,09	277	175.214	-
Trave Acciaio 3a-2a	0%	NS	1.159	0,00	759	175.316	-
	25,0%	NS	1.159	0,00	635	175.316	-
	50,0%	NS	1.159	0,00	502	175.316	-
	75,0%	NS	1.159	0,00	369	175.316	-
	100%	NS	1.159	0,00	235	175.316	-
Trave Acciaio 11-12	0%	82,66	1.159	0,00	2.738	226.317	-
	25,0%	NS	1.159	0,00	1.410	226.317	-
	50,0%	NS	1.159	0,00	-427	226.317	_
	75,0%	NS	1.159	0,00	-1.716	226.317	_
	100%	69,00	1.159	0,00	-3.280	226.317	-
Trave Acciaio 10-11	0%	82,86	1.159	0,01	2.731	226.303	-
	25,0%	ŃS	1.159	0,01	1.402	226.303	_
	50,0%	NS	1.159	0,00	-450	226.317	_
	75,0%	NS	1.159	0,01	-1.728	226.303	_
	100,0%	68,72	1.159	0,01	-3.293	226.303	_
Trave Acciaio 9-10	0%	82,90	1.159	0,01	2.730	226.310	_
Trave Accidio 9-10	25,0%	NS	1.159	0,01	1.405	226.310	
	50,0%	NS	1.159	0,01	-453	226.310	_
					-1.729	226.310	-
	75,0%	NS	1.159	0,01		226.310	-
Toron Arrivia 0.0	100,0%	68,68	1.159	0,01	-3.295		-
Trave Acciaio 8-9	0%	82,96	1.159	0,01	2.728	226.310	-
	25,0%	NS	1.159	0,01	1.400	226.310	-
	50,0%	NS	1.159	0,01	-461	226.310	-
	75,0%	NS	1.159	0,01	-1.744	226.310	-
	100,0%	68,33	1.159	0,01	-3.312	226.310	-
Trave Acciaio 7-8	0%	82,81	1.159	0,00	2.733	226.317	-
	25,0%	NS	1.159	0,00	1.399	226.317	-
	50,0%	NS	1.159	0,00	-458	226.317	-
	75,0%	NS	1.159	0,00	-1.747	226.317	-
	100,0%	68,19	1.159	0,00	-3.319	226.317	-
Trave Acciaio 6-7	0%	82,51	1.159	0,00	2.743	226.317	-
	25,0%	NS	1.159	0,00	1.403	226.317	-
	50,0%	NS	1.159	0,00	-458	226.317	_
	75,0%	NS	1.159	0,00	-1.753	226.317	_
	100,0%	67,96	1.159	0,00	-3.330	226.317	_
Trave Acciaio 5-6	0%	82,69	1.159	0,00	2.737	226.317	_
	25,0%	NS	1.159	0,00	1.401	226.317	_
	50,0%	NS	1.159	0,00	-459	226.317	_
	75,0%	NS	1.159	0,00	-1.750	226.317	_
	100%	68,02	1.159	0,00	-3.327	226.317	_
Trave Acciaio 4-5	0%	82,83	1.159	0,00	2.732	226.303	_
Trave Acciaio 4-3			1.159		1.402	226.303	_
	25,0%	NS		0,01			-
	50,0%	NS	1.159	0,00	-459	226.317	_
	75,0%	NS	1.159	0,01	-1.740	226.303	-
T	100,0%	68,39	1.159	0,01	-3.309	226.303	-
Trave Acciaio 3-4	0%	81,20	1.159	0,01	2.787	226.303	-
	25,0%	NS	1.159	0,01	1.437	226.303	-
	50,0%	NS	1.159	0,00	-446	226.317	-
	75,0%	NS	1.159	0,01	-1.743	226.303	-
	100%	67,90	1.159	0,01	-3.333	226.303	-
Trave Acciaio 2-3	0%	81,86	1.159	0,41	2.759	225.841	-
	25,0%	NS	1.159	0,41	1.422	225.841	-
	50,0%	NS	1.159	0,01	-496	226.303	-
	75,0%	NS	1.159	0,01	-1.811	226.303	-
	100%	66,78	1.159	0,01	-3.389	226.303	-
Trave Acciaio 1-2	0%	70,04	1.159	0,25	3.227	226.025	-
-	25,0%	NS	1.159	0,25	1.897	226.025	_
	50,0%	NS	1.159	0,01	849	226.303	_
	75,0%	NS	1.159	0,26	-1.284	226.011	_
	100%	79,16	1.159	0,26	-2.855	226.011	_
Trave Acciaio 3a-1	0%	NS	1.159	0,38	-2.147	225.875	
Have Acciain 3a-1						225.875	_
	25,0%	86,84	1.159	0,38	-2.601		_
	50,0%	72,86 62,76	1.159	0,38 0,38	-3.100 -3.599	225.875 225.875	_
	75,0%		1.159				

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

REV: 1 30/03/2021

Pag. 72

						Travi (AC) - Vo	erifiche a taglio
Id₁	%L _{LI}	CS	Av	τ _{T,Ed}	V Ed	V _{c,Rd}	P. Vrf.
	[%]		[mm²]	[N/mm ²]	[N]	[N]	
	100,0%	55,13	1.159	0,38	-4.097	225.875	-
Trave Acciaio 1-5a	0%	54,94	1.159	0,00	3.191	175.316	-
	25,0%	61,51	1.159	0,00	2.850	175.316	-
	50,0%	71,65	1.159	0,00	2.447	175.316	-
	75,0%	85,73	1.159	0,00	2.045	175.316	-
	100,0%	NS	1.159	0,00	1.650	175.316	-
Trave Acciaio 1-4a	0%	49,46	1.159	0,01	3.544	175.302	-
	25,0%	55,92	1.159	0,01	3.135	175.302	-
	50,0%	64,38	1.159	0,01	2.723	175.302	-
	75,0%	75,79	1.159	0,01	2.313	175.302	-
	100,0%	92,07	1.159	0,01	1.904	175.302	-
Trave Acciaio 2-7a	0%	32,21	1.159	0,01	5.443	175.302	-
	25,0%	35,87	1.159	0,01	4.887	175.302	-
	50,0%	41,64	1.159	0,01	4.210	175.302	-
	75,0%	49,62	1.159	0,01	3.533	175.302	_
	100,0%	60,97	1.159	0,01	2.875	175.302	_
Trave Acciaio 2-6a	0%	28,56	1.159	0,02	6.137	175.296	_
	25,0%	32,37	1.159	0,02	5.415	175.296	_
	50,0%	37,33	1.159	0,02	4.696	175.296	_
	75,0%	44,12	1.159	0,02	3.973	175.296	_
	100%	53,71	1.159	0,02	3.264	175.296	_
Trave Acciaio 3-9a	0%	32,19	1.159	0,02	5.446	175.302	
Trave Accidio 5-3a		35,85	1.159	•	4.890	175.302	_
	25,0%			0,01			-
	50,0%	41,59	1.159	0,01	4.215	175.302	-
	75,0%	49,52	1.159	0,01	3.540	175.302	-
- • · · · · · ·	100%	60,87	1.159	0,01	2.880	175.302	-
Trave Acciaio 3-8a	0%	28,71	1.159	0,01	6.106	175.302	-
	25,0%	32,59	1.159	0,01	5.379	175.302	-
	50,0%	37,68	1.159	0,01	4.652	175.302	-
	75,0%	44,70	1.159	0,01	3.922	175.302	-
	100%	54,59	1.159	0,01	3.211	175.302	-
Trave Acciaio 4-11a	0%	32,34	1.159	0,01	5.421	175.302	-
	25,0%	36,02	1.159	0,01	4.867	175.302	-
	50,0%	41,80	1.159	0,01	4.194	175.302	-
	75,0%	49,80	1.159	0,01	3.520	175.302	-
	100%	61,23	1.159	0,01	2.863	175.302	-
Trave Acciaio 4-10a	0%	28,77	1.159	0,01	6.093	175.302	-
	25,0%	32,65	1.159	0,01	5.369	175.302	_
	50,0%	37,77	1.159	0,01	4.641	175.302	_
	75,0%	44,79	1.159	0,01	3.914	175.302	_
	100%	54,68	1.159	0,01	3.206	175.302	_
Trave Acciaio 5-13a	0%	32,48	1.159	0,01	5.397	175.302	_
Trave Accidio 5 15a	25,0%	36,17	1.159	0,01	4.846	175.302	_
	50,0%	42,00	1.159	0,01	4.174	175.302	_
	75,0%	50,06	1.159	0,01	3.502	175.302	_
	100,0%	61,60	1.159	0,01	2.846	175.302	_
Trave Acciaio 5-12a	0%	28,53	1.159	0,01	6.145	175.302	_
Trave Acciaio 5-12a	25,0%	32,34	1.159	0,01	5.421	175.302	_
							_
	50,0%	37,31	1.159	0,01	4.698	175.302	-
	75,0%	44,11	1.159	0,01	3.974	175.302	-
	100%	53,72	1.159	0,01	3.263	175.302	-
Trave Acciaio 6-15a	0%	32,47	1.159	0,01	5.399	175.302	-
	25,0%	36,16	1.159	0,01	4.848	175.302	-
	50,0%	41,96	1.159	0,01	4.178	175.302	-
	75,0%	50,00	1.159	0,01	3.506	175.302	-
	100,0%	61,51	1.159	0,01	2.850	175.302	-
Trave Acciaio 6-14a	0%	28,50	1.159	0,01	6.151	175.302	-
	25,0%	32,28	1.159	0,01	5.430	175.302	-
	50,0%	37,25	1.159	0,01	4.706	175.302	-
	75,0%	44,00	1.159	0,01	3.984	175.302	-
	100%	53,54	1.159	0,01	3.274	175.302	-
Trave Acciaio 7-17a	0%	32,54	1.159	0,01	5.388	175.302	-
	25,0%	36,23	1.159	0,01	4.839	175.302	-
	50,0%	42,03	1.159	0,01	4.171	175.302	_
		50,06	1.159	0,01	3.502	175.302	_
	/5 11%						
	75,0% 100%	61,55	1.159	0,01	2.848	175.302	_

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 73

						Travi (AC) - V	
Id₁	%L _{LI}	CS	Av	ττ,Ed	V Ed	V _{c,Rd}	P. Vrf.
	[%]		[mm²]	[N/mm²]	[N]	[N]	
	25,0%	32,32	1.159	0,01	5.424	175.302	-
	50,0%	37,27	1.159	0,01	4.704	175.302	-
	75,0%	44,01	1.159	0,01	3.983	175.302	-
	100%	53,51	1.159	0,01	3.276	175.302	-
Trave Acciaio 8-19a	0%	32,66	1.159	0,01	5.368	175.302	-
	25,0%	36,36	1.159	0,01	4.821	175.302	_
	50,0%	42,23	1.159	0,01	4.151	175.302	_
	75,0%	50,29	1.159	0,01	3.486	175.302	_
	100%	61,81	1.159	0,01	2.836	175.302	_
Trave Acciaio 8-18a	0%	28,58	1.159	0,01	6.133	175.302	_
	25,0%	32,39	1.159	0,01	5.413	175.302	_
	50,0%	37,32	1.159	0,01	4.697	175.302	_
	75,0%	44,11	1.159	0,01	3.974	175.302	
	100%	53,61	1.159	0,01	3.270	175.302	_
Turne Arriais 0 21s							_
Trave Acciaio 9-21a	0%	32,78	1.159	0,01	5.348	175.302	_
	25,0%	36,51	1.159	0,01	4.802	175.302	-
	50,0%	42,37	1.159	0,01	4.137	175.302	-
	75,0%	50,52	1.159	0,01	3.470	175.302	-
	100,0%	62,12	1.159	0,01	2.822	175.302	-
Trave Acciaio 9-20a	0%	28,69	1.159	0,02	6.111	175.296	-
	25,0%	32,50	1.159	0,02	5.394	175.296	-
	50,0%	37,49	1.159	0,02	4.676	175.296	-
	75,0%	44,30	1.159	0,02	3.957	175.296	-
	100%	53,90	1.159	0,02	3.252	175.296	-
Trave Acciaio 10-23a	0%	32,46	1.159	0,00	5.401	175.316	_
	25,0%	35,92	1.159	0,00	4.881	175.316	_
	50,0%	41,42	1.159	0,00	4.233	175.316	_
	75,0%	48,89	1.159	0,00	3.586	175.316	_
	100%	59,65	1.159	0,00	2.939	175.316	_
Trave Acciaio 22a-10	0%	55,66	1.159	0,00	-3.150	175.316	
Trave Accidio 22a-10	25,0%	45,60	1.159	0,00	-3.845	175.316	_
							_
	50,0%	38,51	1.159	0,00	-4.552	175.316	_
	75,0%	33,33	1.159	0,00	-5.260	175.316	_
	100,0%	29,39	1.159	0,00	-5.966	175.316	-
Trave Acciaio 11-25a	0%	32,51	1.159	0,00	5.393	175.316	-
	25,0%	36,02	1.159	0,00	4.867	175.316	-
	50,0%	41,43	1.159	0,00	4.232	175.316	-
	75,0%	48,81	1.159	0,00	3.592	175.316	-
	100,0%	59,29	1.159	0,00	2.957	175.316	-
Trave Acciaio 24a-11	0%	54,02	1.159	0,01	-3.245	175.302	-
	25,0%	44,45	1.159	0,01	-3.944	175.302	_
	50,0%	37,65	1.159	0,01	-4.656	175.302	_
	75,0%	32,65	1.159	0,01	-5.369	175.302	_
	100,0%	28,83	1.159	0,01	-6.080	175.302	_
Trave Acciaio 12-27a	0%	32,57	1.159	0,00	5.383	175.316	_
	25,0%	36,09	1.159	0,00	4.858	175.316	_
	50,0%	41,55	1.159	0,00	4.219	175.316	_
	75,0%	48,96	1.159	0,00	3.581	175.316	
							_
Trava Assisis 20s 12	100,0%	59,65	1.159	0,00	2.939	175.316	_
Trave Acciaio 26a-12	0%	54,19	1.159	0,00	-3.235	175.316	_
	25,0%	45,03	1.159	0,00	-3.893	175.316	_
	50,0%	37,95	1.159	0,00	-4.620	175.316	-
	75,0%	32,79	1.159	0,00	-5.347	175.316	-
	100,0%	28,85	1.159	0,00	-6.076	175.316	-
Trave Acciaio 13-29a	0%	57,37	1.159	0,00	3.056	175.316	-
	25,0%	64,19	1.159	0,00	2.731	175.316	-
	50,0%	74,60	1.159	0,00	2.350	175.316	-
	75,0%	89,08	1.159	0,00	1.968	175.316	_
	100,0%	NS	1.159	0,00	1.585	175.316	_
Trave Acciaio 28a-13	0%	NS	1.159	0,00	-1.751	175.316	_
	25,0%	81,13	1.159	0,00	-2.161	175.316	_
	50,0%	67,93	1.159	0,00	-2.581	175.316	_
					-2.561	175.316	_
	75,0%	58,48	1.159	0,00		175.316	_
	100,0%	51,31	1.159	0,00	-3.417	1/5 116	_

LEGENDA:

Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato. Id_{Tr}

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

						Travi (AC) - Ve	rifiche a taglio
Id₁r	%L _{LI}	CS	Α _ν	τ _{T,Ed}	V Ed	V _{c,Rd}	P. Vrf.
	[%]		[mm²]	[N/mm ²]	[N]	[N]	

%Lıı Posizione della sezione per la quale vengono forniti i valori di verifica, valutata come % della lunghezza libera d'inflessione (Lu), a partire dall'estremo iniziale. Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] = CS

eccezionale; [S] = sismica; [N] = sismica non lineare).

Area resistente a taglio. A_v

Tensione tangenziale di calcolo per torsione. ττ,ε $_{\text{Ed}}$

Taglio di progetto. Taglio resistente. $V_{c,Rd}$ P. Vrf. Piano di minima resistenza.

TRAVI (AC) - VERIFICHE INSTABILITÀ A PRESSOFLESSIONE DEVIATA (Elevazione)

									Travi (A	C) - Ver	ifiche in	nstabilit	tà a pres	soflessi	one deviata
Id _{Tr}	N _{eq,Ed}	Meq,Ed,3 [N·m]	Meq,Ed,2 [N·m]	CS	L _N [m]	L _{Cr}	Dir	λ _L T	α	ф	χ	β	k c	χιτ	N _{cr}
Piano Terra									Piano '	Terra					
Trave Acciaio 13-31a	2	1 255	172	25.00	0.07	0.07	х-х	0,084	0,210	0,524	0,997	1,000	0,940	1,000	10 070 065
	3	1.255	173	25,90	0,97	0,97	у-у	0,070	0,210	0,524	0,997	1,000	0,752	1,000	18.078.865
Trave Acciaio 31a-32a	205	F22		60.63	1.01	1.01	x-x	0,112	0,210	0,586	0,961	1,000	0,940	1,000	4 670 540
	385	523	-	60,63	1,91	1,91	у-у	0,127	0,210	0,586	0,961	1,000	1,000	1,000	4.670.540
Trave Acciaio 30a-31a							x-x	0,000	0,000	0,000	0,000	0,000	0,000	0,000	_
	-401	-	-	VNR	0,00	0,00	у-у	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
Trave Acciaio 12-13							x-x	0,000	0,000	0,000	0,000	0,000	0,000	0,000	_
	-515	-	-	VNR	0,00	0,00	у-у	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
Trave Acciaio 3a-1a							x-x	0,112	0,210	0,586	0,961	1,000	0,910	1,000	
	598	662	23	45,92	1,91	1,91	у-у	0,084	0,210	0,586	0,961	1,000	0,692	1,000	4.684.658
Trave Acciaio 3a-2a							X-X	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
Trave Accidio 3a 2a	-616	-	-	VNR	0,00	0,00		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
Trave Acciaio 1-5a							y-y x-x	0,000	0,210	0,590	0,959	1,000	0,940	1,000	
Trave Acciaio 1-3a	1.453	3.627	280	8,29	1,95	1,95		· ·	0,210	0,590		1,000	0,940	1,000	4.467.573
Trava Assisis 1 4s							у-у	0,113			0,959				
Trave Acciaio 1-4a	-1.526	-	-	VNR	0,00	0,00	X-X	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
Tuesta Accidia 2.7a							у-у	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
Trave Acciaio 2-7a	1.939	6.236	485	4,85	1,95	1,95	X-X	0,113	0,210	0,590	0,958	1,000	0,940	1,000	4.457.197
					·		у-у	0,113	0,210	0,590	0,958	1,000	0,940	1,000	
Trave Acciaio 2-6a	-2.034	_	_	VNR	0,00	0,00	X-X	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
					-,	-,	у-у	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
Trave Acciaio 3-9a	1.952	6.256	484	4,83	1,96	1,96	х-х	0,113	0,210	0,590	0,958	1,000	0,940	1,000	4.446.836
	11,552	0.230		1,03	1,50	1,50	у-у	0,113	0,210	0,590	0,958	1,000	0,940	1,000	11 1 101030
Trave Acciaio 3-8a	-2.013	_	_	VNR	0,00	0,00	х-х	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
	2.015			VIVIX	0,00	0,00	у-у	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
Trave Acciaio 4-11a	1.956	6.238	482	4,84	1,96	1,96	х-х	0,113	0,210	0,591	0,958	1,000	0,940	1,000	4.436.458
	1.930	0.230	702	דט,ד	1,50	1,50	у-у	0,113	0,210	0,591	0,958	1,000	0,940	1,000	7.730.730
Trave Acciaio 4-10a	-2.014	_		VNR	0,00	0,00	X-X	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
	-2.014	_	-	VINK	0,00	0,00	у-у	0,000	0,000	0,000	0,000	0,000	0,000	0,000	U
Trave Acciaio 5-13a	1.057	C 210	477	4.00	1.00	1.00	х-х	0,113	0,210	0,591	0,958	1,000	0,940	1,000	4 426 216
	1.957	6.218	477	4,86	1,96	1,96	у-у	0,113	0,210	0,591	0,958	1,000	0,940	1,000	4.426.216
Trave Acciaio 5-12a	2.022			VAID	0.00	0.00	X-X	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
	-2.032	-	-	VNR	0,00	0,00	у-у	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
Trave Acciaio 6-15a	4 074		470	4.05	4.05	4.00	x-x	0,113	0,210	0,591	0,958	1,000	0,940	1,000	4 445 075
	1.974	6.236	472	4,85	1,96	1,96	у-у	0,113	0,210	0,591	0,958	1,000	0,940	1,000	4.415.975
Trave Acciaio 6-14a							x-x	0,000	0,000	0,000	0,000	0,000	0,000	0,000	_
	-2.044	-	-	VNR	0,00	0,00	у-у	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
Trave Acciaio 7-17a							x-x	0,113	0,210	0,591	0,958	1,000	0,940	1,000	
Trave Accidio 7 17a	1.984	6.238	472	4,85	1,96	1,96	у-у	0,113	0,210	0,591	0,958	1,000	0,940	1,000	4.405.735
Trave Acciaio 7-16a							X-X	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
Trave Accidio / Tod	-2.054	-	-	VNR	0,00	0,00	y-y	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
Trave Acciaio 8-19a								0,000	0,210	0,592	0,958	1,000	0,940	1,000	
Trave Acciaio 0-19a	1.990	6.226	469	4,86	1,97	1,97	X-X	0,114	0,210	0,592	0,958	1,000	0,940	1,000	4.395.541
Trave Acciaio 8-18a							у-у	0,000	0,210	0,000		0,000	0,000		
Have Accidio 0-10g	-2.056	-	-	VNR	0,00	0,00	X-X			-	0,000	-	· ·	0,000	0
Tues a Assisia O 21-							у-у	0,000	0,000	0,000	0,000	0,000	0,000	0,000	-
Trave Acciaio 9-21a	1.994	6.216	459	4,88	1,97	1,97	X-X	0,114	0,210	0,592	0,958	1,000	0,940	1,000	4.385.394
Toron Arriais 0.22				· ·			у-у	0,114	0,210	0,592	0,958	1,000	0,940	1,000	
Trave Acciaio 9-20a	-2.052	_	_	VNR	0,00	0,00	X-X	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
					,	·	у-у	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1
Trave Acciaio 10-23a	1.865	6.170	416	4,95	1,92	1,92	X-X	0,112	0,210	0,587	0,960	1,000	0,940	1,000	4.634.420

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 75

									Travi (A	C) - Ver	ifiche ir	nstabilit	à a pres	soflessi	one deviat
Id₁	N _{eq,Ed}	M _{eq,Ed,3}	M _{eq,Ed,2}	CS	L _N	Lcr	Dir	λιτ	α	ф	χ	β	k _c	χιτ	N _{cr}
	[N]	[N·m]	[N·m]		[m]	[m]									[N]
							у-у	0,112	0,210	0,587	0,960	1,000	0,940	1,000	
Trave Acciaio 22a-10	-2.052			VNR	0,00	0,00	х-х	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
	-2.052	-	-	VINK	0,00	0,00	у-у	0,000	0,000	0,000	0,000	0,000	0,000	0,000	U
Trave Acciaio 11-25a	1 070	5.915	404	F 1F	1 00	1.00	х-х	0,111	0,210	0,585	0,961	1,000	0,910	1,000	4.735.484
	1.870	5.915	404	5,15	1,90	1,90	у-у	0,111	0,210	0,585	0,961	1,000	0,940	1,000	4./35.484
Trave Acciaio 24a-11	-2.050		_	VNR	0,00	0,00	x-x	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
	-2.050	-	-	VINK	0,00	0,00	у-у	0,000	0,000	0,000	0,000	0,000	0,000	0,000	U
Trave Acciaio 12-27a	1.875	5.927	406	E 14	1.00	1.00	X-X	0,112	0,210	0,586	0,961	1,000	0,910	1,000	4.690.53
	1.0/5	5.927	400	5,14	1,90	1,90	у-у	0,112	0,210	0,586	0,961	1,000	0,940	1,000	4.090.53
Trave Acciaio 26a-12	-2.060			VAID	0.00	0.00	х-х	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
	-2.060	-	-	VNR	0,00	0,00	у-у	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
Trave Acciaio 13-29a	1 220	2 202	226	0.22	1.00	1.00	X-X	0,112	0,210	0,586	0,961	1,000	0,910	1,000	4 600 63
	1.220	3.293	226	9,22	1,90	1,90	у-у	0,112	0,210	0,586	0,961	1,000	0,940	1,000	4.698.63
Trave Acciaio 28a-13	1 220			VAID	0.00	0.00	X-X	0,000	0,000	0,000	0,000	0,000	0,000	0,000	_
	-1.328	_	-	VNR	0,00	0,00	y-y	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0

LEGENDA:

 \boldsymbol{Id}_{Tr} Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato.

 $N_{\text{eq,Ed}}$ Sforzo Normale equivalente di progetto. $M_{eq,Ed,3}$ Momento equivalente di progetto intorno a 3. $M_{eq,Ed,2}$ Momento equivalente di progetto intorno a 2.

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR] = Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] =

eccezionale; [S] = sismica; [N] = sismica non lineare).

 \mathbf{L}_{Cr} Lunghezza di libera inflessione laterale, misurata tra due ritegni torsionali successivi.

 λ_{LT} Coefficiente di snellezza normalizzata (per il calcolo di Φ_{LT}).

Fattore di imperfezione. α ф Coefficiente per il calcolo di χ

χ β **k**c Coefficiente di riduzione per instabilità a compressione Coefficiente di riduzione della luce libera di inflessione.

Coefficiente per il calcolo di χ_{LT}

χιτ **N**cr Coefficiente di riduzione ai fini dell'instabilità flessotorsionale.

Sforzo Normale Critico Euleriano.

TRAVI (AC) - VERIFICHE DI DEFORMABILITÀ ALLO SLE (Elevazione)

				Travi (AC) - Verifiche di	deformabilità allo SLE
T.4	Cai	richi Permanenti +	- Variabili		Carichi Var	iabili
Id _{Tr}	CS	δ_{max}	δ_{amm}	CS	δ_{max}	δ_{amm}
		[cm]	[cm]		[cm]	[cm]
Piano Terra				Piano Terra	a	
Trave Acciaio 13-31a	80,97	0,0048	0,3879	NS	0,0006	0,3879
Trave Acciaio 31a-32a	NS	0,0025	0,7633	NS	0,0008	0,7633
Trave Acciaio 30a-31a	NS	0,0029	0,7823	NS	0,0010	0,7823
Trave Acciaio 12-13	51,67	0,0271	1,3996	NS	0,0106	1,3996
Trave Acciaio 3a-1a	NS	0,0033	0,7621	NS	0,0007	0,7621
Trave Acciaio 3a-2a	NS	0,0046	0,7996	NS	0,0009	0,7996
Trave Acciaio 11-12	46,30	0,0303	1,4011	NS	0,0083	1,4011
Trave Acciaio 10-11	47,32	0,0296	1,3993	NS	0,0085	1,3993
Trave Acciaio 9-10	45,76	0,0306	1,4000	NS	0,0089	1,4000
Trave Acciaio 8-9	46,82	0,0299	1,4008	NS	0,0086	1,4008
Trave Acciaio 7-8	46,58	0,0301	1,4024	NS	0,0087	1,4024
Trave Acciaio 6-7	46,27	0,0303	1,4037	NS	0,0089	1,4037
Trave Acciaio 5-6	46,57	0,0300	1,3992	NS	0,0088	1,3992
Trave Acciaio 4-5	47,44	0,0294	1,3944	NS	0,0086	1,3944
Trave Acciaio 3-4	45,92	0,0307	1,4079	NS	0,0092	1,4079
Trave Acciaio 2-3	38,99	0,0359	1,4008	NS	0,0109	1,4008
Trave Acciaio 1-2	68,82	0,0203	1,3979	NS	0,0116	1,3979
Trave Acciaio 3a-1	19,03	0,0343	0,6524	NS	0,0031	0,6524
Trave Acciaio 1-5a	37,66	0,0207	0,7804	62,34	0,0125	0,7804
Trave Acciaio 1-4a	37,41	0,0201	0,7521	57,02	0,0132	0,7521
Trave Acciaio 2-7a	22,10	0,0353	0,7813	32,12	0,0243	0,7813
Trave Acciaio 2-6a	20,48	0,0380	0,7791	27,75	0,0281	0,7791
Trave Acciaio 3-9a	21,97	0,0356	0,7822	32,02	0,0244	0,7822
Trave Acciaio 3-8a	20,37	0,0384	0,7832	28,00	0,0280	0,7832
Trave Acciaio 4-11a	21,98	0,0356	0,7831	32,16	0,0244	0,7831

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

30/03/2021

REV: 1

Pag. 76

				Travi	(AC) - Verifiche di	deformabilità allo SLE
Tal	Ca	richi Permanenti -	+ Variabili		Carichi Var	iabili
Id⊤r	CS	δmax	δamm	CS	δ _{max}	δ _{amm}
		[cm]	[cm]		[cm]	[cm]
Trave Acciaio 4-10a	20,54	0,0381	0,7820	28,16	0,0278	0,7820
Trave Acciaio 5-13a	22,02	0,0356	0,7841	32,32	0,0243	0,7841
Trave Acciaio 5-12a	20,38	0,0383	0,7807	27,64	0,0282	0,7807
Trave Acciaio 6-15a	21,90	0,0358	0,7850	32,24	0,0243	0,7850
Trave Acciaio 6-14a	20,46	0,0381	0,7795	27,65	0,0282	0,7795
Trave Acciaio 7-17a	21,84	0,0360	0,7859	32,27	0,0244	0,7859
Trave Acciaio 7-16a	20,59	0,0378	0,7783	27,72	0,0281	0,7783
Trave Acciaio 8-19a	21,82	0,0361	0,7868	32,34	0,0243	0,7868
Trave Acciaio 8-18a	20,76	0,0374	0,7771	27,85	0,0279	0,7771
Trave Acciaio 9-21a	21,80	0,0361	0,7877	32,44	0,0243	0,7877
Trave Acciaio 9-20a	20,96	0,0370	0,7758	28,02	0,0277	0,7758
Trave Acciaio 10-23a	21,27	0,0360	0,7662	31,86	0,0241	0,7662
Trave Acciaio 22a-10	23,55	0,0328	0,7733	31,95	0,0242	0,7733
Trave Acciaio 11-25a	23,31	0,0325	0,7580	32,58	0,0233	0,7580
Trave Acciaio 24a-11	20,38	0,0379	0,7730	29,11	0,0266	0,7730
Trave Acciaio 12-27a	23,16	0,0329	0,7616	32,41	0,0235	0,7616
Trave Acciaio 26a-12	19,98	0,0396	0,7902	28,22	0,0280	0,7902
Trave Acciaio 13-29a	41,96	0,0181	0,7610	62,80	0,0121	0,7610
Trave Acciaio 28a-13	37,04	0,0208	0,7717	56,06	0,0138	0,7717

LEGENDA:

Pilastro

Pilastro Acciaio 9

Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato. Idτ

M_{Ed,2}

CS $Coefficiente \ di \ sicurezza \ ([NS] = \ Non \ Significativo \ se \ CS \ge 100; \ [VNR] = \ Verifica \ Non \ Richiesta; \ Informazioni \ aggiuntive \ sulla \ condizione: \ [V] \ Perifica \ Non \ Richiesta; \ Informazioni \ aggiuntive \ sulla \ Condizione: \ [V] \ Perifica \ Non \ Richiesta; \ Informazioni \ aggiuntive \ sulla \ Condizione: \ [V] \ Perifica \ Non \ Richiesta; \ Informazioni \ aggiuntive \ sulla \ Condizione: \ [V] \ Perifica \ Non \ Richiesta; \ Informazioni \ aggiuntive \ Sulla \ Richiesta; \ Richiesta$

= statica; [E] = eccezionale; [S] = sismica; [N] = sismica non lineare).

M_{Ed,3}

VEd

Spostamento allo SLE.

%L_{LI}

Spostamento Differenziale ammissibile. δ_{amm}

PILASTRI (AC) - VERIFICHE A PRESSOFLESSIONE DEVIATA (Elevazione) allo SLU Pilastri (AC) - Verifiche a pressoflessione deviata

 $M_{c,Rd}$

 $V_{c,Rd}$

 $\mathbf{A}_{\mathbf{v}}$

 t_{w}

 $N_{pl,Rd}$

CS

[%] [N] [N·m] [N·m] [N·m] [mm²] [mm] [N] [N] Piano Terra 1.470 14.23[241.096 601.385 0.000 3.081 EFF Max Pilastro Acciaio 13 0% 6.288 1.825 -1.986 2.061.230 696 S Min 33.306 825,327 0.000 4.228 23 EFF 161 25.66[Max 241.096 601.385 0,000 3.081 8 50,0% 7.091 12,230 121 2.061.230 6.957 ۷j Min 33.306 825.327 0,000 4.228 23 0,000 1.470 25.30[Max 241.096 601.385 3.081 8 100% 5.227 319 1.188 2.061.230 33.306 825.327 0,000 4.228 23 696 S Min 0,000 3.081 17 FFF Max 241.096 601.385 8.84[V Pilastro Acciaio 12 0% 16.501 12.03 24.951 49 2.061.230 23 Min 33.306 825.327 0,000 4.228 4 17 EFF Max 241.096 601.385 0,000 3.081 16.87 50,0% 15.812 12.03 11.954 66 2.061.230 33.306 825.327 0.000 4.228 Min 23 V1 1.788 18.42 EFF 241.096 601.385 0,000 3.081 Max 100% 6.994 332 1.648 2.061.230 345 33.306 825.327 0,000 4.228 23 Min SI

46 FFF Max 241.096 601.385 0,000 3.081 8.96[V Pilastro Acciaio 11 0% 16.580 11.89 24.755 29 2.061.230 Min 33.306 825.327 0,000 4.228 23 5 241.096 601.385 3.081 46 **EFF** Max 0,000 16.82[8 50,0% 15.891 11.910 77 2.061.230 11.89 V٦ Min 33,306 825.327 0,000 4.228 23 1.753 0,000 3.081 19.01[241.096 601.385 EFF Max 8 100% 6.859 294 1.600 2.061.230 23 466 S Min 33.306 825,327 0,000 4.228 33 EFF Max 241.096 601.385 0,000 3.081 8.90[V 8 Pilastro Acciaio 10 0% 16.575 11.90 24.898 37 2.061.230 Min 33,306 825.327 0.000 4.228 23 6 33 EFF Max 241.096 601.385 0,000 3.081 16.73[50,0% 15.886 11.90 12.040 71 2.061.230 V Min 33.306 825.327 0,000 4.228 23 6 1.757 EFF 3.081 241.096 601.385 0.000 19.03[Max 8 100% 6.872 278 1.601 2.061.230 453 Min 33.306 825.327 0,000 4.228 23

EFF

Max

241.096

601.385

0,000

3.081

4 8.96[V

16.639

presente documento è di proprietà della ANTEX GROUP srl. Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

24.941

73

La società tutela i propri diritti a rigore di Legge.

0%

8

2.061.230

%L_{LI}

 N_{Ed}

 V_{Ed}

M_{Ed,3}

M_{Ed,2}

Pilastro

IMPIANTO FOTOVOLTAICO "MONTALTO -PESCIA"

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Tp Vr max/m

M_{c,Rd}

 $V_{c,Rd}$

Pilastri (AC) - Verifiche a pressoflessione deviata

Αv

tw

 $N_{pl,Rd}$

	[%]	[N]	[N]	[N·m]	[N·m]				[N·m]	[N]		[mm ²]	[mm]	[N]
			11.93 3]		Min	33.306	825.327	0,000	4.228	23	
			73			16.60	EFF	Max	241.096	601.385	0,000	3.081	8	
	50,0%	15.950	11.93 3	12.054	83	16.60[V]		Min	33.306	825.327	0,000	4.228	23	2.061.230
	100%	6.888	1.751	-292	1.590	19.12[EFF	Max	241.096	601.385	0,000	3.081	8	2.061.230
	100%	0.000	-403	-292	1.590	S]		Min	33.306	825.327	0,000	4.228	23	2.061.230
			73			9.00[V	EFF	Max	241.096	601.385	0,000	3.081	8	
Pilastro Acciaio 8	0%	16.677	11.95 5	24.823	3	9.00[v		Min	33.306	825.327	0,000	4.228	23	2.061.230
			73			16.78[EFF	Max	241.096	601.385	0,000	3.081	8	
	50,0%	15.988	11.95 5	11.911	81	10.76[V]		Min	33.306	825.327	0,000	4.228	23	2.061.230
	100%	6.901	1.760	-361	1 507	18.94[EFF	Max	241.096	601.385	0,000	3.081	8	2.061.230
	100%	0.901	-424	-301	361 1.597	S]		Min	33.306	825.327	0,000	4.228	23	2.001.230
			76			8 00L/	EFF	Max	241.096	601.385	0,000	3.081	0	

	100%	6.888	1.751	-292	1.590	19.12[EFF	Max	241.096	601.385	0,000	3.081	8	2.061.230
	10070	0.000	-403		1.550	S]		Min	33.306	825.327	0,000	4.228	23	2.001.250
Pilastro Acciaio 8	0%	16.677	73 11.95	24.823	3	9.00[V	EFF	Max Min	241.096 33.306	601.385 825.327	0,000	3.081 4.228	8 23	2.061.230
			5 73			J	EFF	Max	241.096	601.385	0,000	3.081	25	
	50,0%	15.988	11.95	11.911	81	16.78[V]		Min	33.306	825.327	0,000	4.228	8 23	2.061.230
	100%	6.901	1.760 -424	-361	1.597	18.94[S]	EFF	Max	241.096	601.385	0,000	3.081 4.228	8 23	2.061.230
			76			اد	EFF	Min Max	33.306 241.096	825.327 601.385	0,000	3.081	23	
Pilastro Acciaio 7	0%	16.722	11.98 8	24.865	-1	8.99[V]	LII	Min	33.306	825.327	0,000	4.228	8 23	2.061.230
			76				EFF	Max	241.096	601.385	0,000	3.081		
	50,0%	16.033	11.98 8	11.915	81	16.76[V]		Min	33.306	825.327	0,000	4.228	8 23	2.061.230
	100%	6.908	1.765	-374	1.602	18.87[EFF	Max	241.096	601.385	0,000	3.081	8	2.061.230
	100%	0.906	-369	-3/4	1.002	S]		Min	33.306	825.327	0,000	4.228	23	2.001.230
			86			8.96[V	EFF	Max	241.096	601.385	0,000	3.081	8	
Pilastro Acciaio 6	0%	16.748	12.00 5	24.866	-12]		Min	33.306	825.327	0,000	4.228	23	2.061.230
			86			16 70	EFF	Max	241.096	601.385	0,000	3.081	8	
	50,0%	16.059	12.00 5	11.901	81	16.78[V]		Min	33.306	825.327	0,000	4.228	23	2.061.230
	100%	6.898	1.774	-407	1.614	18.69[EFF	Max	241.096	601.385	0,000	3.081	8	2.061.230
	10070	0.030	-419	-407	1.014	S]		Min	33.306	825.327	0,000	4.228	23	2.001.230
Pilastro Acciaio 5	0%	16.716	93 11.98	24.781	-20	8.97[V	EFF	Max Min	241.096 33.306	601.385 825.327	0,000	3.081 4.228	8 23	2.061.230
			1								,			
	50,0%	16.027	93 11.98	11.841	81	16.85[EFF	Max	241.096	601.385	0,000	3.081	8	2.061.230
	'		1			V]		Min	33.306	825.327	0,000	4.228	23	
	100%	6.870	1.789	-442	1.632	18.46[EFF	Max	241.096	601.385	0,000	3.081	8	2.061.230
	100 /0	0.070	-398	112	1.052	S]		Min	33.306	825.327	0,000	4.228	23	2.001.230
Pilastro Acciaio 4	0%	16.776	87 11.94	24.809	-17	8.96[V	EFF	Max	241.096	601.385	0,000	3.081	8	2.061.230
			1		=-]		Min	33.306	825.327	0,000	4.228	23	
	F0.00/	16.007	87	11.011	76	16.80[EFF	Max	241.096	601.385	0,000	3.081	8	2.061.220
	50,0%	16.087	11.94 1	11.911	76	V]		Min	33.306	825.327	0,000	4.228	23	2.061.230
	100%	6.899	1.791	-475	1.630	18.42[EFF	Max	241.096	601.385	0,000	3.081	8	2.061.230
	10070	0.055	-446	., 5	1.050	S]		Min	33.306	825.327	0,000	4.228	23	2.001.230
Dilantus Anninis 2	00/	16 001	82	25.057	10	8.86[V	EFF	Max	241.096	601.385	0,000	3.081	8	2.061.220
Pilastro Acciaio 3	0%	16.901	12.07 1	25.057	-19	-]		Min	33.306	825.327	0,000	4.228	23	2.061.230
			82			16.71[EFF	Max	241.096	601.385	0,000	3.081	8	
	50,0%	16.212	12.07 1	12.020	69	V]		Min	33.306	825.327	0,000	4.228	23	2.061.230
	100%	7.000	1.773	-502	1.598	18.71[EFF	Max	241.096	601.385	0,000	3.081	8	2.061.230
	100 /0	7.000	-522	302	1.550	S]		Min	33.306	825.327	0,000	4.228	23	2.001.250
			309			8.55[V	EFF	Max	241.096	601.385	0,000	3.081	8	
Pilastro Acciaio 2	0%	16.147	12.05 6	24.952	-187]		Min	33.306	825.327	0,000	4.228	23	2.061.230
			309			16 205	EFF	Max	241.096	601.385	0,000	3.081	0	
	50,0%	15.458	12.05 6	11.932	147	16.28[V]		Min	33.306	825.327	0,000	4.228	8 23	2.061.230
	100%	6.205	2.065	-497	2.011	15.27[EFF	Max	241.096	601.385	0,000	3.081	8	2.061.230
		3.203	-245			S]		Min	33.306	825.327	0,000	4.228	23	

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Pilastri (AC) - Verifiche a pressoflessione deviata

Pilastro	%L _{LI}	N _{Ed}	V _{Ed}	M _{Ed,3}	M _{Ed,2}	cs	Tp Vr	max/m in	M _{c,Rd}	V _{c,Rd}	ρ	Av	tw	N _{pl,Rd}
	[%]	[N]	[N]	[N·m]	[N·m]				[N·m]	[N]		[mm²]	[mm]	[N]
Pilastro Acciaio 1	0%	14.834	-1.309	14.143	966	10.53[EFF	Max	241.096	601.385	0,000	3.081	8	2.061.230
Pilastro Accidio 1	0%	14.034	6.717	14.143	900	V]		Min	33.306	825.327	0,000	4.228	23	2.061.230
	50,0%	14.145	-1.309	6.887	-448	20.46[EFF	Max	241.096	601.385	0,000	3.081	8	2.061.230
	50,0%	14.145	6.717	0.007	-440	V]		Min	33.306	825.327	0,000	4.228	23	2.061.230
	100%	0.716	-1.526	-896	-2.238	13.31[EFF	Max	241.096	601.385	0,000	3.081	8	2.061.230
	100%	8.716	-2.464	-090	-2.236	V]		Min	33.306	825.327	0,000	4.228	23	2.061.230

LEGENDA:

Pilastro Identificativo del pilastro. L'eventuale lettera tra parentesi distingue i diversi tratti della pilastrata al livello considerato.

%L_{LI} Posizione della sezione per la quale vengono forniti i valori di verifica, valutata come % della lunghezza libera d'inflessione (Lu), a partire dall'estremo iniziale.

 N_{Ed} Sforzo normale di progetto.

Taglio di progetto utilizzato per il calcolo di ρ . V_{Ed} M_{Ed.3} Momento flettente di progetto intorno a 3. $M_{Ed,2}$ Momento flettente di progetto intorno a 2.

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] =

eccezionale; [S] = sismica; [N] = sismica non lineare).

Tp Vr Tipo di verifica considerata: "PLS" = con Modulo di resistenza plastico; "ELA" = con modulo di resistenza elastico; "EFF" = con modulo di resistenza efficace.

max/mi [max] = valore per la verifica con modulo di resistenza maggiore; [min] = valore per la verifica con modulo di resistenza minore.

 $M_{c,Rd}$ Momento resistente.

 $\boldsymbol{V}_{c,Rd}$ Taglio resistente. ρ

Coefficiente riduttivo per presenza di taglio.

Area resistente a taglio. A۷

Spessore anima.

 $N_{pl,Rd}$ Resistenza plastica a Sforzo Normale.

PILASTRI (AC) - VERIFICHE A TAGLIO (Elevazione) per pressoflessione deviata allo SLU

_						P	ilastri (AC) - Ve	rifiche a taglio
Pilastro	%L _{LI}	CS	Av	TT,Ed	V _{Ed}	V _{c,Rd}	P. Vrf.	Ω_{Min}
	[%]		[mm ²]	[N/mm ²]	[N]	[N]		
Piano Terra								
Pilastro Acciaio 13	0%	86,41	3.081	0,13	6.958	601.221	Piano XX	1,00
	50,0%	86,41	3.081	0,13	6.958	601.221	Piano XX	1,00
	100%	86,41	3.081	0,13	6.958	601.221	Piano XX	1,00
Pilastro Acciaio 12	0%	49,97	3.081	0,07	12.034	601.303	Piano XX	1,00
	50,0%	49,97	3.081	0,07	12.034	601.303	Piano XX	1,00
	100%	49,97	3.081	0,07	12.034	601.303	Piano XX	1,00
Pilastro Acciaio 11	0%	50,55	3.081	0,07	11.895	601.303	Piano XX	1,00
	50,0%	50,55	3.081	0,07	11.895	601.303	Piano XX	1,00
	100%	50,55	3.081	0,07	11.895	601.303	Piano XX	1,00
Pilastro Acciaio 10	0%	50,50	3.081	0,07	11.906	601.303	Piano XX	1,00
	50,0%	50,50	3.081	0,07	11.906	601.303	Piano XX	1,00
	100%	50,50	3.081	0,07	11.906	601.303	Piano XX	1,00
Pilastro Acciaio 9	0%	50,39	3.081	0,07	11.933	601.303	Piano XX	1,00
	50,0%	50,39	3.081	0,07	11.933	601.303	Piano XX	1,00
	100%	50,39	3.081	0,07	11.933	601.303	Piano XX	1,00
Pilastro Acciaio 8	0%	50,30	3.081	0,07	11.955	601.303	Piano XX	1,00
	50,0%	50,30	3.081	0,07	11.955	601.303	Piano XX	1,00
	100%	50,30	3.081	0,07	11.955	601.303	Piano XX	1,00
Pilastro Acciaio 7	0%	50,15	3.081	0,07	11.989	601.303	Piano XX	1,00
	50,0%	50,15	3.081	0,07	11.989	601.303	Piano XX	1,00
	100%	50,15	3.081	0,07	11.989	601.303	Piano XX	1,00
Pilastro Acciaio 6	0%	50,09	3.081	0,07	12.005	601.303	Piano XX	1,00
	50,0%	50,09	3.081	0,07	12.005	601.303	Piano XX	1,00
	100%	50,09	3.081	0,07	12.005	601.303	Piano XX	1,00
Pilastro Acciaio 5	0%	50,19	3.081	0,07	11.981	601.303	Piano XX	1,00
	50,0%	50,19	3.081	0,07	11.981	601.303	Piano XX	1,00
	100%	50,19	3.081	0,07	11.981	601.303	Piano XX	1,00
Pilastro Acciaio 4	0%	50,35	3.081	0,07	11.942	601.303	Piano XX	1,00
	50,0%	50,35	3.081	0,07	11.942	601.303	Piano XX	1,00
	100%	50,35	3.081	0,07	11.942	601.303	Piano XX	1,00
Pilastro Acciaio 3	0%	49,81	3.081	0,07	12.071	601.303	Piano XX	1,00
	50,0%	49,81	3.081	0,07	12.071	601.303	Piano XX	1,00
	100%	49,81	3.081	0,07	12.071	601.303	Piano XX	1,00
Pilastro Acciaio 2	0%	49,88	3.081	0,07	12.056	601.303	Piano XX	1,00

presente documento è di proprietà della ANTEX GROUP srl. Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

Pilastri (AC) - Verifiche a taglio

Pilastro	%L _{LI}	CS	Av	TT,Ed	V _{Ed}	V _{c,Rd}	P. Vrf.	Ω_{Min}
	[%]		[mm ²]	[N/mm ²]	[N]	[N]		
	50,0%	49,88	3.081	0,07	12.056	601.303	Piano XX	1,00
	100%	49,88	3.081	0,07	12.056	601.303	Piano XX	1,00
Pilastro Acciaio 1	0%	89,49	3.081	0,13	6.718	601.221	Piano XX	1,00
	50,0%	89,49	3.081	0,13	6.718	601.221	Piano XX	1,00
	100%	89,49	3.081	0,13	6.718	601.221	Piano XX	1,00

LEGENDA:

Pilastro Identificativo del pilastro. L'eventuale lettera tra parentesi distingue i diversi tratti della pilastrata al livello considerato.

Posizione della sezione per la quale vengono forniti i valori di verifica, valutata come % della lunghezza libera d'inflessione (LL1), a partire dall'estremo iniziale. %**L**ц CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR] = Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] =

eccezionale; [S] = sismica; [N] = sismica non lineare).

Area resistente a taglio. Αv

Tensione tangenziale di calcolo per torsione. ττ.Ed

Taglio di progetto. V_{Ed} Taglio resistente. $V_{c,Rd}$

P. Vrf. Piano di minima resistenza.

Rapporto minimo momento plastico/momento progetto travi concorrenti. Ω_{Min}

PTI ASTRI (AC) - VERIFICHE INSTARII ITÀ A PRESSORI ESSIONE DEVIATA (Flevazione)

PILASIRI	/														one deviat
Pilastro	N	M _{eq,Ed,3}	M _{eq,Ed,2}	CS	La	L _{Cr}	Dir	λ _{LT}		c) - vei		β	k _c		N _{cr}
PilaStiO	N _{eq,Ed}	[N·m]	[N·m]	CS	L _N	[m]	DII	∧L T	α	Ψ	χ	р	K _C	χιτ	[N]
iano Terra	[IN]	[iv:iii]	[iviii]		Lind	l [iii]					l				[IN]
							х-х	0,507	0,210	0,521	0,999	1,000	0,860	0,997	
Pilastro Acciaio 13	5.758	1.369	1.490	18,40	2,16	2,16	у-у	0,076	0,340	0,914	0,729	1,000	0,770	1,000	3.450.88
							X-X	0,476	0,210	0,521	0,999	1,000	0,744	1,000	
Pilastro Acciaio 12	15.812	14.553	71	13,69	2,16	2,16	у-у	0,108	0,340	0,914	0,729	1,000	0,876	1,000	3.450.88
							x-x	0,476	0,210	0,521	0,999	1,000	0,745	1,000	
Pilastro Acciaio 11	15.890	14.478	88	13,64	2,16	2,16	у-у	0,097	0,340	0,914	0,729	1,000	0,797	1,000	3.450.88
Dilenton Anninin 10	15.005	14.612	70	12.00	2.16	2.16	X-X	0,477	0,210	0,521	0,999	1,000	0,746	1,000	2 450 00
Pilastro Acciaio 10	15.885	14.612	78	13,60	2,16	2,16	у-у	0,101	0,340	0,914	0,729	1,000	0,823	1,000	3.450.88
Dilentus Assisis O	15.040	14 (21	00	12.46	2.16	2.16	x-x	0,477	0,210	0,521	0,999	1,000	0,746	1,000	2 450 00
Pilastro Acciaio 9	15.949	14.631	99	13,46 2,16 2,16	у-у	0,092	0,340	0,914	0,729	1,000	0,752	1,000	3.450.88		
Pilastro Acciaio 8	15.988	14.494	98	12 56	2.16	2,16	X-X	0,476	0,210	0,521	0,999	1,000	0,744	1,000	3.450.88
Pliastro Acciaio o	15.966	14.494	90	13,56 2,16 2	2,10	у-у	0,092	0,340	0,914	0,729	1,000	0,752	1,000	3.430.00	
Pilastro Acciaio 7	16.032	14.507	98	13,55	2,16	2,16	X-X	0,476	0,210	0,521	0,999	1,000	0,744	1,000	3.450.88
Filasti o Accidio 7	10.032	14.507	90	13,33	2,10	2,10	у-у	0,091	0,340	0,914	0,729	1,000	0,752	1,000	3.430.00
Pilastro Acciaio 6	16.058	14.494	101	13,54	2,16	2,16	x-x	0,475	0,210	0,521	0,999	1,000	0,744	1,000	3.450.88
I liastro Accidio o	10.030	17.77	101	13,37	2,10	2,10	у-у	0,089	0,340	0,914	0,729	1,000	0,739	1,000	3.730.00
Pilastro Acciaio 5	16.026	14.429	101	13,59	2,16	2,16	X-X	0,475	0,210	0,521	0,999	1,000	0,744	1,000	3.450.88
Tilastro Accidio 5	10.020	11.123	101	15,55	2,10	2,10	у-у	0,088	0,340	0,914	0,729	1,000	0,732	1,000	3. 130.00
Pilastro Acciaio 4	16.086	14.491	96	13,57	2,16	2,16	X-X	0,476	0,210	0,521	0,999	1,000	0,745	1,000	3.450.88
TildStro Accidio 1	10.000	11.171	50	15,57	2,10	2,10	у-у	0,088	0,340	0,914	0,729	1,000	0,734	1,000	3. 130.00
Pilastro Acciaio 3	16.211	14.628	88	13,49	2,16	2,16	X-X	0,476	0,210	0,521	0,999	1,000	0,744	1,000	3.450.88
asa s / tectalo s	10,211	2.1020		10,10	_,10	_,10	у-у	0,088	0,340	0,914	0,729	1,000	0,730	1,000	350.00
Pilastro Acciaio 2	15.458	14.536	214	12,98	2.16 2.16	X-X	0,475	0,210	0,521	0,999	1,000	0,744	1,000	3.450.88	
				,50	_,_0	,	у-у	0,081	0,340	0,914	0,729	1,000	0,686	1,000	21.30.00
Pilastro Acciaio 1	7.304	1.521	1.879	14,77	2,16	2,16	X-X	0,497	0,210	0,521	0,999	1,000	0,860	1,000	3.450.88
	7.50	-:021		1.879 14,77 2,16 2,1	_,	у-у	0,071	0,340	0,914	0,729	1,000	0,770	1,000		

LEGENDA:

Pilastro Identificativo del pilastro. L'eventuale lettera tra parentesi distingue i diversi tratti della pilastrata al livello considerato.

 $N_{\text{eq,Ed}}$ Sforzo Normale equivalente di progetto. $M_{eq,Ed,3}$ Momento equivalente di progetto intorno a 3. $M_{eq,Ed,2}$ Momento equivalente di progetto intorno a 2.

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR] = Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] =

eccezionale; [S] = sismica; [N] = sismica non lineare).

Lunghezza di libera inflessione laterale, misurata tra due ritegni torsionali successivi. Lcr

λιτ Coefficiente di snellezza normalizzata (per il calcolo di Φ_{LT}).

Fattore di imperfezione.

ф Coefficiente ϕ (per il calcolo di χ).

χ β Coefficiente di riduzione per instabilità a compressione Coefficiente di riduzione della luce libera di inflessione.

Coefficiente per il calcolo di χ_{LT}

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

								Pi	lastri (AC) - Ve	rifiche i	nstabilit	à a pres	soflessio	ne deviata
Pilastro	N _{eq,Ed}	M _{eq,Ed,3}	M _{eq,Ed,2}	CS	L _N	Lcr	Dir	λ _{LT}	α	ф	χ	β	k _c	χιτ	N _{cr}
	[N]	[N·m]	[N·m]		[m]	[m]									[N]

Coefficiente di riduzione ai fini dell'instabilità flessotorsionale. χιτ N_{cr}

Sforzo Normale Critico Euleriano.

11 - PRESCRIZIONI

Si esegue la verifica a sfilamento del palo considerando l'azione del vento p=820 N/m² (pressione normale) e le caratteristiche del terreno.

La forza agente sull'aria di influenza sarà: F= 820x(4,531-0,50)x3,50/10=1.156,9 daN Il punto di applicazione della forza si trova alla quota del centro di rotazione a 2,40m. Si considerano i dati della Prova Penetrometrica Tatica n.2

										RICA									CI	PT	2
	TABELLA PARAMETRI GEOTECNICI												2.01	05-1	57						
- committente : Soc. IdroGeo Service Srl - data : - quota inizio : - località : Montalto di Castro (VT) - falda : - falda :											Pia		amp	agna evata							
						NA	TURA	COE	IVA					NATI	JRA	GRA	ΝŲL	ARE			
Prof.	qc (kg/cm²	qc/fs (-)	Natura Litol.	Y" t/m³	p'vo kg/cm²	Cu kg/cm²	OCR (-)	Eu50 kg/d	Eu25	Mo kg/cm²	Dr %	ø1s (°)	ø2s (°)	ø3s (°)	04s (°)	ødm (°)	ømy (°)	Amax/g (-)	E'50 kg/	E'25 cm² kg	
0,20		-	???	1,85	0,04	0.45	00.0		445			-	277		-	-					

Prof.	qc	qc/fs	Natura	Y'	p'vo	Cu	OCR	Eu50	Eu25	Mo	Dr	ø1s	ø2s	ø3s	04s	ødm	ømy	Amax/g	E'50	E'25	Mo
	kg/cm	(-)	Litol.	t/m³	kg/cm²	kg/cm²	(-)	kg/d	cm ²	kg/cm²	%	(°)	(°)	(°)	(°)	(°)	(°)	(-)	kg/	cm² kg	g/cm²
0.20 0.40 0.60 0.80 1.20 1.40 2.60 2.20 2.40 2.80 3.20 3.20 4.20 4.20 4.20 5.20 5.20 5.40 5.80 6.60 6.60 6.60 6.60 6.60	9 6 6 23 3 11 45 5 6 113 145 87 93 93 98 82 75 78 84 84 977 112 96 80 131 127	19 13 86 46 46 46 46 18 29 17 22 22 23 21 11 15 13 18 18 17 11 11 11 11 11 11 11 11 11 11 11 11	??? 20/// 3::::: 3::::: 3:::: 4/7: 4/7: 4/7: 4/7: 4/7: 4/7: 4/7:	1,85 1,85 1,85 1,85 1,85 1,85 1,85 1,85	0.04 0.07 0.11 0.15 0.22 0.30 0.30 0.37 0.44 0.48 0.52 0.55 0.63 0.70 0.70 0.70 0.78 0.85 0.93 0.93 0.93 0.93 1.00 1.11 1.11 1.12 1.12 1.23	0.45 0.30 17 3.77 3.77 3.10 3.13 4.00 2.63 2.83 2.73 2.50 2.83 3.27 2.50 2.83 3.33 2.77 2.50 2.83 3.33 3.27 2.73 2.83 3.33 2.73 2.73 2.73 2.73 2.73 2.73 2.7	89,3 99,9 99,9 82,3 772,2 80,8 440,6 41,2 33,8 45,6 41,2 22,1 22,1 24,4 24,1 24,8 24,1 24,8 24,8 24,8 24,8 24,8 24,8 24,8 24,8		115 18 	38 9	68 73 81 91 91 91 91 91 77 78 8 77 76 66 66 68 72 66 66 67 3 66 67 76 76		39 40 41 42 43 43 43 44 41 40 41 41 40 41 41 41 41 41 41 41 41 41 41 41 41 41	41 42 43 44 44 44 44 44 44 44 44 44 44 44 44		39 39 40 41 41 41 41 41 41 41 41 41 41 41 41 41	289 311 324 36 33 334 34 33 334 34 33 334 34 33 334 34	0.153 0.168 0.194 0.258 0.228 0.228 0.228 0.228 0.183 0.169	38 52 75 108 242 145 155 157 132 200 132 142 163 137 140 160 128 145 145 145 135 142 163 137 140 180 128 142 122 121 121 121 121 121 121 121 121	218 235 320 300 203 198 215 175 1203 258 245 205 188 195 210 240 240 203 240 240 203 240 240 203 240 240 203	69 93 135 195 279 282 261 279 282 243 360 243 237 255 234 245 224 288 241 255 288 241 393 381

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

VERIFICA DEI PALI DI SUPPORTO: VERIFICA DI STABILITA': DATI: 1850 daN²/m³ Peso specifico terreno $\gamma =$ Angolo di attrito terreno φ = 28 Coesione o Cementificazione c =0,3 daN/cm² Coef. Spinta passiva $k_p =$ 2,77 Coeff. sicurezza η = 1,20 $k_{\rm p}' = k_{\rm p}/\eta$ 2,31 Diametro del palo d= 0.33 m Profondità di Infissione h = Forza applicata al palo F = 1156,9 daN Altezza di appl. fuori terra I = 2,40 m RISULTATI: Profondità centro di rotazione x =1,02 Forza resistente a valle P' = 6873 daN Forza resistente a monte P" = 5716 daN Equilibrio alla rotazione rispetto al centro di rotazione: Momento di F = F(I+x) =3957,1 daNm Momento di P' = P' x/2 = 3506,6 daNm Momento di P" = P" (h-x)2/3 =2589.4 1,54 >1,5 Verifica: (Mp' + Mp") / M_F VERIFICA DI RESISTENZA: Momento massimo M=2973 daNm

3528 cm³

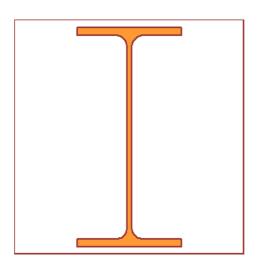
84 daN/cm² <

• La distanza di infissione deve essere almeno 1,70m;

Modulo di resistenza W =

Tensione massima a flessione =

Tens. Amm.le



RELAZIONE DI CALCOLO-TABULATI-STRUTTURA DI SUPPORTO FV

• La sezione del palo deve raggiungere un'ampiezza di 33cm, nelle tavole si indica pali IPE300.

IPE330

Geometria

Principali		
В	160,0	mm
B2	160,0	mm
Н	330,0	mm
Spessori		
t1	7 , 5	mm
t2	11,5	mm
t3	11,5	mm
Raccordi		
R1	18,00	mm
R2	18,00	mm

Caratteristiche Elastiche

Generali		
Peso	49,15	daN/m
Area	62 , 62	cm^2
rx	13,7	cm
ry	3 , 5	cm
xg	8,00	cm
λа	16,50	cm
It	20,70	cm^4
Momenti d'	'inerzia	
Jx	11769,15	cm^4
Jу	788 , 15	cm^4
Jxy	-0,01	cm^4
Moduli di	resistenza	
Wx	713,28	cm^3
Wy	98,52	cm^3

Comm.: C20-032-S05

ISO 3001
BUREAU VERITAS
Certification