

STUDIO DI IMPATTO AMBIENTALE

Realizzazione di un parco Agrivoltaico di potenza nominale pari a 42 MWp, denominato "MACOMER 4" sito nel Comune di Macomer (NU).

Località "Nuraghe Solene".

PROPONENTE:

Rev00		Data ultima elaborazione: 24	Data ultima elaborazione: 24/05/2022	
Redatto	Formattato	Verificato	Approvato	
Dott. Agr. P. Vasta	Ing. A. Palmisano	Dott. Agr. Patrick Vasta	ENERLAND ITALIA s.r.l.	
Codice Elaborato		Og	getto	
MACOMER4-IAR01		STUDIO DI IMPA	TTO AMBIENTALE	

TEAM ENERLAND:

Dott. Agr. Patrick VASTA Ing. Annamaria PALMISANO Dott.ssa Nausica RUSSO Dott.ssa Ilaria CASTAGNETTI

GRUPPO DI LAVORO:

Geol. Nicola PILI
Ing. Marta ZICCHEDDU
Dott. Rosario PIGNATELLO
Ing. Gianluca VICINO
Ing. Fabio Massimo CALDERARO
Ing. Vincenzo BUTTAFUOCO
Dott. Agr. Vincenzo SATTA

INDICE

1	. PREMESSA	1
	1.1 Soggetto proponente	3
	1.2 Area di intervento	4
	1.3 Agrovoltaico	7
	1.4 Metodologia di studio	8
2	QUADRO DI RIFERIMENTO PROGRAMMATICO	11
	2.1 Piani e programmi internazionali e nazionali	11
	2.1.1 Agenda ONU 2030	11
	2.1.2 Quadro normativo europeo in materia di energia e clima	15
	2.1.3 Il PNIEC e il Piano per la transizione ecologica	17
	2.1.4 Piano Nazionale di Ripresa e Resilienza (PNRR)	21
	2.1.5 Normativa nazionale di riferimento	30
	2.2 Pianificazione territoriale e ambientale	34
	2.2.1 Codice dei beni culturali e del paesaggio (D. Lgs. 42/2004)	34
	2.2.2 Analisi del sito rispetto ai vincoli paesaggistico-ambientali, architettonici (D. Lgs. 42/2004)	ŭ
	2.2.2.1 Assetto ambientale (Titolo I della L.R. 8/2004)	38
	2.2.2.2 Assetto storico-culturale (Titolo II della L.R. 8/2004)	42
	2.2.2.3 Assetto insediativo (Titolo III della L.R. n. 8/2004)	45
	2.2.3 Rete Natura 2000: SIC, ZPS e ZSC	47
	2.3 Programmazione regionale	50
	2.3.1 PEARS 2030	50
	2.3.1 Delibera di Giunta Regionale 59/90 del 2020	55
	2.3.2 Piano di tutela delle acque PTA	57
	2.3.2.1 Caratterizzazione climatica	58

2.3.2.2	Piano di Assetto Idrogeologico (P.A.I.) e Piano di gestione del rischio a	Iluvioni62
2.3.3 Ar	nalisi del rischio idrogeologico	65
2.3.4 Di	isciplina regionale sugli scarichi	70
2.3.5 Pi	iano regionale di gestione dei rifiuti (Allegato alla Delib.G.R. n. 1/2 ⁻ 1	1 del 8.1.2021)
2.3.6 Pi	iano regionale Bonifica Siti Inquinati	75
2.3.7 No	ormativa regionale parchi e riserve naturali	77
2.3.8 Pi	iano faunistico venatorio	79
2.3.9 Pi	iano regionale di previsione, prevenzione lotta attiva contro gli ince	ndi boschivi81
2.3.10 Pi	iano regionale dei trasporti	83
2.3.11 Pi	iano forestale Ambientale Regionale	85
2.3.12 Pi	iano regionale di qualità dell'aria ambiente	86
2.3.13 Pi	iano Paesaggistico Regionale	88
2.4 Pianific	cazione provinciale e comunale di riferimento	91
2.4.1 Pi	iano Urbanistico Provinciale	91
2.4.2 Pi	iano Regolatore Generale	93
2.5 Potenz	ziali criticità riscontrate	95
3. QUADRO	O DI RIFERIMENTO PROGETTUALE	96
3.1 Finalità	à del progetto	98
3.2 Situazi	ione attuale	99
3.3 Descriz	zione alternative progetto	100
3.3.1 Al	Iternative di localizzazione	100
3.3.2 Al	Iternative progettuali	101
3.3.2.1	Metodo di valutazione	103
3.3.3 Al	Iternativa "zero"	104
3.4 Descriz	zione del progetto e dimensionamento dell'impianto	106

3.	.4.1	Caratteristiche dei moduli fotovoltaici	107
3.	.4.2	Inverter e trasformatore	108
3.	.4.3	Stazione SE TERNA	110
3.	.4.4	Stima della produzione energetica dell'impianto	111
3.5	Fase	se di costruzione dell'impianto	112
3.	.5.1	Realizzazione impianto agrivoltaico	112
3.	.5.2	Mezzi ed attrezzatura da impiegare in fase di cantiere	114
	3.5.2.	2.1 Messa in cantiere	114
	3.5.2.	2.2 Viabilità di impianto	115
	3.5.2.	2.3 Regolarizzazione superfici area di impianto	116
	3.5.2.	2.4 Recinzioni	116
	3.5.2.	2.5 Impianto antintrusione e videosorveglianza	118
	3.5.2.	2.6 Cavidotto	119
3.6	Fase	se di esercizio	120
	1 430		120
3.7		missione del progetto e ripristino ambientale	
	Disr		121
3.7	Disr Ene	missione del progetto e ripristino ambientale	121
3.73.83.9	Disr Ene	missione del progetto e ripristino ambientaleergia prodotta annualmente	121 124 125
3.7 3.8 3.9	Disr Ene Inte	ergia prodotta annualmenteergioni con l'ambiente	121124125
3.7 3.8 3.9	Disr Ene Inte	ergia prodotta annualmenteerazioni con l'ambiente	121124125125
3.7 3.8 3.9 3.	Disr Ene Inter .9.1	ergia prodotta annualmente. erazioni con l'ambiente. Occupazione di suolo. Impiego di risorse idriche	121124125125125
3.7 3.8 3.9 3 3	Disr Ene Intel .9.1 .9.2	ergia prodotta annualmenteerazioni con l'ambiente	121124125125125126
3.7 3.8 3.9 3.3 3.3	Disr Ene Intel .9.1 .9.2 .9.3	ergia prodotta annualmente. erazioni con l'ambiente. Occupazione di suolo. Impiego di risorse idriche. Impiego di risorse elettriche. Scavi	121124125125126126
3.7 3.8 3.9 3 3 3	Disr Ene Intel .9.1 .9.2 .9.3 .9.4	ergia prodotta annualmente	121124125125126126126
3.7 3.8 3.9 3.3 3.3 3.3 3.3	Disr Ene Intel .9.1 .9.2 .9.3 .9.4 .9.5	ergia prodotta annualmente. Perazioni con l'ambiente. Occupazione di suolo. Impiego di risorse idriche. Impiego di risorse elettriche. Scavi. Traffico indotto dalla realizzazione del progetto. Gestione dei rifiuti	121124125125126126126127

3.9.10 Inquinamento luminoso	136
4. QUADRO DI RIFERIMENTO AMBIENTALE	137
4.1 Atmosfera	139
4.1.1 Analisi dello stato attuale	139
4.1.1.1 Caratteri climatologici generali	139
4.1.2 Analisi del potenziale impatto	145
4.1.2.1 Atmosfera	145
4.1.2.2 Precipitazioni	146
4.1.2.3 Temperature	146
4.1.2.4 Vento	146
4.2 Ambiente idrico	147
4.2.1 Inquadramento e analisi dello stato attuale	147
4.2.2 Analisi dell'impatto potenziale	148
4.3 Suolo e sottosuolo	150
4.3.1 Inquadramento e analisi stato di fatto	150
4.3.1.1 Uso del suolo	150
4.3.1.2 Consumo di suolo	153
4.3.1.3 Inquadramento geologico e geomorfologico	156
4.3.1.4 Sismicità	161
4.3.2 Analisi dell'Impatto Potenziale	163
4.4 Pedologia e morfologia	173
4.4.1 Analisi dell'impatto potenziale	176
4.5 Biodiversità, flora e fauna	177
4.5.1 Inquadramento dello stato di fatto	178
4.5.1.1 Flora	178
4.5.1.2 Fauna	180

4.5.1.3 Valutazione ecologica ed ambientale dei biotipi – Corine Biotop	pes183
4.5.2 Analisi dell'Impatto Potenziale	191
4.6 Rumore	194
4.6.1 Inquadramento e analisi stato di fatto	194
4.6.2 Analisi dell'Impatto Potenziale	197
4.7 Paesaggio e patrimonio	198
4.7.1 Inquadramento e analisi stato di fatto	198
4.7.2 Analisi dell'Impatto Potenziale	199
4.8 Polveri	203
4.8.1 Analisi del Potenziale Impatto	203
4.9 Traffico	204
4.9.1 Inquadramento ed analisi dello stato di fatto	204
4.9.2 Analisi dell'Impatto Potenziale	204
4.10 Valutazione economica e ricadute socio-occupazionali	205
5. STIMA DEGLI IMPATTI	208
5.1 Fase di cantiere	209
5.2 Fase di esercizio	213
5.3 Piano di monitoraggio ambientale	218
5.4 Cumulo cartografico	221
5.4.1 Impianti esistenti	223
6. MISURE DI MITIGAZIONE E INTERVENTI DI COMPENSAZIONE	231
6.1 Fase di costruzione	232
6.1.1 Atmosfera	232
6.1.2 Rumore	232
6.1.3 Impatto visivo e luminoso	233
6.2 Fase di esercizio	234

	6.2.1	Rumore	234
	6.2.2	Impatto visivo e paesaggistico	235
7.	CONC	CLUSIONI	.240
8.	INDIC	E DELLE FIGURE	.243
9.	INDIC	E DELLE TABELLE	.247
10.	BIBLIC	OGRAFIA	.249

1. PREMESSA

La presente relazione è inerente allo "Studio di Impatto Ambientale" - (redatto ai sensi dell'art. 22 del D.lgs. 152/06 e successive modifiche ed integrazioni), inerente al progetto per la realizzazione di un impianto agri-voltaico costituito da tracker a inseguimento monoassiale e relative opere connesse (infrastrutture impiantistiche e civili), ubicato in Sardegna, nel Comune di Macomer, con potenza pari a 42 MWp. L'area occupata dalle strutture sarà complessivamente pari a 19,35 ettari, su circa 72 ettari totali.

L'impianto è soggetto al rilascio di Autorizzazione Unica, ai sensi dell'art. 12 comma 3 del d.lgs. n. 387 del 2003; il progetto proposto rientra, ai sensi dall'art. 31 comma 6 della legge n. 108 del 2021, tra quelli previsti nell'allegato II alla parte seconda del d.lgs. 152/2006 (impianti fotovoltaici per la produzione di energia elettrica con potenza complessiva superiore a 10 MW), pertanto, l'intervento è soggetto, ai sensi dell'art. 6 comma 7 (comma così sostituito dall'art. 3 del d.lgs. n. 104 del 2017) del d.lgs. 152/2006 a provvedimento di VIA (Valutazione di Impatto Ambientale).

Un parco fotovoltaico è la sintesi di un numero congruo di pannelli fotovoltaici, comunemente realizzati in materiale monocristallino, interconnessi tra loro al fine di produrre energia elettrica sfruttando l'effetto fotovoltaico. L'insieme dei pannelli viene quindi collegato a una stazione di inverter in cui l'energia elettrica viene trasformata prima di essere trasferita alla rete attraverso un sistema di linee elettriche solitamente interrate.

L'area oggetto di intervento presenta una superficie con destinazione agricola e di proprietà di soggetti privati. Il sito è caratterizzato da un'orografia lievemente pendente e si divide in 2 blocchi, quello più a sud si attesta attorno ai 350 m s.l.m., quello più a nord invece presenta un'altitudine medi pari a 650 metri sul livello del mare.

Il presente progetto si inserisce nell'ottica di una progressiva sostituzione dei combustibili fossili quale fonte energetica e della riduzione di inquinanti atmosferici e gas clima-alteranti, secondo quanto previsto dagli accordi internazionali in materia (es. Protocollo di Kyoto).

La soluzione di connessione alla RTN qui descritta fa riferimento alla Soluzione Tecnica Minima Generale (STMG), che la Società Terna ha elaborato per l'allacciamento alla RTN, ai sensi dell'art.21 dell'allegato A alla deliberazione ARG/ELT/99/08 dell'ARERA ss.mm.ii.

Essa prevede che il parco fotovoltaico, mediante trasformatori appositi BT/AT - 0.80/36 kV (Allegato A.2 Codice di trasmissione, dispacciamento, sviluppo e sicurezza della rete di Terna – del 18/11/21), venga connesso, mediante attestazione di questi ultimi ad un'unica cabina di consegna, e da questa ad una futura stazione elettrica di trasformazione (SE) 380/150/36 kV denominata "Macomer 380", con sezioni 380/36kV, da inserire entra – esci sulla linea esistente RTN a 380 kV "Ittiri-Selargius", di cui al Piano di Sviluppo Terna.

L'esercizio dell'impianto agri-fotovoltaico come configurato nel progetto, oggetto di tale relazione, consentirà di contribuire al raggiungimento degli obiettivi stabiliti dalla politica energetica europea e nazionale, mantenendo una produzione agricola di tipo sostenibile destinata all'alimentazione umana ed animale.

Considerata la potenza complessiva dell'impianto di 42.000,00 kWp e una producibilità media annua di 78.884 MWh, la produzione media nei 30 anni risulta essere di circa 2.366.520 MWh. Ciò consentirà di raggiungere importanti benefici in termini di riduzione di emissioni di gas climalteranti in atmosfera, rispetto ad una equivalente produzione di energia da combustibili fossili.

Inoltre, considerando una produzione annua 78.884.000,00 kWh si eviterà di emettere in atmosfera una quantità di CO₂ pari a 35.142.822,00 kg. Come fattore di conversione si è considerato il coeff. 0,4455 kg CO₂/kWh (ISPRAmbiente, 2019 p. 029) ¹.

¹ ISPRA, 2019: Fattori di emissione atmosferica di gas a effetto serra nel settore elettrico nazionale e nei principali Paesi Europei, A. Caputo (a cura di), Roma Edizione 2019, pag. 29.

1.1 Soggetto proponente

Enerland Group è una società fondata nel 2007 a Saragozza, in Spagna, specializzata in sviluppo, costruzione, gestione e in attività di O. & M. di parchi fotovoltaici su terreni e di impianti industriali su tetti.

Tali attività vengono condotte a livello internazionale, disponendo di un organico multidisciplinare che si compone di circa 200 dipendenti, con più di 10 sedi aziendali in tutto il mondo, presenti quindi in 14 paesi.

I numeri di Enerland sono:

- +400 MW installati
- +800 GWh prodotti
- +50 progetti in portfolio di sviluppi a livello internazionale
- +20 parchi fotovoltaici costruiti
- +200 impianti di autoconsumo industriale

La nostra storia:

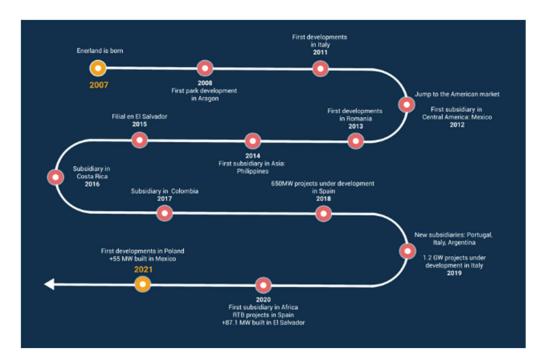


FIGURA 1 - STORYMAP DI ENERLAND

1.2 Area di intervento

L'area di progetto si colloca all'interno del territorio comunale di Macomer (NU), in località "Nuraghe Solene". Il sito si compone di due macroaree principali: un primo blocco minore a nord che si estende per circa 18 ettari e un secondo blocco più a sud di 53,5 ettari. L'area dista circa 3,0 km dal centro abitato di Macomer e dalla sua zona industriale, 5,3 km dal centro abitato di Borore e si colloca tra la S.P. 43 e la S.S. 131 dalle quali è raggiungibile imboccando delle strade secondarie.

Nella Carta d'Italia (I.G.M.) in scala 1:25.000, l'area in esame ricade nel foglio n° 498 sez. III "Macomer", mentre nella Carta Tecnica Regionale (C.T.R.) in scala 1:10.000 essa ricade nel foglio numero 498130 "Monte Sant'Antonio". Le coordinate chilometriche del baricentro dell'area in esame, riferite alla quadrettatura chilometrica Gauss Boaga (ESRI: 102094), sono rispettivamente: E 1476734,3 N 4452753,3. L'altitudine media a cui si colloca il sito è 510,0 m s.l.m.

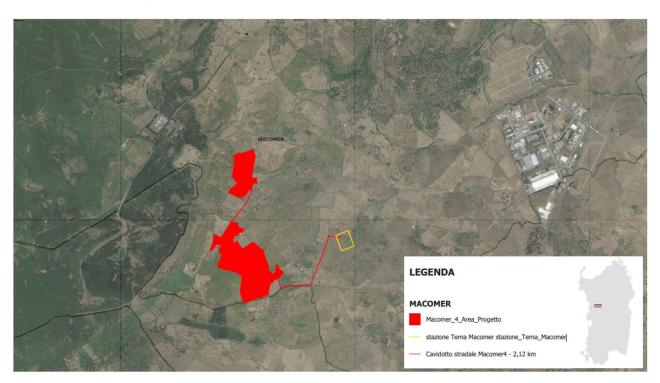


FIGURA 2 – AREA OGGETTO DI INTERVENTO EVIDENZIATA IN ROSSO, STAZIONE ELETTRICA IN GIALLO- ESTRATTO ELABORATO CARTOGRAFICO MACOMER4-PDT01

Il sito è raggiungibile da ovest dalla SP43 e da est e dalla SS131, la zona è lievemente pendente verso SE.

Nell'areale oggetto di studio circa il 60% dei terreni si presenta come pascolo, mentre il restante 40% è destinato a seminativo ed i terreni oggetto di studio si presentano adibiti a coltivazione di cereali avvicendati leguminose.



FIGURA 3 – STRALCIO INQUADRAMENTO AREA DI PROGETTO SU BASE CTR – ESTRATTO DALL'ELABORATO CARTOGRAFICO MACOMER4-PDT02

Per l'individuazione catastale dell'area di intervento si rimanda all'elaborato MACOMER4-PDR08, di seguito si riporta un estratto delle particelle interessate dall'area di progetto.

Provincia	Comune	Foglio	Particella
		54	27
			49
			50
Nuoro	Masamar		100
Nuoro	Macomer		102
			98
		50	2
			50

	1	
		49
		47
		46
		79
		48
	54	105
		103
		53
		54
		99
		55
		56
		57
		59
		60
		101
	55	31

1.3 Agrovoltaico

Con il termine agro-fotovoltaico o agro-voltaico, (in inglese agro-photovoltaic, abbreviato APV) si indica un settore, ancora poco diffuso, caratterizzato da un utilizzo "ibrido" dei terreni agricoli, che si dividono tra produzione agricola e produzione di energia elettrica, attraverso l'installazione, sullo stesso terreno coltivato o adibito ad allevamento, di impianti fotovoltaici.

Nel dettaglio, gli impianti agro-fotovoltaici sono impianti che "adottino soluzioni integrative innovative con montaggio di moduli elevati da terra, anche prevedendo la rotazione dei moduli stessi, comunque in modo da non compromettere la continuità delle attività di coltivazione agricola e pastorale, anche consentendo l'applicazione di strumenti di agricoltura digitale e di precisione".

Inoltre, sempre ai sensi della su citata legge, gli impianti devono essere dotati di "sistemi di monitoraggio che consentano di verificare l'impatto sulle colture, il risparmio idrico, la produttività agricola per le diverse tipologie di colture e la continuità delle attività delle aziende agricole interessate."

I sistemi agro-fotovoltaici costituiscono un approccio strategico e innovativo per combinare il solare fotovoltaico (FV) con la produzione agricola e/o l'allevamento zootecnico e per il recupero delle aree marginali. La sinergia tra modelli di agricoltura 4.0 e l'installazione di pannelli fotovoltaici di ultima generazione potrà garantire una serie di vantaggi a partire dall'ottimizzazione del raccolto e della produzione zootecnica, sia dal punto di vista qualitativo che quantitativo, con conseguente aumento della redditività e dell'occupazione. La Missione 2, Componente 2, del PNRR ha come obiettivo principale l'implementazione di sistemi ibridi agricoltura-produzione di energia che non compromettano l'utilizzo dei terreni dedicati all'agricoltura, ma contribuiscano alla sostenibilità ambientale ed economica delle aziende coinvolte.

1.4 Metodologia di studio

Il documento viene redatto in ossequio alle modalità rappresentate dalla normativa ambientale vigente, per la cui stesura si basa sui criteri per la Verifica Ambientale identificati nell'Allegato VII alla parte seconda del D.lgs. 3 aprile 2006 n. 152 e ss.mm.ii.

Nella descrizione del progetto sono analizzati:

- a) la descrizione dell'ubicazione del progetto, anche in riferimento alle tutele e ai vincoli presenti;
- una descrizione delle caratteristiche fisiche dell'insieme del progetto, compresi, ove pertinenti, i lavori di demolizione necessari, nonché delle esigenze di utilizzo del suolo durante le fasi di costruzione e di funzionamento;
- una descrizione delle principali caratteristiche della fase di funzionamento del progetto e, in particolare, dell'eventuale processo produttivo, con l'indicazione, a titolo esemplificativo e non esaustivo, del fabbisogno e del consumo di energia, della natura e delle quantità dei materiali e delle risorse naturali impiegate (quali acqua, territorio, suolo e biodiversità);
- d) una valutazione del tipo e della quantità dei residui e delle emissioni previsti, quali, a titolo esemplificativo e non esaustivo, inquinamento dell'acqua, dell'aria, del suolo e del sottosuolo, rumore, vibrazione, luce, calore, radiazione, e della quantità e della tipologia di rifiuti prodotti durante le fasi di costruzione e di funzionamento;
- e) la descrizione della tecnica prescelta, con riferimento alle migliori tecniche disponibili
 a costi non eccessivi, e delle altre tecniche previste per prevenire le emissioni degli
 impianti e per ridurre l'utilizzo delle risorse naturali, confrontando le tecniche prescelte
 con le migliori tecniche disponibili.
- f) Una descrizione delle principali **alternative ragionevoli del progetto** (quali, a titolo esemplificativo e non esaustivo, quelle relative alla concezione del progetto, alla tecnologia, all'ubicazione, alle dimensioni e alla portata) prese in esame dal proponente.
- g) Una descrizione dei fattori riferiti alla popolazione, salute umana, biodiversità (quali, a titolo esemplificativo e non esaustivo, fauna e flora), al territorio (quale, a titolo

esemplificativo e non esaustivo, sottrazione del territorio), al suolo (quali, a titolo esemplificativo e non esaustivo, erosione, diminuzione di materia organica, compattazione, impermeabilizzazione), all'acqua (quali, a titolo esemplificativo e non esaustivo, modificazioni idrogeomorfologiche, quantità e qualità), all'aria, ai fattori climatici (quali, a titolo esemplificativo e non esaustivo, emissioni di gas a effetto serra, gli impatti rilevanti per l'adattamento), ai beni materiali, al patrimonio culturale, al patrimonio agroalimentare, al paesaggio, nonché all'interazione tra questi vari fattori.

- h) Una descrizione dei **probabili impatti ambientali rilevanti del progetto proposto**, dovuti, tra l'altro:
 - 1) alla costruzione e all'esercizio del progetto, inclusi, ove pertinenti, i lavori di demolizione;
 - all'utilizzazione delle risorse naturali, in particolare del territorio, del suolo, delle risorse idriche e della biodiversità, tenendo conto, per quanto possibile, della disponibilità sostenibile di tali risorse;
 - 3) all'emissione di inquinanti, rumori, vibrazioni, luce, calore, radiazioni, alla creazione di sostanze nocive e allo smaltimento dei rifiuti;
 - 4) ai rischi per la salute umana, il patrimonio culturale, il paesaggio o l'ambiente (quali, a titolo esemplificativo e non esaustivo, in caso di incidenti o di calamità);
 - 5) al cumulo con gli effetti derivanti da altri progetti esistenti e/o approvati, tenendo conto di eventuali criticità ambientali esistenti, relative all'uso delle risorse naturali e/o ad aree di particolare sensibilità ambientale suscettibili di risentire degli effetti derivanti dal progetto;
 - all'impatto del progetto sul clima (quali, a titolo esemplificativo e non esaustivo, natura ed entità delle emissioni di gas a effetto serra) e alla vulnerabilità del progetto al cambiamento climatico;
 - 7) alle tecnologie e alle sostanze utilizzate. La descrizione dei possibili impatti ambientali sui fattori specificati all'articolo 5, comma 1, lettera c), del presente decreto include sia effetti diretti che eventuali effetti indiretti, secondari, cumulativi, transfrontalieri, a breve, medio e lungo termine, permanenti e temporanei, positivi e negativi del progetto.

- i) Una descrizione delle misure previste per evitare, prevenire, ridurre o, se possibile, compensare gli impatti ambientali significativi e negativi identificati del progetto e, ove pertinenti, delle eventuali disposizioni di monitoraggio;
- j) Una descrizione dei previsti impatti ambientali significativi e negativi del progetto, derivanti dalla vulnerabilità del progetto ai rischi di gravi incidenti e/o calamità che sono pertinenti per il progetto in questione.

2. QUADRO DI RIFERIMENTO PROGRAMMATICO

La presente sezione mira a verificare le rispondenze tra l'iniziativa progettuale ed una serie di strumenti di pianificazione energetica e del territorio su differenti livelli (internazionale, nazionale e locale) ritenuti di interesse e coerenti con le finalità dello studio. Per tali strumenti si analizza la tipologia di correlazione secondo il seguente schema:

Coerente	L'iniziativa progettuale soddisfa i principi e gli obiettivi del piano ed è coerente con le modalità attuative di quest'ultimo.
Compatibile	L'iniziativa progettuale soddisfa i principi e gli obiettivi del piano anche se non è previsto dallo strumento di pianificazione.
Non coerente	L'iniziativa progettuale soddisfa i principi e gli obiettivi del piano; tuttavia, si pone in contrasto con le modalità attuative di quest'ultimo.
Non compatibile	L'iniziativa progettuale è in contrasto con i principi e gli obiettivi del piano analizzato.

2.1 Piani e programmi internazionali e nazionali

2.1.1 Agenda ONU 2030

L'Agenda è un programma d'azione per le persone, il pianeta e la prosperità, con il quale viene riconosciuto l'obiettivo di eradicare la povertà in tutte le sue forme e dimensioni, attualmente la più grande sfida a livello globale e requisito imprescindibile per lo sviluppo sostenibile.

Gli Obiettivi di Sviluppo del Millennio hanno contribuito a sollevare le condizioni di vita di più di un miliardo di persone e consentito di compiere miglioramenti significativi in numerose aree. Il progresso non è stato però uguale ovunque e ha registrato ritardi, specialmente nei paesi meno sviluppati in Africa, in quelli senza sbocco sul mare e nei piccoli stati insulari in via di sviluppo, ove alcuni obiettivi non sono stati raggiunti, soprattutto in relazione alla salute della madre, del neonato e del bambino, e alla salute riproduttiva.

La nuova Agenda globale non intende, tuttavia, solo portare a compimento e incrementare gli Obiettivi di Sviluppo del Millennio: oltre a perseguire priorità come la sconfitta della fame e della povertà, la tutela della salute, la promozione dell'educazione e della

sicurezza alimentare, essa stabilisce una serie di ulteriori obiettivi economici, sociali e ambientali di carattere puntuale, che spaziano dall'agricoltura al turismo sostenibile, dall'energia alle innovazioni tecnologiche, dall'occupazione giovanile ai fenomeni migratori, dal diritto all'acqua potabile alle infrastrutture e alla sostenibilità degli insediamenti urbani, ponendo un'attenzione particolare sulla salvaguardia dei diversi ecosistemi e della biodiversità; mira, inoltre, a promuovere società più aperte, tolleranti e pacifiche e fissa, in modo articolato, le modalità per la sua attuazione, anche attraverso un deciso rafforzamento della partnership globale per lo sviluppo sostenibile.

Il carattere innovativo dell'Agenda 2030 e dei nuovi SGDs risiede proprio nel superamento dell'idea di sostenibilità come questione a carattere unicamente ambientale e nell'affermazione di una visione olistica dello sviluppo, che bilancia le sue tre dimensioni - economica, sociale ed ambientale - fornendo un modello ambizioso di prosperità condivisa in un mondo sostenibile che si incardina sulle c.d. cinque P:

- **Persone**: eliminare fame e povertà in tutte le forme e garantire dignità e uguaglianza;
- Pianeta: proteggere le risorse naturali e il clima del pianeta per le generazioni future
- Prosperità: garantire vite prospere e piene, con un progresso economico, sociale e tecnologico in armonia con la natura;
- Pace: promuovere società pacifiche, giuste e inclusive;
- Partnership: implementare l'agenda attraverso solide partnership fondate su uno spirito di rafforzata solidarietà globale.

In questo quadro, l'Agenda 2030 stabilisce obiettivi globali, indivisibili e interconnessi, che mirano a creare una prosperità condivisa su un pianeta sano, pacifico e resiliente, in cui siano assicurati il rispetto universale per i diritti dell'uomo e la sua dignità, la giustizia, l'uguaglianza e la parità tra i sessi e garantita la coesione economica, sociale e territoriale. In tal senso, l'adozione dei nuovi Obiettivi di Sviluppo Sostenibile rappresenta a pieno titolo un evento storico, atteso che per la prima volta i leader mondiali si sono impegnati in una azione comune attraverso un'agenda politica vasta, ambiziosa e universale, dal carattere fortemente trasformativo, che sottende una precisa visione globale del nostro mondo di oggi, nonché una concezione innovativa del progresso fondata sul principio fondamentale del "leave no one behind".

Questo disegno è stato integrato, nello stesso anno in cui è stata adottata l'Agenda 2030, con l'approvazione di altri rilevanti accordi globali ad essa correlati: il piano d'azione di Addis Abeba della terza conferenza internazionale sul finanziamento dello sviluppo, il quadro di Sendai per la riduzione del rischio di catastrofi 2015-2030 e l'Accordo di Parigi nell'ambito della convenzione quadro delle Nazioni Unite sui cambiamenti climatici.

All'interno dell'Agenda sono stati posti 17 obiettivi e 169 traguardi. Essi sono interconnessi e indivisibili e bilanciano le tre dimensioni dello sviluppo sostenibile: la dimensione economica, sociale ed ambientale.

Di seguito si riporta una tabella con elencati gli obiettivi dell'Agenda ONU 2030:

TABELLA 1 – ELENCO OBIETTIVI AGENDA ONU 2030

Obiettivo 1.

Porre fine ad ogni forma di povertà nel mondo

Obiettivo 2.

Porre fine alla fame, raggiungere la sicurezza alimentare, migliorare la nutrizione e promuovere un'agricoltura sostenibile

Obiettivo 3.

Assicurare la salute e il benessere per tutti e per tutte le età

Obiettivo 4.

Fornire un'educazione di qualità, equa ed inclusiva, e opportunità di apprendimento per tutti

Obiettivo 5.

Raggiungere l'uguaglianza di genere ed emancipare tutte le donne e le ragazze

Obiettivo 6.

Garantire a tutti la disponibilità e la gestione sostenibile dell'acqua e delle strutture igienico-sanitarie

Obiettivo 7.

Assicurare a tutti l'accesso a sistemi di energia economici, affidabili, sostenibili e moderni

Obiettivo 8.

Incentivare una crescita economica duratura, inclusiva e sostenibile, un'occupazione piena e produttiva ed un lavoro dignitoso per tutti

Obiettivo 9.

Costruire un'infrastruttura resiliente e promuovere l'innovazione ed una industrializzazione equa, responsabile e sostenibile

Obiettivo 10.

Ridurre l'ineguaglianza all'interno di e fra le nazioni

Obiettivo 11.

Rendere le città e gli insediamenti umani inclusivi, sicuri, duraturi e sostenibili

Obiettivo 12.

Garantire modelli sostenibili di produzione e di consumo

Obiettivo 13.

Promuovere azioni, a tutti i livelli, per combattere il cambiamento climatico*

Objettivo 14.

Conservare e utilizzare in modo durevole gli oceani, i mari e le risorse marine per uno sviluppo sostenibile

Obiettivo 15.

Proteggere, ripristinare e favorire un uso sostenibile dell'ecosistema terrestre **Obiettivo 16.**

Promuovere società pacifiche e inclusive per uno sviluppo sostenibile

Objettivo 17.

Rafforzare i mezzi di attuazione e rinnovare il partenariato mondiale per lo sviluppo sostenibile

La proposta progettuale intercetta 2 dei 17 obiettivi dell'Agenda ONU 2030, trovando condivisione in 5 traguardi come meglio riportato in Tabella 2:

TABELLA 2 – OBIETTIVI E TRAGUARDI DELL'AGENDA ONU 2030 CONDIVISI DAL PROGETTO

Obiettivo 7	Assicurare a tutti l'accesso a sistemi di energia economici, affidabili, sostenibili e moderni
Traguardo 7.1	Garantire entro il 2030 accesso a servizi energetici che siano convenienti, affidabili e moderni
Traguardo 7.2	Aumentare considerevolmente entro il 2030 la quota di energie rinnovabili nel consumo totale di energia
Traguardo 7.3	Raddoppiare entro il 2030 il tasso globale di miglioramento dell'efficienza energetica
Obiettivo 13	Promuovere azioni, a tutti i livelli, per combattere il cambiamento climatico
Traguardo 13.1	Rafforzare in tutti i paesi la capacità di ripresa e di adattamento ai rischi legati al clima e ai disastri naturali
Traguardo 13.2	Integrare le misure di cambiamento climatico nelle politiche, strategie e pianificazione nazionali

Livello di correlazione del progetto con obiettivi e traguardi Agenda ONU 2030:

Coerente	L'iniziativa progettuale soddisfa i principi e gli obiettivi del		
	piano ed è coerente con le modalità attuative di quest'ultimo.		

^{*} Riconoscendo che la Convenzione delle Nazioni Unite sui Cambiamenti Climatici è il principale forum internazionale e intergovernativo per la negoziazione della risposta globale al cambiamento climatico

2.1.2 Quadro normativo europeo in materia di energia e clima

La Commissione europea ha adottato un pacchetto di proposte per rendere le politiche dell'UE in materia di ambiente, energia, uso del suolo, trasporti e fiscalità idonee a ridurre le emissioni nette di gas a effetto serra di almeno il 55% entro il 2030 rispetto ai livelli del 1990. Tale obiettivo è previsto dalla legge europea sul clima (Regolamento 2021/1119/UE) ed è a sua volta funzionale a trasformare l'UE in un'economia competitiva e contestualmente efficiente sotto il profilo delle risorse, che nel 2050 non genererà emissioni nette di gas a effetto serra, come indicato dal *Green Deal* europeo.

Vi è uno stretto legame tra il raggiungimento dei nuovi obiettivi climatici e di transizione energetica e la realizzazione del Piano europeo di ripresa e resilienza. Per il finanziamento del *Green Deal* sono state messe a disposizione specifiche risorse all'interno di "*Next Generation EU*" (NGEU). In particolare, almeno il 37% delle risorse finanziate attraverso il Dispositivo per la ripresa e la resilienza deve essere dedicato a sostenere, nei PNRR degli Stati membri, gli obiettivi climatici.

Tutti gli investimenti e le riforme devono rispettare il principio del "non arrecare danni significativi" all'ambiente. In tale contesto, gli obiettivi di sviluppo delle fonti rinnovabili e alternative e di efficienza energetica rivestono un ruolo centrale. Nell'ambito di NGEU, vi sono anche le risorse del Fondo speciale per una transizione giusta, finalizzato a sostenere la transizione equilibrata di quei territori degli Stati membri, individuati - dopo una interlocuzione con le Istituzioni europee - a più alta intensità di emissioni di CO₂ e con il più elevato numero di occupati nel settore dei combustibili fossili.

A livello nazionale, il Piano per la transizione ecologica (PTE), sul quale l'VIII Commissione ambiente della Camera ha espresso parere favorevole con osservazioni il 15 dicembre 2021, fornisce un quadro delle politiche ambientali ed energetiche integrato con gli obiettivi già delineati nel Piano nazionale di ripresa e resilienza (PNRR).

L'Unione europea ha definito i propri obiettivi in materia di energia e clima per il periodo 2021-2030 con il pacchetto legislativo "Energia pulita per tutti gli europei" - noto come *Winter package* o *Clean energy package*. Il pacchetto, adottato tra la fine dell'anno 2018 e l'inizio del 2019, fa seguito e costituisce attuazione degli impegni assunti con l'Accordo di Parigi e

comprende diverse misure legislative nei settori dell'efficienza energetica, delle energie rinnovabili e del mercato interno dell'energia elettrica.

Con la pubblicazione, a fine 2019, della comunicazione della Commissione "Il Green Deal Europeo" (COM (2019)640, Communication on the European Green Deal), l'Unione europea ha riformulato su nuove basi l'impegno ad affrontare i problemi legati al clima e all'ambiente e ha previsto un Piano d'azione finalizzato a trasformare l'UE in un'economia competitiva e contestualmente efficiente sotto il profilo delle risorse, che nel 2050 non genererà emissioni nette di gas a effetto serra. È stata riconosciuta anche la necessità di predisporre un quadro favorevole che vada a beneficio di tutti gli Stati membri e comprenda strumenti, incentivi, sostegno e investimenti adeguati ad assicurare una transizione efficiente in termini di costi, giusta, socialmente equilibrata ed equa, tenendo conto delle diverse situazioni nazionali in termini di punti di partenza.

Uno dei punti cardine del Piano è consistito nella presentazione di una proposta di legge europea sul clima, recentemente adottata in via definitiva e divenuta Regolamento 2021/1119/UE. Il Regolamento ha formalmente sancito l'obiettivo della neutralità climatica al 2050 e il traguardo vincolante dell'Unione in materia di clima per il 2030 che consiste in una riduzione interna netta delle emissioni di gas a effetto serra (emissioni al netto degli assorbimenti) di almeno il 55% rispetto ai livelli del 1990 entro il 2030.

Si tratta di un nuovo e più ambizioso obiettivo rispetto a quello che era stato inizialmente indicato per il 2030 nel Regolamento 2018/1999/UE e nel Regolamento 2018/842/UE (riduzione di almeno il 40% delle emissioni al 2030 rispetto ai valori 1990).

La neutralità climatica al 2050 e la riduzione delle emissioni al 2030 del 55% ha costituito il target di riferimento per l'elaborazione degli investimenti e delle riforme in materia di Transizione verde contenuti nei Piani nazionali di ripresa e resilienza

Livello di correlazione del progetto con obiettivi e traguardi Europei:

Coerente

L'iniziativa progettuale soddisfa i principi e gli obiettivi del piano ed è coerente con le modalità attuative di quest'ultimo.

2.1.3 Il PNIEC e il Piano per la transizione ecologica

Il Piano deve comprendere una serie di contenuti definiti tra cui:

- una panoramica della procedura seguita per definire il piano stesso;
- una descrizione degli obiettivi, traguardi e contributi nazionali relativi alle cinque dimensioni dell'Unione dell'energia. Dunque, all'interno del Piano, ogni Stato membro stabilisce i contributi nazionali e la traiettoria indicativa di efficienza energetica e di fonti rinnovabili per il raggiungimento degli obiettivi dell'Unione per il 2030, nonché delinea le azioni per gli obiettivi di riduzione delle emissioni effetto serra e l'interconnessione elettrica.
- una descrizione delle politiche e misure relative ai già menzionati obiettivi, traguardi e contributi, nonché una panoramica generale dell'investimento necessario per conseguirli;
- una descrizione dello stato attuale delle cinque dimensioni dell'Unione dell'energia anche per quanto riguarda il sistema energetico, le emissioni e gli assorbimenti di gas a effetto serra nonché le proiezioni relative agli obiettivi nazionali considerando le politiche e misure già in vigore, con una descrizione delle barriere e degli ostacoli regolamentari, e non regolamentari, che eventualmente si frappongono alla realizzazione degli stessi.
- una valutazione degli impatti delle politiche e misure previste per conseguire gli obiettivi.

Nei loro PNIEC, gli Stati membri possono basarsi sulle strategie o sui piani nazionali esistenti, quali appunto, per l'Italia, la Strategia energetica nazionale - SEN 2017.

La proposta italiana di Piano Nazionale per l'Energia e il Clima per gli anni 2021-2030 viene presentata con un comunicato stampa dell'8 gennaio 2019, del Ministero dello sviluppo economico che informa dell'invio alla Commissione europea, in data 8 gennaio 2019, della stessa. Nelle tabelle che seguiranno – tratte dalla Proposta di PNIEC - sono illustrati i principali obiettivi del PNIEC al 2030, su rinnovabili, efficienza energetica ed emissioni di gas serra e le principali misure previste per il raggiungimento degli obiettivi del Piano. Gli obiettivi risultano

più ambiziosi di quelli delineati nella SEN 2017. Il comunicato stampa del MISE evidenzia che i principali obiettivi del PNIEC italiano sono:

- una percentuale di energia da FER nei Consumi Finali Lordi di energia pari al 30%, in linea con gli obiettivi previsti per il nostro Paese dalla UE;
- una quota di energia da FER nei Consumi Finali Lordi di energia nei trasporti del 21,6%
 a fronte del 14% previsto dalla UE;
- una riduzione dei consumi di energia primaria rispetto allo scenario PRIMES 2007 del 43% a fronte di un obiettivo UE del 32,5%;
- la riduzione dei "gas serra", rispetto al 2005, per tutti i settori non ETS del 33%, obiettivo superiore del 3% rispetto a quello previsto dall'UE.

In data 20 marzo 2019 è stato dato avvio alla consultazione pubblica sulla proposta di PNIEC.

Il 16 giugno 2019 la Commissione europea ha adottato raccomandazioni specifiche sulla Proposta di PNIEC italiana. La Commissione, in particolare, raccomanda all'Italia:

- 1. per quanto riguarda le fonti rinnovabili:
 - a. sostenere il livello che il Paese si è fissato, con la quota del 30 % di energia da fonti rinnovabili entro il 2030, adottando politiche e misure dettagliate e quantificate che siano in linea con gli obblighi imposti dalla direttiva (UE) 2018/2001;
 - b. innalzare il livello di ambizione per le fonti rinnovabili nel settore del riscaldamento e del raffrescamento, così da conseguire l'obiettivo indicativo fissato all'articolo 23 della direttiva (UE) 2018/2001;
 - c. presentare misure per conseguire l'obiettivo nel settore dei trasporti fissato all'articolo 25 della direttiva 2018/2001;
 - d. ridurre complessità e incertezza normativa e precisare i quadri favorevoli all'autoconsumo di energia da fonti rinnovabili e alle comunità di energia rinnovabile, in conformità degli articoli 21 e 22 della direttiva (UE) 2018/2001;
- 2. per quanto riguarda l'efficienza energetica:

- a. accertare che gli strumenti politici fondamentali illustrati nella proposta di PNIEC permettano risparmi adeguati anche nel periodo 2021-2030;
- nel PNIEC definitivo e nelle successive relazioni intermedie, dare adeguato riscontro ai previsti aggiornamenti e miglioramenti dei regimi di sostegno e disporne un consistente potenziamento per conseguire gli obiettivi di risparmio indicati;
- c. date le considerevoli potenzialità inespresse, continuare a operare per rafforzare le misure di efficienza energetica nell'edilizia (per gli edifici pubblici e privati, nuovi ed esistenti) e nei trasporti;

3. quanto alla sicurezza energetica:

- a. precisare le misure di diversificazione e di riduzione della dipendenza energetica, comprese le misure che consentono la flessibilità;
- nel settore dell'energia elettrica, valutare l'adeguatezza delle risorse tenendo conto del contesto regionale e delle potenzialità effettive degli interconnettori e delle capacità di produzione nei paesi limitrofi;
- c. precisare la misura in cui il previsto sviluppo nel settore del gas è compatibile con gli obiettivi di decarbonizzazione dichiarati e con il programmato abbandono graduale degli impianti termoelettrici a carbone;
- d. fissare obiettivi, tappe e calendari chiari per la realizzazione delle riforme dei mercati dell'energia programmate, in particolare per quanto riguarda i mercati all'ingrosso del gas naturale e al dettaglio dell'energia elettrica e del gas naturale;
- e. precisare gli obiettivi nazionali e di finanziamento per la ricerca, innovazione e competitività da raggiungere nel periodo 2021-2030, con riferimento in particolare all'Unione dell'energia, così che siano misurabili agevolmente e idonei a realizzare gli obiettivi nelle altre dimensioni del PNIEC; sostenere detti obiettivi con politiche e misure specifiche e adeguate, comprese quelle in cooperazione con altri Stati membri quali il piano strategico per le tecnologie energetiche;

Tratte dalla Proposta di Piano Nazionale Integrato per l'Energia e il Clima del 31.12.2018, si riporta la seguente tabella ritenuta significativa ai fini del presente SIA:

	Obiettivi 2020		Obiettivi 2030	
	UE	ITALIA	UE	(PNIEC)
Energie rinnovabili (FER)				
Quota di energia da FER nei Consumi Finali Lordi di energia	20%	17%	32%	30%
Quota di energia da FER nei Consumi Finali Lordi di energia nei trasporti	10%	10%	14%	22%
Quota di energia da FER nei Consumi Finali Lordi per riscaldamento e raffrescamento			+1,3% annuo (indicativo)	+1,3% annuo (indicativo)
Efficienza energetica				
Riduzione dei consumi di energia primaria rispetto allo scenario PRIMES 2007	-20%	-24%	-32,5% (indicativo)	-43% (indicativo)
Risparmi consumi finali tramite regimi obbligatori efficienza energetica	-1,5% annuo (senza trasp.)	-1,5% annuo (senza trasp.)	-0,8% annuo (con trasporti)	-0,8% annuo (con trasporti)
Emissioni gas serra				
Riduzione dei GHG vs 2005 per tutti gli impianti vincolati dalla normativa ETS	-21%		-43%	
Riduzione dei GHG vs 2005 per tutti i settori non ETS	-10%	-13%	-30%	-33%
Riduzione complessiva dei gas a effetto serra rispetto ai livelli del 1990	-20%		-40%	
Interconnettività elettrica				
Livello di interconnettività elettrica	10%	8%	15%	10% ¹
Capacità di interconnessione elettrica (MW)		9.285		14.375

TABELLA 3 – PRINCIPALI OBIETTIVI SU ENERGIA E CLIMA DELL'UE E DELL'ITALIA AL 2020 E AL 2030. FONTE: PNIEC (GENNAIO 2020)

Livello di correlazione del progetto con obiettivi e traguardi PNIEC:

Coerente

L'iniziativa progettuale soddisfa i principi e gli obiettivi del piano ed è coerente con le modalità attuative di quest'ultimo.

2.1.4 Piano Nazionale di Ripresa e Resilienza (PNRR)

Il Piano italiano prevede investimenti pari a 191,5 miliardi di euro, finanziati attraverso il Dispositivo per la Ripresa e la Resilienza, lo strumento chiave del NGEU. Il Piano prevede ulteriori 30,6 miliardi di risorse nazionali, che confluiscono in un apposito Fondo complementare finanziato attraverso lo scostamento di bilancio approvato nel Consiglio dei ministri del 15 aprile e autorizzato dal Parlamento, a maggioranza assoluta, nella seduta del 22 aprile. Il totale degli investimenti previsti per gli interventi contenuti nel Piano arriva a 222,1 miliardi di euro, a cui si aggiungono 13 miliardi del React EU. Nel complesso, il 27 per cento delle risorse è dedicato alla digitalizzazione, il 40 per cento agli investimenti per il contrasto al cambiamento climatico e più del 10 per cento alla coesione sociale.

Il Piano destina 82 miliardi al Mezzogiorno sui 206 miliardi ripartibili secondo il criterio del territorio, corrispondenti a una quota del 40%. Per una disamina più approfondita relativa a tali interventi si rinvia al tema Il Mezzogiorno nel PNRR.

Il Piano si articola in sei missioni.

La **prima missione**, "Digitalizzazione, Innovazione, Competitività, Cultura", stanzia complessivamente 49,1 miliardi – di cui 40,7 miliardi dal Dispositivo per la Ripresa e la Resilienza e 8,5 miliardi dal Fondo complementare.

La **seconda missione**, "Rivoluzione Verde e Transizione Ecologica", stanzia complessivamente 68,6 miliardi – di cui 59,4 miliardi dal Dispositivo per la Ripresa e la Resilienza e 9,1 miliardi dal Fondo complementare.

La **terza missione**, "Infrastrutture per una Mobilità Sostenibile", stanzia complessivamente 31,4 miliardi – di cui 25,4 miliardi dal Dispositivo per la Ripresa e la Resilienza e 6,06 miliardi dal Fondo complementare.

La quarta missione, "Istruzione e Ricerca", stanzia complessivamente 31,9 miliardi di euro – di cui 30,9 miliardi dal Dispositivo per la Ripresa e la Resilienza e 1 miliardo dal Fondo complementare.

La **quinta missione**, "Inclusione e Coesione", stanzia complessivamente 22,5 miliardi – di cui 19,8 miliardi dal Dispositivo per la Ripresa e la Resilienza e 2,7 miliardi dal Fondo complementare.

La sesta missione, "Salute", stanzia complessivamente 18,5 miliardi, di cui 15,6 miliardi dal Dispositivo per la Ripresa e la Resilienza e 2,9 miliardi dal Fondo.

Lo sforzo di rilancio dell'Italia delineato dal presente Piano si sviluppa intorno a tre assi strategici condivisi a livello europeo: digitalizzazione e innovazione, transizione ecologica, inclusione sociale. La digitalizzazione e l'innovazione di processi, prodotti e servizi rappresentano un fattore determinante della trasformazione del Paese e devono caratterizzare ogni politica di riforma del Piano. L'Italia ha accumulato un considerevole ritardo in questo campo, sia nelle competenze dei cittadini, sia nell'adozione delle tecnologie digitali nel sistema produttivo e nei servizi pubblici.

Recuperare questo deficit e promuovere gli investimenti in tecnologie, infrastrutture e processi digitali, è essenziale per migliorare la competitività italiana ed europea; favorire l'emergere di strategie di diversificazione della produzione; e migliorare l'adattabilità ai cambiamenti dei mercati. La transizione ecologica, come indicato dall'Agenda 2030 dell'ONU e dai nuovi obiettivi europei per il 2030, è alla base del nuovo modello di sviluppo italiano ed europeo. Intervenire per ridurre le emissioni inquinanti, prevenire e contrastare il dissesto del territorio, minimizzare l'impatto delle attività produttive sull'ambiente è necessario per migliorare la qualità della vita e la sicurezza ambientale, oltre che per lasciare un Paese più verde e una economia più sostenibile alle generazioni future. Anche la transizione ecologica può costituire un importante fattore per accrescere la competitività del nostro sistema produttivo, incentivare l'avvio di attività imprenditoriali nuove e ad alto valore aggiunto e favorire la creazione di occupazione stabile. Il terzo asse strategico è l'inclusione sociale. Garantire una piena inclusione sociale è fondamentale per migliorare la coesione territoriale, aiutare la crescita dell'economia e superare disequaglianze profonde spesso accentuate dalla pandemia. Le tre priorità principali sono la parità di genere, la protezione e la valorizzazione dei giovani e il superamento dei divari territoriali. L'empowerment femminile e il contrasto alle discriminazioni di genere, l'accrescimento delle competenze, della capacità e delle prospettive occupazionali dei giovani, il riequilibrio territoriale e lo sviluppo del Mezzogiorno non sono

univocamente affidati a singoli interventi, ma perseguiti quali obiettivi trasversali in tutte le componenti del PNRR.

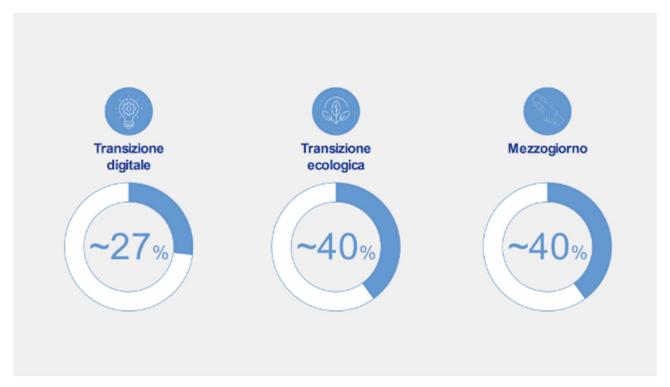


FIGURA 4 - ALLOCAZIONE DELLE RISORSE RRF AD ASSI STRATEGICI (PERCENTUALE SU TOTALE RRF) - FONTE WWW.GOVERNO.IT

Le Linee guida elaborate dalla Commissione Europea per l'elaborazione dei PNRR identificano le Componenti come gli ambiti in cui aggregare progetti di investimento e riforma dei Piani stessi. Ciascuna componente riflette riforme e priorità di investimento in un determinato settore o area di intervento, ovvero attività e temi correlati, finalizzati ad affrontare sfide specifiche e che rappresentino un pacchetto coerente di misure complementari. Le componenti hanno un grado di dettaglio sufficiente ad evidenziare le interconnessioni tra le diverse misure in esse proposte.

Il Piano si articola in sedici Componenti, raggruppate in sei Missioni. Queste ultime sono articolate in linea con i sei Pilastri menzionati dal Regolamento RRF e illustrati nel precedente paragrafo, sebbene la formulazione segua una sequenza e una aggregazione lievemente differente.

MISSIONE 1: Digitalizzazione, innovazione, competitività, cultura e turismo

Sostiene la transizione digitale del paese, nella modernizzazione della P.A., nelle infrastrutture di comunicazione e nel sistema produttivo. Ha l'obiettivo di garantire la copertura di tutto il territorio con reti a banda larga e ultra-larga, migliorare la competitività delle filiere industriali, agevolare l'internazionalizzazione delle imprese. Investe sul rilancio di due settori che caratterizzano l'Italia: i il turismo e la cultura

MISSIONE 2: Rivoluzione verde e transizione ecologica

è volta a realizzare la transizione verde ed ecologica della società e dell'economia per rendere il sistema sostenibile e garantire la sua competitività. Comprende interventi per l'agricoltura sostenibile e per migliorare la capacità di gestione dei rifiuti; programmi di investimento e ricerca per le fonti di energie rinnovabili, investimenti per lo sviluppo delle principali filiere industriali della transizione ecologica e la mobilità sostenibile, prevede inoltre azioni per l'efficientamento del patrimonio immobiliare pubblico e privato; e iniziative per il contrasto al dissesto idrogeologico, per salvaguardare e promuovere la biodiversità del territorio virgola e per garantire la sicurezza dell'approvvigionamento e la gestione sostenibile ed efficiente delle risorse idriche.

MISSIONE 3: Infrastrutture per una mobilità sostenibile

Si pone l'obiettivo di rafforzare ed estendere l'alta velocità ferroviaria nazionale e ferroviaria regionale, con una particolare attenzione Mezzogiorno. potenzia i servizi di trasporto merci secondo una logica intermodale in relazione al sistema degli aeroporti. Promuove l'ottimizzazione la digitazione del traffico aereo. punta a garantire l'interoperabilità della piattaforma logistica nazionale (PNL) per la rete dei porti.

MISSIONE 4: Istruzione e ricerca

punta a colmare le carenze strutturali, qualitative e quantitative, dell'offerta di servizi di istruzione nel nostro paese virgola in tutto il ciclo formativo. Prevede l'aumento dell'offerta di posti negli asili nido favorisce l'accesso all'università, rafforzare gli strumenti di orientamento e riforma il reclutamento e la formazione degli insegnanti. Include anche un significativo

rafforzamento dei sistemi di ricerca di base e applicata e nuovi strumenti per il trasferimento tecnologico per innalzare il potenziale di crescita.

MISSIONE 5: Coesione e inclusione

investe nelle infrastrutture sociali, rafforza le politiche attive del lavoro e sostiene il sistema duale e l'imprenditoria femminile. Migliore sistema di protezione per le situazioni di fragilità sociale ed economica, per le famiglie, per la genitorialità. Promuove inoltre il ruolo dello sport come fattore di inclusione. Un'attenzione specifica e riservata alla coesione territoriale, col rafforzamento delle zone economiche speciali e la strategia nazionale delle aree interne. Potenzia il servizio civile universale e promuove il ruolo del terzo settore nelle politiche pubbliche.

MISSIONE 6: Salute

È focalizzata su due obiettivi: il rafforzamento della prevenzione e dell'assistenza sul territorio, con l'integrazione tra servizi sanitari e sociali, e l'ammodernamento delle dotazioni tecnologiche del servizio sanitario nazionale (SSN). potenzia il fascicolo sanitario elettronico e lo sviluppo della telemedicina sostiene le competenze tecniche, digitali e manageriali del personale del sistema sanitario, oltre a promuovere la ricerca scientifica in ambito biomedico e sanitario.

Nel presente Studio si porrà un <u>focus sulla missione 2</u>: rivoluzione verde e transizione ecologica, per le quali le risorse da allocare sono schematizzate nella sottostante figura:

FIGURA 5 – COMPONENTI E RISORSE IN MILIARDI DI EURO - FONTE WWW.GOVERNO.IT

Scienza e modelli analitici dimostrano inequivocabilmente come il cambiamento climatico sia in corso, ed ulteriori cambiamenti siano ormai inevitabili: la temperatura media del pianeta è aumentata di circa 1.1 °C in media dal 1880 con forti picchi in alcune aree (es. +5 °C al Polo Nord nell'ultimo secolo), accelerando importanti trasformazioni dell'ecosistema (scioglimento dei ghiacci, innalzamento e acidificazione degli oceani, perdita di biodiversità, desertificazione) e rendendo fenomeni estremi (venti, neve, ondate di calore) sempre più frequenti e acuti. Pur essendo l'ulteriore aumento del riscaldamento climatico ormai inevitabile, è assolutamente necessario intervenire il prima possibile per mitigare questi fenomeni ed impedire il loro peggioramento su scala. Serve una radicale transizione ecologica verso la completa neutralità climatica e lo sviluppo ambientale sostenibile per mitigare le minacce a sistemi naturali e umani: senza un abbattimento sostanziale delle emissioni climaalteranti, il riscaldamento globale raggiungerà e supererà i 3-4 °C prima della fine del secolo, causando irreversibili e catastrofici cambiamenti del nostro ecosistema e rilevanti impatti socioeconomici. Gli obiettivi globali ed europei al 2030 e 2050 (es. Sustainable Development Goals, obiettivi Accordo di Parigi, European Green Deal) sono molto ambiziosi. Puntano ad una progressiva e completa decarbonizzazione del sistema ('Net-Zero') e a rafforzare l'adozione di soluzioni di economia circolare, per proteggere la natura e le biodiversità e garantire un sistema alimentare equo, sano e rispettoso dell'ambiente. In particolare, per rispettare gli obiettivi di Parigi, le emissioni cumulate devono essere limitate ad un budget globale di ~600GtCO221, fermo restando che i tempi di recupero dei diversi ecosistemi saranno comunque molto lunghi (secoli).

Questa transizione rappresenta un'opportunità unica per l'Italia, ed il percorso da intraprendere dovrà essere specifico per il Paese in quanto l'Italia:

- ha un patrimonio unico da proteggere: un ecosistema naturale, agricolo e di biodiversità di valore inestimabile, che rappresentano l'elemento distintivo dell'identità, cultura, storia, e dello sviluppo economico presente e futuro;
- É maggiormente esposta a rischi climatici rispetto ad altri Paesi data la configurazione geografica, le specifiche del territorio, e gli abusi ecologici che si sono verificati nel tempo;

può trarre maggior vantaggio e più rapidamente rispetto ad altri Paesi dalla transizione, data la relativa scarsità di risorse tradizionali (es., petrolio e gas naturale) e l'abbondanza di alcune risorse rinnovabili (es., il Sud può vantare sino al 30-40 per cento in più di irraggiamento rispetto alla media europea, rendendo i costi della generazione solare potenzialmente più bassi).

Tuttavia, la transizione è al momento focalizzata su alcuni settori, per esempio quello elettrico rappresenta che solo il 22% delle emissioni di CO₂ eq. (ma potenzialmente una quota superiore di decarbonizzazione, grazie ad elettrificazione diretta e indiretta dei consumi).

E soprattutto, la transizione sta avvenendo troppo lentamente, principalmente a causa delle enormi difficoltà burocratiche ed autorizzative che riguardano in generale le infrastrutture in Italia, ma che in questo contesto hanno frenato il pieno sviluppo di impianti rinnovabili o di trattamento dei rifiuti (a titolo di esempio, mentre nelle ultime aste rinnovabili in Spagna l'offerta ha superato la domanda di 3 volte, in Italia meno del 25 per cento della capacità è stata assegnata).

Il PNRR è un'occasione unica per accelerare la transizione delineata, superando barriere che si sono dimostrate critiche in passato.

La Missione 2, intitolata Rivoluzione Verde e Transizione ecologica, consiste di 4 Componenti:

- C1. Economia circolare e agricoltura sostenibile
- C2. Energia rinnovabile, idrogeno, rete e mobilità sostenibile
- C3. Efficienza energetica e riqualificazione degli edifici
- C4 Tutela del territorio e della risorsa idrica.

Delle 4 componenti della missione 2 quella che coinvolge direttamente con il progetto del presente studio è individuata nella componente 2:

OBIETTIM GENERALI:

M2C2 - ENERGIA RINNOVABILE, IDROGENO, RETE E MOBILITÀ SOSTENIBILE

- Incremento della quota di energia prodotta da fonti di energia rinnovabile (FER) nel sistema, in linea con gli obiettivi europei e nazionali di decarbonizzazione
- Potenziamento e digitalizzazione delle infrastrutture di rete per accogliere l'aumento di produzione da FER e aumentarne la resilienza a fenomeni climatici estremi
- Promozione della produzione, distribuzione e degli usi finali dell'idrogeno, in linea con le strategie comunitarie e nazionali
- Sviluppo di un trasporto locale più sostenibile, non solo ai fini della decarbonizzazione ma anche come leva di miglioramento complessivo della qualità della vita (riduzione inquinamento dell'aria e acustico, diminuzione congestioni e integrazione di nuovi servizi)
- Sviluppo di una leadership internazionale industriale e di ricerca e sviluppo nelle principali filiere della transizione

FIGURA 6 - OBIETTIVI GENERALI MISSIONE 2 COMPONENTE 2 - FONTE WWW.GOVERNO.IT

Con l'accordo di Parigi, i Paesi di tutto il mondo si sono impegnati a limitare il riscaldamento globale a 2°C, facendo il possibile per limitarlo a 1,5° C, rispetto ai livelli preindustriali. Per raggiungere questo obiettivo, l'Unione Europea attraverso lo *European Green Deal* (COM/2019/640) ha definito nuovi obiettivi energetici e climatici estremamente ambiziosi che richiederanno la riduzione dei gas climalteranti (*Green House Gases*, GHG) al 55 per cento nel 2030 e alla neutralità climatica nel 2050. La Comunicazione, come noto, è in via di traduzione legislativa nel pacchetto "*Fit for 55*" ed è stato anticipato dalla *Energy transition strategy*, con la quale le misure qui contenute sono coerenti. L'Italia è stato uno dei Paesi pionieri e promotori delle politiche di decarbonizzazione, lanciando numerose misure che hanno stimolato investimenti importanti (si pensi alle politiche a favore dello sviluppo rinnovabili o dell'efficienza energetica). Il PNIEC22 in vigore, attualmente in fase di aggiornamento (e rafforzamento) per riflettere il nuovo livello di ambizione definito in ambito europeo, così come la Strategia di Lungo Termine già forniscono un importante inquadramento strategico per l'evoluzione del sistema, con il quale le misure di questa

Componente sono in piena coerenza. Nel periodo 1990-2019, le emissioni totali di gas serra in Italia si sono ridotte del 19% (*Total CO₂ equivalent emissions without land use, land-use change and forestry*), passando da 519 Mt CO₂eq a 418 Mt CO₂eq. Di queste le emissioni del settore delle industrie energetiche rappresentano circa il 22%, quelle delle industrie manifatturiere il 12% con riferimento ai consumi energetici e il l'8% con riferimento ai processi industriali, quelle dei trasporti il 25%, mentre quelle del civile (residenziale, servizi e consumi energetici agricoltura) rappresentano il 19% circa. Non vanno peraltro trascurate le emissioni prodotte dai rifiuti (4%) e quelle prodotte da coltivazioni ed allevamenti (7%), dal momento che queste ultime sono caratterizzati da riduzioni piuttosto contenute. La suddetta riduzione rappresenta un risultato importante, ma ancora lontano dagli obiettivi 2030 e 2050 per raggiungere i nuovi target del PNIEC in corso di aggiornamento. L'obiettivo di questa componente è di contribuire al raggiungimento degli obiettivi strategici di decarbonizzazione attraverso cinque linee di riforme e investimenti, concentrate nei primi tre settori.

Livello di correlazione del progetto con obiettivi e del PNRR:

Coerente

L'iniziativa progettuale soddisfa i principi e gli obiettivi del piano ed è coerente con le modalità attuative di quest'ultimo.

2.1.5 Normativa nazionale di riferimento

La legge 120/2002 ha reso esecutivo il protocollo di Kyoto, con il quale i paesi industrializzati si sono impegnati a ridurre, per il periodo 2008-2012, il totale delle emissioni di gas ad effetto serra almeno del 5% rispetto ai livelli del 1990, promuovendo lo sviluppo di forme energetiche rinnovabili. Il D.lgs. 29 dicembre 2003, n.387 ("Attuazione della direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità") riconosce la pubblica utilità ed indifferibilità ed urgenza degli impianti alimentati da fonti rinnovabili per i quali deve essere rilasciata da parte della Regione una Autorizzazione Unica a seguito di un procedimento unico. Per guanto attiene il mercato dei certificati verdi, introdotti con il decreto Bersani, ne viene regolamentata l'emissione attraverso il D.M. 24 ottobre 2005 "Aggiornamento delle direttive per l'incentivazione dell'energia elettrica prodotta da fonti rinnovabili ai sensi dell'articolo 11, comma 5, del decreto legislativo 16 marzo 1999, n. 79", abrogato dal successivo D.M. 18.12.2008. Il D.M. 10 settembre 2010 emanato dal Ministro dello Sviluppo Economico di concerto con il Ministro dell'Ambiente e con il Ministro per i Beni e le Attività Culturali, pubblicato sulla G.U. n. 219 del 18.09.2010 in vigore dal 02.10.2010, approva le "Linee guida per il procedimento di cui all'art. 12 del D.lgs. 29.12.2003 n. 387 per l'autorizzazione alla costruzione e all'esercizio di impianti di produzione di elettricità da fonti rinnovabili nonché linee guida tecniche per gli impianti stessi".

Il progetto in esame per le sue caratteristiche rientra nella procedura di Autorizzazione Unica.

Questo è confermato anche dalla disciplina regionale in materia di autorizzazione all'esercizio degli impianti di produzione di energia da fonti rinnovabili; con Decreto Presidenziale 48 del 18 luglio 2012 "Regolamento recante norme di attuazione dell'art. 105, comma 5 della LR 12 maggio 2010 n. 11" la Regione ha definito la disciplina per il procedimento autorizzativo ai sensi dell'art. 12 del d.lgs. 387/2003, prevedendo, in particolare, per gli impianti fotovoltaici di potenza superiore ad 1 MW, come quello in esame, l'obbligo di presentazione dell'istanza di Autorizzazione Unica.

Dette linee guida, che le Regioni e gli Enti Locali, cui è affidata l'istruttoria di autorizzazione, dovranno recepire entro 90 giorni dalla pubblicazione, contengono:

- regole per la trasparenza amministrativa dell'iter di autorizzazione;
- modalità per il monitoraggio delle realizzazioni e l'informazione ai cittadini;
- regole per l'autorizzazione delle infrastrutture connesse e in particolare delle reti elettriche;
- l'individuazione delle tipologie di impianto e modalità di installazione, per ciascuna fonte, che godono delle procedure semplificate (D.I.A. e attività edilizia libera);
- l'individuazione dei contenuti delle istanze, le modalità di avvio e di svolgimento del procedimento unico di autorizzazione;
- criteri e modalità di inserimento degli impianti nel paesaggio e sul territorio;
- modalità per coniugare esigenze di sviluppo del settore e tutela del territorio.

In particolare, al punto 17 delle Linee Guida si precisa che la non idoneità di un'area per l'installazione di impianti FER non è da intendersi come divieto, bensì come indicazione di area in cui la progettazione di "specifiche tipologie e/o dimensioni di impianti avrebbe un'elevata probabilità di esito negativo delle valutazioni in sede di autorizzazione".

Di seguito vengono presentati alcuni dei requisiti indicati dal DM alla Parte IV_ Inserimento degli impianti nel paesaggio e sul territorio, la cui sussistenza può, in generale, essere elemento per la valutazione positiva dei progetti:

Requisiti di cui al punto 16 delle Linee Guida	Progetto in esame
D.M. 10/2010	
a) la buona progettazione degli impianti, comprovata con l'adesione del progettista ai sistemi di gestione della qualità e ai sistemi di gestione ambientale	La società Proponente, per la redazione di tutti gli elaborati specifici per l'avvio del procedimento autorizzativo, si è avvalsa della collaborazione di figure professionali esperte e abilitate, ognuna con proprie specifiche competenze. Il team tecnico coinvolto nel progetto è composto dai seguenti professionisti: - Studio di impatto ambientale: Dott. Agr. Patrick Vasta (iscrizione all'Ordine dei Dottori Agronomi e Dottori Forestali della provincia di Catania al n.1349) - Studio di compatibilità agronomica, PMA, Botanico-Faunistica e Mitigazione ambientale e paesaggistica: Dott. Agr. Vincenzo Satta (iscrizione all'Ordine dei Dottori Agronomi e Dottori Forestali della provincia di Sassari al n. 361)

b) la valorizzazione dei potenziali energetici delle diverse risorse rinnovabili presenti nel territorio nonché della loro capacità di sostituzione delle fonti fossili. A titolo esemplificativo ma non esaustivo, la combustione ai fini energetici di biomasse derivate da rifiuti potrà essere valorizzata attuando la co-combustione in impianti esistenti per la produzione di energia alimentati da fonti non rinnovabili (es. carbone) mentre la combustione ai fini energetici di biomasse di origine agricola-forestale potrà essere valorizzata ove tali fonti rappresentano una risorsa significativa nel contesto locale ed un'importante opportunità ai fini energetico-produttivi.	- Studio Geologico: Dott. Geol. Nicola Pili (iscrizione all'Ordine dei Geologi della Regione Sardegna con il n. 761); - Studio previsionale di impatto acustico: Ing. Fabio Massimo Calderaro e Ing. Vincenzo Buttafuoco (iscrizione nell'Elenco Nazionale dei Tecnici compententi in Acustica ai n. 4473 e n. 4468) - Progettazione tecnica ed elettrica: Ing. Emanuele Canterino (iscrizione all'Ordine degli Ingegneri di Matera n.B60) Non pertinente con il progetto in esame.
c) il ricorso a criteri progettuali volti ad ottenere il minor consumo possibile del territorio, sfruttando al meglio le risorse energetiche disponibili	Come meglio specificato nel Quadro di Riferimento Progettuale del SIA e nei paragrafi specifici, nonché nella relazione agronomica, l'iniziativa in progetto è stata guidata dalla volontà di conciliare le esigenze impiantistico-produttive con la valorizzazione e la riqualificazione della vocazione agricola dell'area di inserimento dell'impianto. La superficie effettivamente occupata dai moduli fotovoltaici risulta costituire una percentuale pari a circa il 27% del totale della superficie interessata dall'iniziativa in progetto, così come la superficie occupata dalle altre opere di progetto quali strade interne all'impianto, cabine e piazzole occuperanno appena il 6% dell'area di progetto. Per il resto, per l'area di intervento si prevede la soluzione di praticare tra le file e sotto i pannelli la conversione dei seminativi in prato polifita permanente, con lo sfalcio del materiale previa fienagione tradizionale. Inoltre, diverse aree saranno destinate ad aree di compensazione, conservazione, rinaturalizzazione e mitigazione, il tutto per una superficie complessiva di 10,257 ha. È prevista inoltre la realizzazione di una fascia colturale arborea lungo tutto il perimetro di impianto di larghezza pari a 3 m che si estenderà per 3,33 ha.
d) il riutilizzo di aree già degradate da attività antropiche, pregresse o in atto (brownfield), tra cui siti industriali, cave, discariche, siti contaminati, consentendo la minimizzazione di interferenze dirette e indirette sull'ambiente legate all'occupazione del suolo ed alla	Il progetto in esame verrà realizzato ottimizzando al massimo le strutture esistenti; inoltre, non è prevista la realizzazione di nuovi tratti stradali. Si evidenzia come il progetto in esame si sviluppa in una porzione di territorio già industrialmente interessata

modificazione del suo utilizzo a scopi produttivi, con particolare riferimento ai territori non coperti da superfici artificiali o *greenfield*, la minimizzazione delle interferenze derivanti dalle nuove infrastrutture funzionali all'impianto mediante lo sfruttamento di infrastrutture esistenti e, dove necessari, la bonifica e il ripristino ambientale dei suoli e/o delle acque sotterranee.

dalla presenza delle aree industriali dei Comuni di Borore e Macomer.

e) una progettazione legata alla specificità dell'area in cui viene realizzato l'intervento; con riguardo alla localizzazione in aree agricole, assume rilevanza l'integrazione dell'impianto nel contesto delle tradizioni agroalimentari locali e del paesaggio rurale, sia per quanto attiene alla sua realizzazione che al suo esercizio;

Per il progetto in esame è stata prevista la soluzione di convertire i seminativi in **prati migliorati di leguminose**, tra le file delle strutture, unitamente a diverse aree di **compensazione e mitigazione** costituite da specie arbustive ed arboree autoctone e/o storicizzate, per un'estensione totale di 67,86 ha.

16.4: Nell'autorizzare progetti localizzati in zone agricole caratterizzate da produzioni agroalimentari di qualità e/o di particolare pregio rispetto al contesto paesaggistico culturale, deve essere verificato che l'insediamento e l'esercizio dell'impianto non comprometta o interferisca negativamente con le finalità perseguite dalle disposizioni in materia di sostegno nel settore agricolo, con particolare riferimento alla valorizzazione delle tradizioni agroalimentari locali, alla tutela della biodiversità, così come del patrimonio culturale e del paesaggio rurale

L'area interessata dal progetto ricade in area agricola e non è interessata da colture di pregio e tipiche dell'agricoltura mediterranea; il progetto compromette la vocazione agricola del territorio dal momento che si inserisce come una sorta di "zona cuscinetto" tra il centro abitato e il vicino polo industriale andando a mitigare in qualche modo l'impatto che lo stesso ha sul vicino centro abitato; nel dettaglio, l'assetto fondiario, agricolo e colturale e dei caratteri strutturanti del territorio, sarà convertito in conseguenza dell'installazione ed esercizio dell'impianto fotovoltaico, prevedendo oltre alla conversione di parte dei seminativi interposti tra le strutture dell'impianto fotovoltaico stesso, in prati migliorati di leguminose, con lo sfalcio del materiale previa fienagione tradizionale anche diverse aree che verranno destinate ad aree di compensazione e mitigazione che, insieme alle aree libere da interventi, occuperanno una superficie complessiva di 67,88 ha.

16.5: Eventuali misure di compensazione per i Comuni potranno essere eventualmente individuate secondo le modalità e in riferimento agli impatti negativi non mitigabili.

Come meglio specificato nella sezione della stima degli impatti, il progetto in esame non comporterà impatti negativi non mitigabili. La Società concorderà con il Comune le misure compensative in accordo ai principi dell'Allegato 2 al DM 10/09/2010.

2.2 Pianificazione territoriale e ambientale

2.2.1 Codice dei beni culturali e del paesaggio (D. Lgs. 42/2004)

Il Decreto Legislativo n. 42 del 22 gennaio 2004 ("Codice dei Beni Culturali e del Paesaggio, ai sensi dell'Art. 10 della Legge 6 Luglio 2002, n. 137"), modificato e integrato dal D.lgs. n. 156 del 24 marzo 2006 e dal D.lgs. n. 62 del marzo 2008 (per la parte concernente i beni culturali) e dal D.lgs. n. 157 del 24 marzo 2006 e dal D.lgs. n. 63 del marzo 2008 (per quanto concerne il paesaggio), rappresenta il codice unico dei beni culturali e del paesaggio. Il D.lgs. 42/2004 recepisce la Convenzione Europea del Paesaggio e costituisce il punto di confluenza delle principali leggi relative alla tutela del paesaggio, del patrimonio storico ed artistico:

- la Legge n. 1089 del 1° giugno 1939 ("Tutela delle cose d'interesse artistico o storico");
- la Legge n. 1497 del 29 giugno 1939 ("Protezione delle bellezze naturali");
- la Legge n. 431 del 8 agosto 1985, "recante disposizioni urgenti per la tutela delle zone di particolare interesse ambientale".

Il principio su cui si basa il D.lgs. 42/2004 è "la tutela e la valorizzazione del patrimonio culturale". Tutte le attività concernenti la conservazione, la fruizione e la valorizzazione del patrimonio culturale devono essere svolte in conformità della normativa di tutela. Il "patrimonio culturale" è costituito sia dai beni culturali sia da quelli paesaggistici, le cui regole per la tutela, fruizione e valorizzazione sono fissate: per i beni culturali, nella Parte Seconda (Titoli I, II e III, Articoli da 10 a 130); per i beni paesaggistici, nella Parte Terza (Articoli da 131 a 159).

Il Codice definisce quali beni culturali (Art. 10):

- le cose immobili e mobili che presentano interesse artistico, storico, archeologico, o
 etnoantropologico, sia di proprietà pubblica che privata (senza fine di lucro);
- le raccolte di musei, pinacoteche, gallerie e altri luoghi espositivi di proprietà pubblica;
- gli archivi e i singoli documenti pubblici e quelli appartenenti ai privati che rivestano interesse storico particolarmente importante;
- le raccolte librarie delle biblioteche pubbliche e quelle appartenenti a privati di eccezionale interesse culturale;

- le cose immobili e mobili, a chiunque appartenenti, che rivestono un interesse particolarmente importante a causa del loro riferimento con la storia politica, militare, della letteratura, dell'arte e della cultura in genere, ovvero quali testimonianze dell'identità e della storia delle istituzioni pubbliche, collettive o religiose;
- le collezioni o serie di oggetti, a chiunque appartenenti, che, per tradizione, fama e
 particolari caratteristiche ambientali, ovvero per rilevanza artistica, storica,
 archeologica, numismatica o etnoantropologica, rivestono come complesso un
 eccezionale interesse artistico o storico.

Alcuni dei beni sopradetti (ad esempio quelli di proprietà privata) vengono riconosciuti oggetto di tutela solo in seguito ad un'apposita dichiarazione da parte del soprintendente. Il Decreto fissa precise norme in merito all'individuazione dei beni, al procedimento di notifica, alla loro conservazione e tutela, alla loro fruizione, alla loro circolazione sia in ambito nazionale che internazionale, ai ritrovamenti e alle scoperte di beni.

Nello specifico i beni paesaggistici ed ambientali sottoposti a tutela sono (Art. 136 e 142):

- le cose immobili che hanno cospicui caratteri di bellezza naturale, di singolarità geologica o memoria storica, ivi compresi gli alberi monumentali;
- le ville, i giardini e i parchi, non tutelati a norma delle disposizioni relative ai beni culturali, che si distinguono per la loro non comune bellezza;
- i complessi di cose immobili che compongono un caratteristico aspetto avente valore estetico e tradizionale, inclusi i centri e i nuclei storici;
- le bellezze panoramiche e così pure quei punti di vista o di belvedere, accessibili al pubblico dai quali si goda lo spettacolo di quelle bellezze;
- i territori costieri compresi in una fascia della profondità di 300 metri dalla linea di battigia, anche per i terreni elevati sul mare;
- i territori contermini ai laghi compresi in una fascia della profondità di 300 metri dalla linea di battigia, anche per i territori elevati sui laghi;

- i fiumi, i torrenti ed i corsi d'acqua iscritti negli elenchi previsti dal testo unico delle disposizioni di legge sulle acque ed impianti elettrici, approvato con Regio Decreto 11 Dicembre 1933, No. 1775, e le relative sponde o piede degli argini per una fascia di 150 metri ciascuna;
- le montagne per la parte eccedente 1.600 metri sul livello del mare per la catena alpina e 1.200 metri sul livello del mare per la catena appenninica e per le isole;
- i ghiacciai e i circhi glaciali;
- i parchi e le riserve nazionali o regionali, nonché i territori di protezione esterna dei parchi;
- i territori coperti da foreste e da boschi, ancorché percorsi o danneggiati dal fuoco,
 e quelli sottoposti a vincolo di rimboschimento (secondo il D.lgs. 227/2001);
- le aree assegnate alle università agrarie e le zone gravate da usi civici;
- le zone umide incluse nell'elenco previsto dal D.P.R. n. 448 del 13 Marzo 1976;
- i vulcani;
- le zone di interesse archeologico;
- gli immobili e le aree comunque sottoposti a tutela dai piani paesaggistici previsti dagli Art. 143 e 156.

La pianificazione paesaggistica è configurata dall'articolo 135 e dall'articolo 143 del Codice. L'articolo 135 asserisce che "lo Stato e le Regioni assicurano che tutto il territorio sia adeguatamente conosciuto, salvaguardato, pianificato e gestito in ragione dei differenti valori espressi dai diversi contesti che lo costituiscono" e a tale scopo "le Regioni sottopongono a specifica normativa d'uso il territorio mediante piani paesaggistici". All'articolo 143, il Codice definisce i contenuti del Piano paesaggistico. Inoltre, il Decreto definisce le norme di controllo e gestione dei beni sottoposti a tutela e all'articolo 146 assicura la protezione dei beni ambientali vietando ai proprietari, possessori o detentori a qualsiasi titolo di "distruggerli o introdurvi modificazioni che ne rechino pregiudizio ai valori paesaggistici oggetto di protezione". Gli stessi soggetti hanno l'obbligo di sottoporre alla Regione o all'ente locale al quale la regione ha affidato la relativa competenza i progetti delle opere che intendano eseguire, corredati della documentazione prevista, al fine di ottenere la preventiva autorizzazione.

Infine, nel Decreto sono riportate le sanzioni previste in caso di danno al patrimonio culturale (Parte IV), sia in riferimento ai beni culturali che paesaggistici.

2.2.2 Analisi del sito rispetto ai vincoli paesaggistico-ambientali, archeologici e architettonici (D. Lgs. 42/2004)

In base al Piano Paesaggistico Regionale della Sardegna, il Comune di Macomer non ricade in nessuno dei 27 ambiti di paesaggio costieri per i quali il PPR definisce disposizioni immediatamente efficaci. L'ambito territoriale più vicino all'area di progetto è il 22 "Montiferru".

Nel Comune di Macomer ricadono altresì alcuni beni identitari definiti ai sensi dell'art. 6 del PPR come "categorie di immobili, aree e/o valori immateriali che consentono il riconoscimento del senso di appartenenza delle comunità locali alla specificità della cultura sarda".

L'analisi dell'intero territorio regionale e costituisce la base per il riconoscimento delle sue caratteristiche naturali, storiche e insediative nelle loro reciproche interrelazioni e si articola in:

- a) assetto ambientale, di cui alla tavola identificata come MACOMER4-IAT06;
- b) assetto storico-culturale, di cui alla tavola identificata come MACOMER4-IAT07;
- c) assetto insediativo, di cui alla tavola identificata come MACOMER4-IAT08.

2.2.2.1 ASSETTO AMBIENTALE (TITOLO I DELLA L.R. 8/2004)

L'assetto ambientale è costituito dall'insieme degli elementi territoriali di carattere biotico (flora, fauna ed habitat) e abiotico (geologico e geomorfologico), con particolare riferimento alle aree naturali e seminaturali, alle emergenze geologiche di pregio e al paesaggio forestale e agrario, considerati in una visione ecosistemica correlata agli elementi dell'antropizzazione.

Rientrano nell'assetto territoriale ambientale regionale le categorie di beni paesaggistici, tipizzati e individuati nella cartografia del P.P.R. di cui all'art. 3 e nella tabella Allegato 2, ai sensi dell'art. 143, comma 1, lettera i) del decreto legislativo 22 gennaio 2004, n. 42, come modificato dal decreto legislativo 24 marzo 2006, n. 157:

- a) Fascia costiera, così come perimetrata nella cartografia del P.P.R. di cui all'art. 4;
- b) Sistemi a baie e promontori, falesie e piccole isole;
- c) Campi dunari e sistemi di spiaggia;
- d) Aree rocciose di cresta ed aree a quota superiore ai 900 metri s.l.m.;
- e) Grotte e caverne;
- f) Monumenti naturali ai sensi della L.R. n. 31/89;
- g) Zone umide, laghi naturali ed invasi artificiali e territori contermini compresi in una fascia della profondità di 300 metri dalla linea di battigia, anche per i territori elevati sui laghi;

- h) Fiumi torrenti e corsi d'acqua e relative sponde o piedi degli argini, per una fascia di 150 metri ciascuna, e sistemi fluviali, riparali, risorgive e cascate, ancorché temporanee;
- i) Praterie e formazioni steppiche;
- j) Praterie di posidonia oceanica;
- k) Aree di ulteriore interesse naturalistico comprendenti le specie e gli habitat prioritari, ai sensi della Direttiva CEE 43/92;
- I) Alberi monumentali, di cui all'Allegato 2.2.

Rientrano nell'assetto territoriale ambientale regionale le seguenti categorie di beni paesaggistici, ai sensi dell'art. 142 del decreto legislativo 22 gennaio 2004, n. 42 e succ. mod.:

- i territori coperti da foreste e da boschi, ancorché percorsi o danneggiati dal fuoco e quelli sottoposti a vincolo di rimboschimento, come definiti dall'articolo 2, commi 2 e 6, del decreto legislativo 18 maggio 2001, n. 227;
- i parchi e le riserve nazionali o regionali, nonché i territori di protezione esterna dei parchi;
- 3) le aree gravate da usi civici;
- 4) i vulcani.

L'art. 18 della Legge Regionale 8/2004 definisce le misure di tutela e valorizzazione dei beni paesaggistici con valenza ambientale. La Regione, in coerenza con le disposizioni del Piano Paesaggistico Regionale, determina le azioni strategiche necessarie per la promozione, valorizzazione e qualificazione dei beni paesaggistici.

Tali beni sono, dunque, oggetto di conservazione e tutela finalizzate al mantenimento delle caratteristiche degli elementi costitutivi e delle relative morfologie in modo da preservarne l'integrità ovvero lo stato di equilibrio ottimale tra habitat naturale e attività antropiche. Qualunque trasformazione da cui gli stessi vengano interessati, fatto salvo l'art. 149 del decreto legislativo 22 gennaio 2004, n. 42 e succ. mod., è soggetta ad autorizzazione paesaggistica.

Qualora tali beni non siano censiti nelle cartografie del PPR sono gli stessi Comuni, in fase di adeguamento degli strumenti urbanistici comunali, a censire i beni di interesse ambientale presenti nel proprio territorio.

I programmi di tutela e valorizzazione dei beni paesaggistici sono redatti al fine di:

- a. prevenire eventuali situazioni di rischio;
- b. costituire un duraturo equilibrio tra l'attività antropica e il sistema ambientale;

- c. migliorare la funzionalità ecosistemica;
- d. attivare opportuni sistemi di monitoraggio volti a verificare il mantenimento e miglioramento della biodiversità, evidenziando eventuali situazioni di criticità.

Come già detto, l'area di intervento non ricade in fascia costiera e, quindi, in nessuno dei 27 ambiti di paesaggio costieri e non è interessata dalla presenza di beni paesaggistici vincolati.

Il cavidotto interrato che collega le due aree dell'impianto Agrivoltaico attraversa il Riu Mene, ma per tutta la fascia dei 150 m dal corso d'acqua, non sono previste opere fuori terra e sarà ripristinato lo stato dei luoghi.

L'assetto ambientale regionale è costituito dalle seguenti componenti di paesaggio:

- 1) Aree naturali e subnaturali
- 2) Aree seminaturali
- 3) Aree ad utilizzazione agro-forestale.

Le aree seminaturali sono caratterizzate da utilizzazione agro-silvopastorale estensiva, con un minimo di apporto di energia suppletiva per garantire e mantenere il loro funzionamento.

In particolare, tali aree comprendono rimboschimenti artificiali a scopi produttivi, oliveti, vigneti, mandorleti, agrumeti e frutteti in genere, coltivazioni miste in aree periurbane, coltivazioni orticole, colture erbacee incluse le risaie, prati sfalciabili irrigui, aree per l'acquicoltura intensiva e semi-intensiva ed altre aree i cui caratteri produttivi dipendono da apporti significativi di energia esterna.

Rientrano tra le aree ad utilizzazione agro-forestale le seguenti categorie:

- a. colture arboree specializzate;
- b. impianti boschivi artificiali;
- c. colture erbacee specializzate;

L'area di intervento è caratterizzata in parte dalla componente ambientale *Praterie* e in parte dalla componente ambientale *Colture erbacee specializzate*. In funzione delle prescrizioni dettate dalle NTA del PPR, viene vietata la trasformazione delle aree ad utilizzazione agro-forestale, "fatti salvi gli interventi di trasformazione delle attrezzature, degli impianti e delle infrastrutture destinate alla gestione agro-forestale o necessarie per l'organizzazione complessiva del territorio" (Regione Sardegna), con l'accortezza di tutelare e preservare gli impianti delle colture. Gli indirizzi di pianificazione regionale ammettono il recupero e l'armonizzazione di queste aree per ridurre le emissioni dannose e la dipendenza energetica, come indica to al comma n.1 dell'art.30 delle Norme.

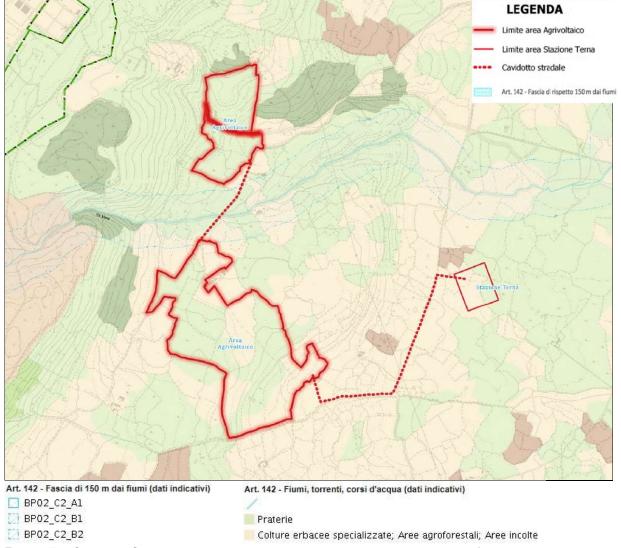


FIGURA 7 – STRALCIO CARTA DEI DISPOSITIVI DI TUTELA AMBIENTALE – ESTRATTO DALL'ELABORATO CARTOGRAFICO MACOMER4-IAT06. (FONTE: PPR – ASSETTO AMBIENTALE)

Il modello di impianto proposto con questo progetto promuove una integrazione equilibrata e sostenibile tra agricoltura, ambiente ed energia, puntando su questi obiettivi:

- riutilizzo e riqualificazione dei manufatti presenti in loco, indirizzandoli all'allevamento di bestiame, alimentato con foraggio e cereali prodotti localmente;
- riconversione di un ampio appezzamento agricolo alla produzione del foraggio necessario per l'alimentazione equilibrata del bestiame;
- incremento della biodiversità grazie alla flora, alla fauna e microfauna che sempre accompagnano l'impianto di un prato polifita stabile;

- arricchimento della matrice organica del terreno, in contrasto col progressivo impoverimento per dilavamento, tipico della coltivazione estensiva attuale, caratterizzata da annuali arature profonde;
- Riduzione del consumo d'acqua per irrigazione;
- utilizzo del letame come ammendante naturale, a chiusura del ciclo coltivazione/allevamento e contemporanea riduzione sostanziale di fertilizzanti chimici;
- Integrazione tra agricoltura e fotovoltaico, che sarà nel seguito oggetto di una trattazione specifica. Il progetto prevede di coltivare l'intera area agricola attraverso l'impianto di un prato polifita permanente, di durata illimitata destinato alla produzione di foraggio.

2.2.2.2 ASSETTO STORICO-CULTURALE (TITOLO II DELLA L.R. 8/2004)

L'assetto storico culturale è costituito dalle aree e dagli immobili, siano essi edifici o manufatti che caratterizzano l'antropizzazione del territorio a seguito di processi storici di lunga durata.

Sono beni paesaggistici con valenza storico-culturale le aree caratterizzate da preesistenze di manufatti o edifici che costituiscono, nel loro insieme, testimonianza del paesaggio culturale sardo.

Le aree di cui sopra, ove non sia stato già effettuato dal P.P.R., sono perimetrate dai Comuni interessati ai fini della conservazione e tutela e della migliore riconoscibilità delle specificità storiche e culturali dei beni stessi nel contesto territoriale di riferimento.

Sino alla analitica delimitazione cartografica delle aree di cui al comma 1 dell'art. 48, queste non possono essere inferiori ad una fascia di larghezza pari a m. 100, a partire dagli elementi di carattere storico- culturale più esterni dell'area medesima. In tale fascia è vietata l'edificazione e ogni altra azione che possa comprometterne la percezione.

La delimitazione dell'area costituisce limite alle trasformazioni di qualunque natura, anche sugli edifici e sui manufatti, soggette all'autorizzazione paesaggistica.

Rientrano nell'assetto storico culturale, ai sensi dell'art. 143 comma 1 lett.i) del decreto legislativo 22 gennaio 2004, n. 42 e successive modifiche le seguenti categorie di beni paesaggistici:

- 1. Aree caratterizzate da edifici e manufatti di valenza storico culturale, così come elencati nel successivo art. 48 comma 1, lett. a.;
- 2. Aree caratterizzate da insediamenti storici, di cui al successivo art. 51.

Rientrano nell'assetto storico culturale, ai sensi dell'art. 142 comma 1, lett. m), del decreto legislativo 22 gennaio 2004, n. 42 e succ. mod, le zone di interesse archeologico individuate alla data di entrata in vigore del medesimo decreto.

Sono definiti beni identitari del paesaggio culturale sardo quegli elementi del patrimonio la cui riconoscibilità è data dall'essere parte di un insieme più complesso (storico-culturale-economico-geografico). A tali beni si applica la disciplina di cui all'art. 9.

I beni paesaggistici con valenza storico culturale e i beni identitari del paesaggio culturale sardo sono tipizzati nel P.P.R. ed individuati nella tavola 3 dello stesso piani; la loro mappatura è periodicamente implementata ed aggiornata attraverso il SITR.

La Regione mediante programmi di valorizzazione e conservazione, in coerenza con gli strumenti di pianificazione, determina le azioni strategiche necessarie per la promozione, valorizzazione e qualificazione delle valenze storico culturali e identitarie.

Il Piano Paesaggistico individua, in attuazione delle disposizioni statali, alcune categorie di aree e beni immobili che vengono sottoposti a disciplina di tutela, conservazione e, se del caso, di valorizzazione e recupero. In particolare, nella categoria delle Aree, edifici e manufatti di valenza storico culturale rientrano:

- 1) i beni paesaggistici individui e d'insieme, art. 142 e 143, 1 co. Lett. i);
- 2) i beni identitari.

Per la categoria di beni paesaggistici di cui all'art. 48, comma 1, lett. a), sino all'adeguamento dei piani urbanistici comunali al P.P.R., si applicano le seguenti prescrizioni:

- a) nelle aree è vietata qualunque edificazione o altra azione che possa comprometterne la tutela;
- sui manufatti e sugli edifici esistenti all'interno dell'aree, sono ammessi, gli interventi di manutenzione straordinaria, di restauro e risanamento conservativo e le attività di studio, ricerca, scavo, restauro, inerenti i beni archeologici, nonché le trasformazioni connesse a tali attività, previa autorizzazione del competente organo del MIBAC;
- c) la manutenzione ordinaria è sempre ammessa

Con riferimento al Comune di Macomer, in particolare all'area di progetto, si individuano diversi siti di interesse storico e archeologico. Dalla cartografia del P.P.R. foglio 498, si riscontra la presenza di beni paesaggistici puntuali in prevalenza nuraghi. Nella carta dell'assetto storico culturale riportata

di seguito viene evidenziato anche un buffer (raggio di 100 m dal nuraghe) che individua la fascia di rispetto. L'intera area interessata dal progetto ricade fuori dalle zone vincolate.

Il sito di progetto, quindi, non interferisce con alcun bene paesaggistico, architettonico ed archeologico identificato dal PPR, sebbene nelle vicinanze dell'area di intervento siano presenti un nuraghe e fascia di rispetto dai fiumi e torrenti "bene paesaggistico art. 143".

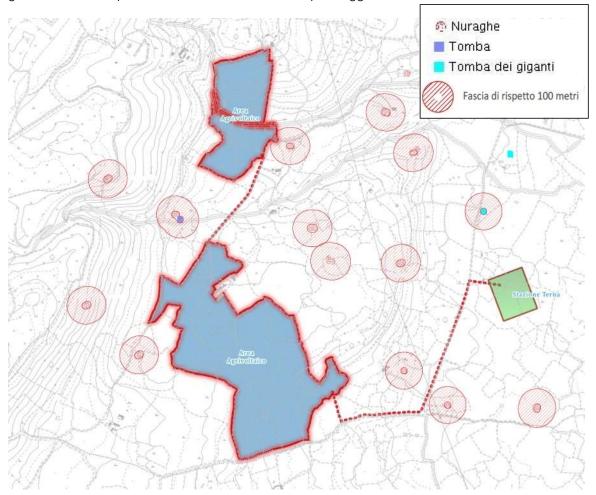


FIGURA 8 – INQUADRAMENTO DELL'AREA DI INTERVENTO RISPETTO ALLA CARTA DI ASSETTO STORICO-CULTURALE – STRALCIO DELL'ELABORATO CARTOGRAFICO MACOMER4-IATO7

Ai beni paesaggistici e identitari così identificati, si applicano i vincoli di tutela in una fascia di rispetto dal perimetro esterno, in qualunque contesto territoriale siano localizzati. In tale fascia di tutela sono consentiti tutti gli interventi di manutenzione ordinaria e straordinaria e consolidamento statico di ristrutturazione e restauro mentre è vietata l'edificazione di nuovi corpi di fabbrica su aree libere e l'incremento dei volumi preesistenti.

Dall'analisi del Piano Paesaggistico Regionale, il progetto dell'impianto agri-voltaico non presenta incompatibilità con le prescrizioni fissate dalle norme tecniche di attuazione.

2.2.2.3 ASSETTO INSEDIATIVO (TITOLO III DELLA L.R. N. 8/2004)

L'assetto insediativo rappresenta l'insieme degli elementi risultanti dai processi di organizzazione del territorio funzionali all'insediamento degli uomini e delle attività.

Rientrano nell'assetto territoriale insediativo regionale le seguenti categorie di aree e immobili definiti nella relazione del P.P.R. e individuati nella tavola 4:

- a) Edificato urbano;
- b) Edificato in zona agricola;
- c) Insediamenti turistici;
- d) Insediamenti produttivi;
- e) Aree speciali (servizi);
- f) Sistema delle infrastrutture.

I Comuni, nell'adeguamento degli strumenti urbanistici al P.P.R., e gli enti e i soggetti istituzionali, per le rispettive competenze, si conformano alle seguenti prescrizioni:

- a. orientare la pianificazione urbanistica alla riqualificazione e al completamento dell'insediamento esistente, a partire dalle matrici storico-ambientali che ne costituiscono la struttura conformativa;
- b. localizzare i nuovi interventi residenziali e turistici e i servizi generali in connessione e integrazione strutturale e formale con l'assetto insediativo esistente;
- c. conformare ogni nuova costruzione o trasformazione dell'edificato esistente al principio di armonizzazione delle architetture e delle facciate con il contesto;
- d. prevedere esplicite norme per la progettazione e realizzazione delle opere infrastrutturali di rete o puntuali rispettando il loro corretto inserimento nel paesaggio e nell'ambiente;
- e. effettuare un puntuale censimento degli abusi edilizi dichiarati o riscontrati, ancorché sanati.

L'edificato in zona agricola è costituito da: a) Insediamenti storici: centri rurali ed elementi sparsi, b) Nuclei e case sparse in agro, c) Insediamenti specializzati.

I Comuni, nell'adeguamento degli strumenti urbanistici al P.P.R., si conformano ai seguenti indirizzi:

 contenere l'indiscriminato utilizzo ai fini residenziali delle campagne, promuovendo oltre alle attività agricole specializzate, la fruibilità della campagna, salvaguardandone il valore ambientale paesaggistico per l'interesse collettivo;

- 2) disciplinare, tenuto conto delle direttive regionali in materia, le caratteristiche tipologiche e architettoniche degli edifici sia con carattere residenziale, sia quelli agricoli, specificando le tecniche e i materiali costruttivi da utilizzarsi;
- conservare e ripristinare gli elementi paesaggistici del contesto come siepi e muretti a secco;
- 4) progettare nuove strade di penetrazione agraria di norma in terra stabilizzata, eventualmente con trattamento antipolvere, o con sistemazioni e tecnologie similari, ad esclusione dei cementi e asfalti. L'uso di asfalti e cementi può essere autorizzato qualora sia dimostrato di non potervi provvedere con tecnologie alternative; in tal caso gli interventi di cui sopra sono autorizzati dalla Giunta regionale previa verifica in conferenza di servizi tra gli enti interessati ai sensi della L.R.40/1990;
- 5) effettuare un puntuale censimento delle case agricole utilizzate per residenza.

Dalla carta dell'assetto insediativo, si riscontra la presenza di alcuni piccoli nuclei di case sparse distribuiti sul territorio agricolo circostante l'impianto in progetto. Gli insediamenti rurali presenti nella zona sono perlopiù aziende agricole legate all'attività pastorizia.

Il progetto è orientato ad integrare l'impianto agrivoltaico con l'ambiente, l'agricoltura e le attività già presenti sul posto con attenzione alle matrici storico-ambientali dell'area interessata, prevedendo anche il riutilizzo e riqualificazione dei manufatti presenti in loco.

FIGURA 9 – INQUADRAMENTO DELL'AREA DI IMPIANTO RISPETTO ALLA CARTA DELL'ASSETTO INSEDIATIVO – ESTRATTO DALL'ELABORATO CARTOGRAFICO MACOMER4-IAT08

2.2.3 Rete Natura 2000: SIC, ZPS e ZSC

La Direttiva 92/43/CEE, recepita in Italia con il D.P.R. 357/97 e nota come "Direttiva Habitat" nasce con l'obiettivo di "salvaguardare la biodiversità mediante la conservazione degli habitat naturali, nonché della flora e della fauna selvatiche nel territorio europeo degli Stati membri al quale si applica il trattato" (art 2). I siti facenti parte di questa rete sono distinguibili in:

- SIC (Siti di Importanza Comunitaria): siti nei quali esistono equilibri tali da mantenere integra la biodiversità presente;
- **ZPS** (Zone di Protezione Speciale): istituite con la Direttiva 2009/147/CE, la "Direttiva Uccelli", sono punti di ristoro per l'avifauna e per la conservazione delle specie di uccelli migratori;
- ZSC (Zone Speciali di Conservazione): sono SIC in cui sono state applicate le misure per il mantenimento e il ripristino degli habitat naturali e delle specie.



FIGURA 10 – INQUADRAMENTO DELL'AREA DI PROGETTO (IN ROSSO) RISPETTO AI SITI SIC-ZSC-ZPS – STRALCIO DELL'ELABORATO CARTOGRAFICO MACOMER4-IATO3

Nel sito di intervento, non sono presenti Habitat che presentano caratteristiche di particolare interesse sia sotto il profilo conservazionistico che naturalistico, inoltre l'intera superficie dell'area non è ricompresa in siti afferenti alla Rete Natura 2000 (SIC e ZPS), la stessa non è altresì ricompresa in Oasi permanenti di protezione e cattura e IBA (Important Bird Areas), né si colloca nel raggio di 5 km dalle stesse.

Le aree protette più vicine risultano essere:

- a Nord-Ovest, distante circa 6 Km si trova Il Sito di Interesse Comunitario" Altopiano di Campeda" codice SIC ITB021101, sempre nella stessa direzione troviamo la ZPS " Piana di Semestene, Bonorva, Macomer e Bortigali" codice ZPS ITB023050 che dista circa 7 Km.
- a Nord-Nord-Ovest, distante oltre 6,5 Km si trova il SIC " Catena del Marghine e del Goceano" codice SIC ITB011102.
- a Sud-Est, distante circa 7,30 Km troviamo la ZPS "Altopiano di Abbasanta" codice **ZPS** ITB023051.

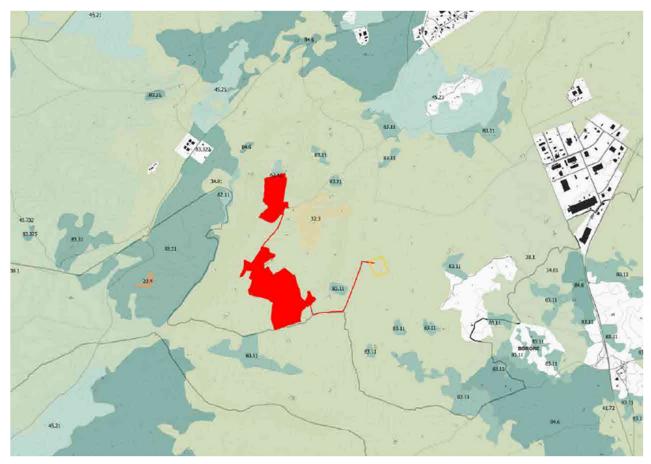


FIGURA 11 – INQUADRAMENTO DELL'AREA DI PROGETTO (IN ROSSO) RISPETTO ALLA CARTA DEGLI HABITAT PRODOTTA DA ISPRA – STRALCIO DELL'ELABORATO CARTOGRAFICO MACOMER4-IAT19

Consultando la Carta degli Habitat, prodotta da ISPRA, si evince inoltre che l'area di progetto non comprende aree interessate dalla presenza di Habitat. Il terreno ricadente nell'area di progetto è caratterizzato da Prati concimati e pascolati - Codice 38.1.

Le classi di appartenenza delle aree adiacenti all'area di progetto sono tutte riportate in Figura.

Il cavidotto collega l'area di progetto posta più a Nord a quella posta più a Sud correndo lungo una strada rurale che collega i due terreni. L'area di progetto più a sud è poi collegata con la Stazione Elettrica "Macomer" dal cavidotto che corre lungo altri terreni adibiti a pascolo per poi imboccare la viabilità rurale, dove incontra la stazione elettrica.

Si può concludere che il sito oggetto di studio non interferisce con elementi di Rete Natura 2000 né con aree riconosciute come habitat.

2.3 Programmazione regionale

2.3.1 PEARS 2030

Il Piano Energetico Ambientale Regione Sardegna (P.E.A.R.S.) è lo strumento attraverso il quale l'Amministrazione Regionale persegue obiettivi di carattere energetico, socioeconomico e ambientale al 2020 partendo dall'analisi del sistema energetico e la ricostruzione del Bilancio Energetico Regionale (BER). Il Piano riprende e sviluppa le analisi e le strategie definite dal Documento di indirizzo delle fonti energetiche rinnovabili approvato con D.G.R. n. 12/21 del 20.03.2012.

In linea con gli obiettivi e le strategie comunitarie e nazionali, la regione Sardegna è da tempo impegnata a ridurre i consumi energetici, le emissioni climalteranti e la dipendenza dalle fonti energetiche tradizionali promuovendo il risparmio e l'efficienza energetica e sostenendo un più ampio utilizzo delle fonti energetiche rinnovabili. La tutela del paesaggio, del territorio e dell'ambiente, tuttavia, occupano un ruolo fondamentale nella persecuzione di tali obiettivi, così come la sostenibilità ambientale. La normativa regionale a partire dal 2009 si è aggiornata con tale scopo arricchendosi di documenti e atti normativi.

Con la Legge Regionale n. 3 del 7 agosto 2009 la Regione Sardegna si dota di un Piano Energetico Ambientale Regionale che prevede lo "sviluppo delle tecnologie e degli impianti per la produzione di energia da fonte rinnovabile".

Nel 2010 si promulgano tre delibere: la Delibera della Giunta regionale n. 10/3 del 12 marzo che si allinea agli obiettivi proposti nelle Conferenze ONU sul Clima e gli orizzonti 2020; la deliberazione n. 17/31 che con il progetto Sardegna CO2.0 approvato dalla Giunta regionale si prefigge l'intento di ridurre le emissioni regionali di CO2 e la Delibera della Giunta Regionale n. 43/31 del 6 dicembre 2010 in cui si predispone il "Documento di indirizzo sulle fonti energetiche rinnovabili" che ne individui le effettive potenzialità rispetto ai possibili scenari al 2020. Nel 2011 e poi successivamente nel 2012 tale Documento viene rimaneggiato per contenere a data del 20 marzo 2012 "gli scenari energetici necessari al raggiungimento dell'obiettivo specifico del 17,8 % di copertura dei consumi finali lordi di energia con fonti rinnovabili nei settori elettrico e termico, assegnato alla Sardegna con Decreto del Ministero dello Sviluppo Economico del 15.03.2012."

La Proposta Tecnica di Piano Energetico Ambientale della Regione Sardegna è stata adottata dalla Giunta Regionale per il periodo 2015 - 2030, con la delibera n. 5/1 del 28 gennaio 2016. Il documento è stato redatto sulla base delle Linee di Indirizzo Strategico del Piano "Verso un'economia condivisa dell'Energia" adottate con DGR n. 37/21 del 21.07.2015 e approvate in via definitiva con

DGR n. 48/13 del 02/10/2015. L'adozione del PEARS assume un'importanza strategica soprattutto alla luce degli obiettivi europei al 2020 ed al 2030 in termini di riduzione dei consumi energetici, riduzione delle emissioni di CO₂ da consumi energetici e di sviluppo delle FER.

Le linee di indirizzo del Piano Energetico ed Ambientale della Regione Sardegna, riportate nella Delibera della Giunta Regionale n. 48/13 del 2.10.2015, indicano come obiettivo strategico di sintesi per l'anno 2030 la riduzione delle emissioni di CO2 associate ai consumi della Sardegna del 50% rispetto ai valori stimati nel 1990.

Per il conseguimento di tale obiettivo strategico sono stati individuati dal Piano i seguenti Obiettivi Generali (OG):

- OG1 Trasformazione del sistema energetico Sardo verso una configurazione integrata e intelligente (Sardinian Smart Energy System)
- OG2 Sicurezza energetica
- OG3 Aumento dell'efficienza e del risparmio energetico
- OG4 Promozione della ricerca e della partecipazione attiva in campo energetico.

OG1: TRASFORMAZIONE DEL SISTEMA ENERGETICO SARDO VERSO UNA CONFIGURAZIONE INTEGRATA E INTELLIGENTE (SARDINIAN SMART ENERGY SYSTEM)

Il raggiungimento dell'obiettivo strategico di sintesi impone una trasformazione del sistema energetico regionale nel suo complesso che sia rispondente alle mutate condizioni del consumo e della produzione. La trasformazione attesa dovrà consentire sia di utilizzare efficientemente le risorse energetiche rinnovabili già disponibili sia di programmare le nuove con l'obiettivo di incrementarne l'utilizzo locale. Infatti, la nuova configurazione distribuita del consumo e della produzione di energia (sia da fonti rinnovabili, sia da fonti fossili) e il potenziale contributo in termini cogenerativi dell'utilizzo del metano nella forma distribuita, dovrebbe rendere la Regione Sardegna una delle comunità più idonee per l'applicazione dei nuovi paradigmi energetici in cui si coniugano gestione, condivisione, produzione e consumo dell'energia in tutte le sue forme: elettrica, termica e dei trasporti. Tutto ciò è finalizzato a realizzare un sistema di produzione e di consumo locale più efficiente e, grazie all'applicazione della condivisione delle risorse, più economico e sostenibile.

Le tecnologie che rendono possibile tutto ciò vengono generalmente riunite nella definizione di reti integrate e intelligenti e, nella loro accezione più ampia applicata alla città ed estesa anche le reti sociali e di governance, di Smart City. I sistemi energetici integrati ed intelligenti presentano come tecnologia abilitante l'Information and Communication Technology (ICT), la quale attraverso l'utilizzo

di tecnologie tradizionali con soluzioni digitali innovative, rende la gestione dell'energia più flessibile ed adattabile alle esigenze dell'utente grazie ad una visione olistica del sistema e all'utilizzo di sistemi di monitoraggio che consentono di scambiare le informazioni in tempo reale.

Tutto ciò avviene grazie all'estensione al settore energetico dei concetti propri dell'ICT che, attraverso lo scambio e la condivisione di informazioni ed energia, permettono di coniugare istantaneamente il consumo e la produzione locale consentendo di superare le criticità connesse alla variabilità sia delle risorse rinnovabili che del consumo a livello locale, trasformando il sistema energetico nel suo complesso, dalla scala locale alla scala regionale, in un sistema di consumo programmabile e prevedibile, permettendo conseguentemente di limitare gli impatti sulle infrastrutture e sui costi ad esso associati.

OG.2 SICUREZZA ENERGETICA

Il Piano si pone come obiettivo quello di garantire la sicurezza energetica della Regione Sardegna in presenza di una trasformazione energetica volta a raggiungere l'obiettivo strategico di sintesi. In particolare, l'obiettivo è quello di garantire la continuità della fornitura delle risorse energetiche nelle forme, nei tempi e nelle quantità necessarie allo sviluppo delle attività economiche e sociali del territorio a condizioni economiche che consentano di rendere le attività produttive sviluppate nella Regione Sardegna competitive a livello nazionale e internazionale. Tale obiettivo riveste una particolare importanza in una regione come quella sarda a causa della sua condizione di insularità ed impone una maggiore attenzione nei confronti della diversificazione delle fonti energetiche, delle sorgenti di approvvigionamento e del numero di operatori agenti sul mercato energetico regionale. Inoltre, considerata la presenza di notevole componente fossile ad alto impatto emissivo, particolare attenzione deve essere prestata alla gestione della transizione energetica affinché questa non sia subita ma sia gestita e programmata.

OG3: AUMENTO DELL'EFFICIENZA E DEL RISPARMIO ENERGETICO

L'aumento dell'efficienza energetica e del risparmio energetico è strettamente correlato all'obiettivo strategico di sintesi in quanto concorre direttamente alla riduzione delle emissioni agendo sui processi di trasformazione e/o sull'uso dell'energia.

La riduzione dei consumi energetici primari e secondari non può essere considerata un indicatore di azioni di efficientamento energetico e/o di risparmio energetico, soprattutto in una regione in fase di transizione economica come quella sarda. Pertanto, la definizione di tale obiettivo deve essere necessariamente connessa allo sviluppo economico del territorio. Quindi, le azioni di

efficientamento e risparmio energetico saranno considerate funzionali al raggiungimento dell'obiettivo solo se alla riduzione dei consumi energetici sarà associato l'incremento o l'invarianza di indicatori di benessere sociale ed economico.

In accordo con tale definizione, si individua nell'intensità energetica di processo e/o di sistema l'indicatore per rappresentare il conseguimento di tale obiettivo sia per l'efficienza energetica che per il risparmio energetico. In tale contesto, non solo le scelte comportamentali o gestionali ma anche quelle di "governance" rappresentano una forma di risparmio energetico. In particolare, lo sviluppo, la pianificazione e l'attuazione di una transizione verso un modello economico e produttivo regionale caratterizzato da una intensità energetica inferiore alla media nazionale rappresenta, a livello strutturale, una forma di risparmio energetico giacché consente di utilizzare la stessa quantità di energia per incrementare il prodotto interno lordo regionale.

OG4: PROMOZIONE DELLA RICERCA E DELLA PARTECIPAZIONE ATTIVA IN CAMPO ENERGETICO

Il conseguimento dell'obiettivo strategico di sintesi richiede la realizzazione di un processo di medio lungo termine destinato a trasformare il sistema energetico regionale secondo paradigmi che risultano ancora in evoluzione. Questi offrono diverse opportunità connesse allo sviluppo di nuovi prodotti e servizi per l'efficientamento energetico, la realizzazione e gestione di sistemi integrati e intelligenti e la sicurezza energetica. Tutto ciò richiede una forte integrazione tra i settori della ricerca e dell'impresa. A tale scopo, l'amministrazione regionale, in coerenza con le strategie e le linee di indirizzo europee e nazionali e con le linee di indirizzo delle attività di ricerca applicata declinate nel programma Horizon 2020 e in continuità con le linee di sperimentazione promosse e avviate nella precedente Pianificazione Operativa Regionale, ha individuato nello sviluppo e nella sperimentazione di sistemi energetici integrati destinati a superare criticità energetiche e migliorare l'efficienza energetica lo strumento operativo per promuovere la realizzazione di piattaforme sperimentali ad alto contenuto tecnologico in cui far convergere sinergicamente le attività di ricerca pubblica e gli interessi privati per promuovere attività di sviluppo di prodotti e sistemi innovativi ad alto valore aggiunto nel settore energetico. Tale impostazione è stata condivisa anche durante il processo di sviluppo della Smart Specialization Strategy (S3) della Regione Sardegna che rappresenta lo strumento di programmazione delle azioni di supporto attività di Ricerca. In particolare, nell'ambito dell'S3 è emersa tra le priorità il tema "Reti intelligenti per la gestione dell'energia".

La Regione promuove e sostiene l'attività di ricerca applicata nel settore energetico attraverso gli strumenti a sua disposizione con particolare riguardo al potenziamento dell'integrazione tra le attività sviluppate nelle Università di Cagliari e Sassari e i centri regionali competenti (la Piattaforma Energie

Rinnovabili di Sardegna Ricerche, il CRS4 e il Centro Tecnologico Italiano per l'Energia ad Emissioni Zero).

Inoltre, la Regione Sardegna consapevole delle minacce e criticità connesse all'attuazione della strategia energetica regionale da un punto di vista normativo e gestionale relativamente allo sviluppo della generazione diffusa, dell'autoconsumo istantaneo, della gestione locale dell'energia elettrica e dell'approvvigionamento del metano, ritiene fondamentale sviluppare le azioni normative e legislative di propria competenza a livello comunitario e nazionale che consentano di superare tali criticità e consentire la realizzazione delle azioni proposte in piena coerenza le Direttive 39 Europee di settore. Pertanto, la Regione Sardegna considera la governance del processo e la partecipazione attiva al processo di trasformazione proposto obiettivo fondamentale del PEARS.

Sulla base dell'analisi del documento di Piano e dello scenario energetico attuale non emergono disarmonie tra la proposta progettuale e gli indirizzi del PEARS. In tal senso si ritiene che l'intervento non alteri le prospettive, ritenute prioritarie, di rafforzamento delle infrastrutture di distribuzione energetica né quelle di una loro gestione secondo i canoni delle Smart Grid.

La nuova potenza elettrica installata, inoltre, è coerente con gli scenari di sviluppo della tecnologia fotovoltaica nel territorio regionale prospettati dal PEARS nell'ambito delle azioni da attuare nel periodo 2016÷2020 ed è sinergica al dichiarato obiettivo di riduzione delle emissioni di CO2 della Sardegna per l'anno 2030 (50% rispetto al 1990).

In base alle considerazioni e alle analisi sopra esposte e alla compatibilità del progetto con gli obiettivi generali del PEARS, si evidenzia quanto segue:

- il progetto in esame non contrasta con le disposizioni specifiche per l'autorizzazione alla realizzazione di impianti FER. La sua collocazione è prevista sì su un terreno agricolo, ma grazie alle diverse soluzioni adottate risulta compatibile con la destinazione agricola dell'area. Come risulta infatti dal presente SIA e dai capitoli dedicati, il progetto costituisce un impianto fotovoltaico per il quale l'attività di coltivazione con prato polifita permanente tra le file, la previsione di una fascia di mitigazione costituita da ulivi oltre che la previsione di diverse aree di compensazione mediante piantumazione di diverse specie, costituiscono il presupposto fondamentale del progetto stesso;
- il progetto presenta elementi di totale coerenza con gli obiettivi e gli indirizzi generali previsti dal Piano in quanto impianto di produzione energetica da fonte rinnovabile, la cui promozione e sviluppo costituisce uno degli obiettivi principali del Piano stesso.

2.3.1 Delibera di Giunta Regionale 59/90 del 2020

Con la deliberazione n. 45/40 del 2 agosto 2016 la Giunta regionale ha approvato in via definitiva il Piano Energetico Ambientale Regionale della Sardegna "Verso un'Economia condivisa dell'Energia" (PEARS) a seguito dell'esito positivo della procedura di Valutazione Ambientale Strategica (VAS).

Congiuntamente al Piano è stata approvata la "Strategia per l'attuazione e il monitoraggio del PEARS" (Strategia) che definisce la Governance ed il Monitoraggio del piano medesimo. Con la deliberazione n. 48/24 del 6.9.2016 la Giunta regionale ha istituito la Conferenza Regionale per l'energia, la Cabina di Regia e il Gruppo di lavoro monitoraggio del PEARS presso l'Assessorato dell'Industria al fine di implementare il Piano di monitoraggio. Secondo quanto previsto al paragrafo 1.2.3. della Strategia, la Cabina di Regia del PEARS ha provveduto ad individuare un gruppo di lavoro interassessoriale che, nel corso del 2019, ha proceduto ad elaborare una nuova proposta organica per l'individuazione delle aree non idonee all'installazione di impianti FER attraverso l'approvazione della D.G.R. n. 59/90 del 27.11.2020 che reca la disciplina attuativa rispetto alle disposizioni di cui al Decreto del Ministero per lo Sviluppo Economico del 10 settembre 2010. Al fine di rendere uniforme e chiara la normativa vigente con tale deliberazione la G.R. ha abrogato le seguenti norme contenute nelle precedenti delibere di Giunta Regionale.

Il percorso di individuazione delle suddette aree non idonee ha anche tenuto conto delle esperienze pregresse dovute alle criticità emerse in fase istruttoria di istanze di impianti fotovoltaici presentate agli uffici dell'amministrazione regionale e dei precedenti atti di indirizzo della Giunta sulla materia.

Il documento individua, una lista di aree particolarmente sensibili e vulnerabili alle trasformazioni territoriali o del paesaggio potenzialmente ascrivibili alla installazione di impianti fotovoltaici su suolo. Per ogni area non idonea così identificata, viene riportata la descrizione delle incompatibilità riscontrate con gli obiettivi di protezione individuati. In particolare, tra le aree non idonee ai sensi della D.G.R. 59/90 del 2020 troviamo:

- i siti dell'UNESCO, le aree ed i beni di vincolati dal D.Lgs 42/2004 (codice dei beniculturali e del paesaggio);
- aree naturali soggette a tutela diversi livelli (europeo, nazionale, regionale, locale);
- altre aree che svolgono funzioni determinanti per la conservazione della biodiversità;
- aree agricole interessate da produzioni agricolo alimentari di qualità (produzioni biologiche, produzioni D.O.P., I.G.P., S.T.G., D.O.C., D.O.C.G., produzioni tradizionali).

• zone individuate ai sensi dell'Art. 142 del D.Lgs 42/2004 (aree tutelate per legge)

L'analisi relativa alla scelta del sito di localizzazione dell'impianto fotovoltaico è stata condotta anche sulla base di quanto contenuto nella D.G.R. 59/90 del 2020 valutando la sussistenza di particolari caratteristiche che rendano le aree prescelte incompatibili con la realizzazione degli impianti.

Tale analisi è stata condotta anche attraverso sopralluoghi diretti in campo che hanno permesso di evitare l'interessamento di aree non idonee da parte degli elementi impiantistici e delle opere di connessione. L'analisi localizzativa condotta ha portato a ritenere il sito interessato dall'intervento idoneo all'installazione di impianti FER come dimostrato dall'inquadramento su DGR 59/90 che si riporta di seguita.

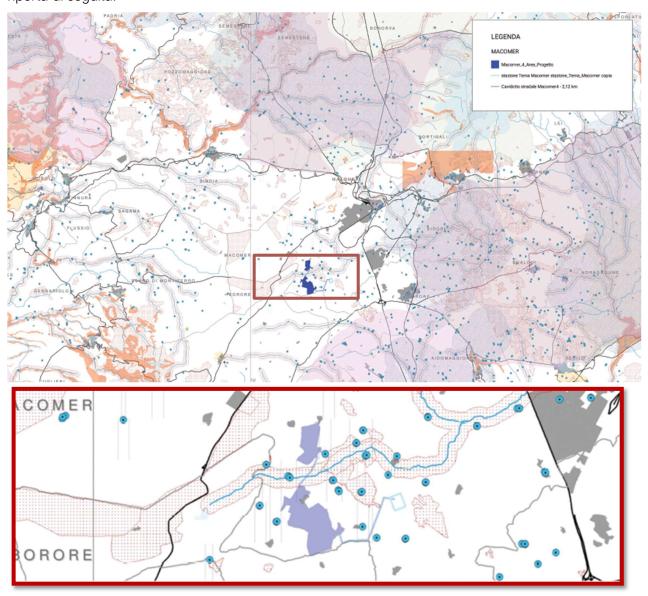


FIGURA 12 – INQUADRAMENTO DEL SITO SU CARTA DELLE AREE NON IDONEE ALL'INSTALLAZIONE DI IMPIANTI FER AI SENSI DELLA D.G.R. 59/90 DEL 2020 (ESTRATTO DALL ELABORATO CARTOGRAFICO MACOMER4-IAT15)

2.3.2 Piano di tutela delle acque PTA

Il Piano di Tutela delle Acque è stato redatto ai sensi dell'art. 44 del D. Lgs. 152/99 e ss.mm.ii, dell'art. 2 della L.R. 14/2000 e della Direttiva 2000/60/CE. Il PTA, costituente un piano stralcio di settore del Piano di Bacino Regionale della Sardegna, ai sensi dell'art 17, comma 6-ter della legge n.183 del 1989 (e ss.mm.ii), è stato approvato con Deliberazione della Giunta Regionale n.14/16 del 4 aprile 2006.

Obiettivo prioritario del Piano è la costruzione di uno strumento conoscitivo, programmatico, dinamico, attraverso azioni di monitoraggio, programmazione, individuazione di interventi, misure, vincoli, finalizzati alla tutela degli aspetti qualitativi e quantitativi della risorsa idrica.

In particolare, il PTA si prefigge il raggiungimento dei seguenti obiettivi:

- raggiungimento o mantenimento degli obiettivi di qualità fissati dal D. Lgs. 152/99 e i suoi
 collegati per i diversi corpi idrici ed il raggiungimento dei livelli di quantità e qualità delle
 risorse idriche, compatibilmente con le diverse destinazioni d'uso;
- recupero e salvaguardia delle risorse naturali e dell'ambiente per lo sviluppo delle attività produttive, in particolare quelle turistiche, in quanto rappresentative di potenzialità economiche di fondamentale importanza per lo sviluppo regionale;
- raggiungimento dell'equilibrio tra fabbisogni idrici e disponibilità, per garantire un uso sostenibile della risorsa idrica, anche con accrescimento delle disponibilità idriche attraverso la promozione di misure tese alla conservazione, al risparmio, al riutilizzo ed al riciclo delle risorse idriche;
- lotta alla desertificazione.

Il raggiungimento o il mantenimento di tali obiettivi è perseguito mediante azioni ed interventi integrati che, nell'ambito del Piano, si attuano per Unità Idrografiche Omogenee (U.I.O.), unità territoriali elementari composte da uno o più bacini idrografici, attraverso le quali il territorio regionale è stato suddiviso in aree omogenee. Le U.I.O. sono state ottenute prevalentemente a partire dai bacini drenanti sui corpi idrici significativi del primo ordine ed accorpando a questi i bacini minori, territorialmente omogenei, per caratteristiche geomorfologiche o idrografiche o idrologiche.

Sulla base di quanto previsto dagli artt. 3, 4 e 5 del D.Lgs. 152/99, oggi rifluito nel D.Lgs. 152/06, il Piano individua e classifica i corpi idrici in relazione al grado di tutela da garantire alle acque superficiali e sotterranee e alle conseguenti azioni di risanamento da predisporre per i singoli corpi

idrici, definite all'interno del Piano di Tutela delle Acque (art. 44). In particolare, il Piano suddivide i corpi idrici in 5 categorie:

- corsi d'acqua, naturali e artificiali;
- laghi, naturali e artificiali;
- acque di transizione
- acque marino costiere;
- acque sotterranee.

2.3.2.1 CARATTERIZZAZIONE CLIMATICA

Il clima locale è quello tipico del Mediterraneo, temperato caldo, caratterizzato da inverni miti e piovosi durante i quali non si osservano temperature inferiori a zero gradi, e da estati piuttosto torride e asciutte, con elevata escursione termica e una forte irraggiamento solare. Nel prospetto della classificazione fitoclimatica del Pavari, l'area è inserita nella fascia del Castanetum - sottozona calda. Nel prospetto della classificazione bioclimatica di Emberger è inserita nel bioclima mediterraneo semiarido, livello superiore.

La stazione termopluviometrica più vicina è quella situata in agro di Macomer in località "Sas Enas", situata ad una quota di 664 m s.l.m. con latitudine 40°18'50" Nord e longitudine 8°47'10" Est.

Secondo la bibliografia, ma anche come evidenziato dall'inclinazione delle piante, le maggiori frequenze si registrano per i venti provenienti dal quadrante Ovest, Ponente, che da solo raggiunge quasi la metà delle frequenze di tutti gli altri venti.

Saranno presi in considerazione due macroelementi del clima:

- Temperatura
- Piovosità.

I dati presi in considerazione in questo studio sono stati analizzati congiuntamente da ARPAS - Dipartimento Meteoclimatico e ISPRA - Settore Climatologia Operativa e si riferiscono a una serie storica significativa dei valori delle precipitazioni e delle temperature del decennio 1981-2010 (ARPAS, ISPRA 2020: *Climatologia della Sardegna per il trentennio 1981-2010*, M. Fiori, G. Fioravanti (a cura di), ARPAS – ISPRA, dicembre 2020. Consultabile qui https://arpas.maps.arcgis.com/apps/MapSeries/index.html?appid=0bedeb6a438f428bb66372ea592f8eb6)

PRECIPITAZIONI

Stazione	gennaio	febbraio	marzo	aprile	maggio	giugno	luglio	agosto	settembre	ottobre	novembre	dicembre	ANNO
ITTIREDDU	57.3	45.1	48.6	63.9	48.0	20.0	11.8	17.5	46.9	75.9	84.8	74.9	594.8
JERZU F.C.	90.7	77.7	73.4	73.0	32.4	13.7	9.0	20.3	71.8	68.1	130.2	120.1	780.3
LACONI	65.7	59.4	56.1	78.5	55.4	24.4	10.2	13.1	50.9	68.3	97.2	84.4	663.7
LANUSEI	103.0	84.1	83.7	85.7	39.2	20.3	9.4	20.2	81.7	101.8	144.2	138.2	911.5
LULA	88.4	60.8	61.0	64.1	35.8	24.5	12.6	17.5	44.4	66.1	96.8	109.0	680.9
LLINAMATRONA	60.0	ER 2	53.0	69.7	43.0	22.4	ΛQ	11.0	42.1	50.0	80.3	926	506 1
MACOMER	80.6	69.5	62.9	83.1	56.5	27.1	6.7	15.7	47.1	75.2	117.1	110.4	751.8

FIGURA 13 – CUMULATI DI PRECIPITAZIONE MEDI CLIMATICI MENSILI E ANNUALI CALCOLATI NEL TRENTENNIO 1981-2010 (FONTE: ARPAS, ISPRA 2020)

I dati indicano una quantità di precipitazioni media annua di 751,8 mm, con piogge concentrate nei mesi autunnali e all'inizio dell'inverno.

Il mese che presenta la maggiore quantità di pioggia è novembre, con precipitazioni medie di 117,4 mm, mentre il mese più siccitoso è luglio con precipitazioni medie di 6,7 mm.

L'estate risulta essere decisamente siccitosa com'è evidente nella seguente infografica.

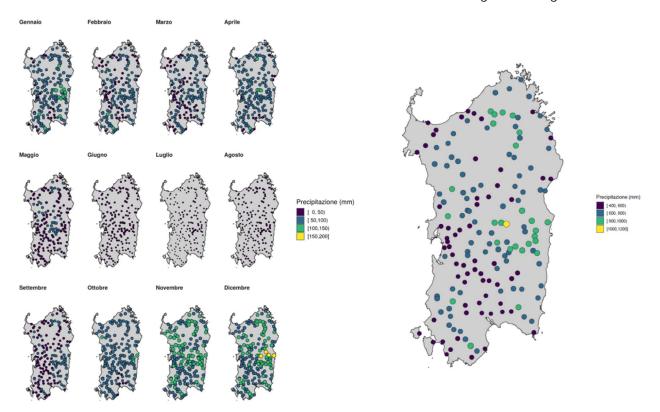


FIGURA 14 – CUMULATI DI PRECIPITAZIONE MEDI MENSILI (A SX) E ANNUALI (A DX) PER IL TRENTENNIO 1981-2010 (FONTE: ARPAS, ISPRA 2020)

TEMPERATURA

Dai dati termometrici rilevati, la temperatura media diurna è di 14,6 °C, il mese più caldo è agosto con una temperatura media mensile di 30,1 °C, al contrario i mesi più freddi risultano essere gennaio e febbraio con una media mensile di 5,2 °C. Il valore medio annuale di escursione termica è di 9,2° C. I dati indicati ci consentono di collocare l'area sotto il profilo climatico nella zona meso-mediterranea, caratterizzata da un periodo piovoso concentrato in autunno-inverno ed un periodo con precipitazioni scarse in estate.

Stazione	gennaio	febbraio	marzo	aprile	maggio	giugno	luglio	agosto	settembre	ottobre	novembre	dicembre
BIDIGHINZU	11.6	12.2	15.4	17.9	23.7	29.0	33.1	32.4	27.2	22.2	16.3	12.7
BUDONI (C.RA)	13.8	14.3	16.4	18.8	22.9	27.1	30.2	30.3	26.8	23.0	17.9	14.9
BUSACHI	11.3	12.1	14.5	17.2	22.1	26.5	31.0	31.0	26.0	21.7	16.3	12.4
CASTIADAS	14.4	14.7	16.9	19.5	24.4	29.6	33.3	33.4	28.7	24.5	19.1	15.3
CORONGIU	13.8	13.8	16.5	19.4	23.8	28.9	32.4	32.2	27.8	23.6	18.5	14.8
DECIMOMANNU (VIVAIO)	14.6	15.4	18.3	20.8	25.8	30.9	34.7	34.3	29.7	25.2	19.8	16.0
DESULO	8.7	9.5	12.3	14.2	19.0	23.6	27.4	27.0	22.8	18.3	12.5	9.5
FERTILIA	14.1	14.9	17.2	19.8	24.7	28.4	31.7	32.0	28.2	24.3	18.6	15.1
FONNI	8.9	9.7	12.5	15.3	21.2	26.0	30.6	30.1	24.2	19.6	13.2	9.6
GONNOSFANADIGA	13.3	14.0	17.0	20.1	25.8	30.6	34.6	34.6	29.3	24.7	18.4	14.2
IS CANNONERIS	8.1	8.5	10.8	13.3	18.3	23.4	27.1	26.8	21.8	17.5	12.2	9.2
DANOOLI	11.0	11.2	10.0	10.1	20.0	20.0	20.1	20.1	24.4	20.0	10.0	12.4
MACOMER	10.9	11.6	14.4	17.0	21.8	26.4	30.1	29.8	25.0	20.7	15.0	11.7

FIGURA 15 – MEDIA MENSILE DELLE TEMPERATURE MASSIME CALCOLATE SUL TRENTENNIO 1981-2010 (FONTE: ARPAS, ISPRA 2020)

Stazione	gennaio	febbraio	marzo	aprile	maggio	giugno	luglio	agosto	settembre	ottobre	novembre	dicembre
BIDIGHINZU	3.1	3.2	5.0	7.0	10.5	13.2	15.5	15.9	13.1	10.6	7.1	4.4
BUDONI (C.RA)	6.4	6.2	7.9	9.7	13.2	17.2	20.2	20.7	18.0	14.7	10.8	7.9
BUSACHI	5.7	5.6	7.5	9.6	12.7	15.6	18.5	18.8	16.3	13.9	10.0	6.9
CASTIADAS	5.5	5.2	6.6	8.5	11.6	15.3	18.4	19.1	16.7	13.8	9.8	7.0
COL.PENALE SARCIDANO	1.2	1.3	2.7	4.8	8.3	11.6	14.5	14.9	12.1	9.2	5.3	2.5
CORONGIU	6.2	6.0	7.3	9.3	12.8	16.7	19.8	20.1	17.1	14.2	10.4	7.3
DECIMOMANNU (VIVAIO)	4.0	4.2	6.4	8.0	11.7	15.4	19.3	19.4	16.1	12.7	8.6	5.7
DESULO	-1.7	-1.5	0.3	2.1	6.2	9.5	12.7	13.0	9.6	6.6	2.6	-0.3
FERTILIA	6.9	7.0	8.4	10.4	13.5	16.5	19.0	19.3	16.9	14.5	10.9	8.2
FONNI	2.1	2.3	4.0	5.7	9.8	12.9	16.2	16.5	12.7	9.8	5.8	3.1
GONNOSFANADIGA	5.0	4.8	6.5	8.5	12.2	15.8	19.4	19.7	16.7	13.6	9.3	6.3
IS CANNONERIS	3.8	3.7	5.3	7.1	11.2	15.1	18.6	18.7	15.1	12.1	8.1	5.1
MACOMER	5.2	5.2	6.6	8.4	12.2	15.5	18.5	18.9	15.7	13.1	9.1	6.3

FIGURA 16 – MEDIA MENSILE DELLE TEMPERATURE MINIME CALCOLATE SUL TRENTENNIO 1981-2010 (FONTE: ARPAS, ISPRA 2020)

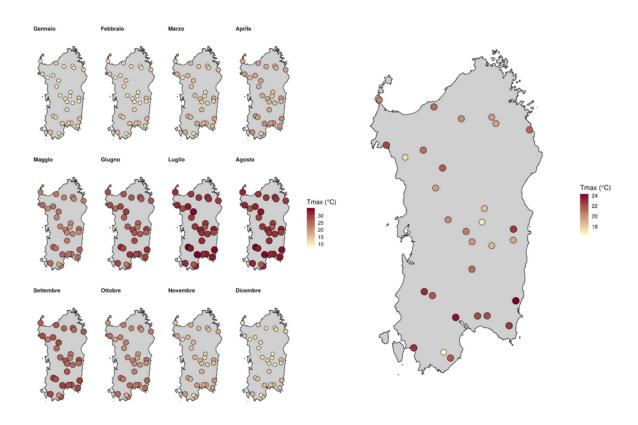


FIGURA 17 – MEDIE MENSILI (A SX) E ANNUALI (A DX) DELLE TEMPERATURE MASSIME PER IL TRENTENNIO 1981-2010 (FONTE: ARPAS, ISPRA 2020)

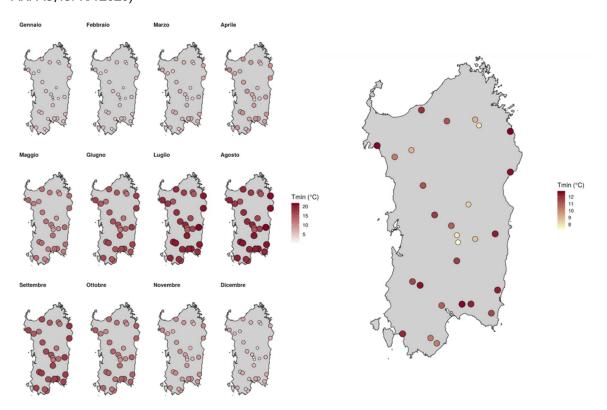


Figura 18 - Medie Mensili (a SX) e annuali (a DX) delle temperature minime per il trentennio 1981-2010 (fonte: ARPAS, ISPRA 2020)

2.3.2.2 PIANO DI ASSETTO IDROGEOLOGICO (P.A.I.) E PIANO DI GESTIONE DEL RISCHIO ALLUVIONI

Il "P.A.I." Piano per l'Assetto Idrogeologico è lo strumento di pianificazione territoriale mediante il quale vengono pianificate e programmate le azioni, gli interventi e le norme d'uso riguardanti la difesa dal rischio idrogeologico nel territorio della Regione Sardegna. Il Piano Stralcio per l'Assetto Idrogeologico è stato redatto dalla Regione Sardegna, ai sensi dell'art. 17, comma 6 ter, della L. 183/89, dell'art. 1, comma 1, del D.L. 180/98, convertito con modificazioni dalla L. 267/98, e dell'art. 1 bis del D.L. 279/2000, convertito con modificazioni dalla L. 365/2000. Con il Piano per l'Assetto Idrogeologico viene avviata, nella Regione Sardegna, la pianificazione di bacino, intesa come lo strumento fondamentale della politica di assetto territoriale delineata dalla legge 183/89, della quale ne costituisce il primo stralcio tematico e funzionale. Il Piano Stralcio per l'Assetto Idrogeologico (di seguito denominato Piano Stralcio o Piano o P.A.I.) ha valore di Piano Territoriale di Settore ed è lo strumento conoscitivo, normativo e tecnico-operativo mediante il quale sono pianificate e programmate le azioni, gli interventi e le norme d'uso riguardanti la difesa dal rischio idrogeologico del territorio Sardegna.

Il P.A.I. ha sostanzialmente tre funzioni:

- la funzione conoscitiva, che comprende lo studio dell'ambiente fisico e del sistema antropico, nonché della ricognizione delle previsioni degli strumenti urbanistici e dei vincoli idrogeologici e paesaggistici;
- la funzione normativa e prescrittiva, destinata alle attività connesse alla tutela del territorio e
 delle acque fino alla valutazione della pericolosità e del rischio idrogeologico e alla conseguente
 attività di vincolo in regime sia straordinario che ordinario;
- la funzione programmatica, che fornisce le possibili metodologie d'intervento finalizzate alla mitigazione del rischio, determina l'impegno finanziario occorrente e la distribuzione temporale degli interventi.

L'idrografia superficiale dell'area in esame è caratterizzata da corsi d'acqua che hanno un bacino idrografico assai più esteso dell'areale di studio, identificato come bacino del Tirso (RAS, PTA - PIANO STRALCIO DI SETTORE DEL PIANO DI BACINO-LINEE GENERALI, 2000) che comprende i bacini imbriferi dell'omonimo fiume Tirso, del Taloro e del Massari.

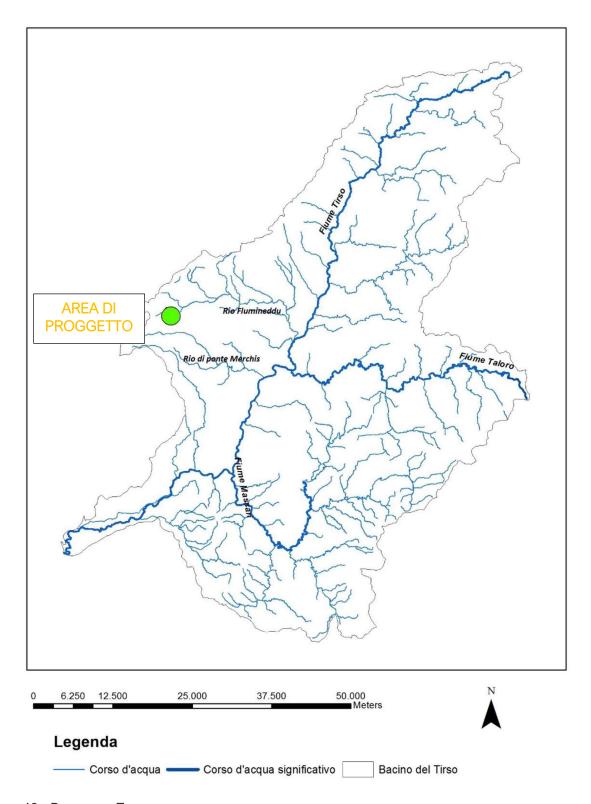


FIGURA 19 - BACINO DEL TIRSO

L'area di progetto è ubicata nella porzione più occidentale del bacino ove la rete di drenaggio assume un aspetto sub-dendritico, regimata dai due affluenti del Tirso, denominati Rio Flumineddu e

del Rio Ponte Merchis: essi scorrono sul plateau basaltico in direzione est, sino ad immettersi in sponda destra nel Tirso.

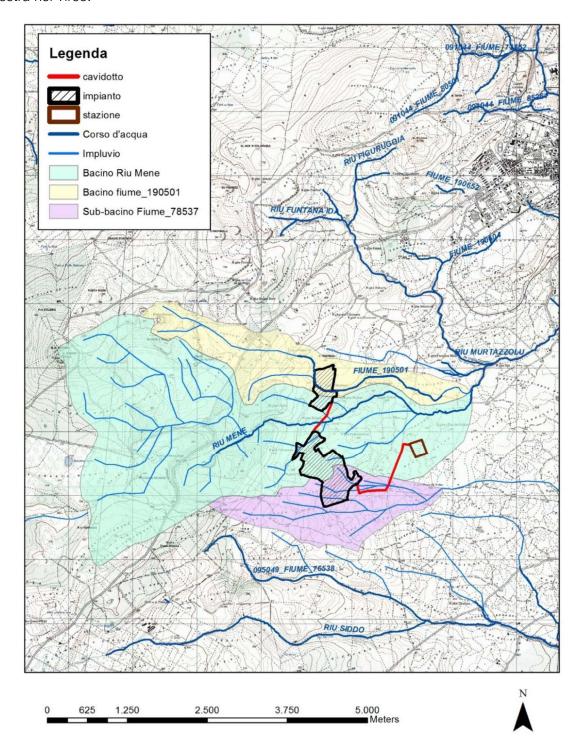


FIGURA 20 – SUDDIVISIONE DELL'AREA DI INDAGINE NEI BACINI IMBRIFERI DI RIFERIMENTO

2.3.3 Analisi del rischio idrogeologico

Il rischio idrogeologico è una grandezza che mette in relazione la pericolosità, intesa come caratteristica di un territorio che lo rende vulnerabile a fenomeni di dissesto (frane, alluvioni, ecc.) e la presenza sul territorio di beni in termine di vite umane e di insediamenti urbani, industriali, infrastrutture, beni storici, artistici, ambientali, ecc. esso è correlato a:

- **Pericolosità** (P) ovvero alla probabilità di accadimento dell'evento calamitoso entro un definito arco temporale, con determinate caratteristiche di magnitudo (intensità);
- Vulnerabilità (V), espressa in una scala variabile da zero (nessun danno) a uno (distruzione totale), intesa come grado di perdita atteso, per un certo elemento, in funzione dell'intensità dell'evento calamitoso considerato;
- Valore esposto (E) o esposizione dell'elemento a rischio, espresso dal numero di presenze umane e/o dal valore delle risorse naturali ed economiche che sono esposte ad un determinato pericolo.

In termini analitici, il rischio idrogeologico può essere espresso attraverso una matrice funzione dei tre fattori suddetti, ovvero: R = R (P, V, E).

Con riferimento al DPCM 29 settembre 1998, è possibile definire quattro classi di rischio, secondo la classificazione di seguito riportata:

- Moderato R1, per il quale i danni sociali, economici e al patrimonio ambientale sono marginali;
- Medio R2, per il quale sono possibili danni minori agli edifici, alle infrastrutture e al patrimonio ambientale che non pregiudicano l'incolumità del personale, l'agibilità degli edifici e la funzionalità delle attività economiche;
- Elevato R3, per il quale sono possibili problemi per l'incolumità delle persone, danni funzionali agli edifici e alle infrastrutture con conseguente inagibilità degli stessi, l'interruzione di funzionalità delle attività socioeconomiche e danni rilevanti al patrimonio ambientale;
- Molto elevato R4, per il quale sono possibili la perdita di vite umane e lesioni gravi alle persone, danni gravi agli edifici, alle infrastrutture ed al patrimonio ambientale e la distruzione di attività socioeconomiche.

Nella relazione delle Norme Tecniche di Attuazione del PAI, aggiornata con Decreto del Presidente della Regione Sardegna n.35 del 21/03/2008, la Pericolosità Idraulica viene trattata al capo II artt. 27, 28, 29, 30 e vengono individuati 4 livelli di pericolosità:

- Hi4 Molto elevata
- Hi3 Elevata
- Hi2 Media
- Hi1 Moderata

Il Capo III delle NTA riporta, invece, la disciplina che regola le aree di pericolosità da frana agli artt. 31, 32, 33, 34 che individuano 4 livelli di pericolosità da frana:

- Hg4 Molto elevata
- Hg3 Elevata
- Hg2 Media
- Hg1 Moderata

Al Capo I art. 23 sono invece riportate le "Prescrizioni generali per gli interventi ammessi nelle aree di pericolosità idrogeologica"

Lo studio geomorfologico di dettaglio è stato integrato dall'analisi delle informazioni fornite dagli strumenti di pianificazione noti. Ovvero:

Piano Stralcio per l'Assetto Idrogeologico (P.A.I.), redatto ai sensi della legge n. 183/1989 e del decreto-legge n. 180/1998, è stato approvato con decreto del Presidente della Regione Sardegna n. 67 del 10/07/2006.

Piano Stralcio Fasce fluviali, DELIBERAZIONE nº 1 del 20.06.2013

Studio di Compatibilità idraulica e geologica-geotecnica relativo alla proposta di variante del Piano di Assetto Idrogeologico del territorio comunale di Macomer (art. 4, 8 Commi 2 e dell' Art. 26 delle NTA del PAI), approvato in via definitiva con deliberazione di Consiglio Comunale n°76 del 16-11-2016.

Secondo quanto riportato nella figura che segue, l'area d'impianto non è classificata come aree a pericolosità e rischio idraulico. Una piccola porzione del cavidotto che collega le due parti dell'impianto interseca una fascia a pericolosità idraulica molto elevata (Hi4) del Riu Mene. In tale area si prevede l'attraversamento in TOC del tratto interessato.

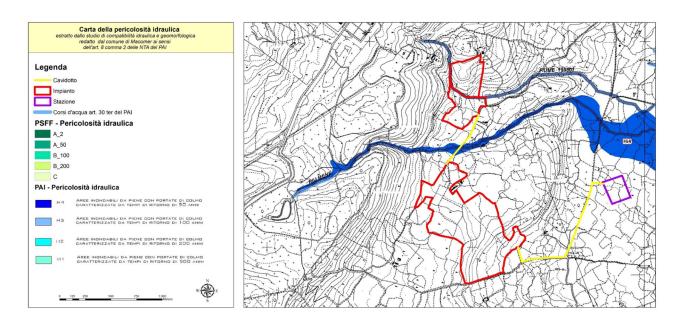


FIGURA 21 – INQUADRAMENTO AREA DI PROGETTO SU CARTA DELLA PERICOLOSITÀ IDRAULICA – STRALCIO DELL'ELABORATO CARTOGRAFICO MACOMER4-IAT10

Dalla carta che rappresenta la pericolosità geomorfologica, invece, si osserva che buona parte dell'impianto ubicato nel versante sud del Monte Mudregu (570 m) ricade in area a pericolosità geologica-geotecnica moderata (Hg1) e media (Hg2).

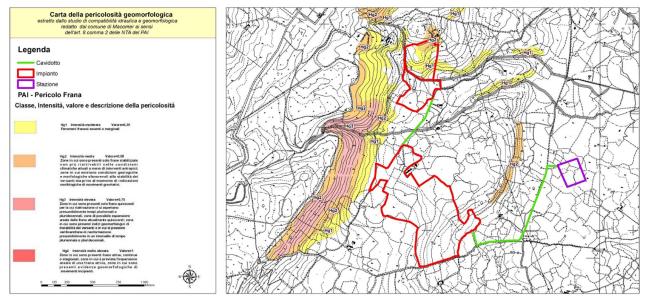


FIGURA 22 – INQUADRAMENTO AREA DI PROGETTO SU CARTA DELLA PERICOLOSITÀ DA FRANA STRALCIO DELL'ELABORATO CARTOGRAFICO MACOMER4-IAT10

Il perimetro Hg1 identifica delle aree in cui i fenomeni franosi sono assenti o marginali.

Le aree a media pericolosità Hg2 identificano zone in cui sono presenti solo frane stabilizzate, non più riattivabili nelle condizioni climatiche attuali a meno degli interventi antropici e zone in cui

esistono condizioni geologiche e morfologiche sfavorevoli alla stabilità dei versanti, ma prive al momento di indicazioni morfologiche di movimenti gravitativi.

Ciò detto, come facilmente desumibile dal layout planimetrico dell'impianto, nessuna delle aree a rischio frana (seppur medio e moderato) saranno interessate dall'impianto, ma quelle porzioni dei terreni contrattualizzati saranno utilizzati come aree di compensazione e rinaturalizzazione.

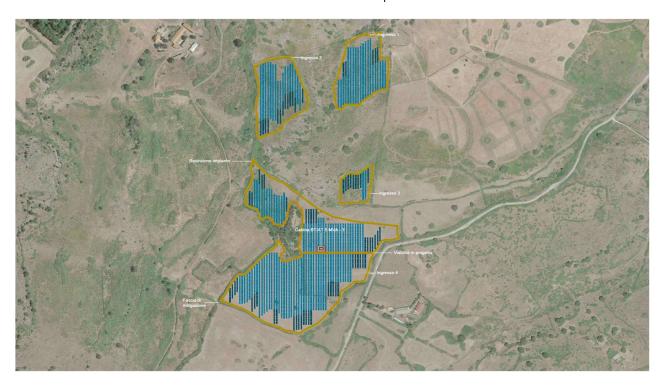


FIGURA 23 - LAYOUT PLANIMETRICO DI PROGETTO DELL'AREA A NORD - ESTRATTO DALL'ELABORATO CARTOGRAFICO MACOMER4-PDT05

Il vincolo idrogeologico è disciplinato dalla L.R. 06/04/1996 n.16, che all'art. 9 precisa che "il rilascio delle autorizzazioni e/o dei nulla-osta concernenti i terreni sottoposti a vincolo per scopi idrogeologici previsti dal regio decreto 30 dicembre 1923, n. 3267, e dal regolamento approvato con regio decreto 16 maggio 1926, n. 1126, nonché dall'articolo 23 della legge regionale 10 agosto 1985, n. 37, rientra nella competenza degli Ispettorati ripartimentali delle foreste". Il Regio Decreto-legge n. 3267/1923 "Riordinamento e riforma in materia di boschi e terreni montani", sottopone a "vincolo per scopi idrogeologici" i terreni di qualsiasi natura e destinazione che, per effetto di forme di utilizzazione contrastanti con le norme di cui agli artt. 7, 8 e 9 (dissodamenti, cambiamenti di coltura ed esercizio del pascolo), possono, con danno pubblico, subire denudazioni, perdere la stabilità o turbare il regime delle acque" (art. 1).

Lo scopo principale del vincolo idrogeologico, dunque è quello di preservare l'ambiente fisico e quindi di garantire che tutti gli interventi che vanno ad interagire con il territorio non compromettano la

stabilità dello stesso, né inneschino fenomeni erosivi, ecc., con possibilità di danno pubblico, specialmente nelle aree collinari e montane. Il vincolo idrogeologico, pertanto, concerne terreni di qualunque natura e destinazione, ma è localizzato principalmente nelle zone montane e collinari e può riguardare aree boschive o non boschive; inoltre, non preclude la possibilità di intervenire sul territorio, ma subordina gli interventi in queste aree all'ottenimento di una specifica autorizzazione (articolo 7 del R.D.L. n. 3267/1923).

L'installazione dell'impianto agrovoltaico in progetto non provoca denudazione del suolo, innesco di fenomeni erosivi, perdita di stabilità, turbamento del regime delle acque. Pertanto, in relazione a quanto sopra specificato, si ritiene che il progetto sia compatibile con la le prescrizioni del vincolo stesso sia nella fase di realizzazione che nella fase di esercizio.

Con l'emanazione della Direttiva Alluvioni (Direttiva Comunitaria 2007/60/CE) è stato individuato nel Piano di Gestione del Rischio Alluvioni, redatto ai sensi del d.lgs. 49/10, lo strumento di riferimento per proseguire, aggiornare e potenziare l'azione intrapresa con il P.A.I., dando maggiore peso e rilievo all'attuazione degli interventi non strutturali e di prevenzione. Il Piano è stato approvato con DPCM 7 marzo 2019.

In relazione alla tipologia di intervento previsto, e in funzione dell'analisi effettuata, il progetto in esame:

- risulta esterno alle perimetrazioni di rischio e pericolosità idraulica del PAI;
- non risulta in contrasto con la disciplina in materia di rischio geomorfologico di PAI (Piano di Gestione del Rischio Alluvioni, per la parte geomorfologica) in quanto l'intervento risulta completamente esterno alla perimetrazione di aree a pericolosità e rischio geomorfologico;
- non ricadendo all'interno di aree soggette a vincolo idrogeologico, l'intervento è tale da non determinare condizioni di instabilità e da non modificare negativamente le condizioni ed i processi geomorfologici nell'area, sia in fase di cantiere che di esercizio.

2.3.4 Disciplina regionale sugli scarichi

INQUADRAMENTO NORMATIVO

La Disciplina degli scarichi di acque reflue ha come finalità la regolamentazione degli scarichi nel rispetto delle disposizioni del d.Lgs. 152/06 e per il raggiungimento degli obiettivi di qualità individuati nel Piano di Tutela delle Acque della Regione Sardegna (PTA) approvato con la Deliberazione della Giunta Regionale 4 aprile 2006, n. 14/16, di cui all'articolo 44 del d.Lgs. 11 maggio 1999, n. 152, come sostituito dall'art. 121 del d.Lgs. 152/06 e dall'art. 2 della L.R. del 19 luglio 2000, n. 14.

La direttiva contiene le norme riguardanti le materie trattate al Titolo III delle Norme Tecniche di Attuazione del PTA in merito alla tutela qualitativa delle risorse idriche. La disciplina degli scarichi, affrontata all'art. 5, prevede che l'autorizzazione a qualsiasi scarico sia preventivamente autorizzata. Il tipo di autorizzazione dipende dallo scarico ed è regolamentata dall'art. 8 e completata da ulteriori nozioni tecniche predisposte dall'autorità competente.

La tutela qualitativa delle risorse idriche contempla una serie di divieti di scarico di reflui in determinate condizioni. Non sono ammessi nuovi scarichi a mare ad eccezione di quelli derivanti da scarico di acqua utilizzata per allevamenti ittici, per processi di raffreddamento, per piscine e impianti di dissalazione e per la produzione di acqua potabile. Sono possibili deroghe in casi eccezionali, da concordare con l'autorità competente.

L'impianto agrovoltaico di Macomer 4, per la tipologia di acque reflue prodotte, può collocarsi nella tipologia di scarichi assimilabili alle acque reflue domestiche, dal momento che produce emissioni derivanti da servizi igienici e acque meteoriche di dilavamento. Per questa tipologia di scarichi (aventi tra 51 e 500 a.e.) si assumono i valori limite di emissione riportati nella tabella 1 dell'Allegato 2. Per gli scarichi superiori a 30 mc/g o derivanti da insediamenti al di sopra dei 100 a.e. si ha l'obbligo di installazione di uno strumento di misurazione delle portate o dei volumi scaricati da registrare quotidianamente nel Quaderno di impianto dei volumi scaricati.

L'installazione dei pannelli fotovoltaici per il progetto di Macomer 4 non comporta emissioni di tipo urbano o industriale. Si devono considerare unicamente gli scarichi assimilabili alle acque reflue domestiche dovuti alla presenza dei servizi igienici per le strutture di servizio in fase di cantiere. Gli scarichi afferenti questa categoria, prodotti in una fase di cantiere limitata nel tempo, potrebbero causare l'insorgenza di inquinanti chimici e/o microbiologici (es. coliformi e streptococchi fecali da servizi WC). In ogni caso la quantità esigua degli scarichi prodotti e la limitata attività di cantiere

verrebbero a creare emissioni di scarsa rilevanza. All'uopo, verrà previsto un idoneo trattamento delle acque reflue con il loro raccoglimento in una vasca a tenuta con successivo smaltimento.

2.3.5 Piano regionale di gestione dei rifiuti (Allegato alla Delib.G.R. n. 1/21 del 8.1.2021)

INQUADRAMENTO NORMATIVO

I capisaldi su cui si fonda la normativa del settore rifiuti sono costituiti dalle seguenti norme:

- la Direttiva del Parlamento Europeo e del Consiglio n. 2008/98/CE del 19 novembre 2008 relativa a rifiuti e sue successive modifiche apportate dal "Pacchetto sull'Economia Circolare";
- il d.Lgs. 3 aprile 2006, n. 152 "Norme in materia ambientale" e successive modifiche e integrazioni.

La normativa comunitaria di riferimento in materia di gestione dei rifiuti è la direttiva del Parlamento Europeo e del Consiglio UE n. 2008/98/CE del 19 novembre 2008. L'obiettivo della normativa consiste nella riduzione del prelievo di risorse naturali con l'aumento dell'efficienza nell'uso di risorse. Il punto fondamentale della normativa comunitaria sui rifiuti è riportato all'art. 4 della direttiva 2008/98/CE e ripreso dalla direttiva 2018/851/UE, il quale presenta la gerarchia dei rifiuti, definita quale ordine di priorità della normativa e della politica in materia di prevenzione e gestione dei rifiuti. Gli stati membri sono tenuti ad adottare misure volte ad incoraggiare le opzioni che danno il miglior risultato ambientale complessivo. Altre direttive europee cui fare riferimento sono:

- la Direttiva 2018/850/UE di modifica della direttiva discariche (1999/31/CE);
- la Direttiva 2018/852/UE di modifica della direttiva imballaggi (94/62/CE);
- la Direttiva 2018/849/UE di modifica delle direttive sui veicoli fuori uso (2000/53/CE), su pile e accumulatori (2006/66/CE) e sui rifiuti di apparecchiature elettriche ed elettroniche

 RAEE (2012/19/UE).

A partire dal 1° giugno 2015 è stata resa obbligatoria l'applicazione in tutti gli Stati membri della decisione 2014/955/UE, che ha introdotto il nuovo Elenco Europeo dei Rifiuti (EER) e del regolamento UE 1357/2014, che ha sostituito l'allegato III della direttiva 2008/98/CE e che ha rinnovato le regole per l'attribuzione delle caratteristiche di pericolo ai rifiuti.

La normativa statale in materia di gestione dei rifiuti è incentrata sulla parte IV del d.Lgs. 3 aprile 2006, n. 152 e riprende i criteri di priorità da adottarsi per la corretta gestione dei rifiuti delle normative a livello europeo, ovvero: prevenzione; preparazione per il riutilizzo; riciclaggio; recupero di altro tipo (es. di energia); smaltimento. L'assetto delle competenze è definito dallo stesso decreto, che scandisce la pianificazione su più livelli istituzionali e promuove una gestione integrata dei rifiuti. Allo Stato vengono riservate le funzioni di coordinamento e di indirizzo, mentre la Regione ha competenze più ampie riguardanti la predisposizione, l'adozione e l'aggiornamento del Piano regionale di gestione dei rifiuti; l'approvazione dei progetti di nuovi impianti per la gestione dei rifiuti anche pericolosi; l'autorizzazione all'esercizio di operazioni di smaltimento e recupero dei rifiuti; la definizione dei criteri per l'individuazione delle aree non idonee alla localizzazione degli impianti di smaltimento e recupero dei luoghi idonei allo smaltimento. Le Province eseguono operazioni di controllo e localizzazione degli impianti e, infine, ai Comuni sono attribuite alcune mansioni sulla gestione dei rifiuti a scala locale.

PIANO REGIONALE DI GESTIONE DEI RIFIUTI

Il Piano regionale di gestione dei rifiuti accoglie gli obiettivi nazionali basandosi sull'analisi delle statistiche dei propri rifiuti e ha la possibilità di stabilire ulteriori obiettivi di riduzione tenendo conto che la prevenzione coinvolge le fasi della produzione. Le misure che vengono indicate dal piano sono inerenti a una serie di temi:

- Produzione sostenibile. Misure con l'obiettivo di apportare cambiamenti nei modelli di produzione e nella progettazione dei prodotti per ridurre le emissioni;
- Green Public Procurement. Introduzione nelle procedure di acquisto e nei bandi pubblici di criteri di selezione e valutazione di carattere ambientale;
- Riutilizzo;
- Informazione, sensibilizzazione ed educazione;
- Strumenti economici, fiscali e di regolamentazione. I principali strumenti indicati come urgenti riguardano: il principio di responsabilità estesa del produttore da applicare anche ad altri flussi di rifiuti rispetto a quelli attualmente previsti e da applicare anche alla prevenzione della formazione del rifiuto; la tariffazione puntuale per il conferimento dei rifiuti urbani, in funzione dei volumi o delle quantità conferite; sistemi fiscali o di finanziamento premiali per processi produttivi ambientalmente più efficienti e a minor produzione di rifiuto; una revisione dei meccanismi di tassazione dei conferimenti in

discarica e infine l'aumento della quota del tributo che le Regioni devono destinare alla promozione di misure di prevenzione dei rifiuti;

Promozione della ricerca.

La realizzazione dell'impianto agrovoltaico sottende la produzione di rifiuti, legati soprattutto allo smantellamento del cantiere e agli imballaggi. La normativa di riferimento dei rifiuti di imballaggio è il d.Lgs. 152/2006 che recepisce la Direttiva del Parlamento Europeo e Consiglio UE 94/62/CE relativa agli imballaggi e ai rifiuti di imballaggio. Secondo quanto riportato nell'art. 219, l'attività di gestione degli imballaggi è basata sui principi generali della prevenzione, il riutilizzo, laddove possibile e della riduzione del flusso di rifiuti. Viene promossa anche la ricerca nel campo del riciclaggio per gli imballaggi non riciclabili o nuove forme di recupero, oltre all'informazione degli utenti degli imballaggi e in particolare ai consumatori con incentivazione alla restituzione degli imballaggi usati.

Per il raggiungimento degli obiettivi globali di recupero e di riciclaggio previsti dalle direttive comunitarie e per garantire il necessario coordinamento dell'attività di raccolta differenziata, i produttori e gli utilizzatori degli imballaggi partecipano al Consorzio Nazionale Imballaggi (CONAI) che ha il compito di elaborare e attuare un programma generale di prevenzione e di gestione degli imballaggi e dei rifiuti di imballaggio. Il CONAI si configura perciò come il principale attore di un processo che, anche in base ai principi generali di responsabilizzazione e cooperazione, vede coinvolti i produttori, i distributori e i consumatori in quanto soggetti interessati alla gestione dei prodotti e dei rifiuti.

L'area di progetto di Macomer 4 è interessata dalle regolamentazioni del presente Piano in quanto a produzione di rifiuti in fase di cantiere. Tenuto conto dell'alto grado di prefabbricazione dei componenti utilizzati, si prevede saranno prodotti esigui quantitativi di rifiuti. Costituiscono un rifiuto principalmente gli imballaggi, da considerarsi non pericolosi. Al fine di conseguire una corretta gestione dei rifiuti, la Società Proponente provvederà alla predisposizione di un apposito Piano di Gestione dei Rifiuti in fase esecutiva. All'interno del Piano saranno definiti gli aspetti inerenti alla gestione dei rifiuti e in particolare saranno individuati:

- i potenziali rifiuti prodotti in fase di cantiere;
- la caratterizzazione dei rifiuti, con attribuzione del codice CER;
- le aree adeguate al deposito temporaneo, parallelamente alla predisposizione di una apposita segnaletica ed etichettatura per la corretta identificazione dei contenitori di raccolta delle varie tipologie di codici CER stoccati;
- l'identificazione per ciascun codice CER del trasportatore e del destinatario finale.

Le macrocategorie dei codici CER che si prevede saranno assegnati ai rifiuti potenziali dell'impianto riguardano le categorie espresse in tabella.

Codice		Tipologia
15	15 01 01 15 01 02	Imballaggi (compresi i rifiuti urbani di imballaggio oggetto di raccolta differenziata)
16	16 02 14	Rifiuti non specificati altrimenti nell'elenco (materiali del pannello)
17	17 01 17 02 17 04 01 17 04 02 17 04 04 17 04 05	Rifiuti dalle attività di costruzione e demolizione (compreso il terreno prelevato da siti contaminati)

Per quanto riguarda i residui delle potature, si prevede una trinciatura ed il reinterro in loco. Non si prevede di conseguenza lo smaltimento di questi residui.

Sarà effettuata la raccolta differenziata per lo smaltimento dei rifiuti prodotti in fase di cantiere. Il deposito temporaneo di rifiuti presso il cantiere (inteso come raggruppamento dei rifiuti effettuato, prima della raccolta, nel luogo in cui gli stessi sono prodotti) dovrà essere gestito in osservanza dell'art. 183, lettera m, del d.Lgs. 152/2006 e s.m.i., nel rispetto delle seguenti condizioni stabilite dalla normativa:

- i rifiuti depositati non devono contenere policlorodibenzodiossine, policlorodibenzofurani, policlorodibenzofenoli in quantità superiore a 2,5 parti per milione (ppm), né policlorobifenile e policlorotrifenili in quantità superiore a 25 parti per milione (ppm);
- i rifiuti devono essere raccolti ed avviati alle operazioni di recupero o di smaltimento secondo una delle seguenti modalità alternative, a scelta del produttore: con cadenza almeno trimestrale, dipendentemente dalle quantità in deposito; quando il quantitativo di rifiuti in deposito raggiunga complessivamente i 10 metri cubi nel caso di rifiuti pericolosi o i 20 metri cubi nel caso di rifiuti non pericolosi. In ogni caso, allorché il quantitativo di rifiuti pericolosi non superi i 10 metri cubi l'anno e il quantitativo di rifiuti non pericolosi non superi i 20 metri cubi l'anno, il deposito temporaneo non può avere durata superiore ad un anno.

Nel rispetto della normativa vigente i rifiuti non pericolosi prodotti nel cantiere saranno prioritariamente avviati a recupero. In quanto la normativa vigente in materia di rifiuti promuove e incentiva, a seconda dei casi, il recupero dei rifiuti attraverso un loro:

- riutilizzo (ovvero ritorno del materiale nel ciclo produttivo della stessa azienda produttrice o di aziende che operano nello stesso settore);
- riciclaggio (ovvero avvio in un ciclo produttivo diverso ed esterno all'azienda produttrice);
- altre forme di recupero (per ottenere materia prima);
- recupero energetico (ovvero utilizzo come combustibile per produrre energia).

I materiali di risulta, opportunamente selezionati, saranno riutilizzati per quanto possibile nell'ambito del cantiere per formazione di rilevati, riempimenti o altro. Il rimanente materiale di risulta prodotto dal cantiere e non utilizzato sarà inviato a smaltimento o recupero presso apposite ditte autorizzate. Per maggiori dettagli si rimanda al "Piano preliminare di utilizzo in sito delle terre e rocce da scavo escluse dalla disciplina dei rifiuti" redatto ai sensi del D.P.R. 120/2017 e allegato alla documentazione di Progetto dell'impianto agrovoltaico presentato contestualmente al presente SIA.

PRODUZIONE DI RIFIUTI FASE DI ESERCIZIO

La produzione di rifiuti nella fase di esercizio deriva esclusivamente da attività di manutenzione programmata e straordinaria dell'impianto. Per quanto concerne sfalci e potature generati dalle attività manutentive della fascia arborea, questi saranno gestiti in accordo con la normativa vigente. Le tipologie di rifiuti derivanti dalle attività di manutenzione saranno direttamente gestite dalla ditta fornitrice del servizio, che si configura come "produttore" del rifiuto, con i relativi obblighi/responsabilità derivanti dalla normativa di settore. La società proponente effettuerà una stretta attività di verifica e controllo che l'appaltatore operi nel pieno rispetto della normativa vigente. Per quanto concerne i rifiuti la cui produzione è in capo alla società proponente, questi saranno gestiti nel rispetto della normativa vigente. Sulla base delle considerazioni sopra esposte si ritiene che il progetto sia coerente e compatibile con gli obiettivi previsti dal piano regionale.

2.3.6 Piano regionale Bonifica Siti Inquinati

INQUADRAMENTO NORMATIVO

La prima formulazione di una legislazione specifica in tema di bonifica di siti contaminati viene introdotta nell'ordinamento italiano con il d.Lgs. 5 febbraio 1997, n. 22 all'art. 17, a seguito del quale una più dettagliata disciplina fu emanata con la norma attuativa di cui al D.M. 25 ottobre 1999, n. 471.

Attraverso il d.Lgs. 3 aprile 2006, n. 152 e ss.mm.ii. (noto come "Codice ambientale"), in base alla Legge delega n. 308/2004, il Parlamento approvò nella Parte quarta dedicata alle Norme in materia di gestione dei rifiuti e di bonifica dei siti inquinati, una nuova disciplina sul tema della bonifica dei siti inquinati. Il Codice ambientale recepisce e attua le disposizioni della direttiva 2004/35/CE.

A livello Nazionale il d.Lgs. n. 152/2006 disciplina il tema in analisi al Titolo V "Bonifica di siti contaminati" della Parte quarta, in sostituzione della normativa previgente dettata dall'art. 17 del d.Lgs. n. 22/1997 e dai decreti attuativi derivati. Il Titolo V disciplina gli interventi di bonifica e ripristino ambientale dei siti contaminati e definisce procedure, criteri e modalità per lo svolgimento delle operazioni necessarie ai fini dell'eliminazione delle sorgenti dell'inquinamento e per la riduzione delle concentrazioni di sostanze inquinanti. La procedura prevista dal Titolo V per l'analisi di inquinamento di un sito prevede il confronto dei livelli di contaminazione delle matrici ambientali e nel caso si presentino concentrazioni soglia di contaminazione (CSC) o, nel caso peggiore, concentrazioni soglia di rischio (CSR), si attueranno interventi di messa in sicurezza e di bonifica o misure di riparazione e ripristino ambientale.

I piani per la bonifica delle aree inquinate, in richiamo all'art. 199 del d.Lgs. n. 152/06, devono prevedere: l'ordine di priorità degli interventi (stabilito su un criterio di valutazione ISPRA); l'individuazione dei siti da bonificare e le caratteristiche generali degli inquinamenti presenti; le modalità di intervento; la stima degli oneri finanziari e le modalità di smaltimento dei materiali da asportare. Il programma nazionale di bonifica è stato adottato con D.M. 18 settembre 2001, n. 468 (e s.m.i.).

IL PIANO DI BONIFICA DEI SITI INQUINATI DEL 2003 (PRB 2003)

Il piano di bonifica attualmente vigente risale al 2003; attualmente è in corso un aggiornamento. Il piano del 2003 venne elaborato a partire dallo studio promosso dal Ministero dell'Ambiente e affidato dalla Regione Sardegna alla Divisione Ambiente della Società Ansaldo Industria S.p.A. che lo ha sviluppato nel rispetto della previgente legislazione ex art. 17 del d.Lgs. n. 22/1997 e D.M. n. 471/99 e dei criteri di cui al Decreto del 16/05/1989 del Ministero dell'Ambiente.

Il PBR 2003 è stato predisposto dall'Amministrazione regionale, con la collaborazione delle Amministrazioni provinciali. L'aggiornamento del piano modifica contenuti e indirizzi con l'obiettivo di completare le attività avviate con la precedente pianificazione. Il Piano aderisce inoltre ai principi e alle norme comunitarie introdotte dalla strategia europea relativa ai rifiuti e ai siti contaminati oltre a realizzare interventi di bonifica, messa in sicurezza e ripristino ambientale.

Lo scopo principale del Piano Regionale per la bonifica delle aree inquinate è il risanamento ambientale di tutte le aree del territorio regionale interessate da fenomeni di inquinamento e la salvaguardia delle matrici/risorse naturali. Il Piano si occupa di delineare lo status dei siti contaminati sul territorio regionale, con strategie elaborate a medio e lungo termine e azioni atte al raggiungimento degli obiettivi a livello regionale. Il Piano si prefigge inoltre di sistematizzare e potenziare l'insieme dei processi di scambio di informazioni relative ad attività antropiche, fenomeni accidentali ed eventi con possibili effetti dannosi sulla salute e/o sull'ambiente, tra i soggetti interessati. Gli obiettivi di Piano sono espressi maggiormente in dettaglio e scanditi secondo una serie di punti nella strategia generale e le azioni regionali.

2.3.7 Normativa regionale parchi e riserve naturali

LEGGE QUADRO SULLE AREE PROTETTE

I principi per l'istituzione e la gestione delle aree protette regionali sono contenuti della L.R. n. 31 del 7 giugno 1989. I principi fondamentali per l'istituzione e la gestione delle aree naturali protette nazionali sono contenuti nella legge quadro n. 394 del 6 dicembre 1991.

La L.R. 7 giugno 1989, n. 31 "Norme per l'istituzione e la gestione dei parchi, delle riserve e dei monumenti naturali, nonché delle aree di particolare rilevanza naturalistica ed ambientale" viene approvata dal Consiglio Regionale. La Legge, in attuazione degli artt. 9 e 32 della Costituzione e nel rispetto degli accordi internazionali, detta principi fondamentali per l'istituzione e la gestione delle aree naturali protette al fine di garantire e di promuovere, in forma coordinata, la conservazione e la valorizzazione del patrimonio naturale del paese. La Legge opera, più nello specifico, ai fini della conservazione, del recupero e della promozione del patrimonio biologico, naturalistico ed ambientale del territorio della Sardegna e stabilisce il sistema nazionale delle aree di rilevanza naturalistica e ambientale. Il sistema regionale dei parchi, delle riserve e dei monumenti naturali costituisce il quadro di riferimento per gli interventi regionali e per gli atti di programmazione. In generale le finalità

perseguite attraverso l'istituzione dei parchi sono riferite alla tutela, al risanamento, al restauro e alla valorizzazione del patrimonio naturale e culturale.

Il patrimonio naturale comprende le formazioni fisiche, geologiche, geomorfologiche e biologiche con rilevante valore naturalistico e ambientale. Le aree protette, in particolare, sono sottoposte ad un regime di tutela e gestione orientato alla conservazione delle specie sia animali sia vegetali, di singolarità geologiche, di formazioni paleontologiche, di valori scenici e panoramici, di equilibri idraulici, idrogeologici e archeologici. Si prevedono inoltre metodi di gestione e di restauro ambientale volti alla salvaguardia di valori storico-culturali e paesaggistici, associati ad un'attività di promozione e di ricerca scientifica sul territorio.

La gestione dei parchi e delle riserve è affidata ai Comuni interessati, alle Comunità montane, alle Province e all'Azienda foreste demaniali della Regione sarda per quanto riguarda i terreni di sua proprietà, ovvero a consorzi fra gli enti. L'organismo di gestione attua le previsioni del piano attraverso un programma di interventi pluriennale, articolato in fasi annuali e predispone un regolamento di gestione del parco o della riserva.

Le aree naturali protette vengono classificate come segue:

- Parchi nazionali, di rilievo internazionale o nazionale per valori naturalistici, scientifici, estetici, culturali, educativi e ricreativi tali da richiedere l'intervento dello Stato ai fini della loro conservazione per le generazioni presenti e future. Le aree naturali protette nazionali vengono istituite secondo le modalità di cui all'art. 4, con decreto del Presidente della Repubblica, su proposta del Ministro dell'ambiente, sentita la Regione.
- Parchi naturali regionali, caratterizzati da un'omogeneità negli assetti naturali e paesaggistici o antropici, soprattutto per quanto riguarda le traduzioni culturali delle popolazioni locali.
- Riserve naturali, nelle quali si rilevano specie naturalisticamente rilevanti della flora e della fauna, per cui è prevista la conservazione delle risorse genetiche. Le riserve naturali possono essere statali o regionali. Le riserve naturali statali sono individuate secondo le modalità di cui all'art. 4 con decreto del Ministro dell'ambiente, sentita la Regione.

Le aree protette rientrano in un programma triennale disciplinato dalla Carta della Natura, che detta le linee fondamentali dell'assetto del territorio, adottate con decreto del Presidente del Consiglio dei ministri, su proposta del Ministro dell'ambiente, previa deliberazione del Comitato per le aree naturali protette. Il programma specifica i territori sottoposti a tutela con indicazioni precise sulla loro delimitazione, definisce il riparto delle disponibilità finanziarie per ciascuna area e per ciascun esercizio,

prevede i contributi in conto capitale per le attività nelle aree naturali protette e determina i criteri e gli indirizzi ai quali debbano uniformarsi le autorità preposte. Il programma stabilisce inoltre i criteri di massima per la modifica di aree naturali di interesse locale a scala urbana e suburbana.

In caso di necessità e urgenza si possono individuare nuove aree da proteggere tramite misure di salvaguardia, individuate dal Ministro dell'ambiente e le regioni ai sensi della legge quadro. Ai comuni ed alle province il cui territorio è compreso entro i confini di un parco nazionale vengono affidati alcuni interventi specifici descritti agli artt. 12 e 25. In tal modo si realizza una scala di priorità determinata dalla posizione reciproca delle aree protette e dei singoli Comuni.

Il progetto di Macomer 4 è stato proposto a partire da una ricognizione preventiva del territorio, per cui sono individuate le aree sottoposte a tutela. La localizzazione dell'impianto prescinde dalla presenza di siti di particolare interesse naturalistico o storico-culturale tanto da determinarne la realizzabilità. L'area di progetto è delineata in modo da non interferire con siti inclusi nelle aree naturali protette e pertanto, si può ritenere compatibile sul piano ambientale.

2.3.8 Piano faunistico venatorio

Il piano faunistico-venatorio regionale, ancora in via di realizzazione, coordina i piani faunistico-venatori provinciali ed è finalizzato alla conservazione della fauna, nonché al conseguimento della densità ottimale delle popolazioni ed alla sua conservazione. Individua gli areali delle singole specie selvatiche, lo stato faunistico e vegetazionale degli habitat, verifica inoltre la dinamica delle popolazioni faunistiche, ripartisce il territorio secondo le diverse destinazioni e individua gli interventi volti al miglioramento della fauna e degli ambienti.

La Legge n. 157 dell'11 febbraio 1992, e ss.mm.ii. "Norme per la protezione della fauna selvatica omeoterma e per il prelievo venatorio", stabilisce che le Regioni debbano emanare norme relative alla gestione e alla tutela di tutte le specie della fauna selvatica in conformità a tale legge, alle convenzioni internazionali ed alle direttive comunitarie.

Il Piano viene recepito in conformità alla Legge n. 157/1992 e si traduce in uno strumento di pianificazione regionale attraverso cui la Regione Autonoma della Sardegna regolamenta e pianifica la protezione della fauna e l'attività venatoria nel proprio territorio.

Nel dettaglio i contenuti del Piano faunistico-venatorio regionale, specificati nell'art. 21 della L.R. 98/23, sono:

- l'individuazione dei comprensori faunistici omogenei;
- l'individuazione delle Oasi permanenti di protezione faunistica e cattura, delle Zone temporanee di ripopolamento e cattura, delle Zone pubbliche o private per l'allevamento della fauna, dei Centri privati di riproduzione di fauna selvatica, delle Zone di addestramento per cani, dei Territori da destinare alle Aziende faunistico venatorie, dei Territori da destinare alle Aziende Agri-turistico venatorie e l'individuazione degli Ambiti Territoriali di Caccia (A.T.C.).
- l'indicazione della densità venatoria programmata relativa ad ogni A.T.C. e dell'indice massimo delle presenze compatibili per le forme speciali di caccia;
- l'indicazione della quota di partecipazione che può essere richiesta ai cacciatori a copertura delle spese di gestione degli A.T.C.;
- le priorità, i parametri ed i criteri per la ripartizione degli introiti derivanti dalle tasse di concessione di cui all'art. 87 L.R. 23/98;
- la ripartizione delle risorse per studi, ricerche e programmi di educazione, informazione e formazione tecnica degli operatori incaricati della gestione e della vigilanza.

Il Piano Faunistico Provinciale di Nuoro attualmente pubblicato è relativo al periodo 2011-2015. Per l'analisi territoriale della Provincia di Nuoro sono state utilizzate informazioni desumibili dalla cartografia regionale di base, ovvero CTR 1:10.000, cartografia relativa all'orografia con risoluzione a 10 m, cartografia dell'uso del suolo aggiornata al 2008 (Corine Land Cover IV livello), mentre per quanto riguarda l'agricoltura e la zootecnia, i dati sono stati desunti dal 5° Censimento generale dell'agricoltura del 2000 realizzato dall'ISTAT. Anche per la valutazione della popolazione residente sono stati utilizzati dati forniti dall'ISTAT ed aggiornati al 1° gennaio 2008. Per la caratterizzazione faunistica della provincia sono state prese in considerazione le indagini faunistiche e le ricerche realizzate sul territorio provinciale e promosse sia dalla Regione Sardegna sia dall'Amministrazione Provinciale di Nuoro. Il Piano si è concretizzato con la proposta di istituzione di 18 Oasi di Protezione Faunistica e 30 Zone Temporanee di Ripopolamento e Cattura.

Il progetto Macomer 4 non interferisce con nessuna Oasi di Protezione Faunistica o Zona Temporanea di Ripopolamento e Cattura proposte nel Piano Faunistico Venatorio Regionale. La scelta di un impianto di tipo agrovoltaico, al contrario, favorisce l'accesso di specie animali, soprattutto di piccola taglia, e non interferisce negativamente con la presenza della fauna.

2.3.9 Piano regionale di previsione, prevenzione lotta attiva contro gli incendi boschivi

INQUADRAMENTO NORMATIVO

La legge quadro sugli incendi boschivi (n. 353 del 21 novembre 2000) affida alle Regioni la competenza in materia di previsione, prevenzione e lotta attiva agli incendi boschivi. Le disposizioni della legge considerano il patrimonio boschivo nazionale un bene insostituibile per la qualità della vita e ne impongono la conservazione e difesa dagli incendi. Le misure di previsione e prevenzione sono attuate grazie a frequenti analisi e rilievi territoriali, affiancati dal sistema informativo territoriale e il suo contenuto informativo in continuo aggiornamento.

L'art. 10 della Legge 353/2000 prevede, al comma 2, che i Comuni provvedano, entro novanta giorni dalla data di approvazione del Piano Regionale, a censire i soprassuoli percorsi dal fuoco nell'ultimo quinquennio, con aggiornamento annuale del catasto. Al comma 1 dello stesso articolo, la norma contiene divieti e prescrizioni derivanti dal verificarsi degli incendi boschivi così censiti, con vincoli che limitano l'uso del suolo solo per quelle aree che sono individuate come boscate o destinate a pascolo, con scadenze temporali differenti, ovvero:

- Vincoli quindicennali (15 anni): la destinazione delle zone boscate e dei pascoli i cui soprassuoli siano stati percorsi dal fuoco non può essere modificata rispetto a quella preesistente l'incendio per almeno quindici anni. In tali aree è consentita la realizzazione solamente di opere pubbliche che si rendano necessarie per la salvaguardia della pubblica incolumità e dell'ambiente. Ne consegue l'obbligo di inserire sulle aree predette un vincolo esplicito da trasferire in tutti gli atti di compravendita stipulati entro quindici anni dall'evento;
- Vincoli decennali (10 anni): nelle zone boscate e nei pascoli i cui soprassuoli siano stati percorsi dal fuoco, è vietata per dieci anni la realizzazione di edifici nonché di strutture e infrastrutture finalizzate ad insediamenti civili ed attività produttive, fatti salvi i casi in cui per detta realizzazione siano stati già rilasciati atti autorizzativi comunali in data precedente l'incendio sulla base degli strumenti urbanistici vigenti a tale data. In tali aree è vietato il pascolo e la caccia;
- Vincoli quinquennali (5 anni): sui predetti soprassuoli è vietato lo svolgimento di attività di rimboschimento e di ingegneria ambientale sostenute con risorse finanziarie pubbliche, salvo il caso di specifica autorizzazione concessa o dal Ministro dell'Ambiente, per le aree naturali protette statali, o dalla regione competente, per documentate

situazioni di dissesto idrogeologico o per particolari situazioni in cui sia urgente un intervento di tutela su valori ambientali e paesaggistici.

PIANO REGIONALE DI PREVISIONE, PREVENZIONE E LOTTA ATTIVA CONTRO GLI INCENDI BOSCHIVI

La Giunta regionale della Sardegna ha approvato con Deliberazione n. 26/1 del 24 maggio 2018, il Piano Regionale di previsione, prevenzione e lotta attiva contro gli incendi boschivi, che ha validità triennale ed è soggetto ad aggiornamento annuale da parte della stessa Giunta. Il Piano redatto in conformità alla Legge n. 353/00 e alle relative linee guida emanate dal Ministro Delegato per il Coordinamento della Protezione Civile (D.M. 20 dicembre 2001), nonché a quanto stabilito dalla L.R. n. 8 del 27 aprile 2016. Il Piano, sottoposto a revisione annuale, individua:

- a. le cause determinanti ed i fattori predisponenti l'incendio;
- b. le aree percorse dal fuoco nell'anno precedente, rappresentate con apposita cartografia;
- c. le aree a rischio di incendio boschivo rappresentate con apposita cartografia tematica aggiornata, con l'indicazione delle tipologie di vegetazione prevalenti;
- d. i periodi a rischio di incendio boschivo, con l'indicazione dei dati anemologici e dell'esposizione ai venti;
 - e. gli indici di pericolosità fissati su base quantitativa e sinottica;

f. le azioni determinanti anche solo potenzialmente l'innesco di incendio nelle aree e nei periodi a rischio di incendio boschivo di cui alle lettere c) e d);

- g. gli interventi per la previsione e la prevenzione degli incendi boschivi anche attraverso sistemi di monitoraggio satellitare;
- h. la consistenza e la localizzazione dei mezzi, degli strumenti e delle risorse umane nonché le procedure per la lotta attiva contro gli incendi boschivi;

i. la consistenza e la localizzazione delle vie di accesso e dei tracciati spartifuoco nonché di adeguate fonti di approvvigionamento idrico; le operazioni silvicolturali di pulizia e manutenzione del bosco, con facoltà di previsione di interventi sostitutivi del proprietario inadempiente in particolare nelle aree a più elevato rischio; le esigenze formative e la relativa programmazione; le attività informative; la previsione economico-finanziaria delle attività previste nel piano stesso.

Il piano è articolato principalmente in quattro attività fondamentali, da realizzarsi per contrastare il rischio dovuto alla presenza di incendi. L'attività di previsione del rischio di incendi boschivi prevede l'individuazione delle aree e i periodi a rischio di incendio, calcolando gli indici di pericolosità. La prevenzione mira alla riduzione delle cause del potenziale innesco di incendio e predispone interventi per un'eventuale mitigazione di danni. Un'importante operazione associata ai temi della previsione e prevenzione è legata alle attività informative per la popolazione. Di fatto, comunicare i rischi e i comportamenti da adottare in presenza di rischio alla popolazione residente può risultare determinante per evitare di incorrere in situazioni di pericolo e parallelamente di tutelare l'ambiente. Gli interventi di lotta attiva contro gli incendi boschivi comprendono attività di ricognizione, sorveglianza, avvistamento, allarme e spegnimento con mezzi da terra e aerei.

Le aree naturali protette sono inserite in un'apposita sezione del Piano Regionale. Per i parchi naturali e le riserve naturali dello Stato è predisposto un apposito piano del Ministro dell'ambiente di intesa con le regioni interessate e in questo caso le attività di previsione e prevenzione sono attuate dagli enti gestori delle aree naturali potette, mentre le attività di lotta attiva per le aree naturali protette sono organizzate e svolte secondo le modalità previste dall'art. 7.

L'area di impianto del progetto Macomer 4 negli ultimi 15 anni non è mai stata interessata dal passaggio del fuoco e pertanto, non si ravvisano elementi di incompatibilità con lo strumento di pianificazione analizzato.

2.3.10 Piano regionale dei trasporti

Con deliberazione n. 30/44 del 02/08/2007, è stato predisposto lo schema preliminare del Piano Regionale dei Trasporti (PTR), in ottemperanza a quanto previsto dalla L.R. n. 21 del 7 dicembre 2005 (artt. 12/14), concernente la "Disciplina e organizzazione del trasporto pubblico in Sardegna". Il documento costituisce uno strumento per regolare il sistema del trasporto pubblico in Sardegna e promuove interventi di natura infrastrutturale, gestionale ed istituzionale al fine di creare collegamenti continui sul territorio regionale.

Il nuovo Piano regionale dei trasporti detta strategie di sviluppo per il medio-lungo termine del sistema trasportistico regionale, integra per la prima volta il tema del trasporto pubblico locale e costituisce il punto di riferimento fondamentale per la programmazione triennale dei servizi minimi di trasporto pubblico. Il Piano mira a configurarsi come strumento strategico per la costruzione del

"Sistema di Trasporto Regionale" sotto la guida della Regione, alla luce della riforma attuata dalla L.R. n. 21/05 e delle Norme di attuazione dello Statuto.

La L.R. 7 dicembre 2005, n. 21 disciplina e organizza il trasporto pubblico locale in Sardegna. La Regione persegue l'obiettivo di conseguire il riequilibrio territoriale e socio-economico e la riorganizzazione e lo sviluppo del trasporto collettivo pubblico. Il sistema del trasporto si inserisce in un programma di azioni volte all'integrazione di diversi modi di trasporto e allo sviluppo della comunità isolana attraverso il contenimento dei consumi energetici e la riduzione delle cause d'inquinamento ambientale. La Legge conferisce alle autonomie locali le funzioni che non richiedano l'unitario esercizio a livello regionale al fine di snellire le procedure e ottimizza i finanziamenti destinati all'esercizio, agli investimenti e all'introduzione di tecnologie avanzate oltre a introdurre regole di concorrenzialità nella gestione dei servizi. La Regione espleta attività di monitoraggio, gestisce i costi di gestione e vigila sugli standard qualitativi dei servizi.

Il Piano regionale dei trasporti: individua le azioni politico-amministrative della Regione nel settore dei trasporti; fissa gli indirizzi per la pianificazione dei trasporti locali; programma gli investimenti; individua gli ambiti territoriali dei servizi di trasporto da assoggettare a interventi di tutela e risanamento atmosferico anche in attuazione della direttiva 96/62/CE del 27 settembre 1996 e successive integrazioni; stabilisce gli indirizzi di riorganizzazione delle catene logistiche di trasporto delle merci.

Per il breve-medio periodo sono predisposti programmi triennali dei servizi di trasporto pubblico locale, attuativi del Piano regionale dei trasporti, con i quali la Regione predispone ed approva gli indirizzi ed i criteri per il dimensionamento del trasporto locale e programma i servizi minimi. Tali programmi affrontano la regolamentazione dei servizi, l'individuazione e definizione delle reti dei collegamenti, le risorse da destinare all'esercizio e agli investimenti, le modalità di attuazione e un sistema di monitoraggio dei servizi.

I piani provinciali di trasporto pubblico locale sono lo strumento di pianificazione del trasporto pubblico locale in ambiti territoriali omogenei sono un ulteriore strumento di gestione e programmazione in ambito trasportistico e coordinano, sotto la supervisione regionale, l'attuazione dei servizi. Ad una scala maggiormente di dettaglio, i Piani comunali adottano specifici programmi di intervento e interessano la mobilità del bacino comunale.

Il progetto di Macomer 4 non crea interferenze con il sistema del trasporto pubblico e si inserisce in un'area non servita da strade principali, ma prevalentemente secondarie e interpoderali con uno scarso flusso di mezzi e utenti. Per quanto analizzato il progetto risulta compatibile con il piano analizzato.

2.3.11 Piano forestale Ambientale Regionale

Il bosco assolve alle funzioni di protezione idrogeologica, di conservazione della biodiversità, di assorbimento del carbonio atmosferico, naturalistiche ed ecologiche e produttive. Oltretutto il bosco è riconosciuto come valore paesaggistico e le sue molteplici funzioni non si limitano ai benefici che apporta al territorio, ma anche a risvolti economici derivanti dalla sua produttività (in Sardegna la produzione di sughero è la più diffusa). La preservazione della copertura boschiva si compie attraverso una serie di linee di intervento della pianificazione, comprendenti la protezione e conservazione dei terreni, la conservazione naturalistico-paesaggistica, la produzione legata alla crescita economica e la ricerca e informazione.

In relazione alle linee guida emanate dal Ministero delle politiche agricole e forestali e dal Ministero dell'ambiente, ciascuno per quanto di propria competenza, in materia forestale ed alle indicazioni fornite ai sensi dell'art. 2, comma 4, della Legge 23 dicembre 1999, n. 499, le regioni definiscono le linee di tutela, conservazione, valorizzazione e sviluppo del settore forestale nel territorio di loro competenza attraverso la redazione e la revisione dei propri piani forestali.

Il Decreto 16 giugno 2005 "Ministero dell'Ambiente e della Tutela del Territorio. Linee guida di programmazione forestale" promuove lo sviluppo sostenibile del sistema forestale e sancisce le linee guida in materia forestale in Italia con lo scopo di individuare elementi di indirizzo per la programmazione a livello regionale. Gli obiettivi strategici delle linee guida si rivolgono alla tutela ambientale, al mantenimento e la promozione delle funzioni produttive delle foreste, al miglioramento delle condizioni socio-economiche locali e alla promozione di interventi di gestione del territorio. I piani di gestione forestale a livello regionale sono tenuti a seguire le linee guida e devono essere aggiornati periodicamente.

Il d.Lgs. 18 maggio 2001, n. 227 "Orientamento e modernizzazione del settore forestale, a norma dell'art. 7 della Legge 5 marzo 2001, n. 57" è finalizzato alla valorizzazione della selvicoltura e detta le prescrizioni per la sua conservazione e disciplina l'incremento del patrimonio forestale nazionale e delle attività selvicolturali. Di particolare rilevanza sono le indicazioni relative alla trasformazione del bosco con cambiamento di destinazione d'uso del suolo, che è vietata fatto salvo per alcune eccezioni, e alle compensazioni da attuarsi attraverso rimboschimenti con specie autoctone.

Il Piano Forestale Ambientale Regionale è predisposto dall'Assessorato della Difesa dell'Ambiente e si configura come uno strumento strategico di pianificazione e gestione del territorio con gli obiettivi di salvaguardia ambientale, conservazione, valorizzazione e incremento del patrimonio boschivo, tutela della biodiversità, miglioramento delle economie locali. La pianificazione del settore

forestale riveste una fortissima valenza ambientale e deve essere inquadrata nell'ambito di un processo complessivo di gestione e regolamentazione delle risorse naturali. Il Piano Forestale Ambientale Regionale persegue gli obiettivi definiti dalla Strategia di azione ambientale per lo sviluppo sostenibile in Italia (delibera CIPE 57/2002), in cui è promosso un nuovo modello di sviluppo basato sulla formulazione di strategie integrate per le sfere ambientale e socio-economica. A tal fine vengono emanati il Piano Forestale Territoriale di Distretto, che attua le linee di indirizzo del Piano Regionale sviluppando un'analisi di dettaglio del territorio e il Piano Forestale Particolareggiato, che sviluppa in dettaglio i progetti esecutivi attraverso piani di gestione delle aree naturalistiche, di assestamento forestale, di rimboschimento e progetti strategici locali.

I temi della tutela ambientale e dello sviluppo sostenibile, ed in particolare della gestione forestale sostenibile, costituiscono il macro-obiettivo comune del Piano e si attuano attraverso il mantenimento e la protezione dell'assetto fisico del territorio e della sua biodiversità animale e vegetale, insieme ad un incremento del patrimonio boschivo e la prevenzione di situazioni sfavorevoli connesse agli incendi e all'insorgenza di problemi fitosanitari.

Il settore forestale è valorizzato di pari passo con il settore rurale, in particolare si tratta di una pianificazione forestale integrata, intesa come un tipo di coordinamento del piano forestale con altri piani e programmi regionali e su più livelli.

La ricerca scientifica e la valorizzazione della formazione professionale e della educazione ambientale sono due punti focali della strategia di piano e sottendono una serie di vantaggi dal punto di vista della programmazione e dell'informazione alla popolazione.

Il progetto di Macomer 4 non interferisce con aree boschive o interessate da rimboschimento, inserendosi in un contesto agro-pastorale non interessato dalla presenza di colture di pregio e non sottoposto a particolari vincoli di tutela ambientale e paesaggistica. Per quanto sopra esposto, l'intervento è d ritenersi compatibile.

2.3.12 Piano regionale di qualità dell'aria ambiente

La proposta di un Piano regionale di qualità dell'aria ambiente è stata elaborata a partire dalle informazioni sulle emissioni di inquinanti dell'aria contenute nell'Inventario delle emissioni di inquinanti dell'aria e la Zonizzazione e classificazione del territorio regionale, di cui alla deliberazione della Giunta Regionale n. 52/19 del 10 dicembre 2015.

Il piano prende in esame le caratteristiche del territorio e ne definisce in sintesi i punti di forza e debolezza. Le tematiche affrontate riguardano il sistema produttivo, un'indagine sociale e demografica, la dotazione infrastrutturale e lo sviluppo delle economie legate all'ambiente. Parallelamente sono passate al vaglio le analisi del territorio dal punto di vista fisico, con accenni all'orografia e alla climatologia. Gli studi relativi alla popolazione vengono successivamente correlati alla configurazione territoriale, al fine di rapportare la qualità aria ambiente alla presenza di centri fortemente urbanizzati o viceversa zone naturali.

Il Piano regionale di qualità dell'aria ambiente è stato predisposto dal Servizio tutela dell'atmosfera e del territorio dell'Assessorato della difesa dell'ambiente ai sensi del d.Lgs. n 155 del 13 agosto 2010 "Attuazione della direttiva 2008/50/CE relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa". L'obiettivo principale del piano consiste nel mantenimento o miglioramento, a seconda dei casi, della qualità dell'aria ambiente. Le misure adottate contribuiscono alla riduzione delle concentrazioni di emissioni inquinanti e alla risoluzione di criticità ambientali connesse. La Regione svolge un'azione di monitoraggio a cadenza annuale. Laddove vengano individuati valori non accettabili, si interviene direttamente sulle principali sorgenti emissive per ridurre i livelli degli inquinanti e garantire il mantenimento di uno standard qualitativo adeguato. L'art. 9 del decreto è di particolare interesse, in quanto fissa le disposizioni per le zone o gli agglomerati in cui si verifichi una condizione di superamento dei valori limite o obiettivo. In tal caso è necessario adottare un piano per la riduzione delle emissioni inquinanti.

Il d.Lgs. 155/2010 e ss.mm.ii. prevede che la qualità dell'aria sia valutata sul territorio nazionale applicando metodi e criteri comuni. A tal fine il territorio nazionale è sottoposto ad una serie di analisi integrate utili per la zonizzazione e classificazione del territorio regionale. La zonizzazione individuata ai sensi del citato decreto e adottata con D.G.R. n. 52/19 del 10/12/2013 e approvata in data 11 novembre 2013 dal Ministero dell'Ambiente e della Tutela del Territorio e del Mare, suddivide il territorio regionale in zone omogenee ai fini della gestione della qualità dell'aria ambiente. Nello specifico, ad ogni zona è assegnato un codice identificativo, attraverso il quale è possibile stabilire la quantità di emissioni inquinanti.

La valutazione della qualità dell'aria viene approfondita con lo scopo di raccogliere dati sulla concentrazione dei principali inquinanti atmosferici sul territorio regionale, stabilire i rischi legati al superamento dei valori critici fissati dalla normativa e garantire un'adeguata protezione della salute della popolazione. Le valutazioni sono supportate da un ampio apparato di monitoraggio e valutazione modellistica a scala locale con applicazione del modello Calpuff e stima delle concentrazioni in aria

ambiente dei principali inquinanti atmosferici. Le valutazioni riguardano, come visto, la situazione attuale della presenza di inquinanti in regione. Il Piano prevede inoltre una valutazione ipotetica delle concentrazioni future chiamato "scenario tendenziale", elaborato ai sensi dell'art. 22 comma 4 del d.Lgs. 155/2010. Lo scenario comprende un'analisi degli andamenti negli anni 2010-2025 e mostra una riduzione nel tempo per gli ossidi di azoto dovuta soprattutto alle misure sui trasporti e motivata anche dalla diminuzione dei consumi dovuta alla crisi economica globale. Al 2025 si prevede una riduzione dell'anidride carbonica e un aumento di emissioni totali per tutti gli inquinanti eccetto per gli ossidi di zolfo. Non si prevedono superamenti significativi di PM10 antropico.

L'area studio ricade nella cosiddetta Zona rurale (codice identificativo IT2010), la quale risulta caratterizzata da livelli emissivi dei vari inquinanti piuttosto contenuti e dalla presenza di poche attività produttive isolate. Il Comune di Macomer è inoltre inserito, così come il resto del territorio regionale, in un'area di tutela in riferimento alle concentrazioni a NO2 e PM10. Più in generale si può affermare che le tecnologie adottate per lo sfruttamento di energia solare nel parco agrovoltaico di Macomer 4 non incidono sulla produzione di gas serra o inquinamento dell'aria quando operativi. Al contrario l'utilizzo dell'energia solare può avere effetti positivi e indiretti sull'ambiente dal momento che le fonti rinnovabili sostituiscono o riducono l'energia prodotta attraverso fonti fossili, che possono avere ripercussioni negative sull'ambiente. Certamente non si possono trascurare le emissioni prodotte in fase di cantiere, dovute alla presenza di mezzi pesanti e a quelle riguardanti la produzione e lo smaltimento dei materiali compositivi dei pannelli fotovoltaici. Queste attività sono limitate ad un contesto temporale esiguo rispetto al periodo di operatività dell'impianto. Peraltro, se comparati gli effetti di due impianti, uno alimentato con energia rinnovabile e uno con energia fossile a parità di produzione, si possono facilmente rilevare le differenze in termini di emissioni e di mitigazione degli impatti, che vedono nella prima tipologia di impianto una drastica riduzione di inquinanti dell'aria ambiente.

2.3.13 Piano Paesaggistico Regionale

Con Decreto del Presidente della Regione n. 82 del 7 settembre 2006 è stato approvato in via definitiva il Piano Paesaggistico Regionale, Primo ambito omogeneo - Area Costiera, in ottemperanza a quanto disposto dall'articolo 11 della L.R. 22 dicembre 1989, n. 45, modificato dal comma 1 dell'articolo 2 della L.R. 25.11.2004, n. 8.

Il Piano è entrato in vigore a decorrere dalla data di pubblicazione sul Bollettino Regionale (BURAS anno 58 n. 30 dell'8 settembre 2006).

Attraverso il Piano Paesaggistico Regionale, di seguito denominato P.P.R., la Regione riconosce i caratteri, le tipologie, le forme e gli innumerevoli caratteri del paesaggio sardo, costituito dalle interazioni della naturalità, della storia e della cultura delle popolazioni locali, intese come elementi fondamentali per lo sviluppo, ne disciplina la tutela e ne promuove la valorizzazione.

Il Codice dei Beni Culturali e del Paesaggio (D.Lgs. 42/04) ha introdotto numerosi requisiti e caratteristiche obbligatorie in ordine ai contenuti dei Piani Paesaggistici; detti requisiti rappresentano, pertanto, dei punti fermi del Piano Paesaggistico Regionale (P.P.R.), configurandolo come strumento certamente innovativo rispetto ai previgenti atti di pianificazione urbanistica regionale (P.T.P. di cui alla L.R. 45/89).

Una prima caratteristica di novità concerne l'ambito territoriale di applicazione del piano paesaggistico che deve essere riferito all'intero territorio regionale. Il comma 1 dell'art. 135 del Codice stabilisce, infatti, che "Lo Stato e le regioni assicurano che tutto il territorio sia adeguatamente conosciuto, salvaguardato, pianificato e gestito in ragione dei differenti valori espressi dai diversi contesti che lo costituiscono. A tale fine le regioni sottopongono a specifica normativa d'uso il territorio mediante piani paesaggistici, ovvero piano urbanistico territoriali con specifica considerazione dei valori paesaggistici, entrambi di seguito denominati: "piani paesaggistici". Con tali presupposti il P.P.R. si configura come "piano urbanistico-territoriale con specifica considerazione dei valori paesaggistici." In questo senso il P.P.R. viene assunto, nella sua valenza urbanistica, come strumento sovraordinato della pianificazione del territorio, con i suoi contenuti descrittivi, prescrittivi e propositivi (art. 143, comma 3, del Codice e art. 2, comma 2, delle NTA). La Regione, quindi, nell'esercizio della sua competenza legislativa primaria in materia di urbanistica, definisce ed approva il P.P.R., che, oltre agli obiettivi ed alle funzioni che gli sono conferiti dal Codice, diventa la cornice ed il quadro programmatico della pianificazione del territorio regionale.

Conformemente a quanto prescritto dal D.Lgs. 42/04, nella sua scrittura antecedente al D.Lgs. 63/2008, il P.P.R. individua i beni paesaggistici, classificandoli in (art. 6 delle NTA, commi 2 e 3):

- beni paesaggistici individui, cioè quelle categorie di beni immobili i cui caratteri di individualità ne permettono un'identificazione puntuale;
- beni paesaggistici d'insieme, cioè quelle categorie di beni immobili con caratteri di diffusività spaziale composti da una pluralità di elementi identitari coordinati in un sistema territoriale relazionale.

I beni paesaggistici individui sono quelli che il Codice definisce "immobili, (identificati con specifica procedura ai sensi dell'art. 136), tutelati vuoi per il loro carattere di bellezza naturale o

singolarità geologica, vuoi per il loro pregio e valore estetico-tradizionale; nonché le aree tutelate per legge ai sensi dell'art. 142 (beni già tutelati dalla Legge Galasso 431/85) e gli immobili e le aree sottoposti a tutela dai piani paesaggistici ai sensi del comma 1, lettera i, dell'art. 143 del Codice Urbani. Nell'attuale riscrittura del Codice, peraltro, il Piano Paesaggistico può individuare ulteriori immobili od aree, di notevole interesse pubblico a termini dell'articolo 134, comma 1, lettera c), procedere alla loro delimitazione e rappresentazione in scala idonea alla identificazione, nonché alla determinazione delle specifiche prescrizioni d'uso, a termini dell'articolo 138.

I beni paesaggistici d'insieme sono le "aree" identificate ai sensi dei medesimi articoli. Per quanto riguarda le categorie di immobili ed aree individuati dal P.P.R. ai sensi della prima versione dell'art. 143, questi necessitano di particolari misure di salvaguardia, gestione ed utilizzazione (comma 2, lettera b, dell'art. 8 delle NTA, e comma 1, lettera i, dell'art. 143 del Codice).

Ciò che differenzia le aree e gli immobili che costituiscono beni paesaggistici ai sensi degli artt. 142 e 143 del Codice e quelli di cui all'articolo 136, è che per questi ultimi è necessaria apposita procedura di dichiarazione di interesse pubblico. I beni di cui all'art. 142 sono individuati senza necessità di questa procedura mentre gli ulteriori immobili od aree, di notevole interesse pubblico a termini dell'articolo 134, di cui al comma 1, lettera d, dell'art. 143, possono essere individuati solamente all'interno del piano paesaggistico.

Il P.P.R. si applica, nella sua attuale stesura, solamente agli ambiti di paesaggio costieri, individuati nella cartografia del P.P.R., secondo l'articolazione in assetto ambientale, assetto storico-culturale e assetto insediativo. Per gli ambiti di paesaggio costieri, che sono estremamente importanti per la Sardegna poiché costituiscono un'importante risorsa potenziale di sviluppo economico legato al turismo connesso al mare ed alle aree costiere, il P.P.R. detta una disciplina transitoria rigidamente conservativa, e un futuro approccio alla pianificazione ed alla gestione delle zone marine e costiere basato su una prassi concertativa tra Comuni costieri, Province e Regione.

Peraltro, i beni paesaggistici ed i beni identitari individuati e tipizzati dal P.P.R., pur nei limiti delle raccomandazioni sancite da alcune sentenze di Tribunale Amministrativo Regionale, sono comunque soggetti alla disciplina del Piano, indipendentemente dalla loro localizzazione o meno negli ambiti di paesaggio costiero (art. 4, comma 5 NTA).

Per quanto riguarda specificamente il territorio interessato dalle opere in progetto, come già detto, non ricade in fascia costiera e, quindi, in nessuno dei 27 ambiti di paesaggio costieri e non è interessata dalla presenza di beni paesaggistici vincolati, per tale ragione, l'intervento si ritiene compatibile con lo strumento di pianificazione analizzato.

2.4 Pianificazione provinciale e comunale di riferimento

2.4.1 Piano Urbanistico Provinciale

Il Piano Urbanistico Provinciale (PUP) della Provincia di Nuoro è stato approvato con Delibera del Consiglio Provinciale n. 131 del 07/11/2003. Obiettivo prioritario del PUP è quello di promuovere ed incentivare lo sviluppo socioeconomico del territorio attraverso la coniugazione degli strumenti economico-finanziari con la pianificazione territoriale, sia essa locale o provinciale. Tra gli obiettivi generali figurano anche lo sviluppo sostenibile del territorio, la riqualificazione dei centri urbani, la tutela dei beni culturali ed ambientali e la valorizzazione delle identità locali. Il Piano si configura dunque come uno strumento di governo del territorio e delle sue trasformazioni e si propone di strutturare il nuovo assetto territoriale-ambientale coniugando gli strumenti economico-finanziari con la pianificazione territoriale. In relazione a quanto previsto nell'art. 16 della L.R. 45/89, i contenuti tematici del Piano sono strutturati in Piani di settore, i quali trovano applicazione nei Sistemi Insediativo, Ambientale, Economico e della Mobilità. Tali Sistemi compongono il quadro provinciale e di pianificazione e contengono rispettivamente un'analisi dello stato di fatto e delle proiezioni previsionali orientate alla gestione e sviluppo del territorio. In coerenza alle analisi ed alle elaborazioni sviluppate per le singole aree tematiche, il PUP definisce degli "Ambiti Territoriali", individuati in base a caratteristiche di omogeneità (storica, culturale, linguistica, ambientale, economicoproduttiva) e di complementarità dei potenziali di crescita economica e culturale di aree specifiche e sono costituiti da aggregazioni aperte di territori.

Una delle specificità del piano concerne la tematica ambientale e consiste nell'attuazione di politiche di tutela delle risorse ambientali che assecondi le esigenze dello sviluppo economico/produttivo della collettività provinciale. In particolare, il Piano attribuisce al territorio provinciale una forte valenza ambientale, il cui valore dipende dalla sua conservazione e il suo legame con i suoi aspetti culturali e identitari. Di conseguenza, il PUP associa e valorizza il territorio contestualmente all'obiettivo di sviluppo-economico e articola le proprie strategie principalmente secondo tre punti:

1. Razionalizzare e riqualificare le aree sviluppate, fino ad ora interessate da forme di turismo "maturo" e recente, prevedendo e promuovendo un'adequata

dotazione di servizi e attrezzature sia al servizio degli insediamenti residenziali, che al servizio degli insediamenti turistici, allo scopo di elevare il livello della qualità urbana.

- 2. Recuperare le aree interne ad una logica di sviluppo compatibile con l'ambiente ed integrata con le aree "forti", valorizzando le risorse esistenti, con interventi che consentano di esprimere una reciproca sinergia tra aree con caratteristiche e vocazioni diverse.
- 3. Potenziare e sviluppare efficacemente il sistema della mobilità e del trasporto.

La tematica ambientale rappresenta un'innovazione nella realtà provinciale e tratta in maniera sinergica i sistemi ambientale e culturale, grazie soprattutto ad un rinnovato interesse turistico per le zone interne della Sardegna e non più solo di quelle costiere. Sono inoltre riscontrabili importanti sviluppi sulla tutela delle risorse agricola e forestale nonché delle aree di maggior pregio naturalistico e dei beni agro-silvo-pastorali, attraverso misure razionali di gestione dei beni presenti sul territorio.

Il Piano dei Parchi contiene indicazioni più mirate rispetto alle problematiche di valorizzazione ambientale e al fine di condurre un'indagine approfondita suddivide i territori in cui si ha un interesse pianificatorio di carattere ambientale in aree con diverse vocazioni. La classificazione delle aree consente una formulazione di interventi specifica per ogni realtà territoriale e una loro identificazione e perimetrazione precise. Ogni area è sottoposta a monitoraggio ambientale, considerato elemento di salvaguardia in grado di valutare e prevenire i rischi derivanti dall'impatto antropico sugli ecosistemi naturali o di natura idrogeologica.

2.4.2 Piano Regolatore Generale

Il Piano Urbanistico del Comune di Macomer individue le aree interessate dal progetto Zone omogenee E. Sono le parti del territorio destinate ad usi agricoli, compresi gli edifici, le attrezzature e gli impianti connessi al settore agro-pastorale ed alla valorizzazione dei loro prodotti.

Per le attività agrituristiche si recepiscono le normative relative alla L.R. 18/98 e D.P.G.R. 228/94.

In particolare, le aree interessate sono destinate alle subzone:

- E1 aree caratterizzate da una produzione agricola tipica e specializzata;
- E2 aree di primaria importanza per la funzione agricolo-produttiva, anche in relazione all'estensione, composizione e localizzazione dei terreni;
- E5h4 agricole marginali con emergenza di aree di salvaguardia paesistico-ambientale

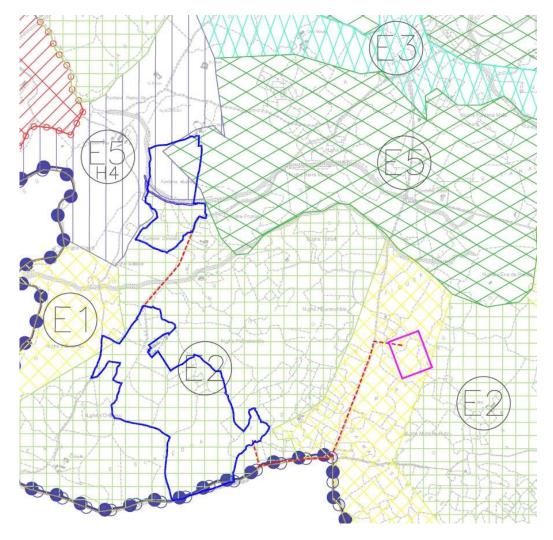


FIGURA 24 – STRALCIO P.U.C. CON AREA IMPIANTO IN BLU (ESTRATTO DALL'ELABORATO CARTOGRAFICO MACOMER4-PDT03)

Le subzone E5 sono aree marginali per attività agricola nelle quali viene ravvisata l'esigenza di garantire condizioni adeguate di stabilità ambientale. Qualora nelle aree oggetto degli interventi, per tutte le sottozone a destinazione agricola, sia accertata la presenza di eventuali reperti archeologici (nuraghi, tombe, ecc.) dovrà comunque essere rispettata la distanza di m 200 dagli eventuali reperti e data preventiva comunicazione alla Soprintendenza ai Monumenti e alle Antichità competente per territorio.

Le sottozone E5h4 agricole marginali con emergenza di aree di salvaguardia paesisticoambientale, sono quelle aree riconoscibili dalla presenza di componenti paesistico ambientali entro un più vasto areale caratterizzato da un profilo agro-pedologico tipico della subzona E5 tali da essere sottoposte a tutela rispetto ad interventi antropici rilevanti od in ogni caso tali da modificarne l'assetto naturale.

Nelle aree individuate è vietato qualsiasi intervento urbanistico ed edilizio che comporti:

- 1. la deviazione o l'impedimento del naturale decorso delle acque anche nei periodi di loro assenza;
- 2. l'apposizione di manufatti, anche precari, a meno di m 50 dalle sponde e non preventivamente autorizzati dall'amministrazione comunale;
- 3. la realizzazione di interventi di nuova costruzione a meno di m 200 dalle sponde, se non autorizzate dalle autorità competenti;
- 4. il deposito, anche temporaneo, di materiali ed impianti che rechino pregiudizio, a parere dell'amministrazione comunale, al decorso naturale delle acque, anche in loro assenza.

Sono ammessi:

- 1. tutti gli interventi tendenti al ripristino ed alla valorizzazione ambientale dei luoghi e degli edifici preesistenti.
- 2. la realizzazione di interventi di nuova costruzione destinati alla conduzione di fondi agricoli, per i quali si applica la normativa delle zone omogenee E5 di cui all'art. 79 delle N.di A.;
- 3. gli interventi edilizi di restauro e risanamento conservativo e quelli di ristrutturazione di cui alle lettere a), b), c), delle L. 457/78.

2.5 Potenziali criticità riscontrate

In accordo a quanto previsto al punto 12 dell'Allegato VII alla parte seconda del D. Lgs. 152/2006, di seguito alcune considerazioni.

Il presente studio è il risultato della collaborazione di diverse figure professionali esperte e abilitate, ognuna con proprie specifiche competenze. Sono state utilizzate, per quanto possibile, le fonti dati più aggiornate. Poiché lo studio è stato effettuato su un ambito territoriale antropizzato, non sono state riscontrate particolari difficoltà nel reperire dati significativi e informazioni derivanti da numerose fonti, tra cui letteratura accademica, database pubblici e studi di amministrazioni pubbliche. Si evidenzia che lo Studio è stato effettuato non solo utilizzando fonti bibliografiche o studi già esistenti ma sono state fatte anche indagini sul campo per la raccolta dati di natura geologica, naturalistica, agronomica e acustica.

3. QUADRO DI RIFERIMENTO PROGETTUALE

In accordo a quanto previsto dall'art.22 c.3 del d.Lgs. 152/2006 e in particolare dall'Allegato VII alla parte seconda al già menzionato decreto circa i contenuti dello Studio d'Impatto Ambientale, il presente capitolo restituisce, nell'ordine così come riportato nell'Allegato VII:

- una descrizione del progetto, comprese, in particolare:
 - una descrizione delle caratteristiche fisiche dell'insieme del progetto, compresi, ove pertinenti, i lavori di demolizione necessari, nonché delle esigenze di utilizzo del suolo durante le fasi di costruzione e di funzionamento;
 - una descrizione delle principali caratteristiche della fase di funzionamento del progetto e, in particolare dell'eventuale processo produttivo, con l'indicazione, a titolo esemplificativo e non esaustivo, del fabbisogno e del consumo di energia, della natura e delle quantità dei materiali e delle risorse naturali impiegate (quali acqua, territorio, suolo e biodiversità);
 - una valutazione del tipo e della quantità dei residui e delle emissioni previsti, quali, a titolo esemplificativo e non esaustivo, inquinamento dell'acqua, dell'aria, del suolo e del sottosuolo, rumore, vibrazione, luce, calore, radiazione, e della quantità e della tipologia di rifiuti prodotti durante le fasi di costruzione e di funzionamento;
 - la descrizione della tecnica prescelta, con riferimento alle migliori tecniche disponibili a costi non eccessivi, e delle altre tecniche previste per prevenire le emissioni degli impianti e per ridurre l'utilizzo delle risorse naturali, confrontando le tecniche prescelte con le migliori tecniche disponibili;
 - una descrizione delle principali alternative ragionevoli del progetto (quali, a titolo
 esemplificativo e non esaustivo, quelle relative alla concezione del progetto, alla
 tecnologia, all'ubicazione, alle dimensioni e alla portata) prese in esame dal
 proponente, compresa l'alternativa zero, adeguate al progetto proposto e alle sue
 caratteristiche specifiche, con indicazione delle principali ragioni della scelta, sotto
 il profilo dell'impatto ambientale, e la motivazione della scelta progettuale, sotto il
 profilo dell'impatto ambientale, con una descrizione delle alternative prese in
 esame e loro comparazione con il progetto presentato.
- una descrizione dei probabili impatti ambientali rilevanti del progetto proposto, dovuti, tra l'altro:

- a) alla costruzione e all'esercizio del progetto, inclusi, ove pertinenti, i lavori di demolizione;
- b) all'emissione di inquinanti, rumori, vibrazioni, luce, calore, radiazioni, alla creazione di sostanze nocive e allo smaltimento dei rifiuti;
- c) all'impatto del progetto sul clima (quali, a titolo esemplificativo e non esaustivo, natura ed entità delle emissioni di gas a effetto serra) e alla vulnerabilità del progetto al cambiamento climatico;
- d) alle tecnologie e alle sostanze utilizzate.

Il progetto proposto è relativo alla realizzazione di un impianto che aumenti la quota di energia elettrica prodotta da fonte rinnovabile, nella fattispecie fotovoltaica. Date le prevedibili applicazioni delle energie rinnovabili, appare molto probabile considerare sempre crescente la domanda energetica da parte di tutti gli utenti potenzialmente interessati. Altra motivazione riguarda l'analisi dei costi e dei benefici: l'investimento richiesto per il progetto risulta assorbibile durante la vita tecnica prevista, con margini sufficienti a rendere sostenibile tale iniziativa di pubblica utilità.

3.1 Finalità del progetto

Il progetto intende contribuire a raggiungere gli obiettivi di produzione energetica da fonti rinnovabili previste dal PEARS 2015-2030, contribuendo di conseguenza a:

- limitare le emissioni inquinanti (in termini di CO₂ equivalenti) in linea col protocollo di Kyoto e con le decisioni del Consiglio Europeo;
- rafforzare la sicurezza per l'approvvigionamento energetico, in accordo alla Strategia Comunitaria "Europa 2020";
- promuovere le fonti energetiche rinnovabili in accordo con gli obiettivi della Strategia
 Energetica Nazionale, aggiornata nel novembre 2017.

L'intervento proposto si allinea, inoltre, a quanto auspicato nella recente comunicazione ministeriale sul "Rilancio degli investimenti nelle rinnovabili e ruolo del fotovoltaico", promossa da Greenpeace Italia, Italia Solare, Legambiente e WWF Italia. Nella comunicazione si reputa necessario prevedere "una quota di impianti a terra, marginale rispetto alla superficie agricola oggi utilizzata (SAU) e che può essere indirizzata verso aree agricole dismesse o situate vicino a infrastrutture, in ogni caso garantendo permeabilità e biodiversità dei suoli".

La scelta di impianti agrovoltaici, inoltre, anziché sostituire, integra la produzione di energia da impianti fotovoltaici nella conduzione dei terreni agricoli. Questo approccio porta alla convivenza tra fotovoltaico e produzione agricola e può rivelarsi alleata nei processi di innovazione aziendale volti a cogliere le opportunità delle tecniche agricole conservative, dell'agricoltura di precisione, della conversione al biologico e dell'adesione a disciplinari di qualità che incontrano crescente interesse da parte del mercato e dei consumatori.

3.2 Situazione attuale

Allo stato attuale l'area oggetto del presente studio è ad uso seminativo non irriguo e pascolo naturale.

Il terreno si presenta principalmente pianeggiante, con una pendenza minima verso la valle del Tirso a est. Alcuni corsi d'acqua intersecano l'area in direzione Ovest-Est. L'installazione delle strutture, quindi, non prevede l'esecuzione di opere di movimento terra consistenti in scavi di sbancamento finalizzata alla creazione di gradonature, rilevati, sterri, e per quanto possibile verrà assecondata la pendenza del terreno preesistente nonché già modellata negli anni scorsi nell'ambito della conduzione agricola.

3.3 Descrizione alternative progetto

Nel presente studio vengono prese in esame alcune alternative progettuali adeguate al progetto e alle sue caratteristiche, con indicazioni delle ragioni principali che hanno condotto alla scelta dell'alternativa presentata. Di seguito verranno considerate diverse ipotesi, di tipo tecnico, impiantistico e di localizzazione, prese in considerazione durante la fase di predisposizione degli interventi in progetto. Le linee generali che hanno guidato le scelte progettuali, al fine di ottimizzare il rendimento dei singoli moduli fotovoltaici, sono state basate su fattori quali: caratteristiche climatiche, irraggiamento dell'area, orografia del sito, accessibilità (esistenza o meno di strade, piste), disponibilità di infrastrutture elettriche vicine, rispetto delle distanze da eventuali vincoli presenti o da eventuali centri abitati.

3.3.1 Alternative di localizzazione

Considerato che la scelta del sito per la realizzazione di un impianto fotovoltaico è di fondamentale importanza ai fini di un investimento sostenibile sia sotto il profilo tecnico sia economico ed ambientale, nella scelta del sito sono stati prima di tutto considerati elementi di natura vincolistica da cui è emerso che: l'area di intervento risulta compatibile con i criteri generali per l'individuazione di aree non idonee stabiliti dal DM 10/09/2010 (comma 7) in quanto completamente esterna ai siti indicati dallo stesso DM, (vedi punto 16.4) e come descritto precedentemente, l'area di impianto non ricade all'interno delle aree vincolate ai sensi dell'art.10 D.lgs. 42/2004 (ex1089/39), e articoli 134 lett.a,b,c e art.142.

Oltre a elementi di natura vincolistica, sono stati considerati anche i seguenti fattori:

- l'irraggiamento dell'area che, al fine di ottenere una soddisfacente produzione di energia, risulta ottimale;
- la presenza della Rete di Trasmissione elettrica Nazionale (RTN) e la sua distanza dal sito tale da consentire l'allaccio elettrico dell'impianto senza la realizzazione di infrastrutture elettriche di rilievo;
- idonee caratteristiche geomorfologiche che consentano la realizzazione dell'opera senza la necessità di strutture di consolidamento di rilievo;
- una conformazione orografica tale che saranno evitati il più possibile ombreggiamenti sui moduli con conseguente perdita di efficienza e riduzione del rendimento dell'impianto e che permetta di realizzare le opere provvisionali, con interventi qualitativamente e

- quantitativamente limitati riducendo al minimo, quasi nulle, le attività di movimentazione del terreno e di sbancamento;
- l'assenza di vegetazione di pregio: alberi ad alto fusto, vegetazione protetta, habitat e specie di interesse comunitario. A tal proposito, l'area non ricade all'interno di aree protette, aree boscate SIC-ZPS, RETE NATURA 2000.
- l'assenza di particolari difficoltà di accesso con mezzi pesanti, impiegati per il trasporto dei materiali di impianto.
- la realizzazione dell'impianto fotovoltaico sull'area individuata è compatibile con i piani e programmi internazionali e nazionali, nonché con la pianificazione territoriale locale.

La preliminare fase di verifica del sito e gli studi condotti rispetto alle alternative di localizzazione rendono evidente che le caratteristiche dell'area di progetto siano le più idonee per l'investimento

3.3.2 Alternative progettuali

Si è ritenuto ottimale, prima di considerare definitivamente la soluzione adottata, procedere ad una valutazione preliminare qualitativa delle differenti tecnologie e soluzioni impiantistiche attualmente presenti sul mercato per gli impianti fotovoltaici a terra per identificare quella più idonea, tenendo in considerazione i seguenti aspetti:

- Impatto visivo
- Possibilità di coltivazione delle aree disponibili con mezzi meccanici
- Costo di investimento
- Costi di manutenzione
- Producibilità prevista dell'Impianto

TABELLA 4 – CONFRONTO PRO E CONTRO DI DIVERSE SOLUZIONI IMPIANTISTICHE

SOLUZIONI IMPIANTISTICHE				
	Pro	Contro		
IMPIANTO FISSO	Impatto visivo contenuto grazie all'altezza ridotta.	Maggiore ombreggiamento del terreno e ridotta scelta nell'utilizzo dei mezzi meccanici per la coltivazione.		
	Costo investimento accettabile.	Producibilità di poco inferiore rispetto ad altri sistemi		
	Manutenzione semplice ed economica			

	Impatto visivo contenuto: alla massima inclinazione i pannelli non superano di solito i 4,50 metri.	Costi d'investimento maggiori.
INSEGUITORE MONOASSIALE	Coltivazione meccanizzata possibile tra le interfile che riduce il rischio di desertificazione e aumenta l'area sfruttabile per fini agricoli.	
INSEGUITORE DI	Ombreggiamento ridotto.	
ROLLIO	Manutenzione semplice ed economica ma leggermente più costosa dell'impianto fisso	
	Producibilità superiore di circa il 15 % rispetto ad un fisso.	
	Producibilità superiore del 20% rispetto ad un sistema fisso	Impatto visivo elevato a causa dell'altezza delle strutture che arriva anche a 8-9 mt
IMPIANTO MONOASSIALE INSEGUITORE DI AZIMUTH		Coltivazione limitata in quanto le aree libere per la rotazione sono consistenti ma non sfruttabili a fini agricoli.
		Costo investimento elevato
	Onlik raniana va sasikila saka sidi.	Manutenzione complessa
IMPIANTO	Coltivazione possibile che riduce il rischio di desertificazione; l'area sottostante è sfruttabile per fini agricoli.	Impatto visivo elevato a causa dell'altezza delle strutture che arriva anche a 8-9 mt.
BIASSIALE	Producibilità superiore di circa il 30 % rispetto ad un fisso.	Costo investimento elevato
		Manutenzione complessa

3.3.2.1 METODO DI VALUTAZIONE

Per stabilire quale delle soluzioni confrontate sia migliore per l'investimento da parte della società proponente, si è proceduto ad assegnare un punteggio da 1 a 5 in scala crescente; sommando i valori assegnati a ciascuna componente è stato scelto l'impianto con il punteggio più basso.

	IMPATTO VISIVO	INTEGRAZIONE AGRICOLA	COSTI DI INVESTIMENTO	MANUTENZIONE	PRODUCIBILITA'	TOTALE
IMPIANTO FISSO	3	3	2	2	4	14
IMPIANTO MONOASSIALE INSEGUITORE DI ROLLIO	3	3	3	3	4	13
IMPIANTO MONOASSIALE INSEGUITORE DI AZIMUTH	4	4	4	3	2	17
IMPIANTO BIASSSIALE	5	2	5	5	1	18

Dall'analisi effettuata è emerso che la migliore soluzione impiantistica, per il sito prescelto, è quella della struttura tracker. Tale soluzione, permette un significativo incremento della producibilità dell'impianto oltre che maggiori superfici utili ai fini della produzione agricola.

3.3.3 Alternativa "zero"

Tra le alternative valutate, è stata considerata anche la cosiddetta alternativa "zero", ovvero la possibilità di non eseguire l'intervento. Tale opzione è resa nota al fine di completare il giudizio di compatibilità ambientale. Al fine di mettere in luce gli effetti conseguenti alla realizzazione del progetto, vengono di seguito esaminati gli effetti positivi che ne derivano. La realizzazione del progetto apporta numerosi vantaggi nell'ambito della pianificazione energetica sostenibile e genera di conseguenza benefici per l'ambiente e implica una crescita dal punto di vista socio-economico.

I principali vantaggi ottenibili attraverso la realizzazione del progetto sono molteplici, per esempio: lo sfruttamento di fonti rinnovabili costituisce una valida alternativa alle fonti energetiche fossili e in particolare il fotovoltaico è stato individuato dal governo italiano e altri organismi sovranazionali come una FER ideale per investimenti a livello di pianificazione energetica. La scelta di impianti afferenti alla produzione da fonti rinnovabili viene promossa a livello internazionale, nazionale e regionale poiché i benefici ambientali che ne derivano sono notevoli e facilmente calcolabili.

RISPARMIO CARBURANTE	TOE
Energia elettrica - fattore di conversione dell'energia primaria [TEP/Wh]	0,187
Tep risparmiate in un anno	14.751,31 x 106
Tep risparmiate in 30 anni	442.539,30 x 106

EMISSIONI IN ATMOSFERA EVITATA	CO2	SO2	NOx	Polveri
Specifiche emissioni in atmosfera [g / kWh]	462,00	0,54	0,49	0,02
Emissioni evitate in un anno [kg]	36.444.408	42.597,36	38.653,16	1.577,68
Emissioni evitate in 30 anni [kg]	1.093.332.240,00	1.277.920,8	1.159.594,8	47.330,4

Dal punto di vista ambientale si riscontrano evidenti riduzioni di gas a effetto serra poiché, a parità di energia prodotta, un impianto alimentato con fonti fossili risulta più impattante. L'alternativa proposta è realizzata in conformità con la Strategia Energetica Nazionale del 2017 approvata dai Ministri dello Sviluppo Economico e dell'Ambiente con Decreto del 10 novembre 2017, che prevede la de-carbonizzazione al 2030, con dismissione totale delle centrali su territorio nazionale alimentate a carbone e pone come obiettivo la transizione energetica verso un modello di produzione più

sostenibile. In aggiunta a quanto esposto, la tipologia di strutture a sostegno dei moduli proposti in progetto permette di sfruttare al meglio la risorsa sole e rende l'investimento in questa tipologia di impianti maggiormente efficiente.

La riduzione della dipendenza da paesi esteri dal punto di vista energetico attraverso la riduzione delle importazioni nel nostro paese, specialmente vista l'attuale situazione geopolitica

Sul piano socio-economico si realizza un aumento del fattore occupazionale diretto e la possibilità di creare nuove figure professionali sia in fase di cantiere (per le attività di costruzione e installazione dell'impianto) sia nella fase di esercizio dell'impianto (per le attività di gestione e manutenzione degli impianti).

La creazione e lo sviluppo di società e ditte che graviteranno attorno all'impianto ricorrendo a manodopera locale.

La riqualificazione dell'area grazie alla realizzazione di recinzioni, drenaggi, viabilità di accesso ai singoli lotti, sistemazioni idraulico-agrarie.

Inoltre, si specifica che il progetto rispetta il principio secondo li quale, ai sensi dell'art. 12 comma 7 del D.lgs. 387/2003 e ss.mm.ii. "Gli impianti di produzione di energia elettrica alimentati da fonti rinnovabili possono essere ubicati anche in zone classificate agricole dai vigenti piani urbanistici. Nell'ubicazione si dovrà tenere conto delle disposizioni in materia di sostegno nel settore agricolo con particolare riferimento alla valorizzazione delle tradizioni agroalimentari locali, alla tutela della biodiversità, così come del patrimonio culturale e del paesaggio rurale di cui alla legge 5 marzo 2001, n. 57, articoli 7 e 8, nonché del D.lgs. 18 maggio 2001, n. 228, art. 14"; in quanto, come meglio specificato nei capitoli dedicati, verranno messe in atto misure di mitigazione e compensazione opportunamente valutate.

Scegliere l'alternativa "zero" sottenderebbe la rinuncia ai vantaggi esaminati. Oltretutto è importante considerare che lo sfruttamento del sole per la produzione di energia fa fronte ad un impatto reversibile e accettabile con conseguenze esigue sotto il profilo visivo e paesaggistico.

3.4 Descrizione del progetto e dimensionamento dell'impianto

Il presente progetto prevede la realizzazione di un impianto con strutture ad inseguimento (trackers) su singolo asse con le caratteristiche di inclinazione riportate nella tabella 2 e datasheet allegati. Fondamentalmente sono previste strutture realizzate assemblando profili metallici commerciali in acciaio zincato a caldo piegati a sagoma. Queste strutture saranno affiancate in modo da costituire file di moduli, la distanza dai confini delle strutture è di almeno 8 metri, come è possibile vedere nella sezione tipica allegata.

Le strutture trackers (Fig 2) presentano le seguenti dimensioni: la tipologia 1Vx56 a singola vela con dimensioni di 2,278 metri per 65,08 metri, dove vengono alloggiate due serie da 28 moduli. Si opterà anche per la tipologia 1Vx28 con singola serie da 28 moduli, per l'ottimizzazione della producibilità in base alle irregolarità del sito, per tanto la stessa presenta le dimensioni di 2,278 metri per 32,77 metri. Il totale delle strutture tracker con tipologia 1Vx56 è pari a 1170, quelle della tipologia 1Vx28 è pari a 291.

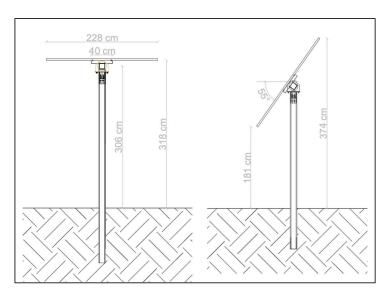


FIGURA 25: TRACKER TIPO AD ASSE VARIABILE

TABELLA 5 – LOCALIZZAZIONE DELL'IMPIANTO FV

Località "Nuraghe Solene"					
Asse di rotazione moduli sul sistema monoassiale (tracker) Nord-Sud					
Angolo ad inseguimento su singolo asse (tracket)	+55° a -55°				
Azimut moduli su strutture fisse	0° (sud)				

3.4.1 Caratteristiche dei moduli fotovoltaici

L'impianto prevede l'impiego di moduli fotovoltaici in silicio monocristallino del tipo bifacciali 72HL4-BDV 570 Watt della Jinko Solar® da 570 Wp, aventi un'efficienza del 22,07% – in condizioni standard - e installazione su strutture tracker di sostegno mobile, in acciaio zincato per l'ancoraggio dei moduli fotovoltaici bifacciali.

Il progetto prevede di utilizzare delle strutture portanti adatte al terreno dell'area in esame (per maggiori dettagli vedasi la relazione geologica e successivamente a realizzarsi, se del caso, la relazione geotecnica), con la probabilità di scegliere tra la configurazione che considera la soluzione con pali infissi nel terreno, mediante l'impiego di attrezzature battipalo o pali a vite. In entrambe le soluzioni si prevedono tutti gli accorgimenti di natura strutturale, tecnologica e di installazione necessari affinché si eviti l'utilizzo di basamenti in calcestruzzo, allo scopo di ridurre al minimo possibile l'impatto sul terreno, facilitando inoltre anche il piano di dismissione dell'impianto.

Resta intesto che eventuali cambi di configurazione strutturale possano essere adottati a valle di analisi e considerazioni oggetto del futuro progetto esecutivo.

Per maggiori dettagli si rimanda agli elaborati: MACOMER4-PDR02_Relazione Tecnica di dettaglio e calcoli preliminari; MACOMER4-PDR03_Relazione Preliminare Strutture; MACOMER4-PDR04_Relazione Tecnica Opere Architettoniche.

FIGURA 26 - FOTO TIPO AGROVOLTAICO

3.4.2 Inverter e trasformatore

L'inverter è un convertitore di tipo statico che viene impiegato per la trasformazione della CC prodotta dai pannelli in CA; esso esegue anche l'adeguamento in parallelo per la successiva immissione dell'energia in rete.

L'inverter possiede infatti una parte in continua in cui sono alloggiati gli ingressi in CC provenienti dai tracker (stringhe) e un sezionatore di protezione che a seguito della conversione dell'energia in CA vede l'uscita di linee di collegamento in BT verso la cabina di campo. Le linee di collegamento in BT di uscita appena menzionate andranno poi a confluire nelle platee attrezzate in cui saranno posizionati i quadri di parallelo per il collegamento alle cabine di trasformazione: a conversione avvenuta infatti, la tensione in BT a 800 V viene consegnata, a mezzo di cavidotto interrato in BT, alla cabina di trasformazione o di sottocampo dove il trasformatore provvede ad eseguire una elevazione a 36 kV.

I convertitori utilizzati per il campo fotovoltaico in esame sono gruppi statici trifase, costituiti da 12 ingressi per stringhe e relativo monitoraggio.

Agli inverter sono collegati generalmente, nella configurazione tipo, n°12 tracker ciascun inverter sorregge generalmente n°336 pannelli fotovoltaici, ma si potrà arrivare ad una configurazione ottimale, nei casi in cui il progetto lo richieda, di n° 420 pannelli; si ricorda che ciascuno modulo presenta una potenza nominale pari a 570 Wp, in condizioni standard. La potenza complessiva nominale collegata a ciascun inverter è pari a quella dei 12 tracker ossia pari a max 250,0 kWp, valore raggiungibile solo in casi particolari (ovvero nelle condizioni di picco).

L'inverter utilizzato ha una potenza di conversione di 250,0 kWp e presenta n.12 ingressi (+ e -) con n.12 inseguitori indipendenti, aventi la funzione di ottimizzare, mediante un algoritmo interno, la produzione di energia da ciascun ingresso.

Per maggiori dettagli circa il funzionamento e le caratteristiche tecniche dell'inverter fare riferimento all' elaborato "MACOMER4-PDR02_Relazione tecnica di dettaglio e calcoli preliminari" paragrafo "INVERTER".

In particolare, gli inverter di cui si prevede l'impiego hanno le seguenti caratteristiche

Type designation	SG250HX
Input (DC)	
Max. PV input voltage	1500 V
Min. PV input voltage / Startup input voltage	500 V / 500 V
Nominal PV input voltage	1160 V
MPP voltage range	500 V – 1500 V
MPP voltage range for nominal power	860 V – 1300 V
No. of independent MPP inputs	12
Max. number of input connector per MPPT	2
Max. PV input current	30 A * 12
Max. DC short-circuit current	50 A * 12
Output (AC)	
AC output power	250 kVA @ 30 °C / 225 kVA @40 °C / 200 KVA @ 50 °C
Max. AC output current	180.5 A
Nominal AC voltage	3 / PE, 800 V
AC voltage range	680 – 880V
Nominal grid frequency / Grid frequency range	50 Hz / 45 – 55 Hz, 60 Hz / 55 – 65 Hz
THD	< 3 % (at nominal power)
DC current injection	< 0.5 % In
Power factor at nominal power / Adjustable power factor	> 0.99 / 0.8 leading – 0.8 lagging
Feed-in phases / connection phases	3/3
	3/3
Efficiency	
Max. efficiency	99.0 %
European efficiency	98.8 %
Protection	
DC reverse connection protection	Yes
AC short circuit protection	Yes
Leakage current protection	Yes
Grid monitoring	Yes
Ground fault monitoring	Yes
DC switch	Yes
AC switch	No
PV String current monitoring	Yes
Q at night function	Yes
Anti-PID and PID recovery function	Yes
Overvoltage protection	DC Type II / AC Type II
General Data	
Dimensions (W*H*D)	1051 * 660 * 363 mm
Weight	99kg
Isolation method	Transformerless
Ingress protection rating	IP66
Night power consumption	< 2 W
Operating ambient temperature range	-30 to 60 °C
Allowable relative humidity range (non-condensing)	0 - 100 %
Cooling method	Smart forced air cooling
Max. operating altitude	5000 m (> 4000 m derating)
Display	_
	LED, Bluetooth+App
Communication	RS485 / PLC
DC connection type	MC4-Evo2 (Max. 6 mm², optional 10mm²)
AC connection type	OT/DT terminal (Max. 300 mm²)
Compliance	IEC 62109, IEC 61727, IEC 62116, IEC 60068, IEC 61683, VDE-AR-N
	4110:2018, VDE-AR-N 4120:2018, EN 50549-1/2, UNE 206007-1:2013,
	P.O.12.3, UTE C15-712-1:2013
Grid Support	Q at night function, LVRT, HVRT, active & reactive power control and
	power ramp rate control

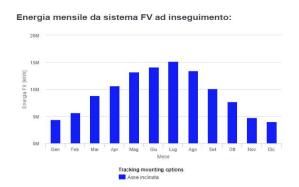
TABELLA 6 – DATI INVERTER SUNGROW

Per i collegamenti BT/MT/AT, il loro dimensionamento e le loro caratteristiche tecniche si rimanda alla relazione tecnica generale.

3.4.3 Stazione SE TERNA

La connessione alla stazione elettrica future Terna denominata "Macomer 380" con la cabina di consegna a bordo campo della società proponente avverrà in linea interrata AT (si veda la tavola allegata MACOMER4-PDT04_Estratto mappa catastale impianto FV e cavidotto).

Il collegamento avrà una lunghezza totale di circa 2110 m e sarà esercito alla tensione di 36 kV. Si prevede che questo sarà realizzato in particolare mediante l'uso di conduttori in alluminio RG7H1R con formazione minima $3x(3x1x400mm^2)$. In fase esecutiva il progetto potrebbe prevedere cavi con diversa designazione e caratteristiche.


In merito alle condizioni ambientali di riferimento vedasi la relazione studio ambientale MACOMER4-IAR04-Relazione_Paesaggistica.

3.4.4 Stima della produzione energetica dell'impianto

Il sistema, con una soluzione ad angolo variabile, atto questo ultimo a captare la massima energia nell'arco della giornata, raggiunge la produzione energetica annua di circa 78.884 MWh con una potenza complessiva nominale installata di 42.000,00 kWp. Il numero di moduli installati sarà della quantità pari a n° 73.696. Per la soluzione prevista con strutture tracker il numero totale di stringhe sarà di 2.632, considerando generalmente 28 moduli per stringa. Si ricorda che su ogni tracker tipo saranno alloggiati 28 moduli.

La tipologia di modulo impiegato avrà indicativamente una potenza di 570 Wp, implementando una tecnologia a celle monocristalline con soluzione bifacciale, in modo da ottenere il massimo della producibilità, puntando sull'elevata efficienza di conversione.

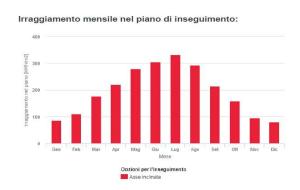


FIGURA 27: SULLA SINISTRA PRODUCIBILITÀ MEDIA MENSILE DEL SITO, SULLA DESTRA IRRAGGIAMENTO AL METRO QUADRO

L'area di progetto è circa pari a 722.700,00 m² mentre l'area occupata dalle strutture risulta essere pari a 195.258,34 m² che è circa il 27% della superficie dell'impianto (per ulteriori dati vedere il documento PD-R18 Piano preliminare di utilizzo delle terre e rocce da scavo.) Le parti costituenti l'impianto sono:

- 1. Strutture tracker di sostegno mobile, in acciaio zincato per ancoraggio moduli fotovoltaici;
- 2. Moduli fotovoltaici bifacciali con Potenza di picco 570 Wp;
- 3. Manufatti in cemento armato (cabine elettriche prefabbricate) per alloggiamento di quadri elettrici, inverters e trasformatori;
- 4. Stazione elettrica ed edifici di gestione e comando per la conversione della tensione ed immissione nella RTN.

3.5 Fase di costruzione dell'impianto

Sarà necessario un diserbo meccanico del terreno per eliminare la scarsa vegetazione spontanea esistente. Nelle aree previste per la posa delle cabine d'impianto e di trasformazione BT/MT non sarà necessario alcuno sbancamento in quanto occorrerà solo realizzare la platea ed eliminare circa 30 cm di terreno vegetale. La soletta sarà in prevalenza interrata, sporgendo dal piano di campagna di uno spessore pari a 10 cm. Pertanto, si può affermare che il profilo generale del terreno non sarà largamente modificato per cui non vi saranno modifiche rilevanti al sistema drenante esistente e consolidato.

Il materiale di scavo verrà reimpiegato totalmente in ambito di cantiere, ed eventuali surplus verranno gestiti ai sensi della vigente normativa sui rifiuti da scavo (D.P.R. 120/2017).

3.5.1 Realizzazione impianto agrivoltaico

L'impianto verrà realizzato con le seguenti fasi:

- Pulizia terreno mediante estirpazione vegetazione esistente;
- Messa in cantiere;
- Integrazione viabilità attuale, realizzata mediante percorsi carrabili di collegamento delle direttrici viarie principali, da realizzare internamente al lotto di terreno in misto di cava. È previsto l'utilizzo di mezzi meccanici tipo escavatore e camion per il carico/scarico del materiale utilizzato e/o rimosso.
- Regolarizzazione dell'area d'impianto;
- Sistemazione e/o integrazione della recinzione;
- Realizzazione di impianto antintrusione, videosorveglianza e di illuminazione dell'intero impianto;
- Cavidotti;
- Interramento linee elettriche aeree di distribuzione;
- Opere di regimentazione idraulica;
- Skid & storage;
- Sottostazione utente;
- Opere RTN;
- Costruzione dell'impianto agrofotovoltaico costituito da struttura metallica portante, previo scavo per l'interramento dei cavi elettrici per media e bassa tensione di collegamento alla

cabina di trasformazione ed alla cabina d'impianto, previste in struttura prefabbricata di c.a. monoblocco

- Assemblaggio, sulle già menzionate strutture metalliche portanti preinstallate, di pannelli fotovoltaici, compreso il relativo cablaggio;
- A completamento dell'opera, smobilitazione cantiere e sistemazione del terreno a verde con messa a dimora di essenze vegetali tipiche dei luoghi previa realizzazione di apposite buche nel terreno e riempimento delle stesse con terreno vegetale.
- Lavorazione del terreno tra le file di tracker e semina di prato migliorato di leguminose.

3.5.2 Mezzi ed attrezzatura da impiegare in fase di cantiere

Nel presente paragrafo si riporta un elenco di automezzi da adoperare durante le diverse fase di esecuzione dell'opera:

FASE DI CANTIERE N. Automezzi				
TIPOLOGIA	Impianto agro-voltaico e dorsali MT	Cavidotti	Sub-TOT	
Escavatore cingolato	1	1	2	
Battipalo	2	-	2	
Muletto	1	1	2	
Carrelli elevatore da cantiere	1	1	2	
Pala cingolata	1	1	2	
Autocarro mezzo d'opera	1	1	2	
Rullo compattatore	1	1	2	
Camion con gru	1	1	2	
Autogru	1	1	2	
Furgoni e auto da cantiere	2	1	3	
Autobetoniera	1	-	1	
Pompa per calcestruzzo	1		1	
Bobcat	1	1	2	
Macchine Trattrici	1	-	1	
Autobotte	1	-	1	
TOTALE AUTOMEZZI DA IMPIEGARE 27				

3.5.2.1 Messa in Cantiere

In relazione alle esigenze di cantiere si precisa che la realizzazione dell'impianto sarà effettuata con mezzi cingolati che possono operare senza la necessità di viabilità eseguita con materiali inerti proveniente da cava.

Con tali mezzi saranno realizzati i cavidotti, le infissioni dei pali delle strutture ad inseguimento ed il montaggio degli stessi. Il transito degli automezzi necessari per le attività di posa in opera di impianti elettrici e dei moduli fotovoltaici non prevede la realizzazione di piste realizzate in materiale inerte. Gli automezzi transiteranno sui terreni esistenti, appositamente compattati, in stagione idonea ad operare in sicurezza. L'incantieramento e l'esecuzione dei lavori prevedono una specifica area di stoccaggio e baraccamenti all'interno dell'area di impianto, senza la previsione di piazzole eseguite

con materiali inerti provenienti da cava. Potrà essere valutato in sede di progetto esecutivo il riutilizzo, per le esigenze di cantiere, nell'ambito di un piano di utilizzo redatto ed approvato nel rispetto del d.Lgs. 152/2006 e ss.mm.ii., dei materiali accatastati provenienti dalle attività di spietramento eseguite dai conduttori agricoli ed ubicate all'interno dell'area di impianto. L'incantieramento dell'area di sottostazione sarà effettuata realizzando, in sede di avvio lavori, i piazzali previsti in sede di progetto, e descritti nel seguito. Le opere relative alla cantierizzazione interesseranno esclusivamente l'area interna di cantiere, in quanto, essendo già in presenza di una rete viaria efficiente, non è prevista alcuna opera supplementare esterna. Qualora dovesse essere necessario, per alcune fasi di lavoro si provvederà al noleggio di attrezzature idonee. In funzione delle opere da realizzare sarà prevista la presenza di personale specializzato da impiegare ad hoc, tra cui: operatori edili, elettricisti, ditte specializzate (montatori meccanici). Il cantiere dovrà essere dotato di servizi igienici di cantiere (del tipo chimico) dimensionati in modo da risultare consoni al numero medio di operatori presumibilmente presenti in cantiere e con caratteristiche rispondenti all'allegato XIII del d.Lgs. 81/08. Il numero dei servizi non potrà essere in ogni caso inferiore ad 1 ogni 10 lavoratori occupati per turno.

3.5.2.2 VIABILITÀ DI IMPIANTO

Per quanto possibile si cercherà di utilizzare la viabilità già esistente, al fine di minimizzare il più possibile gli effetti derivanti dalla realizzazione sia delle opere di accesso. L'attuale ipotesi di ubicazione dei moduli fotovoltaici tiene in debito conto sia le strade principali di accesso, sia le strade secondarie. All'interno dell'impianto sarà realizzata una viabilità di servizio per garantire sia un rapido accesso ai componenti elettrici di impianto che la posa di tutte le linee interne MT, oltre che il mantenimento delle stesse.

La viabilità interna sarà esclusivamente perimetrale e si svilupperà lungo tutto il perimetro dell'impianto.

Tutte le stradelle di servizio per la manutenzione dell'impianto, allo scopo di non alterare i caratteri geomorfologici ed idrogeologici dell'area interessata, saranno realizzate in terra battuta con eventuale aggiunta di pietrisco, assecondando le caratteristiche orografiche del sito in modo da evitare una completa impermeabilizzazione dell'area. La viabilità di impianto di nuova realizzazione è stata prevista con pendenze max pari al 2%.

Accessibilità: l'area di progetto è raggiungibile percorrendo la strada sterrata che conduce al centro di Macomer.

In corrispondenza di ogni punto di accesso all'impianto è stato previsto un cancello avente una larghezza di 7 m in modo da semplificare la viabilità e l'incrocio dei mezzi durante i lavori. Il tracciamento della viabilità all'interno dell'impianto è stato effettuato istituendo una viabilità perimetrale che permetta di raggiungere anche le zone dove sono situate le cabine. Tutte le strade interne hanno una larghezza di 4 m per garantire il transito dei mezzi. Per gli stessi motivi, attorno alle cabine si sviluppano dei piazzali.

3.5.2.3 REGOLARIZZAZIONE SUPERFICI AREA DI IMPIANTO

Non ci saranno movimentazioni di terra al fine di regolarizzare il sito; di fatto, il terreno preesistente risulta già modellato nell'ambito della conduzione agricola. Saranno rispettate le naturali pendenze che consentano di garantire il corretto sgrondo delle acque piovane, ricostruendo le scoline di deflusso in rapporto alla modularità dell'impianto tecnologico. Al fine di non alterare l'attuale assetto idrologico dell'area, si è ritenuto opportuno mantenere inalterato il sistema dei fossi principali e conseguentemente le capezzagne che consentono di eseguire le normali operazioni di pulizia e manutenzione.

3.5.2.4 RECINZIONI

Al fine di garantire la sicurezza dell'impianto, l'area di pertinenza sarà delimitata da una recinzione metallica integrata da un impianto di allarme antintrusione e di videosorveglianza. La rete metallica prevista per la recinzione delle aree di impianto è costituita da una rete grigliata in acciaio zincato alta 2,5 metri con dimensioni della maglia di 10x10 cm nella parte superiore e 20x10 cm nella parte inferiore. Nella parte inferiore è previsto il sollevamento di circa 30 cm dal piano di calpestio della rete metallica al fine di consentire il passaggio di mammiferi, rettili e anfibi, oltre che di numerosi elementi della micro e meso-fauna.

La rete sarà sostenuta da tubi in acciaio, di diametro 60 mm, infissi nel terreno ad una distanza di circa 3 metri l'uno dall'altro. Sia la rete metallica che i tubi in acciaio sono previsti di colore verde. L'opera a fine esercizio verrà smantellata e sarà ripristinato lo stato dei luoghi originario.

Gli accessi principali saranno dotati di un cancello carraio metallico per gli automezzi, largo 7 m e con un'altezza di circa 2 m.

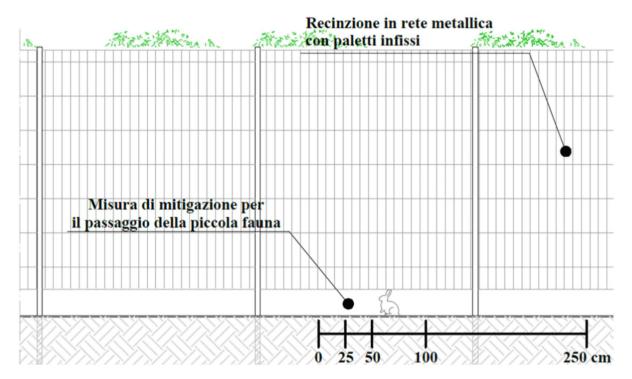


FIGURA 28 – ESEMPIO RECINZIONE METALLICA CHE DELIMITA L'AREA DI PERTINENZA DELL'IMPIANTO

3.5.2.5 IMPIANTO ANTINTRUSIONE E VIDEOSORVEGLIANZA

L'impianto di allarme sarà costituito da sistema antintrusione perimetrale e sistema di videosorveglianza a circuito chiuso realizzato con telecamere perimetrali per monitorare soprattutto le zone maggiormente sensibili ovvero recinzione perimetrale, cancelli di ingresso e viabilità di accesso.

È stato previsto un impianto di videosorveglianza con l'utilizzo di telecamere Day/Night ad alta risoluzione ed un apparato di videoregistrazione digitale affidabile e di elevata qualità, oltre ad un impianto di illuminazione costituito da pali aventi altezza 7,5 m fuori terra e dotati di lampade a led da 50 W cut-off.

È, inoltre, previsto un sistema di antintrusione perimetrale per la protezione della recinzione metallica flessibile che delimita l'impianto fotovoltaico. Il sistema di antintrusione impiega sensori piezodinamici che percepiscono le vibrazioni a cui è sottoposta la recinzione durante un tentativo di intrusione per mezzo di taglio, arrampicamento o sfondamento della struttura, inclusi tagli sporadici (effettuati a una certa distanza di tempo l'uno dall'altro).

Il sistema non impedirà il passaggio della micro e meso fauna che sarà garantito da varchi delle dimensioni di 30x30 cm ogni 20 m.

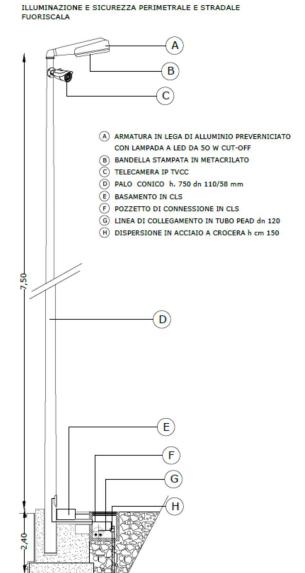


FIGURA 29 – ESEMPIO IMPIANTO DI ILLUMINAZIONE INTEGRATO CON SISTEMA DI VIDEOSORVEGLIANZA – ESTRATTO DALL'ELABORATO TECNICO MACOMER4-PDR02

3.5.2.6 CAVIDOTTO

Il cavidotto servirà per il collegamento dell'impianto di produzione con la RTN Terna. Gli interventi di progetto possono essere così suddivisi:

- Realizzazione delle infrastrutture temporanee di cantiere;
- Apertura della fascia di lavoro e scavo della trincea;
- Posa dei cavi e realizzazione delle giunzioni;
- Ricopertura della linea e ripristini.

Il collegamento avrà una lunghezza totale di circa 2,11 km e sarà esercito alla tensione di 36 kV. Questo sarà realizzato in particolare mediante l'uso di conduttori in rame con formazione minima 3x(3x1x400 mm²). Tale cavidotto è da considerarsi suddiviso in due parti; infatti, la prima parte collegherà l'area di sviluppo nei pressi della Frazione "Nuraghe Solene" alla seconda area sita a Sud con una distanza di 0,59 km. La seconda parte collegherà quest'ultima area di sviluppo con la SE denominata "Stazione Terna Macomer", con uno sviluppo in lunghezza di 1,53 km.

Lo scavo sarà eseguito nel rispetto delle prescrizioni che saranno rilasciate dagli enti competenti, nonché con l'obiettivo di minimizzare i disagi per i frontisti e garantire l'avanzamento delle lavorazioni nel rispetto delle norme di sicurezza. Al termine dei lavori civili ed elettromeccanici sarà effettuato il collaudo di tutte le opere. Non sono previsti chiusini e pozzetti fuori terra e pertanto a partire dalle strutture di inseguimento i cavi non sono ispezionabili, ed eventuali manutenzioni necessiterebbero degli interventi con mezzi di movimento terra.

Il cavidotto per il collegamento dell'impianto di produzione con la RTN Terna attraversa il Comune di Macomer.

La risoluzione delle interferenze con attraversamenti di strade sarà garantita attraverso interventi di scavo e rinterro con ripristino della viabilità esistente alle condizioni ex-ante; inoltre, al fine di limitare al massimo i possibili impatti sulla componente in oggetto, con particolare riferimento all'aspetto archeologico e paesaggistico, verranno condivise dettagliatamente tutte le attività previste con la Soprintendenza per i beni archeologici competenti per il territorio. Inoltre, durante la fase di costruzione, la Società Proponente garantirà l'assistenza archeologica specializzata durante le attività di scavo.

3.6 Fase di esercizio

Le attività prevalenti che verranno svolte durante la vita e l'esercizio dell'impianto possono essere riassunte nelle attività di:

- manutenzione dell'impianto relativamente alla componente elettrica;
- pulizia dei pannelli;
- lavorazioni agronomiche quali: sfalcio delle colture infestanti, potature di allevamento sulla fascia di mitigazione perimetrale, sfalcio prato di leguminose;
- vigilanza.

Per evitare che nel tempo l'impianto riduca la sua funzionalità e il suo rendimento occorrerà un continuo monitoraggio per verificare che tutte le componenti installate mantengano le loro caratteristiche di sicurezza e di affidabilità attraverso interventi di manutenzione standard effettuata nel rispetto delle vigenti Normative in materia. Per evitare l'accumulo di polvere o altro con una conseguente diminuzione del rendimento dell'impianto, i pannelli verranno puliti con cadenza trimestrale.

La centrale viene tenuta sotto controllo-mediante un sistema di supervisione che permette di rilevare le condizioni di funzionamento con continuità e da posizione remota. A fronte di situazioni rilevate dal sistema di monitoraggio, di controllo e di sicurezza, è prevista l'attivazione di interventi da parte di personale tecnico addetto alla gestione e conduzione dell'impianto, le cui principali funzioni possono riassumersi nelle seguenti attività:

- servizio di guardiania;
- conduzione impianto, in conformità a procedure stabilite, di liste di controllo e verifica programmata;
- manutenzione preventiva ed ordinaria, programmate in conformità a procedure stabilite per garantire efficienza e regolarità di funzionamento;
- segnalazione di anomalie di funzionamento con richiesta di intervento di riparazione e/o
 manutenzione straordinaria da parte di ditte esterne specializzate ed autorizzate dai
 produttori delle macchine ed apparecchiature;
- predisposizione di rapporti periodici sulle condizioni di funzionamento dell'impianto e sull'energia elettrica prodotta.

La gestione dell'impianto sarà effettuata generalmente con ispezioni a carattere giornaliero, mentre la manutenzione ordinaria sarà effettuata con interventi a periodicità mensile.

3.7 Dismissione del progetto e ripristino ambientale

Si prevede una vita utile dell'impianto non inferiore ai 30 anni. Poiché l'iniziativa, da un punto di vista economico, non si regge sull'erogazione del contributo da parte del GSE, bensì su contratti privati, è verosimile pensare che a fine vita l'impianto non venga smantellato, bensì mantenuto in esercizio attraverso opere di manutenzione che prevedono la totale o parziale sostituzione dei componenti elettrici principali (moduli, inverter, trasformatori, ecc.). Nel caso in cui, per ragioni puramente gestionali, si dovesse optare per lo smantellamento completo, i materiali tecnologici elettrici ed elettronici verranno smaltiti secondo direttiva 2002/96/EC: WEEE (*Waste Electrical and Electronic Equipment*) – direttiva RAEE – recepita in Italia con il d.Lgs. 151/05.

Per la produzione di energia rinnovabile, i moduli esausti devono essere recuperati e riciclati. Questo processo ridurrà al minimo lo spreco e permetterà il riutilizzo di preziose materie prime per la produzione di nuovi moduli.

In fase di dismissione le varie parti dell'impianto saranno separate in base alla loro natura in modo da poter riciclare il maggior quantitativo possibile dei singoli elementi, quali alluminio e silicio, presso ditte che si occupano di riciclaggio e produzione; i restanti rifiuti saranno inviati in discariche specifiche e autorizzate.

Il piano di dismissione per l'impianto fotovoltaico in esame è caratterizzato essenzialmente dalle sequenti attività lavorative:

- Dismissione dei pannelli fotovoltaici di silicio monocristallino;
- Dismissione dei telai in acciaio;
- Dismissione dei gruppi di conversione DC/CA (Gruppi Inverter) e delle apparecchiature elettriche/elettroniche;
- Dismissione delle cabine elettriche di trasformazione MT/BT e della annessa platea di fondazione;
- Dismissione della recinzione metallica perimetrale;
- Opere a verde di ripristino del sito.

In merito alla dismissione dei moduli fotovoltaici, ad oggi in Italia esistono realtà aziendali che si occupano del loro recupero e riciclaggio, come il consorzio ECO-PV o COBAT che rientrano tra i Consorzi/Sistemi di raccolta idonei per lo smaltimento dei moduli fotovoltaici a fine vita come riconosciuto dal GSE; le parti metalliche verranno rivendute mentre i cavi saranno destinati ad impianti di recupero.

Dal punto di vista dei costi per il recupero dei moduli fotovoltaici, i consorzi sono orientati per un ritiro presso un punto di raccolta concordato ed il trattamento dei rifiuti sarà gratuito per gli utenti finali.

Il costo dello smaltimento del fotovoltaico nell'economia generale è trascurabile in termini energetici e di emissione di gas serra con un'incidenza dell'0,1% sul totale dell'energia consumata dall'impianto nella sua vita.

Le demolizioni di strutture di carpenteria metallica verranno eseguite con l'ausilio di particolari mezzi e attrezzature come, per esempio, miniescavatori cingolati/gommati muniti di cesoia idraulica. Per effettuare le operazioni di demolizione delle strutture metalliche con questi mezzi particolari, verranno impiegati degli addetti al settore qualificati e specializzati, in grado di svolgere le operazioni di demolizione delle strutture di carpenteria metallica con la maggiore attenzione e professionalità possibile. La rimozione della platea di fondazione, dei pali di illuminazione e della recinzione metallica, verranno eseguite con l'ausilio di escavatori idraulici muniti di frantumatori e martelli pneumatici. Per effettuare tali operazioni con questi mezzi particolari, verranno impiegati degli addetti al settore qualificati e specializzati, in grado di svolgere le operazioni di rimozione delle strutture con la maggiore attenzione e professionalità possibile. Questa fase comprende anche il servizio di rimozione dei pali infissi, dell'eventuale frantumazione delle fondazioni risulta e del loro carico e trasporto a discariche o luoghi di smaltimento di materiali autorizzati.

In merito alla dismissione delle apparecchiature elettriche/elettroniche, essendo le apparecchiature elettriche dell'impianto fotovoltaico, quali Quadri Elettrici, Gruppi di Conversione DC/AC, Trasformatori, Sistemi di Monitoraggio e Telecontrollo, ecc., classificate secondo il decreto Legge 151 del 2005, come "Rifiuti di Apparecchiature Elettriche ed Elettroniche (in sigla RAEE)" si procederà principalmente con la dismissione, il loro carico e trasporto a punti di raccolta autorizzati al recupero, reimpiego o ricircolo dei materiali. Questi apparecchi pur rappresentando un piccolo volume rispetto al complesso dei rifiuti, sono tra i più inquinanti e pericolosi per l'ambiente, essendo costituiti anche da materiali pericolosi e difficili da trattare, come CFC, cadmio e mercurio.

Al termine della vita utile dell'impianto a seguito della sua dismissione completa, verranno eseguite una serie di azioni finalizzate al ripristino ambientale del sito ovvero il ripristino delle condizioni analoghe allo stato originario. Non saranno necessarie valutazioni in merito alla stabilità dell'area, né ulteriori opere di regimazione delle acque superficiali e meteoriche se non un mantenimento della rete di canali scolanti presenti o una ricostituzione ove necessario per il collegamento alla linea principale. Le alberature utilizzate per la mitigazione perimetrale e per le aree interne non occupate dalle strutture FV, saranno mantenute in sito.

Si può stimare che il costo di una integrale dismissione dell'impianto sarà pari al 5% dell'investimento iniziale, al netto delle valorizzazioni conseguenti al recupero dei materiali che presenteranno un valore di mercato.

3.8 Energia prodotta annualmente

La tecnologia adottata è costituita da strutture ad inseguimento su singolo asse orientate in direzione Est-Ovest con una inclinazione prestabilita al fine di ottimizzare la captazione dell'energia in funzione del sito di installazione. Alcuni studi ritengono che l'inclinazione ottimale, ovvero quella che garantisce l'angolo di incidenza migliore per la radiazione solare, sia analoga ai gradi di latitudine del sito in cui si trova l'impianto. Il sole, infatti, si "muove" da Est a Ovest ad altezze variabili durante il giorno e durante l'anno. I moduli fotovoltaici sono collegati fra loro in unità di potenza maggiore chiamate stringhe, a loro volta collegate tra loro in strutture definite tavoli fotovoltaici. Sono necessari poi gli inverter per trasformare la corrente continua prodotta dai moduli in corrente alternata.

Questa tecnologia offre molti vantaggi: strutture di supporto semplici ed economiche, leggere, di facile montaggio e smontaggio. Assenza di costi di esercizio e di manutenzione, o legati alla minima manutenzione ordinaria; movimenti di terra ridotti al minimo.

Si prestano ad un inserimento paesistico poco impattante, grazie anche alla previsione di un'ampia fascia perimetrale destinata a mitigazione ambientale, con piantagione di filari.

Al termine del ciclo di vita dell'impianto si prevede una veloce dismissione dell'impianto con conseguenze per l'ambiente poco significative e reversibili in breve tempo.

Tra i vantaggi principali si ricorda la teorica producibilità maggiore rispetto ad impianti strutture fisse.

Il valore dell'energia prodotta in un anno è pari a: 78,88 MWh/anno. Sulla base della producibilità annua stimata si può affermare che la messa in servizio e l'esercizio dell'impianto fotovoltaico consentirà di evitare l'immissione in atmosfera di sostanze nocive come di seguito indicato:

EMISSIONI IN ATMOSFERA EVITATA	CO2	SO2	NOx	Polveri
Specifiche emissioni in atmosfera [g / kWh]	462,00	0,54	0,49	0,02
Emissioni evitate in un anno [kg]	36.444.408	42.597,36	38.653,16	1.577,68
Emissioni evitate in 30 anni [kg]	1.093.332.240,00	1.277.920,8	1.159.594,8	47.330,4

TABELLA 7 – FONTE: RAPPORTO AMBIENTALE ENEL

3.9 Interazioni con l'ambiente

Di seguito si analizzano i principali fattori di interazione tra il progetto e l'ambiente in cui andrà ad inserirsi, definiti a partire dalla descrizione delle attività. Successivamente, nel quadro di riferimento ambientale (Cap. 4) saranno poi definiti ed analizzati in dettaglio i fattori di impatto e la loro rilevanza in relazione alle caratteristiche del Progetto e del contesto territoriale, ambientale e sociale, per arrivare infine alla valutazione dei potenziali impatti ambientali su ogni singola componente analizzata.

3.9.1 Occupazione di suolo

La superficie occupata dalle strutture fotovoltaiche sarà pari a circa 19 ettari rispetto ad una superficie complessiva disponibile di 72,30 ettari.

Le superfici agricole utili all'interno dell'area di progetto tra le file delle strutture saranno destinate a prato polifita per una superficie complessiva 57,61 ettari.

Complessivamente, l'area occupata dalle opere di mitigazione, compensazione e conservazione, occuperà una superficie di circa 10,25 ettari prevederà la messa dimora di essenze arbustive ed arboree autoctone e/o storicizzate. La vegetazione perimetrale creerà una fitta fascia di interruzione tra il contesto agrario e l'impianto stesso.

Per maggiori dettagli circa la caratterizzazione dell'uso del suolo si rimanda al paragrafo dedicato, nonché alla relazione agronomica allegata (MACOMER4-IAR05).

3.9.2 Impiego di risorse idriche

Il consumo di acqua in fase di cantiere è limitato alle seguenti operazioni: posa del calcestruzzo per la realizzazione dei cavi interrati, pulizia dei moduli fotovoltaici, irrigazione delle specie vegetali erbacee, arbustive ed arboree.

Il fabbisogno in fase di esercizio è legato alle esigenze irrigue per la formazione iniziale della barriera vegetale perimetrale e dei terreni residuali di confine adiacenti alla viabilità pubblica.

L'approvvigionamento irriguo sarà fornito tramite irrigazioni di emergenza con l'ausilio di autobotte per garantire l'attecchimento delle piante. Per quanto concerne i consumi di acqua potabile, questi saranno di entità limitata. Per i bagni chimici la gestione sarà affidata a società esterna, che si occuperà di tutte le operazioni (pulizia, disinfezione, manutenzione ordinaria).

3.9.3 Impiego di risorse elettriche

L'energia elettrica necessaria per la cantierizzazione dell'intervento sarà derivata dalle utenze già presenti nell'area.

3.9.4 Scavi

Si evidenza che l'installazione dell'impianto non prevede l'esecuzione di opere di movimento terra consistenti in scavi di sbancamento finalizzata alla creazione di gradonature, rilevati, sterri. Sono state infatti previste strutture, con il fine di assecondare al meglio, in presenza di variazioni di pendenza lungo l'asse della struttura, la pendenza del terreno preesistente nonché già modellata negli anni scorsi nell'ambito della conduzione agricola. Come anticipato i sistemi di ancoraggio dei moduli saranno infissi nel terreno, senza la necessità di realizzazione di scavi ed opere in conglomerato cementizio.

Le terre e rocce da scavo proverranno da:

- Preparazione del piano di posa dell'intero sito;
- Posa in opera cabine di trasformazione complete di basamento e impianto di terra;
- Posa in opera cabine di consegna e cabine vani utente;
- Esecuzione di scavi a sezione per le trincee in cui saranno posati i cavi;
- Esecuzione scavi per posa delle fondazioni delle nuove recinzioni con paletti e rete a maglia di ampiezza variabile e del nuovo cancello;
- Esecuzione scavi per canali di protezione;

Per maggiori dettagli si rimanda all' elaborato "Piano di utilizzo delle terre e rocce da scavo" (MACOMER4-PDR14).

3.9.5 Traffico indotto dalla realizzazione del progetto

La realizzazione del presente progetto prevederà un traffico indotto, che è distinto in due fasi:

Fase di realizzazione: limitato ai mezzi per il trasporto dei materiali e al personale di cantiere. Per il trasporto dei moduli fotovoltaici e del materiale non riutilizzabile nelle fasi di cantiere e di fine esercizio, saranno necessari pochi autocarri al giorno che sfrutteranno la viabilità esistente. Il materiale per la realizzazione dell'impianto sarà conferito in discarica, regolarmente in accordo ai tempi di avanzamento lavori.

Fase di esercizio: limitato al personale addetto al monitoraggio e alla manutenzione dell'impianto.

3.9.6 Gestione dei rifiuti

L'area di progetto di Macomer 4 è interessata dalle regolamentazioni del Piano regionale di gestione dei rifiuti. Tenuto conto dell'alto grado di prefabbricazione dei componenti utilizzati, si prevede saranno prodotti esigui quantitativi di rifiuti. Costituiscono un rifiuto principalmente gli imballaggi, da considerarsi non pericolosi. Al fine di conseguire una corretta gestione dei rifiuti, la Società Proponente provvederà alla predisposizione di un apposito Piano di Gestione dei Rifiuti in fase preliminare. All'interno del Piano saranno definiti gli aspetti inerenti alla gestione dei rifiuti e in particolare saranno individuati:

- i potenziali rifiuti prodotti in fase di cantiere;
- la caratterizzazione dei rifiuti, con attribuzione del codice CER;
- le aree adeguate al deposito temporaneo, parallelamente alla predisposizione di una apposita segnaletica ed etichettatura per la corretta identificazione dei contenitori di raccolta delle varie tipologie di codici CER stoccati;
- l'identificazione per ciascun codice CER del trasportatore e del destinatario finale.

Le macrocategorie dei codici CER che si prevede saranno assegnati ai rifiuti potenziali dell'impianto riguardano le categorie espresse in tabella.

Codi	ce	Tipologia
15	15 01 01 15 01 02	Imballaggi (compresi i rifiuti urbani di imballaggio oggetto di raccolta differenziata)
16	16 02 14	Rifiuti non specificati altrimenti nell'elenco (materiali del pannello)
17	17 01 17 02 17 04 01 17 04 02 17 04 04 17 04 05	Rifiuti dalle attività di costruzione e demolizione (compreso il terreno prelevato da siti contaminati)

Per quanto riguarda i residui delle potature, si prevede una trinciatura e il reinterro in loco. Non si prevede di conseguenza lo smaltimento di questi residui.

Sarà effettuata la raccolta differenziata per lo smaltimento dei rifiuti prodotti in fase di cantiere. Il deposito temporaneo di rifiuti presso il cantiere (inteso come raggruppamento dei rifiuti effettuato, prima della raccolta, nel luogo in cui gli stessi sono prodotti) dovrà essere gestito in osservanza dell'art. 183, lettera m, del d.Lgs. 152/2006 e s.m.i., nel rispetto delle seguenti condizioni stabilite dalla normativa:

- i rifiuti depositati non devono contenere policlorodibenzodiossine, policlorodibenzofurani, policlorodibenzofenoli in quantità superiore a 2,5 parti per milione (ppm), né policlorobifenile e policlorotrifenili in quantità superiore a 25 parti per milione (ppm);
- i rifiuti devono essere raccolti ed avviati alle operazioni di recupero o di smaltimento secondo una delle seguenti modalità alternative, a scelta del produttore: con cadenza almeno trimestrale, dipendentemente dalle quantità in deposito; quando il quantitativo di rifiuti in deposito raggiunga complessivamente i 10 metri cubi nel caso di rifiuti pericolosi o i 20 metri cubi nel caso di rifiuti non pericolosi. In ogni caso, allorché il quantitativo di rifiuti pericolosi non superi i 10 metri cubi l'anno e il quantitativo di rifiuti non pericolosi non superi i 20 metri cubi l'anno, il deposito temporaneo non può avere durata superiore ad un anno (...).

Nel rispetto della normativa vigente i rifiuti non pericolosi prodotti nel cantiere saranno prioritariamente avviati a recupero. In quanto la normativa vigente in materia di rifiuti promuove e incentiva, a seconda dei casi, il recupero dei rifiuti attraverso un loro:

- riutilizzo (ovvero ritorno del materiale nel ciclo produttivo della stessa azienda produttrice o di aziende che operano nello stesso settore);
- riciclaggio (ovvero avvio in un ciclo produttivo diverso ed esterno all'azienda produttrice);
- altre forme di recupero (per ottenere materia prima);
- recupero energetico (ovvero utilizzo come combustibile per produrre energia).

I materiali di risulta, opportunamente selezionati, saranno riutilizzati per quanto possibile nell'ambito del cantiere per formazione di rilevati, riempimenti o altro. Il rimanente materiale di risulta prodotto dal cantiere e non utilizzato sarà inviato a smaltimento o recupero presso apposite ditte autorizzate. Per maggiori dettagli si rimanda al "Piano preliminare di utilizzo in sito delle terre e rocce da scavo escluse dalla disciplina dei rifiuti" redatto ai sensi del D.P.R. 120/2017 e allegato alla

documentazione di Progetto dell'impianto agrovoltaico presentato contestualmente al presente SIA, oltre al già citato Piano di gestione dei rifiuti.

PRODUZIONE DI RIFIUTI FASE DI ESERCIZIO

La produzione di rifiuti nella fase di esercizio deriva esclusivamente da attività di manutenzione programmata e straordinaria dell'impianto. Per quanto concerne sfalci e potature generati dalle attività manutentive della fascia arborea, questi saranno gestiti in accordo con la normativa vigente. Le tipologie di rifiuti derivanti dalle attività di manutenzione saranno direttamente gestite dalla ditta fornitrice del servizio, che si configura come "produttore" del rifiuto, con i relativi obblighi/responsabilità derivanti dalla normativa di settore. La società proponente effettuerà una stretta attività di verifica e controllo che l'appaltatore operi nel pieno rispetto della normativa vigente. Per quanto concerne i rifiuti la cui produzione è in capo alla società proponente, questi saranno gestiti nel rispetto della normativa vigente. Sulla base delle considerazioni sopra esposte si ritiene che il progetto sia coerente e compatibile con gli obiettivi previsti dal piano regionale.

3.9.7 Emissioni in atmosfera in fase di cantiere

Durante la fase di cantiere vi saranno emissioni in atmosfera riconducibili a:

- Circolazione dei mezzi di cantiere (trasporto materiali, trasporto personale, mezzi di cantiere) che emettono inquinanti tipici emessi dalla combustione dei motori diesel dei mezzi (CO e Nox);
- Dispersioni di polveri riconducibili alle attività di escavazione e movimentazione dei mezzi di cantiere.

Per ridurre quanto più possibile l'impatto verranno adottate misure preventive quali bagnatura dei materiali e delle aree prima dello scavo, il lavaggio e pulitura delle ruote dei mezzi per evitare dispersione di polveri e fango, l'uso di contenitori di raccolta chiusi ecc.

Durante la fase di esercizio l'impianto di progetto non comporterà emissioni in atmosfera. Viene presentato nel seguito il dimensionamento dei mezzi di trasporto per la fase di cantiere. Per l'impianto oggetto di studio, saranno adottate le soluzioni tecnico - logistiche più opportune.

Si riporta di seguito l'elenco degli automezzi necessari.

FASE DI CANTIERE N. Automezzi				
TIPOLOGIA	Impianto agro-voltaico e dorsali MT	Cavidotti	Sub-TOT	
Escavatore cingolato	1	1	2	
Battipalo	2	-	2	
Muletto	1	1	2	
Carrelli elevatore da cantiere	1	1	2	
Pala cingolata	1	1	2	
Autocarro mezzo d'opera	1	1	2	
Rullo compattatore	1	1	2	
Camion con gru	1	1	2	
Autogru	1	1	2	
Furgoni e auto da cantiere	2	1	3	
Autobetoniera	1	-	1	
Pompa per calcestruzzo	1	-	1	
Bobcat	1	1	2	
Macchine Trattrici	1	-	1	
Autobotte	1	-	1	
TOTALE AUTOMI	27			

In fase di cantiere le emissioni gassose inquinanti sono causate dall'impiego di mezzi d'opera quali camion per il trasporto degli inerti, rulli compressori, escavatori, ruspe per i movimenti terra ecc. Tale metodologia, grazie alla tipologia del veicolo, la velocità, lo stato di manutenzione, il regime di guida, le caratteristiche del percorso ecc. consente di riprodurre le emissioni di inquinanti. Nel caso considerato è possibile ipotizzare l'attività di cantiere con un parco macchine di 27 unità costituite e di seguito descritte, senza entrare nel merito della tipologia, cilindrata e potenza del mezzo impiegato.

Sulla base dei consumi medi ricavabili dalle schede tecniche per mezzi da lavoro, è possibile stimare un consumo orario medio di gasolio pari a circa 10 litri/h per i mezzi più leggeri e 20 litri/h per gli autocarri.

FASE DI CANTIERE: Consumo medio Automezzi				
TIPOLOGIA	Numero mezzi	Consumo medio per mezzo [I/h]	Consumo parziale [l/h]	
Escavatore cingolato	2	20	40	
Battipalo	2	10	20	
Muletto	2	10	20	
Carrelli elevatore da cantiere	2	10	20	
Pala cingolata	2	20	40	
Autocarro mezzo d'opera	2	10	20	
Rullo compattatore	2	10	20	
Camion con gru	2	20	40	
Autogru	2	20	40	
Furgoni e auto da cantiere	3	10	30	
Autobetoniera	1	20	20	
Pompa per calcestruzzo	1	20	20	
Bobcat	2	10	20	
Macchine Trattrici	1	10	10	
Autobotte	1	20	20	
TOTALE AUTOMEZZI DA IMPIEGARE	27		380	

Nell'arco di una giornata lavorativa di 8 ore, considerando la condizione più sfavorevole caratterizzata dalla totalità dei mezzi, sarebbe dunque prevedibile un consumo medio complessivo di carburante pari a circa 3.040 litri/giorno. Considerato che la densità del gasolio pari a 0,88 Kg/dm³, lo stesso consumo giornaliero in chilogrammi sarebbe pari a circa 2.675,2 kg/giorno.

Naturalmente, data la temporaneità delle lavorazioni e la non contemporaneità delle stesse, è irragionevole considerare che tutto il parco macchine lavori simultaneamente nell'arco delle 8 ore lavorative. Pertanto, sembra più logico ipotizzare un fattore di riduzione pari a 0,40 considerando un parco macchine medio di 10 unità.

Di conseguenza otteniamo che, nell'arco di una giornata lavorativa di 8 ore è dunque prevedibile un consumo medio complessivo di gasolio pari a circa 1.070,08 kg/giorno.

 Fattori di emissione medi espressi in g/Kg di gasolio consumato (rif. bibliografico "CORINAIR" per grossi motori diesel).

Unità di misura	NOx	co	PM ₁₀
g di inquinante emessi per ogni Kg di gasolio consumato	45.0	20,0	3,2

TABELLA 8 - FATTORI DI EMISSIONE IN G/KG DI GASOLIO COMBUSTO

Nella tabella precedente sono riportate le emissioni medie in atmosfera dei mezzi d'opera a motore diesel (rif. CORINAIR per grossi motori diesel). Applicando le condizioni descritte precedentemente, in riferimento alla riduzione dell'85%, in fase di cantiere le emissioni inquinanti in atmosfera ammontano a:

- NOx (ossidi di azoto) = 0,0481536 ton/giorno;
- CO (Monossido di Carbonio) = 0,0214016 ton/giorno;
- PM10 (Polveri inalabili) = 0,0034243 ton/giorno.

In base a tutte le considerazioni svolte l'impatto è classificabile come:

- Reversibile: le attività che comportano la produzione di emissioni gassose sono temporanee e limitate alla fase di cantiere;
- a breve termine: gli effetti delle emissioni gassose si riscontrano immediatamente;
- negativo: la produzione di emissioni gassose dovuta alle attività svolte all'interno del cantiere comporta un peggioramento momentaneo della qualità dell'aria.

3.9.8 Emissioni in atmosfera in fase di dismissione

In fase di dismissione dell'impianto le emissioni gassose inquinanti sono causate dall'impiego di mezzi d'opera di numero ridotto rispetto a quelli di cantiere. Nel caso considerato è possibile ipotizzare l'attività di dismissione con un parco macchine di 23 unità costituite e di seguito descritti, senza entrare nel merito della tipologia, cilindrata e potenza del mezzo impiegato. Sulla base dei valori disponibili è possibile stimare un consumo orario medio di gasolio pari a circa 10 litri/h per i mezzi più leggeri e 20 litri/h per gli autocarri.

FASE DI DISMISSIONE: Consumo medio Automezzi					
TIPOLOGIA	Numero mezzi	Consumo medio per mezzo [l/h]	Consumo parziale [l/h]		
Escavatore cingolato	2	20	40		
Muletto	2	10	20		
Carrelli elevatore da cantiere	2	10	20		
Pala cingolata	2	20	40		
Autocarro mezzo d'opera	2	10	20		
Rullo compattatore	2	10	20		
Camion con gru	2	20	40		
Autogru	2	20	40		
Furgoni e auto da cantiere	3	10	30		
Pompa per calcestruzzo	1	20	20		
Bobcat	2	10	20		
Macchine Trattrici	1	10	10		
TOTALE AUTOMEZZI DA IMPIEGARE	23		320		

Nell'arco di una giornata lavorativa di 8 ore, considerando la condizione più sfavorevole caratterizzata dalla totalità dei mezzi, sarebbe dunque prevedibile un consumo medio complessivo di gasolio pari a circa 2.560 litri/giorno. Assumendo la densità del gasolio pari a 0,88 Kg/dm³, lo stesso consumo giornaliero sarebbe pari a circa 2.252,8 kg/giorno.

Naturalmente, data la temporaneità delle lavorazioni e la non contemporaneità delle stesse, è irragionevole considerare che tutto il parco macchine lavori simultaneamente nell'arco delle 8 ore lavorative. Pertanto, sembra più logico ipotizzare un fattore di riduzione pari a 0,40, considerando un parco macchine medio di 10 unità. Di conseguenza, otteniamo che nell'arco di una giornata lavorativa di 8 ore è dunque prevedibile un consumo medio complessivo di gasolio pari a circa 901,12 kg/giorno.

Nella tabella precedente sono riportate le emissioni medie in atmosfera dei mezzi d'opera a motore diesel (rif. CORINAIR per grossi motori diesel). Applicando le condizioni descritte precedentemente, in riferimento alla riduzione dell'85%, in fase di cantiere le emissioni inquinanti in atmosfera ammontano a:

- NOx (ossidi di azoto) = 0,0405504 T/giorno;
- CO (Monossido di Carbonio) = 0,018022 T/giorno;
- PM10 (Polveri inalabili) = 0,002884 T/giorno.

In base a tutte le considerazioni svolte l'impatto è classificabile come:

- Reversibile: le attività che comportano la produzione di emissioni gassose sono temporanee e limitate alla fase di cantiere;
- A breve termine: gli effetti delle emissioni gassose si riscontrano immediatamente;
- Negativo: la produzione di emissioni gassose dovuta alle attività svolte all'interno del cantiere comporta un peggioramento momentaneo della qualità dell'aria.

3.9.9 Emissioni acustiche

Le attività di cantiere produrranno un aumento della rumorosità nelle aree interessate limitate alle ore diurne e solo per alcune attività come le operazioni di scavo (autocarro, pala meccanica cingolata, ecc.) o l'utilizzo di battipalo, trasporto e scarico dei materiali (gru, automezzi, ecc.) che possono essere causa di maggiore disturbo, e per le quali saranno previsti specifici accorgimenti di prevenzione e mitigazione.

Fase di cantiere: durante le lavorazioni non verranno impiegate macchine particolarmente rumorose; le emissioni acustiche saranno prodotte principalmente da:

- macchinari per le attività legate all'interramento dei cavi;
- macchina battipalo necessaria per l'infissione nel terreno dei pali di supporto alle rastrelliere porta moduli;
- transito degli autocarri per il trasporto dei materiali;
- apparecchiature individuali di lavoro.

Le interazioni sull'ambiente che ne derivano sono modeste, dato che la durata dei lavori è limitata nel tempo e l'area del cantiere è comunque sufficientemente lontana da centri abitati. Al fine di limitare l'impatto acustico in fase di cantiere sono comunque previste specifiche misure di contenimento e mitigazione.

Fase di esercizio: le emissioni di rumore sono limitate al funzionamento dei macchinari elettrici, progettati e realizzati nel rispetto dei più recenti standard normativi ed il cui alloggiamento è previsto all'interno di apposite cabine tali da attenuare ulteriormente il livello di pressione sonora in prossimità della sorgente stessa. Analoga considerazione vale per le installazioni previste in corrispondenza della stazione di trasformazione.

Per approfondimenti sulle emissioni acustiche si consiglia di consultare il relativo "Studio previsionale di Impatto Acustico" con codice elaborato MACOMER4-IAR03.

3.9.10 Inquinamento luminoso

I locali saranno dotati di un impianto d'illuminazione ordinaria e di sicurezza, in grado di garantire almeno 200 lux, realizzato con apparecchi d'illuminazione dotati di lampade a led e da una presa di servizio, 10/16 A; 230 V, serie tipo civile universale, necessaria per eventuali riparazioni e alimentazioni di apparecchiature locali oltre che da prese industriali. L'illuminazione di sicurezza sarà invece realizzata con lampada a led ad inserzione automatica in mancanza di tensione di rete e ricarica ed accumulatori, integrata nell'apparecchio d'illuminazione ordinaria.

Gli apparecchi illuminanti saranno installati in modo tale da evitare fonti di ulteriore inquinamento luminoso e disturbo per abbagliamento dell'avifauna notturna.

4. QUADRO DI RIFERIMENTO AMBIENTALE

In accordo a quanto previsto dall'art.22 c.3 del d.lgs. 152/2006 e in particolare dall'Allegato VII alla parte seconda del già menzionato decreto circa i contenuti dello Studio d'Impatto Ambientale, il presente capitolo restituisce, nell'ordine così come riportato nell'Allegato VII:

- la descrizione degli aspetti pertinenti dello stato attuale dell'ambiente (scenario di base);
- una descrizione dei fattori potenzialmente soggetti a impatti ambientali dal progetto proposto, con particolare riferimento alla popolazione, salute umana, biodiversità, al territorio, al suolo, all'acqua, all'aria, ai fattori climatici, ai beni materiali, al patrimonio culturale, al patrimonio agroalimentare, al paesaggio, nonché all'interazione tra questi vari fattori;
- probabili impatti ambientali rilevanti del progetto proposto, dovuti tra l'altro: a) alla costruzione e all'esercizio del progetto, inclusi, ove pertinenti, i lavori di demolizione; b) all'utilizzazione delle risorse naturali, in particolare del territorio, del suolo, delle risorse idriche e della biodiversità, tenendo conto, per quanto possibile, della disponibilità sostenibile di tali risorse; d) ai rischi per la salute umana, il patrimonio culturale, il paesaggio o l'ambiente;
- la descrizione degli elementi e dei beni culturali e paesaggistici eventualmente presenti, nonché dell'impatto del progetto su di essi, delle trasformazioni proposte e delle misure di mitigazione e compensazione eventualmente necessarie;
- una descrizione dei previsti impatti ambientali significativi e negativi del progetto, derivanti dalla vulnerabilità del progetto ai rischi di gravi incidenti e/o calamità che sono pertinenti per il progetto in questione.

Le valutazioni circa i potenziali impatti tengono altresì conto del punto 4 dell'Allegato VII alla Parte Seconda del D. Lgs 152/2006 e ss.mm.ii. In particolare, considerando la natura dell'opera e le caratteristiche dell'area nella quale è prevista la realizzazione dell'impianto, sono state condotte con riferimento a:

- Aria;
- Acque;
- Suolo e sottosuolo;
- Vegetazione, fauna, ecosistemi e biodiversità;
- Rumore:

- Paesaggio.

Le considerazioni circa i potenziali impatti sono elaborate tenendo conto dello scenario attuale, oltre a quello di progetto che si inserisce in un contesto in cui sono già operativi altri impianti seppur di ridotte dimensioni. Le azioni di progetto individuate in grado di interferire con le componenti ambientali sono state ricondotte a due tipologie:

- Fase di costruzione;
- Fase di esercizio.

La fase di dismissione dell'impianto avverrà dopo un periodo di circa 30 anni per cui al momento attuale, non è possibile prevedere il quadro di riferimento ambientale e normativo a cui fare riferimento.

Per la descrizione dello stato attuale dell'ambiente in cui il progetto si inserisce sono stati considerati i dati utili messi a disposizione dai vari Enti, risultati di studi e indagini eseguiti da soggetti pubblici o privati nell'area di studio.

4.1 Atmosfera

In coerenza con quanto richiesto dalla vigente normativa in materia di VIA, l'analisi della componente ambientale "atmosfera" è affrontata di seguito operando una distinzione tra le sottocomponenti di livello locale, riferibili ai caratteri meteo-climatici ed alla qualità dell'aria, e quelle di carattere globale, certamente di maggiore interesse specifico per una valutazione compiuta degli effetti ambientali del proposto progetto.

Come noto ed ampiamente condiviso, infatti, le centrali fotovoltaiche non sono all'origine di effetti significativi sul microclima delle aree di installazione degli impianti né, allo stesso modo, a queste possono attribuirsi effetti di alterazione della qualità dell'aria, trattandosi di centrali energetiche totalmente prive di emissioni atmosferiche. Sulla base di quanto precede, ancorché gli effetti del proposto progetto sulla qualità dell'aria a livello locale risultino, palesemente, alquanto contenuti e di carattere temporaneo, l'analisi del sottocomponente è comunque riportata per completezza di trattazione.

Per altro verso, al pari delle altre categorie di centrali elettriche da FER, la diffusione degli impianti fotovoltaici concorre positivamente al processo di conversione dei sistemi di generazione elettrica nella direzione di un crescente ricorso alle fonti rinnovabili e progressiva contrazione della quota di produzione da combustibili fossili, con positivi effetti in termini di contrasto ai cambiamenti climatici e riduzione generale dell'inquinamento atmosferico.

4.1.1 Analisi dello stato attuale

4.1.1.1 CARATTERI CLIMATOLOGICI GENERALI

Il clima della Sardegna è generalmente classificato come Mediterraneo Interno, caratterizzato da inverni miti e relativamente piovosi ed estati secche e calde. Da un punto di vista più generale, il Mediterraneo può essere considerato come una fascia di transizione tra le zone tropicali, dove le stagioni sono definite in accordo alla quantità di pioggia, e le zone temperate, dove le stagioni sono caratterizzate dalle variazioni di temperatura. Di conseguenza si presentano con grandi variazioni interstagionali di precipitazione accompagnate da variazioni di temperatura, senza che però le une le altre raggiungano i valori estremi tipici delle due aree climatiche.

La principale causa delle notevoli differenze climatiche fra le stagioni è la migrazione del limite settentrionale delle celle di alta pressione che caratterizzano le fasce subtropicali del Pianeta. D'estate,

infatti, tali celle arrivano ad interessare tutto il bacino del Mediterraneo, dando vita ad una zona di forte stabilità atmosferica (che nei mesi di giugno, luglio e agosto può dare origine ad un regime tipicamente subtropicale arido), favorendo situazioni di cielo sereno con temperature massime elevate, anche se accompagnate da escursioni termiche di discreta entità. D'inverno invece le medesime celle restano confinate al Nord-Africa e lasciano il Mediterraneo esposto a flussi di aria umida di provenienza atlantica o di aria fredda di provenienza polare. In realtà una gran parte delle strutture cicloniche che interessano l'area in esame si genera nel golfo di Genova (seppure a seguito di una perturbazione atlantica), probabilmente a causa della disposizione delle Alpi e del forte gradiente di temperatura tra Nord e Centro Europa ed il Mediterraneo. È interessante notare, poi, che la regione mediterranea presenta la più alta frequenza e concentrazione di ciclogenesi del mondo.

Il clima locale è, dunque, quello tipico del Mediterraneo, temperato caldo, caratterizzato da inverni miti e piovosi durante i quali non si osservano temperature inferiori a zero gradi, e da estati piuttosto torride e asciutte, con elevata escursione termica e una forte irraggiamento solare. Nel prospetto della classificazione fitoclimatica del Pavari, l'area è inserita nella fascia del Castanetum - sottozona calda. Nel prospetto della classificazione bioclimatica di Emberger è inserita nel bioclima mediterraneo semiarido, livello superiore.

La stazione termopluviometrica più vicina è quella situata in agro di Macomer in località "Sas Enas", situata ad una quota di 664 m s.l.m. con latitudine 40°18'50" Nord e longitudine 8°47'10" Est.

I dati presi in considerazione in questo studio sono stati analizzati congiuntamente da ARPAS - Dipartimento Meteoclimatico e ISPRA - Settore Climatologia Operativa e si riferiscono a una serie storica significativa dei valori delle precipitazioni e delle temperature del decennio 1981-2010 (ARPAS, 2020).

PRECIPITAZIONI

Stazione	gennaio	febbraio	marzo	aprile	maggio	giugno	luglio	agosto	settembre	ottobre	novembre	dicembre	ANNO
ITTIREDDU	57.3	45.1	48.6	63.9	48.0	20.0	11.8	17.5	46.9	75.9	84.8	74.9	594.8
JERZU F.C.	90.7	77.7	73.4	73.0	32.4	13.7	9.0	20.3	71.8	68.1	130.2	120.1	780.3
LACONI	65.7	59.4	56.1	78.5	55.4	24.4	10.2	13.1	50.9	68.3	97.2	84.4	663.7
LANUSEI	103.0	84.1	83.7	85.7	39.2	20.3	9.4	20.2	81.7	101.8	144.2	138.2	911.5
LULA	88.4	60.8	61.0	64.1	35.8	24.5	12.6	17.5	44.4	66.1	96.8	109.0	680.9
LUNAWA INONA	6.00	30.3	55.8	00.7	43.2	22.4	4.0	11.0	43.1	ວອ.ອ	09.3	02.0	390. I
MACOMER	80.6	69.5	62.9	83.1	56.5	27.1	6.7	15.7	47.1	75.2	117.1	110.4	751.8

FIGURA 30 – CUMULATI DI PRECIPITAZIONE MEDI CLIMATICI MENSILI E ANNUALI CALCOLATI NEL TRENTENNIO 1981-2010 (FONTE: ARPAS, ISPRA 2020)

I dati indicano una quantità di precipitazioni media annua di 751,8 mm, con piogge concentrate nei mesi autunnali e all'inizio dell'inverno.

Il mese che presenta la maggiore quantità di pioggia è novembre, con precipitazioni medie di 117,4 mm, mentre il mese più siccitoso è luglio con precipitazioni medie di 6,7 mm.

L'estate risulta essere decisamente siccitosa com'è evidente nella seguente infografica.

TEMPERATURA

Dai dati termometrici rilevati, la temperatura media diurna è di 14,6 °C, il mese più caldo è agosto con una temperatura media mensile di 30,1 °C, al contrario i mesi più freddi risultano essere gennaio e febbraio con una media mensile di 5,2 °C. Il valore medio annuale di escursione termica è di 9,2° C. I dati indicati ci consentono di collocare l'area sotto il profilo climatico nella zona meso-mediterranea, caratterizzata da un periodo piovoso concentrato in autunno-inverno ed un periodo con precipitazioni scarse in estate.

Stazione	gennaio	febbraio	marzo	aprile	maggio	giugno	luglio	agosto	settembre	ottobre	novembre	dicembre
BIDIGHINZU	11.6	12.2	15.4	17.9	23.7	29.0	33.1	32.4	27.2	22.2	16.3	12.7
BUDONI (C.RA)	13.8	14.3	16.4	18.8	22.9	27.1	30.2	30.3	26.8	23.0	17.9	14.9
BUSACHI	11.3	12.1	14.5	17.2	22.1	26.5	31.0	31.0	26.0	21.7	16.3	12.4
CASTIADAS	14.4	14.7	16.9	19.5	24.4	29.6	33.3	33.4	28.7	24.5	19.1	15.3
CORONGIU	13.8	13.8	16.5	19.4	23.8	28.9	32.4	32.2	27.8	23.6	18.5	14.8
DECIMOMANNU (VIVAIO)	14.6	15.4	18.3	20.8	25.8	30.9	34.7	34.3	29.7	25.2	19.8	16.0
DESULO	8.7	9.5	12.3	14.2	19.0	23.6	27.4	27.0	22.8	18.3	12.5	9.5
FERTILIA	14.1	14.9	17.2	19.8	24.7	28.4	31.7	32.0	28.2	24.3	18.6	15.1
FONNI	8.9	9.7	12.5	15.3	21.2	26.0	30.6	30.1	24.2	19.6	13.2	9.6
GONNOSFANADIGA	13.3	14.0	17.0	20.1	25.8	30.6	34.6	34.6	29.3	24.7	18.4	14.2
IS CANNONERIS	8.1	8.5	10.8	13.3	18.3	23.4	27.1	26.8	21.8	17.5	12.2	9.2
DANOGEI	11.0	11.2	15.0	10.1	20.0	20.0	20.1	20.1	24.4	20.0	15.0	12.4
MACOMER	10.9	11.6	14.4	17.0	21.8	26.4	30.1	29.8	25.0	20.7	15.0	11.7

FIGURA 31 – MEDIA MENSILE DELLE TEMPERATURE MASSIME CALCOLATE SUL TRENTENNIO 1981-2010 (FONTE: ARPAS, ISPRA 2020)

Stazione	gennaio	febbraio	marzo	aprile	maggio	giugno	luglio	agosto	settembre	ottobre	novembre	dicembre
BIDIGHINZU	3.1	3.2	5.0	7.0	10.5	13.2	15.5	15.9	13.1	10.6	7.1	4.4
BUDONI (C.RA)	6.4	6.2	7.9	9.7	13.2	17.2	20.2	20.7	18.0	14.7	10.8	7.9
BUSACHI	5.7	5.6	7.5	9.6	12.7	15.6	18.5	18.8	16.3	13.9	10.0	6.9
CASTIADAS	5.5	5.2	6.6	8.5	11.6	15.3	18.4	19.1	16.7	13.8	9.8	7.0
COL.PENALE SARCIDANO	1.2	1.3	2.7	4.8	8.3	11.6	14.5	14.9	12.1	9.2	5.3	2.5
CORONGIU	6.2	6.0	7.3	9.3	12.8	16.7	19.8	20.1	17.1	14.2	10.4	7.3
DECIMOMANNU (VIVAIO)	4.0	4.2	6.4	8.0	11.7	15.4	19.3	19.4	16.1	12.7	8.6	5.7
DESULO	-1.7	-1.5	0.3	2.1	6.2	9.5	12.7	13.0	9.6	6.6	2.6	-0.3
FERTILIA	6.9	7.0	8.4	10.4	13.5	16.5	19.0	19.3	16.9	14.5	10.9	8.2
FONNI	2.1	2.3	4.0	5.7	9.8	12.9	16.2	16.5	12.7	9.8	5.8	3.1
GONNOSFANADIGA	5.0	4.8	6.5	8.5	12.2	15.8	19.4	19.7	16.7	13.6	9.3	6.3
IS CANNONERIS	3.8	3.7	5.3	7.1	11.2	15.1	18.6	18.7	15.1	12.1	8.1	5.1
MACOMER	5.2	5.2	6.6	8.4	12.2	15.5	18.5	18.9	15.7	13.1	9.1	6.3

FIGURA 32 – MEDIA MENSILE DELLE TEMPERATURE MINIME CALCOLATE SUL TRENTENNIO 1981-2010 (FONTE: ARPAS, ISPRA 2020)

VENTO

La stazione mareografica della RMN (Rete Mareografica Nazionale) più vicina a Macomer è quella del Porto Civico di Porto Torres. La stazione è posta sul lato ridossato del molo di levante, in corrispondenza alle coordinate geografiche 40° 50′ 31″ N e 08° 24′ 13″E.

Per il vento in costa si è analizzata la serie oraria disponibile (1998-2010) misurata dall'anemometro della stazione mareografica di Porto Torres. La serie storica esaoraria analizzata si estende dal 01.01.2000 al 31.12.2009 per un complessivo di 10 anni.

La Tabella seguente fornisce i rendimenti annuali dell'anemometro della stazione mareografica, essendo il rendimento del modello ovviamente pari al 100%

TABELLA 9 – RENDIMENTI ANNUALI DELL'ANEMOMETRO

Anno	Rendimento
	(%)
1998	29.94
1999	89.44
2000	76.07
2001	97.48
2002	84.35
2003	95.53
2004	99.35
2005	96.60
2006	98.34
2007	95.11
2008	92.03
2009	82.25
2010	81.29

Il regime annuale o stagionale dei venti e dei mari in un paraggio si ricava elaborando statisticamente i dati disponibili e viene comunemente rappresentato con tabelle e diagrammi (rosa che forniscono per ogni settore di provenienza la frequenza percentuale delle osservazioni suddivise in opportune classi di intensità).

Nel caso in esame lo studio del regime dei venti è finalizzato anche alla determinazione del moto ondoso. Per determinare il regime dei venti si fa riferimento, come già anticipato, ai dati di vento della Rete Mareografica Nazionale che presenta come stazione maggiormente significativa per l'areale oggetto di studio quella di Porto Torres (40°50'31.87" N, 08°24'13.98" E, con rilevamenti dal 23/07/98 al 18/12/2010 per un totale di 100291 osservazioni considerate).

Ogni stazione di misura RMN oltre ad essere corredata di strumenti di misura della marea, è dotata di diversi sensori, tra cui il sensore anemometrico, che misura velocità e direzione del vento a 10 m dal suolo.

Nella Tabella 10 sono riportati i dati riassuntivi della frequenza del vento (per mille) per direzione e per classi di velocità. Si evidenzia come le direzioni regnanti, cioè più frequenti riguardino le direzioni intorno al mezzogiorno con velocità attese che raramente si collocano nella classe 10 -14 m/s. I venti che spirano con le maggiori velocità superiori ai 18 m/s provengono principalmente dalle direzioni comprese fra i 260°- 290° N e quindi a cavallo del ponente. La velocità media si attesta a 5.8 m/s. °

TABELLA 10 - DATI RIASSUNTIVI DELLA FREQUENZA DEL VENTO (IN PER MILLE) PER DIREZIONE DI PROVENIENZA E PER CLASSI DI VELOCITÀ NELLA STAZIONE DI PORTO TORRES CON DATI DI RILEVAMENTO DAL 23/07/98 AL 18/12/2010 PER UN TOTALE DI 100291 OSSERVAZIONI CONSIDERATE

	Velocità (m/s)									
Direzione	<2	2-6	6-10	10-14	14-18	18-22	22-26	>26	TOTALE	
0-10	11.28	7.05	0.26	0.01	0.01	0.00	0.00	0.00	18.61	
10-20	8.70	6.51	0.21	0.03	0.00	0.00	0.00	0.00	15.46	
20-30	9.20	9.59	0.91	0.15	0.06	0.00	0.00	0.00	19.91	
30-40	9.21	15.22	3.36	0.82	0.13	0.00	0.00	0.00	28.74	
40-50	6.64	12.83	7.29	2.32	0.36	0.05	0.00	0.00	29.49	
50-60	5.96	12.42	7.84	3.10	0.66	0.02	0.00	0.00	30.00	
60-70	6.85	14.26	7.93	3.70	0.61	0.00	0.00	0.00	33.34	
70-80	7.28	11.61	5.41	1.25	0.04	0.00	0.00	0.00	25.59	
80-90	5.55	6.45	1.83	0.10	0.00	0.00	0.00	0.00	13.94	
90-100	4.23	4.59	0.80	0.03	0.00	0.00	0.00	0.00	9.64	
100-110	5.10	4.38	0.29	0.03	0.00	0.00	0.00	0.00	9.79	
110-120	4.81	3.24	0.20	0.03	0.00	0.00	0.00	0.00	8.28	
120-130	5.24	2.76	0.12	0.00	0.00	0.00	0.00	0.00	8.13	
130-140	5.71	2.16	0.17	0.00	0.00	0.00	0.00	0.00	8.05	
140-150	6.00	3.97	0.11	0.01	0.00	0.00	0.00	0.00	10.09	
150-160	7.76	6.41	0.15	0.01	0.00	0.00	0.00	0.00	14.33	
160-170	21.23	25.24	0.63	0.03	0.00	0.00	0.00	0.00	47.12	
170-180	60.36	85.85	1.77	0.04	0.00	0.00	0.00	0.00	148.03	
180-190	37.32	38.99	3.01	0.17	0.01	0.00	0.00	0.00	79.50	
190-200	16.04	19.47	4.43	0.09	0.02	0.00	0.00	0.00	40.05	
200-210	9.85	17.41	2.89	0.12	0.01	0.00	0.00	0.00	30.28	
210-220	6.78	11.23	1.90	0.14	0.00	0.00	0.00	0.00	20.05	
220-230	4.83	8.88	2.47	0.10	0.00	0.00	0.00	0.00	16.28	
230-240	3.51	8.89	3.67	0.30	0.01	0.00	0.00	0.00	16.38	
240-250	2.93	12.03	6.66	0.66	0.05	0.00	0.00	0.00	22.33	
250-260	2.58	11.45	10.99	1.85	0.11	0.00	0.00	0.00	26.98	
260-270	2.59	9.40	13.47	5.06	0.44	0.05	0.02	0.00	31.03	
270-280	2.69	13.65	21.84	10.42	2.07	0.21	0.05	0.00	50.93	
280-290	2.94	16.13	16.55	7.43	1.72	0.24	0.01	0.00	45.02	
290-300	2.53	17.80	8.98	3.84	0.72	0.11	0.00	0.00	33.98	
300-310	3.44	17.67	5.84	1.77	0.24	0.02	0.00	0.00	28.99	
310-320	4.52	13.04	2.18	0.46	0.08	0.00	0.00	0.00	20.28	
320-330	5.06	11.07	1.61	0.21	0.02	0.00	0.00	0.00	17.96	
330-340	6.22	7.30	1.22	0.18	0.04	0.00	0.00	0.00	14.96	
340-350	7.87	5.16	0.44	0.03	0.00	0.00	0.00	0.00	13.50	
350-360	8.51	4.20	0.26	0.01	0.00	0.00	0.00	0.00	12.97	
TOTALE	321.33	478.31	147.69	44.49	7.40	0.70	0.08	0.00		

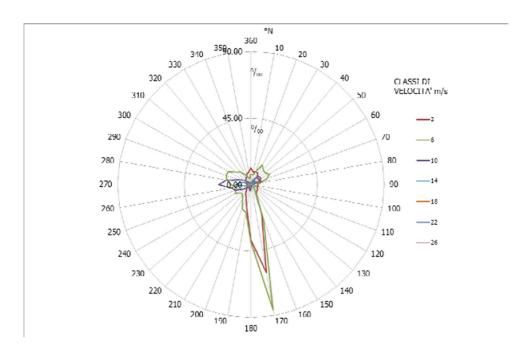


FIGURA 33 – ROSA DEL REGIME DEI VENTI NELLA STAZIONE DI PORTO TORRES CON DATI DI RILEVAMENTO DAL 23/07/98 AL 18/12/2010.

4.1.2 Analisi del potenziale impatto

4.1.2.1 ATMOSFERA

Sintetizzando le azioni di progetto e i relativi fattori di impatto, sono stati identificati per la componente atmosfera i seguenti fattori:

- emissione di polveri in atmosfera e loro ricaduta;
- emissione di inquinanti organici e inorganici in atmosfera e loro ricaduta.

Fase di costruzione e dismissione: l'emissione di polveri sarà dovuta principalmente al transito dei mezzi pesanti per la fornitura di materiali e dei mezzi d'opera per la realizzazione delle attività di preparazione del sito, per l'adeguamento della viabilità interna, nonché durante la realizzazione del tratto di cavo interrato per il collegamento dell'impianto alla rete di distribuzione esistente. Il sollevamento di polvere potrà essere minimizzato attraverso una idonea pulizia dei mezzi ed eventuale bagnatura delle superfici più esposte. Tali attività saranno di lieve entità e con scavi superficiali di profondità non superiore ai 150 cm. In riferimento alle emissioni di inquinanti organici e inorganici in atmosfera e alla loro ricaduta, queste saranno dovute esclusivamente agli scarichi dei mezzi meccanici impiegati per le attività e per il trasporto di personale e materiali.

In base a quanto sopra riportato, ed in virtù del numero di mezzi impiegati e di viaggi effettuati, della temporaneità di ciascuna attività e della loro durata, nonché delle caratteristiche dell'area agricola in cui si inseriranno le indagini, si ritiene che l'impatto sulla componente atmosfera in fase di cantiere possa essere considerato minimo. In fase di esercizio, invece, le emissioni gassose saranno limitate a quelle dei mezzi durante le attività di manutenzione dell'impianto il che fa sì che possano essere considerate trascurabili. La produzione di energia elettrica da fotovoltaico determinerà un impatto positivo in termini di mancata emissione di gas ad effetto serra.

4.1.2.2 PRECIPITAZIONI

Per quanto sopra esposto non si ritiene che l'opera in progetto possa incidere sul microclima in maniera rilevante; pertanto, si assegna un valore di magnitudo pari a 2 in fase di costruzione, e un valore di magnitudo pari a 1 in fase di esercizio.

4.1.2.3 TEMPERATURE

In sintesi, la temperatura media della zona in esame, a grande scala è aumentata di poco meno di un grado e buona parte di questa variazione è relativa ai mesi della stagione calda degli ultimi decenni.

Anche per il fattore temperatura, non si ritiene che l'opera possa avere una significativa influenza, pertanto si assegna in fase di costruzione un valore di magnitudo pari a 5 ed in fase di esercizio, un valore di magnitudo pari a 3.

4.1.2.4 VENTO

In certi periodi dell'anno, si può potenzialmente manifestare un certo impatto dovuto ai venti, in concomitanza della fase di messa in opera dell'impianto, con l'emissione di polvere durante le operazioni di movimento terra del materiale (trattasi di volumi irrisori), nonché dal passaggio degli autocarri nelle piste interne del fondo terriero (trasporto elementi impianto).

In relazione al tipo di lavorazioni e in relazione al fatto che si è scelto di optare per strutture a inseguimento monoassiale si ritiene, di fissare per il fattore relativo al vento, per la fase di **costruzione** una magnitudo pari a 7 e per la fase di **esercizio una magnitudo pari a 6**.

4.2 Ambiente idrico

Il presente paragrafo è finalizzato a valutare i potenziali impatti sul fattore ambientale "acque superficiali e sotterranee" indotti dall'installazione ed esercizio del nuovo impianto fotovoltaico. L'ambiente idrico viene trattato tenendo conto dei suoi due aspetti principali: circolazione superficiale e nel sottosuolo e stato qualitativo. Per la determinazione dello stato attuale si è fatto riferimento agli elaborati del PTP e del PTA.

4.2.1 Inquadramento e analisi dello stato attuale

L'idrografia superficiale è caratterizzata da corsi d'acqua che hanno un bacino idrografico assai più esteso dell'areale di studio, identificato come bacino del Tirso che comprende i bacini imbriferi dell'omonimo fiume Tirso, del Taloro e del Massari.

L'area di progetto è ubicata nella porzione più occidentale del bacino ove la rete di drenaggio assume un aspetto sub-dendritico, regimata dai due affluenti del Tirso, denominati Rio Flumineddu e del Rio Ponte Merchis: essi scorrono sul plateau basaltico in direzione est, sino ad immettersi in sponda destra nel Tirso.

Nel dettaglio si distinguono 3 bacini imbriferi minori socchiusi immediatamente a valle dell'area di progetto:

- Il bacino del fiume 190501, di 2,85 km2 che interessa la porzione nord;
- Il bacino del Riu Mene, di 12,12 km2 che interessa la porzione centrale;
- Il sub-bacino del Fiume 78537, di 2,46 km2 che interessa la porzione sud.

Il Rio Mene e il Fiume 190501 appartengono entrambi al bacino del Rio Flumineddu, mentre le acque del canale del Fiume 78537 convergono nel Rio Siddo affluente del Rio di Ponte Merchis.

Sono tutti caratterizzati da un regime torrentizio con portate generalmente limitate o nulle e piene violente ed improvvise in occasione di precipitazioni intense che avvengono con una frequenza abbastanza ravvicinata.

L'area di studio appartiene all'unità dell'Acquifera delle vulcaniti Plio-Quaternarie.

La struttura idrogeologica è costituita da una roccia basaltica potente sino a 300 metri, poggiante sulle vulcaniti oligo mioceniche e ricoperta in superficie da un suolo e/o una coltre eluvio colluviale di spessore inferiore ai 3,00 m.

Si tratta di un acquifero a permeabilità secondaria, costituito frequentemente da falde in pressione e da una buona qualità delle acque, di norma adatte anche al consumo umano.

Nel complesso la permeabilità per porosità è dell'ordine di k= 10-9 m/s, mentre la permeabilità nei giunti di frattura varia in funzione del riempimento: si hanno bassi valori di conducibilità per riempimenti a tessitura argillosa, elevati valori di conducibilità per giunti privi di riempimento o costituiti da ghiaie e ciottoli.

Attraverso i dati dei rilievi piezometrici condotti dallo scrivente si è potuto constatare come la soggiacenza della falda si attesti ad una profondità > 12 m da p.c. e che i pozzi presenti nell'intorno presentano tutti le medesime caratteristiche:

- Profondità superiori ai 100 m da p.c.
- Modesti valori di portata, compresi tra 0,25 e 0,60 l/sec.
- Ottima qualità delle acque, con valori di conducibilità elettrica >500 µs/cm.

4.2.2 Analisi dell'impatto potenziale

Gli impatti sull'ambiente idrico generati dal progetto sono limitati ai prelievi idrici e allo scarico degli effluenti liquidi derivanti dal normale svolgimento delle attività di cantiere.

Per ciò che concerne i prelievi idrici, il fabbisogno necessario alle attività di cantiere verrà soddisfatto mediante l'approvvigionamento con autobotte. La produzione di effluenti liquidi durante la fase di cantiere è sostanzialmente riconducibile alle acque reflue civili derivanti dalla presenza del personale in cantiere e per la durata dello stesso.

In tale fase non è prevista l'emissione di scarichi di tipo sanitario, atteso che, saranno adoperati bagni chimici.

In fase di esercizio non è prevista attività di scarico di tipo sanitario, mentre per la pulizia dei pannelli si prediligeranno sistemi a secco (spazzole) e nel caso di necessità di interventi di pulizia straordinaria si provvederà all'approvvigionamento mediante autobotte.

Considerate anche le carte redatte per il P.A.I., l'intero sito di impianto non ricade presso aree a rischio di esondazione e pertanto non si colloca in zone classificate a Rischio Idraulico. Alla luce delle verifiche di non sussistenza di zone soggette a pericolosità ed a rischio geomorfologico e/o idraulico in corrispondenza del sito oggetto di studio (si veda l'elaborato cartografico MACOMER4-IAT10_Inquadramento su PAI) è possibile concludere che:

- le opere in progetto, secondo le Norme del PAI, rientrano fra quelle consentite, data la valutazione di rischio nullo ad esse associato e dall'analisi degli effetti indotti sulle aree limitrofe;
- l'impatto delle opere da realizzare sull'attuale assetto idraulico nelle zone limitrofe a monte e a valle non determina una variazione delle attuali nulle condizioni del rischio d'inondazione.

Alla luce delle analisi effettuate, si può infine affermare che il sito non presenta particolari problematiche per la realizzazione dell'opera in progetto.

Per quanto esposto, si assegna a questo fattore in:

fase di costruzione una magnitudo pari a 3;

fase di esercizio una magnitudo pari a 3.

4.3 Suolo e sottosuolo

Vengono esaminate le problematiche relative ai seguenti aspetti ambientali:

- descrizione dell'uso del suolo;
- caratterizzazione suolo e sottosuolo;
- inquadramento geologico e geomorfologico dell'ambito territoriale di riferimento e del sito di localizzazione dell'intervento;

4.3.1 Inquadramento e analisi stato di fatto

4.3.1.1 USO DEL SUOLO

In base al Piano Paesaggistico Regionale della Sardegna, il Comune di Macomer non ricade in nessuno dei 27 ambiti di paesaggio costieri per i quali il PPR definisce disposizioni immediatamente efficaci. L'ambito territoriale più vicino all'area di progetto è il 22 "Montiferru".

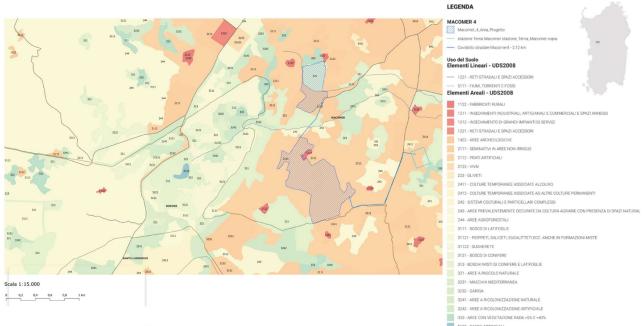


FIGURA 34 – CARTA DELL'USO DEL SUOLO CON AREA DI PROGETTO IN ROSSO – ELABORATO CARTOGRAFICO MACOMER4-IAT04

L'area oggetto del presente studio si caratterizza per la presenza di 2 tipologie di uso del suolo dominanti: seminativi in aree non irrigue (cod. 2111) e aree a pascolo naturale (cod. 321)

Nel caso specifico si è suddiviso il prato artificiale in prato pascolo e prato sfalciabile (aggiungendo in pratica un sesto livello di dettaglio). Restano immutate le superfici a seminativo e tutte le altre destinazioni d'uso e copertura del suolo.

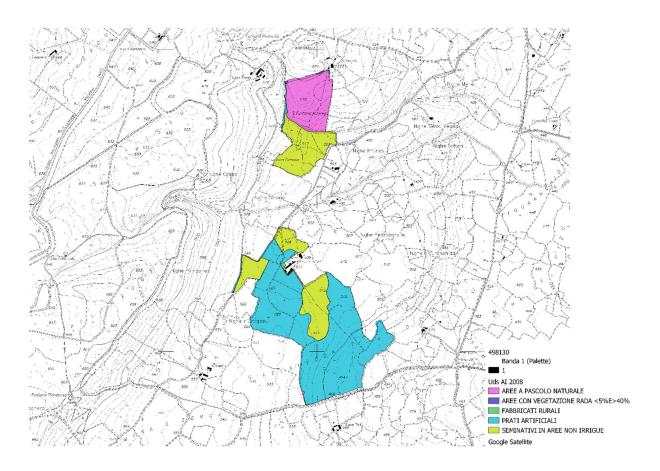


Figura 35 – Carta dell'uso del suolo con approfondimento a livello VI

Le definizioni vengono qui riportate:

- Seminativi in aree non irrigue. Sono da considerarsi perimetri non irrigui quelli dove non siano individuabili per fotointerpretazione canali o strutture di pompaggio. Vi sono inclusi i seminativi semplici, compresi gli impianti per la produzione di piante medicinali, aromatiche e culinarie.
- Prati artificiali. Colture foraggere ove si può riconoscere una sorta di avvicendamento con i seminativi e una certa produttività, sono sempre potenzialmente riconvertiti a seminativo, possono essere riconoscibili muretti o manufatti.
- Affioramenti con copertura vegetale > 5 % e < 40%. Comprende le steppe xerofile, le steppe alofile e le aree calanchive con parziale copertura vegetale.
- Aree a pascolo naturale. Aree foraggere localizzate nelle zone meno produttive talvolta con affioramenti rocciosi non convertibili a seminativo. Sono spesso situate in zone accidentate e/o

montane. Possono essere presenti anche limiti di particella (siepi, muri, recinti) intesi a circoscriverne e localizzarne l'uso.

Fabbricati rurali. Superfici occupate da costruzioni rurali, fabbricati agricoli e loro pertinenze – stalle, magazzini, caseifici, cantine viticole, frantoi, ecc..- che formano zone insediative disperse negli spazi seminaturali o agricoli. Gli edifici, la viabilità e le superfici coperte artificialmente coprono meno del 30% e più del 10% della superficie totale dell'unità cartografata.

In definitiva, anche il territorio circostante si caratterizza per la diffusa presenza di aree destinate a seminativo (codici: 2111 - 2121) e dalla massiccia presenza di aree agroforestali (cod. 244) e boschi di latifoglie (cod. 3111).

4.3.1.2 Consumo di suolo

Per consumo di suolo si intende l'occupazione di una superficie originariamente agricola, naturale o seminaturale con una copertura artificiale, si tratta di un processo associato alla perdita di una risorsa ambientale limitata e non rinnovabile (ISPRA, 2021)². Il fenomeno si riferisce, quindi, a un incremento della copertura artificiale di terreno, legato alle dinamiche insediative.

Un suolo in condizioni naturali e di buona qualità è in grado di garantire un valore economico e sociale attraverso la fornitura di importanti servizi ecosistemici: servizi di approvvigionamento (prodotti alimentari, biomassa, materie prime, etc.); servizi di regolazione (regolazione del clima, cattura e stoccaggio del carbonio, controllo dell'erosione, protezione e mitigazione dei fenomeni idrologici estremi, etc.); servizi di supporto (supporto fisico, decomposizione di materia organica, habitat, conservazione della biodiversità, etc.) e servizi culturali (servizi ricreativi, paesaggio, patrimonio naturale, etc.); tali servizi possono essere considerati come un contributo indiretto del "capitale naturale", ovvero l'insieme delle risorse naturali che forniscono beni e servizi all'umanità.

Nel rapporto "Consumo di suolo, dinamiche territoriali e servizi ecosistemici 2021" prodotto dal Sistema Nazionale per la Protezione dell'Ambiente (SNPA) viene valutato l'incremento del suolo consumato in funzione di 3 parametri:

- Consumo di suolo, definito come la l'incremento delle superfici artificiali (suolo consumato) a dispetto delle superfici naturali (suolo non consumato);
- Consumo di suolo netto, valutato attraverso il bilancio tra nuovo consumo di suolo e superfici agricole ripristinate grazie a interventi di recupero, demolizione, deimpermeabilizzazione, rinaturalizzazione o altro;
- Densità di consumo di suolo netto, definito come l'incremento in metri quadrati del suolo consumato per ogni ettaro di territorio.

I dati ottenuti dalla fase di monitoraggio mostrano come, a livello nazionale, le coperture artificiali abbiano riguardato altri 56,7 km² di suolo naturale ovvero, in media, oltre 15 ettari al giorno, che corrisponde al 7,11% (7,21% al netto della superficie dei corpi idrici permanenti), un dato in linea con i valori registrati nell'anno precedente (7,09% nel 2019).

² ISPRA, 2021: *Consumo di suolo, dinamiche territoriali e servizi ecosistemici*, Munafò M. (a cura di), Edizione 2021. Report SNPA 22/21

Consumo di suolo (km²)	56,7
Ripristino (km²)	5,0
Consumo di suolo netto (km²)	51,7
Consumo di suolo permanente (km²)	9,8
Impermeabilizzazione di aree già consumate reversibilmente (km²)	8,2
Impermeabilizzazione complessiva (km²)	18,0
Incremento di altre coperture non considerate (km²)	1,7
Nuove aree con superficie inferiore ai 1.000 m ² (km ²)	2,9

Suolo consumato - superficie a copertura artificiale (% sul territorio nazionale)	7,11
Altre coperture non considerate (% sul territorio nazionale)	0,20
Aree con superficie inferiore ai 1.000 m² (% sul territorio nazionale)	0,25
Suolo consumato - superficie a copertura ar- tificiale (% sul territorio nazionale, esclusi i corpi idrici)	7,21
Suolo consumato (% all'interno del suolo utile)	9,15

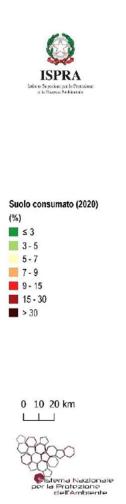
FIGURA 36 – A SINISTRA: STIMA DEL CONSUMO DI SUOLO ANNUALE TRA 2019 E 2020. A DESTRA: STIMA DEL SUOLO CONSUMATO (2020) (FONTE: ELABORAZIONE ISPRA SU CARTOGRAFIA SNPA)

Densità del consumo di suolo netto (m²/ha)	1,72
Consumo di suolo netto (incremento %)	0,24

FIGURA 37 – INCREMENTO DEL CONSUMO DI SUOLO GIORNALIERO NETTO (FONTE: ELABORAZIONE ISPRA SU CARTOGRAFIA SNPA)

In Sardegna si è registrato un incremento di consumo di suolo nel 2020 pari al 3,3%, un dato inferiore alla media nazionale che si attesta intorno al 7% come evidenziato nella tabella che segue:

Regione	Suolo consumato 2020 [%]	Suolo consumato 2020 [ha]	Incremento 2019-2020 [consumo di suolo annuale netto in ettari]
Sardegna	3,3	79.545	251
Italia	7,1	2.143.209	5175


FIGURA 38 – INDICATORI DI CONSUMO DI SUOLO PER LA REGIONE SARDEGNA. (FONTE: ELABORAZIONE ISPRA SU CARTOGRAFIA SNPA)

In particolare, a livello provinciale i dati relativi al consumo di suolo vedono in testa la provincia di Cagliari, che registra gli incrementi maggiori, mentre tutte le altre province risultano essere in linea con i dati regionali.

Province	Suolo consumato 2020 [ha]	Suolo consumato 2020 [%]	Suolo consumato pro capite 2020 [m²/ab]	Consumo di suolo 2019- 2020 [ha]	Consumo di suolo pro capite 2019- 2020 [m²/ab/anno]	Densità consumo di suolo 2019- 2020 [m²/ha]
Cagliari	9.756	7,81	230,72	83	1,97	6,66
Nuoro	13.043	2,31	635,59	13	0,62	0,23
Oristano	10.526	3,52	679,24	7	0,47	0,24
Sassari	27.812	3,61	574,14	127	2,63	1,65
Sud Sardegna	18.409	2,82	534,83	21	0,60	0,31
Regione	79.545	3,30	493,57	251	1,56	1,04
ITALIA	2.143.209	7,11	359,35	5.175	0,87	1,72

FIGURA 39 – INDICATORI DI CONSUMO DI SUOLO PER LE PROVINCE SARDEGNA(FONTE: ISPRA/SNPA)

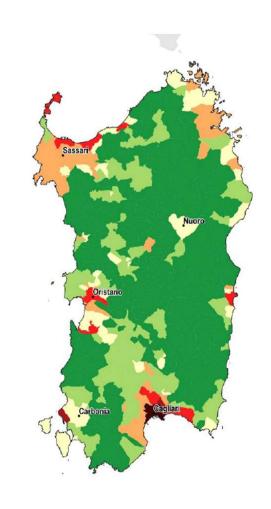


FIGURA 40 – SUOLO CONSUMATO NEL 2020: PERCENTUALE SULLA SUPERFICIE AMMINISTRATIVA (FONTE: ISPRA/SNPA)

In particolare, la provincia di Nuoro risulta essere quella con la percentuale di suolo consumato minore. In merito al comune su cui ricade l'area di progetto, di seguito si riportano i dati relativi a:

- Superficie di suolo consumato (%);
- Superficie di suolo consumato (ha);
- Incremento di suolo consumato (consumo di suolo annuale in ha);

TABELLA 11 – CONSUMO DI SUOLO RELATIVO AL COMUNE DI MACOMER E ALLA PROVINCIA DI NUORO, INTERESSATI DALL'INTERVENTO (FONTE: ISPRA)

Comune	Provincia	Regione	Suolo consumato 2020 [%]	Suolo consumato 2020 [ettari]	Incremento 2019-2020 [consumo di suolo annuale netto in ettari]
Macomer	Nuoro	Sardegna	4,14	508,33	0,74
-	Nuoro	Sardegna	2,31	13042,72	12,81

4.3.1.3 INQUADRAMENTO GEOLOGICO E GEOMORFOLOGICO

Il settore di studio si caratterizza da un punto di vista geologico come un'areale di ricoprimento post-ercinico, che interessa un periodo relativamente recente che va dall'epoca oligo-miocenica sino all'Olocene (circa 25 milioni di anni).

L'areale di progetto geograficamente ricade all'interno dei seguenti riferimenti cartografici: Foglio IGM scala 1:50000 n. 498 "Macomer"; Tavoletta IGM 1:25000, Foglio 498 Sezione III "Macomer", Carta Tecnica Regionale scala 1:10000 foglio n° 498130 "MONTE SANT'ANTONIO".

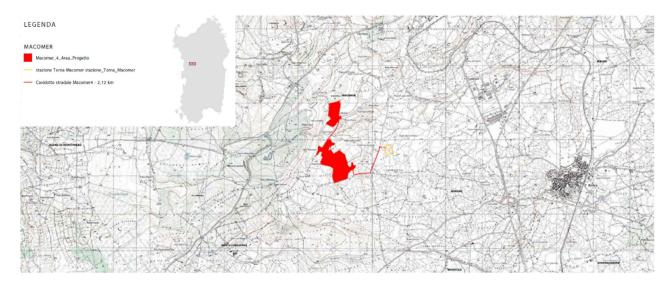


FIGURA 41 – ESTENSIONE AREA DI PROGETTO SU CARTOGRAFIA IGM IN SCALA 1:25.000. IN ROSSO I POLIGONI DELL'AREA DI PROGETTO E IL CAVIDOTTO – ESTRATTO DALL'ELABORATO CARTOGRAFICO MACOMER4-IATO1

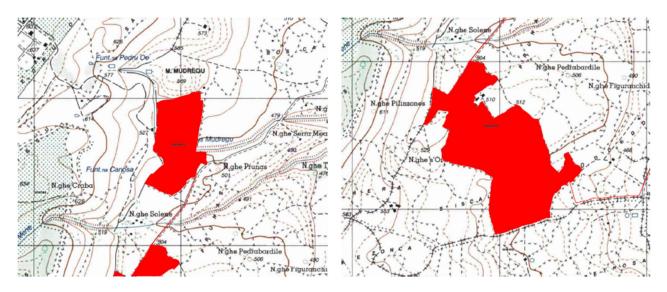


FIGURA 42 - PARTICOLARE DELLE DUE AREE DI PROGETTO SU BASE IGM 1:25000 - ESTRATTO DALL'ELABORATO CARTOGRAFICO MACOMER4-IAT01

L'area si trova nel mezzo del Plaeau basaltico dell'altopiano Planargia-Campeda, caratterizzato da una tipica piattaforma strutturale continua leggermente ondulata, generata dalla sovrapposizione delle colate basaltiche, talora resa evidente dalla presenza di gradini morfologici nelle aree incise dai corsi d'acqua, che hanno fissato le forme planari preesistenti preservandone l'erosione.

L'espandimento si presenta quindi come un debole pianoro degradante verso la valle del Tirso a est, tagliato in direzione ovest-est da corsi d'acqua che nelle rotture di pendio delineano delle incisioni e delle forre.

In tutta la Sardegna è noto che l'inversione di rilievo ha giocato un ruolo chiave nel modellare la topografia delle regioni vulcaniche. Nell'area si identificano dei pattern di drenaggio di tipo sub-dendritico (Figura 42) che sono simili alle morfologie viste in altri distretti vulcanici dove la lava al momento dell'eruzione scorreva attraverso le valli.

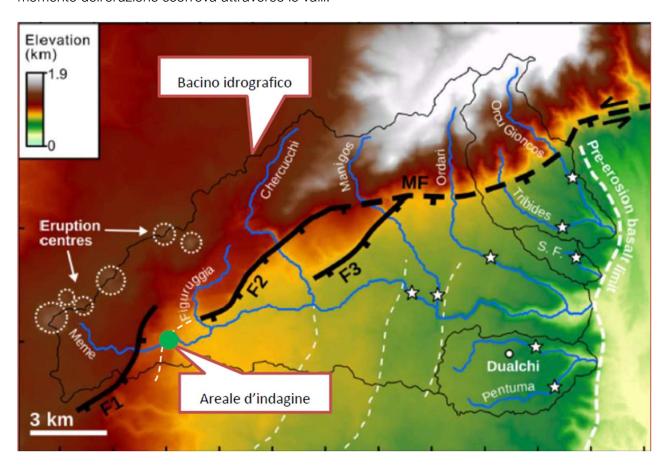


FIGURA 43 - Interpretazione geologica e geomorfologica dell'area di studio (Estratto dalla Relazione Geologica e Geomorfologica MACOMER4-IAR10)

Sulla base di queste osservazioni, si può dedurre che il gradino morfologico al margine dell'altopiano basaltico è il risultato di un'inversione di rilievo tra strati di bacino più facilmente erodibili e le più resistenti litologie basaltiche.

I centri eruttivi risultano essere intercettati dalla linea spartiacque principale, il che suggerisce che la geometria della rete di drenaggio si sia sviluppata in risposta alla variazione topografica causata dalle effusioni magmatiche.

Le linee tratteggiate bianche sottili indicano continue interruzioni di pendenza all'interno del basalto: presentano lo stesso orientamento delle faglie normali e sono approssimativamente parallele al confine estrapolato dell'affioramento pre-erosivo (Linea tratteggiata bianca spessa); da tutto ciò ne consegue che le suddette rotture di pendio, rappresentano i bordi della sovrapposizione di diverse colate laviche.

L'emissione delle lave è di tipo lineare e ha dato origine a superfici tabulari o leggermente ondulate localmente costituite dalle seguenti sub-unità:

- Sub-Unità di Dualchi (BPL2) Andesiti basaltiche subalcaline, porfiriche per fenocristalli di PI, Cpx, Opx, OI; in estesi espandimenti. Trachibasalti e basalti debolmente alcalini, porfirici per fenocristalli di PI, OI, Cpx; in estesi espandimenti. Trachibasalti e basalti debolmente alcalini, porfirici per fenocristalli di PI, OI, Cpx. PLIOCENE PLEISTOCENE.
- Sub-unità di Funtana Perdu Oe (BPL3) Basalti debolmente alcalini e trachibasalti, a grana minuta, porfirici per fenocristalli di PI, OI, Px; in estese colate. PLIOCENE SUPERIORE.
- Sub-unità di Sindia (BPL4) Basalti debolmente alcalini olocristallini, porfirici per fenocristalli di OI, PI, e rari xenocristalli quarzosi; in colate. Trachibasalti debolmente alcalini, olocristallini. PLIOCENE PLEISTOCENE.

I processi erosivi di modellamento dei versanti pliocenici hanno dato origine alle coltri di ricoprimento quaternarie, localmente rappresentate da dei detriti di versante ubicati alla base delle colati laviche e da una coltre eluvio-colluviale su cui si è impostato il suolo.

All'interno del settore oggetto di intervento la campagna d'indagine ha messo alla luce la seguente successione litostratigrafica:

LIVELLO A – SUOLO E COLTRE ELUVIO-COLLUVIALE

[DA 0,00 m A 0,50 m variabile 3,00 m]

Il deposito è costituito da limi argillosi di colore bruno con ciottoli e blocchi di basalto dispersi, sulla cui porzione superficiale si è sviluppato un suolo olocenico ricco di materia organica.

La coltre si è sviluppata per disfacimento del rilevo a monte della faglia e progressivo accumulo a valle, sino a raggiungere lo spessore massimo di 3,00 m lungo la linea di faglia, che risulta essere sepolta dai sedimenti.

LIVELLO B - BASALTI DEL PLATEAU

[DA 0,00 m variabile 3,00 m A >250 m]

I basalti affiorano lungo tutta la superficie strutturale del plateau, ad eccezione della porzione centrale dell'area di studio, ricoperta da una coltre olocenica.

La roccia lapidea si presenta, al taglio fresco, di colore grigio nerastro, dura e compatta. Appare sostanzialmente afanitica, fatta eccezione la presenza di microcristalli olivinici di 4-5mm e rari microcristalli plagioclasici; è caratterizzata da una certa fluidità con struttura minutamente porfirica. Il raffreddamento è avvenuto dopo la messa in posto e ha generalmente prodotto una fessurazione verticale sub ortogonale, isolando grossi blocchi a forma di colonne più o meno regolari. La fratturazione è ben visibile ai bordi dell'espandimento, oppure lungo le principali incisioni vallive. Il passaggio tra le colate successive, spesso, è segnato da livelli argillosi anche molto arrossati, interpretabili o come paleosuoli o più spesso come porzioni scoriacee dei bordi delle colate.

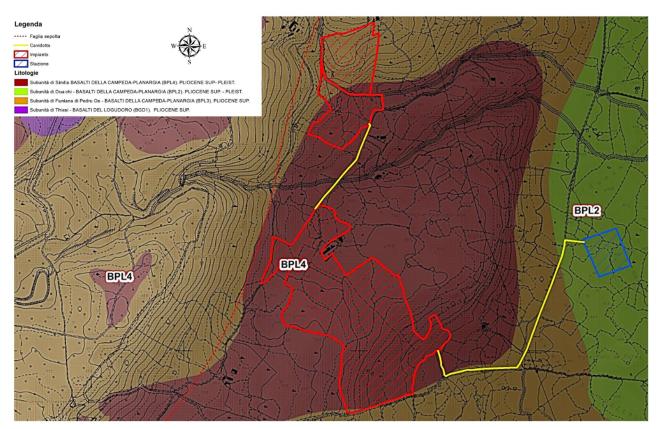


FIGURA 44 - STRALCIO DELLA CARTA GEOLOGICA (MACOMER4-IAT25)

La struttura idrogeologica è costituita da una roccia basaltica potente sino a 300 metri, poggiante sulle vulcaniti oligo mioceniche e ricoperta in superficie da un suolo e/o una coltre eluvio colluviale di spessore inferiore ai 3,00 m.

Si tratta di un acquifero a permeabilità secondaria, costituito frequentemente da falde in pressione e da una buona qualità delle acque, di norma adatte anche al consumo umano.

Nel complesso la permeabilità per porosità è dell'ordine di k= 10-9 m/s, mentre la permeabilità nei giunti di frattura varia in funzione del riempimento: si hanno bassi valori di conducibilità per riempimenti a tessitura argillosa, elevati valori di conducibilità per giunti privi di riempimento o costituiti da ghiaie e ciottoli.

In conclusione, le aree interessate dal progetto in esame riguardano litologie caratterizzate, nel complesso, da buone condizioni di stabilità. Le considerazioni riportate in maniera più approfondita nello studio geologico e geomorfologico mostrano che il progetto è compatibile con le caratteristiche geologiche, geomorfologiche e idrogeologiche dell'area in esame.

Per maggiori dettagli ed inquadramento cartografico della situazione geologica del sito si rimanda alla carta geologica (elaborato cartografico MACOMER4-IAT25) e alla relazione geologica e geomorfologica (MACOMER4-IAR10).

4.3.1.4 SISMICITÀ

La mappa di pericolosità sismica italiana è stata ricavata a partire dalla carta della zonazione sismogenetica ZS9 del territorio nazionale (In Figura 15), ottenuta dal Gruppo Nazionale per la Difesa dai Terremoti, in cui è possibile notare la totale assenza di zone sismogenetiche all'interno del territorio della Sardegna.

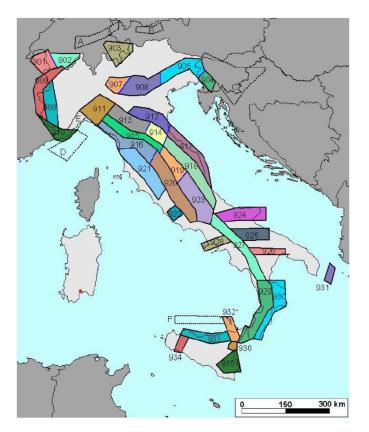


FIGURA 45 – ZONAZIONE SISMICA ZS9

Con l'applicazione della normativa antisismica nella progettazione (Ordinanza PCM n. 3274 del 20.03.2003 "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica", Allegato 1, Tabella A), tutta l'Italia è considerata sismica e suddivisa in 4 zone alle quali si applicano norme tecniche differenziate.

Allo stato attuale l'attività tettonica nel settore considerato, come per tutta l'Isola, è molto bassa. Il catalogo CPTI04 riporta solo due eventi di magnitudo ≤ 5Mw avvenuti in Sardegna nel 1924 e 1948). In occasione dell'evento del 1948 sono state osservate intensità pari a 6MCS in alcune località della Sardegna nordoccidentale. I terremoti più recenti (avvenuti nel 2000, 2004 e 2006), tutti di Mw<5 e localizzati in mare, hanno prodotto in terraferma effetti di modesta intensità.

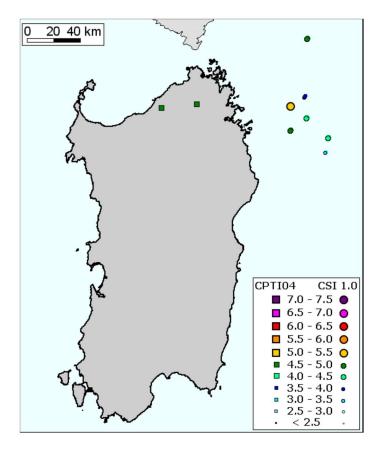


FIGURA 46 – DISTRIBUZIONE DEI TERREMOTI IN SARDEGNA E NEI MARI ADIACENTI.

Le caratteristiche di bassa sismicità della Sardegna, anche in relazione all'assenza di danni significativi in seguito ai rari eventi registrati, fanno sì che l'isola possa essere inserita in Zona sismica 4 contraddistinta da un valore dell'accelerazione orizzontale massima su suolo pari o inferiore a 0,05g (Stucchi, et al., 2007), zona a bassa sismicità evidenziata anche dai risultati degli studi condotti da diversi autori e sinteticamente riportati in tabella:

	Slejko et al. (1999)	Albarello et al. (2000) valore mappa	Albarello et al. (2000) valore capoluogo	Romeo et al. (2000)	MPS04	Prestininzi et al. (2005)
Sardegna Nord	0.040- 0.080	<0.050	0.000	<0.050	<0.025	<0.050
Sardegna Sud	NC	<0.050	0. 000	<0.050	<0.025	<0.050

Tabella 3 – Valori di amax forniti da diversi studi per la Sardegna

4.3.2 Analisi dell'Impatto Potenziale

Uno dei fattori di cui tener conto nell'analisi del potenziale impatto dell'opera è il consumo di suolo che questa genererà in relazione al suo stato prima dell'impianto. I siti interessati dall'installazione dell'impianto fotovoltaico denominato "MACOMER 4" ricadono in zona E "Aree Agricole" nel Comune di Macomer e risultano attualmente destinati prevalentemente a seminativo e pascolo.

Per la valutazione degli impatti sulla componente suolo, sono stati identificati i seguenti fattori:

- occupazione di suolo;
- asportazione di suolo superficiale;
- rilascio inquinanti al suolo;
- modifiche morfologiche del terreno;
- produzione di terre e rocce da scavo.

Non molto rilevante risulterà il contributo legato alla realizzazione della viabilità di servizio in quanto in parte verrà utilizzata quella esistente ma verranno anche realizzate alcune piste di accesso all'interno dei lotti.

Per quanto riguarda l'asportazione di suolo, questa sarà legata alla regolarizzazione delle superfici del piano di posa delle strutture e della viabilità interna necessaria al passaggio di mezzi per la manutenzione. Il progetto non prevede l'esecuzione di interventi tali da comportare sostanziali modifiche del terreno, in quanto le operazioni di scavo e riporto sono minimizzate. Rimane esclusa qualsiasi interferenza con il sottosuolo in quanto gli scavi maggiori saranno inferiori ai 1,5 mt. La produzione di terre e rocce sarà limitata a piccoli quantitativi in funzione della tipologia di opere e saranno legati alla posa in opera del cavidotto; il materiale movimentato verrà reimpiegato totalmente all'interno del sito. In fase di costruzione, le attività connesse alla regolarizzazione del piano di campagna saranno di breve durata così come lo scavo della trincea per la posa in opera del cavidotto.

Nel computo del consumo di suolo è stata effettuata una distinzione tra:

- consumo di suolo permanente, rientrano in questa categoria edifici, fabbricati, strade pavimentate, sede ferroviaria, piste aeroportuali, banchine, piazzali e altre aree impermeabilizzate o pavimentate, serre permanenti pavimentate, discariche;
- consumo di suolo reversibile, comprende aree non pavimentate con rimozione della vegetazione e asportazione o compattazione del terreno dovuta alla presenza di infrastrutture, cantieri, piazzali, parcheggi, cortili, campi sportivi o depositi permanenti di materiale; impianti fotovoltaici a terra; aree estrattive non rinaturalizzate; altre coperture

artificiali non connesse alle attività agricole in cui la rimozione della copertura ripristina le condizioni naturali del suolo.

Si riporta di seguito la classificazione del consumo di suolo dei componenti e delle relative opere che globalmente costituiscono l'impianto, specificando quando queste lasciano il suolo non consumato, o quando generano un consumo di suolo reversibile o irreversibile. Le componenti dell'impianto fotovoltaico sono:

- Strutture FV: suolo sottostante la proiezione a terra dei moduli FV inclinati a 15°, associato alla classificazione consumo di suolo reversibile;
- Cabine: suolo sottostante le cabine, comprese le piazzole di accesso, associato alla classificazione consumo di suolo reversibile;
- **Strade**: suolo occupato dalle strade costituenti la viabilità d'impianto (realizzate in terra battuta), appartenenti alla classificazione consumo di suolo reversibile;
- **Prati**: superfici occupate dai prati polifita permanenti tra le file delle strutture fisse, appartenenti alla categoria suolo non consumato;
- Mitigazione perimetrale: aree impiantate con specie vegetali arboree e arbustive (Olea Europea) destinate a mitigare visivamente e paesaggisticamente l'area aumentandone il grado di naturalità. Tali aree sono associate alla classificazione suolo non consumato;
- Aree di compensazione: aree non interessate dal posizionamento delle strutture, corrispondenti alle fasce di rispetto della linea AT e degli impluvi, destinate a compensare paesaggisticamente l'area aumentandone il grado di naturalità e pertanto associate alla categoria di suolo non consumato;
- Aree libere da interventi: aree nella disponibilità della Società proponente che non saranno interessate da alcun intervento, associate alla classificazione suolo non consumato (impluvi e cumuli di roccia, ecc..).

L'area di progetto si estende per circa 72,3 ha con area d'impianto effettiva di 58,39 ha come riportato nella tabella di seguito:

Tipologia	A [ha]
Area recintata	62,585
Area di progetto	72,302
Area impianto	58,391

L'analisi del progetto ha portato ad una classificazione del consumo di suolo in relazione alle componenti dell'impianto fotovoltaico in esame come riportato di seguito:

Tipologia	Suolo non consumato [ha]	Consumo di suolo reversibile [ha]	Consumo di suolo permanente [ha]
Strutture FV fisse	0,000	0,000	0
Strutture FV (tracker)	19,353	0,000	0
Pali infissi	0,000	0,012	0
Cabine di trasf./utente/cons./coll./guard.	0,000	0,047	0
Area da sfalciare sotto pannelli	0,000	0,000	0
Piazzole cabine di trasformazione	0,000	0,151	0
Piazzola cabina utente	0,000	0,004	0
Piazzola cabina di consegna	0,000	0,008	0
Viabilità impianto	0,000	4,194	0
Habitat	0,000	0,000	0
Area di conservazione	0,554	0,000	0
Mitigazione perimetrale	3,331	0,000	0
Compensazione e rinaturalizzazione	6,372	0,000	0
Prato permanente polifita	57,615	0,000	0
Aree libere da intervento	0,013	0,000	0
TOTALE	67,884	4,417	0

Le superfici associate alla categoria consumo di suolo reversibile si dividono in aree che rendono il suolo impermeabile e quelle che conservano buona permeabilità. Le percentuali di queste superfici rispetto alla totalità delle aree interessate dall'intervento energetico, sono:

Superficie impermeabile pari a 0,08%, composta da:

- Manufatti cabine
- Strutture di sostegno moduli FV (pali)

che occupano circa 0,053 ettari della superficie di progetto.

Superficie permeabile, o che mantiene buona permeabilità, pari al 6,03%, comprendente:

- Viabilità interna
- Piazzole di accesso alle cabine

che si estendono per 4,36 ettari.

Le superfici impermeabili sono associate alla categoria di consumo di suolo reversibile, perché alla fine della vita utile dell'impianto energetico il suolo può tornare ad essere suolo non consumato una volta ripristinato lo stato originario dell'area di intervento.

Non sono invece classificabili come consumo di suolo le seguenti aree, la cui percentuale rispetto alla totalità delle aree interessate dall'intervento energetico, è pari al 93,89%:

- Aree corrispondenti agli impluvi esistenti e alle relative fasce di rispetto;
- Aree di compensazione e mitigazione interne all'area di progetto;
 Aree destinate a rinaturalizzaione e conservazione;
- Aree libere da interventi.

Si riepilogano nel seguito le superfici complessive:

- Area di progetto: 72,30 ha

- Suolo non consumato: 67,88 ha

- Consumo di suolo reversibile: 4,42 ha

- Consumo di suolo irreversibile: 0,000 ha

Si riporta un riepilogo degli indici di occupazione del suolo con riferimento all'area di intervento:

TABELLA 12 – FATTORE DI OCCUPAZIONE % RELATIVO ALL'AREA DI PROGETTO

Fattore di occupazione	%
Suolo non consumato	93,89
Consumo di suolo reversibile	6,11
Consumo di suolo permanente	0,00

Trattasi di fattori che rappresentano un' occupazione di suolo discretamente bassa, che consente di classificare il progetto, nonostante la sua estensione in termini di area d'intervento, come a basso indice di occupazione.

Per una migliore analisi del consumo di suolo e a scala più ampia, sono stati anche valutati gli indici di occupazione di suolo dell'impianto rispetto ai territori amministrativi in cui lo stesso si inserisce.

TABELLA 13 – ESTENSIONE DEI LIMITI AMMINISTRATIVI DELLA PROVINCIA DI NUORO E DEL COMUNE DI MACOMER

Superficie provincia di Nuoro [ha]		
564204,82		
Superficie Comune di Macomer [ha]		
12274,89		

TABELLA 14 – INDICE OCCUPAZIONE DI SUOLO DEL PROGETTO PER LA PROVINCIA DI NUORO

Indice provincia di Nuoro (NU)	%	‰
Area di impianto/Sup. provincia	0,0103	0,1035
Suolo non consumato/Sup. provincia	0,0120	0,1203
Consumo di suolo reversibile/Sup. provincia	0,0008	0,0078
Consumo di suolo irrev./Sup. provincia	0,0000	0,0000

TABELLA 15 – INDICE OCCUPAZIONE DI SUOLO DEL PROGETTO PER IL COMUNE DI MACOMER

Indice Comune di Macomer	%	%
Area di impianto/sup. comune	0,4757	4,7570
Suolo non consumato/sup. comune	0,5530	5,5303
Consumo di suolo reversibile/sup. comune	0,0360	0,3599
Consumo di suolo irrev./sup. comune	0,0000	0,0000

Di seguito una rappresentazione grafica della tabella con il fattore di occupazione del suolo rispetto all'area di progetto (%):

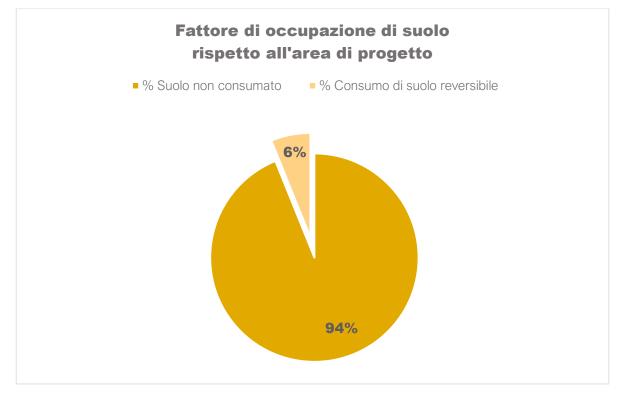


FIGURA 47 – INFOGRAFICA DEL FATTORE DI OCCUPAZIONE DEL SUOLO IN RELAZIONE AL PROGETTO AGRO-VOLTAICO DENOMINATO "MACOMER 4"

In considerazione delle previsioni progettuali, delle analisi sopra riportate e del censimento ISPRA relativo al suolo consumato, si precisa che l'incremento di suolo consumato conseguente all'installazione dell'impianto fotovoltaico per il comune e la provincia interessati dall'intervento, presenta i seguenti indici:

TABELLA 16 – RAPPORTO DI SUOLO CONSUMATO NELLA PROVINCIA DI NUORO

Suolo consumato progetto [ha]		
4,38		
Suolo consumato Provincia di Nuoro [ha]		
4107,52		
Rapporto suolo consumato [%]		
0,11%		

TABELLA 17 – RAPPORTO DI SUOLO CONSUMATO SUL COMUNE DI MACOMER

Suolo consumato progetto [ha]		
4,42		
Suolo consumato Comune di Macomer [ha]		
508,33		
Rapporto suolo consumato [%]		
0,87%		

È, inoltre, possibile valutare il consumo di suolo sul territorio comunale ante e post operam in relazione al numero di abitanti, in modo da valutare la variazione di tale indice e quindi l'incidenza del progetto.

TABELLA 18 – INDICE DI CONSUMO DI SUOLO PRO-CAPITE NEL COMUNE DI MACOMER E NELLA PROVINCIA DI NUORO – ANTE E POST OPERAM

MACOMER	9567 ab	fonte: ISTAT, 2021
Consumo di suolo per abitante <i>ante operam</i> [ha/ab]		Consumo di suolo per abitante <i>post</i> operam [ha/ab]
	0,0531	0,0536
NUORO (Prov)	201517 ab	fonte: ISTAT, 2021
Consumo di suolo per abitante <i>ante</i> <i>operam</i> [ha/ab]		Consumo di suolo per abitante <i>post</i> operam [ha/ab]
	0,0647	0,0647

È evidente come l'incidenza dell'opera impatti in maniera irrilevante sul consumo di suolo procapite del comune e della provincia interessati dall'intervento. Infatti, sul comune si registra un

incremento di consumo di suolo pro-capite pari a 0,0005 ha/ab mentre sulla provincia il dato resta invariato rispetto a quello ISTAT.

Si precisa, inoltre, che, seppur ci fosse stato un aumento del consumo di suolo, tale incremento sarebbe circoscritto temporalmente alla fase di gestione dell'impianto e cesserebbe alla data di dismissione dello stesso, alla fine della sua vita utile.

In conclusione, alla luce dei dati forniti ed esaminati, si afferma che l'impianto fotovoltaico in esame non accresce la percentuale di consumo di suolo dell'area in oggetto.

Vista, inoltre, la collocazione del sito in area agricola, relativamente alla componente "uso del suolo" in fase di costruzione, si ritiene di assegnare una **magnitudo pari a 5.**

Al fine di evitare un depauperamento irreversibile del suolo agricolo utilizzato con l'impianto fotovoltaico, ovvero all'indirizzo dell'area verso un progressivo processo di desertificazione, sarà previsto per l'area interessata un uso agricolo congruo e integrato. La soluzione che verrà adottata è la coltivazione di foraggio con prato polifita permanente.

I prati sia annuali che poliennali, fanno parte degli avvicendamenti colturali da centinaia di anni. Il prodotto ottenibile è il fieno. Con questo indirizzo produttivo, si garantisce una copertura permanente del suolo, che favorisce la mitigazione dei fenomeni di desertificazione, e di erosione per ruscellamento delle acque superficiali. Un prato stabile apporta una copertura perenne, per il quale dopo l'insediamento, non sarà necessario effettuare semine, ma provvedere al suo mantenimento con l'apporto di concimazione e sfalciature. Dopo la sfalciatura, il materiale vegetale sarà raccolto e fornito come foraggio.

Si limiterà la crescita di specie erbacee e arbustive infestanti che potrebbero ridurre l'efficienza dell'impianto fotovoltaico ma, per eliminare qualsiasi rischio di rilascio accidentale e di interazione con la componente suolo, non saranno utilizzati erbicidi o altre sostanze potenzialmente nocive. Il rilascio di inquinanti al suolo potrà essere riferito solo a sversamenti accidentali dai mezzi meccanici; questo potrà essere efficacemente gestito con l'applicazione di corrette misure gestionali e di manutenzione dei mezzi.

È inoltre prevista la realizzazione di una fascia arborea perimetrale larga 3 m destinata alla piantumazione di alberi di olmo, prugnolo, biancospino e perastro lungo il confine.

Sono previste anche diverse aree destinate a compensazione e rinaturalizzazione e si prevede inoltre, la conservazione delle aree in cui si è riscontrata una maggior presenza di individui arborei. Tali aree negli stralci che seguono vengono indicate con il colore rosa e con il verde.

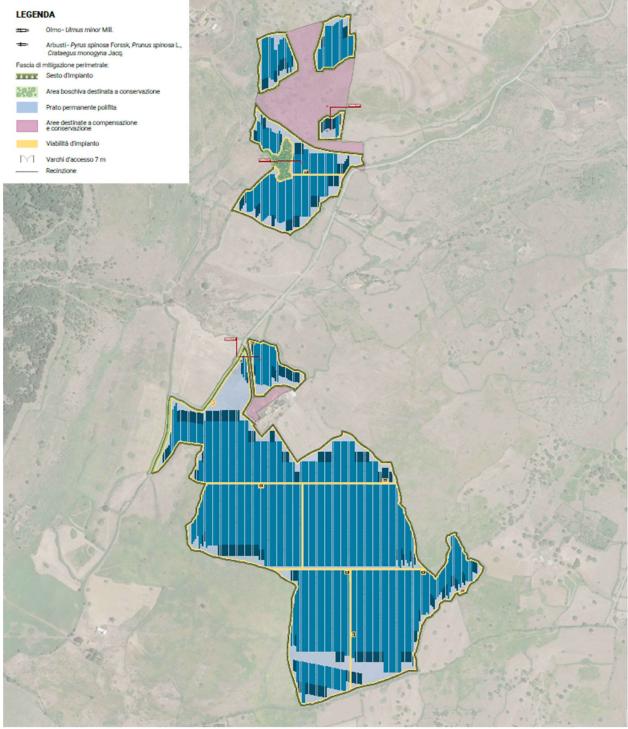


FIGURA 48 – PLANIMETRIA GENERALE SISTEMAZIONE A VERDE OPERE DI MITIGAZIONE (ESTRATTO DALL'ELABORATO GRAFICO MACOMER4-PDT11)

FIGURA 49 — PARTICOLARE AREA DESTINATA A CONSERVAZIONE E RELATIVA SEZIONE O-E DELL'IMPIANTO(ESTRATTO DALL'ELABORATO GRAFICO MACOMER4-PDT11)

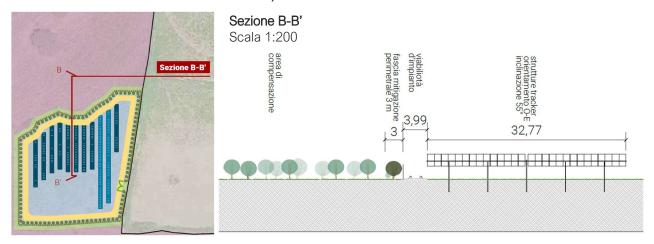


FIGURA 50 – PARTICOLARE FASCIA DI MITIGAZIONE E AREA DESTINATA A RINATURALIZZAZIONE E RELATIVA SEZIONE N-S DELL'IMPIANTO – ESTRATTO DALL'ELABORATO GRAFICO MACOMER4-PDT11)

FIGURA 51 – PARTICOLARE FASCIA DI MITIGAZIONE E RELATIVA SEZIONE O-E DELL'IMPIANTO – ESTRATTO DALL'ELABORATO GRAFICO MACOMER4-PDT11)

Le soluzioni previste permetteranno di:

- creare un ambiente favorevole allo sviluppo di insetti impollinatori, uccelli, rettili, anfibi;

garantire una copertura permanente del terreno che riduca fenomeni di erosione del suolo dovuti al vento ed alle acque superficiali; ridurre significativamente l'utilizzo di fertilizzanti di chimici, erbicidi e pesticidi, migliorando così la qualità delle acque; migliorare la capacità del terreno di trattenere l'acqua e la quantità di sostanza organica nel suolo, lasciando così un terreno con buone capacità produttive una volta dismesso l'impianto agro voltaico.

Per maggiori informazioni circa il futuro uso agricolo dell'area, alle macchine ed attrezzature da impiegare si rimanda alla relazione agronomica allegata (codice elaborato: MACOMER4-IAR05), mentre per quanto attiene i dettagli dell'intervento di mitigazione e compensazione ambientale si rimanda all'elaborato: MACOMER4-IAR08 Relazione mitigazione ambientale e paesaggistica.

Infine, in considerazione del fatto che l'intervento si colloca in area agricola, si assegna per la componente uso del suolo in <u>fase di esercizio</u> un valore di **magnitudo reale pari a 5**.

4.4 Pedologia e morfologia

L'area vasta pedologica è stata determinata in base alle caratteristiche dell'unità di paesaggio dominante, quella del Sistema delle rocce ignimbritiche e basaltiche che dividono in due parti l'area in esame.

La rappresentazione seguente riporta i dati riferiti alla Carta dei Suoli della Sardegna (Aru et al., 1991), e riporta, anche l'inquadramento climatico utilizzando la metodologia utilizzata da Thornthwaite e Mater (1956), partendo dai dati di temperatura e precipitazione (medie mensili) e dal calcolo dell'evapotraspirazione, e ne sintetizza i risultati in un grafico riportante il Bilancio Idrico di un suolo.

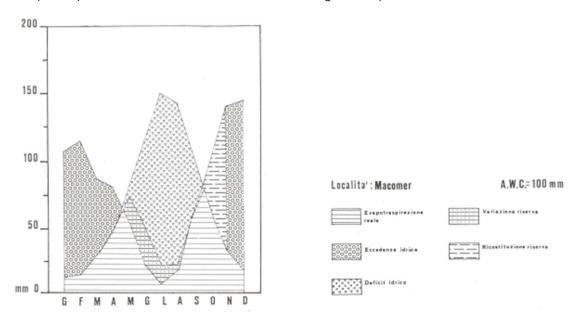


FIGURA 52 – INQUADRAMENTO CLIMATICO AREA DI MACOMER SECONDO LA METODOLOGIA DI THORNTHWAITE

I dati climatici di base riferiscono di un clima tipicamente bistagionale, delle aree interne alto collinari, In queste condizioni lo stress idrico è posizionato tra i mesi di maggio ed ottobre, con rari eventi relegati ad acquazzoni estivi.

Si riscontra su superfici dalla morfologia collinare formate su aree di vulcaniche, nonché nei depositi di versante. La copertura vegetale è di norma costituita da macchia mediterranea anche evoluta e dal pascolo cespugliato o arborato, ma soprattutto da aree con miglioramenti pascoli e seminativi ottenuti per interventi di miglioramento fondiario. Nelle situazioni di marginalità il pascolo tende ad essere sostituito dalla macchia più o meno degradata, mentre situazioni più favorevoli per giacitura e fin dove è stato possibile lavorare a ritocchino senza ribaltamento delle macchine, sono presenti seminativi a cereali o erbai in rotazione al pascolo.

La pietrosità superficiale varia da scarsa a moderata. La rocciosità affiorante è sensibilmente inferiore a quella della unità precedente ed è limitata a quelle aree dove affiorano filoni particolarmente resistenti alla alterazione.

I suoli hanno profili di tipo A(p) Bw R, A Bw B/C C o A(p) Bw C, tutti con potenze generalmente inferiori a 30 - 35 cm o nelle situazioni meno potenti ed evolute di tipo A R e potenze sempre inferiori a 20 cm. Con il suffisso (p) indichiamo la presenza di suoli arati o comunque stravolti nel loro profilo da un intervento antropico.

La potenza dell'orizzonte Bw cambico è in funzione diretta sia della pendenza della superficie; quindi, sono di norma discontinui e possono variare di potenza anche nello spazio di pochi metri.

Il contenuto in scheletro, quando non si è proceduto con spietramenti o nei profili non soggetti a lavorazioni frequenti o profonde, è di norma moderato, con elementi per lo più quarzosi dagli spigoli vivi, e tende all'aumentare della profondità. Spesso, invece con le lavorazioni si ha un incremento della pietrosità superficiale a cui deve seguire uno spietramento.

La tessitura è franco-sabbiosa o franca, senza variazioni significative di classe tessiturale all'aumentare della profondità. La reazione è subacida o al limite tra la subacida e la neutra. Il grado di saturazione in basi varia nei diversi profili dal saturo (condizione più comune) alla insatura e all'interno dello stesso profilo può variare da satura a insatura all'aumentare della profondità in base agli apporti esterni e alla copertura del suolo.

I rischi di erosione variano da moderati a severi in funzione della morfologia, del grado e delle caratteristiche della copertura vegetale, della frequenza e del tipo delle lavorazioni.

Le superfici ascritte a questa unità sono adatte ad un uso agricolo estensivo o semi estensivo. Le destinazioni d'uso ottimali sono pertanto rappresentate dal pascolo localmente migliorabile e dal rimboschimento finalizzato, più che alla produzione di masse legnose da cellulosa o da opera, alla protezione del suolo. Nelle situazioni di maggiore marginalità le destinazioni d'uso ottimali sono rappresentate dal ripristino e dalla conservazione della vegetazione naturale e dal pascolo con carico limitato di razze bovine rustiche, attività turistiche e ricreative.

Dal punto di vista tassonomico siamo in presenza di una associazione i cui termini sono classificabili secondo la Soil Taxonomy come Lithic Xerochrepts, Dystric Lithic Xerochrepts (insaturi), Lithic Ruptic Xerorthents Xerochrepts, (profili A Bw R, gli ultimi due con Bw discontinuo), e Lithic Xerorthents (profili A R).

In situazioni estremamente localizzate e sotto una copertura vegetale rappresentata dal bosco o dalla macchia molto fitta, sono stati osservati su substrati costituiti da depositi colluviali di materiali già fortemente pedogenizzati, dei suoli a profilo A Bw C R o A Bw C 2 Bt R. Le caratteristiche chimicofisiche e fisiche di questi suoli quali colore, tessitura, reazione C.S.C. e grado di saturazione sono variabilissime. Fa eccezione lo scheletro sempre molto elevato per elementi di tutte le dimensioni.

All'interno della Land Capability Classification sono collocati nella IV classe e talora nella V.

4.4.1 Analisi dell'impatto potenziale

Le considerazioni pedologiche sull'area in esame riportano ad un contesto pedologico decisamente alterato rispetto alle condizioni di naturalità, già da tempo non riscontrabili. Le attività agricole sono collocate in un'area marginale, anche per le particolari condizioni climatiche presenti, con inverni freddi, ma con una buona disponibilità idrica per gli inverni piovosi.

I suoli vengono proposti per colture come i prati sfalciabili e i prati pascolo, in funzione della loro profondità, rammentando che localmente sono possibili piccoli accumuli di suolo, anche artificiali, dove viene condotta attualmente una attività di orticoltura a destinazione familiare.

In generale le classi secondo la Land Capability Classification sono la IV e la V, ma non escludono forme di utilizzazione agricole importanti per la produzione di foraggi. Infatti, il vero limite dopo i miglioramenti fondiari è la modalità di conduzione del fondo e le relative pratiche agricole che non possono essere fondate sul pascolamento.

I suoli se abbandonati sono destinati in breve tempo alla rinaturalizzazione con specie forestali.

L'intervento proposto punta all'integrazione della destinazione agricola dei suoli con la produzione di energia, l'approccio dell'agrovoltaico, infatti, punta a modificare il meno possibile le caratteristiche del terreno, per questo si ritiene di assegnare alla componente "modifiche delle caratteristiche pedo-morfologiche" una magnitudo pari a 4 in fase di costruzione e 2 in fase di esercizio.

4.5 Biodiversità, flora e fauna

L'area in esame è ubicata nel settore collinare interno della Sardegna Centrale, all'interno delle forme di paesaggio delle vulcaniti effusive, ed in particolare nelle forme di paesaggio determinate dalle rocce ignimbritiche e da quelle basaltiche che qui vengono a contatto.

L'area è identificata nei tipi di paesaggi agrari con elementi di subnaturalità, interrotti per l'azione di miglioramenti fondiari realizzati a partire dagli anni '70, chiamati miglioramenti pascolo, che hanno alterato completamente l'ecologia e le caratteristiche floristiche e vegetazionali in diverse aree introducendo una monotonia ecologica determinata dall'eccessivo carico di animali al pascolo.

Solo alcuni tratti con suoli più profondi sono destinati alla semina o utilizzati come erbai.

Dal punto di vista bioclimatico, in accordo con la classificazione di Rivas-Martinez et al. (2002), il territorio ricade nei macrobioclimi mediterraneo e temperato, quest'ultimo nella variante submediterranea. All'interno del macrobioclima mediterraneo sono presenti il bioclima mediterraneo pluvistagionale oceanico che interessa gran parte dei territori collinari. Per il bioclima mediterraneo pluvistagionale oceanico si inquadra nel termotipo supramediterraneo superiore e ombrotipi secco inferiore.

4.5.1 Inquadramento dello stato di fatto

4.5.1.1 FLORA

La flora è quella tipica delle aree coltivate, caratterizzata dalla presenza di specie legate alla presenza dell'uomo e alle pratiche agricole. In particolare, la presenza di *Rubus ulmifolius*, nelle aree perimetrali a formare delle siepi, rappresenta un habitat di confine, allorché la sua azione è quella di una tipica specie invasiva. Le specie endemiche sono presenti in numero ridotto soprattutto per l'azione antropica che ha reso uniformi le aree in esame. Oggi dominano le specie ubiquitarie e avventizie, nonché quelle di corteggio a quelle coltivate, che caratterizzano l'area. Altre specie, come *Pteridium aquilinum* e *Cistus monspeliesis*, son invece legate al pascolo e al diffuso fenomeno degli incendi. Infatti, queste due specie, largamente presenti come *Ferula comunis*, sono diffuse dagli incendi e dal pascolamento, soprattutto come piante rifiutate dagli animali, anche perché caratterizzate da una certa tossicità. Pertanto, viene esclusa la presenza di specie endemiche di particolare valore ed importanza ecologica e biologica, mentre è diffusa la presenza di specie ubiquitarie come prima indicato.

VEGETAZIONE POTENZIALE

La vegetazione potenziale dell'area in esame è caratterizzata presenza della Serie sarda, neutro-acidofila, mesomediterranea della quercia di Sardegna (*Ornithogalo pyrenaici-Quercetum ichnusae*)

La sua distribuzione riguarda le colline interne dell'Isola ed in particolare è censita per l'area in esame.

La fisionomia, struttura e caratterizzazione floristica dello stadio maturo micro-mesoboschi è quella determinata dalla dominanza di latifoglie decidue e semidecidue, con strato fruticoso a basso ricoprimento e strato erbaceo costituito prevalentemente da emicriptofite scapose o cespitose e geofite bulbose. Rispetto agli altri querceti sardi sono differenziali di quest'associazione: Quercus ichnusae, Q. dalechampii, Q. suber e Ornithogalum pyrenaicum. Sono taxa ad alta frequenza: Hedera helix subsp. helix, Luzula forsteri, Viola alba subsp. dehnhardtii, Brachypodium sylvaticum, Clematis vitalba, Q. ilex, Rubia peregrina, Carex distachya, Rubus gr. ulmifolius, Crataegus monogyna, Pteridium aquilinum subsp. aquilinum, Clinopodium vulgare subsp. arundanum.

Caratterizzazione litomorfologica e climatica boschi caducifogli climatofili ed edafo-mesofili, che si rinvengono su substrati litologici di natura non carbonatica ed in particolare su basalti, andesiti, trachiti e metarenarie nella Sardegna centro-settentrionale.

Dal punto di vista bioclimatico si localizzano in ambito Mediterraneo pluvistagionale oceanico, in condizioni termotipiche ed ombrotipiche comprese tra il mesomediterraneo inferiore-subumido inferiore ed il mesomediterraneo superiore-umido inferiore. Mostrano un optimum bioclimatico di tipo mesomediterraneo superiore-subumido superiore. Vegetano dai 280 ai 955 m di quota. Stadi della serie sono presenti mantelli attribuibili all'alleanza *Pruno-Rubion*, mentre gli arbusteti di sostituzione ricadono nella classe *Cytisetea* scopario-striati. Gli orli sono rappresentati da formazioni erbacee inquadrabili nell'ordine *Geranio purpurei-Cardaminetalia hirsutae*. L'eliminazione della copertura forestale e arbustiva, specie in aree di altopiano, ha favorito lo sviluppo di cenosi erbacee delle classi *Poetea bulbosae, Molinio-Arrhenatheretea e Stellarietea mediae*. Serie minori accessorie boschi mesofili di *Laurus nobilis*.

La condizione attuale appare decisamente lontana dalla vegetazione potenziale dapprima descritta e definita dalla vegetazione delle aree coltivate come erbaio e pascolate sulle stoppie nella stagione estiva, sono dominate dalla presenza di graminacee e sono definite dall'Alleanza Centaureaetalia cyani.

VEGETAZIONE REALE

Le colture agrarie associate alle attività pastorali sono legate soprattutto alle arature saltuarie per la cosiddetta pulizia del pascolo finalizzata all'eliminazione degli arbusti o specie erbacee poco appetibili (Asphodelus microcarpus, Carlina corymbosa, Thapsia garganica, Ferula communis, Cynara cardunculus, Pteridium aquilinum) e arbusti spinosi in genere (Prunus spinosa, Rubus ulmifolius) per ottenere una migliore produzione erbacea. Le arature sono ricorrenti, ma sono effettuate in modo non periodico, per cui anche lo stato della copertura erbacea è molto variabile in funzione di queste pratiche. In condizioni di morfologie più favorevoli, si impiantano erbai vernino-primaverili e, laddove è possibile, si attua il trattamento irriguo, medicai sfalciati regolarmente. La flora è quella tipica dei popolamenti erbacei con la prevalenza di specie annuali o perenni a seconda dell'altitudine e dei trattamenti colturali.

Le colture cerealicole sono concentrate quasi esclusivamente nelle aree pianeggianti.

Si hanno le seguenti tipologie principali:

- Prati pascolo arati e sfalciati saltuariamente;
- Prati pascolo regolarmente sfalciati (medicai, erbai autunno-vernini);
- Colture a cereali a sviluppo invernale-primaverile (frumento, orzo, mais).

Per ulteriori dettagli circa la vegetazione nell'area oggetto d'intervento, si rimanda allo studio naturalistico allegato (codice elaborato MACOMER4-IAR06, MACOMER4-IAR07).

4.5.1.2 FAUNA

L'evoluzione della fauna selvatica presente nel complesso forestale del Monte di Sant'Antonio, ha subito negli anni, grosso modo lo stesso andamento del resto della Sardegna. Cercando di semplificare si illustrerà il processo socio-economico che ha contribuito a modificare lo "status" della fauna selvatica nel territorio. A partire dalla seconda metà del 1900, nell'isola si è assistito ad un progressivo abbandono delle pratiche agricole tradizionali, in modo particolare nelle zone marginali e svantaggiate sotto il profilo agronomico, quali zone di alta collina e montagna, spesso prive di infrastrutture. Questa situazione ha portato ad un abbandono del presidio del territorio da parte dell'uomo che da contadino-allevatore si è trasformato in pastore. Il territorio abbandonato, si è gradualmente prima trasformato in un incolto, tramite la così detta "successione secondaria", poi in un arbusteto e in seguito ove le condizioni edafiche lo consentivano in un bosco. Tale processo dinamico delle cenosi agro-forestali, ha da un lato favorito il proliferare di alcune specie faunistiche particolarmente "opportuniste", sia sotto il profilo alimentare che sotto quello ecologico, quali ad esempio il cinghiale (Sus scrofa meridionalis), la volpe (Vulpes ichnusae), la cornacchia grigia (Corvus corone cornix). Al contrario per altre specie faunistiche molto più specializzate, sotto il profilo alimentare ed ecologico e, indissolubilmente legate alla gestione agricola del territorio da parte dell'uomo contadino, come ad esempio alcune specie "steppiche" quali la pernice sarda (Alectoris barbara), la lepre sarda (Lepus capensis mediterraneus), il prima descritto processo di abbandono delle campagne, ha creato gravi problematiche, tanto che la consistenza delle loro popolazioni vitali si contrae sempre di più. Naturalmente altri molteplici fattori hanno contribuito da un lato alla affermazione anche in ambiti

sub-urbani delle prima indicate specie "opportunistiche" e alla conseguente rarefazione delle specie "steppiche". Tra i tanti appare opportuno ricordare la eccessiva pressione venatoria, la piaga del bracconaggio, l'uso di pesticidi e di concimi chimici in agricoltura, gli incendi boschivi, l'isolamento di alcune popolazioni con conseguente deriva genetica e molteplici interventi di ripopolamento gestiti in maniera sconsiderata.

Il cinghiale sardo (Sus scrofa meridionalis) è senza dubbio da alcuni anni il maggior rappresentante in termini di presenze della fauna di interesse venatorio sul territorio. La presenza del suide, in numero consistente, risale alla fine degli anni '80 quando in seguito ad un grosso incendio che interessò il territorio di Santu Lussurgiu, Cuglieri e di Scano Montiferro, risparmiando ma lambendo il complesso forestale del Monte Sant'Antonio, alcuni nuclei di cinghiali sopravvissuti al fuoco si stabilirono nell'area in oggetto. Questo è anche dimostrato dal fatto che sino a quel periodo (fine anni '80) le "Squadre di caccia grossa" di Macomer dovevano recarsi per esercitare l'attività venatoria nei territori di altri Comuni. In seguito, grazie anche ad un'oculata gestione faunistica attuata dalla dirigenza della locale Autogestita di caccia, le presenze del suide si sono stabilizzate, consentendo ai soci della Autogestita prelievi sostenibili rispetto alla dinamica di popolazione. Il discorso opposto va purtroppo fatto per la pernice sarda (Alectoris barbara) e per la lepre sarda (Lepus capensis mediterraneus), di fatto tali specie hanno subito, anche per i motivi prima esposti, un costante decremento numerico, nonostante la dirigenza della zona di caccia autogestita abbia posto in atto numerosi tentativi di ripopolamento tramite immissione di fauna allevata e limitato drasticamente, o addirittura per alcuni anni precluso, i prelievi venatori di queste due specie faunistiche.

Anche il coniglio selvatico (*Oryctolagus cuniculus*) abbondava nell'area trovando il suo habitat ideale nei muretti a secco, nei macchioni di rovi e nei cumuli di pietre ma purtroppo, in seguito al diffondersi di alcune patologie gastro-intestinali quali la mixomatosi (introdotta dall'uomo), la sua consistenza è diminuita notevolmente. Tra le specie migratorie, la beccaccia (*Scolopax rusticola*), è indubbiamente la più rappresentata, numerosi sono difatti gli scolopacidi che sostano nei quartieri di svernamento dell'area.

Indubbiamente il complesso forestale descritto, sia per le sue caratteristiche fisionomiche e tipologiche forestali, sia per i numerosi ecotoni particolari, che per la sua elevata diversità biologica sia a livello di specie che a livello di habitat è ritenuto tra i più vocati di tutta la Sardegna per lo svernamento della beccaccia. Altre presenze saltuarie di fauna di interesse venatorio sono

rappresentate dalla quaglia (*Coturnix coturnix*), un tempo numerosa e spesso nidificante, dal merlo (*Turdus merula*), dal tordo bottaccio (*Turdus philomelus*), dalla cesena (*Turdus pilaris*), dal colombaccio (*Columba palumbus*). I rapaci diurni, sono rappresentati in buona quantità sia dalla poiana (*Buteo buteo*), che dal gheppio (*Falco tinninculus*). È stato inoltre avvistato qualche raro esemplare di astore sardo (*Accipiter gentilis arrigonii*) e di lodolaio (*Falco subbuteo*). I rapaci notturni sono invece rappresentati dall'assiolo (*Otus scops*), dalla civetta (*Athene noctua*) e dal barbagianni (*Tyto alba*). I corvidi sono invece rappresentati dalla ghiandaia (*Garulus glandarius*), dalla cornacchia grigia (*Corvus corone cornix*), e dalla taccola (*Corvus monedula*). Tra i mammiferi è rappresentata come abbondante la volpe sarda (*Vulpes ichnusae*), la donnola (*Mustela nivalis*), più rara la martora (*Martes martes*). Sono naturalmente rappresentate alcune specie sarde di entomofauna, erpetofauna e diverse specie di chirotteri.

Per un elenco esaustivo delle specie animali censite nell'area di progetto si rimanda allo studio faunistico allegato (codice elaborato MACOMER4-IAR06, MACOMER4-IAR07).

4.5.1.3 VALUTAZIONE ECOLOGICA ED AMBIENTALE DEI BIOTIPI – CORINE BIOTOPES

Utilizzando come base la Carta degli habitat e applicando la metodologia valutativa illustrata nel Manuale "ISPRA 2009 Il Progetto Carta della Natura alla scala 1:50.000 - Linee guida per la cartografia e la valutazione degli habitat. ISPRA ed., Serie Manuali e Linee Guida n.48/2009, Roma" sono stati stimati, per ciascun biotopo, gli indici Valore Ecologico, Sensibilità Ecologica, Pressione Antropica, Fragilità Ambientale. Nella rappresentazione cartografica in Carta della Natura, in scala 1:50.000 le unità di base sono gli habitat, e ogni poligono cartografato rappresenta un biotopo di uno specifico habitat, dove per biotopo si intende il complesso ecologico nel quale vivono determinate specie animali e vegetali che insieme formano una biocenosi.

Gli habitat sono classificati secondo il sistema gerarchico CORINE Biotopes (ISPRA Manuali e Linee Guida 30/2004 e successivo ISPRA Manuali e Linee Guida 48/2009).

A loro volta i codici del sistema CORINE Biotopes corrispondono ai codici della rete dei siti Natura 2000 (Direttiva 92/43/CEE).

FIGURA 53 – STRALCIO CARTA DEGLI HABITAT SECONDO IL SISTEMA CORINE BIOTOPES – STRALCIO MACOMER4-IAT19

Fonte: Camarda I., Carta L., Laureti L., Angelini P., Brunu A., Brundu G., 2011. Carta della Natura della Regione Sardegna: Carta degli habitat alla scala 1:50.000. ISPRA.

Il terreno ricadente nell'area di progetto è caratterizzato da *Prati concimati e pascolati - Codice 38.1*.

Nelle aree adiacenti all'area di progetto si riscontrano inoltre le seguenti classi:

Codice 84.6: Pascolo alberato in Sardegna

Il cavidotto decorre principalmente su viabilità esistente, caratterizzata da strade poderali.

La valutazione degli habitat deve necessariamente prendere in considerazione la flora e la fauna. Per quanto riguarda la fauna, poiché non si è ancora in possesso delle distribuzioni degli invertebrati, sono stati presi in considerazione solo i vertebrati. Relativamente alla flora, invece viene valutato il peso delle sole specie a rischio di estinzione e, nel futuro, potrebbe essere valutata anche la distribuzione dei licheni, importanti bioindicatori della qualità ambientale.

Poiché la Carta della Natura serve a evidenziare le emergenze naturali, sia dal punto di vista del Valore Ecologico, sia della Fragilità Ambientale, per i biotopi dell'habitat classificato con il codice CORINE Biotopes del gruppo 86, cioè i centri urbani e le aree industriali, non si valorizza nessun indicatore e non si calcolano gli indici precedentemente definiti.

Si riporta di seguito una rappresentazione cartografica dell'area di progetto in sovrapposizione con la Carta Sensibilità Ecologica, la Carta Pressione Antropica, la Carta Fragilità Ambientale e la Carta Valore Ecologico.

SENSIBILITÀ ECOLOGICA

Questo indice fornisce una misura della predisposizione intrinseca dell'habitat al rischio di degrado ecologico-ambientale. La Sensibilità Ecologica può essere dovuta o alla presenza di specie animali e vegetali che sono state classificate come a rischio di estinzione, oppure per particolari caratteristiche di sensibilità del biotopo stesso, in presenza o meno di fattori antropici.

Nello specifico la Sensibilità di un biotopo viene valutata per la sua inclusione negli habitat prioritari (Allegato I della Direttiva Habitat 92/43/CEE), presenza di vertebrati e flora a rischio per la lista rossa IUCN (International Union for the Conservation of Nature), per la sua distanza dal biotopo più vicino appartenente allo stesso tipo di habitat, per la sua ampiezza e rarità.

Dalla sovrapposizione dell'aera di progetto con la carta della Sensibilità Ecologica si evince come l'area in oggetto ricada all'interno di siti caratterizzati da un livello "medio" di Sensibilità Ecologica.

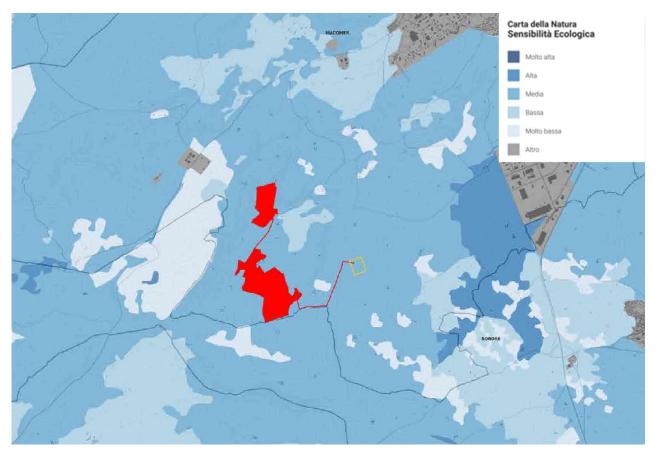


FIGURA 54 – INQUADRAMENTO AREA DI PROGETTO SU CARTA DELLA SENSIBILITÀ ECOLOGICA – STRALCIO ELABORATO CARTOGRAFICO MACOMER4-IAT21

(Fonte: Capogrossi R., Angelini P., Bianco P.M., 2013. Carta della Natura della Regione Sardegna: Carte di Valore Ecologico, Sensibilità Ecologica, Pressione Antropica e Fragilità Ambientale scala 1:50.000. ISPRA)

Vista l'assenza di habitat prioritari (Natura 2000), la scarsa presenza di vertebrati e di flora a rischio di estinzione e tenuto conto degli interventi di mitigazione/compensazione previsti per il progetto in questione, che potrebbero consentire il ripopolamento dell'area attualmente priva di copertura vegetale da parte della piccola fauna inclusi gli artropodi (tra i primi organismi a subire l'alterazione del loro habitat causata dalle coltivazioni), si esclude un danno diretto e una indiretta interferenza sulle

condizioni ecologiche degli habitat a seguito della installazione dell'impianto fotovoltaico. Pertanto, si ritiene che l'impatto relativo al degrado ecologico-ambientale sia poco significativo.

PRESSIONE ANTROPICA

Questo indice rappresenta il disturbo complessivo di origine antropica che interessa gli ambienti all'interno di un habitat. Tale indice viene valutato tramite la stima indiretta e sintetica del grado di disturbo indotto su un biotopo dalle attività umane.

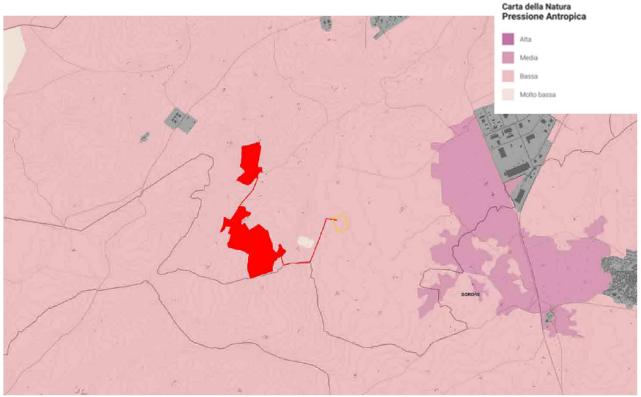


FIGURA 55 – INQUADRAMENTO AREA DI PROGETTO SU CARTA DELLA PRESSIONE ANTROPICA – STRALCIO ELABORATO CARTOGRAFICO MACOMER4-IAT22

(Fonte: Capogrossi R., Angelini P., Bianco P.M., 2013. *Carta della Natura della Regione Sardegna: Carte di Valore Ecologico, Sensibilità Ecologica, Pressione Antropica e Fragilità Ambientale scala 1:50.000.* ISPRA)

Gli indicatori utilizzati per la stima dell'indice Pressione Antropica sono: grado di frammentazione di un biotopo prodotto dalla rete viaria, costrizione del biotopo e diffusione del disturbo antropico.

Dalla figura si evince che l'area di progetto ricade su aree caratterizzate da un livello "basso" di Pressione Antropica. Essa, infatti, è inserita in un'area a forte vocazione agricola piuttosto distante dai maggiori punti di interesse del territorio, si configura dunque come poco appetibile per le antropizzazioni.

Al fine di conservare tale vocazione dell'area, grazie ad alcuni accorgimenti (recinzione con passaggi per piccola fauna, fasce di mitigazione ed isole verdi ecc..) si favorirà l'avvicinamento di

specie faunistiche. L'impianto in oggetto, quindi, non entra in contrasto con l'ambiente che lo circonda anzi, grazie alle misure previste, potrebbe apportare qualche beneficio in termini di biodiversità.

FRAGILITÀ AMBIENTALE

La Fragilità Ambientale è il risultato della combinazione degli indici di Sensibilità Ecologica e di Pressione Antropica. Infatti, a differenza degli altri indici che si ottengono da un algoritmo matematico, la Fragilità Ambientale si ottiene dalla combinazione della classe di Pressione Antropica con la classe di Sensibilità Ecologica di ogni singolo biotopo, secondo una matrice che relaziona le classi in cui sono stati divisi gli indici di Sensibilità Ecologica e Pressione Antropica. Essa rappresenta lo stato di vulnerabilità del territorio dal punto di vista della conservazione dell'ambiente naturale. Nella fase di interpretazione è importante confrontare la distribuzione delle aree che risultano a maggiore Fragilità Ambientale con quelle di maggior Valore Ecologico perché, da questo confronto, possono scaturire importanti considerazioni in merito a possibili provvedimenti da adottare, qualora biotopi di alto valore e al tempo stesso di alta fragilità dovessero risultare non ancora sottoposti a tutela. (Fonte: Il progetto Carta della Natura Linee guida per la cartografia e la valutazione degli habitat alla scala 1:50.000 - ISPRA).

Come si evince dalla figura sottostante, l'intera area di progetto ricade su aree caratterizzate da un livello "basso" di Fragilità Ambientale.

Verranno comunque previsti appositi accorgimenti al fine di mitigare, per quanto possibile, gli impatti che un'opera come quella in oggetto, soprattutto in ragione della sua estensione, può manifestare nei confronti dell'ambiente naturale. Nello specifico, si prevede una conversione dei seminativi in prati stabili di leguminose, un'ampia fascia di mitigazione, avente una larghezza di 3 m e, dove possibile, 6 m nella quale verranno messi a dimora esemplari di *lentisco e ulivo selvatico* e diverse aree di compensazione, nelle quali verranno piantate arbusti autoctoni (vedi tavola di interventi di mitigazione MACOMER4-PDT11).

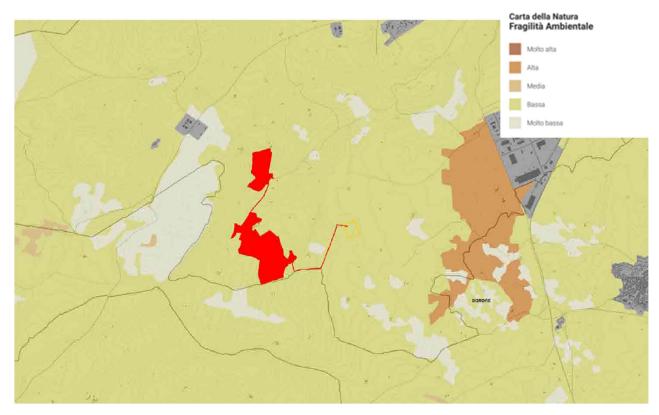


FIGURA 56 – INQUADRAMENTO AREA DI PROGETTO SU CARTA DELLA FRAGILITÀ AMBIENTALE – STRALCIO ELABORATO CARTOGRAFICO MACOMER4-IAT23

(Fonte: Capogrossi R., Angelini P., Bianco P.M., 2013. *Carta della Natura della Regione Sardegna: Carte di Valore Ecologico, Sensibilità Ecologica, Pressione Antropica e Fragilità Ambientale scala 1:50.000.* ISPRA)

Inoltre, il PMA (Piano di Monitoraggio Ambientale – codice elaborato MACOMER4-IAR02) prevede l'analisi delle componenti ambientali quali suolo, acqua, aria e della componente biotica nelle fasi Ante Opera, Corso d'Opera e Post Opera. Questo consentirà di poter avere informazioni su ciascuna di esse e quindi, ai sensi delle normative comunitarie e nazionali, sarà possibile valutare lo stato di qualità ambientale e di avere consapevolezza di un eventuale peggioramento delle condizioni ambientali.

In definitiva, vista l'assenza di habitat prioritari (Natura 2000) e tenendo conto di quanto appena esposto, si ritiene che il progetto in oggetto non alteri in maniera significativa il livello di "Fragilità Ambientale".

VALORE ECOLOGICO

Questo indice rappresenta la misura della qualità di ciascun habitat dal punto di vista ecologicoambientale; in particolare determina la priorità nel conservare gli habitat stessi.

Gli indicatori utilizzati fanno riferimento a diversi valori da poter assegnare al biotopo come, ad esempio, il valore di aree e habitat già segnalati in direttive comunitarie (come la Direttiva "Habitat" 92/43/CEE, la Direttiva "Uccelli" 79/409/CEE o la Convenzione di Ramsar sulle zone umide), valore per inclusione nella lista di habitat di interesse comunitario (Direttiva 92/43/CEE), per la presenza potenziale di vertebrati e di flora e per l'ampiezza, la rarità e rapporto perimetro/area.

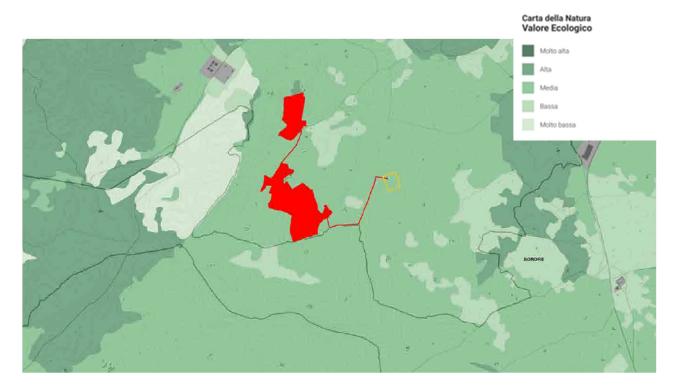


FIGURA 57 - INQUADRAMENTO AREA DI PROGETTO SU CARTA DEL VALORE ECOLOGICO - STRALCIO ELABORATO CARTOGRAFICO MACOMER4-IAT24

(Fonte: Capogrossi R., Angelini P., Bianco P.M., 2013. *Carta della Natura della Regione Sardegna: Carte di Valore Ecologico, Sensibilità Ecologica, Pressione Antropica e Fragilità Ambientale scala 1:50.000.* ISPRA)

Gli indicatori che compongono l'indice sono: la presenza di aree e habitat sottoposti a tutela, la biodiversità e le caratteristiche strutturali dei biotopi.

L'area di progetto ricade all'interno di un sito caratterizzato da un livello "medio" di Valore Ecologico.

Come specificato nello Studio Botanico Faunistico allegato a questo studio (codice elaborato MACOMER4-IAR06), nell'area di impianto non sono state individuate tipologie di habitat riconducibili

alla classificazione Natura 2000, né sono stati individuati ambienti naturali e seminaturali rappresentativi di una connotazione paesaggistica ancora integra, perché l'espansione industriale commerciale e urbanistica ed il conseguente elevato grado di pressione antropica, hanno ristretto i territori dove possano conservarsi lembi di vegetazione naturale.

Pertanto, vista l'assenza di habitat prioritari significativi (Natura 2000) e tenuto conto degli interventi di mitigazione/compensazione previsti per l'impianto in oggetto, si ritiene che tale intervento sia compatibile con l'indice "Valore Ecologico".

4.5.2 Analisi dell'Impatto Potenziale

Sono stati analizzati, per le diverse fasi dell'impianto e per le componenti in esame, i seguenti fattori:

- sfalcio/danneggiamento di vegetazione esistente;
- disturbo alla fauna locale;
- perdita e/o modifica degli habitat.

Fase di costruzione: i fattori di impatto sopra elencati saranno imputabili alle attività di preparazione dell'area e di adeguamento della viabilità interna al lotto. Anche le emissioni di rumore dovute alle attività di cantiere potrebbero arrecare disturbo alla fauna ma, data la relativa breve durata delle operazioni, questo può considerarsi trascurabile in quanto le specie presenti sono già largamente abituate al rumore delle lavorazioni antropiche dovute anche alle lavorazioni nei campi. Le misure di tutela attuabili saranno: rivolgere particolare attenzione al movimento dei mezzi per evitare schiacciamenti di anfibi o rettili e preparazione dell'area in un periodo compreso tra settembre e marzo per evitare di arrecare disturbo nei momenti di massima attività biologica delle specie presenti. Anche in questo caso, data la temporaneità delle attività nonché delle caratteristiche dell'area agricola in cui si inseriranno le indagini, si ritiene che l'impatto in fase di costruzione sulla componente vegetazionale e faunistica possa essere considerato basso.

Nell'area del progetto non sono presenti comunità vegetali e aspetti ambientali riconducibili agli habitat di Natura 2000 perché le superfici interessate dal progetto, talune incolte, altre seminate a grano avvicendato a foraggio e a pascolo, sono sottoposte a ripetuti turni di lavorazione del soprassuolo, tali da escludere la presenza di flora e vegetazione naturale. Pertanto, si esclude un danno diretto e una indiretta interferenza sulle condizioni ecologiche degli habitat a seguito della installazione dell'impianto fotovoltaico e della posa del cavidotto. In riferimento all'avifauna, date le caratteristiche dell'area, difficilmente essa si presta come sito di potenziale nidificazione. Nel complesso si può quindi affermare che nel sito non sono presenti specie ornitologiche particolarmente rilevanti dal punto di vista conservazionistico. Ciò è dovuto all'elevata pressione antropica presente nell'area, con conseguente impoverimento dell'ambiente che, a sua volta, ha determinato una notevole diminuzione della biodiversità animale.

Si attribuisce dunque al fattore "modifiche della vegetazione" un valore medio di **magnitudo pari** a 3 e al fattore "modifiche della fauna" un valore di **magnitudo pari a 3** in <u>fase di cantiere</u>, non essendo presenti specie di particolare pregio nell'area.

<u>Fase di esercizio:</u> fatta eccezione per gli inquinanti dovuti al passaggio dei mezzi durante le operazioni di manutenzione dell'impianto, non ci saranno altre emissioni in atmosfera o di rumore che porterebbero ad una riduzione degli habitat né ad un disturbo della fauna.

Le attività di progetto sicuramente impattanti sono riferibili alla presenza dell'impianto e all'illuminazione connessa. Le strutture non intralceranno in alcun modo il volo degli uccelli; il sistema di illuminazione, che di solito disturba le specie soprattutto in fase di riproduzione, sarà opportunamente limitato all'area di gestione dell'impianto, mirato alle aree e fasce sottoposte a controllo e vigilanza.

Tutte gli esemplari di cui si riscontra la presenza nell'areale di studio, sono in realtà specie oggi molto frequenti in Sardegna, benché sensibili alle trasformazioni del territorio legate alle pratiche di agricoltura intensiva che prevedono anche un massiccio uso di insetticidi. Nell'area interessata direttamente dal progetto esse sarebbero certamente più disturbate da una eventuale prosecuzione delle attività che tuttora sussistono, che dalla realizzazione e dall'esercizio di una centrale fotovoltaica, che non presenterà particolari incidenze negative su queste specie, né nella fase di cantiere, né in quella di esercizio.

È stato osservato che, un'area su cui insiste un impianto fotovoltaico, se ben tenuta e gestita, anche in presenza di coperture che diminuiscano la ventilazione, l'insolazione, con aumenti di temperatura, non diminuisce la sua capacità di incrementare la produzione di humus e conseguentemente, di trattenere l'acqua meteorica. Questa, scivolando sulla superficie inclinata dei pannelli fa sì che una porzione limitata di suolo sia interessata da una quantità pari a quella che cadrebbe nell'intera superficie sottesa dal pannello generando il cosiddetto effetto gronda; questo, in aree prive di manto erboso, potrebbe causare col tempo erosione superficiale localizzata.

Premesso che le opere di installazione dell'impianto fotovoltaico "Macomer 4" sono localizzate sui seminativi cerealicoli e foraggeri; pertanto, tali opere insistono su suoli già destinati alle colture, si constata che gli interventi di installazione e scavo di solchi, non dovrebbero determinare importanti squilibri ecologici sugli strati di vegetazione naturale rilevata e descritta per la zona dell'impianto. Per la finalità naturalistica è importante che, dopo l'installazione dell'impianto fotovoltaico, le aree vengano recintate, lo stesso cavidotto previsto in progetto è posto sottotraccia, pertanto, anche le opere di scavo e la installazione del cavo stesso non dovrebbero determinare conseguenze sulla flora e sulla vegetazione locale.

Dal punto di vista vegetazionale, in fase di esercizio, pertanto si assegna al fattore relativo generale una magnitudo pari a 1.

In via definitiva, considerando la scarsa presenza di specie che insistono nelle zone in esame, la tipologia costruttiva dell'impianto, si può affermare che l'impatto che deriva dall'opera in progetto nei confronti della fauna risulta molto modesto. Si ritiene che data la tipologia di opera e le dimensioni della stessa, l'impatto sulle specie sarà minimo, sempre che vengano rispettate le misure di mitigazione previste e di seguito riassunte:

- limitare il movimento dei mezzi meccanici solo alle circoscritte aree interessate dal progetto;
- ripristinare le aree di intervento con la posa di suolo organico e/o aggiunto di humus al fine di favorire l'insediamento di specie vegetali autoctone per garantire ospitalità a specie entomologiche impollinatrici;
- sostenere e accelerare il ripristino dello strato vegetale erbaceo mediante spargimento di sementi raccolte in situ così da ripristinare lo strato vegetale erbaceo ospitante specie faunistiche terrestri (Rettili e Micro-Mammiferi).
- realizzare le recinzioni dell'impianto fotovoltaico provviste di passaggi, meglio detti "corridoi ecologici", per non interrompere la libera circolazione di vertebrati terrestri, come la lepre italica, il coniglio selvatico e altri mammiferi presenti nell'area.
- realizzare una fascia di vegetazione autoctona che fungerà da corridoio ecologico.

Per la componente faunistica, si assegna relativamente al fattore "modifica della fauna" una magnitudo pari a 2.

<u>Fase di dismissione:</u> gli impatti potenziali sulla componente possono essere assimilati a quelli della fase di costruzione dell'impianto; inoltre, il ripristino dell'area porterebbe ad una ricolonizzazione vegetazionale dell'area.

4.6 Rumore

Nello studio redatto dagli ing. Calderaro e Buttafuoco, iscritti nell'Elenco Nazionale dei Tecnici Competenti in Acustica, vengono esaminate le problematiche acustiche relative all'installazione dell'impianto fotovoltaico nelle varie fasi dell'opera: costruzione, esercizio e dismissione. Il presente capitolo riporta sinteticamente le valutazioni ente approfondite nel relativo studio di settore consultabile all'elaborato MACOMER4-IAR03.

4.6.1 Inquadramento e analisi stato di fatto

A livello nazionale la materia di tutela dell'ambiente dall'inquinamento acustico è disciplinata dalla Legge 26 ottobre 1995, n.447 - Legge quadro sull'inquinamento acustico. La legge 447/95 prevede, inoltre, decreti attuativi di regolamentazione in materia di inquinamento acustico, tra i quali:

- D.lgs 17 febbraio 2017, n. 41 (G.U. 4 aprile 2017 n. 79): "Disposizioni per l'armonizzazione della normativa nazionale in materia di inquinamento acustico con la direttiva 2000/14/CE e con il regolamento (CE) n. 765/2008, a norma dell'articolo 19, comma 2, lettere i), l) e m) della legge 30 ottobre 2014, n. 161"
- D.lgs 17 febbraio 2017, n. 42 (G.U. 4 aprile 2017 n. 79): "Disposizioni in materia di armonizzazione della normativa nazionale in materia di inquinamento acustico, a norma dell'articolo 19, comma 2, lettere a), b), c), d), e), f) e h) della legge 30 ottobre 2014, n.161"
- D.Lgs. 19/8/2005, n. 194 (G.U. n. 239 del 13/10/2005): "Attuazione della direttiva 2002/49/CE relativa alla determinazione e alla gestione del rumore ambientale"
- Circolare Ministro dell'Ambiente 6/9/2004 (G.U. n. 217 del 15/9/2004): "Interpretazione in materia di inquinamento acustico: criterio differenziale e applicabilità dei valori limite differenziali"
- DPR 30/3/2004, n. 142 (G.U. n. 127 dell'1/6/2004): "Disposizioni per il contenimento e la prevenzione dell'inquinamento acustico derivante dal traffico veicolare, a norma dell'articolo 11 della legge 26 ottobre 1995, n.447"
- DPR 3/4/2001, n. 304 (G.U. n. 172 del 26/7/2001): "Regolamento recante disciplina delle emissioni sonore prodotte nello svolgimento delle attività motoristiche, a norma dell'art.
 11 della legge 26 novembre 1995, n. 447"
- DPR 18/11/98 n. 459 (G.U. n. 2 del 4/1/99): "Regolamento recante norme in materia di inquinamento acustico derivante da traffico ferroviario"

- DPCM 31/3/98 (G.U. n. 120 del 26/5/98): "Atto di indirizzo e coordinamento recante criteri generali per l'esercizio dell'attività del tecnico competente in acustica"
- DM Ambiente 16/3/98 (G.U. n. 76 dell'1/4/98): "Tecniche di rilevamento e di misurazione dell'inquinamento acustico"
- DPCM 5/12/97 (G.U. n. 297 del 19/12/97): "Determinazione dei requisiti acustici passivi degli edifici"
- DPCM 14/11/97 (G.U. n. 280 dell'1/12/97): "Determinazione dei valori limite delle sorgenti sonore"
- DM Ambiente 11/12/96(G.U. n. 52 del 4/3/97): "Applicazione del criterio differenziale per gli impianti a ciclo produttivo continuo"
- DPCM 1/3/1991 (G.U. n. 57 dell'8/3/91): "Limiti massimi di esposizione al rumore negli ambienti abitativi e nell'ambiente esterno".

Tale legge, oltre a indicare finalità e dettare obblighi e competenze per i vari Enti, fornisce le definizioni dei parametri interessati al controllo dell'inquinamento acustico.

La classificazione acustica consiste nella suddivisione del territorio in classi, definite dal DPCM 14 novembre 1997 - Determinazione dei valori limite delle sorgenti sonore - in cui si applicano i limiti individuati dallo stesso decreto. Nella tabella che segue si riportano tali indicazioni.

TABELLA 19 – CLASSIFICAZIONE DEL TERRITORIO COMUNALE INDIVIDUATA DAL D.P.C.M. 14.11.1997

C	Classificazione del territorio comunale	
Classe	Descrizione	
I Aree particolarmente protette	Rientrano in questa classe le aree nelle quali la quiete rappresenta un elemento di base per la loro utilizzazione: aree ospedaliere, scolastiche, aree destinate al riposo ed allo svago, aree residenziali rurali, aree di particolare interesse urbanistico, parchi pubblici, ecc.	
II Aree destinate ad uso prevalentemente residenziale	Rientrano in questa classe le aree urbane interessate prevalentemente da traffico veicolare locale, con bassa densità di popolazione, con limitata presenza di attività commerciali ed assenza di attività industriali e artigianal	
III Aree di tipo misto	Rientrano in questa classe le aree urbane interessate da traffico veicolare locale o di attraversamento, con media densità di popolazione, con presenza di attività commerciali, uffici, con limitata presenza di attività artigianali e con assenza di attività natigianali e con assenza di attività nuturali interessate da attività che impiegano macchine operatrici; aree portuali a carattere turistico.	
IV Aree di intensa attività umana	Rientrano in questa classe le aree urbane interessate da intenso traffico veicolare, con alta densità di popolazione, con elevata presenza di attivito commerciali e uffici, con presenza di attività artiginanti; le aree in prossimità di strade di grande comunicazione e di linee ferroviarie; le aree portuali a carattere commerciale-industriale, le aree con limitata presenza di piccole industrie.	
V Aree prevalentemente industriali	Rientrano in questa classe le aree interessate da insediamenti industriali e con scarsità di abitazioni.	
VI Aree esclusivamente industriali	Rientrano in questa classe le aree esclusivamente interessate da attività industriali e prive di insediamenti abitativi.	

La Regione Sardegna con la Delibera del 14 novembre 2008, n. 62/9 definisce le "Direttive regionali in materia di inquinamento acustico ambientale" e disposizioni in materia di acustica ambientale.

La caratterizzazione acustica di un ambiente o di una sorgente richiede la definizione di una serie di indicatori fisici (Leq, Ln, Lmax...) per mezzo dei quali "etichettare" il fenomeno osservato. La valutazione preliminare di impatto acustico viene eseguita sulla scorta del clima acustico di zona al fine di comprendere in via preventiva quale incidenza potrà avere la nuova attività energetica sul sito oggetto di studio.

Per la taratura del modello di calcolo sono state effettuate alcune campagne di misura in modo da poter indagare accuratamente la variazione dei livelli acustici del sito in funzione delle variazioni presenti in sito. Stante la specificità dei luoghi, caratterizzati dalla sostanziale ininfluenza delle sorgenti di rumore preesistenti quali infrastrutture viarie e piccole realtà produttive nonché la limitata presenza di potenziali ricettori sensibili prossimi all'areale di riferimento, si è optato per l'esecuzione di monitoraggio in continuo.

4.6.2 Analisi dell'Impatto Potenziale

Per la valutazione dei rumori attesi presso i ricettori durante le attività di cantiere si è fatto uso di un software di simulazione acustica per la propagazione del rumore in campo aperto.

L'emissione di rumore sarà dovuta principalmente al transito dei mezzi per la fornitura di materiali, per le attività di preparazione del sito, per l'adeguamento della viabilità interna, per la realizzazione degli scavi per la posa del cavidotto, per l'ancoraggio al suolo delle strutture di sostegno dell'impianto. Dunque, la probabilità che si generino rumori che potrebbero causare disturbo alle specie, soprattutto nel periodo di accoppiamento e riproduzione, è legata principalmente alle fasi di messa in cantiere, scavo e movimento terra.

Le simulazioni ricavate tarando il modello sulla base delle misurazioni strumentali effettuate mostrano che in prossimità dei ricettori individuati i livelli di pressione acustica previsti risultano rispettare i limiti imposti dalla legislazione vigente.

Relativamente alla fase di cantiere, sono stati evidenziati potenziali impatti completamente reversibili che potranno essere efficacemente ridotti attraverso specifiche attenzioni operative. Infatti, al fine del contenimento dei livelli di rumorosità, verranno rispettati gli orari per le attività di cantiere e per le connesse attività tipo gestionale/operativo.

Data la distanza del sito dal centro abitato di Macomer, in <u>fase di cantiere</u> si ritiene di assegnare, relativamente al fattore "rumore", una <u>magnitudo pari a 6</u>.

Le valutazioni relative alla fase di esercizio, sviluppate con l'ausilio di modelli previsionali di dettaglio, hanno evidenziato livelli di impatto pienamente conformi ai limiti normativi con adeguati margini di sicurezza. Per quanto riguarda la Fase di Esercizio dell'impianto agrovoltaico "Macomer 4", dunque, l'impatto acustico è da considerarsi del tutto trascurabile vista la scarsa emissione di rumore di questo tipo fonti di produzione di energia.

Durante la <u>Fase di esercizio</u> non ci sarà alcun incremento delle emissioni sonore nell'area. Si ritiene quindi di assegnato a tale fase una **magnitudo pari a 4** esclusivamente perché, come già detto, l'impianto si colloca non lontano dal centro abitato di Macomer.

In <u>Fase di dismissione</u> gli impatti sono assimilabili a quelli già valutati per la fase di costruzione.

4.7 Paesaggio e patrimonio

4.7.1 Inquadramento e analisi stato di fatto

In base al Piano Paesaggistico Regionale della Sardegna, il Comune di Macomer non ricade in nessuno dei 27 ambiti di paesaggio costieri per i quali il PPR definisce disposizioni immediatamente efficaci. L'ambito territoriale più vicino all'area di progetto è il 22 "Montiferru".

Nel Comune di Macomer ricadono però alcuni beni identitari definiti ai sensi dell'art. 6 del PPR come "categorie di immobili, aree e/o valori immateriali che consentono il riconoscimento del senso di appartenenza delle comunità locali alla specificità della cultura sarda".

L'area di intervento è caratterizzata in parte dalla componente ambientale *Praterie* e in parte dalla componente ambientale *Colture erbacee specializzate*. In funzione delle prescrizioni dettate dalle NTA del PPR, viene vietata la trasformazione delle aree ad utilizzazione agro-forestale, "fatti salvi gli interventi di trasformazione delle attrezzature, degli impianti e delle infrastrutture destinate alla gestione agro-forestale o necessarie per l'organizzazione complessiva del territorio" (Regione Sardegna), con l'accortezza di tutelare e preservare gli impianti delle colture. Gli indirizzi di pianificazione regionale ammettono il recupero e l'armonizzazione di queste aree per ridurre le emissioni dannose e la dipendenza energetica, come indica to al comma n.1 dell'art.30 delle Norme.

Il modello di impianto proposto con questo progetto promuove una integrazione equilibrata e sostenibile tra agricoltura, ambiente ed energia, puntando su diversi obiettivi, tra cui: riutilizzo e riqualificazione dell'area, riconversione degli appezzamenti agricoli per la produzione del foraggio necessario per l'alimentazione equilibrata del bestiame, incremento della biodiversità, arricchimento della matrice organica del terreno, etc.

Per quanto riguarda i beni storico culturali riscontrati nell'area di progetto, si individuano diversi siti di interesse storico e archeologico. Dalla cartografia del P.P.R. foglio 498, si riscontra la presenza di beni paesaggistici puntuali in prevalenza nuraghi. Nella carta dell'assetto storico culturale riportata di seguito viene evidenziato anche un buffer (raggio di 100 m dal nuraghe) che individua la fascia di rispetto. L'intera area interessata dal progetto ricade fuori dalle zone vincolate e dalla relative fasce di rispetto delle stesse.

Il sito di progetto, quindi, non interferisce con alcun bene paesaggistico, architettonico ed archeologico identificato dal PPR, sebbene nelle vicinanze dell'area di intervento siano presenti un nuraghe e fascia di rispetto dai fiumi e torrenti "bene paesaggistico art. 143".

4.7.2 Analisi dell'Impatto Potenziale

L'analisi degli aspetti estetico - percettivi è stata realizzata a seguito di specifici sopralluoghi nel corso dei quali sono stati analizzati vari punti di vista al fine di valutare la compatibilità paesaggistica dell'opera.

Per verificare le alterazioni apportate dall'impianto Macomer 4 sullo stato attuale del contesto paesaggistico sono state prese a riferimento le indicazioni del D.P.C.M. del 12 dicembre 2005 "Individuazione della documentazione necessaria alla verifica della compatibilità paesaggistica degli interventi proposti, ai sensi dell'articolo 146, comma 3, del Codice dei beni culturali del paesaggio di cui al d.lgs. 22 gennaio 2004, n. 42 (Pubblicato nella Gazz. Uff. 31 gennaio 2006, n. 25), che riguardano:

- le modificazioni della morfologia;
- le modificazioni della compagine vegetale;
- le modificazioni dello skyline naturale o antropico;
- le modificazioni della funzionalità ecologica, idraulica e dell'equilibrio idrogeologico;
- le modificazioni dell'assetto percettivo, scenico o panoramico;
- le modificazioni dell'assetto fondiario, agricolo e colturale e dei caratteri strutturanti del territorio agricolo. Le modificazioni della morfologia possono essere definite poco significative in quanto i movimenti terra sono limitati agli scavi relativi alla realizzazione del fondo della viabilità interna e per l'interramento del cavidotto, in quanto gli elementi di sostegno dei moduli verranno collocati nel terreno con pali infissi o ad avvitamento.

Le modificazioni della morfologia possono essere definite poco significative in quanto i movimenti di terra verranno effettuati principalmente per gli scavi relativi alla realizzazione delle fondazioni delle cabine, del fondo della viabilità interna e per l'interramento dei cavidotti, in quanto gli elementi di sostegno dei moduli verranno collocati nel terreno con pali infissi o ad avvitamento e asseconderanno la pendenza del terreno preesistente, già modellato nell'ambito della conduzione agricola. Inoltre, durante le operazioni di scavo, lo strato fertile del terreno sarà recuperato e riutilizzato nell'ambito dei successivi ripristini, e gli inerti derivanti dagli scavi saranno rigorosamente recuperati e riutilizzati per i successivi rinterri. Ciò che non potrà essere riutilizzato in loco sarà smaltito e conferito in discarica in accordo alla normativa vigente.

Le modificazioni della compagine vegetale riguarderanno l'incremento delle aree a macchia mediterranea nella fascia di mitigazione e nell'area di compensazione. Non si avranno modificazioni

dello skyline naturale o antropico, poiché i pannelli avranno un'altezza contenuta, pur essendo strutture a inseguimento, e seguiranno l'orografia attuale del terreno.

Il progetto evita modificazioni della funzionalità ecologica, idraulica e dell'equilibrio idrogeologico, dell'assetto paesistico.

L'area destinata ad ospitare l'impianto si colloca a ovest del centro abitato di Macomer e della sua zona industriale che si interpone tra l'area urbanizzata e quella destinata ad ospitare l'impianto, ai fini della valutazione dell'impatto scenico, è stata presa in considerazione la visibilità del sito in esame dalle zone limitrofe.

Le modifiche dell'assetto percettivo, scenico o panoramico durante la fase di esercizio sono quelle che presentano naturalmente un'incidenza maggiore, poiché gli impatti visuali che si vengono a verificare in tale fase risultano permanenti, almeno fino al termine del ciclo vitale dell'impianto (30 anni).

La percezione visiva dell'impianto è limitata ad un ristretto numero di osservatori ed è inoltre mitigata da opportuni accorgimenti e opere di mitigazione che limitano la vista dei pannelli. Gli osservatori più numerosi sono gli utenti della SP 43, che funge da collegamento con le arterie principali e delle diverse strade interpoderali presenti, e quelli della SS 131 importate arteria di collegamento della Sardegna.

L'impianto si colloca in una posizione tale da inserirsi ed integrarsi in maniera non notevolmente impattante sul paesaggio circostante; questo anche grazie alla quasi assenza di specie vegetali di particolare importanza sul sito e di vegetazione naturale. Pertanto, si può affermare che l'impatto estetico-percettivo delle nuove opere si possa considerare in generale basso; inoltre, sulla base dell'analisi di intervisibilità, le nuove opere risultano scarsamente visibili. Di conseguenza il progetto proposto genera un impatto certamente modesto nell'ambito del contesto analizzato.

È utile considerare che la dimensione prevalente degli impianti fotovoltaici a terra è quella planimetrica, mentre l'altezza assai contenuta rispetto alla superficie non impatta sull'aspetto visivo-percettivo in un territorio ampio e morfologicamente vario.

L'estensione planimetrica e la forma dell'impianto diventano invece apprezzabili e valutabili in una visione dall'alto.

Il tema della visibilità dell'impianto, come richiesto dalle linee guida nazionali, normalmente può essere affrontato con l'elaborazione di una carta dell'intervisibilità basata su un modello tridimensionale del terreno creato a partire dalle curve di livello; su di essa sono rappresentati i punti del territorio da

cui è possibile vedere almeno un elemento dell'impianto, e per differenza cromatica i punti dai quali l'impianto non risulta visibile.

Sono stati scelti 3 punti di presa prendendo in considerazione i percorsi altamente frequentati quali le strade principali che attraversano il territorio e una azienda agricola che si trova a sud-ovest dell'impianto.

L'impianto risulta nascosto per quasi tutto il tratto della Strada Provinciale n. 43 che raggiunge il paese di Macomer e passa ad ovest del parco agrovoltaico, come si può vedere da tutte le mappe dell'intervisibilità. Il punto di presa 1 mostra la vista dell'impianto, peraltro molto ridotta, dall'unico punto di visibilità sulla S.P. 43 in vicinanza del paese.

Il punto di presa 2 si trova sulle Strada Statale n. 131, in vicinanza della zona industriale Tossilo, come nel caso precedente, la vista dell'impianto risulta ridotta e non si percepisce la reale estensione del parco agrivoltaico. La Strada Provinciale n. 77 passa a sud dell'impianto e come nel caso delle altre strade principali, il punto 4 mostra il parco in lontananza e con un basso impatto visivo.

Il punto 3 si trova nei pressi di una azienda agricola a sud-ovest dell'impianto (coordinate $40^{\circ}11'52.25"N - 8^{\circ}41'42.81"E$). Il parco anche in questo caso non risulta visibile in tutta la sua dimensione effettiva e l'impatto visivo è ridotto.

Per quanto attiene alle modificazioni dell'assetto fondiario, agricolo e colturale e dei caratteri strutturanti del territorio, queste riguarderanno l'incremento delle aree di macchia mediterranea nelle aree di mitigazione e compensazione e la conversione dei seminativi sottostanti le strutture in prati monofita di leguminose. Durante il ciclo vitale dell'impianto saranno inoltre assenti le operazioni di diserbo chimico.

La percezione visiva dell'impianto è limitata ad un ristretto numero di osservatori ed è inoltre mitigata da opportuni accorgimenti e opere di mitigazione che limitano la vista dei pannelli.

L'impianto si colloca in una posizione tale da inserirsi ed integrarsi in maniera non notevolmente impattante sul paesaggio circostante; questo anche grazie alla quasi assenza di specie vegetali di particolare importanza sul sito e di vegetazione naturale. Pertanto, si può affermare che l'impatto estetico-percettivo delle nuove opere si possa considerare in generale basso; inoltre, sulla base dell'analisi di intervisibilità (rif. Elaborati: MACOMER4-IAR04_Relazione Paesaggistica, MACOMER4-IAT19_Mappa di intervisibilità teorica dell'impianto), le nuove opere risultano scarsamente visibili da punti di normale transito e ampia visibilità. Di conseguenza il progetto proposto genera un impatto certamente modesto nell'ambito del contesto analizzato.

Pertanto, si può affermare che l'impatto estetico – percettivo delle nuove opere si possa considerare in generale basso. Di conseguenza il progetto proposto genera un impatto certamente modesto nell'ambito del contesto analizzato.

Si valuta, dunque, di assegnare, per l'aspetto paesaggistico in:

- fase di costruzione una magnitudo pari a 2;
- fase di esercizio una magnitudo pari a -3.

4.8 Polveri

4.8.1 Analisi del Potenziale Impatto

Le emissioni di polvere sono subordinate, nel caso in esame, solo alle operazioni di movimentazione terra che sarà, certamente, di scarsa rilevanza. I terreni essendo composti anche di materiale pseudo coerente, privo di tenacità, possono, durante il passaggio dei mezzi di trasporto e la movimentazione terra, provocare, in concomitanza della stagione secca, una certa diffusione di polveri. Risulta, quindi, evidente che prima del passaggio dei mezzi e nel caso di lavori di movimento terra si provvederà alla bagnatura delle piste e dei terreni per mezzo di pompe idrauliche tale da mantenere allo stato plastico l'argilla inibendo la diffusione di polveri. Nell'eventualità che l'intervento di messa in opera dell'impianto fosse realizzato nella stagione autunnale-invernale non sarà necessario adottare alcun accorgimento antipolvere, in quanto, a causa delle piogge, i terreni si mantengono sufficientemente umidi. Nella fase di esercizio dell'impianto non sono previsti emissioni di polvere in atmosfera atteso che è prevista la copertura permanente del terreno con manto erboso.

Pertanto, in fase di costruzione si assegna un valore di magnitudo pari a 5 mentre, in fase di esercizio, considerando gli interventi di mitigazione che saranno adottati per le emissioni di polveri, si assegna, relativamente a questo fattore una magnitudo pari a 3.

4.9 Traffico

4.9.1 Inquadramento ed analisi dello stato di fatto

L'area oggetto di intervento è interessata da alcuni importanti assi viari, quali la SP 43 la SS 131, ma è raggiungibile solo imboccando una strada secondaria priva di denominazione.

4.9.2 Analisi dell'Impatto Potenziale

In fase di installazione si utilizzeranno i tracciati viari presenti, pertanto, non sarà necessario realizzare nuovi percorsi stradali per raggiungere il sito di interesse. Il tracciato stradale nell'area d'interesse coinvolge principalmente strade asfaltate e percorribili.

Il principale centro urbano risulta essere ad una distanza considerevole rispetto al sito di interesse, e si tratta proprio del nucleo abitato principale di Macomer, che conta poco più di 9000 abitanti.

Relativamente alla fase di messa in opera degli impianti, si prevede un incremento del traffico dei mezzi pesanti che trasporteranno gli elementi modulari e compositivi dell'impianto fotovoltaico, con intensità di traffico valutabile in circa 5-7 mezzi giornalieri, per un periodo limitato a qualche settimana. Si evidenzia, inoltre, che gli elementi modulari da trasportare sono di dimensioni limitate e trasportabili con comuni autocarri.

Il resto del traffico consisterà nel movimento di autoveicoli, utilizzati dal personale che a vario titolo sarà impiegato nella fase di installazione dell'impianto.

Si ritiene di assegnare, per il fattore "modifiche del traffico veicolare" in fase di cantiere, una magnitudo pari a 2.

L'entità del traffico, comunque, non è tale da apportare disturbi consistenti nella viabilità ordinaria della zona anche perché trattasi di un'area agricola coltivata, già soggetta al passaggio di mezzi specifici per le attività presenti.

Si ritiene di assegnare, per il fattore "modifiche del traffico veicolare" in fase di esercizio, una magnitudo pari a 1.

4.10 Valutazione economica e ricadute socio-occupazionali

L'iniziativa rappresenterà per il territorio una grandissima opportunità occupazionale, sia in fase di realizzazione dell'impianto, che in fase di esercizio. La manutenzione straordinaria può attivare un indotto di tecnici e di personale qualificato esterno in atto non quantificabile.

La realizzazione dell'impianto Agri voltaico denominato "Macomer 4" ha una importante ripercussione a livello occupazionale ed economico considerando tutte le fasi, da quelle preliminari di individuazione delle aree a quelle connesse all'ottenimento delle autorizzazioni, dalla fase di realizzazione, a quelle di esercizio e manutenzione durante tutti gli anni di produzione della centrale elettrica. Nella tabella, qui di seguito riportata, viene indicato il numero di risorse, con la relativa qualifica, che saranno indicativamente coinvolte nelle attività relative all'impianto in oggetto.

FASE	NUMERO RISORSE	TIPOLOGIA RISORSA
Realizzazione	6	operaio manovratore mezzi meccanici
	18	operaio specializzato edile
	22	operaio specializzato elettrico
	8	trasportatore
Esercizio	6	manutentore elettrico
	4	manutentore edile e area a verde
	2	squadra specialistica (4 addetti)

Si ricorda che il periodo di realizzazione dell'impianto è stimato in un tempo di circa 9 mesi dall'inizio dei lavori alla entrata in esercizio dell'impianto. Considerando che la fase di progettazione si avvierà sei mesi prima dell'apertura del cantiere possiamo considerare 12 mesi come durata effettiva delle attività lavorative. Le attività lavorative nelle fasi di costruzione possono essere sviluppate così come riportato nella tabella sottostante:

È importante sottolineare che il mercato delle rinnovabili conosce una fase ormai matura ed è quindi facile reperire sul territorio competenze qualificate il cui contributo è sicuramente da considerare come una risorsa per la realizzazione dell'iniziativa in questione, dalla fase di sviluppo progettuale ed autorizzativo, sino a quella di esercizio e manutenzione.

Oltre al contributo specialistico e qualificato, le competenze locali giocano un ruolo importante sotto l'aspetto logistico. La seguente tabella descrive le percentuali attese del contributo locale, a seconda delle macro-attività della fase operativa dell'iniziativa:

Fase di Costruzione	Percentuale attività Contributo Locale
Progettazione	20%
Preparazione area cantiere	100%

Preparazione area	100%
Recinzione	100%
Installazione strutture fondazione	90%
Installazione strutture	90%
Installazione moduli FV.	90%
Cavidotti AT/BT	100%
Preparazione aree e basamenti per	100%
Conversion Units	
Installazione Conversion Units	100%
Installazione elettrica Conversion	90%
Units	
Installazione cavi AT/BT	100%
Cablaggio pannelli FV+cassette	90%
stringa	
Opere elettriche Sottostazione	90%
Commissioning	80%

In linea di massima, si prevede che il principale apporto locale nella fase di realizzazione è rappresentato dalle attività legate alle opere civili ed elettriche che rappresentano approssimativamente il 15-20% del totale dell'investimento.

La restante quota percentuale viene individuata dalle forniture delle componenti tecnologiche, tra cui le principali sono rappresentate dai moduli fotovoltaici, dalle unità di conversione (Cabine di conversione "Inverter Stations"), dai Trasformatori AT/BT e dalle strutture di supporto dei moduli fotovoltaici (tracker).

Per quanto riguarda la fornitura delle strutture di supporto "tracker", una porzione della carpenteria metallica può tuttavia essere acquistata sulla filiera del territorio regionale, incrementando il contributo locale di un'ulteriore porzione variabile tra l'8 e il 10% del totale dell'investimento. Ovviamente vanno anche considerate le attività direttamente connesse alle opere di recinzione, nonché le maestranze qualificate tanto individuate nelle varie fasi di installazione, quanto per la manutenzione del verde all'interno dell'area di impianto.

Si ritiene che l'impatto dell'opera nel contesto sociale possa considerarsi positivo, e quindi si pone l'esigenza di usare una scala di magnitudo con valori negativi ed opposti rispetto alle altre valutazioni, assegnando per il fattore "valutazione economica" un valore di magnitudo pari a -1 in fase di costruzione e un valore di magnitudo -3 in fase di esercizio.

Si stima, quindi, che nelle varie fasi di sviluppo, progettazione, realizzazione e gestione del progetto verranno coinvolte circa 290 risorse umane, senza considerare tutte le competenze tecniche

e professionali che svolgono lavoro sotto forma indiretta e che sono parte del sistema economico a monte e a valle della realizzazione dell'impianto.

È inoltre importante valutare l'indotto economico che si può apportare riutilizzando e migliorando le aree agricole, le aree accessorie e le infrastrutture degli impianti esistenti.

5. STIMA DEGLI IMPATTI

Assegnata la magnitudo, si pone adesso l'esigenza, per ciascun fattore, di stabilire il valore d'influenza ponderale nei confronti della singola componente ambientale.

Sarà necessario, per ricavare tale valore, determinare il livello di correlazione tra la specifica componente ambientale ed il singolo fattore, che per il caso in esame è stato distinto in 4 livelli:

- NL= nullo 0
- MN= minimo 1
- MD = medio 2
- MX =massimo 4

Il livello di correlazione massimo è stato ipotizzato doppio del valore medio, quello medio doppio di quello minimo, mentre il livello nullo è stato posto uguale a zero. La somma dei valori d'influenza ponderale di tutti i fattori, su ciascuna componente, è stata normalizzata, imponendola ad un valore pari a 10, con riferimento alle due fasi temporali, di seguito esplicitate:

- Fase di installazione, fino al completamento dei lavori di messa in opera dell'impianto.
- Fase di esercizio, relativa al periodo di attività dell'impianto.

Per ognuno dei fattori sono stati ipotizzati più casi, rappresentativi di diverse situazioni con definite caratteristiche; a ciascuno di detti casi è stato assegnato un valore (magnitudo) compreso nell'intervallo, normalizzato da -10 a +10, secondo la presumibile entità degli effetti prodotti sull'ambiente: tanto maggiore è il danno ipotizzato, tanto più alta sarà la magnitudo attribuita. Va evidenziato che a nessuna situazione corrisponde il valore 0 in quanto si ritiene che, qualunque sia l'area prescelta ed a prescindere dai criteri progettuali seguiti, a seguito della realizzazione dell'opera, si verranno a determinare, comunque, conseguenze sull'ambiente.

Non è stata considerata la terza fase, di dismissione, prevista al termine della vita utile dell'impianto (stimata a 30 anni) in quanto si presuppone il manifestarsi di impatti potenziali sulle componenti ambientali sostanzialmente analoghi a quelli che verranno contemplati in fase di cantiere. L'esito di tale ultima fase della vita del progetto, peraltro, prevede che venga ripristinato lo stato dei luoghi dal punto di vista ambientale e quindi che si verifichino effetti positivi sulla qualità paesaggistica complessiva del territorio, attraverso lo smantellamento degli inseguitori solari e la rimozione delle opere accessorie.

5.1 Fase di cantiere

Di seguito sono indicate le condizioni valutate per ciascun fattore e la relativa magnitudo in fase di costruzione.

TABELLA 20 – FASE DI COSTRUZIONE: VALORE DEGLI INDICI DI SENSIBILITÀ CARATTERISTICI

FASE DI COSTRUZIONE

FATTORI	CONDIZIONI PROGETTUALI	MAGNITUDO
	Variazione sostanziale	7
Precipitazioni	Variazione moderata	3
·	Variazione irrilevante	1
Taman anatoma	Variazione sostanziale	10
Temperatura	Variazione irrilevante	2
Monto	Pannello fisso su copertura	10
Vento	Pannello inseguitore	7
	Pannello fisso a terra	4
	Area urbana	10
Uso del suolo	Area agricola	5
	Area produttiva	3
	Boschi	10
Modifiche delle caratteristiche	Colture arboree di pregio	8
pedomorfologiche	Seminativo	4
	Ricca mediterranea	10
Modifiche della vegetazione	Agrumeto-seminativo	5
	Spontanea-infestante	1
	Ricca presenza di fauna locale	8
Modifiche della fauna	Presenza moderata	5
modifier dolla radira	Presenza irrilevante	2
Modifica delle caratteristiche	Deposito alluvionale	2
geotecniche e di stabilità del	Sabbie	-1
sito	Lave-rocce	-5
		9
Modifiche del drenaggio	Zona pericolosità P3	6
superficiale e del regime	Zona pericolosità P2 Zona pericolosità P1	3
idraulico	·	
Modifiche dell'aspetto	Visibile dai centri abitati	10
paesaggistico	Visibile da strade principali	6
pacsaggistico	Poco visibile	2
	Strade ad alta densità di traffico	10
Modifiche del traffico veicolare	Strade che interessano aree produttive	5
	Strade a bassa densità di traffico	2
	Distanza dal centro abitato d < 1 km	10
Emissioni di polveri	Distanza dal centro abitato 1 < d < 5 km	6
	Distanza dal centro abitativo d > 5 km	3
	Distanza dal centro abitato d < 1 km	10
Emissioni di rumori	Distanza dal centro abitato d < 1 km Distanza dal centro abitato 1 < d < 5 km	7
Emissioni di rumori		7 3
Emissioni di rumori	Distanza dal centro abitato 1 < d < 5 km	7
Emissioni di rumori Aspetti economici/ Forza lavoro	Distanza dal centro abitato 1 < d < 5 km Distanza dal centro abitativo d > 5 km	7 3

A seconda delle caratteristiche dell'impianto e del territorio è stato assegnato un valore di magnitudo per ogni fattore considerato, riportandolo nella seguente tabella.

TABELLA 21 – CORRELAZIONE TRA COMPONENTI E FATTORI AMBIENTALI IN FASE DI COSTRUZIONE

	ANALISI DEGLI IMF	PATTI	- I IV	FLLLI	DI CORF	RFI AZIO	NF TRA	\ FATT(ORI F	COMP	ONFNTI	NFI I A F	ASF DI C	COSTRU	IZIONE	
	7.07.2101.2201.1111											BIEN				
		MAG	SNITI	UDO	АТМО	SFERA		ENTE		OLO		SOTTOSUOLO		AGGIO	E	IOMIA E TIONE
	FATTORI	MIN	PROGETTO	MAX	LIVELLO DI CORRELAZIONE	VALORI DI INFLUENZA	LIVELLO DI CORRELAZIONE	VALORI DI INFLUENZA	LIVELLO DI CORRFI AZIONF	VALORI DI INFLUENZA	LIVELLO DI CORRELAZIONE	VALORI DI INFLUENZA	LIVELLO DI CORRELAZIONE	VALORI DI INFLUENZA	LIVELLO DI CORRELAZIONE	VALORI DI INFLUENZA
	PRECIPITAZIONI	1	2	7	MN	0,45	MX	2,11	MX	0,95	MD	1,67	MD	0,65	NL	0,00
ш	TEMPERATURA	2	5	10	MD	0,91	MD	1,05	MD	0,48	NL	0,00	NL	0,00	NL	0,00
Z	VENTO	4	7	10	MD	0,91	NL	0,00	MN	0,24	NL	0,00	MD	0,65	NL	0,00
2	USO DEL SUOLO	3	5	10	MN	0,45	MD	1,05	MX	0,95	MN	0,83	MX	1,29	MX	2,22
COSTRUZION	MODIFICHE DELLE CARATTERISTICHE PEDOMORFOLOGICHE	4	3	10	MN	0,45	MD	1,05	MX	0,95	MD	1,67	MD	0,65	MD	1,11
SOS	MODIFICHE DELLA VEGETAZIONE	1	3	10	MN	0,45	MN	0,53	MX	0,95	MN	0,83	MD	0,65	MN	0,56
0 0	MODIFICHE DELLA FAUNA	2	3	8	MD	0,91	MN	0,53	MX	0,95	MD	1,67	MD	0,65	NL	0,00
FASE	MODIFICHE DELLE CARATTERISTICHE GEOTECNICHE E DI STABILITA' DEL SITO	-5	-5	2	NL	0,00	MN	0,53	MD	0,48	MD	1,67	NL	0,00	NL	0,00
	MODIFICHE DEL DRENAGGIO SUPERFICIALE E DEL REGIME IDRAULICO	3	3	9	NL	0,00	MX	2,11	MD	0,48	MD	1,67	MN	0,32	MD	1,11
	MODIFICHE DELL'ASPETTO PAESAGGISTICO	2	2	10	NL	0,00	NL	0,00	MX	0,95	NL	0,00	MX	1,29	MN	0,56
	MODIFICHE DEL TRAFFICO VEICOLARE	2	2	10	MX	1,82	NL	0,00	MX	0,95	NL	0,00	MX	1,29	MX	2,22
	EMISSIONI DI POLVERI	3	5	10	MX	1,82	NL	0,00	MX	0,95	NL	0,00	MX	1,29	NL	0,00
	EMISSIONI DI RUMORI	3	6	10	MX	1,82	NL	0,00	MN	0,24	NL	0,00	MX	1,29	NL	0,00
	ASPETTI ECONOMICI	-7	-1	-1	NL	0,00	MD	1,05	MD	0,48	NL	0,00	NL	0,00	MX	2,22
	TOTALE					10		10		10		10		10		10

Moltiplicando il valore della magnitudo per il valore d'influenza ponderale della specifica componente ambientale, è stato ottenuto il valore dell'impatto elementare IE per ogni fattore. Successivamente, la somma degli impatti elementari [IE] ha restituito il valore dell'impatto globale [IG] del progetto in riferimento ad ogni componente specifica, relativamente alla fase di cantiere.

TABELLA 22 – VALORE DEGLI IMPATTI ELEMENTARI SU CIASCUNA COMPONENTE - FASE DI COSTRUZIONE

		TABELLA VALORI DEI CONTRIBUTI FATTORIALI E DELL'IMPATTO ELEMENTARE SPECIFICO																
FASE DI COSTRUZIONE	П	TRIBU MPATT MOSFE	0	I A	ITRIBU MPATT MBIEN IDRICO	TE		ONTRIBUTI DI IMPAT PATTO SUOLO SOTTOSI		MPATT	0	п	CONTRIBUTI DI IMPATTO PAESAGGIO CONTRIBUTI IMPATTO ECONOMIA GESTION		O A E			
	MIN	PRO	MAX	MIN	PRO	MAX	MIN	PRO	MAX	MIN	PRO	MAX	MIN	PRO	MAX	MIN	PRO	MAX
PRECIPITAZIONI	0,45	0,91	3,18	2,11	4,21	14,74	0,95	1,90	6,67	1,67	3,33	11,67	0,65	1,29	4,52	0,00	0,00	0,00
TEMPERATURA	1,82	4,55	9,09	2,11	5,26	10,53	0,95	2,38	4,76	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
VENTO	3,64	6,36	9,09	0,00	0,00	0,00	0,95	1,67	2,38	0,00	0,00	0,00	2,58	4,52	6,45	0,00	0,00	0,00
USO DEL SUOLO	1,36	2,27	4,55	3,16	5,26	10,53	2,86	4,76	9,52	2,50	4,17	8,33	3,87	6,45	12,90	6,67	11,11	22,22
MODIFICHE DELLE CARATTERISTICHE PEDOMORFOLOGICHE	1,82	1,36	4,55	4,21	3,16	10,53	3,81	2,86	9,52	6,67	5,00	16,67	2,58	1,94	6,45	4,44	3,33	11,11
MODIFICHE DELLA VEGETAZIONE	0,45	1,36	4,55	0,53	1,58	5,26	0,95	2,86	9,52	0,83	2,50	8,33	0,65	1,94	6,45	0,56	1,67	5,56
MODIFICHE DELLA FAUNA	1,82	2,73	7,27	1,05	1,58	4,21	1,90	2,86	7,62	3,33	5,00	13,33	1,29	1,94	5,16	0,00	0,00	0,00
MODIFICHE DELLE CARATTERISTICHE GEOTECNICHE E DI STABILITA' DEL SITO	0,00	0,00	0,00	- 2,63	-2,63	1,05	-2,38	-2,38	0,95	-8,33	-8,33	3,33	0,00	0,00	0,00	0,00	0,00	0,00
MODIFICHE DEL DRENAGGIO SUPERFICIALE E DEL REGIME IDRAULICO	0,00	0,00	0,00	6,32	6,32	18,95	1,43	1,43	4,29	5,00	5,00	15,00	0,97	0,97	2,90	3,33	3,33	10,00
MODIFICHE DELL'ASPETTO PAESAGGISTICO	0,00	0,00	0,00	0,00	0,00	0,00	1,90	1,90	9,52	0,00	0,00	0,00	2,58	2,58	12,90	1,11	1,11	5,56
MODIFICHE DEL TRAFFICO VEICOLARE	3,64	3,64	18,18	0,00	0,00	0,00	1,90	1,90	9,52	0,00	0,00	0,00	2,58	2,58	12,90	4,44	4,44	22,22
EMISSIONI DI POLVERI	5,45	9,09	18,18	0,00	0,00	0,00	2,86	4,76	9,52	0,00	0,00	0,00	3,87	6,45	12,90	0,00	0,00	0,00
EMISSIONI DI RUMORI	5,45	10,91	18,18	0,00	0,00	0,00	0,71	1,43	2,38	0,00	0,00	0,00	3,87	7,74	12,90	0,00	0,00	0,00
ASPETTI ECONOMICI	0,00	0,00	0,00	- 7,37	-1,05	-1,05	-3,33	-0,48	-0,48	0,00	0,00	0,00	0,00	0,00	0,00	- 15,56	-2,22	-2,22
VALORI DI IMPATTO GLOBALE	25,91	43,18	96,82	9,47	23,68	74,74	15,48	27,86	85,71	11,67	16,67	76,67	25,48	38,39	96,45	5,00	22,78	74,44

Dall'analisi dei dati relativi agli impatti si evince che, in fase di costruzione, tra i fattori che avranno un impatto maggiore ci sono quelli relativi all'emissione di polveri e rumori sulla componente ambientale "atmosfera". Entrambi i fattori potranno però essere mitigati dalla messa in opera di accorgimenti quali la bagnatura del terreno per evitare il sollevamento eccessivo di polveri, l'impiego di mezzi certificati e rispondenti alle normative in vigore circa l'emissione di rumori e rispettando gli orari imposti dai regolamenti comunali e dalle normative vigenti per lo svolgimento delle lavorazioni.

Un'altra delle componenti maggiormente coinvolte in questa fase è certamente il paesaggio, che vedrà una trasformazione percettiva rilevante dovuta alle attività di cantiere e al posizionamento delle

strutture, oltre che un aumento del traffico veicolare in corrispondenza dell'area di progetto e sulle strade che la servono.

Al fine di mitigare l'impatto per la presenza del cantiere nell'area, si prevede di mettere a dimora le essenze per la fascia di mitigazione e per le zone di compensazione già nelle prime fasi di cantierizzazione dell'opera.

FIGURA 58 – VALORI DEGLI IMPATTI GLOBALI SU OGNI SINGOLA COMPONENTE - FASE DI COSTRUZIONE

Inoltre, in fase di cantiere, gli impatti principali saranno di carattere temporaneo e reversibile e si esauriranno con la fase di esercizio. Dunque, l'impatto sulle varie componenti che si manifesta in questa fase si può considerare accettabile in relazione all'utilità che l'opera avrà nella sua fase di esercizio.

5.2 Fase di esercizio

Di seguito sono indicate le condizioni valutate per ciascun fattore e la relativa magnitudo in fase di esercizio dell'opera in esame.

TABELLA 23 – FASE DI ESERCIZIO: VALORE DEGLI INDICI DI SENSIBILITÀ CARATTERISTICI

FASE DI ESERCIZIO

FATTORI	CONDIZIONI PROGETTUALI	MAGNITUDO
	Variazione sostanziale	7
Precipitazioni	Variazione moderata	3
	Variazione irrilevante	1
Tomporoturo	Variazione sostanziale	10
Temperatura	Variazione irrilevante	2
Vento	Pannello fisso su copertura	9
vento	Pannello inseguitore	6
	Pannello fisso a terra	2
	Area urbana	10
Uso del suolo	Area agricola	5
	Area produttiva	3
Modifiche delle caratteristiche	Boschi	10
	Colture arboree di pregio	6
pedomorfologiche	Seminativo	2
	Ricca mediterranea	10
Modifiche della vegetazione	Agrumeto-seminativo	3
G .	Spontanea-infestante	-2
	Ricca presenza di fauna locale	7
Modifiche della fauna	Presenza moderata	4
	Presenza irrilevante	1
Madifica della corottoriationa	Deposito alluvionale	2
Modifica delle caratteristiche	Sabbie	-1
geotecniche e di stabilità del sito	Lave-rocce	-5
Modifiche del drenaggio	Zona pericolosità P3	9
superficiale e del regime	Zona pericolosità P2	6
idraulico	Zona pericolosità P1	3
	Visibile dai centri abitati	8
Modifiche dell'aspetto	Visibile da strade principali	-2
paesaggistico	Poco visibile	-5
	Strade ad alta densità di traffico	9
Modifiche del traffico veicolare	Strade che interessano aree produttive	3
	Strade a bassa densità di traffico	1
	Distanza dal centro abitato d < 1 km	7
Emissioni di polveri	Distanza dal centro abitato 1 < d < 5 km	4
	Distanza dal centro abitativo d > 5 km	1
	Distanza dal centro abitato d < 1 km	9
Emissioni di rumori	Distanza dal centro abitato 1 < d < 5 km	5
	Distanza dal centro abitativo d > 5 km	1
	Impianti P ≤ 50 MWp	-3
Aspetti economici/ Forza lavoro	Impianti 50 < P < 100 MWp	-6
ASDELLI ECONOMICI/ FOIZA IAVOIO		

A seconda delle caratteristiche dell'impianto e del contesto in cui lo stesso si colloca è quindi stato assegnato un valore di magnitudo per ogni fattore considerato, riportandolo nella seguente tabella.

TABELLA 24 – CORRELAZIONE TRA COMPONENTI E FATTORI AMBIENTALI IN FASE DI ESERCIZIO

	ANALISI DEGLI IMPATTI - LIVELLI DI CORRELAZIONE TRA FATTORI E COMPONENTI NELLA FASE DI ESERCIZIO															
								CON	лРОМ	NENT	TI AM	BIENT	ΓALI			
		MA	GNIT O	rub		SFER A		AMBIENT E IDRICO		SUOLO		SOTTOSUOL O		PAESAGGI O		NOMI E TIONE
	FATTORI	MIN	PROGETTO	MAX	LIVELLO DI CORRELAZIONE	VALORI DI INFLUENZA										
	PRECIPITAZIONI	1	1	7	MN	0,77	MX	2,67	MD	0,77	MD	2,50	NL	0,00	NL	0,00
	TEMPERATURA	2	3	10	MD	1,54	MN	0,67	MD	0,77	NL	0,00	NL	0,00	NL	0,00
	VENTO	2	6	9	MX	3,08	NL	0,00	MN	0,38	NL	0,00	NL	0,00	NL	0,00
	USO DEL SUOLO	3	5	10	MN	0,77	MD	1,33	MX	1,54	MN	1,25	MX	2,50	MD	1,82
ESERCIZIO	MODIFICHE DELLE CARATTERISTICHE PEDOMORFOLOGIC HE	2	1	10	NL	0,00	MN	0,67	MD	0,77	MN	1,25	MN	0,63	MN	0,91
ESE	MODIFICHE DELLA VEGETAZIONE	-2	1	10	MD	1,54	MN	0,67	MD	0,77	MN	1,25	MD	1,25	MD	1,82
EDI	MODIFICHE DELLA FAUNA	1	2	7	NL	0,00	NL	0,00	MN	0,38	NL	0,00	MN	0,63	NL	0,00
FASE	MODIFICHE DELLE CARATTERISTICHE GEOTECNICHE E DI STABILITA' DEL SITO	-5	-5	2	NL	0,00	MN	0,67	MD	0,77	MN	1,25	NL	0,00	NL	0,00
	MODIFICHE DEL DRENAGGIO SUPERFICIALE E DEL REGIME IDRAULICO	3	3	9	NL	0,00	MX	2,67	MD	0,77	MD	2,50	MN	0,63	MN	0,91
	MODIFICHE DELL'ASPETTO PAESAGGISTICO	-5	-3	8	NL	0,00	MN	0,67	MX	1,54	NL	0,00	MX	2,50	NL	0,00
	MODIFICHE DEL TRAFFICO VEICOLARE	1	1	9	MN	0,77	NL	0,00	MN	0,38	NL	0,00	MN	0,63	MN	0,91
	EMISSIONI DI POLVERI	1	3	7	MN	0,77	NL	0,00	MN	0,38	NL	0,00	MN	0,63	NL	0,00
	EMISSIONI DI RUMORI	1	4	9	MN	0,77	NL	0,00	MN	0,38	NL	0,00	MN	0,63	NL	0,00
	ASPETTI ECONOMICI	-10	-3	-3	NL	0,00	NL	0,00	MN	0,38	NL	0,00	NL	0,00	MX	3,64
	TOTALE					10		10		10		10		10		10

Moltiplicando il valore della magnitudo per il valore d'influenza ponderale della specifica componente ambientale, è stato ottenuto il valore dell'impatto elementare IE per ogni fattore. Successivamente, la somma degli impatti elementari [IE] ha restituito il valore dell'impatto globale [IG] del progetto in riferimento ad ogni componente specifica per la fase di esercizio dell'opera.

TABELLA 25 – VALORE DEGLI IMPATTI ELEMENTARI SU CIASCUNA COMPONENTE - FASE DI ESERCIZIO

		TABE	LLA V	ALOR	I DEI	CONT	RIBU	TI FA	ΓΤΟRI	ALI E	DELL	.'IMPA	тто е	LEME	NTAR	E SPE	CIFICO	•
FASE DI ESERCIZIO	l II	ITRIBU MPATT MOSFE	0	l I	NTRIBU MPATI MBIEN IDRICO	O TE	I	NTRIBU MPATT SUOLO	0	II	NTRIBU MPATT TTOSU	ГО	II	CONTRIBUTI DI IMPATTO PAESAGGIO		EC:	CONTRIBUTI IMPATTO ECONOMIA I GESTIONE	
	MIN	PRO	MAX	MIN	PRO	MAX	MIN	PRO	MAX	MIN	PRO	MAX	MIN	PRO	MAX	MIN	PRO	MAX
PRECIPITAZIONI	0,77	0,77	5,38	2,67	2,67	18,67	0,77	0,77	5,38	2,50	2,50	17,50	0,00	0,00	0,00	0,00	0,00	0,00
TEMPERATURA	3,08	4,62	15,38	1,33	2,00	6,67	1,54	2,31	7,69	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
VENTO	6,15	18,46	27,69	0,00	0,00	0,00	0,77	2,31	3,46	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
USO DEL SUOLO	2,31	3,85	7,69	4,00	6,67	13,33	4,62	7,69	15,38	3,75	6,25	12,50	7,50	12,50	25,00	5,45	9,09	18,18
MODIFICHE DELLE CARATTERISTICHE PEDOMORFOLOGICHE	0,00	0,00	0,00	1,33	0,67	6,67	1,54	0,77	7,69	2,50	1,25	12,50	1,25	0,63	6,25	1,82	0,91	9,09
MODIFICHE DELLA VEGETAZIONE	-3,08	1,54	15,38	- 1,33	0,67	6,67	- 1,54	0,77	7,69	- 2,50	1,25	12,50	-2,50	1,25	12,50	-3,64	1,82	18,18
MODIFICHE DELLA FAUNA	0,00	0,00	0,00	0,00	0,00	0,00	0,38	0,77	2,69	0,00	0,00	0,00	0,63	1,25	4,38	0,00	0,00	0,00
MODIFICHE DELLE CARATTERISTICHE GEOTECNICHE E DI STABILITA' DEL SITO	0,00	0,00	0,00	- 3,33	-3,33	1,33	- 3,85	-3,85	1,54	- 6,25	-6,25	2,50	0,00	0,00	0,00	0,00	0,00	0,00
MODIFICHE DEL DRENAGGIO SUPERFICIALE E DEL REGIME IDRAULICO	0,00	0,00	0,00	8,00	8,00	24,00	2,31	2,31	6,92	7,50	7,50	22,50	1,88	1,88	5,63	2,73	2,73	8,18
MODIFICHE DELL'ASPETTO PAESAGGISTICO	0,00	0,00	0,00	- 3,33	-2,00	5,33	- 7,69	-4,62	12,31	0,00	0,00	0,00	- 12,50	-7,50	20,00	0,00	0,00	0,00
MODIFICHE DEL TRAFFICO VEICOLARE	0,77	0,77	6,92	0,00	0,00	0,00	0,38	0,38	3,46	0,00	0,00	0,00	0,63	0,63	5,63	0,91	0,91	8,18
EMISSIONI DI POLVERI	0,77	2,31	5,38	0,00	0,00	0,00	0,38	1,15	2,69	0,00	0,00	0,00	0,63	1,88	4,38	0,00	0,00	0,00
EMISSIONI DI RUMORI	0,77	3,08	6,92	0,00	0,00	0,00	0,38	1,54	3,46	0,00	0,00	0,00	0,63	2,50	5,63	0,00	0,00	0,00
ASPETTI ECONOMICI	0,00	0,00	0,00	0,00	0,00	0,00	- 3,85	-1,15	-1,15	0,00	0,00	0,00	0,00	0,00	0,00	- 36,36	- 10,91	- 10,91
VALORI DI IMPATTO GLOBALE	11,54	35,38	90,77	9,33	15,33	82,67	- 3,85	11,15	79,23	7,50	12,50	80,00	-1,88	15,00	89,38	- 29,09	4,55	50,91

Il grafico che segue evidenzia come, in fase di esercizio dell'impianto, il sistema degli effetti negativi sulle componenti ambientali influisca prevalentemente sulla componente atmosfera a causa delle inevitabili alterazioni che la presenza dello stesso andrebbe ad apportare alle caratteristiche intrinseche del territorio. La modifica dello stato dei luoghi e la trasformazione dell'uso del suolo da esclusivamente agricolo a integrato energetico-agricolo può certamente mutare la percezione del territorio ma a fronte di tali effetti sull'ambiente, da ricondursi prevalentemente a scala locale, si devono considerare gli impatti positivi a livello globale, in particolare la riduzione delle emissioni di gas serra ed inquinanti in atmosfera oltre che il risparmio di risorse non rinnovabili e la tutela complessiva della biodiversità.

Gli effetti sulla percezione del paesaggio verrebbero inoltre mitigati da opere di compensazione e mitigazione, già previste da progetto, che mirano ad integrare l'intervento in un contesto territoriale a forte vocazione agricola.

FIGURA 59 – VALORI DEGLI IMPATTI GLOBALI SU OGNI SINGOLA COMPONENTE - FASE DI ESERCIZIO

In fase di esercizio, gli impatti principali saranno comunque di carattere reversibile poiché si esauriranno con la fase di dismissione dell'impianto.

A seguito di questa analisi risulta evidente che gli impatti attesi si manifesteranno in modo più significativo in fase di costruzione, sia sulle componenti naturali dell'ambiente che su quelle antropiche

in relazione ai possibili disagi associati all'operatività del cantiere, in particolare in relaziona agli impatti da rumore, polveri e traffico indotto in un'area che si colloca nelle immediate vicinanze di un – seppur piccolo – centro abitato.

Tali impatti saranno però di carattere temporaneo e reversibile nel breve termine, esaurendosi sostanzialmente alla conclusione del processo costruttivo dell'impianto agro-fotovoltaico.

Permarranno per tutta la vita utile dell'impianto (che si stima intorno ai 30 anni circa) i soli effetti legati all'occupazione di superfici conseguenti all'allestimento del parco che, peraltro, saranno di lieve entità in ragione dei criteri progettuali seguiti (assenza di apprezzabili modifiche morfologiche, adeguato interasse tra i tracker, conservazione degli ambiti a maggiore pendenza, salvaguardia della permeabilità del suolo) nonché degli opportuni interventi di mitigazione e inserimento ambientale adottati (creazione di fasce e nuclei di vegetazione autoctona arbustiva e arborea, espianto di esemplari arborei presenti all'interno dell'area di progetto e reimpianto lungo fasce perimetrali e aree di compensazione).

Risulta dunque evidente che l'opera in progetto ha un impatto ambientale contenuto e, comunque, commisurato alla sua utilità.

Tale progetto si allinea, infatti, con gli obiettivi e le strategie comunitarie e nazionali, che si prefiggono di incrementare la produzione di energia da fonti rinnovabili riducendo le emissioni climalteranti e la dipendenza dalle fonti tradizionali di energia che ci rendono fortemente dipendenti da altri paesi.

5.3 Piano di monitoraggio ambientale

Il Monitoraggio Ambientale, con l'entrata in vigore della Parte Seconda del D. Lgs. 152/2006 e ss.mm.ii., è divenuto parte integrante del processo di Valutazione di Impatto Ambientale. Rappresenta, per tutte le opere soggette a VIA si sensi dell'art. 28 del T.U. Ambiente, lo strumento che fornisce la reale misura dell'evoluzione dello stato dell'ambiente nelle varie fasi di attuazione dell'opera e che consente ai soggetti responsabili di individuare i segnali necessari per attivate preventivamente e tempestivamente eventuali azioni correttive qualora le "risposte" ambientali non siano rispondenti alle previsioni effettuate nell'ambito del processo di VIA.

Il monitoraggio assicura "il controllo sugli impatti ambientali significativi sull'ambiente provocati dalle opere approvate, nonché la corrispondenza alle prescrizioni espresse sulla compatibilità ambientale dell'opera, anche al fine di individuare tempestivamente gli impatti negativi imprevisti e di consentire all'autorità competente di essere in grado di adottare le opportune misure correttive" (art. 28, comma 1 del D.Lgs. 152/2006).

Il monitoraggio ambientale nella VIA comprende 4 fasi principali:

- monitoraggio, ossia l'insieme delle misure effettuate, periodicamente o in maniera continua, attraverso rilevazioni nel tempo (antecedentemente e successivamente all'attuazione del progetto) di determinati parametri biologici, chimici e fisici che caratterizzano le sorgenti di contaminazione/inquinamento e/o le componenti ambientali impattate dalla realizzazione e/o esercizio delle opere;
- valutazione della conformità con i limiti di legge e con le previsioni d'impatto effettuate in fase di verifica della compatibilità ambientale del progetto;
- **gestione** di eventuali criticità emerse in sede di monitoraggio non già previste in fase di verifica delle compatibilità ambientale del progetto;
- comunicazione dei risultati delle attività di monitoraggio, valutazione, gestione all'autorità competente e alle agenzie interessata.

La European Environment Agency (EEA) definisce il monitoraggio ambientale come l'insieme delle misurazioni, valutazioni e determinazioni – periodiche o continuative – dei parametri ambientali, effettuato per prevenire possibili danni all'ambiente. A tal proposito è stato realizzato un Piano di Monitoraggio Ambientale (PMA), allegato al presente studio, che ha lo scopo di individuare e descrivere le attività di controllo che il proponente intende attuare relativamente agli aspetti ambientali più significativi interessati dall'opera e che deve essere sviluppato tenendo in considerazione le linee

guida redatte dal Ministero dell'Ambiente e della Tutela del Territorio e del Mare (MATTM), in merito al monitoraggio ambientale delle opere soggette a VIA - Linee Guida per la predisposizione del Progetto di Monitoraggio Ambientale (PMA) delle opere soggette a procedure di VIA (D.Lgs.152/2006 e s.m.i., D.Lgs.163/2006 e s.m.i.) Indirizzi metodologici generali Rev.1 del 16/06/2014). Le aree interessate dall'opera saranno sottoposte a un monitoraggio delle componenti ambientali in fase *Ante Operam*, in corso d'Opera e *Post Operam*; ciò si rende necessario per evidenziare se la realizzazione dell'impianto e delle opere connesse può causare effetti negativi a specifici parametri ambientali. Il monitoraggio interesserà:

- Suolo: riguarderà aree che verranno interessate da una modificazione delle condizioni del terreno, tramite la determinazione di parametri fisici, chimici e pedologici da effettuare prima e dopo la realizzazione dell'impianto stesso.
- Corpi idrici: superficiali e consumi di acqua utilizzata: verranno sottoposti a monitoraggio ambientale i corpi idrici superficiali che potrebbero essere maggiormente interessati dal progetto.
- Flora: Il monitoraggio della flora sarà svolto mediante l'osservazione lungo transetti e plot definiti nel PMA. Sarà previsto un piano di manutenzione del verde.
- Fauna: (avifauna, chirotteri, erpetofauna e lagomorfi): Le tecniche di monitoraggio saranno sia dirette che indirette e consentiranno di comprendere se le misure di mitigazione previste hanno effettivamente consentito di accogliere la fauna nel contesto del progetto.
- Rifiuti: nell'ambito del progetto sarà sviluppato uno specifico Piano di Gestione dei Rifiuti al fine di minimizzare, mitigare e ove possibile prevenire gli impatti derivanti da rifiuti, sia liquidi che solidi.
- Qualità dell'aria: L'obiettivo del monitoraggio atmosferico è quello di valutare la qualità dell'aria, verificando gli eventuali incrementi nel livello di concentrazione degli inquinanti e le eventuali conseguenze sull'ambiente.
- Parametri ambientali e climatici: per la valutazione delle condizioni climatiche si prevede l'installazione di un opportuno sistema di monitoraggio al fine di garantire l'acquisizione dei parametri ambientali e climatici presenti sui campi fotovoltaici in particolare quelli climatici e di irraggiamento.

Il piano di monitoraggio, come previsto dalla Linee Guide redatte dal Ministero dell'Ambiente e della Tutela del Territorio, si articola in tre fasi:

- monitoraggio ante operam (AO): periodo che precede l'avvio delle attività di cantiere e
 che può essere avviato nelle fasi autorizzative successive all'emanazione del
 provvedimento di VIA; il monitoraggio ha, in questo caso, lo scopo di descrivere lo stato
 delle componenti ambientali e le relative tendenze in atto prima dell'avvio di lavori per la
 realizzazione dell'impianto; l'analisi dello stato di fatto potrà essere utilizzato come livello
 di riferimento cui confrontare le misurazioni frutto delle indagini e dei monitoraggio delle
 fasi successive;
- monitoraggio in corso d'opera (CO): periodo che comprende le attività di cantiere per la realizzazione dell'opera quali l'allestimento del cantiere, le specifiche lavorazioni per la realizzazione dell'opera, lo smantellamento del cantiere e il ripristino dei luoghi. In questa fase il monitoraggio sarà utile a documentare l'evoluzione della situazione dell'ambiente delineata durante la fase precedente, al fine di verificare che l'andamento dei fenomeni sia coerente con le previsioni dello SIA. Si verificherà, inoltre, l'efficacia delle misure di mitigazione previste nello SIA per ridurre la significatività degli impatti ambientale e si individueranno eventuali impatti ambientali non previsti o di entità superiore rispetto alle previsioni, con la conseguente programmazione delle opportune misure correttive per la loro gestione/risoluzione;
- monitoraggio post operam (PO): periodo che comprende le fasi di esercizio e di eventuale dismissione dell'opera, riferibili quindi al periodo che precede l'entrata in esercizio dell'opera nel suo assetto funzionale definitivo (pre-esercizio), all'esercizio dell'opera (eventualmente articolato a sua volta in diversi scenari temporali di brave/medio/lungo periodo) e alle attività di cantiere per la dismissione dell'opera alla fine del suo ciclo di vita. La fase post opera è di fondamentale importanza per la verifica che eventuali alterazioni temporanee intervenute in fase di cantiere rientrino entro i valori previsti e che eventuali trasformazioni permanenti siano compatibili con l'ambiente. Inoltre, verrà verificata l'efficacia delle opere di mitigazione ambientale adottate.

A partire dalle indicazioni e dalle analisi svolte nel capitolo di Sintesi degli Impatti del presente Studio di Impatto Ambientale sulle diverse componenti ambientali che possono subire eventuali effetti negativi dalla costruzione dell'opera, il PMA (consultabile per intero nel relativo elaborato MACOMER4-IAR02) fornisce le indicazioni riguardanti il monitoraggio ambientale nelle varie fasi caratterizzanti la vita dell'impianto.

5.4 Cumulo cartografico

L'allegato VII alla parte seconda del D. Lgs. 152/2006 che disciplina i contenuti dello Studio di Impatto Ambientale di cui all'articolo 22 (allegato sostituito dall'art.22 del D. Lgs. 104/2017) al comma 5 lett.e) specifica che bisogna riportare una descrizione dei probabili impatti ambientali rilevanti del progetto proposto, dovuti, tra l'altro al cumulo con gli effetti derivanti da altri progetti esistenti e/o approvati, tenendo conto di eventuali criticità ambientali esistenti, relative all'uso delle risorse naturali e/o ad aree di particolare sensibilità ambientale suscettibili di risentire degli effetti derivanti dal progetto.

Anche l'Allegato V del D. Lgs 4/2008 sullo studio Preliminare Ambientale, evidenzia che bisogna dare informazioni circa il cumulo cartografico con altri progetti. Successivamente, il decreto 30 marzo 2015_ Linee guida per la verifica di assoggettabilità a valutazione di impatto ambientale dei progetti di competenza delle regioni e province autonome, previsto dall'articolo 15 del decreto-legge 24 giugno 2014, n. 91, convertito, con modificazioni, dalla legge 11 agosto 2014, n. 116. (15A02720) (GU Serie Generale n.84 del 11-04-2015) specifica che un singolo progetto deve essere considerato anche in riferimento ad altri progetti localizzati nel medesimo contesto ambientale e territoriale al fine di evitare che la valutazione dei potenziali impatti ambientali sia limitata al singolo intervento senza tenere conto dell'interazione con altri progetti.

Il criterio del «cumulo con altri progetti» deve essere considerato in relazione a progetti relativi ad opere o interventi di nuova realizzazione appartenenti alla stessa categoria progettuale indicata nell'allegato IV alla parte seconda del decreto legislativo n. 152/2006, ricadenti in un ambito territoriale entro il quale non possono essere esclusi impatti cumulati sulle diverse componenti ambientali, per i quali le caratteristiche progettuali, definite dai parametri dimensionali stabiliti nell'allegato IV alla parte seconda del decreto legislativo n. 152/2006, sommate a quelle dei progetti nel medesimo ambito territoriale, determinano il superamento della soglia dimensionale fissata nell'allegato IV alla parte seconda del decreto legislativo n.152/2006 per la specifica categoria progettuale. L'ambito territoriale è definito dalle autorità regionali competenti in base alle diverse tipologie progettuali e ai diversi contesti localizzativi, con le modalità previste al paragrafo 6 delle suddette linee guida.

Qualora le autorità regionali competenti non provvedano diversamente, motivando le diverse scelte operate, l'ambito territoriale è definito da:

- una fascia di un chilometro per le opere lineari (500 m dall'asse del tracciato);
- una fascia di un chilometro per le opere areali (a partire dal perimetro esterno dell'area occupata dal progetto proposto).

Sono esclusi dall'applicazione del criterio del «cumulo con altri progetti»:

- i progetti la cui realizzazione sia prevista da un piano o programma già sottoposto alla procedura di VAS ed approvato, nel caso in cui nel piano o programma sia stata già definita e valutata la localizzazione dei progetti oppure siano stati individuati specifici criteri e condizioni per l'approvazione, l'autorizzazione e la realizzazione degli stessi;
- i progetti per i quali la procedura di verifica di assoggettabilità di cui all'art. 20 del decreto legislativo n. 152/2006 è integrata nella procedura di valutazione ambientale strategica, ai sensi dell'art. 10, comma 4 del medesimo decreto. La VAS risulta essere, infatti, il contesto procedurale più adeguato a una completa e pertinente analisi e valutazione di effetti cumulativi indotti dalla realizzazione di opere e interventi su un determinato territorio.

La regione Sardegna non ha fissato delle direttive per definire il criterio del cumulo con altri progetti ma è stata comunque effettuata l'analisi dell'effetto cumulo, in un raggio massimo di 10 km, considerando diverse componenti ambientali.

Di seguito verrà valutato l'impatto cumulativo prima per gli impianti esistenti.

5.4.1 Impianti esistenti

L'analisi territoriale ha consentito di individuare altri impianti fotovoltaici ed eolici presenti nell'area interessata dal parco agro-voltaico "Macomer 4". Per l'analisi è stata circoscritta l'area di progetto analizzando i dintorni prima nel raggio di 2 km, poi nel raggio di 5 km e, infine, si è analizzato il territorio nel raggio di 10 km dall'area di progetto.

Analizzando l'area che ricade nel raggio di 2 km non si riscontra la presenza di impianti FV né di impianti eolici come evidenziato in figura.

FIGURA 60 – IMPIANTI FV (IN •) PRESENTI NEL RAGGIO DI 2 KM (IN BIANCO) DALLE AREE DI PROGETTO (IN GIALLO)

Nel raggio di 5 km dalle superfici interessate dal progetto è presente un impianto fotovoltaico e 8 singole torri eoliche di potenza inferiore a 100kW, come evidente in figura.

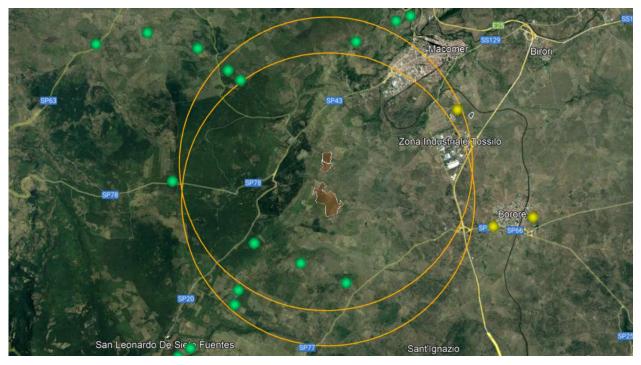


FIGURA 61 – IMPIANTI FV (IN O) E IMPIANTI EOLICI (IN O) PRESENTI NEL RAGGIO DI 5 KM (IN ARANCIO) DALLE AREE DI PROGETTO (IN GIALLO)

In ultima analisi, è stata valutata la zona nel raggio di 10 km dall'area di progetto riscontrando la presenza di 5 impianti fotovoltaici fissi a terra e 2 impianti eolici.

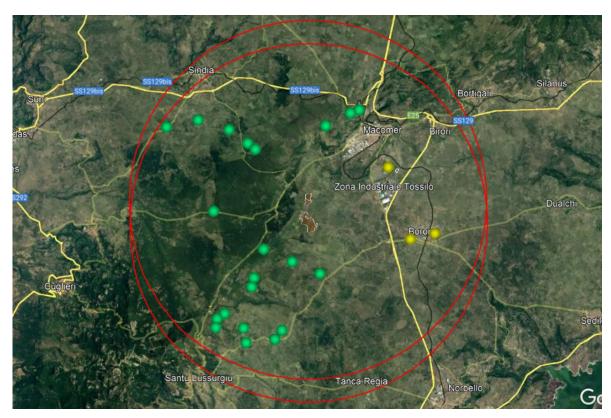


FIGURA 62 – IMPIANTI FV (IN $^{\circ}$) E IMPIANTI EOLICI (IN $^{\circ}$) PRESENTI NEL RAGGIO DI 10 KM (IN ROSSO) DALLE AREE DI PROGETTO (IN GRIGIO)

IDENTIFICATIVO	Estensione [ha]	Simbolo	Tipo di struttura	Distanza dal progetto [km]	Potenza [KW]
solare 1	2,38	0	terra / tracker	5,24	947,68
solare 2	1,36	0	terra / fissa	7,32	996,40
solare 3	1,10	0	terra / fissa	6,03	901,60
eolico 1	-	0	singola torre	2,80	60,00
eolico 2	-	0	singola torre	2,38	60,00
eolico 3	-	0	singola torre	3,81	60,00
eolico 4	-	0	singola torre	4,35	60,00
eolico 5	-	0	singola torre	4,41	60,00
eolico 6	-	0	singola torre	4,79	59,00
eolico 7	-	0	singola torre	4,94	60,00
eolico 8	-	0	singola torre	4,93	60,00
eolico 9	-	0	singola torre	5,15	59,00
eolico 10	-	0	singola torre	5,58	60,00
eolico 11	-	0	singola torre	5,97	60,00
eolico 12	-	0	singola torre	6,25	60,00
eolico 13	-	0	singola torre	6,50	60,00
eolico 14	-	0	singola torre	6,90	60,00
eolico 15	-	0	singola torre	6,88	60,00
eolico 16	-	0	singola torre	7,95	60,00

eolico 17	-		singola torre	7,38	59,00
eolico 18	-		singola torre	8,22	59,00
eolico 19	-		singola torre	8,08	60,00
eolico 20	-		singola torre	9,24	60,00
eolico 21	-		singola torre	8,01	60,00
eolico 22	-	0	singola torre	7,24	60,00
TOTALE	4,84				4.161,68

La zona di progetto è inserita in un contesto agricolo nel quale sono stati autorizzati altri progetti di impianti fotovoltaici ed eolici di medie dimensioni (P>100 kW), così come mostra l'elenco di seguito, estratto dall'Atlante ATLAIMPIANTI degli impianti del GSE e aggiornati ad aprile 2022 (https://atla.gse.it/atlaimpianti/project/Atlaimpianti Internet.html), che riporta gli impianti presenti nel raggio di 10 km dall'area di progetto:

			IMPIANTI AU	TORIZZ	ATI	
N.	Fonte	Provincia	Comune	Tipo	Costruito	Pot. nom. (kW)
1	SOLARE	Nuoro	MACOMER	tetto	si	149,76
2	SOLARE	Nuoro	MACOMER	tetto	si	151,80
3	SOLARE	Nuoro	MACOMER	tetto	si	177,84
4	SOLARE	Nuoro	MACOMER	tetto	si	195,80
5	SOLARE	Nuoro	MACOMER	tetto	si	199,98
6	SOLARE	Nuoro	MACOMER	tetto	si	345,92
7	SOLARE	Nuoro	MACOMER	terra	no	420,37
8	SOLARE	Nuoro	MACOMER	terra	no	439,56
9	SOLARE	Nuoro	MACOMER	tetto	si	499,20
10	SOLARE	Nuoro	MACOMER	tetto	si	960,48
11	SOLARE	Nuoro	MACOMER	tetto	si	999,00
12	SOLARE	Nuoro	MACOMER	tetto	si	1496,88
13	SOLARE	Nuoro	MACOMER	tetto	si	2651,76

FIGURA 63 – IMPIANTI FV (IN ○) AUTORIZZATI NEL TERRITORIO IN ESAME RISPETTO ALL'AREA DI PROGETTO (IN ●) – FONTE: ATLAIMPIANTI GSE

Dall'analisi effettuata si evince che nei dintorni dell'area di progetto sono presenti alcuni impianti, in considerazione dell'estensione di questi progetti e interrogando l'Atlante ATLAIMPIANTI degli impianti del GSE aggiornati ad aprile 2022, si tratta di impianti FV ed eolici con potenza media nell'ordine di 600 kWp, stando alle informazioni fornite dagli strati informativi del GSE (GSE, 2022).

La valutazione degli impatti cumulativi valuta la somma e l'interazione dei cambiamenti indotti dall'uomo nelle componenti ambientali di rilievo. Gli impatti cumulativi di tipo additivo sono impatti dello stesso tipo che possono sommarsi e concorrere a superare valori di soglia che sono formalmente rispettati da ciascun intervento. Gli impatti cumulativi di tipo interattivo possono invece essere distinti in sinergici o antagonisti a seconda che l'interazione tra gli impatti sia maggiore o minore della loro addizione.

Sulla base dell'analisi effettuata, si ritiene che l'impianto agro-voltaico denominato "Macomer 4" non interferisca con essi né costituisca frammentazione, in quanto si pone come un progetto energetico unitario, i cui impatti non possono essere cumulabili con quelli dei progetti esistenti.

Di seguito, si analizzeranno gli impatti sulle componenti ambientali che potrebbero essere causati dall'effetto cumulo.

ATMOSFERA

Le emissioni di polvere subordinate alle operazioni di movimentazione terra saranno dovute al passaggio dei mezzi di trasporto che, in concomitanza della stagione secca, potrebbero causare una certa diffusione di polveri. I terreni dei progetti considerati sono caratterizzati da materiale pseudo coerente, privo di tenacità, per cui, prima del passaggio dei mezzi si provvederà alla bagnatura delle piste e dei terreni per mezzo di pompe idrauliche tale da inibire la diffusione di polveri.

Gli impianti ad ogni modo non saranno realizzati contemporaneamente e dunque non si verificheranno cumuli di impatti su questa componente.

AMBIENTE IDRICO

L'installazione di pannelli fotovoltaici non presenta immissione di scarichi di nessun tipo, né di natura civile, né industriale. Inoltre, la sua installazione, non prevedendo impermeabilizzazioni del terreno se non parzialmente e limitatamente alle aree che verranno occupate dalle cabine a servizio dell'impianto, non comporta variazioni in relazione alla permeabilità e regimazione delle acque meteoriche. In base alle analisi svolte per tutti i siti, si evidenzia che nessuna delle aree ricade in zone classificate come a rischio e pericolosità idraulica secondo il PAI.

Tuttavia, non si prevedono impatti cumulativi sulla rete idrografica esistente poiché i progetti non prevedono impermeabilizzazioni di alcun tipo, non causano variazioni in relazione alla permeabilità e regimazione delle acque meteoriche non modificando in alcun modo l'assetto idraulico naturale rispettando così il principio dell'invarianza idraulica.

AVIFAUNA

Analogamente alla precedente analisi svolta in riferimento ai progetti esistenti, l'indagine sull'impatto dell'effetto cumulativo sull'avifauna dell'area interessata dal progetto ha messo in risalto che, in generale, non si possono escludere impatti negativi. Le superfici interessate dal progetto sono coltivate e destinate a seminativi, dunque, sussistono condizioni ecologiche che favoriscono la presenza di flora e vegetazione naturale, ma non di comunità faunistiche di pregio.

In ogni caso, l'impostazione di tipo agri-voltaico, di fatto, non esclude completamente la componente faunistica dall'ambito d'intervento progettuale l'applicazione delle misure mitigative già previste consentirebbe comunque la presenza di alcune specie sia nelle aree dell'impianto sia in quelle perimetrali, anche grazie all'adozione di "varchi" posti nella parte basale della recinzione, che consentono il passaggio di anfibi, rettili e di alcune specie di mammiferi di piccola taglia.

PAESAGGIO

L'impatto cumulativo sul paesaggio è certamente di natura visiva. È bene sottolineare come, grazie alla morfologia pianeggiante del contesto, basta allontanarsi dall'immediato intorno dell'area di progetto per non avere più una chiara visuale della stessa. Questo viene evidenziato anche dall'analisi dell'intervisibilità svolta per il progetto "Macomer 4" che ha dimostrato come l'impianto, dai punti di vista considerati, risulta scarsamente visibile. La percezione visiva degli impianti sarebbe limitata solo ad un ristretto numero di osservatori della SP 43 e della SS 131 da cui l'impianto è visibile solo in determinati punti ma non se ne percepisce mai la reale estensione. Anche l'analisi dell'intervisibilità rispetto alla SP 77 ha restituito un risultato positivo in termini di impatto visivo dell'impianto, anche a causa degli ostacoli di origine antropica e naturali presenti nell'area.

Questo impatto verrà, inoltre, notevolmente mitigato grazie alla realizzazione di una fascia arborea e arbustiva perimetrale costituita da vegetazione autoctona, sul lato esterno della recinzione. Si ritiene pertanto che l'impatto cumulativo visivo determinato dal progetto possa essere considerato poco significativo in virtù degli interventi di mitigazione previsti.

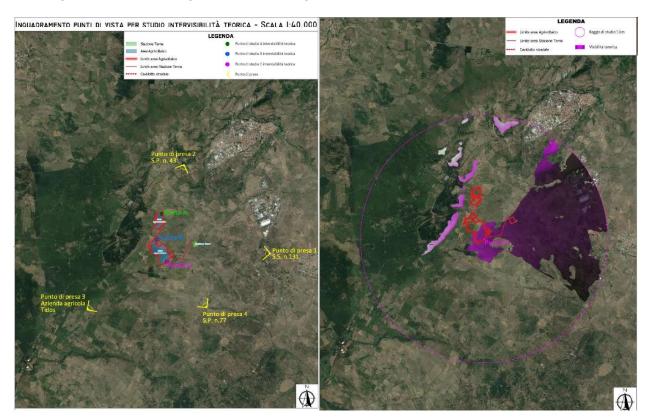


FIGURA 64 – INTERVISIBILITÀ INDAGATA DALLA 4 PUNTO C RISPETTO ALL'IMPIANTO AGROVOLTAICO (EVENTUALI ALTRI PUNTI INDAGATI SONO CONSULTABILI NELLA RELAZIONE PAESAGGISTICA – CODICE ELABORATO MACOMER4-IAR04)

CONSUMO DI SUOLO

L'impatto cumulativo degli impianti sulla componente suolo è relativo all'occupazione di territorio agricolo. Mettendo a confronto il progetto oggetto di studio con l'impianto identificato come "1", anch'esso costituito da strutture a inseguimento (tracker), per esempio, si ha una superficie di progetto cumulativa pari a 74,68 ha, ma la superficie occupata dalle strutture sarà pari a circa 19,99 ha con, quindi, un indice di occupazione pari a circa il 27%. Questo è da valutare positivamente in quanto l'indice di occupazione è ben al di sotto del 50%. La proponente ha, infatti, previsto la rinaturalizzazione delle aree di progetto, prevedendo delle opere di compensazione e mitigazione, oltre ad una vasta area da conservare allo stato originario per consentire la propagazione della macchia mediterranea.

Tale intervento comporta un accrescimento del valore ambientale e paesaggistico dell'area mediante un incremento della macchia mediterranea in un'area priva di vegetazione di pregio. In definitiva, la superficie recintata sarà comunque estesa, ma grazie alle opere di mitigazione previste, come ad esempio la fitta fascia arborea lungo il perimetro che nasconderà in parte la vista dei pannelli dalle arterie stradali contigue all'impianto, e alla sistemazione di specie arboree nelle aree di compensazione si ritiene che l'impatto cumulativo possa essere considerato poco significativo grazie anche alla soluzione di mantenere un prato stabile che contribuirà a garantire una copertura vegetale per tutto l'anno, preservare la fertilità del terreno ed il relativo quantitativo di sostanza organica, creare un habitat quasi naturale e ridurre i fenomeni di erosione del suolo, in un'area caratterizzata da un alto indice di desertificazione.

Si ribadisce che non si può parlare di consumo di suolo permanente in quanto, al termine della vita utile degli impianti, questi saranno dismessi; si parla di consumo di suolo reversibile dato dalla presenza delle strutture di supporto dei moduli FV, delle piazzole, cabinati, ecc che, nel complesso dell'area interessata dagli interventi, così come dimostrato anche nel capitolo dedicato, ha una percentuale molto bassa.

In definitiva, sulla base delle osservazioni fin qui esposte, si ritiene che un impatto dell'effetto cumulo sulla componente suolo per l'impianto considerato possa essere considerato scarsamente rilevante ma in gran parte mitigabile grazie alle soluzioni di rinaturalizzazione già previste nel progetto.

6. MISURE DI MITIGAZIONE E INTERVENTI DI COMPENSAZIONE

La realizzazione di un'infrastruttura che determina una variazione di uso del suolo produce sempre un impatto ambientale che difficilmente potrà essere del tutto eliminato. Si possono però introdurre elementi di autoregolazione, in grado di rispondere agli impatti determinati dalle azioni proposte dal progetto, cosicché ogni forma di trasformazione e uso del suolo che determini alterazioni negative del bilancio ecologico locale, possa essere controbilanciata da un'adeguata misura in grado di annullare o quantomeno di ridurre al minimo tale azione. La fase della mitigazione ambientale è finalizzata alla riduzione degli impatti sul territorio attraverso interventi di riduzione degli stessi, idonee disposizioni e misure di carattere ecologico ed ambientale connesse all'intervento trasformativo. Le azioni compensative saranno finalizzate a restituire condizioni di naturalità mediante azioni di riequilibrio ecologico, quale risarcimento dei danni causati dagli effetti trasformativi dell'impianto che la mitigazione non ha potuto cancellare.

Il progetto in esame tiene in considerazione che, nella fase di installazione e, per quanto possibile, anche nel corso dell'esercizio, siano compiuti alcuni interventi di mitigazione, che manterrebbero il sito ad un livello di qualità ambientale adeguato. In particolare, si provvederà a migliorare gli standard ambientali intervenendo contemporaneamente sia sull'aspetto **vegetativo** che su quello **paesaggistico**.

Le opere di mitigazione e compensazione saranno realizzate durante la fase di cantiere, attraverso i seguenti interventi: limitando il movimento dei mezzi meccanici ad aree circoscritte interessate dal progetto, prevedendo il riutilizzo del suolo agricolo attraverso la coltivazione di foraggio con prato polifita per la produzione di fieno tra le file dei pannelli e incrementando parte di macchia mediterranea nella fascia di mitigazione perimetrale.

Inoltre, le suddette misure di mitigazione verranno mantenute in stato ottimale per tutto il periodo di vita dell'impianto. Le singole opere di mitigazione avranno un diverso grado di capacità di contrastare gli effetti dell'intervento ma saranno finalizzate a raggiungere, nel loro insieme, non solo un effetto di riduzione degli impatti, ma anche di riqualificazione ambientale dell'intera area.

6.1 Fase di costruzione

6.1.1 Atmosfera

Al fine di ridurre le emissioni in atmosfera verranno adottate le seguenti misure di mitigazione e prevenzione:

- i mezzi di cantiere saranno sottoposti a regolare manutenzione;
- manutenzioni periodiche e regolari delle apparecchiature presenti in cantiere.

Per ridurre il sollevamento polveri verranno adottate le seguenti misure di mitigazione e prevenzione:

- circolazione degli automezzi a bassa velocità;
- eventuale bagnatura delle strade e dei cumuli di scavo stoccati;
- lavaggio delle ruote dei mezzi pesanti prima dell'immissione sulla viabilità pubblica.

6.1.2 Rumore

Al fine della mitigazione dell'impatto acustico in fase di cantiere sono previste le seguenti azioni:

- rispetto degli orari imposti dai regolamenti comunali e dalle normative vigenti per lo svolgimento delle lavorazioni;
- la riduzione dei tempi di esecuzione delle attività rumorose tramite l'impiego di più attrezzature e più personale;
- la scelta di attrezzature più performanti dal punto di vista acustico;
- manutenzione programmata per macchinari e attrezzature;
- divieto di utilizzo di macchinari senza dichiarazione CE di conformità e indicazione del livello di potenza sonora garantito, secondo guanto stabilito dal D.lgs. 262/02.
- limitare, compatibilmente con le esigenze tecniche, il numero di movimenti da/per il cantiere ed all'interno di esso;
- evitare la sosta di mezzi con motore in funzione al di là delle esigenze operative inderogabili;
- evitare, quando possibile, contemporaneità e concentrazione di attività ad alto impatto acustico;
- limitare la velocità dei mezzi in transito sulla viabilità di cantiere;
- evitare, se possibile, la realizzazione degli interventi nei periodi primaverili/estivi in quanto periodo di accoppiamento oltre che di migrazione.

6.1.3 Impatto visivo e luminoso

Per ridurre al minimo l'impatto visivo del cantiere, si provvederà a:

- mantenere l'ordine e la pulizia quotidiana;
- depositare i materiali esclusivamente nelle aree di stoccaggio predefinite;
- individuare idonee aree di carico/scarico dei materiali e stazionamento dei mezzi all'interno del cantiere.

Per quanto concerne l'impatto luminoso, si ridurrà ove possibile, l'emissione di luce nelle ore crepuscolari invernali, senza compromettere la sicurezza dei lavoratori; eventuali lampade presenti nell'area di cantiere saranno orientate verso il basso e tenute spente qualora non utilizzate.

6.2 Fase di esercizio

6.2.1 Rumore

Gli impianti fotovoltaici sono il sistema più silenzioso in assoluto per generare energia elettrica in quanto, sfruttando le peculiarità della fisica quantistica, evita la necessità di parti in movimento tipiche di tutti i sistemi di generazione tradizionali da fonti fossili ma anche di molti sistemi da fonti rinnovabili.

Le emissioni di rumore sono limitate al funzionamento dei macchinari elettrici, progettati e realizzati nel rispetto dei più recenti standard normativi ed il cui alloggiamento è previsto all'interno di apposite cabine tali da attenuare ulteriormente il livello di pressione sonora in prossimità della sorgente stessa. Le uniche parti che generano rumore sono i sistemi di ventilazione forzata per il raffreddamento dei trasformatori oltre il rumore di magnetizzazione del nucleo ferro magnetico dello stesso trasformatore. Gli inverter localizzati sul campo fotovoltaico hanno potenze sonore compatibili con i livelli acustici della zona; pertanto, verranno considerati ininfluenti al fine del calcolo. In prossimità di ogni singola cabina, l'impatto acustico è da considerarsi trascurabile.

Si precisa inoltre che la disposizione baricentrica dei dispositivi che sono fonte di rumori, è tale da rendere non percepibile la rumorosità generata, dall'esterno della recinzione, dove è prevista una fascia arbustiva e arborea che funge da mitigazione acustica naturale. È opportuno specificare che l'impianto insiste in un contesto rurale-agricolo all'interno del quale non risultano presenti particolari habitat e distante dai centri abitati.

6.2.2 Impatto visivo e paesaggistico

Complessivamente, le opere di mitigazione e compensazione e quelle a destinazione agricola (prato migliorato di leguminose) occuperanno una superficie pari a 26,76% dell'area di progetto; in particolare, su un totale di circa 72 ha, la fascia di mitigazione perimetrale occuperà una superficie di 3,3 ha, mentre le aree di compensazione, comprese le aree libere da interventi e il prato polifita, occuperanno una superficie di 64,54 ha poiché il prato sarà coltivata anche sotto alle strutture.

La valutazione delle specie arboree da utilizzare è stata dettata dalla volontà di conciliare l'azione di mitigazione/riqualificazione paesaggistica con la valorizzazione della vocazione agricola dell'area di inserimento dell'impianto.

In merito agli interventi di mitigazione e compensazione sono state elaborate due tipologie di intervento in relazione alla collocazione delle aree e alla loro natura: fascia di mitigazione perimetrale, prato polifita sottostante i pannelli, aree di compensazione interne.

Recinzione perimetrale provvista di barriera vegetale: le aree destinate alla collocazione delle strutture, saranno protette da una recinzione metallica fissata con tubi a intervalli regolari e a maglie variabili, più grandi nella parte inferiore, per permettere il passaggio della microfauna locale, e da aperture di circa 30x30 cm poste ad una distanza di 20 mt l'una dall'altra. Al fine di ridurre l'impatto visivo, l'intervento è mirato all'inserimento di una schermatura perimetrale con vegetazione autoctona, arbustiva ed arborea, posta sul lato esterno della recinzione, antintrusione con altezza pari a circa 2,5 mt. La fascia avrà una larghezza costante di 3 mt arrivando fino a 6 mt dov'è possibile. Inoltre, in prossimità del ciglio stradale, la fascia di mitigazione verrà arretrata di 10 m per rispettare le limitazioni imposte dall'art.26 del Nuovo Codice della Strada. Considerando le essenze compatibili con il territorio e la natura dei luoghi per la stessa è stato previsto l'impianto di Olmo Minore e alcuni arbusti: Prugnolo, Biancospino e Pero selvativo. Tutte essenze arboree sempreverdi termofile ed eliofile, con grande capacità di adattamento e resilienza a condizioni climatiche stressanti con spiccata capacità di reagire alle carenze idriche; le piante verranno piantumate a quinconce.

L'inserimento di questa fascia di mitigazione garantirà non solo la formazione di una cortina verde che nasconderà alla vista i pannelli fotovoltaici, anche dai terreni limitrofi, ma avrà anche le seguenti funzioni:

- riqualificazione paesaggistica;
- abbattimento rumori in fase di cantiere e dismissione;
- schermatura polveri;

 miglioria delle possibilità dell'area di costituire rifugio per specie migratorie o stanziali della fauna.

Prato migliorato di leguminose permanente: per l'area di impianto, sotto le strutture, si è scelta la soluzione della conversione dei seminativi in prato migliorato di leguminose, la scelta delle sementi sarà orientata ad un mix con percentuale di leguminose maggiore del 50%, con essenze la cui fioritura permette il pascolo, il tutto per un'area complessiva pari a 57,61 ha. Il prato favorirà così il mantenimento della flora pabulare spontanea e garantirà una copertura permanente del suolo, che favorirà la mitigazione dei fenomeni di desertificazione, e di erosione per ruscellamento delle acque superficiali.

Il prato stabile apporterà una copertura perenne, per il quale dopo l'insediamento, non sarà necessario effettuare semine, ma provvedere al suo mantenimento con l'apporto di concimazione e sfalciature. Inoltre, verrà lasciato sul terreno per favorire il reintegro della sostanza organica.

Aree di compensazione: all'interno dell'area di progetto sono state individuate delle aree non idonee al posizionamento delle strutture fotovoltaiche e per questo destinate ad aree di compensazione, per una superficie di circa 6,37 ettari.

Per maggiori dettagli si rimanda all'elaborato cartografico MACOMER4-IAT11 e alla specifica relazione riguardante le opere di mitigazione MACOMER4-IAR08 di seguito si riportano alcune delle foto-simulazioni di impatto estetico-percettivo che danno un'idea di come si intende mitigare l'inserimento dell'area all'interno del contesto territoriale.

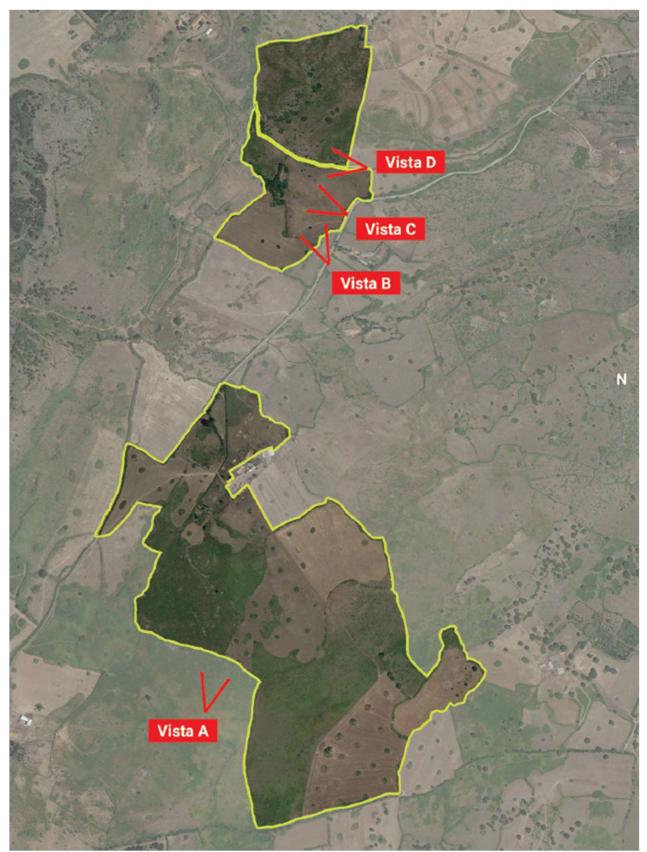


FIGURA 65 – PLANIMETRIA AREA DI PROGETTO CON CONI OTTICI

FIGURA 66 – INSERIMENTO DEL PROGETTO ALL'INTERNO DEL CONTESTO TERRITORIALE CON RELATIVE MISURE DI COMPENSAZIONE E MITIGAZIONE – VISTA A VERSO N-E IN CUI È POSSIBILE APPREZZARE ENTRAMBE LE PORZIONI DELL'IMPIANTO – ESTRATTO DALL'ELABORATO GRAFICO MACOMER4-IAT17

FIGURA 67 – INSERIMENTO DEL PROGETTO ALL'INTERNO DEL CONTESTO TERRITORIALE CON RELATIVE MISURE DI COMPENSAZIONE E MITIGAZIONE – VISTA C DA STRADA – ESTRATTO DALL'ELABORATO GRAFICO MACOMER4-IAT17

Questi interventi serviranno a ricostruire lo strato erbaceo ed arbustivo nelle adiacenze dell'impianto fotovoltaico, intervenendo con opere mirate a restituire in breve "tempo tecnico" uno strato vegetale utile a due precise funzioni:

- Ricomporre lo strato organico del suolo e consolidare le superfici, allontanando il rischio di erosione;
- Ricostruire la componente vegetale del paesaggio per mitigare l'impatto ambientale paesaggistico.

Al fine di garantire una maggiore compatibilità ambientale del sito, verranno altresì rispettati i seguenti accorgimenti:

- Saranno evitate cementificazioni che impediscano la penetrazione della pioggia;
- L'erba sarà trinciata regolarmente e lasciata sul posto in modo da dare nutrimento al terreno ed evitarne l'indurimento.

7. CONCLUSIONI

Energia Pulita Italiana 3 s.r.l., proponente per il progetto in esame, quale società facente parte del gruppo Enerland Italia s.r.l., intende realizzare un impianto agro-voltaico in un'area nella disponibilità della stessa, in zona agricola dei Comune di Macomer (NU).

Lo studio è inerente al progetto per la realizzazione di un impianto agri-voltaico costituito da strutture fisse e relative opere connesse (infrastrutture impiantistiche e civili), ubicato in Sardegna, nel Comune di Macomer, con potenza pari a 42 MWp. L'area occupata dalle strutture sarà complessivamente pari a 19,35 ettari, su 72,30 ettari totali. L'impianto è soggetto al rilascio di Autorizzazione Unica, ai sensi dell'art. 12 comma 3 del d.lgs. n. 387 del 2003; il progetto proposto rientra, ai sensi dall'art. 31 comma 6 della legge n. 108 del 2021, tra quelli previsti nell'allegato II alla parte seconda del d.lgs. 152/2006 (impianti fotovoltaici per la produzione di energia elettrica con potenza complessiva superiore a 10 MW), pertanto, l'intervento è soggetto, ai sensi dell'art. 6 comma 7 (comma così sostituito dall'art. 3 del d.lgs. n. 104 del 2017) del d.lgs. 152/2006 a provvedimento di VIA (Valutazione di Impatto Ambientale).

Per la redazione del presente Studio sono state seguite le indicazioni della normativa di settore precedentemente richiamata. Perseguendo l'obiettivo di favorire lo sviluppo autonomo del solare come fonte di energia alternativa alle fonti inquinanti fossili, lo Studio ha inizialmente valutato le caratteristiche del progetto che potessero costituire interferenza sulle diverse componenti ambientali e si è quindi proceduto con l'analisi della qualità delle componenti ambientali interferite e con la valutazione degli impatti, tutto questo, prendendo in considerazione le caratteristiche del territorio nel quale è ubicato il progetto. Sono stati affrontati gli aspetti programmatici e ambientali e descritte le singole attività per la realizzazione dell'impianto.

L'area all'interno della quale si inserisce il progetto è classificata come area agricola; non ricade all'interno di aree vincolate ai sensi dell'art. 142 lett. c) del d.lgs. 42/2004 o in aree identificate come siti facenti parte di Rete Natura2000 (SIC-ZPS-ZSC) o nel raggio di 5 km dalle stesse.

L'analisi degli impatti meticolosamente effettuata ha sottolineato come, in virtù della durata e tipologia delle attività, gli impatti siano trascurabili o bassi per specifiche componenti, in ogni caso mitigabili con gli accorgimenti progettuali.

Si vuole sottolineare come, grazie alla realizzazione di questo progetto, ci saranno degli impatti positivi sotto diversi aspetti, da quello ambientale a quello economico. La previsione di un'estesa fascia di mitigazione arborea tutt'intorno l'impianto e l'inserimento di aree di compensazione, provvederà ad

incrementare e ricostituire la macchia mediterranea portando così ad un accrescimento del valore ambientale e paesaggistico dell'area di progetto anche le poche specie arboree presenti nelle aree interessate dal progetto verranno conservate o, eventualmente, espiantate e reimpiantate lungo le fasce di mitigazione perimetrale o nelle aree destinate a compensazione.

Questo, assieme al prato permanente, contribuirà a garantire una copertura vegetale per tutto l'anno, preservare la fertilità del terreno ed il relativo quantitativo di sostanza organica, creare un habitat quasi naturale e ridurre i fenomeni di erosione del suolo. È bene inoltre sottolineare che l'indice di occupazione dell'area sarà circa pari al 27%, poiché su un'area complessiva di circa 72 ha la superficie occupata dalle strutture sarà di soli 19,35, un valore assolutamente accettabile in termini di impatto visivo ma soprattutto ambientale, visto che anche al di sotto delle strutture è prevista la presenza del prato.

L'incentivazione della produzione di energia da fonti rinnovabili è uno dei principali obiettivi della pianificazione energetica a livello internazionale, nazionale e regionale poiché, i benefici ambientali che ne derivano sono notevoli e facilmente calcolabili. I benefici ambientali attesi dell'impianto in progetto, valutati sulla base della stima di produzione annua di energia elettrica di circa 78,88 GWh/anno sono riportati di seguito:

TABELLA 26 – FONTE: DELIBERA EEN 08/03, ART. 2

RISPARMIO CARBURANTE	TOE
Energia elettrica - fattore di conversione dell'energia primaria [TEP/Wh]	0,187
Tep risparmiate in un anno	14.751,31 x 10⁵
Tep risparmiate in 30 anni	442.539,30 x 10⁵

TABELLA 27 – FONTE: RAPPORTO AMBIENTALE ENEL

EMISSIONI IN ATMOSFERA EVITATA	CO ₂	SO ₂	NO _x	Polveri
Specifiche emissioni in atmosfera [g/kWh] 462,00	0,54	0,49	0,02
Emissioni evitate in un anno [kg]	36.444.408	42.597,36	38.653,16	1.577,68
Emissioni evitate in 30 anni [kg]	1.093.332.240,00	1.277.920,8	1.159.594,8	47.330,4

Questo significa che la realizzazione dell'impianto porterà dei vantaggi sia sul piano ambientale, contribuendo al risparmio di migliaia di tonnellate di petrolio e CO₂ tradotte in mancate emissioni di inquinanti e risparmio di combustibile, sia sul piano socioeconomico:

- aumento del fattore di occupazione diretta sia nella fase di cantiere (per le attività di costruzione e installazione dell'impianto) che nella fase di esercizio dell'impianto (per le attività di gestione e manutenzione degli impianti);
- creazione e sviluppo di società e ditte che graviteranno attorno l'impianto ricorrendo a manodopera locale;
- riqualificazione dell'area grazie alla realizzazione di recinzioni, viabilità di accesso ai singoli lotti, sistemazioni idraulico-agrarie.

In definitiva, quindi, si può ritenere che il progetto delle opere in oggetto sia compatibile dal punto di vista ambientale e che esso, a fronte di impatti spazialmente circoscritti e di limitata entità e durata (fasi di cantiere), costituisca occasione importante di promozione dell'uso delle fonti energetiche rinnovabili.

Si ritiene, pertanto, che gli impatti potenziali dell'opera in oggetto siano quasi del tutto eliminabili attraverso le opportune pratiche progettuali e gestionali previste. Si afferma, pertanto, che la soluzione proposta non ha effetti negativi e/o significativi nei confronti dell'ambiente che ne accoglie la realizzazione e l'esercizio.

Milano, 25 maggio 2022

II Tecnico

Agr. Patrick Vasta

8. INDICE DELLE FIGURE

Figura 1 – Storymap di Enerland3
Figura 2 – area oggetto di intervento evidenziata in rosso, stazione elettrica in giallo– Estratto elaborato cartografico MACOMER4-PDT014
Figura 3 – Stralcio inquadramento area di progetto su base CTR – estratto dall'elaborato cartografico MACOMER4-PDT025
Figura 4 – Allocazione delle risorse RRF ad assi strategici (percentuale su totale RRF) - Fonte www.governo.it
Figura 5 – componenti e risorse in Miliardi di Euro - fonte www.governo.it25
Figura 6 – obiettivi generali missione 2 componente 2 - Fonte www.governo.it28
Figura 7 – Stralcio Carta dei dispositivi di tutela ambientale – estratto dall'elaborato cartografico MACOMER4-IAT06. (Fonte: PPR – Assetto Ambientale)41
Figura 8 – Inquadramento dell'area di intervento rispetto alla Carta di Assetto storico-culturale - Stralcio dell'elaborato cartografico MACOMER4-IAT0744
Figura 9 – Inquadramento dell'area di impianto rispetto alla Carta dell'assetto insediativo – estratto dall'elaborato cartografico MACOMER4-IAT08
Figura 10 – Inquadramento dell'area di progetto (in rosso) rispetto ai Siti SIC-ZSC-ZPS – Stralcic dell'elaborato cartografico MACOMER4-IAT03
Figura 11 – Inquadramento dell'area di progetto (in rosso) rispetto alla Carta degli Habitat prodotta da ISPRA – Stralcio dell'elaborato cartografico MACOMER4-IAT1948
Figura 12 – Inquadramento del sito su Carta delle Aree non Idonee all'installazione di impianti FER a sensi della D.G.R. 59/90 del 2020 (Estratto dall elaborato cartografico MACOMER4-IAT15)56
Figura 13 – Cumulati di precipitazione medi climatici mensili e annuali calcolati nel trentennio 1981- 2010 (fonte: ARPAS, ISPRA 2020)59
Figura 14 – Cumulati di precipitazione medi mensili (a sx) e annuali (a dx) per il trentennio 1981-2010 (fonte: ARPAS, ISPRA 2020)
Figura 15 – Media mensile delle temperature massime calcolate sul trentennio 1981-2010 (fonte: ARPAS, ISPRA 2020)

Figura 16 – Media mensile delle temperature minime calcolate sul trentennio 1981-2010 (fonte ARPAS, ISPRA 2020)60
Figura 17 – Medie mensili (a sx) e annuali (a dx) delle temperature massime per il trentennio 1981 2010 (fonte: ARPAS, ISPRA 2020)6
Figura 18 – Medie mensili (a sx) e annuali (a dx) delle temperature minime per il trentennio 1981-2010 (fonte: ARPAS, ISPRA 2020)6
Figura 19 – Bacino del Tirso63
Figura 20 – Suddivisione dell'area di indagine nei bacini imbriferi di riferimento64
Figura 21 – Inquadramento area di progetto su Carta della pericolosità idraulica – Stralcio dell'elaborato cartografico MACOMER4-IAT1067
Figura 22 – Inquadramento area di progetto su Carta della pericolosità da frana Stralcio dell'elaborato cartografico MACOMER4-IAT1067
Figura 23 – Layout planimetrico di progetto dell'area a Nord – Estratto dall'elaborato cartografico MACOMER4-PDT0568
Figura 24 – Stralcio P.U.C. con area impianto in Blu (Estratto dall'elaborato cartografico MACOMER4 PDT03)93
Figura 25: Tracker tipo ad asse variabile106
Figura 26 – Foto tipo agrovoltaico107
Figura 27: Sulla sinistra producibilità media mensile del sito, sulla destra irraggiamento al metro quadro11
Figura 28 – Esempio recinzione metallica che delimita l'area di pertinenza dell'impianto117
Figura 29 – Esempio impianto di illuminazione integrato con sistema di videosorveglianza – estratto dall'elaborato tecnico MACOMER4-PDR02118
Figura 30 – Cumulati di precipitazione medi climatici mensili e annuali calcolati nel trentennio 1981 2010 (fonte: ARPAS, ISPRA 2020)140
Figura 31 – Media mensile delle temperature massime calcolate sul trentennio 1981-2010 (fonte ARPAS, ISPRA 2020)

Figura 32 – Media mensile delle temperature minime calcolate sul trentennio 1981-2010 (fonte ARPAS, ISPRA 2020)
Figura 33 – Rosa del regime dei venti nella stazione di Porto Torres con dati di rilevamento dal 23/07/98 al 18/12/2010
Figura 34 – Carta dell'uso del suolo con area di progetto in rosso – Elaborato cartografico MACOMER4-IAT04
Figura 35 – Carta dell'uso del suolo con approfondimento a livello VI
Figura 36 – A SINISTRA: Stima del consumo di suolo annuale tra 2019 e 2020. A DESTRA: stima de suolo consumato (2020) (fonte: elaborazione ISPRA su cartografia SNPA)
Figura 37 – Incremento del consumo di suolo giornaliero netto (fonte: elaborazione ISPRA su cartografia SNPA)
Figura 38 – Indicatori di consumo di suolo per la Regione Sardegna. (fonte: elaborazione ISPRA su cartografia SNPA)
Figura 39 – Indicatori di consumo di suolo per le province Sardegna(fonte: ISPRA/SNPA)
Figura 40 – Suolo consumato nel 2020: percentuale sulla superficie amministrativa (FONTE ISPRA/SNPA)
Figura 41 – Estensione area di progetto su cartografia IGM in scala 1:25.000. In Rosso i poligon dell'Area di progetto e il cavidotto – estratto dall'elaborato cartografico MACOMER4-IAT01 156
Figura 42 – Particolare delle due aree di progetto su base IGM 1:25000 – estratto dall'elaborato cartografico MACOMER4-IAT01
Figura 43 - Interpretazione geologica e geomorfologica dell'area di studio (Estratto dalla Relazione Geologica e Geomorfologica MACOMER4-IAR10)
Figura 44 – Stralcio della Carta Geologica (MACOMER4-IAT25)
Figura 45 – Zonazione Sismica ZS9161
Figura 46 – Distribuzione dei terremoti in Sardegna e nei mari adiacenti
Figura 47 – Infografica del fattore di occupazione del suolo in relazione al progetto agro-voltaico denominato "MACOMER 4"

Figura 48 – Planimetria generale sistemazione a verde opere di mitigazione (Estratto dall'elaborato grafico MACOMER4-PDT11)
Figura 49 – Particolare area destinata a conservazione e relativa Sezione O-E dell'impianto(Estratto dall'elaborato grafico MACOMER4-PDT11)171
Figura 50 – Particolare fascia di Mitigazione e area destinata a rinaturalizzazione e relativa Sezione N-S dell'impianto – Estratto dall'elaborato grafico MACOMER4-PDT11)171
Figura 51 – Particolare fascia di Mitigazione e relativa Sezione O-E dell'impianto – Estratto dall'elaborato grafico MACOMER4-PDT11)171
Figura 52 – Inquadramento climatico area di Macomer secondo la metodologia di Thornthwaite 173
Figura 53 – Stralcio carta degli Habitat secondo il sistema CORINE Biotopes – Stralcio MACOMER4 IAT19183
Figura 54 – Inquadramento area di progetto su Carta della Sensibilità Ecologica – stralcio elaborato cartografico MACOMER4-IAT21
Figura 55 – Inquadramento area di progetto su Carta della Pressione Antropica – stralcio elaborato cartografico MACOMER4-IAT22
Figura 56 – Inquadramento area di progetto su Carta della Fragilità Ambientale – stralcio elaborato cartografico MACOMER4-IAT23
Figura 57 – Inquadramento area di progetto su Carta del Valore Ecologico – stralcio elaborato cartografico MACOMER4-IAT24
Figura 58 – Valori degli impatti globali su ogni singola componente - FASE DI COSTRUZIONE212
Figura 59 – Valori degli impatti globali su ogni singola componente - FASE DI ESERCIZIO216
Figura 60 – Impianti FV (in ○) presenti nel raggio di 2 km (in bianco) dalle aree di progetto (in giallo)
Figura 61 – Impianti FV (in ○) e Impianti Eolici (in ○) presenti nel raggio di 5 km (in arancio) dalle aree di progetto (in giallo)
Figura 62 – Impianti FV (in ○) e Impianti Eolici (in ○) presenti nel raggio di 10 km (in rosso) dalle area di progetto (in grigio)
Figura 63 – Impianti FV (in ○) autorizzati nel territorio in esame rispetto all'area di progetto (in ○) - fonte: Atlaimpianti GSF

Figura 64 – Intervisibilità indagata dalla 4 punto C rispetto all'Impianto Agrovoltaico (eventuali altri pur
indagati sono consultabili nella Relazione Paesaggistica – codice elaborato MACOMER4-IAR04
Figura 65 – Planimetria area di progetto con coni ottici
Figura 66 – Inserimento del progetto all'interno del contesto territoriale con relative misure compensazione e mitigazione – Vista A verso N-E in cui è possibile apprezzare entrambe le porzio dell'impianto – Estratto dall'elaborato grafico MACOMER4-IAT17
Figura 67 – Inserimento del progetto all'interno del contesto territoriale con relative misure compensazione e mitigazione – Vista C da strada – Estratto dall'elaborato grafico MACOMERA IAT17
9. INDICE DELLE TABELLE
Tabella 1 – Elenco obiettivi Agenda ONU 20301
Tabella 2 – Obiettivi e Traguardi dell'Agenda ONU 2030 condivisi dal progetto1
Tabella 3 – Principali obiettivi su energia e clima dell'UE e dell'Italia al 2020 e al 2030. Fonte: PNIE (gennaio 2020)
Tabella 4 – Confronto pro e contro di diverse soluzioni impiantistiche
Tabella 5 – Localizzazione dell'Impianto FV
Tabella 6 – DATI INVERTER SUNGROW
Tabella 7 – Fonte: Rapporto ambientale ENEL
Tabella 8 – fattori di emissione in g/Kg di gasolio combusto
Tabella 9 – Rendimenti annuali dell'anemometro
Tabella 10 - Dati riassuntivi della frequenza del vento (in per mille) per direzione di provenienza e per classi di velocità nella stazione di Porto Torres con dati di rilevamento dal 23/07/98 al 18/12/201 per un totale di 100291 osservazioni considerate
Tabella 11 – Consumo di suolo relativo al Comune di Macomer e alla Provincia di Nuoro, interessa
dall'intervento (fonte: ISPRA)15

Tabella 12 – Fattore di occupazione % relativo all'area di progetto	166
Tabella 13 – Estensione dei limiti amministrativi della Provincia di Nuoro e del Comune di Maco	mer
	166
Tabella 14 – Indice occupazione di suolo del progetto per la Provincia di Nuoro	167
Tabella 15 – Indice occupazione di suolo del progetto per il Comune di Macomer	167
Tabella 16 – Rapporto di suolo consumato nella Provincia di Nuoro	168
Tabella 17 – Rapporto di suolo consumato sul Comune di Macomer	168
Tabella 18 – Indice di consumo di suolo pro-capite nel Comune di Macomer e nella Provincia di Nu – ANTE e POST OPERAM	
Tabella 19 – Classificazione del territorio comunale individuata dal D.P.C.M. 14.11.1997	
Tabella 20 – FASE DI COSTRUZIONE: Valore degli indici di sensibilità caratteristici	209
Tabella 21 – Correlazione tra componenti e fattori ambientali in FASE DI COSTRUZIONE	210
Tabella 22 – Valore degli impatti elementari su ciascuna componente - Fase di costruzione	211
Tabella 23 – FASE DI ESERCIZIO: Valore degli indici di sensibilità caratteristici	213
Tabella 24 – Correlazione tra componenti e fattori ambientali in FASE DI ESERCIZIO	214
Tabella 25 – Valore degli impatti elementari su ciascuna componente - FASE DI ESERCIZIO	215
Tabella 26 – Fonte: Delibera EEN 08/03, art. 2	241
Tabella 27 – Fonte: Rapporto ambientale ENEL	241

10. BIBLIOGRAFIA

ARPAS, ISPRA. 2020. Climatologia della Sardegna per il trentennio 1981-2010. s.l.: M. Fiori, G. Fioravanti (a cura di), 2020.

GSE, Gestore Servizi Energetici. 2022. ATLAIMPIANTI GSE. *GSE.* [Online] 2022. https://atla.gse.it/atlaimpianti/project/Atlaimpianti_Internet.html.

ISPRA. 2021. Consumo di suolo, dinamiche territoriali e servizi ecosistemici. [aut. libro] M. (a cura di) Munafò. *Report SNPA 22/21*. s.l. : Edizione, 2021.

ISPRAmbiente. 2019. Fattori di emissione atmosferica di gas a effetto serra nel settore elettrico nazionale e nei principali Paesi Europei. Roma: Editore, 2019. p. 29.

Stucchi, M., Meletti, C. e Montaldo, V. 2007. Progetto DPC-INGV S1. Valutazione standard (10%, 475 anni) di amax (16mo, 50mo e 84mo percentile) per le isole rimaste escluse nella fase di redazione di MPS04. . [Online] 2007. http://esse1.mi.ingv.it/d1.html.