

REGIONE SARDEGNA COMUNE DI SASSARI

Provincia di Sassari

Titolo del Progetto

PROGETTO DEFINITIVO

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRO-FOTOVOLTAICO DENOMINATO "GREEN AND BLUE DOMO SPANEDDA"

DELLA POTENZA DI 75.116.420 kW IN LOCALITÀ "GIANNA DE MARE" NEL COMUNE DI SASSARI

Identificativo Documento

REL_SIA

ID Progetto	GBDS	Tipologia	R	Formato	A4	Disciplina	AMB
-------------	------	-----------	---	---------	----	------------	-----

Titolo

STUDIO IMPATTO AMBIENTALE

IL PROGETTISTA FILE: REL_SIA.pdf
GRUPPO DI PROGETTAZIONE

Arch. Andrea Casula Ing. Antonio Dedoni

Arch. Andrea Casula Geom. Fernando Porcu Dott. in Arch. J. Alessia Manunza Geom. Vanessa Porcu Dott.Agronomo Giuseppe Vacca Archeologo Alberto Mossa Geol.Marta Camba Ing. Antonio Dedoni Blue Island Energy SaS

COMMITTENTE

SF LIDIA I SRL

SF LIDIA I SRL Via Brescia Nº26 - 20063 Cernuscolo sul Naviglio P.Iva 02387390566 pec: sflidia1@pec.it

Rev.	Data Revisione	Descrizione Revisione	Redatto	Controllato	Approvato
Rev.	Luglio 2022	Prima Emissione	Blue Island Energy	SF Lidia I Srl	SF Lidia I Srl

PROCEDURA

Valutazione di Impatto Ambientale ai sensi dell'art.23 del D.Lgs.152/2006

BLUE ISLAND ENERGY SAS Via S.Mele, N 12 - 09170 Oristano tel&fax(+39) 0783 211692-3932619836 email: blueislandsas@gmail.com

NOTA LEGALE: Il presente documento non può lassativamente essere diffuso o copiato su qualsiasi formato e tramite qualsiasi mezzo senza preventiva autorizzazione formale da parte di Blue Island Energy SaS

Provincia di Sassari

COMUNE DI SASSARI

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO

AGRO-FOTOVOLTAICO

DENOMINATO "GREEN AND BLUE DOMO SPANEDDA"

DELLA POTENZA DI **75.116.420 kW**IN LOCALITÀ "GENNA DE MARE" NEL COMUNE DI SASSARI"

STUDIO DI IMPATTO AMBIENTALE

INDICE

1. II	NTRODUZIONE AL PROGETTO	5
1.1.	PREMESSA	5
1.2.	IL SOGGETTO PROPONENTE	5
1.3.	DESCRIZIONE DELL'OPERA	6
1.4.	ANALISI DELLE MOTIVAZIONI DELL'OPERA E DELLE COERENZE	7
1.5.	SCOPO E CONTENUTI DELLO STUDIO DI IMPATTO AMBIENTALE	10
2. II	L PROGETTO	11
2.1.	UBICAZIONE DEL PROGETTO	11
2.2.	LOCALIZZAZIONE CATASTALE	13
2.3.	ANALISI DELLE ALTERNATIVE	14
2.3.1.	Alternativa zero	14
2.3.2.	Ipotesi esaminate e soluzione scelta	16
2.4.	DIMENSIONI E CARATTERISTICHE DELL'IMPIANTO	17
2.5.	Pannelli fotovoltaici	_
2.6.	Tracker	24
2.7.	REALIZZAZIONE IMPIANTO	34
2.7.1.	Realizzazione della Viabilità Interna e accesso al sito	34
2.7.2.	Opere impianto	34
2.7.3.	Viabilità Strade e piazzali	34
2.7.4.	Cronoprogramma di Progetto	35
2.7.5.	Fase di Cantiere	35
2.7.6.	Fase di Esercizio	37
2.7.7.	Fase di Dismissione dell'opera e Ripristino Ambientale a Fine Esercizio	37
2.8.	FUNZIONAMENTO IMPIANTO, RISORSE NATURALI IMPIEGATE ED EMISSIONI	38
2.8.1.	Emissioni in Atmosfera	38
2.8.2.	Gestione delle Acque Meteoriche	38
2.8.3.	Consumi Idrici	39
2.8.4.	Occupazione del Suolo	39
2.8.5.	Emissioni Sonore	39
2.8.6.	Trasporto e Traffico	
2.8.7.	Movimentazione e Smaltimento dei Rifiuti	40
2.9.	CRITERI DI SCELTA DELLA MIGLIOR TECNOLOGIA DISPONIBILE	42
3. C	COERENZA E CONFORMITA'	42
3.1.	PIANIFICAZIONE ENERGETICA	42
3.1.1.	PIANIFICAZIONE ENERGETICA A LIVELLO COMUNITARIO	42
3.1.2.	PIANIFICAZIONE ENERGETICA A LIVELLO NAZIONALE	44
3.1.3.	NORMATIVA REGIONALE IN CAMPO ENERGETICO	46
3.1.4.	PIANO ENERGETICO REGIONALE (PEARS)	
3.1.5.	NORMATIVA REGIONALE DI RIFERIMENTO IMPIANTI FOTOVOLTAICI	50
3.2.	PIANO REGIONALE DELLA QUALITA' DELL'ARIA	52
3.3.	PAI – PIANO DI ASSETTO IDROGEOLOGICO	54
3.4.	PIANO DI GESTIONE DEL DISTRETTO DELLA SARDEGNA	59

3.5.	PTA – PIANO TUTELA ACQUE	59
3.6.	PIANO DI BONIFICA DEI SITI CONTAMINATI	63
3.7.	PIANO REGIONALE DELLE ATTIVITA' ESTRATTIVE	64
3.8.	PIANO REGIONALE DEI RIFIUTI	65
3.9.	PPR – PIANO PAESAGGISTICO REGIONALE	66
3.10.	IANIFICAZIONE PROVINCIALE	81
3.11.	PIANIFICAZIONE COMUNALE	82
3.12.	CLASSIFICAZIONE SISMICA	85
3.13.	SISTEMA DELLE AREE PROTETTE	87
3.13.1.	RETE NATURA 2000	87
3.13.2.	IBA	88
3.13.3.	ALTRE AREE PROTETTE	89
3.14.	CONCLUSIONI COERENZA E CONFORMITA' PROGETTO	89
3.14.1.	Coerenza e conformità con la pianificazione energetica	89
3.14.2.	Coerenza e conformità con la pianificazione paesaggistica regionale	89
3.14.3.	Coerenza e conformità con il vincolo idrogeologico	89
3.14.4.	Coerenza e conformità con il Piano di Bonifica dei siti contaminati	89
3.14.5.	Coerenza e conformità con il Piano Regionale dei rifiuti	90
3.14.6.	Coerenza e conformità con il Piano Regionale delle attività estrattive	90
3.14.7.	Coerenza e conformità con la pianificazione Provinciale	90
3.14.8.	Coerenza e conformità con la pianificazione comunale	90
3.14.9.	Coerenza e conformità con il PTA	90
3.14.10	. Coerenza e conformità con il Piano Regionale della Qualità dell'Aria	90
3.14.11	. Coerenza e conformità con il PAI	90
3.14.12	Coerenza e conformità con il piano di gestione del distretto della Regione Sardegna	91
3.14.13	. Coerenza e conformità aree protette	91
4. Al	NALISI DELLO STATO ATTUALE DELL'AMBIENTE	91
4.1.	ARIA E CLIMA	91
4.2.	SUOLO E SOTTOSUOLO	108
4.3.	AMBIENTE IDRICO	118
4.4.	TERRITORIO E PATRIMONIO AGROALIMENTARE	123
4.5.	BIODIVERSITA'	125
4.6.	PAESAGGIO	139
4.7.	POPOLAZIONE E SALUTE UMANA	143
4.8.	CLIMA ACUSTICO	147
5. Al	NALISI DELLA COMPATIBILITA' DELL'OPERA	149
5.1.	INTERAZIONE OPERA AMBIENTE	150
5.1.1.	VALUTAZIONE DEGLI IMPATTI	150
5.2.	ARIA E CLIMA	155
5.3.	SUOLO E SOTTOSUOLO	163
5.4.	AMBIENTE IDRICO E RISORSE IDRICHE UTILIZZATE	170
5.5.	QUANTITA DELLE RISORSE IDRICHE UTILIZZATE	177
5.6.	TERRITORIO E PATRIMONIO AGROALIMENTARE	179
5.7.	BIODIVERSITA'	186

5.8.	PAESAGGIO	. 193
5.9.	POPOLAZIONE E SALUTE UMANA	. 200
5.10.	CLIMA ACUSTICO	. 210
5.11.	EFFETTI CUMULATIVI CON ALTRE OPERE	. 216
6.	MITIGAZIONI E COMPENSAZIONI AMBIENTALI	. 217
7	CONCLUSIONI	220

1. INTRODUZIONE AL PROGETTO

1.1.PREMESSA

Il presente documento costituisce lo Studio di Impatto Ambientale (SIA) relativo al Progetto "**Green and Blue Domo Spanedda**" da realizzarsi in agro del Comune di Sassari, presentato dalla società **SF LIDIA I S.R.L.** per lo sviluppo di un impianto Agro-fotovoltaico nell'area denominata **Genna de Mare**, nella piana della Nurra Sassarese.

Il proponente intende sottoporre il progetto alla procedura di VIA, secondo quanto previsto dalle seguenti norme entrate in vigore nel 2021:

- **D.L. 77/2021**, successivamente convertito in **L. 108/2021**: tali norme hanno introdotto delle modifiche al D.Lgs. n. 152/2006, tra cui, all'art. 31 (*Semplificazione per gli impianti di accumulo e fotovoltaici e individuazione delle infrastrutture per il trasporto del G.N.L. in Sardegna*), c. 6,
 - «All'Allegato II alla Parte seconda del decreto legislativo 3 aprile 2006, n. 152, al paragrafo
 2), è aggiunto il seguente punto: "impianti fotovoltaici per la produzione di energia elettrica con potenza complessiva superiore a 10 MW."»

che comporta un trasferimento al Mi.T.E. (Ministero della transizione ecologica) della competenza in materia di V.I.A. per gli impianti fotovoltaici con potenza complessiva superiore a 10 MW;

- D.L. 92/2021: entrato in vigore il 23.06.2021, all'art. 7, c. 1, ha stabilito, tra l'altro, che
 - «[...] L'articolo 31, comma 6, del decreto-legge 31 maggio 2021, n. 77, che trasferisce alla competenza statale i progetti relativi agli impianti fotovoltaici per la produzione di energia elettrica con potenza complessiva superiore a 10 MW, di cui all'Allegato II alla Parte seconda, paragrafo 2), ultimo punto, del decreto legislativo 3 aprile 2006, n. 152, si applica alle istanze presentate <u>a partire dal 31 luglio 2021</u>»,

Il presente Studio è stato articolato in coerenza con i contenuti elencati nell'Allegato VII "Contenuti dello Studio di Impatto Ambientale" di cui all'articolo 22 del Dlgs 152/2006 così come modificato dall'art. 11 del Dlgs 104/2017.

Nel presente Studio, dall'analisi combinata dello stato dell'ambiente (Scenario Base) e delle caratteristiche progettuali, sono state analizzate la coerenza e la compatibilità dell'opera nelle fasi di realizzazione, esercizio e dismissione dell'impianto, individuando le mitigazioni e compensazioni ambientali nonché il Piano di Monitoraggio.

Tale analisi è stata condotta principalmente sulla base della conoscenza del territorio e delle tematiche ambientali, intese sia come fattori ambientali sia come pressioni e le loro reciproche interazioni in relazione alla tipologia e alle caratteristiche specifiche dell'opera e al contesto ambientale in cui si inserisce.

1.2.IL SOGGETTO PROPONENTE

La società SF LIDIA I S.R.L. CON SEDE LEGALE IN CERNUSCO SUL NAVIGLIO (MI) VIA BRESCIA N°26 P.I./C.F. 02387390566, AMMINISTRATORE UNICO TEMES FERNANDEZ-RANDA ANDRES; intende operare nel settore delle energie rinnovabili in generale. In particolare, la società erigerà, acquisterà, costruirà, metterà in opera ed effettuerà la manutenzione di centrali elettriche generanti elettricità da fonti rinnovabili, quali, a titolo esemplificativo ma non esaustivo, energia solare, fotovoltaica, geotermica ed eolica, e commercializzerà l'elettricità prodotta.

La società, in via non prevalente e del tutto accessoria e strumentale, per il raggiungimento dell'oggetto sociale - e comunque con espressa esclusione di qualsiasi attività svolta nei confronti del pubblico potrà:

- compiere tutte le operazioni commerciali, finanziarie, industriali, mobiliari ed immobiliari ritenute utili dall'organo amministrativo per il conseguimento dell'oggetto sociale, concedere fideiussioni, avalli, cauzioni e garanzie, anche a favore di terzi;
- assumere, in Italia e/o all'estero solo a scopo di stabile investimento e non di collocamento, sia direttamente che indirettamente, partecipazioni in altre società e/o enti, italiane ed estere, aventi oggetto sociale analogo, affine o connesso al proprio, e gestire le partecipazioni medesime.

1.3.DESCRIZIONE DELL'OPERA

Il Progetto è localizzato nella zona agricola di Nurra nel territorio comunale di Sassari, circa 8 km a ovest dal centro abitato e 12 Km a sud dal centro abitato di Porto Torres, a 6,5 km a nord di Olmedo. L'area interessata, di estensione pari a 117.85.96 ha, ricade interamente nel territorio del comune di Sassari, in provincia di Sassari, presso la località denominata "Genna de Mare". Il progetto mira a realizzare un impianto fotovoltaico con potenza di picco (teoricamente realizzabile nelle migliori condizioni climatiche e solari prospettabili) pari a 75.116.420 kW.

Localizzazione Impianto

Il sito è raggiungibile tramite la strada provinciale **SP 65**. Si prevede inoltre la realizzazione di una strada bianca (di ampiezza circa 4 m) per l'ispezione dell'area di intervento lungo tutto il perimetro dell'impianto e lungo gli assi principali e per l'accesso alle piazzole delle cabine. Per la Conversione e trasformazione dell'energia saranno installati otto blocchi del tipo Shelter a formare delle Power Station.

In seguito all'inoltro da parte della società proponente a Terna ("il Gestore") di richiesta formale di connessione alla RTN per l'impianto sopra descritto, la Società ha ricevuto, la soluzione tecnica minima generale per la connessione (STMG), Codice Pratica **202101601**. La STMG, formalmente accettata dalla Società, prevede che l'impianto venga collegato in antenna a 36 kV sulla sezione 36 kV della futura Stazione Elettrica (SE) di Trasformazione 380/150/36 kV della RTN da inserire in entra – esce alla linea RTN a 380 kV "Fiumesanto Carbo – Ittiri.

A seguito del ricevimento della STMG è stato possibile definire puntualmente le opere progettuali da realizzare, che si possono così sintetizzare:

- 1) Impianto ad inseguimento monoassiale, della potenza complessiva installata di **75.116.420** *kW*, ubicato in località Genna de Mare, nel Comune di Sassari (SS);
- 2) N. 8 dorsali di collegamento interrate, per il vettoriamento dell'energia elettrica prodotta dall'impianto alla futura stazione elettrica di trasformazione 380/1507/36 kV.
- 3) Futura stazione elettrica di trasformazione 36/20 kV (Stazione Utente), di proprietà della Società, da realizzarsi nel Comune di Sassari (SS).
- 4) Nuovo stallo arrivo produttore a 36 kV che dovrà essere realizzato nella sezione a 36 kV nella nuova stazione elettrica 380/150/36 kV della RTN di Sassari, di proprietà del gestore di rete.
- 5) I moduli saranno montati su strutture ad inseguimento solare (tracker), in configurazione mono filare, I Tracker saranno collegati in bassa tensione alle cabine inverter (una per ogni blocco elettrico in cui è suddiviso lo schema dell'impianto) e queste saranno collegate alla cabina di media tensione che a sua volta si collegherà alla sottostazione Terna.

1.4.ANALISI DELLE MOTIVAZIONI DELL'OPERA E DELLE COERENZE

La società ha valutato positivamente la proposta di un innovativo progetto capace di sposare l'esigenza sempre maggiore di fonti di energia rinnovabile con quella dell'attività agricola, cercando di perseguire due obiettivi fondamentali fissati dalla Strategia Energetica Nazionale (SEN), quali il contenimento del consumo di suolo e la tutela del paesaggio. La SEN è il risultato di un articolato processo che ha coinvolto, sin dalla fase istruttoria, gli organismi pubblici operanti sull'energia, gli operatori delle reti di trasporto di elettricità e gas e qualificati esperti del settore energetico. Nella stessa fase preliminare, sono state svolte due audizioni parlamentari, riunioni con alcuni gruppi parlamentari, con altre Amministrazioni dello Stato e con le Regioni, nel corso delle quali è stata presentata la situazione del settore e il contesto internazionale ed europeo, e si sono delineate ipotesi di obiettivi e misure.

Inoltre in ottemperanza all'art. 12, comma 7, del d.lgs. n. 387 del 2003, come integrato dalle "Linee guida per l'autorizzazione degli impianti alimentati da fonti rinnovabili", riportate nel Decreto del Ministero dello Sviluppo Economico del 10 settembre 2010, pubblicato su GU n. 219 18/09/2010, si prevede che:

"gli impianti alimentati da fonti rinnovabili possono essere ubicati anche in zone classificate agricole dai piani urbanistici nel rispetto delle disposizioni in materia di sostegno nel settore agricolo, della valorizzazione delle tradizioni agroalimentari locali, alla tutela della biodiversità e del patrimonio culturale e del paesaggio rurale."

Considerato che:

- la normativa comunitaria di settore fornisce elementi per definire strumenti reali di promozione delle fonti rinnovabili;
- la strategia energetica nazionale fornirà ulteriori elementi di contesto di tale politica, con particolare riferimento all'obiettivo di diversificazione delle fonti primarie e di riduzione della dipendenza dall'estero;
- che l'art. 2, comma 167, della legge 24 dicembre 2007, n. 244, come modificato dall'art. 8-bis della legge 27 febbraio 2009, n. 13, di conversione del decreto-legge 30 dicembre 2008, n. 208,

prevede la ripartizione tra regioni e province autonome degli obiettivi assegnati allo Stato italiano, da realizzare gradualmente;

- i livelli quantitativi attuali di copertura del fabbisogno con fonti rinnovabili di energia e gli obiettivi prossimi consentono di apprezzare l'incremento quantitativo che l'Italia dovrebbe raggiungere;
- il sistema statale e quello regionale devono dotarsi, quindi, di strumenti efficaci per la valorizzazione di tale politica ed il raggiungimento di detti obiettivi;
- da parte statale, il sistema di incentivazione per i nuovi impianti, i potenziamenti ed i rifacimenti è ormai operativo, come pure altri vantaggi a favore di configurazioni efficienti di produzione e consumo;

l'obbiettivo del progetto è quello di garantire l'espletamento delle attività agricole, unendo ad essa il tema della sostenibilità ambientale, ossia rispondere alla sempre maggiore richiesta di energia rinnovabile.

Per coniugare queste due necessità, in sostanza è necessario diminuire l'occupazione di suolo, mediante strutture ad inseguimento monoassiale che a differenza delle tradizionali strutture fisse, consentono di ridurre lo spazio occupato dai moduli fotovoltaici e, come esposto nel presente documento, continuare a svolgere l'attività di coltivazione tra le interfile dei moduli fotovoltaici. La distanza tra le file delle strutture, infatti è tale da permettere tutte le lavorazioni agrarie a mezzo di comuni trattrici disponibili sul mercato. L'intero lotto interessato all'intervento sarà inoltre circondato da una fascia arborea perimetrale che oltre a garantire un reddito dalla gestione e raccolta dei frutti, fungerà da barriera visiva, svolgendo la funzione di mitigazione visiva. I terreni, contigui tra loro ed interessati al progetto verranno inoltre riqualificati con un piano colturale a maggiore produttività piuttosto che con la migliore sistemazione dello stesso a mezzo di adeguati sistemazioni idrauliche ed agrarie, quali recinzioni, viabilità interna e drenaggi. Il tutto come ben intuibile a vantaggio del miglioramento dell'ambiente e della sostenibilità ambientale.

Un'importante motivazione è inoltre quella rappresentata dalla possibilità di ottenere una **duplice produttività**, in quanto oltre al miglioramento del **piano di coltura** si affiancherà la risorsa e il reddito proveniente dall'**energia pulita**, rinnovabile quindi a zero emissioni.

In funzione degli ultimi indirizzi programmatici a livello nazionale in tema di energia, indicati nella Strategia Energetica Nazionale (SEN) pubblicata da Novembre 2017, la Proponente ha considerato di fondamentale importanza presentare un progetto che possa garantire di unire l'esigenza di produrre energia pulita con quella del' attività agricola, perseguendo gli obiettivi prioritari fissati dalla SEN, ossia il contenimento del consumo di suolo e la tutela del paesaggio.

La nascita dell'idea progettuale proposta scaturisce da una sempre maggior presa di coscienza da parte della comunità internazionale circa gli effetti negativi associati alla produzione di energia dai combustibili fossili. Gli effetti negativi hanno interessato gran parte degli ecosistemi terrestri e si sono esplicati in particolare attraverso una modifica del clima globale, dovuto all'inquinamento dell'atmosfera prodotto dall'emissione di grandi quantità di gas climalteranti generati dall'utilizzo dei combustibili fossili. Questi in una seconda istanza hanno provocato altre conseguenze, non ultima il verificarsi di piogge con una concentrazione di acidità superiore al normale.

Queste ed altre considerazioni hanno portato la comunità internazionale a prendere delle iniziative, anche di carattere politico, che ponessero delle condizioni ai futuri sviluppi energetici mondiali al fine di strutturare un sistema energetico maggiormente sostenibile, privilegiando ed incentivando la produzione e l'utilizzazione di fonti energetiche rinnovabili (FER) in un'ottica economicamente e ambientalmente applicabile. Tutti gli sforzi si sono tradotti in una serie di attivi legislativi da parte dell'Unione Europea tra i quali il Libro Bianco del 1997, il Libro verde del 2000 e la Direttiva sulla produzione di energia da Fonti

Rinnovabili. Per il Governo Italiano uno dei principali adempimenti è stata l'adesione al Protocollo di Kyoto dove per l'Italia veniva prevista una riduzione nel quadriennio 2008-2012 del 6,5 % delle emissioni di gas serra rispetto al valore del 1990. Attualmente lo sviluppo delle energie rinnovabile vive in Italia un momento strettamente legato all'attività imprenditoriale di settore. Infatti a seguito della definitiva eliminazione degli incentivi statali gli operatori del mercato elettrico hanno iniziato ad investire su interventi cosiddetti in "greed parity". Per questo motivo si cerca l'ottimizzazione degli investimenti con la condivisione di infrastrutture di connessione anche con altri operatori in modo da poter ridurre i costi di impianto.

In base a quanto riconosciuto dall'Unione Europea l'energia prodotta attraverso il sistema fotovoltaico potrebbe in breve tempo diventare competitiva rispetto alle produzioni convenzionali, tanto da auspicare il raggiungimento dell'obiettivo del 4% entro il 2030 di produzione energetica mondiale tramite questo sistema. E' evidente che ogni Regione deve dare il suo contributo, ma non è stata stabilita dallo Stato una ripartizione degli oneri di riduzione delle emissioni di CO² tra le Regioni. Anche per questo motivo è di importanza strategica per la Sardegna l'arrivo del metano che produce emissioni intrinsecamente minori.

Tra i principali obiettivi del Piano Energetico Ambientale Regionale (PEARS), nel rispetto della direttiva dell'UE sulla Valutazione Ambientale Strategica, la Sardegna si propone di contribuire all'attuazione dei programmi di riduzione delle emissioni nocive secondo i Protocolli di Montreal, di Kyoto, di Göteborg, compatibilmente con le esigenze generali di equilibrio socioeconomico e di stabilità del sistema industriale esistente. In particolare, si propone di contribuire alla riduzione delle emissioni nel comparto di generazione elettrica facendo ricorso alle FER ed alle migliori tecnologie per le fonti fossili e tenendo conto della opportunità strategica per l'impatto economico-sociale del ricorso al carbone Sulcis. Onde perseguire il rispetto del Protocollo di Kyoto l'U.E. ha approvato la citata Direttiva 2001/77/CE che prevedeva per l'Italia un "Valore di riferimento per gli obiettivi indicativi nazionali" per il contributo delle Fonti Rinnovabili nella produzione elettrica pari al 22% del consumo interno lordo di energia elettrica all'anno 2010. Il D.lgs. n.387/2003 (attuativo della Direttiva) prevedeva la ripartizione tra le Regioni delle quote di produzione di Energia elettrica da FER, ma ad oggi lo Stato non ha ancora deliberato questa ripartizione. Il contesto normativo della Direttiva in oggetto lascia intendere che questo valore del 22% è da interpretare come valore di riferimento, e che eventuali scostamenti giustificati sono possibili; nel caso della Sardegna esistono obiettive difficoltà strutturali dipendenti da fattori esterni che rendono difficoltoso, alle condizioni attuali, il raggiungimento dell'obiettivo così a breve termine. In Qatar, nel 2012, si arriva al rinnovo del piano di riduzione di emissioni di gas serra: quello che è noto come l'emendamento di Doha rappresenta il nuovo orizzonte ecologista, con termine al 2020. L'obiettivo è quello di ridurre le emissioni di gas serra del 18% rispetto al 1990, ma non è mai entrato in vigore.

A novembre 2015, nel corso della Cop di Parigi, 195 paesi hanno adottato il primo accordo universale e giuridicamente vincolante sul clima mondiale. Limitare l'aumento medio della temperatura mondiale al di sotto di 2°C rispetto ai livelli preindustriali, puntando alla soglia di 1,5 gradi, come obiettivo a lungo termine. La posizione geografica della Sardegna, così come evidenziato dal Piano Energetico Ambientale Regionale, è particolarmente favorevole per lo sviluppo delle energie rinnovabili, in particolare per il livello di insolazione che permette un rendimento ottimale del sistema fotovoltaico. Tra gli obiettivi del Piano si evidenzia inoltre l'indirizzo a minimizzare quanto più possibile le alterazioni ambientali. Il progetto proposto si inserisce in contesto, e in un momento, in cui il settore del fotovoltaico rappresenta una delle principali forme di produzione di energia rinnovabile. Inoltre la localizzazione del progetto all'interno di un'area a destinazione d'uso prettamente industriale e produttiva, coerentemente con quanto indicato dal PEARS e dalle Linee Guida regionali, nonché dallo stesso PPR, consente la promozione di uno sviluppo sostenibile delle fonti rinnovabili in Sardegna, garantendo la salvaguardia dell'ambiente e del paesaggio.

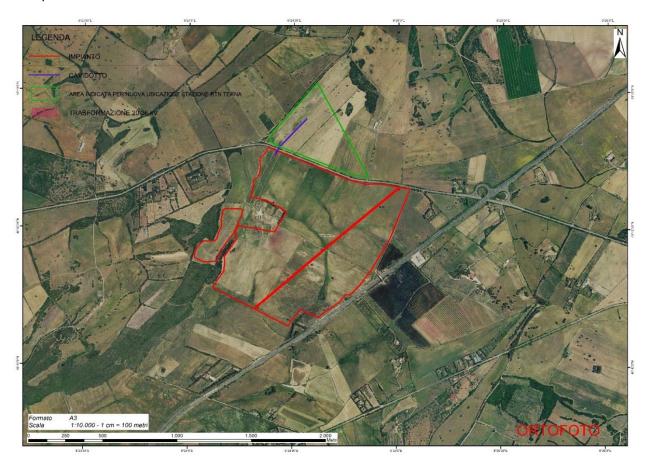
1.5.SCOPO E CONTENUTI DELLO STUDIO DI IMPATTO AMBIENTALE

Il presente Studio di Impatto Ambientale è stato strutturato secondo quanto richiesto nell'Allegato VII "Contenuti dello Studio di Impatto Ambientale" di cui all'articolo 22 del 152/2006, modificato dall'art. 11 del DIgs 104/2017.

I contenuti tengono in considerazione anche quanto riportato nelle linee guida nazionali e norme tecniche per l'elaborazione della documentazione finalizzata allo svolgimento della valutazione di impatto ambientale (Linee Guida SNPA 28/2020), redatte da ISPRA nonché quanto richiesto dalla Normativa Regionale in materia di impianti alimentati da fonti rinnovabili.

Per la redazione del presente studio è stata abbandonata l'articolazione nei tre "quadri di riferimento" programmatico, progettuale e ambientale a favore di una relazione unica, che si svolge in coerenza con i contenuti elencati nel citato Allegato VII, e che è completata da una Sintesi non tecnica dello studio redatta con un linguaggio di facile comprensione per un pubblico non tecnico, che espone le principali conclusioni del SIA.

Di seguito sono indicate le principali sezioni secondo il quale è stato origanizzato lo Studio di Impatto Ambientale:


- Introduzione al Progetto: Introduzione di presentazione del proponente, dell'opera e delle motivazioni e delle coerenze rispetto alla programmazione;
- Il progetto: analisi delle alternative, localizzazione e descrizione del progetto, con dettaglio di
 dimensioni e caratteristiche, cronoprogramma delle attività previste nonché descrizione delle fasi
 di cantiere, di esercizio e di dismissione, individuazione del fabbisogno delle risorse naturali ed
 emissioni, individuazione della migliore tecnica disponibile;
- Coerenza e Conformità: analisi degli indirizzi di piani e programmi di riferimento per l'opera sottoposta a VIA nell'ottica del perseguimento della sostenibilità ambientale, analisi di coerenza con la pianificazione e programmazione e congruenza con la vincolistica e la tutela del territorio;
- Analisi dello stato attuale dell'Ambiente (Scenario di base): descrizione dello stato dell'ambiente prima della realizzazione dell'opera che costituisce il riferimento su cui è fondato lo studio;
- Analisi della compatibilità dell'opera: analisi della previsione degli impatti dovuti alle attività previste nelle fasi di costruzione, esercizio e dismissione dell'opera per ciascuna delle tematiche ambientali, al fine di valutare l'interazione opera ambiente.
- Mitigazioni e compensazioni ambientali: descrizioni di misure di mitigazione e compensazione ambientale al fine di riequilibrare il sistema ambientale e compensare gli impatti residui nei casi in cui gli interventi di mitigazione non riescano a coprire completamente gli stessi.
- Piano di Monitoraggio Ambientale: insieme di azioni volte a verificare i potenziali impatti ambientali significativi e negativi derivanti dalla realizzazione e dall'esercizio.
- Conclusioni nel quale si riportano i principali risultati dello studio e le valutazioni conclusive.

2. IL PROGETTO

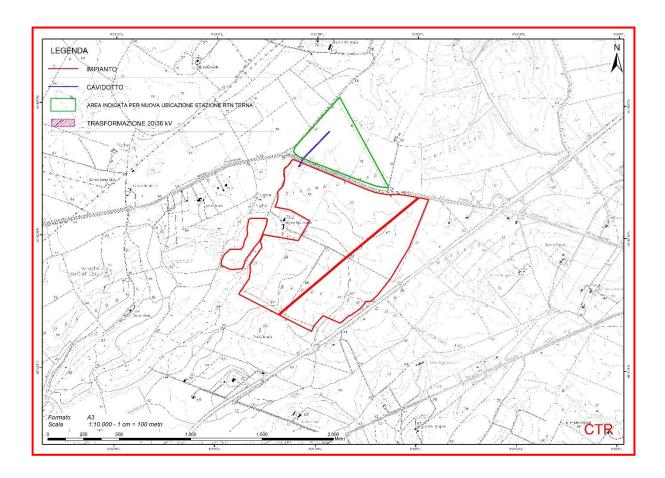
2.1.UBICAZIONE DEL PROGETTO

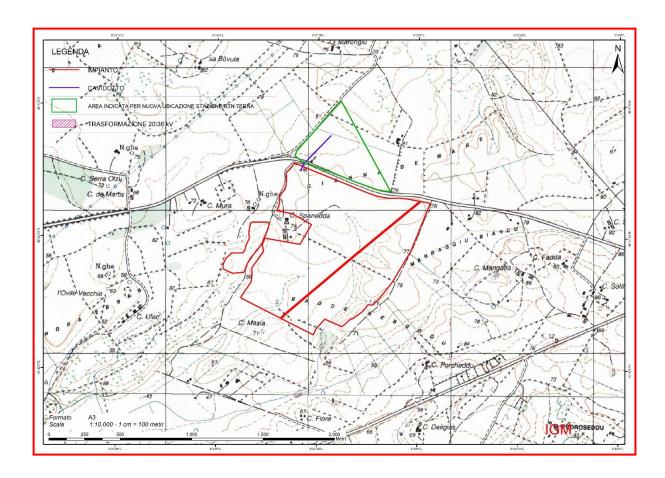
L'area interessata dall'impianto ricade nel territorio del comune di Sassari, in provincia di Sassari, in una località denominata "Genna e Mare".

Il sito di impianto ha una superficie pari a 117.85.96 ha, di cui 33.86.31 ha occupati dai pannelli e 5,7 ha occupati dal mandorleto.

Localizzazione impianto su ortofoto

Il centro abitato di Sassari è ubicato ad Est rispetto all'intervento proposto, ad 8 km di distanza. Il territorio comunale di Sassari si estende su una superficie di 546,1 Kmq con una popolazione residente di circa 123.755 abitanti e una densità di 226,23 ab./Kmq; confina con 12 comuni: Alghero, Muros, Olmedo, Osilo, Ossi, Porto Torres, Sennori, Sorso, Stintino, Tissi, Uri, Usini.

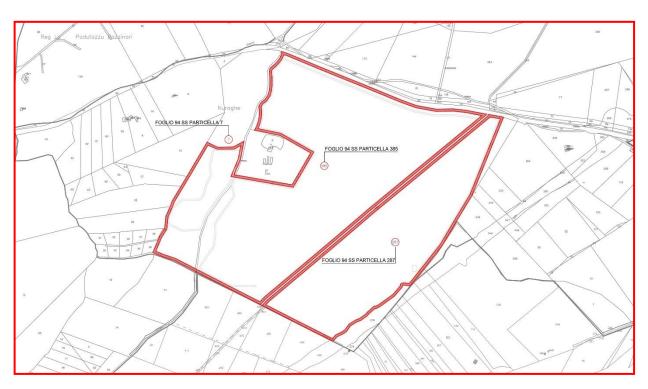

Il sito si trova a 12 Km dal centro abitato di Porto Torres. Il territorio in cui si deve realizzare l'impianto rappresenta un centro prevalentemente agricolo, antropizzato e non lontano da un contesto industriale. Con particolare riferimento alla vocazione industriale, va sottolineato come a partire dagli anni '60 nelle aree adiacenti sono stati installati impianti per la chimica di base a partire dal greggio: le principali lavorazioni consistevano in reforming e cracking, con produzione di vari tagli di petrolio e altri prodotti.


La disponibilità di tali terreni è concessa dai soggetti titolari del titolo di proprietà alla società proponente mediante la costituzione di un diritto di superficie per una durata pari alla vita utile di impianto stimata in 30 anni.

In generale, l'area deputata all'installazione dell'impianto fotovoltaico risulta essere adatta allo scopo in quanto presenta una buona esposizione alla radiazione solare ed è facilmente raggiungibile ed accessibile attraverso le vie di comunicazione esistenti.

Inquadramento CTR e IGM

- Nell'intorno sono presenti aziende agricole. La viabilità d'accesso all'area di intervento è asfaltata, ed è collegata alla strada Provinciale N° 65 che collega Sassari con Porto Ferro.
- Nella Cartografia IGM ricade nel foglio 459 SEZ. IV La Crucca della cartografia ufficiale IGM in scala 1:25.000.
- Mentre nella Carta Tecnica Regionale ricade nella sezione 459050Monte Nurra; -459060 La Landriga.



2.2.LOCALIZZAZIONE CATASTALE

L'area interessata ricade interamente nel territorio del comune di Sassari, provincia di Sassari, in località denominata "Genna e Mare".

I terreni su cui sorge l'impianto sono distinti al catasto come segue:

COMUNE	FOGLIO	MAPPALE	SUP.Ha particella	DEST. URBANISTICA	TITOLO DI POSSESSO
			catastale		
Sassari	94	7	16.53.70	Zona E – Sottozona E2.b ed E5.c	Preliminare d'acquisto
Sassari	94	385	66.18.09	Zona E – Sottozona E2.b ed E2.c	Preliminare d'acquisto
Sassari	94	287	35.14.17	Zona E – Sottozona E2.b	Preliminare d'acquisto
Superficie Total	Superficie Totale Catastale delle particelle		117.85.96		
Superfice totale	utilizzata per l'i	mpianto AGRO-	93.30.48		
FTV recintato					
Superfice Mand	orleto Mitigazion	e Perimetrale	05.70.00		
Superfice Coltivazione Lavanda		20.00.00			
Superfice Coltivazione Aloe		09.30.20			
Superfice Coltivazione Asparagi		01.54.77			

Sito impianto su cartografia catastale

Usi civici

Secondo l'art.142, co.1, lett.h del D.Lgs. 42/2004, e secondo gli aggiornamenti della Regione Sardegna (consultabili al seguente link: http://www.sardegnaagricoltura.it/finanziamenti/gestione/usicivici/) in merito ai Provvedimenti formali di accertamento ed inventario terre civiche al 23 novembre 2020 e secondo la tabella consultata pubblicata dalla regione Sardegna, le superfici catastali su cui ricade il progetto non sono gravate da usi civici, così come le aree circostanti.

2.3.ANALISI DELLE ALTERNATIVE

2.3.1. Alternativa zero

L'analisi è volta alla caratterizzazione dell'evoluzione del sistema nel caso in cui l'opera non venisse realizzata al fine di valutare la miglior soluzione possibile dal punto di vista ambientale, sociale ed economico. Alla base di tale valutazione è presente la considerazione che, in relazione alle attuali linee strategiche nazionali ed europee che mirano a incrementare e rafforzare il sistema delle "energie rinnovabili", nuovi impianti devono comunque essere realizzati.

Infartti la L'UE ha stabilito autonomamente degli obiettivi in materia di clima ed energia per il 2020, il 2030 e il 2050.

- a) Obiettivi per il 2020:
- ridurre le emissioni di gas a effetto serra almeno del 20% rispetto ai livelli del 1990;
- > ottenere il 20% dell'energia da fonti rinnovabili;

- migliorare l'efficienza energetica del 20%;
 - b) Obiettivi per il 2030:
- ridurre del 40% i gas a effetto serra;
- ottenere almeno il 27% dell'energia da fonti rinnovabili;
- aumentare l'efficienza energetica del 27-30%;
- portare il livello di interconnessione elettrica al 15% (vale a dire che il 15%
- dell'energia elettrica prodotta nell'Unione può essere trasportato verso altri paesi dell'UE);
 - c) Obiettivi per il 2050:
- tagliare dell'80-95% i gas a effetto serra rispetto ai livelli del 1990.

Ad oggi l'UE è sulla buona strada per raggiungere gli obiettivi fissati per il 2020:

- gas serra ridotti del 18% tra il 1990 e il 2012;
- la guota di energie rinnovabili è passata dall'8,5% del 2005 al 14,1% del 2012;
- > si prevede un aumento dell'efficienza energetica del 18–19% entro il 2020. Siamo appena al di sotto dell'obiettivo del 20%, ma possiamo raggiungerlo se gli Stati membri applicheranno tutte le normative dell'UE necessarie.

L'ubicazione del progetto così come presentato nasce dalla disponibilità dei proprietari a destinare i terreni a tale finalità per la scarsa utilizzazione agro-economica dei terreni, naturalmente anche l'ampliamento della stazione elettrica (SE) di Smistamento a 150 kV della RTN, farà si che la corrente prodotta dall'impianto possa essere inserita in rete.

Si è scelto inoltre di ottimizzare la produzione di energia rinnovabile minimizzando l'occupazione del suolo scegliendo la tecnologia ad inseguimento solare mono assiale, con dei costi iniziali maggiori ma dei vantaggi in termini di efficienza dell'impianto a parità di occupazione suolo.

Sicuramente in termini di emissioni e qualità dell'aria si può dire che il progetto ha degli impatti positivi, per le ragioni esposte e per quanto stabilito nell'ambito della pianificazione energetica dell'UE.

Inoltre, con l'innovativo PIANO AGRO-FOTOVOLTAICO presentato nella relativa relazione si opererà un'integrazione virtuosa TRA Produzione di energia Rinnovabile e Agricoltura Floro-vivaistica.

<u>L'alternativa zero</u> consentirebbe la prosecuzione delle consuete attività agricole sui terreni.

I dati sull'uso del suolo forniti da Regione Sardegna permettono di affermare che l'area interessata dal progetto è definibile come una matrice agricola caratterizzata dalla dominanza di seminativi asciutti; all'interno di tale contesto si identificano sporadici uliveti che, durante i sopralluoghi, hanno evidenziato precarie condizioni circa lo stato vegetativo.

In termini di occupazione suolo avremmo un impatto di consumo suolo della stessa entità, mentre per il paesaggio avremmo un minor impatto.

Il progetto definitivo dell'intervento in esame è stato il frutto di un percorso che ha visto la valutazione di diverse ipotesi progettuali e di localizzazione, ivi compresa quella cosiddetta "zero", cioè la possibilità di non eseguire l'intervento e lasciare i terreni in oggetto allo stato in cui versano in maggior parte.

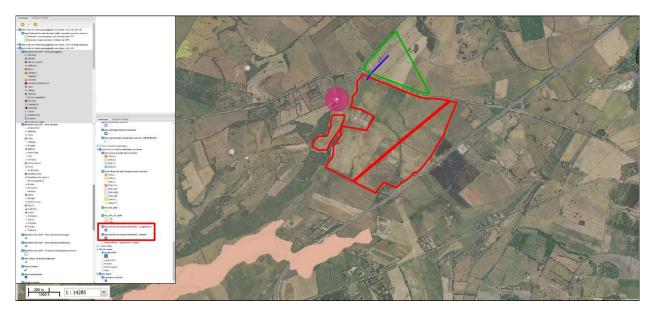
Sicuramente, però, in termini di clima e qualità dell'aria e anche del suolo e sottosuolo avremmo impatti maggiori in questo caso, per la mancata riduzione di emissione di CO2 e per l'uso del suolo per attività agricole senza la possibilità di produrre contemporaneamente energia rinnovabile. Inoltre non ci sarà la creazione di posti di lavoro indiretti e diretti (anche se temporanei) e il conseguente aumento del reddito agrario.

Infatti, il reddito agricolo generato dalle coltivazioni previste in progetto ed illustratte nella relazione economica su una porzione dell'intera superficie complessiva è ben superiore al reddito agricolo generato dai medesimi terreni nella loro interezza coltivati prevalentemente a seminativo

Si desume per cui che il medesimo suolo agricolo utilizzato per attività agro-voltaiche produce un incremento del 180% della densità di occupati per ettaro solo se si considera la densità di occupati per le attività di O&M dell'impianto fotovoltaico a cui si deve aggiungere anche l'incremento delle unità lavorative legate al mandorletto intensivo che genera un incremento del 198% delle ore lavorative, pertanto si può facilmente affermare l'importanza che ha la realizzazione dell'impianto agro-voltaico rispetto al territorio locale, sia in termini economici, di occupazione diretta e indiretta e indotta, oltre che ai chiari vantaggi in termini ambientali legati alla riduzione delle emissioni di gas serra e non per ultimo l'incremento del reddito agricolo generato dall'oliveto super intensivo rispetto alla condizione preesistente nonché il beneficio in termini di contrasto al consumo di suolo in virtù dell'abbinamento dell'attività agricola e della produzione di energia elettrica da fonte rinnovabile.

Inoltre, i pannelli di ultima generazione, proposti in progetto, permettono di sfruttare al meglio la risrsa solare presente nell'area, così da rendere produttivo l'investimento.

Rinunciare alla realizzazione dell'impianto (opzione zero), significherebbe rinunciare atutti i vantaggi e le opportunità sia a livello locale sia a livello nazionale e sovra-nazionale. Significherebbe non sfruttare la risorsa sole a fronte di un impatto (sovratutto quello visivo -paesaggistico) non trascurabile, ma comunque accetabile e soprattutto completamente reversibile.


2.3.2. Ipotesi esaminate e soluzione scelta

L'analisi relativa alla scelta del sito di localizzazione dell'impianto fotovoltaico è stata condotta anche sulla base di quanto contenuto nelle delibere della Giunta Regionale N° 59/90 del 27/11/2020, "Individuazione delle **aree non idonee** all'installazione di impianti alimentati da fonti energetiche rinnovabili"che individua i siti particolarmente sensibili all'installazione degli impianti quali:

- i siti dell'UNESCO, le aree ed i beni di vincolati dal D.Lgs 42/2004 (codice dei beniculturali e del paesaggio);
- aree naturali soggette a tutela diversi livelli (europeo, nazionale, regionale, locale);
- altre aree che svolgono funzioni determinanti per la conservazione della biodiversità;
- aree agricole interessate da produzioni agricolo alimentari di qualità (produzioni biologiche, produzioni D.O.P., I.G.P., S.T.G., D.O.C., D.O.C.G., produzioni tradizionali).
- zone individuate ai sensi dell'Art. 142 del D.Lgs 42/2004 (aree tutelate per legge) valutando la sussistenza di particolari caratteristiche che le rendano incompatibili con la realizzazione degli impianti.

In tal senso si evidenzia che, l'individuazione delle aree di progetto è stata definita anche tramite sopralluoghi diretti in campo che hanno permesso di evitare l'interessamento di aree non idonee da parte degli elementi impiantistici (moduli fotovoltaici, cabine elettriche, connessioni elettriche) e da parte delle opere di viabilità interna previsti dal progetto. L'analisi localizzativa condotta sui punti precedentemente

evidenziati e sugli aspetti di caratteretecnico (esposizione del sito, ombreggiamento, presenza di infrastrutture ecc.) ha portato a ritenere il sito prescelto, idoneo ad ospitare l'impianto.

Aree non idonee (fonte: Sardegna Mappe)

Come visibile dalla immagine sopra riportata il sito (indicato con perimetro rosso) ricade all'interno di aree servite dal consorzio di Bonifica Nurra, indicate dal sito Sardegna Mappe ma è stato ugualmente proposto perché si ritiene che il modello Agrosolare dovrebbe superare la criticità legata alla presenza del consorzio su questi territori.

2.4.DIMENSIONI E CARATTERISTICHE DELL'IMPIANTO

Il progetto mira a realizzare un impianto fotovoltaico con potenza di picco (teoricamente realizzabile nelle migliori condizioni climatiche e solari prospettabili) pari a **75.116.420 kW.**La componente principale di un impianto fotovoltaico è il modulo o pannello fotovoltaico; più moduli possono essere collegati in serie a formare una "stringa". Le stringhe sono collegate tra loro per formare un sottocampo a cui è sotteso un inverter.

Il generatore fotovoltaico o campo fotovoltaico produce energia elettrica in corrente continua, che per poter essere normalmente utilizzata deve essere appunto trasformata in corrente alternata tramite un'apparecchiatura che si chiama inverter; più sottocampi formano l'impianto e generano la potenza di picco. I moduli producono corrente in bassa tensione e per allacciare l'impianto alla rete, la corrente viene innalzata in media tensione mediante un trasformatore.

L'impianto verrà diviso nelle segunti sezioni:

Nome	Num. moduli	Energia annua	Potenza	Numero generatori e/o sottoimpianti
Sezione 1	2820	2 281 013.27 kWh	1 748.400 kW	1
Sezione 3	3480	2 814 854.15 kWh	2 157.600 kW	1
Sezione 4	2905	2 349 756.49 kWh	1 801.100 kW	1

Sezione 5	3048	2 465 423.90 kWh	1 889.760 kW	1
Sezione 6	3048	2 465 423.90 kWh	1 889.760 kW	1
Sezione 7	3528	2 853 678.83 kWh	2 187.360 kW	1
Sezione 8	3528	2 853 678.83 kWh	2 187.360 kW	1
Sezione 10	3528	2 853 678.83 kWh	2 187.360 kW	1
Sezione 11	3532	2 856 916.92 kWh	2 189.840 kW	1
Sezione 12	3532	2 856 916.92 kWh	2 189.840 kW	1
Sezione 13	3532	2 856 916.92 kWh	2 189.840 kW	1
Sezione 14	3532	2 856 916.92 kWh	2 189.840 kW	1
Sezione 15	3532	2 856 916.92 kWh	2 189.840 kW	1
Sezione 16	3532	2 856 916.92 kWh	2 189.840 kW	1
Sezione 17	3048	2 465 423.90 kWh	1 889.760 kW	1
Sezione 18	3532	2 856 916.92 kWh	2 189.840 kW	1
Sezione 19	3532	2 856 916.92 kWh	2 189.840 kW	1
Sezione 20	3532	2 856 916.92 kWh	2 189.840 kW	1
Sezione 21	3532	2 856 916.92 kWh	2 189.840 kW	1
Sezione 22	3532	2 856 916.92 kWh	2 189.840 kW	1
Sezione 23	3532	2 856 916.92 kWh	2 189.840 kW	1
Sezione 24	11915	9 637 643.25 kWh	7 387.300 kW	1
Sezione 25	3532	2 856 916.92 kWh	2 189.840 kW	1
Sezione 26	14851	12 012 475.70 kWh	9 207.620 kW	1
Sezione 27	5769	4 666 352.01 kWh	3 576.780 kW	1

Le sostanziali motivazioni che hanno determinato la scelta delle soluzioni tecniche adottate riguardano la comparazione e la valutazione dei costi economici, tecnologici e soprattutto ambientali, cui si deve far fronte sia in fase di progettazione che di esecuzione dell'opera. Da tali analisi si è giunti alla soluzione che la costruzione dell'impianto sarà eseguita mediante l'installazione di moduli fotovoltaici a terra con sistema ad inseguimento monoassiale.

Il modulo fotovoltaico scelto è prodotto da **Jinko Solar Holding Co.**, Ltd che è uno dei più grandi produttori al mondo di moduli fotovoltaici andando utilizzando il modulo del tipo monocristallino che ha la più elevata efficienza pari al 21.40 % che si trova nel modello **Tiger mono- facial 620 Watt**. Utilizzando tale tipologia di moduli si garantisce la maggiore potenza realizzabile per metro quadrato di terreno impegnato.

SCHEDA TECNICA DELL'IMPIANTO

Dati generali				
Committente	SF LIDIA I SRL			
Indirizzo	LOCALITA' GENNA DE MARE			
CAP Comune (Provincia)	07010 Sassari (SS)			
Latitudine	40.708387°N			
Longitudine	8.410432° E			
Altitudine	70 m			
Irradiazione solare annua sul piano orizzontale	5 024.20 MJ/m ²			
Coefficiente di ombreggiamento	1.00			

Dati tecnici		
Superficie totale moduli	338 631.02 m ²	
Numero totale moduli	121 156	
Numero totale inverter	36	
Energia totale annua	97 999 031.94 kWh	
Potenza totale	75 116.720 kW	
Potenza fase L1	60 783.560 kW	
Potenza fase L2	8 046.360 kW	
Potenza fase L3	6 286.800 kW	
Energia per kW	1 304.62 kWh/kW	
Sistema di accumulo	Assente	
Capacità di accumulo utile	-	
Capacità di accumulo nominale	-	
BOS standard	74.97 %	

2.5.Pannelli fotovoltaici

Come da scheda tecnica sottostante il progetto elettrico del generatore fotovoltaico prevede un totale 121 156 moduli che occupano una superficie di 338 631.02 m², ed è composto da 26 generatori suddivisi in vari campi. I moduli sono realizzati in esecuzione a doppio isolamento (classe II), completi di cornice in alluminio anodizzato e cassetta di giunzione elettrica IP65, realizzata con materiale resistente alle alte temperature ed isolante, con diodi di by-pass, alloggiata nella zona posteriore del pannello.

I moduli sono costruiti secondo quanto specificato dalle vigenti norme IEC 61215 in data (certificata dal costruttore) non anteriore a 24 mesi dalla data di consegna dei lavori.

I moduli utilizzati saranno coperti da una garanzia di almeno 20 anni, finalizzata ad assicurare il mantenimento delle prestazioni di targa.

Le celle sono inglobate tra due fogli di E.V.A. (Etilvinile Acetato), laminati sottovuoto e ad alta temperatura. La protezione frontale pannello è costituita da un vetro a basso contenuto di Sali ferrosi, temprato per poter resistere senza danno ad urti e grandine; la protezione posteriore del modulo è costituita da una lamina di TEDLAR, il quale consente la massima resistenza agli agenti atmosferici ed ai raggi ultravioletti.

Essi avranno un'altezza minima da terra (D) 0,50 m.; mentre la distanze tra le fila dei moduli sarà di ml. 9,50 (da interasse a interasse).

SCHEDE TECNICHE MODULI

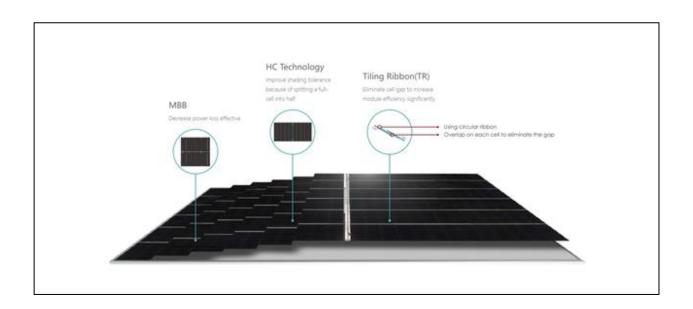
Marca	Jinko Solar Holding Co., Ltd.
Serie	Tiger Pro N-type 78HL4-(V) 590-610-620W Bifacial
Modello	JKM615N-78HL4/JKM615N-78HL4-V - Copia
Tipo materiale	Si monocristallino

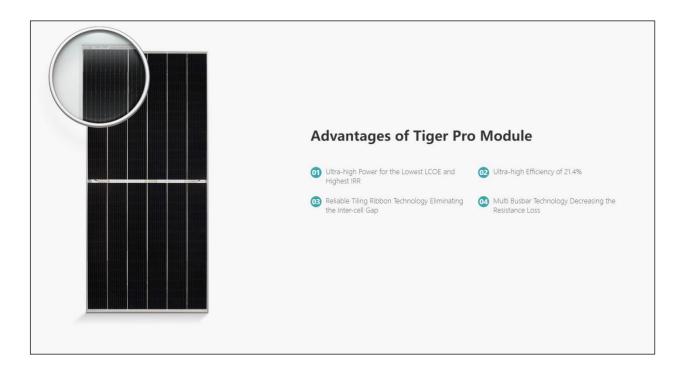
CARATTERISTICHE ELETTRICHE IN CONDIZIONI STC

Potenza di picco	620.0 W
Im	13.46 A
Isc	14.18 A
Efficienza	22.00 %
Vm	45.69 V
Voc	55.40 V

ALTRE CARATTERISTICHE ELETTRICHE

Coeff. Termico Voc	-0.2500 %/°C
Coeff. Termico Isc	0.046 %/°C
NOCT	45±2 °C
Vmax	1 500.00 V


CARATTERISTICHE MECCANICHE


Lunghezza	2 465 mm
Larghezza	1 134 mm
Superficie	2.795 m²

Spessore 35 mm

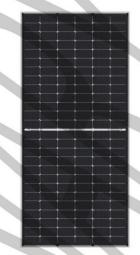
Peso **30.60 kg**

Numero celle 156

www.jinkosolar.com

Tiger Pro N-type **78HL4-BDV** 590-610-620 Watt

BIFACIAL MODULE WITH **DUAL GLASS**


N-Type

Positive power tolerance of 0~+3%

IEC61215(2016), IEC61730(2016)

ISO9001:2015: Quality Management System

ISO14001:2015: Environment Management System

Key Features

SMBB Technology

Better light trapping and current collection to improdule power output and reliability.

Hot 2.0 Technology

The N-type module with Hot 2.0 technology has better reliability and lower LID/LETID.

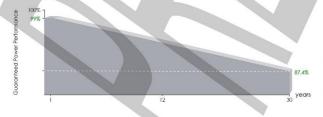
PID Resistance Excellent Anti-PID performance guarantee via optimized mass-production process and materials

Enhanced Mechanical Load

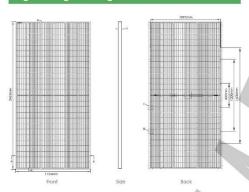
Certified to withstand: wind load (2400 Pascal) and snow load (5400 Pascal).

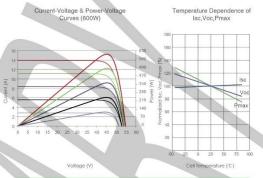
Higher Power Output

Module power increases 5-25% generally, bringing significantly lower LCOE and higher IRR.



LINEAR PERFORMANCE WARRANTY


12 Year Product Warranty


30 Year Linear Power Warranty

0.40% Annual Degradation Over 30 years

Engineering Drawings

Electrical Performance & Temperature Dependence

Length: ±2mm Wdith: ±2mm Wdith: ±2mm Height: ±1mm Row Flich: ±2mm A-A 0-8

Cell Type N type Mono-crystalline No. of cells 156 (2×78) Dimensions 2465×1134×35mm (97.05×44.65×1.38 inch) Weight 34.0kg (74.96 lbs) Front Glass 2.0mm, Anti-Reflection Coating Back Glass 2.0mm, Heat Strengthened Glass Frame Anodized Aluminium Alloy Junction Box IP68 Rated

TUV 1×4.0mm' (+): 400mm , (-): 200mm or Customized Length

Mechanical Characteristics

Packaging Configuration

(Two pallets = One stack)

31pcs/pallets, 62pcs/stack, 496pcs/ 40'HQ Container

SPECIFICATIONS										
Module Type	JKM590N-	78HL4-BDV	JKM595N-7	8HL4-BDV	JKM600N-7	8HL4-BDV	JKM605N-	78HL4-BDV	JKM610N	-78HL4-BD\
	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT
Maximum Power (Pmax)	590Wp	440Wp	595Wp	444Wp	600Wp	447Wp	605Wp	451Wp	610Wp	455Wp
Maximum Power Voltage (Vmp)	45.32V	41.98V	45.42V	42.09V	45.53V	42.20V	45.63V	43.32V	45.73V	42.43V
Maximum Power Current (Imp)	13.02A	10.48A	13.10A	10.54A	13.18A	10.60A	13.26A	10.66A	13.34A	10.72A
Open-circuit Voltage (Voc)	54.63V	51.56V	54.73V	51.66V	54.84V	51.76V	54.94V	51.86V	55.04V	51.95V
Short-circuit Current (Isc)	13.79A	11.14A	13.87A	11.20A	13.95A	11.27A	14.03A	11.33A	14.11A	11.40A
Module Efficiency STC (%)	21.1	1%	21.	29%	21.	46%	21	.64%	21	.82%
Operating Temperature (°C)					-40°C-	-+85°C				
Maximum system voltage					1500VD	C (IEC)				
Maximum series fuse rating				-	30	DA		7		
Power tolerance					0~-	+3%				
Temperature coefficients of Pmax	×	_			-0.30	%/°C				
Temperature coefficients of Voc					-0.28	%/°C				
Temperature coefficients of Isc					0.048	3%/°C				
Nominal operating cell temperate	ure (NOCT		/		45±	2°C				
Refer, Bifacial Factor				-	803	£5%	7			

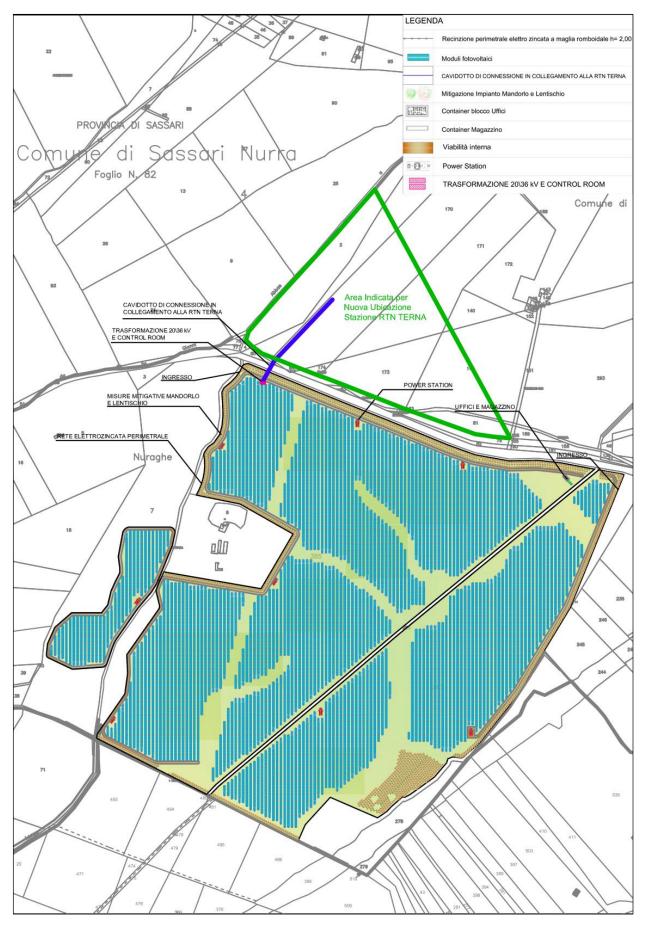
BIFAC	AL OUTPUT-REARSIDE	POWER GAIL	N			
5%	Maximum Power (Pmax) Module Efficiency STC (%)	620Wp 22.16%	625Wp 22,35%	630Wp 22.54%	635Wp 22.73%	641Wp 22.91%
15%	Maximum Power (Pmax) Module Efficiency STC (%)	679Wp 24.27%	684Wp 24.48%	690Wp 24.68%	696Wp 24.89%	702Wp 25.10%
25%	Maximum Power (Pmax) Module Efficiency STC (%)	767Wp 27.44%	774Wp 27.67%	780Wp 27.90%	787Wp 28.14%	793Wp 28.37%

NOCT: Irradiance 800W/m²

Ambient Temperature 20°C

©2021 Jinko Solar Co., Ltd. All rights reserved. Specifications included in this datasheet are subject to change without notice.

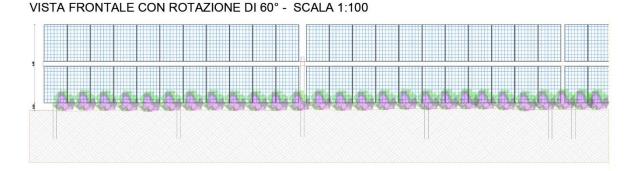
JKM590-610N-78HL4-BDV-D1-EN (IEC 2016)


2.6.Tracker

La struttura del tracker TRJ è completamente adattabile in base alle dimensioni del pannello fotovoltaico, alle condizioni geotecniche del sito specifico e alla quantità di spazio di installazione disponibile.

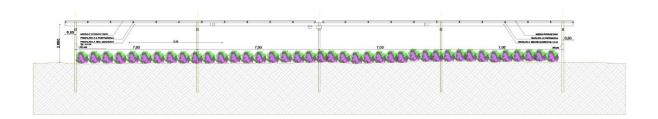
La configurazione elettrica delle stringhe (x moduli per stringa) verrà raggiunta utilizzando la seguente configurazione di tabella dell'inseguitore con moduli fotovoltaici disponibile in verticale: per ogni x stringa PV, proponiamo x tracker TRJHT40PDP. Struttura 2x14 moduli fotovoltaici disponibili in verticale

- Dimensione (L) 16,40 m x 5,23 m x (H) max. 4,98 m.
- Componenti meccaniche della struttura in acciaio: 3 pali (di solito alti circa 2,5 m) e tubolari quadrati (le specifiche dimensionali variano a seconda del terreno e del vento e sono inclusi nelle specifiche tecniche stabilite durante la progettazione preliminare del progetto). Supporto del profilo Omega e ancoraggio del pannello.
- Componenti proprietari del movimento: 7 post-test (2 per i montanti, 4 per i montanti intermedi e 1 per il motore). Quadri elettronici di controllo per il movimento (1 scheda può servire 10 strutture). Motori (CA elettrico lineare - mandrino - attuatore).
- La distanza tra i tracker (I) verrà impostata in base alle specifiche del progetto al fine di ottenere il valore desiderato GCR e rispettare i limiti del progetto, poiché TRJ è un tracker indipendente di file, non ci sono limitazioni tecniche.
- L'altezza minima da terra (D) è 0,50 m.
 - Ciascuna struttura di tracciamento completa, comprese le fondazioni dei pali di spinta, pesa circa 880 kg.
 - Una media di 70 tracker è necessaria per ogni 1 MWp.

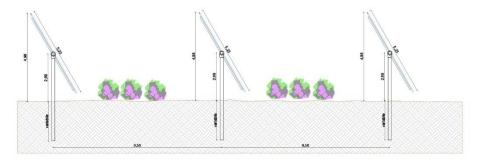

LAYOUT DELL'IMPIANTO

La realizzazione dell'impianto sarà eseguita mediante l'installazione di moduli fotovoltaici a terra installati su sistema ad inseguimento monoassiale che raggiunge +/- 55°G di inclinazione rispetto al piano di calpestio sfruttando interamente un rapporto di copertura non superiore al 50% della superficie totale. Il fissaggio della struttura di sostegno dei moduli al terreno avverrà a mezzo di un sistema di fissaggio del tipo a infissione con battipalo nel terreno e quindi amovibile in maniera tale da non degradare, modificare o compromettere in qualunque modo il terreno utilizzato per l'installazione e facilitarne lo smantellamento o l'ammodernamento in periodi successivi senza l'effettuazione di opere di demolizione scavi o riporti. Il movimento dei moduli avviene durante l'arco della giornata con piccolissime variazioni di posizione che ad una prima osservazione darà l'impressione che l'impianto risulti fermo.

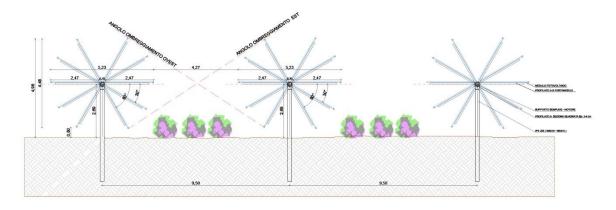
L'impianto in progetto, del tipo ad inseguimento monoassiale (inseguitori di rollio), prevede l'installazione di strutture di supporto dei moduli fotovoltaici (realizzate in materiale metallico), disposte in direzione Nord-Sud su file parallele ed opportunamente spaziate tra loro (interasse di 9.50 m), per ridurre gli effetti degli ombreggiamenti.

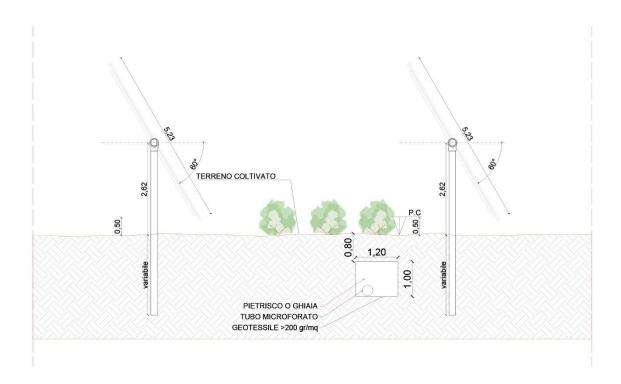

Le strutture di supporto sono costituite fondamentalmente da tre componenti

- 1) I pali in acciaio zincato, direttamente infissi nel terreno;
- 2) La struttura porta moduli girevole, montata sulla testa dei pali, composta da profilati in alluminio, sulla quale vengono posate due file parallele di moduli fotovoltaici
- 3) L'inseguitore solare monoassiale, necessario per la rotazione della struttura porta moduli.


L'inseguitore è costituito essenzialmente da un motore elettrico che tramite un'asta collegata al profilato centrale della struttura di supporto, permette di ruotare la struttura durante la giornata, posizionando i pannelli nella perfetta angolazione per minimizzare la deviazione dall'ortogonalità dei raggi solari incidenti, ed ottenere per ogni cella un surplus di energia fotovoltaica generata.

DETTAGLIO SEZIONE LONGITUDINALE STRUTTURA - SCALA 1:100

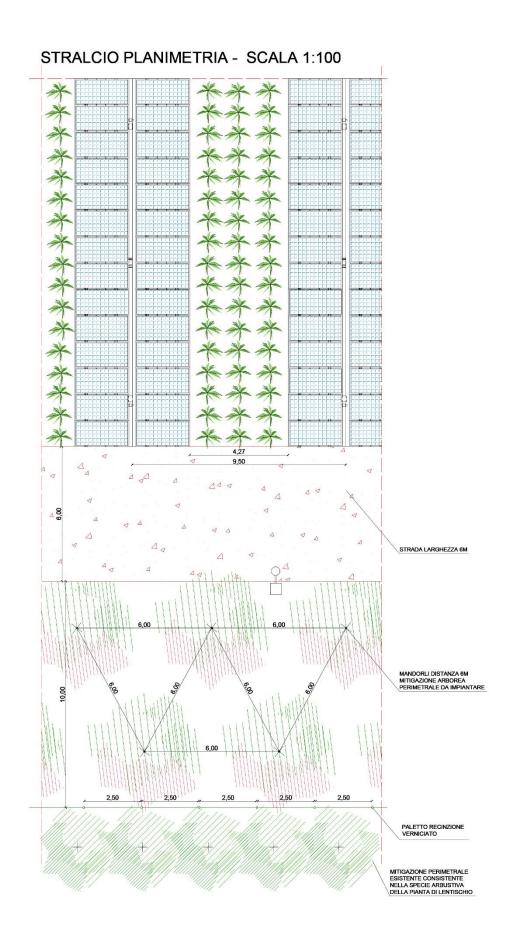

L'inseguitore solare serve ad ottimizzare la produzione elettrica dell'effetto fotovoltaico (il silicio cristallino risulta molto sensibile al grado di incidenza della luce che ne colpisce la superficie) ed utilizza la tecnica del backtracking, per evitare fenomeni di ombreggiamento a ridosso dell'alba e del tramonto. In pratica nelle prime ore della giornata e prima del tramonto i moduli non sono orientati in posizione ottimale rispetto alla direzione dei raggi solari, ma hanno un'inclinazione minore (tracciamento invertito). Con questa tecnica si ottiene una maggiore produzione energetica dell'impianto agro-fotovoltaico, perché il beneficio associato all'annullamento dell'ombreggiamento e superiore alla mancata produzione dovuta al non perfetto allineamento dei moduli rispetto alla direzione dei raggi solari.

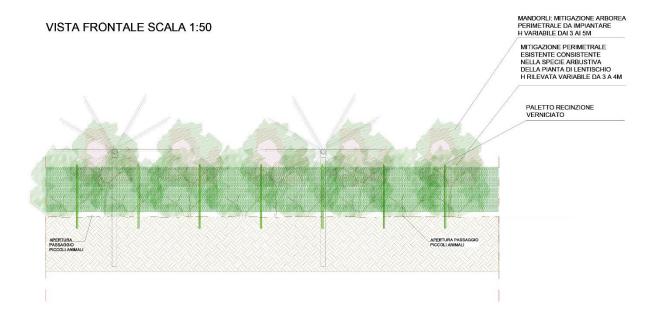

L'altezza dei pali di sostegno e stata fissata in modo tale che lo spazio libero tra il piano campagna ed i moduli, alla massima inclinazione, sia superiore a 0,40 m, per agevolare la fruizione del suolo per le attività agricole. Di conseguenza, l'altezza massima raggiunta dai moduli è di 4.98 m.

DETTAGLIO TRASVERSALE STRUTTURA - SCALA 1:100

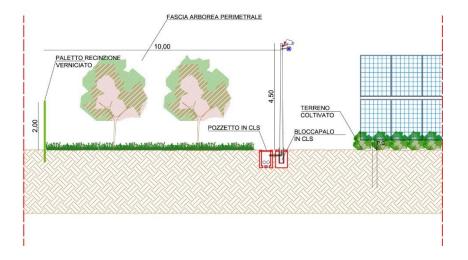
La larghezza in sezione delle suddette strade è variabile da 4 a 6 m, pertanto i mezzi utilizzati nelle fasi di cantiere e di manutenzione e in fase di sfruttamento agricolo del fondo potranno operare senza alcuna difficoltà

TIPICO DRENAGGIO - SCALA 1:50

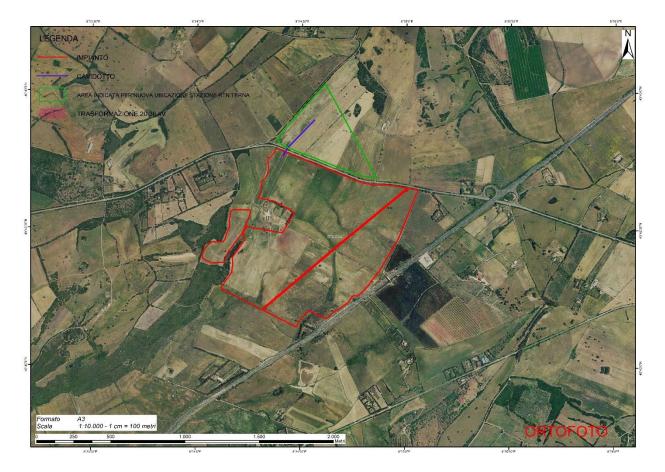



La tipologia di struttura prescelta, considerata la distanza tra le strutture gli ingombri e l'altezza del montante principale si presta ad una perfetta integrazione impianto tra impianto agro-fotovoltaico ed attività agricole.

Come precedentemente illustrato nei paragrafi precedenti, l'impianto agro-fotovoltaico è stato progettato, con lo scopo di garantire lo svolgimento di attività di coltivazione agricola identificando anche a mezzo di contributi specialistici di un Dottore Agronomo quali coltivazioni effettuare nell'area di impianto e quali accorgimenti progettuali adottare, al fine di consentire la coltivazione con mezzi meccanici, il tutto meglio specificato nella Relazione Agronomica in allegato.


Per rendere i terreni in cui è prevista la realizzazione dell'impianto agro-fotovoltaico idonei alla coltivazione, prima dell'inizio delle attività di installazione delle strutture di sostegno si eseguirà un livellamento mediante livellatrice.

Non è necessario effettuare altre operazioni preparatorie per l'attività di coltivazione agricola, come ad esempio scasso a media profondità (0,60-0,70 m) mediante ripper e concimazione di fondo, ad esclusione dell'area interessata dalla realizzazione della fascia arborea in quanto i terreni si prestano alle coltivazioni e presentano un discreto contento di sostanza organica.



Le attività di coltivazione delle superfici con l'impianto agro-fotovoltaico in esercizio includono anche le attività riguardanti la fascia arborea perimetrale, nella quale saranno impiantati piante di mandorlo. Si è ritenuto opportuno orientarsi verso colture ad elevato grado di meccanizzazione o del tutto meccanizzate, considerata l'estensione dell'area.

STAZIONE ELETTRICA UTENTE DI TRASFORMAZIONE 30/150 KV

Ha il compito di prelevare l'energia prodotta dalle centrali FV, trasmessa alla stazione di trasformazione mediante cavi interrati a 30 kV, di trasformarla alla tensione di richiesta e di consegnarla in rete nella SE RTN, contabilizzando nel punto di misura AT l'energia in transito. La Stazione Elettrica RTN e quella utente, anche se eserciteranno le proprie funzioni in parallelo, saranno due entità completamente separate (come rappresentato nelle tavole allegate).

In verde area scelta da Terna per la nuava RTN.

STAZIONE ELETTRICA RTN A 220 KV

Con i raccordi AT svolge la funzione di smistamento e interfacciamento, tra la Rete di Trasmissione AT ed il Punto di Consegna, dell'energia prodotta dagli impianti fotovoltaici. In questo caso si realizzerà solamente la parte di stazione necessaria alla realizzazione del collegamento in antenna, quindi lo Stallo AT assegnato al produttore.

Con i raccordi AT svolge la funzione di smistamento e interfacciamento, tra la Rete di Trasmissione AT ed il Punto di Consegna, dell'energia prodotta dagli impianti fotovoltaici.

In questo caso la STMG, formalmente accettata dalla Società, prevede che l'impianto venga collegato in antenna a 36 kV sulla sezione 36 kV della futura Stazione Elettrica (SE) di Trasformazione 380/150/36 kV della RTN da inserire in entra – esce alla linea RTN a 380 kV "Fiumesanto Carbo – Ittiri.

ISTALLAZIONE DELLE LINEE DI CONNESSIONE

La posa delle linee Mt/Bt funzionali ai collegamenti è interamente prevista interrata ad una profondità minima di 1,20 m dal piano naturale del terreno.

I materiali di scavo saranno utilizzati per il successivo riempimento degli scavi. I cavi saranno contenuti all'interno di un cavidotto del diametro di 160 mm e sulla sommità degli stessi sarà effettuato il ricoprimento in sabbia, si costituirà una eventuale copertura di protezione contro scavi accidentali con coppi in ceramica, mentre a metà scavo è previsto un nastro segnalatore giallo con strisce rosse e nere di segnalazione cavo 30 kV.

CABINE DI CAMPO O POWER STATION PS

Le n. 8 Power Station o cabine di campo di progetto hanno la duplice funzione di convertire l'energia elettrica dal campo fotovoltaico da corrente continua (CC) a corrente alternata (CA), trasformandola successivamente da bassa (BT) a media tensione (MT).

L'energia prodotta dai sistemi di conversione cc/ca (inverter) sarà immessa nel lato BT di un trasformatore 15/0,53 kV (con funzione di isolamento).

Le Power Station saranno collegate tra loro in configurazione radiale (in antenna).

Alle Power Station, collocate in posizione più possibile baricentrica rispetto ai campi fotovoltaici, saranno convogliati i cavi provenienti dalle String Box, che a loro volta raccoglieranno i cavi provenienti dai raggruppamenti delle stringhe dei moduli fotovoltaici collegati in serie.

Le cabine saranno costituite da elementi prefabbricati suddivisi in più scomparti e saranno progettate per garantire la massima robustezza meccanica e durabilità. Le pareti e il tetto saranno tali da garantire impermeabilità all'acqua e corretto isolamento termico. Il locale sarà posato su un basamento in calcestruzzo di adeguate dimensioni.

Non sono previsti scavi per la realizzazione delle power station.

Per ognuna delle cabine è indicativamente prevista la realizzazione di un impianto di ventilazione naturale che utilizzerà un sistema di griglie, posizionate nelle pareti in due differenti livelli, ed un impianto di condizionamento e/o di ventilazione forzata adeguato allo smaltimento dei carichi termici introdotti nel locale dalle apparecchiature, che entrerà in funzione nel periodo di massima temperatura estiva.

All'interno del sistema saranno presenti le seguenti componenti:

- inverter fino ad un massimo di 2,4 MWp in DC;
- quadro di parallelo in bassa tensione per protezione dell'interconnessione tra gli inverter e il trasformatore;
- trasformatore BT/MT fino a 15 kV, preferibilmente con doppio secondario fino a 2,5 kVA;
- celle di media tensione fino a 15 kV;
- quadro servizi ausiliari;
- sistema di dissipazione del calore;
- impianto elettrico completo (cavi di alimentazione, illuminazione, prese elettriche, messa a terra della rete, ecc);
- dotazioni di sicurezza;
- trasformatore BT/BT per alimentazione quadro servizi ausiliari BT-AUX;
- UPS per servizi ausiliari;
- sistema centralizzato di comunicazione con interfaccie RS485/USB/ETHERNET.

CABINE ELETTRICHE

Fornitura a piè d'opera di Cabina Elettrica Box Prefabbricata in CLS costituita da: BASAMENTO CABINA 11,00x4,00 cm :vasca di fondazione prefabbricata, con due elementi da assemblare in cantiere, in calcestruzzo armato e vibrato, cm. 60 di altezza, con spessore delle pareti di cm. 10 e spessore del fondo di cm. 10, completa di fori a frattura prestabilita diametro 200 mm., n. 2 connettori per impianto di messa terra esterno, impianto di messa a terra STRUTTURA CABINA: struttura prefabbricata ad uso cabina elettrica, realizzata con una struttura monolitica in resina., delle dimensioni totali dicm. 10,00 x 3,00 x 260h, fondo autoportante e solaio di copertura spessore cm. 10, unico locale con n. 1 porta in resina da cm.120x215h, n. 1 porta in resina da cm.80x215h n. 2 griglie di aerazione in resina da cm. 120x50h, n. 1 botola in resina da cm. 60x60 per accesso alla vasca di fondazione,n. 1 aspiratori eolici in acciaio inox,n. 3 punto luce interno sottotraccia con n. 1 plafoniere a stagna lampade a risparmio energetico, nº6 prese di servizio 10/16 A Impianto di terra interno locale utente Impianto di terra interno locale utente costituito dal nodo (collettore) di terra realizzato con un piatto in rame di 400x60x5mm posato a parete e collegamento delle apparecchiature con corda in rame isolata giallo verde e collegamento alle maglie della struttura e alla fondazione. La cabina dovrà essere fornita perfettamente rifinita, tinteggiata all' interno con colore bianco, all' esterno con pitture colore standard RAL 1011 beige- marrone al quarzo ad alta durata, sigillatura giunti verticali ed orizzontali con mastici acrilici, forature a pavimento per passaggio cavi secondo schemi standard Caratteristiche dei materiali: Spessore minimi da normativa vigente, DM 14.01.2008, Ferro tondo per c.a. tipo B 450C- Rete elettrosaldata tipo B 450 A- Piastre in acciaio saldabili S 275- Tinteggiatura interna lavabile- Tinteggiatura esterna con pittura al quarzo ad alta durata tipo bucciato, completta di:

Trasformatore in resina di potenza 20/36 kV Trasformatore del tipo a OLIO, con avvolgimento primario in alluminio inglobato in resina epossidica classe F, ed avvolgimento secondario in alluminio impregnato classe F. Classe di reiezione al fuoco F1, classe ambientale E2, classe climatica C2. Tensione primaria nominale 24kV, tensione primaria di rete fino 20 kV, tensione secondaria 400/231V a vuoto, Avvolgimenti triangolo/stella con neutro, gruppo vettoriale DYN11, Tensione di cc 6%, prese per la regolazione della tensione primaria ± 2x2,5% n. 4 termosonde tipo PT100 per il controllo della temperatura. Norme di riferimenti CEI 14.8, IEC 76. su ruote Trasformatore in resina di potenza 24kV/400230V - 800 kVA.

Quadro di media tensione del tipo SM6 con protezione ad arco interno sui 3 lati IAC AFL 12,5 kA x 1s, tensione nominale 24kV, corrente nominale 630A, tensione di esercizio 15kV, dovrà essere completo di tutte le connessioni interne e in uscita delle linee elettriche in arrivo e partenza, attestazione cavi in ingresso e uscita, gli accessori di fissaggio.e tutte le altre componenti neccessari per dare l'opera finita in perfetta regola d'arte. TRASFORMATORE COME DA SCHEDA TECNICA ALLEGATA.

QUADRI BT E MT

Sia all'interno delle Power Station che nelle MTR saranno presenti quadri MT e BT necessari per il trasporto dell'energia prodotta nonché per l'alimentazione dei carichi ausiliari dell'impianto. Per le specifiche si rimanda al Progetto Definitivo.

CAVI DI POTENZA MT E BT

La connessione delle apparecchiature dell'impianto fotovoltaico atte alla produzione e conversione dell'energia elettrica avverrà tramite linee in cavo in MT e BT. Tali linee saranno poste fuori terra attraverso delle canalette. Per le specifiche di dettaglio si rimanda al Progetto Definitivo.

2.7.REALIZZAZIONE IMPIANTO

2.7.1. Realizzazione della Viabilità Interna e accesso al sito

Verrà realizzato l'accesso a partire dalla strada pubblica, attraverso un cancello connesso alla recinzione di confine andando a formare un ingresso con raggio minimo di curvatura pari a 25 m per consentire l'accesso dei mezzi e materiali secondo il percorso definito negli elaborati progettuali.

La larghezza della strada per la viabilità interna sarà pari a 6 m con raccordo con cunette laterali per la regimazione e deflusso delle acque meteoriche secondo la pendenza naturale del terreno.

Installazione del traker. Tutte le lavorazioni edili e impiantistiche verranno eseguite da ditte specializzate locali così come la fornitura e l'installazione del locale cabina compreso l'assemblaggio dei materiali e componenti in sito.

Le operazioni di montaggio verranno svolte, con personale altamente formato e specializzato nel settore. Tutte le operazioni saranno supervisionate dal personale tecnico della committente oltre che da direttore lavori e coordinatore della sicurezza in fase di esecuzione. Le operazioni di montaggio richiederanno piccole attrezzature manuali quali chiavi dinamometriche avvitatori e utensili vari che non comporteranno utilizzo di sostanze chimiche o operazioni di saldatura in sito.

2.7.2. Opere impianto

Le Nuove Opere da eseguire per l'istallazione dell'impianto fotovoltaico comprendono:

Scavi

Gli scavi saranno realizzati con mezzi meccanici, idonei per lo scavo su materiale prevalentemente costituito da terreno vegetale di varia natura e consistenza e saranno ridotti al minimo necessario per consentire la regolarizzazione del terreno che in parte risulta già livellato. Le operazioni di scavo non comporteranno dissesti idrogeologici e non causeranno inquinamento delle falde. Per la piccola parte di scavi necessari alle tubazioni interrate sarà effettuato il riempimento dei cavi con le terre di scavo stesso al fine di ripristinare la copertura originaria. Saranno eseguiti dei livellamenti minimi del terreno che avranno lo scopo di regolarizzare l'area di intevento, senza conferimeto di materiale di risulta in quanto il terreno verrà sistemato in componsazione tra scavi e riporti. Tali pendenze fanno si che non siano necessarie realizzazioni di opere di regimazione ma il deflusso delle acque avverrà in modo del tutto naturale come già avviene ora senza che l'impianto possa influenzarlo in alcun modo. Il terreno è inutilizzato e allo stato attuale non presenta caratteristiche di contaminazione né tanto meno ha subito attività potenzialmente inquinanti in passato. Nell'esecuzione non verranno utilizzate sostante potenzialmente inquinanti e, al fine di evitare potenziali contaminazioni da parte di sostanze rilasciate accidentalmente dai mezzi meccanici, le fasi di scavo verranno monitorate visivamente con continuità.

Opere di connessione e Cabina di ricevimento

Per la Connessione dell'impianto alla RTN le opere da realizzare sono quelle previste per la soluzione tecnica predisposta dal gestore che prevede che l'impianto progettato venga collegato l'impianto venga collegato in antenna a 36 kV sulla sezione 36 kV della futura Stazione Elettrica (SE) di Trasformazione 380/150/36 kV della RTN da inserire in entra – esce alla linea RTN a 380 kV "Fiumesanto Carbo – Ittiri.

2.7.3. Viabilità Strade e piazzali

La viabilità interna all'impianto agro-fotovoltaico è costituita da strade bianche di nuova realizzazione, che includono i piazzali sul fronte delle cabine/gruppi di conversione. La sezione tipo è costituita da una piattaforma stradale avente larghezza media di circa 6 m, formata da uno strato in rilevato di circa 20 cm di misto di cava. Ove necessario vengono quindi effettuati:

- Scotico circa 20 cm;
- Eventuale spianamento del sottofondo;
- Rullatura del sottofondo;
- Posa di geotessile e/o geogriglia;
- > Formazione di fondazione stradale in misto frantumato e detriti di cava per 20 cm e rullatura;
- Finitura superficiale in misto granulare stabilizzato per 10 cm e rullatura;

2.7.4. Cronoprogramma di Progetto

Di seguito si riporta la tempistica di realizzazione dell'impianto:

• la costruzione dell'impianto prenderà avvio immediatamente dopo l'ottenimento dell'Autorizzazione Unica, previa realizzazione del progetto esecutivo, insieme con i lavori di connessione. Si stima una durata complessiva di circa **24 mesi**.

Per il dettaglio delle tempistiche delle attività di realizzazione si faccia riferimento al Cronoprogramma lavori di costruzione.

2.7.5. Fase di Cantiere

La realizzazione dell'impianto si avvierà immediatamente a valle dell'autorizzazione alla costruzione.

La fase di costruzione vera e propria avverrà successivamente alla predisposizone dell'ultima fase progettuale, consistente nella definizione della progettazione esecutiva, che completerà i calcoli in base alle scelte di dettaglio dei singoli componenti.

La sequenza delle operazioni sarà la seguente:

- 1. Progettazione esecutiva di dettaglio;
- 2. Costruzione:

Opere civili:

- accessibilità all'area ed approntamento cantiere;
- preparazione terreno mediante rimozione vegetazione e livellamento;
- realizzazione viabilità di campo;
- realizzazione recinzioni e cancelli ove previsto;
- preparazione e posa pali di sostegno e fondazioni in cls;
- posa strutture metalliche;
- posa cavi;
- realizzazione locali tecnici, Power Stations, MTR1 e MTR2;

Opere impiantistiche:

- messa in opera e cablaggi moduli FV;
- installazione inverter e trasformatori;
- posa cavi e quadristica BT;

- posa cavi e quadristica MT;
- allestimento cabine;
- Opere a verde.

Per quanto riguarda le modalità operative di costruzione si farà riferimento alle scelte progettuali esecutive. Le attività di cantiere si prevede richiederanno circa 24 mesi e comprenderanno le macroattività descritte di seguito.

Fase di cantiere	Tempistica stimata
Preparazione del terreno e viabilità interna e allestimento di cantiere, segnaletica	7 settimane
Recinzione perimetrale con sorveglianza e cancello d'ingresso	8 settimane
Viabilità di campo	4 settimane
Posa canalette e posa dei cavi	14 settimane
Installazione delle cabine di conversione e trasformazione e delle componenti	8 settimane
Posa in opera dei locali tecnici e impianto monitoraggio e allestimento	5 settimane
Installazione delle strutture	18 settimane
Montaggio dei moduli e cablaggi	18 settimane
Installazione dei quadri	4 settimane
Messa in servizio dell'impianto	2 settimane
Collaudo	2 settimane
Opere di mitigazione	5 settimane
Durata complessiva del cantiere	95 settimane

I materiali saranno tendenzialmente trasportati sul posto nelle prime settimane di cantiere, in cui avverrà l'approntamento dei pannelli fotovoltaici, del materiale elettrico - cavi e cabine - e di quello meccanico necessario per le strutture di sostegno.

Le strutture di sostegno dei moduli saranno installate con battipalo. Tutto l'impianto, incluse le cabine e la rete di connessione, sarà "appoggiato" a terra; non saranno pertanto previsti scavi.

2.7.6. Fase di Esercizio

Durante la fase di esercizio, la gestione ed il mantenimento dell'impianto includeranno le attività di manutenzione dell'impianto fotovoltaico, di pulizia dei pannelli e di vigilanza.

La manutenzione dell'impianto fotovoltaico è un'operazione particolarmente importante, in quanto l'utilizzo di un impianto elettrico nel corso del suo esercizio va costantemente monitorato per valutare il permanere nel tempo delle caratteristiche di sicurezza e di affidabilità dei componenti e dell'impianto nel suo complesso. La manutenzione verrà eseguita secondo le norme nazionali in materia, con verifiche periodiche sull'impianto elettrico, dei cablaggi e di tutte le componenti.

Come tutti i dispositivi collocati all'aperto, i pannelli fotovoltaici sono esposti ad una serie di agenti, quali insetti morti, foglie, muschi e resine, che ne sporcano la superficie, a cui contribuiscono anche gli agenti atmosferici, tra cui il vento, la pioggia e la neve. L'accumulo di sporcizia influisce sulle prestazioni dei pannelli, diminuendone l'efficacia. Per tale motivo i pannelli fotovoltaici verranno lavati a mano semplicemente con acqua, con frequenza semestrale.

L'impianto sarà dotato di sistema antintrusione perimetrale di tipo barriera a micronde o simili, associato ad un impianto di videosorveglianza con telecamere.

Il sistema sarà predisposto per un sistema ciclico di registrazioni e avrà un collegamento in remoto. A tale sistema sarà associata un'attività di vigilanza del sito, affidata a personale locale, per poter garantirne una sua perfetta salvaguardia.

2.7.7. Fase di Dismissione dell'opera e Ripristino Ambientale a Fine Esercizio

L'impianto sarà interamente smantellato al termine della sua vita utile, prevista a 30 anni dall'entrata in esercizio, e l'area restituita all'uso originario previsto.

A conclusione della fase di esercizio dell'impianto, seguirà quindi la fase di "decommissioning", dove le varie parti dell'impianto verranno separate in base alla caratteristica del rifiuto/materia prima seconda, in modo da poter riciclare il maggior quantitativo possibile dei singoli elementi.

I restanti rifiuti che non potranno essere né riciclati né riutilizzati, stimati in un quantitativo dell'ordine dell'1%, verranno inviati alle discariche autorizzate.

Questa operazione sarà a carico del Proponente, che provvederà a propria cura e spese, entro i tempi tecnici necessari alla rimozione di tutte le parti dell'impianto.

Nello specifico la dismissione dell'impianto prevede:

- lo smontaggio ed il ritiro dei pannelli fotovoltaici. La gestione del ciclo di vita dei moduli prevede un programma prefinanziato che garantisce al proprietario il ritiro ed il riciclaggio gratuito dei moduli al termine della loro durata di vita;
- lo smontaggio ed il riciclaggio dei telai in alluminio (supporto dei pannelli);
- lo smontaggio ed il riciclaggio dei cavi e degli altri componenti elettrici (compresa la cabina di trasformazione BT/MT prefabbricata);
- il ripristino ambientale dell'area.

Le varie componenti tecnologiche costituenti l'impianto sono progettate ai fini di un completo ripristino del terreno a fine ciclo. Per tale motivo sono state privilegiate scelte che garantiscano la minima invasività e la minima posa di materiali inerti e fondazioni nonché canalette posa cavi fuori terra.

Una volta finite le operazioni di smantellamento e smaltimento degli apparati tecnologici (a patto che le operazioni di bonifica siano state completate), sarà ripristinato il livello di campagna originario e le pendenze originarie.

Nella fattispecie, verranno effettuate operazioni di livellamento mediante pale meccaniche livellatrici e, a seguire, verranno effettuate le operazioni agronomiche classiche per la rimessa a coltura del terreno.

2.8.FUNZIONAMENTO IMPIANTO, RISORSE NATURALI IMPIEGATE ED EMISSIONI

Di seguito si riportano le principali interazioni del Progetto con l'ambiente, in termini di "utilizzo delle risorse" e di "interferenze ambientali".

Tali interazioni sono state valutate per la fase di cantiere, considerata sia come realizzazione che come dismissione, e di esercizio.

In riferimento ai contenuti delle tubazioni esistenti, si precisa che, durante la fase di progettazione esecutiva e comunque anche prima dell'inizio dei lavori, si procederà alla verifica di dettaglio dell'effettiva dismissione e/o delle sostanze contenute.

2.8.1. Emissioni in Atmosfera

Fase di Cantiere

Durante le attività di costruzione e di dismissione, le emissioni in atmosfera saranno costituite:

- dagli inquinanti rilasciati dai gas di scarico dei macchinari di cantiere. I principali inquinanti prodotti saranno NOx, SO2, CO e polveri;
- dalle polveri provenienti dalla movimentazione dei mezzi durante la preparazione del sito e l'installazione delle cabine;
- dalle polveri provenienti dalla movimentazione delle terre durante le attività di smantellamento e rimozione delle canalette posa cavi, dei pannelli fotovoltaici e delle altre strutture.

Fase di Esercizio

Durante la fase di esercizio non è prevista la presenza di sorgenti significative di emissioni in atmosfera, ad eccezione del generatore diesel che entrerà in funzione solo in caso di emergenza; pertanto, non si avranno impatti negativi sulla componente. Al contrario, l'esercizio del Progetto determina un impatto positivo, consentendo un risparmio di emissioni in atmosfera rispetto alla produzione di energia mediante combustibili fossili tradizionali.

2.8.2. Gestione delle Acque Meteoriche

Fase di Cantiere

Durante le attività di costruzione e di dismissione, dal momento che l'area non sarà pavimentata/impermeabilizzata, la dispersione delle acque meteoriche avverrà tramite il naturale drenaggio nel suolo.

Fase di Esercizio

Durante la fase di esercizio non è prevista una regimazione dedicata, anche in considerazione della moderata entità delle precipitazioni, ma la dispersione avverrà naturalmente per infiltrazione nel sottosuolo.

2.8.3. Consumi Idrici

Fase di Cantiere

Il consumo idrico previsto durante la fase di costruzione è relativo principalmente alla umidificazione delle aree di cantiere, per ridurre le emissioni di polveri dovute alle movimentazioni dei mezzi, e per gli usi domestici.

Il consumo idrico civile stimato è di circa 50 l/giorno per addetto. L'approvvigionamento idrico verrà effettuato mediante autobotte, qualora la rete di approvvigionamento idrico non fosse disponibile al momento della cantierizzazione.

Fase di Esercizio

Durante la fase di esercizio, il consumo idrico sarà relativo alla pulizia dei pannelli. Ipotizzando che i fenomeni piovosi all'anno siano scarsi e che lo strato erbaceo posto al di sotto dei moduli consenta di evitare l'ulteriore movimentazione di polveri, si prevede l'utilizzo di circa 350 m3 all'anno di acqua per la pulizia dei pannelli.

A tale scopo sarà utilizzata solamente acqua senza detergenti. La stessa acqua utilizzata per la pulizia, poiché priva di detergenti, sarà usata per irrigare qualora necessario le aree erbacee e arbustive previste nel Progetto.

L'approvvigionamento idrico per la pulizia dei pannelli verrà effettuato mediante autobotte.

2.8.4. Occupazione del Suolo

Fase di cantiere

Durante la fase di costruzione, sarà necessaria l'occupazione di suolo sia per lo stoccaggio dei materiali, quali tubazioni, moduli, cavi e materiali da costruzione, che dei rifiuti prodotti (imballaggi).

Fase di Esercizio

Durante la fase di esercizio, si avrà l'occupazione di suolo da parte dei moduli fotovoltaici, a cui vanno aggiunte le superfici occupate dalla strada bianca sterrata (di larghezza pari a circa 4 m) che corre lungo tutto il perimetro dell'impianto e lungo gli assi principali.

In fase di dismissione dell'impianto saranno rimosse tutte le strutture facendo attenzione a non asportare il suolo e verranno ripristinate le condizioni esistenti.

2.8.5. Emissioni Sonore

Fase di Cantiere

Si prevede che le emissioni sonore saranno generate dai mezzi pesanti durante le attività dipreparazione del terreno e di montaggio delle strutture.

I macchinari in uso durante i lavori di costruzione che potranno generare rumore sono i seguenti:

- n. 3 muletti/pale gommate;
- n. 4 autocarri;
- n. 8 autobetoniere;
- n. 2 rulli.

Fase di Esercizio

Durante la fase di esercizio non è prevista la presenza di sorgenti significative di rumore e pertanto di impatti negativi.

2.8.6. Trasporto e Traffico

Fase di Cantiere

Per il trasporto delle strutture, dei moduli e delle altre utilities è previsto l'utilizzo di circa 160 mezzi, pari a circa 25 mezzi al giorno, a cui si aggiungono i mezzi leggeri per il trasporto della manodopera di cantiere.

Il materiale in arrivo sarà depositato temporaneamente in un'area di stoccaggio all'interno della proprietà e verranno utilizzate piste interne esistenti e di progetto per agevolare il trasporto e il montaggio dell'impianto. Verrà inoltre realizzata una strada bianca per l'ispezione dell'area di centrale lungo tutto il perimetro dell'impianto e lungo gli assi principali e per l'accesso alle piazzole delle cabine.

Fase di Esercizio

Durante la fase di esercizio è previsto unicamente lo spostamento del personale addetto alle attività di manutenzione preventiva dell'impianto, di pulizia e di sorveglianza.

2.8.7. Movimentazione e Smaltimento dei Rifiuti

Fase di Cantiere

La gestione dei rifiuti sarà strettamente in linea con le disposizioni legislative e terrà conto delle migliori prassi in materia.

Tutti i materiali di scarto saranno raccolti, stoccati e trasportati separatamente all'interno di opportuni bidoni e contenitori idonei alla tipologia di rifiuto da stoccare: nell'area di cantiere sarà predisposta un'area dedicata a tale scopo.

Il trasporto, il riciclo e lo smaltimento dei rifiuti sarà commissionato solo a società autorizzate. Tale processo sarà strettamente allineato con quanto prevedono le norme di settore, oltre che le procedure aziendali.

L'obiettivo generale della strategia di gestione dei rifiuti è quello di ridurre al minimo l'impatto dei rifiuti generati durante la fase di cantiere, attraverso le seguenti misure:

- massimizzare la quantità di rifiuti recuperati per il riciclo;
- ridurre al minimo la quantità di rifiuti smaltita in discarica;

- assicurare che eventuali rifiuti pericolosi (ad es. oli esausti) siano stoccati in sicurezza e trasferiti presso le opportune strutture di smaltimento;
- assicurare che tutti i rifiuti siano appropriatamente alloggiati nei rispettivi contenitori, etichettati e smaltiti conformemente ai regolamenti locali;
- smaltire i rifuti in conformità con il piano di gestione dei rifiuti.
- In particolare, la gestione dei rifiuti durante la fase di costruzione avverrà con le seguenti modalità:
- i rifiuti degli insediamenti posti nell'area riservata a uffici, spogliatoi e refettorio verranno depositati in appositi cassoni di RSU;
- gli olii esausti delle macchine verranno momentaneamente stoccati in apposita area, approntata come da normativa vigente, in attesa del loro regolare smaltimento;
- il materiale vegetale proveniente dal decespugliamento e dal disboscamento delle aree di lavoro sarà conferito, appena prodotto, ad impianto di compostaggio;
- i rifiuti derivati dagli imballaggi dei pannelli fotovoltaici (quali carta e cartone, plastica, legno e
 materiali misti) saranno provvisoriamente stoccati in appositi cassoni metallici appoggiati a terra,
 nelle aree individuate ed appositamente predisposte come da normativa vigente, e
 opportunamente coperti con teli impermeabili. I rifiuti saranno poi conferiti ad uno smaltitore
 autorizzato, da individuare prima della fase di realizzazione dell'impianto fotovoltaico, che li
 prenderà in carico e li gestirà secondo la normativa vigente.

Durante la fase di dismissione, le operazioni di rimozione e demolizione delle strutture nonché recupero e smaltimento dei materiali di risulta, verranno eseguite, applicando le migliori metodiche di lavoro e tecnologie a disposizione, in osservazione delle norme vigenti in materia di smaltimento rifiuti. I principali rifiuti prodotti, con i relativi codici CER, sono i seguenti:

- 20 01 36 Apparecchiature elettriche ed elettroniche fuori uso (inverter, quadri elettrici, trasformatori, moduli fotovoltaici);
- 17 01 01 Cemento (derivante dalla demolizione dei fabbricati che alloggiano le apparecchiature elettriche);
- 17 02 03 Plastica (derivante dalla demolizione delle tubazioni per il passaggio dei cavi elettrici);
- 17 04 05 Ferro, Acciaio (derivante dalla demolizione delle strutture di sostegno dei moduli fotovoltaici);
- 17 04 11 Cavi;
- 17 05 08 Pietrisco (derivante dalla rimozione della ghiaia gettata per realizzare la viabilità e le piazzole).

Fase di Esercizio

Durante la fase di esercizio la produzione di rifiuti sarà non significativa, essendo sostanzialmente limitata agli scarti degli imballaggi prodotti durante le attività di manutenzione dell'impianto.

2.9. CRITERI DI SCELTA DELLA MIGLIOR TECNOLOGIA DISPONIBILE

I criteri con cui è stata realizzata la progettazione dell'impianto fotovoltaico fanno riferimento sostanzialmente a:

- scelta preliminare della tipologia impiantistica;
- ottimizzazione dell'efficienza di captazione energetica realizzata mediante orientamento statico dei pannelli;
- disponibilità delle aree, morfologia ed accessibilità del sito acquisita sia mediante sopralluoghi che rilievo topografico di dettaglio;
- disponibilità di punto di connessione.
- Oltre a queste assunzioni preliminari si è proceduto tenendo conto di:
- rispetto delle leggi e delle normative di buona tecnica vigenti;
- soddisfazione dei requisiti di performance di impianto;
- conseguimento delle massime economie di gestione e di manutenzione degli impianti progettati;
- ottimizzazione del rapporto costi/benefici;
- impiego di materiali componenti di elevata qualità, efficienza, lunga durata e facilmente reperibili sul mercato;
- riduzione delle perdite energetiche connesse al funzionamento dell'impianto, al fine di massimizzare la quantità di energia elettrica immessa in rete.

3. COERENZA E CONFORMITA'

La presente sezione fornisce elementi conoscitivi necessari all'individuazione delle relazioni tra il Progetto e gli atti di programmazione e pianificazione territoriale e settoriale. In esso sono sintetizzati i principali contenuti e obiettivi degli strumenti di pianificazione vigenti a livello comunitario, nazionale, regionale, provinciale e comunale.

3.1.PIANIFICAZIONE ENERGETICA

3.1.1. PIANIFICAZIONE ENERGETICA A LIVELLO COMUNITARIO

Le linee generali dell'attuale strategia energetica dell'Unione Europea sono state delineate nel pacchetto "Unione dell'Energia", che mira a garantire all'Europa ed ai suoi cittadini energiasicura, sostenibile e a prezzi accessibili. Misure specifiche riguardano cinque settori chiave, fra cuisicurezza energetica, efficienza energetica e decarbonizzazione.

Il pacchetto "Unione dell'Energia" è stato pubblicato dalla Commissione il 25 febbraio 2015 e consiste in tre comunicazioni:

- una strategia quadro per l'Unione dell'energia, che specifica gli obiettivi dell'Unione dell'energia e le misure concrete che saranno adottate per realizzarla COM (2015) 80;
- una comunicazione che illustra la visione dell'UE per il nuovo accordo globale sul clima, tenutosi a Parigi nel dicembre 2015 COM (2015) 81;
- una comunicazione che descrive le misure necessarie per raggiungere l'obiettivo del 10% di interconnessione elettrica entro il 2020 COM (2015) 82.

Il 16 febbraio 2016, facendo seguito all'adozione da parte dei leader mondiali del nuovoaccordo globale e universale tenutosi a Parigi nel 2015 sul cambiamento climatico, la Commissioneha presentato un nuovo pacchetto di misure per la sicurezza energetica, per dotare l'UE deglistrumenti per affrontare la transizione energetica globale, al fine di fronteggiare possibiliinterruzioni dell'approvvigionamento energetico.

L'accordo di Parigi contiene sostanzialmente quattro impegni per i 196 stati che lo hanno sottoscritto:

- mantenere l'aumento di temperatura inferiore ai 2°C e compiere sforzi per mantenerlo entro 1.5°C;
- smettere di incrementare le emissioni di gas serra il prima possibile e raggiungere nella seconda parte del secolo il momento in cui la produzione di nuovi gas serra sarà sufficientemente bassa da essere assorbita naturalmente;
- controllare i progressi compiuti ogni cinque anni, tramite nuove Conferenze;
- versare 100 miliardi di dollari ogni anno ai paesi più poveri per aiutarli a sviluppare fonti di energia meno inquinanti.

Il pacchetto presentato dalla Commissione nel 2015 indica un'ampia gamma di misure perrafforzare la resilienza dell'UE in caso di interruzione delle forniture di gas.

Tali misure comprendonouna riduzione della domanda di energia, un aumento della produzione di energia in Europa (ancheda fonti rinnovabili), l'ulteriore sviluppo di un mercato dell'energia ben funzionante e perfettamente integrato nonché la diversificazione delle fonti energetiche, dei fornitori e delle rotte.

Le proposte intendono inoltre migliorare la trasparenza del mercato europeo dell'energia e creare maggioresolidarietà tra gli Stati membri. I contenuti del pacchetto "Unione dell'Energia" sono definitiall'interno delle tre comunicazioni sopra citate.

Il Pacchetto Clima ed Energia 20-20-20, approvato il 17 dicembre 2008 dal Parlamento Europeo, costituisce il quadro di riferimento con il quale l'Unione Europea intende perseguire lapropria politica di sviluppo per il 2020, ovvero riducendo del 20%, rispetto al 1990, le emissioni digas a effetto serra, portando al 20% il risparmio energetico ed aumentando al 20% il consumo difonti rinnovabili. Il pacchetto comprende, inoltre, provvedimenti sul sistema di scambio di quote diemissione e sui limiti alle emissioni delle automobili. In dettaglio il Pacchetto 20-20-20 riguarda i seguenti temi:

- Sistema di scambio delle emissioni di gas a effetto serra: il Parlamento ha adottato una Direttiva volta a perfezionare ed estendere il sistema comunitario di scambio delle quote di emissione dei gas a effetto serra, con l'obiettivo di ridurre le emissioni dei gas serra del 21% nel 2020 rispetto al 2005. A tal fine prevede un sistema di aste, a partire dal 2013, per l'acquisto di quote di emissione, i cui introiti andranno a finanziare misure di riduzione delle emissioni e di adattamento al cambiamento climatico;
- Ripartizione degli sforzi per ridurre le emissioni: il Parlamento ha adottato una decisione che mira a ridurre del 10% le emissioni di gas serra prodotte in settori esclusi dal sistema di scambio di quote, come il trasporto stradale e marittimo o l'agricoltura;
- Cattura e stoccaggio geologico del biossido di carbonio: il Parlamento ha adottato una Direttiva che istituisce un quadro giuridico per lo stoccaggio geologico ecosostenibile di biossido di carbonio (CO2);

- Accordo sulle energie rinnovabili: il Parlamento ha approvato una Direttiva che stabilisce obiettivi
 nazionali obbligatori (17% per l'Italia) per garantire che, nel 2020, una media del 20% del consumo
 di energia dell'UE provenga da fonti rinnovabili;
- Riduzione dell'emissione di CO2 da parte delle auto: il Parlamento ha approvato un Regolamento che fissa il livello medio di emissioni di CO2 delle auto nuove;
- Riduzione dei gas a effetto serra nel ciclo di vita dei combustibili: il Parlamento ha approvato una direttiva che, per ragioni di tutela della salute e dell'ambiente, stabilisce le specifiche tecniche per i carburanti da usare per diverse tipologie di veicoli e che fissa degli obiettivi di riduzione delle emissioni di gas a effetto serra (biossido di carbonio, metano, ossido di diazoto) prodotte durante il ciclo di vita dei combustibili. In particolare, la direttiva fissa un obiettivo di riduzione del 6% delle emissioni di gas serra prodotte durante il ciclo di vita dei combustibili, da conseguire entro fine 2020 ricorrendo, ad esempio, ai biocarburanti. L'obiettivo potrebbe salire fino al 10% mediante l'uso di veicoli elettrici e l'acquisto dei crediti previsti dal protocollo di Kyoto.

3.1.2. PIANIFICAZIONE ENERGETICA A LIVELLO NAZIONALE

Con la Legge 9.1.1991 n.° 10 "Norme per l'attuazione del Piano energetico nazionale in materia di uso razionale dell'energia, di risparmio energetico e di sviluppo delle fonti rinnovabili di energia" si è delineata una cornice normativa organica destinata ad accogliere, a livello nazionale, i nascenti orientamenti europei tramite una serie di misure di incentivazione, documenti programmatori e norme; tale strumento normativo ha definito le risorse rinnovabili e assimilabili alle rinnovabili, ha introdotto l'obbligo di realizzare una pianificazione energetica a tutti i livelli amministrativi ed ha previsto una serie di misure rivolte al pubblico ed ai privati per incentivare l'uso di Fonti Energetiche Rinnovabili ed il contenimento dei consumi energetici nel settore civile ed in vari settori produttivi. Alla legge sono seguiti importanti provvedimenti attuativi: ad esempio il CIP 6/92 e quindi il D.Lgs 79/1999, cosiddetto decreto Bersani, emanato in attuazione della Direttiva 96/92/CE. Questo decreto ha introdotto l'obbligo di immettere nella rete elettrica nazionale energia prodotta da impianti alimentati da fonti rinnovabili per una quota pari al 2% dell'energia elettrica da fonti non rinnovabili prodotta o importata nell'anno precedente, eccedente i 100 GWh. L'adempimento all'obbligo può avvenire anche attraverso l'acquisto da terzi dei diritti di produzione da fonti rinnovabili.

La produzione di energia elettrica ottenuta da impianti alimentati da fonti rinnovabili, entrati in esercizio in data successiva al 1 aprile 1999 (articolo 4, commi 1, 2 e 6 del D.M. 11/11/99), ha diritto, per i primi otto anni di esercizio, alla certificazione di produzione da fonti rinnovabili, denominata "certificato verde". Il certificato verde, di valore pari a 100 MWh, é emesso dal Gestore della Rete di Trasmissione Nazionale (GRTN) su comunicazione del produttore circa la produzione dell'anno precedente, o relativamente alla producibilità attesa nell'anno da fonte rinnovabile in corso o nell'anno successivo. I produttori e gli importatori soggetti all'obbligo, entro il 31 marzo di ogni anno, a partire dal 2003, trasmettono l'annullamento al GRTN i certificati verdi relativi all'anno precedente per In osservanza del protocollo di Kyoto, in ambito nazionale sono stati emanati i seguenti ulteriori provvedimenti:

Deliberazione CIPE n. 126 del 6 agosto 1999 con cui é stato approvato il libro bianco per la valorizzazione energetica delle fonti rinnovabili;

Legge n. 120 del 01 giugno 2002 "Ratifica ed esecuzione del Protocollo di Kyoto alla Convenzione Quadro delle Nazioni Unite sui cambiamenti climatici, fatto a Kyoto, l'11 dicembre 1997".

Piano di azione nazionale per la riduzione delle emissioni di gas a effetto serra, approvato con delibera CIPE n. 123 del 19 dicembre 2002 (revisione della Delibera CIPE del 19 novembre 1998).

Il "Libro Bianco" italiano per la "valorizzazione energetica delle fonti rinnovabili" (aprile 1994) afferma che "Il Governo italiano attribuisce alle fonti rinnovabili una rilevanza strategica". Per quanto concerne più nel dettaglio i riferimenti normativi recenti relativi alla produzione di energia da fonte solare fotovoltaica, é possibile sintetizzare la normativa tecnico-amministrativa come nel seguito:

- Decreto Legislativo 29 dicembre 2003, n.º 387 (attuativo della Direttiva 2001/77/CE) Decreto del Ministro delle attività produttive 28 luglio 2005. "Criteri per l'incentivazione della produzione di energia elettrica mediante conversione fotovoltaica della fonte solare";
- Decreto del Ministero dello incentivare la produzione di Sviluppo Economico 19 febbraio 2007, "Criteri e modalità per energia elettrica mediante conversione fotovoltaica della fonte solare, in attuazione dell'articolo 7 del Decreto Legislativo 29 dicembre 2003, numero 387" Delibere dell'Autorità per l'Energia Elettrica e il Gas (nel seguito AEEG o Autorità) n. 89, 281, 33/08;
- Normativa tecnica inerente alla connessione alla rete in Media Tensione (MT) o Alta Tensione (AT) sviluppata dai distributori (Terna, Enel, ecc.).

Con il Decreto 10 settembre 2010 "Linee guida per l'autorizzazione degli impianti alimentati da fonti rinnovabili" il Ministero dello Sviluppo Economico di concerto con il Ministero dell'Ambiente e della Tutela del Territorio e del Mare e con il Ministero per i Beni e le Attività Culturali, ha emanato le "linee guida per il procedimento di cui all'art. 12 del decreto legislativo 29 dicembre 2003, n° 387 per l'autorizzazione alla costruzione e all'esercizio di impianti di produzione di elettricità da fonti rinnovabili nonché linee guida tecniche per gli impianti stessi".

Il testo e suddiviso in cinque parti e quattro allegati, di cui:

- Parte I: disposizioni generali;
- Parte II: Regime giuridico delle autorizzazioni;
- Parte III: Procedimento unico. All'art. 13.1 b) V indica la necessità di "analisi delle possibili ricadute sociali, occupazionali ed economiche dell'intervento a livello locale per gli impianti di potenza superiore a 1 MW.
- Parte IV: Inserimento degli impianti nel paesaggio sul territorio.

All'art. 16.1, punto e, si indica come elemento ottimale per la valutazione positiva dei progetti una progettazione legata a specificità dell'area in cui viene realizzato l'intervento con riguardo alla localizzazione in aree agricole, assume rilevanza l'integrazione dell'impianto nel contesto delle tradizioni agroalimentari locali e del paesaggio rurale, sia per quanto attiene alla sua realizzazione che al suo esercizio. Inoltre, al punto g si fa riferimento al coinvolgimento dei cittadini e alla formazione di personale e maestranze future. All'art. 17 invece vengono definite le "aree non idonee"; al comma 1 si indica che le Regioni e le Province autonome devono procedere con l'indicazione delle aree e dei siti non idonei per la realizzazione di specifiche tipologie di impianti. Questo deve essere stabilito attraverso apposita istruttoria previa verifica delle tutele ambientali, paesaggistiche, storico-artistiche, delle tradizioni agroalimentari locali, della biodiversità e del paesaggio rurale. Per conciliare lo sviluppo delle energie rinnovabili e le politiche di tutela ambientale e del paesaggio le Regioni e le Province autonome devono considerare la propria quota assegnata di produzione di FER Parte V: disposizioni transitorie e finali.

La definizione delle aree non idonee dovrà tener conto degli strumenti di pianificazione vigenti dovrà seguire alcuni criteri prefissati. Questi esprimono la disciplina dell'individuazione delle aree basandola su "criteri oggettivi legati agli aspetti di tutela", differenziate in base alle diverse fonti e taglie degli impianti, non impedendo la costruzione di impianti su aree agricole ed evitando definizioni generiche di tutela su porzioni significative di territorio. Altri principi ispiratori della scelta delle aree non idonee dovrà essere

l'impatto cumulativo creato dalla presenza di un numero eccessivo di impianti. In generale **costituiscono** aree non idonee i siti maggiormente sensibili e vulnerabili quali:

- siti UNESCO o all'interno di coni visuali storicizzati anche in località turistiche famose in prossimità di parchi archeologici ed emergenze di particolare interesse in aree naturali protette ai diversi livelli (nazionale, regionale, locale)
- zone designate Ramsar
- aree della Rete Natura 2000 all'interno di IBA
- altre aree importanti per la funzione di connettività ecologica e per la biodiversità, quali i
 corridoi naturali di spostamento e migrazione; incluse le aree che per la presenza di specie animali
 e vegetali sono protette secondo Convenzioni internazionali e Direttive Comunitarie.
- Le aree agricole interessate da produzioni agricolo-alimentari paesaggistico culturale e con un'elevata capacità di uso del suolo.
- Aree perimetrale PAI di qualità e pregio.

Successivamente II Governo ha adottato il D.Lgs. 16 giugno 2017 n. 104, di modifica del Titolo III della Parte II del D.Lgs. 3 aprile 2006, n. 152, pubblicato nella Gazzetta Ufficiale n. 156 del 16.7.2017 ed entrato in vigore il 21 luglio 2017. Tale provvedimento legislativo, ha introdotto delle sostanziali modifiche alla disciplina vigente in materia di VIA, in particolare, ridefinendo i confini tra i procedimenti di VIA di competenza statale e regionale con un forte potenziamento della competenza ministeriale ed introducendo all'art. 27bis il nuovo "provvedimento autorizzatorio unico regionale".

Inoltre, lo stesso provvedimento ridefinisce all'art. 19 il procedimento di verifica di assoggettabilità alla VIA, volto ad accertare se un progetto che determini potenziali impatti ambientali significativi e negativi debba essere sottoposto al procedimento di VIA. Le disposizioni introdotte dal D.Lgs. n. 104/2017 sono di immediata applicazione nei confronti dei procedimenti di VIA avviati dal 16 maggio 2017, inoltre, il comma 4 dell'art. 23 D.Lgs. n. 104/2017, riportante "Disposizioni transitorie e finali", assegna alle Regioni ed alle Province autonome di Trento e di Bolzano il termine del 18 novembre 2017 per disciplinare con proprie leggi o regolamenti l'organizzazione e le modalità di esercizio delle funzioni amministrative ad esse attribuite in materia di VIA, nonché l'eventuale conferimento di tali funzioni o di compiti specifici agli altri enti territoriali sub-regionali.

Più recentemente e come sopra riportato a seguito dell'emanazione del D.L. 77/2021, entrato in vigore il 31.05.2021, successivamente convertito, con modificazioni, in legge L. n. 108 del 29.07.2021, ha introdotto delle modifiche al D.Lgs. n. 152/2006, tra cui, all'art. 31 (Semplificazione per gli impianti di accumulo e fotovoltaici e individuazione delle infrastrutture per il trasporto del G.N.L. in Sardegna), c. 6, la seguente: «All'Allegato II alla Parte seconda del decreto legislativo 3 aprile 2006, n. 152, al paragrafo 2), è aggiunto, in fine, il seguente punto: "- impianti fotovoltaici per la produzione di energia elettrica con potenza complessiva superiore a 10 MW."», che comporta un trasferimento al Ministero della transizione ecologica (Mi.T.E.) della competenza in materia di V.I.A. per gli impianti fotovoltaici con potenza complessiva superiore a 10 MW.

3.1.3. NORMATIVA REGIONALE IN CAMPO ENERGETICO

D.G.R. 30/02 del 23 maggio 2008: la Giunta Regionale elaborato uno studio per le linee guida sui potenziali impatti degli impianti fotovoltaici e per il loro corretto inserimento ambientale, in riferimentoall'art. 12, comma 10, del D. Lgs. 387/2003. L'idoneità degli impianti fotovoltaici ricadenti in areeagricole è determinata dall'"autoproduzione energetica": gli impianti possono essere installati in

areedi pertinenza di stabilimenti produttivi, nonché di imprese agricole, per i quali integrano esostituiscono l'approvvigionamento energetico in regime di autoproduzione.

D.G.R. 59/12 del 29 ottobre 2008: Vengono confermate come aree idonee quelle compromesse

dal punto di vista ambientale o paesaggistico (discariche e cave dismesse ad esempio); siaggiungono le aree industriali, artigianali e produttive in quanto più propriamente predisposte per

accogliere impianti industriali. Gli impianti fotovoltaici industriali possono essere installati in:

- a) Aree di pertinenza di stabilimenti produttivi, di imprese agricole, di potabilizzatori, di depuratori, di impianti di trattamento, recupero e smaltimento rifiuti, di impianti di sollevamento delle acque o diattività di servizio in genere, per i quali gli impianti integrano o sostituiscono l'approvvigionamentoenergetico in regime di autoproduzione, così come definito all'art. 2, comma 2, del D. Lgs. 16 marzo1999 n. 79 e ss.mm.ii.
- b) aree industriali o artigianali così come individuate dagli strumenti pianificatori vigenti.
- c) aree compromesse dal punto di vista ambientale, costituite esclusivamente da perimetrazioni di discariche controllate di rifiuti in norma con i dettami del D. Lgs. N. 36/03 e da perimetrazioni di areedi cava dismesse, di proprietà pubblica o privata.

Per le categorie d'impianto previste al punto b) è stato fissato un tetto massimo per la potenza installabile, definito in termini di "superficie lorda massima occupabile dell'impianto" e finalizzato allapreservazione della vera funzione delle zone industriali, ossia la creazione di nuove realtà produttive.

D.G.R. 30/02 del 12 marzo 2010: "Applicazione della L.R. n. 3 del 2009, art. 6, comma 3, inmateria di procedure autorizzative per la realizzazione degli impianti di produzione di energia da fontirinnovabili. Atto di indirizzo e Linee Guida". Annullata dal TAR con sentenza del 14 gennaio 2011, n.37, e sostituita dalla Delibera 25/40 "Competenze e procedure per l'autorizzazione di impianti per laproduzione di energia elettrica da fonti rinnovabili. Chiarimenti D.G.R. 10/3 del 12 marzo 2010.

Riapprovazione Linee Guida".

D.G.R. 27/16 del 1° giugno 2011: riferimento normativo per gli impianti di produzione energetica

da fonte rinnovabile fotovoltaica. Nelle tabelle di cui all'Allegato B sono riportate le tipologie di aree"non idonee" individuate a seguito della istruttoria effettuata dalla Regione Sardegna, tenuto contodelle indicazioni contenute nell'Allegato 3, lettera f) delle Linee Guida Ministeriali.

Ulteriori contenuti degli Allegati alla Delibera:

- Tipologia di aree particolarmente sensibili e/o vulnerabili alle trasformazioni territoriali o del paesaggio;
- I riferimenti attuativi di ogni specifica area (ad esempio eventuale fonte del dato, provvedimento normativo o riferimento a una specifica categoria delle norme del PPR);
- Il codice identificativo dell'area;

La descrizione delle incompatibilità riscontrate con gli obiettivi di protezione individuati per le aree medesime.

L'ultima tabella dell'Allegato B si riferisce esattamente alle "aree già degradate da attività

antropiche, pregresse o in atto (brownfield), tra cui siti industriali, cave, discariche, siti contaminati" (paragrafo 16, comma 1, lettera d)) delle Linee Guida Ministeriali. Si tratta di superfici checostituiscono aree preferenziali in cui realizzare gli impianti fotovoltaici con moduli ubicati al suolo.

L'utilizzo di tali aree per l'installazione dei suddetti impianti, nel rispetto dei criteri rappresentati nellaultima colonna della tabella, diventa il fattore determinante ai fini dell'ottenimento di una valutazionepositiva del progetto.

D.G.R. N. 5/25 del 29.01.2019: "Linee guida per l'Autorizzazione Unica degli impianti alimentati dafonti rinnovabili, ai sensi dell'articolo 12 del D. Lgs. n. 387/2003 e dell'articolo 5 del D. Lgs. n. 28/2011. Modifica della Delib. G. R. n. 27/16 del 1° giugno 2011, incremento limite utilizzo territorio industriale".

Con la Delibera:

si approva l'incremento del limite di utilizzo del territorio industriale per la realizzazione al suolo di impianti fotovoltaici e solari termodinamici nelle aree brownfield definite "industriali, artigianali, di servizio", fino al 20% della superficie totale dell'area;

si prevede che gli Enti di gestione o comunque territorialmente competenti per tali aree (es. Comune ovvero Consorzio Industriale) dispongano con propri atti, i criteri per le attribuzioni delle superfici disponibili per l'installazione degli impianti;

si prevede che tali Enti possano disporre con i medesimi atti, eventuali incrementi al limite menzionato al punto 1 fino ad un massimo del 35% della superficie totale dell'area;

si stabilisce che il parere dei suddetti Enti, rispetto alla conformità circa il rispetto dei suddetti criteri, è vincolante per il rilascio dell'autorizzazione alla realizzazione dell'impianto.

D.G.R. N. 59/90 del 27.11.2020: "Individuazione delle aree non idonee all'installazione di impianti alimentati da fonti energetiche rinnovabili.".

Con la Delibera vengono abrogate:

la DGR 3/17 del 2009;

la DGR 45/34 del 2012;

la DGR 40/11 del 2015

la DGR 28/56 del 26/07/2007

la DGR 3/25 del 2018 – esclusivamente l'Allegato B

Vengono pertanto individuate in una nuova proposta organica le aree non idonee, ossia soggette aun iter di approvazione complesso per la presenza di vincoli ecc., per l'installazione di impianti energetici da fonti energetiche rinnovabili.

3.1.4. PIANO ENERGETICO REGIONALE (PEARS)

Il Piano Energetico Ambientale Regionale (PEARS) e lo strumento attraverso il quale l'Amministrazione Regionale persegue obiettivi di carattere energetico, socio-economico e ambientale al 2020 partendo dall'analisi del sistema energetico e la ricostruzione del Bilancio Energetico Regionale (BER).

La Giunta Regionale con Delibera n. 5/1 del 28/01/2016 ha adottato il nuovo Piano Energetico ed Ambientale della Regione Sardegna 2015-2030.

Le linee di indirizzo del Piano Energetico ed Ambientale della Regione Sardegna, riportate nella Delibera della Giunta Regionale n. 48/13 del 2.10.2015, indicano come obiettivo strategico di sintesi per l'anno 2030 la riduzione delle emissioni di CO2 associate ai consumi della Sardegna del 50% rispetto ai valori stimati nel 1990. Per il conseguimento di tale obiettivo strategico sono stati individuati i seguenti Obiettivi Generali (OG):

- OG1. Trasformazione del sistema energetico Sardo verso una configurazione integrata e intelligente (Sardinian Smart Energy System)
- OG2. Sicurezza energetica
- OG3. Aumento dell'efficienza e del risparmio energetico
- OG4. Promozione della ricerca e della partecipazione attiva in campo energetico

Uno degli obiettivi del PEARS è quello di garantire un rafforzamento delle infrastrutture energetiche regionali attraverso la realizzazione di importanti progetti quali il cavo sottomarino SAPEI (500 + 500 MW) e il metanodotto GALSI. Lo sviluppo di questi nuovi progetti è fondamentale per fornire energia alle attività produttive regionali in un'ottica di contenimento dei costi e di una conseguente maggiore competitività sui mercati internazionali.

Alla base della pianificazione energetica regionale, in linea con il contesto europeo e nazionale, si pone la tutela ambientale, territoriale e paesaggistica; a tal fine interventi e azioni del Piano dovranno essere guidate dal principio di sostenibilità in maniera tale da ridurre al minimo gli impatti sull'ambiente. In base a questa direttrice e in accordo con quanto espresso dal PPR, gli impianti di produzione di energia rinnovabile dovranno essere preferibilmente localizzati in aree compromesse dal punto di vista ambientale quali cave dismesse, discariche o aree industriali.

Al fine di definire gli scenari energetici riguardanti le fonti rinnovabili finalizzati al raggiungimento dell'obiettivo regionale, la Giunta Regionale con delibera n.12/21 del 20.03.2012 ha approvato il Documento di Indirizzo sulle fonti energetiche rinnovabili (di seguito Documento). Il Documento, in piena coerenza con i riferimenti normativi attuali, ha definito gli scenari di sviluppo e gli interventi a supporto delle politiche energetiche che l'amministrazione regionale intende attuare per contribuire al raggiungimento degli obiettivi nazionali indicati dal Piano d'Azione Nazionale delle Fonti Energetiche Rinnovabili (di seguito PAN-FER). Il Documento ha altresì fornito gli Indirizzi Strategici per l'implementazione delle azioni considerate prioritarie per il raggiungimento dell'Obiettivo Burden Sharing. Gli indirizzi sono definiti sulla base dell'esperienza pregressa, dell'analisi della normativa e degli strumenti di supporto, delle tempistiche di realizzazione e messa in esercizio delle azioni, del contesto socio economico ambientale e sulla base degli iter autorizzativi avviati e conclusi o in via di conclusione.

Tra gli obiettivi, la Strategia 4 – Solare, individua iniziative volte alla progressiva integrazione della tecnologia solare fotovoltaica con le nuove tecnologie a maggiore efficienza, produttività e gestibilità in termini energetici quali fotovoltaico a concentrazione e solare termodinamico.

Le iniziative devono essere di 3 tipologie:

- Individuazione di aree idonee che abbiano le caratteristiche adatte ad accogliere gli impianti;
- Cofinanziamento dei progetti ritenuti idonei;

Promozione di accordi di programma con il coinvolgimento attivo degli enti locali territoriali.

Coerentemente con la politica di incentivazione nazionale le attuali tecnologie fotovoltaiche presenti sul mercato dovrebbero essere indirizzate prevalentemente verso impianti di piccola taglia (<20 kWp) distribuiti nel territorio e caratterizzati da elevati livelli di integrazione architettonica, ed inoltre mirati all'autoconsumo degli utenti.

3.1.5. NORMATIVA REGIONALE DI RIFERIMENTO IMPIANTI FOTOVOLTAICI

Con riferimento alla tipologia di impianto in esame (impianto FV da realizzarsi sul terreno), il principale atto normativo di riferimento di carattere regionale e attualmente rappresentato dalla Deliberazione della Giunta Regionale n. 59/90 del 27.112020, che reca la disciplina attuativa rispetto alle disposizioni di cui al Decreto del Ministero per lo Sviluppo Economico del 10 settembre 2010.

Al fine di rendere uniforme e chiara la normativa vigente con tale deliberazione la G.R. ha abrogato le seguenti norme contenute nelle precedenti delibere di G.R.:

- 1) la Delib.G.R. n. 28/56 del 26.7.2007 concernente "Studio per l'individuazione delle aree in cui ubicare gli impianti eolici (art. 112, delle Norme tecniche di attuazione del Piano Paesaggistico Regionale art 18 comma 1 della L.R 29 maggio 2007 n. 2)";
- 2) la Delib.G.R n. 3/17 del 16.1.2009 avente ad oggetto "Modifiche allo "Studio per l'individuazione delle aree in cui ubicare gli impianti eolici" (Delib.G.R. n. 28/56 del 26.7.2007)";
- 3) l'Allegato B ("Individuazione delle aree e dei siti non idonei all'installazione di impianti fotovoltaici a terra"), della Delib.G.R. n. 3/25 del 23 gennaio 2018 concernente "Linee guida per l'Autorizzazione Unica degli impianti alimentati da fonti rinnovabili, ai sensi dell'articolo 12 del D.Lgs. n. 387 del 2003 e dell'articolo 5 del D.Lgs. 28 del 2011. Modifica della deliberazione n. 27/16 del 1 giugno 2011" e della Delib.G.R. n. 27/16 del 1.6.2011 concernente "Linee guida attuative del decreto del Ministero per lo Sviluppo Economico del 10.9.2010 "Linee guida per l'autorizzazione degli impianti alimentati da fonti rinnovabili", e modifica della Delib.G.R. n. 25/40 dell'1.7.2010";
- 4) la Delib.G.R. n. 45/34 del 12.11.2012 avente ad oggetto "Linee guida per la installazione degli impianti eolici nel territorio regionale di cui alla Delib.G.R. n. 3/17 del 16.1.2009 e s.m.i. Conseguenze della Sentenza della Corte Costituzionale n. 224/2012. Indirizzi ai fini dell'attuazione dell'art 4 comma 3 del D.Lgs. n. 28/2011";
- 5) la Delib.G.R. n. 40/11 del 7.8.2015 concernente "Individuazione delle aree e dei siti non idonei all'installazione degli impianti alimentati da fonti di energia eolica".

Il percorso di individuazione delle suddette **aree non idonee** ha anche tenuto conto delle esperienze pregresse dovute alle criticità emerse in fase istruttoria di istanze di impianti fotovoltaici presentate agli uffici dell'amministrazione regionale e dei precedenti atti di indirizzo della Giunta sulla materia, Sulla base di quanto precede, alla D.G.R. 59/90 del 27/11/2020 e allegata tutta la documentazione necessaria ad "Individuazione delle aree e dei siti non idonei all'installazione di impianti fotovoltaici a terra. Il documento individua, una lista di aree particolarmente sensibili e vulnerabili alle trasformazioni territoriali o del paesaggio potenzialmente ascrivibili alla installazione di impianti fotovoltaici su suolo. Per ogni area non idonea così identificata, viene riportata la descrizione delle incompatibilità riscontrate con gli obiettivi di protezione individuati.

La normativa statale e quella regionale relative alle fonti di energia rinnovabile prendono il via dallaDirettiva 2001/77/CE sulla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabilinel mercato interno dell'elettricità. La Direttiva costituisce il primo quadro legislativo per il

mercatodelle fonti energetiche rinnovabili relative agli stati membri della Comunità Europea, con l'obbligo diquesti ultimi di recepire la Direttiva medesima entro ottobre 2003.

Con il D. Lgs. 29 dicembre 2003, n. 387, che rappresenta la prima legislazione organica nazionaleper la disciplina dell'energia elettrica prodotta da fonti rinnovabili e definisce le nuove regole diriferimento per la promozione delle fonti rinnovabili, viene istituita l'Autorizzazione Unica (art. 12) eviene disciplinato il procedimento unico semplificato della durata di 180 giorni.

Al comma 4 dell'art. 12 si specifica che "[...] l'autorizzazione di cui al comma 3 è rilasciata aseguito di un procedimento unico, al quale partecipano tutte le Amministrazioni interessate, svolto nelrispetto dei principi di semplificazione e con le modalità stabilite dalla legge 7 agosto 1990, n. 241, esuccessive modificazioni e integrazioni". Il rilascio dell'autorizzazione costituisce titolo a costruire edesercire l'impianto in conformità al progetto approvato e deve contenere, in ogni caso, l'obbligo alripristino dello stato dei luoghi a carico del soggetto esercente a seguito della dismissionedell'impianto. Il termine massimo per la conclusione del procedimento di cui al presente comma nonpuò comunque essere superiore a centottanta giorni".

Al comma 1 dell'art. 12 si stabilisce che "[...] le opere per la realizzazione degli impianti alimentati da fonti rinnovabili, nonché le opere connesse e le infrastrutture indispensabili alla costruzione eall'esercizio degli stessi impianti, autorizzate ai sensi del comma 3, sono di pubblica utilità edindifferibili ed urgenti", e pertanto consentono di attivare il procedimento espropriativo di cui al D.P.R.327/01.

La Regione Sardegna con l'allegato alla D.G.R. 10/3 del 12 marzo 2010 "Applicazione della L.R. n.3/2009, art. 6, comma 3 in materia di procedure autorizzative per la realizzazione degli impianti diproduzione di energia da fonti rinnovabili, Atto di indirizzo e linee guida", ha emanato le linee guidaper l'Autorizzazione Unica e ha individuato nella Regione Autonoma della Sardegna il soggettodeputato al rilascio dell'autorizzazione unica (A.U.), fatta eccezione per alcune tipologie di impianti dipiccola taglia. La stessa deliberazione è stata annullata dal TAR con sentenza n. 37 del 14 febbraio 2011.

Con la D.G.R. 27/16 sono state definitivamente recepite le Linee guida attuative dello Sviluppo Economico del 10 settembre 2010, "Linee Guida per l'autorizzazione degli impianti alimentati da fontirinnovabili".La recente D.G.R. 3/25 del 23 gennaio 2018 ha sostituito gli allegati A, A1, A2, A3, A4, A5 e B1della D.G.R. 27/16.

Le Linee Guida sono lo strumento regolatorio mediante il quale, ai sensi della L. n. 241/1990 e della L.R. n. 24/2016, si definisce e si attua il procedimento amministrativo finalizzato alla emissionedel provvedimento di Autorizzazione Unica, che costituisce l'atto di permesso alla costruzione eall'esercizio degli impianti di produzione di energia elettrica alimentati da fonti energetiche rinnovabilisulla terraferma, delle opere connesse e delle infrastrutture indispensabili alla costruzione eall'esercizio dei medesimi impianti.

Nell'allegato A in particolare si stabilisce che il procedimento unico si conclude entro e non oltre 90giorni consecutivi dalla data di presentazione della istanza. La competenza per il rilasciodell'Autorizzazione Unica è in capo alla Regione Sardegna, Assessorato dell'Industria, "Servizio energia ed economia verde".

D.G.R. 5/25 del 29 gennaio 2019: "Linee guida per l'Autorizzazione Unica degli impianti alimentatida fonti rinnovabili, ai sensi dell'articolo 12 del D.Lgs. n. 387/2003 e dell'articolo 5 del D.Lgs. n.28/2011.

– si approva l'incremento del limite di utilizzo del territorio industriale per la realizzazione al suolo diimpianti fotovoltaici e solari termodinamici nelle aree brownfield definite "industriali, artigianali, diservizio", fino al 20% della superficie totale dell'area;

Modifica della D.G.R. n. 27/16 del 1° giugno 2011, incremento limite utilizzo territorio industriale".

Con la Delibera:

- si prevede che gli Enti di gestione o comunque territorialmente competenti per tali aree (es. Comune ovvero Consorzio Industriale) dispongano con propri atti, i criteri per le attribuzioni delle superfici disponibili per l'installazione degli impianti;
- si prevede che tali Enti possano disporre con i medesimi atti, eventuali incrementi al limite menzionato al punto 1 fino ad un massimo del 35% della superficie totale dell'area;
- si stabilisce che il parere dei suddetti Enti, rispetto alla conformità circa il rispetto dei suddetti criteri, è vincolante per il rilascio dell'autorizzazione alla realizzazione dell'impianto.

L'allegato B della D.G.R 27/16 è stato sostituito dall'allegato B e allegato C della D.G.R 59/90 del27.11.2020.

3.2.PIANO REGIONALE DELLA QUALITA' DELL'ARIA

Il Piano di Prevenzione, Conservazione e Risanamento della **Qualità dell'Aria** è stato approvato con DGR 55/6 del 29.11.2005. Esso rientra in un ampio progetto promosso dalla Regione, che si articola in tre fasi:

- realizzazione dell'inventario regionale sulle sorgenti di emissione;
- valutazione dello stato di qualità dell'aria e conseguente zonizzazione del territorio in aree omogenee;
- definizione di possibili misure di risanamento.

Il Piano è composto da due documenti:

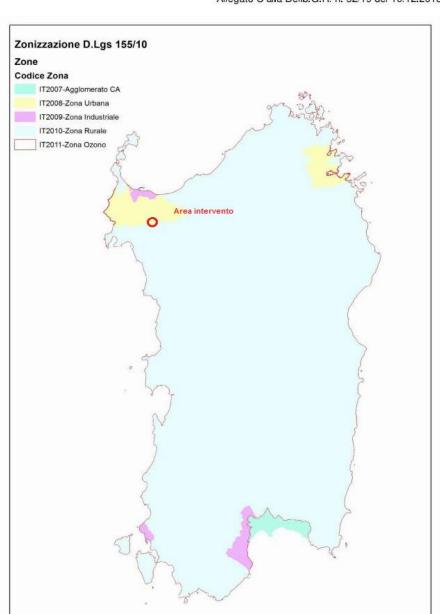
- "Valutazione della qualità dell'aria e zonizzazione", che riporta i risultati del censimento delle emissioni e le relative analisi e individua una prima zonizzazione del territorio;
- "Individuazione delle possibili misure da attuare per il raggiungimento degli obiettivi di cui al D.lgs.
 n. 351/99", che contiene la valutazione finale della qualità dell'aria ambiente e la zonizzazione
 definitiva del territorio regionale, le azioni e gli interventi da attuare per il raggiungimento dei
 valori di qualità nelle aree critiche e le azioni dirette a mantenere la migliore qualità dell'aria
 ambiente nelle restanti aree del territorio regionale.

Nell'ambito della redazione del Piano, la Regione ha inoltre prodotto uno studio sulla Qualità dell'aria - Ottobre 2005, che prende in considerazione le emissioni al 2001 e la loro proiezione al 2005 e 2010, come indicato dal DM 60/02 e dalla Direttiva Ozono (2002/3/CE).

La modellazione è stata eseguita tramite CALMET/CALPUFF, ricostruendo il campo di vento tridimensionale sull'intera Regione per il 2001. In base ai risultati delle simulazioni e all'individuazione delle zone con presenza di criticità, lo studio ha fornito indicazioni su possibili misure di risanamento.

Dallo studio, i comuni in zona di risanamento sono risultati essere i seguenti:

- Agglomerato di Cagliari (Cagliari, Monserrato, Selargius, Quartucciu, Quartu);
- Zona di Sassari (Sassari);
- Zona di Porto Torres (Porto Torres);


- Zona di Sarroch (Sarroch);
- Zona di Portoscuso (Portoscuso).

L'area di progetto ricade in zona IT 2008 Zona Urbana.

Per tale motivo non sono proposte nel Piano misure di risanamento per l'Ozono, anche se si rende necessaria la realizzazione di una rete di monitoraggio del parametro e dei relativi precursori.

Le misure previste dal Piano per la riduzione delle emissioni sono:

- adozione delle migliori tecnologie disponibili;
- alimentazione degli impianti con combustibili meno inquinanti;
- regolamentazione delle situazioni di emergenza.

Allegato C alla Delib.G.R. n. 52/19 del 10.12.2013

3.3.PAI – PIANO DI ASSETTO IDROGEOLOGICO

Il Piano stralcio di bacino per l'Assetto Idrogeologico (PAI) del bacino unico regionale, è stato approvato con Delibera n. 54/33 del 30 dicembre 2004 successivamente integrato e modificato con specifiche varianti. Il PAI è stato redatto dalla Regione Autonoma della Sardegna ai sensi del comma 6 ter, dell'art. 17 della Legge 18 maggio 1989 n. 183 "Norme per il riassetto organizzativo e funzionale della difesa del suolo" s.m.i., successivamente confluita nel D.lgs. 152/2006 "Norme in materia ambientale".

Il PAI ha valore di piano territoriale di settore e, poiché persegue finalità di salvaguardia di persone, beni ed attività dai pericoli e dai rischi idrogeologici, prevale su piani e programmi di settore di livello regionale e infra-regionale e sugli strumenti di pianificazione del territorio previsti dall'ordinamento urbanistico regionale, secondo i principi indicati nella Legge n. 183/1989.

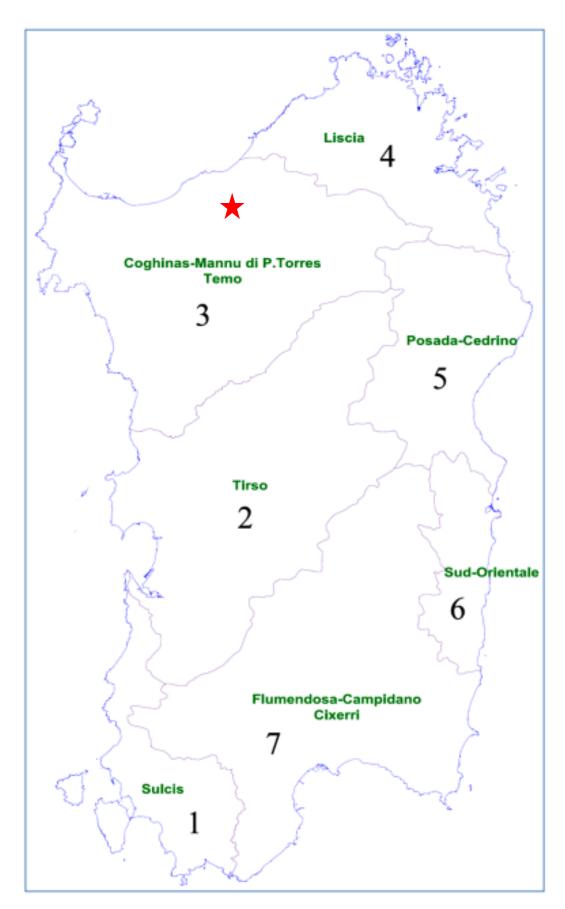
L'art. 17 comma 4 mette in evidenza come il Piano di Assetto Idrogeologico si configuri come uno strumento di pianificazione territoriale che "prevale sulla pianificazione urbanistica provinciale, comunale, delle Comunità montane, anche di livello attuativo, nonché su qualsiasi pianificazione e programmazione territoriale insistente sulle aree di pericolosità idrogeologica".

Il PAI, secondo quanto previsto dall'art. 67 del D.lgs. 152/2006, rappresenta un Piano stralcio del Piano di Bacino Distrettuale, che è esplicitamente finalizzato alla conservazione, alla difesa e alla valorizzazione del suolo e alla corretta utilizzazione delle acque, sulla base delle caratteristiche fisiche ed ambientali del territorio interessato; esso si propone, dunque, ai sensi del D.P.C.M. del 29 settembre 1998, sia di individuare le aree su cui apporre le norme di salvaguardia a seconda del grado di rischio e di pericolosità, sia di proporre una serie di interventi urgenti volti alla mitigazione delle situazioni di rischio maggiore.

Le Norme di Attuazione dettano linee guida, indirizzi, azioni settoriali, norme tecniche e prescrizioni generali per la prevenzione dei pericoli e dei rischi idrogeologici nel bacino idrografico unico regionale e nelle aree di pericolosità idrogeologica e stabiliscono, rispettivamente, interventi di mitigazione ammessi al fine di ridurre le classi di rischio, e la disciplina d'uso delle aree a pericolosità idrogeologica.

Il PAI si applica nel bacino idrografico unico della Regione Sardegna, corrispondente all'intero territorio regionale, comprese le isole minori. L'intero territorio della Sardegna è stato suddiviso nei seguenti sette sub-bacini, caratterizzati da omogeneità geomorfologiche, geografiche e idrologiche ma anche da forti differenze di estensione territoriale:

- Sulcis;
- Tirso;
- Coghinas-Mannu-Temo;
- Liscia;
- Posada-Cedrino;
- Sud Orientale;
- Flumendosa-Campidaro-Cixerri.


Il Comune di Sassari ricade nel **sub bacino 3 Coghinas-Mannu-Temo**, che si estende per circa 5.000 km2 (circa il 23% del territorio regionale).

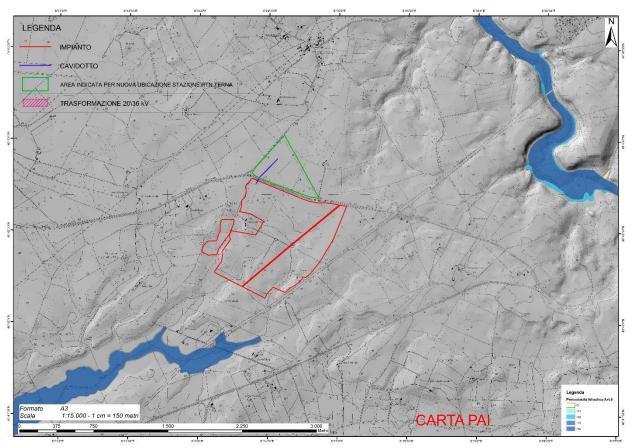
I corsi d'acqua principali sono i seguenti:

- Rio Mannu di Porto Torres, sul quale confluiscono, nella parte montana, il Rio Bidighinzu ed il Rio Funtana Ide;
- Rio Minore;
- Rio Carrabus;.
- Rio Mascari;
- Fiume Temo;
- Rio Sa Entale;
- Fiume Coghinas, il cui bacino occupa una superficie di 2.453 km2 ed è regolato da due invasi; esso riceve i contributi dai seguenti affluenti: Rio Mannu d'Ozieri, Rio Tilchiddesu, Rio Butule, Rio Su Rizzolu, Rio Puddina, Rio Gazzini, Rio Giobaduras.

In totale nel bacino sono presenti nove opere di regolazione in esercizio e cinque opere di derivazione.

Il territorio comunale di Sassari è interessato da aree a rischio idraulico e rischio frana, oltre che da aree a pericolo piena. Tali aree non interessano però l'area di progetto, come evidenziato nelle tavole di progetto.

Divisione territoriale in sub bacini

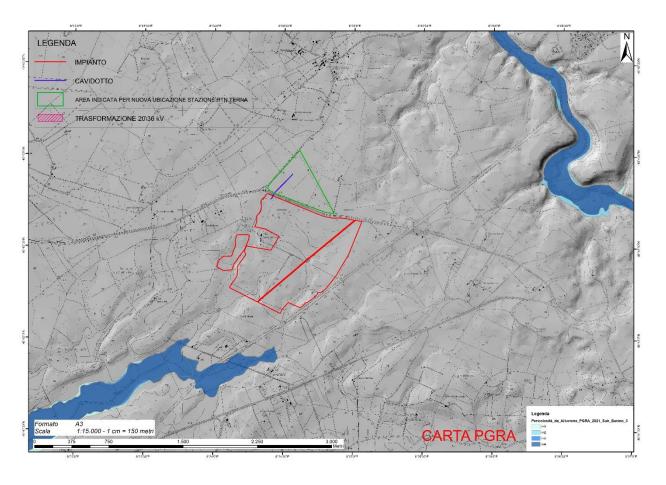

Stralcio Piano di Assetto Idrogeologico Art.8 (PAI)

Il Piano Stralcio per l'Assetto Idrogeologico (PAI) è stato redatto dalla Regione Sardegna ai sensi del comma 6 ter dell'art. 17 della Legge 18 maggio 1989 n. 183 e ss.mm.ii., adottato con Delibera della Giunta Regionale n. 2246 del 21 luglio 2003, reso esecutivo dal Decreto dell'Assessore dei Lavori Pubblici n. 3 del 21 febbraio 2005 e approvato con Decreto del Presidente della Regione del 10.07.2006 n. 67.

Ha valore di piano territoriale di settore e, in quanto dispone con finalità di salvaguardia di persone, beni, ed attività dai pericoli e dai rischi idrogeologici, prevale sui piani e programmi di settore di livello regionale (Art. 4 comma 4 delle Norme Tecniche di Attuazione del PAI). Inoltre (art. 6 comma 2 lettera c delle NTA), "le previsioni del PAI [...] prevalgono: [...] su quelle degli altri strumenti regionali di settore con effetti sugli usi del territorio e delle risorse naturali, tra cui i [...] piani per le infrastrutture, il piano regionale di utilizzo delle aree del demanio marittimo per finalità turistico-ricreative.

Con la Deliberazione n. 12 del 21/12/2021, pubblicata sul BURAS n. 72 del 30/12/2021 il Comitato Istituzionale ha adottato alcune modifiche alle Norme di Attuazione del PAI. Le modifiche sono state successivamente approvate con la Deliberazione di giunta regionale n. 2/8 del 20/1/2022 e con Decreto del Presidente della Regione n. 14 del 7/2/2022.

Le vigenti Norme di Attuazione del P.A.I. recitano, all'art. 8, comma 2, che i Comuni, "con le procedure delle varianti al PAI, assumono e valutano le indicazioni di appositi studi comunali di assetto idrogeologico concernenti la pericolosità e il rischio idraulico, in riferimento ai soli elementi idrici appartenenti al reticolo idrografico regionale, e la pericolosità e il rischio da frana, riferiti a tutto il territorio comunale o a rilevanti parti di esso"



Le aree dove sorgerà l'impianto agro-fotovoltaico non risultano essere interessate da pericolosità idraulica e geomorfologica.

PGRA - Piano di Gestione del Rischio Alluvioni

Il PGRA è redatto ai sensi della direttiva 2007/60/CE e del decreto legislativo 23 febbraio 2010, n. 49 (di seguito denominato D.lgs. 49/2010) ed è finalizzato alla gestione del rischio di alluvioni nel territorio della regione Sardegna.

L'obiettivo generale del PGRA è la riduzione delle conseguenze negative derivanti dalle alluvioni sulla salute umana, il territorio, i beni, l'ambiente, il patrimonio culturale e le attività economiche e sociali. Esso individua strumenti operativi e azioni di governance finalizzati alla gestione preventiva e alla riduzione delle potenziali conseguenze negative degli eventi alluvionali sugli elementi esposti; deve quindi tener conto delle caratteristiche fisiche e morfologiche del distretto idrografico a cui è riferito, e approfondire conseguentemente in dettaglio i contesti territoriali locali.

Il PGRA della Sardegna è stato approvato con Deliberazione del Comitato Istituzionale n. 2 del 15/03/2016 e con Decreto del Presidente del Consiglio dei ministri del 27/10/2016, pubblicato sulla Gazzetta Ufficiale serie generale n. 30 del 06/02/2017.

A conclusione del processo di partecipazione attiva, avviato nel 2018 con l'approvazione della "Valutazione preliminare del rischio" e del "Calendario, programma di lavoro e dichiarazione delle misure consultive", proseguito poi nel 2019 con l'approvazione della "Valutazione Globale Provvisoria" e nel 2020 con l'adozione del Progetto di Piano, con la Deliberazione del Comitato Istituzionale n. 14 del 21/12/2021 è stato approvato il Piano di gestione del rischio di alluvioni della Sardegna per il secondo ciclo di pianificazione.

L'approvazione del PGRA per il secondo ciclo adempie alle previsioni di cui all'art. 14 della Direttiva 2007/60/CE e all'art. 12 del D.Lgs. 49/2010, i quali prevedono l'aggiornamento dei piani con cadenza sessennale.

Le aree dove sorgerà l'impianto agro-fotovoltaico non risultano essere interessate dal PGRA.

PSFF - Piano Stralcio delle Fasce Fluviali

Il Piano Stralcio delle Fasce Fluviali è redatto ai sensi dell'art. 17, comma 6 della legge 19 maggio 1989 n. 183, quale Piano Stralcio del Piano di Bacino Regionale relativo ai settori funzionali individuati dall'art. 17, comma 3 della L. 18 maggio 1989, n. 183.

Ha valore di Piano territoriale di settore ed è lo strumento conoscitivo, normativo e tecnico-operativo, mediante il quale sono pianificate e programmate le azioni e le norme d'uso riguardanti le fasce fluviali.

Con Delibera n. 2 del 17.12.2015, il Comitato Istituzionale dell'Autorità di bacino della Regione Sardegna ha approvato in via definitiva, per l'intero territorio regionale, ai sensi dell'art. 9 delle L.R. 19/2006 come da ultimo modificato con L.R. 28/2015, il Piano Stralcio delle Fasce Fluviali.

L'opera in studio non ricade in aree perimetrate dal PSFF

3.4.PIANO DI GESTIONE DEL DISTRETTO DELLA SARDEGNA

Il Piano di Gestione del Distretto della Sardegna è approvato con Decreto del Presidente del Consiglio dei Ministri del 17 maggio 2013 e pubblicato sulla Gazzetta Ufficiale della Repubblica Italiana del 29 ottobre 2013 - Serie Generale n. 254.

Con propria Delibera n. 1 del 15 marzo 2016 il Comitato Istituzionale dell'Autorità di Bacino ha adottato e approvato, ai sensi dell'art. 2 L.R. 9 novembre 2015, n. 28, il Riesame e Aggiornamento del Piano di Gestione del Distretto Idrografico della Sardegna ai fini del successivo iter di approvazione in sede statale secondo le disposizioni dell'articolo 66 del D.lgs. 152/2006.

Il documento di piano integra e aggiorna il documento già adottato e approvato con Delibera n. 5 del 17 dicembre 2015 alla luce delle risultanze del tavolo di confronto con il MATTM svoltosi, d'intesa con i tecnici della DG Environment della Commissione Europea, nei primi due mesi del 2016.

Tale Piano presenta un quadro integrato e organico, a livello di bacino, delle conoscenze disponibili e identifica i programmi di misure (strutturali e non) da mettere in atto per conseguire gli obiettivi di qualità ambientale.

3.5.PTA - PIANO TUTELA ACQUE

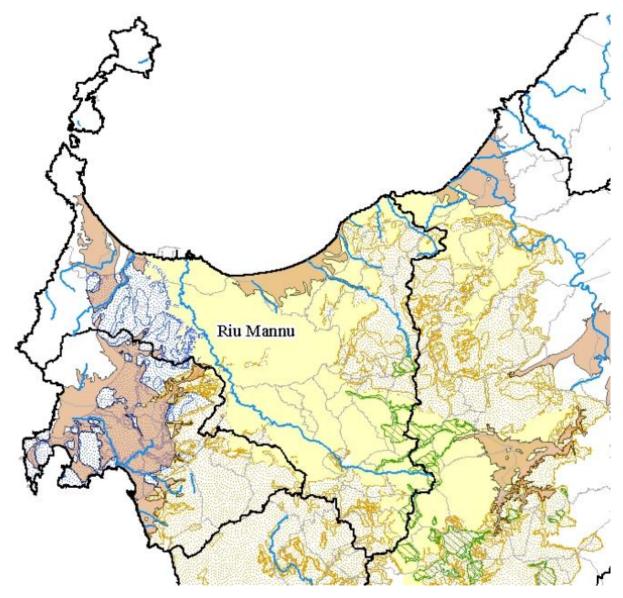
Il Piano di Tutela delle Acque (PTA) è stato approvato con Deliberazione della GiuntaRegionale n. 14/16 del 4 aprile 2006.

Il PTA è lo strumento conoscitivo, programmatico, dinamico che opera attraverso azioni di monitoraggio, programmazione, individuazione di interventi, misure, vincoli, finalizzati alla tutela integrata degli aspetti quantitativi e qualitativi della risorsa idrica. Oltre agli interventi volti a garantire il raggiungimento o il mantenimento degli obiettivi, le misure necessarie alla tutela qualitativa e quantitativa del sistema idrico, il Piano contiene:

- i risultati dell'attività conoscitiva;
- l'individuazione degli obiettivi ambientali e per specifica destinazione;
- l'elenco dei corpi idrici a specifica destinazione e delle aree richiedenti specifiche misure di prevenzione dall'inquinamento e di risanamento;
- le misure di tutela qualitative e quantitative tra loro integrate e coordinate per bacino idrografico;
- il programma di attuazione e verifica dell'efficacia degli interventi previsti.
- Scopo del Piano è il perseguimento dei seguenti obiettivi:
- raggiungimento o mantenimento degli obiettivi di qualità fissati dal D.lgs. 152/99 per i diversi
 corpi idrici ed il raggiungimento dei livelli di quantità e di qualità delle risorse idriche compatibili
 con le differenti destinazioni d'uso;
- recupero e salvaguardia delle risorse naturali e dell'ambiente per lo sviluppo delle attività produttive ed in particolare di quelle turistiche;
- raggiungimento dell'equilibrio tra fabbisogni idrici e disponibilità, per un uso sostenibile della risorsa idrica.

Il Piano suddivide il territorio regionale in Unità Idrografiche Omogenee (U.I.O.) costituite da bacini idrografici limitrofi e dai rispettivi tratti marino-costieri.

L'area di progetto risulta ricadere nell'UIO Mannu di Porto Torres. L'Unità ha un'estensione di circa 1.200 km2, il cui bacino principale, che si estende per circa 670 km2 nell'entroterra, è caratterizzato da una intensa idrografia. Il bacino si sviluppa in una vasta area della Sardegna Nord Occidentale, interessata in periodi diversi da ripetute trasgressioni e regressioni marine e da numerose manifestazioni vulcaniche. A seguito dei movimenti che hanno originato la "Fossa Sarda", il territorio fu invaso dal mare e ricoperto da coltri sedimentarie che, all'atto dell'emersione, hanno originato l'altopiano, oramai serie di colline e falsipiani, in cui oggi si sviluppa il Rio Mannu. Il Rio Mannu e i suoi emissari hanno andamento lineare, quasi ortogonale alla linea di costa. I principali affluenti sono il Rio Bidighinzu ed il Rio Mascari, in destra orografica, ed il Rio Minore ed il Rio Ertas, in sinistra orografica.



Rappresentazione della U.I.O. del Mannu di Porto Torres

Complessivamente l'**U.I.O.** del Mannu di Porto Torres comprende 12 corsi d'acqua del primo ordine e 16 corsi d'acqua del secondo ordine, oltre a cinque corpi idrici tra invasi superficiali e traverse. In merito alle acque di transizione (ovvero le acque salmastre, originate dal mescolamento tra le acque costiere e le acque dolci dei fiumi, quali lagune, stagni costieri e foci dei fiumi), si segnalano tra i più importanti lo Stagno di Platamona, lo Stagno di Pilo e lo Stagno di Casaraccio. Infine, le acque marine costiere hanno uno sviluppo pari a circa 252 km, di cui 26,8 km circa vengono monitorati.

Gli acquiferi sotterranei che interessano il territorio della U.I.O. del Mannu di Porto Torres sono:

- Acquifero dei Carbonati Mesozoici della Nurra;
- Acquifero Detritico-Carbonatico Oligo-Miocenico del Sassarese;
- Acquifero delle Vulcaniti Oligo-Mioceniche della Sardegna Nord-Occidentale;
- Acquifero delle Vulcaniti Plio-Pleistoceniche del Logudoro;
- Acquifero Detritico-Alluvionale Plio-Quaternario della Nurra;
- Acquifero Detritico-Alluvionale Plio-Quaternario della Marina di Sorso.

Complessi acquiferi presenti nella U.I.O. del Mannu di Porto Torres

All'interno dell'UO sono inoltre presenti aree sensibili quali il Lago Casaraccio, il Lago Bidighinzu, lo Stagno Pilo e la Traversa Rio Mascari, e zone potenzialmente vulnerabili da nitrati di origine agricola, in particolare i seguenti acquiferi:

- Acquifero dei carbonati mesozoici della Nurra;
- Acquifero delle Vulcaniti Plio Pleistoceniche del Logudoro;
- Acquifero Detritico Alluvionale Plio Quaternario della Marina di Sorso.

I dati del monitoraggio effettuato nell'ambito del PTA non sono però sufficienti, in termini di densità dei punti di campionamento, da consentire di valutare la effettiva vulnerabilità degli acquiferi sopra menzionati.

In merito alle zone vulnerabili da prodotti fitosanitari si evidenzia che nell'area della U.I.O. del Mannu di Porto Torres è stato riscontrato un utilizzo abbastanza consistente di prodotti fitosanitari, in corrispondenza dei Comuni di Alghero e Putifigari.

Infine, le aree di salvaguardia dell'U.I.O. sono aree di particolare interesse sia ambientale che paesaggistico: tra le aree di maggior pregio vi sono il sito dell'Argentiera ed il Parco Nazionale dell'Asinara.

Inoltre numerosi siti rientranti nella U.I.O. appartengono alla Rete Natura 2000 e/o sono sottoposti a tutela paesistica ai sensi della L. 1497/39.

Dall'analisi del Piano e degli elaborati cartografici si evidenzia che:

- l'area di progetto non è interessata dalla presenza di "aree sensibili", come disciplinate dall'art.
 22 delle NTA di Piano
- l'area di progetto non risulta interessata dalla presenza di zone vulnerabili ai nitrati.
- l'area di progetto non interessa direttamente aree di tutela paesaggistica o appartenenti alla Rete Natura 2000, così come evidenziato nelle tavole di progetto.

Per quanto concerne i corpi idrici significativi ed i relativi obiettivi di qualità fissati dal piano, i corpi idrici ricadenti nell'U.I.O. più prossimi al sito sono:

- il Rio Mannu, circa 3 km ad Est dell'area di intervento;
- le acque di transizione dello Stagno di Platamona, circa 8 km a Nord-Est dell'area di intervento;
- le acque di transizione dello Stagno di Pilo, circa 4 km a Nord-Ovest dell'area di intervento;

In merito alle Acque di Transizione il Piano riporta che "lo stato conoscitivo attuale sulle acque di transizione della Sardegna derivante dal monitoraggio eseguito ai sensi del D.lgs. 152/99 (ora sostituito dal D. Lgs.152/06 s.m.i.) non consente di evidenziare delle criticità e quindi di definire compiutamente degli obiettivi per la loro qualità ambientale. Di conseguenza, al fine di predisporre degli studi ad hoc su questi corpi idrici andranno individuati gli stagni più importanti per dimensioni e caratteristiche ambientali. Si deve inoltre intensificare la frequenza del monitoraggio ad almeno una misura mensile. Parte integrante del monitoraggio sarà la definizione di una metodologia ad hoc che consente di classificare lo stato ambientale di questi corpi idrici. Tuttavia, sulla base dello stato conoscitivo derivante da studi e monitoraggi pregressi, citati a proposito delle criticità, per alcuni stagni possono definirsi degli obiettivi meno generici".

Il Piano di Tutela delle Acque prevede, tra l'altro, l'individuazione di una serie di azioni e misure finalizzate alla tutela integrata e coordinata degli aspetti qualitativi e quantitativi della risorsa idrica, tra cui la disciplina degli scarichi che deve regolamentare gli scarichi in ambiente ed in pubblica fognatura in funzione del rispetto degli obiettivi di qualità fissati per i corpi idrici e la cui emanazione è demandata alla Regione dal D.lgs. 152/2006 (Parte III).

Con DGR n. 69/25 del 10/12/2008 è stata approvata la direttiva concernente la "Disciplina degli scarichi", in attuazione del Piano di Tutela delle Acque, della parte III del D.lgs. 152/2006 e s.m.i. e della legge regionale n. 9/2006 e s.m.i., che contiene le norme regolamentari per gli scarichi dei reflui urbani (acque domestiche o assimilate) e dei reflui industriali. Tutti gli scarichi devono essere preventivamente autorizzati secondo le indicazioni della direttiva in oggetto.

3.6.PIANO DI BONIFICA DEI SITI CONTAMINATI

La Regione Sardegna, con DGR n. 45/34 del 05/12/2003, ha approvato il Piano Regionale di Bonifica (PRB) dei siti inquinati, che costituisce uno degli stralci funzionali tematici che compongono la Pianificazione Regionale di gestione dei rifiuti.

Il Piano Regionale delle Bonifiche fa riferimento e dà attuazione alle disposizioni stabilite dalla normativa di settore, nazionale e regionale, raccoglie e organizza tutte le informazioni presenti sul territorio, delinea le azioni da adottare per gli interventi di bonifica e messa in sicurezza permanente, definisce le priorità di intervento, effettua una ricognizione dei finanziamenti concessi e condotta una prima stima degli oneri necessari per la bonifica delle aree pubbliche.

L'obiettivo principale del Piano consiste nel risanamento ambientale di quelle aree del territorio regionale in cui l'attività industriale e civile ha generato pesanti impatti sull'ambiente.

Il Piano Regionale delle Bonifiche ha censito e mappato tutti i siti potenzialmente inquinati, attraverso l'individuazione di tutti gli atti e le segnalazioni ufficiali inerenti situazioni di inquinamento sul territorio della Regione Sardegna, suddividendoli in:

- siti interessati da attività industriali;
- discariche dismesse di rifiuti urbani;
- siti di stoccaggio idrocarburi (distributori di carburanti; sversamenti da stoccaggi di idrocarburi presso utenze civili o di servizio);
- siti contaminati da amianto;
- siti interessati da sversamenti accidentali non riconducibili ad attività industriale;
- siti interessati da attività minerarie dismesse.
- Stando ai dati dell'anagrafe dei siti inquinati, risultano censiti complessivamente n. 364 siti, di cui:
- 157 attività minerarie pregresse o in atto;
- 45 attività industriali;
- 59 attività di smaltimento controllato o incontrollato di rifiuti solidi urbani o assimilabili di cui è prioritaria la bonifica;
- 98 stoccaggi o perdite accidentali di idrocarburi;
- stoccaggi abusivi di rifiuti contenenti amianto;
- sversamenti accidentali non riconducibili ad alcuna attività industriale.

Il Piano ha dunque determinato le priorità di intervento sulla base dell'applicazione di diversi criteri di valutazione e modelli di calcolo, in modo tale da tenere conto delle specificità delle varie tipologie di siti inquinati.

Le aree da bonificare risultano concentrate essenzialmente nelle Province di Cagliari, Sassari e Carbonia-Iglesias. Tale fatto è imputabile alla presenza in queste aree dei poli industriali di Macchiareddu, Sarroch, Portovesme e Porto Torres e delle vecchie aree minerarie del Sulcis-Iglesiente.

Sono inoltre presenti due siti contaminati di interesse nazionale:

- il Sulcis-Iglesiente-Guspinese, che comprende 40 Comuni ubicati nella parte sud-occidentale della Sardegna
- l'Area Industriale di Porto Torres.

3.7.PIANO REGIONALE DELLE ATTIVITA' ESTRATTIVE

Il Piano regionale attività estrattive (PRAE) è stato approvato con Deliberazione n. 37/14 del 25/09/2007. Esso si prefigge quale obiettivo "il corretto uso delle risorse estrattive, in un quadro di salvaguardia dell'ambiente e del territorio, al fine di soddisfare il fabbisogno regionale di materiali di cava per uso civile e industriale, e valorizzare le risorse minerarie (prima categoria) e i lapidei di pregio (materiali seconda

categoria uso ornamentale) in una prospettiva di adeguate ricadute socioeconomiche nella regione sarda."

L'assetto del settore estrattivo riportato nel PRAE rispecchia quanto riportato nell'aggiornamento (al 2 marzo 2007) del catasto regionale dei giacimenti di cava e del pubblico registro dei titoli minerari. Il PRAE non individua ulteriori ambiti territoriali estrattivi, oltre quelli elencati nel registro titoli minerari e nel catasto cave.

3.8.PIANO REGIONALE DEI RIFIUTI

La pianificazione regionale in materia di rifiuti è articolata in tre tematiche principali: i rifiuti urbani, i rifiuti speciali e gli imballaggi e rifiuti da imballaggio.

Il Nuovo Piano Regionale dei Rifiuti Urbani, a modifica del Piano del 1998, è stato approvato con DGR 73/7 del 20.12.2008. Il Piano si incentra su due idee fondamentali:

- la necessità di partire dalle raccolte dei rifiuti per programmare e gestire con efficienza ed efficacia le successive operazioni di recupero, trattamento e smaltimento;
- la Gestione Integrata dei Rifiuti che porti al superamento della frammentarietà degli interventi nei singoli bacini, attraverso la creazione di un unico ATO regionale che si occupi principalmente degli impianti di trattamento/smaltimento lasciando la fase di raccolta in capo a Province ed enti locali.

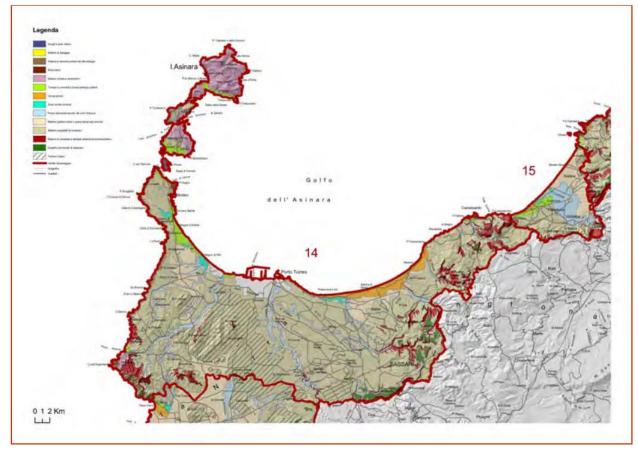
La sezione del Piano relativa ai rifiuti speciali, ovvero il Piano Regionale di Gestione dei Rifiuti Speciali (PRGRS), è stata approvata con DGR 50/17 del 21/02/2012. Essa scaturisce da una analisi approfondita della situazione impiantistica e logistica regionale mirato soprattutto alla determinazione dei nuovi fabbisogni e ad un maggior incentivo al recupero.

Gli obiettivi principali del Piano sono:

- ridurre la produzione e la pericolosità dei rifiuti speciali;
- massimizzare l'invio a recupero e la reimmissione della maggior parte dei rifiuti nel ciclo economico, favorendo in particolare il recupero di energia dal riutilizzo dei rifiuti e minimizzando lo smaltimento in discarica;
- promuovere il riutilizzo dei rifiuti per la produzione di materiali commerciali debitamente certificati e la loro commercializzazione anche a livello locale;
- ottimizzare le fasi di raccolta, trasporto, recupero e smaltimento;
- favorire la realizzazione di un sistema impiantistico territoriale che consenta di garantire il trattamento e lo smaltimento dei rifiuti speciali in prossimità dei luoghi di produzione;
- assicurare che i rifiuti destinati allo smaltimento finale siano ridotti e smaltiti in maniera sicura;
- perseguire l'integrazione con le politiche per lo sviluppo sostenibile;
- assicurare le massime garanzie di tutela dell'ambiente e della salute, nonché di salvaguardia dei valori naturali e paesaggistici e delle risorse presenti nel territorio regionale.

Per la realizzazione dei propri obiettivi il Piano identifica una serie di azioni tra cui, a titolo di esempio non esaustivo, si citano: la formazione, il consolidamento dei rapporti con i consorzi di filiera, il consolidamento delle attività economiche che favoriscono il riciclaggio, riutilizzo e recupero di materia

dai rifiuti, l'incentivazione dello sviluppo di impiantistica in grado di dar risposta ai fabbisogni d'area e della collocazione a recupero dei rifiuti e disincentivazione dello stoccaggio, la definizione di protocolli di controllo della qualità dei rifiuti in ingresso agli impianti, la definizione di apposite linee guida regionali per l'utilizzo dei rifiuti inerti nelle opere pubbliche, la sensibilizzazione presso i Comuni per l'integrazione della raccolta dei RAEE professionali presso i centri di raccolta comunali.


In sintesi, il Piano mira ad individuare percorsi e modalità per assicurare l'attuazione della gestione integrata ed attivare una rete impiantistica che riduca il trasporto di rifiuti. Il Piano stabilisce infine i criteri di idoneità localizzativa per la realizzazione della nuova impiantistica, per gli interventi di adeguamento e/o potenziamento di impianti esistenti, dovranno aver luogo nel pieno rispetto dei criteri di idoneità localizzativa. Tali criteri riguardano anche gli impianti per i rifiuti urbani.

3.9.PPR - PIANO PAESAGGISTICO REGIONALE

Lo strumento vigente di pianificazione paesaggistica a livello regionale è il Piano Paesaggistico Regionale (PPR) approvato con Delibera della Giunta Regionale n. 36/7 del 5 settembre 2006.

Tale piano ha subito una serie di aggiornamenti sino al 2013, anno in cui è stata approvata in via preliminare, con D.G.R. n.45/2 del 25 ottobre 2013, una profonda revisione. La Giunta Regionale, con Deliberazione n. 39/1 del 10 ottobre 2014, ha revocato la D.G.R. del 2013, concernente l'approvazione preliminare del Piano Paesaggistico della Sardegna. Pertanto, attualmente, a seguito di tale revoca, lo strumento vigente è il PPR approvato nel 2006, integrato dall'aggiornamento del repertorio del Mosaico dei Beni Paesaggistici del 2014.

Il Piano identifica la fascia costiera, che è stata suddivisa in 27 ambiti di Paesaggio omogenei (AdP) catalogati tra aree di interesse paesaggistico, compromesse o degradate, quale risorsa strategica

Ambito paesaggistico 14 - Golfo dell'Asinara

fondamentale per lo sviluppo territoriale e riconosce la necessità di utilizzare forme di gestione integrata per garantirne lo sviluppo sostenibile.

Il PPR ha contenuto descrittivo, prescrittivo e propositivo ed articola due principali dispositivi di piano:

- gli Assetti Territoriali, suddivisi in Assetto Storico-Culturale ed Insediativo, che individuano i beni
 paesaggistici, i beni identitari e le componenti di paesaggio sulla base della "tipizzazione" del PPR
 (art. 134 d.lgs. 42/2004);
- gli **Ambiti di paesaggio**, ovvero una sorta di **linee guida e di indirizzo** per le azioni di conservazione, recupero e/o trasformazione.

L'area in cui ricade l'area di progetto, appartiene all'ambito **14 - Golfo dell'Asinara**. caratterizzato da un sistema ambientale complesso, dominato dal complesso della penisola di Stintino, dell'isola di Piana e dell'Asinara, che rappresentano un elemento di separazione tra il mare "di dentro" del Golfo e il mar di Sardegna. Lungo la costa è rilevante il paesaggio dei pascolativi e la presenza degli ecosistemi degli stagni di Pino e Cesaraccio, nonché la connessione tra il sistema dunale e l'insediamento del Bagaglino.

La successiva Figura riporta un estratto della cartografia di piano relativa all'area di progetto, classificata ai sensi del PPR prevalentemente come "Colture erbacee specializzate, Utilizzazione agro-forestale, aree incolte".

L'area è classificata come "Colture erbacee specializzate". Secondo la definizione data dal PPR all'art. 28 delle Norme Tecniche di Attuazione queste sono le "Aree ad utilizzazione agro-forestale."

- 1. Sono aree con utilizzazioni agro-silvo pastorali intensive, con apporto di fertilizzanti, pesticidi, acqua e comuni pratiche agrarie che le rendono dipendenti da energia suppletiva per il loro mantenimento e per ottenere le produzioni quantitative desiderate.
- 2. In particolare tali aree comprendono rimboschimenti artificiali a scopi produttivi, oliveti, vigneti,

mandorleti, agrumeti e frutteti in genere, coltivazioni miste in aree periurbane, coltivazioni orticole, colture erbacee incluse le risaie, prati sfalciabili irrigui, aree per l'acquicoltura intensiva e semi-intensiva ed altre aree i cui caratteri produttivi dipendono da apporti significativi di energia esterna.

3. Rientrano tra le aree ad utilizzazione agro-forestale le seguenti categorie:

a. colture arboree specializzate;

- b. impianti boschivi artificiali;
- c. colture erbacee specializzate;

Le prescrizioni su queste aree enunciate all'art. 29 delle NTA del PPR che forniscono i seguenti indirizzi:

- 1. La pianificazione settoriale e locale si conforma alle seguenti prescrizioni:
- a) vietare trasformazioni per destinazioni e utilizzazioni diverse da quelle agricole di cui non sia dimostrata la rilevanza pubblica economica e sociale e l'impossibilità di localizzazione alternativa, o che interessino suoli ad elevata capacità d'uso, o paesaggi agrari di particolare pregio o habitat di interesse naturalistico, fatti salvi gli interventi di trasformazione delle attrezzature, degli impianti e delle infrastrutture destinate alla gestione agro-forestale o necessarie per l'organizzazione complessiva del territorio, con le cautele e le limitazioni conseguenti e fatto salvo quanto previsto per l'edificato in zona agricola di cui agli artt. 79 e successivi;

b) promuovere il recupero delle biodiversità delle specie locali di interesse agrario e delle produzioni agricole tradizionali, nonché il mantenimento degli agrosistemi autoctoni e

dell'identità scenica delle trame di appoderamento e dei percorsi interpoderali, particolarmente nelle aree perturbane e nei terrazzamenti storici;

c) preservare e tutelare gli impianti di colture arboree specializzate.

L'Ambito comprende i territori afferenti al Golfo dell'Asinara. L'apertura del golfo descrive un contesto territoriale che si apre e si relaziona in diverse forme con il sistema costiero.

L'arco costiero è sottolineato dalla presenza di un sistema insediativo rappresentato dai centri di Stintino, Portotorres, Sassari (Platamona), Sorso (La Marina), Sennori, Castelsardo.

Il sistema ambientale è dominato dal complesso della penisola di Stintino, dell'Isola Piana e dell'Asinara che costituiscono l'elemento di separazione fra i due "mari", mare di dentro, interno al golfo, e mare di fuori, il mar di Sardegna.

Alcune direttrici idrografiche strutturano le relazioni fra gli insediamenti: la dominante ambientale del Rio Mannu di Porto Torres collega il territorio di Sassari e Porto Torres; le valli del Rio Frigianu - Rio Toltu - Rio de Tergu connettono l'ambito costiero in cui ricade l'insediamento di Castelsardo con l'ambito di Lu Bagnu che si sviluppa, lungo la direttrice del rio omonimo; il sistema delle aste fluviali sul litorale di Platamona incide il territorio costiero nel tratto prossimo a Sorso. Il sistema del Rio d'Astimini-Fiume Santo e relativi affluenti definiscono la morfologia a valli debolmente incise del paesaggio interno della Nurra occidentale.

La caratterizzazione del rapporto fra insediamento e paesaggio agricolo si configura attraverso la successione di diverse forme di utilizzazione dello spazio: la dispersione insediativa che caratterizza tutto il territorio della Nurra si articola, nella sua porzione occidentale a morfologia basso collinare, lungo due direttrici trasversali (Palmadula-Canaglia e La PetraiaBiancareddu-Pozzo San Nicola) che si appoggiano alla viabilità storica romana, mentre una terza direttrice insediativa collega verso la centralità urbana di Sassari.

Nella porzione centrale, sub-pianeggiante, nel territorio compreso fra la Nurra e la direttrice Sassari-Porto Torres, domina una configurazione rada, di territori aperti con una morfologia ondulata ed un uso del suolo caratterizzato da una copertura erbacea legata ad attività zootecniche estensive e da attività estrattive. Lungo la direttrice insediativa di collegamento fra le centralità urbane di Porto Torres e Sassari si addensano gli annucleamenti urbani (che tendono alla concentrazione in prossimità del capoluogo), con funzioni prevalentemente residenziali e di servizio; nell'ambito compreso fra l'area periurbana di Sassari e il contesto rurale di Sorso, la presenza insediativa è correlata alla organizzazione dello spazio agricolo dedicato a colture specializzate.

In particolare, lo spazio dell'insediamento agricolo-residenziale, nella fascia periurbana di Sassari, è dominato dalla presenza degli oliveti che rappresentano un elemento caratteristico del paesaggio e della coltura locale; la loro coltivazione si spinge anche sui terrazzamenti realizzati sulle formazioni calcaree intorno alla città e hanno costituito un fattore attrattivo per la residenza stabile.

Il paesaggio agricolo dei campi chiusi nelle aree di pianura (Sorso, Platamona) si caratterizza con le coltivazioni ortive e fruttifere.

Nella piana della Nurra, interessata dalle reti consortili per la distribuzione delle acque, il paesaggio si caratterizza per le ampie superfici coltivate a seminativi e in parte utilizzate per l'allevamento ovino e bovino.

L'allevamento estensivo ovino si spinge anche nelle aree con copertura vegetale spontanea costituita da formazioni boschive e arbustive.

La disponibilità di tali terreni è concessa dai soggetti titolari del titolo di proprietà alla società proponente mediante la costituzione di un diritto di superficie per una durata pari alla vita utile di impianto stimata in 30 anni. In generale, l'area deputata all'installazione dell'impianto fotovoltaico risulta essere adatta allo scopo in quanto presenta una buona esposizione alla radiazione solare ed è facilmente raggiungibile ed accessibile attraverso le vie di comunicazione esistenti.

La classificazione delle aree basata sul PPR, oltre che i beni paesaggistici individuati, anche nell'ambito del Mosaico Regionale, sono riportati, nelle immagini sotto riportate.

La Regione Sardegna mette a disposizione due differenti strumenti per la visualizzazione online dei dati cartografici: SardegnaMappe e SardegnaFotoAeere. SardegnaMappe è l'applicazione web che consente, all'interno di un unico strumento, la visualizzazione delle mappe disponibili presso la Regione Sardegna, la consultazione dei metadati. Per facilitare la consultazione dei dati sono stati configurati alcuni navigatori dedicati a temi specifici del territorio, i quali sono

Di Seguito verranno analizzati attraverso il Sardegna Mappe e i seguenti navigatori la situazione vincolistica dell'area in progetto:

1) Cartografia base del PPR

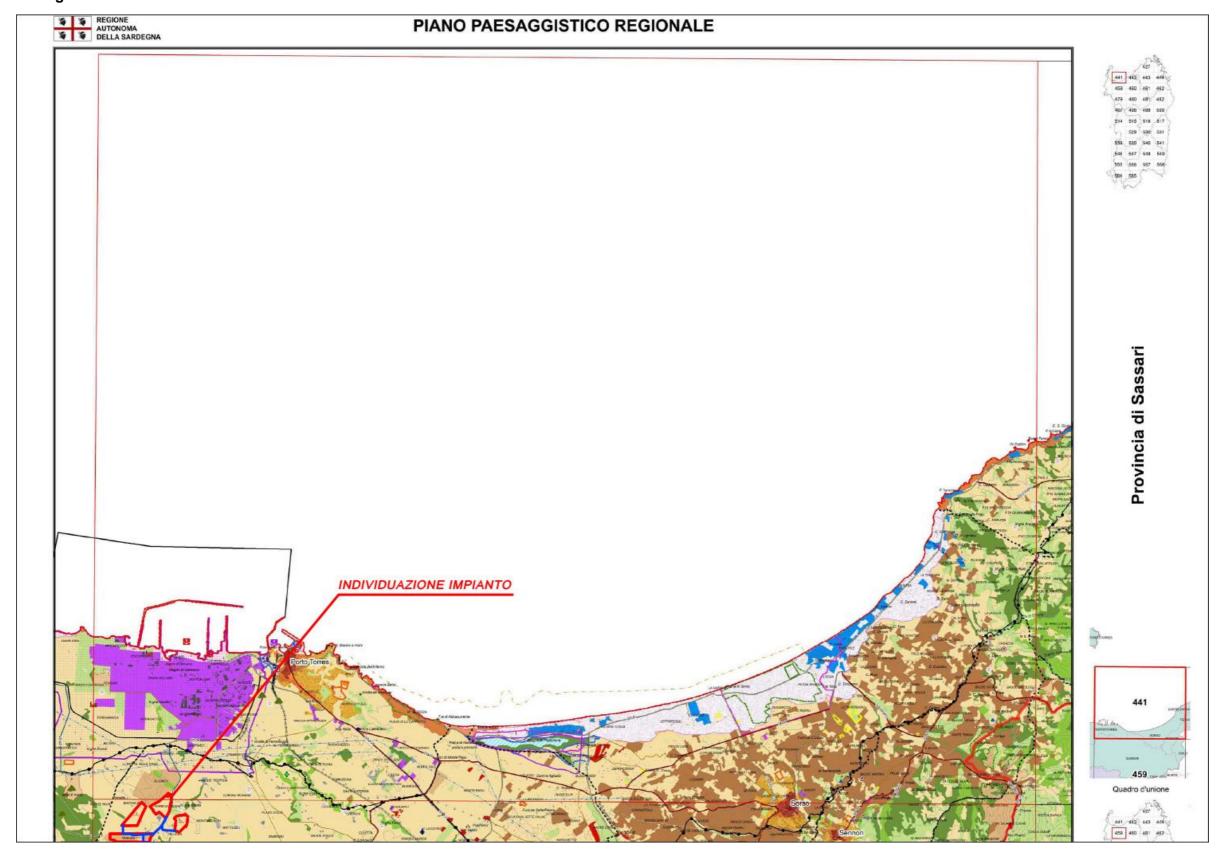
Consultabile e scaricabile sul sito: https://www.sardegnaterritorio.it/pianificazione/pianopaesaggistico/

2) Sardegna Mappe PPR

Il Piano Paesaggistico Regionale, approvato nel 2006, è uno strumento di governo del territorio che persegue il fine di preservare, tutelare, valorizzare e tramandare alle generazioni future l'identità ambientale, storica, culturale e insediativa del territorio sardo, proteggere e tutelare il paesaggio culturale e naturale con la relativa biodiversità e assicurare la salvaguardia del territorio e promuoverne forme di sviluppo sostenibile.

3) Sardegna Mappe Aree Tutelate

E' il navigatore tematico dedicato alle aree della Sardegna soggette a tutela.


4) Sardegna Mappe Fonti Energetiche Rinnovabili

Aree e siti non idonei all'installazione degli impianti alimentati da fonti energetiche rinnovabili. Il navigatore, contenente i layer cartografici attualmente a disposizione della Regione Autonoma della Sardegna, è da utilizzare congiuntamente alla deliberazione G.R. n. 59/90 del 27.11.2020, ed ai relativi allegati, avente ad oggetto "Individuazione delle aree non idonee all'installazione di impianti alimentati da fonti energetiche rinnovabili". Il navigatore rappresenta pertanto un'evoluzione di quello finora pubblicato ai sensi della Delib.G.R. n. 40/11 del 7.8.2015 per la rappresentazione delle aree non idonee all'installazione di impianti alimentati da fonte eolica.

5) PUC Comune Di Sassari

6.6.2 Carta Dei Beni Paesaggistici, Architettonici, Archeologici E Identitari.

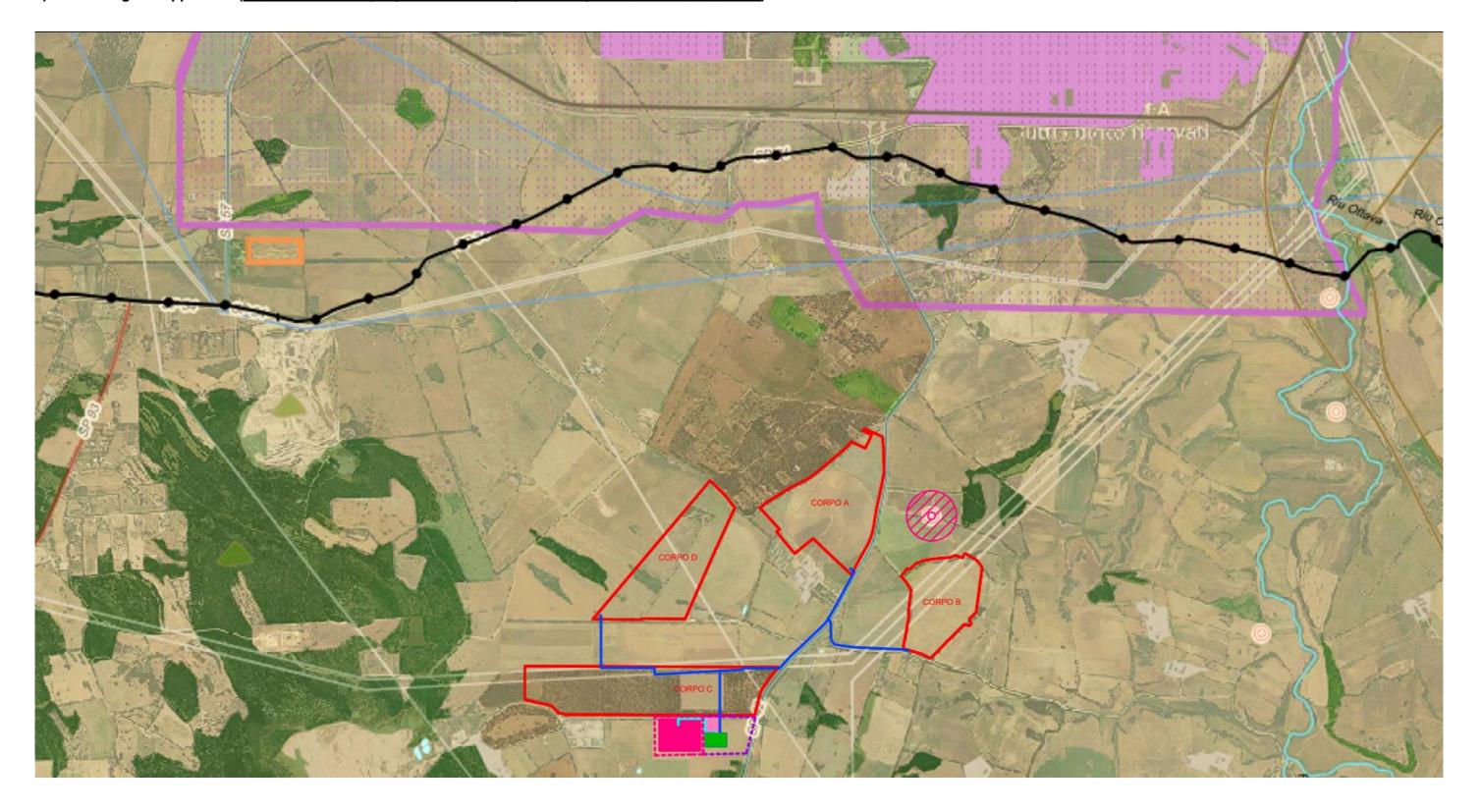
1) Cartografia base del PPR

Piano Paesaggistico Regionale Foglio 441-459 Provincia di Sassari

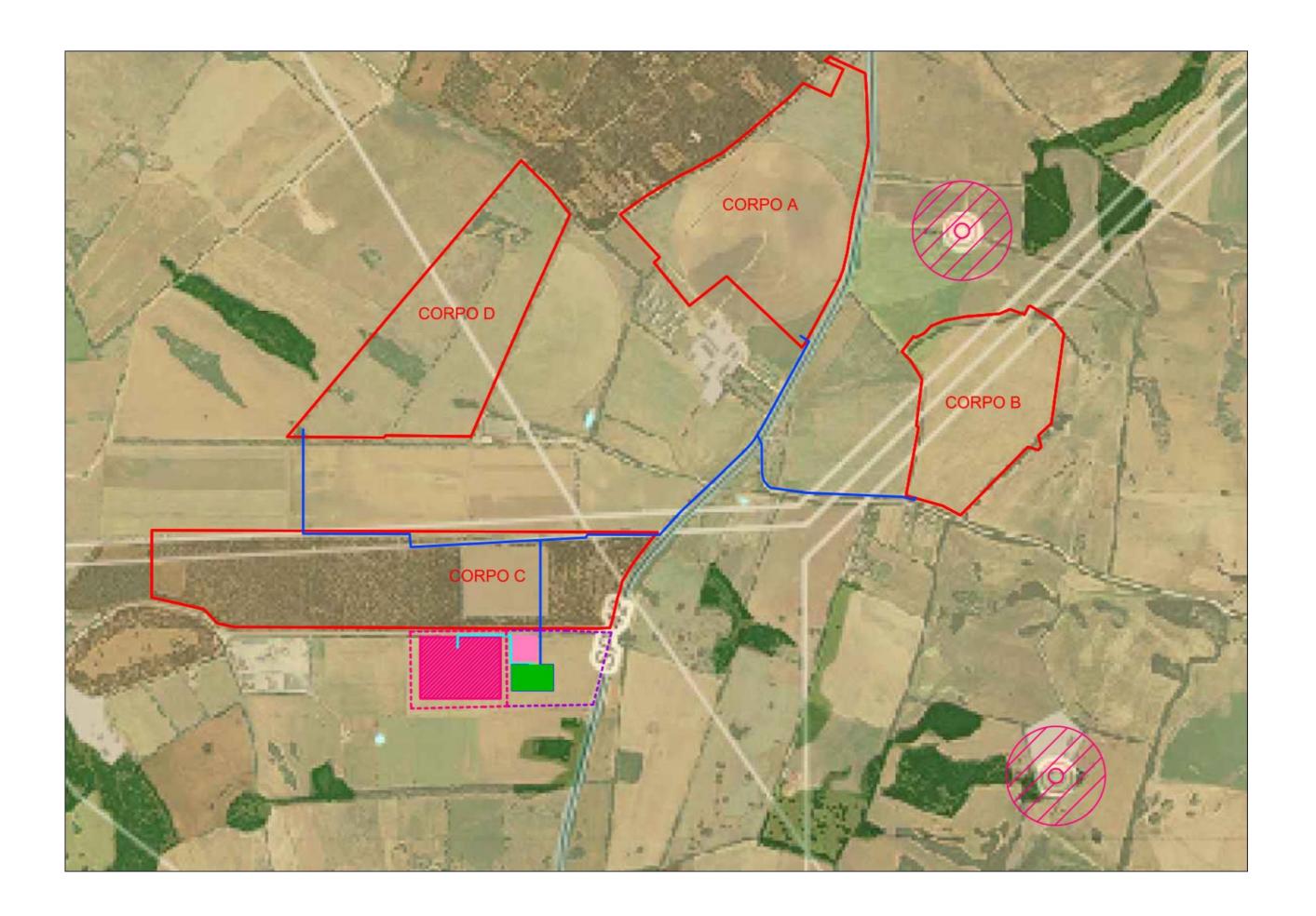
LEGENDA

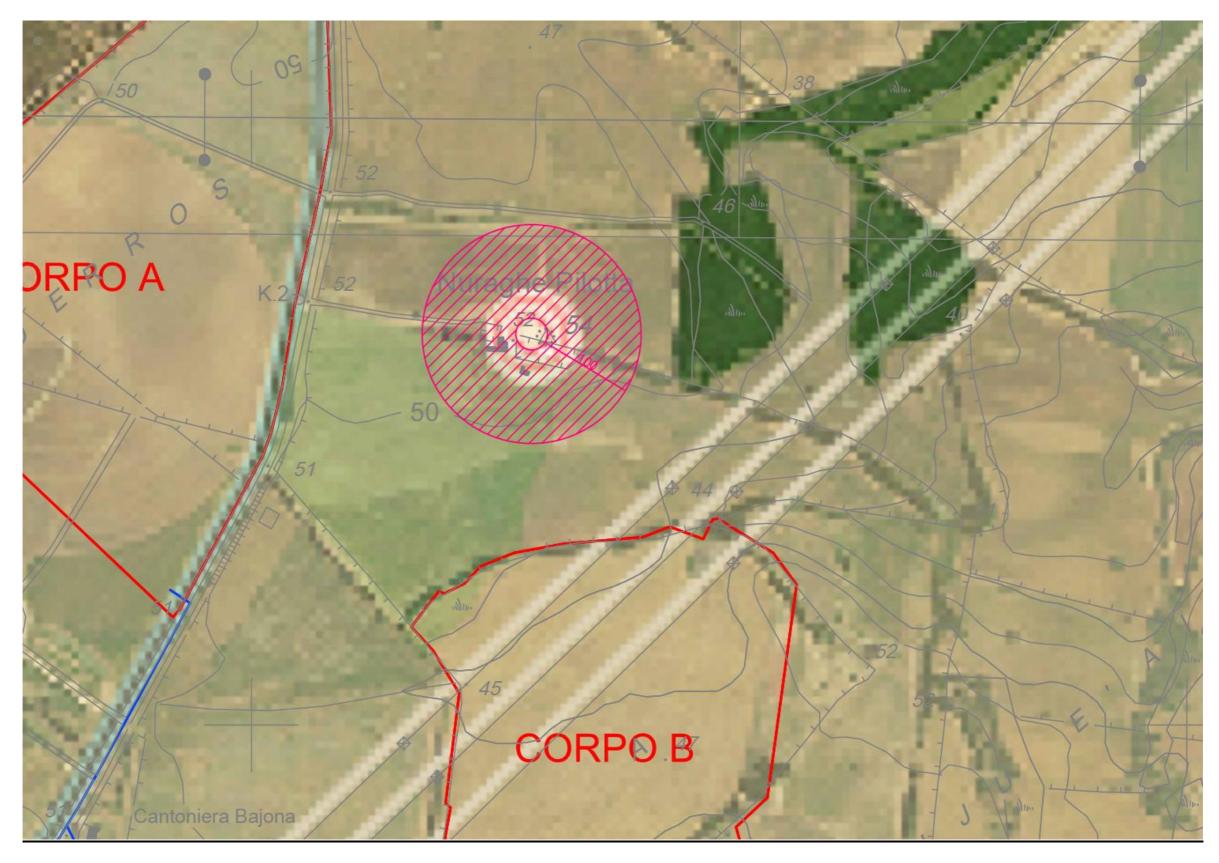
PIANO PAESAGGISTICO REGIONALE

D.Lgs. 22 gennaio 2004 n.42 e succ. mod.

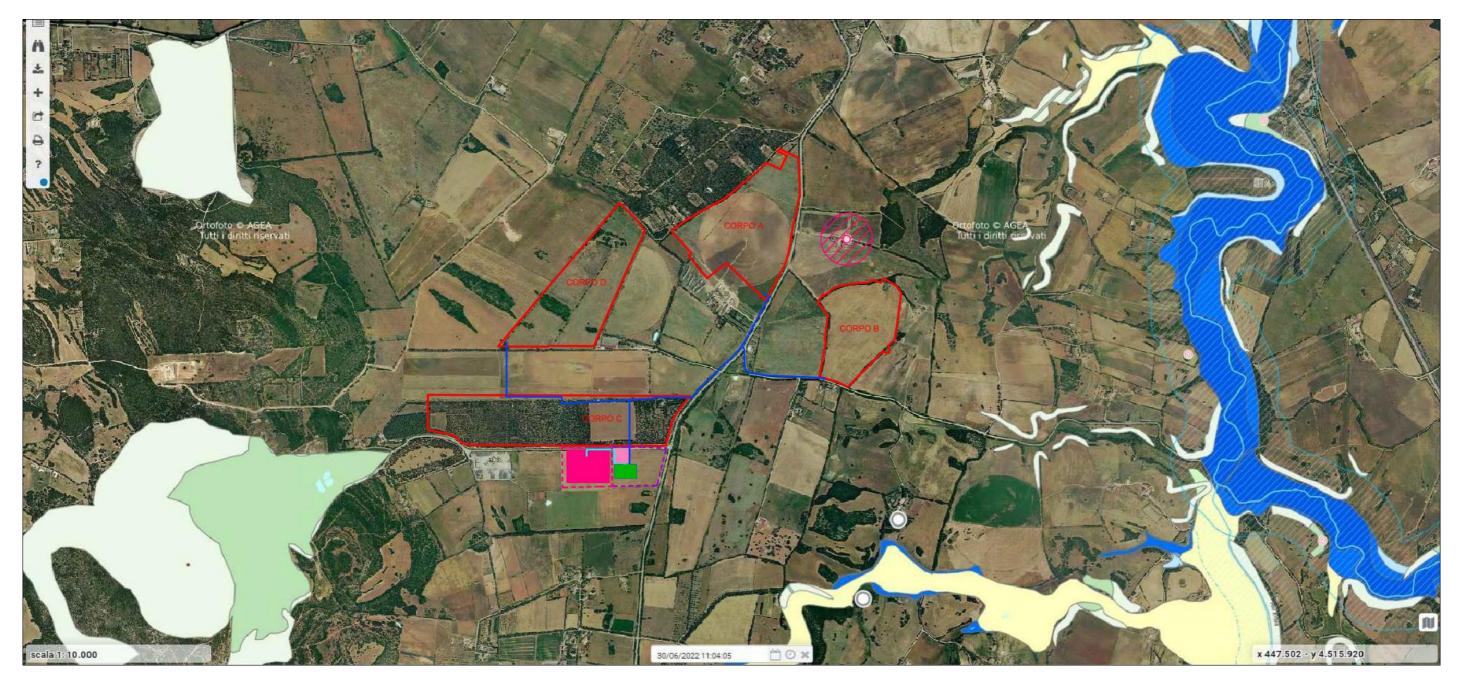

L.R. 25 novembre 2004 n.8

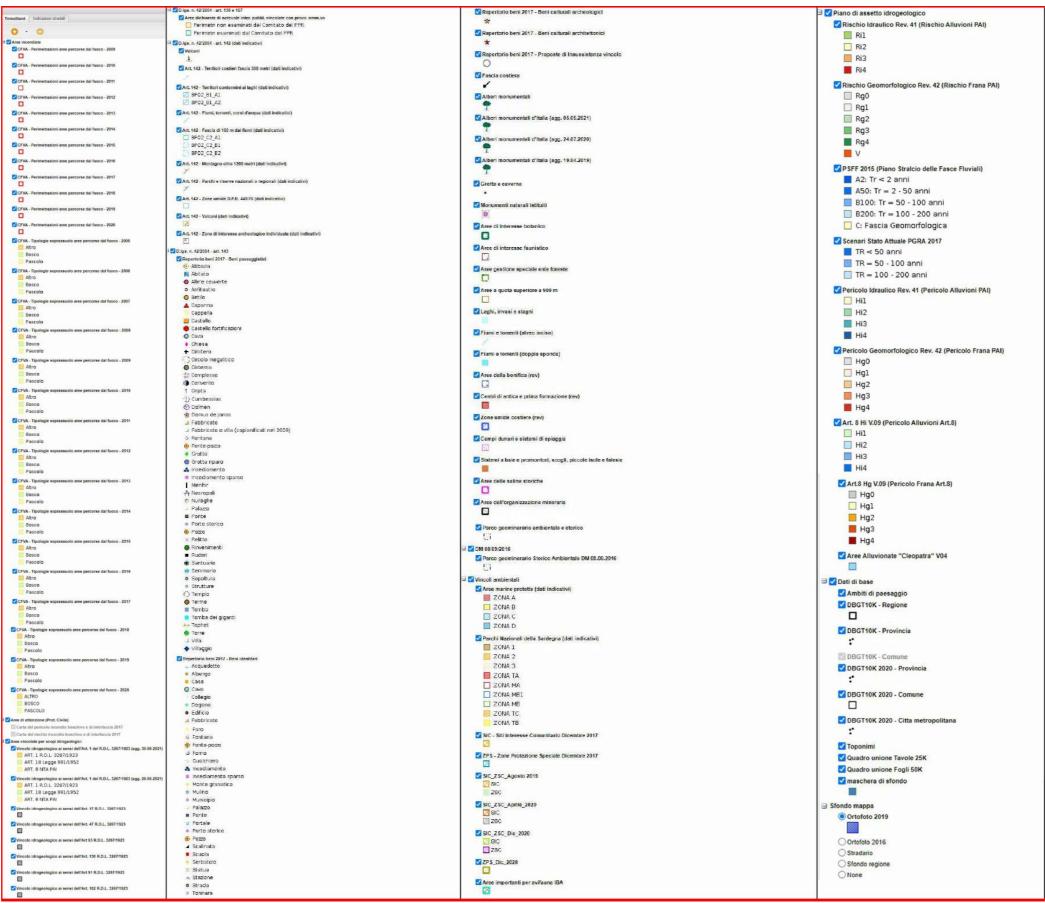
ASSETTO INSEDIATIVO


70


REL_SIA STUDIO DI IMPATTO AMBIENTALE

2) Sardegna Mappe PPR (https://www.sardegnageoportale.it/webgis2/sardegnamappe/?map=ppr2006)

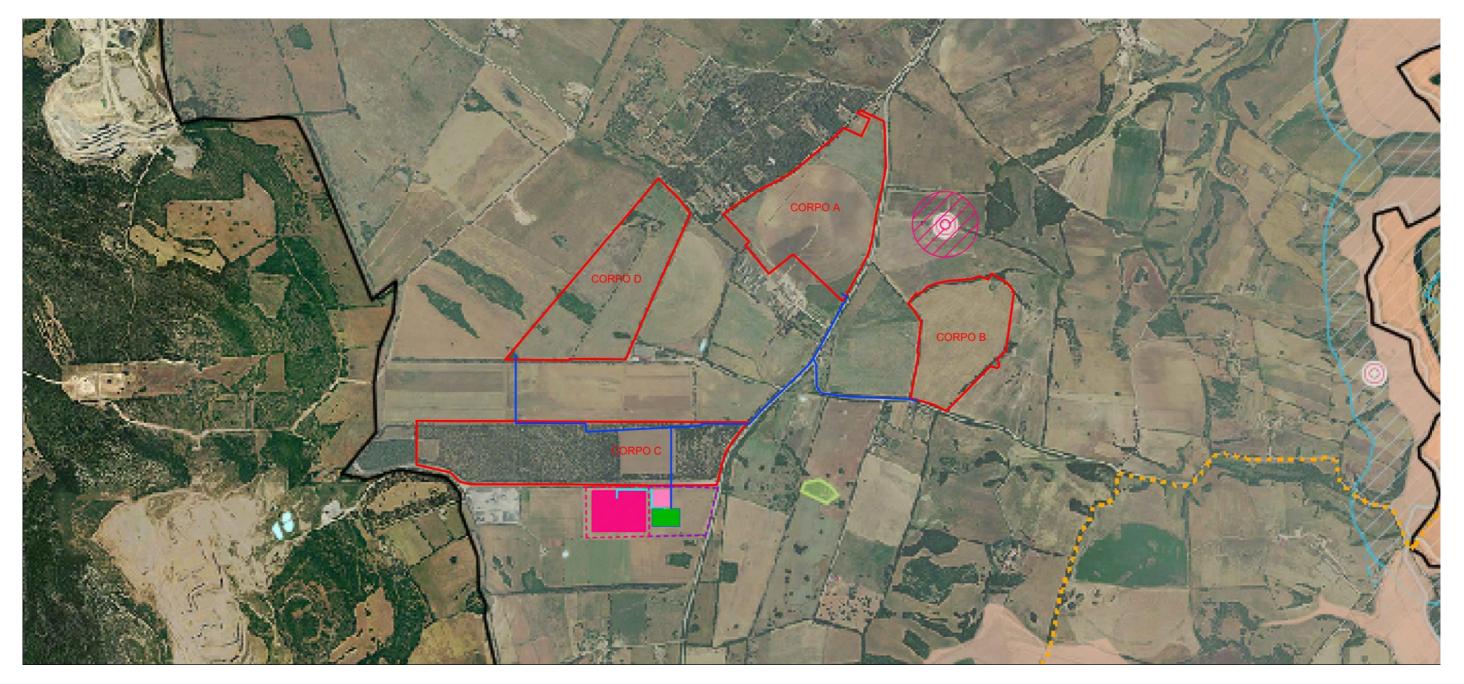

Il sito in progetto e il sito della SS Terna come da leggenda ricadono sulla componente di paesaggio con valenza ambientale classificata come: "Colture erbacee specializzate, aree agroforestali, aree incolte", l'analisi in loco dei terreni presi in considerazione per lo sviluppo progetto agrofotovoltaico a foraggera per il bestiame.



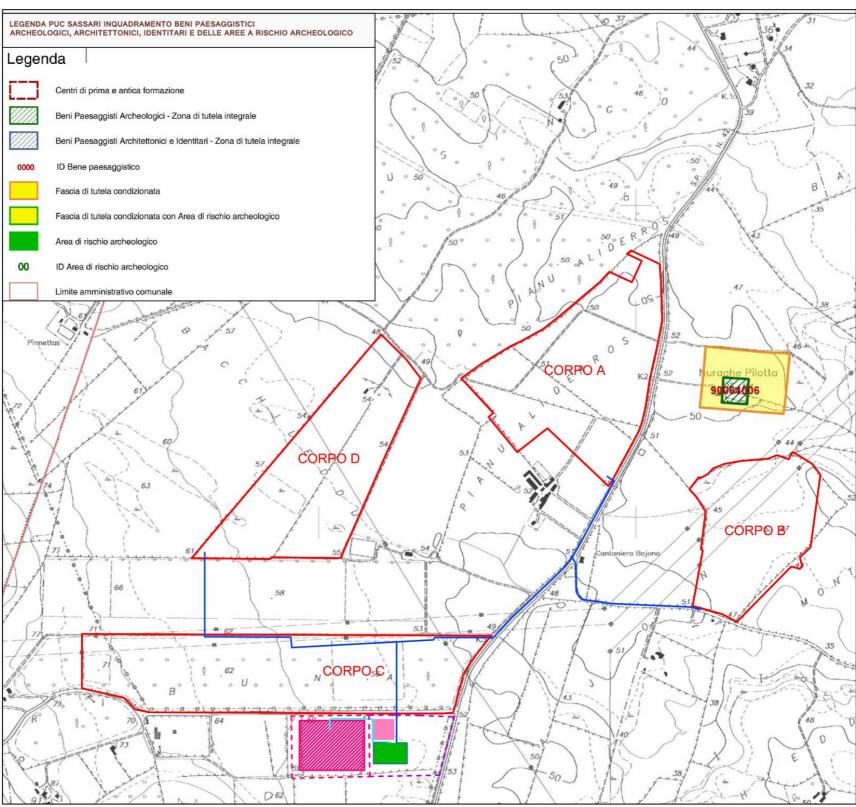
L'intervento di progetto è compatibile con quanto previsto al piano e non interferisce con nessun vincolo D.Lgs. 42/2004, la fascia di rispetto così come individuata dalle NTA del PPR della Regione Sardegna di 100m è stata rispettata, si fa presente inoltre come si evince dall'immagine del Geoportale con ortofoto che il nuraghe si trova proprio all'interno di un azienda.

3) Sardegna Mappe Aree Tutelate (https://www.sardegnageoportale.it/webgis2/sardegnamappe/?map=aree_tutelate)

Il navigatore tematico dedicato alle aree della Sardegna soggette a tutela mette in evidenza: tutti i vincoli soggetti al Decreto Legislativo 22 gennaio 2004, n. 42 Codice dei beni culturali e del paesaggio, ai sensi dell'articolo 10 della legge 6 luglio 2002, n. 137; le aree percorse da incendi; le aree vincolate a scopi idrogeologici; il piano di assetto Idrogeologico.



Tematismi navigatore Flaggati nella loro totale completezza


Dettaglio: Come da Art. 49 com.5 delle Norme Tecniche di attuazione del PPR è stata indicata la fascia di rispetto di 100m su ortofoto con sovrapposizione catastale, si fa presente inoltre come si evince dall'immagine del Geoportale con ortofoto che il nuraghe si trova proprio all'interno di un azienda.

4) Sardegna Mappe Fonti Energetiche Rinnovabili (https://www.sardegnageoportale.it/webgis2/sardegnamappe/?map=fer_Del_59-90_e_agg_succ)

Il navigatore tematico dedicato alle aree della Sardegna Mappe Fonti Energetiche Rinnovabili mette in evidenza che il sito in progetto ed il cavidotto si trova all'interno di Aree Servite da consorzi di Bonifica (Comprensori e Distretti), in particolare nel Consorzio di Bonifica della Nurra.

5) PUC Comune Di Sassari

Dettaglio Puc Sassari inquadramento beni paesaggistici, archeologici architettonici, indennitari, come indica il puc e la legenda la fasce di tutela condizionata sono state rispettate.

Come si evince dalla carte dei vincoli ambientali analizzate:

In sintesi come si evince dalla carta dei vincoli ambientali, e dalle altre cartografie consultate, l'area dell'impianto, il cavidotto e l'area della nuova RTN scelta da Terna non sono interessate dai vincoli ambientali di cui alla legenda sopra riportata. Di seguito si riporta anche un dettaglio sulla consultazione della carta dei beni paesaggistici, archeologici, architettonici e indennitari del PUC del Comune di Sassari.

Per quanto riguarda il rischio archeologico, mediante la ricerca sulle cartografie disponibili, quali mappe geoportale, aree tutelate, piano paesaggistico e piano urbanistico del comune di Sassari risulta che il sito in progetto non interferisce con alcun sito di interesse archeologico. Nella progettazione sono inoltre stati rispettati tutti i buffer e fasce di rispetto indicate negli strumenti sopra elencati. Si fa inoltre presente che il cavidotto di collegamento dall'impianto all' area della nuova RTN Terna, attraverserà con tecnologia T.O.C., come meglio evidenziato nella cartografia allegata. Nella cartografia è riportato il dettaglio buffer di rispetto sulla Carta dei paesaggistici, architettonici, archeologici, identitari e delle aree a rischio archeologico Extraurbane del PUC del Comune di Sassari.

II T.O.C. (Trivellazioni Orizzontali Controllate):

La posa si realizza grazie a un perforazione guidata nel terreno mediante l'introduzione nel terreno di aste guidate da una testa di perforazione che preparano il percorso per il cavidotto da posare. Le fasi principali della posa sono 3:

- Esecuzione della perforazione pilota quidata per creare il percorso del prodotto da posare.
- Passaggio con alesatore per adattare il percorso al diametro del cavo/condotta.
- Tiro del prodotto in posizione.

Questo sistema presenta molti vantaggi oggettivi:

- E possibile svolgere lavori in attraversamento di strade, ferrovie e corsi d'acqua senza bloccare la circolazione.
- Si possono collocare condotte anche per tratte molto estese, anche oltre un km, e di diametro molto ampio.
- I perforatori orizzontali hanno un ingombro di cantiere ridotto, quindi è possibile svolgere il lavoro senza interrompere il traffico, un vantaggio notevole soprattutto in ambito urbano.
- Si può eseguire la posa anche in centri storici e con superfici pregiate senza alcun danno.
- Si riduce in generale l'impatto ambientale.

3.10. IANIFICAZIONE PROVINCIALE

Il Piano Urbanistico Provinciale (PUP) della Provincia di Sassari è stato approvato con Delibera del Consiglio Provinciale n. 18 del 04/05/2006.

Scopo ultimo del piano è la gestione del territorio e della sua economia attraverso un'attività cooperativa tra Province, Comuni e gli altri attori territoriali. La normativa del Piano, infatti, descrive il processo di costruzione di regole di comportamento condivise e assume pertanto la definizione di Normativa di coordinamento degli usi e delle procedure.

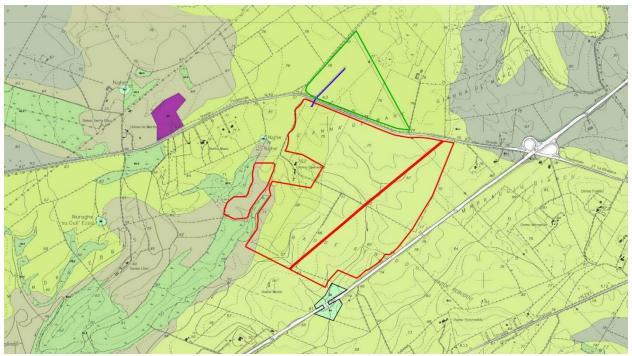
In particolare, in merito alla tematica energetica, il documento "Normativa di coordinamento degli usi e delle procedure" all'art. 26.6 - Linee guida per il sistema dell'energia prevede le seguenti linee guida generali:

- orientare lo sviluppo futuro del sistema elettrico nel quadro dell'uso razionale dell'energia;
- diversificare la produzione energetica. Tale obiettivo è necessario sia per la riduzione dei costi energetici nei diversi settori d'utenza ma anche per ridurre la dipendenza energetica del territorio e gli squilibri nel rapporto domanda/fabbisogni con azioni volte al contenimento dei consumi;
- favorire l'autonomia energetica attraverso l'incremento della produzione di energia da fonti rinnovabili;
- valorizzare risorse e competenze locali, come nel caso dell'utilizzo di biomasse (costituite da residui o coltivazioni dedicate);
- favorire l'infrastrutturazione del territorio per la produzione di energia da fonti alternative e rinnovabili e per il risparmio energetico;
- sfruttare ed ottimizzare le richieste combinate di energia termica ed elettrica mediante la cogenerazione;
- favorire la riduzione delle emissioni nocive, in particolar modo alle emissioni di CO2, per contribuire al rispetto del protocollo di Kyoto;
- favorire campagne di informazione sugli usi energetici delle fonti rinnovabili.

Inoltre nello specifico il documento indirizza delle Linee guida per l'energia solare e fotovoltaica, consistenti nel "pubblicizzare e promuovere i previsti programmi di finanziamento comunitari destinati all'energia solare e fotovoltaica, con particolare riferimento a realizzazioni innovative o all'installazione in primo luogo in edifici pubblici e privati di dimensioni adeguate."

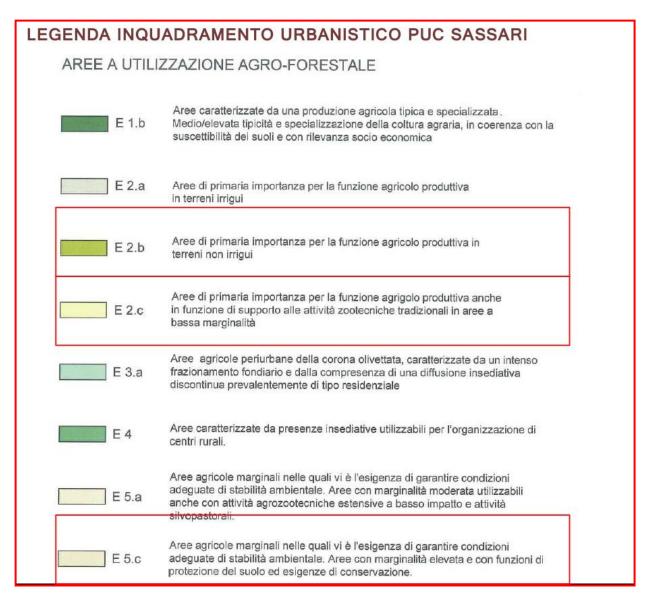
Il Piano si articola in:

- Ecologie elementari e complesse (disciplinate dagli art. 6 e 7 delle NTA di Piano), che costituiscono la rappresentazione dell'insieme di tutti i valori storici e ambientali di rilevanza, e, insieme ai sistemi di cui sotto, rappresentano il quadro conoscitivo di riferimento per la pianificazione comunale;
- Sistemi di organizzazione spaziale, che rappresentano la situazione di infrastrutturazione e le linee guida per la gestione dei servizi territoriali;
- Campi del progetto ambientale, che contengono i processi di interazione e cooperazione per la gestione del territorio tra i diversi soggetti.
- Base fondante del PUP è la sostenibilità ambientale. Gli obiettivi di Piano sono i seguenti:


- dotare ogni parte del territorio di una specifica qualità urbana;
- individuare per ogni parte del territorio una collocazione soddisfacente nel modello di sviluppo del territorio;
- fornire un quadro di riferimento generale in cui coordinare al meglio risorse e potenzialità.

L'area di intervento, che ricade in un'area classificata come antropizzata, rientra nell'Ambito di Paesaggio 14 (Golfo dell'Asinara), Ecologia Complessa 8 (Foce del Rio Mannu di Porto Torres), Ecologia Elementare 152 (Aree ad uso agricolo della Nurra).

3.11. PIANIFICAZIONE COMUNALE


Il Comune di Sassari si è dotato di Piano Regolatore Generale Comunale approvato definitivamente con delibera del Consiglio Comunale n° 43 del 26/07/2012 con Decreto Assessoriale della RAS n. 1571/U del 10 febbraio 1982, cui sono seguite diverse varianti, di cui l'ultima nel 2008; con Determinazione n. 3857/DG del 21.11.2013, il Direttore Generale della pianificazione urbanistica territoriale e vigilanza edilizia della Regione Autonoma della Sardegna ha determinato la coerenza del Piano Urbanistico Comunale col quadro normativo e pianificatorio sovraordinato, subordinandolo al recepimento delle prescrizioni di cui all'art. 2 della medesima Determinazione; con Delibera del Consiglio Comunale n. 35 del 18.11.2014 è stato approvato il recepimento nel Piano Urbanistico Comunale degli esiti della verifica di coerenza, di cui alla Determinazione regionale n. 3857/DG del 21.11.2013; - con Determinazione n. 3280/DG del 02.12.2014 il Direttore Generale della pianificazione urbanistica territoriale e vigilanza edilizia della Regione Autonoma della Sardegna ha determinato, che il Piano Urbanistico Comunale in adeguamento al PPR e al PAI del Comune di Sassari di cui alle Deliberazioni del Consiglio Comunale n. 43 del 26.07.2012 e n. 35 del 18.11.2014, risulta coerente con il quadro normativo e pianificatorio sovraordinato. È stato pubblicato sul Buras NT 58 del 11/12/2014.

L'area oggetto di intervento ricade in zona Agricola E, più precisamente nelle seguenti sottozone Zona E

Sottozona E2.b, E2.c ed E5.c

Le previsioni del PUC per le su riportate zone sono le seguenti:

• Art.45 Sottozone E2

Descrizione

Sono zone caratterizzate da attività agricole e zootecniche che avvengono in suoli irrigui e non con medio/elevate capacità e suscettibilità agli usi agro-zootecnici si estendono nei sistemi agricoli individuati nella Nurra e nella fascia esterna alla corona olivetata.

Le coltivazioni interessano:

gli ortaggi, per i quali il territorio comunale vantava in epoche passate un'importante tradizione. Questi vengono coltivati in aree di piano (nei sistemi agricoli dei fondivalle e nella fascia esterna della corona olivetata spesso associati ad altre colture o in aziende che associano differenti tipi di coltivazioni, sono limitatissime le coltivazioni in coltura specializzata in serra;

i vigneti, tradizionalmente coltivati in epoche passate in prossimità della città, sono rimaste marginali coltivazioni spesso in coltura promiscua nel sistema agricolo della corona olivetata in particolare in prossimità del comune di Sorso e la Nurra di Alghero;

i seminativi e le foraggere spesso legate all'importante attività zootecnica che vede nel territorio allevamenti semintensivi e intensivi bovini della linea latte e ovicaprini, localizzati nel sistema agricolo della Nurra in gran parte dotato di reti consortili per la distribuzione dell'acqua.

i vivai.

Il sistema che comprende queste sottozone è caratterizzato da una sufficiente sostenibilità del rapporto, tendenzialmente stabile, tra risorse primarie, assetti del suolo e sistemi insediativi.

Comprende le tre sottozone:

- E2a) Aree di primaria importanza per la funzione agricolo produttiva in terreni irrigui (es. seminativi);
- E2b) Aree di primaria importanza per la funzione agricolo produttiva in terreni non irrigui (es. seminativi in asciutto);
- E2c) Aree di primaria importanza per la funzione agricolo produttiva anche in funzione di supporto alle attività zootecniche tradizionali in aree a bassa marginalità (es. colture foraggiere, seminativi anche alberati, colture legnose non tipiche, non specializzate)
 Sono zone caratterizzate da attività agricole e zootecniche che avvengono in suoli irrigui e non con medio/elevate capacità e suscettibilità agli usi agro-zootecnici si estendono nei sistemi agricoli individuati nella Nurra e nella fascia esterna alla corona olivetata;

Destinazioni ammesse

- Valgono le destinazioni ammesse per le zone E art. 43.

Modalità di attuazione

- Valgono le modalità di attuazione indicate per le zone E art. 43.

Categorie di intervento

Valgono le categorie d'intervento previste per le zone E art. 43.

Parametri urbanistici e edilizi

Valgono i parametri urbanistici ed edilizi previsti per le zone E art. 43.

• Art.48 Sottozone E5

Descrizione

Sono zone caratterizzate da condizioni geopedologiche e capacità d'uso e suscettibilità all'uso agricolo scarse o assenti a causa di severe limitazioni (pendenze elevate, pericolo di erosione, eccesso di rischiosità).

La marginalità alle attività agricole si determina attraverso l'analisi costi benefici per la quale si evidenzia un costo eccessivo di eventuali interventi di miglioramento non compensati dai benefici ottenibili.

Vengono individuate le seguenti ed ulteriori sottozone:

- E5a Aree agricole marginali nelle quali vi è l'esigenza di garantire condizioni adeguate di stabilità ambientale, aree con marginalità moderata utilizzabili anche con attività agrozootecniche estensive a basso impatto e attività silvopastorali.
- E5c Aree agricole marginali nelle quali vi è l'esigenza di garantire condizioni adeguate di stabilità ambientale. Aree con marginalità elevata e con funzioni di protezione del suolo ed esigenze di conservazione.

Destinazioni ammesse

Valgono le destinazioni ammesse per le zone E art. 43.

Modalità di attuazione

Valgono le modalità di attuazione indicate per le zone E art. 43.

Categorie di intervento

Valgono le categorie d'intervento previste per le zone E art. 43.

Parametri urbanistici e edilizi

Valgono i parametri urbanistici ed edilizi previsti per le zone E art. 43.

In riferimento alle prescrizioni del sopracitato comma, gli interventi progettuali previsti - che prevedono esclusivamente interventi di posizionamento dei moduli fotovoltaici, delle relative

3.12. CLASSIFICAZIONE SISMICA

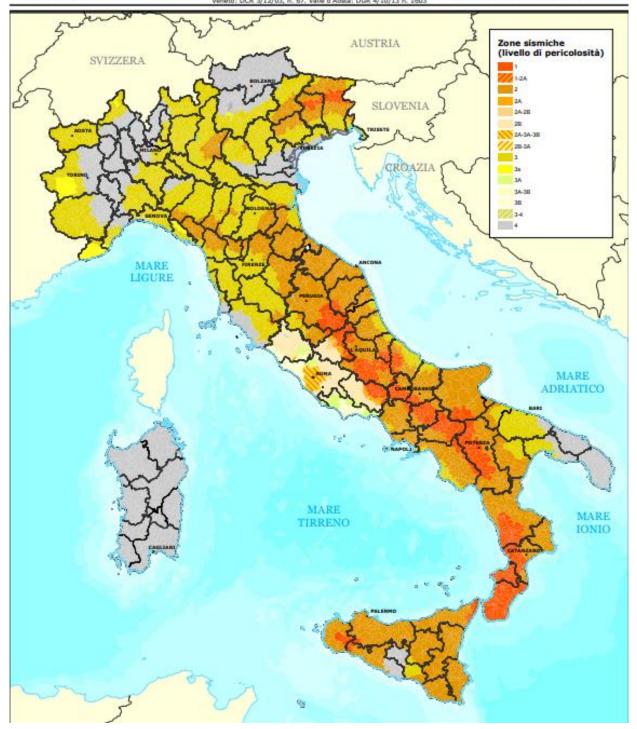
Con delibera DGR 15/31 del 30/03/2004 la Regiona Autonoma della Sardegna adotta la classificazione sismica del territorio (Decreto Legislativo n. 112 del 1998 e Decreto del Presidente della Repubblica n. 380 del 2001 - "Testo Unico delle Norme per l'Edilizia") a cura dell'Istituto Nazionale di Geofisica e Vulcanologia. Tale zonazione indica per l'intero territorio regionale la zona di classificazione sismica 4, nella quale è facoltà delle singole Regioni prescrivere l'obbligo della progettazione antisismica.

Presidenza del Consiglio dei Ministri Dipartimento della protezione civile

Ufficio rischio sismico e vulcanico

Classificazione sismica al 2015

Recepimento da parte delle Regioni e delle Province autonome dell'Ordinanza PCM 20 marzo 2003, n. 3274.


Atti di recepimento al 1º giugno 2014. Abruzzo: DGR 29/3/03, n. 438. Basilicata: DCR 19/11/03, n. 731. Calabria: DGR 10/2/04, n. 47. Campania: DGR 7/11/02, n. 5447.

Emilia Romagna: DGR 21/7/03, n. 1435. Friuli Venezia Giulia: DGR 6/5/10, n. 845. Lazio: DGR 22/5/09, n. 887. Liquria: DGR 19/11/10, n. 1562. Lombardia: DGR 11/7/14, n. X/2129

Marche: DGR 29/7/03, n. 1046. Molise: DGR 2/8/06, n. 1171. Permonta: DGR 12/12/11, n. 4-3084. Puglia: DGR 2/3/04, n. 153. Sandagna: DGR 30/3/04, n. 15/31.

Sicilia: DGR 19/12/03, n. 408. Toscana: DGR 26/5/14, n. 878. Trentino Alto Adag: Bolizano, DGP 6/11/06, n. 4047; Trento, DGP 27/12/12, n. 2919. Umbria: DGR 18/9/12, n. 1111.

Veneto: DCR 3/12/03, n. 67. Valle d'Aosta: DGR 4/10/13 n. 1603

Zonazione sismica dell'Italia.

Al fine di caratterizzare ulteriormente il rischio sismico, sono utili i dati storici del database macrosismico, utilizzato nel 2004 per la compilazione del catalogo CPTI04 (Gruppo di Lavoro CPTI, 2004). Tale database permette di visionare la storia sismica delle località italiane censite almeno tre volte (5.325 località in totale). L'analisi delle informazioni contenute nel database ha restituito un complessivo numero di 6 eventi in un raggio di 250 km dal sito tra il 1775 e il 2004.

Eventi sismici dal catalogo parametrico dei terremoti italiani (espressi in magnitudo riferita alla scala Richter).

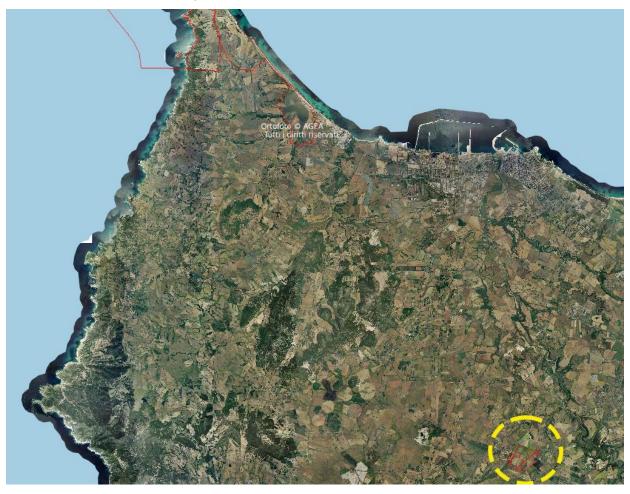

3.13. SISTEMA DELLE AREE PROTETTE

3.13.1.RETE NATURA 2000

La Rete Natura 2000 costituisce la più importante strategia di intervento per la conservazione della biodiversità presente nel territorio dell'Unione Europea ed in particolare la tutela di una serie di habitat e di specie animali e vegetali rari e minacciati. I siti della Rete Natura 2000 sono regolamentati dalle *Direttive Europee 79/409/CEE*, concernente la conservazione degli uccelli selvatici (Direttiva Uccelli), e 92/43/CEE, relativa alla conservazione degli habitat naturali e seminaturali della flora e della fauna selvatiche (Direttiva Habitat).

Di seguito sono elencate le aree SIC/ZSC e ZPS che ricadono in prossimità dell'area di intervento con la relativa distanza al sito di impianto. I dati sulle SIC e ZPS sono stati estrapolati dalla consultazione del Geoportale nazionale del MiTE, in particolare sono stati inseriti in una mappa GIS i due layer tramite WMS:

- SIC -SITI DI INTERESSE COMUNITARIO (Direttiva 92/43/CEE "habitat")
- ZPS-ZSC ZONE DI PROTEZIONE SPECIALE (Direttiva 79/409/CEE "uccelli")


Sardegna Mappe Aree Tutelate Siti Natura 2000

Nella seguente Tabella si individuano gli ambiti di tutela naturalistica che interessano la zona di studio con la relativa distanza dal sito in progetto.

Codice Natura 2000	Nome Sito	Distanza (km)
SIC-ZSC ITB010002	Stagno di Pilo e di Casaraccio	Circa 17 km
SIC ITB010003	Stagno e ginepreto di Platamona	Circa 14 km
SIC-ZSC ITB11155	Lago di Baratz Porto Ferro	Circa 15 km
SIC ITB13051	Dall'isola dell'Asinara all'Argentiera	Circa 19 km
ZPS ITB013012	Stagno di Pilo, Casaraccio e Saline di Stintino	Circa 17 km

3.13.2.IBA

L'acronimo IBA, Important Bird Areas, identifica le aree strategicamente importanti per la conservazione delle oltre 9.000 specie di uccelli che vi risiedono stanzialmente o stagionalmente. Tali siti sono individuati in tutto il mondo sulla base di criteri ornitologici applicabili su larga scala da parte di associazioni non governative che fanno parte di BirdLife International, un'associazione internazionale che riunisce oltre 100 associazioni ambientaliste e protezioniste.

Le IBA vengono identificate applicando un complesso sistema di criteri che si basa su soglie numeriche e percentuali applicate alle popolazioni di uccelli che utilizzano regolarmente il sito.

I dati sulle aree IBA sono stati estrapolati dalla consultazione del Geoportale nazionale del MiTE, in particolare è stato inserito in una mappa GIS il layer tramite WMS.L'impianto non ricade in aree IBA.

3.13.3.ALTRE AREE PROTETTE

Una ulteriore area marina protetta, ubicata in prossimità del sito di progetto, è costituita dal **Santuario per i Mammiferi Marini** (**EUAP1174**). Essa, che si estende solamente a mare e non include aree costiere, si trova ad una distanza di circa 12 km dal sito di progetto.

L'impianto non ricade in aree protette.

3.14. CONCLUSIONI COERENZA E CONFORMITA' PROGETTO

3.14.1. Coerenza e conformità con la pianificazione energetica

Sulla base dell'analisi del documento di Piano e dello scenario energetico attuale non emergono disarmonie tra la proposta progettuale e gli indirizzi del PEARS. In tal senso si ritiene che l'intervento non alteri le prospettive, ritenute prioritarie, di rafforzamento delle infrastrutture di distribuzione energetica ne quelle di una loro gestione secondo i canoni delle Smart Grid.

La nuova potenza elettrica installata, inoltre, è coerente con gli scenari di sviluppo della tecnologia fotovoltaica nel territorio regionale prospettati dal PEARS nell'ambito delle azioni da attuare nel periodo 2016÷2020 ed e sinergica al dichiarato obiettivo di riduzione delle emissioni di CO2 della Sardegna per l'anno 2030 (50% rispetto al 1990).

3.14.2. Coerenza e conformità con la pianificazione paesaggistica regionale

Sulla base del PPR, l'area di progetto ricade nell'ambito paesaggistico 14 - Golfo dell'Asinara ed è classificata quale area "Utilizzazione agro-forestale", per cui varrebbero le limitazioni d'uso previste per tale utilizzo.

Sulla base della disamina effettuata, il sito dell'impianto non interferisce con alcun bene paesaggistico, architettonico ed archeologico identificato nell'ambito del Mosaico dei Bani Paesaggistici 2014.

Per ulteriori approfondimenti in merito al Paesaggio si rimanda all'allegato della Relazione Paesaggistica.

3.14.3. Coerenza e conformità con il vincolo idrogeologico

L'impianto, il cavidotto e l'area della sottostazione non ricadono in zone sottoposte a vincolo idrogeologico ai sensi del RDL 3267/1923, né a vincoli ai sensi della L.R. n. 8/2016 (presenza di bosco) e ai sensi della L.R. n. 4/1994 (presenza di sughera).

3.14.4. Coerenza e conformità con il Piano di Bonifica dei siti contaminati

Dall'analisi condotta sulle Tavole e gli Elaborati del Piano l'area di progetto non risulta tra le aree comprese nel presente piano; pertanto, l'intervento non risulta incongruente con le specifiche di Piano.

3.14.5. Coerenza e conformità con il Piano Regionale dei rifiuti

Per quanto concerne la produzione di rifiuti connessa all'impianto in progetto, non si evidenziano interferenze con obiettivi e indicazioni degli strumenti di pianificazione e con la normativa vigente.

3.14.6. Coerenza e conformità con il Piano Regionale delle attività estrattive

L'area di intervento si trova in un'area classificata come "aree in cui è vietata l'apertura di nuove attività estrattive", come evidenziato in progetto per sua natura non risulta in contrasto con quanto definito dalla normativa settoriale in materia di attività estrattive.

3.14.7. Coerenza e conformità con la pianificazione Provinciale

Dall'analisi condotta sulla cartografia del Piano Urbanistico Provinciale risulta che l'area di intervento ricade in un'area classificata come antropizzata e non è interessata dalla presenza di vincoli di alcun tipo.

3.14.8. Coerenza e conformità con la pianificazione comunale

Il progetto non presenta incongruenze con il PUC analizzato, come trattato nel dettaglio nella **Relazione** dello Studio di Inserimento Urbanistico.

3.14.9. Coerenza e conformità con il PTA

Dall'analisi effettuata risulta che il sito di progetto ricade in un'area a vulnerabilità elevata: in questi casi la disciplina prevede una particolare attenzione alla regolamentazione degli scarichi ed al relativo carico di nutrienti. Allo stato attuale le acque meteoriche non sono gestite tramite una regimazione dedicata ma la dispersione avviene naturalmente per infiltrazione nel sottosuolo, modalità funzionale sia per le caratteristiche del sito sia per la moderata entità delle precipitazioni, anche estreme, dell'area. In considerazione delle caratteristiche progettuali dell'opera, non si evidenziano elementi di contrasto con il Piano di Tutela delle Acque, dal momento che essa non comporterà la realizzazione di scarichi idrici e prelievi, né prevedrà un'interferenza diretta con la falda.

3.14.10. Coerenza e conformità con il Piano Regionale della Qualità dell'Aria

Il progetto in esame risulta coerente con quanto definito dalla Regione Sardegna in materia di pianificazione per la tutela ed il risanamento della qualità dell'aria.

3.14.11. Coerenza e conformità con il PAI

Il progetto in esame è ubicato in un'area non soggetta a vincoli PAI e pertanto risulta coerente con il Piano.

Nella figura che riporta uno stralcio della cartografia del P.A.I e P.S.F.F., si evince che l'area oggetto di intervento non ricade all'interno delle perimetrazioni previste nel Piano Assetto Idrogeologico e nel Piano Stralcio delle Fasce Fluviali. In luogo di quanto riportato l'area occupata è da ritenersi complessivamente stabile, escludendo, al momento dell'indagine, la presenza di fenomenologie geomorfologiche e/o idrogeologiche in atto o potenziali di particolare entità. Nel complesso l'intervento in oggetto risulta pertanto compatibile con la Normativa Generale in perfetta coerenza con il Piano stralcio di Assetto Idrogeologico. Nello specifico verrà analizzato puntualmente dettagliato il sito di progetto e la relativa connessione all'interno delle relazioni specifiche di compatibilità idraulica, geologica, idrogeologica.

3.14.12. Coerenza e conformità con il piano di gestione del distretto della Regione Sardegna

Dall'analisi condotta sulle Tavole e gli Elaborati del Piano l'area di progetto non risulta tra i bacini drenanti/aree sensibili; pertanto, l'intervento non risulta incongruente con le specifiche di Piano.

3.14.13. Coerenza e conformità aree protette

L'articolo 6.3 della Direttiva 92/43/CE in merito ai siti protetti della **Rete Natura 2000** asserisce che: "Qualsiasi piano o progetto non direttamente connesso e necessario alla gestione del sito protetto, che possa generare impatti potenziali sul sito singolarmente o in combinazione con altri piani o progetti, deve essere soggetto ad una adeguata valutazione delle sue implicazioni per il sito stesso, tenendo conto degli specifici obiettivi conservazionistici del sito".

L'area di intervento non ricade direttamente in alcuna zona individuata ai sensi delle Direttive 92/43/CE e 79/409/CEE.

L'area di intervento non ricade direttamente in alcuna **area IBA**. L'area dell'impianto non ricade in alcuna area naturale protetta.

4. ANALISI DELLO STATO ATTUALE DELL'AMBIENTE

La definizione del momento zero per le varie componenti ambientali è descritta più approfonditamente nel Quadro ambientale Antropico, "Stato attuale delle componenti ambientali".

4.1.ARIA E CLIMA

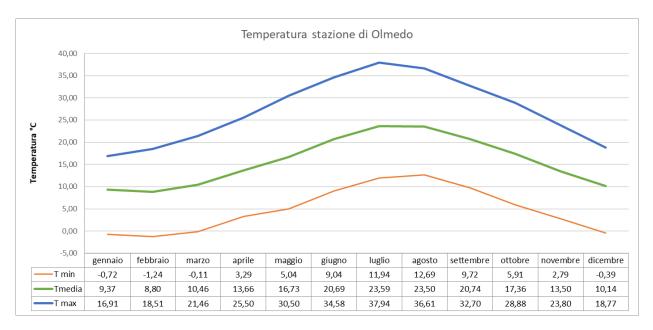

Sono stati utilizzati i dati raccolti delle centraline meteo ARPA Sardegna posizionate in prossimità dell'area di progetto. I principali parametri meteorologici e climatici presi in considerazione sono: temperatura media, temperatura minima media, precipitazioni cumulate, copertura nuvolosa media, umidità relativa media, misurati dalle stazioni identificate, ove possibile. Sono stati riportati inoltre i dati sulla qualità dell'aria nell'area di progetto per individuare la situazione attuale.

Sulla base delle informazioni contenute nel sistema nazionale per la raccolta, l'elaborazione e la diffusione di dati climatici di interesse ambientale (Sistema Nazionale per la raccolta, l'elaborazione e la diffusione di dati climatici di interesse ambientale, ISPRA) le stazioni meteorologiche più prossime al sito di Progetto sono le seguenti:

- Stazione Mareografica Porto Torres (Codice Stazione 70017) posta a 0 m s.l.m. presso zona portuale di Porto Torres circa 13 km a Nord del sito.
- Stazione Meteo Regionale ARPA Sardegna di Sassari S.A.R. (Codice Stazione 0) posta a 150 m s.l.m. nella periferia Nord di Sassari, circa 13 km ad Est del sito.
- Stazione Meteo Regionale ARPA Sardegna di Sorso (Codice Stazione 8) posta a 57m s.l.m. tra le località di Sorso e Marritza a circa 22 km Nord-Est dal sito.
- Stazione Meteo Regionale ARPA Sardegna di Olmedo (Codice Stazione 6) posta a 32 m s.l.m. a circa 7,4 km a sud del sito.

Per quanto riguarda infine la posizione delle centraline di rilevamento della qualità dell'aria nell'area di interesse si è fatto riferimento alle stazioni ubicate nel comune di Sassari e nel comune di Porto Torres, dal momento che non sono presenti stazioni localizzate in prossimità dell'area di progetto. In particolare le stazioni considerate sono le seguenti:

- CENSS3 (Porto Torres Loc. Bivio Rosario) e CENSS4 (Porto Torres Loc. Ponte Colombo) e
 CENPT1 (Porto Torres Via Pertini) rispettivamente nella zona industriale e nell'area urbana di
 Porto Torres
- CENS12 (Sassari Via Budapest) e CENS16 (Sassari Via De Carolis) nell'area urbana di Sassari
- Centralina di Porto Torres, Zona Industriale Bivio Rosario (Anidride solforosa, Ossidi di azoto, Ozono, Monossido di carbonio e PM10).
- Centralina di Porto Torres, via Pertini (Anidride solforosa, Ossidi di azoto, Ossido di carbonio, PM2,5, PM10, Ozono e Benzene).


Punti monitoraggio meteo

CARATTERIZZAZIONE METEOCLIMATICA

Di seguito si riportano i principali parametri meteorologici e climatici: temperatura media, temperatura massima media, temperatura minima media, precipitazioni cumulate, copertura nuvolosa media, umidità relativa media, misurati dalle stazioni identificate, ove possibile.

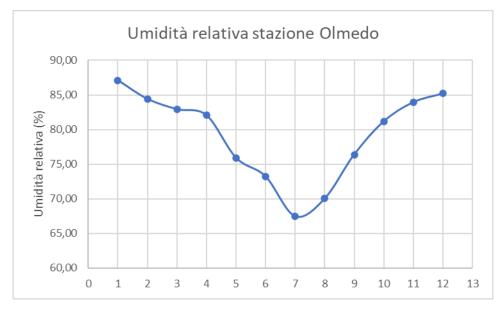
Temperatura

Per quanto concerne le temperature in prossimità dell'area di studio sono stati considerati i valori misurati nel periodo compreso tra il 2007 e il 2017 nella **Stazione di Olmedo** (a 7 km dall'area di studio). Le temperature sono comprese tra i 0°C e i 37°C. Sono qui di seguito riportati i dati per la suddetta centralina data la buona disponibilità temporale e la vicinanza col sito in esame. Le altre stazioni meteo fornivano serie storiche meno estese.

Temperatura Media, Massima e Minima - Stazione di Olmedo (fonte:SCIA ISPRA)

Precipitazioni

I trend di seguito riportati sono stati ottenuti considerando le serie di dati disponibili comprese tra il 2005 e il 2015 della stazione meteo ARPA di Olmedo, l'unica a fornire una serie completa per tale periodo. La curva identifica chiaramente una stagione piovosa compresa tra settembre e dicembre ed una stagione secca coincidente con il periodo maggio -agosto.



Precipitazioni Cumulate - Stazione ARPA Olmedo (fonte:SCIA ISPRA)

Umidità Relativa Media

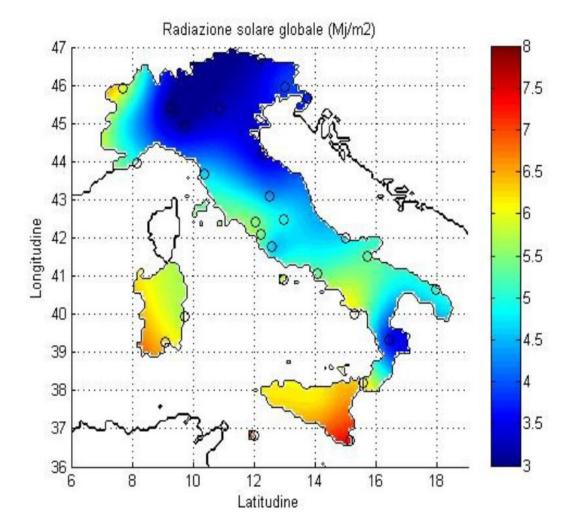
I trend di seguito riportati sono stati ottenuti considerando la serie di dati disponibili compresa tra il 2005 e il 2016 per la stazione di Olmedo, posta a circa 7 km dal sito del progetto.

Complessivamente l'umidità si attesta tra il 67% e l'87% con un periodo più umido tra ottobre e marzo, ed uno secco tra maggio e settembre.

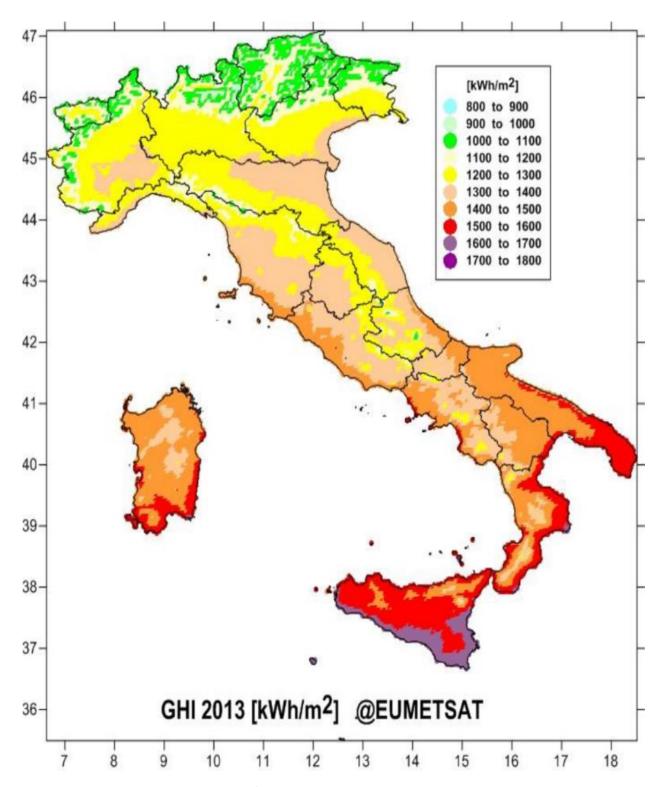
Umidità Relativa Media - stazione di Olmedo (fonte:SCIA ISPRA)

RADIAZIONE SOLARE

Per quanto concerne la radiazione solare, i dati disponibili più prossimi provengono dalla stazione di Capo Bellavista, situata sulla costa orientale a circa 140 km dal sito. Lo studio prodotto dall'Aeronautica Militare


nella pubblicazione "La Radiazione solare globale e la durata del soleggiamento in Italia dal 1991 al 2010" riporta un massimo di radiazione media espressa in Mj/m² nel mese di Luglio (24,62 Mj/m²) ed un minimo nel mese di Dicembre.

Complessivamente sulla base dei dati su scala nazionale resi disponibili all'interno del Rapporto Statistico sul Solare Fotovoltaico predisposto dal GSE, l'area del progetto si inserisce in un contesto caratterizzato da un irraggiamento solare compreso tra $1.400 \, \text{kWh/m}^2$ e $1.600 \, \text{kWh/m}^2$.


Radiazione Solare Globale (Mj/m2) (Capo Bellavista)

Stazione di Capo		Radiazione Solare Globale (Mj/m²)												
Bellavista (550)	Media 1991-2010	Dev. St.	1° Quartile	Mediana	3° Quartile	Clino '61-'90								
Gennaio	6.85	0.80	6.14	6.88	7.52	//								
Febbraio	10.06	1.30	9.20	10.40	10.86	//								
Marzo	13.89	1.63	12.62	14.19	14.97	//								
Aprile	17.66	1.43	16.43	17.65	18.95	//								
Maggio	22.04	2.28	20.12	21.92	23.44	//								
Giugno	23.93	1.99	23.15	24.10	25.32	//								
Luglio	24.62	1.21	23.89	24.33	25.35	//								
Agosto	21.71	1.02	20.80	21.92	22.22	//								
Settembre	16.04	1.18	15.44	16.01	16.82	//								
Ottobre	11.52	1.28	10.60	11.66	12.36	//								
Novembre	7.59	0.98	6.75	7.63	8.05	//								
Dicembre	5.69	0.55	5.41	5.72	5.96	//								


Le seguenti figure mostrano la radiazione solare globale per l'intera penisola.

Radiazione Solare Globale (Mj/m²) – Dicembre

Irraggiamento Solare nel 2013 espresso in kWh/m² (fonte GSE)

Irraggiamento Solare nel 2014 espresso in kWh/m² (fonte GSE)

QUALITÀ DELL'ARIA

Normativa Nazionale di Riferimento

I primi standard di qualità dell'aria sono stati definiti in Italia dal DPCM 28/03/1983 relativamente ad alcuni parametri, modificati quindi dal DPR 203 del 24/05/1988 che, recependo alcune Direttive Europee, ha introdotto oltre a nuovi valori limite, i valori guida, intesi come "obiettivi di qualità" cui le politiche di settore devono tendere.

Con il successivo Decreto del Ministro dell'Ambiente del 15/04/1994 (aggiornato con il Decreto del Ministro dell'Ambiente del 25/11/1994) sono stati introdotti i Livelli di Attenzione (situazione di inquinamento atmosferico che, se persistente, determina il rischio che si raggiunga lo stato di allarme) ed i Livelli di Allarme (situazione di inquinamento atmosferico suscettibile di determinare una condizione di rischio ambientale e sanitario), valido per gli inquinanti in aree urbane.

Tale decreto ha inoltre introdotto i valori obiettivo per alcuni nuovi inquinanti atmosferici non regolamentati con i precedenti decreti tra cui il PM10 (frazione delle particelle sospese inalabile).

Il D.Lgs 351 del 04/08/1999 ha recepito la Direttiva 96/62/CEE in materia di valutazione e gestione della qualità dell'aria, rimandando a decreti attuativi l'introduzione dei nuovi standard di qualità.

Infine il D.M. 60 del 2 Aprile 2002 ha recepito rispettivamente la Direttiva 1999/30/CE concernente i valori limite di qualità dell'aria ambiente per il biossido di zolfo, e il biossido di azoto, e la Direttiva 2000/69/CE relativa ai valori limite di qualità dell'aria ambiente per il monossido di carbonio. Il decreto ha abrogato le disposizioni della normativa precedente relative a: biossido di zolfo, biossido d'azoto, alle particelle sospese, al PM10, al monossido di carbonio, ma l'entrata in vigore dei nuovi limiti avverrà gradualmente per completarsi nel gennaio 2010.

Il D.M. 60/2002 ha introdotto, inoltre, i criteri per l'ubicazione ottimale dei punti di campionamento in siti fissi; per l'ubicazione su macroscala, ai fini della protezione umana, un punto di campionamento dovrebbe essere ubicato in modo tale da essere rappresentativo dell'aria in una zona circostante non inferiore a 200 m², in siti orientati al traffico, e non inferiore ad alcuni km², in siti di fondo urbano.

Per la protezione degli ecosistemi e della vegetazione i punti di campionamento dovrebbero essere ubicati a più di 20 km dagli agglomerati o a più di 5 km da aree edificate diverse dalle precedenti o da impianti industriali o autostrade; il punto di campionamento dovrebbe essere ubicato in modo da essere rappresentativo della qualità dell'aria ambiente di un'area circostante di almeno 1.000 km².

L'Allegato IX del D.M. 60/2002 riporta, infine, i criteri per determinare il numero minimo di punti di campionamento per la misurazione in siti fissi dei livelli di Biossido di Zolfo, Biossido d'Azoto, Materiale Particolato (PM10) e Monossido di Carbonio nell'aria ambiente.

Per la popolazione umana vengono dati dei criteri distinti per le fonti diffuse e per le fonti puntuali. Per queste ultime il punto di campionamento dovrebbe essere definito sulla base della densità delle emissioni, del possibile profilo di distribuzione dell'inquinamento dell'aria e della probabile esposizione della popolazione.

Il D.M. 60/2002 stabilisce per Biossido di Zolfo, Biossido di Azoto, PM10 e Monossido di Carbonio:

• I valori limite, vale a dire le concentrazioni atmosferiche fissate in base alle conoscenze scientifiche al fine di evitare, prevenire o ridurre gli effetti dannosi sulla salute umana e sull'ambiente;

- Le soglie di allarme, ossia la concentrazione atmosferica oltre la quale vi è un rischio per la salute umana in caso di esposizione di breve durata e raggiunto il quale si deve immediatamente intervenire;
- Il margine di tolleranza, cioè la percentuale del valore limite nella cui misura tale valore può essere superato e le modalità secondo le quali tale margine deve essere ridotto nel tempo;
- Il termine entro il quale il valore limite deve essere raggiunto;
- I periodi di mediazione, cioè il periodo di tempo durante il quale i dati raccolti sono utilizzati per calcolare il valore riportato.

Si precisa che il D.Lgs 152 del 3 Aprile 2006 (Codice dell'Ambiente) e le sue successive integrazioni non modificano quanto stabilito dai suddetti decreti in materia di qualità dell'aria.

L'emanazione del D.Lgs. 155/2010, recentemente modificato dal Dlgs n. 250 del 24 dicembre 2012 senza alterarne i valori limite proposti, oltre ad indicare un limite in merito alla concentrazione media annua per il PM2.5, di fatto armonizza la preesistente normativa in materia di qualità dell'aria riportando in un solo atto normativo i limiti di qualità dell'aria per tutti gli inquinanti trattati in materia di qualità dell'aria.

Vengono riportati nelle successive tabelle i principali parametri di valutazione della qualità dell'aria (NOx, SO2, CO, Polveri); i valori limite sono espressi in μ g/m3 (ad eccezione del Monossido di Carbonio espresso come mg/m3) e il volume deve essere normalizzato ad una temperatura di 293 K e ad una pressione di 101,3 kPa.

Limiti di Legge Relativi all'Esposizione Acuta

Sostanza	Tip ologia	Valore	Riferimento Legislativo
SOz	Soglia di allarme*	500 µg/m³	
SO _Z	Limite orario da non superare più di 24 volte per anno civile	350 µg/m³	
SO _Z	Limite di 24 h da non superare più di 3 volte per anno civile	125 µg/m³	
NO₂	Soglia di allarme*	400 µg/m³	
NO₂	Limite orario da non superare più di 18 volte per anno civile	200 µg/m³	D.Lgs. 155/2010
PM ₁₀	Limite di 24 h da non superare più di 35 volte per anno civile	50 µg/m²	
со	Massimo giornaliero della media mobile di 8 h	10 mg/m³	

^{*} misurato per 3 ore consecutive in un sito rappresentativo della qualità dell'aria in un'area di almeno 100° km², oppure in un'intera zona o agglomerato nel caso siano meno estese.

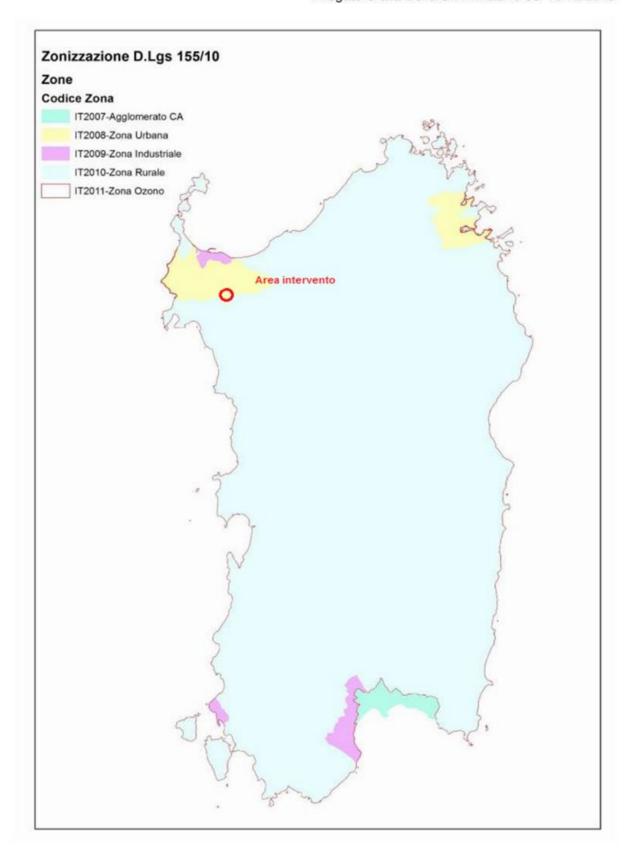
^{**} valori limite indicativi, da rivedere con successivo decreto sulla base della futura normativa comunitaria; margine di tolleranza da stabilire in base alla fase 1.

Sostanza	Tipologia	Valore	Riferimento Legislativo
	Valore limite annuale per la		
NOz	protezione della salute umana	40 μg/m³	
	Anno civile		
PM ₁₀	Valore limite annuale	40 µg/ m³	D.Lgs. 155/2010
F11170	Anno civile	чо руу пт	
PM _{z,s}	Valore limite annuale	25 µg/ m³	
F1112.5	Anno civile	Dal 1 gennaio 2015	

Limiti di Legge per la Protezione degli Ecosistemi

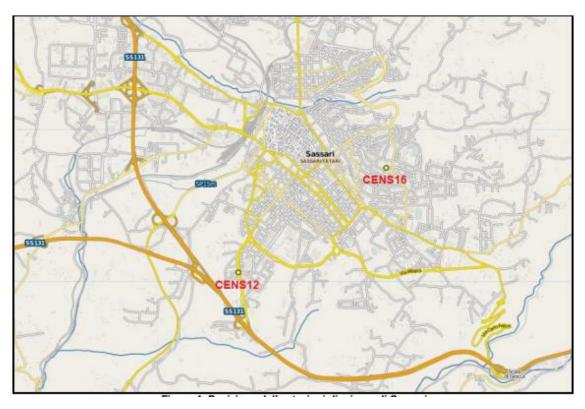
Inquinante	Tipologia	Valore	Riferimento Legislativo Termine di efficacia
SOz	Limite protezione ecosistemi Anno civile e inverno (01/10 – 31/03)	20 μg/m³ Dal 19 luglio 2001	D.Lgs, 155/2010
NO _X	Limite protezione ecosistemi Anno civile	30 μg/m³ Dal 19 luglio 2001	-

Soglia di informazione ed Allarme per l'Ozono

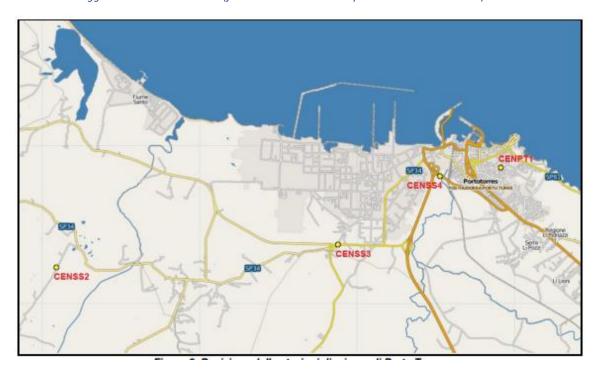

Inquin an te	Tipologia	Valore	Riferimento Legislativo - Termine di efficacia
O ₃	Soglia di Informazione	180 µg/m²	D.Lgs, 155/2010
	Soglia di Allarme	240 μg/m²	J

Normativa Regionale di Riferimento

Il principale riferimento normativo in merito alla qualità dell'aria della regione Sardegna è rappresentato dal PPCRQA.


Vista la posizione del Progetto, con riferimento alla zonizzazione per la qualità dell'aria prevista dal PPCRQA, l'area di Progetto è interessata dalle seguenti zone:

• IT2008 – Zona Urbana.



Posizione delle stazioni di misura nell'area di Sassari a sud di Porto Torres

Per quanto riguarda infine la posizione delle centraline di rilevamento della qualità dell'aria nell'area di interesse si è fatto riferimento alle seguenti stazioni: CENS12 e CENS16, ubicate rispettivamente nel comune di Sassari, all'interno dell'area urbana, e due nell'area industriale di Porto Torres, CENSS3, CENSS4 e una nel centro urbano di Porto Torres (CENPT1).

Punti monitoraggio aria comune di Sassari (fonte: Relazione annuale qualità dell'aria anno 2019)

Punti monitoraggio aria a Porto Torres (fonte: Relazione annuale qualità dell'aria anno 2019)

Comune	Stazione	C6H6	СО	NO2	О3	PM10	SO2	PM2,5
	CENPT1	99	95	91	96	96	91	95
Porto Torres	CENSS3	-	94	94	93	99	91	-
	CENSS4	100	-	95	-	95	92	-

Comune	Stazione	C6H6	СО	NO2	О3	PM10	SO2	PM2,5
Saccari	CENS12	-	90	94	94	99	92	-
Sassari	CENS16	97	95	94	95	95	93	92

Percentuali di funzionamento della strumentazione – Area di Sassari e Porto Torres

Riepilogo dei superamenti rilevati – Aree di Sassari

		С6Н6	со	NO2			О3				PM10		SO2			PM2,5
Comune		MA	M8	MO	MO	MA	МО	MO	M8	M8	MG	MA	МО	МО	MG	MA
	Stazione	PSU	PSU	PSU	SA	PSU	SI	SA	VO	OLT	PSU	PSU	PSU	SA	PSU	PSU
		5	10	200	400	40	180	240	120	120	50	40	350	500	125	25
				18					25		35		24		3	
Canani	CENS12	-									2					-
Sassari	CENS16								4	2	8					

Tabella 18- Riepilogo dei superamenti rilevati- Area di Sassari

Nell'anno 2019 le stazioni di misura dell'area di Sassari hanno avuto una funzionalità con percentuali medie di dati validi pari al 94%.

Le stazioni di misura hanno registrato i seguenti superamenti, senza peraltro eccedere il numero massimo consentito dalla normativa:

- per il valore obiettivo per l'O3 (120 μg/m3 sulla massima media mobile giornaliera di otto ore da non superare più di 25 volte in un anno civile come media sui tre anni): 4 superamenti della media triennale nella CENS16;
- per il valore limite giornaliero per la protezione della salute umana per i PM10 (50 μg/m3 sulla media giornaliera da non superare più di 35 volte in un anno civile): 2 superamenti nella CENS12 e 8 nella CENS16.

Il benzene (C6H6), misurato nella stazione CENS16, mostra valori stazionari con una media annua pari a $0.7~\mu g/m^3$, largamente entro il limite di legge di $5~\mu g/m^3$.

Tabella 19- Medie annuali di benzene (μg/m³)- Area di Sassari

Il monossido di carbonio (CO) ha una massima media mobile di otto ore che varia da 1,4 mg/m³ (CENS16) a 1,5 mg/m³ (CENS12). Le concentrazioni rilevate si mantengono quindi ampiamente entro il limite di legge (10 mg/m³ sulla massima media mobile di otto ore).

Per quanto riguarda il biossido di azoto (NO2), le medie annue variano da 11 μ g/m³ (CENS16) a 23 μ g/m³ (CENS12), mentre i valori massimi orari da 134 μ g/m³ (CENS16) a 171 μ g/m³ (CENS12), senza nessun superamento normativo. Le medie annuali evidenziano livelli più elevati di NO2 nella stazione CENS12, posizionata in prossimità di una strada ad elevato traffico veicolare.

Tabella 20- Medie annuali di biossido di azoto (μg/m³)- Area di Sassari

In relazione all'ozono, la massima media mobile di otto ore varia tra 80 $\mu g/m^3$ (CENS12) e 126 $\mu g/m^3$ (CENS16); le massime medie orarie tra 85 $\mu g/m^3$ (CENS12) e 144 $\mu g/m^3$ (CENS16), sufficientemente al di sotto della soglia di informazione (180 $\mu g/m^3$) e della soglia di allarme (240 $\mu g/m^3$). In relazione al valore obiettivo per la protezione della salute umana (120 $\mu g/m^3$) sulla massima media mobile giornaliera di otto ore.

Il PM10 evidenzia medie annue che variano tra 19 $\mu g/m^3$ (CENS12) e 25 $\mu g/m^3$ (CENS16), mentre le massime medie giornaliere tra 82 $\mu g/m^3$ (CENS16) e 86 $\mu g/m^3$ (CENS12). I valori medi di PM10 sono rispettosi dei limiti normativi, con superamenti contenuti rispetto ai 35 ammessi dalla normativa. Si rileva sul lungo periodo un aumento delle concentrazioni annuali e dei superamenti giornalieri nella stazione di fondo CENS16.

Tabella 21- Medie annuali di PM10 (μg/m³)- Area di Sassari

PM10 (Superamenti)	Stazione	2011	2012	2013	2014	2015	2016	2017	2018	2019	12 10
Sassari	CENS12	2	0	0	6	0	5	1	2	2	6 4 2 — CENS12 — CENS16
Sassaii	CENS16	1	0	0	7	1	9	2	11	8	को को को को को का का का

Tabella 22- Superamenti di PM10- Area di Sassari

Il PM2,5 misurato nella stazione CENS16 ha una media annua di 6 μ g/m³, valore che rientra ampiamente entro il limite di legge di 25 μ g/m³. I livelli manifestano una tendenza alla riduzione.

Per quanto riguarda il biossido di zolfo (SO2), i livelli si mantengono molto bassi e lontani dai limiti di legge; le massime medie giornaliere oscillano tra 5 μ g/m3 (CENS16) e 7 μ g/m3 (CENS12), i massimi valori orari tra 8 μ g/m3 (CENS16) e 22 μ g/m3 (CENS12).

Nell'area urbana di Sassari, si registra una situazione entro la norma per tutti gli inquinanti monitorati. Sul lungo periodo i livelli appaiono contenuti e stazionari, moderatamente in crescita per il PM10.

Riepilogo dei su	uperame	nti rile	vati – A	ree di Po	rto Torres
	_		_		_

		С6Н6	СО	NO2			О3				PM10		SO2			PM2,5
		MA	M8	МО	МО	MA	МО	МО	M8	M8	MG	MA	МО	МО	MG	MA
Comune S	Stazione	PSU	PSU	PSU	SA	PSU	SI	SA	VO	OLT	PSU	PSU	PSU	SA	PSU	PSU
		5	10	200	400	40	180	240	120	120	50	40	350	500	125	25
				18					25		35		24		3	
	CENPT1								4	5	4					
Porto Torres	CENSS3	-							5	1	1		5	1	1	-
	CENSS4		-				-	-	-	-	2					-

Tabella 50- Riepilogo dei superamenti rilevati- Area di Porto Torres

Nell'area di Porto Torres, le stazioni della Rete hanno una percentuale media di dati validi per l'anno in esame pari al 95%.

Le stazioni di misura hanno registrato il seguente numero di superamenti, con superamento della soglia di allarme dell'SO2 nella CENSS3:

- per il valore obiettivo per l'ozono (120 μg/m³ sulla massima media mobile giornaliera di otto ore da non superare più di 25 volte in un anno civile come media sui tre anni): 4 superamenti della media triennale nella CENPT1 e 5 nella CENSS3;
- per il valore limite giornaliero per la protezione della salute umana per i PM10 (50 μg/m³) sulla media giornaliera da non superare più di 35 volte in un anno civile): 4 superamenti nella CENPT1, 1 nella CENSS3 e 2 nella CENSS4;
- per il valore limite orario per la protezione della salute umana per l'SO2 (350 μg/m³) sulla media oraria da non superare più di 24 volte in un anno civile): 5 superamenti nella CENSS3;
- per la soglia di allarme per l'SO2 (500 µg/m³) da non superare per più di due ore consecutive): 1 superamento nella CENSS3;
- per il valore limite giornaliero per la protezione della salute umana per l'SO2 (125 μg/m³) sulla media giornaliera da non superare più di 3 volte in un anno civile): 1 superamento nella CENSS3.

Per quanto riguarda le misure di benzene (C6H6), i valori medi annui si attestano tra 1,1 μ g/m³ (CENSS4) e 1,5 μ g/m³ (CENPT1), nel rispetto del limite di legge di 5 μ g/m³ . L'andamento appare stabile sul lungo periodo e coerente tra le due stazioni di misura.

Tabella 51- Medie annuali di benzene (μg/m³)- Area di Porto Torres

Il monossido di carbonio (CO), presenta una massima media oraria di otto ore tra 0,6 mg/m³ (CENSS3) e 1,0 mg/m³ (CENPT1), decisamente entro il limite di legge di 10 mg/m³.

Per quanto riguarda il biossido di azoto (NO2), la massima media annua è di 9 $\mu g/m^3$ (CENPT1 e CENSS3), mentre la massima media oraria è di 83 $\mu g/m^3$ (CENSS4), con valori che si mantengono distanti dai limiti di legge. I livelli sono contenuti e stabili nel tempo.

Tabella 52- Medie annuali di biossido di azoto (μg/m³)- Area di Porto Torres

L'ozono(O3) presenta una massima medie mobile di otto ore che oscilla tra 128 $\mu g/m3$ (CENPT1) e 129 $\mu g/m3$ (CENSS3); la massima media oraria tra 137 $\mu g/m3$ (CENSS3) e 138 $\mu g/m3$ (CENPT1), valori al di sotto della soglia di informazione (180 $\mu g/m3$) e della soglia di allarme (240 $\mu g/m3$). In relazione al valore obiettivo per la protezione della salute umana (120 $\mu g/m3$) sulla massima media mobile giornaliera di otto ore da non superare più di 25 volte in un anno civile come media sui tre anni) non si registra nessuna violazione.

Il PM10 presenta una media annuale che varia tra 15 μ g/m³ (CENSS4) e 20 μ g/m³ (CENPT1) e una massima media giornaliera tra 57 μ g/m³ (CENSS3) e 74 μ g/m³ (CENPT1 e CENSS4), senza violazioni normative. Il confronto mostra una situazione di stabilità per tutte le stazioni, con superamenti limitati.

Tabella 53- Medie annuali di PM10 (μg/m³)- Area di Porto Torres

PM10 (Superamenti)	Stazione	2011	2012	2013	2014	2015	2016	2017	2018	2019	7 6 5
Porto Torres	CENPT1	-	4	4	5	1	4	0	4	4	4 — CENPT
	CENSS3	5	1	0	2	0	3	1	6	1	1 O CENS
	CENSS4	0	0	0	2	0	4	0	0	2	201, 201, 201, 201, 201, 201, 201, 2018, 2018

Tabella 54- Superamenti di PM10- Area di Porto Torres

Il PM2,5, misurato nella stazione CENPT1, ha una media annua di $8 \mu g/m^3$, valore che rispetta decisamente sia il limite di legge di $25 \mu g/m^3$. I livelli sono contenuti e stabili nel lungo periodo.

PM2,5 (Medie annuali)	Stazione	2011	2012	2013	2014	2015	2016	2017	2018	2019	10,0
Porto Torres	CENPT1		8,3	8,5	9	9,4	8	8,5	7,6	8,3	

Tabella 55- Medie annuali di PM2,5 (μg/m³)- Area di Porto Torres

Per quanto riguarda l'anidride solforosa (SO2), le massime medie giornaliere variano tra 5 $\mu g/m^3$ (CENPT1 e CENSS4) e 242 $\mu g/m^3$ (CENSS3), mentre le massime medie orarie tra 7 $\mu g/m^3$ (CENPT1) e 1254 $\mu g/m^3$ (CENSS3). Si registra un superamento della soglia di allarme nella stazione industriale CENSS3, valore che non deve mai essere superato. I valori registrati nell'area urbana sono contenuti e modesti.

In relazione al superamento della soglia di allarme di SO2 del giorno 28 luglio 2019, presso la stazione puntuale industriale CENSS3 ubicata a sud dell'area industriale di Porto Torres, con contestuali superamenti relativi del limite orario per cinque ore consecutive dalle ore 3:00 alle ore 7:00 (SO2 - limite normativo di 350 microgrammi/metro cubo da non superare più di 24 volte in un anno civile) e giornaliero (SO2 - limite normativo di 125 microgrammi/metro cubo da non superare più di 3 volte in un anno civile), si evidenzia che le aziende dell'area industriale di Porto Torres, EP Produzione Spa (Centrale Fiume Santo), MATRICA Spa e Versalis Spa, a seguito di richiesta da parte dell'autorità competente, hanno manifestato l'estraneità alla criticità ambientale monitorata. Successivamente il Dipartimento ARPAS di Sassari non ha riscontrato nessuna eventuale correlazione tra il superamento e la gestione delle attività industriali della zona.

In relazione all'impatto generato, non si evidenziano particolari criticità ambientali vista la scarsa durata dell'evento di superamento in area industriale, che comunque non ha determinato alcuna criticità nel monitoraggio delle altre stazioni della Rete Regionale CENPT1 e CENSS4, rispettivamente stazione urbana ubicata nel centro abitato di Porto Torres e stazione puntuale a protezione del centro abitato, ubicata tra l'area industriale e l'abitato.

Si evidenzia che il 27/07/2019, nella giornata precedente alla registrazione del predetto superamento, nell'area in esame si è verificato un violento incendio, divampato nel territorio comunale di Porto Torres presso un'azienda di stoccaggio rifiuti e la vicina ex fabbrica di vernici; l'incendio, durato per diverse ore data la natura infiammabile del materiale stoccato, ha visto l'intervento immediato dei VVF e delle autorità competenti. In tale occasione il Sindaco ha adottato le misure di prevenzione necessarie con debita informazione alla popolazione. Si presume pertanto che il superamento registrato dalla stazione CENSS3 sia dovuto alle conseguenze del predetto incendio.

A Porto Torres la situazione registrata risulta moderata per un contesto industriale, stabile sul lungo periodo. Nell'area si registra un episodio molto critico relativo all'anidride solforosa con superamento della soglia di allarme, correlato, probabilmente, al violento incendio sviluppatosi nella giornata precedente e che ha interessato due aziende ubicate nelle immediate vicinanze della stazione di misura. Il PM10 evidenzia superamenti limitati e comunque entro il numero massimo consentito dalla norma.

4.2.SUOLO E SOTTOSUOLO

Il presente Paragrafo fornisce l'analisi della componente suolo e sottosuolo nel territorio interessato. In particolare, nei Paragrafi seguenti vengono approfondite le tematiche riguardanti:

- gli aspetti geomorfologici;
- l'assetto geologico;
- le caratteristiche sismiche;
- l'uso del suolo.

ASPETTI GEOMORFOLOGICI

Il Progetto ricade nella regione della Nurra di Sassari nella porzione Nord-occidentale della Sardegna in una zona compresa tra i rilievi calcarenitici del complesso di Monte Alvaro a sud-ovest, Rio Mannu ad est e la linea di costa del Mar Tirreno a nord, lungo il limite meridionale del Golfo dell'Asinara.

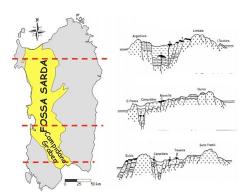
Pertanto, vista la varietà di litologie presenti nel territorio di Sassari, nel complesso le morfologie si presentano alquanto varie.

L'area vasta è caratterizzata da una morfologia collinare articoltata le cui quote più elevate si raggiungono nel settore nord-orientale ed in quello SE. La maggior parte di questi rilievi sono modellati sulle calcareniti e calciruditi della fomazione di Mores o sui calcari bioclastici della formazione di Monte Santo, più resistenti delle formazioni circostanti.

Il settore interessato dall'area di progetto è caratterizzato da un estesa pianura, che a S si presenta ricoperta dai depositi pleistocenici, in genere di ridotto spessore, mentre a N è modellata direttamente sui calcari più o meno marnosi delle formazioni di Mores, Gamba di Moro, M. Zirra e Capo Cacia. Peculiare è la presenza di rilievi più o meno elevati sulla pianura (M. Uccari a123m, M.Nurra a 133 e M.Casteddu a 99 m), anch'essi modellati sui medesimi litotipi calcarei e dunque non originati dai processi di erosione selettiva.

L'area geomorfologicamente significativa è quell'area all'interno della quale gli agenti morfodinamici vanno ad interessare indirettamente o direttamente l'opera oggetto di studio.

Nell'area interessata la morfologia si presenta del tutto pianeggiante, dominata prevalentemente dal ruscellamento delle acque superficiali. Oltre all'alterazione fisica e al trasporto dei detriti ad opera delle acque superficiali, essendo presenti litologie calcaree, anche l'alterazione di tipo chimico (carsismo) contribuisce all'alterazione dei suoli e substrato roccioso, il quale potrebbe manifestarsi con morfologie epigee o ipogee (inghiottitoi, doline).


Tuttavia, l'area si presenta alquanto pianeggiante e semplice dal punto di vista morfologico. Il sito si trova ad una altitudine media di 60 m s.l.m.

Geomorfologia dell'area

ASSETTO GEOLOGICO

La Sardegna è classicamente divisa in tre grossi complessi geologici, che affiorano distintamente in tutta la regione per estensioni circa equivalenti: il basamento metamorfico ercinico, il complesso magmatico tardo-paleozoico e le successioni vulcano-sedimentarie tardo-paleozoiche, mesozoiche e cenozoiche.

- Zona a falde Esterne" formata da rocce metasedimentarie;
- Zona a falde Interne un settore della Sardegna centrale con vergenza sud ovest costituito da metamorfiti paleozoiche;
- Zona Assiale caratterizzata da rocce metamorfiche di medio e alto grado con migmatiti e grandi intrusioni granitiche.

Il comune di Sassari fa parte della fascia centrale della "zona a falde interne".

La Nurra mesozoica rappreseta un esempio di piattaforma carbonatica sottoposta ad oscillazioni eustatiche e a fasi tettoniche distensive, che hanno favorito l'ingressione di mari epicontinentali alternati a fasi subaeree. Il controllo tettonico, attivo in vari intervalli cronostratigrafici, unitamente al controllo eustatico, ha condizionato l'evoluzione sedimentaria della piattaforma, l'instaurarsi dei bacini estensionali e la loro colmata, innescando processi erosivi e la deposizione di flussi silicoclastici e depositi pedogenetici (bauxite).

Di seguito si riportano le carte geologiche IGM 1:50.000 e 1:100.000, del progetto CARG di ISPRA.

INQUADRAMENTO GEOLOGICO-STRUTTURALE

L'area individuata per la realizzazione dell'impianto ricade all'interno della regione della Sardegna meridionale nota come Nurra.

E' stata inoltre esaminata la situazione vincolistica relativa al Piano di Assetto Idrogeologico della Regione Sardegna (P.A.I.).

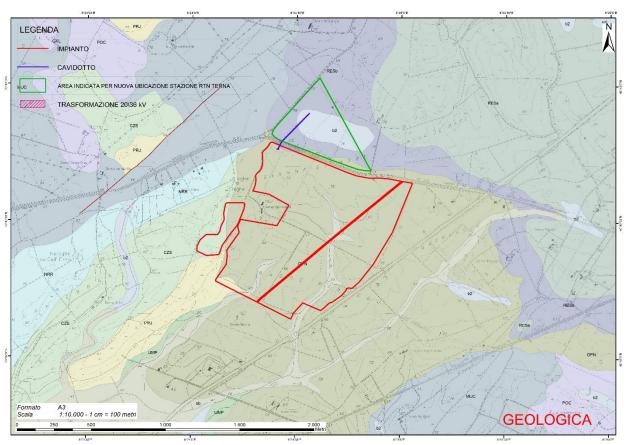
Le risultanze dei rilievi di campagna sono riportate nelle seguenti carte tematiche:

- carta geologica
- carta geomorfologica;
- carta idrogeologica;
- carta dell'uso del suolo.

Il sito individuato per la realizzazione dell'Agro-fotovoltaico è ubicati nel territorio del Comune di Sassari e risulta essere compresi nel Foglio carta Tecnica d'Italia in scala 1:25000 Foglio n. 459 – sez. IV – La Crucca.

La regione geografica della Nurra, nel quadrante di nord-ovest dell'Isola è caratterizzato dall'affioramento di litotipi mesozoici e dalle vulcaniti del ciclo calcalcalino oligo-miocenico. Il settore è caratterizzato dall'affioramento di litologie mesozoiche che ricoprono il basamento metamorfico paleozoico, affiorante nell'area centrale e settentrionale della regione. In relazione ai litotipi affioranti è possibile suddividere la regione della Nurra in tre distinti settori:

settore occidentale, ove affiorano i prodotti del metamorfismo paleozoico;


settore orientale, caratterizzato da limitati affioramenti di vulcaniti oligo-mioceniche e dal complesso sedimentario miocenico;

settore centro-meridionale, con litologie sedimentarie mesozoiche, di ambiente marino e continentale.

Nel settore centro-meridionale gli affioramenti di litologie della serie mesozoica testimoniano l'alternarsi di condizioni deposizionali molto eterogenee che hanno portato alla formazione di serie continentali, marine, lagunari ed evaporitiche. La base della successione mesozoica è costituita da arenarie e

conglomerati d'ambiente continentale del Trias inferiore, cui si succedono depositi lagunari e marini del trias medio, con prevalenza di dolomie, calcari e marne, con spessori di alcune centinaia di metri. La successione triassica si chiude con depositi di dolomie, calcari, marne, argille ed ammassi di gesso; l'ambiente di deposizione passa, pertanto, da condizioni marine verso un ambiente continentale lagunare evaporitico. Nel Giurassico ha inizio un'attività deposizionale, di ambiente schiettamente marino, che ha portato all'accumulo di una potente serie sedimentaria con spessore massimo di circa 600 m, dove prevalgono i litotipi calcareo-dolomitici. La serie termina con facies lagunare, con calcari e marne, e neritica, con calcari compatti. Nel Cretaceo si succedono periodi di deposizione sedimentaria marina ad altri continentali associati, inoltre, a parziale erosione della serie precedentemente deposta. La serie cretacea ha uno spessore di circa 180 m ed è costituita da calcari, marne e calcari-marnosi. Strutturalmente l'area è caratterizzata da lineazioni tettoniche, con direzione prevalenti NNW-SSE e NE-SW, che hanno causato lo smembramento del basamento mesozoico in diversi nuclei dando origine ad una struttura con horst e graben. La presenza di tali lineazioni è meglio evidenziata laddove si trovano a contatto termini non sequenziali della serie mesozoica. Il basamento cristallino è ricoperto da depositi detritici, d'ambiente prevalentemente continentale, presenti per lo più in corrispondenze delle zone interessate dallo sviluppo del reticolato idrografico e al piede dei maggiori rilievi. I sedimenti continentali, quaternari e recenti, sono granulometricamente molto eterogenei in dipendenza dell'energia deposizionale che ha originato il deposito, con consistenza molto variabile. In prossimità della linea di costa si rinvengono depositi marini, sabbioso-arenacei e ciottolosi. Il substrato litoide nella zona in esame

è costituito da depositi sedimentari di piattaforme, dolomie e calcari dolomitici, calcari e calcari marmosi di età mesozoica del cretaceo inferiore.

Stratigrafia

A partire dal basso, la successione litostratigrafia della Nurra, può essere schematicamente così riassunta:

- alla base il basamento cristallino metamorfico ercinico (Ordoviciano ? Carbonifero inf. ?)
- successione trasgressiva permo-triassica in facies germanica continentale, costituita da conglomerati grossolani e arenarie rosse e varicolori (Buntsandstein), dolomie basali, calcari nodulari e gessi (Muschelkalk), dolomie, marne e gessi (Keuper)
- complesso dolomitico calcareo di piattaforma carbonatica, costituito da dolomie massive, calcari dolomitici, calcari oolitici e calcari micritici (Giurassico).
- formazione marnosa di ambiente laguno-lacustre (facies Purbeckiana) costituita da marne di colore verdastro, calcari marnosi, calcari micritici, calcari ad ostree (Berriasiano-Vaianginiano inf. / Cretaceo inferiore).
- formazione carbonatica di ambiente di scogliera (facies urgoniana) costituita principalmente da calcari bioclastici massivi, talvolta dolomitici (Vaianginiano-Aptiano inf. / Cretaceo inferiore).
- formazione bauxitica, che corrisponde alla lacuna di sedimentazione mesocretacica, formatasi per l'evoluzione pedogenetica di tipo ferralitico di depositi aitaritici (Albiano ? Turoniano).
- complesso carbonatico al tetto delle bauxite, costituito da calcari di tipo bioclastico, biocalcareniti, marne, calcareniti a glauconite, marne arenacee, calcari biosparitici (Cretaceo superiore).
- vulcaniti del ciclo terziario calco-alcalino, ignimbriti, tufi, cineriti, piroclastici, vitrofiri e termini della loro alterazione (bentoniti) (Oligo-Miocene).
- complesso carbonatico costituito da calcari, calcari marnosi, calcareniti, marne, marne arenacee, depositi sabbiosi fluvio-deltizi (Miocene).
- depositi quaternari di vario tipo con la presenza della panchina wurmiana sabbioso ciottolosa, terrazzi alluvionali, alluvioni di fondo valle, detrito di falda e suolo vegetale.

Particolare attenzione occorre porre alle fenomenologie carsiche che rivestono nella Nurra una notevole importanza, facilitate nella loro evoluzione dalla presenza delle imponenti coltri carbonatiche della piattaforma mesozoica. Tali fenomeni, assunsero una notevole intensità nel Cretaceo medio, per la

concomitanza del clima caldo umido che favoriva la dissoluzione dei litotipi prevalentemente calcarei e dolomitici del Cretaceo inferiore e del Giurese, durante il periodo di peneplanazione della regione in oggetto. Le condizioni climatiche particolari del periodo descritto e paragonabili a quelle attuali delle regioni tropicali e sub-tropicali, favorirono il carsismo che si manifestò con le forme morfologiche caratteristiche che variavano dal tipico inghiottitoio a prevalente sviluppo verticale ad ampie doline con forma ellittica a estesi campi carreggiati. Le direttrici tettoniche di tipo distensivo, fungevano da linee di innesco e da successive lineazioni per la evoluzione di questi fenomeni.

La situazione geologica, si rispecchia anche nella situazione strutturale della regione, come conseguenza di una complessa successione di eventi tettonici le cui principali tappe si possono così riassumere:

- orogenesi ercinica a carattere plicativo;
- "decrochement" tardo ercinico con formazione di zone a shear;
- "fase austriaca" a carattere prevalentemente compressivo;
- "fase pirenaica" a carattere compressivo;
- rifting oligo-miocenico a carattere distensivo. Di seguito, si ripercorrono i principali eventi tettonici che hanno portato deformazioni sulle litologie presenti nelle aree limitrofe a quelle interessate dall'intervento in oggetto.

Tettonica

Le uniche impronte deformative, sicuramente erciniche registrate nel complesso granitoide, riguardano le plutoniti precoci sin-tettoniche. La tettonica ercinica del basamento sardo, può essere ricondotta a due importanti eventi geodinamici:

il primo di essi è facilmente inquadrabile in una collisione continentale in corrispondenza della zona assiale e di cui si conosce il prolungamento nel massiccio centrale francese;

il secondo evento geodinamico, responsabile delle fasi tardive erciniche, ha carattere estensionale e si manifesta con zone di taglio a basso angolo che nelle zone a falde riattivano i contatti di accavallamento.

La fase tettonica successiva a quella ercinica, è una tettonica di tipo trascorrente che si esplica con zone di taglio, nelle quali sono individuabili ampi settori transtensivi con zone di crosta assottigliata. Le evidenze di tale tettonica, sono chiare nella zona di taglio del Grighini, che taglia il complesso intrusivo tardo ercinico

La tettonica mesozoica ed eo-cenozoica

Questi eventi tettonici del mesozoico, in Sardegna, sono confinati nelle piattaforme carbonatiche di questo periodo. Gli eventi tettonici, non hanno influenzato il batolite sardo, anche se non si può escludere

che le faglie trascorrenti legate alla compressione nord est possono aver ripreso le precedenti strutture

tardo paleozoiche del batolite.

La tettonica di rifting oligo-miocenica

Durante l'oligo-miocene, la Sardegna è stata interessata da movimenti tettonici di notevole entità che

riflettono la complessa geodinamica mediterranea di questo intervallo di tempo. La struttura più

importante generata dalla tettonica oligo-miocenica è il rift sardo, legato ad una fase di tipo distensivo,

messa in relazione con l'apertura del bacino ligure-provenzale, con conseguente rotazione del blocco

sardo-corso.

La tettonica del Miocene superiore e del Plio-quaternario

Alla tettonica trascorrente, inquadrabile in un intervallo di tempo che dall'oligocene superiore arriverebbe

sino al langhiano inferiore, fa seguito un regime distensivo individuabile, con ogni probabilità, nel rilascio

del campo di stress indotto dalla precedente collisione.

Caratteri geotecnici dei terreni

Si indicano i parametri geotecnici dei terreni entro i quali verranno ammorsati i montanti in acciaio delle

strutture di sostegno dei moduli fotovoltaici. Si tratta di valori medi, assegnati in base alle osservazioni di

campagna, che si ritengono sufficientemente rappresentativi dei valori sperimentali che verranno

ottenuti in fase esecutiva mediante prove geotecniche in laboratorio o in situ.

Calcari, Calcareniti

peso di volume: g = 19 - 20 KN/m3

angolo di resistenza al taglio: f >= 45°

coesione: c = 30 Kpa

modulo di deformabilità : Ed = 5 Gpa

Dovrà essere rimosso lo strato di terreno superficiale per la realizzazione del piano di posa delle

fondazioni. Dovranno essere eseguiti dei carotaggi geotecnici al fine di caratterizzare l'ammasso roccioso

stimando i parametri geotecnici necessari per la determinazione di capacità portante e cedimenti. In tal

modo sarà anche possibile verificare la continuità dell'ammasso roccioso calcareo ed accertarsi che non

esistano cavità nel sottosuolo. A tal fine i carotaggi dovranno interessare il volume significativo del

sottosuolo entro il quale si esplicano le tensioni applicate dal modulo FTV.

REL_SIA STUDIO DI IMPATTO AMBIENTALE

115

Caratteri pedologici dei terreni

Dagli esami effettuati risulta che nell'area vasta in esame sono presenti le seguenti 4 unità cartografiche al cui interno sono state definite 9 delineazioni pedologiche.

Unità A : Superfici pianeggianti o leggermente depresse incise da corsi d'acqua, in gran parte regimati, caratterizzate da tre sottounità geopedologiche.

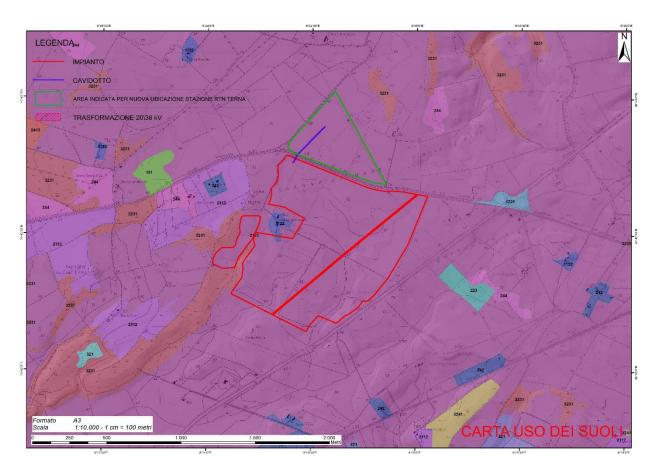
Unità B : Superfici pianeggianti o debolmente ondulate dei sedimenti alluvionali antichi caratterizzate da due sottounita geopedologiche.

Unità C : Superfici da leggermente ondulate ad ondulate, ma a tratti depresse, caratterizzate da due sottounità geopedologiche.

Unità D: Superfici da ondulate a fortemente acclivi caratterizzate da due sotto unità geopedologiche:

I suoli dell'area vasta in esame risultano appartenere agli ordini degli Alfisuoli, degli Entisuoli degli Inceptisuoli e dei Vertisuoli secondo la classificazione dei suoli U.S.D.A. (Soil Taxonomy).

Gli Alfisuoli sono suoli che hanno subito processi evolutivi significativi con la formazione di orizzonti diagnostici di accumulo (orizzonte Bt "argillico") per lisciviazione e che nell'area in esame appaiono particolarmente alterati dai consistenti rimaneggiamenti antropici. Gli Entisuoli sono suoli nei quali i limitati processi pedogenetici non hanno portato allo sviluppo di orizzonti di alterazione o di accumulo; il loro profilo è pertanto del tipo A1C, dove molto spesso l'orizzonte A mostra un limitate spessore.


I Vertisuoli sono suoli condizionati dall'elevato contenuto in argilla espandibile che provoca fenomeni meccanici quali la contrazione e fessurazione della struttura durante in periodi di ardita climatica e rigonfiamento per forte ritenzione idrica durante i periodi umidi e piovosi. Per quanto concerne gli Inceptisuoli si tratta, in generale, di suoli che hanno subito limitati processi evolutivi dal punto di vista pedogenetico; non risultano infatti fenomeni di lisciviazione, ma all'interno del profilo sono evidenti segni di alterazione chimico-fisica. Per ciascuna delle unità cartografiche sono stati valutati alcuni fattori limitanti esterni ed interni ai rispettivi suoli così da permetterne una graduatoria in funzione delle possibili utilizzazioni agro-silvo-pastorali. Tale graduatoria è stata ottenuta applicando la metodologia di capacità d'uso dei suoli (land capability del sistema statunitense modificata dal CNR). La capacità d'uso dei suoli classifica i terreni in otto classi indicati con numero romano; le prime quattro classi da la IV comprendono suoli arabili, mentre dalla V alla VIII suoli non arabili.

Come già evidenziato in precedenza per tutti i suoli dell'area vasta in esame il regime idrico di tipo xerico rappresenta un fattore limitante esterno ad essi di importante significato.

Considerati inoltre i limitati spessori della maggior parte dei suoli presenti nell'area risulta evidente che alla diminuzione della ritenzione idrica del suolo corrisponda un incremento del deficit idrico globale annuo. Tali condizioni limitanti escludono a priori che nell'area in esame possano venire assegnate ai suoli la prima classe di capacità d'uso; il grado di limitazione potrebbe portare ad escludere anche assegnazioni di seconde classi, ma nell'area in esame risultano disponibili depositi idrici per un potenziale sistema irriguo. Tra gli altri fattori limitanti esterni al suolo sono stati considerati, la presenza di affioramenti litoidi e il rischio di erosione; tra quelli interni la profondità, la granulometria (tessitura e scheletro), la reazione (pH) ed il drenaggio interno.

USO DEL SUOLO

Le forme di uso del suolo predominanti della zona individuata per la realizzazione dell'impianto sono di tipo antropico e legate alla presenza nell'area di una vasta area a carattere industriale. Il sito di progetto, viene utilizzato a pascolo naturale. L'area di pertinenza dell'impianto (la superficie occupata dai pannelli e strade di pertinenza a servizio dell'impianto) è pari a una superficie di circa Ha 33.86.31, La Tavola dell'Uso del Suolo definisce la porzione del sito oggetto di studio, individuandola con il codice 2121 Seminativi semplici e colture orticole a pieno campo.

Carta dell'uso del suolo Corine Land cover (fonte Geoportale Nazionale)

4.3.AMBIENTE IDRICO

Dal punto di vista idrografico l'area di studio ricade interamente nel bacino idrografico del Rio Mannu che secondo il Piano di Tutela delle Acque (PTA), suddiviso per Unità Idrografiche Omogenee U.I.O., è parte integrante dell'U.I.O.: Mannu di Porto Torres.

Rappresentazione della U.I.O. del Mannu di Porto Torres

BACINO IDROGRAFICO SUB BACINO DEL MANNU DI PORTO TORRES

Il bacino del Riu Mannu di Porto Torres, si sviluppa in una vasta area della Sardegna nord-occidentale, all'interno dell'area denominata "Fossa Sarda", quest'ultima è stata interessata in diversi periodi da ripetute trasgressioni e regressioni marine e da numerose manifestazioni vulcaniche.

A seguito dei movimenti che hanno dato origine alla "Fossa Sarda", questo territorio è stato invaso dal mare e ricoperto da imponenti coltri sedimentarie dalla cui emersione si è originato un esteso altopiano.

L'area nel quale si sviluppa il corso d'acqua è caratterizzata da una serie di colline di media altezza, da falsipiani e tavolati modellati nei sedimenti calcarei di età miocenica.

Complessivamente nella U.I.O. del Mannu di Porto Torres si contano, oltre ai 12 corsi d'acqua del primo ordine relativi agli altrettanti bacini nonche 16 corsi d'acqua del secondo ordine, come visibile nelle tabelle di seguito riportate.

Tabella 1-1: U.I.O. del Mannu di Porto Torres – elenco bacini

N	Nome Bacino Idrografico	Codice Bacino CEDOC	Area Bacino (Kmq)
1	Riu Mannu di Porto Torres	0182	671,32
2	Isola Asinara	0315	51,18
3	Isola Piana	0309	1,18
4	Palmas	0187	19,09
5	Riu Flumini	0186	8,79
6	Riu San Nicola	0185	45,55
7	Casaraccio	0184	54,72
8	Flumen Santu	0183	94,58
9	Riu di Buddi Buddi	0181	55,13
10	Riu Pedrugnanu	0180	10,71
11	Fiume Silis	0179	122,46
12	Riu Toltu	0178	103,98
Total	le	1238,69	

Tabella 1-3: U.I.O. del Mannu di Porto Torres – elenco corsi d'acqua del 2° ordine

N.	Cod. Bacino 1° ord. di appartenenza	Nome Bacino 1° ord. di appartenenza	Codice Corpo Idrico	Nome Corpo Idrico	Lunghezza Asta (km)
1	0182	Riu Mannu di Porto Torres	0002	Riu Ottava	15,36
2	0182	Riu Mannu di Porto Torres	0005	Riu Ertas	8,98
3	0182	Riu Mannu di Porto Torres	0006	Riu Aliderru	3,24
4	0182	Riu Mannu di Porto Torres	0007	Riu Màscari	29,08
5	0182	Riu Mannu di Porto Torres	0018	Riu Rumbosu	5,98
6	0182	Riu Mannu di Porto Torres	0020	Riu Minore	13,19
7	0182	Riu Mannu di Porto Torres	0022	Riu Briai	2,54
8	0182	Riu Mannu di Porto Torres	0023	Riu Lacu Ruju	1,69
9	0182	Riu Mannu di Porto Torres	0024	Riu Bidighinzu	14,43
10	0182	Riu Mannu di Porto Torres	0027	Torrente Banzos	7,14
11	0185	Riu San Nicola	0002	Canale de Chirigu Cosso	5,13
12	0179	Fiume Silis	0002	Riu de su Golfu	5,21
13	0179	Fiume Silis	0003	Riu san Lorenzo	6,75
14	0179	Fiume Silis	0004	Riu Bade Samure	5,34
15	0178	Riu Toltu	0002	Riu Tergu	5,33
16	0178	Riu Toltu	0005	Riu di Chinna	4,65

Tabelle dal PTA Regione Sardegna

IDROGRAFIA SUPERFICIALE

L'idrologia superficiale dell'area è caratterizzata dalla presenza del Riu Ertas affluente sinistro del Riu Mannu. Confluisce in tale corso nei pressi dell'attraversamento della S.P. "La Crucca". Il bacino drena un settore di territorio (geograficamente facente parte della piana della Nurra) caratterizzato da alternanze di aree pianeggianti e di deboli rilievi collinari, il tutto inciso dal reticolo idrografico secondario a formare fondovalle alluvionali piuttosto ampi in relazione al tipo di corso d'acqua.

Il substrato nella zona di testata è costituito da successioni carbonatiche cretacee, poi andando verso valle segue una fascia di vulcaniti acide, mentre nel tratto prossimo alla confluenza affiorano arenarie e marne mioceniche. La zona di affioramento delle formazioni carbonatiche costituisce una sorta di altipiano, poco o per nulla inciso del reticolo idrografico.

Il riu Ertas nasce nei pressi della località Fatt.a Bossalino, circa 15 km ad Ovest del centro di Sassari, non lontano dai margini dell'altopiano calcareo, che raggiunge dopo un percorso di circa 3 km vagamente a semicerchio. Di qui, poi, la valle si fa stretta e incassata per circa 1,5 km, dopo di che il fondovalle si allarga notevolmente tra alte scarpate di terrazzo fino a raggiungere la valle del Mannu di Porto Torres. In tale settore l'Ertas è arginato e il drenaggio del fondovalle alluvionale è assicurato dai canali di bonifica fiume 356 (dotato di idrovora alla confluenza nell'Ertas) e fiume 361. Pertanto, questi ultimi due corsi d'acqua, per altro artificiali, si sviluppano interamente all'interno della fascia di naturale esondazione dell'Ertas.

IDROGRAFIA SOTTERRANEA

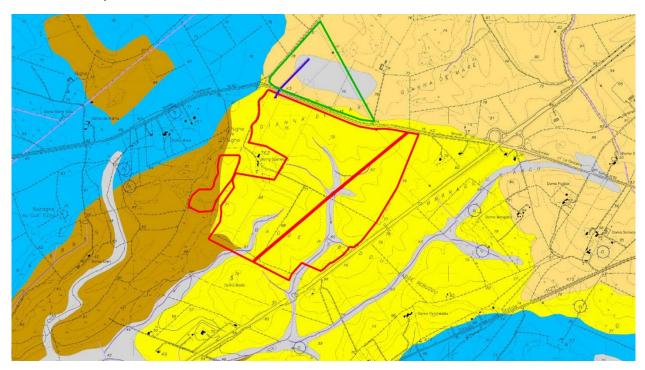
L'idrografia sotterranea dell'area oggetto di studio si presenta alquanto articolata data la varietà di litologie presenti, le quali permettono la circolazione dell'acqua attraverso fratture nelle rocce compatte e porosità nei depositi detritici. La permeabilità ed il comportamento idrogeologico dei terreni affioranti nell'aera in esame sono determinati prendendo in considerazione, sia la loro natura litologico-sedimentologica dei terreni, sia il loro assetto strutturale.

L'acquifero più importante è costituito dalla successione carbonatica mesozoica. Il suo spessore non è ben riconosciuto. Il serbatoio principale deve essere ricondotto alle zone in cui l'assetto e la storia strutturale della regione ha consentito la conservazione del massimo spessore. I Calcari possiedono una permeablità secondaria per fessurazione o per carsismo.

Da un punto di vista idrogeologico, nell'area è presete un'unità idrogeologica divisa in 3 complessi idrogeologici.

LE UNITÀ IDROGEOLOGICHE

Sulla base del quadro conoscitivo attuale, sono stati individuati, per tutta la Sardegna, 37 complessi acquiferi principali, costituiti da una o più Unità Idrogeologiche con caratteristiche idrogeologiche sostanzialmente omogenee.


Il territorio della U.I.O. del Rio Mannu di Porto Torres, comprende i seguenti acquiferi:

- 1. Acquifero dei Carbonati Mesozoici della Nurra;
- 2. Acquifero Detritico-Carbonatico Oligo-Miocenico del Sassarese;
- 3. Acquifero delle Vulcaniti Oligo-Mioceniche della Sardegna Nord Occidentale;
- 4. Acquifero delle Vulcaniti Plio-Pleistoceniche del Logudoro;
- 5. Acquifero Detritico-Alluvionale Plio-Quaternario della Nurra;
- 6. Acquifero Detritico-Alluvionale Plio-Quaternario della Marina di Sorso.

L'area interessata dall'intervento, rientra all'interno del complesso acquifero dei carbonati mesozoici della Nurra e dell'acquifero delle vulcaniti oligo-mioceniche della Sardegna nord occidentale. Dal punto di vista idrogeologico, le formazioni rocciose presenti nella zona, sono caratterizzate dalle seguenti caratteristiche:

- le formazioni carbonatiche, caratterizzate da una potenziale circolazione idrica in frattura e per carsismo, con permeabilità da media ad alta con k variabile da 10-4 a valori maggiori di 10 cm/s, con tendenza crescente nel tempo;
- le formazioni costituite dalle ignimbriti compatte che appartengono all'acquifero delle vulcaniti, sono caratterizzate da permeabilità per fratturazione, sono mediamente permeabili con k compreso tra 10 e 10-4 cm/s, con tendenza di questa a decrescere nel tempo;
- le formazioni costituite dalle vulcaniti poco compatte che appartengono sempre all'acquifero delle vulcaniti, sono caratterizzate da permeabilità per fratturazione, sono scarsamente permeabili con k compreso tra 10-4 e 10-7 cm/s; Pertanto, l'infiltrazione delle acque è dovuta fondamentalmente ad una circolazione idrica per frattura (permeabilità secondaria) e per carsismo. Il carsismo della Nurra, è uno dei più interessanti dell'isola, ed è accentuato soprattutto lungo la costa, dove si sono formate delle grotte di notevole importanza.

Sulle superfici calcaree, si è sviluppato un paesaggio carsico frammentato dalle dislocazioni, vi si trovano conche e campi carreggiati, ampie depressioni dolinari, pozzi profondi e inghiottitoi. Non si segnalano forme carsiche prossime all'area interessata dai lavori.

Nelle vulcaniti la permeabilità, per fessurazione, è variabile: il più delle volte bassa per la presenza di vulcaniti saldate variamente fessurate e fratturate, la cui capacità di trasmettere la risorsa idrica dipende dalla intercomunicabilità delle stesse. Infatti, gli espandimenti che si caratterizzano per la presenza di discontinuità, nel caso siano aperte e in relazione anche al loro livello di rugosità, contribuiscono all'incremento della conduttività idraulica. Al contrario, i livelli bentonitici per la loro elevata componente argillosa, sono per antonomasia rocce dotate di assai bassa porosità efficace ed elevato coefficiente di ritenzione; quindi, non in grado di permettere la trasmissività della risorsa idrica e fungono da sbarramento alla introduzione delle acque negli strati più profondi.

La messa in opera dell'impianto, date le sue caratteristiche, non compromette ne la permeabilità del sottosuolo, la quale è legata ad un tipo di permeabilità primaria per porosità, ne il normale ruscelllamento delle acque data la l'esigua porzione di terreno utilizzato per l'infissione delle aste. Pertanto, non interferisce con l'idrogeologia sotterranea e superficiale.

L'ombreggiatura dei pannelli in alcune aree soleggiate, favorisce inoltre la crescita di vegetazione e un conseguente rallentamento dell'effetto erosivo ad opera del ruscellamento delle acque superficiali.

AMBIENTE IDRICO SOTTERRANEO

Nel PTA della Regione sono stati individuati, per tutta la Sardegna, i complessi acquiferi principali, costituiti da una o più Unità Idrogeologiche con caratteristiche idrogeologiche sostanzialmente omogenee. Di seguito, si riportano gli acquiferi che interessano il territorio della U.I.O. del Mannu di Porto Torres:

- Acquifero dei Carbonati Mesozoici della Nurra.
- Acquifero Detritico-Carbonatico Oligo-Miocenico del Sassarese.
- Acquifero delle Vulcaniti Oligo-Mioceniche della Sardegna Nord Occidentale.
- Acquifero delle Vulcaniti Plio-Pleistoceniche del Logudoro.
- Acquifero Detritico-Alluvionale Plio-Quaternario della Nurra.
- Acquifero Detritico-Alluvionale Plio-Quaternario della Marina di Sorso.

Come riportano le seguenti, l'area di Progetto è interessata dall'acquifero dei carbonati mesozoico della Nurra, in particolare <u>l'area di progetto ricade in un'area a vulnerabilità media</u>. La tipologia di opera però non crea impatti sulla risorsa.

Vulnerabilità intrinseca degli Acquiferi Carbonatici Mesozoici Paleozoici (fonte: PTA Regione Sardegna)

4.4.TERRITORIO E PATRIMONIO AGROALIMENTARE

Il territorio comunale di Sassari si presenta con una forma irregolare, coincide in gran parte con la **regione della Nurra**, la parte nord-occidentale della Sardegna. Si tratta di un'area di notevolissimo interesse naturalistico caratterizzata da un paesaggio ricco e variegato: **piano e collinoso al centro e sulla costa settentrionale e ricco di promontori imponenti a picco sul mare sulla costa occidentale.**

Il nome deriva dall'antica Nure, che costituiva un'antica curatoria del giudicato di Torres, è una regione della Sardegna posta all'estremità nord occidentale dell'Isola, che forma un quadrilatero compreso tra il golfo dell'Asinara a nord est ed il Mar di Sardegna ad ovest, delimitata dal Rio Mannu a est e dai rilievi del Logudoro a sud est. I comuni che fanno parte della Nurra sono: Alghero, Olmedo, Porto Torres, Stintino, e numerose frazioni del comune di Sassari. Si tratta di una zona prevalentemente pianeggiante scarsamente popolata, il cui territorio conserva traccia degli insediamenti sparsi dei pastori e contadini, che abitavano in ricoveri di bestiame denominati Cuiles. I punti più alti sono il Monte Forte di 464 metri e il monte Doglia di 437 metri.

Nel territorio preponderano gli usi agricoli ma esso appare pesantemente condizionato, dalla presenza delle aree industriali.

Si rappresenta in ogni caso che l'area in esame risulta servita dal consorzio di Bonifica della Nurra che si sviluppa su una superficie di 83.574 ettari. Il Comprensorio irriguo si estende su una superficie di circa 27.600 ettari, di cui circa 15.500 corrispondono alla superficie irrigabile al netto delle tare. La superficie effettivamente irrigata corrisponde a 4.300 ettari. A questa superficie si devono aggiungere circa 1 migliaio di ettari di superficie irrigata da fonti non consortili, soprattutto da pozzi aziendali. La presenza di importanti industrie di trasformazione, indirizzate soprattutto alla produzione di vini ed olio, hanno senz'altro favorito la diffusione di colture che in altre parti della Sardegna hanno faticato ad affermarsi. Rispetto alla situazione generale che si riscontra nell'isola, infatti, l'area si caratterizza per un notevole sviluppo della viticoltura, dell'olivicoltura e dell'orticoltura (Banco di Sardegna, 2004a). Non vi è dubbio, comunque, che soprattutto per quanto riguarda la produzione di ortaggi, un fattore che ha condizionato le scelte degli imprenditori nel corso degli anni è rappresentato dal fatto che la Nurra è un territorio particolarmente fertile. Dopo il Campidano è la seconda pianura della Sardegna per estensione e, da sempre, si presta ad utilizzi dei terreni che vanno oltre lo sfruttamento a fini zootecnici. Ciò nonostante, l'allevamento ovino e la foraggicoltura costituiscono a tutt'oggi le attività principali nel territorio. Invero, in questo comparto si registra la presenza di alcune realtà imprenditoriali che si sviluppano su scale produttive di portata ben maggiore rispetto alla media regionale, non solo per quel che concerne la superficie e/o il numero di capi, ma soprattutto per il volume di capitali investiti e le relazioni commerciali. Alcune di queste imprese sono dedite anche all'allevamento bovino.

Sotto questo profilo, è pur vero che, non solo nel comparto zootecnico, si rinvengono aziende di grandi dimensioni (relativamente al contesto in cui operano le imprese agricole sarde). Nel territorio ricadono alcune tra le più importanti ed estese imprese vitivinicole italiane e talune altre che producono olio d'oliva, oramai conosciute in molte parti del mondo ed in grado di ritagliarsi da tempo una posizione in seno ai mercati internazionali (Banco di Sardegna, 2004a). Inoltre, è di una certa consistenza la presenza della cerealicoltura, sebbene nel corso degli ultimi anni le superfici investite a cereali hanno subito un ridimensionamento a causa delle condizioni meno favorevoli dettate dalla PAC, la superficie irrigata con acqua distribuita dalla rete del Consorzio è risultata pari a circa 4.300 ettari, vale a dire circa il 28% della superficie attrezzata. Rispetto al 2005, la SAU irrigata è aumentata di circa il 4%, pur se tale incremento non è stato uniforme.

I caratteri essenziali del territorio e della popolazione sono riportati nello schema seguente.

• popolazione residente (Comune Sassari 31/12/2017) 127.533 abitanti

superficie comunale 546,10 kmq

Il fondo agricolo in esame è facilmente accessibile dalla S.P 65 Provinciale N° 65 che collega Sassari con Porto Ferro.

Nella proprietà non sono presenti fabbricati. Ad una semplice visione del sito, si nota una certa differenza nelle tonalità di colore dei terreni superficiali, dovuta a caratteristiche disomogenee nella granulometria oltre che nella composizione minerale degli stessi. Tali differenze vengono messe in evidenza anche nella relazione geologia allegata al progetto, che descrive i terreni che affiorano nell'area in esame come "[...] terreni che presentano condizioni di permeabilità molto diverse sia in relazione alla varietà dei termini costituenti le varie successioni stratigrafiche, sia alla frequente variabilità degli aspetti litologici e strutturali riscontrabili all'interno delle singole unità che compongono tali successioni. La permeabilità degli affioramenti presenti nell'area in oggetto risulta essere molto eterogenea visto che tali depositi costituiti da un'alternanza di livelli sabbiosi di colore giallastro, livelli limoso - argillosi e livelli conglomeratici eterometrici, presentano spesso passaggi laterali di facies che vanno a modificare puntualmente sia la componente argillo-sabbiosa che la tessitura dei vari depositi. L'area in studio è sede di una falda freatica che viene alimentata prevalentemente da apporti pluviometrici, che si attesta mediamente ad una profondità di -20/-25 m dal piano di campagna". L'area di pertinenza risulta comunque essere fortemente antropizzata.

Il territorio preso in esame, per quanto concerne le caratteristiche del paesaggio agrario, comprende un'area omogenea che parte proprio dalla zona interessata dalla realizzazione dell'impianto agrofotovoltaico per poi estendersi a NORD su una vastissima area pianeggiante, denominata comunemente "PIANA DELLA NURRA". Ad una semplice ricognizione del sito, si può notare una variazione cromatica dei terreni a livello superficiale, imputabile a proprietà disomogenee granulometriche e compositive, nonché mineralogiche.

Sulla base del più recente Censimento Agricoltura, per quanto concerne le produzioni animali l'areale preso in esame risulta essere fortemente dedicato alle "coltivazioni Orticole a pieno campo, che nel caso dell'area in oggetto, sono costituite da carciofi, olive, uva da tavola.

Elevatissimo risulta essere purtroppo anche il dato sulle superfici agricole non utilizzate (oltre 40 % nell'intera Provincia), dovuto principalmente al progressivo abbandono degli appezzamenti dimensioni minori, solitamente con superfici comprese tra 1,00 e 2,50 ha, molto diffusi nella Provincia di Sassari. Pressoché irrisorie, invece, risultano essere le produzioni animali nell'area di intervento, nonostante abbiano ricoperto fino ai primi anni '90 un ruolo importantissimo nell'economia della Piana della Nurra, specie con gli allevamenti di ovine da latte.

4.5.BIODIVERSITA'

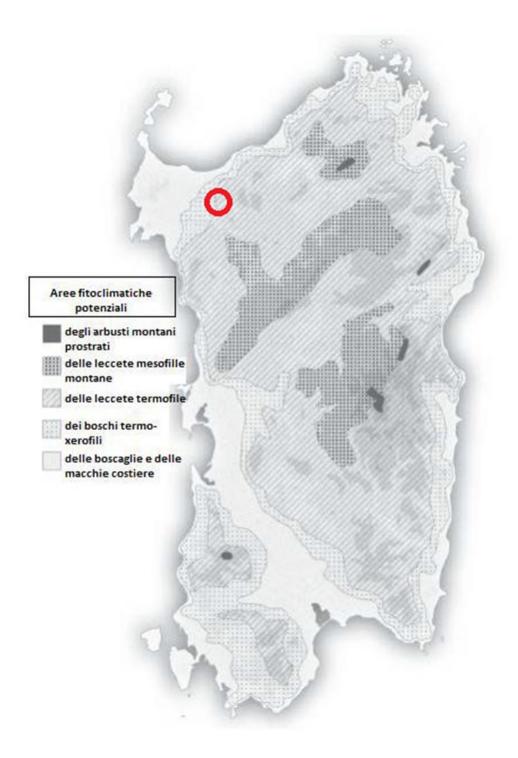
Come presentato nei paragrifi precedenti, il perimetro del sito proposto non interferisce con il sistema delle aree protette le aree più prossime sono come riportato nella seguente tabella. Di seguito sono elencate le aree SIC/ZSC e ZPS che ricadono in prossimità dell'area di intervento con la relativa distanza al sito di impianto. I dati sulle SIC e ZPS sono stati estrapolati dalla consultazione del Geoportale nazionale del MiTE, in particolare sono stati inseriti in una mappa GIS i due layer tramite WMS:

- SIC -SITI DI INTERESSE COMUNITARIO (Direttiva 92/43/CEE "habitat")
- ZPS-ZSC ZONE DI PROTEZIONE SPECIALE (Direttiva 79/409/CEE "uccelli")

Le aree SIC ricadenti nell'intorno dell'area di intervento sono numerosi e sono rivolti prevalentemente alla tutela di specie e habitat litoraneo-costieri e delle zone umide stagnali e lagunari, con limitata valenza forestale, come evidenziato dalla scarsa incidenza di coperture boscate e di sistemi preforestali al loro interno.

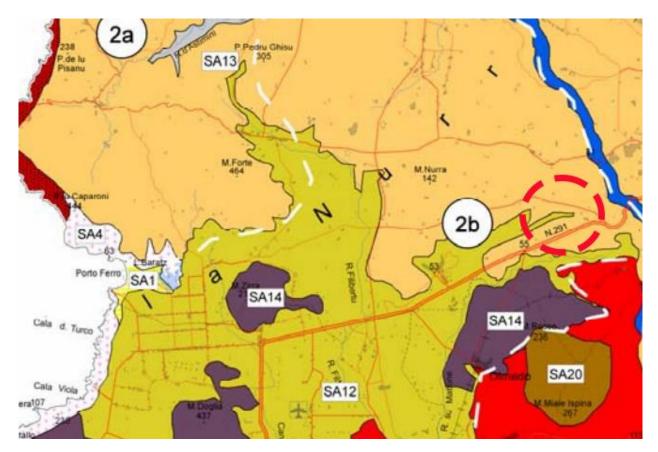
Areee Tutelate Sardegna Geoportale

Nella seguente Tabella si individuano gli ambiti di tutela naturalistica che interessano la zona di studio con la relativa distanza dal sito in progetto.


Codice Natura 2000	Nome Sito	Distanza (km)
SIC-ZSC ITB010002	Stagno di Pilo e di Casaraccio	Circa 17 km
SIC ITB010003	Stagno e ginepreto di Platamona	Circa 14 km
SIC-ZSC ITB11155	Lago di Baratz Porto Ferro	Circa 15 km
SIC ITB13051	Dall'isola dell'Asinara all'Argentiera	Circa 19 km
ZPS ITB013012	Stagno di Pilo, Casaraccio e Saline di Stintino	Circa 17 km

VEGETAZIONE

Secondo Valsecchi (1989) la flora della Nurra è caratterizzata da un notevole contingente di specie mediterranee termofile, da un elevato numero di specie endemiche sarde o sardo-corse e da diverse entità ad areale poco esteso o che trovano in Sardegna il limite di distribuzione


Gli aspetti geologici del territorio unitamente al carattere insulare del clima della Sardegna hanno determinato lo svilupparsi di una vegetazione quasi esclusivamente di tipo mediterraneo, costituita da formazioni vegetali organizzate da un punto di vista fitoclimatico in cinque aree di vegetazione potenziale:

- Area Basale: costiera e planiziaria con clima arido e caldo a prevalente presenza di specie termofile tra cui le sclerofille sempreverdi (Chamaerops humilis, Quercus coccifera, Erica multiflora, Pistacia lentiscus, Phillyrea angustifolia) e le caducifoglie a sviluppo autunnale invernale come Euphorbia dendroides. Tale area corrisponde al Fitoclima delle Boscaglie e Macchie Costiere;
- Area Termofila: corrispondente all'associazione Viburno tini-Quercetum ilicis frequente nelle zone collinari e medio-montane, con diverse sotto-associazioni e varianti ecologiche caratterizzate da una consistente partecipazione di una o l'altra specie sclerofillica. Tale area corrisponde al Fitoclima delle Leccete Termofile;
- Area collinare/montana: caratterizzato da un orizzonte di vegetazione sempreverde delle foreste di leccio. Tale area corrisponde al Fitoclima dei Boschi termo-xerofili);
- Area montano/mesofila: caratterizzata da suoli silicei con Asplenio onopteris-Quercetum ilicis nella parte centro settentrionale della Sardegna e da suoli calcarei con Aceri monspessulani-Quercetum ilicis sull'altopiano centrale del Supramonte. Tale area corrisponde al Fitoclima delle leccete mesofile montane;
- Area Culminale: caratterizzata da arbusti mediterranei in cui prevalgono Juniperus sibirica, Astragalus genargenteus, Berberis aetnensis, Thymus catharinae, Daphne oleoides. Tale area corrisponde al Fitoclima degli arbusti montani prostrati.

Piani fitoclimatici potenziali della Sardegna (Fonte ISPRA – il sistema della carta della natura della Sardegna)

Come si vede dalla figura soprariportata, il sito è localizzato all'interno del Fitoclima delle Boschi termoxerofili. Dagli esiti del sopralluogo è stata identificata la presenza di seminativi nell'intorno dell'area di progetto.

Carta delle serie di vegetazione (fonte: Piano forestale della Regione Sardegna); Legenda Carta delle serie di vegetazione (fonte: Piano forestale della Regione Sardegna)

In base a quanto riportato nel Piano Forestale della Regione Sardegna il sito del progetto ricade nella Serie SA13, che corrisponde alla Serie sarda Termo-mesomeditterranea del leccio.

FAUNA TERRESTRE

In generale la fauna vertebrata terrestre della Sardegna conta circa 370 specie, di cui 41 specie di mammiferi, 18 rettili, 8 anfibi.

Sulla base di quanto riportato nelle schede dei siti Natura 2000 presenti nell'area si possono identificare le seguenti specie di interesse.

L'erpetofauna locale comprende alcune specie piuttosto comuni e diffuse nell'Italia meridionale e nelle isole maggiori, tra cui il geco verrucoso, la tarantola muraiola, la luscengola, la lucertola campestre, il biacco e la natrice dal collare. Oltre a queste, vi è la presenza di specie più rare come la lucertola tiliguerta, il congilo e l'algiroide nano, la natrice viperina, la lucertola tirrenica e diverse specie di testuggine, tra cui la testuggine d'acqua, la testuggine greca, la testuggine comune e la testuggine marginata. Di seguito si riportano quelle principali da un punto di vista delle categorie IUCN.

Testuggine d'acqua (Emys orbicularis): Le maggiori popolazioni italiane si trovano in aree protette. Attualmente è frequente in zone umide costiere, mentre è presente con popolazioni poco numerose che sopravvivono in pochissime località in buona parte del territorio nazionale. Si trova prevalentemente in due tipologie di habitat umidi: stagni, pozze, paludi, acquitrini; oppure canali anche artificiali. Categoria IUCN = In Pericolo;

Testuggine greca (Testudo graeca): Distribuita in Africa del nord, Medio Oriente ed Europa del sud. In Italia sono note due popolazioni naturalizzate in Sardegna di cui una sull'Isola di Mal di Ventre, l'altra in provincia di Oristano. Frequenta zone costiere e collinari/montane caratterizzate da vegetazione mediterranea, sia di macchia bassa sia di bosco; si trova anche in zone agricole abbandonate o con bassa pressione agricola. Durante il sopralluogo condotte a Gugno 2016, all'interno del perimetro del SIN è stata riscontrata la presenta di questa specie. Categoria IUCN = Quasi Minacciata;

Testuggine marginata (Testudo marginata): Specie originaria della Grecia e dell'Albania, anticamente introdotta in Sardegna, nella parte nord-occidentale dell'isola (Gallura). Predilige ambienti con pendii aridi e pietrosi, associati a diversi stadi di sviluppo della macchia mediterranea e della gariga. Categoria IUCN = Quasi Minacciata:

Testuggine comune (Testudo hermanni): Entità nord-mediterranea presente in Italia sia nella penisola sia nelle isole maggiori. Gli habitat ottimali sono la foresta costiera termofila caducifoglia e sempreverde e la macchia su substrato roccioso o sabbioso. E' presente anche nelle dune cespugliate, pascoli, prati aridi, oliveti abbandonati, agrumeti e orti. Categoria IUCN = In Pericolo;

Lucertola tirrenica (Podarcis tiliguerta): Distribuita in Sardegna e nelle isole minori circostanti dal livello del mare fino a 1800 m di quota. Specie ubiquitaria e adattata al bioclima mediterraneo. Si trova in aree aride di macchia, roccia, bosco aperto, ai margini dei campi, in aree costiere sabbiose, con vegetazione, occasionalmente in campi coltivati. Categoria IUCN = Quasi Minacciata;

Natrice dal collare (Natrix natrix ssp. Cetti): La popolazione in Sardegna è decisamente rara e irregolarmente distribuita. Gli individui più grandi si allontanano dall'acqua e frequentano boschi, prati, pascoli, zone rocciose e aree antropizzate. Categoria IUCN = Vulnerabile.

Per quanto concerne gli Anfibi, gli stagni di Pilo e Platamona rappresentano areali importanti. Gli anfibi presenti nell'area rivestono un notevole interesse naturalistico in quanto appartenenti a specie che si possono considerare poco diffuse. Tra i principali segnalati dalle Schede Natura 2000 si può menzionare il Discoglosso sardo (Discoglossus sardus). In Italia la specie è presente in Sardegna, su due isole dell' Arcipelago Toscano, Giglio e Montecristo, e sull'isola fossile di Monte Argentario; su quest'ultima e al Giglio la specie sembra attualmente rara e assai localizzata. La specie utilizza una ampia varietà di habitat acquatici e terrestri incluse acque lentiche in aree aperte, boscate o a macchia. Resta quasi sempre in prossimità dell'acqua, spesso nascosto sotto pietre ed altri rifugi durante il giorno, e frequenta piccoli stagni. Depone le uova nella vegetazione acquatica (Categoria IUCN = Vulnerabile).

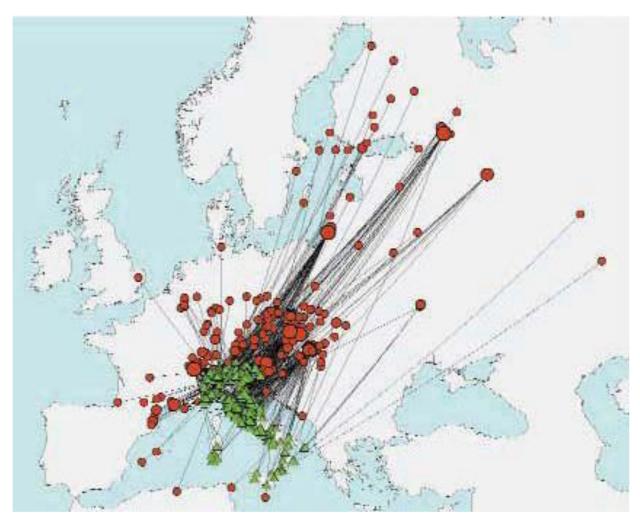
Per quanto concerne l'entomofauna, da segnalare la presenza di Lindenia (Lindenia tetraphylla). La specie ha un areale frammentato che si estende dall'Asia centrale, attraverso il Medio Oriente, fino all'Europa balcanica e all'Italia, che rappresenta il limite occidentale del suo areale europeo (antiche segnalazioni per la penisola iberica mancano di conferma recente); pochi insediamenti sono noti anche in Egitto e nel Magreb. In Italia è attualmente presente in pochissimi siti di Toscana, Campania e Sardegna. Il periodo di volo si estende da maggio ad agosto. Vive in laghi naturali e artificiali di dimensioni medio- piccole e in corsi d'acqua planiziali (Categoria IUCN = Quasi Minacciata).

Testuggine d'acqua

Testuggine comune

Testuggine marginata

Discoglosso sardo


Testuggine greca

Per quanto concerne l'area direttamente interessata dal Progetto, il disturbo generato dalle attività agricole e l'assenza di associazioni vegetazionali consolidate e strutturate rendono l'area scarsamente idonea all'instaurarsi di comunità faunistiche di rilievo ad eccezione di sporadici individui e piccoli roditori. Durante il sopralluogo del Maggio 2021 non sono state riscontrate tracce di fauna terrestre ad eccezione di un individuo appartenente alla specie Testudo hermanni (Testuggine comune).

AVIFAUNA

Sulla base di quanto riportato nell'Atlante della Migrazione degli Uccelli in Italia pubblicato da ISPRA e basato sui dati raccolti tra il 1906 e il 2003, la Regione Sardegna rappresenta un importante area di passaggio di alcune rotte migratorie di diverse specie di uccelli.

In particolare come mostrato nelle seguenti figure sottostanti l'area in cui si inserisce il Progetto è oggetto di interesse per l'avifauna, dovuto principalmente alla presenza di due aree di interesse conservazionistico che presentano habitat favorevoli per la sosta e la nidificazione quali lo Stagno di Pilo e lo Stagno di Platemona incluse entro una distanza di circa 15 km dall'area di Progetto, diverse sono le specie di uccelli di rilevanza conservazionistico presenti nell'area di studio.

Movimenti di individui esteri ripresi in Italia (non passeriformi) -Atlante della Migrazione degli Uccelli in Italia, ISPRA - Distribuzione geografica degli inanellamenti in Italia tra il 1982 e il 2003 (Passeriformi)

Di seguito si riportano quelle principali da un punto di vista delle categorie IUCN e che caratterizzano l'area di studio:

- Moretta tabaccata (Aythya nyroca): L'areale della popolazione italiana è di piccole dimensioni.
 Specie parzialmente sedentaria e nidificante con presenze più consistenti in Emilia Romagna,
 Sardegna e Sicilia. Nidifica in zone umide d'acqua dolce costiere o interne. (Categoria IUCN = In Pericolo);
- Tarabuso (Botaurus stellaris: L'areale della popolazione italiana è di piccole dimensioni. Nidificante e parzialmente sedentaria in Pianura Padana, toscana e Umbria, irregolare in altre regioni tra cui la sardegna. Nidifica in zone umide d'acqua dolce, costiere o interne. (Categoria IUCN = In Pericolo).
- Mignattaio (Plegadis falcinellus): Specie migratrice nidificante estiva con presenze generalmente irregolari. Nidifica in Emilia Romagna, Piemonte, Lombardia, Veneto, Toscana, Puglia, Sardegna e Sicilia. Nidifica in zone umide d'acqua dolce o salmastra. (Categoria IUCN = In Pericolo).
- Alzavola (Anas crecca): Specie parzialmente sedentaria e nidificante in Pianura Padana e in maniera irregolare anche altrove. Svernante regolare. Nidifica in zone umide d'acqua dolce. (Categoria IUCN = In Pericolo).

- **Fistione turco** (Netta rufina): Specie parzialmente sedentaria e nidificante in Sardegna, irregolare in Pianura Padana. Nidifica in zone umide costiere o interne. Categoria IUCN = In Pericolo).
- Moriglione (Aythya ferina): Specie parzialmente sedentaria e nidificante, recente colonizzazione. Primi casi accertati in Sardegna nel 1971. Nidifica in maniera frammentaria in tutta la Penisola, Sicilia e Sardegna. Nidifica in zone umide d'acqua dolce o salmastre. (Categoria IUCN = In Pericolo).
- **Pittima reale** (Limosa limosa): La specie in Italia è in fase di immigrazione recente. Nidifica in aree rurali come campi di mais o risaie, comunque nelle vicinanze di aree umide. (Categoria IUCN = In Pericolo).
- **Torcicollo** (Jynx torquilla): L'areale della specie in Italia risulta essere va. Presente in tutta Italia, Sicilia e Sardegna. Frequenta un'ampia varietà di ambienti: boschi, terreni coltivati, zone ad alberi sparsi, vigneti e anche parchi e giardini urbani. Nidifica fino agli 800 m s.l.m. (Categoria IUCN = In Pericolo).
- Calandrella (Calandrella brachydactyla): L'areale della specie in Italia risulta essere vasto. Presente in tutta la Penisola italiana anche se in maniera non continua, in particolare nel settore sud-orientale, Sicilia e Sardegna. Nidifica in ambienti aridi e aperti con vegetazione rada. Lungo i litorali o greti sabbiosi e ciottolosi, non oltre i 1300 m s.l.m. (Categoria IUCN = In Pericolo).
- Averla capirossa (Lanius senator): L'areale della specie è vasto. Presente lungo tutta la Penisola italiana, Sicilia e Sardegna. Specie ecotonale, tipica di ambienti mediterranei aperti, cespugliati o con alberi sparsi. In Sicilia nidifica tipicamente nei mandorleti con presenza di arbusti (possibilmente rosacee). (Categoria IUCN = In Pericolo).
- Gallina prataiola (Tetrax tetrax): Sedentaria e nidificante in Sardegna, estinta in Sicilia. Rara e localizzata in Puglia. La specie è considerata in declino in Sardegna (dove vive in piccole subpopolazioni, Santangeli 2008, Gustin M. com. pers.) a causa della distruzione degli habitat idonei alla nidificazione. Nidifica in aree agricole o pascoli xerici. (Categoria IUCN = In Pericolo).

Di interesse conservazionistico in quanto incluse nell'allegato I della Direttiva uccelli si segnalano anche le seguenti specie:

- **Falco di palude** (Circus aeruginosus): Diffusa in Pianura Padana, e soprattutto in zone costiere di Toscana e Sardegna. Nidifica in zone umide ricche di vegetazione palustre emergente, soprattutto fragmiteti. (Categoria IUCN = Vulnerabile).
- **Grillaio** (Falco naumanni): Presente in Italia meridionale. In particolare, Puglia, Basilicata e Sicilia, più scarsa in Sardegna. Predilige ambienti steppici con rocce e ampi spazi aperti, collinari o pianeggianti a praterie xeriche. Nidifica spesso nei centri storici dei centri urbani, ricchi di cavità e anfratti. (Categoria IUCN = Minor Preoccupazione).
- Pernice sarda (Alectoris Barbara): Si tratta di una specie paleo-introdotta in Italia, presente oggi in Sardegna e in alcune isole satellite. Specie sedentaria, nidifica in zone di macchia mediterranea bassa e discontinua, in pascoli di collina e montagna e localmente in seminativi o coltivazioni legnose. (Categoria IUCN = Vulnerabile).
- **Pollo sultano** (Porphyrio porphyrio): Presente in Sardegna e reintrodotta in Sicilia. In Sardegna stimate 450-600 coppie con tendenza ad incremento sia della popolazione nidificante che dell'areale riproduttivo. Rallide tipicamente legato agli ecosistemi palustri caratterizzati dalla presenza di vegetazione lungo le sponde. Occupa stabilmente zone umide interne e costiere, laghi, invasi artificiali, paludi, stagni anche temporanei, canali di bonifica e di irrigazione, impianti di fitodepurazione, aste fluviali. (Categoria IUCN = Quasi Minacciata).

- Tarabusino (Ixobrychus minutus): Specie migratrice nidificante estiva in Pianura Padana e nelle regioni centrali, più scarsa e localizzata al meridione, in Sicilia e Sardegna. Nidifica in zone umide d'acqua dolce, ferma o corrente. Si rinviene prevalentemente presso laghi e stagni eutrofici, con abbondante vegetazione acquatica ed in particolare canneti a Phragmites. (Categoria IUCN = Vulnerabile).
- Occhione (Burhinus oedicnemus): Migratrice nidificante estiva con popolazioni parzialmente sedentarie in Italia meridionale, Sicilia e in particolare in Sardegna. Nidifica in ambienti aridi e steppici come praterie o pascoli a copertura erbacea bassa e rada. Categoria IUCN = Vulnerabile).

Moretta tabaccata

Mignattaio

Alzavola

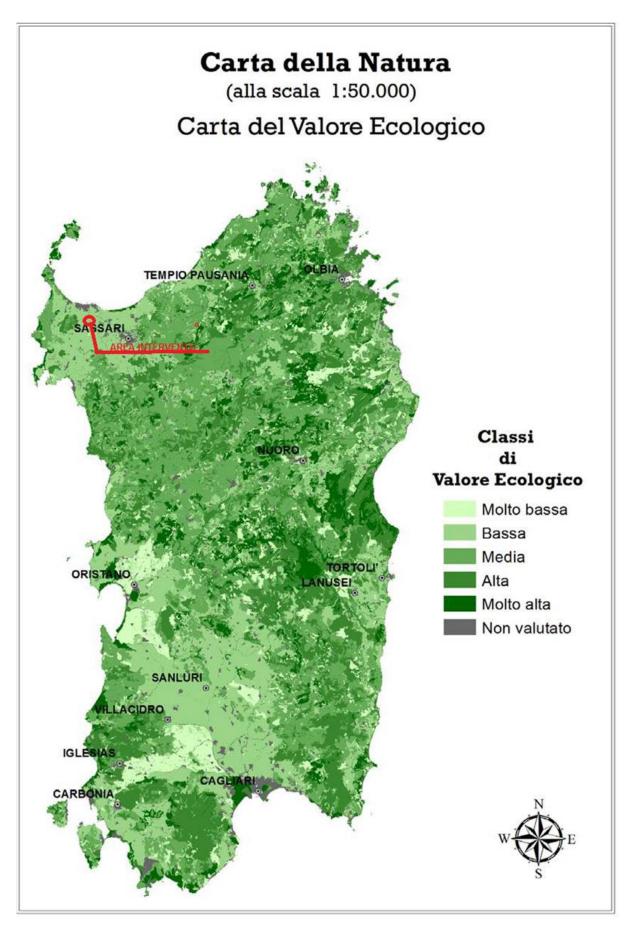
Gallina Prataiola

Grillaio

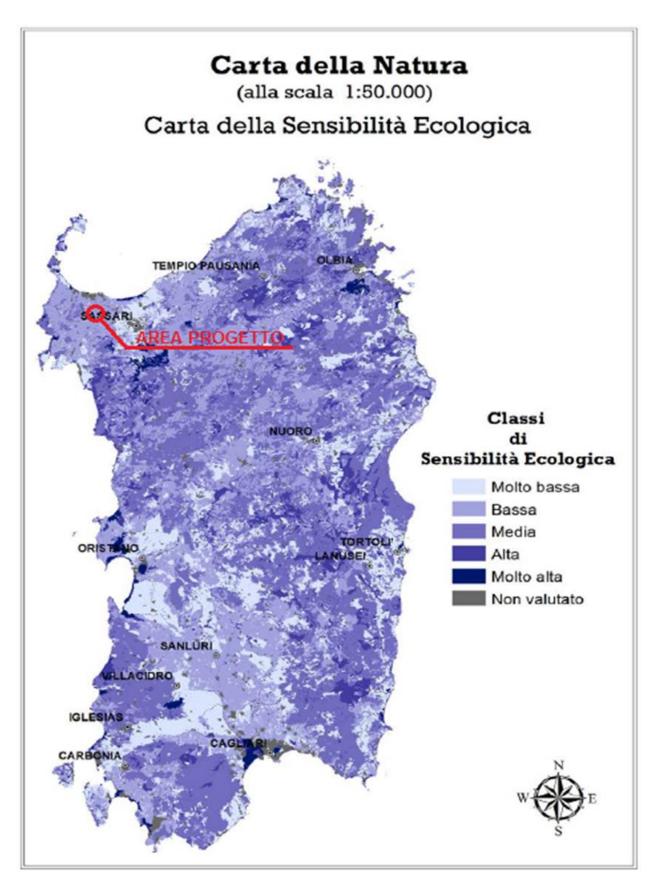
Pernice sarda

Pollo sultano

Per quanto concerne l'area direttamente interessata dal Progetto, il disturbo generato dalle attività AGRICOLE esistenti e l'assenza di associazioni vegetazionali consolidate e strutturate **rendono l'area scarsamente idonea alla nidificazione delle specie**.


VALORE ECOLOGICO E SENSIBILITA' ECOLOGICA

Sulla base della Pubblicazione dell'ISPRA "Il Sistema Carta della Natura della Sardegna" (2015), è stato cartografato il valore ecologico delle diverse zone della Regione Sardegna, inteso come pregio naturale e rappresenta una stima del livello di qualità di un biotopo. L'Indice complessivo del Valore Ecologico calcolato per ogni biotopo della Carta degli habitat e derivato dai singoli indicatori, è rappresentato tramite una suddivisione dei valori numerici in cinque classi (ISPRA 2009): "Molto bassa", "Bassa", "Media", "Alta", "Molto alta".


Sulla base di quanto descritto nei paragrafi precedenti e considerato il contenuto della pubblicazione dell'ISPRA, le aree della Rete Natura 2000 situate ad est ed ovest dall'area di Progetto, presentano una valenza ecologica medio-alta caratterizzata dalla presenza di habitat prioritari e specie di interesse conservazionistico come mostrato dalla seguente figura. Tuttavia tali aree risultano essere distanti oltre 12 km dalle aree direttamente interessate dal Progetto.

La valenza ecologica dell'area corrispondente alle aree prossime al sito è da considerarsi generalmente non significativa in quanto i terreni proposti per la realizzazione del Progetto essendo in un contesto altamente antropizzato e disturbato dalle attività presenti. Oltre alla carta del valore ecologico, è stata sviluppata la carta della Sensibilità Ecologica. Tale indice evidenzia gli elementi che determinano condizioni di rischio di perdita di biodiversità o di integrità ecologica. L'Indice di Sensibilità Ecologica, come quello di valore Ecologico, è rappresentato tramite la classificazione in cinque classi da "Molto bassa" a "Molto alta". Le aree in prossimità del SIN sono classificate a bassa sensibilità, mentre le aree della Rete Natura 2000 hanno una sensibilità alta. Le aree in cui ricade il Progetto sono mappate come "molto bassa"

.

Carta del Valore Ecologico della Regione Sardegna (fonte: ISPRA, Serie Rapporti, 222/2015)

Carta della Sensibilità Ecologica della Regione Sardegna (fonte: ISPRA, Serie Rapporti, 222/2015)

4.6.PAESAGGIO

Il presente Paragrafo riporta una descrizione semplificata e riassuntiva di quanto approfondito nell'ambito della Relazione Paesaggistica allegata al progetto, che dovrà essere considerato istanza di Autorizzazione Paesaggistica ai fini dell'ottenimento del relativo parere da parte dell'Ente Competente.

Nello sviluppo della Relazione Paesaggistica si è tenuto conto di quanto riportato nelle Linee Guida per i Paesaggi rurali in Sardegna redatte a cura dell'*Osservatorio della pianificazione Urbanistica e della qualità del paesaggio* (allegato alla Delib. G.R. 65/13 del 06/12/2016), nella quale individua il paesaggio rurale come "una determinata parte del territorio con prevalenti usi agricoli, zootecnici, forestali, naturali e insediativi, singoli o combinati, la cui caratterizzazione deriva dall'interrelazione di processi naturali e/o antropici, materiali e immateriali, così come è percepito dalle popolazioni".

Lo stato attuale della componente Paesaggio è stato analizzato in relazione all'Area Vasta, definita come la porzione di territorio potenzialmente interessata dagli impatti diretti e/o indiretti del *Progetto*. Si è assunto di considerare come Area Vasta l'intorno di circa 10 km di raggio centrato sull'Area di Progetto.

Per meglio comprendere l'analisi, è necessario introdurre una definizione del concetto di paesaggio; a tal fine si cita la Convenzione Europea del Paesaggio, sottoscritta dai Paesi Europei nel Luglio 2000 e ratificata nel Gennaio 2006. Tale Convenzione, applicata sull'intero territorio europeo, promuove l'adozione di politiche di salvaguardia, gestione e pianificazione dei paesaggi europei, intendendo per paesaggio il complesso degli ambiti naturali, rurali, urbani e periurbani, terrestri, acque interne e marine, eccezionali, ordinari e degradati [art. 2].

Il paesaggio è riconosciuto giuridicamente come "componente essenziale del contesto di vita delle popolazioni, espressione della diversità del loro comune patrimonio culturale e naturale e fondamento della loro identità".

Risulta quindi che la nozione di paesaggio, apparentemente chiara nel linguaggio comune, è in realtà carica di molteplici significati in ragione dei diversi ambiti disciplinari nei quali viene impiegata. Tale concetto risulta fondamentale per il caso in esame, in ragione delle relazioni con l'ambiente circostante che questo tipo di infrastruttura può instaurare.

Un'ulteriore variabile da considerare ai fini della conservazione e della tutela del Paesaggio è il concetto di "cambiamento": il territorio per sua natura vive e si trasforma, ha, in sostanza, una sua capacità dinamica interna, da cui qualsiasi tipologia di analisi non può prescindere.

Ai fini di una descrizione dello stato attuale della componente Paesaggio devono, pertanto, essere considerati i seguenti aspetti:

- identificazione delle componenti naturali e paesaggistiche d'interesse e loro fragilità rispetto ai presumibili gradi di minaccia reale e potenziale;
- analisi dello stato di conservazione del paesaggio aperto sia in aree periurbane sia in aree naturali;
- evoluzione delle interazioni tra uomo risorse economiche territorio tessuto sociale.

Macroambiti di Paesaggio e Sistema delle Tutele

Classificando il paesaggio secondo le sue componenti principali (regioni - o sub-regioni – climatiche, unità geomorfologiche, complessi vegetazionali, comprensori di uso antropico, tipi di suolo, habitat zoologici), il sistema paesistico italiano può essere delineato in 16 differenti ambiti territoriali. Le macro caratteristiche proprie dei suddetti sistemi paesaggistici sono approfondite nella Relazione Paesaggistica.

Gli elementi normativi che definiscono il contesto paesaggistico dell'area di interesse sono stati precedentementi trattati nel quadro programmatico.

Il Comune di Sassari, in cui ricade l'area di progetto, appartiene all'ambito 14 - Golfo dell'Asinara, caratterizzato da un sistema ambientale complesso, dominato dall'ambito della penisola di Stintino, dell'isola di Piana e dell'Asinara, che rappresentano un elemento di separazione tra il mare "di dentro" del Golfo e il mar di Sardegna. Lungo la costa è rilevante il paesaggio dei pascolativi e la presenza degli ecosistemi degli stagni di Pilo e Cesaraccio, nonché la connessione tra il sistema dunale e l'insediamento del Bagaglino.

Di seguito si riporta la valutazione della qualità paesaggistica dell'area di interesse in base agli elementi paesaggistici presenti nel contesto locale sulla base delle seguenti componenti:

- Componente Morfologico Strutturale, in considerazione dell'appartenenza a "sistemi" che strutturano l'organizzazione del territorio. La stima della sensibilità paesaggistica di questa componente viene effettuata elaborando ed aggregando i valori intrinseci e specifici dei seguenti aspetti paesaggistici elementari: Morfologia, Naturalità, Tutela, Valori Storico Testimoniali;
- Componente Vedutistica, in considerazione della fruizione percettiva del paesaggio, ovvero di valori panoramici e di relazioni visive rilevanti. Per tale componente, di tipo antropico, l'elemento caratterizzante è la Panoramicità;
- Componente Simbolica, in riferimento al valore simbolico del paesaggio, per come è percepito dalle comunità locali. L'elemento caratterizzante di questa componente è la Singolarità Paesaggistica.

Descrizione delle Caratteristiche Paesaggistiche dell'Area di Studio

L'area oggetto di studio è ubicata nella parte nordoccidentale della Sardegna, in Provincia di Sassari.In termini di unità paesaggistiche l'area di intervento, caratterizzata da una utilizzazione agroforestale rientra nell'Ambito di Paesaggio 14 (Golfo dell'Asinara), Ecologia Complessa 8 (Foce del Rio Mannu di Porto Torres), Ecologia Elementare 152 (Aree ad uso agricolo della Nurra).

Unità di Paesaggio individuate nell'area di studio

Partendo dall'analisi della Carta delle Unità di Paesaggio redatta all'interno del Piano Forestale Ambientale Regionale e dal PUP e mediante l'analisi e lo studio delle caratteristiche fisiografiche, delle caratteristiche della copertura vegetale e dell'uso del suolo della vasta area di studio e mediante l'integrazione con rilievi di campo sono state identificate le Unità di Paesaggio a scala locale, rispetto all'area di studio, omogenee per le caratteristiche sopra citate, che per chiarezza distinguiamo in Antropico e Naturale.

- Antropico o Paesaggio insediativo industriale;
- Naturaleo Paesaggio dei rilievi calcarei con macchia mediterranea;
- Paesaggio lagunare costiero;
- Paesaggio di pianura con seminativi irrigui e colture complesse;
- Paesaggi di pianura con seminativi non irrigui e vegetazione spontanea;
- Paesaggio delle fasce fluviali.

Componente Morfologico Strutturale

Dal punto di vista geomorfologico l'area è definita dalla combinazione di tre elementi territoriali rappresentati:

- dalla pianura costiera;
- dai plateaux calcarei debolmente inclinati che nella zona di Porto Torres arrivano fino al mare
- dai rilievi calcarei della Nurra sassarese, dove il modellamento dovuto a fenomeni tettonici ed erosivi ha prodotto forme arrotondate con versanti a pendenze moderate.

La quota media va dal livello del mare del litorale fino a circa 342 m s.l.m. del Monte Alvaru. I principali corsi d'acqua sono rappresentati dal Riu Mannu, Riu Ottava, Riu Sant'Osanna, Riu Ertas e Riu San Nicola, che insieme allo Stagno di Pilo e allo Stagno di Platamona definiscono il quadro idrografico dell'area.

UP Sistema Naturale

La componente vegetale dominante è la macchia mediterranea classica dell'isola con la serie sarda termomesomediterranea del leccio, con l'associazione Prasio majoris-Quercetum ilicis che si sviluppa in condizioni bioclimatiche di tipo termomediterraneo superiore e mesomediterraneo inferiore.

Si tratta di boschi climatofili a Quercus ilex, con Pistacia lentiscus, Juniperus phoenicea subsp. turbinata e Olea europaea var. sylvestris che possono essere riferiti alla subassociazione phillyreetosum angustifoliae silicicola, che si sviluppa soprattutto su metamorfiti, in corrispondenza dei piani bioclimatici termomediterraneo superiore e mesomediterraneo inferiore, con ombrotipi variabili dal secco superiore al subumido inferiore.

La serie sarda termomediterranea del leccio è invece osservabile nelle aree pianeggianti, in particolare nella piana retrostante Platamona, comparendo come edafo-mesofila in corrispondenza di piane alluvionali, su substrati argillosi a matrice mista calcicola-silicicola. Nello strato arbustivo sono presenti Pistacia lentiscus, Rhamnus alaternus, Phillyrealatifolia, Erica arborea, Phillyrea angustifolia, Myrtus communis e Arbutus unedo.

Le formazioni di sostituzione di questa serie sono rappresentate da arbusteti densi, di taglia elevata, dell'associazione Pistacietum lentisci con Pistacia lentiscus, Rhamnusalaternus, Pyrus spinosa, Crataegus

monogyna, Myrtus communis e da praterie emicriptofitiche e geofitiche, a fioritura autunnale, dell'associazione Scillo obtusifoliae-Bellidetum sylvestris.

Le cenosi erbacee di sostituzione sono rappresentate da pascoli ovini della classe Poetea bulbosae, da praterie emicriptofitiche della classe Artemisietea e da comunità terofitiche della classe Tuberarietea guttatae.

L'area è caratterizzata da una vasta pianura alluvionale su cui si sviluppano sistemi produttivi agricoli molto semplificati principalmente seminativi non irrigui, ed aree destinate al pascolo o comunque non utilizzate dal punto di vista agricolo. Le geometrie dei campi vengono delimitate da siepi quasi sempre spontanee. L'area, inoltre, non presentando uno strato arboreo degno di nota, conferisce una monotonicità al paesaggio in cui prevalgono le distese ad uso cerealicolo.

Il paesaggio lagunare costiero si trova ad Nord Ovest dall'area indagata tutto intorno allo Stagno di Pilo ed a Est dall'area lungo lo Stagno di Platamona. In corrispondenza di tutti gli stagni e lagune, temporanei o permanenti, anche di piccola estensione, presenti in gran numero lungo le coste basse e sabbiose, si sviluppa la microgeoserie alofila sarda degli stagni e delle lagune costiere, che occupa bacini retrodunali, delta fluviali, su conglomerati, sabbie e argille in terrazzi e conoidi alluvionali (alluvioni antiche) pliopleistocenici.

Si tratta di comunità vegetali specializzate acrescere su suoli generalmente limoso-argillosi, scarsamente drenanti, allagati perperiodi più o meno lunghi da acque salate.

A livello naturalistico il valore è determinato dalla presenza di sopra citati sistemi lagunari quali:

- lo "Stagno di Pilo", situato lungo il litorale di Platamona, dichiarato sito faunistico di importanza comunitaria e oasi permanente di protezione faunistica della Regione Autonoma della Sardegna;
- lo Stagno di Platamona, per estensione e per rilevanza della biodiversità una delle più importanti zone umide del Nord della Sardegna.

Il sito di progetto vista la distanza da questi (circa 12 Km) non interferisce con alcun bene paesaggistico, architettonico ed archeologico identificato dal PPR.

Componente Vedutistica

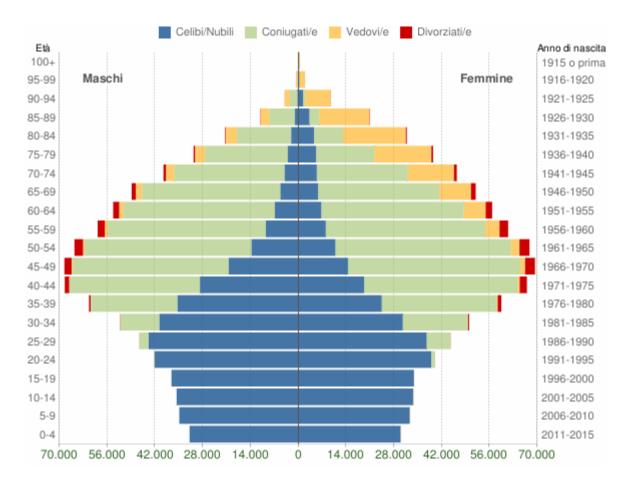
L'impianto in progetto, posto in una fascia abbastanza omogenea e pianeggiante. Gli aspetti che incidono come criticità nell'Ambito sono prevalentemente rappresentati dai processi didegrado ambientale legati al forte sfruttamento e utilizzo del suolo.

La presenza di una forte componente antropica ha fortemente mutato gli aspetti identitatri del territorio, anche con limitrofi **sfruttamenti estrattivi** che riducono sensibilmente la valenza paesaggistica.

In virtù della panoramicità, pertanto, alla componente vedutistica è assegnato un valore medio-basso.

Componente Simbolica

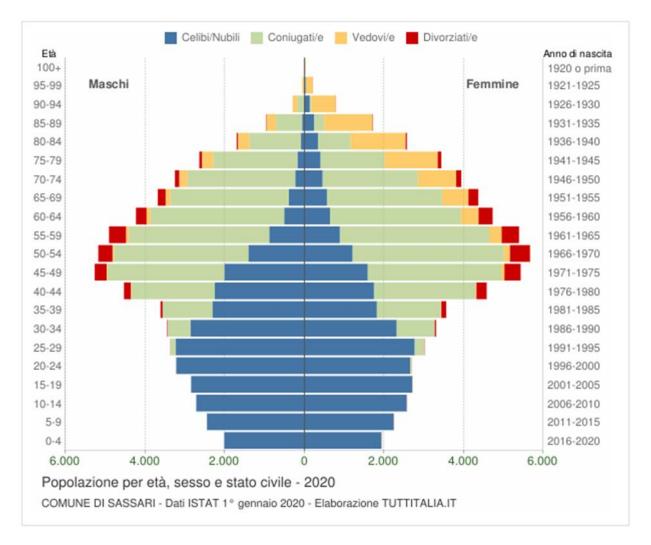
Nell'area di intervento allo stato attuale della ricerca non esistono testimonianze archeologiche che documentino l'esistenza di insediamenti archeologici, fatta eccezione dell'area di Porto torres che in ogni caso dista circa 8 Km.


Per quanto riguarda il valore simbolico della UP, considerate la tipologia di elementi peculiari del Paesaggio quali l'attrazione turistica del sistema litoraneo, il centro abitato di Porto Torres con le sue emergenze culturali e storico architettoniche alla componente simbolica è attribuito un valore **medio**.

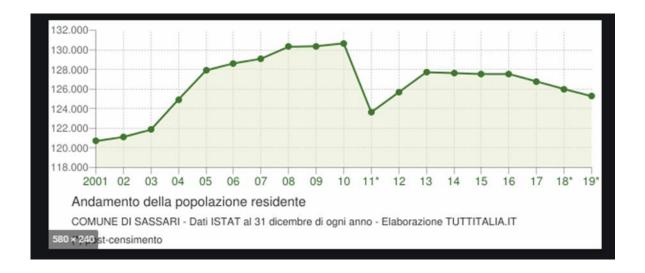
Sulla base della valutazione, il giudizio complessivo per la UP 14 nell'area di studio è Medio.

4.7.POPOLAZIONE E SALUTE UMANA

Aspetti demografici


La Regione Sardegna contava, al 1 Gennaio 2015 (dati ISTAT), 1.663.286 abitanti, di cui il 49% maschi ed il 51% femmine. La classe di età più rappresentativa è quella tra i 45 ed i 49 anni, pari all'8,3% della popolazione, come mostrato nella figura sottostante,

Popolazione della Regione Sardegna per età, sesso e stato civile, 2015


La Provincia di Sassari presenta proporzioni simili alla Sardegna, con il 48,8 % di maschi ed il 51,2% di femmine residenti, su un totale di 334.715 abitanti (dati ISTAT relativi al 1 Gennaio 2015). A livello provinciale, le classi di età più rappresentative sono quelle tra i 45 e i 49 anni, pari al 9,3% della popolazione.

A livello comunale, Sassari conta 127.533 abitanti (dati ISTAT relativi al 1 Gennaio 2017), di cui il 48,0 % maschi ed il 52,0% femmine. La classe di età più rappresentativa è quella tra i 50 ed i 54 anni, pari al 9% della popolazione.

Popolazione del Comune sassari per età, sesso e stato civile, 2015

L'andamento demografico del comune di Sassari negli ultimi 15 anni mostra un trend generalmente in discesa, sostanzialmente stabile dal 2008 al 2011.

La struttura economica e produttiva

Il sistema economico della provincia presenta i tipici tratti di un'economia terziarizzata. Il numero di imprese insediate ammonta a 28.547 unità, con una netta predominanza di quelle afferenti al macrocomparto dei servizi, ben oltre il 50% del totale. Rilevante risulta essere il numero delle attività commerciali, che rappresentano da sole il 28% del totale, mentre le imprese del comparto agricolo superano appena le 7000 unità e rappresentano complessivamente il 25%. Discorso a parte merita il settore secondario che, nella suddivisione tra attività del settore delle costruzioni e attività più specificamente manifatturiere, mette in risalto la debolezza del comparto industriale della provincia con una netta predominanza delle prime, con circa 4000 unità, mentre quelle specificamente manifatturiere rappresentano appena il 10% del totale (2800 imprese).

Per quel che concerne la **situazione occupazionale**, l'incidenza degli occupati nei servizi è pari a circa il 70%, contro appena il 7% degli occupati nel settore agricolo. La crisi della grande industria si riscontra in una quota di occupati nel settore inferiore al 25% provinciale. L'analisi degli occupati per settore di attività evidenzia una struttura produttiva orientata sui servizi tradizionali (servizi pubblici e commercio) e il notevole peso delle costruzioni nell'industria locale. La filiera agricola sconta un calo fisiologico degli occupati ma evidenzia, specialmente nel settore agroindustria, una buona propensione all'innovazione.

Il sistema delle imprese nella provincia di Sassari continua a mostrare, negli anni, una buona dinamicità in termini di natalità imprenditoriale e di sviluppo di unità locali. Ciò appare evidente anche dal confronto con i dati fatti registrare dal sistema economico regionale nel suo complesso: il tasso di mortalità provinciale presenta valori, nell'anno di riferimento, di circa mezzo punto inferiori a quelli medi regionali mentre il tasso di natalità presenta un valore leggermente superiore. Nel territorio si riscontrano buoni livelli di specializzazione produttiva. Di particolare rilevanza è il patrimonio zootecnico, soprattutto ovino, bovino ed equino; elevata è la presenza di aziende biologiche. Alla buona qualità delle materie prime agricole si accompagna in taluni comparti l'estrema varietà e ricchezza di produzioni agroalimentari di eccellenza, grazie alla presenza di una qualificata attività di trasformazione e di filiere complete (formaggi ovini e bovini, vino, olio, miele e liquori). La filiera casearia ovina sarda esprime la componente più estesa e qualificata proprio all'interno della Provincia di Sassari. Il Polo di Thiesi rappresenta, oltre che un'importante concentrazione produttiva del settore, anche l'unico Distretto in senso proprio presente nell'isola accanto a quello del sughero in Gallura. Molte filiere si caratterizzano per una forte internazionalizzazione (formaggi, vini, liquori) e per la presenza di operatori leader a livello regionale e, in alcuni casi, nazionale e europeo. Un elemento di forza, che potrebbe favorire la diffusione sul mercato interno delle produzioni provinciali e regionali, dispiegando una azione di sostituzione delle importazioni,

è il radicamento di operatori locali della distribuzione organizzata. Insieme al Medio Campidano, la Provincia di Sassari è l'unica in cui si verifica tale circostanza.

Significativo a riguardo, risulta essere il grado di apertura rispetto all'esterno che mostra come i comparti della chimica e dell'alimentare siano quelli con un saldo attivo più evidente. Complessivamente la Provincia di Sassari esporta merci per circa 440 milioni di euro, contribuendo al 10% dell'export complessivo della Sardegna, mentre importa merci pari a 455 milioni di euro facendo registrare un saldo complessivo pari a -12 milioni di euro. Disarticolando i dati per settore i prodotti della chimica rappresentano circa il 60% delle esportazioni ed il 42% dell'import; molto meno influente in termini quantitativi, ma non certo in termini qualitativi, è il dato relativo ai prodotti del comparto alimentare, che rappresentano il 16% dell'export ed l'9% dell'import.

I mercati di sbocco delle merci provinciali sono principalmente i paesi dell'Europa a 15 (per un valore complessivo di circa 300 milioni di euro) e il nord America (per 80 milioni di euro). Scarsi rimangono i rapporti commerciali con i paesi europei di nuova adesione. Il saldo commerciale presenta, come già accennato, valori estremamente positivi nei comparti della chimica (113 milioni in attivo), dell'alimentare (27 milioni) e del legno e della carta (6 milioni), mentre fortemente in passivo è il comparto industriale e manifatturiero (-152 milioni). Il saldo commerciale per area geografica presenta dati fortemente negativi relativamente al rapporto con il continente Africano (-58 milioni) e con i paesi asiatici (-41).

La provincia di Sassari rappresenta una delle più importanti realtà territoriali del sistema turistico regionale. Alghero, Stintino e la costa di Sassari sono i centri costieri principali per il supporto al turismo balneare. La dotazione ricettiva attuale del territorio appare caratterizzata da una concentrazione notevolissima dei posti letto nelle aree costiere, con particolare riferimento al territorio di Alghero, che ospita circa la metà dei circa 26 mila posti letto del territorio, contro una dotazione ricettiva dei comuni non costieri inferiore al 5% del totale con vaste aree quasi totalmente sprovviste di attività ricettive, anche diffuse. Nello specifico la provincia conta 245 esercizi complementari con 11.290 posti letto e circa 15 mila posti letto nelle 112 strutture alberghiere. Le strutture agrituristiche vanno assumendo nel territorio provinciale un ruolo importante nel completare l'offerta ricettiva e della ristorazione. In totale, nel territorio provinciale, sono attive 119 aziende di cui oltre il 65% offre servizio di alloggio e ristorazione mentre le restanti si dividono tra chi offre esclusivamente la ristorazione o il solo alloggio. Il territorio provinciale ha contato, nel 2006, 1 milione e 407 mila presenze turistiche, soprattutto concentrate nelle aree di Alghero e Sassari-Stintino e in parte nei comuni di Porto Torres, Sorso e Castelsardo (oltre il 15% del totale regionale delle presenze turistiche). Un ulteriore 2% delle presenze regionali si divide tra gli altri comuni costieri (in particolare Valledoria) e i comuni delle aree interne della Provincia, per un totale di circa il 18% del totale delle presenze regionali ufficiali. L'analisi dell'attuale domanda turistica, in termini di arrivi e presenze rilevate sul territorio, se da un lato evidenzia e accentua ulteriormente i differenziali tra coste e aree interne, dall'altro mostra come le caratteristiche della popolazione turistica del nord Sardegna stia progressivamente mutando, secondo un processo che riguarda il settore turistico a livello globale e che, nel territorio, è stato accelerato dall'azione, anche promozionale, dei voli a basso costo che si stanno affermando sullo scalo aeroportuale di Alghero. Il nord ovest presenta, infatti, le quote di presenze straniere più alte della Sardegna: oltre un terzo delle presenze totali annuali, con una crescita evidente negli ultimi anni, in particolare dei turisti provenienti dal nord Europa e dalle isole britanniche, tendenzialmente meno legati alla stagionalità nella pianificazione delle vacanze e particolarmente attenti alle risorse dell'ambiente e dell'identità, delle tradizioni e della cultura locale in genere.

Inquadramento sullo stato di salute della popolazione

La speranza di vita rimane uno degli indicatori dello stato di salute della popolazione più frequentemente utilizzati. Nelle tabelle sottostanti vengono analizzati, rispettivamente, i valori della speranza di vita alla nascita e a 65 anni, distinti per genere e Regione di residenza.

In Italia, al 2014, la speranza di vita alla nascita è pari a 80,3 anni per gli uomini e 85,0 anni per le donne. Nei 5 anni trascorsi, dal 2010 al 2014, gli uomini hanno guadagnato 1 anno mentre le donne 0,7 anni (circa 8 mesi). Sebbene la distanza tra la durata media della vita di donne e uomini si stia sempre più riducendo (+4,7 anni nel 2014 vs +5,0 anni nel 2010), è ancora nettamente a favore delle donne.

Le differenze a livello territoriale non si colmano con il passare degli anni: la distanza tra la regione più favorita e quella meno favorita è di 2,8 anni, sia per gli uomini che per le donne: per entrambi i generi è la Provincia Autonoma di Trento ad avere il primato per la speranza di vita alla nascita. La regione più sfavorita è, invece, sia per gli uomini che per le donne, la Campania.

Per la Regione Sardegna, la speranza di vita alla nascita è pari a 79,7 anni per gli uomini e 85,3 anni per le donne, rispettivamente leggermente inferiore, nel primo caso, e superiore, nel secondo, ai valori nazionali.

Mortalità

Per quanto riguarda la mortalità per causa, sono state utilizzate le graduatorie delle principali cause di morte. Dai dati emerge che al primo posto della graduatoria si collocano le malattie ischemiche del cuore, responsabili da sole di 75.098 morti (poco più del 12% del totale dei decessi). Seguono le malattie cerebrovascolari (61.255 morti, pari a quasi il 10% del totale) e le altre malattie del cuore non di origine ischemica (48.384 morti, pari a circa l'8,0% del totale).

Tra le principali cause di morte, i tumori maligni di trachea, bronchi e polmoni hanno maggior diffusione negli uomini rispetto alle donne (Tabella 5.23): i 24.885 decessi tra gli uomini (2° causa di morte) hanno un peso sul totale poco più del triplo rispetto ai 8.653 decessi osservati nelle donne (10° causa di morte). I decessi dovuti a malattie ipertensive, nonché a demenza e malattia di Alzheimer, presentano, invece, un peso sul totale di circa il doppio per le donne, tra le quali si hanno, rispettivamente, 20.367 e 18.226 decessi (4° e 5° causa di morte in graduatoria), rispetto a quello osservato negli uomini con 10.880 e 8.333 decessi (6° e 9° causa di morte in graduatoria).

La situazione territoriale mostra, comunque, una evidente variabilità geografica Nord-Sud ed Isole. I tumori maligni di trachea, bronchi e polmoni, demenza, malattia di Alzheimer, influenza e polmonite presentano percentuali più alte nelle aree settentrionali, mentre nell'area meridionale risulta più alta in graduatoria la posizione occupata dai decessi per diabete e per malattie ipertensive. A fronte di un valore del tasso nazionale di 106,27 decessi per 10.000 abitanti, la mortalità più bassa si osserva nel Nord-Est con un tasso pari a 95,86 per 10.000 e a seguire, in ordine crescente, si trovano Centro (104,72 per 10.000), Nord-Ovest (105,53 per 10.000), Sud (108,74 per 10.000) ed Isole (111,61 per 10.000).

4.8.CLIMA ACUSTICO

La campagna di monitoraggio acustico eseguita a LUGLIO 2021 ha permesso di analizzare il clima acustico attuale dell'Area Vasta e di evidenziare eventuali criticità esistenti dal punto di vista del rumore.

Normativa di Riferimento

In Italia lo strumento legislativo di riferimento per le valutazioni del rumore nell'ambiente abitativo e nell'ambiente esterno è la *Legge n. 447* del *26 ottobre 1995, "Legge Quadro sull'inquinamento Acustico",* che tramite i suoi *Decreti Attuativi* (*DPCM 14 novembre 1997* e *DM 16 Marzo 1998*) definisce le indicazioni normative in tema di disturbo da rumore, i criteri di monitoraggio dell'inquinamento acustico e le relative tecniche di campionamento.

In accordo alla *Legge 447/95*, tutti i comuni devono redigere un Piano di Zonizzazione Acustica con il quale suddividere il territorio in classi acustiche sulla base della destinazione d'uso (attuale o prevista) e delle caratteristiche territoriali (residenziale, commerciale, industriale, ecc.). Questa classificazione permette di raggruppare in classi omogenee aree che necessitano dello stesso livello di tutela dal punto di vista acustico, come riportato in Tabella 5.17. I limiti di immissione ed emissione per ciascuna classe acustica sono riportati inClassi di Zonizzazione Acustica

Classe Acustica		Descrizione
I	Aree particolarmente protette	Ospedali, scuole, case di riposo, parchi pubblici, aree
		di interesse urbano e architettonico, aree protette
II	Aree prevalentemente residenziali	Aree urbane caratterizzate da traffico veicolare locale,
		con bassa densità di popolazione, con limitata
		presenza di attività commerciali, assenza di attività
		artigianali e industriali
III	Aree di tipo misto	Aree urbane con traffico veicolare locale e di
		attraversamento, con media densità di popolazione,
		con presenza di uffici, attività commerciali e piccole
		attività artigianali, aree agricole, assenza di attività
		industriali
IV	Aree di intense attività umana	Aree caratterizzate da intenso traffico veicolare, alta
		densità di popolazione, attività commerciali e
		artigianali, aree in prossimità di autostrade e ferrovie,
		aree portuali, aree con piccole attività industriali
٧	Aree prevalentemente industriali	Aree industriali con scarsità di abitazioni
VI	Aree esclusivamente industriali	Aree industriali prive di insediamenti abitativi

Limiti di Emissione ed Immissione Acustica

Classe	Limiti di Emissione dB(A) ⁽¹⁾		Limiti di Immissione dB(A) ⁽²⁾		
acustica	Diumo (06-22)	Notturno (22-06)	Diumo (06-22)	Notturno (22-06)	
Classe I	45	35	50	40	
Classe II	50	40	55	45	
Classe III	55	45	60	50	
Classe IV	60	50	65	55	
Classe V	65	55	70	60	
Classe VI	65	65	70	70	

Classe	Limiti di Emissione	ne dB(A) 1) Limiti di Immissione dB(A)		ne dB(A) ⁽²⁾
acustica	Diumo (06-22)	Notturno (22-06)	Diumo (06-22)	Notturno (22-06)

Note:

Fonte: DPCM 14/11/97

Limite di Emissione: massimo livello di rumore che può essere prodotto da una sorgente, misurato in prossimità della sorgente stessa. Questo valore è legato principalmente alle caratteristiche acustiche della singola sorgente e non è influenzato da altrifattori, quali la presenza di ulteriori sorgenti.

Limite di Immissione (Assoluto e Differenziale): massimo livello di rumore prodotto da una o più sorgenti che può impattare un'area (interno o esterno), misurato in prossimità dei recettori. Questo valore tiene in considerazione l'effetto cumulativo di tutte le sorgenti e del rumore di fondo presente nell'area.

Con l'entrata in vigore della *Legge 447/95* e dei *Decreti Attuativi* sopra richiamati, il *DPCM 1/3/91*, che fissava i limiti di accettabilità dei livelli di rumore validi su tutto il territorio nazionale, è da considerarsi superato. Tuttavia le sue disposizioni in merito alla definizione dei limiti di zona restano formalmente valide nei territori in cui le amministrazioni comunali non abbiano approvato un Piano di Zonizzazione Acustica.

L'approvazione e adozione definitiva del piano di classificazione acustica ai sensi del'art.6 legge 26 ottobre 1995 n. 447 è avvenuta con *Deliberazione del Consiglio Comunalen° 79 del 08 Novembre 2017*. Il Piano determina la classificazione del Territorio e la Determinazione dei valori limite delle sorgenti sonore ai sensi della *Legge 447/95*.

A tal riguardo si evidenzia come il Comune di Sassari abbia approvato con Deliberazione del Consiglio Comunale n° 79 del 07 Novembre 2017 il Piano di Zonizzazione Acustica comunale.

Sulla base del piano di Classificazione acustica del territorio comunale di Sassari l'area circostante viene classificata in zona di Classe III.

Per ulteriori approfondimenti in merito alle valutazioni di impatto acustico si rimanda all'allegato: REL_SP_09_ACU_VALUTAZIONE IMPATTO ACUSTICO.

Individuazione Potenziali Recettori Sensibili

L'Area di Progetto è sita a ovest dell'abitato di Sassari e a sud dell'agglomerato nella zona della Nurra. Le sorgenti di rumore attualmente presenti nell'area sono costituite dalle attività Agricole è dal traffico veicolare sulla Strada Provinciale n.18 a Nord del sito.

Al fine della caratterizzazione dello stato attuale del clima acustico dell'Area di Progetto, è stata effettuata una campagna di monitoraggio acustico, secondo quanto prescritto dal DM 16 marzo 1998.

I rilievi fonometrici sono stati eseguiti, sia in periodo diurno che notturno, intorno al perimetro dell'Area di Progetto, con particolare attenzione ai punti in prossimità di potenziali recettori sensibili (edifici).

L'indagine fonometrica condotta nei pressi dell'Area di Progetto ha evidenziato valori di rumore residuo piuttosto uniformi, tutti al di sotto dei limiti di rumore previsti dalla normativa nazionale per le classi acustiche in cui ricadono i siti di monitoraggio (Classe VI siti P1 e P2, classe IV siti P3, P4 e P5). I livelli di rumore residuo monitorati secondo quanto prescritto dal DM 16 marzo 1998 evidenziano valori di Leq diurno variabile tra 38,3 dB(A) e 45,9 dB(A) per il periodo di riferimento diurno e valori compresi tra 33,9 dB(A) e 40,3 dB(A) per il periodo di riferimento notturno.

5. ANALISI DELLA COMPATIBILITA' DELL'OPERA

Il Progetto è localizzato a sud ovest dell'abitato di Sassari, a Nord dell'abitato di Olmedo e a sud dell'abitato di Porto Torres. Per la definizione dell'area in cui indagare i fattori ambientali potenzialmente interferiti dal progetto (e di seguito presentate) sono state introdotte le seguenti definizioni:

- Area di Progetto, che corrisponde all'area presso la quale sarà installato l'impianto agrofotovoltaico;
- Area Vasta, che è definita in funzione della magnitudo degli impatti generati e della sensibilità delle componenti ambientali interessate.

- In generale, l'Area vasta comprende l'area del progetto includendo le linee di connessione elettrica fino al punto di connessione con la rete elettrica principale. Fanno eccezione:
- la biodiversità, con particolare riferimento alla avifauna, la cui area vasta è definita sull'intero
 contesto della Provincia di Sassari, data la presenza di aree protette importanti per la
 conservazione di diverse specie;
- gli aspetti socio-economici e salute pubblica, per le quali l'Area Vasta è estesa fino alla scala provinciale-regionale;
- il paesaggio, per il quale l'Area Vasta è estesa ad un intorno di circa 10 km di raggio centrato sull'Area di Progetto, in accordo a quanto descritto nel successivo Paragrafo.

I fattori ambientali analizzati sono in linea con quanto richiesto dalla normativa vigente per la valutazione degli impatti ambientali, pertanto sono i seguenti:

- Aria e Clima;
- Ambiente Idrico Superficiale e Sotterraneo;
- Suolo e Sottosuolo;
- Biodiversità (Vegetazione, Flora, Fauna ed Ecosistemi);
- Clima acustico;
- Territorio e Patrimonio agroalimentare;
- Popolazione e Salute umana;
- Paesaggio.

L'inquadramento dell'Area di Progetto è riportato nelle tavole di progetto.

5.1.INTERAZIONE OPERA AMBIENTE

5.1.1. VALUTAZIONE DEGLI IMPATTI

Di seguito viene presentata la metodologia da applicare per l'identificazione e la valutazione degli impatti potenzialmente derivanti dal Progetto, determinati sulla base delle analisi sulla coerenza e conformità del progetto e dello stato attuale dell'ambiente. Una volta identificati e valutati gli impatti, vengono definite le misure di mitigazione da mettere in atto al fine di evitare, ridurre, compensare o ripristinare gli impatti negativi oppure valorizzare gli impatti positivi.

La valutazione degli impatti interessa tutte le fasi di progetto, ovvero costruzione, esercizio e dismissione dell'opera. La valutazione comprende un'analisi qualitativa degli impatti derivanti da eventi non pianificati ed un'analisi degli impatti cumulati.

Gli impatti potenziali derivanti dalle attività di progetto su recettori o risorse vengono descritti sulla base delle potenziali interferenze del Progetto con gli aspetti del quadro ambientale inziale.

Di seguito si riportano le principali tipologie di impatti.

Tipologia di impatti

Tipologia	Definizione		
Diretto Impatto derivante da una interazione diretta tra il prisorsa/recettore (esempio: occupazione di un'area e habi			
Indiretto	Impatto che deriva da una interazione diretta tra il progetto e il suo contesto di riferimento naturale e socio-economico, come risultato di una successiva interazione che si verifica nell'ambito del suo contesto naturale e umano (per esempio: possibilità di sopravvivenza di una specie derivante dalla perdita di habitat, risultato dell'occupazione da parte di un progetto di un lotto di terreno).		
Cumulativo	Impatto risultato dell'effetto aggiuntivo, su aree o risorse usate o direttamente impattate dal progetto, derivanti da altri progetti di sviluppo esistenti, pianificati o ragionevolmente definiti nel momento in cui il processo di identificazione degli impatti e del rischio viene condotto (esempio: contributo aggiuntivo di emissioni in atmosfera; riduzioni di flusso d'acqua in un corpo idrico derivante da prelievi multipli).		

Significatività degli impatti

La determinazione della significatività degli impatti si basa su una matrice di valutazione che combina la 'magnitudo' degli impatti potenziali (pressioni del progetto) e la sensitività dei recettori/risorse. La significatività degli impatti è categorizzata secondo le seguenti classi:

- Bassa;
- Media;
- Alta;
- Critica.

Significatività degli impatti

		Sensitività della Risorsa/Recettore		
		Bassa	Media	Alta
npatti	Trascurabile	Bassa	bassa	bassa
egli ir	Bassa	Bassa	Media	Alta
Magnitudo degli impatti	Media	Media	Alta	Critica
Magni	Alta	Alta	Critica	Critica

Le classi di significatività sono così descritte:

Bassa: la significatività di un impatto è bassa quando la magnitudo dell'impatto è trascurabile o bassa e la sensitività della risorsa/recettore è bassa.

Media: la significatività di un impatto è media quando l'effetto su una risorsa/recettore è evidente ma la magnitudo dell'impatto è bassa/media e la sensitività del recettore è rispettivamente media/bassa, oppure quando la magnitudo dell'impatto previsto rispetta ampiamente i limiti o standard di legge applicabili.

Alta: la significatività dell'impatto è alta quando la magnitudo dell'impatto è bassa/media/alta e la sensitività del recettore è rispettivamente alta/media/bassa oppure quando la magnitudo dell'impatto previsto rientra generalmente nei limiti o standard applicabili, con superamenti occasionali.

Critica: la significatività di un impatto è critica quando la magnitudo dell'impatto è media/alta e la sensitività del recettore è rispettivamente alta/media oppure quando c'è un ricorrente superamento di limite o standard di legge applicabile.

Nel caso in cui la risorsa/recettore sia essenzialmente non impattata oppure l'effetto sia assimilabile ad una variazione del contesto naturale, nessun impatto potenziale è atteso e pertanto non deve essere riportato.

Determinazione della magnitudo dell'impatto

La magnitudo descrive il cambiamento che l'impatto di un'attività di Progetto può generare su una risorsa/recettore. La determinazione della magnitudo è funzione dei seguenti criteri di valutazione, descritti nel dettaglio nella seguente tabella:

- Durata;
- Estensione;
- Entità

Criteri per la determinazione della magnitudo degli impatti

Criteri	Descrizione

Il periodo di tempo per il quale ci si aspetta il perdurare dell'impatto prima del ripristino della risorsa/recettore. Si riferisce alla durata dell'impatto e non alla durata dell'attività che determina l'impatto. Potrebbe essere:

Temporaneo. L'effetto è limitato nel tempo, risultante in cambiamenti non continuativi dello stato quali/quantitativo della risorsa/recettore. La/il risorsa/recettore è in grado di ripristinare rapidamente le condizioni iniziali. In assenza di altri strumenti per la determinazione esatta dell'intervallo di tempo, può essere assunto come riferimento per la durata temporanea un periodo approssimativo pari o inferiore ad a 1 anno;

Breve termine. L'effetto è limitato nel tempo e la risorsa/recettore è in grado di ripristinare le condizioni iniziali entro un breve periodo di tempo. In assenza di altri strumenti per la determinazione esatta dell'intervallo temporale, si può considerare come durata a breve termine dell'impatto un periodo approssimativo da 1 a 5 anni;

Lungo Termine. L'effetto è limitato nel tempo e la risorsa/recettore è in grado di ritornare alla condizione precedente entro un lungo arco di tempo. In assenza di altri strumenti per la determinazione esatta del periodo temporale, si consideri come durata a lungo termine dell'impatto un periodo approssimativo da 5 a 25 anni;

Permanente. L'effetto non è limitato nel tempo, la risorsa/recettore non è in grado di ritornare alle condizioni iniziali e/o il danno/i cambiamenti sono irreversibili. In assenza di altri strumenti per la determinazione esatta del periodo temporale, si consideri come durata permanente dell'impatto un periodo di oltre 25 anni.

La dimensione spaziale dell'impatto, l'area completa interessata dall'impatto. Potrebbe essere:

Locale. Gli impatti locali sono limitati ad un'area contenuta (che varia in funzione della componente specifica) che generalmente interessa poche città/paesi;

Regionale. Gli impatti regionali riguardano un'area che può interessare diversi paesi (a livello di provincia/distretto) fino ad area più vasta con le medesime caratteristiche geografiche e morfologiche (non necessariamente corrispondente ad un confine amministrativo);

Nazionale. Gli impatti nazionali interessano più di una regione e sono delimitati dai confini nazionali;

Transfrontaliero. Gli impatti transfrontalieri interessano più paesi, oltre i confini del paese ospitante il progetto.

Entità (definita su una componente specifica)

L' entità dell'impatto è il grado di cambiamento delle condizioni qualitative e quantitative della risorsa/recettore rispetto al suo stato iniziale *ante-operam*:

non riconoscibile o variazione difficilmente misurabile rispetto alle condizioni iniziali o impatti che interessano una porzione limitata della specifica componente o impatti che rientrano ampiamente nei limiti applicabili o nell'intervallo di variazione stagionale;

riconoscibile cambiamento rispetto alle condizioni iniziali o impatti che interessano una porzione limitata di una specifica componente o impatti che sono entro/molto prossimi ai limiti applicabili o nell'intervallo di variazione stagionale;

evidente differenza dalle condizioni iniziali o impatti che interessano una porzione sostanziale di una specifica componente o impatti che possono determinare occasionali superamenti dei limiti applicabili o dell'intervallo di variazione stagionale (per periodi di tempo limitati);

maggiore variazione rispetto alle condizioni iniziali o impatti che interessato una specifica componente completamente o una sua porzione significativa o impatti che possono determinare superamenti ricorrenti dei limiti applicabilio dell'intervallo di variazione stagionale (per periodi di tempo lunghi).

Come riportato la magnitudo degli impatti è una combinazione di durata, estensione ed entità ed è categorizzabile secondo le seguenti quattro classi:

- Trascurabile;
- Bassa;
- Media;
- Alta.

La determinazione della magnitudo degli impatti viene presentata nelle successive Tabelle.

Classificazione dei criteri di valutazione della magnitudo degli impatti

	Criteri di valutazione				
Classificazione	Durata dell'impatto	Estensione dell'impatto	Entità dell'Impatto	- Magnitudo	
1	Temporaneo	Locale	Non riconoscibile	da 3	
2	Breve termine	Regionale	Riconoscibile	intervallo	
3	Lungo termine	Nazionale	Evidente	inter	
4	Permanente	trasfrontaliero	Maggiore	nell'	
Punteggio	(1; 2; 3; 4)	(1; 2; 3; 4)	(1; 2; 3; 4)	(variabile a 12)	

Classificazione della magnitudo degli impatti

Criterio	Descrizione
Importanza / valore	L'importanza/valore di una risorsa/recettore è generalmente valutata sulla base della sua protezione legale (definita in base ai requisiti nazionali e/o internazionali), le politiche di governo, il valore sotto il profilo ecologico, storico o culturale, il punto di vista degli stakeholder e il valore economico.
Vulnerabilità / resilienza della risorsa / recettore	È la capacità delle risorse/recettori di adattamento ai cambiamenti portati dal progetto e/o di ripristinare lo stato <i>ante-operam</i> .

Come menzionato in precedenza, la sensitività della risorsa/recettore è la combinazione della importanza/valore e della vulnerabilità/resilienza e viene distinta in tre classi:

- 1. Bassa;
- 2. Media;
- 3. Alta.

5.2.ARIA E CLIMA

Introduzione

Nel presente Paragrafo si analizzano i potenziali impatti del Progetto sulla qualità dell'aria. L'analisi prende in esame gli impatti legati alle diverse fasi di Progetto, costruzione, esercizio e dismissione.

I potenziali ricettori presenti nell'area di progetto sono identificabili principalmente con la popolazione residente e più in generale con le aree nelle sue immediate vicinanze. Il seguente box riassume le principali fonti d'impatto sulla qualità dell'aria connesse al Progetto, evidenziando le risorse potenzialmente impattate e i ricettori sensibili. Nelle tabelle seguenti si presentano invece gli impatti potenziali sulla qualità dell'aria legati alle diverse fasi del Progetto prese in esame, costruzione esercizio e dismissione.

Principali Fonti di Impatto, Risorse e Recettori Potenzialmente Impattati – Aria e Clima

Benefici

L'esercizio dell'impianto garantisce emissioni risparmiate rispetto alla produzione di un'uguale quota di energia mediante impianti tradizionali.

Fonte di Impatto

Emissione temporanea di gas di scarico in atmosfera da parte dei veicoli coinvolti nella costruzione del progetto (aumento del traffico veicolare);

Emissione temporanea di polveri dovuta al movimento mezzi durante la realizzazione dell'opera (preparazione dell'area di cantiere (scotico superficiale), posa della linea elettrica fuori terra etc.).

Risorse e Ricettori Potenzialmente Impattati

Popolazione residente nei pressi del cantiere (comune di Sassari e di Porto Torres). Popolazione residente lungo le reti viarie interessate dal movimento mezzi, per trasporto di materiale e lavoratori, principalmente la SP18, utilizzata prevalentemente per l'accesso alle zone abitate intorno al progetto.

Fattori del Contesto (Ante Operam) inerenti la Valutazione

Il progetto è localizzato in un area fortemente antropizzata. La relazione annuale sulla qualità dell'aria in Sardegna per l'anno 2019 conclude che, nell'area di Sassari, si registra un inquinamento contenuto, stabile rispetto all'anno precedente ed entro la norma per tutti gli inquinanti monitorati.

Caratteristiche del Progetto influenzanti la Valutazione

Gestione delle attività di cantiere con particolare riferimento alle misure di riduzione degli impatti sulla qualità dell'aria;

Intensità del traffico veicolare legato al Progetto e percorsi interessati.

Principali Impatti Potenziali – Aria e Clima

Costruzione	Esercizio	Dismissione		
Impatti di natura temporanea sulla qualità dell'aria dovuti alle emissioni in atmosfera di: polveri da movimentazione mezzi; gas di scarico dei veicoli coinvolti nella realizzazione del progetto	alle emissioni risparmiate rispetto alla produzione di un'uguale quota mediante impianti tradizionali.	qualità dell'aria dovuti alle		

Nel seguito di questo capitolo si riportano la valutazione della significatività degli impatti potenziali attribuibili al Progetto e le misure di mitigazione individuate, entrambe divise per fase di Progetto.

Si sottolinea che ai fini della valutazione della significatività degli impatti riportata di seguito, la sensitività della risorsa/recettore per il fattore aria e clima è stata classificata come *media*.

Fase di Costruzione

Stima degli Impatti potenziali

Durante la fase di costruzione del Progetto, i potenziali impatti diretti sulla qualità dell'aria sono legati alle seguenti attività:

- Utilizzo di veicoli/macchinari a motore nelle fasi di costruzione con relativa emissione di gas di scarico (PM, CO, SO2 e NOx). In particolare si prevede il transito di circa 20 mezzi al giorno, per il trasporto di materiale, oltre ai mezzi leggeri per il trasporto dei lavoratori.
- Lavori di scotico per la preparazione dell'area di cantiere e la costruzione del progetto, con conseguente emissione di particolato (PM10, PM2.5) in atmosfera, prodotto principalmente da risospensione di polveri da transito di veicoli su strade non asfaltate. Tali lavori includono:
 - scotico superficiale;
 - o realizzazione di viabilità interna;
 - o fondazioni per le cabine elettriche MTR1 e MTR2 e per la Power StationPS;
 - o splateamenti per posa zavorre.

0

Per quanto riguarda l'eventuale transito di veicoli su strade non asfaltate, con conseguente risospensione di polveri in atmosfera, la viabilità sfrutterà principalmente strade esistenti asfaltate. Gli unici tratti non asfaltati sono costituiti da una strada bianca che sarà realizzata lungo tutto il perimetro dell'impianto e lungo gli assi principali per garantire la viabilità interna e l'accesso alle piazzole delle cabine.

L'impatto potenziale sulla qualità dell'aria, riconducibile alle suddette emissioni di inquinanti e particolato, consiste in un eventuale peggioramento della qualità dell'aria rispetto allo stato attuale, limitatamente agli inquinanti emessi durante la fase di cantiere.

Potenziali impatti sui lavoratori dovuti alle polveri che si generano durante la movimentazione dei mezzi in fase di cantiere saranno trattati nell'ambito delle procedure e della legistazione che regolamnetano la tutela e la salute dei lavoratori esposti.

Tali impatti non sono previsti al di fuori della recinzione di cantiere.

La durata degli impatti potenziali è classificata come a **breve termine**, in quanto l'intera fase di costruzione durerà al massimo circa 24 mesi. Si sottolinea che durante l'intera durata della fase di costruzione l'emissione di inquinanti in atmosfera sarà discontinua e limitata nel tempo e che la maggioranza delle emissioni di polveri avverrà durante i lavori civili.

Inoltre le emissioni di gas di scarico da veicoli/macchinari e di polveri da movimentazione terre e lavori civili sono rilasciate al livello del suolo con limitato galleggiamento e raggio di dispersione, determinando impatti potenziali di estensione locale ed entità non riconoscibile.

Si stima infatti che le concentrazioni di inquinanti indotte al suolo dalle emissioni della fase di costruzione si estinguano entro 100 m dalla sorgente emissiva.

La magnitudo degli impatti risulta pertanto trascurabile e la significatività bassa; quest'ultima è stata determinata assumendo una sensitività media dei ricettori.

L'esito della sopra riportata valutazione della significatività degli impatti è riassunta nella seguente Tabella.

Impatto	Criteri di valutazione e relativo Punteggio	Magnitudo	Sensitività	Significatività
Aria e Clima – Fase di Costruz	zione			
Peggioramento della qualità dell'aria dovuta all'emissione temporanea di gas di scarico in atmosfera da parte dei mezzi e veicoli coinvolti nella costruzione del progetto.	termine, 2 Estensione: Locale, 1	Classe 4: Trascurabile	Media	Bassa
Peggioramento della qualità dell'aria dovuta all'emissione temporanea di polveri da movimentazione mezzi e risospensione durante la realizzazione dell'opera.	termine, 2 Estensione: Locale, 1	Classe 4: Trascurabile	Media	Bassa

Misure di Mitigazione

Gli impatti sulla qualità dell'aria derivanti dalla fase di costruzione del progetto sono di bassa significatività e di breve termine, a causa del carattere temporaneo delle attività di cantiere. Non sono pertanto previste né specifiche misure di mitigazione atte a ridurre la significatività dell'impatto, nè azioni permanenti.

Tuttavia, al fine di contenere quanto più possibile le emissioni di inquinanti gassosi e polveri, durante la fase di costruzione saranno adottate norme di pratica comune e, ove richiesto, misure a carattere operativo e gestionale.

In particolare, per limitare le emissioni di gas si garantiranno il corretto utilizzo di mezzi e macchinari, una loro regolare manutenzione e buone condizioni operative. Dal punto di vista gestionale si limiterà le velocità dei veicoli e si eviterà di tenere inutilmente accesi i motori di mezzi e macchinari.

Per quanto riguarda la produzione di polveri, saranno adottate, ove necessario, idonee misure a carattere operativo e gestionale, quali:

- bagnatura delle gomme degli automezzi;
- umidificazione del terreno nelle aree di cantiere per impedire il sollevamento delle polveri, specialmente durante i periodi caratterizzati da clima secco;
- utilizzo di scivoli per lo scarico dei materiali;
- riduzione della velocità di transito dei mezzi.

Fase di Esercizio

Stima degli Impatti potenziali

Durante la fase di esercizio non sono attesi potenziali impatti negativi sulla qualità dell'aria, vista l'assenza di significative emissioni di inquinanti in atmosfera. Le uniche emissioni attese, discontinue e trascurabili, sono ascrivibili ai veicoli che saranno impiegati durante le attività di manutenzione dell'impianto

fotovoltaico. Pertanto, non è applicabile la metodologia di valutazione degli impatti descritta e, dato il numero limitato dei mezzi coinvolti, l'impatto è da ritenersi non significativo.

Per quanto riguarda i benefici attesi, l'esercizio del Progetto determina un impatto positivo sulla componente aria, consentendo un notevole risparmio di emissioni, sia di gas ad effetto serra che di macroinquinanti, rispetto alla produzione di energia mediante combustibili fossili tradizionali.

Sulla base del calcolo della producibilità riportato nel Relazione Tecnica Descrittiva del progetto definitivo, è stata stimata la seguente produzione energetica dell'impianto fotovoltaico:

Ad oggi, la produzione di energia elettrica è per la quasi totalità proveniente da impianti termoelettrici che utilizzano combustibili sostanzialmente di origine fossile. Quindi, considerando l'energia stimata come produzione del primo anno, 97 999 031.94 kWh, e la perdita di efficienza annuale, 0.90 %, le considerazioni successive valgono per il tempo di vita dell'impianto pari a 20 anni.

Partendo da questi dati, è possibile calcolare quale sarà il risparmio in termini di emissioni in atmosfera evitate (CO₂, NOx, SOx e polveri), ossia quelle che si avrebbero producendo la medesima quantità di energia utilizzando combustibili fossili.

Un utile indicatore per definire il risparmio di combustibile derivante dall'utilizzo di fonti energetiche rinnovabili è il fattore di conversione dell'energia elettrica in energia primaria [TEP/MWh].

Questo coefficiente individua le TEP (Tonnellate Equivalenti di Petrolio) necessarie per la realizzazione di 1 MWh di energia, ovvero le TEP risparmiate con l'adozione di tecnologie fotovoltaiche per la produzione di energia elettrica.

Risparmio di combustibile

Risparmio di combustibile in	
Fattore di conversione dell'energia elettrica in energia primaria [TEP/MWh]	0.187
TEP risparmiate in un anno	18 325.82
TEP risparmiate in 20 anni	336 808.53

Fonte dati: Delibera EEN 3/08, art. 2

Inoltre, l'impianto fotovoltaico consente la riduzione di emissioni in atmosfera delle sostanze che hanno effetto inquinante e di quelle che contribuiscono all'effetto serra.

Emissioni evitate in atmosfera

Emissioni evitate in atmosfera di	CO ₂	SO ₂	NO _x	Polveri
Emissioni specifiche in atmosfera [g/kWh]	474.0	0.373	0.427	0.014
Emissioni evitate in un anno [kg]	46 451 541.14	36 553.64	41 845.59	1 371.99
Emissioni evitate in 20 anni [kg]	853 728 576.38	671 815.95	769 076.16	25 215.61

Fonte dati: Rapporto ambientale ENEL 2013

Significatività degli Impatti Potenziali – Aria e Clima– Fase di Esercizio

Impatto	Criteri di valutazione e relativo Punteggio	Magnitudo	Sensitività	Significatività
Aria e Clima – Fase di Eser	cizio			
Non si prevedono impatti negativi significativi sulla qualità dell'aria collegati all'esercizio dell'impianto.	Metodologia non applicabile			Non Significativo
Impatti positivi conseguenti le emissioni risparmiate rispetto alla produzione di energia mediante l'utilizzo di combustibili fossili.	Durata: Lungo termine, 3 Estensione: Locale, 1 Entità: Riconoscibile, 2	Classe 6: Bassa	Media	Media (positiva)

Misure di Mitigazione

L'adozione di misure di mitigazione non è prevista per la fase di esercizio, in quanto non sono previsti impatti negativi significativi sulla componente aria collegati all'esercizio dell'impianto. Al contrario, sono attesi benefici ambientali per via delle emissioni atmosferiche risparmiate rispetto alla produzione di energia mediante l'utilizzo di combustibili fossili.

Fase di Dismissione

Stima degli Impatti potenziali

Per la fase di dismissione si prevedono impatti sulla qualità dell'aria simili a quelli attesi durante la fase di costruzione, principalmente collegati all'utilizzo di mezzi/macchinari a motore e generazione di polveri da movimenti mezzi.

In particolare, si prevedono le seguenti emissioni:

Emissione temporanea di gas di scarico (PM, CO, SO₂ e NOx) in atmosfera da parte dei mezzi e veicoli coinvolti nella rimozione, smantellamento e successivo trasporto delle strutture di progetto e ripristino del terreno.

Emissione temporanea di particolato atmosferico (PM₁₀, PM_{2.5}), prodotto principalmente da movimentazione terre e risospensione di polveri da superfici/cumuli e da transito di veicoli su strade non asfaltate.

Rispetto alla fase di cantiere si prevede l'utilizzo di un numero inferiore di mezzi e di conseguenza la movimentazione di un quantitativo di /materiale pulverulento limitato. La fase di dismissione durerà 12 mesi, determinando impatti di natura *temporanea*. Inoltre, le emissioni attese sono di natura discontinua nell'arco dell'intera fase di dismissione. Di conseguenza, la valutazione degli impatti è analoga a quella presentata per la fase di cantiere, con impatti caratterizzati da magnitudo *trascurabile* e significatività *bassa* come riassunto seguente Tabella. Tale classificazione è stata ottenuta assumendo una sensitività *media* dei ricettori. La movimentazione terre in fase di decommissioning sarà effettuata solo ad avvenuta bonifica della matrice terreno e a valle della restituzione dei suoli agli usi origivari.

Livello di Magnitudo degli Impatti Potenziali – Aria e Clima- Fase di Dismissione

Impatto	Criteri di valutazione e relativo Punteggio	Magnitudo	Sensitività	Significatività
Aria e Clima: Fase di Di	smissione			
Peggioramento della qualità dell'aria dovuta all'emissione temporanea di gas di scarico in atmosfera da parte dei veicoli e mezzi coinvolti nella dismissione del progetto.	Durata: Temporaneo, 1 Estensione: Locale, 1 Entità: Non riconoscibile, 1	Classe 3: Trascurabile	Media	Bassa
Peggioramento della qualità dell'aria dovuta all'emissione temporanea di polveri da movimentazione mezzi e rispospensione durante le operazione di rimozione e smantellamento del progetto.	Durata: Temporaneo, 1 Estensione: Locale, 1 Entità: Non riconoscibile, 1	Classe 3: Trascurabile	Media	Bassa

Misure di Mitigazione

Gli impatti sulla qualità dell'aria derivanti dalla fase di dismissione del progetto sono di bassa significatività e di breve termine, a causa del carattere temporaneo delle attività. Non sono pertanto previste né specifiche misure di mitigazione atte a ridurre la significatività dell'impatto, né azioni permanenti.

Nell'utilizzo dei mezzi saranno adottate misure di buona pratica, quali regolare manutenzione dei veicoli, buone condizioni operative e velocità limitata. Sarà evitato inoltre di mantenere i motori accesi se non strettamente necessario.

Per quanto riguarda la produzione di polveri, visto il limitato quantitativo di mezzi impiegati e l'assenza di terre movimentate, non si prevedono particolari mitigazioni.

Conclusioni e Stima degli Impatti Residui

La seguente riassume la valutazione degli impatti potenziali sulla qualità dell'aria presentata in dettaglio in questo capitolo. Gli impatti sono divisi per fase e per ogni impatto viene indicata la significatività e le misure di mitigazione da adottare.

Come già riportato nell'analisi per singola fase, il progetto nel suo complesso (costruzione, esercizio e dismissione) non presenta particolari interferenze con la componente aria e la valutazione condotta non ha ravvisato alcun tipo di criticità. Al contrario, si sottolinea che l'impianto di per se costituisce un beneficio per la qualità dell'aria, in quanto consente la produzione di **97 999 031.94 kWh** annua di energia elettrica senza il rilascio di emissioni in atmosfera, tipico della produzione di energia mediante l'utilizzo di combustibili fossili.

Sintesi Impatti sull'Aria e Clima e relative Misure di Mitigazione

Impatto	Significatività	Misure di Mitigazione	Significatività Impatto residuo
Aria e Clima: Fase	di Costruzione		
Peggioramento della qualità dell'aria dovuta all'emissione temporanea di gas di scarico in atmosfera da parte dei veicoli coinvolti nella costruzione del progetto (aumento del traffico veicolare);	Bassa	Regolare manutenzione dei veicoli Buone condizioni operative Velocità limitata Evitare motori accesi se non strettamente necessario	Bassa
Peggioramento della qualità dell'aria dovuta all'emissione temporanea di polveri durante la realizzazione dell'opera.)	Bassa	Bagnatura delle gomme degli automezzi; Umidificazione del terreno nelle aree di cantiere per impedire il sollevamento delle polveri, specialmente durante i periodi caratterizzati da clima secco; Utilizzo di scivoli per lo scarico dei materiali; Riduzione della velocità di transito dei mezzi.	Bassa

Impatto	Significatività	Misure di Mitigazione	Significatività Impatto residuo
Aria e Clima: Fase	di Esercizio		
Non si prevedono impatti negativi significativi sulla qualità dell'aria collegati all'esercizio dell'impianto.		Non previste in quanto l'impatto potenziale è non significativo	Non Significativa
Impatti positivi conseguenti le emissioni risparmiate rispetto alla produzione di energia mediante l'utilizzo di combustibili fossili.		Non previste	Media (impatto positivo)
Aria e Clima: Fase di	Dismissione		

Peggioramento della qualità dell'aria dovuta all'emissione temporanea di gas di scarico in atmosfera da parte dei veicoli coinvolti nella dismissione del progetto (aumento del traffico veicolare).		Regolare manutenzione dei veicoli Buone condizioni operative Velocità limitata; Evitare motori accesi se non strettamente necessario.	Bassa
Peggioramento della qualità dell'aria dovuta all'emissione temporanea di polveri durante la dismissione dell'opera.	Bassa	Non previste	Bassa

5.3.SUOLO E SOTTOSUOLO

Introduzione

Il presente Paragrafo analizza i potenziali impatti del Progetto sulla componente suolo e sottosuolo. Gli impatti sono presi in esame considerando le diverse fasi di Progetto: Costruzione, Esercizio e Dismissione.

Il box riportato di seguito riassume le principali fonti di Impatto, Risorse e Recettori Potenzialmente Impattati e il contesto in cui si inserisce l'opera.

Principali Fonti di Impatto, Risorse e Recettori Potenzialmente Impattati – Suolo e Sottosuolo

Fonte di Impatto

Occupazione del suolo da parte dei mezzi atti all'approntamento dell'area ed alla disposizione progressiva dei moduli fotovoltaici;

Sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti, o dal serbatoio di alimentazione del generatore diesel di emergenza.

Risorse e Ricettori Potenzialmente Impattati

Suolo e sottosuolo.

Fattori del Contesto (Ante Operam) inerenti la Valutazione

L'area di Progetto non è in zone a rischio sismico;

L'area di progetto è sostanzialmente occupata da insediamenti agricoli ed aree sensibilmente antropizzate.

Caratteristiche del Progetto influenzanti la Valutazione

Ottimizzazione del numero dei mezzi di cantiere previsti per le fasi di Costruzione e Dismissione;

Realizzazione di uno strato erboso perenne nelle porzioni di terreno sottostante i pannelli, in modo da rendere inefficace l'effetto di erosione della pioggia battente e del ruscellamento superficiale;

Modalità di disposizione dei moduli fotovoltaici sull'area di Progetto.

Le principali fonti d'impatto sulla matrice in oggetto connesse al Progetto sono riassunte nel seguente box e suddivise per ciascuna fase.

Principali Impatti potenziali –Suolo e Sottosuolo

Costruzione	Esercizio	Dismissione
Occupazione del suolo da parte dei mezzi atti all'approntamento dell'area e dalla progressiva disposizione dei moduli fotovoltaici. Contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti.	 Impatto dovuto all'occupazione del suolo da parte dei moduli fotovoltaici durante il periodo di vita dell'impianto. Contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti, o dal serbatoio di alimentazione del generatore diesel di emergenza. 	. 5

Per la matrice suolo e sottosuolo è importante sottolineare, come già ricordato, che il progetto in alcun modo interferirà con il progetto di bonifica previsto, sia nella fase di cantiere sia nella fase di esercizio. Il progetto essendo "appoggiato" sul terreno non interferirà direttamente con la matrice suolo e sottosuolo.

Non essendoci movimenti terra non è previsto un piano di Riutilizzo delle Terre e Rocce da scavo. I lavori di preparazione dell'area non avranno alcuna influenza sulla conformazione morfologica dei luoghi.

Si sottolinea che anche durante la messa in opera delle fasce vegetali perimetrali a mitigazione dell'impatto peasaggistico dell'opera non si avranno interferenze con il terreno sottostante, in quanto tutte le piante saranno posizionate su terreno vegetale riportato in aiuole fuori terra. Inoltre verranno piantati esemplari a basso fusto.

Valutazione della Sensitività

Secondo quanto riportato nella baseline, la maggior parte dei campioni analizzati in corrispondenza dell'area di Progetto non presentano superi dei valori di cui al DLgs. n. 152/06, All. 5 di Titolo V - Tab. 1/B

Per questo motivo, la sensitività della componente suolo e sottosuolo può essere classificata come *media*.

Fase di Costruzione

Stima degli Impatti potenziali

Come riportato per l'ambiente idrico, si prevede che gli impatti potenziali sulla componente suolo e sottosuolo derivanti dalle attività di costruzione siano attribuibili all'utilizzo dei mezzi d'opera quali gru di cantiere e muletti, gruppo, furgoni e camion per il trasporto. I potenziali impatti riscontrabili legati a questa fase sono introdotti di seguito e successivamente descritti con maggiore dettaglio:

- occupazione del suolo da parte dei mezzi atti all'approntamento dell'area e dalla progressiva disposizione dei moduli fotovoltaici (impatto diretto);
- contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti (impatto diretto).

Per quanto riguarda le potenziali interferenze del Progetto con le attività previste, sono state eliminate adottando i seguenti accorgimenti:

Una adeguata protezione meccanica sarà posta sui cavi stessi (tegolo) in conformità alla modalità di posa"M" della Norma C.E.I 11-17. Gli scavi saranno effettuati usando mezzi meccanici ed evitando scoscendimenti, franamenti e in modo tale che le acque di ruscellamento non si riversino negli scavi. Il percorso dei cavidotti correrà, ove possibile, a lato delle strade interne di progetto in modo tale da ridurre al minimo l'impatto dovuto all'occupazione di suolo. Inoltre il percorso dei cavidotti sarà segnalato in superficie da appositi cartelli. I materiali di risulta delle opere provvisionali e delle opere civili, opportunamente selezionati, dovranno essere riutilizzati per quanto è possibile nell'ambito del cantiere per la formazione di rilevati, riempimenti o altro; il rimanente materiale di risulta prodotto dal cantiere e non utilizzato dovrà essere trasportato in discarica autorizzata.

Durante la fase di scotico superficiale e di posa dei moduli fotovoltaici saranno necessariamente indotte delle modifiche sull'utilizzo del suolo, circoscritto alle aree interessate dalle operazioni di cantiere. L'occupazione di suolo, date le dimensioni limitate del cantiere, non induce significative limitazioni o perdite d'uso dello stesso. Inoltre, il criterio di posizionamento delle apparecchiature sarà condotto con il fine di ottimizzare al meglio gli spazi, nel rispetto di tutti i requisiti di sicurezza. Si ritiene che questo tipo d'impatto sia di estensione *locale*. Durante questa fase, l'area interessata dal progetto sarà delimitata, recintata, quindi progressivamente interessata dalla disposizione dei moduli fotovoltaici che, successivamente, durerà per tutta la vita dell'impianto. Limitatamente al perdurare della fase di costruzione l'impatto può ritenersi per natura di *breve durata* e *riconoscibile* per la natura delle opere che verranno progressivamente eseguite.

Durante la fase di costruzione una potenziale sorgente di impatto per la matrice potrebbe essere lo sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti. Tuttavia, essendo tali quantità di idrocarburi trasportati contenute e ritenendo che la parte il terreno incidentato venga prontamente rimosso in caso di contaminazione ai sensi della legislazione vigente, è corretto ritenere che non vi siano rischi specifici né per il suolo né per il sottosuolo. Le operazioni che prevedono l'utilizzo di questo tipo di mezzi meccanici avranno una durata limitata e pertanto la durata di questo tipo di impatto è da ritenersi **temporanea**. Qualora dovesse verificarsi un'incidente, i quantitativi di idrocarburi riversati sarebbero ridotti e produrrebbero un impatto limitato al punto di contatto (impatto *locale*) e di entità *non riconoscibile*.

Con riferimento alla presenza di sottoservizi, non sono previste interferenze durante la fase di cantiere. Tuttavia, in sede di progetto esecutivo, saranno fatte le dovute verifiche al fine di garantire la non interferenza tra il progetto ed i sottoservizi.

Significatività degli Impatti Potenziali – Suolo e Sottosuolo – Fase di Costruzione

Impatto	Criteri di valutazione e relativo Punteggio		Sensitività	Significatività
Suolo e Sottosuo	lo: Fase di Costruzio	ne		

Impatto dovuto all'occupazione del suolo da parte dei moduli fotovoltaici durante il periodo di vita dell'impianto	Baratar Breve terrimie,	Classe 6: Bassa	Media	Media
Contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti, o dal serbatoio di alimentazione del generatore diesel di emergenza	Durata: Temporaneo, 1 Estensione: Locale, 1 Entità: Non Riconoscibile, 1	Classe 3: Trascurabile	Media	Bassa

Misure di Mitigazione

Tra le misure di mitigazione per gli impatti potenziali legati a questa fase si ravvisano:

- Ottimizzazione del numero dei mezzi di cantiere previsti;
- Utilizzo di kit antinquinamento in caso di sversamenti accidentali dai mezzi. Tali kit saranno presenti o direttamente in sito o sarà cura degli stessi trasportatori avere con se a bordo dei mezzi.

Fase di Esercizio

Stima degli Impatti potenziali

Gli impatti potenziali sulla componente suolo e sottosuolo derivante dalle attività di esercizio sono riconducibili a:

- occupazione del suolo da parte dei moduli fotovoltaici durante il periodo di vita dell'impianto (impatto diretto);
- erosione/ruscellamento;
- contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti, o dal serbatoio di alimentazione del generatore diesel di emergenza (impatto diretto).

Il criterio di posizionamento delle apparecchiature sarà condotto con il fine di ottimizzare al meglio gli spazi disponibili, nel rispetto di tutti i requisiti di sicurezza. Inoltre, i moduli fotovoltaici saranno ancorati al terreno mediante pali infissi nel terreno, tale operazione non comporterà alcuna alterazione derivante da ulteriore scavo o movimentazione. Infine, per minimizzare l'effetto di erosione dovuto all'eventuale pioggia battente e ruscellamento è prevista la realizzazione di uno strato erboso perenne nelle porzioni di terreno sottostante i pannelli. Questo impatto si ritiene di estensione *locale* in quanto limitato alla sola area di progetto. L'area di progetto sarà occupata da parte dei moduli fotovoltaici per tutta la durata della fase di esercizio, conferendo a questo impatto una durata di *lungo termine* (durata media della vita dei

moduli: 30 anni). Infine, per la natura delle opere che verranno progressivamente eseguite, si ritiene che l'impatto sarà di entità *riconoscibile*

L'utilizzo dei mezzi meccanici impiegati per le operazioni di sfalcio periodico della vegetazione spontanea, nonché per la pulizia periodica dei moduli fotovoltaici potrebbe comportare, in caso di guasto, lo sversamento accidentale di idrocarburi quali combustibili o oli lubrificanti direttamente sul terreno. Data la periodicità e la durata limitata di questo tipo di operazioni, questo tipo di impatto è da ritenersi *temporaneo*.

Qualora dovesse verificarsi un incidente il suolo contaminato sarà asportato, caratterizzato e smaltito (impatto *locale* e *non riconoscibile*.

Significatività degli Impatti Potenziali – Suolo e Sottosuolo – Fase di Esercizio

Impatto	Criteri di valutazione e relativo Punteggio	Magnitudo	Sensitività	Significatività
Suolo e Sottosuo	lo: Fase di Esercizio			
Impatto dovuto all'occupazione del suolo da parte dei moduli fotovoltaici durante il periodo di vita dell'impianto	Durata: Lungo Termine, 3 Estensione: Locale, 1 Entità: Riconoscibile, 2	Classe 6: Bassa	Media	Media
Contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti, o dal serbatoio di alimentazione del generatore diesel di emergenza	Durata: Temporaneo, 1 Estensione: Locale, 1 Entità: Non Riconoscibile, 1	Classe 3: Trascurabile	Media	Bassa

Misure di Mitigazione

Per questa fase del progetto, per la matrice ambientale oggetto di analisi si ravvisano le seguenti misure di mitigazione:

realizzazione di uno strato erboso perenne nelle porzioni di terreno sottostante i pannelli;

la previsione di un bacino di contenimento in pvc per il serbatoio del generatore diesel di emergenza.

Fase di Dismissione

Stima degli Impatti potenziali

Si prevede che gli impatti potenziali sulla componente suolo e sottosuolo derivante dalle attività di dismissione siano assimilabili a quelli previsti nella fase di costruzione. E quindi:

- occupazione del suolo da parte dei mezzi atti al ripristino dell'area ed alla progressiva rimozione dei moduli fotovoltaici (impatto diretto);
- modifica dello stato geomorfologico in seguito ai lavori di ripristino (impatto diretto);
- contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti (impatto diretto).

La fase di ripristino del terreno superficiale e di dismissione dei moduli fotovoltaici darà luogo sempre ad una modificazione dell'utilizzo del suolo sull'area di progetto. L'occupazione di suolo, date le dimensioni limitate del cantiere, non induce significative limitazioni o perdite d'uso del suolo stesso. In fase di dismissione dell'impianto saranno rimosse tutte le strutture facendo attenzione a non asportare porzioni di suolo e verranno ripristinate le condizioni esistenti. Questo tipo d'impatto si ritiene di estensione *locale*. Limitatamente al perdurare della fase di dismissione l'impatto può ritenersi per natura *temporaneo*. Infine, per la natura delle opere che verranno progressivamente eseguite, si ritiene che l'impatto sarà di entità *riconoscibile*.

Per quanto riguarda le aree di intervento si evidenzia che in fase di dismissione l'area sarà oggetto di modificazioni geomorfologiche di bassa entità dovute alle opere di sistemazione del terreno superficiale al fine di ripristinare il livello superficiale iniziale del piano campagna. In considerazione di quanto sopra riportato, si ritiene che le modifiche dello stato geomorfologico in seguito ai lavori di ripristino sia di durata *temporanea*, estensione *locale* e di entità *non riconoscibile*.

L'utilizzo dei mezzi meccanici impiegati per le operazioni di ripristino dell'area, nonché per la rimozione e trasporto dei moduli fotovoltaici potrebbe comportare, in caso di guasto, lo sversamento accidentale di idrocarburi quali combustibili o oli lubrificanti direttamente sul terreno. Le operazioni che prevedono l'utilizzo di questo tipo di mezzi meccanici avranno una durata limitata e pertanto la durata di questo tipo di impatto è da ritenersi *temporanea*. Qualora dovesse verificarsi un incidente, i quantitativi di idrocarburi riversati sarebbero ridotti e produrrebbero un impatto limitato al punto di contatto (impatto *locale*) e di entità *non riconoscibile*.

Significatività degli Impatti Potenziali – Suolo e Sottosuolo – Fase di Dismissione

Impatto	Criteri di valutazione e relativo Punteggio	Magnitudo	Sensitività	Significatività
Occupazione del suolo da parte dei mezzi atti al ripristino dell'area ed	Daratar Larigo Terrimie,	Classe 4:	Media	Media
alla rimozione progressiva dei moduli fotovoltaici	Entità: Riconoscibile, 2	Trascurabile		

Modifica dello stato geomorfologico in seguito ai lavori di ripristino	Durata: Temporaneo, 1 Estensione: Locale, 1 Entità: Non Riconoscibile, 1	Classe 3: Trascurabile	Media	Bassa
Contaminazione in caso disversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti	Durata: Temporaneo, 1 Estensione: Locale, 1 Entità: Non Riconoscibile, 1	Classe 3: Trascurabile	Media	Bassa

Misure di Mitigazione

Tra le misure di mitigazione per gli impatti potenziali legati a questa fase si ravvisano:

- Ottimizzazione del numero dei mezzi di cantiere previsti;
- Dotazione dei mezzi di cantiere di kit antinquinamento.

Conclusioni e Stima degli Impatti Residui

La seguente Tabella riassume la valutazione degli impatti potenziali sulla componente suolo e sottosuolo presentata in questo capitolo. Gli impatti sono divisi per fase, e per ogni impatto viene indicata la significatività e le misure di mitigazione, oltre all'indicazione dell'impatto residuo. Come già riportato nell'analisi per singola fase, il progetto nel suo complesso (costruzione, esercizio e dismissione) non presenta particolare interferenze con il Suolo e Sottosuolo.

Impatto	Significatività	Misure di Mitigazione	Significatività Impatto residuo
Suolo e Sottosuolo:	Fase di Costruz	ione	
Occupazione del suolo da parte dei mezzi atti all'approntamento dell'area ed alla disposizione progressiva dei moduli fotovoltaici	Media	Ottimizzazione del numero dei mezzi di cantiere previsti.	Basso
Contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti	Bassa	Ottimizzazione del numero dei mezzi di cantiere previsti. Dotazione dei mezzi di cantiere di kit anti-inquinamento	Bassa
Suolo e Sottosuolo:	Fase di Esercizi	O	

Impatto dovuto all'occupazione del suolo da parte dei moduli fotovoltaici durante il periodo di vita dell'impianto	Media	Realizzazione di uno strato erboso perenne nelle porzioni di terreno sottostante i pannelli e la realizzazione del piano colturale per il campo agrofotovoltaico.	Bassa
Contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti, o dal serbatoio di alimentazione del generatore diesel di emergenza	Bassa	La previsione di un bacino di contenimento in pvc per il serbatoio del generatore diesel di emergenza.	Bassa
Suolo e Sottosuolo:	Fase dismission	ne	
Occupazione del suolo da parte dei mezzi atti al ripristino dell'area ed alla disposizione progressiva dei moduli fotovoltaici	Media	Ottimizzazione del numero dei mezzi di cantiere previsti.	Bassa
Modifica dello stato geomorfologico in seguito ai lavori di ripristino	Bassa	Non si ravvisano misure di mitigazione.	Bassa
Contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti	Bassa	Ottimizzazione del numero dei mezzi di cantiere previsti. Dotazione dei mezzi di cantiere di kit anti-inquinamento	Bassa

5.4.AMBIENTE IDRICO E RISORSE IDRICHE UTILIZZATE

Introduzione

Il presente Paragrafo analizza i potenziali impatti sull'ambiente idrico (sia acque superficiali sia sotterranee) dettagliata al paragrafo della baseline. Gli impatti sono presi in esame per le diverse fasi di Progetto: costruzione, esercizio e dismissione. Il seguente box riassume le principali fonti d'impatto connesse al Progetto, evidenziando le risorse potenzialmente impattate ed i ricettori sensibili.

Le principali fonti d'impatto sulla matrice in oggetto connesse al Progetto sono riassunte, per ciascuna fase, nella tabella seguente.

Principali Fonti di Impatto, Risorse e Recettori Potenzialmente Impattati – Ambiente Idrico

Fonte di Impatto

Utilizzo di acqua per le necessità legate alle attività di cantiere;

Utilizzo di acqua per la pulizia dei pannelli in fase di esercizio;

Contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti, o dal serbatoio di alimentazione del generatore diesel di emergenza.

Risorse e Ricettori Potenzialmente Impattati

Come emerge dalla baseline l'area dell'impianto non è interessata direttamente da corsi d'acqua di 1° o 2° ordine, né da altri corpi idrici. Inoltre, l'area di progetto non interferisce con alcuna area individuata come a probabilità di esondazione. Il cavidotto non attreversa nessuna area a rischio idraulico. Il cavidotto verrà realizzato al di sotto di strade eistenti.

Fattori del Contesto (Ante Operam) inerenti la Valutazione

Riguardo alla qualità delle acque superficiali, si nota per i corpi idrici più prossimi all'area di Progetto presentano uno stato qualitativo ecologico e chimico generale tendenzialmente non buono.

Caratteristiche del Progetto influenzanti la Valutazione

Gestione dell'approvvigionamento dell'acqua necessaria sia alle fasi di costruzione e dismissione, sia per la fase di esercizio;

Accorgimenti particolari per le attività di manutenzione durante la fase di esercizio;

Metodologia di installazione dei moduli fotovoltaici;

La previsione di un bacino di contenimento in pvc per il serbatoio del generatore diesel di emergenza.

Principali Impatti potenziali –Ambiente Idrico

Costruzione	Esercizio	Dismissione
 Utilizzo di acqua per le necessità di cantiere; Contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti. 	 Utilizzo di acqua per la pulizia dei pannelli e irrigazione manto erboso; Impermeabilizzazione aree superficiali; Contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti, o dal serbatoio di alimentazione del generatore diesel di emergenza. 	sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in

Valutazione della Sensitività

La sensitività della componente ambiente idrico può essere classificata come Bassa.

Fase di Costruzione

Stima degli Impatti potenziali

Si ritiene che i potenziali impatti legati alle attività di costruzione siano i seguenti:

utilizzo di acqua per le necessità di cantiere (impatto diretto);

contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti (impatto diretto).

Il consumo di acqua per necessità di cantiere è strettamente legato alle operazioni di bagnatura delle superfici, al fine di limitare il sollevamento delle polveri prodotte dal passaggio degli automezzi sulle strade sterrate (limitate per il progetto in oggetto).

L'approvvigionamento idrico verrà effettuato mediante autobotte, qualora la rete non fosse disponibile al momento della cantierizzazione. Non sono previsti prelievi diretti da acque superficiali o da pozzi per le attività di realizzazione delle opere. Sulla base di quanto precedentemente esposto, si ritiene che l'impatto sia di *breve termine*, di estensione *locale* ed entità *non riconoscibile*.

Per quanto riguarda le aree oggetto di intervento, si evidenzia che in fase di cantiere l'area non sarà pavimentata/impermeabilizzata consentendo il naturale drenaggio delle acque meteoriche nel suolo.

Per la natura delle attività previste, sono state evitate possibili interazioni con i flussi idrici superficiali e sotterranei dovute all'infissione dei pali di sostegno dei moduli fotovoltaici nel terreno poiché come delineato nel progetto, i moduli fotovoltaici saranno solamente "appoggiati" al terreno ed assicurati con opportuni zavorramenti. Allo stesso scopo, anche le cabine e la rete di connessione saranno "appoggiate" a terra. In considerazione di quanto sopra riportato, si ritiene che questo tipo d'impatto sia di *breve termine*, di estensione *locale* e di entità *non riconoscibile*.

Durante la fase di costruzione una potenziale sorgente di impatto per gli acquiferi potrebbe essere lo sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti Tuttavia, essendo le quantità di idrocarburi trasportati contenute, essendo gli acquiferi protetti da uno strato di terreno superficiale nella parte centrale ed essendo la parte di terreno incidentato prontamente rimosso in caso di contaminazione ai sensi della legislazione vigente, è corretto ritenere che non vi siano rischi specifici né per l'ambiente idrico superficiale (l'area di progetto non insiste sul reticolo idrografico) né per l'ambiente idrico sotterraneo. Le operazioni che prevedono l'utilizzo di questo tipo di mezzi meccanici avranno una durata limitata e pertanto questo tipo d'impatto per questa fase è da ritenersi *temporaneo*. Qualora dovesse verificarsi un incidente, i quantitativi di idrocarburi riversati produrrebbero un impatto limitato al punto di contatto (impatto *locale*) di entità *non riconoscibile*.

La seguente tabella riassume l'analisi per questa fase di costruzione.

Impatto	Criteri di valutazione e relativo Punteggio	Magnitudo	Sensitività	Significatività
Ambiente Idrico:	Fase di Costruzione			
Utilizzo di acqua per le necessità di cantiere	Durata: Breve Termine, 2 Estensione: Locale, 1 Entità: Non iconoscibile, 1	Classe 4: Trascurabile Media	Media	Bassa
Contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti	Durata: Temporaneo, 1 Estensione: Locale, 1 Entità: Non Riconoscibile, 1	Classe 3: Trascurabile	Media	Bassa

Misure di Mitigazione

Non si ravvisa la necessità di misure di mitigazione per gli impatti potenziali legati a questa fase.

Fase di Esercizio

Stima degli Impatti potenziali

Per la fase di esercizio i possibili impatti individuati sono i seguenti:

- utilizzo di acqua per la pulizia dei pannelli e conseguente irrigazione del manto erboso sottostante (impatto diretto);
- impermeabilizzazione di aree (impatto diretto);
- contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti, o dal serbatoio di alimentazione del generatore diesel di emergenza (impatto diretto).

L'impatto sull'ambiente idrico è riconducibile all'uso della risorsa per la pulizia dei pannelli in ragione di circa 350 m₃/anno di acqua che andrà a dispersione direttamente nel terreno. Tuttavia, si sottolinea che l'approvvigionamento idrico verrà tramite autobotte, per cui sarà garantita la qualità delle acque di origine in linea con la legislazione vigente. Non sono previsti prelievi diretti da acque superficiali o da pozzi per le attività di realizzazione delle opere. Data la natura occasionale con cui è previsto avvengano tali operazioni di pulizia dei pannelli (circa due volte all'anno), si ritiene che l'impatto sia *temporaneo*, di estensione *locale* e di entità *non riconoscibile*.

In fase di esercizio le aree di impianto non saranno interessate da copertura o pavimentazione, le aree impermeabili presenti sono rappresentate esclusivamente dalle aree sottese alle Power station; non si prevedono quindi sensibili modificazioni alla velocità di drenaggio dell'acqua nell'area.

Le strutture di sostegno dei pannelli che verranno posizionati sono costituite da pali conficati nel terreno. In ragione dell'esigua impronta a terra, esse non genereranno una significativa modifica alla capacità di infiltrazione delle aree in quanto non modificano le caratteristiche di permeabilità del terreno; lo stesso si può affermare delle platee di appoggio delle Power statio. Sulla base di quanto esposto si ritiene che questo impatto sia di *lungo termine*, di estensione locale e di entità *non riconoscibile*.

L'utilizzo dei mezzi meccanici impiegati per le operazioni di sfalcio periodico della vegetazione spontanea, nonché per la pulizia periodica dei moduli fotovoltaici potrebbe comportare, in caso di guasto, lo sversamento accidentale di idrocarburi quali combustibili o oli lubrificanti direttamente sul terreno. Altrettanto potrebbe capitare in caso di incidenti durante le operazioni riempimento/manutenzione del serbatoio di alimentazione del generatore diesel di emergenza Data la periodicità e la durata limitata delle operazioni di cui sopra, questo tipo di impatto è da ritenersi **temporaneo**. Qualora dovesse verificarsi un incidente in grado di produrre questo impatto, i quantitativi di idrocarburi riversati produrrebbero un impatto limitato al punto di contatto con il terreno superficiale (impatto **locale**) ed entità **non riconoscibile**. Va sottolineato che in caso di riversamento il prodotto dovrà essere caratterizzato e smaltito secondo la legislazione applicabile e vigente.

La seguente tabella riassume l'analisi per questa fase di progetto.

Significatività degli Impatti Potenziali – Ambiente Idrico – Fase di Esercizio

Impatto	Criteri di valutazione e relativo Punteggio	Magnitudo	Sensitivit à	Significatività
Ambiente Idrico:	Fase di Esercizio			
Utilizzo di acqua per la pulizia dei pannelli e conseguente irrigazione del manto erboso	Durata: Temporaneo, 1 Estensione: Locale, 1 Entità: Non Riconoscibile, 1	Classe 3: Trascurabile	Media	Bassa
Impermeabilizzazione aree superficiali	Durata: Lungo Termine, 3 Estensione: Locale, 1 Entità: Non Riconoscibile, 1	Classe 5: Bassa	Media	Media
Contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti, o dal serbatoio di alimentazione del generatore diesel di emergenza	Durata: Temporaneo, 1 Estensione: Locale, 1 Entità: Non Riconoscibile, 1	Classe 3: Trascurabile	Media	Bassa

Misure di Mitigazione

Tra le eventuali misure di mitigazione ravvisate per questa fase vi sono:

- l'approvvigionamento di acqua tramite autobotti;
- realizzazione di fossi drenanti che sfruttano la naturale pendenza del terreno ed aumentano la capacità di filtrazione del sito;
- la previsione di un bacino di contenimento in pvc per il serbatoio del generatore diesel di emergenza.

Fase di Dismissione

Stima degli Impatti potenziali

Per la fase di Dismissione i possibili impatti individuati sono i seguenti:

- utilizzo di acqua per le necessità di cantiere (impatto diretto);
- contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti (impatto diretto).

Come visto per la fase di Costruzione, il consumo di acqua per necessità di cantiere è strettamente legato alle operazioni di bagnatura delle superfici per limitare il sollevamento delle polveri dalle operazioni di ripristino delle superfici e per il passaggio degli automezzi sulle strade sterrate. L'approvvigionamento idrico verrà effettuato mediante autobotte qualora. Non sono previsti prelievi diretti da acque superficiali o da pozzi per le attività di Dismissione.

Sulla base di quanto precedentemente esposto e delle tempistiche diriferimento, si ritiene che l'impatto sia di durata *temporanea*, che sia di estensione *locale* e di entità *non riconoscibile*.

Come per la fase di costruzione l'unica potenziale sorgente di impatto per gli acquiferi potrebbe essere lo sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti. Tuttavia, essendo le quantità di idrocarburi contenute, essendo gli acquiferi protetti da uno strato di terreno superficiale dello spessore medio di 6 m ed essendo la parte il terreno incidentato prontamente rimosso in caso di contaminazione, è corretto ritenere che non vi siano rischi specifici né per l'ambiente idrico superficiale né per l'ambiente idrico sotterraneo. Le operazioni che prevedono l'utilizzo di questo tipo di mezzi meccanici avranno una durata limitata e pertanto questo tipo di impatto per questa fase è da ritenersi *temporaneo*. Qualora dovesse verificarsi un incidente, i quantitativi di idrocarburi riversati produrrebbero un impatto limitato al punto di contatto (impatto *locale*) e di entità *non riconoscibile*.

Sulla base di quanto previsto dal piano di decommissioning non saranno lasciati in loco manufatti (es. platee di appoggio dei pannelli) in quanto è previsto il ripristino allo stato iniziale dei luoghi.

La seguente tabella riassume l'analisi per questa fase.

Significatività degli Impatti Potenziali – Ambiente Idrico – Fase di Dismissione

Impatto	Criteri di valutazione e relativo Punteggio	Magnitudo	Sensitività	Significatività
Ambiente Idrico: Fas	e di Dismissione			
Utilizzo di acqua per le necessità di cantiere	Durata: Temporaneo, 1 Estensione: Locale, 1 Entità: Non Riconoscibile, 1	Classe 3: Trascurabile	Media	Bassa
Contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti	Durata: Temporaneo, 1 Estensione: Locale, 1 Entità: Non Riconoscibile, 1	Classe 3: Trascurabile	Media	Bassa

Misure di Mitigazione

Per questa fase non si ravvede la necessità di misure di mitigazione. Nel caso di eventuali sversamenti saranno adottate le procedure previste dal sito che includono l'utilizzo di kit antinquinamento.

Conclusioni e Stima degli Impatti Residui

La seguente Tabella riassume la valutazione degli impatti potenziali sull'Ambiente Idrico presentata in questo capitolo. Gli impatti sono divisi per fase, e per ogni impatto viene indicata la significatività e le misure di mitigazione, oltre all'indicazione dell'impatto residuo. Come già riportato nell'analisi per singola fase, il progetto nel suo complesso (costruzione, esercizio e dismissione) non presenta particolare interferenze con l'Ambiente Idrico.

Impatto	Significatività	Misure di Mitigazione	Significatività Impatto residuo			
Ambiente Idrico: Fa	Ambiente Idrico: Fase di Costruzione					
Utilizzo di acqua per le necessità di cantiere	Bassa	Non si ravvisano misure di mitigazione.	Bassa			
Contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti	Bassa	Non si ravvisano misure di mitigazione.	Bassa			
Ambiente Idrico: Fase di Esercizio						
Utilizzo di acqua per la pulizia dei pannelli e conseguente irrigazione del manto erboso	Bassa	Approvvigionamento di acqua tramite autobotti	Basso			

Impermeabilizzazione aree superficiali	Media	realizzazione di fossi drenanti che sfruttano la naturale pendenza del terreno ed aumentano la capacità di filtrazione del sito	Bassa
Contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti, o dal serbatoio di alimentazione del generatore diesel di emergenza	Bassa	Previsione di un bacino di contenimento in pvc per il serbatoio del generatore diesel di emergenza	Bassa
Ambiente Idrico: Fa	se dismissione		
Utilizzo di acqua per le necessità di cantiere	Bassa	Non si ravvisano misure di mitigazione.	Bassa
Contaminazione in caso di sversamento accidentale degli idrocarburi contenuti nei serbatoi di alimentazione dei mezzi di campo in seguito ad incidenti	Bassa	Non si ravvisano misure di mitigazione.	Bassa

5.5.QUANTITA DELLE RISORSE IDRICHE UTILIZZATE

La quantità d'acqua utilizzabile nelle varie fasi di cantiere

I prelievi idrici nella fase di realizzazione dell'opera in progetto consistono in:

- acqua potabile per usi sanitari del personale presente in cantiere;
- acqua per lavaggio ruote dei camion, se necessario;
- acqua per irrigazione per le prime fasi di crescita delle specie arboree previste nel Piano colturale della fascia perimetrale del parco fotovoltaico.

Per quanto concerne i consumi di acqua di lavaggio, le quantità non risultano, ovviamente, stimabili, ma in ogni caso si tratterà di consumi limitati. Anche per quanto concerne i consumi di acqua potabile, questi saranno di entità limitata.

L'approvvigionamento idrico, necessario alle varie utenze di cantiere, avverrà tramite autobotte. Per i bagni chimici la gestione è affidata a società esterna, che si occupa di tutte le operazioni (pulizia, disinfezione, manutenzione ordinaria).

Per quanto riguarda l'utilizzo dell'acqua durante l'esercizio dell'impianto, la quantità neccessaria é quella relativa all'irrigazione delle produzioni agricole sono le seguenti:

a. Mandorletto

Premesso che il mandorlo sopporta bene la siccità, non ha bisogno d'irrigazione e si accontenta delle precipitazioni naturali.

Tuttavia, un periodo troppo prolungato di caldo e siccità può provocare disidratazione dei semi, le cosiddette 'mandorle monache'. In questo caso è bene **intervenire con qualche irrigazione** di emergenza. Una quantità media di acqua che deve avere un impianto di mandorli all'anno si aggira intorno ai 2000-3000 m³/ha. L'epoca di erogazione è compresa tra maggio ed agosto.

Considerato che nel caso del progetto proposto la superficie utilizzata a Mandorlo e di

ha. 05.70.00 x 3000 mc = 171.000 mc.

b. ALOE

La pianta di Aloe non desidera grandi quantità di acqua. Le irrigazioni, infatti, devono essere saltuarie e tra una e l'altra è opportuno lasciar passare alcuni giorni.

L'acqua ideale per innaffiare l'aloe è quella piovana o filtrata, perché l'acqua del rubinetto – spesso ricca di cloro – potrebbe rallentare la crescita. In linea generale, durante l'inverno sarà sufficiente innaffiare una volta al mese nel periodo primaverile e autunnale, mentre in estate sarà bene fornire l'acqua una volta a settimana.

Non si quantifica l'entità dell'acqua in quanto e molto irrisori quella neccessaria.

c. LAVANDA

Anche in questoi caso le quantità d'acqua neccessarie per l'irrigazione della pianta sono irrisorie e dificilmente calcolabili. **Può essere necessaria un'irrigazione di soccorso solo il primo anno in caso di fortissima siccità**.

d. ASPARAGI

Premesso che Il livello di umidità del terreno è uno di quei fattori che ha un impatto diretto sulla qualità e quantità del prodotto.

Infatti, per ottenere quanto sopra si drovranno seguire le seguenti indicazioni:

- Frequenza di irrigazione: all'inizio e alla fine del ciclo produttivo, sarà sufficiente una volta alla settimana. Nel tempo di sviluppo del germoglio, aumenta a due settimanali.
- > Momento ottimale della giornata per l'irrigazione: al mattino, preferibilmente prima che il sole diventi molto caldo.
- > Identificare l'acqua in eccesso: germogli morbidi, marciume radicale.
- > **Identificare la mancanza d'acqua:** meno germogli, fogliame con segni di siccità e decomposto.

In linea generale si puo affermare la quantita di acqua neccessaria per irrigare un ha di aparagi e di 250 mc/ ha

Essendo la superficie occupata di ha 01.54.77 si avra una quantità d'arcqua totale di 3.869 mc.

Si può quindi affermare che la quantità d'acqua neccessaria per l'irrigazione delle culture agronomiche e di circa mc. 174.869 mc.

Quantità alquanto irrisorie per per creare impatti con il sottosuolo

Da considerare infine come descitto nelle varie relazioni allegate al progetto che l'acqua viene presa dalle condotte di proprietà del consorzio di Bonifica della Nurra.

Tecniche e modi di irrigazione sono riportate nella relazione agronomica.

5.6.TERRITORIO E PATRIMONIO AGROALIMENTARE

Il sito su cui insiste il presente progetto con le sue caratteristiche qualitative e dimensionali risulta ottimale e non insistendo tra l'altro né su beni, né su aree vincolate, inoltre l'impianto, una volta realizzato, sarà visibile solo da alcuni punti sensibili non dando comunque luogo a considerevoli alterazioni dell'assetto paesaggistico. Il sito è attualmente sfruttato come seminativo e pascolo naturale in grado, quindi, di coesistere con la presenza dell'impianto agro-fotovoltaico e con le coltivazioni previste.Il buon collegamento infrastrutturale, contribuisce a rendere questa zona estremamente adatta all'installazione di impianti fotovoltaici non rendendosi necessarie modifiche alla viabilità esistente. La modesta distanza del sito prescelto per la costruzione dell'impianto agrofotovoltaico dalla rete elettrica nazionale è stata una delle motivazioni determinanti per la sua scelta localizzativa.

Risultati dell'analisi costi e benefici

L'analisi costi-benefici, riportata in premessa, mostra che la convenienza alla realizzazione dell'impianto agro- fotovoltaico risulta evidente non solo in relazione ai flussi finanziari, ma anche sulla base del confronto con la situazione preesistente ove il miglioramento delle condizioni ambientali e socioeconomiche indotte dal progetto, risultano come un beneficio e, allo stesso tempo, un mancato costo sociale.

L'installazione dell'impianto fotovoltaico porterà ad una redditività difficilmente riscontrabile in qualsiasi altra forma di investimento. I benefici economici rispetto all'attuale contesto territoriale derivano dall'incremento nella produzione di energia per copertura della domanda crescente e in termini di riduzione delle importazioni energetiche per sostituzione con fonti locali e rinnovabili; inoltre lo sfruttamento agricolo diversificato e con colture ricercate sul mercato e intensivo neaumenterà la produttività sia a breve che a lungo termine.

Un utile indicatore per definire il risparmio di combustibile derivante dall'utilizzo di fonti energetiche rinnovabili è il fattore di conversione dell'energia elettrica in energia primaria [TEP/MWh].

Questo coefficiente individua le TEP (Tonnellate Equivalenti di Petrolio) necessarie per la realizzazione di 1 MWh di energia, ovvero le TEP risparmiate con l'adozione di tecnologie fotovoltaiche per la produzione di energia elettrica.

Risparmio di combustibile

Risparmio di combustibile in	TEP
Fattore di conversione dell'energia elettrica in energia primaria [TEP/MWh]	0.187
TEP risparmiate in un anno	18 325.82
TEP risparmiate in 20 anni	336 808.53

Fonte dati: Delibera EEN 3/08, art. 2

Inoltre, l'impianto fotovoltaico consente la riduzione di emissioni in atmosfera delle sostanze che hanno effetto inquinante e di quelle che contribuiscono all'effetto serra.

Emissioni evitate in atmosfera

Emissioni evitate in atmosfera di	CO ₂	SO ₂	NO _x	Polveri
Emissioni specifiche in atmosfera [g/kWh]	474.0	0.373	0.427	0.014
Emissioni evitate in un anno [kg]	46 451 541.14	36 553.64	41 845.59	1 371.99
Emissioni evitate in 20 anni [kg]	853 728 576.38	671 815.95	769 076.16	25 215.61

Fonte dati: Rapporto ambientale ENEL 2013

Le ricadute immediate sull'economia locale riguardano gli occupati specializzati e non, che saranno impiegati per la fase costruttiva dell'impianto e le successive fasi di manutenzione e delle opere accessorie.

La realizzazione del progetto proposto può inoltre innescare un processo virtuoso di emulazione imprenditoriale ed orientamento degli investimenti verso un settore produttivo che ha grandi prospettive, con nuove opportunità per le banche locali e i risparmiatori e ricadute positive per l'occupazione.

Introduzione

Il presente Paragrafo analizza i potenziali impatti del Progetto sulla componente Territorio e Patrimonio agroalimentare. Gli impatti sono presi in esame considerando le diverse fasi di Progetto: Costruzione, Esercizio e Dismissione.

Il box riportato di seguito riassume le principali fonti di Impatto, Risorse e Recettori Potenzialmente Impattati e il contesto in cui si inserisce l'opera.

Principali Fonti di Impatto, Risorse e Recettori Potenzialmente Impattati – Territorio e Patrimonio agroalimentare

Fonte di Impatto

Sottrazione di suolo per l'approntamento dell'area e per la disposizione progressiva dei moduli fotovoltaici;

sottrazione di suolo agricolo.

Risorse e Ricettori Potenzialmente Impattati

Territorio e Patrimonio agroalimentare.

Fattori del Contesto (Ante Operam) inerenti la Valutazione

L'area di Progetto non è in una zona di particolare pregio dal punto di vista agricolo; L'area di progetto è sostanzialmente occupata da insediamenti agricoli ed aree sensibilmente antropizzate.

Caratteristiche del Progetto influenzanti la Valutazione

Realizzazione di uno strato erboso perenne nelle porzioni di terreno sottostante i pannelli, in modo da rendere inefficace l'effetto di erosione della pioggia battente e del ruscellamento superficiale;

Realizzazione del piano colturale tra i moduli fotovoltaici sull'area di Progetto, della presenza della fascia perimetrale coltivata a mandorleto e del campo destinato alla coltivazione del mandorleto.

Le principali fonti d'impatto sulla matrice in oggetto connesse al Progetto sono riassunte nel seguente box e suddivise per ciascuna fase.

Principali Impatti potenziali –Suolo e Sottosuolo

Costruzione	Esercizio	Dismissione
Sottrazione del suolo da parte dei mezzi atti all'approntamento dell'area e dalla progressiva disposizione dei moduli fotovoltaici.	 Impatto dovuto all'occupazione del suolo da parte dei moduli fotovoltaici durante il periodo di vita dell'impianto. 	 Occupazione del suolo da parte dei mezzi atti ai lavori di ripristino dell'area e dalla progressiva rimozione dei moduli fotovoltaici.
Sottrazione di suolo destinato all'agricoltura	• Sottrazione di suolo destinato all'agricoltura	 Sottrazione di suolo destinato all'agricoltura

Per la matrice territorio e patrimonio agroalimentare è importante sottolineare, come già ricordato, che il progetto in alcun modo interferirà con il progetto di bonifica previsto, sia nella fase di cantiere sia nella fase di esercizio. Il progetto essendo "appoggiato" sul terreno non interferirà direttamente con il territorio.

I lavori di preparazione dell'area non avranno alcuna influenza sulla conformazione morfologica dei luoghi.

Si sottolinea che anche durante la messa in opera delle fasce vegetali perimetrali a mitigazione dell'impatto peasaggistico dell'opera non si avranno interferenze con il terreno sottostante, in quanto tutte le piante saranno posizionate su terreno vegetale riportato in aiuole fuori terra. Inoltre verranno piantati esemplari a basso fusto.

Fase di Costruzione

Stima degli Impatti potenziali

Si prevede che gli impatti potenziali sulla componente territorio derivanti dalle attività di costruzione siano attribuibili all'utilizzo dei mezzi d'opera quali gru di cantiere e muletti, gruppo, furgoni e camion per il trasporto. I potenziali impatti riscontrabili legati a questa fase sono introdotti di seguito e successivamente descritti con maggiore dettaglio:

- sottrazione del suolo da parte dei mezzi atti all'approntamento dell'area e dalla progressiva disposizione dei moduli fotovoltaici (impatto diretto);
- sottrazione di suolo destinato alla coltivazione agricola (impatto diretto).

Per quanto riguarda le potenziali interferenze del Progetto con le attività previste, sono state eliminate adottando i seguenti accorgimenti:

durante la fase di scotico superficiale e di posa dei moduli fotovoltaici saranno necessariamente indotte delle modifiche sull'utilizzo del suolo, circoscritto alle aree interessate dalle operazioni di cantiere. L'occupazione di suolo, date le dimensioni limitate del cantiere, non induce significative limitazioni o perdite d'uso dello stesso. Inoltre, il criterio di posizionamento delle apparecchiature sarà condotto con il fine di ottimizzare al meglio gli spazi, nel rispetto di tutti i requisiti di sicurezza. Si ritiene che questo tipo d'impatto sia di estensione *locale*. Durante questa fase, l'area interessata dal progetto sarà delimitata, recintata, quindi progressivamente interessata dalla disposizione dei moduli fotovoltaici che, successivamente, durerà per tutta la vita dell'impianto. Limitatamente al perdurare della fase di costruzione l'impatto può ritenersi per natura di *breve durata* e *riconoscibile* per la natura delle opere che verranno progressivamente eseguite.

Durante la fase di costruzione una potenziale sorgente di impatto per la matrice potrebbe essere la sottrazione di suolo destinato all'agricoltura. Tuttavia si tratta di seminativi in aree non irrigue. Le operazioni durante la fase di costruzioni avranno una durata limitata e pertanto la durata di questo tipo di impatto è da ritenersi *temporanea*. L'impatto è limitato al punto di contatto (impatto *locale*) e di entità *riconoscibile*.

Significatività degli Impatti Potenziali – Territorio e Patrimonio agroalimentare – Fase di Costruzione

Impatto	Criteri di valutazione e relativo Punteggio	Magnitudo	Sensitività	Significatività
Territorio e Patrin	monio agroalimentare	e : Fase di Co	struzione	
Sottrazione del suolo da parte dei mezzi atti all'approntamento dell'area e dalla progressiva disposizione dei moduli fotovoltaici.	Durata: Breve termine, 2 Estensione: Locale, 1 Entità: Riconoscibile, 2	Classe 6: Bassa	Bassa	Bassa
Sottrazione di suolo destinato all'agricoltura	Durata: Temporaneo, 1 Estensione: Locale, 1 Entità: Riconoscibile, 1	Classe 3: Trascurabile	Bassa	Bassa

Misure di Mitigazione

Tra le misure di mitigazione per gli impatti potenziali legati a questa fase si ravvisano:

Ottimizzazione degli spazi al fine di ridurre il più possibile la sottrazione di suolo.

Fase di Esercizio

Stima degli Impatti potenziali

Gli impatti potenziali sulla componente Territorio derivante dalle attività di esercizio sono riconducibili a:

- Sottrazione del suolo da parte dei mezzi atti all'approntamento dell'area e dalla progressiva disposizione dei moduli fotovoltaici;
- Sottrazione di suolo destinato all'agricoltura.

Il criterio di posizionamento delle apparecchiature sarà condotto con il fine di ottimizzare al meglio gli spazi disponibili, nel rispetto di tutti i requisiti di sicurezza. Il territorio lasciato libero verrà inerbito e coltivato secondo il piano colturale allegato al progetto. Questo impatto si ritiene di estensione *locale* in quanto limitato alla sola area di progetto. L'area di progetto sarà occupata da parte dei moduli fotovoltaici per tutta la durata della fase di esercizio, conferendo a questo impatto una durata di *lungo termine* (durata media della vita dei moduli: 30 anni). Infine, per la natura delle opere che verranno progressivamente eseguite, si ritiene che l'impatto sarà di entità *riconoscibile*.

La sottrazione di suolo destinato all'agricoltura pertanto anch'esso risulterà un impatto a *lungo termine* (durata media della vita dei moduli: 30 anni), con estensione *locale* e di entità *riconoscibile*.

Significatività degli Impatti Potenziali – Territorio e Patrimonio agroalimentare – Fase di Esercizio

Impatto	Criteri di valutazione e relativo Punteggio	Magnitudo	Sensitività	Significatività
Territorio e Patrir	monio agroalimentare	e : Fase di Ese	ercizio	
Sottrazione del suolo da parte dei mezzi atti all'approntamento dell'area e dalla progressiva disposizione dei moduli fotovoltaici.	Durata: Lungo Termine, 3 Estensione: Locale, 1 Entità: Riconoscibile, 2	Classe 6: Bassa	Media	Media
Sottrazione di suolo destinato all'agricoltura	Durata: Lungo Termine, 3 Estensione: Locale, 1 Entità: Riconoscibile, 2	Classe 3: Trascurabile	Media	Bassa

Misure di Mitigazione

Per questa fase del progetto, per la matrice ambientale oggetto di analisi si ravvisano le seguenti misure di mitigazione:

realizzazione di uno strato erboso perenne nelle porzioni di terreno sottostante i pannelli;

realizzazione di un piano colturale tra le fila dei pannelli, lungo il perimetro dell'impianto e realizzazione di un mandorleto affianco all'impianto.

Fase di Dismissione

Stima degli Impatti potenziali

Si prevede che gli impatti potenziali sul Territorio derivante dalle attività di dismissione siano assimilabili a quelli previsti nella fase di costruzione. E quindi:

sottrazione del suolo da parte dei mezzi atti all'approntamento dell'area e dalla progressiva disposizione dei moduli fotovoltaici (impatto diretto);

sottrazione di suolo destinato alla coltivazione agricola (impatto diretto).

La fase di ripristino del terreno superficiale e di dismissione dei moduli fotovoltaici darà luogo sempre ad una modificazione dell'utilizzo del suolo sull'area di progetto. L'occupazione di suolo, date le dimensioni limitate del cantiere, non induce significative limitazioni o perdite d'uso del suolo stesso. In fase di dismissione dell'impianto saranno rimosse tutte le strutture, questo tipo d'impatto si ritiene di estensione *locale*. Limitatamente al perdurare della fase di dismissione l'impatto può ritenersi per natura *temporaneo*. Infine, per la natura delle opere che verranno progressivamente eseguite, si ritiene che l'impatto sarà di entità *riconoscibile*.

Per quanto riguarda le aree di intervento si evidenzia che in fase di dismissione l'area sarà oggetto di modificazioni geomorfologiche di bassa entità dovute alle opere di sistemazione del terreno superficiale al fine di ripristinare il livello superficiale iniziale del piano campagna e restituire il terreno alla coltivazione. In considerazione di quanto sopra riportato, si ritiene che le modifiche dello stato geomorfologico in seguito ai lavori di ripristino sia di durata *temporanea*, estensione *locale* e di entità *non riconoscibile*.

Significatività degli Impatti Potenziali – Territorio e Patrimonio agroalimentare – Fase di Dismissione

Impatto	Criteri di valutazione e relativo Punteggio	Magnitudo	Sensitività	Significatività
Territorio e Patrir	monio agroalimentare	e : Fase Dism	issione	
Sottrazione del suolo da parte dei mezzi atti all'approntamento dell'area e dalla progressiva disposizione dei moduli fotovoltaici.	Durata: Breve termine, 2 Estensione: Locale, 1 Entità: Riconoscibile, 2	Classe 6: Bassa	Bassa	Bassa
Sottrazione di suolo destinato all'agricoltura	Durata: Temporaneo, 1 Estensione: Locale, 1 Entità: Riconoscibile, 1	Classe 3: Trascurabile	Bassa	Bassa

Misure di Mitigazione

Tra le misure di mitigazione per gli impatti potenziali legati a questa fase si ravvisano:

Ottimizzazione degli spazi al fine di ridurre il più possibile la sottrazione di suolo

Conclusioni e Stima degli Impatti Residui

La seguente Tabella riassume la valutazione degli impatti potenziali sulla componente Territorio e Patrimonio agroalimentare presentata in questo capitolo. Gli impatti sono divisi per fase, e per ogni impatto viene indicata la significatività e le misure di mitigazione, oltre all'indicazione dell'impatto residuo. Come già riportato nell'analisi per singola fase, il progetto nel suo complesso (costruzione, esercizio e dismissione) non presenta particolare interferenze con il Territorio.

Impatto	Significatività	Misure di Mitigazione	Significatività Impatto residuo
Territorio e Patrimo	are: Fase di Costruzione		

Sottrazione del suolo da parte dei mezzi atti all'approntamento dell'area e dalla progressiva disposizione dei moduli fotovoltaici.	Bassa	Ottimizzazione degli spazi al fine di ridurre il più possibile la sottrazione di suolo.	Basso
Sottrazione di suolo destinato all'agricoltura	Bassa	Ottimizzazione degli spazi al fine di ridurre il più possibile la sottrazione di suolo.	Bassa
Territorio e Patrimo	nio agroaliment	are: Fase di Esercizio	
Sottrazione del suolo da parte dei mezzi atti all'approntamento dell'area e dalla progressiva disposizione dei moduli fotovoltaici.	Media	realizzazione di uno strato erboso perenne nelle porzioni di terreno sottostante i pannelli;	Bassa
Sottrazione di suolo destinato all'agricoltura	Bassa	realizzazione di un piano colturale tra le fila dei pannelli, lungo il perimetro dell'impianto e realizzazione di un mandorleto affianco all'impianto.	Bassa
Territorio e Patrimo	nio agroalimento	are: Fase dismissione	
Sottrazione del suolo da parte dei mezzi atti all'approntamento dell'area e dalla progressiva disposizione dei moduli fotovoltaici.	Bassa	Ottimizzazione degli spazi al fine di ridurre il più possibile la sottrazione di suolo.	Bassa
Sottrazione di suolo destinato all'agricoltura	Bassa	realizzazione di un piano colturale tra le fila dei pannelli, lungo il perimetro dell'impianto e realizzazione di un mandorleto affianco all'impianto.	Bassa

5.7.BIODIVERSITA'

Introduzione

Il presente Paragrafo analizza i potenziali impatti del Progetto sulla Biodiversità. L'analisi prende in esame gli impatti legati alle diverse fasi di Progetto, ovvero di costruzione, esercizio e dismissione.

Come riportato nei paragrafi precedenti, il perimetro del sito di progetto non interferisce con il sistema delle aree protette. La seguente tabella riassume le principali fonti di Impatto, Risorse e Recettori Potenzialmente Impattati per questa matrice ambientale.

Fonte di Impatto

- Aumento del disturbo antropico derivanti dalle attività di costruzione e dismissione, con particolare riferimento al movimento mezzi;
- Rischi di uccisione di animali selvatici derivanti dalle attività di costruzione e dismissione, con particolare riferimento al movimento mezzi;
- Rischio del probabile fenomeno "abbagliamento" e "confusione biologica" sull'avifauna acquatica migratoria derivante esclusivamente dalla fase di esercizio;
- Variazione del campo termico nella zona di installazione dei moduli durante la fase di esercizio.

Risorse e Ricettori Potenzialmente Impattati

• Fauna vertebrata terrestre.

Fattori del Contesto (Ante Operam) inerenti la Valutazione

- Sul sito l'assetto vegetazionale risulta essere nullo in quanto oggetto di trasformazione dei mezzi agricoli per le coltivazioni di pascoli (aratura , semina, trebiatura) eviene per cui impedita una formazione continua ed omogenea della vegetazione;
- Le periodiche lavorazioni del terreno, rendono l'area scarsamente idonea all'instaurarsi di comunità faunistiche di rilievo ad eccezione di sporadici individui di piccoli roditori. Durante il sopralluogo non sono state riscontrate tracce di fauna terrestre ad eccezione di un individuo appartenente alla specie Testudo Hermanni (Testuggine comune);
- Per quanto concerne l'avifauna, il disturbo generato dalle attività agro silvo pastorali e l'assenza di associazioni vegetazionali consolidate e strutturate, rendono l'area scarsamente idonea alla nidificazione delle specie. Tuttavia vista la presenza di una macchia sporadica e non strutturata e la possibile presenza di piccoli roditori, l'area potrebbe essere interessata dall'attività predatoria dei rapaci.

Caratteristiche del Progetto influenzanti la Valutazione

- Ottimizzazione del numero dei mezzi di cantiere previsti per le fasi di costruzione e dismissione;
- Rispetto dei limiti di velocità dei mezzi di trasporto previsti per la fase di costruzione e dismissione;
- Utilizzo della viabilità esistente per minimizzare la sottrazione di habitat e disturbo antropico;
- Realizzazione di opere a verde lungo la fascia perimetrale arborea dell'impianto fotovoltaico;
- Utilizzo di pannelli di ultima generazione a bassissimo indice di riflettanza.

Principali Impatti potenziali – Biodiversità (Vegetazione, Flora, Fauna ed Ecosistemi)

Costruzione	Esercizio	Dismissione
Aumento del disturbo antropico da parte dei mezzi di cantiere. Rischio di uccisione di animali selvatici da parte dei mezzi di cantiere.	"abbagliamento" e "confusione biologica" sull'avifauna acquatica migratoria.	Rischio di uccisione di animali selvatici da parte dei mezzi di

Valutazione della Sensitività

Dal sopralluogo effetuato in loco il sito di intervento ha evidenziato una copertura vegetativa pressochè nulla composta da erbe ed arbusti con alcuni elementi tipici della macchia mediterranea che, tuttavia, considerata le attivitò agricole che si svolgono annulmente, si è sviluppata in maniera disomogenea.

Per quanto emerso dall'analisi di questa matrice ambientale, si ritiene che la sensitività della componente sia complessivamente classificata come *bassa*.

Fase di Costruzione

Stima degli Impatti potenziali

In virtu di quanto riportato nell'analisi preliminare in introduzione al presente paragrafo, si ritiene che i potenziali impatti legati alle attività di costruzione siano i seguenti:

aumento del disturbo antropico da parte dei mezzi di cantiere (impatto diretto);

rischi di uccisione di animali selvatici da parte dei mezzi di cantiere(impatto diretto).

L'aumento del disturbo antropico legato alle operazioni di cantiere interesserà aree che presentano condizioni di antropizzazione già elevate. L'incidenza negativa di maggior rilievo consiste nel rumore e nella presenza dei mezzi meccanici che saranno impiegati per l'approntamento delle aree di Progetto, per il trasporto in sito dei moduli fotovoltaici e per l'installazione degli stessi. Come anticipato al paragrafo precedente le specie vegetali e quelle animali interessate sono complessivamente di scarso interesse conservazionistico. Considerando la durata di questa fase del Progetto, l'area interessata e la tipologia delle attività previste, si ritiene che questo tipo di impatto sia di *breve termine*, estensione *locale* ed entità *non riconoscibile*.

L'uccisione di fauna selvatica durante la fase di cantiere potrebbe verificarsi principalmente a causa della circolazione di mezzi di trasporto sulle vie di accesso all'area di Progetto. Alcuni accorgimenti progettuali, quali la recinzione dell'area di cantiere ed il rispetto dei limiti di velocità da parte dei mezzi utilizzati, saranno volti a ridurre la possibilità di incidenza anche di questo impatto. Considerando la durata delle

attività di cantiere, l'area interessata e la tipologia delle attività previste, tale impatto sarà *a breve termine*, *locale* e non *riconoscibile*.

Significatività degli Impatti Potenziali – Biodiversità – Fase di Costruzione

Impatto	Criteri di valutazione e relativo Punteggio	Magnitudo	Sensitività	Significatività
Biodiversità: Fase Co.	struzione			
Aumento del disturbo antropico da parte dei mezzi di cantiere	Durata: Breve Termine, 2 Estensione: Locale, 1 Entità: Non Riconoscibile, 1	Classe 4: Trascurabile	Bassa	Bassa
Rischi di uccisione di animali selvatici da parte dei mezzi di cantiere	Durata: Breve Termine, 2 Estensione: Locale, 1 Entità: Non Riconoscibile, 1	Classe 4: Trascurabile	Bassa	Bassa

Misure di Mitigazione

L'impianto fotovoltaico in oggetto sarà realizzato seguendo scelte progettuali finalizzate ad una riduzione degli impatti potenziali sulla biodiversità, ovvero:

- il sito, sia in fase di cantiere che di esercizio, sarà raggiungibile tramite viabilità già esistente; pertanto, verranno minimizzati l'ulteriore sottrazione di habitat ed il disturbo antropico;
- il sito risulta vicino ad una rete elettrica interna, scelta che comporta una riduzione delle opere necessarie, minimizzando l'ulteriore sottrazione di habitat ed il disturbo antropico;
- non sono previsti scavi; ma palificazioni come struttura dei moduli fotovoltaici.

Ulteriori misure di mitigazione specifiche, che verranno implementate per ridurre l'impatto generato in fase di cantiere, sono le seguenti:

- ottimizzazione del numero dei mezzi di cantiere previsti per la fase di costruzione;
- sensibilizzazione degli appaltatori al rispetto dei limiti di velocità dei mezzi di trasporto durante la fase di costruzione.

Fase di Esercizio

Si ritiene che durante la fase di esercizio gli impatti potenziali siano:

 rischio di "abbagliamento" e "confusione biologica" sull'avifauna acquatica migratoria (impatto diretto);

- variazione del campo termico nella zona di installazione dei moduli durante la fase di esercizio (impatto diretto);
- degrado e perdita di habitat di interesse faunistico (impatto diretto).

Il fenomeno "confusione biologica" è dovuto all'aspetto generale della superficie dei pannelli di una centrale fotovoltaica, che nel complesso risulta simile a quello di una superficie lacustre, con tonalità di colore variabili dall'azzurro scuro al blu intenso, anche in funzione dell'albedo della volta celeste.

Dall'alto, pertanto, le aree pannellate potrebbero essere scambiate dall'avifauna per specchi lacustri.

In particolare, i singoli isolati insediamenti non sarebbero capaci di determinare incidenza sulle rotte migratorie, mentre vaste aree o intere porzioni di territorio pannellato potrebbero rappresentare un ingannevole appetibile attrattiva per tali specie, deviarne le rotte e causare morie di individui esausti dopo una lunga fase migratoria, incapaci di riprendere il volo organizzato una volta scesi a terra.

Per quanto riguarda il possibile fenomeno di "abbagliamento", è noto che gli impianti che utilizzano l'energia solare come fonte energetica presentano possibili problemi di riflessione ed abbagliamento, determinati dalla riflessione della quota parte di energia raggiante solare non assorbita dai pannelli. Si può tuttavia affermare che tale fenomeno è stato di una certa rilevanza negli anni passati, soprattutto per l'uso dei cosiddetti "campi a specchio" o per l'uso di vetri e materiali di accoppiamento a basso potere di assorbimento. Esso, inoltre, è stato registrato esclusivamente per le superfici fotovoltaiche "a specchio" montate sulle architetture verticali degli edifici. Vista la tipologia dell'impianto a inseguimento, si considera poco probabile un fenomeno di abbagliamento.

Inoltre, i nuovi sviluppi tecnologici per la produzione delle celle fotovoltaiche fanno sì che aumentando il coefficiente di efficienza delle stesse diminuisca ulteriormente la quantità di luce riflessa (riflettanza superficiale caratteristica del pannello), e conseguentemente la probabilità di abbagliamento. Con i dati in possesso, considerata la durata del progetto e l'area interessata, si ritiene che questo tipo di impatto sia di *lungo termine, locale* e *non riconoscibile*.

Per quanto concerne l'impatto potenziale dovuto alla variazione del campo termico nella zona di installazione dei moduli durante la fase di esercizio, si può affermare che ogni pannello fotovoltaico genera nel suo intorno un campo termico che può arrivare anche a temperature dell'ordine di 55 °C; questo comporta la variazione del microclima sottostante i pannelli ed il riscaldamento dell'aria durante le ore di massima insolazione dei periodi pià caldi dell'anno. Vista la natura intermittente e temporanea del verificarsi di questo impatto potenziale si ritiene che l'impatto stesso sia *temporaneo*, *locale* e di entità *non riconoscibile*.

Il degrado e perdita di habitat di interesse faunistico è un impatto potenziale legato principalmente alla progressiva occupazione delle aree da parte dei moduli fotovoltaici e dalla realizzazione delle vie di accesso. Come emerge dalla baseline, sul sito di intervento non si identificano habitat di rilevante interesse faunistico, ma solo terreni caratterizzati da terreni lavovarti annualmente, interessati per cui da specie faunistiche di scarso valore conservazionistico.

Come riportato nella descrizione del Progetto, l'accessibilità al sito sarà assicurata solo dalla viabilità già esistente, riducendo ulteriormente la potenziale sottrazione di habitat naturale indotta dal Progetto. Data la durata di questa fase del Progetto, l'area interessata e la tipologia di attività previste, si ritiene che questo l'impatto sia di *breve termine*, *locale* e non *riconoscibile*.

Impatto	Criteri di valutazione e relativo Punteggio	Magnitudo	Sensitività	Significatività			
Biodiversità: Fase Ese	Biodiversità: Fase Esercizio						
rischio di "abbagliamento" e "confusione biologica" sull'avifauna acquatica migratoria	Durata: Lungo Termine, 2 Estensione: Locale, 1 Entità: Non Riconoscibile, 1	Classe 4: Trascurabile	Bassa	Media			
variazione del campo termico nella zona di installazione dei moduli durante la fase di esercizio	Daratar remperance, E	Classe 3: Trascurabile	Media	Bassa			
Degrado e perdita di habitat di interesse faunistico	Durata: Breve Termine, 2 Estensione: Locale, 1 Entità: Non Riconoscibile, 1	Classe 4: Trascurabile	Bassa	Bassa			

Misure di Mitigazione

Per questa fase si ravvisano le seguenti misure di mitigazione:

- l'utilizzo di pannelli di ultima generazione a basso indice di riflettanza;
- previsione di una sufficiente circolazione d'aria al di sotto dei pannelli per semplice moto convettivo o per aerazione naturale;
- realizzazione di ponti ecologici lungo la recinzione per permettere il passaggio della fauna.

Fase di Dismissione Stima degli Impatti potenziali

Si ritiene che i potenziali impatti legati alle attività di dismissione siano gli stessi legati alle attività di accantieramento previste per la fase di costruzione, ad eccezione del rischio di sottrazione di habitat d'interesse faunistico. I potenziali impatti sono pertanto riconducibili a:

- aumento del disturbo antropico da parte dei mezzi di cantiere;
- rischio di uccisione di animali selvatici da parte dei mezzi di cantiere.

L'incidenza negativa di maggior rilievo, anche per la fase di dismissione, consiste nel rumore e nella presenza dei mezzi meccanici che saranno impiegati per la restituzione delle aree di Progetto e per il trasporto dei moduli fotovoltaici a fine vita. Come anticipato al paragrafo precedente le specie interessate sono complessivamente di scarso valore conservazionistico. Considerata la durata di questa fase del Progetto, l'area interessata e la tipologia di attività previste, si ritiene che questo tipo di impatto sia *temporaneo, locale* e *non riconoscibile*.

L'uccisione di fauna selvatica durante la fase di dismissione potrebbe verificarsi principalmente a causa della circolazione di mezzi di trasporto sulle vie di accesso all'area di Progetto. Alcuni accorgimenti

progettuali, quali la recinzione dell'area di cantiere ed il rispetto dei limiti di velocità da parte dei mezzi utilizzati, saranno volti a ridurre la possibilità di incidenza di questo impatto. Considerando la durata delle attività di dismissione del Progetto, l'area interessata e la tipologia delle attività previste, si ritiene che tale di impatto sia *temporaneo*, *locale* e non *riconoscibile*.

Significatività degli Impatti Potenziali – Biodiversità – Fase di Dismissione

Impatto	Criteri di valutazione e relativo Punteggio	Magnitudo	Sensitività	Significatività
Biodiversità: Fase Dis	smissione			
Aumento del disturbo antropico da parte dei mezzi di cantiere	Durata: Temporaneo, 2 Estensione: Locale, 1 Entità: Non Riconoscibile, 1	Classe 4: Trascurabile	Bassa	Media
Rischi di uccisione di animali selvatici da parte dei mezzi di cantiere	Durata: Temporaneo, 2 Estensione: Locale, 1 Entità: Non Riconoscibile, 1	Classe 4: Trascurabile	Bassa	Bassa

Misure di Mitigazione

Le misure di mitigazione individuate per la fase di dismissione sono le stesse riportate per la fase di costruzione, ovvero:

ottimizzazione del numero dei mezzi di cantiere previsti per la fase di dismissione;

sensibilizzazione degli appaltatori al rispetto dei limiti di velocità dei mezzi di trasporto previsti per la fase di dismissione.

Conclusioni e Stima degli Impatti Residui

La seguente Tabella riassume la valutazione degli impatti potenziali sulla Biodiversità presentata in questo capitolo. Gli impatti sono divisi per fase, e per ogni impatto viene indicata la significatività e le misure di mitigazione, oltre all'indicazione dell'impatto residuo. Come già riportato nell'analisi per singola fase, il progetto nel suo complesso (costruzione, esercizio e dismissione) non presenta particolare interferenze con la Biodiversità.

Impatto	Significatività	Misure di Mitigazione	Significatività Impatto residuo
Biodiversità: Fase di C	ostruzione		
Aumento del disturbo antropico da parte dei mezzi di cantiere		ottimizzazione del numero dei mezzi di cantiere previsti per la fase di costruzione;	Bassa

Rischi di uccisione di animali selvatici da parte dei mezzi di cantiere	Bassa	sensibilizzazione degli appaltatori al rispetto dei limiti di velocità dei mezzi di trasporto durante la fase di costruzione.	Bassa
Biodiversità: Fase di Es	sercizio		
rischio di "abbagliamento" e "confusione biologica" sull'avifauna acquatica migratoria	Bassa	l'utilizzo di pannelli di ultima generazione a basso indice di riflettanza	Bassa
variazione del campo termico nella zona di installazione dei moduli durante la fase di esercizio	Bassa	previsione di una sufficiente circolazione d'aria al di sotto dei pannelli per semplice moto convettivo o per aerazione naturale	Bassa
Degrado e perdita di habitat di interesse faunistico	Bassa	realizzazione di ponti ecologici lungo la recinzione per permettere il passaggio della fauna	Bassa
Biodiversità: Fase dism	nissione		
Aumento del disturbo antropico da parte dei mezzi di cantiere	Bassa	ottimizzazione del numero dei mezzi di cantiere previsti per la fase di costruzione;	Bassa
Rischi di uccisione di animali selvatici da parte dei mezzi di cantiere	Bassa	sensibilizzazione degli appaltatori al rispetto dei limiti di velocità dei mezzi di trasporto durante la fase di costruzione.	Bassa

5.8.PAESAGGIO

Introduzione

Il presente Paragrafo riporta i risultati della valutazione degli impatti del Progetto sulla componente paesaggio. Sulla base delle indicazioni proposte dalle "Linee guida per i paesaggi della Sardegna", l'analisi è stata condotta a scale dimensionali e concettuali diverse, ovvero:

- a livello di sito, ovvero di impianto;
- a livello di contesto, ovvero di area che ospita il sito dell'impianto e le sue pertinenze, nelle quali si manifestano interrelazioni significative dell'attività produttiva con il contesto geomorfologico, idrogeologico, ecologico, paesistico-percettivo, economico, sociale e culturale;
- a livello di paesaggio, ovvero di unità paesistica comprendente uno o più siti e contesti produttivi, caratterizzata da un sistema relativamente coerente di strutture segniche e percettive, da un'immagine identitaria riconoscibile, anche in relazione all'articolazione regionale degli ambiti di paesaggio.

La seguente cartella riassume le principali fonti d'impatto sul paesaggio connesse al Progetto ed evidenzia le risorse potenzialmente impattate ed i ricettori sensibili.

Principali Fonti di Impatto, Risorse e Recettori Potenzialmente Impattati – Paesaggio

Fonte di Impatto

- Presenza fisica del cantiere, dei macchinari e dei cumuli di materiali di cantiere, impatto luminoso, taglio di vegetazione;
- Presenza dei pannelli fotovoltaici e delle strutture connesse.

Risorse e Ricettori Potenzialmente Impattati

- Viste panoramiche;
- Elementi del paesaggio che hanno valore simbolico per la comunità locale;
- Turisti e abitanti.

Fattori del Contesto (Ante Operam) inerenti la Valutazione

• Valori storici e culturali nelle vicinanze dell'Area di Studio.

Caratteristiche del Progetto influenzanti la Valutazione

• Volumi e posizione degli elementi.

Nella tabella che segue sono riportati i principali impatti potenziali del Progetto sul paesaggio, durante le fasi principali del Progetto.

Principali Impatti Potenziali - Paesaggio

Costruzione	Esercizio	Dismissione
Impatti dovuti ai cambiamenti fisici degli elementi che costituiscono il paesaggio; Impatti visivi dovuti alla presenza del cantiere, dei macchinari e dei cumuli di materiali; Impatto luminoso del	Impatti visivi dovuti alla presenza dell'impianto fotovoltaico e delle strutture connesse. x	I potenziali impatti previsti saranno simili a quelli attesi in fase di costruzione.

Nei successivi paragrafi si riporta la valutazione della significatività degli impatti potenziali attribuibili al Progetto e le misure di mitigazione individuate, entrambi divisi per fase di Progetto.

Valutazione della Sensitività

Al fine di stimare la significatività dell'impatto sul paesaggio apportato dal Progetto, è necessario descrivere la sensibilità della componente.

La valutazione della sensibilità del paesaggio è stata effettuata nell'analisi dello stato attuale dell'ambiente (scenario base) ed analizzata nel dettaglio nella Relazione Paesaggistica, con riferimento alle tre componenti: morfologico-strutturale, vedutistica e simbolica.

Il Sito si inserisce in un paesaggio costiero sostanzialmente pianeggiante, dove siamo di fronte ad un caratteristico paesaggio costiero massicciamente antropizzato, dove la complessità originaria è tuttavia ancora distinguibile ma solo per frammenti, se si eccettuano i sistemi ambientali e naturali legati alle foci fluviali, agli stagni limitrofi e al litorale. Le due componenti, vedutistica e simbolica, è stato assegnato rispettivamente un valore **medio-basso** e **medio**.

Pertanto, sulla base delle valutazioni effettuate sulle tre componenti considerate, la sensitività complessiva della componete paesaggistica è stata classificata come *media*.

Fase di Costruzione

Stima degli Impatti potenziali

Di seguito vengono analizzati gli impatti sul paesaggio durante la fase del cantiere. Tali impatti sono imputabili essenzialmente alla presenza delle strutture del cantiere, delle macchine e dei mezzi di lavoro.

Cambiamenti Fisici degli Elementi che costituiscono il Paesaggio

I cambiamenti diretti al paesaggio ricevente derivano principalmente dalla perdita di suolo e vegetazione per poter consentire l'installazione delle strutture e delle attrezzature e la creazione della viabilità di cantiere.

Allo stato attuale, l'area di progetto è caratterizzata da una copertura - erbacea spontanea, costituita da elementi discontinui e disomogenei, adattati a condizioni di aridità, anche in relazione alla presenza di terreno a ridotta fertilità.

Tale impatto avrà durata *a breve termine* e si annullerà al termine delle attività e a valle degli interventi di ripristino morfologico e vegetazionale. L'estensione dell'impatto sarà *locale* e l'entità *riconoscibile*.

Impatto Visivo

L'impatto visivo è generato dalla presenza delle strutture di cantiere, delle macchine e dei mezzi di lavoro, e di eventuali cumuli di materiali.

L'area di cantiere è localizzata all'interno della zona Agricola di Sassari, a circa 10-12 km dai centri abitati.

Come diffusamente descritto nella Relazione Paesaggisticadate le condizioni morfologiche e orografiche generali dell'area non vi sono che pochi punti elevati da cui poter godere di viste panoramiche di insieme (Monte Arci).

Considerando che:

- le attrezzature di cantiere che verranno utilizzate durante la fase di costruzione, a causa della loro modesta altezza, non altereranno significativamente le caratteristiche del paesaggio;
- l'area sarà occupata solo temporaneamente;

è possibile affermare che l'impatto sul paesaggio avrà durata *a breve termine*, estensione *locale* ed entità *non riconoscibile*.

Impatto Luminoso

Per ragioni di sicurezza, durante la fase di costruzione il sito di cantiere sarà illuminato durante il periodo notturno, anche nel caso in cui esso non sia operativo.

Il potenziale impatto sul paesaggio durante la fase di cantiere avrà pertanto durata *a breve termine*, estensione *locale* ed entità *riconoscibile*.

Significatività degli Impatti Potenziali – Paesaggio – Fase di Costruzione

Impatto	Criteri di valutazione e relativo Punteggio	Magnitudo	Sensitività	Significatività
Paesaggio: Fase Cost	ruzione			
Cambiamenti fisici degli elementi che costituiscono il paesaggio	Durata: Breve Termine, 2 Estensione: Locale, 1 Entità: Non Riconoscibile, 1	Classe 4: Trascurabile	Bassa	Bassa
Impatto visivo dovuto alla presenza del cantiere, dei macchinari e dei cumuli di materiali	Durata: Breve Termine, 2 Estensione: Locale, 1 Entità: Riconoscibile, 1	Classe 4: Trascurabile	Bassa	Bassa
Impatto luminoso del cantiere	Durata: Breve Termine, 2 Estensione: Locale, 1 Entità: Riconoscibile, 1	Classe 4: Trascurabile	Bassa	Media

Misure di Mitigazione

Sono previste alcune misure di mitigazione e di controllo, anche a carattere gestionale, che verranno applicate durante la fase di cantiere, al fine di minimizzare gli impatti sul paesaggio. In particolare:

- Le aree di cantiere verranno mantenute in condizioni di ordine e pulizia e saranno opportunatamente delimitate e segnalate.
- Al termine dei lavori si provvederà al ripristino dei luoghi; tutte le strutture di cantiere verranno rimosse, insieme agli stoccaggi di materiale.

In linea generale, verranno adottati anche opportuni accorgimenti per ridurre l'impatto luminoso (Institute of Lighting Engineers, 2005):

• Si eviterà di sovra-illuminare e verrà minimizzata la luce riflessa verso l'alto.

- Verranno adottati apparecchi di illuminazione specificatamente progettati per ridurre al minimo la diffusione della luce verso l'alto.
- Verranno abbassate o spente le luci quando cesserà l'attività lavorativa, a fine turno.
 Generalmente un livello più basso di illuminazione sarà comunque sufficiente ad assicurare adeguati livelli di sicurezza.
- Verrà mantenuto al minimo l'abbagliamento, facendo in modo che l'angolo che il fascio luminoso crea con la verticale non sia superiore a 70°.

Fase di Esercizio

Stima degli Impatti potenziali

L'unico impatto sul paesaggio durante la sua fase di esercizio è riconducibile alla presenza fisica dei pannelli fotovoltaici e delle strutture connesse.

Le strutture fuori terra visibili saranno:

- le strutture di sostegno metalliche di altezza pari a 2,42 m rispetto al piano di campagna, su cui verranno montati i pannelli fotovoltaici;
- una cabina di trasformazione 20/36 kV con control room
- le 8 power station.

L'impatto sul paesaggio avrà durata *a lungo termine* ed estensione *locale*.

Come approfondito nella Relazione Paesaggistica la dimensione prevalente degli impianti fotovoltaici in campo aperto è quella planimetrica, mentre l'altezza assai contenuta rispetto alla superficie fa sì che l'impatto visivo-percettivo in un territorio pianeggiante, non sia generalmente di rilevante criticità. Pertanto, dai pochi punti panoramici elevati in cui si possono avere visioni di insieme, il sito di intervento risulta difficilmente percepibile in quanto la prospettiva e i volumi circostanti ne riducono sensibilmente l'estensione visuale. Ad ogni modo, laddove l'area di impianto risulta visibile, lo stesso non ha alcuna capacità di alterazione significativa nell'ambito di una visione di insieme e panoramica. L'entità dell'impatto sarà dunque *riconoscibile*.

Significatività degli Impatti Potenziali – Paesaggio – Fase di Esercizio

Impatto	Criteri di valutazione e relativo Punteggio	Magnitudo	Sensitività	Significatività
Paesaggio: Fase Eser	cizio			
Impatto visivo dovuto alla presenza dei pannelli fotovoltaici e delle strutture connesse	Durata: Lungo Termine, 2 Estensione: Locale, 1 Entità: Riconoscibile, 1	Classe 4: Trascurabile	Bassa	Media

Misure di Mitigazione

A mitigazione dell'impatto peasaggistico dell'opera, sono previste fasce vegetali perimetrali costituite da mardorli di larghezza pari a 10 m.

L'inserimento di mitigazioni così strutturate favorirà un migliore inserimento paesaggistico dell'impianto e avrà l'obiettivo di ricostituire elementi paesaggistici legati alla spontaneità dei luoghi.

Tali accorgimenti progettuali sono in linea con quanto suggerito dalle "Linee guida per i paesaggi industriali della Sardegna".

Fase di Dismissione

Stima degli Impatti potenziali

La rimozione, a fine vita, di un impianto fotovoltaico come quello proposto, risulta essere estremamente semplice e rapida, soprattutto in forza del fatto che i pannelli saranno ancorati al suolo non tramite pali conficati nel terreno. Questa tecnica di installazione, per sua natura, consentirà il completo ripristino della situazione preesistente all'installazione dei pannelli. In questa fase si prevedono impatti sul paesaggio simili a quelli attesi durante la fase di costruzione, principalmente collegati alla presenza delle macchine e dei mezzi di lavoro, oltre che dei cumuli di materiali.

I potenziali impatti sul paesaggio avranno pertanto durata *temporanea*, estensione *locale* ed entità *riconoscibile*.

Significatività degli Impatti Potenziali – Paesaggio – Fase di Dismissione

Impatto	Criteri di valutazione e relativo Punteggio	Magnitudo	Sensitività	Significatività
Paesaggio: Fase Dism	nissione			
Impatto visivo dovuto alla presenza del cantiere, dei macchinari e dei cumuli di materiali	Durata: Temporanea, 2 Estensione: Locale, 1 Entità: Riconoscibile, 1	Classe 4: Trascurabile	Bassa	Media
Impatto luminoso del cantiere	Durata: Temporanea, 2 Estensione: Locale, 1 Entità: Riconoscibile, 1	Classe 4: Trascurabile	Bassa	Media

Misure di Mitigazione

Le misure di mitigazione che verranno adottate durante le attività di dismissione del progetto, al fine di ridurre gli impatti potenziali, sono analoghe a quelle ipotizzate per la fase di cantiere.

Conclusioni e Stima degli Impatti Residui

La seguente Tabella riassume la valutazione degli impatti potenziali sul paesaggio presentata in dettaglio nei precedenti paragrafi. Gli impatti sono divisi per fase, e per ogni impatto vengono indicate la significatività e le misure di mitigazione da adottare, oltre all'indicazione dell'impatto residuo. Dall'analisi condotta si evince che il progetto nel suo complesso non presenta particolari interferenze con la componente paesaggio. La valutazione non ha ravvisato alcun tipo di criticità.

Sintesi Impatti sul Paesaggio e relative Misure di Mitigazione.

Impatto	Significatività	Misure di Mitigazione	Impatto residuo			
Paesaggio: Fase di Costruzio	Paesaggio: Fase di Costruzione					
Cambiamenti fisici degli elementi che costituiscono il paesaggio	Basso	Non previste	Basso			
Impatto visivo dovuto alla presenza del cantiere, dei macchinari e dei cumuli di materiali	Bassa	Le aree di cantiere verranno mantenute in condizioni di ordine e pulizia e saranno opportunatamente delimitate e segnalate. Al termine dei lavori i luoghi verranno ripristinati e tutte le strutture verranno rimosse, insieme agli stoccaggi di materiale.	Basso			
Impatto luminoso del cantiere	Media	Verranno adottati apparecchi di illuminazione progettati per ridurre al minimo la diffusione della luce verso l'alto. Le luci verranno abbassate o spente al termine della giornata lavorativa. Verrà mantenuto al minimo l'abbagliamento, facendo in modo che l'angolo che il fascio luminoso crea con la verticale non sia superiore a 60°.	Basso			
Paesaggio: Fase di Esercizio						
Impatto visivo dovuto alla presenza dei pannelli fotovoltaici e delle strutture connesse	Media	Sono previste fasce vegetali perimetrali di larghezza pari a 10 m, a mitigazione dell'impatto peasaggistico dell'opera. Le opere di mitigazione saranno piantumate su terreno vegetale riportato fuori terra.	Basso			
Paesaggio: Fase di Dismissio	Paesaggio: Fase di Dismissione					
Impatto visivo dovuto alla presenza dei macchinari e mezzi di lavoro e dei cumuli di materiali	Bassa	Le aree verranno mantenute in condizioni di ordine e pulizia e saranno opportunatamente delimitate e segnalate. Al termine dei lavori i luoghi verranno ripristinati e tutte le strutture verranno rimosse, insieme agli stoccaggi di materiale.	Basso			

		Verranno adottati apparecchi di illuminazione progettati per ridurre al minimo la diffusione della luce verso l'alto.	
Impatto luminoso dell'area di lavoro	Bassa	Le luci verranno abbassate o spente al termine della giornata lavorativa. Verrà mantenuto al minimo	Basso
		l'abbagliamento, facendo in modo che l'angolo che il fascio luminoso crea con la verticale non sia superiore a 60°.	

5.9.POPOLAZIONE E SALUTE UMANA

Introduzione

Il presente Paragrafo analizza i potenziali impatti del Progetto sulla popolazione e salute umana. Tale analisi prende in esame gli impatti legati alle diverse fasi di Progetto, ovvero di costruzione, esercizio e dismissione.

Nella valutazione dei potenziali impatti sulla salute pubblica è importante ricordare che:

i potenziali impatti negativi sulla popolazione e salute umana possono essere collegati essenzialmente alle attività di costruzione e di dismissione, come conseguenza delle potenziali interferenze delle attività di cantiere e del movimento mezzi per il trasporto merci con le comunità locali;

impatti positivi (benefici) sulla popolazione e salute umana possono derivare, durante la fase di esercizio, dalle emissioni risparmiate rispetto alla produzione di un'uguale quota di energia mediante impianti tradizionali;

La seguente tabella riassume le principali fonti d'impatto sulla popolazione e salute umana connesse al Progetto ed evidenzia le risorse potenzialmente impattate ed i ricettori sensibili.

Fonte di Impatto

- Aumento della rumorosità, riduzione della qualità dell'aria e cambiamento dell'ambiente visivo, derivanti dalle attività di costruzione e dismissione, con particolare riferimento al movimento mezzi per le fasi di approvvigionamento e cantiere;
- Aumento del numero di veicoli nell'area e del traffico, che potrebbe generare un incremento del numero di incidenti stradali;
- Aumento delle pressioni sulle infrastrutture sanitarie locali derivanti dalla presenza del personale impiegato nelle attività di costruzione e dismissione;
- Impatto generato dai campi elettromagnetici prodotti dall'impianto durante la fase di esercizio.

Risorse e Ricettori Potenzialmente Impattati

- Popolazione del comune di Sassari e Porto Torres che transita in prossimità delle Aree di Progetto o lungo le reti viarie interessate dal movimento dei mezzi di cantiere;
- Strutture sanitarie dei comuni prossimi all'area di progetto.
- Operatori presenti sul sito che costituiscono una categoria di recettori non permanenti.
- Non sono presenti recettori sensibili permanenti in prossimità del sito.

Fattori del Contesto (Ante Operam) inerenti la Valutazione

- Livelli di rumore e stato della qualità dell'aria in prossimità dell'Area di Progetto e delle principali reti viarie interessate dal trasporto;
- Presenza di strutture sanitarie nei vicini centri abitati adeguati a sopperire all'eventuale necessità di domanda aggiuntiva di servizi.
- Il Sito si trova in un area agricola, non si può escludere potenziali sorgenti di radiazioni ionizzanti o non ionizzanti.

Gruppi Vulnerabili

• Bambini ed anziani sono i gruppi tradizionalmente più vulnerabili nel caso di peggioramento della qualità della vita.

Caratteristiche del Progetto influenzanti la Valutazione

- Gestione delle attività di cantiere con particolare riferimento alle misure di riduzione degli impatti sulla qualità dell'aria e rumore;
- Impiego e presenza di lavoratori non residenti;
- Intensità del traffico veicolare legato al Progetto e percorsi interessati;
- Utilizzo del cavo tripolare, in grado di limitare al massimo le correnti parassite circolanti negli eventuali rivestimenti metallici esterni (guaina ed armatura).

Nella tabella che segue sono riportati i principali impatti potenziali del Progetto sulla salute pubblica, durante le fasi principali del Progetto.

Costruzione	Esercizio	Dismissione
Potenziale temporaneo aumento della rumorosità e peggioramento della qualità dell'aria derivanti dalle attività di cantiere e dal movimento mezzi per il trasporto del materiale.	 Potenziali impatti positivi (benefici) sulla salute, a causa delle emissioni risparmiate rispetto alla produzione di un'uguale quota mediante impianti tradizionali. 	dell'aria derivanti dalle
Potenziale aumento del numero di veicoli e del traffico nell'area di progetto	 Potenziali impatti sulla salute della popolazione e degli operatori del sito antropizzato 	Potenziale aumento del numero di veicoli e del traffico

е	consegue	ente	potenzi	ale
ind	cremento	del	numero	di
ind	cidenti stra	adali		

- Aumento della pressione sulle infrastrutture sanitarie locali in caso di lavoratori non residenti.
- Rischio di esposizione per la popolazione e gli operatori al campo elettromagnetico esistente in sito dovuto alla presenza di fonti esistenti e di sottoservizi.

generati dai campi elettrici e magnetici.

- incremento del numero di incidenti stradali.
- Aumento della pressione sulle infrastrutture sanitarie locali in caso di lavoratori non residenti.
- Rischio di esposizione per la popolazione e gli operatori al campo elettromagnetico esistente in sito dovuto alla presenza di fonti esistenti e di sottoservizi.

Valutazione della Sensitività

Al fine di stimare la significatività dell'impatto sulla salute pubblica apportato dal Progetto, è necessario descrivere la sensibilità della componente in corrispondenza dei recettori potenzialmente impattati.

Le aree residenziali più prossime al sito di progetto sono ubicate presso l'abitato Sassari a est del sito e distante circa 10 km. e in quello di Porto Torres, distante circa 12 km a nord del sito. Il centro abitato di Olmedo dista circa 8-9 km a sud.

Pertanto, in considerazione delle suddette distanze, ai fini della presente valutazione di impatto, la sensitività della componete salute pubblica in corrispondenza dei ricettori identificati può essere classificata come *bassa*.

Fase di costruzione

Stima degli Impatti potenziali

Si prevede che gli impatti potenziali sulla popolazione e salute pubblica derivanti dalle attività di realizzazione del Progetto, di seguito descritti nel dettaglio, siano collegati principalmente a:

- potenziali rischi per la sicurezza stradale;
- potenziali rischi derivanti da malattie trasmissibili;
- salute ambientale e qualità della vita;
- potenziale aumento della pressione sulle infrastrutture sanitarie;
- possibili incidenti connessi all'accesso non autorizzato al sito di cantiere.
- rischio di esposizione al campo elettromagnetico esistente in sito dovuto alla presenza di fonti esistenti e di sottoservizi (impatto diretto).

RISCHI TEMPORANEI PER LA SICUREZZA STRADALE

I potenziali impatti sulla sicurezza stradale, derivanti dalle attività di costruzione del Progetto, sono riconducibili a:

- Intensità del traffico veicolare legato alla costruzione e percorsi interessati: si stima che durante le attività di costruzione, una media di circa 24 veicoli al giorno transiterà sulla viabilità locale da/per l'area di cantiere. Come già illustrato nel Quadro di Riferimento Progettuale, si prevede l'utilizzo di veicoli pesanti quali furgoni e camion vari per il trasporto dei moduli fotovoltaici e delle cabine prefabbricate. La strada principale con accesso al sito è rappresentata dalla SP 68.
- Spostamenti dei lavoratori: si prevede anche il traffico di veicoli leggeri (minivan ed autovetture) durante la fase di costruzione, per il trasporto di lavoratori e di materiali leggeri da e verso le aree di cantiere. Tali spostamenti avverranno prevalentemente durante le prime ore del mattino e di sera, in corrispondenza dell'apertura e della chiusura del cantiere.

Tale impatto avrà durata *a breve termine* ed estensione *locale*. Considerato il numero limitato di lavoratori previsti in cantiere durante la realizzazione dell'opera ed il numero ridotto di spostamenti giornalieri sulla rete viaria pubblica, l'entità dell'impatto sarà *non riconoscibile*.

RISCHI TEMPORANEI PER LA SALUTE DERIVANTE DA MALATTIE TRASMISSIBILI

La presenza di forza lavoro non residente potrebbe portare potenzialmente ad un aumento del rischio di diffusione di malattie trasmissibili, tra cui quelle sessualmente trasmissibili.

Tuttavia, in considerazione della bassa diffusione in Italia di tali malattie e del fatto che la manodopera sarà presumibilmente locale, proveniente al più dai comuni limitrofi, si ritiene poco probabile il verificarsi di tale impatto. Pertanto, ai sensi della metodologia utilizzata, tale impatto avrà durata *a breve termine*, estensione *locale* ed entità *non riconoscibile*.

Salute Ambientale e Qualità della vita

La costruzione del Progetto comporterà modifiche all'ambiente fisico esistente che potrebbero influenzare la salute ambientale ed il benessere psicologico della comunità locale, con particolare con riferimento a:

- emissioni di polveri e di inquinanti in atmosfera;
- aumento delle emissioni sonore;
- modifiche del paesaggio.

Con riferimento alle emissioni in atmosfera, durante le attività di costruzione del Progetto potranno verificarsi emissioni di polveri ed inquinanti derivanti da:

- gas di scarico di veicoli e macchinari a motore (PM, CO, SO₂ e NOx);
- lavori civili e movimentazione terra per la preparazione dell'area di cantiere e la costruzione del progetto (PM10, PM2.5);
- transito di veicoli su strade non asfaltate, con conseguente risospensione di polveri in atmosfera.

I potenziali impatti sulla qualità dell'aria durante la fase di cantiere sono descritti nel dettaglio nei paragrafi precedenti, da cui si evince essi avranno durata *a breve termine*, estensione *locale* ed entità *non riconoscibile*. Pertanto, la magnitudo degli impatti connessi ad un possibile peggioramento della qualità dell'aria rispetto allo stato attuale risulta *trascurabile*.

Le attività di costruzione provocheranno inoltre un temporaneo aumento del rumore, principalmente generato principalmente dai macchinari utilizzati per il movimento terra e la preparazione del sito, dai macchinari per la movimentazione dei materiali e dai veicoli per il trasporto dei lavoratori. Tali impatti avranno durata *a breve termine*, estensione *locale* e, sulla base della simulazione effettuata mediante il modello di propagazione del rumore SoundPLAN, entità *riconoscibile*. I risultati della simulazione mostrano, infatti, che l'incremento del rumore attribuibile alle attività di progetto sarà limitato, in corrispondenza del recettore sensibile più prossimo all'area di cantiere.

Infine, le modifiche al paesaggio potrebbero potenzialmente impattare sul benessere psicologico della comunità. Come si evince dall'analisi condotta al Paragrafo 6.2.9, gli impatti sul paesaggio, imputabili essenzialmente alla presenza delle strutture del cantiere, delle macchine e dei mezzi di lavoro, saranno minimi durante la fase di costruzione. Tali impatti avranno durata a *breve termine* e si annulleranno al termine delle attività e a valle degli interventi di ripristino morfologico e vegetazionale. L'estensione dell'impatto sarà *locale* e l'entità *non riconoscibile*.

AUMENTO DELLA PRESSIONE SULLE STRUTTURE SANITARIE

In seguito alla presenza di personale impiegato nel cantiere, potrebbe verificarsi un aumento di richiesta di servizi sanitari. In caso di bisogno, i lavoratori che operano nel cantiere potrebbero dover accedere alle infrastrutture sanitarie pubbliche disponibili a livello locale, comportando un potenziale sovraccarico dei servizi sanitari locali esistenti.

Tuttavia, il numero di lavoratori impiegati nella realizzazione del Progetto sarà pari a circa 150 addetti, pertanto si ritiene che un'eventuale richiesta di servizi sanitari possa essere assorbita senza difficoltà dalle infrastrutture esistenti. Si presume, in aggiunta, che la manodopera impiegata sarà totalmente o parzialmente locale, e quindi già inserita nella struttura sociale esistente, o al più darà vita ad un fenomeno di pendolarismo locale.

Pertanto, gli eventuali impatti dovuti a un limitato accesso alle infrastrutture sanitarie possono considerarsi di carattere *a breve termine*, *locale* e di entità *non riconoscibile*.

Accesso non autorizzato al Sito di Lavoro e Possibili Incidenti

Nella fase di costruzione del Progetto esiste un rischio potenziale di accesso non autorizzato al cantiere, da parte della popolazione, che potrebbe dare origine a incidenti. Il rischio di accesso non autorizzato, tuttavia, è maggiore quando i cantieri sono ubicati nelle immediate vicinanze di case o comunità isolate, mentre risulta remoto in aree come quella di progetto.

Pertanto, considerando l'ubicazione del cantiere di progetto, tali impatti avranno durata *a breve termine*, estensione *locale* ed entità *non riconoscibile*.

La tabella che segue riportata la valutazione della significatività degli impatti associati alla componente salute pubblica.

RISCHI CONNESSI AI CAMPI ELETTROMAGNETICI

Come già ricordato, i potenziali recettori individuati sono solo gli operatori impiegati come manodopera per la fase di allestimento dei moduli fotovoltaici, la cui esposizione sarà gestita in accordo con la legislazione sulla sicurezza dei lavoratori, mentre non sono previsti impatti significativi sulla popolazione riconducibili ai campi elettromagnetici.

Dal momento che non sono presenti recettori sensibili permanenti in prossimità del sito, la sensitività della popolazione che occupa la casa colonicapuò essere considerata bassa.

Gli unici recettori potenzialmente impattati sono gli operatori presenti sul sito. Tali recettori saranno esposti alle radiazioni ionizzanti/non ionizzanti presenti in sito principalmente nella fase di costruzione e di dismissione del Progetto, laddove si prevede un impiego più massiccio di manodopera, mentre durante la fase di esercizio non è prevista sul sito la presenza di personale full time.

L'esposizione degli addetti all'operazioni di costruzione dell'impianto sarà gestita in accordo con la legislazione sulla sicurezza dei lavoratori applicabile (D.lgs. 81/2008 e smi) e non è oggetto del presente SIA.

Significatività degli Impatti Potenziali – Salute Umana – Fase di Cantiere

Impatto	Criteri di valutazione e relativo Punteggio	Magnitudo	Sensitività	Significatività
Popolazione e Salute	umana: Fase di Costri	uzione		
Rischi temporanei per la sicurezza stradale derivanti da un potenziale aumento del traffico e dalla presenza di veicoli pesanti sulle strade	Estensione: Locale, 1	Classe 4: Trascurabile	Bassa	Bassa
Rischi temporanei per la salute della comunità derivanti da malattie trasmissibili	Durata: A breve termine, 2 Estensione: Locale, 1 Entità: Non riconoscibile, 1	Classe 4: Trascurabile	Bassa	Bassa
Impatti sulla salute ed il benessere psicologico causati da inquinamento atmosferico, emissioni di polveri e rumore e cambiamento del paesaggio	Durata: A breve termine, 2 Estensione: Locale, 1 Entità: Non riconoscibile, 1 (Riconoscibile, 2, per il rumore)	Classe 4: Trascurabile (5: Bassa, per il rumore)	Bassa	Bassa
Aumento della pressione sulle infrastrutture sanitarie	Durata: A breve termine, 2 Estensione: Locale, 1 Entità: Non riconoscibile, 1	Classe 4: Trascurabile	Bassa	Bassa
Rischi temporanei di sicurezza per la comunità locale dovuti all'accesso non autorizzato all'area di cantiere	Durata: A breve termine, 2 Estensione: Locale, 1	Classe 4: Trascurabile	Bassa	Bassa

Entità: Non riconoscibile,		
1		

Incrociando la magnitudo degli impatti, valutata sempre come *trascurabile*, e la sensitività dei recettori, a cui è stato assegnato un valore *basso*, si ottiene una significatività degli impatti *bassa*.

Misure di Mitigazione

Di seguito si riportano le misure di mitigazione che verranno adottate durante le attività di cantiere, al fine di ridurre gli impatti potenziali.

Rischi Temporanei per la Sicurezza Stradale

Al fine di minimizzare il rischio di incidenti, tutte le attività saranno segnalate alle autorità locali in anticipo rispetto alla attività che si svolgono.

I lavoratori verranno formati sulle regole da rispettare per promuovere una guida sicura e responsabile.

Verranno previsti percorsi stradali che limitino l'utilizzo della rete viaria pubblica da parte dei veicoli del Progetto durante gli orari di punta del traffico allo scopo di ridurre i rischi stradali per la comunità locale ed i lavoratori.

Rischi Temporanei per la salute della Comunità derivanti da Malattie Trasmissibili

Non sono previste misure di mitigazione, dal momento che gli impatti sulla salute pubblica, derivanti da un potenziale aumento del rischio di diffusione di malattie trasmissibili, sono stati valutati come trascurabili.

Salute Ambientale e Qualità della vita

Per ridurre l'impatto temporaneo sulla qualità di vita della popolazione che lavora nelle vicinanze dell'area di cantiere, verranno adottate le misure di mitigazione per la riduzione degli impatti sulla qualità dell'aria, sul clima acustico e sul paesaggio.

Aumento della Pressione sulle Infrastrutture Sanitarie

Il Progetto perseguirà una strategia di prevenzione per ridurre i bisogni di consultazioni cliniche/mediche. I lavoratori riceveranno una formazione in materia di salute e sicurezza mirata ad aumentare la loro consapevolezza dei rischi per la salute e la sicurezza.

Presso il cantiere verrà fornita ai lavoratori assistenza sanitaria di base e pronto soccorso.

Accesso non autorizzato al Sito di Lavoro e Possibili Incidenti

Adeguata segnaletica verrà collocata in corrispondenza dell'area di cantiere per avvisare dei rischi associati alla violazione. Tutti i segnali saranno in italiano e in forma di diagramma per garantire una comprensione universale della segnaletica.

Laddove necessario saranno installate delle recinzioni temporanee per delimitare le aree di cantiere.

Rischi connessi ai Campi elettromagnetici

L'adozione di misure di mitigazione non è prevista in questa fase in quanto non si avranno impatti significativi.

Fase di esercizio

Stima degli Impatti potenziali

Durante la fase di esercizio i potenziali impatti sulla salute pubblica, di seguito descritti nel dettaglio, sono riconducibili a:

- presenza di campi elettrici e magnetici generati dall'impianto fotovoltaico e dalle strutture connesse;
- potenziali emissioni di inquinanti e rumore in atmosfera;
- potenziale malessere psicologico associato alle modifiche apportate al paesaggio.

SALUTE AMBIENTALE E QUALITA' DELLA VITA

Durante l'esercizio dell'impianto, non sono attesi potenziali impatti negativi per la popolazione e sulla salute umana generati dalle emissioni in atmosfera, dal momento che:

- non si avranno significative emissioni di inquinanti in atmosfera. Le uniche emissioni attese, discontinue e trascurabili, sono ascrivibili ai veicoli che saranno impiegati durante le attività di manutenzione dell'impianto fotovoltaico, e dato il numero limitato dei mezzi coinvolti, l'impatto è da ritenersi non significativo;
- non si avranno emissioni di rumore perché non vi sono sorgenti significative.

Pertanto, gli impatti dovuti alle emissioni di inquinanti e rumore in atmosfera possono ritenersi non significativi. Va inoltre ricordato che l'esercizio del Progetto consentirà un notevole risparmio di emissioni di gas ad effetto serra e macroinquinanti, rispetto alla produzione di energia mediante combustibili fossili tradizionali. Esso, pertanto, determinerà un impatto positivo (beneficio) sulla componente aria e conseguentemente sulla salute pubblica.

Impatti associati alle Modifiche al Paesaggio

La presenza della struttura tecnologica potrebbe creare alterazioni visive che potrebbero influenzare il benessere psicologico della comunità.

Tuttavia, tale possibilità è remota, dal momento che le strutture avranno altezze limitate, inferiori a 2,5 m e saranno difficilmente percepibili dai centri abitati, molto distanti dall'area di progetto. Inoltre, anche la percezione dai recettori lineari (strade) verrà ampiamente limitata grazie all'inserimento delle barriere verdi piantumate che verranno realizzate come fasce di mitigazione.

Pertanto, si assume che i potenziali impatti sul benessere psicologico della popolazione derivanti dalle modifiche apportate al paesaggio abbiano estensione *locale* ed entità *non riconoscibile*, sebbene siano di *lungo termine*.

La tabella che segue riportata la valutazione della significatività degli impatti associati alla componente popolazione e salute umana.

Significatività degli Impatti Potenziali – Popolazione e Salute Umana – Fase di Esercizio

Impatto	Criteri di valutazione relativo Punteggio	e Magni	tudo	Sensitività	Significatività		
Popolazione e Salute Umana: Fase di Esercizio							
Rischio di esposizione al campo elettromagnetico	Metodologia non applicabile			Non Significativo			
Impatti negativi sulla salute ed il benessere psicologico causati da inquinamento atmosferico ed emissioni di polveri e rumore	Metodologia non applicab	ile		Non Significa	ativo		
Impatti positivi sulla salute collegati al risparmio di emissioni di gas ad effetto serra e macro inquinanti	,	Classe 5: Bassa	Bassa	Bassa (impa	tto positivo)		
Impatti sul benessere psicologico causati dal cambiamento del paesaggio		Classe 5: Bassa	Bassa	Bassa			

Tralasciando l'impatto negativo non significativo e quello positivo, generati dalle emissioni in atmosfera di inquinanti, polvere e rumore, gli impatti sulla salute pubblica generati durante la fase di esercizio sono caratterizzati da una significatività valutata come *bassa*. Tale valore è stato ottenuto incrociando la magnitudo degli impatti, valutata sempre come *bassa*, e la sensitività dei recettori, a cui è stato assegnato un valore *basso*.

Misure di Mitigazione

Di seguito si riportano le misure di mitigazione che verranno adottate durante la fase di esercizio, al fine di ridurre gli impatti potenziali.

Impatti generati dai Campi Elettrici e Magnetici

Utilizzo del cavo tripolare, che ha un ottimo comportamento dal punto di vista dei campi magnetici, limitando al massimo le correnti parassite circolanti negli eventuali rivestimenti metallici esterni.

Emissioni di Inquinanti e Rumore in Atmosfera

Non sono previste misure di mitigazione dal momento che gli impatti sulla salute pubblica in fase di esercizio saranno non significativi.

Impatti associati alle Modifiche al Paesaggio

Il progetto prevede una mascheratura vegetale, con la piantumazione di elementi arborei ed arbustivi, allo scopo di realizzare una barriera verde ed armonizzare l'inserimento dell'impianto.

Fase di dismissione

Stima degli Impatti potenziali

Per la fase di dismissione si prevedono potenziali impatti sulla popolazione e salute pubblica simili a quelli attesi durante la fase di costruzione, principalmente collegati alle emissioni di rumore, polveri e macro inquinanti da mezzi/macchinari a motore e da attività di movimentazione terra/opere civili.

Si avranno, inoltre, i medesimi rischi collegati all'aumento del traffico, sia mezzi pesanti per le attività di dismissione, sia mezzi leggeri per il trasporto di personale, ed all'accesso non autorizzato in sito.

Rispetto alla fase di cantiere, tuttavia, il numero di mezzi di cantiere sarà inferiore e la movimentazione di terreno coinvolgerà quantitativi limitati. Analogamente alla fase di cantiere, gli impatti sulla salute pubblica avranno estensione *locale* ed entità *riconoscibile*, mentre la durata sarà *temporanea*, stimata in circa 1 anno.

Dalla successiva tabella, che utilizza la metodologia descritta al Paragrafo 6.1, si evince che incrociando la magnitudo degli impatti e la sensitività dei recettori, si ottiene una significatività degli impatti *bassa*.

Livello di Magnitudo degli Impatti Potenziali – Popolazione e Salute Umana - Fase di Dismissione

Impatto	Criteri di valutazione e relativo Punteggio	Magnitudo	Sensitività	Significatività
Popolazione e Salute	Umana: Fase di Dismissio	ne		
Rischi temporanei per la sicurezza stradale derivanti da un aumento del traffico e dalla presenza di veicoli pesanti sulle strade	Durata: Temporanea, 1 Estensione: Locale, 1	Classe 3: Trascurabile	Bassa	Bassa
Rischi temporanei per la salute della comunità derivanti da malattie trasmissibili	Durata: Temporanea, 1 Estensione: Locale, 1 Entità: Non riconoscibile, 1	Classe 3: Trascurabile	Bassa	Bassa
Impatti sulla salute ed il benessere psicologico causati da inquinamento atmosferico, emissioni di polveri e rumore e	Durata: Temporanea, 1 Estensione: Locale, 1 Entità: Non riconoscibile, 1	Classe 3: Trascurabile	Bassa	Bassa

cambiamento del paesaggio				
Aumento della pressione sulle infrastrutture sanitarie	Durata: Temporanea, 1 Estensione: Locale, 1 Entità: Non riconoscibile, 1	Classe 3: Trascurabile	Bassa	Bassa
Rischi temporanei di sicurezza per la comunità locale dovuti all'accesso non autorizzato all'area di cantiere		Classe 3: Trascurabile	Bassa	Bassa

Misure di Mitigazione

Le misure di mitigazione che verranno adottate durante le attività di dismissione del progetto, al fine di ridurre gli impatti potenziali, sono analoghe a quelle ipotizzate per la fase di cantiere.

Conclusioni e Stima degli Impatti Residui

Come già riportato nell'analisi per singola fase, il progetto nel suo complesso (nelle tre fasi di costruzione, esercizio e dismissione) non presenta particolari interferenze per la popolazione e salute umana e la valutazione condotta non ha ravvisato alcun tipo di criticità. Al contrario, si sottolinea che l'impianto costituisce di per sè un beneficio per la qualità dell'aria, e quindi per la salute pubblica, in quanto consente di produrre energia elettrica senza rilasciare in atmosfera le emqissioni tipiche derivanti dall'utilizzo di combustibili fossili.

In merito agli impatti legati ai campi elettromagnetici, dal momento che non sono presenti recettori sensibili permanenti in prossimità del sito, non sono previsti impatti potenziali significativi sulla popolazione connessi ai campi elettromagnetici. Gli unici potenziali recettori, durante le tre fasi di costruzione, esercizio e dismissione, sono gli operatori di campo; la loro esposizione ai campi elettromagnetici sarà gestita in accordo con la legislazione sulla sicurezza dei lavoratori applicabile (D.lgs. 81/2008 e smi).

5.10. CLIMA ACUSTICO

Introduzione

Nel presente Paragrafo si analizzano i potenziali impatti del Progetto sul clima acustico. L'analisi prende in esame gli impatti legati alle diverse fasi di Progetto, ovvero di costruzione, esercizio e dismissione.

I potenziali recettori presenti nell'area di progetto sono identificabili con la popolazione residente nelle sue immediate vicinanze. La seguente tabella riassume le principali fonti d'impatto sulla componente rumore connesse al Progetto, evidenziando le risorse potenzialmente impattate ed i recettori sensibili.

Fonte di Impatto

I principali effetti sul clima acustico riconducibili al Progetto sono attesi durante la fase di cantiere. Le fonti di rumore in tale fase sono rappresentate dai macchinari utilizzati per il movimento terra e materiali, per la preparazione del sito e per il trasporto dei lavoratori durante la fase di cantiere;

Non si prevedono fonti di rumore significative durante la fase di esercizio del progetto;

La fase di dismissione prevede fonti di rumore connesse all'utilizzo di veicoli/macchinari per le attività di smantellamento, simili a quelle previste nella fase di cantiere. Si prevede tuttavia l'impiego di un numero di mezzi inferiore.

Risorse e Ricettori Potenzialmente Impattati

Le case coloniche presenti.

Fattori del Contesto (Ante Operam) inerenti la Valutazione

Le sorgenti di rumore attualmente presenti nell'area sono costituite dalle attività agricole e da traffico veicolare sulla SP 18. L'indagine fonometrica condotta nei pressi dell'Area di Progetto ha evidenziato valori di rumore residuo conformi ai limiti di rumore previsti dalla normativa nazionale.

Caratteristiche del Progetto influenzanti la Valutazione

Localizzazione dei macchinari nell'area di cantiere; numero di macchinari in uso durante la fase di cantiere; gestione aree di cantiere; gestione del traffico indotto.

Nella tabella che segue sono riportati i principali impatti potenziali del Progetto sul clima acustico, durante le fasi principali del Progetto.

Costruzione	Esercizio	Dismissione
Temporaneo disturbo alla popolazione residente nei pressi delle aree di cantiere.	Non sono previsti impatti sulla componente rumore.	I potenziali impatti previsti saranno simili a quelli attesi in fase di costruzione.
Potenziale temporaneo disturbo e/o allontanamento della fauna.		

Come riportato nella tabella precedente, per la componente rumore non sono attesi impatti significativi per la fase di esercizio, vista l'assenza di fonti di rumore rilevanti. Con riferimento alle fasi di cantiere e di dismissione, le tipologie di impatto previste sono simili, essendo connesse principalmente all'utilizzo dei veicoli/macchinari per le operazioni di costruzione/dismissione.

La fase di costruzione risulta tuttavia più critica rispetto a quella di dismissione per via del maggior numero di mezzi e macchinari coinvolti e dalla maggior durata delle attività di costruzione rispetto a quelle di dismissione.

Di conseguenza la stima degli impatti potenziali per la fase di cantiere è stata supportata da uno specifico studio di impatto acustico.

Valutazione della Sensitività

Come dimostrato dal piano di classificazione accustica allegato al progetto, ai fini della presente valutazione di impatto, la sensitività del clima acustico è stata classificata come *media* in corrispondenza del ricettore adiacente alla casa colonica di proprietà del colono, mentre agli altri punti di monitoraggio, non collocati in corrispondenza di ricettori sensibili, si è attribuita una sensitiva *bassa*.

Fase di costruzione

Stima degli Impatti potenziali

La principale fonte di rumore durante la fase di cantiere è rappresentata dai macchinari utilizzati per il movimento terra e la preparazione del sito, dai macchinari per la movimentazione dei materiali e dai veicoli per il trasporto dei lavoratori.

Al fine di stimare il rumore prodotto durante l'attività di costruzione, è stata condotta un'analisi quantitativa dell'impatto potenziale del Progetto, attraverso la stesura del piano di classificazione accustica allegato al progetto.

Le attività di costruzione avranno luogo solo durante il periodo diurno, dal mattino al pomeriggio, solitamente dalle 8.00 fino alle 18.00.

La successiva Tabella riporta la tipologia ed il numero di macchinari in uso durante i lavori di costruzione, considerati nella simulazione delle emissioni sonore.la tabella successiva mostra la scomposizione in frequenze del livello di potenza acustica di tali macchine.

Macchinari in Uso

Macchinario	Numero	Durata Attività	Livello di Potenza Sonora [dB(A)]
Muletto/Pala gommata	5	Diurna	91.8

Autocarro	4	Diurna	75.3
Autocarro	4	Diurna	75.3
Autobetoniera	3	Diurna	90.0
Rullo	2	Diurna	83.6

Scomposizione in frequenze del Livello di Potenza Acustica

Macchinario	Livello	63	125	250	500	1	2	4	8
	di Potenza Sonora [dB(A)]	Hz dBA	Hz dBA	Hz dBA	Hz dBA	Khz dBA	Khz dBA	Khz dBA	Khz dBA
Muletto/Pala gommata	91.8	75.8	77.9	88.4	83.8	86.0	85.2	80.2	70.9
Autocarro	75.3	51.1	60.3	62.7	68.8	67.8	69.6	62.4	57.7
Autocarro	90.0	66.8	67.9	67.3	75.7	75.7	89.2	70.9	53.9
Autobetoniera	83.6	63.8	68.9	78.4	78.8	78.8	73.2	65.0	54.9

I livelli di emissione sonora previsti durante le fasi di costruzione del progetto sono stati valutati considerando il seguente scenario:

- le sorgenti continuative sono state inserite nel modello come sorgenti puntuali e si è assunto che operassero in continuo e contemporaneamente durante il periodo diurno a pieno carico;
- le sorgenti intermittenti sono anch'esse state inserite nel modello come sorgenti puntuali, tuttavia il numero modellizzato è stato ridotto al fine di approssimare il funzionamento intermittente di più sorgenti ad un numero inferiore che potesse essere ritenuto continuativo nel tempo, durante il periodo diurno a pieno carico.

I livelli di rumore previsti presso ognuno dei recettori individuati durante la campagna di monitoraggio e simulati sulla base delle assunzioni sopra descritte.

Dai risultati ottenuti dal piano di classificazione accustica, è possibile affermare che l'impatto sulla popolazione presente, associato al rumore generato durante la fase di cantiere, sarà *non riconoscibile*,

dal momento che in corrispondenza del recettore sensibile più prossimo (casa colonica) l'incremento del rumore attribuibile alle attività di progetto sarà nullo.

Misure di Mitigazione

Le misure di mitigazione specifiche, che verranno implementate per ridurre l'impatto acustico generato in fase di cantiere, sono le seguenti:

su sorgenti di rumore/macchinari:

- spegnimento di tutte le macchine quando non sono in uso;
- dirigere, ove possibile, il traffico di mezzi pesanti lungo tragitti lontani dai recettori sensibili;
- sull'operatività del cantiere: o simultaneità delle attività rumorose, laddove fattibile; il livello sonoro prodotto da più operazioni svolte contemporaneamente potrebbe infatti non essere significativamente maggiore di quello prodotto dalla singola operazione;
- limitare le attività più rumorose ad orari della giornata più consoni;
- sulla distanza dai ricettori: o posizionare i macchinari fissi il più lontano possibile dai recettori.

Fase di esercizio

Stima degli Impatti potenziali

Durante la fase di esercizio dell'impianto fotovoltaico, non sono previsti impatti significativi sulla componente rumore, dal momento che l'impianto non prevede la presenza di sorgenti significative.

Misure di Mitigazione

L'adozione di misure di mitigazione non è prevista in questa fase in quanto non sono previsti impatti sulla componente rumore collegati all'esercizio dell'impianto.

Fase di dismissione

Stima degli Impatti potenziali

Al termine della vita utile dell'opera, l'impianto sarà interamente smantellato e l'area restituita all'uso agricolo attualmente previsto.

Le operazioni di dismissione verranno realizzate con macchinari simili a quelli previsti per la fase di cantiere e consisteranno in:

- smontaggio e ritiro dei pannelli fotovoltaici;
- smontaggio e riciclaggio dei telai in alluminio, dei cavi e degli altri componenti elettrici;
- ripristino ambientale dell'area, condotto con operazioni di livellamento mediante pale meccaniche livellatrici e, a seguire, operazioni agronomiche classiche per la rimessa a coltura del terreno (a patto che i suoli siano restituiti ai loro usi a valle delle operazioni di bonifica).

In questa fase, gli impatti potenziali e le misure di mitigazione sono simili a quelli valutati per la fase di cantiere, con la differenza che il numero di mezzi di cantiere e la durata delle attività saranno inferiori e la movimentazione di terreno coinvolgerà quantitativi limitati.

Pertanto, è possibile affermare che l'impatto sulla popolazione e sulla fauna associato al rumore generato durante la fase di dismissione, sarà *non riconoscibile* ed avrà durata *temporanea* ed estensione *locale*.

Durante le attività di dismissione, la significatività dell'impatto generato dalle emissioni sonore sulla popolazione e sulla fauna è valutata come *bassa*. Tale valore è stato ottenuto incrociando la magnitudo degli impatti e la sensitività dei recettori.

Misure di Mitigazione

Le misure di mitigazione che verranno adottate durante le attività di dismissione del progetto, al fine di ridurre gli impatti potenziali, sono analoghe a quelle ipotizzate per la fase di cantiere.

Conclusioni e Stima degli Impatti Residui

La seguente Tabella riassume la valutazione degli impatti potenziali sul clima acustico presentata in dettaglio nei precedenti paragrafi. Gli impatti sono divisi per fase e per ogni impatto viene indicata la significatività e le misure di mitigazione da adottare, oltre all'indicazione dell'impatto residuo.

Per la componente rumore non sono attesi impatti significativi per la fase di esercizio, vista l'assenza di fonti di rumore rilevanti in tale fase. Durante le fasi di cantiere e di dismissione si avranno tipologie di impatto simili, connesse principalmente all'utilizzo di veicoli/macchinari per le operazioni di costruzione/dismissione. La fase di costruzione risulta tuttavia più critica rispetto a quella di dismissione per via del maggior numero di mezzi e macchinari coinvolti e dalla maggior durata delle attività di costruzione rispetto a quelle di dismissione. Per un approfondimento sulla valutazione dell'impatto acustico si rimanda alla **Rleazione Valutazione dell'impatto Acustico** allegata al Progetto.

Sintesi Impatti sul Rumore e relative Misure di Mitigazione

Impatto	Significatività	Misure di Mitigazione	Impatto residuo
Rumore: Fase di Co	struzione		
Disturbo alla popolazione residente nei punti più prossimi all'area di cantiere.	Bassa	Spegnimento di tutte le macchine quando non in uso Dirigere il traffico di mezzi pesanti lungo tragitti lontani dai recettori sensibili;	Bassa
Disturbo ai recettori non residenziali posti all'interno del l'area	Bassa	Simultaneità delle attività rumorose, laddove fattibile; Limitare le attività più rumorose ad orari della giornata più consoni; Posizionare i macchinari fissi il più lontano possibile dai recettori	Bassa
Rumore: Fase di Es	ercizio		

Impatti sulla componente rumore	Non Significativa	Non previste in quanto l'impatto potenziale è non significativo	Non Significativa
Rumore: Fase di Di	smissione		
Disturbo alla popolazione residente nei punti più prossimi all'area di cantiere.	Bassa	Spegnimento di tutte le macchine quando non in uso; Dirigere il traffico di mezzi pesanti lungo tragitti lontani dai recettori sensibili; Simultaneità delle attività rumorose, laddove fattibile;	
Disturbo ai recettori non residenziali posti all'interno dell'area	Bassa	Limitare le attività più rumorose ad orari della giornata più consoni; Posizionare i macchinari fissi il più lontano possibile dai recettori.	

5.11. EFFETTI CUMULATIVI CON ALTRE OPERE

Con la D.G.R. n. 45/24 del 2017, progetti elencati nell'allegato B1, in applicazione dei criteri e delle soglie definiti dal Ministero dell'ambiente e della tutela del territorio e del mare 30 Marzo 2015 pubblicato nella Gazzetta Ufficiale n° 84 dell' 11 aprile 2015, la Regione Sardegna ha fornito gli indirizzi per la valutazione degli impatti cumulativi degli impianti a fonti rinnovabili (FER) nelle procedure di valutazione di impatto ambientale. Per "impatti cumulativi" si intendono quegli impatti (positivi o negativi, diretti o indiretti, a lungo e a breve termine) derivanti da una pluralità di attività all'interno di un'area o regione, ciascuno dei quali potrebbe non risultare significativo se considerato nella singolarità.

La D.G.R. n. 45/24 del 2017 "Indirizzi applicativi per la valutazione degli impatti cumulativi di impianti di produzione di energia da fonti rinnovabili nella Valutazione di Impatto Ambientale - Regolamentazione degli aspetti tecnici e di dettaglio" individua gli ambiti tematici che devono essere valutati e consideranti al fine di individuare gli impatti cumulativi che insistono su un dato territorio:

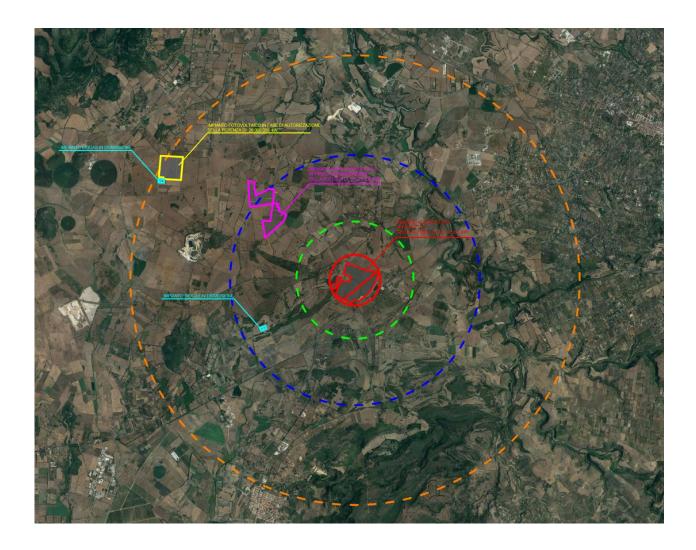
Tema I: impatto visivo cumulativo;

Tema II: impatto su patrimonio culturale e identitario;

Tema III: tutela della biodiversità e degli ecosistemi;

Tema IV: impatto acustico cumulativo

Tema V: impatti cumulativi su suolo e sottosuolo (sottotemi: I consumo di suolo; II contesto agricolo e colture di pregio; III rischio idrogeologico).


Per le componenti relative ai sottosistemi ecologico – agricolo si rimanda alla Relazione Agronomica allegata.

Anche al fine di pervenire alla valutazione degli impatti cumulativi e alla loro applicazione omogenea su tutto il territorio regionale, nonché di orientare le valutazioni in capo alle diverse autorità competenti, è necessario disporre di una base comune e condivisa di informazioni che comprenda anche il complesso dei progetti realizzati, di quelli già muniti del provvedimento di autorizzazione unica, di quelli in corso di valutazione e di quelli ancora da valutare.

La mappa rappresenta l'impianto fotovoltaico in progetto rispetto alle installazioni appartenenti alla stessa categoria progettuale (DM 30 Marzo 2015) attualmente in esercizio, cantieirizzate e/o con iter autorizzativo concluso positivamente quello indicato con il colore ciano, e in giallo quello e magenta in fase di valutazione, , per la verifica degli impianti esistenti si e dovuto fare ricorso ai datii della Regione Sardegna che gentilmente ci ha concesso le informazioni richiesto. Al fine di ridurre e/o annullare

i potenziali effetti negativi verranno adeguatamente valutati i termini di "mitigazione" come indicato all'interno del presente Studio di Impatto Ambientale nonché il possibile inserimento di attività compensative e sperimentali che renderanno il progetto funzionale agli obiettivi di decarbonizzazione che lo stato italiano ha deciso di imporsi.

Per ulteriori approfondimenti si rimanda alla relazione REL_SP_10_IC_RELAZIONE IMPATTI CUMULATIVI e alla tavola progettuale TAV_FTV027 IMPATTI CUMULATIVI.

6. MITIGAZIONI E COMPENSAZIONI AMBIENTALI

La fase finale dello studio di impatto individua ed illustra in forma più esaustiva le misure di mitigazione essenziali al fine della riduzione degli impatti residui messi in evidenza nello stesso. Le opere di mitigazione e compensazione si fondano sul principio che ogni intervento deve essere finalizzato ad un miglioramento e della qualità paesaggistica complessiva dei luoghi, o, quanto meno, deve garantire che non vi sia una diminuzione delle sue qualità, pur nelle trasformazioni. Le misure di miglioramento sono state individuate

sulla base della lettura degli effetti dell'intervento sulle attuali caratteristiche dei luoghi, fra cui la loro eventuale reversibilità. Dall'analisi dei possibili effetti dell'intervento sulle attuali caratteristiche dei luoghi, si individuano le opportune opere di compensazione, che possono essere realizzate anche prima della realizzazione dell'intervento, all'interno dell'area di intervento, ai suoi margini, ovvero in un'area lontana ed in tempi diversi da quelli dell'intervento stesso; in quest'ultimo caso, l'amministrazione può individuare un area comune su cui concentrare i contributi e le azioni di compensazione da realizzare nel tempo a spese ed eventualmente a cura dei soggetti interessati.

Misure di protezione e mitigazione - Fase di cantiere

Le misure che saranno adottate durante la fase di costruzione dell'impianto fotovoltaico al fine di minimizzare gli impatti residui sono di seguito sintetizzate:

- 1. massimizzare il recupero del suolo vegetale durante le operazioni di scavo e riutilizzo dello stesso per i successivi ripristini (piste e cabine);
- 2. localizzazione delle aree di servizio alla costrizione (piazzole e aree di cantiere) in punti di minima copertura vegetale;
- 3. ricopertura vegetale, con specie erbacee e arboree autoctone, delle piazzole fino al limitare dei pannelli fotovoltaici e delle piste di accesso;
- 4. massimizzare il recupero e il riutilizzo dei materiali inerti di scavo per le successive sistemazioni delle strade, ingressi ecc.;
- 5. utilizzo di macchinari silenziati;
- 6. interramento degli elettrodotti;
- 7. realizzazione solo di strade non asfaltate;

La realizzazione dell'intervento nella stagione primaverile, estiva o al più di inizio autunno consentirà di beneficiare dei seguenti vantaggi:

- l'accesso delle macchine operatrici e degli automezzi pesanti sui terreni asciutti limita al minimo gli effetti di costipazione dei suoli;
- migliore operabilità e pulizia durante le limitate operazioni di movimentazione terreno e/o di scavo.

Altre misure di mitigazione saranno le seguenti:

- eventuali scavi (in genere non previsti) resteranno aperti solo per il tempo minimoindispensabile;
- lo stato originario dei luoghi sarà ripristinato con lo stesso terreno movimentato odi risulta da eventuali scavi;
- una volta terminati i lavori, in tutte le aree interessate dagli interventi (areeutilizzate per i cantieri, eventuali carraie di accesso, piazzole, ecc.), si provvederàalla pulizia ed al ripristino dei luoghi, senza dispersione di materiali, quali spezzonidi conduttore, spezzoni o frammenti di ferro, elementi di isolatori, ecc..

Le scelte delle tecnologie e delle modalità operative per la gestione del cantiere saranno dettate, oltre che dalle esigenze tecnico-costruttive, anche dalla necessità di contenere I minimo la produzione di

materiale di rifiuto, limitare la produzione di rumori e polveri dovuti alle lavorazioni direttamente ed indirettamente collegate all'attività del cantiere. La produzione di polveri che si verifica durante le fasi di preparazione del sito, escavazioni dei cavidotti, e loro successivo riempimento, per quanto poso significativa rispetto ad altri tipi di cantiere, verrà ulteriormente ridotta dalla regolare annaffiatura delle superfici di lavorazione. Per quanto riguarda le emissioni in atmosfera si provvederà all'utilizzo laddove possibile di automezzi dotati di marmitta catalitica. Per quanto riguarda gli impatti da emissione acustica, i mezzi meccanici fissi e mobili utilizzati, se necessario verranno dotati di silenziatori al fine di contenere le emissioni sonore. La definizione e la dinamica del layout di cantiere sarà effettuata in modo che nelle varie fasi di avanzamento lavori, la disposizione delle diverse componenti del cantiere (macchinari, servizi, stoccaggi, magazzini) siano poste a sufficiente distanza dalle aree esterne al cantiere e laddove praticabile, ubicate in aree di minore accessibilità visiva. Tali accorgimenti consentiranno di attenuare le compromissioni di qualità paesaggistica legate alle attività di cantiere, fattori che comunque si configurano come reversibili e contingenti alle fasi di lavorazione e che incidono su un'area già caratterizzata dalla presenza di impianti e macchinari.

MISURE DI PROTEZIONE E MITIGAZIONE - FASE DI ESERCIZIO

In fase di esercizio saranno eseguite le seguenti misure di mitigazione:

- terminata la fase di cantiere e di costruzione sarà ripristinato il manto erboso tra le varie strutture dell'impianto, laddove eventualmente fosse parzialmente compromesso durante la fase di cantiere e preparato lo stesso per le piantumazioni previste tra le interfile al fine di poter condurre adeguatamente il fondo;
- durante tutto il periodo di esercizio dell'impianto è previsto un servizio continuo di controllo, sorveglianza e manutenzione, che permetterà di verificare e quindi di intervenire qualora si verificasse qualsiasi tipo di disfunzione sull'impianto, non solo in termini produttivi, ma anche in termini di gestione e cura delle aree di impianto;
- per evitare il potenziale impatto dato dalle emissioni acustiche della cabina inverter durante la fase di esercizio dell'impianto, la cabina verrà opportunamente insonorizzata secondo la tecnologia prevista dalla casa costruttrice;
- verrà valutata la possibilità di predisporre una rete drenante che permetta l'infiltrazione dell'acque nel terreno e agevolare la capacità di drenaggio del sito;
- mitigazione visiva della recinzione con una fascia arborea perimetrale a mandorlo e arbustiva di lentischio;
- realizzazione di aperture nella rete dimensionate in funzione di consentire il libero passaggio dei piccoli mammiferi e dell'avi-fauna.

Misure di protezione e mitigazione - Fase di dismissione

Al termine dell'esercizio dell'impianto, ci sarà una fase di dismissione e demolizione delle strutture, che restituiranno le aree al loro stato originario, preesistente al progetto.

In particolare, sarà assicurato il totale ripristino del suolo agrario originario, anche mediante pulizia e smaltimento di eventuali materiali residui, quali spezzoni o frammenti metallici, frammenti di cemento, ecc..

Per ulteriori approfondimenti in merito alle misure mitigative si rimanda alla relazione REL_SP_05_MMT_RELAZIONE MISURE MITIGATIVE IMPIANTO.

7. CONCLUSIONI

Le analisi di valutazione effettuate inerente alla soluzione progettuale adottata consentono di concludere che l'opera non incide in maniera sensibile sui fattori ambientali. Le scelte progettuali rispondono alla volontà dell'investitore di eliminare e/o contenere tutti i possibili impatti sui diversi fattori ambientali.

Gli impatti che sono emersi sono pressochè nulli, e dove presenti, si manifestano in fase di cantiere e di dismissione; hanno cioè una natura reversibile e transitoria e comunque per tempi assai limitati. Così si rileva per gli effetti sull'atmosfera/aria e clima, ambiente idrico e sul clima acustico.

La biodiversità del territorio, che non presenta sul sito di installazione dei pannelli punti riconosciuti con particolare valore naturalistico, non subirà incidenze significative a seguito dell'attività svolta. L'impianto infatti così come progettato non produrrà eccessive alterazioni all'ecosistema dello scenario base dal momento che si tratta di un terreno a destinazione agricola e dal momento che si tratta di un impianto agrofotovoltaco che consente l'inserimento dell'opera nel territorio circostante. Particolare cura infatti è stata dedicata nella progettazione del Piano colturale dell'impianto e alla progettazione della fascia arborea perimetrale con un moderno mandorleto su due file parallele ed un'ulteriore area in prossimità destinata unicamente a mandorleto intensivo. Per quanto riguarda gli aspetti socioeconomica saranno invece influenzati positivamente dallo svolgimento dell'attività in essere, comportando una serie di benefici economici e occupazionali diretti e indotti sulle popolazioni locali.

L'analisi effettuata ha permesso di valutare il valore intrinseco e l'interazione tra l'opera ed i fattori ambientali, pervenendo al calcolo della sensibilità globale dell'intervento che ha evidenziato la sua non criticità.