CLIENTE:	PROGETTISTA: SAIPEM	COMMESSA 7200189500	UNITÀ 001
snam	LOCALITÀ: Porto Torres (SS)	001-CI-E-10025	
	PROGETTO: Terminale di Porto Torres Ingegneria di Base	Fg. 1 di 25	Rev . 00

Rif.Saipem: 022932T_001-C-C-0025

TERMINALE DI PORTO TORRES

RELAZIONE DESCRITTIVA E DI CALCOLO - BANCHINA ESISTENTE, BRICCOLE ORMEGGIO E CATWALKS

ALLEGATO 2 ANALISI DELLA PALIFICATA DELLE BRICCOLE B2 e B3

			C		
			_		
		4	P	190	
00	Emissione Finale/per Enti	AA	GMP	FM	09/11/2022
Rev.	Descrizione	Elaborato	Verificato	Approvato	Data

CLIENTE:	PROGETTISTA:	SAIPEM	COMMESSA 7200189500	UNITÀ 001
	LOCALITÀ:	rto Torres (SS)	001-CI-	E-10025
		nale di Porto Torres gegneria di Base	Fg. 2 di 25	Rev . 00

INDICE

1	GE	ENERALITA'	3
	1.1	Inquadramento generale	3
	1.2	Scopo e contenuti del documento	3
	1.3	Informazioni in sospeso	4
	1.4	Acronimi e Abbreviazione	4
	1.5	Riferimenti	4
	1.6	Normative	4
2	DE	FINIZIONE	6
3	ST	RATIGRAFIA DI PROGETTO	7
4	PA	ALI OFFSHORE PER BRICCOLE B2 E B3	8
	4.1	Carichi	8
5	CA	APACITÀ PORTANTE DEL PALO SINGOLO (B2 E B3)	10
6	AN	IALISI DEL GRUPPO DI PALI (B2 E B3)	16
7	SII	NTESI DEI RISULTATI (B2 E B3)	24

CLIENTE:	PROGETTISTA:	SAIPEM	COMMESSA 7200189500	UNITÀ 001
snam	LOCALITÀ:	Porto Torres (SS)	001-CI-	E-10025
		minale di Porto Torres Ingegneria di Base	Fg. 3 di 25	Rev . 00

1 GENERALITA'

1.1 Inquadramento generale

Snam Rete Gas sta sviluppando un progetto per l'approvvigionamento di gas naturale nel Nord della Regione Sardegna che prevede l'ormeggio a lungo termine (25 anni) di una unità di stoccaggio e rigassificazione (FSRU) di Gas Naturale Liquefatto (GNL) all'interno del porto industriale di Porto Torres nonché i lavori impiantistici, civili e marittimi di adeguamento della relativa banchina di ormeggio fino al limite di batteria con la condotta di distribuzione di gas naturale che porterà il gas alle utenze industriali e civili del nord Sardegna.

La condotta di collegamento con la Dorsale Sardegna Nord per il trasporto del gas naturale avrà un diametro DN 650 ed una pressione di progetto (DP) di 75 barg.

La posizione selezionata per l'ormeggio della FSRU è indicativamente rappresentata nella immagine sottostante e corrisponde all'attuale molo carbonifero (Banchina E-ON) a cui attraccano le navi che approvvigionano la vicina centrale elettrica di Fiume Santo di proprietà di EPH.

Il porto industriale di Porto Torres è classificato in Categoria II e Classe I secondo la legge italiana n. 84 (del 28 gennaio 1994)

L'FSRU avrà una capacità di stoccaggio di circa 25.000 m³ ed una capacità di rigassificazione massima di LNG (send out) di 170.000 Sm³/h. Si prevede di utilizzare acqua di mare per il sistema di vaporizzazione.

1.2 Scopo e contenuti del documento

Questo documento, che costituisce l'allegato N°2 al documento 001-CI-E-10025 Relazione Descrittiva e di Calcolo - Banchina Esistente, Briccole Ormeggio e

CLIENTE:	PROGETTISTA:	SAIPEM	COMMESSA 7200189500	UNITÀ 001
snam	LOCALITÀ:	Porto Torres (SS)	001-CI-	E-10025
	PROGETTO:	erminale di Porto Torres Ingegneria di Base	Fg. 4 di 25	Rev . 00

Catwalks, descrive le analisi di dimensionamento relative alla palificata delle briccole B2 e B3

1.3 Informazioni in sospeso

Tag	Sezione	Descrizione
HOLD1		

1.4 Acronimi e Abbreviazione

1.5 Riferimenti

- [1] Doc: Porto Torres GPH&TOP survey SOW_draft_02 FSRU di Porto Torres Ingegneria di Base Saipem S.p.A.
- [2] Doc: Porto Torres studio preliminare installazione pali rev0-a Porto Torres Pontile Solidi Analisi preliminare installazione pali Technip S.p.A. (11/05/2021)
- [3] FHWA-NHI-16-009 FHWA GEC 012 July 2016 : "Design and Construction of Driven Pile Foundations Volume I"

Per i documenti di Progetto con riferimento alla lista Documenti N. 001-ZX-E-09800:

001-ZA-E-08000 - Basi di Progetto

001-CA-E-10012 - Criteri di Progettazione Opere Marittime

001-ZA-E-15000 - Studio di ormeggio

001-CA-E-10017 - Specifica di Progettazione per Fenders, Bollards e Quick Release Hooks

1.6 Normative

Questa SPECIFICA è stata basata sulla normativa Italiana e in subordine sugli standard Europei/USA.

Tutta la legislazione Italiana applicabile:

NTC 2018 - AGGIORNAMENTO DELLE NORME TECNICHE PER LE COSTRUZIONI - (DM 17 GENNAIO 2018)

Istruzioni per l'applicazione dell'aggiornamento delle "Norme tecniche per le costruzioni" di cui al DM 17 gennaio 2018 - (C.M. 21/01/2019)

CLIENTE:	PROGETTISTA:	SAIPEM	COMMESSA 7200189500	UNITÀ 001
	LOCALITÀ:	Porto Torres (SS)	001-CI-E-10025	
	PROGETTO:	rminale di Porto Torres Ingegneria di Base	Fg. 5 di 25	Rev . 00

Standard:

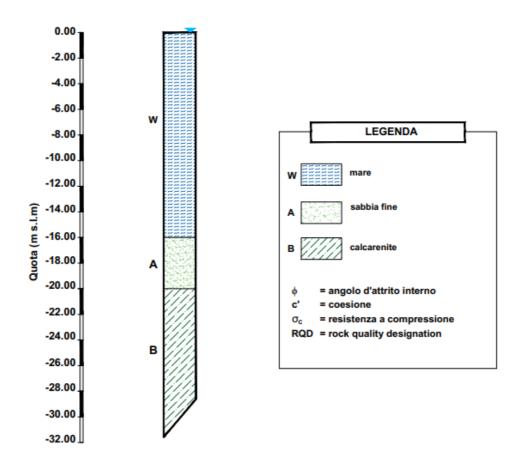
UNI - EN xxxx

ASTM come citati nel testo nel caso di carenza specifica da parte della normativa Nazionale

CLIENTE:	PROGETTISTA: SAIPEM	COMMESSA 7200189500	UNITÀ 001
snam	LOCALITÀ: Porto Torres (SS)	001-CI-E-10025	
	PROGETTO: Terminale di Porto Torres Ingegneria di Base	Fg. 6 di 25	Rev . 00

2 **DEFINIZIONE**

COMMITTENTE	Snam Rete Gas S.p.A.		
PROGETTO	Esecuzione delle attività di ingegneria relative alla progettazione del FSRU (Floating Storage and Regasification Unit) di Porto Torres ed opere connesse		
SITO	Porto Torres		
IMPIANTO DI RICEZIONE	Impianto in Banchina		
TERMINALE	La FSRU e l'impianto di ricezione		
NAVE SPOLA	Nave metaniera "shuttle carrier" necessaria a garantire la fornitura di gas naturale alla FSRU		
BUNKERING VESSEL	Nave metaniera necessaria per la distribuzione del GNL stoccato nei serbatoi della FSRU		
FSRU	Floating Storage Regasification Unit		


CLIENTE:	PROGETTISTA:	SAIPEM	COMMESSA 7200189500	UNITÀ 001
snam	LOCALITÀ:	Porto Torres (SS)	001-CI-	E-10025
	PROGETTO:	erminale di Porto Torres Ingegneria di Base	Fg. 7 di 25	Rev . 00

3 STRATIGRAFIA DI PROGETTO

La Figura 1 seguente, illustra la stratigrafia di progetto adottata.

La stratigrafia è stata definita sulla base dei dati forniti nella relazione di "Pontile solidi" [2] in mancanza delle indagini geognostiche specifiche che sono attualmente in corso.

Figura 1 - Stratigrafia di progetto

PARAMETRI GEOTECNICI					
Strato	Spessore (m)	ф (°)	c' (kPa)	σ _c (MPa)	RQD (%)
Α	4	-	-	-	-
В	n.i.	30	150	4	30

CLIENTE:	PROGETTISTA:	SAIPEM	COMMESSA 7200189500	UNITÀ 001
snam	LOCALITÀ:	Porto Torres (SS)	001-CI-	E-10025
	PROGETTO:	rminale di Porto Torres Ingegneria di Base	Fg. 8 di 25	Rev . 00

4 PALI OFFSHORE PER BRICCOLE B2 E B3

I pali considerati per le briccole B2 e B3 sono di tipo battuto, con tubo d'acciaio aperto di diametro 20" (559 mm) e spessore 15.88 mm.

I carichi saranno sostenuti da quattro pali. La quota testa palo è posta a +3.0 m s.l.m. L'angolo di inclinazione dei pali è 76° rispetto all'orizzontale nei piani longitudinale e trasversale. In figura 2 sono illustrate una sezione e una pianta schematici.

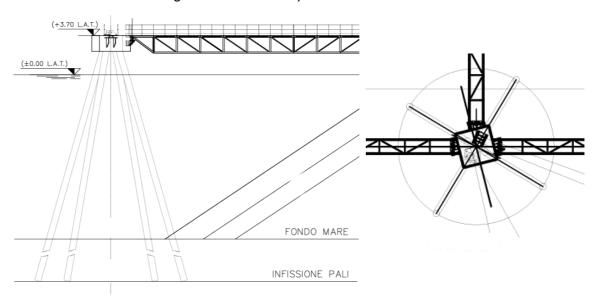


Figura 2 - Sezione e pianta schematici

4.1 Carichi

I carichi globali al centro della piattaforma sono riportati nelle tabelle 1 (non fattorizzati) e 2 (con fattore amplificativo 1.5):

Tabella 1 - Carichi globali

Carichi globali	Carico (t)	Carico (kN)
Orizzontale	297	2911
Verticale	107	1049

Tabella 2 - Carichi globali amplificati (fattore 1,5)

Carichi globali	Carico (t)	Carico (kN)
Orizzontale	445.5	4366
Verticale	160.5	1573

CLIENTE:	PROGETTISTA:	SAIPEM	COMMESSA 7200189500	UNITÀ 001
snam	LOCALITÀ:	Porto Torres (SS)	001-CI-	E-10025
	PROGETTO:	rminale di Porto Torres Ingegneria di Base	Fg. 9 di 25	Rev . 00

Al fine di definire una lunghezza preliminare, sono stati valutati i carichi in compressione e in trazione sul singolo palo. I carichi fattorizzati alla testa del palo singolo sono mostrati nella Figura 3 e presentati nella Tabella 3:

Figura 3 - Carichi preliminari per i pali

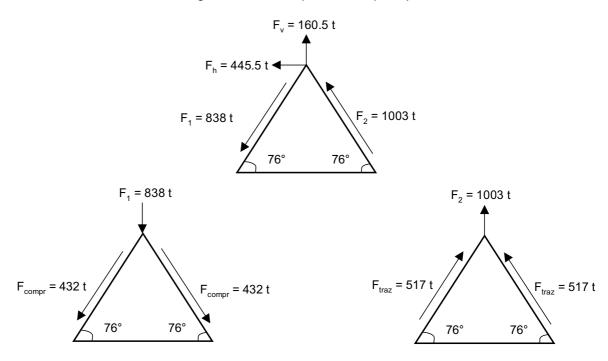


Tabella 3 - Carico assiale di progetto per singolo palo (fattorizzati)

Carico di progetto per singolo palo	Carico (t)	Carico (kN)
Compressione	432	4234
Trazione	517	5067

CLIENTE:	PROGETTISTA:	SAIPEM	COMMESSA 7200189500	UNITÀ 001
snam	LOCALITÀ:	orto Torres (SS)	001-CI-	E-10025
		inale di Porto Torres gegneria di Base	Fg. 10 di 25	Rev . 00

5 CAPACITÀ PORTANTE DEL PALO SINGOLO (B2 E B3)

Il calcolo è stato condotto secondo NTC 2018, adottando l'Approccio 2, e cioè combinazione A1 + M1 + R3.

La resistenza di progetto R_d viene determinata in modo analitico con riferimento al valore dei parametri geotecnici di resistenza. La tabella 4 mostra i coefficienti parziali per M1.

Tabella 4 - Coefficienti parziali γ_M

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_M	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	$\gamma_{c'}$	1,0	1,25
Resistenza non drenata	$c_{ m uk}$	γ_{cu}	1,0	1,4
Peso dell'unità di volume	γ_{γ}	γ_{γ}	1,0	1,0

La resistenza così calcolata deve essere confrontata con le azioni di progetto E_d in cui la verifica ($E_d \le R_d$) deve essere soddisfatta.

Il valore di progetto R_d della resistenza si ottiene a partire dal valore caratteristico R_k applicando i coefficienti γ_R per pali battuti della tabella 5 sottostante.

Tabella 5 - Coefficienti parziali γ_R

Resistenza	Simbolo	Pali	Pali	Pali ad elica
		infissi	trivellati	continua
	γ_{R}	(R3)	(R3)	(R3)
Base	Υb	1,15	1,35	1,3
Laterale in compressione	γ_{s}	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	γ_{st}	1,25	1,25	1,25

[🖰] da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Il valore caratteristico della resistenza $R_{c,k}$ (compressione) è dato dal valore ottenuto applicando alla resistenza calcolata $R_{c,cal}$ il fattore di correzione ξ riportato nella tabella 6 sottostante, in funzione del numero N di verticali di indagine (pari a 1, ξ_3 = 1.7).

Tabella 6 – Numero di verticali indagate ξ₃

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ_4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Per il peso dei pali, i coefficienti parziali nella tabella 7 sono stati considerati (γ_{G1} =1.3 (sfavorevole); γ_{G1} = 1.0 (favorevole)).

CLIENTE:	PROGETTISTA:	SAIPEM	COMMESSA 7200189500	UNITÀ 001
snam	LOCALITÀ:	Porto Torres (SS)	001-CI-	E-10025
		rminale di Porto Torres Ingegneria di Base	Fg. 11 di 25	Rev . 00

Tabella 7 - Coefficienti parziali γ_F per le azioni e gli effetti delle azioni

	Effetto	Coefficiente Parziale $\gamma_F \ (o \ \gamma_E)$	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	γ_{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ_{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	Υ _Q	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

⁽i) Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γ61

La resistenza di progetto R_d del palo singolo è stata dedotta, a partire dai valori caratteristici dei parametri geotecnici, utilizzando i metodi descritti nel seguito.

Portata di punta:

$$R_{b.cal} = A_b \cdot q_0$$

dove

A_b = area di base della sezione del palo;

q₀ = capacità portante unitaria di base.

Il valore di q₀ nella roccia viene valutato attraverso le seguenti formule (Zhang, 2010):

$$\sigma_{cm} = (\alpha_E)^{0.7} \cdot \sigma_c$$
 $\alpha_E = 0.0231RQD - 1.32 \ge 0.15$
 $q_{max} = 6.39(\sigma_{cm})^{0.45}$

dove:

 σ_{cm} = resistenza a compressione monoassiale dell'ammasso roccioso;

 σ_c = resistenza a compressione monoassiale della roccia intatta;

 α_E = fattore di riduzione;

q_{max} = resistenza di punta;

RQD = rock quality designation.

 $q_0 = q_{max} = 6560$ kPa è stato utilizzato lungo lo strato di roccia.

Lo strato di sabbia fine non è stato tenuto in considerazione nei calcoli a causa della mancanza di dati sui terreni e sulle probabili scarse proprietà meccaniche.

Portata totale laterale:

$$R_{s,cal} = \pi \cdot D \cdot \int_{z_1}^{z_2} \tau \cdot dz$$

I valori di τ sono calcolati attraverso la seguente formula (Horvath e Kenney, 1979):

$$\tau = f_{max} = \alpha \cdot (\sigma_{cm})^{0.5}$$
 lungo lo strato della roccia

CLIENTE:	PROGETTISTA:	SAIPEM	COMMESSA 7200189500	UNITÀ 001
snam	LOCALITÀ: Porto Torres (SS)		001-CI-E-10025	
	PROGETTO:	erminale di Porto Torres Ingegneria di Base	Fg. 12 di 25	Rev . 00

dove:

 α = costante empirica;

 σ_{cm} = resistenza a compressione monoassiale dell'ammasso roccioso;

f_{max} = resistenza laterale.

 τ = f_{max} = 210 kPa è stato utilizzato nel livello roccioso.

Lo strato di sabbia fine non è stato tenuto in considerazione nei calcoli a causa della mancanza di dati geotecnici e delle probabili scarse proprietà meccaniche.

Nei calcoli della capacità portante, è stata verificata la possibilità che si verifichi il plugging (formazione di un "tappo") del palo durante la battitura sulla base dei valori di resistenza laterale e di punta del palo. Durante l'installazione di pali a tubo aperto, il terreno entra nel palo fino a quando il cilindro interno del terreno non sviluppa una resistenza sufficiente per prevenire un'ulteriore intrusione di terreno e si verifica il "plugging". Questo fenomeno modifica la caratteristica del palo a tubo aperto che diventa a tubo chiuso (figura 4).

Unplugged failure load, V_{ult.p}

External shaft resistance, Q_{sf-e}

Plug length, h_p

Internal shaft resistance, Q_{sf-e}

Plug weight, W_p

Base resistance on pile wall, Q_{bf-w}

Base resistance on soil plug, Q_{bf-p}

Figura 4 - "Unplugging" e "plugging"

Si verifica "plugging" se si verifica la seguente condizione:

$$Q_{sf-i} > Q_{bf-p} - W_p$$

In presenza di "plugging", la capacità portante si calcola con la seguente formula:

$$Q_u = Q_{sf-e} + Q_{bf}$$

dove:

Q_{sf-i} resistenza laterale interna;

Q_{bf-p} resistenza di base sul tappo;

Q_u resistenza totale;

Q_{sf-e} resistenza laterale esterna;

CLIENTE:	PROGETTISTA: SAIPEM	COMMESSA 7200189500	UNITÀ 001
snam	LOCALITÀ: Porto Torres (SS)	001-CI-E-10025	
	PROGETTO: Terminale di Porto Torres Ingegneria di Base	Fg. 13 di 25	Rev . 00

Q_{bf} resistenza di base;

W_p peso del tappo.

Per il palo di lunghezza L = 52,5 m (32,5.0 m dal fondo del mare):

$$Q_{sf-i} = 10391 \text{ kN} > (Q_{bf-p} - W_p) = 1428 \text{ kN}$$
 (verificato "plugging")

Le figure seguenti mostrano i valori di capacità portante in compressione (Figura 5) e trazione (Figura 6), i diagrammi si riferiscono alla profondità da testa palo.

I calcoli sono stati effettuati considerando lo svilupparsi del "plugging". In ogni caso, in assenza di plugging è stato verificato che la capacità portante risulta superiore a quella con plug.

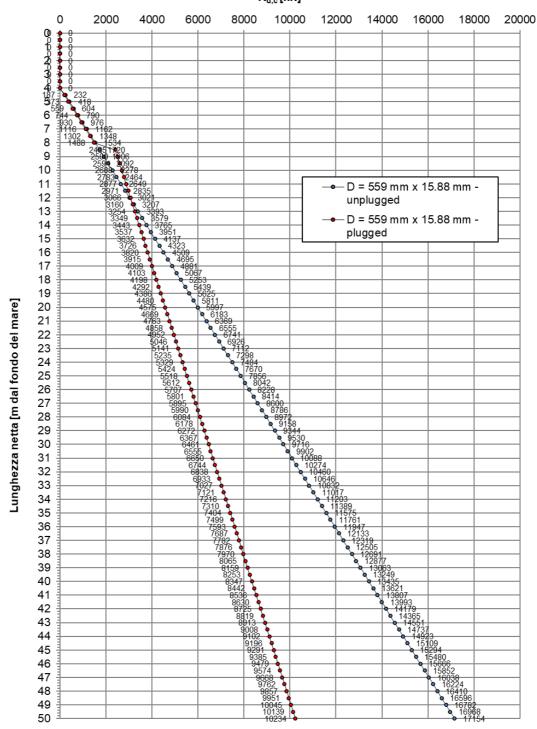
Per il palo di lunghezza L = 52,5 m (32,5.0 m dal fondo del mare) la capacità portante minima del palo singolo calcolata ha i seguenti valori:

compressione R_{d,c} = 7027 kN;

trazione $R_{dt} = 5707 \text{ kN}.$

Le verifiche preliminari sono soddisfatte considerando le azioni dal capitolo 4.1 come segue:

 $E_{d,t} = 5067 \text{ kN} < R_{d,t} = 5707 \text{ kN (verificato)}$

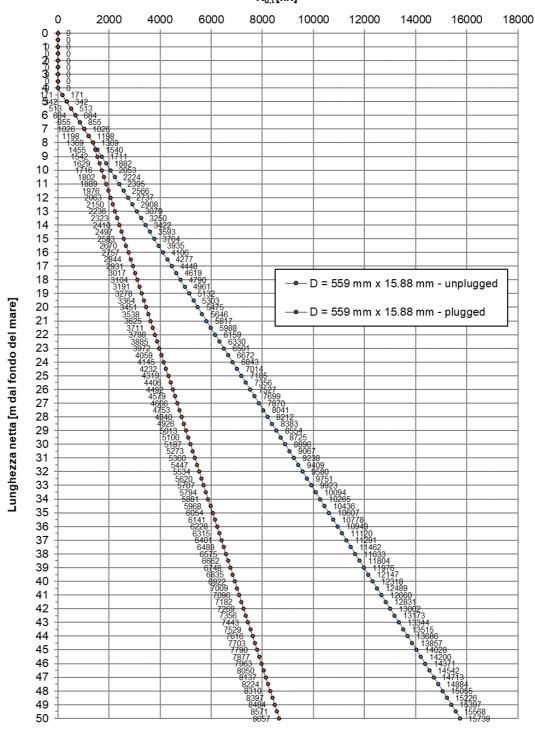

 $E_{d,c} = 4204 \text{ kN} < R_{d,c} = 7027 \text{ kN (verificato)}$

CLIENTE:	PROGETTISTA:	SAIPEM	COMMESSA 7200189500	UNITÀ 001
snam	LOCALITÀ: Porto Torres (SS)		001-CI-E-10025	
	PROGETTO:	erminale di Porto Torres Ingegneria di Base	Fg. 14 di 25	Rev . 00

Figura 5 – Capacità portante a compressione

PORTO TORRES (IT)

Palo battuto con tubo d'acciaio aperto Ø559 mm x 15.88 mm spessore Resistenza di progetto a compressione SLU (NTC 2018) R_{d,c} [kN]



CLIENTE:	PROGETTISTA:	SAIPEM	COMMESSA 7200189500	UNITÀ 001
snam	LOCALITÀ: Porto Torres (SS)		001-CI-E-10025	
	PROGETTO:	erminale di Porto Torres Ingegneria di Base	Fg. 15 di 25	Rev . 00

Figura 6 – Capacità portante a trazione

PORTO TORRES (IT)

Palo battuto con tubo d'acciaio aperto Ø559 mm x 15.88 mm spessore Resistenza di progetto a trazione SLU (NTC 2018) R_{d,t}[kN]

CLIENTE:	PROGETTISTA:	SAIPEM	COMMESSA 7200189500	UNITÀ 001
snam	LOCALITÀ:	Porto Torres (SS)	001-CI-	E-10025
	PROGETTO:	erminale di Porto Torres Ingegneria di Base	Fg. 16 di 25	Rev . 00

6 ANALISI DEL GRUPPO DI PALI (B2 E B3)

Il comportamento della palificata sotto i carichi indicati nel capitolo 4.1 è stato analizzato in maniera tridimensionale tramite il codice di calcolo GROUP 2019 (Ensoft) che permette di analizzare il comportamento di palificate soggette a carico assiale, trasversale e momento flettente nelle due direzioni perpendicolari. Esso è in grado, assegnati i carichi, le caratteristiche geometriche e meccaniche dei pali, la geometria della palificata e le caratteristiche del terreno, di calcolare la distribuzione delle sollecitazioni e degli spostamenti lungo tutta la lunghezza dei pali.

Si analizza quindi la piattaforma su 4 pali battuti, di tipo tubo d'acciaio aperto con diametro 20" (559 mm) e spessore 15,88 mm, L= 52,5 m (32,5 m dal fondo del mare). La distanza tra i pali è 1,1 m.

Nel modello non è stato tenuto in considerazione lo strato di sabbia fine a causa della mancanza di dati geotecnici e delle probabili scarse proprietà meccaniche.

Le figure 7 e 8 mostrano la pianta della palificata, mentre le figure 9, 10 e 11 mostrano rispettivamente il modello 3D dell'analisi, la vista in pianta e la vista laterale.

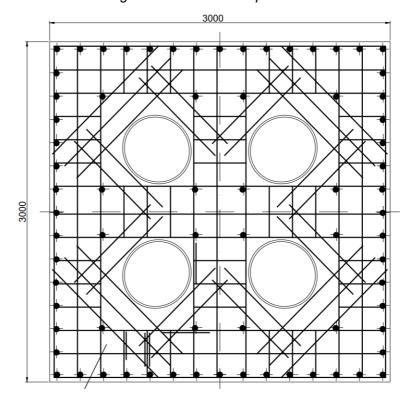


Figura 7 - Pianta della palificata

CLIENTE:	PROGETTISTA: SAIPEM	COMMESSA UNIT 7200189500 001		
snam	LOCALITÀ: Porto Torres (SS)	001-CI-E-10025	001-CI-E-10025	
	PROGETTO: Terminale di Porto Torres Ingegneria di Base	Fg. 17 di 25 Rev 00	-	

Figura 8 - Pianta della palificata nel modello

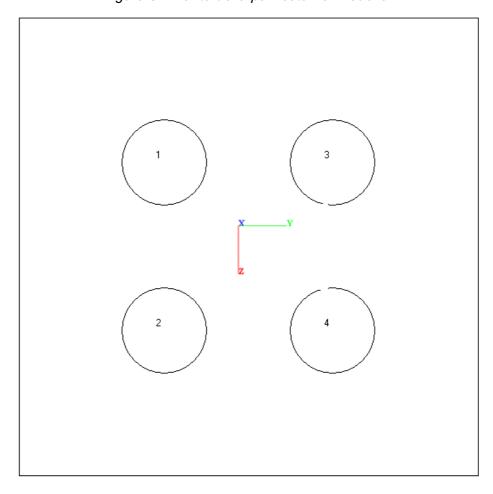


Figura 9 - Vista 3D del modello analizzato

CLIENTE:	PROGETTISTA:	SAIPEM	COMMESSA 7200189500	UNITÀ 001
snam	LOCALITÀ: Porto Torres (SS)		001-CI-E-10025	
	PROGETTO: Terminale di Por Ingegneria di		Fg. 18 di 25	Rev . 00

Figura 10 - Modello 3D vista in pianta

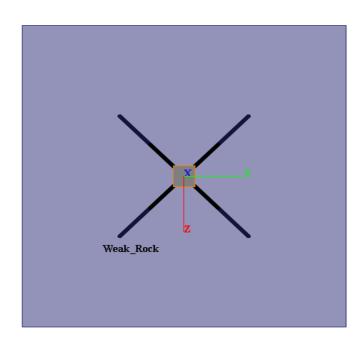
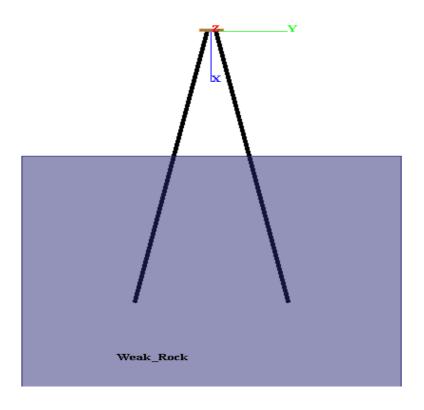



Figura 11 - Vista laterale del modello 3D

CLIENTE:	PROGETTISTA:	SAIPEM	COMMESSA 7200189500	UNITÀ 001
snam	LOCALITÀ:	Porto Torres (SS)	001-CI-	E-10025
	PROGETTO:	erminale di Porto Torres Ingegneria di Base	Fg. 19 di 25	Rev . 00

I dati e le caratteristiche del tubo di acciaio introdotte nel software sono presentati nella seguente figura 12.

Steel Pipe Pile
Section Items
Section
-Add. Properties

Show Stress Curve

Thickness (mm)

Show Stress Curve

To (kN/m²2)

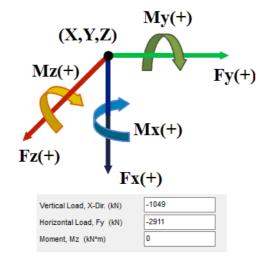

Adjust Softening
Compute Equivalent
ElastoPlastic M-phi
(CALTRANS)

Figura 12 - Dati e caratteristiche del tubo di acciaio

Nella seguente figura 13, sono mostrati i carichi globali (non fattorizzati) applicati nell'analisi di gruppo dei pali. I carichi inseriti sono i seguenti:

 F_y = 297 t = 2911 kN (Carico orizzontale); F_x = 107 t = 1049 kN (Carico verticale).

Figura 13 - Carichi non fattorizzati applicati

I carichi assiali, laterali e i momenti flettenti (questi ultimi scomposti nelle direzioni Y e Z) ottenuti sui pali sono mostrati nella tabella 8.

CLIENTE:	PROGETTISTA: SAIPEM	COMMESSA 7200189500	UNITÀ 001	
snam	LOCALITÀ: Porto Torres (SS)	001-CI-	001-CI-E-10025	
	PROGETTO: Terminale di Porto Torres Ingegneria di Base	Fg. 20 di 25	Rev . 00	

Tabella 8 - Carichi assiali, laterali e i momenti flettenti

* PILE TOP	REACTIONS, L	.0CAL *				
	AXIAL, KN	LAT. y, KN	LAT. z, KN	MOM x, KN- M	MOM y, KN- M	MOM z, KN- M
	******	******	******	*******	*******	******
MINIMUM	-3800.1	-133.16	47.590	-184.91	-1728.7	-1765.7
Pile N.	3	4	1	2	3	4
MAXIMUM	3238.6	133.16	131.15	184.91	-875.91	1765.7
Pile N.	1	3	3	1	1	3

I carichi assiali fattorizzati risultano:

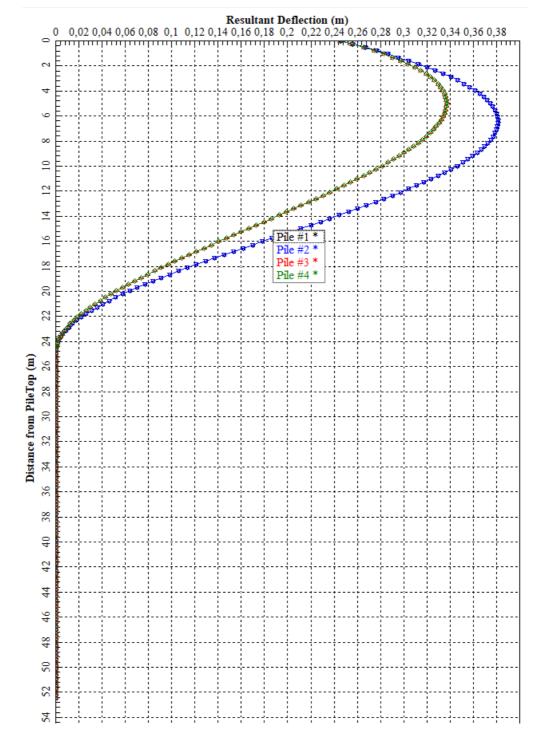
<u>Trazione</u>: 3800,1 kN x 1.5 = 5700 kN

Compressione: 3238,6 kN x 1,5 = 4858 kN

Le verifiche della capacità portante sono soddisfatte per la lunghezza di palo L =52.5 m (33.0 m dal fondo del mare):

$$E_{d,t} = 5700 \text{ kN} < R_{d,t} = 5707 \text{ kN (verificato)}$$

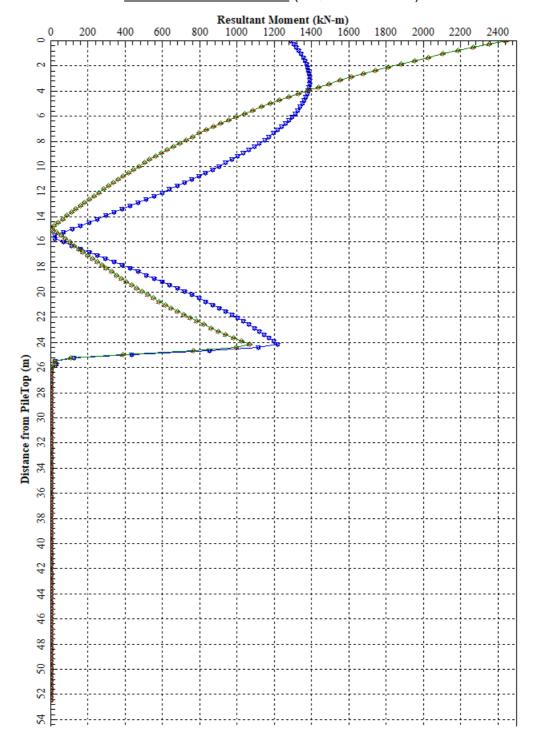
$$E_{d,c} = 4858 \text{ kN} < R_{d,c} = 7027 \text{ kN (verificato)}$$


Nelle figure 14, 15 e 16 sono mostrati, rispettivamente, l'andamento dello spostamento risultante, del momento flettente risultante e del taglio risultante lungo il palo, dove la lunghezza totale del palo è pari a 52.5 m (la lunghezza di immorsamento risulta 32,5 m dal fondo del mare e 28,5 m dalla testa della roccia).

Sono inoltre indicati i valori massimi delle azioni.

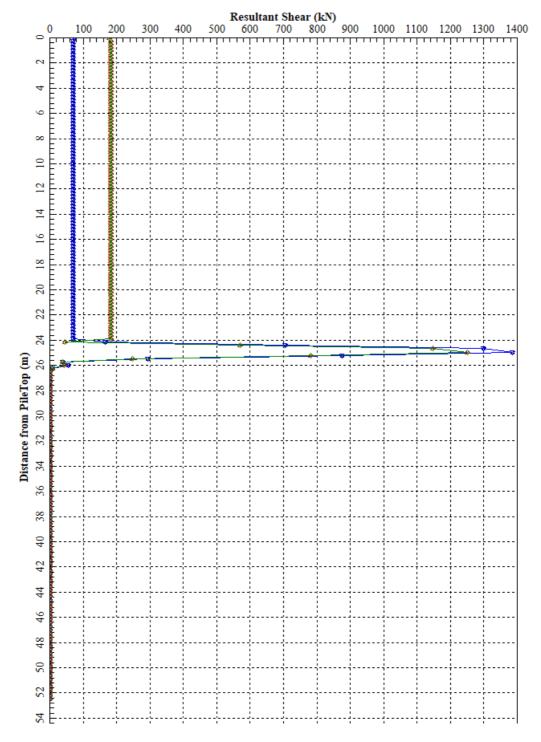
CLIENTE:	PROGETTISTA:	SAIPEM	COMMESSA 7200189500	UNITÀ 001
snam	LOCALITÀ:	Porto Torres (SS)	001-CI-	E-10025
	PROGETTO:	rminale di Porto Torres Ingegneria di Base	Fg. 21 di 25	Rev . 00

Figura 14 - Andamento dello spostamento lungo i pali


$\underline{\text{SPOSTAMENTO}}$ (d_{max} = 0.382 m)

CLIENTE:	PROGETTISTA:	SAIPEM	COMMESSA 7200189500	UNITÀ 001
snam	LOCALITÀ:	Porto Torres (SS)	001-CI-	E-10025
		ninale di Porto Torres Ingegneria di Base	Fg. 22 di 25	Rev . 00

Figura 15 - Andamento del momento flettente lungo i pali


MOMENTO FLETTENTE (M_{max} = 2444 kN m)

CLIENTE:	PROGETTISTA:	SAIPEM	COMMESSA 7200189500	UNITÀ 001
snam	LOCALITÀ:	Porto Torres (SS)	001-CI-E-10025	
	PROGETTO:	erminale di Porto Torres Ingegneria di Base	Fg. 23 di 25	Rev . 00

Figura 16 - Andamento del taglio lungo i pali

 $\underline{\mathsf{TAGLIO}}\ (\mathsf{V}_{\mathsf{max}} = 1387\ \mathsf{kN})$

CLIENTE:	PROGETTISTA:	SAIPEM	COMMESSA 7200189500	UNITÀ 001
snam	LOCALITÀ:	Porto Torres (SS)	001-CI-E-10025	
		minale di Porto Torres Ingegneria di Base	Fg. 24 di 25	Rev . 00

7 SINTESI DEI RISULTATI (B2 E B3)

La seguente tabella 9 riassume le caratteristiche del palo adottato per le Briccole B2 e B3.

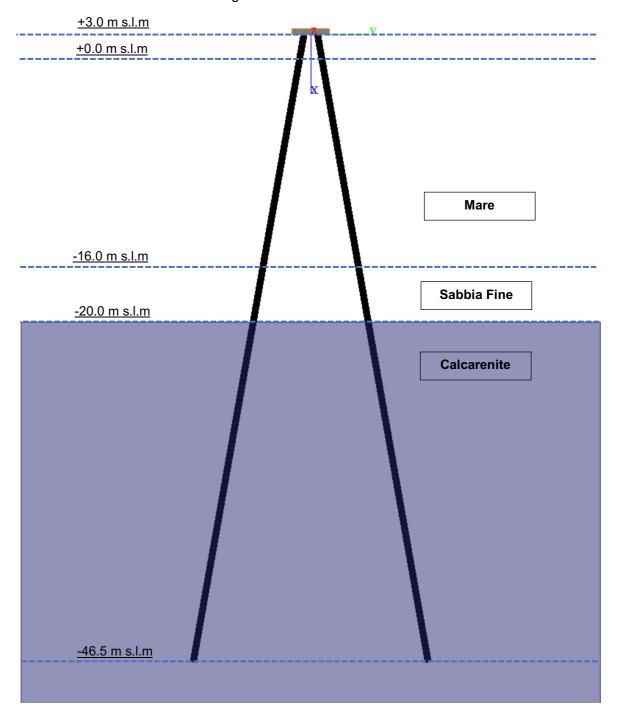
Tabella 9 - Caratteristiche del palo battuto con tubo d'acciaio aperto

Caratteristiche del palo battuto con tubo d'acciaio aperto			
Diametro (mm)	559		
Spessore (mm)	15.88		
Lunghezza totale (m)	52.5		
Lunghezza dal fondo del mare (m)	32.5		
Lunghezza dalla testa della roccia (m)	28.5		
Quota testa palo (m s.l.m)	+3.0		
Quota base palo (m s.l.m.)	-46,5		
Inclinazione assoluta sull'orizzontale	70.6°		

Le seguenti tabelle 10 e 11 riassumono rispettivamente la verifica di capacità portante e il massimo momento flettente risultante e taglio risultante sui pali dal modello Group (azioni non fattorizzate).

Tabella 10 - Azioni assiali massime sul palo singolo (fattorizzate) e capacità portante

Azioni massime sul palo	Carichi preliminari [kN]	Carichi dall'analisi di gruppo [kN]	Capacità portante del palo singolo [kN]
Compressione	4234	4858	7027
Trazione	5067	5700	5707


Tabella 11 - Momenti e tagli (non fattorizzati)

Massimo momento flettente risultante		Massimo taglio risultante		
	[kN.m]	Quota [m s.l.m]	[kN]	Quota [m s.l.m]
	2444	+3.0	1387	-21.6

Nella seguente figura 17 sono indicate le quote considerate nel modello.

CLIENTE:	PROGETTISTA:	SAIPEM	COMMESSA UNITÀ 7200189500 001	
snam	LOCALITÀ: Porto	Torres (SS)	001-CI-	E-10025
	PROGETTO: Terminale di Porto Torres Ingegneria di Base		Fg. 25 di 25	Rev . 00

Figura 17 - Modello studiato

