

GRV WIND SARDEGNA 5 S.R.L.

Via Durini, 9 20122 Milano Tel. +39.02.50043159 PEC: grvwindsardegna5@legalmail.it GRV WIND SARDEGNA 5 S.r.l.

Via Dyrini, 9
20112 Miliono (MI)
P. IVA 1875460963

PROGETTISTI

Progettisti: Ing. Mariano Marseglia Ing. Giuseppe Federico Zingarelli M&M ENGINEERING S.R.L.

Sede Operativa: Via I Maggio, 4 Orta Nova (FG)

Tel./Fax. +39.0885.791912 Email: ing.marianomarseglia@gmail.com Collaboratori: Ing. Giovanna Scuderi Ing. Dionisio Staffieri

PROGETTO

COMUNE ERULA

COMUNE TULA

PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO DENOMINATO "SA FIURIDA" COMPOSTO DA 5 AEROGENERATORI DA 6.3 MW, PER UNA POTENZA COMPLESSIVA DI 31,5 MW SITO NEL COMUNE DI ERULA (SS), CON OPERE DI CONNESSIONE NEI COMUNI DI ERULA (SS) E TULA (SS)

		CON	OPERE DI CONNESSIONE NEI COMUNI DI EK	(ULA (SS) E I	ULA	4 (55)		
Titolo: VALUTAZIONE RISORSA EOLICA E ANALISI DI PRODUCIBILITA' SIA-18								
Codice	Codice elaborato: EOL-SIA-18 Scala/Formato: A4							
0 Aprile 2022 Prima emissione ING. SAURO ING. SAURO						GRVALUE		
ı	REV.	DATA	DESCRIZIONE	ELABORAZIONE	١	/ERIFICA	APPROVAZIONE	

INDICE DELLE REVISIONI

VERSIONE	DATA	CODICE
1	Mag 2022	R20220517_EPR_V1

INDICE

EXE	CUTIVE SUMMARY	4
1.	DESCRIZIONE DEL SITO	5
2.	ANEMOLOGIA	7
3.	ANALISI OROGRAFIA	. 11
4.	MODELLO TURBINA EOLICA (WTG)	. 14
5.	ESTRAPOLAZIONE VENTOSITA' DA STAZIONE ANEMOMETRICA A WTG	. 15
6.	STIMA DI PRODUZIONE ENERGETICA P50	. 16
ALLE	EGATO A – REPORT INSTALLAZIONE TDM OZIERI 80 M	. 20
ALLE	EGATO B — TAB FILE DI WASP TDM OZIERI 80 M LONG-TERM	. 23
ALLE	EGATO C – SPECIFICHE DI DETTAGLIO WTG SIEMENS GAMESA SG170	. 25

EXECUTIVE SUMMARY

Il presente elaborato è parte integrante del progetto definitivo relativo al Parco Eolico Erula denominato "Sa Fiurida" e ne rappresenta lo studio di producibilità. Il Parco Eolico è sito nel comune omonimo nella parte nord della Sardegna. Il progetto prevede l'installazione di 5 aerogeneratori del tipo Siemens Gamesa SG170. Gli aerogeneratori hanno potenza nominale di base di 6,2MW con potenza di picco occasionale di 6,3MW sotto determinate condizioni di temperatura (versione AM+1), per una potenza complessiva del parco eolico di 31,5MW. L'altezza delle torri al mozzo (hub) è di 115m e il diametro delle pale è di 170m per una altezza complessiva della struttura pari a 200m fuori terra. Questi aerogeneratori sono del tipo con rotore tripala sopravento con pale e rotore controllati da un sistema (pitching & yawing) basato sul posizionamento ottimizzato in funzione delle varie condizioni di vento.

Dal punto di vista anemometrico le valutazioni del potenziale di sito saranno basate su Dati Misurati da una Stazione di altezza 80 m presente in sito (short-term da Febbraio 2021 a Aprile 2022) con aggiustamento long-term effettuato con Dati Storici di Rianalisi ERA5 (da Maggio 2012 a Aprile 2022) per definire la ventosità attesa di lungo termine alla Stazione stessa.

Nell'ambito dello studio si è approfondito altresì l'orografia del sito e della zona più ampia nel suo complesso e nell'esito non si sono riscontrate criticità di nota.

La Stima di Produzione Energetica P50 per la wind farm di potenza nominale totale di 31,5 MW è stata calcolata in 79,2 GWh/anno, pari a 2514 Ore Equivalenti annue.

Si sono altresì verificati i parametri minimi imposti da Delibera Regionale 3/17 del 2009 per confermare la congruenza del sito e della wind farm oggetto di questo studio a tali parametri.

1. DESCRIZIONE DEL SITO

Il proposto progetto eolico di Erula si colloca a sud della SP75 che collega Chiaramonti a Erula (come da **Figura 1**). Sassari è a circa 30 km a ovest rispetto al sito.

Figura 1 – Puntatore di ubicazione di wind farm Erula

Il layout di wind farm prevede 5 posizioni di WTG come da **Figura 2** ripresa da GoogleEarth. La zona è orograficamente complessa con le basi di WTG comprese nel range 440-550 m s.l.m., con superfici coperte prevalentemente da coltivazioni di foraggio, pascolo e con presenza diffusa di alberi e arbusti di bassa altezza, ovvero tali da non rappresentare ostacoli fisici da pregiudicare dal punto di vista strutturale le WTG di progetto quando operative. Si rileva altresì la presenza vicina di una wind farm operativa nell'arco est-sudest-sud rispetto alle 5 WTG di progetto.

Figura 2 – Lay-Out wind farm Erula su Google Earth Map

2. ANEMOLOGIA

Dal punto di vista anemometrico le valutazioni del potenziale di sito saranno basate sui dati misurati di una Torre di Misura (TDM) on-site di altezza 80 m ubicata a circa 3 km a sud rispetto al baricentro di sito e dati di Rianalisi virtuali ERA5 per la stessa TDM per un aggiustamento long-term del dato.

In dettaglio:

- a) Questa TDM, ricadente sotto il vicino comune di Ozieri in coordinate UTM WGS84 zone 32 493969-4509190, è stata installata dalla società Tecnogaia e avviata il 18 Febbraio 2021. I dati processati nell'ambito di questo elaborato sono fino al 30 Aprile 2022, per cui il tempo complessivo di misure è di circa 1,2 anni di dati.
- b) Gli strumenti di misura adottati alle varie altezze sono industry standard con anemometri modelli Thies First Class e NRG e con banderuole, termometri, misuratore di pressione della NRG. Il logger acquisitore dati è SecondWind Nomad2. Le altezze dei sensori sono presentate in **Tabella 1** seguente.

Tipo	Altezza (m)	Marca	Modello
Velocità	80	Thies 1st class	4.3352.00.000
Velocità	80	Thies 1st class	4.3352.00.000
Velocità	78	NRG	Max40
Velocità	65	NRG	Max40
Velocità	50	NRG	Max40
Velocità	30	NRG	Max40
Direzione	78	NRG	200P
Direzione	75	NRG	200P
Direzione	65	NRG	200M
Direzione	50	NRG	200M
Temperatura	4	NRG	110S
Pressione	4	NRG	BP20
Logger	2	SecondWind	Nomad2

Tabella 1 – Sensoristica Stazione di Misura Ozieri 80 m

Ulteriori informazioni sulle specifiche di TDM possono essere desunte in **Allegato A**, estratto da Report di installazione della stessa TDM. La stessa Tecnogaia si

- occupa di garantire un regolare funzionamento dei parametri di TDM, con report trimestrali a evidenziare i principali valori misurati ed eventuali anomalie funzionali.
- c) Un data Quality Check di dettaglio è stato effettuato per riscontrare che effettivamente non si hanno anomalie evidenti nel dato registrato (casi di overreading o under-reading, icing, ecc.). Si indicano in **Tabella 2** sotto le statistiche principali relative ai mesi di dati misurati per l'anemometro primario Thies First Class a 80 m.

					Weibull	Weibull
Anno	Mese	Vmedia	Vmax	Std. Dev.	k	С
		(m/s)	(m/s)	(m/s)		(m/s)
2021	Feb	5,33	13,47	3,45	1,604	5,970
2021	Mar	6,04	19,83	3,50	1,819	6,817
2021	Apr	6,06	19,69	3,17	2,013	6,846
2021	May	6,56	16,88	3,31	2,092	7,412
2021	Jun	4,38	12,73	2,18	2,115	4,941
2021	Jul	5,53	16,83	2,85	2,049	6,258
2021	Aug	5,09	14,15	2,65	2,018	5,755
2021	Sep	5,44	15,58	2,61	2,221	6,156
2021	Oct	5,47	17,25	2,64	2,192	6,180
2021	Nov	6,13	16,85	3,10	2,069	6,913
2021	Dec	7,29	20,63	4,01	1,892	8,220
2022	Jan	6,29	25,30	3,69	1,800	7,091
2022	Feb	6,84	30,26	4,15	1,704	7,669
2022	Mar	7,29	18,52	3,70	2,068	8,225
2022	Apr	7,64	19,05	3,69	2,183	8,620

Tabella 2 – Dati misurati elaborati da Stazione di misura Ozieri 80 m

d) I circa 1,2 anni di dati misurati in sito sono stati quindi rettificati per meglio rappresentare il long-term atteso alla TDM. Con tale finalità è stata generata da piattaforma 3tier una serie temporale di Rianalisi ERA5 di Virtual TDM centrata nella TDM Ozieri a 80 m per 10 anni esatti compresi tra Maggio 2012 e Aprile 2022, ovvero con un periodo di sovrapposizione dati misurati tra Febbraio 2021 e Aprile 2022. Con metodo di Wind Index si è potuto constatare che il periodo di

- dati misurati è sotto la media di lungo periodo e un incremento del 3.7% è da applicarsi, per cui la velocità media long-term di TDM Ozieri a 80 m è pari a circa 6,3 m/s per direzioni di vento prevalente nei settori nordovest ed est.
- e) Si mostra quindi in **Figura 3** il risultante TAB file long-term in WAsP format, ovvero i parametri di ventosità della Stazione suddivisi in 12 settori angolari principali: % Frequenza nel settore, fattori A e k della distribuzione di Weibull, velocità media in ciascun settore derivata da Weibull, potenza del vento contenuta per metro quadrato passante. Lo stesso TAB estrapolato è presentato in formato numerico in **Allegato B**.

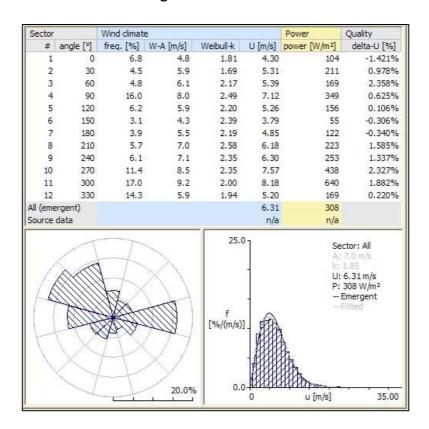


Figura 3 – Long-term TAB file di WAsP Stazione di Misura Ozieri 80 m

f) Nello studio si è altresì verificato il trend di ventosità atteso mediamente durante le 24h della giornata (Daily Wind Speed Profile). La verifica ha dimostrato che le ore di maggiore ventosità sono concentrate circa tra le ore 13:00 e le ore 19:00 (Figura 4), ovvero il futuro parco eolico proposto avrà le sue migliori performance di produzione in questa fascia di orario.

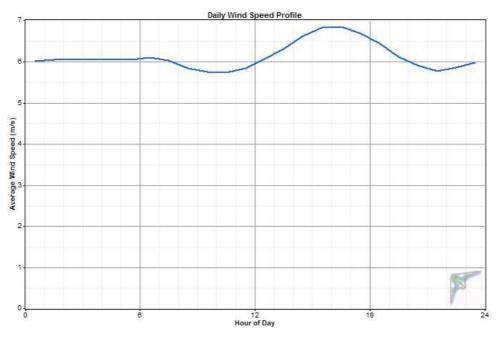


Figura 4 – Profilo velocità medie nelle 24h di Stazione di Misura Ozieri 80 m

g) Il trend di ventosità atteso mediamente durante i 12 mesi dell'anno (Monthly Wind Speed Profile) dimostra che la maggiore ventosità è presente tra novembre e maggio (Figura 5), ovvero il futuro parco eolico proposto avrà le sue migliori performance nei mesi invernali e primaverili.

Figura 5 – Profilo velocità medie mensili di Stazione di Misura Ozieri 80 m

3. ANALISI OROGRAFIA

In questa Sezione, partendo da una mappa satellitare SRTM con risoluzione DTM 10 m (passo griglia blu delle mappe 1000 m), l'obiettivo è di esaminare l'orografia generale di sito ed individuare eventuali fenomeni o criticità presenti nell'immediato intorno delle posizioni di WTG o anche effetti determinati da rilievi lontani dal sito. Nello specifico si esaminano le altimetrie, le pendenze del sito e le interdistanze tra WTG tenendo in considerazione che il modello di Turbina (WTG) proposta è la Siemens Gamesa SG170 6,2 MW, avente diametro rotore 170 m e altezza mozzo 115m per una altezza fuori terra complessiva di 200 m (ground to tip height). Ulteriori informazioni di dettaglio sul modello Turbina saranno trattate in una Sezione successiva.

a) Si premette innanzitutto che le coordinate e altitudini di base delle WTG oggetto di studio sono come da **Tabella 3** seguente:

ID Turbina	Altezza base (m)	UTM wgs84 32S Est	UTM wgs84 32S Nord
ER1	547	495716	4513384
ER2	482	495033	4513186
ER3	444	493342	4512031
ER4	490	493595	4511588
ER5	484	493242	4511052

Tabella 3 - WTG del Lay-Out wind farm Erula

b) Nell'orografia di sito estrapolata da DTM (**Figura 6**) si nota come Layout WTG e aree circostanti presentano una marcata variabilità di altimetria, comunque non critica per l'esposizione delle WTG ai venti prevalenti. Nella mappa, oltre le cinque WTG di sito, è indicata la Stazione di misura Ozieri 80 m collocata a sud.

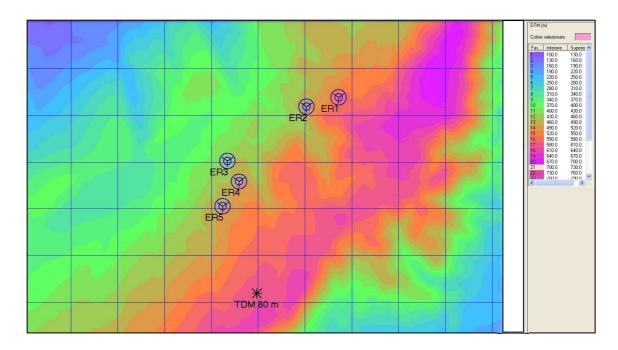


Figura 6 – WTG del Lay-Out wind farm Erula su DTM di altimetria

c) Dal punto di vista delle pendenze le WTG di layout si presentano in terreno con pendenze inferiori a 10 gradi nell'immediato intorno del layout (**Figura 7**).

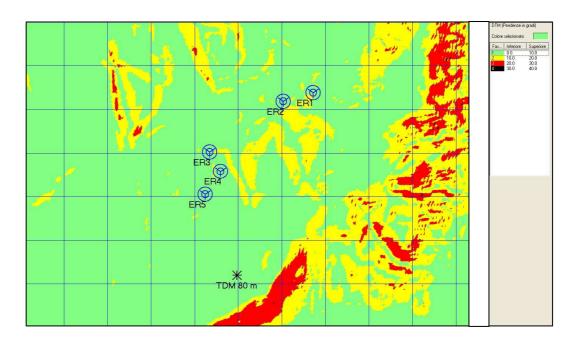


Figura 7 – WTG del Lay-Out wind farm Erula su DTM di clisimetria

d) Anche dal punto di vista interdistanze tra WTG non si rilevano criticità di nota, In particolare in **Figura 8** e considerando il modello WTG con diametro rotore 170m si mostrano le interdistanze 3D ritenute il tipico minimo progettuale. Per promemoria la griglia della mappa è con passo planimetrico 1000 m.

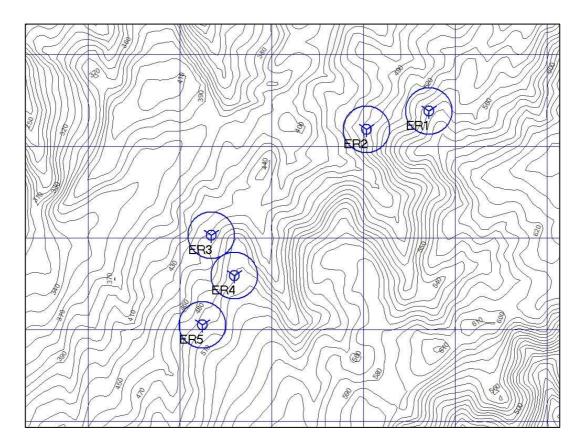


Figura 8 – Interdistanze WTG del Lay-Out wind farm Erula su mappa isoipse

4. MODELLO TURBINA EOLICA (WTG)

Il modello previsto da progetto è la Siemens Gamesa SG170 come da quadro sintetico di **Tabella 4** seguente.

Modello WTG	Siemens Gamesa SG170 vers. AM+1
Potenza Nominale	6,2 MW con power-up fino 6,3 MW
Diametro Rotore D	170 m
Altezza mozzo H	115 m
Altezza totale fuori terra	200 m
Velocità di Cut-in / Cut-out / Re Cut-in	3,0 – 25,0 – 22,0 m/s

Tabella 4 – Specifiche principali WTG Siemens Gamesa SG170 vers. AM+1

Gli ulteriori dettagli di WTG sono desumibili in Allegato C.

5. ESTRAPOLAZIONE VENTOSITA' DA STAZIONE ANEMOMETRICA A WTG

Successivamente allo studio dell'anemologia (Sezione 2) e dell'orografia di sito (Sezione 3) si sono effettuati i seguenti passaggi salienti per derivare la ventosità long-term prevista al Layout di progetto e modello WTG (da Sezione 4):

- a) Il software WAsP è stato adottato per estrapolare il regime di ventosità alle 5 WTG di progetto ad altezza 70 m (per effettuare poi verifica di velocità media a questa altezza e sua aderenza ai criteri minimi regionali per cui deve essere >5m/s ad ogni punto WTG) e 115 m sopra piano campagna usando la Stazione Anemometrica Ozieri di 80 m come punto di inizializzazione di modello e adottando la Distribuzione di Frequenza Long-Term determinata in Sezione 2 (Allegato B).
- b) Ulteriore passaggio è stato di verificare la velocità media long-term prevista a tutte le 5 posizioni di WTG a 70 m, le quali soddisfano come da **Tabella 5** i criteri minimi per cui devono essere maggiore di 5 m/s sanciti da Delibera Regionale 3/17 del 2009.

ID Turbina	UTM wgs84 32S Est	UTM wgs84 32S Nord	Velocità media del vento libero a 70 m (m/s)
ER1	495716	4513384	5,84 > 5 m/s
ER2	495033	4513186	5,31 > 5 m/s
ER3	493342	4512031	5,31 > 5 m/s
ER4	493595	4511588	5,67 > 5 m/s
ER5	493242	4511052	5,45 > 5 m/s

Tabella 5 – Verifica Velocità minima a 70m di WTG wind farm Erula

6. STIMA DI PRODUZIONE ENERGETICA P50

La ventosità determinata tramite software WAsP come Distribuzione di Frequenza Long-Term ai 5 punti WTG del Lay-out è stata dunque caricata nel software WindFarmer per la previsione delle Efficienze di Scia (Wake Efficiency) e il calcolo delle Efficienze di Sistema (System Efficiency), ovvero tutte quelle perdite tecniche che si devono computare per il passaggio da una produzione lorda a una produzione netta di wind farm.

L'obiettivo di questo calcolo è la determinazione del valore a P50, ovvero tenendo conto che il processo di calcolo è essenzialmente probabilistico e non deterministico (per variabilità interannuale del vento, incertezze di modellistica, ecc,), il P50 è quel valore che rappresenta la media di un calcolo probabilistico degli scenari ipotizzabili.

In base alle premesse si presentano in **Tabella 6** sottostante i risultati di Stima di Produzione Energetica a P50, con ipotesi modello WTG Siemens Gamesa SG170 6,2 MW (con power-up fino 6,3 MW sotto determinate condizioni di temperatura) di diametro rotore 170 m e altezza mozzo 115 m:

Numero di WTG	5	
Potenza Nominale totale sito	31,5	MW
Efficienza di Scia	95,47	%
Efficienza elettrica	97,5	%
Disponibilità WTG	98,0	%
Disponibilità BOP	99,0	%
Degradazione pale	99,5	%
Fermo Utility	100	%
Variazione curva di potenza	98,5	%
Isteresi ad alti venti	99,8	%
Sector Management	100	%
Produzione energetica annua netta stimata	79,2	GWh/anno
Fattore di capacità stimato	28,68	%
Ore Equivalenti annue	2514	he

Tabella 6 – Quadro di dettaglio Stima di Produzione annua P50 di wind farm Erula

In dettaglio si spiegano le Perdite considerate nel computo di tabella precedente:

a) Efficienza di Scia: ciò è dovuto alla riduzione della velocità del vento esercitata dalle schermature che si determinano tra turbine eoliche, dove per un determinata direzione del vento alcune WTG arretrate rispetto alla direzione del vento sono schermate dalle WTG ubicate in posizione più avanzata, Il valore in tabella è calcolato sulla base del modello teorico Eddy Viscosity con software WindFarmer. In tale computo è stato altresì considerato l'effetto scia causato dalla vicina wind farm operativa ubicata a sudest rispetto al sito.

- b) *Efficienza Elettrica:* è dovuto alle perdite elettriche per effetto joule nei cavi interni del parco, nei trasformatori e in altri componenti dell'impianto elettrico interno alle WTG. Il valore in tabella è <u>ipotizzato</u> sulla base delle caratteristiche di progetto della wind farm in questione.
- c) *Disponibilità WTG:* è dovuta ai fermi delle apparecchiature di WTG per manutenzione ordinaria, straordinaria o problemi tecnici, e tiene conto di fattori legati alla tecnologia di WTG e la logistica di manutenzione pianificata. Il valore è <u>ipotizzato</u> sulla base di dati reali storici di impianti con caratteristiche tecniche analoghe alla wind farm in questione.
- d) *Disponibilità BOP:* è dovuta ai fermi di tutte le altre apparecchiature di wind farm per manutenzione ordinaria, straordinaria o problemi tecnici (cavidotti, problemi di sottostazione, problemi di accesso WTG per dissesto rete stradale interna di wind farm, ecc,). Il valore è <u>ipotizzato</u> sulla base di dati reali storici di impianti con caratteristiche tecniche analoghe alla wind farm in questione.
- e) Degradazione aerodinamica pale: è dovuto alle perdite di efficienza aerodinamica dovute alla formazione di sporco o ghiaccio che alterano il profilo aerodinamico delle pale. In base alla climatologia dell'area di parco il valore è <u>ipotizzato</u> sulla base di dati reali storici di impianti con caratteristiche tecniche analoghe alla wind farm in questione.
- f) Disponibilità Rete Nazionale: è dovuta all'impossibilità in taluni casi di evacuare l'energia prodotta dalla wind farm per problemi di modulazione, manutentivi o tecnici

della rete nazionale a cui il parco è allacciato. In questa sede <u>non si sono ipotizzate</u> <u>perdite</u> in tal senso.

g) *Variazione curva di potenza:* eventuali deviazioni della performance di WTG rispetto ai valori garantiti, anche per casi di Lay-Out subottimale o non conforme. Una verifica di interdistanze WTG è stata effettuata sui 12 settori angolari per estrapolare un valore <u>calcolato</u> sulla base della distribuzione di frequenza del vento e le WTG in scia le cui performance possono essere energeticamente dal 5 al 10% inferiori rispetto alle WTG soggette al vento libero incidente.

h) *Isteresi ad alti venti:* è dovuta alle perdite di energia provocate dal ciclo di isteresi iterativo del sistema di controllo tra la velocità di cut-off di WTG (25,0 m/s quando la WTG viene fermata) e la velocità di re-cut-in di WTG (22,0 m/s ovvero quando la WTG viene riavviata). Questo <u>parametro è stato calcolato</u> sulla base della performance di WTG e la ventosità specifica di ogni WTG di Lay-Out.

i) Sector Management: eventuali interdistanze WTG subottimali possono determinare l'esigenza di un fermo WTG programmato per alcune WTG di wind farm allo scopo di preservarne l'integrità strutturale in certe condizioni di vento (es: alta turbolenza, alto vento da una certa direzione, ecc,). Lo studio preliminare di questo parametro in particolare non ha fatto emergere la necessità di fermi WTG e quindi si è calcolata una perdita di Sector Management pari a zero.

Da notare che l'applicazione di power-up mode AM+1 con rating esteso da 6.2MW a 6.3MW nel range di velocità 12-20m/s consentirebbe al sito specifico un incremento di produzione fino a un +0.5% circa, per cui migliorativo rispetto al P50 da **Tabella 6**. È opportuno segnalare che il power-up mode è attivato sotto determinate circostanze di condizioni di temperatura di hub height (<28°C) e condizioni di rete elettrica, tutte soggette a real-time monitoring ed averaging dinamico fatto da Controller di WTG e da SCADA di parco.

I risultati P50 individuali di WTG per i parametri principali sono riportati nella **Tabella 7** che segue. Da questi risultati si desume che tutte le 5 WTG proposte soddisfano il criterio della produzione minima netta annua P50 di almeno 2000 Ore Equivalenti imposte da Delibera Regionale 3/17 del 2009.

ID Turbina	Velocità media del vento libero (m/s)	Resa Netta P50 (MWh/anno)	Ore Equivalenti P50 (h/anno)
ER1	6,49	17224	2734 > 2000
ER2	6,02	14902	2365 > 2000
ER3	6,03	15440	2451 > 2000
ER4	6,32	15788	2506 > 2000
ER5	6,17	15856	2517 > 2000

Tabella 7 – Quadro sintetico Stima di Produzione annua P50 di WTG wind farm Erula

A titolo di riferimento per la finalità di questo studio non si tratteranno eventuali studi delle incertezze di modellistica e di scenari di probabilità PXX in quanto situazioni da considerare tipicamente per una bancabilità e finanziamento futuro di progetto.

Valutazioni preliminari di producibilità wind farm "Sa Fiurida" Erula

ALLEGATO A – REPORT INSTALLAZIONE TDM OZIERI 80 M

QUALIFICAZIONE DEI DATI ANEMOLOGICI DI UN SITO

Scheda della stazione anemometrica

Sito: Ischinditta		Fornitore: Tecnogai	a
Data	Codifica documento	Archivio	Compilato da

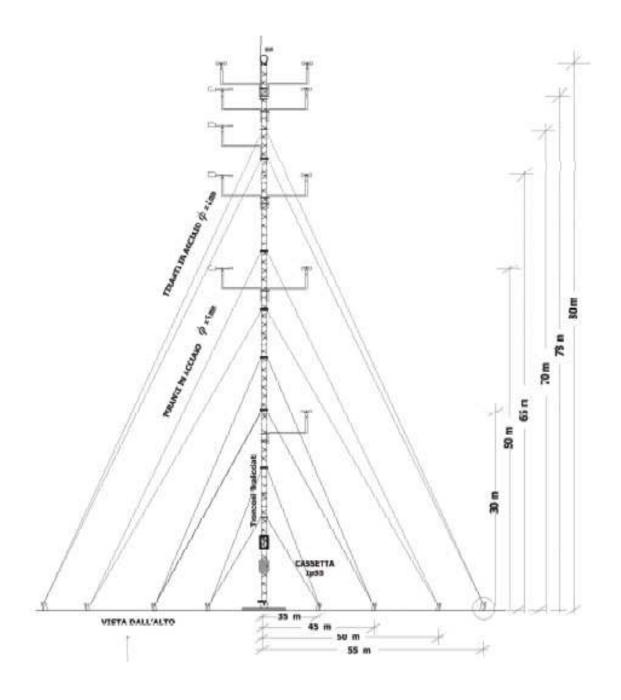
Sezione A) – Dati identificativi della stazione anemometrica

Nome stazione (max 16 car.): **Ischinditta**Codice: **2048**Comune di: **Ozieri**Provincia: **SS**Regione: **Sardegna**

Tavoletta IGMI: Monte Sassu Foglio nº: 180 II SE

Sezione B) - Dati identificativi delle apparecchiature

SENSORI DIGITALI				Calibrazione		Orient	amento	
N	Про	h dal suolo(m)	Marca	modello	Matricola	nº inventario	mensole	
Α	Velocità	80	THIES FC	4.3352.00.000	10191172	TG20-3022	20	5°
В	Velocità	80	THIES FC	4.3352.00.000	10191174	TG20-3024	_	5°
С	Velocità	78	NRG	MAX40C	179500328733	TG20-3032	20	5°
D	Velocità	65	NRG	MAX40C	179500328742	TG20-3039	20	5°
E	Velocità	50	NRG	MAX40C	179500328744	TG20-3041	20	.5°
F	Velocità	30	NRG	MAX40C	179500315372	TG19-2962	20)5°
51	ENSORI AN	ALOGICI		modello	-8t	-0:	Orient.	Rotaz
N	Тіро	h dal suolo(m)	Marca	modelio	n° matricola	n° inventario	Sensore	Positiva verso
Α	Direzione	78	NRG	200P	179900034372	TG20/3045	25°	Est
В	Direzione	75	NRG	200P	179900034472	TG20/3044	25°	Est
С	Direzione	65	NRG	200M	100700034473	TG20/3046	25°	Est
D	Direzione	50	NRG	200M	100700034474	TG20/3047	25°	Est
E	Temp.	4	NRG	1108		TG18/2651	0°	
F	Press.	4	NRG	BP20	18055293	TG18/2643		
G								
ACQUISITORE SE		SECONDWIND	NOMAD2	# 06769	TG19/2896		SORI: GPRS	
50	STEGNO (Calzavara	TSTL					
	Contenito	re appare	ecchiature	SECONDWIND				


Coordinate chilometriche **UTM ED50**: long. **494 050** - latit. **4 509 380** - Fuso **32** Coordinate chilometriche **UTM WGS84**: long. **493 969** - latit. **4 509 190** - Fuso **32**

Altitudine in metri s.l.m.: 602

Caratteristiche orografiche: MEZZACOSTA Utilizzo del terreno: PASCOLO

Dimensioni dell'area interessata: 1 (kmq) Accessibilità: Scarsa

Presenza linee elettriche: BT rurale a 60m dal P.I.

ALLEGATO B - TAB FILE DI WASP TDM OZIERI 80 M LONG-TERM

40.70	8.90	80.00										
12 1.	037 0											
	6.830	4.516	4.826	15.971	6.229	3.141	3.939	5.723	6.120	11.449	16.973	14.279
0.5	3.2	8.2	5.1	3.0	1.4	3.0	0.7	0.5	3.1	0.7	2.6	3.1
1.5	69.8	97.4	68.2	25.3	48.1	59.0	44.7	33.7	38.7	32.2	28.4	46.3
2.5	160.6	166.6	114.9	42.7	95.0	197.1	130.1	73.2	81.6	72.4	75.6	113.6
3.5	210.5	135.1	127.9	64.3	134.0	232.2	165.7	101.8	86.5	81.1	85.8	153.5
4.5	168.6	90.6	122.7	91.0	157.9	229.5	163.4	124.0	113.2	67.9	80.1	155.6
5.5	140.6	102.3	137.3	115.5	170.8	143.5	172.6	123.3	134.7	86.1	74.8	147.4
6.5	102.7	87.5	141.3	135.1	138.1	84.8	110.4	136.6	120.6	101.4	74.8	134.9
7.5	77.7	77.9	116.7	128.5	97.7	35.9	88.0	125.0	125.3	106.8	88.0	103.6
8.5	23.3	62.3	62.6	116.7	73.9	9.9	58.8	109.6	96.2	97.7	85.2	59.5
9.5	9.9	64.2	39.1	98.9	37.5	4.5	41.1	85.3	77.9	99.3	70.6	27.5
10.5	12.1	49.5	33.0	69.7	22.8	0.0	18.9	48.9	60.9	72.1	77.5	19.6
11.5	10.8	22.0	17.5	46.8	9.1	0.4	4.6	21.0	32.6	69.3	66.9	10.7
12.5	4.9	17.9	7.4	29.3	5.8	0.0	0.0	12.4	15.3	49.0	49.4	9.5
13.5	2.8	8.7	3.9	11.9	5.7	0.0	1.0	3.3	6.2	28.0	37.6	6.0
14.5	1.7	4.2	1.0	9.4	2.0	0.0	0.0	1.5	3.9	16.9	31.2	3.5
15.5	0.5	3.8	0.4	5.1	0.3	0.0	0.0	0.0	1.9	9.1	20.3	2.3
16.5	0.3	1.7	0.4	4.0	0.0	0.0	0.0	0.0	0.8	4.0	18.2	1.1
17.5	0.0	0.2	0.6	2.1	0.0	0.0	0.0	0.0	0.2	2.9	13.5	1.2
18.5	0.0	0.0	0.2	0.8	0.0	0.0	0.0	0.0	0.2	1.0	8.6	0.5
19.5	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.3	0.6	5.5	0.4
20.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	1.7	0.1
21.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	1.0	0.0
22.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0
23.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.1
24.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
25.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0
26.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0

Valutazioni preliminari di producibilità wind farm "Sa Fiurida" Erula

ALLEGATO C – SPECIFICHE DI DETTAGLIO WTG SIEMENS GAMESA SG170

Developer Package SG 6.2-170

3. Technical Specifications

Rotor			
Туре	3-bladed, horizontal axis		
Position	Upwind		
Diameter	170 m		
Swept area	22,698 m²		
Power regulation	Pitch & torque regulation with variable speed		
Rotor tilt	6 degrees		

Blade			
Туре	Self-supporting		
Blade length	83,5 m		
Max chord	4.5 m		
Aerodynamic profile	Siemens Gamesa proprietary airfoils		
Material	G (Glassfiber) – CRP (Carbon Reinforced Plastic)		
Surface gloss	Semi-gloss, < 30 / ISO2813		
Surface color	Light grey, RAL 7035 or		

Aerodynamic Brake			
Туре	Full span pitching		
Activation	Active, hydraulic		

Load-Supporting Parts		
Hub	Nodular cast iron	
Main shaft	Nodular cast iron	
Nacelle bed frame	Nodular cast iron	

Nacelle Cover	
Туре	Totally enclosed
Surface gloss	Semi-gloss, <30 / ISO2813
Color	Light Grey, RAL 7035 or White, RAL 9018

Generator	
Туре	Asynchronous, DFIG

Grid Terminals (LV)				
Baseline nominal power	6.0MW/6.2 MW			
Voltage	690 V			
Frequency	50 Hz or 60 Hz			

Yaw System			
Туре	Active		
Yaw bearing	Externally geared		
Yaw drive	Electric gear motors		
Yaw brake	Active friction brake		

Controller				
Туре	Siemens Integrated Control System (SICS)			
SCADA system	MySite360			

Tower				
Туре	Tubular steel / Hybrid			
Hub height	100m to 165 m and site- specific			
Corrosion protection				
Surface gloss	Painted			
Color	Semi-gloss, <30 / ISO-2813 Light grey, RAL 7035 or White, RAL 9018			

Operational Data				
Cut-in wind speed	3 m/s			
Rated wind speed	11.0 m/s (steady wind without turbulence, as defined by IEC61400-1)			
Cut-out wind speed	25 m/s			
Restart wind speed	22 m/s			

Weight	
	Different modules depending
Modular approach	on restriction

8. Tower Dimensions

SG 6.2-170 is offered with an extensive tower portfolio ranging from 100m-165m, including the baseline 115m and 165m catalogue towers. All towers are designed in compliance with local logistics requirements. Information about other tower heights and logistic will be available upon request.

8.1. Tower hub height 100m IIIA. Tapered tubular steel tower

T100-51A_Rev01a	Section 1	Section 2	Section 3	Section 4
External diameter upper flange (m)	4,700	4,493	4,493	3,503
External diameter lower flange (m)	4,700	4,700	4,493	4,493
Section's height (m)	14,300	21,560	26,880	34,450
Flange type [bottom-top]	T-T	T-L	L-L	L-Top
Total weight (kg)	84983	79746	76060	75793
Total Tower weight (kg)	316582			

8.2. Tower hub height 101.5m IIIA. Tapered tubular steel tower

T101.5-50A_Rev03f	Section 1	Section 2	Section 3	Section 4	Section 5	Section 6
External diameter upper flange (m)	4,297	4,500	4,495	4,495	4,100	3,503
External diameter lower flange (m)	4,500	4,500	4,500	4,495	4,495	4,100
Section's height (m)	9,930	16,520	13,440	15,960	21,000	21,850
Flange type [bottom-top]	T-T	T-L	L-L	L-L	L-L	L-Top
Total weight (kg)	65558	70497	47749	47266	47619	49717
Total Tower weight (kg)	328408					

8.3. Tower hub height 115m IIIA. Tapered tubular steel tower

•		•			
T115-50A_Rev01a	Section 1	Section 2	Section 3	Section 4	Section 5
External diameter upper flange (m)	4,700	4,436	4,427	4,021	3,503
External diameter lower flange (m)	4,700	4,700	4,436	4,427	4,021
Section's height (m)	13,284	18,200	23,800	27,160	29,970
Flange type [bottom-top]	T-T	T-L	L-L	L-L	L-Top
Total weight (kg)	85636	85143	85408	73226	64918
Total Tower weight (kg)	394329				

8.4. Tower hub height 115m CS Brazil. Tapered tubular steel tower

T115-51A_Rev00a	Section 1	Section 2	Section 3	Section 4	Section 5
External diameter upper flange (m)	4,800	4,793	4,793	4,793	3,503
External diameter lower flange (m)	4,800	4,800	4,793	4,793	4,793
Section's height (m)	11,780	17,920	21,840	28,000	32,770
Flange type [bottom-top]	T-T	T-L	L-L	L-L	L-Top
Total weight (kg)	86804	84644	81556	77286	72512
Total Tower weight (kg)	402801				

8.5. Tower hub height 115m CS Germany. Tapered tubular steel tower

T115-53A_Rev01a	Section 1	Section 2	Section 3	Section 4	Section 5
External diameter upper flange (m)	4,500	4,394	4,386	4,021	3,503
External diameter lower flange (m)	4,500	4,500	4,394	4,386	4,021
Section's height (m)	12,292	16,520	21,280	30,240	32,082
Flange type [bottom-top]	T-T	T-L	L-L	L-L	L-Top
Total weight (kg)	84720	82737	81957	80443	70030
Total Tower weight (kg)	399887				

11. Flexible Rating Specifications ®

The SG 6.2-170 is offered with various operational modes that are achieved through the flexible operating capacity of the product, enabling the configuration of an optimal power rating that is best suited for each wind farm. The operating modes are broadly divided into two categories: Application Modes and Noise Reduction System Modes⁵.

12. Application Modes

Application Modes ensure optimal turbine performance with maximum power rating allowed by the structural and electrical systems of the turbine. There are multiple Application Modes, offering flexibility of different power ratings. All Application Modes are part of the turbine Certificate.

SG 6.2-170 can offer increased operation flexibility with modes based on AM 0 with reduced power rating. For SG 6.2-170 there are as well two application modes with increased rating. These modes are created with same noise performance of the corresponding Application Mode 0 (full rated power) but with different rating and temperature de-rating than the corresponding Application Mode 0. In addition, the turbine's electrical performance is constant for the full set of application modes, as shown on the table below.

The SG 6.2-170 is designed with a base wind class, applicable to AM 0, of IEC IIIA for 20 year lifetime as well as IEC IIIB for 25 year lifetime. All other Application Modes may be analyzed for more demanding site conditions.

12.1. Full list of Application Modes SG 6.2-170

									Max temperature
Rotor	r Application Power Curve		Acoustic Emission	Elec	trical Perf	With Max active power and			
Configuration	mode	[MW]	[dB(A)]	Document	Document	Cos Phi	Voltage Range	Frequency range	electrical capabilities ⁶
SG 6.2-170	AM +2	6.4	106	D3071271	D3071321	0.9	[0.95,1.1 2] Un	±3% Fn	25°C
SG 6.2-170	AM +1	6.3	106	D3071274	D3071333	0.9	[0.95,1.1 2] Un	±3% Fn	28°C
SG 6.2-170	AM 0	6.2	106	D2075729	D2359593	0.9	[0.95,1.1 2] Un	±3% Fn	30°C
SG 6.2-170	AM-1	6.1	106	D2356499	D2359593	0.9	[0.95,1.1 2] Un	±3% Fn	33°C
SG 6.2-170	AM-2	6.0	106	D2356509	D2359593	0.9	[0.95,1.1 2] Un	±3% Fn	35°C
SG 6.2-170	AM-3	5.9	106	D2356523	D2359593	0.9	[0.95,1.1 2] Un	±3% Fn	37°C
SG 6.2-170	AM-4	5.8	106	D2356539	D2359593	0.9	[0.95,1.1 2] Un	±3% Fn	38°C

⁵ It should be noted that the definition of various modes as described in this chapter is applicable in combination with standard temperature limits and grid capabilities of the turbine. Please refer to High Temperature Power De-rating Specification and Reactive Power Capability Document for more information

⁶ Please Refer to "Power De-rating Specification" for more details'

			SG 6.2-17	0 Mode AM	l 0 Power c	urves [kW]			
Ws hub				Air	density [kg/	/m³]			
[m/s]	1.225	1.06	1.09	1.12	1.15	1.18	1.21	1.24	1.27
3.0	89	75	77	80	82	85	88	90	93
3.5	178	145	151	157	163	169	175	181	187
4.0	328	272	282	292	302	312	323	333	343
4.5	522	439	454	470	485	500	515	530	545
5.0	758	644	665	686	706	727	748	769	789
5.5	1040	888	916	944	971	999	1027	1054	1082
6.0	1376	1179	1215	1250	1286	1322	1358	1394	1430
6.5	1771	1521	1566	1612	1657	1703	1748	1794	1839
7.0	2230	1919	1976	2032	2089	2146	2202	2259	2315
7.5	2758	2377	2446	2516	2585	2654	2723	2793	2862
8.0	3351	2893	2977	3060	3144	3227	3310	3392	3474
8.5	3988	3455	3553	3652	3749	3846	3941	4035	4127
9.0	4617	4033	4145	4255	4363	4467	4568	4664	4756
9.5	5166	4586	4706	4820	4928	5029	5122	5208	5288
10.0	5584	5074	5191	5296	5390	5475	5549	5616	5675
10.5	5862	5466	5567	5652	5725	5786	5839	5884	5922
11.0	6028	5753	5830	5891	5940	5981	6013	6040	6063
11.5	6117	5944	5997	6036	6067	6090	6109	6124	6136
12.0	6161	6061	6094	6117	6135	6148	6157	6165	6171
12.5	6183	6128	6147	6160	6169	6176	6181	6184	6187
13.0	6192	6164	6174	6181	6186	6189	6191	6193	6194
13.5	6197	6182	6188	6191	6194	6195	6196	6197	6198
14.0	6199	6192	6194	6196	6197	6198	6198	6199	6199
14.5	6199	6196	6197	6198	6199	6199	6199	6199	6200
15.0	6200	6198	6199	6199	6199	6200	6200	6200	6200
15.5	6200	6199	6199	6200	6200	6200	6200	6200	6200
16.0	6200	6200	6200	6200	6200	6200	6200	6200	6200
16.5	6200	6200	6200	6200	6200	6200	6200	6200	6200
17.0	6200	6200	6200	6200	6200	6200	6200	6200	6200
17.5	6200	6200	6200	6200	6200	6200	6200	6200	6200
18.0	6200	6200	6200	6200	6200	6200	6200	6200	6200
18.5	6200	6200	6200	6200	6200	6200	6200	6200	6200
19.0	6200	6200	6200	6200	6200	6200	6200	6200	6200
19.5	6200	6200	6200	6200	6200	6200	6200	6200	6200
20.0	6200	6200	6200	6200	6200	6200	6200	6200	6200
20.5	6080	6080	6080	6080	6080	6080	6080	6080	6080
21.0	5956	5956	5956	5956	5956	5956	5956	5956	5956
21.5	5832	5832	5832	5832	5832	5832	5832	5832	5832
22.0	5708	5708	5708	5708	5708	5708	5708	5708	5708
22.5	5584	5584	5584	5584	5584	5584	5584	5584	5584
23.0	5460	5460	5460	5460	5460	5460	5460	5460	5460
23.5	5336	5336	5336	5336	5336	5336	5336	5336	5336
24.0	5212	5212	5212	5212	5212	5212	5212	5212	5212
24.5	5088	5088	5088	5088	5088	5088	5088	5088	5088
25.0	4964	4964	4964	4964	4964	4964	4964	4964	4964

			SG 6.2	-170 Mode	AM 0 ct cu	ırves [-]			
Ws hub				Air	density [kg/	/m³]			
[m/s]	1.225	1.06	1.09	1.12	1.15	1.18	1.21	1.24	1.27
3.0	0.953	0.953	0.953	0.953	0.953	0.953	0.953	0.953	0.953
3.5	0.880	0.880	0.880	0.880	0.880	0.880	0.880	0.880	0.880
4.0	0.847	0.847	0.847	0.847	0.847	0.847	0.847	0.847	0.847
4.5	0.828	0.828	0.828	0.828	0.828	0.828	0.828	0.828	0.828
5.0	0.824	0.824	0.824	0.824	0.824	0.824	0.824	0.824	0.824
5.5	0.828	0.828	0.828	0.828	0.828	0.828	0.828	0.828	0.828
6.0	0.833	0.833	0.833	0.833	0.833	0.833	0.833	0.833	0.833
6.5	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836
7.0	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837
7.5	0.835	0.835	0.835	0.835	0.835	0.835	0.835	0.835	0.835
8.0	0.825	0.825	0.825	0.825	0.825	0.825	0.825	0.825	0.825
8.5	0.802	0.804	0.804	0.804	0.803	0.803	0.802	0.801	0.800
9.0	0.759	0.767	0.767	0.766	0.765	0.763	0.761	0.757	0.753
9.5	0.696	0.716	0.715	0.712	0.709	0.705	0.699	0.693	0.686
10.0	0.620	0.654	0.651	0.646	0.640	0.633	0.625	0.615	0.605
10.5	0.541	0.588	0.582	0.575	0.566	0.556	0.546	0.535	0.524
11.0	0.466	0.521	0.513	0.503	0.493	0.483	0.472	0.461	0.450
11.5	0.402	0.458	0.448	0.438	0.428	0.417	0.407	0.396	0.386
12.0	0.347	0.401	0.391	0.381	0.371	0.361	0.352	0.343	0.334
12.5	0.303	0.351	0.342	0.333	0.324	0.315	0.307	0.299	0.291
13.0	0.266	0.309	0.300	0.292	0.284	0.276	0.269	0.262	0.256
13.5	0.235	0.273	0.265	0.258	0.251	0.244	0.238	0.232	0.226
14.0	0.209	0.243	0.236	0.229	0.223	0.217	0.212	0.207	0.202
14.5	0.187	0.217	0.211	0.205	0.200	0.195	0.190	0.185	0.181
15.0	0.169	0.195	0.190	0.185	0.180	0.175	0.171	0.167	0.163
15.5	0.153	0.176	0.171	0.167	0.163	0.158	0.155	0.151	0.147
16.0	0.139	0.160	0.156	0.152	0.148	0.144	0.141	0.137	0.134
16.5	0.127	0.146	0.142	0.138	0.135	0.132	0.128	0.125	0.123
17.0	0.117	0.134	0.130	0.127	0.124	0.121	0.118	0.115	0.113
17.5	0.108	0.124	0.120	0.117	0.114	0.112	0.109	0.106	0.104
18.0	0.100	0.115	0.112	0.109	0.106	0.104	0.101	0.099	0.097
18.5	0.093	0.107	0.104	0.101	0.099	0.096	0.094	0.092	0.090
19.0	0.087	0.100	0.097	0.095	0.093	0.090	0.088	0.086	0.084
19.5	0.082	0.094	0.091	0.089	0.087	0.085	0.083	0.081	0.079
20.0	0.077	0.088	0.086	0.084	0.082	0.080	0.078	0.076	0.075
20.5	0.066	0.075	0.073	0.071	0.069	0.068	0.066	0.065	0.064
21.0	0.060	0.068	0.067	0.065	0.064	0.062	0.061	0.060	0.058
21.5	0.055	0.063	0.061	0.060	0.058	0.057	0.056	0.055	0.054
22.0	0.051	0.058	0.056	0.055	0.054	0.053	0.051	0.050	0.049
22.5	0.047	0.053	0.052	0.051	0.050	0.048	0.047	0.046	0.046
23.0	0.043	0.049	0.048	0.047	0.046	0.045	0.044	0.043	0.042
23.5	0.040	0.045	0.044	0.043	0.042	0.041	0.040	0.040	0.039
24.0	0.037	0.042	0.041	0.040	0.039	0.038	0.037	0.037	0.036
24.5	0.034	0.039	0.038	0.037	0.036	0.035	0.035	0.034	0.033
25.0	0.032	0.036	0.035	0.034	0.034	0.033	0.032	0.034	0.033