

NOME PROGETTO:

Costruzione ed esercizio di un impianto agrovoltaico avente potenza in immissione pari a 240,500 MW, con relativo collegamento alla rete elettrica, sito nei comuni di Castel di Iudica e Ramacca (CT) - Impianto "FICURINIA".

ID. PROGETTO DEL MITE:

PROCEDURA:

Valutazione di impatto ambientale ai sensi dell'art. 23 c. 1 del D.Lgs. 152/06 e ss.mm.ii..

PROPONENTE:

INE FICURINIA S.R.L Piazza di Sant Anastasia 7 00186 Roma (RM) ineficuriniasrl@legalmail.it

RESPONSABILE PROGETTO: Ing. Jury Mancinelli

INE FICURINIA S.R.L.
a company of ILOS New Energy Italy
P.IVA e C.F.: IT 1) 311551002
Se de legale: Piazza di Sa.: Arrastasia 7, 00186 Roma
in ficuriniasri@legal nai

Legale rappresentante: Ing. Sergio Chiericoni

ELABORATO REDATTO DA:

IDENTIFICATORE ELABORATO:

RS06REL092A0

CARTELLA:

\VIA 2

TITOLO ELABORATO:

Relazione di calcolo - tabulati - Struttura di supporto FV da 24M

SCALA:

-

PROGETTAZIONE E COORDINAMENTO

Arato SRL
Dott. Ing. Giada Stella Maria Bolignano
Ordine degli Ingegneri, Prov. di Reggio Calabria, n. A 2508
Via Diaz, 74 - 74023 Grottaglie (TA)
info@aratosrl.com

OPERE ELETTRICHE

Studio Tecnico BFP SRL
Dott. Ing. Danilo Pomponio
Ordine degli Ingegneri, Prov. di Bari, n. A6222
Via Degli Arredatori, 8 - 70026 Modugno (BA)
info@bfpgroup.net

ACUSTICA

Dott. Ing. Marcello Latanza Ordine degli Ingegneri, Prov. di Taranto, n. A2166 via Costa 25/b - 74027 S. Giorgio Jonico (TA) marcellolatanza@gmail.com

ARCHEOLOGIA

GeA Archeologia Preventiva Dott. Archeologa Ghiselda Pennisi, Abilitazione MIBACT 2192 Via De Gasperi, 4 - 95030 Sant'Agata Li Battiati (CT) info@aratosrl.com

DATA apr-22 REVISIONE Emissione

GEOLOGIA E IDROLOGIA

Dott. Geol. Domenico Boso Ordine dei Geologi della Sicilia, n. 1005 Geoexpert di Maria Rita Arcidiacono via Panebianco, 10 95024 Acireale (CT)

IDRAULICA

13 Ingegneria S.r.l.

13 Ingegneria S.r.I.
Dott. Ing. Alfredo Foti
Ordine degli Ingegneri, Prov. di Catania, n. A2333
via Galermo, 306 - 95123 Catania (CT)
i3ingegneria@gmail.com

STUDIO PEDO-AGRONOMICO

Dott. Agr. Arturo Urso Ordine dei Dottori Agronomi e Forestali, Prov. di Catania, n. 1280 Via Pulvirenti, 10 95131 Catania (CT) arturo.urso@gmail.com

STRUTTURE ED OPERE CIVILI

Dott. Ing. Giuseppe Furnari Ordine degli Ingegneri, Prov. di Catania, n. A6223 Viale del Rotolo, 44 95126 Catania (CT) sep.furnari@gmail.com

ELABORATO

VERIFICATO

VALIDATO

Ing. Furnari

INE Ficurinia S.r.l.

INE Ficurinia S.r.l.

INE Ficurinia Srl A Company of 8.05 New Energy Italy

Proponente: INE FICURINIA S.R.L

SOMMARIO

PREMESSA		3				
1 - DESCRIZIONE GENERALE DELL'OPERA						
2 - NORMATIVA DI RIFERIMENTO						
3 - MATERIALI IMPIEGATI E RESISTENZE DI CALCOLO						
4 - TERRENO DI FONDAZIONE						
5 - ANALISI DEI CARICHI		11				
6 - VALUTAZIONE DELL'A	ZIONE SISMICA	12				
6.1 VERIFICHE DI REGOLA	RITÀ	12				
6.3 SPETTRI DI PROGETTO	PER S.L.U. E S.L.D.	14				
6.4 METODO DI ANALISI		18				
6.5 VALUTAZIONE DEGLI S	SPOSTAMENTI	19				
6.6 COMBINAZIONE DELLE	E COMPONENTI DELL'AZIONE SISMICA	20				
6.7 ECCENTRICITÀ ACCIDE	ENTALI	21				
7 - AZIONI SULLA STRUTT	URA	21				
7.1 STATO LIMITE DI SALV	AGUARDIA DELLA VITA	21				
7.2 STATO LIMITE DI DANI	NO	24				
7.3 STATI LIMITE DI ESERC	CIZIO	24				
7.4 AZIONE DEL VENTO		26				
7.4.1 CALCOLO PRESSIONE	NORMALE E TANGENZIALE	26				
7.4.2 APPLICAZIONE DELLI	E FORZE SULLA STRUTTURA	30				
8 - CODICE DI CALCOLO IN	//PIEGATO	30				
8.1 DENOMINAZIONE		30				
8.2 SINTESI DELLE FUNZIO	NALITÀ GENERALI	31				
8.3 SISTEMI DI RIFERIMEN	TO	32				
8.3.1 RIFERIMENTO GLOBA	ALE	32				
8.3.2 RIFERIMENTO LOCAL	E PER TRAVI	32				
8.3.3 RIFERIMENTO LOCAL	E PER PILASTRI	33				
8.4 MODELLO DI CALCOLO)	33				
9 PROGETTO E VERIFICA D	DEGLI ELEMENTI STRUTTURALI	35				
9.1 VERIFICHE DI RESISTE	NZA	35				
9.1.1 ELEMENTI IN ACCIAIO	0	35				
9.1.1.1 VERIFICHE DI INSTA	ABILITÀ	36				
	RMABILITÀ					
9.2 GERARCHIA DELLE RE	SISTENZE	37				
9.2.1 ELEMENTI IN ACCIAIO.						
9.3 DETTAGLI STRUTTURALI						
10 - TABULATI DI CALCOL	O	37				
INFORMAZIONI GENERAL	I	38				
Consulente:						
Dott. Ing. Giuseppe Furnari	RELAZIONE DI CALCOLO - TABULATI -					
Viale del Rotolo, 44 95126 Catania	STRUTTURA DI SUPPORTO FV DA 24M					
	Codice elaborato: RS06REL092A0 Pag. 1 di 127					
		1				

INE Ficurinia Srl

Proponente: INE FICURINIA S.R.L

MATERIALI ACCIAIO	38
TENSIONI AMMISSIBILI ALLO SLE DEI VARI MATERIALI	39
SEZIONI PROFILATI IN ACCIAIO	39
SEZIONI PROFILATI IN ACCIAIO	40
ANALISI CARICHI	41
TIPOLOGIE DI CARICO	41
SLU: NON SISMICA - STRUTTURALE SENZA AZIONI GEOTECNICHE	42
SERVIZIO(SLE): CARATTERISTICA(RARA)	43
SERVIZIO(SLE): FREQUENTE	44
SERVIZIO(SLE): QUASI PERMANENTE	44
DATI GENERALI ANALISI SISMICA	45
DATI GENERALI ANALISI SISMICA - FATTORI DI COMPORTAMENTO	45
PRINCIPALI ELEMENTI ANALISI SISMICA	47
RIEPILOGO MODI DI VIBRAZIONEMODI DI VIBRAZIONE N.15	48
TRAVI IN ELEVAZIONE	53
PILASTRI	56
CARICHI SULLE TRAVI	
CARICHI SUI PILASTRI	
NODI - SPOSTAMENTI PER CONDIZIONI DI CARICO NON SISMICHE	74
TRAVI - SOLLECITAZIONI PER CONDIZIONI DI CARICO NON SISMICHE	
PILASTRI - SOLLECITAZIONI PER CONDIZIONI DI CARICO NON SISMICHE	89
NODI - REAZIONI VINCOLARI ESTERNE PER TIPOLOGIE DI CARICO NON SISMI	CHE.92
TRAVI (AC) - VERIFICHE A PRESSOFLESSIONE (ELEVAZIONE) ALLO SLU	
TRAVI (AC) - VERIFICHE A TAGLIO (ELEVAZIONE) PER PRESSOFLESSIONE	RETTA
ALLO SLU	
TRAVI - VERIFICA DI SNELLEZZA (ELEVAZIONE)	
TRAVI (AC) - VERIFICHE INSTABILITÀ A PRESSOFLESSIONE DEVIATA (ELEVA	ZIONE)
111	
TRAVI (AC) - VERIFICHE DI DEFORMABILITÀ ALLO SLE (ELEVAZIONE)	
PILASTRI (AC) - VERIFICHE A PRESSOFLESSIONE DEVIATA (ELEVAZIONE) AL	LO SLU
117	
PILASTRI (AC) - VERIFICHE A TAGLIO (ELEVAZIONE) PER PRESSOFLE	
DEVIATA ALLO SLU	
PILASTRI (AC) - VERIFICHE INSTABILITÀ A PRESSOFLESSIONE DI	
(ELEVAZIONE)	
PILASTRI - VERIFICA DI SNELLEZZA (ELEVAZIONE)	
11 – VERIFICA ALLO SFILAMENTO	125

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M

Proponente: INE FICURINIA S.R.L

PREMESSA

La società **INE FICURINIA S.r.l.** facente parte del gruppo **ILOS New Energy S.r.l.**, avvalendosi del know-how della capogruppo, intende realizzare in provincia di Catania nei Comuni di Ramacca e Castel di Iudica un impianto agrovoltaico avente potenza in immissione pari a 240,500 MW e potenza installata pari a 261,646 MW.

L'impianto verrà allacciato alla RTN attraverso il collegamento in antenna a 150 kV con la sezione a 150 kV di una nuova stazione elettrica (SE) RTN 380/150 kV da inserire in entra – esce sulla futura linea RTN a 380 kV "Chiaramonte Gulfi- Ciminna", di cui al Piano di Sviluppo Terna.

La presente relazione redatta dall' Ing. Giuseppe Furnari è finalizzata alla verifica della struttura di supporto di 24 moduli fotovoltaici.

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Proponente: INE FICURINIA S.R.L

1 - DESCRIZIONE GENERALE DELL'OPERA

Per il generatore fotovoltaico sono stati previste delle strutture fisse con tilt pari a 30°, in cui le colonne vengono installate sul terreno conficcando 4 inserti di ancoraggio per circa 1500mm, attraverso delle apposite guide posizionate alla base dei supporti verticali, utilizzando un comune martello o un martello elettropneumatico.

Il telaio trasversale consiste in un travetto incernierato su due colonne in acciaio S235 scatolare da 60x60mm spessore 3.2., le altezze sono regolabili in funzione ai pendii con pendenze da 10° a 40°, sono regolabili anche in direzione est-ovest con un'inclinazione pari o superiore a 40°, l'interasse tra le due colonne è di 2040mm.

La struttura di supporto dispone i pannelli a un'altezza minima di circa 400 mm e un'altezza massima di circa 2731mm dal terreno.

La struttura di calcolo viene progettata per il supporto di **24 moduli tipo JAM78S30 585-610/GR** con un telaio che si ripete per 7 volte in 14900mm, mantenendo un interasse di 2167mm tra telaio- telaio e di 908mm tra i lembi laterali.

Vengono riportate di seguito due viste assonometriche contrapposte, allo scopo di consentire una migliore comprensione della struttura oggetto della presente relazione:

Vista Anteriore

La direzione di visualizzazione (bisettrice del cono ottico), relativamente al sistema di riferimento globale 0,X,Y, Z, ha versore (1;1;-1)

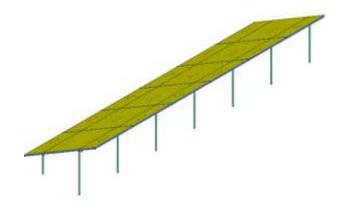


Figure 1: Vista anteriore

	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A)	Pag. 4 di 127

Proponente: INE FICURINIA S.R.L

Vista Posteriore

La direzione di visualizzazione (bisettrice del cono ottico), relativamente al sistema di riferimento globale 0,X,Y, Z, ha versore (-1;-1;-1)

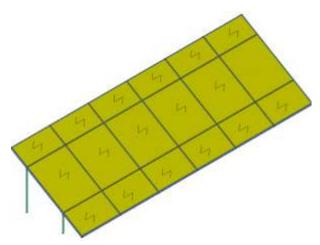


Figure 2: Vista posteriore

2 - NORMATIVA DI RIFERIMENTO

Le fasi di analisi e verifica della struttura sono state condotte in accordo alle seguenti disposizioni normative, per quanto applicabili in relazione al criterio di calcolo adottato dal progettista, evidenziato nel prosieguo della presente relazione:

Legge 5 novembre 1971 n. 1086 (G.U. 21 dicembre 1971 n. 321)

"Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica".

Legge 2 febbraio 1974 n. 64 (G.U. 21 marzo 1974 n. 76)

"Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".

Indicazioni progettive per le nuove costruzioni in zone sismiche a cura del Ministero per la Ricerca scientifica - Roma 1981.

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A)	Pag. 5 di 127

Proponente: INE FICURINIA S.R.L

D. M. Infrastrutture Trasporti 17/01/2018 (G.U. 20/02/2018 n. 42 - Suppl. Ord. n. 8)

"Aggiornamento delle Norme tecniche per le Costruzioni".

Inoltre, in mancanza di specifiche indicazioni, ad integrazione della norma precedente e per quanto con esse non in contrasto, sono state utilizzate le indicazioni contenute nelle seguenti norme:

Circolare 21 gennaio 2019, n. 7 C.S.LL.PP. (G.U. Serie Generale n. 35 del 11/02/2019 - Suppl. Ord. n. 5)

Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018.

Eurocodice 3 - "*Progettazione delle strutture in acciaio*" - EN 1993-1-1.

3 - MATERIALI IMPIEGATI E RESISTENZE DI CALCOLO

Tutti i materiali strutturali impiegati devono essere muniti di marcatura "CE", ed essere conformi alle prescrizioni del "REGOLAMENTO (UE) N. 305/2011 DEL PARLAMENTO EUROPEO E DEL CONSIGLIO del 9 marzo 2011", in merito ai prodotti da costruzione.

Per la realizzazione dell'opera in oggetto saranno impiegati i seguenti materiali:

MATERIALI ACCIAIO

_					
Cai	atte	risti	cne	acc	ıaıc

			ατ, i E G Stz LMT f _{yk} f _{tk} f _{yd}											7M3.SI	γм3,SL	γм7							
Nid	γk	αт, і		ftd	ttd γs	γм1	γм2	v	E	NCn t	Cnt												
	[N/m ³]	[1/°C]	[N/mm ²]	[N/mm ²]			[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]													
S23 !	S235 - Acciaio per Profilati - (S235)																						
001	78.500	5UU	2 210.00							80.769	Р	40	235,00	360,00	-	_	1,05	1,05	1,25	_	_	-	_
		2		0 00.703		80	215,00	360,00	-		,	_,== _,==	,										

LEGENDA:

Botti mg. Graseppe r armarr	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A0		Pag. 6 di 127

Proponente: INE FICURINIA S.R.L

Caratteristiche acciaio

A.			_		Ct-	LMT	_	_	_	_							γ м 3,SL	γm3,SL	γ.	17
N _{id}	γк αт, і	E G	Stz	Stz LMT f _{yk}	Туk	f _{tk} f _{yd}	f _{td} γ _s	γs	/s γM1	γм2	v	E	NCn t	Cnt						
	[N/m ³]	[1/°C]	[N/mm ²]	[N/mm ²]			[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]										

Numero identificativo del materiale, nella relativa tabella dei materiali.

γ_k Peso specifico.

 $\alpha_{T,i}$ Coefficiente di dilatazione termica.

E Modulo elastico normale.

G Modulo elastico tangenziale.

Stz Tipo di situazione: [F] = di Fatto (Esistente); [P] = di Progetto (Nuovo).

LMT Campo di validità in termini di spessore t, (per profili, piastre, saldature) o diametro, d (per bulloni, tondini, chiodi, viti, spinotti)

 $\mathbf{f}_{\mathbf{y}\mathbf{k}}$ Resistenza caratteristica allo snervamento

f_{tk} Resistenza caratteristica a rottura

f_{yd} Resistenza di calcolo

ftd Resistenza di calcolo a Rottura (Bulloni).

 γ_s Coefficiente parziale di sicurezza allo SLV del materiale.

 γ_{M1} Coefficiente parziale di sicurezza per instabilità.

γ_{M2} Coefficiente parziale di sicurezza per sezioni tese indebolite.

 $\gamma_{M3,SLV}$ Coefficiente parziale di sicurezza per scorrimento allo SLV (Bulloni).

 $\gamma_{\text{M3,SLE}}$ Coefficiente parziale di sicurezza per scorrimento allo SLE (Bulloni).

үмт Coefficiente parziale di sicurezza precarico di bulloni ad alta resistenza (Bulloni - NCnt = con serraggio NON controllato; Cnt = con serraggio controllato). [-] = parametro NON significativo per il materiale.

NOTE [-] = Parametro non significativo per il materiale.

TENSIONI AMMISSIBILI ALLO SLE DEI VARI MATERIALI

Tensioni ammissibili allo SLE dei vari materiali

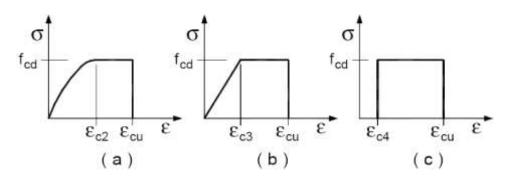
Materiale	SL	Tensione di verifica	Od,amm
			[N/mm ²]

LEGENDA:

SL Stato limite di esercizio per cui si esegue la verifica.

 $\sigma_{d,amm}$ Tensione ammissibile per la verifica.

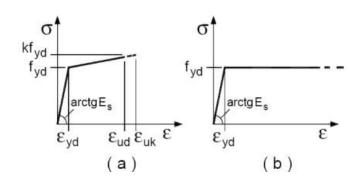
- · · · · - · · · · · · · · · · · · · ·	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A0		Pag. 7 di 127


Proponente: INE FICURINIA S.R.L

I valori dei parametri caratteristici dei suddetti materiali sono riportati anche nei "*Tabulati di calcold*", nella relativa sezione.

Tutti i materiali impiegati dovranno essere comunque verificati con opportune prove di laboratorio secondo le prescrizioni della vigente Normativa.

I diagrammi costitutivi degli elementi in calcestruzzo sono stati adottati in conformità alle indicazioni riportate al §4.1.2.1.2.1 del D.M. 2018; in particolare per le verifiche effettuate a pressoflessione retta e pressoflessione deviata è adottato il modello (a) riportato nella seguente figura.


Diagrammi di calcolo tensione/deformazione del calcestruzzo.

I valori di deformazione assunti sono:

$$\varepsilon_{c2} = 0,0020;$$
 $\varepsilon_{cu2} = 0,0035.$

I diagrammi costitutivi dell'acciaio sono stati adottati in conformità alle indicazioni riportate al §4.1.2.1.2.2 del D.M. 2018; in particolare è adottato il modello elastico perfettamente plastico tipo (b) rappresentato nella figura sulla destra.

La resistenza di calcolo è data da f_{yk}/γ_s . Il coefficiente di sicurezza γ_s si assume pari a 1,15.

8	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice alaborato: PS06PEL002A0		Pag. 8 di 127

Codice elaborato: RS06REL092A0 Pag. 8 di 127

Proponente: INE FICURINIA S.R.L

4 - TERRENO DI FONDAZIONE

Le proprietà meccaniche dei terreni sono state investigate mediante specifiche prove mirate alla misurazione della velocità delle onde di taglio negli strati del sottosuolo. In particolare, è stata calcolata una velocità di propagazione equivalente delle onde di taglio con la seguente relazione (eq. [3.2.1] D.M. 2018):

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

dove:

- h_i è lo spessore dell'i-simo strato;
- V_{S,i} è la velocità delle onde di taglio nell'i-simo strato;
- N è il numero totale di strati investigati;
- H è la profondità del substrato con $V_S \ge 800 \text{ m/s}$.

Le proprietà dei terreni sono, quindi, state ricondotte a quelle individuate nella seguente tabella, ponendo H = 30 m nella relazione precedente ed ottenendo il parametro $V_{S,30}$.

Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato (Tab. 3.2.II D.M. 2018)

Categoria	Caratteristiche della superficie topografica
А	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.

Botti Ing. Gruseppe I urmari	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A0		Pag. 9 di 127

Proponente: INE FICURINIA S.R.L

В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

Le indagini effettuate, mirate alla valutazione della velocità delle onde di taglio (V_{S,30}), permettono di classificare il profilo stratigrafico, ai fini della determinazione dell'azione sismica, di categoria **C** [**C** - **Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti**].

Le costanti di sottofondo (alla Winkler) del terreno sono state corrette secondo la seguente espressione:

$$K = c \cdot K_1$$
;

dove:

 K_1 = costante di Winkler del terreno riferita alla piastra standard di lato b = 30 cm;

c = coefficiente di correzione, funzione del comportamento del terreno e della particolare geometria degli elementi di fondazione. Nel caso di "*Riduzione Automatica*" è dato dalle successive espressioni (*Rif. Evaluation of coefficients of subgrade reaction K. Terzaghi, 1955 p. 315*):

$$c = \left[\frac{\left(B + b\right)}{2 \cdot B}\right]^{2}$$
 per terreni incoerenti

$$c = \left(\frac{L/B + 0.5}{1.5 \cdot L/B}\right) \cdot \frac{b}{B}$$
 per terreni coerenti

Essendo:

b = 0,30 m, dimensione della piastra standard;

L = lato maggiore della fondazione;

B = lato minore della fondazione.

Down ing. Graseppe r armair	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A0)	Pag. 10 di 127

Proponente: INE FICURINIA S.R.L

Nel caso di stratigrafia la costante di sottofondo utilizzata nel calcolo delle **sollecitazioni** è quella del terreno a contatto con la fondazione, mentre nel calcolo dei **cedimenti** la costante di sottofondo utilizzata è calcolata come media pesata delle costanti di sottofondo presenti nel volume significativo della fondazione.

Tutti i parametri che caratterizzano i terreni di fondazione sono riportati nei "<u>Tabulati di calcolo</u>", nella relativa sezione. Per ulteriori dettagli si rimanda alle relazioni geologica e geotecnica.

5 - ANALISI DEI CARICHI

Un'accurata valutazione dei carichi è un requisito imprescindibile di una corretta progettazione, in particolare per le costruzioni realizzate in zona sismica. Essa, infatti, è fondamentale ai fini della determinazione delle forze sismiche, in quanto incide sulla valutazione delle masse e dei periodi propri della struttura dai quali dipendono i valori delle accelerazioni (ordinate degli spettri di progetto).

La valutazione dei carichi e dei sovraccarichi è stata effettuata in accordo con le disposizioni del punto 3.1 del **D.M. 2018**. In particolare, è stato fatto utile riferimento alle Tabelle 3.1.I e 3.1.II del D.M. 2018, per i pesi propri dei materiali e per la quantificazione e classificazione dei sovraccarichi, rispettivamente.

La valutazione dei carichi permanenti è effettuata sulle dimensioni definitive.

Le analisi effettuate, corredate da dettagliate descrizioni, oltre che nei "*Tabulati di calcolo*" nella relativa sezione, sono di seguito riportate:

ANALISI CARICHI

Analisi carichi

N _{id}	т. с.	Descrizione del Carico	Tipologie di Carico	Peso Proprio Permanente NON Strutturale Sovraccarico Acc				Sovraccarico Accide	raccarico Accidentale	
				Descrizione	PP	Descrizione	PNS	Descrizione	SA	Neve
										[N/m ²]
001	S	Pannello JA solar 1134x2465x35	Permanenti NON Strutturali	Peso di un pannello 31,1kg	112		0		0	0

LEGENDA:

Numero identificativo dell'analisi di carico.

T. C. Identificativo del tipo di carico: [S] = Superficiale - [L] = Lineare - [C] = Concentrato.

PP, Valori, rispettivamente, del Peso Proprio, del Sovraccarico Permanente NON strutturale, del Sovraccarico Accidentale. Secondo il tipo di carico indicato nella colonna "T.C." ("S" - "L" - "C"), i valori riportati nelle colonne "PP", "PNS" e "SA", sono espressi in [N/m²] per carichi Superficiali, [N/m] per carichi Lineari, [N] per carichi Concentrati.

	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A0)	Pag. 11 di 127

Proponente: INE FICURINIA S.R.L

6 - VALUTAZIONE DELL'AZIONE SISMICA

L'azione sismica è stata valutata in conformità alle indicazioni riportate al §3.2 del D.M. 2018.

In particolare il procedimento per la definizione degli spettri di progetto per i vari Stati Limite per cui sono state effettuate le verifiche è stato il seguente:

- definizione della Vita Nominale e della Classe d'Uso della struttura, il cui uso combinato ha portato alla definizione del Periodo di Riferimento dell'azione sismica;
- individuazione, tramite latitudine e longitudine, dei parametri sismici di base a_g , F_0 e T_c^* per tutti e quattro gli Stati Limite previsti (SLO, SLD, SLV e SLC); l'individuazione è stata effettuata interpolando tra i 4 punti più vicini al punto di riferimento dell'edificio;
- determinazione dei coefficienti di amplificazione stratigrafica e topografica; calcolo del periodo T_c corrispondente all'inizio del tratto a velocità costante dello Spettro.

I dati così calcolati sono stati utilizzati per determinare gli Spettri di Progetto nelle verifiche agli Stati Limite considerate.

Si riportano di seguito le coordinate geografiche del sito rispetto al Datum **ED50**:

Latitudine	Longitudine	Altitudine
[°]	[°]	[m]
37.498345	14.608146	405

6.1 Verifiche di regolarità

Sia per la scelta del metodo di calcolo, sia per la valutazione del fattore di comportamento adottato, deve essere effettuato il controllo della regolarità della struttura.

La tabella seguente riepiloga, per la struttura in esame, le condizioni di regolarità in pianta ed in altezza soddisfatte.

REGOLARITÀ DELLA STRUTTURA IN PIANTA					
Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M				
Codice elaborato: RS06REL092A	Pag. 12 di 127				

Proponente: INE FICURINIA S.R.L

La distribuzione di masse e rigidezze è approssimativamente simmetrica rispetto a due direzioni ortogonali e la forma in pianta è compatta, ossia il contorno di ogni orizzontamento è convesso; il requisito può ritenersi soddisfatto, anche in presenza di rientranze in pianta, quando esse non influenzano significativamente la rigidezza nel piano dell'orizzontamento e, per ogni rientranza, l'area compresa tra il perimetro dell'orizzontamento e la linea convessa circoscritta all'orizzontamento non supera il 5% dell'area dell'orizzontamento	NO
Il rapporto tra i lati di un rettangolo in cui la costruzione risulta inscritta è inferiore a 4	NO
Ciascun orizzontamento ha una rigidezza nel proprio piano tanto maggiore della corrispondente rigidezza degli elementi strutturali verticali da potersi assumere che la sua deformazione in pianta influenzi in modo trascurabile la distribuzione delle azioni sismiche tra questi ultimi e ha resistenza sufficiente a garantire l'efficacia di tale distribuzione	Cī

REGOLARITÀ DELLA STRUTTURA IN ALTEZZA	
Tutti i sistemi resistenti alle azioni orizzontali si estendono per tutta l'altezza della costruzione o, se sono presenti parti aventi differenti altezze, fino alla sommità della rispettiva parte dell'edificio	SI
Massa e rigidezza rimangono costanti o variano gradualmente, senza bruschi cambiamenti, dalla base alla sommità della costruzione (le variazioni di massa da un orizzontamento all'altro non superano il 25 %, la rigidezza non si riduce da un orizzontamento a quello sovrastante più del 30% e non aumenta più del 10%); ai fini della rigidezza si possono considerare regolari in altezza strutture dotate di pareti o nuclei in c.a. o pareti e nuclei in muratura di sezione costante sull'altezza o di telai controventati in acciaio, ai quali sia affidato almeno il 50% dell'azione sismica alla base	NO
Il rapporto tra la capacità e la domanda allo SLV non è significativamente diverso, in termini di resistenza, per orizzontamenti successivi (tale rapporto, calcolato per un generico orizzontamento, non deve differire più del 30% dall'analogo rapporto calcolato per l'orizzontamento adiacente); può fare eccezione l'ultimo orizzontamento di strutture intelaiate di almeno tre orizzontamenti	NO
Eventuali restringimenti della sezione orizzontale della costruzione avvengano con continuità da un orizzontamento al successivo; oppure avvengano in modo che il rientro di un orizzontamento non superi il 10% della dimensione corrispondente all'orizzontamento immediatamente sottostante, né il 30% della dimensione corrispondente al primo orizzontamento. Fa eccezione l'ultimo orizzontamento di costruzioni di almeno quattro orizzontamenti, per il quale non sono previste limitazioni di restringimento	SI

La rigidezza è calcolata come rapporto fra il taglio complessivamente agente al piano e δ , spostamento relativo di piano (il taglio di piano è la sommatoria delle azioni orizzontali agenti al di sopra del piano considerato).

Tutti i valori calcolati ed utilizzati per le verifiche sono riportati nei "*Tabulati di calcolo*" nella relativa sezione. La struttura è pertanto:

in pianta	in altezza
NON REGOLARE	REGOLARE

6.2 Classe di duttilità

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A)	Pag. 13 di 127

Proponente: INE FICURINIA S.R.L

La classe di duttilità è rappresentativa della capacità dell'edificio di dissipare energia in campo anelastico per azioni cicliche ripetute.

Le deformazioni anelastiche devono essere distribuite nel maggior numero di elementi duttili, in particolare le travi, salvaguardando in tal modo i pilastri e soprattutto i nodi travi pilastro che sono gli elementi più fragili.

Il D.M. 2018 definisce due tipi di comportamento strutturale:

- a) comportamento strutturale non-dissipativo;
- b) comportamento strutturale dissipativo.

Per strutture con comportamento strutturale dissipativo si distinguono due livelli di Capacità Dissipativa o Classi di Duttilità (CD).

- CD "A" (Alta);
- CD "B" (Media).

La differenza tra le due classi risiede nell'entità delle plasticizzazioni cui ci si riconduce in fase di progettazione; per ambedue le classi, onde assicurare alla struttura un comportamento dissipativo e duttile evitando rotture fragili e la formazione di meccanismi instabili imprevisti, si fa ricorso ai procedimenti tipici della gerarchia delle resistenze.

La struttura in esame è stata progettata in classe di duttilità "MEDIA" (CD"B").

6.3 Spettri di Progetto per S.L.U. e S.L.D.

L'edificio è stato progettato per una Vita Nominale pari a 50 e per Classe d'Uso pari a 1.

In base alle indagini geognostiche effettuate si è classificato il **suolo** di fondazione di **categoria C**, cui corrispondono i seguenti valori per i parametri necessari alla costruzione degli spettri di risposta orizzontale e verticale:

Parametri	di	pericolosità	sismica
-----------	----	--------------	---------

Stato Limite	a _g /g	Fo	T*c	Cc	T _B	Tc	T _D	Ss
			[s]		[s]	[s]	[s]	
SLO	0.0379	2.560	0.247	1.67	0.137	0.411	1.752	1.50
SLD	0.0463	2.513	0.280	1.60	0.149	0.447	1.785	1.50
SLV	0.1200	2.506	0.456	1.36	0.207	0.620	2.080	1.50
SLC	0.1714	2.455	0.528	1.30	0.228	0.684	2.286	1.45

Consulente:
Dott. Ing. Giuseppe Furnari
Viale del Rotolo, 44
95126 Catania

Proponente: INE FICURINIA S.R.L

Per la definizione degli spettri di risposta, oltre all'accelerazione (a_g) al suolo (dipendente dalla classificazione sismica del Comune) occorre determinare il Fattore di Comportamento (q).

Il Fattore di comportamento q è un fattore riduttivo delle forze elastiche introdotto per tenere conto delle capacità dissipative della struttura che dipende dal sistema costruttivo adottato, dalla Classe di Duttilità e dalla regolarità in altezza.

Si è inoltre assunto il Coefficiente di Amplificazione Topografica (S_T) pari a 1.00.

Tali succitate caratteristiche sono riportate negli allegati "*Tabulati di calcolo*" al punto "DATI GENERALI ANALISI SISMICA".

Per la struttura in esame sono stati utilizzati i seguenti valori:

Stato Limite di Danno

Fattore di Comportamento (qx) per sisma orizzontale in direzione X: **1.00**;
Fattore di Comportamento (qy) per sisma orizzontale in direzione Y: **1.00**;

Fattore di Comportamento (qz) per sisma verticale: **1.00** (se richiesto).

Stato Limite di salvaguardia della Vita

Fattore di Comportamento (qx) per sisma orizzontale in direzione X: 2.677 (N.B.2);
Fattore di Comportamento (qx) per sisma orizzontale in direzione Y: 3.150 (N.B.2);
Fattore di Comportamento (qz) per sisma verticale: 1.50 (se richiesto).

Di seguito si esplicita il calcolo del fattore di comportamento per il sisma orizzontale:

	Dir. X	Dir. Y	
Tipologia	A telaio, miste equivalenti a telaio	A telaio, miste equivalenti a telaio	
(§7.4.3.2 D.M. 2018)	A telato, miste equivalenti a telato	A telalo, illiste equivalenti a telalo	
Tipologia strutturale	con più campate	con più campate	
$lpha_{\sf u}\!/lpha_1$	1.05	1.05	

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A)	Pag. 15 di 127

Proponente: INE FICURINIA S.R.L

k _w	-	-
q_{o}	3.150	3.150
k _R	1.	00

Il fattore di comportamento è calcolato secondo la relazione (7.3.1) del §7.3.1 del D.M. 2018:

 $q = q_0 \cdot k_R$;

dove:

kw è il coefficiente che riflette la modalità di collasso prevalente in sistemi strutturali con pareti.

- q_0 è il valore massimo del fattore di comportamento che dipende dal livello di duttilità attesa, dalla tipologia strutturale e dal rapporto α_u/α_1 tra il valore dell'azione sismica per il quale si verifica la formazione di un numero di cerniere plastiche tali da rendere la struttura labile e quello per il quale il primo elemento strutturale raggiunge la plasticizzazione a flessione. **NOTA:** il valore proposto di q_0 è già ridotto dell'eventuale coefficiente k_w ;
- k_R è un fattore riduttivo che dipende dalle caratteristiche di regolarità in altezza della costruzione, con valore pari ad 1 per costruzioni regolari in altezza e pari a 0,8 per costruzioni non regolari in altezza.
- **N.B.1:** Per le costruzioni *regolari in pianta*, qualora non si proceda ad un'analisi non lineare finalizzata alla valutazione del rapporto $\alpha_{\text{u}}/\alpha_{1}$, per esso possono essere adottati i valori indicati nel §7.4.3.2 del D.M. 2018 per le diverse tipologie costruttive. Per le costruzioni *non regolari in pianta*, si possono adottare valori di $\alpha_{\text{u}}/\alpha_{1}$ pari alla media tra 1,0 ed i valori di volta in volta forniti per le diverse tipologie costruttive.

Valori massimi del valore di base q_0 del fattore di comportamento allo SLV per costruzioni di calcestruzzo (§ 7.4.3.2 D.M. 2018)(cfr. Tabella 7.3.II D.M. 2018)

Tipologia strutturale	q o	
	CD"A"	CD"B"
Strutture a telaio, a pareti accoppiate, miste (v. §7.4.3.1)	4,5 α _u /α ₁	3,0 α _u /α ₁
Strutture a pareti non accoppiate (v. §7.4.3.1)	4,0 α _u /α ₁	3,0
Strutture deformabili torsionalmente (v. §7.4.3.1)	3,0	2,0
Strutture a pendolo inverso (v. §7.4.3.1)	2,0	1,5
Strutture a pendolo inverso intelaiate monopiano (v. §7.4.3.1)	3,5	2,5

N.B.2: Al fine di evitare che le ordinate dello spettro di progetto allo SLV, ottenuto con il fattore di comportamento illustrato nei precedenti paragrafi, siano inferiori a quelle dello spettro allo SLD, è

2 ott. ing. Graseppe i armari	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A	0	Pag. 16 di 127

Proponente: INE FICURINIA S.R.L

stato necessario ridurre il fattore di comportamento nel seguente modo (come previsto dalla Circolare 2019 delle NTC 2018 al punto C7.3.1):

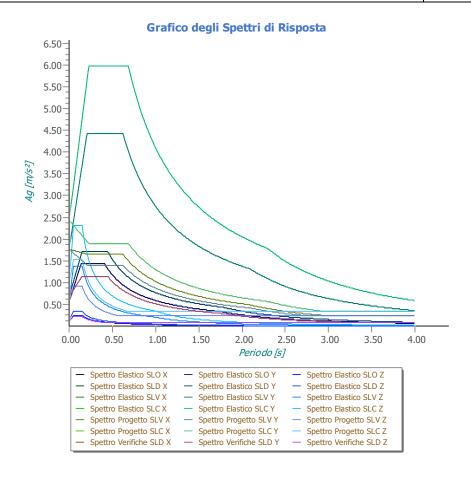
$$q' = q_{ND}.S_{e,SLV}(T_1)/S_{e,SLD}(T_1)$$

dove:

q_{ND} è il fattore di comportamento non dissipativo, assunto pari ad 1, ed in generale pari a:

$$1 \le q_{ND} = (2/3) \cdot q_{o,CD''B''} \le 1,5$$

q_{o,CD"B"} è il fattore di struttura per CD"B" di cui nella Tab. 7.3.II;


T₁ è il periodo del primo modo di vibrare traslazionale nella direzione considerata;

 $S_{e,SLV}(T_1)$ ed $S_{e,SLD}(T_1)$ sono la risposta spettrale elastica allo SLV e allo SLD, rispettivamente.

Gli spettri utilizzati sono riportati nella successiva figura.

Proponente: INE FICURINIA S.R.L

6.4 Metodo di Analisi

Il calcolo delle azioni sismiche è stato eseguito in analisi dinamica modale, considerando il comportamento della struttura in regime elastico lineare.

Il numero di **modi di vibrazione** considerato (**15**) ha consentito, nelle varie condizioni, di mobilitare le seguenti percentuali delle masse della struttura:

Stato Limite	Direzione Sisma	%	
salvaguardia della vita	X	99.9	97
salvaguardia della vita	Y	99.9	90
salvaguardia della vita	Z	100.00	
Codice elaborato: RS06REL092A0			Pag. 18 di 127

Proponente: INE FICURINIA S.R.L

salvaguardia della vita	Torsionale	-

Per valutare la risposta massima complessiva di una generica caratteristica E, conseguente alla sovrapposizione dei modi, si è utilizzata una tecnica di combinazione probabilistica definita CQC (*Complete Quadratic Combination - Combinazione Quadratica Completa*):

$$E = \sqrt{\sum_{i,j=1,n} \rho_{ij} \cdot E_i \cdot E_j} \qquad \qquad \rho_{ij} = \frac{8 \cdot \xi^2 \cdot (1 + \beta_{ij}) \cdot \beta_{ij}^{3/2}}{(1 - \beta_{ij}^2)^2 + 4 \cdot \xi^2 \cdot \beta_{ij} \cdot (1 + \beta_{ij})^2} \qquad \qquad \beta_{ij} = \frac{T_j}{T_i}$$

dove:

n è il numero di modi di vibrazione considerati;

è il coefficiente di smorzamento viscoso equivalente espresso in percentuale;

β_{ij} è il rapporto tra le frequenze di ciascuna coppia i-j di modi di vibrazione.

Le sollecitazioni derivanti da tali azioni sono state composte poi con quelle derivanti da carichi verticali, orizzontali non sismici secondo le varie combinazioni di carico probabilistiche. Il calcolo è stato effettuato mediante un programma agli elementi finiti le cui caratteristiche verranno descritte nel seguito.

Il calcolo degli effetti dell'azione sismica è stato eseguito con riferimento alla struttura spaziale, tenendo cioè conto degli elementi interagenti fra loro secondo l'effettiva realizzazione escludendo i tamponamenti. Non ci sono approssimazioni su tetti inclinati, piani sfalsati o scale, solette, pareti irrigidenti e nuclei.

Si è tenuto conto delle deformabilità taglianti e flessionali degli elementi monodimensionali; muri, pareti, setti, solette sono stati correttamente schematizzati tramite elementi finiti a tre/quattro nodi con comportamento a quscio (sia a piastra che a lastra).

Sono stati considerati sei gradi di libertà per nodo; in ogni nodo della struttura sono state applicate le forze sismiche derivanti dalle masse circostanti.

Le sollecitazioni derivanti da tali forze sono state poi combinate con quelle derivanti dagli altri carichi come prima specificato.

6.5 Valutazione degli spostamenti

Gli spostamenti d_E della struttura sotto l'azione sismica di progetto allo SLV sono stati ottenuti moltiplicando per il fattore μ_d i valori d_{Ee} ottenuti dall'analisi lineare, dinamica o statica, secondo l'espressione seguente:

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A0)	Pag. 19 di 127

Proponente: INE FICURINIA S.R.L

$$d_E = \pm \mu_d \cdot d_{Ee}$$

dove

 $\mu_d = q$ se $T_1 \ge T_C$;

 $\mu_d = 1 + (q-1) \cdot T_C / T_1$ se $T_1 < T_C$.

In ogni caso $\mu_d \leq 5q$ - 4.

6.6 Combinazione delle componenti dell'azione sismica

Le azioni orizzontali dovute al sisma sulla struttura vengono convenzionalmente determinate come agenti separatamente in due direzioni tra loro ortogonali prefissate. In generale, però, le componenti orizzontali del sisma devono essere considerate come agenti simultaneamente. A tale scopo, la combinazione delle componenti orizzontali dell'azione sismica è stata tenuta in conto come segue:

• gli effetti delle azioni dovuti alla combinazione delle componenti orizzontali dell'azione sismica sono stati valutati mediante le seguenti combinazioni:

$$E_{EdX} \pm 0.30E_{EdY}$$
 $E_{EdY} \pm 0.30E_{EdX}$

dove:

E_{EdX} rappresenta gli effetti dell'azione dovuti all'applicazione dell'azione sismica lungo l'asse orizzontale X scelto della struttura;

E_{EdY} rappresenta gli effetti dell'azione dovuti all'applicazione dell'azione sismica lungo l'asse orizzontale Y scelto della struttura.

L'azione sismica verticale deve essere considerata in presenza di: elementi pressoché orizzontali con luce superiore a 20 m, elementi pressoché orizzontali precompressi, elementi a sbalzo pressoché orizzontali con luce maggiore di 5 m, travi che sostengono colonne, strutture isolate.

La combinazione della componente verticale del sisma, qualora portata in conto, con quelle orizzontali è stata tenuta in conto come segue:

• gli effetti delle azioni dovuti alla combinazione delle componenti orizzontali e verticali del sisma sono stati valutati mediante le seguenti combinazioni:

Bott. Ing. Graseppe ramair	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A0		Pag. 20 di 127

Proponente: INE FICURINIA S.R.L

 $E_{EdX} \pm 0.30E_{EdY} \pm 0.30E_{EdZ}$

 $E_{EdY} \pm 0.30E_{EdX} \pm 0.30E_{EdZ}$

 $E_{EdZ} \pm 0.30E_{EdX} \pm 0.30E_{EdY}$

dove:

E_{EdX} e E_{EdY} sono gli effetti dell'azione sismica nelle direzioni orizzontali prima definite;

E_{EdZ} rappresenta gli effetti dell'azione dovuti all'applicazione della componente verticale dell'azione sismica di progetto.

6.7 Eccentricità accidentali

Per valutare le eccentricità accidentali, previste in aggiunta all'eccentricità effettiva sono state considerate condizioni di carico aggiuntive ottenute applicando l'azione sismica nelle posizioni del centro di massa di ogni piano ottenute traslando gli stessi, in ogni direzione considerata, di una distanza pari a +/- 5% della dimensione massima del piano in direzione perpendicolare all'azione sismica. Si noti che la distanza precedente, nel caso di distribuzione degli elementi non strutturali fortemente irregolare in pianta, viene raddoppiata ai sensi del § 7.2.3 del D.M. 2018.

7 - AZIONI SULLA STRUTTURA

I calcoli e le verifiche sono condotti con il metodo semiprobabilistico degli stati limite secondo le indicazioni del D.M. 2018. I carichi agenti sui solai, derivanti dall'analisi dei carichi, vengono ripartiti dal programma di calcolo in modo automatico sulle membrature (travi, pilastri, pareti, solette, platee, ecc.).

I carichi dovuti ai tamponamenti, sia sulle travi di fondazione che su quelle di piano, sono schematizzati come carichi lineari agenti esclusivamente sulle aste.

Su tutti gli elementi strutturali è inoltre possibile applicare direttamente ulteriori azioni concentrate e/o distribuite (variabili con legge lineare ed agenti lungo tutta l'asta o su tratti limitati di essa).

Le azioni introdotte direttamente sono combinate con le altre (carichi permanenti, accidentali e sisma) mediante le combinazioni di carico di seguito descritte; da esse si ottengono i valori probabilistici da impiegare successivamente nelle verifiche.

7.1 Stato Limite di Salvaguardia della Vita

	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06RFI 092A0	Pag 21 di 127	

Proponente: INE FICURINIA S.R.L

Le azioni sulla costruzione sono state cumulate in modo da determinare condizioni di carico tali da risultare più sfavorevoli ai fini delle singole verifiche, tenendo conto della probabilità ridotta di intervento simultaneo di tutte le azioni con i rispettivi valori più sfavorevoli, come consentito dalle norme vigenti.

Per gli stati limite ultimi sono state adottate le combinazioni del tipo:

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{K1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{K2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{K3} + \dots$$

$$\tag{1}$$

dove:

G₁ rappresenta il peso proprio di tutti gli elementi strutturali; peso proprio del terreno, quando pertinente; forze indotte dal terreno (esclusi gli effetti di carichi variabili applicati al terreno); forze risultanti dalla pressione dell'acqua (quando si configurino costanti nel tempo);

G₂ rappresenta il peso proprio di tutti gli elementi non strutturali;

P rappresenta l'azione di pretensione e/o precompressione;

Q azioni sulla struttura o sull'elemento strutturale con valori istantanei che possono risultare sensibilmente diversi fra loro nel tempo:

- di lunga durata: agiscono con un'intensità significativa, anche non continuativamente, per un tempo non trascurabile rispetto alla vita nominale della struttura;
- di breve durata: azioni che agiscono per un periodo di tempo breve rispetto alla vita nominale della struttura;

Qki rappresenta il valore caratteristico della i-esima azione variabile;

 γ_g , γ_q , γ_p coefficienti parziali come definiti nella Tab. 2.6.I del D.M. 2018;

γοι sono i coefficienti di combinazione per tenere conto della ridotta probabilità di concomitanza delle azioni variabili con i rispettivi valori caratteristici.

Le **10 combinazioni** risultanti sono state costruite a partire dalle sollecitazioni caratteristiche calcolate per ogni condizione di carico elementare: ciascuna condizione di carico accidentale, a rotazione, è stata considerata sollecitazione di base (Q_{k1} nella formula precedente).

I coefficienti relativi a tali combinazioni di carico sono riportati negli allegati "Tabulati di calcolo".

In zona sismica, oltre alle sollecitazioni derivanti dalle generiche condizioni di carico statiche, devono essere considerate anche le sollecitazioni derivanti dal sisma. L'azione sismica è stata combinata con le altre azioni secondo la seguente relazione:

 $G_1+G_2+P+E+\Sigma_i\psi_{2i}\cdot Q_{ki}$;

dove:

E rappresenta l'azione sismica per lo stato limite in esame;

G₁ rappresenta peso proprio di tutti gli elementi strutturali;

D V	6 - III	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M		
Co	Coding alaborator DS06DEL002A0			

Codice elaborato: RS06REL092A0 Pag. 22 di 127

INE Ficurinia Srl A Company of 8.05 New Energy Italy

Proponente: INE FICURINIA S.R.L

G₂ rappresenta il peso proprio di tutti gli elementi non strutturali;

P rappresenta l'azione di pretensione e/o precompressione;

ψ2i coefficiente di combinazione delle azioni variabili Qi;

Qki valore caratteristico dell'azione variabile Qi.

Gli effetti dell'azione sismica sono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_K+\Sigma_i(\psi_{2i}'Q_{ki}).$$

I valori dei coefficienti ψ_{2i} sono riportati nella seguente tabella:

Categoria/Azione	ψ 2i
Categoria A - Ambienti ad uso residenziale	0,3
Categoria B - Uffici	0,3
Categoria C - Ambienti suscettibili di affollamento	0,6
Categoria D - Ambienti ad uso commerciale	0,6
Categoria E - Biblioteche, archivi, magazzini e ambienti ad uso industriale	0,8
Categoria F - Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,6
Categoria G - Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,3
Categoria H - Coperture	0,0
Categoria I - Coperture praticabili	*
Categoria K - Coperture per usi speciali (impianti, eliporti,)	*
Vento	0,0
Neve (a quota ≤ 1000 m s.l.m.)	0,0
Neve (a quota > 1000 m s.l.m.)	0,2
Variazioni termiche	0,0
* "Da valutarsi caso per caso"	

Le verifiche strutturali e geotecniche delle fondazioni, sono state effettuate con l'**Approccio 2** come definito al §2.6.1 del D.M. 2018, attraverso la combinazione **A1+M1+R3**. Le azioni sono state amplificate tramite i coefficienti della colonna A1 definiti nella Tab. 6.2.I del D.M. 2018.

I valori di resistenza del terreno sono stati ridotti tramite i coefficienti della colonna M1 definiti nella Tab. 6.2.II del D.M. 2018.

Si è quindi provveduto a progettare le armature di ogni elemento strutturale per ciascuno dei valori ottenuti secondo le modalità precedentemente illustrate. Nella sezione relativa alle verifiche dei "*Tabulati di calcolo*" in allegato sono riportati, per brevità, i valori della sollecitazione relativi alla combinazione cui corrisponde il minimo valore del coefficiente di sicurezza.

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A)	Pag. 23 di 127

Proponente: INE FICURINIA S.R.L

7.2 Stato Limite di Danno

L'azione sismica, ottenuta dallo spettro di progetto per lo Stato Limite di Danno, è stata combinata con le altre azioni mediante una relazione del tutto analoga alla precedente:

$$G_1+G_2+P+E+\Sigma_i\psi_{2i}\cdot Q_{ki}$$
;

dove:

- E rappresenta l'azione sismica per lo stato limite in esame;
- G₁ rappresenta peso proprio di tutti gli elementi strutturali;
- G₂ rappresenta il peso proprio di tutti gli elementi non strutturali;
- P rappresenta l'azione di pretensione e/o precompressione;
- ψ2i coefficiente di combinazione delle azioni variabili Qi;
- Qki valore caratteristico dell'azione variabile Qi.

Gli effetti dell'azione sismica sono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_K+\Sigma_i(\psi_{2i}^{\dagger}Q_{ki}).$$

I valori dei coefficienti ψ_{2i} sono riportati nella tabella di cui allo SLV.

7.3 Stati Limite di Esercizio

Allo Stato Limite di Esercizio le sollecitazioni con cui sono state semiprogettate le aste in c.a. sono state ricavate applicando le formule riportate nel D.M. 2018 al §2.5.3. Per le verifiche agli stati limite di esercizio, a seconda dei casi, si fa riferimento alle seguenti combinazioni di carico:

rara	frequente	quasi permanente
$\sum_{j \geq 1} \boldsymbol{G}_{kj} + \boldsymbol{P} + \boldsymbol{Q}_{k1} + \sum_{i > 1} \boldsymbol{\psi}_{0i} \cdot \boldsymbol{Q}_{ki}$	$\sum_{j \geq 1} G_{kj} + P + \psi_{11} \cdot Q_{k1} + \sum_{i > 1} \psi_{2i} \cdot Q_{ki}$	$\sum_{j\geq 1} G_{kj}^{} + P + \sum_{i>1} \psi_{2i} \cdot Q_{ki}^{}$

2 ott. mg. Gruseppe i urmari	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A0		Pag. 24 di 127

Proponente: INE FICURINIA S.R.L

dove:

G_{kj}: valore caratteristico della j-esima azione permanente;

Pkh: valore caratteristico della h-esima deformazione impressa;

Qkl: valore caratteristico dell'azione variabile di base di ogni combinazione;

Qki: valore caratteristico della i-esima azione variabile;

ψο: coefficiente atto a definire i valori delle azioni ammissibili di durata breve ma ancora significativi nei

riguardi della possibile concomitanza con altre azioni variabili;

ψ1i: coefficiente atto a definire i valori delle azioni ammissibili ai frattili di ordine 0,95 delle distribuzioni

dei valori istantanei;

ψ2i: coefficiente atto a definire i valori quasi permanenti delle azioni ammissibili ai valori medi delle

distribuzioni dei valori istantanei.

Ai coefficienti ψ_{0i} , ψ_{1i} , ψ_{2i} sono attribuiti i seguenti valori:

Azione	ψ 0i	ψ_{1i}	ψ 2i
Categoria A – Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B – Uffici	0,7	0,5	0,3
Categoria C – Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D – Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E – Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F − Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6
Categoria G – Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H – Coperture	0,0	0,0	0,0
Vento	0,6	0,2	0,0
Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

In maniera analoga a quanto illustrato nel caso dello SLU le combinazioni risultanti sono state costruite a partire dalle sollecitazioni caratteristiche calcolate per ogni condizione di carico; a turno ogni condizione di carico accidentale è stata considerata sollecitazione di base $[Q_{k1}$ nella formula (1)], con ciò dando origine a tanti valori combinati. Per ognuna delle combinazioni ottenute, in funzione dell'elemento (trave, pilastro, etc...) sono state effettuate le verifiche allo SLE (tensioni, deformazioni e fessurazione).

Negli allegati "*Tabulati Di Calcolo*" sono riportanti i coefficienti relativi alle combinazioni di calcolo generate relativamente alle combinazioni di azioni "**Quasi Permanente**" (1), "**Frequente**" (4) e "**Rara**" (4).

Nelle sezioni relative alle verifiche allo SLE dei citati tabulati, inoltre, sono riportati i valori delle sollecitazioni relativi alle combinazioni che hanno originato i risultati più gravosi.

Bott. Ing. Gruseppe i arman	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A0)	Pag. 25 di 127

Proponente: INE FICURINIA S.R.L

7.4 Azione del Vento

L'applicazione dell'azione del vento sulla struttura si articola in due fasi:

- 1. calcolo della pressione Normale e Tangenziale lungo l'altezza dell'edificio;
- 2. trasformazione delle pressioni in forze (lineari/concentrate) sugli elementi (strutturali/non strutturali) dell'edificio.

7.4.1 Calcolo pressione normale e tangenziale

Pressione Normale

La pressione del vento è data dall'espressione:

$$p = q_r'C_e'C_p'C_d$$
 (relazione 3.3.4 - D.M. 2018);

dove

- q_r: la pressione cinetica di riferimento data dall'espressione:

$$q_b = \frac{1}{2} \cdot \rho \cdot v_r^2$$
 (relazione 3.3.6 - D.M. 2018);

con:

ρ: densità dell'aria (assunta pari a 1,25 kg/m³);

v_r: velocità di riferimento del vento (in m/s), data da (Eq. 3.3.2 - D.M. 2018):

$$v_r = v_b \cdot c_r$$
, con:

 α_R : coefficiente dato dalla seguente relazione:

$$c_r = 0.75 \cdot \sqrt{1 - 0.2 \cdot \ln \left[-\ln \left(1 - \frac{1}{T_R} \right) \right]}$$
 (relazione 3.3.3 - D.M. 2018);

 v_b : velocità di riferimento del vento associata ad un periodo di ritorno di 50 anni, data da: $v_b = v_{b,0} \cdot c_a$

dove:

ca è il coefficiente di altitudine fornito dalla relazione:

$$c_a = 1 \qquad \qquad \text{per } a_s \leq a_0.$$

6	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A0	· · · · · · · · · · · · · · · · · · ·	Pag. 26 di 127

Proponente: INE FICURINIA S.R.L

 $c_a = 1 + k_s (a_s/a_0 - 1) \quad \text{ per } a_0 < a_s \leq 1500 \text{ m.}$

v_{b,0}, a₀, k_s: parametri forniti dalla Tab. 3.3.I del §3.3.2 D.M. 2018;

as: altitudine sul livello del mare (m.s.l.m) del sito ove sorge la costruzione;

T_R: periodo di ritorno espresso in anni [10 anni; 500 anni].

- C_e: coefficiente di esposizione, che per altezza sul suolo (z) non maggiori di 200 m è dato dalla formula:

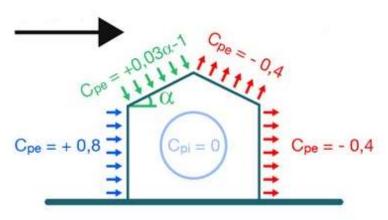
 $c_e(z) = k_r^2 \cdot c_t \cdot \ln(z/z_0) \cdot [7 + c_t \cdot \ln(z/z_0)]$

per $z \ge z_{min}$

 $c_e(z) = c_e(z_{min})$

per $z < z_{min}$

(relazione 3.3.7 - D.M. 2018);


dove:

k_r , z₀ , z_{min}: parametri forniti dalla Tab. 3.3.II del par. 3.3.7 D.M. 2018 (*funzione della categoria di esposizione del sito e della classe di rugosità del terreno*);

ct: coefficiente di topografia (assunto pari ad 1).

c_p: coefficiente di forma (o coefficiente aerodinamico), funzione della tipologia e della geometria della costruzione e del suo orientamento rispetto alla direzione del vento (cfr. § 3.3.8 - D.M. 2018).

La valutazione dei coefficienti di forma o coefficienti aerodinamici (C_p) , applicati automaticamente dal programma alle superfici esposte al vento indicate dall'utente, è stata formulata nell'ipotesi di costruzioni "stagne" (coefficiente di pressione interna C_{pi} nullo), a pianta rettangolare con coperture piane, inclinate o a falde (si veda la figura di esempio seguente per vento agente da sinistra a destra).

In tutte le altre situazioni in cui tali ipotesi non risultino soddisfatte (coperture multiple, tettoie, pensiline, ecc.), occorre procedere ad una opportuna valutazione dei coefficienti di forma, modificando quanto proposto dal programma.

- c_d: coefficiente dinamico (assunto pari ad 1; par. 3.3.9 - D.M. 2018).

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A	0	Pag. 27 di 127

Proponente: INE FICURINIA S.R.L

Pressione Tangenziale

L'azione tangente per unità di superficie parallela alla direzione del vento è data dall'espressione

 $p_f = q_r \cdot c_e \cdot c_f$ (relazione 3.3.5 - D.M. 2018);

dove

- q_r, c_e: definiti in precedenza;
- c_f: coefficiente d'attrito, funzione della scabrezza della superficie sulla quale il vento esercita l'azione tangente funzione (valori presi dalla Tab. C3.3.I della Circolare 2018).

Per il caso in esame:

VENTO - CALCOLO PRESSIONE CINETICA DI RIFERIMENTO

Vento - calcolo pressione cinetica di riferimento

α	DIR	as	Zona	V _{b,0}	a ₀	k s	V _b	T _R	αR	qь
[°]		[m]		[m/s]	[m]		[m/s]	[anni]		[N/m ²]
0,00	+X; -X; +Y; -Y	405	4	28	500	0,360	28,00	50	1,00	490

LEGENDA:

α Angolo di inclinazione del vento rispetto all'asse x

DIR Direzioni locali di calcolo del vento

as Altitudine sul livello del mare (m.s.l.m) del sito ove sorge la costruzione;

Zona Zona di riferimento per il calcolo del vento;

V_{b,0}, **a**₀, **k**_s Parametri per la definizione della velocità base di riferimento

V_b Velocità di riferimento del vento associata ad un periodo di ritorno di 50 anni;

T_R Periodo di ritorno;

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A	Pag. 28 di 127	

Proponente: INE FICURINIA S.R.L

Vento - calcolo pressione cinetica di riferimento

α	DIR	as	Zona	V _{b,0}	a ₀	k s	V _b	T _R	α_R	qь
[°]		[m]		[m/s]	[m]		[m/s]	[anni]		[N/m ²]

α_R Coefficiente per il calcolo della pressione cinetica di riferimento;

q_b Pressione cinetica di riferimento.

VENTO - CALCOLO COEFFICIENTE DI ESPOSIZIONE

Vento - calcolo coefficiente di esposizione

Z	d _{ct}	CIRg	Cat exp	k _r	Z G	Z _{min}	Ct	Ce
[m]	[km]				[m]	[m]		
0,00	Sulla Costa,	D	II	0,19	0,05	4,00	1,00	1,80
2,70	oltre 30 Km			,	,	,	,	1,80

LEGENDA:

- Z Altezza dell'edifico a cui viene calcolata la pressione del vento;
- dct Distanza dalla costa;
- CIR Classe di rugosità del terreno (A, B, C, D);

g

Cat Categoria di esposizione del sito (I, II, III, IV, V);

exp

k_r, Parametri per la definizione del coefficiente di esposizione;

 $\begin{array}{cc} Z_0 & , \\ Z_{min} \end{array}$

Ct Coefficiente di topografia;

Ce Coefficiente di esposizione;

VENTO - CALCOLO PRESSIONE DEL VENTO

Vento - calcolo pressione del vento

Z	q ь	Ce	Cp	C _d	р	Scz	Cf	p _f
[m]	[N/m ²]				[N/m ²]			[N/m ²]
0,00	490	1,80	1,00	1,00	882	-	-	-
2,70		1,80	·	·	882			-

LEGENDA:

Z Altezza dell'edifico a cui viene calcolata la pressione del vento;

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A)	Pag. 29 di 127

Proponente: INE FICURINIA S.R.L

Vento - calcolo pressione del vento

Z	qь	C _e	Cp	C _d	р	Scz	C _f	p _f
[m]	[N/m ²]				[N/m ²]			[N/m ²]

- **q**_b Pressione cinetica di riferimento.
- Ce Coefficiente di esposizione;
- **C**_p Coefficiente di forma/aerodinamico.
 - (*) Valorizzato al momento del calcolo della pressione agente sul singolo elemento strutturale ed è funzione della posizione dello stesso (sopravento/sottovento);
- **C**_d Coefficiente dinamico;
- **p** Pressione normale (senza il contributo di C_p);
- Scz Scabrezza della superficie (liscia, scabra, molto scabra);
- C_f Coefficiente d'attrito;
- \mathbf{p}_{f} Pressione tangenziale (senza il contributo di C_{p}).

7.4.2 Applicazione delle forze sulla struttura

Per ogni superficie esposta all'azione del vento si individua la posizione del baricentro e in corrispondenza di esso, dal diagramma delle pressioni dell'edificio, si ricava la pressione per unità di superficie.

Per gli elementi **<u>strutturali</u>** la pressione è trasformata in:

- forze lineari per i beam (pilastri e travi);
- forze nodali per le shell (*pareti, muri e solette*).

Per gli elementi **non strutturali** (*tamponature, solai e balconi*) la forza totale (pressione nel baricentro x superficie) viene divisa per il perimetro in modo da ottenere una forza per unità di lunghezza che viene applicata sugli elementi strutturali confinanti.

8 - CODICE DI CALCOLO IMPIEGATO

8.1 Denominazione

Nome del Software	EdiLus
Versione	BIM 3(f) [64bit]
Caratteristiche del Software	Software per il calcolo di strutture agli elementi finiti per Windows

Bott. Ing. Graseppe ramair	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A0		Pag. 30 di 127

Proponente: INE FICURINIA S.R.L

Numero di serie	ACCA EDILUS CA-AC V.32
Intestatario Licenza	licenza 16100990
Produzione e Distribuzione	ACCA software S.p.A.
	Contrada Rosole 13
	83043 BAGNOLI IRPINO (AV) - Italy
	Tel. 0827/69504 r.a Fax 0827/601235
	e-mail: info@acca.it - Internet: www.acca.it

8.2 Sintesi delle funzionalità generali

Il pacchetto consente di modellare la struttura, di effettuare il dimensionamento e le verifiche di tutti gli elementi strutturali e di generare gli elaborati grafici esecutivi.

È una procedura integrata dotata di tutte le funzionalità necessarie per consentire il calcolo completo di una struttura mediante il metodo degli elementi finiti (FEM); la modellazione della struttura è realizzata tramite elementi Beam (travi e pilastri) e Shell (platee, pareti, solette, setti, travi-parete).

L'input della struttura avviene per oggetti (travi, pilastri, solai, solette, pareti, etc.) in un ambiente grafico integrato; il modello di calcolo agli elementi finiti, che può essere visualizzato in qualsiasi momento in una apposita finestra, viene generato dinamicamente dal software.

Apposite funzioni consentono la creazione e la manutenzione di archivi Sezioni, Materiali e Carichi; tali archivi sono generali, nel senso che sono creati una tantum e sono pronti per ogni calcolo, potendoli comunque integrare/modificare in ogni momento.

L'utente non può modificare il codice ma soltanto eseguire delle scelte come:

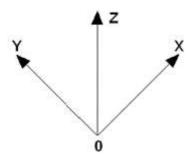
- definire i vincoli di estremità per ciascuna asta (vincoli interni) e gli eventuali vincoli nei nodi (vincoli esterni);
- modificare i parametri necessari alla definizione dell'azione sismica;
- definire condizioni di carico;
- definire gli impalcati come rigidi o meno.

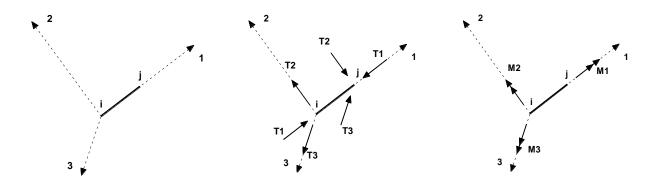
Il programma è dotato di un manuale tecnico ed operativo. L'assistenza è effettuata direttamente dalla casa produttrice, mediante linea telefonica o e-mail.

Tutti i risultati del calcolo sono forniti, oltre che in formato numerico, anche in formato grafico permettendo così di evidenziare agevolmente eventuali incongruenze.

Il programma consente la stampa di tutti i dati di input, dei dati del modello strutturale utilizzato, dei risultati del calcolo e delle verifiche dei diagrammi delle sollecitazioni e delle deformate.

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A	0	Pag. 31 di 127


Proponente: INE FICURINIA S.R.L


8.3 Sistemi di Riferimento

8.3.1 Riferimento globale

Il sistema di riferimento globale, rispetto al quale va riferita l'intera struttura, è costituito da una terna di assi cartesiani sinistrorsa O, X, Y, Z (X, Y, e Z sono disposti e orientati rispettivamente secondo il pollice, l'indice ed il medio della mano destra, una volta posizionati questi ultimi a 90° tra loro).

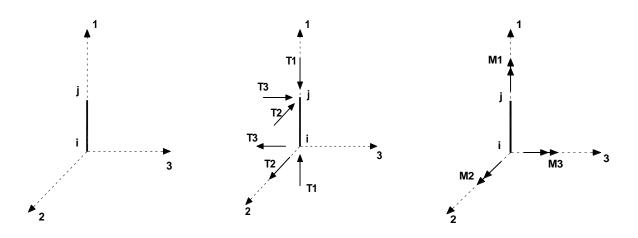
8.3.2 Riferimento locale per travi

L'elemento Trave è un classico elemento strutturale in grado di ricevere Carichi distribuiti e Carichi Nodali applicati ai due nodi di estremità; per effetto di tali carichi nascono, negli estremi, sollecitazioni di taglio, sforzo normale, momenti flettenti e torcenti.

Definiti i e j (nodi iniziale e finale della Trave) viene individuato un sistema di assi cartesiani 1-2-3 locale all'elemento, con origine nel Nodo i così composto:

- asse 1 orientato dal nodo i al nodo j;
- assi 2 e 3 appartenenti alla sezione dell'elemento e coincidenti con gli assi principali d'inerzia della sezione stessa.

Le sollecitazioni verranno fornite in riferimento a tale sistema di riferimento:


- 1. Sollecitazione di Trazione o Compressione T₁ (agente nella direzione i-j);
- 2. Sollecitazioni taglianti T₂ e T₃, agenti nei due piani 1-2 e 1-3, rispettivamente secondo l'asse 2 e l'asse 3;
- 3. Sollecitazioni che inducono flessione nei piani 1-3 e 1-2 (M₂ e M₃);
- 4. Sollecitazione torcente M₁.

Dotte ing. Grasspie i armari	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A0)	Pag. 32 di 127

Proponente: INE FICURINIA S.R.L

8.3.3 Riferimento locale per pilastri

Definiti i e j come i due nodi iniziale e finale del pilastro, viene individuato un sistema di assi cartesiani 1-2-3 locale all'elemento, con origine nel Nodo i così composto:

- asse 1 orientato dal nodo i al nodo j;
- asse 2 perpendicolare all' asse 1, parallelo e discorde all'asse globale Y;
- asse 3 che completa la terna destrorsa, parallelo e concorde all'asse globale X.

Tale sistema di riferimento è valido per Pilastri con angolo di rotazione pari a '0' gradi; una rotazione del pilastro nel piano XY ha l'effetto di ruotare anche tale sistema (ad es. una rotazione di '90' gradi porterebbe l'asse 2 a essere parallelo e concorde all'asse X, mentre l'asse 3 sarebbe parallelo e concorde all'asse globale Y). La rotazione non ha alcun effetto sull'asse 1 che coinciderà sempre e comunque con l'asse globale Z.

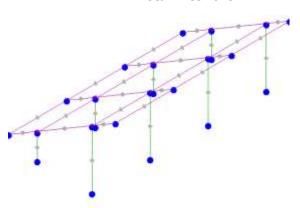
Per quanto riguarda le sollecitazioni si ha:

- una forza di trazione o compressione T₁, agente lungo l'asse locale 1;
- due forze taglianti T₂ e T₃ agenti lungo i due assi locali 2 e 3;
- due vettori momento (flettente) M₂ e M₃ agenti lungo i due assi locali 2 e 3;
- un vettore momento (torcente) M₁ agente lungo l'asse locale nel piano 1.

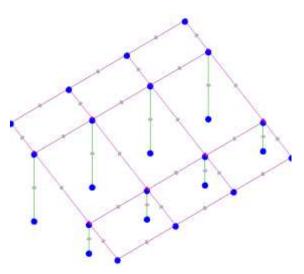
8.4 Modello di Calcolo

Il modello della struttura viene creato automaticamente dal codice di calcolo, individuando i vari elementi strutturali e fornendo le loro caratteristiche geometriche e meccaniche.

Viene definita un'opportuna numerazione degli elementi (nodi, aste, shell) costituenti il modello, al fine di individuare celermente ed univocamente ciascun elemento nei "*Tabulati di calcolo*".


Qui di seguito è fornita una rappresentazione grafica dettagliata della discretizzazione operata con evidenziazione dei nodi e degli elementi.

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A)	Pag. 33 di 127


Proponente: INE FICURINIA S.R.L

Vista Anteriore

Vista Posteriore

Le aste in **c.a.**, in **acciaio**, sia travi che pilastri, sono schematizzate con un tratto flessibile centrale e da due tratti (braccetti) rigidi alle estremità. I nodi vengono posizionati sull'asse verticale dei pilastri, in corrispondenza dell'estradosso della trave più alta che in esso si collega. Tramite i braccetti i tratti flessibili sono quindi collegati ad esso. In questa maniera il nodo risulta perfettamente aderente alla realtà poiché vengono presi in conto tutti gli eventuali disassamenti degli elementi con gli effetti che si possono determinare, quali momenti flettenti/torcenti aggiuntivi.

Le sollecitazioni vengono determinate solo per il tratto flessibile. Sui tratti rigidi, infatti, essendo (teoricamente) nulle le deformazioni, le sollecitazioni risultano indeterminate.

Questa schematizzazione dei nodi viene automaticamente realizzata dal programma anche quando il nodo sia determinato dall'incontro di più travi senza il pilastro, o all'attacco di travi/pilastri con elementi shell.

Consulente:
Dott. Ing. Giuseppe Furnari
Viale del Rotolo, 44
95126 Catania

RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0 Pag. 34 di 127

Proponente: INE FICURINIA S.R.L

La modellazione del materiale degli elementi in c.a., acciaio e legno segue la classica teoria dell'elasticità lineare; per cui il materiale è caratterizzato oltre che dal peso specifico, da un modulo elastico (E) e un modulo tagliante (G).

La possibile fessurazione degli elementi in c.a. è stata tenuta in conto nel modello considerando un opportuno decremento del modulo di elasticità e del modulo di taglio, nei limiti di quanto previsto dalla normativa vigente per ciascuno stato limite.

Gli eventuali elementi di **fondazione** (travi, platee, plinti, plinti su pali e pali) sono modellati assumendo un comportamento elastico-lineare sia a trazione che a compressione.

9 PROGETTO E VERIFICA DEGLI ELEMENTI STRUTTURALI

La verifica degli elementi allo SLU avviene col seguente procedimento:

- si costruiscono le combinazioni non sismiche in base al D.M. 2018, ottenendo un insieme di sollecitazioni;
- si combinano tali sollecitazioni con quelle dovute all'azione del sisma secondo quanto indicato nel §2.5.3, relazione (2.5.5) del D.M. 2018;
- per sollecitazioni semplici (flessione retta, taglio, etc.) si individuano i valori minimo e massimo con cui
 progettare o verificare l'elemento considerato; per sollecitazioni composte (pressoflessione retta/deviata)
 vengono eseguite le verifiche per tutte le possibili combinazioni e solo a seguito di ciò si individua quella
 che ha originato il minimo coefficiente di sicurezza.

9.1 Verifiche di Resistenza

9.1.1 Elementi in Acciaio

Per quanto concerne la verifica degli elementi in **acciaio**, le verifiche effettuate per ogni elemento dipendono dalla funzione dell'elemento nella struttura. Ad esempio, elementi con prevalente comportamento assiale (controventi o appartenenti a travature reticolari) sono verificate a trazione e/o compressione; elementi con funzioni portanti nei confronti dei carichi verticali sono verificati a Pressoflessione retta e Taglio; elementi con funzioni resistenti nei confronti di azioni orizzontali sono verificati a pressoflessione deviata e taglio oppure a sforzo normale se hanno la funzione di controventi.

Le verifiche allo SLU sono effettuate sempre controllando il soddisfacimento della relazione:

R_d ³ S_d

dove R_d è la resistenza calcolata come rapporto tra R_k (resistenza caratteristica del materiale) e γ (coefficiente di sicurezza), mentre S_d è la generica sollecitazione di progetto calcolata considerando tutte le Combinazioni di Carico per lo Stato Limite esaminato.

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A0		Pag. 35 di 127

Proponente: INE FICURINIA S.R.L

La resistenza viene determinata, in funzione della Classe di appartenenza della Sezione metallica, col metodo Elastico o Plastico (vedi §4.2.3.2 del D.M. 2018).

Viene portato in conto l'indebolimento causato dall'eventuale presenza di fori.

Le verifiche effettuate sono quelle previste al §4.2.4.1.2 D.M. 2018 ed in particolare:

- Verifiche di Trazione
- Verifiche di Compressione
- Verifiche di Flessione Monoassiale
- Verifiche di Taglio (considerando l'influenza della Torsione) assiale e biassiale.
- Verifiche per contemporanea presenza di Flessione e Taglio
- Verifiche per PressoFlessione retta e biassiale

Nei "<u>Tabulati di calcolo</u>", per ogni tipo di Verifica e per ogni elemento interessato dalla Verifica, sono riportati i valori delle resistenze e delle sollecitazioni che hanno dato il minimo coefficiente di sicurezza, calcolato generalmente come:

 $CS = R_d/S_d$.

9.1.1.1 Verifiche di Instabilità

Per tutti gli elementi strutturali sono state condotte verifiche di stabilità delle membrature secondo le indicazioni del §4.2.4.1.3 del D.M. 2018; in particolare sono state effettuate le seguenti verifiche:

- Verifiche di stabilità per compressione semplice, con controllo della snellezza.
- Verifiche di stabilità per elementi inflessi.
- Verifiche di stabilità per elementi inflessi e compressi.

Le verifiche sono effettuate considerando la possibilità di instabilizzazione flessotorsionale.

Nei "<u>Tabulati di calcold</u>", per ogni tipo di verifica e per ogni elemento strutturale, sono riportati i risultati di tali verifiche.

9.1.1.2 Verifiche di Deformabilità

Sono state condotte le verifiche definite al §4.2.4.2 del D.M. 2018 e in particolare si citano:

- Verifiche agli spostamenti verticali per i singoli elementi (§4.2.4.2.1 D.M. 2018).
- Verifiche agli spostamenti laterali per i singoli elementi (§4.2.4.2.2 D.M. 2018).

	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A)	Pag. 36 di 127

Proponente: INE FICURINIA S.R.L

• Verifiche agli spostamenti per il piano e per l'edificio (§4.2.4.2.2 D.M. 2018).

I relativi risultati sono riportati nei "Tabulati di calcolo".

9.2 Gerarchia delle Resistenze

9.2.1 Elementi in Acciaio

Per quanto riguarda le aste in acciaio, sono state applicate le disposizioni contenute al §7.5.3 del D.M. 2018. Più in particolare:

- per gli elementi travi e pilastri sono state effettuate le verifiche definite al §7.5.4 D.M. 2018 e relativi sotto paragrafi;
- per gli elementi di controventamento sono state effettuate le verifiche definite al §7.5.5 D.M. 2018; più specificatamente, per gli elementi dissipativi (aste tese di controventi a X o aste di controventi a V) sono state effettuate le relative verifiche di resistenza; per gli elementi in acciaio (travi o colonne) ad essi collegati le sollecitazioni di progetto sono state ricavate considerando come agenti le resistenze degli elementi dissipativi, opportunamente amplificate dal minimo coefficiente Ω tra tutti gli elementi dissipativi collegati alla trave o colonna.

Le relative verifiche sono riportate nei " $\underline{\textit{Tabulati di calcolo}}$ ", con l'indicazione del coefficiente Ω utilizzato per la singola verifica.

9.3 DETTAGLI STRUTTURALI

Il progetto delle strutture è stato condotto rispettando i dettagli strutturali previsti dal D.M. 2018, nel seguito illustrati. Il rispetto dei dettagli può essere evinto, oltreché dagli elaborati grafici, anche dalle verifiche riportate nei tabulati allegati alla presente relazione.

10 - TABULATI DI CALCOLO

Per quanto non espressamente sopra riportato, ed in particolar modo per ciò che concerne i dati numerici di calcolo, si rimanda all'allegato "*Tabulati di calcolo*" costituente parte integrante della presente relazione.

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A0)	Pag. 37 di 127

Proponente: INE FICURINIA S.R.L

INFORMAZIONI GENERALI

Edificio Cemento Armato Costruzione Nuova Situazione Intervento Comune Ramacca- Castel di judica **Provincia** Catania Oggetto Parte d'opera Normativa di riferimento D.M. 17/01/2018 Calcolo semplificato per siti a bassa sismicità (§ 7.0) Analisi sismica Dinamica solo Orizzontale

MATERIALI ACCIAIO

Caratteristiche acciaio

Nid	γk	αт, і	Е	G	Stz	LMT	f _{yk}	f _{tk}	f _{yd}	f _{td}	γs	γм1	γм2	γ̃M3,SLV	γ̃м3,SLE	γ٨	47
		,-					-7		-,-		,,,	7	,	,,	11.0,022	NCnt	Cnt
	[N/m³]	[1/°C]	[N/mm²]	[N/mm²]			[N/mm²]	[N/mm²]	[N/mm²]	[N/mm²]							
S235	- Acciaio	per Profila	ti - (S235	5)													
001	78.500	0,000012	210.000	80.769	Р	40	235,00	360,00	-	_	1,05	1,05	1,25	_	_	_	_
		-,,,,,,,,				80	215,00	360,00	-			_,,,,	-,				

LEGENDA:

Numero identificativo del materiale, nella relativa tabella dei materiali.

γ_k Peso specifico.

 $\alpha_{\text{T, i}}$ Coefficiente di dilatazione termica.

E Modulo elastico normale.

G Modulo elastico tangenziale.

Stz Tipo di situazione: [F] = di Fatto (Esistente); [P] = di Progetto (Nuovo).

LMT Campo di validità in termini di spessore t, (per profili, piastre, saldature) o diametro, d (per bulloni, tondini, chiodi, viti, spinotti)

f_{vk} Resistenza caratteristica allo snervamento

f_{tk} Resistenza caratteristica a rottura

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A	0	Pag. 38 di 127

Proponente: INE FICURINIA S.R.L

Caratteristiche acciaio

Nid	γk	αт, і	E	G	Stz	LMT	f _{yk}	f _{tk}	f _{vd}	f _{td}	γs	γм1	γ м2	γ̃м3,SLV	γ̃м3,SLE	γм	17
	,-	,-					- 7		-,-		,,,	,	,	11.10,021	11.0,022	NCnt	Cnt
	[N/m³]	[1/°C]	[N/mm ²]	[N/mm²]			[N/mm ²]	[N/mm ²]	[N/mm²]	[N/mm ²]							

Resistenza di calcolo f_{yd}

 f_{td} Resistenza di calcolo a Rottura (Bulloni).

Coefficiente parziale di sicurezza allo SLV del materiale. γs

Coefficiente parziale di sicurezza per instabilità. γм1

Coefficiente parziale di sicurezza per sezioni tese indebolite. **Үм2**

Coefficiente parziale di sicurezza per scorrimento allo SLV (Bulloni). γмз,slv

Coefficiente parziale di sicurezza per scorrimento allo SLE (Bulloni). γмз,sle

Coefficiente parziale di sicurezza precarico di bulloni ad alta resistenza (Bulloni - NCnt = con serraggio NON controllato; Cnt = con serraggio controllato). [-] =

parametro NON significativo per il materiale.

NOTE [-] = Parametro non significativo per il materiale.

TENSIONI AMMISSIBILI ALLO SLE DEI VARI MATERIALI

Tensioni ammissibili allo SLE dei vari materiali

Materiale	SL	Tensione di verifica	σ d,amm
			[N/mm²]

LEGENDA:

SL Stato limite di esercizio per cui si esegue la verifica.

Tensione ammissibile per la verifica. σ_{d,amm}

SEZIONI PROFILATI IN ACCIAIO

Sezioni profilati in acciaio - parte I

Nid	Тр	Label	b	b ₁	h	t _f	t _{f1}	tw	t p	r _w	rf	r _{w/f}	hi	d	pw	pf	d _{sp,w}	$d_{sp,f}$
			[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[%]	[%]	[mm]	[mm]
001	Ω	60x60x3.2	60,0	-	60,0	3,2	-	-	-	-	-	-	-	-	-	-	-	-

LEGENDA:

 N_{id} Numero identificativo del profilato.

Tр Tipo di profilato.

Label Identificativo del profilato come indicato nelle carpenterie.

Base del profilato. b

b1 Seconda base (per profilati composti).

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A)	Pag. 39 di 127

Proponente: INE FICURINIA S.R.L

Sezioni profilati in acciaio - parte I

N _{id}	Тр	Label	b	b ₁	h	t _f	t _{f1}	t _w	t _p	r _w	r _f	r _{w/f}	hi	d	p _w	p _f	d _{sp,w}	$\mathbf{d}_{sp,f}$
			[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[%]	[%]	[mm]	[mm]
h		Altezza.																
\mathbf{t}_{f}		Spessore ala.																
t _{f1}		Spessore seconda	ala (per	profilati	composti).												
tw		Spessore anima.																
t p		Spessore piatto (p	per profila	ati compo	osti).													
r _w		Raggio anima.																
rf		Raggio ala.																
r _{w/f}		Raggio anima/ala																
hi		Altezza anima.																
d		Altezza netta racc	ordi.															
pw		Pendenza anima.																
\mathbf{p}_{f}		Pendenza ala.																
d _{sp,w}		Distanza spessore	anima.															
$\mathbf{d}_{sp,f}$		Distanza spessore	e ala.															

SEZIONI PROFILATI IN ACCIAIO

Sezioni profilati in acciaio - parte II

N _{id}	Тр	Label	Di r	тс	d _{x/y}	P _{abb}	A	A _v	I	W _{el,sup/dx}	W el,inf/sx	W _{pl}	i	I _w	Ιτ	I _{XY}	αху
					[mm]	[mm]	[cm²]	[cm²]	[cm⁴]	[cm³]	[cm³]	[cm³]	[cm]	[cm ⁶]	[cm ⁴]	[cm ⁴]	[°]
001	Ω	60x60x3.2	X	_	-	0	7	3,58	38,2	12,7	12,7	15,2	2,31	0,000	0	0	0,0
			Y		-			3,58	38,2	12,7	12,7	15,2	2,31				

LEGENDA:

 N_{id} Numero identificativo del profilato.

Tp Tipo di profilato.

Label Identificativo del profilato come indicato nelle carpenterie.

Dir Direzione

TC Tipo collegamenti (per profilati composti). A = Abbottonati; R = Ravvicinati.

 $\mathbf{d}_{\mathbf{x}/\mathbf{y}}$ Distanza profilati lungo X/Y (per profilati composti).

Passo abbottonatura (per profilati composti).

A Area della sezione.

Av Area resistente a taglio.

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A	0	Pag. 40 di 127

Proponente: INE FICURINIA S.R.L

Sezioni profilati in acciaio - parte II

N _{id}	Тр	Label	Di r	тс	d _{x/y}	P _{abb}	A	A _v	I	W _{el,sup/dx}	W el,inf/sx	\mathbf{W}_{pl}	i	I _w	Ι _τ	I _{XY}	αху
					[mm]	[mm]	[cm ²]	[cm²]	[cm ⁴]	[cm³]	[cm³]	[cm³]	[cm]	[cm ⁶]	[cm ⁴]	[cm ⁴]	[°]

I Inerzia.

 $\mathbf{W}_{\text{el,inf/sx}}$ Modulo di resistenza elastica superiore/destra. $\mathbf{W}_{\text{el,inf/sx}}$ Modulo di resistenza elastica inferiore/sinistra.

W_{pl} Modulo resistenza plastica.

i Raggio inerzia

Iw Inerzia settoriale.

I_T Inerzia torsionale.

 I_{XY}

α_{xy} Rotazione assi inerzia.

Inerzia in XY.

ANALISI CARICHI

Analisi carichi

	N _{id}	T. C.	Descrizione del	Tipologie di Peso Proprio			Permanente NON Strut	turale	Sovraccarico Accidentale		Carico
	0		Carico	Carico	Descrizione	PP	Descrizione	PNS	Descrizione	SA	Neve
Γ											[N/m ²]
	001	S	Pannello JA solar 1134x2465x35	Permanenti NON Strutturali	Peso di un pannello 31,1kg	112		0		0	0

LEGENDA:

Nid Numero identificativo dell'analisi di carico.

T. C. Identificativo del tipo di carico: [S] = Superficiale - [L] = Lineare - [C] = Concentrato.

PP, PNS, SA Valori, rispettivamente, del Peso Proprio, del Sovraccarico Permanente NON strutturale, del Sovraccarico Accidentale. Secondo il tipo di carico indicato nella colonna "T.C." ("S" - "L" - "C"), i valori riportati nelle colonne "PP", "PNS" e "SA", sono espressi in [N/m²] per carichi Superficiali, [N/m] per carichi Lineari, [N] per carichi Concentrati.

TIPOLOGIE DI CARICO

Tipologie di carico

N _{id}	Descrizione	F+E	+/- F	CDC	Ψο	Ψ1	Ψ2
0001	Carico Permanente	SI	NO	Permanente	1,00	1,00	1,00
0002	Pressione del Vento (+X)	NO	NO	Istantanea	0,60	0,20	0,00
0003	Pressione del Vento (-X)	NO	NO	Istantanea	0,60	0,20	0,00
0004	Pressione del Vento (+Y)	NO	NO	Istantanea	0,60	0,20	0,00

· · · · · · · · · · · · · · · · · ·	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A)	Pag. 41 di 127

Proponente: INE FICURINIA S.R.L

Tipologie di carico

N _{id}	Descrizione	F+E	+/- F	CDC	Ψο	Ψ1	Ψ2
0005	Pressione del Vento (-Y)	NO	NO	Istantanea	0,60	0,20	0,00
0006	Sisma X	-	-	-	-	-	-
0007	Sisma Y	-	-	-	-	-	-
0008	Sisma Z	-	-	-	-	-	-
0009	Sisma Ecc.X	-	-	-	-	-	-
0010	Sisma Ecc.Y	-	-	-	-	-	-

LEGENDA:

N_{id} Numero identificativo della Tipologia di Carico.

F+E Indica se la tipologia di carico considerata è AGENTE con il sisma.

+/- F Indica se la tipologia di carico è ALTERNATA (cioè considerata due volte con segno opposto) o meno.

CDC Indica la classe di durata del carico.

NOTA: dato significativo solo per elementi in materiale legnoso.

ψο Coefficiente riduttivo dei carichi allo SLU e SLE (carichi rari).

 ψ_1 Coefficiente riduttivo dei carichi allo SLE (carichi frequenti).

ψ₂ Coefficiente riduttivo dei carichi allo SLE (carichi frequenti e quasi permanenti).

SLU: Non Sismica - Strutturale senza azioni geotecniche

SLU: Non Sismica - Strutturale senza azioni geotecniche

	CC 01	CC 02	CC 03	CC 04	CC 05		
Id _{Comb}	Carico Permanente	Pressione del Vento (+X)	Pressione del Vento (- X)	Pressione del Vento (+Y)	Pressione del Vento (- Y)		
01	1,00	0,00	0,00	0,00	0,00		
02	1,00	1,50	0,00	0,00	0,00		
03	1,00	0,00	1,50	0,00	0,00		
04	1,00	0,00	0,00	1,50	0,00		
05	1,00	0,00	0,00	0,00	1,50		
06	1,30	0,00	0,00	0,00	0,00		
07	1,30	1,50	0,00	0,00	0,00		
08	1,30	0,00	1,50	0,00	0,00		
09	1,30	0,00	0,00	1,50	0,00		
10	1,30	0,00	0,00	0,00	1,50		

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A	0	Pag. 42 di 127

Proponente: INE FICURINIA S.R.L

SLU: Non Sismica - Strutturale senza azioni geotecniche

	CC 01	CC 02	CC 03	CC 04	CC 05
Id _{Comb}	Carico Permanente	Pressione del Vento (+X)	Pressione del Vento (- X)	Pressione del Vento (+Y)	Pressione del Vento (- Y)

LEGENDA:

Id_{Comb} Numero identificativo della Combinazione di Carico.

CC Identificativo della tipologia di carico nella relativa tabella.

CC 01= Carico Permanente

CC 02= Pressione del Vento (+X)

CC 03= Pressione del Vento (-X)

CC 04= Pressione del Vento (+Y)

CC 05= Pressione del Vento (-Y)

SERVIZIO(SLE): Caratteristica(RARA)

SERVIZIO(SLE): Caratteristica(RARA)

	CC 01	CC 02	CC 03	CC 04	CC 05	
Id _{Comb}	Carico Permanente	Pressione del Vento (+X)	Pressione del Vento (- X)	Pressione del Vento (+Y)	Pressione del Vento (- Y)	
01	1,00	1,00	0,00	0,00	0,00	
02	1,00	0,00	1,00	0,00	0,00	
03	1,00	0,00	0,00	1,00	0,00	
04	1,00	0,00	0,00	0,00	1,00	

LEGENDA:

Idcomb Numero identificativo della Combinazione di Carico.

CC Identificativo della tipologia di carico nella relativa tabella.

CC 01= Carico Permanente

CC 02= Pressione del Vento (+X)

CC 03= Pressione del Vento (-X)

CC 04= Pressione del Vento (+Y)

CC 05= Pressione del Vento (-Y)

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0 Pag. 43 di 127

Proponente: INE FICURINIA S.R.L

SERVIZIO(SLE): Frequente

SERVIZIO(SLE): Frequente

	CC 01	CC 02	CC 03	CC 04	CC 05	
Id _{Comb}	Carico Permanente	Pressione del Vento (+X)	Pressione del Vento (- X)	Pressione del Vento (+Y)	Pressione del Vento (- Y)	
01	1,00	0,20	0,00	0,00	0,00	
02	1,00	0,00	0,20	0,00	0,00	
03	1,00	0,00	0,00	0,20	0,00	
04	1,00	0,00	0,00	0,00	0,20	

LEGENDA:

Id_{Comb} Numero identificativo della Combinazione di Carico.

CC Identificativo della tipologia di carico nella relativa tabella.

CC 01= Carico Permanente

CC 02= Pressione del Vento (+X)

CC 03= Pressione del Vento (-X)

CC 04= Pressione del Vento (+Y)

CC 05= Pressione del Vento (-Y)

SERVIZIO(SLE): Quasi permanente

SERVIZIO(SLE): Quasi permanente

	CC 01	CC 02	CC 03	CC 04	CC 05
Id _{Comb}	Carico Permanente	Pressione del Vento (+X)	Pressione del Vento (- X)	Pressione del Vento (+Y)	Pressione del Vento (- Y)
01	1,00	0,00	0,00	0,00	0,00

LEGENDA:

Idcomb Numero identificativo della Combinazione di Carico.

CC Identificativo della tipologia di carico nella relativa tabella.

CC 01= Carico Permanente

CC 02= Pressione del Vento (+X)

CC 03= Pressione del Vento (-X)

CC 04= Pressione del Vento (+Y)

CC 05= Pressione del Vento (-Y)

Consul	onto:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0 Pag. 44 di 127

Proponente: INE FICURINIA S.R.L

DATI GENERALI ANALISI SISMICA

Dati generali analisi sismica

Ang	NV	CD	MP	Dir	TS	EcA	Ir _{Tmp}	C.S.T.	RP	RH	ξ
[°]											[%]
0	15	В	ca	Х	[T +C]	S	N	С	NO	SI	5
				Y	[T +C]						

LEGENDA:

- Ang Direzione di una componente dell'azione sismica rispetto all'asse X (sistema di riferimento globale); la seconda componente dell'azione sismica e' assunta con direzione ruotata di 90 gradi rispetto alla prima.
- NV Nel caso di analisi dinamica, indica il numero di modi di vibrazione considerati.
- CD Classe di duttilità: [A] = Alta [B] = Media [ND] = Non Dissipativa [-] = Nessuna.
- MP Tipo di struttura sismo-resistente prevalente: [ca] = calcestruzzo armato [caOld] = calcestruzzo armato esistente [muOld] = muratura esistente [muNew] = muratura nuova [muArm] = muratura armata [ac] = acciaio.
- Dir Direzione del sisma.
- **TS** Tipologia della struttura:

Cemento armato: [T 1C] = Telai ad una sola campata - [T+C] = Telai a più campate - [P] = Pareti accoppiate o miste equivalenti a pareti- [2P NC] = Due pareti per direzione non accoppiate - [P NC] = Pareti non accoppiate - [DT] = Deformabili torsionalmente - [PI] = Pendolo inverso - [PM] = Pendolo inverso intelaiate monopiano;

Muratura: [P] = un solo piano - [PP] = più di un piano - [C-P/MP] = muratura in pietra e/o mattoni pieni - [C-BAS] = muratura in blocchi artificiali con percentuale di foratura > 15%;

Acciaio: [T 1C] = Telai ad una sola campata - [T+C] = Telai a più campate - [CT] = controventi concentrici diagonale tesa - [CV] = controventi concentrici a V - [M] = mensola o pendolo inverso - [TT] = telaio con tamponature.

- Ecc Eccentricità accidentale: [S] = considerata come condizione di carico statica aggiuntiva [N] = Considerata come incremento delle sollecitazioni.
- Irmp Per piani con distribuzione dei tamponamenti in pianta fortemente irregolare, l'eccentricità accidentale è stata incrementata di un fattore pari a 2: [SI] = Distribuzione tamponamenti irregolare fortemente [NO] = Distribuzione tamponamenti regolare.
- **C.S.T.** Categoria di sottosuolo: [A] = Ammassi rocciosi affioranti o terreni molto rigidi [B] = Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti [C] = Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti [D] = Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti [E] = Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D.
- **RP** Regolarità in pianta: [SI] = Struttura regolare [NO] = Struttura non regolare.
- **RH** Regolarità in altezza: [SI] = Struttura regolare [NO] = Struttura non regolare.
- ξ Coefficiente viscoso equivalente.
- **NOTE** [-] = Parametro non significativo per il tipo di calcolo effettuato.

DATI GENERALI ANALISI SISMICA - FATTORI DI COMPORTAMENTO

Fattori di comportamento

Dir	q'	q	q ₀	K _R	α _u /α ₁	kw
X	2,665	3,150	3,15	1,00	1,05	-

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A0	0	Pag. 45 di 127

Proponente: INE FICURINIA S.R.L

Fattori di comportamento

Dir	q'	q	q ₀	K _R	α _u /α ₁	k _w
Y	3,150	3,150	3,15	1,00	1,05	_
Z	-	1,500	-	1,00	1,05	-

LEGENDA:

- q' Fattore di riduzione dello spettro di risposta sismico allo SLU ridotto (Fattore di comportamento ridotto relazione C7.3.1 circolare NTC)
- Fattore di riduzione dello spettro di risposta sismico allo SLU (Fattore di comportamento).
- **qo** Valore di base (comprensivo di k_w).
- **K**_R Fattore riduttivo funzione della regolarità in altezza : pari ad 1 per costruzioni regolari in altezza, 0,8 per costruzioni non regolari in altezza, e 0,75 per costruzioni in muratura esistenti non regolari in altezza (§ C8.5.5.1)..
- α_u/α_1 Rapporto di sovraresistenza.
- **k**_w Fattore di riduzione di q₀.

Stato Limite	Tr	a _g /g	Amplif. Stratigrafica		Fo	Fv	T*c	Тв	Tc	T _D
			Ss	Cc				- 15		
	[t]						[s]	[s]	[s]	[s]
SLO	30	0,0379	1,500	1,666	2,560	0,673	0,247	0,137	0,411	1,752
SLD	50	0,0463	1,500	1,598	2,513	0,730	0,280	0,149	0,447	1,785
SLV	475	0,1200	1,500	1,361	2,506	1,172	0,456	0,207	0,620	2,080
SLC	975	0,1714	1,448	1,297	2,455	1,372	0,528	0,228	0,684	2,286

LEGENDA:

- T_r Periodo di ritorno dell'azione sismica. [t] = anni.
- **a**_g/**g** Coefficiente di accelerazione al suolo.
- Ss Coefficienti di Amplificazione Stratigrafica allo SLO/SLD/SLV/SLC.
- **C**c Coefficienti di Amplificazione di Tc allo SLO/SLD/SLV/SLC.
- Fo Valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale.
- Fv Valore massimo del fattore di amplificazione dello spettro in accelerazione verticale.
- **T***c Periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.
- T_B Periodo di inizio del tratto accelerazione costante dello spettro di progetto.
- T_c Periodo di inizio del tratto a velocità costante dello spettro di progetto.
- T_D Periodo di inizio del tratto a spostamento costante dello spettro di progetto.

Consulente:	
Dott. Ing. Giuseppe Furnari	RELAZIONE DI CALCOLO - TABULATI -
Viale del Rotolo, 44	STRUTTURA DI SUPPORTO FV DA 24M
95126 Catania	

Codice elaborato: RS06REL092A0 Pag. 46 di 127

Proponente: INE FICURINIA S.R.L

CI Ed	V _N V _R Lat.		Long.	Q ₉	СТор	ST	
	[t]	[t]	[°ssdc]	[°ssdc]	[m]		
1	50	50	37.498345	14.608146	405	T1	1,00

LEGENDA:

CI Ed Classe dell'edificio

 V_N Vita nominale ([t] = anni).

 V_R Periodo di riferimento. [t] = anni.

Latitudine geografica del sito.

Long. Longitudine geografica del sito.

Q_g Altitudine geografica del sito.

CTop Categoria topografica (Vedi NOTE).

S_T Coefficiente di amplificazione topografica.

NOTE [-] = Parametro non significativo per il tipo di calcolo effettuato.

Categoria topografica.

T1: Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i <= 15°.

T2: Pendii con inclinazione media i > 15°.

T3: Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^{\circ} <= i <= 30^{\circ}$.

T4: Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $i > 30^{\circ}$.

PRINCIPALI ELEMENTI ANALISI SISMICA

Dir	M _{Str}	M _{SLU}	M _{Ecc,SLU}	M _{SLD}	M _{Ecc,SLD}	%T.M _{Ecc}	$\Sigma V_{Ed,SLU}$
	[N·s²/m]	[N·s²/m]	[N·s²/m]	[N·s²/m]	[N·s²/m]	[%]	[N]
Х	1.249	1.186	1.154	1.186	1.154	97,41	1.985
Υ	1.249	1.186	1.182	1.186	1.182	99,59	1.926
Z	1.249	0	0	0	0	100,00	0

LEGENDA:

Dir Direzione del sisma.

Mstr Massa complessiva della struttura.

MsLu Massa eccitabile allo SLU.

Mecc, SLU Massa Eccitata dal sisma allo SLU.

Consulen	te:
----------	-----

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0 Pag. 47 di 127

Proponente: INE FICURINIA S.R.L

Dir	M _{Str}	M _{SLU}	M _{Ecc,SLU}	M _{SLD}	M _{Ecc,SLD}	%T.M _{Ecc}	$\Sigma V_{\text{Ed,SLU}}$
	[N·s²/m]	[N·s²/m]	[N·s²/m]	[N·s²/m]	[N·s²/m]	[%]	[N]

Msld Massa eccitabile della struttura allo SLD, nelle direzioni X, Y, Z.

 $\mathbf{M}_{\mathsf{Ecc},\mathsf{SLD}}$ Massa Eccitata dal sisma allo SLD.

%T.M_{Ecc} Percentuale Totale di Masse Eccitate dal sisma.ΣV_{Ed,SLU} Tagliante totale, alla base, per sisma allo SLU.

RIEPILOGO MODI DI VIBRAZIONEMODI DI VIBRAZIONE N.15

Sptr	Т	a _{g,0}	a _{g,} v	Г	СМ	%M.M	M _{Ecc}
	[s]	[m/s²]	[m/s²]			[%]	[N·s²/m]
Modo Vibrazio	ne n. 1						
SLU-X	0,181	1,673	0,000	-25,136	-0,0209	53,27	632
SLU-Y	0,181	1,449	0,000	0,000	0,0000	0,00	0
SLU-Z	0,000	0,000	0,551	0,000	0,0000	0,00	0
SLD-X	0,181	1,713	0,000	-25,136	-0,0209	53,27	632
SLD-Y	0,181	1,713	0,000	0,000	0,0000	0,00	0
SLD-Z	0,000	0,000	0,132	0,000	0,0000	0,00	0
Elast-X	-	1,713	0,000	-	-	-	-
Elast-Y	-	1,713	0,000	-	-	-	-
Elast-Z	-	0,000	0,551	-	-	-	-
Modo Vibrazio	ne n. 2						
SLU-X	0,081	1,724	0,000	-0,001	0,0000	0,00	0
SLU-Y	0,081	1,624	0,000	-18,895	-0,0032	30,10	357
SLU-Z	0,000	0,000	0,551	0,000	0,0000	0,00	0
SLD-X	0,081	1,244	0,000	-0,001	0,0000	0,00	0
SLD-Y	0,081	1,244	0,000	-18,895	-0,0032	30,10	357
SLD-Z	0,000	0,000	0,132	0,000	0,0000	0,00	0
Elast-X	-	1,244	0,000	-	-	-	-
Elast-Y	-	1,244	0,000	-	-	-	-
Elast-Z	-	0,000	0,551	-	-	-	-
Modo Vibrazio	ne n. 3						
SLU-X	0,100	1,715	0,000	-0,001	0,0000	0,00	0
SLU-Y	0,100	1,591	0,000	-18,647	-0,0048	29,32	348

Consul	lente:
Consui	ente.

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 48 di 127

Proponente: INE FICURINIA S.R.L

Sptr	Т	a _{g,O}	a _{g,V}	Γ	СМ	%M.M	M _{Ecc}
SLU-Z	0,000	0,000	0,551	0,000	0,0000	0,00	0
SLD-X	0,100	1,376	0,000	-0,001	0,0000	0,00	0
SLD-Y	0,100	1,376	0,000	-18,647	-0,0048	29,32	348
SLD-Z	0,000	0,000	0,132	0,000	0,0000	0,00	0
Elast-X	-	1,376	0,000	-	-	-	-
Elast-Y	-	1,376	0,000	-	-	-	-
Elast-Z	-	0,000	0,551	-	-	-	-
Modo Vibrazion	ne n. 4						
SLU-X	0,129	1,700	0,000	0,001	0,0000	0,00	0
SLU-Y	0,129	1,541	0,000	15,415	0,0065	20,03	238
SLU-Z	0,000	0,000	0,551	0,000	0,0000	0,00	0
SLD-X	0,129	1,572	0,000	0,001	0,0000	0,00	0
SLD-Y	0,129	1,572	0,000	15,415	0,0065	20,03	238
SLD-Z	0,000	0,000	0,132	0,000	0,0000	0,00	0
Elast-X	-	1,572	0,000	-	-	-	-
Elast-Y	-	1,572	0,000	-	-	-	-
Elast-Z	-	0,000	0,551	-	-	-	-
Modo Vibrazion	ne n. 5						
SLU-X	0,076	1,727	0,000	14,119	0,0021	16,81	199
SLU-Y	0,076	1,633	0,000	0,004	0,0000	0,00	0
SLU-Z	0,000	0,000	0,551	0,000	0,0000	0,00	0
SLD-X	0,076	1,209	0,000	14,119	0,0021	16,81	199
SLD-Y	0,076	1,209	0,000	0,004	0,0000	0,00	0
SLD-Z	0,000	0,000	0,132	0,000	0,0000	0,00	0
Elast-X	-	1,209	0,000	-	-	-	-
Elast-Y	-	1,209	0,000	-	-	-	-
Elast-Z	-	0,000	0,551	-	-	-	-
Modo Vibrazion	ne n. 6						
SLU-X	0,073	1,729	0,000	-11,482	-0,0015	11,12	132
SLU-Y	0,073	1,639	0,000	0,004	0,0000	0,00	0
SLU-Z	0,000	0,000	0,551	0,000	0,0000	0,00	0
SLD-X	0,073	1,185	0,000	-11,482	-0,0015	11,12	132
SLD-Y	0,073	1,185	0,000	0,004	0,0000	0,00	0

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 49 di 127

Proponente: INE FICURINIA S.R.L

Sptr	Т	a _{g,O}	a _{g,V}	Г	СМ	%M.M	M _{Ecc}
SLD-Z	0,000	0,000	0,132	0,000	0,0000	0,00	0
Elast-X	-	1,185	0,000	-	-	-	-
Elast-Y	-	1,185	0,000	-	-	-	-
Elast-Z	-	0,000	0,551	-	-	-	-
Modo Vibrazio	ne n. 7						
SLU-X	0,043	1,744	0,000	-10,073	-0,0005	8,56	101
SLU-Y	0,043	1,692	0,000	0,000	0,0000	0,00	0
SLU-Z	0,000	0,000	0,551	0,000	0,0000	0,00	0
SLD-X	0,043	0,976	0,000	-10,073	-0,0005	8,56	101
SLD-Y	0,043	0,976	0,000	0,000	0,0000	0,00	0
SLD-Z	0,000	0,000	0,132	0,000	0,0000	0,00	0
Elast-X	-	0,976	0,000	-	-	-	-
Elast-Y	-	0,976	0,000	-	-	-	-
Elast-Z	-	0,000	0,551	-	-	-	-
Modo Vibrazion	ne n. 8						
SLU-X	0,103	1,713	0,000	-0,003	0,0000	0,00	0
SLU-Y	0,103	1,586	0,000	9,184	0,0025	7,11	84
SLU-Z	0,000	0,000	0,551	0,000	0,0000	0,00	0
SLD-X	0,103	1,392	0,000	-0,003	0,0000	0,00	0
SLD-Y	0,103	1,392	0,000	9,184	0,0025	7,11	84
SLD-Z	0,000	0,000	0,132	0,000	0,0000	0,00	0
Elast-X	-	1,392	0,000	-	-	-	-
Elast-Y	-	1,392	0,000	-	-	-	-
Elast-Z	-	0,000	0,551	-	-	-	-
Modo Vibrazion	ne n. 9						
SLU-X	0,084	1,723	0,000	0,002	0,0000	0,00	0
SLU-Y	0,084	1,619	0,000	-8,415	-0,0015	5,97	71
SLU-Z	0,000	0,000	0,551	0,000	0,0000	0,00	0
SLD-X	0,084	1,263	0,000	0,002	0,0000	0,00	0
SLD-Y	0,084	1,263	0,000	-8,415	-0,0015	5,97	71
SLD-Z	0,000	0,000	0,132	0,000	0,0000	0,00	0
Elast-X	-	1,263	0,000	-	-	-	-
Elast-Y	-	1,263	0,000	-	-	-	-

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 50 di 127

Proponente: INE FICURINIA S.R.L

Sptr	Т	a _{g,0}	a _{g,V}	Г	СМ	%М.М	M _{Ecc}
Elast-Z	-	0,000	0,551	-	-	-	-
Modo Vibrazion	ne n. 10						
SLU-X	0,077	1,727	0,000	-6,274	-0,0009	3,32	39
SLU-Y	0,077	1,631	0,000	-0,014	0,0000	0,00	0
SLU-Z	0,000	0,000	0,551	0,000	0,0000	0,00	0
SLD-X	0,077	1,214	0,000	-6,274	-0,0009	3,32	39
SLD-Y	0,077	1,214	0,000	-0,014	0,0000	0,00	0
SLD-Z	0,000	0,000	0,132	0,000	0,0000	0,00	0
Elast-X	-	1,214	0,000	-	-	-	-
Elast-Y	-	1,214	0,000	-	-	-	-
Elast-Z	-	0,000	0,551	-	-	-	-
Modo Vibrazion	ne n. 11	I			I		
SLU-X	0,067	1,732	0,000	0,010	0,0000	0,00	0
SLU-Y	0,067	1,650	0,000	-5,662	-0,0006	2,70	32
SLU-Z	0,000	0,000	0,551	0,000	0,0000	0,00	0
SLD-X	0,067	1,142	0,000	0,010	0,0000	0,00	0
SLD-Y	0,067	1,142	0,000	-5,662	-0,0006	2,70	32
SLD-Z	0,000	0,000	0,132	0,000	0,0000	0,00	0
Elast-X	-	1,142	0,000	-	-	-	-
Elast-Y	-	1,142	0,000	-	-	-	-
Elast-Z	-	0,000	0,551	-	-	-	-
Modo Vibrazion	ne n. 12						
SLU-X	0,090	1,720	0,000	-5,672	-0,0012	2,71	32
SLU-Y	0,090	1,609	0,000	-0,003	0,0000	0,00	0
SLU-Z	0,000	0,000	0,551	0,000	0,0000	0,00	0
SLD-X	0,090	1,304	0,000	-5,672	-0,0012	2,71	32
SLD-Y	0,090	1,304	0,000	-0,003	0,0000	0,00	0
SLD-Z	0,000	0,000	0,132	0,000	0,0000	0,00	0
Elast-X	-	1,304	0,000	-	-	-	-
Elast-Y	-	1,304	0,000	-	-	-	-
Elast-Z	-	0,000	0,551	-	-	-	-
Modo Vibrazion	ne n. 13						
SLU-X	0,070	1,730	0,000	0,003	0,0000	0,00	0

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 51 di 127

Proponente: INE FICURINIA S.R.L

SLU-Z SLD-X SLD-Y SLD-Z	0,070 0,000 0,070 0,070 0,000 -	1,644 0,000 1,166 1,166 0,000 1,166 1,166	0,000 0,551 0,000 0,000 0,132 0,000	5,538 0,000 0,003 5,538 0,000	0,0007 0,0000 0,0000 0,0007 0,0000	2,59 0,00 0,00 2,59 0,00	31 0 0 31
SLU-Z SLD-X SLD-Y SLD-Z	0,000 0,070 0,070 0,000	0,000 1,166 1,166 0,000 1,166	0,551 0,000 0,000 0,132	0,000 0,003 5,538	0,0000 0,0000 0,0007	0,00 0,00 2,59	0
SLD-X SLD-Y SLD-Z	0,070 0,070 0,000	1,166 1,166 0,000 1,166	0,000 0,000 0,132	0,003 5,538	0,0000	0,00 2,59	0
SLD-Y SLD-Z	0,070 0,000 -	1,166 0,000 1,166	0,000 0,132	5,538	0,0007	2,59	
SLD-Z	0,000	0,000 1,166	0,132			·	31
	-	1,166		0,000	0,0000	0.00	
			0,000			0,00	0
Elast-X	-	1 166		-	-	-	-
Elast-Y		1,100	0,000	-	-	-	-
Elast-Z	-	0,000	0,551	-	-	-	-
Modo Vibrazione n. 14	1						
SLU-X	0,056	1,737	0,000	-0,003	0,0000	0,00	0
SLU-Y	0,056	1,669	0,000	-4,569	-0,0004	1,76	21
SLU-Z	0,000	0,000	0,551	0,000	0,0000	0,00	0
SLD-X	0,056	1,067	0,000	-0,003	0,0000	0,00	0
SLD-Y	0,056	1,067	0,000	-4,569	-0,0004	1,76	21
SLD-Z	0,000	0,000	0,132	0,000	0,0000	0,00	0
Elast-X	-	1,067	0,000	-	-	-	-
Elast-Y	-	1,067	0,000	-	-	-	-
Elast-Z	-	0,000	0,551	-	-	-	-
Modo Vibrazione n. 1	5						
SLU-X	0,066	1,732	0,000	-4,382	-0,0005	1,62	19
SLU-Y	0,066	1,651	0,000	-0,008	0,0000	0,00	0
SLU-Z	0,000	0,000	0,551	0,000	0,0000	0,00	0
SLD-X	0,066	1,138	0,000	-4,382	-0,0005	1,62	19
SLD-Y	0,066	1,138	0,000	-0,008	0,0000	0,00	0
SLD-Z	0,000	0,000	0,132	0,000	0,0000	0,00	0
Elast-X	-	1,138	0,000	-	-	-	-
Elast-Y	-	1,138	0,000	-	-	-	-
Elast-Z	-	0,000	0,551	-	-	-	-

LEGENDA:

Sptr Spettro di risposta considerato.

T Periodo del Modo di vibrazione.

 ${f a_{g,0}}$ Valore dell'Accelerazione Spettrale Orizzontale, riferita al corrispondente periodo.

 $\mathbf{a}_{\mathbf{g},\mathbf{v}}$ Valore dell'Accelerazione Spettrale Verticale, riferita al corrispondente periodo.

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0 Pag. 52 di 127

Proponente: INE FICURINIA S.R.L

Spt	r T	a _{g,O}	a _{g,V}	Γ	СМ	%M.M	M _{Ecc}		
Γ	Coefficiente di partecipa	zione.							
СМ	Coefficiente modale del	modo di vibrazione.							
%M.M	Percentuale di mobilitaz	ione delle masse nel m	odo di vibrazione.						
M _{Ecc}	Massa Eccitata nel mode	o di vibrazione.							
SLU-X	Spettro di progetto allo	S.L. Ultimo per sisma i	n direzione X.						
SLU-Y	Spettro di progetto allo	S.L. Ultimo per sisma i	n direzione Y.						
SLU-Z	Spettro di progetto allo	S.L. Ultimo per sisma i	n direzione Z.						
SLD-X	Spettro di progetto allo	S.L. di Danno per sism	a in direzione X.						
SLD-Y	Spettro di progetto allo	S.L. di Danno per sism	a in direzione Y.						
SLD-Z	Spettro di progetto allo S.L. di Danno per sisma in direzione Z.								
Elast-X	Spettro Elastico per sisn	na in direzione X.							
Elast-Y	Spettro Elastico per sisn	na in direzione Y.							

TRAVI IN ELEVAZIONE

Elast-Z Spettro Elastico per sisma in direzione Z.

Travi in elevazione

				Sezione		V. 1	Int.			Mt	AA	Nd	Nd	Dis _{i-}	Qı	LLI	Clc	Pr/
Idτr	L _{LT}	Id _{Sz}	Тр	Label	Rtz	Iniz.	Fin.	Stz	Note	rl	/C IS	i	f	j	Iniz	Fin.	Fnd	Sc
	[m]				[°ssdc]									[m]	[m]	[m]		
Piano Terra					Travat	a: Piano Terr	а											
Trave Acciaio 8-8a	1,01	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S;S	-		00 1	-	00 02	00 24	1,03	2,18	2,69	NO	-
Trave Acciaio 13-14	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	-		00 1	-	00 19	00 21	2,17	2,16	2,16	NO	-
Trave Acciaio 11-12	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	-		00 1	-	00 13	00 15	2,17	2,16	2,16	NO	-
Trave Acciaio 12-13	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	-		00 1	-	00 15	00 19	2,17	2,16	2,16	NO	-
Trave Acciaio 8-9	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	-		00 1	-	00 02	00 07	2,17	2,16	2,16	NO	-
Trave Acciaio 9-10	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S;S	-		00 1	-	00 07	00 09	2,17	2,16	2,16	NO	-
Trave Acciaio 10-11	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S;S	-		00 1	-	00 09	00 13	2,17	2,16	2,16	NO	-
Trave Acciaio 1-8	2,38	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	-		00 1	-	00 04	00 02	2,38	0,97	2,18	NO	-

Consulente:
Dott. Ing. Giuseppe Furnari
Viale del Rotolo, 44
95126 Catania

RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0 Pag. 53 di 127

Proponente: INE FICURINIA S.R.L

Travi in elevazione

																I a VI III		
				Sezione		v.	Int.			Mt	AA	Nd	Nd	Dis _{i-}	Q	LLI	Clc	Pr/
Id _{Tr}	L _{LI}	Idsz	Тр	Label	Rtz	Iniz.	Fin.	Stz	Note	rl	/C IS	i	f	j	Iniz	Fin.	Fnd	Sc
	[m]				[°ssdc]									[m]	[m]	[m]		
Trave Acciaio 6-7	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 17	00 22	2,17	0,94	0,94	NO	-
Trave Acciaio 4-5	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 11	00 16	2,17	0,94	0,94	NO	-
Trave Acciaio 5-6	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 16	00 17	2,17	0,94	0,94	NO	-
Trave Acciaio 1-2	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	-		00 1	-	00 04	00 05	2,17	0,94	0,94	NO	-
Trave Acciaio 2-3	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 05	00 10	2,17	0,94	0,94	NO	-
Trave Acciaio 3-4	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 10	00 11	2,17	0,94	0,94	NO	-
Trave Acciaio 1a-1	1,24	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 23	00 04	1,22	0,34	0,97	NO	-
Trave Acciaio 9-9a	1,01	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 07	00 26	1,03	2,18	2,69	NO	-
Trave Acciaio 2-9	2,38	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	-		00	-	00 05	00 07	2,38	0,97	2,18	NO	-
Trave Acciaio 2a-2	1,24	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	-		00 1	-	00 25	00 05	1,22	0,34	0,97	NO	-
Trave Acciaio 10- 10a	1,01	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	-		00 1	-	00 09	00 29	1,03	2,18	2,69	NO	-
Trave Acciaio 3-10	2,38	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	-		00 1	-	00 10	00 09	2,38	0,97	2,18	NO	-
Trave Acciaio 3a-3	1,24	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	-		00 1	-	00 28	00 10	1,22	0,34	0,97	NO	-
Trave Acciaio 11- 11a	1,01	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S	-		00 1	-	00 13	00 32	1,03	2,18	2,69	NO	-
Trave Acciaio 4-11	2,38	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S	-		00 1	-	00 11	00 13	2,38	0,97	2,18	NO	-
Trave Acciaio 4a-4	1,24	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S	-		00 1	-	00 31	00 11	1,22	0,34	0,97	NO	-
Trave Acciaio 12- 12a	1,01	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S	-		00 1	-	00 15	00 35	1,03	2,18	2,69	NO	-
Trave Acciaio 5-12	2,38	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	-		00 1	-	00 16	00 15	2,38	0,97	2,18	NO	-
Trave Acciaio 5a-5	1,24	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S	-		00 1	-	00 34	00 16	1,22	0,34	0,97	NO	-
Trave Acciaio 13- 13a	1,01	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S	-		00 1	-	00 19	00 37	1,03	2,18	2,69	NO	-

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 54 di 127

Proponente: INE FICURINIA S.R.L

Travi in elevazione

															•	ravi in		
				Sezione		V. 1	Int.			Mt	AA	Nd	Nd	Dis _{i-}	Q	LLI	Clc	Pr/
Id _{Tr}	L _{LI}	Id _{Sz}	Тр	Label	Rtz	Iniz.	Fin.	Stz	Note	ri	/C IS	i	f	j j	Iniz	Fin.	Fnd	Sc
	[m]				[°ssdc]									[m]	[m]	[m]		
										00		00	00					
Trave Acciaio 6-13	2,38	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	-		1	-	17	19	2,38	0,97	2,18	NO	-
Trave Acciaio 6a-6	1,24	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S;S	-		00 1	-	00 36	00 17	1,22	0,34	0,97	NO	-
Trave Acciaio 14- 14a	1,01	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S;S	-		00 1	-	00 21	00 39	1,03	2,18	2,69	NO	-
Trave Acciaio 7-14	2,38	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S;S	-		00 1	-	00 22	00 21	2,38	0,97	2,18	NO	-
Trave Acciaio 7a-7	1,24	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S;S	-		00 1	-	00 38	00 22	1,22	0,34	0,97	NO	-
Trave Acciaio 13a- 14a	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S	-		00 1	-	00 37	00 39	2,17	2,70	2,70	NO	-
Trave Acciaio 8a-9a	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S;S	-		00 1	-	00 24	00 26	2,17	2,70	2,70	NO	-
Trave Acciaio 9a- 10a	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S;S	-		00 1	-	00 26	00 29	2,17	2,70	2,70	NO	-
Trave Acciaio 10a- 11a	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S;S	-		00 1	-	00 29	00 32	2,17	2,70	2,70	NO	-
Trave Acciaio 11a- 12a	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S;S	-		00 1	-	00 32	00 35	2,17	2,70	2,70	NO	-
Trave Acciaio 12a- 13a	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S;S	-		00 1	-	00 35	00 37	2,17	2,70	2,70	NO	-
Trave Acciaio 6a-7a	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S;S	-		00 1	-	00 36	00 38	2,17	0,35	0,35	NO	-
Trave Acciaio 1a-2a	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S;S	-		00 1	-	00 23	00 25	2,17	0,35	0,35	NO	-
Trave Acciaio 2a-3a	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S;S	-		00 1	-	00 25	00 28	2,17	0,35	0,35	NO	_
Trave Acciaio 3a-4a	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S;S	-		00 1	-	00 28	00 31	2,17	0,35	0,35	NO	-
Trave Acciaio 4a-5a	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S	-		00	-	00 31	00 34	2,17	0,35	0,35	NO	-
Trave Acciaio 5a-6a	2,17	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S;S	-		00 1	-	00 34	00 36	2,17	0,35	0,35	NO	-

LEGENDA:

 $\textbf{Id}_{\textbf{Tr}} \qquad \text{Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato.}$

L_{LI} Lunghezza libera d'Inflessione.

Id_{Sz} Identificativo della sezione, nella relativa tabella.

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A	0	Pag. 55 di 127

Proponente: INE FICURINIA S.R.L

Travi in elevazione

7.4				Sezione		V. 1	Int.	Ci-	Nata	Mt	AA	Nd	Nd	Dis _{i-}	Qı	.LI	Clc	Pr/
Id _{Tr}	LLI	Idsz	Тр	Label	Rtz	Iniz.	Fin.	Stz	Note	rl	IS	i	f	j	Iniz	Fin.	Fnd	Pr/ Sc
	[m]				[°ssdc]									[m]	[m]	[m]		

Tp Tipo di sezione.

Label Identificativo della sezione, come indicato nelle carpenterie.

Rtz Angolo di rotazione della sezione.

V. Int. Identificativo delle condizioni di vincolo agli estremi inferiore e superiore del pilastro, costituito da sei caratteri. I primi tre, sono relativi alla traslazione rispettivamente lungo gli assi 1, 2 e 3, mentre i secondi tre sono relativi rispettivamente alla rotazione intorno agli assi 1, 2 e 3 (Assi 1, 2, 3: riferimento locale). Il carattere "S" o "N" indica se il vincolo allo spostamento/rotazione è presente o assente.

Stz Tipo di situazione: [F] = di Fatto (Esistente); [P] = di Progetto (Nuovo).

Note Nota relativa alla verifica di deformabilità delle travi in acciaio e in legno.

Se presente "elemento a sbalzo" = la freccia viene valutata nell'ipotesi di trave a mensola; altrimenti la freccia viene valutata nell'ipotesi di trave appoggiata-appoggiata.

Mtrl Identificativo del materiale.

AA/CIS Identificativo dell'aggressività dell'ambiente o della classe di servizio:

Aggressività dell'ambiente: [PCA] = "Ordinario"; [MDA] = "Aggressivo"; [MLA] = "Molto aggressivo";

Classe di servizio: [1] = Ambiente con umidità bassa - [2] = Ambiente con umidità media - [3] = Ambiente con umidità alta.

Nd_i Identificativo del nodo iniziale, nella relativa tabella.

Nd_f Identificativo del nodo finale, nella relativa tabella.

Disi-j Distanza tra il nodo iniziale e finale.

Quota agli estremi iniziale e finale del tratto di trave libero d'inflettersi (Lunghezza Libera d'Inflessione), valutata rispetto al livello (piano) di appartenenza.

Clc Fnd [Si] = elemento progettato attraverso una modalità di rispetto della Gerarchia delle Resistenze per le Fondazioni. [No] = elemento progettato con le sollecitazioni ottenute dall'analisi (senza nessuna modalità di rispetto della Gerarchia delle Resistenze per le Fondazioni).

Pr/Sc Indica se l'elemento strutturale è incluso nel modello per il calcolo delle azioni sismiche. [1] = non incluso; [-] = incluso.

PILASTRI

Pilastri

N _{id}	Lv	L _{LI}		Int.	Mtrl	AA/CI	N	od	Dis _{i-i}	Qı	.LI	Clc	Pr/Sc				
			Idsz	Тр	Label	Rtz	Inf.	Sup.		S	Inf.	Sup.	,	Inf.	Sup.	Fnd	,
		[m]				[°ssdc							[m]	[m]	[m]		
008	01	2,13	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S;S	001	-	0001	0002	2,13	0,00	2,13	NO	-
001	01	0,91	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	001	-	0003	0004	0,91	0,00	0,91	NO	-
009	01	2,13	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	001	-	0006	0007	2,13	0,00	2,13	NO	-
010	01	2,13	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	001	-	0008	0009	2,13	0,00	2,13	NO	-
011	01	2,13	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S	001	-	0012	0013	2,13	0,00	2,13	NO	-

Consulente:
Dott. Ing. Giuseppe Furnari
Viale del Rotolo, 44
95126 Catania

RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0 Pag. 56 di 127

Proponente: INE FICURINIA S.R.L

Pilastri

N _{id}	Lv	L _{LI}			Sezione		V. 1	Int.	Mtrl	AA/CI	N	od	Dis _{i-i}	Q	ш	Clc	Pr/Sc
			Idsz	Тр	Label	Rtz	Inf.	Sup.		S	Inf.	Sup.	,	Inf.	Sup.	Fnd	,
		[m]				[°ssdc							[m]	[m]	[m]		
12 (a)	01	2,13	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S;S	001	-	0014	0015	2,13	0,00	2,13	NO	-
013	01	2,13	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	001	-	0018	0019	2,13	0,00	2,13	NO	-
014	01	2,13	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	001	-	0020	0021	2,13	0,00	2,13	NO	-
002	01	0,91	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	001	-	0027	0005	0,91	0,00	0,91	NO	-
003	01	0,91	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	001	-	0030	0010	0,91	0,00	0,91	NO	-
004	01	0,91	001	Ω	60x60x3.2	0,00	S;S;S;S;S	S;S;S;S;S	001	-	0033	0011	0,91	0,00	0,91	NO	-
007	01	0,91	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S	001	-	0040	0022	0,91	0,00	0,91	NO	-
006	01	0,91	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S	001	-	0041	0017	0,91	0,00	0,91	NO	-
005	01	0,91	001	Ω	60x60x3.2	0,00	S;S;S;S;S;S	S;S;S;S;S	001	-	0042	0016	0,91	0,00	0,91	NO	-

LEGENDA:

Nid Numero identificativo della pilastrata. L'eventuale lettera tra parentesi distingue i diversi tratti della pilastrata al livello considerato.

Lv Identificativo del livello, nella relativa tabella.

LLI Lunghezza libera d'Inflessione.

Identificativo della sezione, nella relativa tabella.

Tp Tipo di sezione.

Label Identificativo della sezione, come indicato nelle carpenterie.

Rtz Angolo di rotazione della sezione.

V. Int. Identificativo delle condizioni di vincolo agli estremi inferiore e superiore del pilastro, costituito da sei caratteri. I primi tre, sono relativi alla traslazione rispettivamente lungo gli assi 1, 2 e 3, mentre i secondi tre sono relativi rispettivamente alla rotazione intorno agli assi 1, 2 e 3 (Assi 1, 2, 3: riferimento locale). Il carattere "S" o "N" indica se il vincolo allo spostamento/rotazione è presente o assente.

Mtrl Identificativo del materiale.

AA/CIS Identificativo dell'aggressività dell'ambiente o della classe di servizio:

Aggressività dell'ambiente: [PCA] = "Ordinario"; [MDA] = "Aggressivo"; [MLA] = "Molto aggressivo";

Classe di servizio: [1] = Ambiente con umidità bassa - [2] = Ambiente con umidità media - [3] = Ambiente con umidità alta.

Nod Identificativo del nodo nella relativa tabella.

Dis_{i-j} Distanza tra il nodo iniziale e finale.

Quota agli estremi inferiore e superiore del tratto di elemento libero d'inflettersi (Lunghezza Libera d'Inflessione), valutata rispetto al livello (piano) di appartenenza.

Clc Fnd [Si] = elemento progettato attraverso una modalità di rispetto della Gerarchia delle Resistenze per le Fondazioni. [No] = elemento progettato con le sollecitazioni ottenute dall'analisi (senza nessuna modalità di rispetto della Gerarchia delle Resistenze per le Fondazioni).

Pr/Sc Indica se l'elemento strutturale è incluso nel modello per il calcolo delle azioni sismiche. [1] = non incluso; [-] = incluso.

Dotte ing. Graseppe i arriari	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A0)	Pag. 57 di 127

Proponente: INE FICURINIA S.R.L

CARICHI SULLE TRAVI

Carichi sulle travi

TC	С	СС	SR	Disi	F _{X,i} /Q _{X,i}	F _{Y,i} /Q _{Y,i}	F _{z,i} /Q _{z,i}	$M_{X,i}/M_{T,i}$	$\mathbf{M}_{\mathrm{Y,i}}$	$M_{Z,i}$	Dis _f	$\mathbf{Q}_{X,f}$	$\mathbf{Q}_{Y,f}$	Q _{Z,f}	$M_{T,f}$
				[m]	[N;N/m]	[N;N/m]	[N;N/m]	[N·m;N·m/m]	[N·m;N·m/m]	[N·m;N·m/m]	[m]	[N/m]	[N/m]	[N/m]	[N·m/m]
Piano Terr	ra		Trava	ata: Piar	o Terra				Trave: Tra	ve Acciaio	8-8a	Peso prop	rio	'	-56
L	CR001	001	G	0,04	0	0	-118	0	-	-	0,00	0	0	-118	0
L,	CR002	002	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
L	CR002	003	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
L	CR002	004	G	0,04	0	-13	21	0	-	-	0,00	0	-13	21	0
L	CR002	005	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
L	CR003	002	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	003	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	004	G	0,00	0	-2	4	0	-	-	0,00	0	-2	4	0
L	CR003	005	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
Piano Terr	ra		Trava	ata: Piar	o Terra				Trave: Tra	ve Acciaio	13-14	Peso prop	rio		-56
L	CR001	001	G	0,03	0	0	-1	0	-	-	0,03	0	0	0	0
L	CR002	002	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	003	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	004	G	0,03	0	-13	21	0	-	-	0,03	0	-13	21	0
L	CR002	005	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	002	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0
L	CR002	003	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0
L	CR002	004	G	0,03	0	-21	35	0	-	-	0,03	0	-21	35	0
L	CR002	005	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0
Piano Terr	ra		Trava	ata: Piar	o Terra				Trave: Tra	ve Acciaio	11-12	Peso prop	rio		-56
L	CR001	001	G	0,03	0	0	-1	0	-	-	0,03	0	0	0	0
L	CR002	002	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	003	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	004	G	0,03	0	-13	21	0	-	-	0,03	0	-13	21	0
L	CR002	005	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	002	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0
L	CR002	003	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0
L	CR002	004	G	0,03	0	-21	35	0	-	-	0,03	0	-21	35	0
L	CR002	005	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0
Piano Terr	ra		Trava	ata: Piar	o Terra				Trave: Tra	ve Acciaio	12-13	Peso prop	rio		-56

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 58 di 127

Proponente: INE FICURINIA S.R.L

Carichi sulle travi

														Carichi	sulle trav
TC	С	СС	SR	Disi	F _{X,i} /Q _{X,i}	F _{Y,i} /Q _{Y,i}	F _{Z,i} /Q _{Z,i}	$M_{X,i}/M_{T,i}$	M _{Y,i}	$M_{Z,i}$	Dis _f	$\mathbf{Q}_{X,f}$	$\mathbf{Q}_{Y,f}$	Q _{Z,f}	M _{T,f}
				[m]	[N;N/m]	[N;N/m]	[N;N/m]	[N·m;N·m/m]	[N·m;N·m/m]	[N·m;N·m/m]	[m]	[N/m]	[N/m]	[N/m]	[N·m/m]
L	CR001	001	G	0,03	0	0	-1	0	-	-	0,03	0	0	0	0
L	CR002	002	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0
L	CR002	003	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0
L	CR002	004	G	0,03	0	-21	35	0	-	-	0,03	0	-21	35	0
L	CR002	005	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0
L	CR002	002	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	003	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	004	G	0,03	0	-13	21	0	-	-	0,03	0	-13	21	0
L	CR002	005	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
Piano Te	rra		Trav	ata: Piar	no Terra				Trave: Tra	ave Acciaio	8-9	Peso prop	rio		-56
L	CR001	001	G	0,03	0	0	-1	0	-	-	0,03	0	0	0	0
L	CR002	002	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0
L	CR002	003	G	0,03	0	-99	168	0	_	-	0,03	0	-99	168	0
L	CR002	004	G	0,03	0	-21	35	0	_	-	0,03	0	-21	35	0
L	CR002	005	G	0,03	0	-99	168	0	_	-	0,03	0	-99	168	0
L	CR002	002	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	003	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	004	G	0,03	0	-13	21	0	-	_	0,03	0	-13	21	0
L	CR002	005	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
Piano Te	rra		Trav	ata: Piar	no Terra				Trave: Tra	ave Acciaio	9-10	Peso prop	orio		-56
L	CR001	001	G	0,03	0	0	-1	0	-	-	0,03	0	0	0	0
L	CR002	002	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	003	G	0,03	0	-60	101	0	_	-	0,03	0	-60	101	0
L	CR002	004	G	0,03	0	-13	21	0	_	-	0,03	0	-13	21	0
L	CR002	005	G	0,03	0	-60	101	0	_	-	0,03	0	-60	101	0
L	CR002	002	G	0,03	0	-99	168	0	_	-	0,03	0	-99	168	0
L	CR002	003	G	0,03	0	-99	168	0	_	-	0,03	0	-99	168	0
L	CR002	004	G	0,03	0	-21	35	0	_	-	0,03	0	-21	35	0
L	CR002	005	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0
Piano Te	rra		Trava	ata: Piar	no Terra				Trave: Tra	ave Acciaio	10-11	Peso prop	orio		-56
L	CR001	001	G	0,03	0	0	-1	0	-	-	0,03	0	0	0	0
L	CR002	002	G	0,03	0	-99	168	0	_	-	0,03	0	-99	168	0

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 59 di 127

Proponente: INE FICURINIA S.R.L

Carichi sulle travi

														Cariciii	sulle trav
TC	С	СС	SR	Disi	F _{X,i} /Q _{X,i}	F _{Y,i} /Q _{Y,i}	F _{Z,i} /Q _{Z,i}	$M_{X,i}/M_{T,i}$	$M_{Y,i}$	$M_{Z,i}$	Dis _f	$\mathbf{Q}_{X,f}$	$Q_{Y,f}$	Q _{z,f}	$M_{T,f}$
				[m]	[N;N/m]	[N;N/m]	[N;N/m]	[N·m;N·m/m]	[N·m;N·m/m]	[N·m;N·m/m]	[m]	[N/m]	[N/m]	[N/m]	[N·m/m]
L	CR002	003	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0
L	CR002	004	G	0,03	0	-21	35	0	-	-	0,03	0	-21	35	0
L	CR002	005	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0
L	CR002	002	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	003	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	004	G	0,03	0	-13	21	0	-	-	0,03	0	-13	21	0
L	CR002	005	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
iano Te	rra		Trava	ata: Piar	no Terra				Trave: Tra	ve Acciaio	1-8	Peso prop	rio		-56
L	CR001	001	G	0,06	0	0	-118	0	-	-	0,01	0	0	-118	0
L	CR001	001	G	0,04	0	0	0	0	-	-	2,32	0	0	-118	0
L	CR002	002	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR002	003	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR002	004	G	0,04	0	-21	35	0	-	-	0,01	0	-21	35	0
L	CR002	005	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR003	002	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	003	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	004	G	0,00	0	-2	4	0	-	-	0,00	0	-2	4	0
L	CR003	005	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
iano Te	rra		Trava	ata: Piar	no Terra				Trave: Tra	ve Acciaio	6-7	Peso prop	orio		-56
L	CR001	001	G	0,03	0	0	0	0	-	-	0,03	0	0	-1	0
L	CR002	002	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0
L	CR002	003	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0
L	CR002	004	G	0,03	0	-21	35	0	-	-	0,03	0	-21	35	0
L	CR002	005	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0
L	CR002	002	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
L	CR002	003	G	0,03	0	-67	114	0	_	-	0,03	0	-67	114	0
L	CR002	004	G	0,03	0	-14	24	0	_	-	0,03	0	-14	24	0
L	CR002	005	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
iano Te	rra		Trava	ata: Piar	no Terra				Trave: Tra	ve Acciaio	4-5	Peso prop	orio		-56
L	CR001	001	G	0,03	0	0	0	0	-	-	0,03	0	0	-1	0
L	CR002	002	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0
L	CR002	003	G	0,03	0	-99	168	0	_	_	0,03	0	-99	168	0

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 60 di 127

Proponente: INE FICURINIA S.R.L

Carichi sulle travi

								Carichi								
тс	С	CC	SR	Disi	$F_{X,i}/Q_{X,i}$	F _{Y,i} /Q _{Y,i}	F _{Z,i} /Q _{Z,i}	$M_{X,i}/M_{T,i}$	$M_{Y,i}$	$M_{Z,i}$	Dis _f	$\mathbf{Q}_{\mathbf{X},\mathbf{f}}$	$\mathbf{Q}_{\mathrm{Y,f}}$	$Q_{Z,f}$	$M_{T,f}$	
				[m]	[N;N/m]	[N;N/m]	[N;N/m]	[N·m;N·m/m]	[N·m;N·m/m]	[N·m;N·m/m]	[m]	[N/m]	[N/m]	[N/m]	[N·m/m]	
L	CR002	004	G	0,03	0	-21	35	0	-	-	0,03	0	-21	35	0	
L	CR002	005	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0	
L	CR002	002	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0	
L	CR002	003	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0	
L	CR002	004	G	0,03	0	-14	24	0	-	-	0,03	0	-14	24	0	
L	CR002	005	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0	
Piano Te	rra		Trava	ata: Piar	no Terra				Trave: Tra	ve Acciaio	5-6	Peso prop	rio		-56	
L	CR001	001	G	0,03	0	0	0	0	-	-	0,03	0	0	-1	0	
L	CR002	002	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0	
L	CR002	003	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0	
L	CR002	004	G	0,03	0	-14	24	0	-	-	0,03	0	-14	24	0	
L	CR002	005	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0	
L	CR002	002	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0	
L	CR002	003	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0	
L	CR002	004	G	0,03	0	-21	35	0	-	-	0,03	0	-21	35	0	
L	CR002	005	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0	
Piano Te	rra		Trava	ata: Piar	o Terra				Trave: Tra	ve Acciaio	1-2	Peso prop	rio		-56	
L	CR001	001	G	0,03	0	0	0	0	-	-	0,03	0	0	-1	0	
L	CR002	002	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0	
L	CR002	003	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0	
L	CR002	004	G	0,03	0	-21	35	0	-	-	0,03	0	-21	35	0	
L	CR002	005	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0	
L	CR002	002	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0	
L	CR002	003	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0	
L	CR002	004	G	0,03	0	-14	24	0	-	-	0,03	0	-14	24	0	
L	CR002	005	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0	
Piano Te	rra		Trava	ata: Piar	no Terra				Trave: Tra	ve Acciaio	2-3	Peso prop	orio		-56	
L	CR001	001	G	0,03	0	0	0	0	-	-	0,03	0	0	-1	0	
L	CR002	002	G	0,03	0	-99	168	0	_	-	0,03	0	-99	168	0	
L	CR002	003	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0	
L	CR002	004	G	0,03	0	-21	35	0	_	-	0,03	0	-21	35	0	
L	CR002	005	G	0,03	0	-99	168	0	_	_	0,03	0	-99	168	0	

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 61 di 127

Proponente: INE FICURINIA S.R.L

Carichi sulle travi

														Cariciii	sulle travi
TC	С	СС	SR	Disi	$F_{X,i}/Q_{X,i}$	F _{Y,i} /Q _{Y,i}	F _{Z,i} /Q _{Z,i}	$M_{X,i}/M_{T,i}$	M _{Y,i}	$M_{Z,i}$	Dis _f	$\mathbf{Q}_{X,f}$	$\mathbf{Q}_{Y,f}$	$\mathbf{Q}_{\mathbf{Z},\mathbf{f}}$	M _{T,f}
				[m]	[N;N/m]	[N;N/m]	[N;N/m]	[N·m;N·m/m]	[N·m;N·m/m]	[N·m;N·m/m]	[m]	[N/m]	[N/m]	[N/m]	[N·m/m]
L	CR002	002	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
L	CR002	003	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
L	CR002	004	G	0,03	0	-14	24	0	-	-	0,03	0	-14	24	0
L	CR002	005	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
ano Te	rra		Trava	ata: Piar	o Terra				Trave: Tra	ave Acciaio	3-4	Peso prop	rio		-56
L	CR001	001	G	0,03	0	0	0	0	-	-	0,03	0	0	-1	0
L	CR002	002	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
L	CR002	003	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
L	CR002	004	G	0,03	0	-14	24	0	_	-	0,03	0	-14	24	0
L	CR002	005	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
L	CR002	002	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0
L	CR002	003	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0
L	CR002	004	G	0,03	0	-21	35	0	-	-	0,03	0	-21	35	0
L	CR002	005	G	0,03	0	-99	168	0	-	-	0,03	0	-99	168	0
ano Te	rra		Trava	ata: Piar	o Terra				Trave: Tra	ave Acciaio	1a-1	Peso prop	rio		-56
L	CR001	001	G	0,06	0	0	-118	0	-	-	0,01	0	0	-118	0
L	CR002	002	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
L	CR002	003	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
L	CR002	004	G	0,06	0	-14	24	0	-	-	0,01	0	-14	24	0
L	CR002	005	G	0,06	0	-67	114	0	_	-	0,01	0	-67	114	0
L	CR003	002	G	0,02	0	-11	18	0	_	-	0,00	0	-11	18	0
L	CR003	003	G	0,02	0	-11	18	0	-	_	0,00	0	-11	18	0
L	CR003	004	G	0,02	0	-2	4	0	_	-	0,00	0	-2	4	0
L	CR003	005	G	0,02	0	-11	18	0	-	-	0,00	0	-11	18	0
iano Te	rra		Trava	ata: Piar	no Terra				Trave: Tra	ave Acciaio	9-9a	Peso prop	rio		-56
L	CR001	001	G	0,04	0	0	-118	0	-	-	0,00	0	0	-118	0
L	CR001	001	G	0,04	0	0	-118	0	-	-	0,00	0	0	-118	0
L	CR002	002	G	0,04	0	-60	101	0	_	_	0,00	0	-60	101	0
L	CR002	003	G	0,04	0	-60	101	0	_	_	0,00	0	-60	101	0
L	CR002	004	G	0,04	0	-13	21	0	_	-	0,00	0	-13	21	0
L	CR002	005	G	0,04	0	-60	101	0	_	_	0,00	0	-60	101	0
L	CR003	002	G	0,00	0	-11	18	0	_	_	0,00	0	-11	18	0
_	CINOUS	002		0,00	0	11	10		-		0,00		11	10	

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 62 di 127

Proponente: INE FICURINIA S.R.L

Carichi sulle travi

														Carichi	sulle travi
TC	С	CC	SR	Disi	$F_{X,i}/Q_{X,i}$	F _{Y,i} /Q _{Y,i}	F _{Z,i} /Q _{Z,i}	$M_{X,i}/M_{T,i}$	$\mathbf{M}_{\mathrm{Y,i}}$	$M_{z,i}$	Dis _f	$\mathbf{Q}_{X,f}$	$\mathbf{Q}_{Y,f}$	Q _{Z,f}	$M_{T,f}$
				[m]	[N;N/m]	[N;N/m]	[N;N/m]	[N·m;N·m/m]	[N·m;N·m/m]	[N·m;N·m/m]	[m]	[N/m]	[N/m]	[N/m]	[N·m/m]
L	CR003	003	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	004	G	0,00	0	-2	4	0	-	-	0,00	0	-2	4	0
L	CR003	005	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR002	002	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
L	CR002	003	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
L	CR002	004	G	0,04	0	-13	21	0	-	-	0,00	0	-13	21	0
L	CR002	005	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
Piano Te	rra		Trava	ata: Piar	no Terra				Trave: Tra	ve Acciaio	2-9	Peso prop	rio		-56
L	CR001	001	G	2,36	0	0	-118	0	-	-	0,01	0	0	0	0
L	CR001	001	G	0,04	0	0	-118	0	-	-	0,03	0	0	-118	0
L	CR001	001	G	0,06	0	0	-118	0	-	-	0,01	0	0	-118	0
L	CR001	001	G	0,04	0	0	0	0	-	-	2,32	0	0	-118	0
L	CR002	002	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR002	003	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR002	004	G	0,04	0	-21	35	0	-	-	0,01	0	-21	35	0
L	CR002	005	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR003	002	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	003	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	004	G	0,00	0	-2	4	0	-	-	0,00	0	-2	4	0
L	CR003	005	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR002	002	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR002	003	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR002	004	G	0,04	0	-21	35	0	-	-	0,01	0	-21	35	0
L	CR002	005	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
Piano Te	rra		Trava	ata: Piar	no Terra				Trave: Tra	ve Acciaio	2a-2	Peso prop	orio		-56
L	CR001	001	G	0,06	0	0	-118	0	-	-	0,01	0	0	-118	0
L	CR001	001	G	0,06	0	0	-118	0	-	-	0,01	0	0	-118	0
L	CR002	002	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
L	CR002	003	G	0,06	0	-67	114	0	_	-	0,01	0	-67	114	0
L	CR002	004	G	0,06	0	-14	24	0	_	-	0,01	0	-14	24	0
L	CR002	005	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
L	CR003	002	G	0,02	0	-11	18	0	_	-	0,00	0	-11	18	0

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 63 di 127

Proponente: INE FICURINIA S.R.L

Carichi sulle travi

													Cariciii	sulle travi	
TC	С	СС	SR	Disi	$F_{X,i}/Q_{X,i}$	F _{Y,i} /Q _{Y,i}	F _{Z,i} /Q _{Z,i}	$M_{X,i}/M_{T,i}$	$M_{Y,i}$	$M_{Z,i}$	Dis _f	$\mathbf{Q}_{\mathbf{X},\mathbf{f}}$	$Q_{Y,f}$	Q _{Z,f}	M _{T,f}
				[m]	[N;N/m]	[N;N/m]	[N;N/m]	[N·m;N·m/m]	[N·m;N·m/m]	[N·m;N·m/m]	[m]	[N/m]	[N/m]	[N/m]	[N·m/m]
L	CR003	003	G	0,02	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	004	G	0,02	0	-2	4	0	-	-	0,00	0	-2	4	0
L	CR003	005	G	0,02	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR002	002	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
L	CR002	003	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
L	CR002	004	G	0,06	0	-14	24	0	-	-	0,01	0	-14	24	0
L	CR002	005	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
Piano Te	rra		Trava	ata: Piar	o Terra				Trave: Ti	rave Accia	io 10-	Peso prop	orio		-56
L	CR001	001	G	0,04	0	0	-118	0	-	-	0,00	0	0	-118	0
L	CR001	001	G	0,04	0	0	-118	0	-	-	0,00	0	0	-118	0
L	CR002	002	G	0,04	0	-60	101	0	_	_	0,00	0	-60	101	0
L	CR002	003	G	0,04	0	-60	101	0	_	_	0,00	0	-60	101	0
L	CR002	004	G	0,04	0	-13	21	0	-	-	0,00	0	-13	21	0
L	CR002	005	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
L	CR003	002	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	003	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	004	G	0,00	0	-2	4	0	-	-	0,00	0	-2	4	0
L	CR003	005	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR002	002	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
L	CR002	003	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
L	CR002	004	G	0,04	0	-13	21	0	-	-	0,00	0	-13	21	0
L	CR002	005	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
Piano Te	rra		Trava	ata: Piar	o Terra				Trave: Tra	ave Acciaio	3-10	Peso prop	rio		-56
L	CR001	001	G	2,36	0	0	-118	0	-	-	0,01	0	0	0	0
L	CR001	001	G	0,04	0	0	-118	0	-	-	0,03	0	0	-118	0
L	CR001	001	G	0,06	0	0	-118	0	-	-	0,01	0	0	-118	0
L	CR001	001	G	0,04	0	0	0	0	-	-	2,32	0	0	-118	0
L	CR002	002	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR002	003	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR002	004	G	0,04	0	-21	35	0	-	-	0,01	0	-21	35	0
L	CR002	005	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR003	002	G	0,00	0	-11	18	0	_	-	0,00	0	-11	18	0
			1												

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 64 di 127

Proponente: INE FICURINIA S.R.L

Carichi sulle travi

														sulle travi	
TC	С	CC	SR	Disi	F _{X,i} /Q _{X,i}	F _{Y,i} /Q _{Y,i}	F _{z,i} /Q _{z,i}	$M_{X,i}/M_{T,i}$	M _{Y,i}	M _{z,i}	Dis _f	$\mathbf{Q}_{X,f}$	$\mathbf{Q}_{Y,f}$	$\mathbf{Q}_{\mathbf{Z},\mathbf{f}}$	$M_{T,f}$
				[m]	[N;N/m]	[N;N/m]	[N;N/m]	[N·m;N·m/m]	[N·m;N·m/m]	[N·m;N·m/m]	[m]	[N/m]	[N/m]	[N/m]	[N·m/m]
L	CR003	003	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	004	G	0,00	0	-2	4	0	-	-	0,00	0	-2	4	0
L	CR003	005	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR002	002	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR002	003	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR002	004	G	0,04	0	-21	35	0	-	-	0,01	0	-21	35	0
L	CR002	005	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
Piano Tei	rra		Trava	ata: Piar	o Terra				Trave: Tra	ave Acciaio	3a-3	Peso prop	rio		-56
L	CR001	001	G	0,06	0	0	-118	0	-	-	0,01	0	0	-118	0
L	CR001	001	G	0,06	0	0	-118	0	-	-	0,01	0	0	-118	0
L	CR002	002	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
L	CR002	003	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
L	CR002	004	G	0,06	0	-14	24	0	-	-	0,01	0	-14	24	0
L	CR002	005	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
L	CR003	002	G	0,02	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	003	G	0,02	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	004	G	0,02	0	-2	4	0	-	-	0,00	0	-2	4	0
L	CR003	005	G	0,02	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR002	002	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
L	CR002	003	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
L	CR002	004	G	0,06	0	-14	24	0	-	-	0,01	0	-14	24	0
L	CR002	005	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
Piano Tei	rra		Trava	ata: Piar	no Terra				Trave: Ti	rave Accia	io 11-	Peso prop	rio		-56
L	CR001	001	G	0,04	0	0	-118	0	110	_	0,00	0	0	-118	0
L	CR001	001	G	0,04	0	0	-118	0	_	_	0,00	0	0	-118	0
L	CR001	001	G	0,04	0	-60	101	0	_	_	0,00	0	-60	101	0
L	CR002	002	G	0,04	0	-60	101	0	_	_	0,00	0	-60	101	0
L	CR002	003	G	0,04	0	-13	21	0	_	_	0,00	0	-13	21	0
L	CR002		G	0,04	0	-60	101	0	_	_	0,00	0	-60	101	0
L	CR002	003	G	0,04	0	-11	18	0		_	0,00	0	-11	18	0
L	CR003	002	G	0,00	0	-11 -11	18	0	_	_	0,00	0	-11	18	0
			G						_	_					0
L	CR003	004	G	0,00	0	-2	4	0	_	_	0,00	0	-2	4	U

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 65 di 127

Proponente: INE FICURINIA S.R.L

Carichi sulle travi

														Cariciii	sulle travi
TC	С	СС	SR	Disi	F _{X,i} /Q _{X,i}	F _{Y,i} /Q _{Y,i}	F _{Z,i} /Q _{Z,i}	$M_{X,i}/M_{T,i}$	$\mathbf{M}_{\mathrm{Y,i}}$	M _{Z,i}	Dis _f	$\mathbf{Q}_{X,f}$	$Q_{Y,f}$	Q _{z,f}	M _{T,f}
				[m]	[N;N/m]	[N;N/m]	[N;N/m]	[N·m;N·m/m]	[N·m;N·m/m]	[N·m;N·m/m]	[m]	[N/m]	[N/m]	[N/m]	[N·m/m]
L	CR003	005	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR002	002	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
L	CR002	003	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
L	CR002	004	G	0,04	0	-13	21	0	-	-	0,00	0	-13	21	0
L	CR002	005	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
Piano Te	rra		Trava	ata: Piar	no Terra				Trave: Tra	ave Acciaio	4-11	Peso prop	rio		-56
L	CR001	001	G	2,36	0	0	-118	0	-	-	0,01	0	0	0	0
L	CR001	001	G	0,04	0	0	-118	0	-	-	0,03	0	0	-118	0
L	CR001	001	G	0,06	0	0	-118	0	-	-	0,01	0	0	-118	0
L	CR001	001	G	0,04	0	0	0	0	-	-	2,32	0	0	-118	0
L	CR002	002	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR002	003	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR002	004	G	0,04	0	-21	35	0	-	-	0,01	0	-21	35	0
L	CR002	005	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR003	002	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	003	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	004	G	0,00	0	-2	4	0	-	-	0,00	0	-2	4	0
L	CR003	005	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR002	002	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR002	003	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR002	004	G	0,04	0	-21	35	0	-	-	0,01	0	-21	35	0
L	CR002	005	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
Piano Te	rra		Trava	ata: Piar	no Terra				Trave: Tra	ave Acciaio	4a-4	Peso prop	orio		-56
L	CR001	001	G	0,06	0	0	-118	0	-	-	0,01	0	0	-118	0
L	CR001	001	G	0,06	0	0	-118	0	-	-	0,01	0	0	-118	0
L	CR002	002	G	0,06	0	-67	114	0	_	-	0,01	0	-67	114	0
L	CR002	003	G	0,06	0	-67	114	0	_	-	0,01	0	-67	114	0
L	CR002	004	G	0,06	0	-14	24	0	_	-	0,01	0	-14	24	0
L	CR002	005	G	0,06	0	-67	114	0	_	-	0,01	0	-67	114	0
L	CR003	002	G	0,02	0	-11	18	0	_	-	0,00	0	-11	18	0
L	CR003	003	G	0,02	0	-11	18	0	_	_	0,00	0	-11	18	0
L	CR003	004	G	0,02	0	-2	4	0	_	-	0,00	0	-2	4	0

Con	cul	ent	0	•
Con	Sui	CIII	·	٠

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 66 di 127

Proponente: INE FICURINIA S.R.L

Carichi sulle travi

														Cariciii	sulle trav
TC	С	СС	SR	Disi	$F_{X,i}/Q_{X,i}$	$F_{Y,i}/Q_{Y,i}$	$\mathbf{F}_{\mathbf{Z},i}/\mathbf{Q}_{\mathbf{Z},i}$	$\mathbf{M}_{\mathrm{X,i}}/\mathbf{M}_{\mathrm{T,i}}$	$M_{Y,i}$	$M_{Z,i}$	Dis _f	$\mathbf{Q}_{\mathrm{X,f}}$	$\mathbf{Q}_{\mathrm{Y,f}}$	Q _{Z,f}	M _{T,f}
				[m]	[N;N/m]	[N;N/m]	[N;N/m]	[N·m;N·m/m]	[N·m;N·m/m]	[N·m;N·m/m]	[m]	[N/m]	[N/m]	[N/m]	[N·m/m]
L	CR003	005	G	0,02	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR002	002	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
L	CR002	003	G	0,06	0	-67	114	0	_	-	0,01	0	-67	114	0
L	CR002	004	G	0,06	0	-14	24	0	-	-	0,01	0	-14	24	0
L	CR002	005	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
Piano Te	rra		Trava	ata: Piar	no Terra					rave Accia	io 12-	Peso prop	rio		-56
									12a	,					
L	CR001	001	G	0,04	0	0	-118	0	-	-	0,00	0	0	-118	0
L	CR001	001	G	0,04	0	0	-118	0	-	-	0,00	0	0	-118	0
L	CR002	002	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
L	CR002	003	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
L	CR002	004	G	0,04	0	-13	21	0	-	-	0,00	0	-13	21	0
L	CR002	005	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
L	CR003	002	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	003	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	004	G	0,00	0	-2	4	0	-	-	0,00	0	-2	4	0
L	CR003	005	G	0,00	0	-11	18	0	_	-	0,00	0	-11	18	0
L	CR002	002	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
L	CR002	003	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
L	CR002	004	G	0,04	0	-13	21	0	-	-	0,00	0	-13	21	0
L	CR002	005	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
Piano Te	rra		Trava	ata: Piar	no Terra				Trave: Tra	ave Acciaio	5-12	Peso prop	rio		-56
L	CR001	001	G	2,36	0	0	-118	0	-	-	0,01	0	0	0	0
L	CR001	001	G	0,04	0	0	-118	0	-	-	0,03	0	0	-118	0
L	CR001	001	G	0,06	0	0	-118	0	_	-	0,01	0	0	-118	0
L	CR001	001	G	0,04	0	0	0	0	-	-	2,32	0	0	-118	0
L	CR002	002	G	0,04	0	-99	168	0	_	-	0,01	0	-99	168	0
L	CR002	003	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR002	004	G	0,04	0	-21	35	0	-	-	0,01	0	-21	35	0
L	CR002		G	0,04	0	-99	168	0	_	_	0,01	0	-99	168	0
L	CR003	002	G	0,00	0	-11	18	0	_	_	0,00	0	-11	18	0
L	CR003	003	G	0,00	0	-11	18	0	_	_	0,00	0	-11	18	0
L	CR003		G	0,00	0	-2	4	0	_	_	0,00	0	-2	4	0
_	C1.003	004		0,00		_	, T				0,00			, T	

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 67 di 127

Proponente: INE FICURINIA S.R.L

Carichi sulle travi

														Caricni	sulle trav
TC	С	СС	SR	Disi	$F_{X,i}/Q_{X,i}$	F _{Y,i} /Q _{Y,i}	F _{Z,i} /Q _{Z,i}	$M_{X,i}/M_{T,i}$	$M_{Y,i}$	$M_{Z,i}$	Dis _f	$\mathbf{Q}_{X,f}$	$Q_{Y,f}$	Q _{z,f}	$M_{T,f}$
				[m]	[N;N/m]	[N;N/m]	[N;N/m]	[N·m;N·m/m]	[N·m;N·m/m]	[N·m;N·m/m]	[m]	[N/m]	[N/m]	[N/m]	[N·m/m]
L	CR003	005	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR002	002	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR002	003	G	0,04	0	-99	168	0	_	-	0,01	0	-99	168	0
L	CR002	004	G	0,04	0	-21	35	0	-	-	0,01	0	-21	35	0
L	CR002	005	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
Piano Te	rra		Trava	ata: Piar	no Terra				Trave: Tra	ave Acciaio	5a-5	Peso prop	rio		-56
L	CR001	001	G	0,06	0	0	-118	0	-	-	0,01	0	0	-118	0
L	CR001	001	G	0,06	0	0	-118	0	-	-	0,01	0	0	-118	0
L	CR002	002	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
L	CR002	003	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
L	CR002	004	G	0,06	0	-14	24	0	-	-	0,01	0	-14	24	0
L	CR002	005	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
L	CR003	002	G	0,02	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	003	G	0,02	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	004	G	0,02	0	-2	4	0	-	-	0,00	0	-2	4	0
L	CR003	005	G	0,02	0	-11	18	0	_	-	0,00	0	-11	18	0
L	CR002	002	G	0,06	0	-67	114	0	_	-	0,01	0	-67	114	0
L	CR002	003	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
L	CR002	004	G	0,06	0	-14	24	0	-	_	0,01	0	-14	24	0
L	CR002	005	G	0,06	0	-67	114	0	-	_	0,01	0	-67	114	0
Piano Te	rra		Trava	ata: Diar	no Terra				Trave: Tr	rave Accia	io 13-	Peso prop	rio		-56
Tallo Te	iia				io reira				13a			reso prop			-30
L	CR001	001	G	0,04	0	0	-118	0	-	-	0,00	0	0	-118	0
L	CR001	001	G	0,04	0	0	-118	0	-	-	0,00	0	0	-118	0
L	CR002	002	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
L	CR002	003	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
L	CR002	004	G	0,04	0	-13	21	0	-	-	0,00	0	-13	21	0
L	CR002	005	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
L	CR003	002	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	003	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	004	G	0,00	0	-2	4	0	-	-	0,00	0	-2	4	0
L	CR003	005	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR002	002	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
			I					I				1	I		

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 68 di 127

Proponente: INE FICURINIA S.R.L

Carichi sulle travi

													Cariciiis					
TC	С	СС	SR	Disi	F _{X,i} /Q _{X,i}	F _{Y,i} /Q _{Y,i}	F _{Z,i} /Q _{Z,i}	$M_{X,i}/M_{T,i}$	$M_{Y,i}$	$M_{Z,i}$	Dis _f	$\mathbf{Q}_{X,f}$	$\mathbf{Q}_{Y,f}$	Q _{Z,f}	M _{T,f}			
				[m]	[N;N/m]	[N;N/m]	[N;N/m]	[N·m;N·m/m]	[N·m;N·m/m]	[N·m;N·m/m]	[m]	[N/m]	[N/m]	[N/m]	[N·m/m]			
L	CR002	003	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0			
L	CR002	004	G	0,04	0	-13	21	0	-	-	0,00	0	-13	21	0			
L	CR002	005	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0			
Piano Ter	ra		Trava	ata: Piar	o Terra				Trave: Tra	ve Acciaio	6-13	Peso prop	rio		-56			
L	CR001	001	G	2,36	0	0	-118	0	-	-	0,01	0	0	0	0			
L	CR001	001	G	0,04	0	0	-118	0	-	-	0,03	0	0	-118	0			
L	CR001	001	G	0,06	0	0	-118	0	-	-	0,01	0	0	-118	0			
L	CR001	001	G	0,04	0	0	0	0	-	-	2,32	0	0	-118	0			
L	CR002	002	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0			
L	CR002	003	G	0,04	0	-99	168	0	_	-	0,01	0	-99	168	0			
L	CR002	004	G	0,04	0	-21	35	0	-	-	0,01	0	-21	35	0			
L	CR002	005	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0			
L	CR003	002	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0			
L	CR003	003	G	0,00	0	-11	18	0	_	_	0,00	0	-11	18	0			
L	CR003	004	G	0,00	0	-2	4	0	_	_	0,00	0	-2	4	0			
L	CR003	005	G	0,00	0	-11	18	0	_	_	0,00	0	-11	18	0			
L	CR002	002	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0			
L	CR002	003	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0			
L	CR002	004	G	0,04	0	-21	35	0	-	-	0,01	0	-21	35	0			
L	CR002	005	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0			
Piano Ter	ra		Trava	ata: Piar	no Terra				Trave: Tra	ve Acciaio	6a-6	Peso prop	rio		-56			
L	CR001	001	G	0,06	0	0	-118	0	-	-	0,01	0	0	-118	0			
L	CR001	001	G	0,06	0	0	-118	0	_	-	0,01	0	0	-118	0			
L	CR002	002	G	0,06	0	-67	114	0	_	-	0,01	0	-67	114	0			
L	CR002	003	G	0,06	0	-67	114	0	_	-	0,01	0	-67	114	0			
L	CR002	004	G	0,06	0	-14	24	0	_	_	0,01	0	-14	24	0			
L	CR002	005	G	0,06	0	-67	114	0	_	_	0,01	0	-67	114	0			
L	CR003	002	G	0,02	0	-11	18	0	_	-	0,00	0	-11	18	0			
L	CR003	003	G	0,02	0	-11	18	0	_	-	0,00	0	-11	18	0			
L	CR003	004	G	0,02	0	-2	4	0	_	-	0,00	0	-2	4	0			
L	CR003	005	G	0,02	0	-11	18	0	_	-	0,00	0	-11	18	0			
L	CR002	002	G	0,06	0	-67	114	0	_	_	0,01	0	-67	114	0			
-				-,00		"					-,02							

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 69 di 127

Proponente: INE FICURINIA S.R.L

Carichi sulle travi

														sulle trav	
TC	С	СС	SR	Disi	F _{X,i} /Q _{X,i}	F _{Y,i} /Q _{Y,i}	F _{Z,i} /Q _{Z,i}	$M_{X,i}/M_{T,i}$	M _{Y,i}	M _{Z,i}	Dis _f	$\mathbf{Q}_{X,f}$	$\mathbf{Q}_{\mathrm{Y,f}}$	Q _{z,f}	$M_{T,f}$
				[m]	[N;N/m]	[N;N/m]	[N;N/m]	[N·m;N·m/m]	[N·m;N·m/m]	[N·m;N·m/m]	[m]	[N/m]	[N/m]	[N/m]	[N·m/m]
L	CR002	003	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
L	CR002	004	G	0,06	0	-14	24	0	-	-	0,01	0	-14	24	0
L	CR002	005	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
iano Tei	rra		Trava	ata: Piar	no Terra				Trave: Ti	rave Accia	io 14-	Peso prop	rio		-56
L	CR001	001	G	0,04	0	0	-118	0	-	-	0,00	0	0	-118	0
L	CR002	002	G	0,04	0	-60	101	0	_	_	0,00	0	-60	101	0
L	CR002	003	G	0,04	0	-60	101	0	-	-	0,00	0	-60	101	0
L	CR002	004	G	0,04	0	-13	21	0	_	-	0,00	0	-13	21	0
L	CR002	005	G	0,04	0	-60	101	0	_	-	0,00	0	-60	101	0
L	CR003	002	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	003	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	004	G	0,00	0	-2	4	0	-	-	0,00	0	-2	4	0
L	CR003	005	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
iano Tei	rra		Trava	ta: Piar	no Terra				Trave: Tra	ave Acciaio	7-14	Peso prop	rio		-56
L	CR001	001	G	2,36	0	0	-118	0	-	-	0,01	0	0	0	0
L	CR001	001	G	0,04	0	0	-118	0	-	-	0,03	0	0	-118	0
L	CR002	002	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR002	003	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR002	004	G	0,04	0	-21	35	0	-	-	0,01	0	-21	35	0
L	CR002	005	G	0,04	0	-99	168	0	-	-	0,01	0	-99	168	0
L	CR003	002	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	003	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	004	G	0,00	0	-2	4	0	-	-	0,00	0	-2	4	0
L	CR003	005	G	0,00	0	-11	18	0	-	-	0,00	0	-11	18	0
iano Tei	rra		Trava	ata: Piar	no Terra				Trave: Tra	ave Acciaio	7a-7	Peso prop	orio		-56
L	CR001	001	G	0,06	0	0	-118	0	-	-	0,01	0	0	-118	0
L	CR002	002	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
L	CR002	003	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
L	CR002	004	G	0,06	0	-14	24	0	-	-	0,01	0	-14	24	0
L	CR002	005	G	0,06	0	-67	114	0	-	-	0,01	0	-67	114	0
L	CR003	002	G	0,02	0	-11	18	0	-	-	0,00	0	-11	18	0
L	CR003	003	G	0,02	0	-11	18	0	-	-	0,00	0	-11	18	0
	1			I				1							

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 70 di 127

Proponente: INE FICURINIA S.R.L

Carichi sulle travi

													sulle travi		
TC	С	СС	SR	Disi	F _{X,i} /Q _{X,i}	F _{Y,i} /Q _{Y,i}	F _{Z,i} /Q _{Z,i}	$M_{X,i}/M_{T,i}$	M _{Y,i}	M _{Z,i}	Dis _f	$\mathbf{Q}_{X,f}$	$\mathbf{Q}_{\mathrm{Y,f}}$	$\mathbf{Q}_{\mathbf{Z},\mathbf{f}}$	$M_{T,f}$
				[m]	[N;N/m]	[N;N/m]	[N;N/m]	[N·m;N·m/m]	[N·m;N·m/m]	[N·m;N·m/m]	[m]	[N/m]	[N/m]	[N/m]	[N·m/m]
L	CR003	004	G	0,02	0	-2	4	0	-	-	0,00	0	-2	4	0
L	CR003	005	G	0,02	0	-11	18	0	-	-	0,00	0	-11	18	0
Piano Ter	та		Trava	ata: Piar	no Terra				Trave: Tr 14a	ave Acciai	13a-	Peso prop	orio		-56
L	CR002	002	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	003	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	004	G	0,03	0	-13	21	0	-	-	0,03	0	-13	21	0
L	CR002	005	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
Piano Ter	та		Trava	ta: Piar	no Terra				Trave: Tra	ave Acciaio	8a-9a	Peso prop	orio		-56
L	CR002	002	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	003	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	004	G	0,03	0	-13	21	0	-	-	0,03	0	-13	21	0
L	CR002	005	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
Piano Ter	та		Trava	ata: Piar	no Terra				Trave: Ti	rave Accia	io 9a-	Peso proprio			-56
L	CR002	002	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	003	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	004	G	0,03	0	-13	21	0	-	-	0,03	0	-13	21	0
L	CR002	005	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
Piano Ter	та		Trava	ata: Piar	no Terra				Trave: Tr 11a	ave Acciai	10a-	Peso prop	orio		-56
L	CR002	002	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	003	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	004	G	0,03	0	-13	21	0	-	-	0,03	0	-13	21	0
L	CR002	005	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
Piano Ter	та		Trava	ata: Piar	no Terra				Trave: Tr 12a	ave Acciai	o 11a-	Peso prop	orio		-56
L	CR002	002	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	003	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	004	G	0,03	0	-13	21	0	_	-	0,03	0	-13	21	0
L	CR002	005	G	0,03	0	-60	101	0	_	-	0,03	0	-60	101	0
Piano Ter	ra		Trava	ata: Piar	no Terra				Trave: Tr	ave Acciai	o 12a-	Peso prop	orio		-56
L	CR002	002	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
L	CR002	003	G	0,03	0	-60	101	0	_	-	0,03	0	-60	101	0

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 71 di 127

Proponente: INE FICURINIA S.R.L

Carichi sulle travi

														Cariciii	sulle trav
TC	С	СС	SR	Disi	F _{X,i} /Q _{X,i}	F _{Y,i} /Q _{Y,i}	$F_{Z,i}/Q_{Z,i}$	$M_{X,i}/M_{T,i}$	$M_{Y,i}$	$M_{z,i}$	Dis _f	$\mathbf{Q}_{X,f}$	$\mathbf{Q}_{Y,f}$	$Q_{z,f}$	$M_{T,f}$
				[m]	[N;N/m]	[N;N/m]	[N;N/m]	[N·m;N·m/m]	[N·m;N·m/m]	[N·m;N·m/m]	[m]	[N/m]	[N/m]	[N/m]	[N·m/m]
L	CR002	004	G	0,03	0	-13	21	0	-	-	0,03	0	-13	21	0
L	CR002	005	G	0,03	0	-60	101	0	-	-	0,03	0	-60	101	0
Piano Te	erra		Trav	ata: Piar	no Terra				Trave: Tra	ve Acciaio	6a-7a	Peso prop	rio		-56
L	CR002	002	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
L	CR002	003	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
L	CR002	004	G	0,03	0	-14	24	0	-	-	0,03	0	-14	24	0
L	CR002	005	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
Piano Te	erra		Trav	ata: Piar	no Terra				Trave: Tra	ve Acciaio	1a-2a	Peso prop	rio		-56
L	CR002	002	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
L	CR002	003	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
L	CR002	004	G	0,03	0	-14	24	0	-	-	0,03	0	-14	24	0
L	CR002	005	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
Piano Te	rra		Trav	ata: Piar	no Terra				Trave: Tra	ve Acciaio	2a-3a	Peso prop	rio		-56
L	CR002	002	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
L	CR002	003	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
L	CR002	004	G	0,03	0	-14	24	0	-	-	0,03	0	-14	24	0
L	CR002	005	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
Piano Te	erra		Trav	ata: Piar	no Terra				Trave: Tra	ve Acciaio	3a-4a	Peso prop	orio		-56
L	CR002	002	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
L	CR002	003	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
L	CR002	004	G	0,03	0	-14	24	0	-	-	0,03	0	-14	24	0
L	CR002	005	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
Piano Te	rra		Trav	ata: Piar	no Terra				Trave: Tra	ve Acciaio	4a-5a	Peso prop	orio		-56
L	CR002	002	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
L	CR002	003	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
L	CR002	004	G	0,03	0	-14	24	0	-	-	0,03	0	-14	24	0
L	CR002	005	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
Piano Te	erra		Trav	ata: Piar	no Terra				Trave: Tra	ve Acciaio	5a-6a	Peso prop	orio		-56
L	CR002	002	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
L	CR002	003	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0
L	CR002	004	G	0,03	0	-14	24	0	-	-	0,03	0	-14	24	0
L	CR002	005	G	0,03	0	-67	114	0	-	-	0,03	0	-67	114	0

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 72 di 127

Proponente: INE FICURINIA S.R.L

Carichi sulle travi

TC	С	CC	SR	Disi	$F_{X,i}/Q_{X,i}$	F _{Y,i} /Q _{Y,i}	F _{Z,i} /Q _{Z,i}	$M_{X,i}/M_{T,i}$	M _{Y,i}	M _{Z,i}	Dis _f	$\mathbf{Q}_{X,f}$	$\mathbf{Q}_{\mathrm{Y,f}}$	Q _{Z,f}	M _{T,f}
				[m]	[N;N/m]	[N;N/m]	[N;N/m]	[N·m;N·m/m]	[N·m;N·m/m]	[N·m;N·m/m]	[m]	[N/m]	[N/m]	[N/m]	[N·m/m]

LEGENDA:

TC Descrizione del tipo di carico: [L] = Lineare - [C] = Concentrato - [S] = Superficiale - [T] = Termico.

C Descrizione del carico:

CR001= SOLAIO: Pannello JA solar 1134x2465x35 CR002= Azione del Vento (Solaio Generico) CR003= Azione del Vento (Trave Acciaio)

CC Identificativo della tipologia di carico nella relativa tabella.

SR Identificativo del sistema di riferimento considerato: [G] = Sistema di riferimento Globale X, Y, Z - [L] = Sistema di riferimento Locale 1, 2, 3.

Distanza del punto "i" dall'estremo iniziale dell'elemento. Il punto "i" indica il punto iniziale del tratto interessato dal carico distribuito sul bordo.

M_{X,i}/M_{T,i} Se nella colonna "TC" è riportato "Concentrato", è il valore del vettore momento concentrato collocato nel punto "i", riferito agli assi del sistema di riferimento indicato nella colonna "S.R". Se nella colonna "TC" è riportato "Lineare", è il valore nel punto "i", del vettore momento (torcente) distribuito sempre riferito all"asse 1 (asse dell"elemento) del sistema di riferimento locale 1, 2, 3, quale che sia il sistema di riferimento indicato nella colonna "S.R".

Distanza del punto "f" dall'estremo inferiore dell'elemento. Il punto "f" indica il punto finale del tratto interessato dal carico distribuito.

M_{T,f} Se nella colonna "TC" è riportato "Lineare", è il valore nel punto "f", del vettore momento (torcente) distribuito sempre riferito all"asse 1 (asse dell'elemento) del sistema di riferimento locale 1, 2, 3, quale che sia il sistema di riferimento indicato nella colonna "S.R".

Fx.i/Qx.i, Valore (nel punto "i") della forza concentrata/distribuita riferita agli assi del sistema di riferimento indicato nella colonna "S.R".

F_{Y,i}/Q_{Y,i},

 $\textbf{F}_{\textbf{Z},i}/\textbf{Q}_{\textbf{Z},i}$

My,i, Mz,i Valore (nel punto "i") del vettore momento concentrato riferito agli assi del sistema di riferimento indicato nella colonna "S.R".

Qx,f, Qy,f, Valore (nel punto "f") della forza distribuita riferita agli assi del sistema di riferimento indicato nella colonna "S.R".

 $\mathbf{Q}_{\mathbf{Z},\mathbf{f}}$

 ΔT_{1} , ΔT_{2} , Variazione di temperatura rispettivamente lungo gli assi 1, 2 o 3 del sistema locale.

ΔT3

CARICHI SUI PILASTRI

Carichi sui pilastri

TC	С	СС	SR	Disi	$F_{X,i}/Q_{X,i}$	$F_{Y,i}/Q_{Y,i}$	F _{Z,i} /Q _{Z,i}	$M_{X,i}/M_{T,i}$	$M_{Y,i}$	M _{Z,i}	Dis _f	$\mathbf{Q}_{X,f}$	$Q_{Y,f}$	Q _{z,f}	M _{T,f}
				[m]	[N;N/m]	[N;N/m]	[N;N/m]	[N·m;N·m/m]	[N·m;N·m/m]	[N·m;N·m/m]	[m]	[N/m]	[N/m]	[N/m]	[N·m/m]
Piano	Terra			Pilastro	008			'			Peso pro	prio			-56
Piano	Terra			Pilastro	001						Peso pro		-56		
Piano	Piano Terra Pilastro 009								Peso pro	prio			-56		
Piano	nno Terra Pilastro 010								Peso pro		-56				
Piano	Terra			Pilastro	011						Peso pro	prio			-56
Piano	Terra			Pilastro	12 (a)						Peso pro	prio			-56
Piano	Terra			Pilastro	013						Peso pro	prio			-56
Piano	nno Terra Pilastro 014							Peso proprio				-56			
Piano Terra Pilastro 002 Peso pro							prio			-56					

	Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
(Codice elaborato: RS06REL092A)	Pag. 73 di 127

Proponente: INE FICURINIA S.R.L

Carichi sui pilastri

С	СС	SR	Disi	F _{X,i} /Q _{X,i}	F _{Y,i} /Q _{Y,i}	F _{Z,i} /Q _{Z,i}	$M_{X,i}/M_{T,i}$	$M_{Y,i}$	M _{z,i}	Dis _f	Q _{X,f}	Q _{Y,f}	$\mathbf{Q}_{Z,f}$	M _{T,f}
			[m]	[N;N/m]	[N;N/m]	[N;N/m]	[N·m;N·m/m]	[N·m;N·m/m]	[N·m;N·m/m]	[m]	[N/m]	[N/m]	[N/m]	[N·m/m]
Terra			Pilastro	003					ı	Peso pro	prio			-56
Terra			Pilastro	004						Peso pro	prio			-56
Terra			Pilastro	007						Peso pro	prio			-56
Terra			Pilastro	006						Peso proprio				-56
Piano Terra Pilastro 005 Peso proprio							prio			-56				
	Terra Terra Terra Terra	Terra Terra Terra Terra	Terra Terra Terra Terra	Terra Pilastro Terra Pilastro Terra Pilastro Terra Pilastro Terra Pilastro	[m] [N;N/m] Terra Pilastro 003 Terra Pilastro 004 Terra Pilastro 007 Terra Pilastro 006	[m] [N;N/m] [N;N/m] Terra Pilastro 003 Terra Pilastro 004 Terra Pilastro 007 Terra Pilastro 006	[m] [N;N/m] [N;N/m] [N;N/m] Terra Pilastro 003 Terra Pilastro 004 Terra Pilastro 007 Terra Pilastro 006	[m] [N;N/m] [N;N/m] [N;N/m] [N;N/m] [N:m;N·m/m] Terra Pilastro 004 Terra Pilastro 007 Terra Pilastro 006	[m] [N;N/m] [N;N/m] [N;N/m] [N-m;N-m/m] [N-m;N-m/m] Terra Pilastro 004 Terra Pilastro 007 Terra Pilastro 006	[m] [N;N/m] [N;N/m] [N-m;N-m/m] [N-m;N-m/m] [N-m;N-m/m] Terra Pilastro 003 Terra Pilastro 004 Terra Pilastro 007 Terra Pilastro 006	[m] [N;N/m] [N;N/m] [N-m;N-m/m] [N-m;N-m/m] [m]	[m] [N;N/m] [N;N/m] [N-m;N-m/m] [N-m;N-m/m] [m] [N/m]	[m] [N;N/m] [N;N/m] [N-m;N-m/m] [N-m;N-m/m] [m] [N/m] [N/m]	[m] [N;N/m] [N;N/m] [N-m;N-m/m] [N-m;N-m/m] [M-m;N-m/m] [m] [N/m] [N

LEGENDA:

TC Descrizione del tipo di carico: [L] = Lineare - [C] = Concentrato - [S] = Superficiale - [T] = Termico.

C Descrizione del carico:

CC Identificativo della tipologia di carico nella relativa tabella.

SR Identificativo del sistema di riferimento considerato: [G] = Sistema di riferimento Globale X, Y, Z - [L] = Sistema di riferimento Locale 1, 2, 3.

DistDistanza del punto "i" dall'estremo inferiore dell'elemento. Il punto "i", in relazione alla descrizione riportata nella colonna "TC" ("Lineare" o "Concentrato"), indica rispettivamente il punto iniziale del tratto interessato dal carico distribuito o in cui è posizionato il carico concentrato.

M_{X,i}/M_{T,i} Se nella colonna "TC" è riportato "Concentrato", è il valore del vettore momento concentrato collocato nel punto "i", riferito agli assi del sistema di riferimento indicato nella colonna "S.R". Se nella colonna "TC" è riportato "Lineare", è il valore nel punto "i", del vettore momento (torcente) distribuito sempre riferito all'asse 1 (asse dell'elemento) del sistema di riferimento locale 1, 2, 3, quale che sia il sistema di riferimento indicato nella colonna "S.R".

Distanza del punto "f" dall'estremo inferiore dell'elemento. Il punto "f" indica il punto finale del tratto interessato dal carico distribuito.

M_{T,f} Se nella colonna "TC" è riportato "Lineare", è il valore nel punto "f", del vettore momento (torcente) distribuito sempre riferito all"asse 1 (asse dell'elemento) del sistema di riferimento locale 1, 2, 3, quale che sia il sistema di riferimento indicato nella colonna "S.R".

Fx,i/Qx,i, Valore (nel punto "i") della forza concentrata/distribuita riferita agli assi del sistema di riferimento indicato nella colonna "S.R".

F_{Y,i}/Q_{Y,i},

Fz,i/Qz,i

My,i, Mz,i Valore (nel punto "i") del vettore momento concentrato riferito agli assi del sistema di riferimento indicato nella colonna "S.R".

Qx,f, Qv,f, Valore (nel punto "f") della forza distribuita riferita agli assi del sistema di riferimento indicato nella colonna "S.R".

Qz,f

 ΔT_1 , ΔT_2 , Variazione di temperatura rispettivamente lungo gli assi 1, 2 o 3 del sistema locale.

ΔT₃

NODI - SPOSTAMENTI PER CONDIZIONI DI CARICO NON SISMICHE

Nodi - Spostamenti per condizioni di carico non sismiche

Nodo	СС	S _X	S _Y	Sz	Θx	Θγ	Θz
		[cm]	[cm]	[cm]	[rad]	[rad]	[rad]
00001	001	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	002	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	003	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	004	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A	0	Pag. 74 di 127

Proponente: INE FICURINIA S.R.L

Nodi - Spostamenti per condizioni di carico non sismiche

	Nodo	СС	S _X	S _Y	Sz	Θx	Θ _Y	Θz
00002			[cm]	[cm]	[cm]	[rad]	[rad]	[rad]
002		005	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
003	00002	001	-0,0003	-0,0256	-0,0008	-2,2673 E-04	7,3284 E-05	3,086 E-05
004		002	0,0009	-0,1355	0,0015	5,6393 E-04	-5,0765 E-04	-4,6063 E-04
005		003	0,0009	-0,1355	0,0015	5,6393 E-04	-5,0765 E-04	-4,6063 E-04
00003		004	0,0002	-0,0288	0,0003	1,189 E-04	-1,0663 E-04	-9,7517 E-05
002		005	0,0009	-0,1355	0,0015	5,6393 E-04	-5,0765 E-04	-4,6063 E-04
003	00003	001	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
004		002	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
005 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0 E-01 00004 001 0,0000 -0,0211 -0,0003 5,2194 E-04 4,9473 E-05 2,3152 E-05 002 0,0005 -0,1286 0,0002 1,1863 E-03 -3,1176 E-04 -3,7517 E-04 004 0,0001 -0,0273 0,0000 2,526 E-04 -6,548 E-05 -7,9204 E-05 005 0,0005 -0,1286 0,0002 1,1863 E-03 -3,1176 E-04 -3,7517 E-04 0005 0,0005 -0,1286 0,0002 1,1863 E-03 -3,1176 E-04 -3,7517 E-04 0005 0,0005 -0,1286 0,0002 1,1863 E-03 -3,1176 E-04 -3,7517 E-04 0000 0,0001 -0,0274 -0,0006 7,6101 E-04 -5,5123 E-06 -1,6469 E-05 003 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 004 0,0000 -0,0026 0,0001 3,5533 E-04 -2,7051 E-07 -1,5884 E-05 <		003	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
00004 001 0,0000 -0,0211 -0,0003 5,2194 E-04 4,9473 E-05 2,3152 E-05 002 0,0005 -0,1286 0,0002 1,1863 E-03 -3,1176 E-04 -3,7517 E-04 003 0,0005 -0,1286 0,0002 1,1863 E-03 -3,1176 E-04 -3,7517 E-04 004 0,0001 -0,0273 0,0000 2,526 E-04 -6,548 E-05 -7,9204 E-05 005 0,0005 -0,1286 0,0002 1,1863 E-03 -3,1176 E-04 -3,7517 E-04 00005 001 0,0001 -0,0274 -0,0006 7,6101 E-04 -5,5123 E-06 -1,6469 E-05 002 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 003 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 004 0,0000 -0,0426 0,0001 3,5533 E-04 -2,7051 E-07 -1,5854 E-05 005 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-0		004	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
002 0,0005 -0,1286 0,0002 1,1863 E-03 -3,1176 E-04 -3,7517 E-04 003 0,0005 -0,1286 0,0002 1,1863 E-03 -3,1176 E-04 -3,7517 E-04 004 0,0001 -0,0273 0,0000 2,526 E-04 -6,548 E-05 -7,9204 E-05 005 0,0005 -0,1286 0,0002 1,1863 E-03 -3,1176 E-04 -3,7517 E-04 00005 001 0,0001 -0,0274 -0,0006 7,6101 E-04 -5,5123 E-06 -1,6469 E-05 002 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 003 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 004 0,0000 -0,0426 0,0001 3,5533 E-04 -2,7051 E-07 -1,5854 E-05 005 -0,0002 -0,2003 0,0000 0 E-01 0 E-01 0 E-01 0 E-01 0004 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0 E-01 0 E-01		005	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
003 0,0005 -0,1286 0,0002 1,1863 E-03 -3,1176 E-04 -3,7517 E-04 004 0,0001 -0,0273 0,0000 2,526 E-04 -6,548 E-05 -7,9204 E-05 005 0,0005 -0,1286 0,0002 1,1863 E-03 -3,1176 E-04 -3,7517 E-04 00005 001 0,0001 -0,0274 -0,0006 7,6101 E-04 -5,5123 E-06 -1,6469 E-05 002 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 003 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 004 0,0000 -0,0426 0,0001 3,5533 E-04 -2,7051 E-07 -1,5854 E-05 005 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 005 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 005 -0,0002 -0,2003 0,0000 0 E-01 0 E-01 0 E-01 0 E-01	00004	001	0,0000	-0,0211	-0,0003	5,2194 E-04	4,9473 E-05	2,3152 E-05
004 0,0001 -0,0273 0,0000 2,526 E-04 -6,548 E-05 -7,9204 E-05 005 0,0005 -0,1286 0,0002 1,1863 E-03 -3,1176 E-04 -3,7517 E-04 00005 001 0,0001 -0,0274 -0,0006 7,6101 E-04 -5,5123 E-06 -1,6469 E-05 002 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 003 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 004 0,0000 -0,0426 0,0001 3,5533 E-04 -2,7051 E-07 -1,5854 E-05 005 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 0006 001 0,0000 0,0000 1,665 E-03 -8,1568 E-07 -7,384 E-05 0006 001 0,0000 0,0000 0 E-01 0 E-01 0 E-01 002 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0 E-01 004 0,0000		002	0,0005	-0,1286	0,0002	1,1863 E-03	-3,1176 E-04	-3,7517 E-04
005 0,0005 -0,1286 0,0002 1,1863 E-03 -3,1176 E-04 -3,7517 E-04 00005 001 0,0001 -0,0274 -0,0006 7,6101 E-04 -5,5123 E-06 -1,6469 E-05 002 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 003 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 004 0,0000 -0,0426 0,0001 3,5533 E-04 -2,7051 E-07 -1,5854 E-05 005 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 0006 001 0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 0006 001 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0 E-01 002 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0 E-01 0 E-01 004 0,0000 0,0000 0,0000 0 E-01 0 E-01		003	0,0005	-0,1286	0,0002	1,1863 E-03	-3,1176 E-04	-3,7517 E-04
00005 001 0,0001 -0,0274 -0,0006 7,6101 E-04 -5,5123 E-06 -1,6469 E-05 002 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 003 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 004 0,0000 -0,0426 0,0001 3,5533 E-04 -2,7051 E-07 -1,5854 E-05 005 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 0006 001 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 002 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0 E-01 004 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0 E-01 005 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0 E-01 007 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0 E-01 <		004	0,0001	-0,0273	0,0000	2,526 E-04	-6,548 E-05	-7,9204 E-05
002 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 003 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 004 0,0000 -0,0426 0,0001 3,5533 E-04 -2,7051 E-07 -1,5854 E-05 005 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 0006 001 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 002 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0 E-01 003 0,0000 0,0000 0,0000 0 E-01		005	0,0005	-0,1286	0,0002	1,1863 E-03	-3,1176 E-04	-3,7517 E-04
003 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 004 0,0000 -0,0426 0,0001 3,5533 E-04 -2,7051 E-07 -1,5854 E-05 005 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 00006 001 0,0000 0,0000 0 E-01 0 E-01 0 E-01 002 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 003 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 004 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0007 001 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0007 001 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0007 001 0,0000 -0,0001 -0,0014 -4,0445 E-04 -1,5175 E-05 -2,2988 E-05 002 -0,0005	00005	001	0,0001	-0,0274	-0,0006	7,6101 E-04	-5,5123 E-06	-1,6469 E-05
004 0,0000 -0,0426 0,0001 3,5533 E-04 -2,7051 E-07 -1,5854 E-05 005 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 00006 001 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 002 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 003 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 004 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0007 001 0,0000 -0,0001 -0,0014 -4,0445 E-04 -1,5175 E-05 -2,2988 E-05 002 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05 004 -0,0001 -0,0446 0,0006 2,0634 E-04 3,4927 E-06 -1,4204 E-05 005 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05		002	-0,0002	-0,2003	0,0006	1,665 E-03	-8,1568 E-07	-7,384 E-05
005 -0,0002 -0,2003 0,0006 1,665 E-03 -8,1568 E-07 -7,384 E-05 00006 001 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 002 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0 E-01 004 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0 E-01 005 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0 E-01 00007 001 0,0000 -0,0001 -4,0445 E-04 -1,5175 E-05 -2,2988 E-05 002 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05 004 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05 005 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05		003	-0,0002	-0,2003	0,0006	1,665 E-03	-8,1568 E-07	-7,384 E-05
00006 001 0,0000 0,0000 0,0000 0 E-01 0 E-01		004	0,0000	-0,0426	0,0001	3,5533 E-04	-2,7051 E-07	-1,5854 E-05
002 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0 E-01 003 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0 E-01 004 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0 E-01 0007 001 0,0000 -0,0341 -0,0014 -4,0445 E-04 -1,5175 E-05 -2,2988 E-05 002 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05 004 -0,0001 -0,0446 0,0006 2,0634 E-04 3,4927 E-06 -1,4204 E-05 005 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05		005	-0,0002	-0,2003	0,0006	1,665 E-03	-8,1568 E-07	-7,384 E-05
003 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 004 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 005 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0007 001 0,0000 -0,0341 -0,0014 -4,0445 E-04 -1,5175 E-05 -2,2988 E-05 002 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05 003 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05 004 -0,0001 -0,0446 0,0006 2,0634 E-04 3,4927 E-06 -1,4204 E-05 005 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05	00006	001	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
004 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 005 0,0000 0,0000 0 E-01 0 E-01 0 E-01 0 E-01 00007 001 0,0000 -0,0341 -0,0014 -4,0445 E-04 -1,5175 E-05 -2,2988 E-05 002 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05 003 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05 004 -0,0001 -0,0446 0,0006 2,0634 E-04 3,4927 E-06 -1,4204 E-05 005 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05		002	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
005 0,0000 0,0000 0,0000 0 E-01 0 E-01 0 E-01 00007 001 0,0000 -0,0341 -0,0014 -4,0445 E-04 -1,5175 E-05 -2,2988 E-05 002 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05 003 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05 004 -0,0001 -0,0446 0,0006 2,0634 E-04 3,4927 E-06 -1,4204 E-05 005 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05		003	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
00007 001 0,0000 -0,0341 -0,0014 -4,0445 E-04 -1,5175 E-05 -2,2988 E-05 002 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05 003 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05 004 -0,0001 -0,0446 0,0006 2,0634 E-04 3,4927 E-06 -1,4204 E-05 005 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05		004	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
002 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05 003 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05 004 -0,0001 -0,0446 0,0006 2,0634 E-04 3,4927 E-06 -1,4204 E-05 005 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05		005	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
003 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05 004 -0,0001 -0,0446 0,0006 2,0634 E-04 3,4927 E-06 -1,4204 E-05 005 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05	00007	001	0,0000	-0,0341	-0,0014	-4,0445 E-04	-1,5175 E-05	-2,2988 E-05
004 -0,0001 -0,0446 0,0006 2,0634 E-04 3,4927 E-06 -1,4204 E-05 005 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05		002	-0,0005	-0,2096	0,0030	9,7858 E-04	1,7473 E-05	-6,5886 E-05
005 -0,0005 -0,2096 0,0030 9,7858 E-04 1,7473 E-05 -6,5886 E-05		003	-0,0005	-0,2096	0,0030	9,7858 E-04	1,7473 E-05	-6,5886 E-05
		004	-0,0001	-0,0446	0,0006	2,0634 E-04	3,4927 E-06	-1,4204 E-05
00008 001 0,0000 0,0000 0 0 E-01 0 E-01 0 E-01		005	-0,0005	-0,2096	0,0030	9,7858 E-04	1,7473 E-05	-6,5886 E-05
	00008	001	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 75 di 127

Proponente: INE FICURINIA S.R.L

Nodi - Spostamenti per condizioni di carico non sismiche

Nodo	СС	S _X	S _Y	Sz	Θx	Θ _Y	Θz
		[cm]	[cm]	[cm]	[rad]	[rad]	[rad]
	002	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	003	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	004	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	005	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
00009	001	0,0000	-0,0378	-0,0013	-4,3533 E-04	6,535 E-08	-3,4588 E-06
	002	-0,0002	-0,2240	0,0030	1,0607 E-03	-1,0039 E-05	-2,1445 E-05
	003	-0,0002	-0,2240	0,0030	1,0607 E-03	-1,0039 E-05	-2,1445 E-05
	004	0,0000	-0,0477	0,0006	2,2372 E-04	-2,1152 E-06	-4,5683 E-06
	005	-0,0002	-0,2240	0,0030	1,0607 E-03	-1,0039 E-05	-2,1445 E-05
00010	001	0,0001	-0,0304	-0,0006	8,3293 E-04	-1,2509 E-07	-3,4737 E-06
	002	-0,0001	-0,2141	0,0005	1,7994 E-03	-4,3125 E-06	-1,5672 E-05
	003	-0,0001	-0,2141	0,0005	1,7994 E-03	-4,3125 E-06	-1,5672 E-05
	004	0,0000	-0,0455	0,0001	3,8422 E-04	-9,0862 E-07	-3,3451 E-06
	005	-0,0001	-0,2141	0,0005	1,7994 E-03	-4,3125 E-06	-1,5672 E-05
00011	001	0,0000	-0,0310	-0,0006	8,3889 E-04	-6,3613 E-08	-3,8463 E-09
	002	0,0000	-0,2157	0,0005	1,833 E-03	-3,6463 E-07	-4,2995 E-07
	003	0,0000	-0,2157	0,0005	1,833 E-03	-3,6463 E-07	-4,2995 E-07
	004	0,0000	-0,0459	0,0001	3,9138 E-04	-7,6439 E-08	-9,0683 E-08
	005	0,0000	-0,2157	0,0005	1,833 E-03	-3,6463 E-07	-4,2995 E-07
00012	001	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	002	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	003	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	004	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	005	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
00013	001	0,0000	-0,0385	-0,0013	-4,3057 E-04	2,3653 E-07	2,9199 E-08
	002	0,0000	-0,2259	0,0030	1,0533 E-03	-5,3819 E-07	-4,9622 E-07
	003	0,0000	-0,2259	0,0030	1,0533 E-03	-5,3819 E-07	-4,9622 E-07
	004	0,0000	-0,0480	0,0006	2,2218 E-04	-1,1266 E-07	-1,0502 E-07
	005	0,0000	-0,2259	0,0030	1,0533 E-03	-5,3819 E-07	-4,9622 E-07
00014	001	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	002	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	003	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 76 di 127

Proponente: INE FICURINIA S.R.L

Nodi - Spostamenti per condizioni di carico non sismiche

Nodo	CC	S _X	S _Y	Sz	Θx	Θ _Y	Θz
		[cm]	[cm]	[cm]	[rad]	[rad]	[rad]
	004	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	005	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
00015	001	0,0000	-0,0378	-0,0013	-4,3548 E-04	9,1815 E-08	3,3617 E-06
	002	0,0002	-0,2241	0,0030	1,0612 E-03	1,0816 E-05	2,1842 E-05
	003	0,0002	-0,2241	0,0030	1,0612 E-03	1,0816 E-05	2,1842 E-05
	004	0,0001	-0,0477	0,0006	2,2382 E-04	2,2778 E-06	4,6517 E-06
	005	0,0002	-0,2241	0,0030	1,0612 E-03	1,0816 E-05	2,1842 E-05
00016	001	-0,0001	-0,0304	-0,0006	8,3314 E-04	-2,0615 E-07	3,3579 E-06
	002	0,0001	-0,2142	0,0005	1,7996 E-03	4,8038 E-06	1,5978 E-05
	003	0,0001	-0,2142	0,0005	1,7996 E-03	4,8038 E-06	1,5978 E-05
	004	0,0000	-0,0455	0,0001	3,8426 E-04	1,0115 E-06	3,4089 E-06
	005	0,0001	-0,2142	0,0005	1,7996 E-03	4,8038 E-06	1,5978 E-05
00017	001	-0,0001	-0,0274	-0,0006	7,6134 E-04	5,3341 E-06	1,6454 E-05
	002	0,0002	-0,2004	0,0006	1,6654 E-03	3,9797 E-07	7,3247 E-05
	003	0,0002	-0,2004	0,0006	1,6654 E-03	3,9797 E-07	7,3247 E-05
	004	0,0000	-0,0426	0,0001	3,5541 E-04	1,8295 E-07	1,5729 E-05
	005	0,0002	-0,2004	0,0006	1,6654 E-03	3,9797 E-07	7,3247 E-05
00018	001	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	002	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	003	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	004	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	005	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
00019	001	0,0000	-0,0342	-0,0014	-4,047 E-04	1,5594 E-05	2,3036 E-05
	002	0,0006	-0,2097	0,0030	9,7929 E-04	-1,8142 E-05	6,5182 E-05
	003	0,0006	-0,2097	0,0030	9,7929 E-04	-1,8142 E-05	6,5182 E-05
	004	0,0001	-0,0446	0,0006	2,0649 E-04	-3,6326 E-06	1,4055 E-05
	005	0,0006	-0,2097	0,0030	9,7929 E-04	-1,8142 E-05	6,5182 E-05
00020	001	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	002	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	003	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	004	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	005	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 77 di 127

Proponente: INE FICURINIA S.R.L

Nodi - Spostamenti per condizioni di carico non sismiche

Nodo	CC	S _X	S _Y	Sz	Θx	Θ _Y	Θz
		[cm]	[cm]	[cm]	[rad]	[rad]	[rad]
00021	001	0,0003	-0,0256	-0,0008	-2,2691 E-04	-7,3231 E-05	-3,1008 E-05
	002	-0,0008	-0,1355	0,0015	5,6429 E-04	5,0879 E-04	4,6129 E-04
	003	-0,0008	-0,1355	0,0015	5,6429 E-04	5,0879 E-04	4,6129 E-04
	004	-0,0002	-0,0288	0,0003	1,1898 E-04	1,0687 E-04	9,7656 E-05
	005	-0,0008	-0,1355	0,0015	5,6429 E-04	5,0879 E-04	4,6129 E-04
00022	001	0,0000	-0,0211	-0,0003	5,2206 E-04	-4,9792 E-05	-2,3304 E-05
	002	-0,0005	-0,1287	0,0002	1,1862 E-03	3,1241 E-04	3,7562 E-04
	003	-0,0005	-0,1287	0,0002	1,1862 E-03	3,1241 E-04	3,7562 E-04
	004	-0,0001	-0,0273	0,0000	2,5259 E-04	6,5616 E-05	7,9298 E-05
	005	-0,0005	-0,1287	0,0002	1,1862 E-03	3,1241 E-04	3,7562 E-04
00023	001	-0,0018	0,0621	-0,1379	1,6397 E-03	5,0593 E-04	2,4464 E-04
	002	0,0025	-0,1423	0,0057	-6,4946 E-04	-8,6123 E-04	-6,0455 E-04
	003	0,0025	-0,1423	0,0057	-6,4946 E-04	-8,6123 E-04	-6,0455 E-04
	004	0,0005	-0,0299	0,0008	-1,3232 E-04	-1,8064 E-04	-1,2712 E-04
	005	0,0025	-0,1423	0,0057	-6,4946 E-04	-8,6123 E-04	-6,0455 E-04
00024	001	-0,0011	0,0101	-0,0649	-9,4143 E-04	3,6289 E-04	1,7518 E-04
	002	0,0039	-0,2037	0,1223	1,7539 E-03	-9,3605 E-04	-6,7199 E-04
	003	0,0039	-0,2037	0,1223	1,7539 E-03	-9,3605 E-04	-6,7199 E-04
	004	0,0008	-0,0431	0,0257	3,6786 E-04	-1,9695 E-04	-1,4204 E-04
	005	0,0039	-0,2037	0,1223	1,7539 E-03	-9,3605 E-04	-6,7199 E-04
00025	001	-0,0007	0,1010	-0,2127	2,4841 E-03	1,723 E-04	8,999 E-05
	002	-0,0001	-0,2630	0,0770	-1,7775 E-03	-8,8917 E-05	-1,9086 E-04
	003	-0,0001	-0,2630	0,0770	-1,7775 E-03	-8,8917 E-05	-1,9086 E-04
	004	0,0000	-0,0554	0,0156	-3,6831 E-04	-1,829 E-05	-4,0295 E-05
	005	-0,0001	-0,2630	0,0770	-1,7775 E-03	-8,8917 E-05	-1,9086 E-04
00026	001	-0,0002	0,0278	-0,1123	-1,5879 E-03	8,3101 E-05	3,7221 E-05
	002	0,0012	-0,3311	0,2182	3,0574 E-03	-2,0343 E-04	-2,4157 E-04
	003	0,0012	-0,3311	0,2182	3,0574 E-03	-2,0343 E-04	-2,4157 E-04
	004	0,0003	-0,0701	0,0458	6,4169 E-04	-4,2951 E-05	-5,1233 E-05
	005	0,0012	-0,3311	0,2182	3,0574 E-03	-2,0343 E-04	-2,4157 E-04
00027	001	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	002	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 78 di 127

Proponente: INE FICURINIA S.R.L

Nodi - Spostamenti per condizioni di carico non sismiche

Nodo	СС	S _X	S _Y	Sz	Θx	Θ _Y	Θz
		[cm]	[cm]	[cm]	[rad]	[rad]	[rad]
	003	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	004	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	005	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
00028	001	-0,0001	0,1078	-0,2290	2,6917 E-03	1,2232 E-05	1,1805 E-06
	002	-0,0004	-0,2755	0,0729	-1,8175 E-03	5,1309 E-05	2,0238 E-05
	003	-0,0004	-0,2755	0,0729	-1,8175 E-03	5,1309 E-05	2,0238 E-05
	004	-0,0001	-0,0581	0,0147	-3,761 E-04	1,0935 E-05	4,2822 E-06
	005	-0,0004	-0,2755	0,0729	-1,8175 E-03	5,1309 E-05	2,0238 E-05
00029	001	0,0001	0,0276	-0,1184	-1,6858 E-03	-4,7859 E-06	-8,1124 E-06
	002	0,0003	-0,3536	0,2323	3,2757 E-03	-1,5612 E-07	-1,3931 E-05
	003	0,0003	-0,3536	0,2323	3,2757 E-03	-1,5612 E-07	-1,3931 E-05
	004	0,0001	-0,0749	0,0488	6,8776 E-04	-7,4926 E-08	-3,0227 E-06
	005	0,0003	-0,3536	0,2323	3,2757 E-03	-1,5612 E-07	-1,3931 E-05
00030	001	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	002	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	003	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	004	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	005	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
00031	001	0,0000	0,1075	-0,2295	2,7006 E-03	2,8414 E-07	1,0505 E-07
	002	0,0000	-0,2731	0,0663	-1,7482 E-03	-5,6901 E-07	-3,8838 E-07
	003	0,0000	-0,2731	0,0663	-1,7482 E-03	-5,6901 E-07	-3,8838 E-07
	004	0,0000	-0,0576	0,0133	-3,6136 E-04	-1,1918 E-07	-8,1526 E-08
	005	0,0000	-0,2731	0,0663	-1,7482 E-03	-5,6901 E-07	-3,8838 E-07
00032	001	0,0000	0,0264	-0,1176	-1,6774 E-03	2,446 E-07	7,7707 E-08
	002	0,0000	-0,3546	0,2310	3,2629 E-03	-5,9858 E-07	-4,5058 E-07
	003	0,0000	-0,3546	0,2310	3,2629 E-03	-5,9858 E-07	-4,5058 E-07
	004	0,0000	-0,0751	0,0485	6,8511 E-04	-1,2567 E-07	-9,5382 E-08
	005	0,0000	-0,3546	0,2310	3,2629 E-03	-5,9858 E-07	-4,5058 E-07
00033	001	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	002	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	003	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	004	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 79 di 127

Proponente: INE FICURINIA S.R.L

Nodi - Spostamenti per condizioni di carico non sismiche

Nodo	СС	S _X	S _Y	Sz	Θx	Θ _Y	Θz
		[cm]	[cm]	[cm]	[rad]	[rad]	[rad]
	005	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
00034	001	0,0001	0,1079	-0,2291	2,6923 E-03	-1,2332 E-05	-1,1879 E-06
	002	0,0004	-0,2756	0,0729	-1,8183 E-03	-5,078 E-05	-2,017 E-05
	003	0,0004	-0,2756	0,0729	-1,8183 E-03	-5,078 E-05	-2,017 E-05
	004	0,0001	-0,0581	0,0147	-3,7628 E-04	-1,0823 E-05	-4,2684 E-06
	005	0,0004	-0,2756	0,0729	-1,8183 E-03	-5,078 E-05	-2,017 E-05
00035	001	0,0000	0,0276	-0,1184	-1,6862 E-03	4,6526 E-06	8,0267 E-06
	002	-0,0002	-0,3537	0,2324	3,2768 E-03	5,0918 E-07	1,3945 E-05
	003	-0,0002	-0,3537	0,2324	3,2768 E-03	5,0918 E-07	1,3945 E-05
	004	0,0000	-0,0749	0,0488	6,8799 E-04	1,4881 E-07	3,0256 E-06
	005	-0,0002	-0,3537	0,2324	3,2768 E-03	5,0918 E-07	1,3945 E-05
00036	001	0,0007	0,1010	-0,2128	2,4851 E-03	-1,7189 E-04	-8,9822 E-05
	002	0,0001	-0,2631	0,0771	-1,7789 E-03	8,8019 E-05	1,9023 E-04
	003	0,0001	-0,2631	0,0771	-1,7789 E-03	8,8019 E-05	1,9023 E-04
	004	0,0000	-0,0554	0,0156	-3,6859 E-04	1,8102 E-05	4,0161 E-05
	005	0,0001	-0,2631	0,0771	-1,7789 E-03	8,8019 E-05	1,9023 E-04
00037	001	0,0002	0,0278	-0,1123	-1,5886 E-03	-8,2712 E-05	-3,7079 E-05
	002	-0,0012	-0,3312	0,2183	3,0591 E-03	2,026 E-04	2,4091 E-04
	003	-0,0012	-0,3312	0,2183	3,0591 E-03	2,026 E-04	2,4091 E-04
	004	-0,0002	-0,0701	0,0459	6,4205 E-04	4,2777 E-05	5,1093 E-05
	005	-0,0012	-0,3312	0,2183	3,0591 E-03	2,026 E-04	2,4091 E-04
00038	001	0,0018	0,0621	-0,1380	1,6401 E-03	-5,0628 E-04	-2,4474 E-04
	002	-0,0025	-0,1424	0,0057	-6,5034 E-04	8,6223 E-04	6,048 E-04
	003	-0,0025	-0,1424	0,0057	-6,5034 E-04	8,6223 E-04	6,048 E-04
	004	-0,0005	-0,0300	0,0008	-1,325 E-04	1,8085 E-04	1,2717 E-04
	005	-0,0025	-0,1424	0,0057	-6,5034 E-04	8,6223 E-04	6,048 E-04
00039	001	0,0012	0,0101	-0,0649	-9,4182 E-04	-3,6316 E-04	-1,7535 E-04
	002	-0,0038	-0,2038	0,1224	1,7548 E-03	9,3708 E-04	6,7235 E-04
	003	-0,0038	-0,2038	0,1224	1,7548 E-03	9,3708 E-04	6,7235 E-04
	004	-0,0008	-0,0431	0,0257	3,6805 E-04	1,9717 E-04	1,4211 E-04
	005	-0,0038	-0,2038	0,1224	1,7548 E-03	9,3708 E-04	6,7235 E-04
00040	001	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 80 di 127

Proponente: INE FICURINIA S.R.L

Nodi - Spostamenti per condizioni di carico non sismiche

Nodo	СС	S _X	S _Y	Sz	Θχ	Θγ	Θz
		[cm]	[cm]	[cm]	[rad]	[rad]	[rad]
	002	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	003	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	004	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	005	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
00041	001	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	002	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	003	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	004	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	005	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
00042	001	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	002	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	003	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	004	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01
	005	0,0000	0,0000	0,0000	0 E-01	0 E-01	0 E-01

LEGENDA:

CC Identificativo della tipologia di carico nella relativa tabella.

 $\mathbf{S}_{\mathbf{X}_{\mathbf{Y}}}$ Le componenti dello spostamento sono relative al sistema di riferimento globale X, Y, Z.

 S_{z} , Θ_{x} ,

Θγ, Θz

TRAVI - SOLLECITAZIONI PER CONDIZIONI DI CARICO NON SISMICHE

Travi - Sollecitazioni per condizioni di carico non sismiche

Id₁r	СС			Es	tr. Inz.					Es	tr. Fin.		
Autr		M ₁	M ₂	M ₃	N	T ₂	T ₃	M ₁	M ₂	M ₃	N	T ₂	T ₃
		[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	[N·m]	[N·m]	[N·m]	[N]	[N]	[N]
Piano Terra					Travata: P	iano Terra						'	
Trave Acciaio 8-8a	001	-5	-8	133	120	198	20	-5	12	6	33	51	20
	002	7	-47	-201	40	-253	88	7	42	-11	40	-118	88
	003	7	-47	-201	40	-253	88	7	42	-11	40	-118	88
	004	2	-10	-42	10	-53	19	2	9	-2	9	-25	19
	005	7	-47	-201	40	-253	88	7	42	-11	40	-118	88
Trave Acciaio 13-14	001	-1	-7	25	-11	67	8	-1	11	13	-11	-56	8

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A)	Pag. 81 di 127

Proponente: INE FICURINIA S.R.L

Travi - Sollecitazioni per condizioni di carico non sismiche

**	66	Estr. Inz.								Es	tr. Fin.		
Id _{Tr}	CC	M ₁	M ₂	M ₃	N	T ₂	T ₃	M ₁	M ₂	Мз	N	T ₂	T 3
		[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	[N·m]	[N·m]	[N·m]	[N]	[N]	[N]
	002	3	29	-138	-117	-332	-151	3	66	-33	-117	235	185
	003	3	29	-138	-117	-332	-151	3	66	-33	-117	235	185
	004	1	6	-29	-25	-69	-32	1	14	-7	-25	49	40
	005	3	29	-138	-117	-332	-151	3	66	-33	-117	235	185
Trave Acciaio 11-12	001	0	0	22	-21	61	0	0	0	22	-21	-61	0
	002	0	62	-106	-179	-285	-168	0	61	-104	-179	283	167
	003	0	62	-106	-179	-285	-168	0	61	-104	-179	283	167
	004	0	13	-22	-38	-59	-36	0	13	-22	-38	59	36
	005	0	62	-106	-179	-285	-168	0	61	-104	-179	283	167
Trave Acciaio 12-13	001	0	-1	21	-19	60	1	0	0	24	-19	-63	1
	002	1	55	-105	-174	-283	-163	1	66	-107	-174	284	172
	003	1	55	-105	-174	-283	-163	1	66	-107	-174	284	172
	004	0	12	-22	-37	-59	-35	0	14	-22	-37	59	37
	005	1	55	-105	-174	-283	-163	1	66	-107	-174	284	172
Trave Acciaio 8-9	001	1	11	13	-11	56	-8	1	-7	25	-11	-66	-8
	002	-3	66	-33	-117	-235	-185	-3	29	-138	-117	332	150
	003	-3	66	-33	-117	-235	-185	-3	29	-138	-117	332	150
	004	-1	14	-7	-25	-49	-40	-1	6	-29	-25	69	32
	005	-3	66	-33	-117	-235	-185	-3	29	-138	-117	332	150
Trave Acciaio 9-10	001	0	0	24	-19	63	-1	0	-1	21	-19	-59	-1
	002	-1	66	-107	-174	-284	-172	-1	55	-105	-174	283	163
	003	-1	66	-107	-174	-284	-172	-1	55	-105	-174	283	163
	004	0	14	-22	-37	-59	-37	0	12	-22	-37	59	35
	005	-1	66	-107	-174	-284	-172	-1	55	-105	-174	283	163
Trave Acciaio 10-11	001	0	0	22	-21	61	0	0	0	22	-21	-61	0
	002	0	61	-104	-179	-282	-167	0	62	-106	-179	284	168
	003	0	61	-104	-179	-282	-167	0	62	-106	-179	284	168
	004	0	13	-22	-38	-59	-36	0	13	-22	-38	59	36
	005	0	61	-104	-179	-282	-167	0	62	-106	-179	284	168
Trave Acciaio 1-8	001	0	-2	125	71	198	2	0	2	67	-135	-153	2
	002	1	-32	92	552	-104	26	1	30	-254	552	400	26

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 82 di 127

Proponente: INE FICURINIA S.R.L

Travi - Sollecitazioni per condizioni di carico non sismiche

• .	66			Es	tr. Inz.					Es	tr. Fin.		
Id _{Tr}	CC	M ₁	M ₂	M ₃	N	T ₂	T ₃	M ₁	M ₂	Мз	N	T ₂	T 3
		[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	[N·m]	[N·m]	[N·m]	[N]	[N]	[N]
	003	1	-32	92	552	-104	26	1	30	-254	552	400	26
	004	0	-7	20	118	-21	5	0	6	-53	118	84	5
	005	1	-32	92	552	-104	26	1	30	-254	552	400	26
Trave Acciaio 6-7	001	2	-6	25	39	65	7	2	9	15	39	-57	7
	002	3	29	-133	-124	-329	-152	3	79	-65	-124	266	198
	003	3	29	-133	-124	-329	-152	3	79	-65	-124	266	198
	004	1	6	-28	-26	-69	-32	1	17	-14	-26	56	42
	005	3	29	-133	-124	-329	-152	3	79	-65	-124	266	198
Trave Acciaio 4-5	001	0	0	22	39	61	0	0	0	22	39	-61	0
	002	0	64	-111	-76	-298	-175	0	64	-110	-76	297	175
	003	0	64	-111	-76	-298	-175	0	64	-110	-76	297	175
	004	0	14	-23	-16	-62	-37	0	14	-23	-16	62	37
	005	0	64	-111	-76	-298	-175	0	64	-110	-76	297	175
Trave Acciaio 5-6	001	1	-2	22	38	60	1	1	1	23	38	-62	1
	002	1	58	-111	-78	-298	-171	1	67	-110	-78	297	179
	003	1	58	-111	-78	-298	-171	1	67	-110	-78	297	179
	004	0	12	-23	-16	-62	-36	0	14	-23	-16	62	38
	005	1	58	-111	-78	-298	-171	1	67	-110	-78	297	179
Trave Acciaio 1-2	001	-2	9	15	39	57	-7	-2	-6	25	39	-66	-7
	002	-3	79	-65	-124	-266	-198	-3	29	-133	-124	329	152
	003	-3	79	-65	-124	-266	-198	-3	29	-133	-124	329	152
	004	-1	17	-13	-26	-56	-42	-1	6	-28	-26	69	32
	005	-3	79	-65	-124	-266	-198	-3	29	-133	-124	329	152
Trave Acciaio 2-3	001	-1	1	23	38	62	-1	-1	-2	22	38	-61	-1
	002	-1	67	-110	-78	-297	-179	-1	58	-111	-78	298	171
	003	-1	67	-110	-78	-297	-179	-1	58	-111	-78	298	171
	004	0	14	-23	-16	-62	-38	0	12	-23	-16	62	36
	005	-1	67	-110	-78	-297	-179	-1	58	-111	-78	298	171
Trave Acciaio 3-4	001	0	0	22	39	61	0	0	0	22	39	-61	0
	002	0	64	-110	-75	-297	-175	0	64	-111	-75	298	175
	003	0	64	-110	-75	-297	-175	0	64	-111	-75	298	175

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 83 di 127

Proponente: INE FICURINIA S.R.L

Travi - Sollecitazioni per condizioni di carico non sismiche

Id _{Tr}	СС	Estr. Inz.								Es	tr. Fin.		
1u _{Tr}	CC	M ₁	M ₂	M ₃	N	T ₂	T ₃	M ₁	M ₂	M ₃	N	T ₂	T ₃
		[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	[N·m]	[N·m]	[N·m]	[N]	[N]	[N]
	004	0	14	-23	-16	-62	-37	0	14	-23	-16	62	37
	005	0	64	-110	-75	-297	-175	0	64	-111	-75	298	175
Trave Acciaio 1a-1	001	6	-11	5	-32	-53	13	6	6	178	-136	-231	13
	002	-7	-46	-6	-40	128	83	-7	56	-271	-40	308	83
	003	-7	-46	-6	-40	128	83	-7	56	-271	-40	308	83
	004	-2	-10	-1	-8	27	18	-2	12	-57	-8	64	18
	005	-7	-46	-6	-40	128	83	-7	56	-271	-40	308	83
Trave Acciaio 9-9a	001	-2	-4	233	207	351	8	-2	4	-2	62	105	8
	002	4	-32	-377	-40	-495	70	4	39	3	-40	-247	70
	003	4	-32	-377	-40	-495	70	4	39	3	-40	-247	70
	004	1	-7	-79	-5	-104	15	1	8	1	-7	-52	15
	005	4	-32	-377	-40	-495	70	4	39	3	-40	-247	70
Trave Acciaio 2-9	001	0	-2	193	89	320	2	0	3	123	-256	-268	2
	002	0	-13	90	921	-254	11	0	13	-432	921	704	11
	003	0	-13	90	921	-254	11	0	13	-432	921	704	11
	004	0	-3	20	197	-52	2	0	3	-91	197	148	2
	005	0	-13	90	921	-254	11	0	13	-432	921	704	11
Trave Acciaio 2a-2	001	3	-4	-6	-62	-99	6	3	4	294	-237	-396	6
	002	-2	-38	13	41	280	55	-2	30	-532	41	614	55
	003	-2	-38	13	41	280	55	-2	30	-532	41	614	55
	004	0	-8	3	9	59	12	0	6	-112	9	129	12
	005	-2	-38	13	41	280	55	-2	30	-532	41	614	55
Trave Acciaio 10-10a	001	0	-1	240	206	356	3	0	2	1	61	109	3
	002	0	-4	-392	0	-504	7	0	3	-3	0	-256	7
	003	0	-4	-392	0	-504	7	0	3	-3	0	-256	7
	004	0	-1	-82	3	-106	1	0	1	-1	1	-54	1
	005	0	-4	-392	0	-504	7	0	3	-3	0	-256	7
Trave Acciaio 3-10	001	0	-1	200	89	324	1	0	1	123	-257	-264	1
	002	0	-3	114	978	-236	2	0	3	-452	978	722	2
	003	0	-3	114	978	-236	2	0	3	-452	978	722	2
	004	0	-1	25	210	-49	0	0	1	-95	210	152	0

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 84 di 127

Proponente: INE FICURINIA S.R.L

Travi - Sollecitazioni per condizioni di carico non sismiche

*4	66		Estr. Inz. M ₁ M ₂ M ₃ N T ₂ T ₃							Es	tr. Fin.		
Id _{Tr}	CC	M ₁	M ₂	M ₃	N	T ₂	T ₃	M ₁	M ₂	Мз	N	T ₂	T 3
		[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	[N·m]	[N·m]	[N·m]	[N]	[N]	[N]
	005	0	-3	114	978	-236	2	0	3	-452	978	722	2
Trave Acciaio 3a-3	001	0	-1	-3	-60	-108	2	0	1	308	-235	-406	2
	002	1	-3	6	-1	287	6	1	4	-548	-1	621	6
	003	1	-3	6	-1	287	6	1	4	-548	-1	621	6
	004	0	-1	1	0	60	1	0	1	-115	0	131	1
	005	1	-3	6	-1	287	6	1	4	-548	-1	621	6
Trave Acciaio 11-11a	001	0	0	239	207	353	0	0	0	2	63	107	0
	002	0	0	-389	-1	-500	0	0	0	-5	-1	-252	0
	003	0	0	-389	-1	-500	0	0	0	-5	-1	-252	0
	004	0	0	-82	3	-105	0	0	0	-1	1	-53	0
	005	0	0	-389	-1	-500	0	0	0	-5	-1	-252	0
Trave Acciaio 4-11	001	0	0	202	91	324	0	0	0	122	-254	-263	0
	002	0	0	117	981	-234	0	0	0	-453	981	724	0
	003	0	0	117	981	-234	0	0	0	-453	981	724	0
	004	0	0	26	210	-48	0	0	0	-95	210	152	0
	005	0	0	117	981	-234	0	0	0	-453	981	724	0
Trave Acciaio 4a-4	001	0	0	-2	-62	-107	0	0	0	308	-236	-404	0
	002	0	0	4	2	280	0	0	0	-541	2	614	0
	003	0	0	4	2	280	0	0	0	-541	2	614	0
	004	0	0	1	1	59	0	0	0	-114	1	129	0
	005	0	0	4	2	280	0	0	0	-541	2	614	0
Trave Acciaio 12-12a	001	0	1	240	206	356	-3	0	-2	1	61	109	-3
	002	0	4	-392	0	-505	-7	0	-3	-3	0	-257	-7
	003	0	4	-392	0	-505	-7	0	-3	-3	0	-257	-7
	004	0	1	-82	3	-106	-1	0	-1	-1	1	-54	-1
	005	0	4	-392	0	-505	-7	0	-3	-3	0	-257	-7
Trave Acciaio 5-12	001	0	1	201	89	324	-1	0	-1	123	-257	-264	-1
	002	0	3	114	979	-236	-2	0	-3	-452	979	722	-2
	003	0	3	114	979	-236	-2	0	-3	-452	979	722	-2
	004	0	1	25	210	-49	0	0	-1	-95	210	152	0
	005	0	3	114	979	-236	-2	0	-3	-452	979	722	-2

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 85 di 127

Proponente: INE FICURINIA S.R.L

Travi - Sollecitazioni per condizioni di carico non sismiche

Id₁	СС	Estr. Inz.								Es	tr. Fin.		
10 _{Tr}	cc	M ₁	M ₂	M ₃	N	T ₂	T ₃	M ₁	M ₂	M ₃	N	T ₂	T ₃
		[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	[N·m]	[N·m]	[N·m]	[N]	[N]	[N]
Trave Acciaio 5a-5	001	0	1	-3	-60	-108	-2	0	-1	309	-235	-406	-2
	002	-1	3	6	-1	287	-6	-1	-4	-548	-1	621	-6
	003	-1	3	6	-1	287	-6	-1	-4	-548	-1	621	-6
	004	0	1	1	0	60	-1	0	-1	-115	0	131	-1
	005	-1	3	6	-1	287	-6	-1	-4	-548	-1	621	-6
Trave Acciaio 13-13a	001	2	4	233	207	351	-8	2	-4	-2	62	105	-8
	002	-4	32	-377	-40	-496	-70	-4	-39	3	-40	-248	-70
	003	-4	32	-377	-40	-496	-70	-4	-39	3	-40	-248	-70
	004	-1	7	-79	-5	-104	-15	-1	-8	1	-7	-52	-15
	005	-4	32	-377	-40	-496	-70	-4	-39	3	-40	-248	-70
Trave Acciaio 6-13	001	0	2	193	89	320	-2	0	-3	123	-256	-268	-2
	002	0	13	90	922	-254	-11	0	-13	-432	922	704	-11
	003	0	13	90	922	-254	-11	0	-13	-432	922	704	-11
	004	0	3	20	198	-52	-2	0	-3	-91	198	148	-2
	005	0	13	90	922	-254	-11	0	-13	-432	922	704	-11
Trave Acciaio 6a-6	001	-3	4	-6	-62	-99	-6	-3	-4	294	-237	-396	-6
	002	2	38	13	41	280	-55	2	-30	-532	41	614	-55
	003	2	38	13	41	280	-55	2	-30	-532	41	614	-55
	004	0	8	3	9	59	-12	0	-6	-112	9	129	-12
	005	2	38	13	41	280	-55	2	-30	-532	41	614	-55
Trave Acciaio 14-14a	001	5	8	133	120	198	-20	5	-12	6	33	51	-20
	002	-7	47	-201	40	-253	-88	-7	-42	-11	40	-118	-88
	003	-7	47	-201	40	-253	-88	-7	-42	-11	40	-118	-88
	004	-2	10	-42	10	-53	-19	-2	-9	-2	9	-25	-19
	005	-7	47	-201	40	-253	-88	-7	-42	-11	40	-118	-88
Trave Acciaio 7-14	001	0	2	125	72	199	-2	0	-2	67	-134	-152	-2
	002	-1	32	92	553	-104	-26	-1	-30	-254	553	400	-26
	003	-1	32	92	553	-104	-26	-1	-30	-254	553	400	-26
	004	0	7	20	118	-21	-5	0	-6	-53	118	84	-5
	005	-1	32	92	553	-104	-26	-1	-30	-254	553	400	-26
Trave Acciaio 7a-7	001	-6	11	5	-32	-53	-13	-6	-6	178	-136	-231	-13

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 86 di 127

Proponente: INE FICURINIA S.R.L

Travi - Sollecitazioni per condizioni di carico non sismiche

7.4	СС			Es	tr. Inz.					Es	tr. Fin.		
Id _{Tr}	CC	M ₁	M ₂	M ₃	N	T ₂	T ₃	M ₁	M ₂	Мз	N	T ₂	T 3
		[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	[N·m]	[N·m]	[N·m]	[N]	[N]	[N]
	002	7	46	-6	-40	128	-83	7	-56	-271	-40	308	-83
	003	7	46	-6	-40	128	-83	7	-56	-271	-40	308	-83
	004	2	10	-1	-8	27	-18	2	-12	-57	-8	65	-18
	005	7	46	-6	-40	128	-83	7	-56	-271	-40	308	-83
Trave Acciaio 13a-14a	001	-5	2	13	20	62	3	-5	8	11	20	-60	3
	002	9	-26	-41	88	-132	-32	9	41	16	88	81	94
	003	9	-26	-41	88	-132	-32	9	41	16	88	81	94
	004	2	-5	-8	19	-28	-7	2	9	3	19	17	20
	005	9	-26	-41	88	-132	-32	9	41	16	88	81	94
Trave Acciaio 8a-9a	001	5	8	11	20	60	-3	5	2	13	20	-62	-3
	002	-9	41	16	88	-80	-94	-9	-26	-40	88	132	32
	003	-9	41	16	88	-80	-94	-9	-26	-40	88	132	32
	004	-2	9	3	19	-17	-20	-2	-5	-8	19	28	7
	005	-9	41	16	88	-80	-94	-9	-26	-40	88	132	32
Trave Acciaio 9a-10a	001	1	5	16	29	58	-3	1	-1	21	29	-63	-3
	002	-2	11	-24	158	-99	-59	-2	20	-40	158	114	67
	003	-2	11	-24	158	-99	-59	-2	20	-40	158	114	67
	004	0	2	-5	34	-21	-13	0	4	-8	34	24	15
	005	-2	11	-24	158	-99	-59	-2	20	-40	158	114	67
Trave Acciaio 10a-11a	001	0	0	22	32	60	0	0	-1	22	32	-61	0
	002	0	22	-38	165	-105	-63	0	23	-41	165	108	64
	003	0	22	-38	165	-105	-63	0	23	-41	165	108	64
	004	0	5	-8	35	-22	-14	0	5	-9	35	22	14
	005	0	22	-38	165	-105	-63	0	23	-41	165	108	64
Trave Acciaio 11a-12a	001	0	-1	22	32	61	0	0	0	22	32	-60	0
	002	0	23	-41	165	-108	-64	0	22	-38	165	105	63
	003	0	23	-41	165	-108	-64	0	22	-38	165	105	63
	004	0	5	-9	35	-22	-14	0	5	-8	35	22	14
	005	0	23	-41	165	-108	-64	0	22	-38	165	105	63
Trave Acciaio 12a-13a	001	-1	-1	21	29	63	3	-1	5	16	29	-58	3
	002	2	20	-40	158	-114	-67	2	11	-24	158	99	59

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 87 di 127

Proponente: INE FICURINIA S.R.L

Travi - Sollecitazioni per condizioni di carico non sismiche

	60		Estr. Inz. M ₁ M ₂ M ₃ N T ₂ T ₃						Estr. Fin.							
Id _{Tr}	CC	M ₁	M ₂	M ₃	N	T ₂	T ₃	M ₁	M ₂	Мз	N	T ₂	Т3			
		[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	[N·m]	[N·m]	[N·m]	[N]	[N]	[N]			
	003	2	20	-40	158	-114	-67	2	11	-24	158	99	59			
	004	0	4	-8	34	-24	-15	0	2	-5	34	21	13			
	005	2	20	-40	158	-114	-67	2	11	-24	158	99	59			
Trave Acciaio 6a-7a	001	6	5	8	-13	60	0	6	6	11	-13	-62	0			
	002	-8	-20	-48	-83	-150	-42	-8	42	16	-83	91	99			
	003	-8	-20	-48	-83	-150	-42	-8	42	16	-83	91	99			
	004	-2	-4	-10	-18	-32	-9	-2	9	3	-18	19	21			
	005	-8	-20	-48	-83	-150	-42	-8	42	16	-83	91	99			
Trave Acciaio 1a-2a	001	-6	6	11	-13	62	0	-6	5	8	-13	-59	0			
	002	8	42	16	-83	-90	-99	8	-20	-48	-83	150	42			
	003	8	42	16	-83	-90	-99	8	-20	-48	-83	150	42			
	004	2	9	3	-18	-19	-21	2	-4	-10	-18	32	9			
	005	8	42	16	-83	-90	-99	8	-20	-48	-83	150	42			
Trave Acciaio 2a-3a	001	-1	7	12	-19	57	-4	-1	-1	20	-19	-64	-4			
	002	0	12	-31	-138	-112	-65	0	25	-48	-138	128	76			
	003	0	12	-31	-138	-112	-65	0	25	-48	-138	128	76			
	004	0	3	-7	-29	-24	-14	0	5	-10	-29	27	16			
	005	0	12	-31	-138	-112	-65	0	25	-48	-138	128	76			
Trave Acciaio 3a-4a	001	0	1	21	-21	60	0	0	0	22	-21	-62	0			
	002	0	27	-45	-143	-119	-71	0	27	-48	-143	121	71			
	003	0	27	-45	-143	-119	-71	0	27	-48	-143	121	71			
	004	0	6	-10	-31	-25	-15	0	6	-10	-31	26	15			
	005	0	27	-45	-143	-119	-71	0	27	-48	-143	121	71			
Trave Acciaio 4a-5a	001	0	0	22	-21	62	0	0	1	21	-21	-60	0			
	002	0	27	-48	-143	-121	-71	0	27	-45	-143	119	71			
	003	0	27	-48	-143	-121	-71	0	27	-45	-143	119	71			
	004	0	6	-10	-31	-26	-15	0	6	-10	-31	25	15			
	005	0	27	-48	-143	-121	-71	0	27	-45	-143	119	71			
Trave Acciaio 5a-6a	001	1	-1	20	-19	64	4	1	7	12	-19	-57	4			
	002	0	25	-48	-138	-128	-76	0	12	-31	-138	112	65			
	003	0	25	-48	-138	-128	-76	0	12	-31	-138	112	65			

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 88 di 127

Proponente: INE FICURINIA S.R.L

Travi - Sollecitazioni per condizioni di carico non sismiche

Id₁r	СС			Es	tr. Inz.					Es	tr. Fin.		
		M ₁	M ₂	M ₃	N	T ₂	T ₃	M ₁	M ₂	M ₃	N	T ₂	T ₃
		[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	[N·m]	[N·m]	[N·m]	[N]	[N]	[N]
	004	0	5	-10	-29	-27	-16	0	3	-7	-29	24	14
	005	0	25	-48	-138	-128	-76	0	12	-31	-138	112	65

LEGENDA:

Id_{Tr} Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato.

CC Identificativo della tipologia di carico nella relativa tabella.

Estr. Sollecitazione caratteristiche relative al sistema di riferimento locale 1, 2, 3 (N > 0: compressione).

Inz./Fin.

PILASTRI - SOLLECITAZIONI PER CONDIZIONI DI CARICO NON SISMICHE

Pilastri - Sollecitazioni per condizioni di carico non sismiche

Id _{Pil}	СС			Estr.	Inf.			Estr. Sup.						Lv
24711		M ₁	M ₂	M ₃	N	T ₂	T ₃	M ₁	M ₂	M ₃	N	T ₂	T ₃	
		[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	
					Pilastrat	a: Piano 1	Гегга	'		'				
Pilastro Acciaio 8	001	0	-6	-44	607	-49	8	0	11	61	488	-49	8	01
	002	3	39	-101	-1.058	-75	-54	3	-77	58	-1.058	-75	-54	01
	003	3	39	-101	-1.058	-75	-54	3	-77	58	-1.058	-75	-54	01
	004	1	8	-21	-222	-16	-11	1	-16	12	-222	-16	-11	01
	005	3	39	-101	-1.058	-75	-54	3	-77	58	-1.058	-75	-54	01
Pilastro Acciaio 1	001	0	-8	-31	583	32	27	0	17	-61	532	32	27	01
	002	6	55	-522	-320	-917	-181	6	-110	313	-320	-917	-181	01
	003	6	55	-522	-320	-917	-181	6	-110	313	-320	-917	-181	01
	004	1	12	-111	-65	-194	-38	1	-23	66	-65	-194	-38	01
	005	6	55	-522	-320	-917	-181	6	-110	313	-320	-917	-181	01
Pilastro Acciaio 9	001	0	1	-66	1.017	-76	-2	0	-2	97	897	-76	-2	01
	002	0	-2	-148	-2.137	-104	2	0	3	74	-2.137	-104	2	01
	003	0	-2	-148	-2.137	-104	2	0	3	74	-2.137	-104	2	01
	004	0	0	-32	-449	-22	0	0	1	16	-449	-22	0	01
	005	0	-2	-148	-2.137	-104	2	0	3	74	-2.137	-104	2	01
Pilastro Acciaio 10	001	0	0	-72	1.009	-83	0	0	0	105	890	-83	0	01
	002	0	1	-157	-2.119	-110	-1	0	-1	77	-2.119	-110	-1	01

8 - 11	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M
--------	--

Codice elaborato: RS06REL092A0 Pag. 89 di 127

Proponente: INE FICURINIA S.R.L

Pilastri - Sollecitazioni per condizioni di carico non sismiche

T-1	66	Estr. Inf.						Estr. Sup.							
Id _{Pil}	CC	M ₁	M ₂	M ₃	N	T ₂	T ₃	M ₁	M ₂	M ₃	N	T ₂	T ₃	Lv	
		[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	[N·m]	[N·m]	[N·m]	[N]	[N]	[N]		
	003	0	1	-157	-2.119	-110	-1	0	-1	77	-2.119	-110	-1	01	
	004	0	0	-34	-445	-24	0	0	0	17	-445	-24	0	01	
	005	0	1	-157	-2.119	-110	-1	0	-1	77	-2.119	-110	-1	01	
Pilastro Acciaio 11	001	0	0	-73	1.007	-83	0	0	0	105	888	-83	0	01	
	002	0	0	-159	-2.123	-112	0	0	0	80	-2.123	-112	0	01	
	003	0	0	-159	-2.123	-112	0	0	0	80	-2.123	-112	0	01	
	004	0	0	-34	-446	-24	0	0	0	17	-446	-24	0	01	
	005	0	0	-159	-2.123	-112	0	0	0	80	-2.123	-112	0	01	
Pilastro Acciaio 12	001	0	0	-72	1.009	-83	0	0	0	105	890	-83	0	01	
	002	0	-1	-157	-2.119	-110	1	0	1	77	-2.119	-110	1	01	
	003	0	-1	-157	-2.119	-110	1	0	1	77	-2.119	-110	1	01	
	004	0	0	-34	-445	-24	0	0	0	17	-445	-24	0	01	
	005	0	-1	-157	-2.119	-110	1	0	1	77	-2.119	-110	1	01	
Pilastro Acciaio 13	001	0	-1	-66	1.017	-76	2	0	2	97	898	-76	2	01	
	002	0	2	-148	-2.138	-104	-2	0	-3	74	-2.138	-104	-2	01	
	003	0	2	-148	-2.138	-104	-2	0	-3	74	-2.138	-104	-2	01	
	004	0	0	-32	-449	-22	-1	0	-1	16	-449	-22	-1	01	
	005	0	2	-148	-2.138	-104	-2	0	-3	74	-2.138	-104	-2	01	
Pilastro Acciaio 14	001	0	6	-44	606	-49	-8	0	-11	61	487	-49	-8	01	
	002	-3	-39	-101	-1.058	-75	54	-3	77	58	-1.058	-75	54	01	
	003	-3	-39	-101	-1.058	-75	54	-3	77	58	-1.058	-75	54	01	
	004	-1	-8	-21	-222	-16	11	-1	16	12	-222	-16	11	01	
	005	-3	-39	-101	-1.058	-75	54	-3	77	58	-1.058	-75	54	01	
Pilastro Acciaio 2	001	0	2	-26	961	89	-5	0	-3	-108	910	89	-5	01	
	002	1	-1	-843	-925	-1.530	2	1	1	549	-925	-1.530	2	01	
	003	1	-1	-843	-925	-1.530	2	1	1	549	-925	-1.530	2	01	
	004	0	0	-179	-191	-324	0	0	0	116	-191	-324	0	01	
	005	1	-1	-843	-925	-1.530	2	1	1	549	-925	-1.530	2	01	
Pilastro Acciaio 3	001	0	0	-31	965	92	-1	0	0	-115	914	92	-1	01	
	002	0	0	-898	-835	-1.624	-1	0	-1	580	-835	-1.624	-1	01	
	003	0	0	-898	-835	-1.624	-1	0	-1	580	-835	-1.624	-1	01	

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 90 di 127

Proponente: INE FICURINIA S.R.L

Pilastri - Sollecitazioni per condizioni di carico non sismiche

Id _{Pil}	СС			Estr.	Inf.			Estr. Sup.						
24711		M ₁	M ₂	M ₃	N	T ₂	T ₃	M ₁	M ₂	M ₃	N	T ₂	T ₃	Lv
		[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	[N·m]	[N·m]	[N·m]	[N]	[N]	[N]	
	004	0	0	-191	-172	-344	0	0	0	123	-172	-344	0	01
	005	0	0	-898	-835	-1.624	-1	0	-1	580	-835	-1.624	-1	01
Pilastro Acciaio 4	001	0	0	-34	967	88	0	0	0	-114	916	88	0	01
	002	0	0	-901	-828	-1.625	0	0	0	578	-828	-1.625	0	01
	003	0	0	-901	-828	-1.625	0	0	0	578	-828	-1.625	0	01
	004	0	0	-191	-171	-345	0	0	0	122	-171	-345	0	01
	005	0	0	-901	-828	-1.625	0	0	0	578	-828	-1.625	0	01
Pilastro Acciaio 7	001	0	8	-31	584	32	-28	0	-17	-61	533	32	-28	01
	002	-6	-55	-522	-320	-917	181	-6	110	313	-320	-917	181	01
	003	-6	-55	-522	-320	-917	181	-6	110	313	-320	-917	181	01
	004	-1	-12	-111	-65	-194	38	-1	23	66	-65	-194	38	01
	005	-6	-55	-522	-320	-917	181	-6	110	313	-320	-917	181	01
Pilastro Acciaio 6	001	0	-2	-26	961	89	5	0	3	-108	910	89	5	01
	002	-1	1	-843	-925	-1.530	-3	-1	-1	550	-925	-1.530	-3	01
	003	-1	1	-843	-925	-1.530	-3	-1	-1	550	-925	-1.530	-3	01
	004	0	0	-179	-191	-324	0	0	0	116	-191	-324	0	01
	005	-1	1	-843	-925	-1.530	-3	-1	-1	550	-925	-1.530	-3	01
Pilastro Acciaio 5	001	0	0	-31	965	92	1	0	0	-116	914	92	1	01
	002	0	0	-898	-835	-1.625	1	0	1	581	-835	-1.625	1	01
	003	0	0	-898	-835	-1.625	1	0	1	581	-835	-1.625	1	01
	004	0	0	-191	-172	-345	0	0	0	123	-172	-345	0	01
	005	0	0	-898	-835	-1.625	1	0	1	581	-835	-1.625	1	01

LEGENDA:

Identificativo del Pilastro.

CC Identificativo della tipologia di carico nella relativa tabella.

Lv Identificativo del livello, nella relativa tabella.

Estr. Sollecitazione caratteristiche relative al sistema di riferimento locale 1, 2, 3 (N > 0: compressione).

Inf./Sup.

	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A)	Pag. 91 di 127

Proponente: INE FICURINIA S.R.L

NODI - REAZIONI VINCOLARI ESTERNE PER TIPOLOGIE DI CARICO NON SISMICHE

Nodi - Reazioni vincolari esterne per tipologie di carico non sismiche

Id _{Nd}	СС	F _X	F _Y	Fz	M _X	M _Y	Mz
		[N]	[N]	[N]	[N·m]	[N·m]	[N·m]
00001	001	8	49	607	-44	6	0
00001	002	-54	75	-1.058	-101	-39	3
00001	003	-54	75	-1.058	-101	-39	3
00001	004	-11	16	-222	-21	-8	1
00001	005	-54	75	-1.058	-101	-39	3
00003	001	27	-32	583	-31	8	0
00003	002	-181	917	-320	-522	-55	6
00003	003	-181	917	-320	-522	-55	6
00003	004	-38	194	-65	-111	-12	1
00003	005	-181	917	-320	-522	-55	6
00006	001	-2	76	1.017	-66	-1	0
00006	002	2	104	-2.137	-148	2	0
00006	003	2	104	-2.137	-148	2	0
00006	004	0	22	-449	-32	0	0
00006	005	2	104	-2.137	-148	2	0
00008	001	0	83	1.009	-72	0	0
00008	002	-1	110	-2.119	-157	-1	0
00008	003	-1	110	-2.119	-157	-1	0
00008	004	0	24	-445	-34	0	0
00008	005	-1	110	-2.119	-157	-1	0
00012	001	0	83	1.007	-73	0	0
00012	002	0	112	-2.123	-159	0	0
00012	003	0	112	-2.123	-159	0	0
00012	004	0	24	-446	-34	0	0
00012	005	0	112	-2.123	-159	0	0
00014	001	0	83	1.009	-72	0	0
00014	002	1	110	-2.119	-157	1	0
00014	003	1	110	-2.119	-157	1	0
00014	004	0	24	-445	-34	0	0
00014	005	1	110	-2.119	-157	1	0
00018	001	2	76	1.017	-66	1	0
	1	_				_	

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 92 di 127

Proponente: INE FICURINIA S.R.L

Nodi - Reazioni vincolari esterne per tipologie di carico non sismiche

Id _{Nd}	СС	F _X	F _Y	Fz	M _X	M _Y	Mz
		[N]	[N]	[N]	[N·m]	[N·m]	[N·m]
00018	002	-2	104	-2.138	-148	-2	0
00018	003	-2	104	-2.138	-148	-2	0
00018	004	-1	22	-449	-32	0	0
00018	005	-2	104	-2.138	-148	-2	0
00020	001	-8	49	606	-44	-6	0
00020	002	54	75	-1.058	-101	39	-3
00020	003	54	75	-1.058	-101	39	-3
00020	004	11	16	-222	-21	8	-1
00020	005	54	75	-1.058	-101	39	-3
00027	001	-5	-89	961	-26	-2	0
00027	002	2	1.530	-925	-843	1	1
00027	003	2	1.530	-925	-843	1	1
00027	004	0	324	-191	-179	0	0
00027	005	2	1.530	-925	-843	1	1
00030	001	-1	-92	965	-31	0	0
00030	002	-1	1.624	-835	-898	0	0
00030	003	-1	1.624	-835	-898	0	0
00030	004	0	344	-172	-191	0	0
00030	005	-1	1.624	-835	-898	0	0
00033	001	0	-88	967	-34	0	0
00033	002	0	1.625	-828	-901	0	0
00033	003	0	1.625	-828	-901	0	0
00033	004	0	345	-171	-191	0	0
00033	005	0	1.625	-828	-901	0	0
00040	001	-28	-32	584	-31	-8	0
00040	002	181	917	-320	-522	55	-6
00040	003	181	917	-320	-522	55	-6
00040	004	38	194	-65	-111	12	-1
00040	005	181	917	-320	-522	55	-6
00041	001	5	-89	961	-26	2	0
00041	002	-3	1.530	-925	-843	-1	-1
00041	003	-3	1.530	-925	-843	-1	-1

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 93 di 127

Proponente: INE FICURINIA S.R.L

Nodi - Reazioni vincolari esterne per tipologie di carico non sismiche

Id _{Nd}	СС	F _X	F _Y	Fz	M _X	M _Y	Mz
		[N]	[N]	[N]	[N·m]	[N·m]	[N·m]
00041	004	0	324	-191	-179	0	0
00041	005	-3	1.530	-925	-843	-1	-1
00042	001	1	-92	965	-31	0	0
00042	002	1	1.625	-835	-898	0	0
00042	003	1	1.625	-835	-898	0	0
00042	004	0	345	-172	-191	0	0
00042	005	1	1.625	-835	-898	0	0

LEGENDA:

 $\textbf{Id}_{\textbf{Nd}}$ Identificativo del nodo.

CC Identificativo della tipologia di carico nella relativa tabella.

 $\textbf{F}_{\textbf{X}_{\textbf{Y}}} \quad \textbf{F}_{\textbf{Y}_{\textbf{Y}}} \quad \text{Reazioni vincolari relative al sistema di riferimento globale X, Y, Z.} \\ \textbf{F}_{\textbf{Z}_{\textbf{Y}}} \quad \textbf{M}_{\textbf{X}_{\textbf{Y}}} \quad$

M_Y, M_z

TRAVI (AC) - VERIFICHE A PRESSOFLESSIONE (Elevazione) allo SLU

Travi (AC) - Verifiche a pressoflessione

Pag. 94 di 127

Id _{Tr}	%L _{LI}	N _{Ed}	V _{Ed}	M _{Ed,3}	cs	Tp Vr	M _{c,Rd}	V _{c,Rd}	ρ	A _v	t _w	N _{pl,Rd}
	[%]	[N]	[N]	[N·m]			[N·m]	[N]		[mm²]	[mm]	[N]
Piano Terra							Piano Terra					
Trave Acciaio 8-8a	0%	227	270	202	16,84	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	207	236	137	24,83	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	138	-155	84	40,50	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	13	-20	66	51,54	PLS	3.402	46.259	0,000	358	6,40	160.258
	100%	-9	-20	92	36,98	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 13-14	0%	-187	-431	182	18,69	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	-190	-94	52	65,42	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	-187	-67	95	35,81	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	-187	121	79	43,06	PLS	3.402	46.259	0,000	358	6,40	160.258
	100%	-190	288	109	31,21	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 11-12	0%	-289	-367	137	24,83	PLS	3.402	46.259	0,000	358	6,40	160.259
	25,0%	-2	91	37	91,94	PLS	3.402	46.259	0,000	358	6,40	160.259
	50,0%	-289	-3	70	48,60	PLS	3.402	46.259	0,000	358	6,40	160.259

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania

RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Proponente: INE FICURINIA S.R.L

Travi (AC) - Verifiche a pressoflessione

Id₁	%L _{LI}	N _{Ed}	\mathbf{V}_{Ed}	M _{Ed,3}	CS	Tp Vr	M _{c,Rd}	V _{c,Rd}	ρ	A _v	t _w	N _{pl,Rd}
	[%]	[N]	[N]	[N·m]			[N·m]	[N]		[mm²]	[mm]	[N]
	75,0%	-22	25	36	94,50	PLS	3.402	46.259	0,000	358	6,40	160.259
	100%	-289	362	130	26,17	PLS	3.402	46.259	0,000	358	6,40	160.259
Trave Acciaio 12-13	0%	-280	-364	137	24,83	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	23	89	37	91,94	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	-280	-2	69	49,30	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	-11	23	33	NS	PLS	3.402	46.259	0,000	358	6,40	160.258
	100,0 %	-280	364	136	25,01	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 8-9	0%	-190	-288	113	30,11	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	-187	-120	79	43,06	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	-187	66	95	35,81	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	-190	94	53	64,19	PLS	3.402	46.259	0,000	358	6,40	160.258
	100,0 %	-187	432	183	18,59	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 9-10	0%	-280	-363	136	25,01	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	23	92	33	NS	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	-280	-1	67	50,77	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	-11	26	36	94,50	PLS	3.402	46.259	0,000	358	6,40	160.258
	100,0 %	-280	365	140	24,30	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 10-11	0%	-289	-362	134	25,39	PLS	3.402	46.259	0,000	358	6,40	160.259
	25,0%	-2	91	37	91,94	PLS	3.402	46.259	0,000	358	6,40	160.259
	50,0%	-289	1	69	49,30	PLS	3.402	46.259	0,000	358	6,40	160.259
	75,0%	-22	25	36	94,50	PLS	3.402	46.259	0,000	358	6,40	160.259
	100,0 %	-289	367	139	24,47	PLS	3.402	46.259	0,000	358	6,40	160.259
Trave Acciaio 1-8	0%	920	101	300	11,34	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	857	171	219	15,53	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	798	242	98	34,71	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	745	345	76	44,76	PLS	3.402	46.259	0,000	358	6,40	160.259
	100,0 %	693	447	312	10,90	PLS	3.402	46.259	0,000	358	6,40	160.259
Trave Acciaio 6-7	0%	-147	-429	175	19,44	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	-135	-91	49	69,43	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	-147	-44	90	37,80	PLS	3.402	46.259	0,000	358	6,40	160.258

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 95 di 127

Proponente: INE FICURINIA S.R.L

Travi (AC) - Verifiche a pressoflessione

Id _{Tr}	%L _{LI}	N _{Ed}	V _{Ed}	M _{Ed,3}	CS	Tp Vr	M _{c,Rd}	$V_{c,Rd}$	ρ	A _v	t _w	N _{pl,Rd}
	[%]	[N]	[N]	[N·m]			[N·m]	[N]		[mm²]	[mm]	[N]
	75,0%	-147	155	57	59,68	PLS	3.402	46.259	0,000	358	6,40	160.258
	100%	-135	306	129	26,37	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 4-5	0%	-75	-386	144	23,62	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	45	65	22	NS	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	-75	-2	73	46,60	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	45	3	21	NS	PLS	3.402	46.259	0,000	358	6,40	160.258
	100%	-75	383	142	23,96	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 5-6	0%	-79	-387	144	23,62	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	51	67	22	NS	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	-79	-3	74	45,97	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	45	3	23	NS	PLS	3.402	46.259	0,000	358	6,40	160.258
	100,0 %	-79	382	140	24,30	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 1-2	0%	-135	-306	130	26,17	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	-147	-156	55	61,85	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	-147	42	86	39,56	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	-135	91	51	66,70	PLS	3.402	46.259	0,000	358	6,40	160.258
	100,0 %	-147	427	177	19,22	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 2-3	0%	-79	-384	142	23,96	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	51	69	24	NS	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	-79	1	73	46,60	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	51	7	23	NS	PLS	3.402	46.259	0,000	358	6,40	160.258
	100,0 %	-79	386	144	23,62	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 3-4	0%	-73	-385	143	23,79	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	46	65	21	NS	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	-73	0	73	46,60	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	46	3	22	NS	PLS	3.402	46.259	0,000	358	6,40	160.258
	100,0 %	-73	385	143	23,79	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 1a-1	0%	-102	141	83	40,99	PLS	3.402	46.259	0,000	358	6,40	160.259
	25,0%	-116	156	50	68,04	PLS	3.402	46.259	0,000	358	6,40	160.259
	50,0%	-143	182	102	33,35	PLS	3.402	46.259	0,000	358	6,40	160.259

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 96 di 127

Proponente: INE FICURINIA S.R.L

Travi (AC) - Verifiche a pressoflessione

Id₁r	%L _{LI}	N _{Ed}	V _{Ed}	M _{Ed,3}	CS	Tp Vr	M _{c,Rd}	$\mathbf{V}_{c,Rd}$	ρ	A _v	t _w	N _{pl,Rd}
	[%]	[N]	[N]	[N·m]			[N·m]	[N]		[mm²]	[mm]	[N]
	75,0%	-170	207	163	20,87	PLS	3.402	46.259	0,000	358	6,40	160.259
	100%	-178	-300	231	14,73	PLS	3.402	46.259	0,000	358	6,40	160.259
Trave Acciaio 9-9a	0%	147	-391	333	10,22	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	114	-365	238	14,29	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	77	-331	150	22,68	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	40	-297	69	49,30	PLS	3.402	46.259	0,000	358	6,40	160.258
	100%	22	115	63	54,00	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 2-9	0%	1.498	35	386	8,81	PLS	3.402	46.259	0,000	358	6,40	160.259
	25,0%	1.391	192	321	10,60	PLS	3.402	46.259	0,000	358	6,40	160.259
	50,0%	1.301	357	158	21,53	PLS	3.402	46.259	0,000	358	6,40	160.259
	75,0%	1.212	573	119	28,59	PLS	3.402	46.259	0,000	358	6,40	160.259
	100,0 %	1.126	788	524	6,49	PLS	3.402	46.259	0,000	358	6,40	160.259
Trave Acciaio 2a-2	0%	-19	90	62	54,87	PLS	3.402	46.259	0,000	358	6,40	160.259
	25,0%	-39	362	90	37,80	PLS	3.402	46.259	0,000	358	6,40	160.259
	50,0%	-85	419	213	15,97	PLS	3.402	46.259	0,000	358	6,40	160.259
	75,0%	-130	473	349	9,75	PLS	3.402	46.259	0,000	358	6,40	160.259
	100%	-175	525	501	6,79	PLS	3.402	46.259	0,000	358	6,40	160.259
Trave Acciaio 10-10a	0%	206	-400	348	9,78	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	173	-374	252	13,50	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	136	-340	161	21,13	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	99	-306	78	43,61	PLS	3.402	46.259	0,000	358	6,40	160.258
	100%	78	53	46	73,95	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 3-10	0%	1.583	67	431	7,89	PLS	3.402	46.259	0,000	358	6,40	160.259
	25,0%	1.476	225	345	9,86	PLS	3.402	46.259	0,000	358	6,40	160.259
	50,0%	1.386	389	165	20,62	PLS	3.402	46.259	0,000	358	6,40	160.259
	75,0%	1.297	605	131	25,97	PLS	3.402	46.259	0,000	358	6,40	160.259
	100,0 %	1.211	819	554	6,14	PLS	3.402	46.259	0,000	358	6,40	160.259
Trave Acciaio 3a-3	0%	-45	54	27	NS	PLS	3.402	46.259	0,000	358	6,40	160.259
	25,0%	-101	363	100	34,02	PLS	3.402	46.259	0,000	358	6,40	160.259
	50,0%	-147	420	221	15,39	PLS	3.402	46.259	0,000	358	6,40	160.259
	75,0%	-192	474	360	9,45	PLS	3.402	46.259	0,000	358	6,40	160.259

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 97 di 127

Proponente: INE FICURINIA S.R.L

Travi (AC) - Verifiche a pressoflessione

Id₁	%L _{LI}	N _{Ed}	V _{Ed}	M _{Ed,3}	CS	Tp Vr	M _{c,Rd}	$\mathbf{V}_{c,Rd}$	ρ	A _v	t _w	$N_{pl,Rd}$
	[%]	[N]	[N]	[N·m]			[N·m]	[N]		[mm²]	[mm]	[N]
	100%	-237	527	511	6,66	PLS	3.402	46.259	0,000	358	6,40	160.259
Trave Acciaio 11-11a	0%	205	-397	345	9,86	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	172	-371	249	13,66	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	135	-337	159	21,40	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	98	-303	77	44,18	PLS	3.402	46.259	0,000	358	6,40	160.258
	100%	51	46	42	81,00	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 4-11	0%	1.590	70	439	7,75	PLS	3.402	46.259	0,000	358	6,40	160.259
	25,0%	1.484	228	350	9,72	PLS	3.402	46.259	0,000	358	6,40	160.259
	50,0%	1.393	391	168	20,25	PLS	3.402	46.259	0,000	358	6,40	160.259
	75,0%	1.304	607	129	26,37	PLS	3.402	46.259	0,000	358	6,40	160.259
	100,0 %	1.218	822	556	6,12	PLS	3.402	46.259	0,000	358	6,40	160.259
Trave Acciaio 4a-4	0%	-50	53	26	NS	PLS	3.402	46.259	0,000	358	6,40	160.259
	25,0%	-98	354	97	35,07	PLS	3.402	46.259	0,000	358	6,40	160.259
	50,0%	-144	411	217	15,68	PLS	3.402	46.259	0,000	358	6,40	160.259
	75,0%	-189	465	352	9,66	PLS	3.402	46.259	0,000	358	6,40	160.259
	100%	-234	517	501	6,79	PLS	3.402	46.259	0,000	358	6,40	160.259
Trave Acciaio 12-12a	0%	206	-402	348	9,78	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	173	-375	250	13,61	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	136	-341	161	21,13	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	99	-308	76	44,76	PLS	3.402	46.259	0,000	358	6,40	160.258
	100%	78	47	47	72,38	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 5-12	0%	1.584	67	432	7,87	PLS	3.402	46.259	0,000	358	6,40	160.259
	25,0%	1.477	225	346	9,83	PLS	3.402	46.259	0,000	358	6,40	160.259
	50,0%	1.387	389	166	20,49	PLS	3.402	46.259	0,000	358	6,40	160.259
	75,0%	1.298	605	130	26,17	PLS	3.402	46.259	0,000	358	6,40	160.259
	100,0 %	1.212	819	553	6,15	PLS	3.402	46.259	0,000	358	6,40	160.259
Trave Acciaio 5a-5	0%	-45	50	27	NS	PLS	3.402	46.259	0,000	358	6,40	160.259
	25,0%	-101	363	100	34,02	PLS	3.402	46.259	0,000	358	6,40	160.259
	50,0%	-147	420	221	15,39	PLS	3.402	46.259	0,000	358	6,40	160.259
	75,0%	-192	474	360	9,45	PLS	3.402	46.259	0,000	358	6,40	160.259
	100%	-237	527	511	6,66	PLS	3.402	46.259	0,000	358	6,40	160.259

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 98 di 127

Proponente: INE FICURINIA S.R.L

Travi (AC) - Verifiche a pressoflessione

Id _{Tr}	%L _{LI}	N _{Ed}	V _{Ed}	M _{Ed,3}	CS	Tp Vr	M _{c,Rd}	V _{c,Rd}	ρ	A _v	t _w	N _{pl,Rd}
	[%]	[N]	[N]	[N·m]			[N·m]	[N]		[mm²]	[mm]	[N]
Trave Acciaio 13-13a	0%	147	-393	333	10,22	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	114	-367	238	14,29	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	77	-333	148	22,99	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	40	-299	67	50,77	PLS	3.402	46.259	0,000	358	6,40	160.258
	100%	22	-115	63	54,00	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 6-13	0%	1.499	35	386	8,81	PLS	3.402	46.259	0,000	358	6,40	160.259
	25,0%	1.392	192	321	10,60	PLS	3.402	46.259	0,000	358	6,40	160.259
	50,0%	1.302	357	158	21,53	PLS	3.402	46.259	0,000	358	6,40	160.259
	75,0%	1.213	573	119	28,59	PLS	3.402	46.259	0,000	358	6,40	160.259
	100,0 %	1.127	788	524	6,49	PLS	3.402	46.259	0,000	358	6,40	160.259
Trave Acciaio 6a-6	0%	-19	-90	62	54,87	PLS	3.402	46.259	0,000	358	6,40	160.259
	25,0%	-39	362	90	37,80	PLS	3.402	46.259	0,000	358	6,40	160.259
	50,0%	-85	419	213	15,97	PLS	3.402	46.259	0,000	358	6,40	160.259
	75,0%	-130	473	349	9,75	PLS	3.402	46.259	0,000	358	6,40	160.259
	100%	-175	525	501	6,79	PLS	3.402	46.259	0,000	358	6,40	160.259
Trave Acciaio 14-14a	0%	227	270	202	16,84	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	207	236	137	24,83	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	138	-155	84	40,50	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	13	-60	66	51,54	PLS	3.402	46.259	0,000	358	6,40	160.258
	100%	-9	-60	92	36,98	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 7-14	0%	924	103	300	11,34	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	859	171	220	15,46	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	800	243	97	35,07	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	747	345	77	44,18	PLS	3.402	46.259	0,000	358	6,40	160.259
	100,0 %	696	448	314	10,83	PLS	3.402	46.259	0,000	358	6,40	160.259
Trave Acciaio 7a-7	0%	-102	-141	83	40,99	PLS	3.402	46.259	0,000	358	6,40	160.259
	25,0%	-116	156	50	68,04	PLS	3.402	46.259	0,000	358	6,40	160.259
	50,0%	-143	182	102	33,35	PLS	3.402	46.259	0,000	358	6,40	160.259
	75,0%	-170	207	163	20,87	PLS	3.402	46.259	0,000	358	6,40	160.259
	100%	-178	-300	231	14,73	PLS	3.402	46.259	0,000	358	6,40	160.259
Trave Acciaio 13a-14a	0%	96	104	96	35,44	PLS	3.402	46.259	0,000	358	6,40	160.258

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 99 di 127

Proponente: INE FICURINIA S.R.L

Travi (AC) - Verifiche a pressoflessione

Id _{Tr}	%L _{LI}	N _{Ed}	V _{Ed}	M _{Ed,3}	CS	Tp Vr	M _{c,Rd}	V _{c,Rd}	ρ	A _v	t _w	N _{pl,Rd}
	[%]	[N]	[N]	[N·m]			[N·m]	[N]		[mm²]	[mm]	[N]
	25,0%	152	1	48	70,87	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	152	-37	48	70,87	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	-20	-80	79	43,06	PLS	3.402	46.259	0,000	358	6,40	160.258
	100%	-20	-80	135	25,20	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 8a-9a	0%	96	98	134	25,39	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	96	98	78	43,61	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	152	38	49	69,43	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	152	0	51	66,70	PLS	3.402	46.259	0,000	358	6,40	160.258
	100,0 %	-20	-86	95	35,81	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 9a-10a	0%	92	82	97	35,07	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	92	82	49	69,43	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	266	3	28	NS	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	86	74	45	75,60	PLS	3.402	46.259	0,000	358	6,40	160.258
	100,0 %	86	74	93	36,58	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 10a-11a	0%	69	85	94	36,19	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	69	85	47	72,38	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	280	0	20	NS	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	43	-73	47	72,38	PLS	3.402	46.259	0,000	358	6,40	160.258
	100,0 %	43	-73	93	36,58	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 11a-12a	0%	69	85	94	36,19	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	69	85	48	70,87	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	280	-2	21	NS	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	43	-73	48	70,87	PLS	3.402	46.259	0,000	358	6,40	160.258
	100%	43	-73	95	35,81	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 12a-13a	0%	92	88	92	36,98	PLS	3.402	46.259	0,000	358	6,40	160.258
	25,0%	92	88	46	73,95	PLS	3.402	46.259	0,000	358	6,40	160.258
	50,0%	266	-3	28	NS	PLS	3.402	46.259	0,000	358	6,40	160.258
	75,0%	86	80	50	68,04	PLS	3.402	46.259	0,000	358	6,40	160.258
	100,0 %	86	80	98	34,71	PLS	3.402	46.259	0,000	358	6,40	160.258
Trave Acciaio 6a-7a	0%	-137	-165	64	53,15	PLS	3.402	46.259	0,000	358	6,40	160.259

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 100 di 127

Proponente: INE FICURINIA S.R.L

Travi (AC) - Verifiche a pressoflessione

Id _{Tr}	%L _{LI}	N _{Ed}	V _{Ed}	M _{Ed,3}	CS	Tp Vr	M _{c,Rd}	V _{c,Rd}	ρ	A _v	t _w	N _{pl,Rd}
	[%]	[N]	[N]	[N·m]			[N·m]	[N]		[mm²]	[mm]	[N]
	25,0%	-137	-12	46	73,95	PLS	3.402	46.259	0,000	358	6,40	160.259
	50,0%	-137	-46	54	63,00	PLS	3.402	46.259	0,000	358	6,40	160.259
	75,0%	-137	17	60	56,70	PLS	3.402	46.259	0,000	358	6,40	160.259
	100%	-141	148	69	49,30	PLS	3.402	46.259	0,000	358	6,40	160.259
Trave Acciaio 1a-2a	0%	-141	-148	71	47,91	PLS	3.402	46.259	0,000	358	6,40	160.259
	25,0%	-137	-16	60	56,70	PLS	3.402	46.259	0,000	358	6,40	160.259
	50,0%	-137	46	53	64,19	PLS	3.402	46.259	0,000	358	6,40	160.259
	75,0%	-137	12	45	75,60	PLS	3.402	46.259	0,000	358	6,40	160.259
	100,0 %	-137	166	66	51,54	PLS	3.402	46.259	0,000	358	6,40	160.259
Trave Acciaio 2a-3a	0%	-226	-111	34	NS	PLS	3.402	46.259	0,000	358	6,40	160.259
	25,0%	-3	33	17	NS	PLS	3.402	46.259	0,000	358	6,40	160.259
	50,0%	-226	5	29	NS	PLS	3.402	46.259	0,000	358	6,40	160.259
	75,0%	-226	59	14	NS	PLS	3.402	46.259	0,000	358	6,40	160.259
	100,0 %	-226	128	53	64,19	PLS	3.402	46.259	0,000	358	6,40	160.259
Trave Acciaio 3a-4a	0%	-235	-118	47	72,38	PLS	3.402	46.259	0,000	358	6,40	160.259
	25,0%	-10	11	9	NS	PLS	3.402	46.259	0,000	358	6,40	160.259
	50,0%	-235	1	21	NS	PLS	3.402	46.259	0,000	358	6,40	160.259
	75,0%	-13	10	7	NS	PLS	3.402	46.259	0,000	358	6,40	160.259
	100,0 %	-235	121	48	70,87	PLS	3.402	46.259	0,000	358	6,40	160.259
Trave Acciaio 4a-5a	0%	-235	-120	50	68,04	PLS	3.402	46.259	0,000	358	6,40	160.259
	25,0%	-11	38	8	NS	PLS	3.402	46.259	0,000	358	6,40	160.259
	50,0%	-235	0	20	NS	PLS	3.402	46.259	0,000	358	6,40	160.259
	75,0%	-2	-28	9	NS	PLS	3.402	46.259	0,000	358	6,40	160.259
	100%	-235	119	50	68,04	PLS	3.402	46.259	0,000	358	6,40	160.259
Trave Acciaio 5a-6a	0%	-226	-128	52	65,42	PLS	3.402	46.259	0,000	358	6,40	160.259
	25,0%	-226	-59	9	NS	PLS	3.402	46.259	0,000	358	6,40	160.259
	50,0%	-226	-4	27	NS	PLS	3.402	46.259	0,000	358	6,40	160.259
	75,0%	-8	-21	16	NS	PLS	3.402	46.259	0,000	358	6,40	160.259
	100,0	-226	111	34	NS	PLS	3.402	46.259	0,000	358	6,40	160.259

LEGENDA:

Consulente:
Dott. Ing. Giuseppe Furnari
Viale del Rotolo, 44
95126 Catania

RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0 Pag. 101 di 127

Proponente: INE FICURINIA S.R.L

Travi (AC) - Verifiche a pressoflessione

	Id _{Tr}	%L _{LI}	N _{Ed}	V _{Ed}	M _{Ed,3}	CS	Tp Vr	M _{c,Rd}	V _{c,Rd}	ρ	A _v	t _w	N _{pl,Rd}
		[%]	[N]	[N]	[N·m]			[N·m]	[N]		[mm²]	[mm]	[N]
Id _{Tr}	Identificativo	della tra	ive. L'eventuale	lettera t	ra parentesi dist	ingue i d	liversi tratti	i della travata al	l livello consider	ato.	I		
%L _{LI}	Posizione della sezione per la quale vengono forniti i valori di verifica, valutata come % della lunghezza libera d'inflessione (L _{II}), a partire dall'estremo iniziale.												
N _{Ed}	Sforzo norma	ale di pro	getto.										
\mathbf{V}_{Ed}	Taglio di pro	getto util	izzato per il cal	colo di ρ									
M _{Ed.3}	Momento flet	Momento flettente di progetto intorno a 3.											

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] = eccezionale; [S] = sismica; [N] = sismica non lineare).

Tp Vr Tipo di verifica considerata: "PLS" = con Modulo di resistenza plastico; "ELA" = con modulo di resistenza elastico; "EFF" = con modulo di resistenza efficace.

M_{c,Rd} Momento resistente.

 $V_{c,Rd}$ Taglio resistente.

ρ Coefficiente riduttivo per presenza di taglio.

Av Area resistente a taglio.

t_w Spessore anima resistente a taglio.

N_{pl,Rd} Resistenza plastica a Sforzo Normale.

TRAVI (AC) - VERIFICHE A TAGLIO (Elevazione) per pressoflessione retta allo SLU

Travi (AC) - Verifiche a taglio

Id _{Tr}	%L _{LI}	CS	Av	₹T,Ed	V _{Ed}	$V_{c,Rd}$	P. Vrf.
	[%]		[mm²]	[N/mm²]	[N]	[N]	
Piano Terra					Piano Terra		
Trave Acciaio 8-8a	0%	NS	358	0,97	270	45.912	-
	25,0%	NS	358	0,97	236	45.912	-
	50,0%	NS	358	0,97	199	45.912	-
	75,0%	NS	358	0,97	161	45.912	-
	100%	NS	358	0,19	158	46.190	-
Trave Acciaio 13-14	0%	NS	358	0,15	-431	46.207	-
	25,0%	NS	358	0,15	-254	46.207	-
	50,0%	NS	358	0,10	80	46.224	-
	75,0%	NS	358	0,15	164	46.207	-
	100%	NS	358	0,15	297	46.207	-
Trave Acciaio 11-12	0%	NS	358	0,00	-367	46.259	-
	25,0%	NS	358	0,00	-189	46.259	-

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A	0	Pag. 102 di 127

Proponente: INE FICURINIA S.R.L

Travi (AC) - Verifiche a taglio

(%) (mm²) (N) (M) (M	Id _{Tr}	%L _{LI}	CS	Α _ν	₹T,Ed	V _{Ed}	$V_{c,Rd}$	P. Vrf.
Trave Acciaio 12-13		[%]		[mm²]	[N/mm²]	[N]	[N]	
Trave Acciaio 12-13		50,0%	NS	358	0,00	-61	46.259	-
Trave Acciaio 12-13 0% NS 358 0,10 -364 46,224 - 25,0% NS 358 0,10 -188 46,224 - 50,0% NS 358 0,10 187 46,224 - 75,0% NS 358 0,10 364 46,224 - 100,0% NS 358 0,10 364 46,224 - 1100,0% NS 358 0,10 364 46,224 - Trave Acciaio 8-9 0% NS 358 0,15 -296 46,207 - 25,0% NS 358 0,15 -164 46,207 - 25,0% NS 358 0,15 -164 46,207 - 50,0% NS 358 0,15 255 46,207 - 100,0% NS 358 0,15 255 46,207 - 1100,0% NS 358 0,15 255 46,207 - Trave Acciaio 9-10 0% NS 358 0,10 -363 46,224 - 25,0% NS 358 0,10 -363 46,224 - 50,0% NS 358 0,10 -186 46,224 - Trave Acciaio 10-11 0% NS 358 0,10 189 46,224 - Trave Acciaio 10-11 0% NS 358 0,10 365 46,224 - Trave Acciaio 10-11 0% NS 358 0,00 365 46,224 - Trave Acciaio 10-11 0% NS 358 0,00 365 46,224 - Trave Acciaio 10-11 0% NS 358 0,00 365 46,229 - Trave Acciaio 10-11 0% NS 358 0,00 365 46,259 - Trave Acciaio 10-11 0% NS 358 0,00 367 46,259 - Trave Acciaio 10-18 0% NS 358 0,00 367 46,259 - Trave Acciaio 1-8 0% NS 358 0,00 367 46,259 - Trave Acciaio 1-8 0% NS 358 0,00 367 46,259 - Trave Acciaio 1-8 0% NS 358 0,00 367 46,259 - Trave Acciaio 1-8 0% NS 358 0,00 367 46,259 -		75,0%	NS	358	0,00	185	46.259	-
25,0% NS 358 0,10 -188 46.224 - 50,0% NS 358 0,00 -61 46.259 - 75,0% NS 358 0,10 187 46.224 - 100,0% NS 358 0,10 364 46.224 - 100,0% NS 358 0,15 -296 46.207 - 25,0% NS 358 0,15 -164 46.207 - 25,0% NS 358 0,15 -164 46.207 - 50,0% NS 358 0,15 255 46.207 - 100,0% NS 358 0,15 255 46.207 - 100,0% NS 358 0,15 255 46.207 - 100,0% NS 358 0,15 432 46.207 - 100,0% NS 358 0,15 432 46.207 - 100,0% NS 358 0,10 -363 46.224 - 100,0% NS 358 0,10 -186 46.224 - 100,0% NS 358 0,10 -186 46.224 - 100,0% NS 358 0,10 189 46.224 - 100,0% NS 358 0,10 365 46.224 - 100,0% NS 358 0,10 365 46.224 - 100,0% NS 358 0,00 -362 46.259 - 100,0% NS 358 0,00 -362 46.224 - 100,0% NS 358 0,00 -362 46.259 - 100,0% NS 358 0,00 -362 46.259 - 100,0% NS 358 0,00 -362 46.259 - 100,0% NS 358 0,0		100%	NS	358	0,00	362	46.259	-
So,0% NS 358 0,00 -61 46.259 -75,0% NS 358 0,10 187 46.224 -100,0% NS 358 0,10 364 46.224 -100,0% NS 358 0,15 -296 46.207 -100,0% NS 358 0,15 -164 46.207 -100,0% NS 358 0,15 -164 46.207 -100,0% NS 358 0,15 -255 46.207 -100,0% NS 358 0,15 -363 46.224 -100,0% NS 358 0,15 -363 46.224 -100,0% NS 358 0,10 -363 46.224 -100,0% NS 358 0,10 -186 46.224 -100,0% NS 358 0,10 -186 46.224 -100,0% NS 358 0,10 189 46.224 -100,0% NS 358 0,10 365 46.224 -100,0% NS 358 0,00 -362 46.259 -100,0% NS 358 0,00 -362 46.259 -100,0% NS 358 0,00 -185 46.259 -100,0% NS 358 0,00 -161 46.259 -100,0% NS 358 0,00 -100,0%	Trave Acciaio 12-13	0%	NS	358	0,10	-364	46.224	-
75,0% NS 358 0,10 187 46.224 - Trave Acciaio 8-9 0% NS 358 0,15 -296 46.207 - 25,0% NS 358 0,15 -164 46.207 - 25,0% NS 358 0,15 -164 46.207 - 50,0% NS 358 0,15 -255 46.207 - 100,0% NS 358 0,15 255 46.207 - 100,0% NS 358 0,15 432 46.207 - Trave Acciaio 9-10 0% NS 358 0,10 -363 46.224 - 25,0% NS 358 0,10 -186 46.224 - 25,0% NS 358 0,10 189 46.224 - Trave Acciaio 10-11 0% NS 358 0,00 -362 46.259 - 25,0% NS 358 0,00 -185 46.259 - Trave Acciaio 10-11 0% NS 358 0,00 -362 46.259 - 75,0% NS 358 0,00 -362 46.259 - 75,0% NS 358 0,00 -362 46.259 - Trave Acciaio 10-11 0% NS 358 0,00 -362 46.259 - Trave Acciaio 10-11 0% NS 358 0,00 -362 46.259 - Trave Acciaio 10-11 0% NS 358 0,00 -362 46.259 - Trave Acciaio 10-18 0% NS 358 0,00 -362 46.259 - Trave Acciaio 10-8 0% NS 358 0,00 -362 46.259 - Trave Acciaio 1-8 0% NS 358 0,00 367 46.259 - Trave Acciaio 1-8 0% NS 358 0,00 367 46.259 -		25,0%	NS	358	0,10	-188	46.224	-
Trave Acciaio 8-9 100,0% NS 358 0,10 364 46.224 -		50,0%	NS	358	0,00	-61	46.259	-
Trave Acciaio 8-9 0% NS 358 0,15 -296 46.207 - 50,0% NS 358 0,10 -81 46.224 - 75,0% NS 358 0,15 255 46.207 - 100,0% NS 358 0,15 255 46.207 - 100,0% NS 358 0,15 255 46.207 - Trave Acciaio 9-10 0% NS 358 0,10 -363 46.224 - 25,0% NS 358 0,10 -363 46.224 - 50,0% NS 358 0,10 -186 46.224 - 50,0% NS 358 0,10 189 46.224 - Trave Acciaio 10-11 0% NS 358 0,10 365 46.224 - Trave Acciaio 10-11 0% NS 358 0,00 -362 46.259 - Trave Acciaio 10-11 0% NS 358 0,00 -185 46.259 - 75,0% NS 358 0,00 -185 46.259 - 75,0% NS 358 0,00 -185 46.259 - Trave Acciaio 1-8 0% NS 358 0,00 367 46.259 - Trave Acciaio 1-8 0% NS 358 0,00 367 46.259 - Trave Acciaio 1-8 0% NS 358 0,00 367 46.259 - Trave Acciaio 1-8		75,0%	NS	358	0,10	187	46.224	-
25,0% NS 358 0,15 -164 46.207 - 50,0% NS 358 0,10 -81 46.224 - 75,0% NS 358 0,15 255 46.207 - 100,0% NS 358 0,15 432 46.207 - 100,0% NS 358 0,15 -363 46.224 - 25,0% NS 358 0,10 -363 46.224 - 25,0% NS 358 0,10 -186 46.224 - 50,0% NS 358 0,10 189 46.224 - 100,0% NS 358 0,10 365 46.224 - 100,0% NS 358 0,10 365 46.224 - 100,0% NS 358 0,00 -362 46.259 - 25,0% NS 358 0,00 -362 46.259 - 25,0% NS 358 0,00 -185 46.259 - 50,0% NS 358 0,00 -61 46.259 - 100,0% NS 358 0,00 367 46.259 -		100,0%	NS	358	0,10	364	46.224	-
50,0% NS 358 0,10 -81 46,224 -	Trave Acciaio 8-9	0%	NS	358	0,15	-296	46.207	-
75,0% NS 358 0,15 255 46,207 - 100,0% NS 358 0,15 432 46,207 - Trave Acciaio 9-10 0% NS 358 0,10 -363 46,224 - 25,0% NS 358 0,10 -186 46,224 - 50,0% NS 358 0,00 60 46,259 - 75,0% NS 358 0,10 365 46,224 - 100,0% NS 358 0,10 365 46,224 - 100,0% NS 358 0,00 -362 46,259 - 25,0% NS 358 0,00 -362 46,259 - 25,0% NS 358 0,00 -185 46,259 - 50,0% NS 358 0,00 -61 46,259 - 50,0% NS 358 0,00 367 46,259 - 100,0% NS 358 0,00 367 46,259 - Trave Acciaio 1-8 0% NS 358 0,00 367 46,259 - Trave Acciaio 1-8 0% NS 358 0,05 262 46,242 -		25,0%	NS	358	0,15	-164	46.207	-
Trave Acciaio 9-10 NS 358 0,15 432 46.207 - 100,0% NS 358 0,10 -363 46.224 - 25,0% NS 358 0,10 -186 46.224 - 50,0% NS 358 0,00 60 46.259 - 75,0% NS 358 0,10 189 46.224 - 100,0% NS 358 0,10 365 46.224 - Trave Acciaio 10-11 0% NS 358 0,00 -362 46.259 - 25,0% NS 358 0,00 -185 46.259 - 50,0% NS 358 0,00 -185 46.259 - 75,0% NS 358 0,00 -61 46.259 - 75,0% NS 358 0,00 367 46.259 - Trave Acciaio 1-8 0% NS 358 0,00 367 46.259 - Trave Acciaio 1-8 0% NS 358 0,00 367 46.259 - Trave Acciaio 1-8 0% NS 358 0,00 367 46.259 - 46.242 - 46.242		50,0%	NS	358	0,10	-81	46.224	-
Trave Acciaio 9-10 0% NS 358 0,10 -363 46.224 - 50,0% NS 358 0,00 60 46.259 - 75,0% NS 358 0,10 189 46.224 - 100,0% NS 358 0,10 365 46.224 - Trave Acciaio 10-11 0% NS 358 0,00 365 46.259 - 25,0% NS 358 0,00 -362 46.259 - 25,0% NS 358 0,00 -185 46.259 - 50,0% NS 358 0,00 -61 46.259 - 75,0% NS 358 0,00 189 46.259 - Trave Acciaio 1-8 0% NS 358 0,00 367 46.259 - Trave Acciaio 1-8 0% NS 358 0,00 367 46.259 - Trave Acciaio 1-8 0% NS 358 0,00 367 46.259 - 46.259 - 100,0% NS 358 0,00 367 46.259 - 100,0% NS 358 0,00 367 46.259 - 100,0%		75,0%	NS	358	0,15	255	46.207	-
25,0% NS 358 0,10 -186 46.224 - 50,0% NS 358 0,00 60 46.259 - 75,0% NS 358 0,10 189 46.224 - 100,0% NS 358 0,10 365 46.224 - 1100,0% NS 358 0,00 -362 46.259 - 25,0% NS 358 0,00 -185 46.259 - 50,0% NS 358 0,00 -61 46.259 - 50,0% NS 358 0,00 189 46.259 - 75,0% NS 358 0,00 367 46.259 - 1100,0% NS 358 0,00 367 46.259 - Trave Acciaio 1-8 0% NS 358 0,05 262 46.242 -		100,0%	NS	358	0,15	432	46.207	-
50,0% NS 358 0,00 60 46.259 -	Trave Acciaio 9-10	0%	NS	358	0,10	-363	46.224	-
75,0% NS 358 0,10 189 46.224 - 100,0% NS 358 0,10 365 46.224 - Trave Acciaio 10-11 0% NS 358 0,00 -362 46.259 - 25,0% NS 358 0,00 -185 46.259 - 50,0% NS 358 0,00 -61 46.259 - 75,0% NS 358 0,00 189 46.259 - 100,0% NS 358 0,00 367 46.259 - Trave Acciaio 1-8 0% NS 358 0,05 262 46.242 - 25,0% NS 358 0,05 262 46.242 -		25,0%	NS	358	0,10	-186	46.224	-
Trave Acciaio 10-11		50,0%	NS	358	0,00	60	46.259	-
Trave Acciaio 10-11		75,0%	NS	358	0,10	189	46.224	-
25,0% NS 358 0,00 -185 46.259 - 50,0% NS 358 0,00 -61 46.259 - 75,0% NS 358 0,00 189 46.259 - 100,0% NS 358 0,00 367 46.259 - Trave Acciaio 1-8 0% NS 358 0,05 262 46.242 - 25,0% NS 358 0,05 177 46.242 -		100,0%	NS	358	0,10	365	46.224	-
50,0% NS 358 0,00 -61 46.259 - 75,0% NS 358 0,00 189 46.259 - 100,0% NS 358 0,00 367 46.259 - Trave Acciaio 1-8 0% NS 358 0,05 262 46.242 - 25,0% NS 358 0,05 177 46.242 -	Trave Acciaio 10-11	0%	NS	358	0,00	-362	46.259	-
75,0% NS 358 0,00 189 46.259 - 100,0% NS 358 0,00 367 46.259 - Trave Acciaio 1-8 0% NS 358 0,05 262 46.242 - 25,0% NS 358 0,05 177 46.242 -		25,0%	NS	358	0,00	-185	46.259	-
Trave Acciaio 1-8		50,0%	NS	358	0,00	-61	46.259	-
Trave Acciaio 1-8 0% NS 358 0,05 262 46.242 - 25,0% NS 358 0,05 177 46.242 -		75,0%	NS	358	0,00	189	46.259	-
25,0% NS 358 0,05 177 46.242 -		100,0%	NS	358	0,00	367	46.259	-
	Trave Acciaio 1-8	0%	NS	358	0,05	262	46.242	-
50,0% NS 358 0,10 249 46.224 -		25,0%	NS	358	0,05	177	46.242	-
		50,0%	NS	358	0,10	249	46.224	-
75,0% NS 358 0,10 345 46.224 -		75,0%	NS	358	0,10	345	46.224	-
100,0% NS 358 0,10 447 46.224 -		100,0%	NS	358	0,10	447	46.224	-
Trave Acciaio 6-7 0% NS 358 0,29 -429 46.155 -	Trave Acciaio 6-7	0%	NS	358	0,29	-429	46.155	-
25,0% NS 358 0,29 -243 46.155 -		25,0%	NS	358	0,29	-243	46.155	-
50,0% NS 358 0,15 46 46.207 -		50,0%	NS	358	0,15	46	46.207	-
75,0% NS 358 0,34 179 46.138 -		75,0%	NS	358	0,34	179	46.138	-

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 103 di 127

Proponente: INE FICURINIA S.R.L

Travi (AC) - Verifiche a taglio

Id _{Tr}	%L _{LI}	CS	A _v	TT,Ed	V _{Ed}	V _{c,Rd}	P. Vrf.
	[%]		[mm²]	[N/mm²]	[N]	[N]	
	100%	NS	358	0,29	341	46.155	-
Trave Acciaio 4-5	0%	NS	358	0,00	-386	46.259	-
	25,0%	NS	358	0,00	-200	46.259	-
	50,0%	NS	358	0,00	34	46.259	-
	75,0%	NS	358	0,00	197	46.259	-
	100%	NS	358	0,00	383	46.259	-
Trave Acciaio 5-6	0%	NS	358	0,15	-387	46.207	-
	25,0%	NS	358	0,15	-201	46.207	-
	50,0%	NS	358	0,10	-38	46.224	-
	75,0%	NS	358	0,15	196	46.207	-
	100,0%	NS	358	0,15	382	46.207	-
Trave Acciaio 1-2	0%	NS	358	0,29	-342	46.155	-
	25,0%	NS	358	0,34	-179	46.138	-
	50,0%	NS	358	0,15	-46	46.207	-
	75,0%	NS	358	0,29	241	46.155	-
	100,0%	NS	358	0,29	427	46.155	-
Trave Acciaio 2-3	0%	NS	358	0,15	-384	46.207	-
	25,0%	NS	358	0,15	-198	46.207	-
	50,0%	NS	358	0,10	38	46.224	-
	75,0%	NS	358	0,15	200	46.207	-
	100,0%	NS	358	0,15	386	46.207	-
Trave Acciaio 3-4	0%	NS	358	0,00	-385	46.259	-
	25,0%	NS	358	0,00	-199	46.259	-
	50,0%	NS	358	0,00	34	46.259	-
	75,0%	NS	358	0,00	199	46.259	-
	100,0%	NS	358	0,00	385	46.259	-
Trave Acciaio 1a-1	0%	NS	358	0,10	141	46.224	-
	25,0%	NS	358	0,19	156	46.190	-
	50,0%	NS	358	0,39	-182	46.120	-
	75,0%	NS	358	0,39	-242	46.120	-
	100%	NS	358	0,39	-300	46.120	-
Trave Acciaio 9-9a	0%	NS	358	0,15	456	46.207	-

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 104 di 127

Proponente: INE FICURINIA S.R.L

Travi (AC) - Verifiche a taglio

Id _{Tr}	%L _{LI}	CS	A _v	τ _{τ,Ed}	V _{Ed}	V _{c,Rd}	P. Vrf.
	[%]		[mm²]	[N/mm²]	[N]	[N]	
	25,0%	NS	358	0,15	383	46.207	-
	50,0%	NS	358	0,19	-331	46.190	-
	75,0%	NS	358	0,19	-297	46.190	
	100%	NS	358	0,19	-268	46.190	-
Trave Acciaio 2-9	0%	NS	358	0,00	416	46.259	-
	25,0%	NS	358	0,00	231	46.259	
	50,0%	NS	358	0,00	366	46.259	
	75,0%	80,73	358	0,00	573	46.259	
	100,0%	58,70	358	0,00	788	46.259	
Trave Acciaio 2a-2	0%	NS	358	0,00	321	46.259	
	25,0%	NS	358	0,00	362	46.259	-
	50,0%	NS	358	0,00	419	46.259	
	75,0%	97,80	358	0,00	473	46.259	
	100%	88,11	358	0,00	525	46.259	
Trave Acciaio 10-10a	0%	99,91	358	0,00	463	46.259	
	25,0%	NS	358	0,00	390	46.259	
	50,0%	NS	358	0,00	-340	46.259	-
	75,0%	NS	358	0,00	-306	46.259	
	100%	NS	358	0,00	-277	46.259	-
Trave Acciaio 3-10	0%	NS	358	0,00	421	46.259	-
	25,0%	NS	358	0,00	237	46.259	
	50,0%	NS	358	0,00	399	46.259	-
	75,0%	76,46	358	0,00	605	46.259	-
	100,0%	56,48	358	0,00	819	46.259	-
Trave Acciaio 3a-3	0%	NS	358	0,10	322	46.224	
	25,0%	NS	358	0,10	363	46.224	-
	50,0%	NS	358	0,10	420	46.224	
	75,0%	97,52	358	0,10	474	46.224	
	100%	87,71	358	0,10	527	46.224	-
Trave Acciaio 11-11a	0%	NS	358	0,00	459	46.259	
	25,0%	NS	358	0,00	386	46.259	
	50,0%	NS	358	0,00	-337	46.259	
				<u> </u>			

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 105 di 127

Proponente: INE FICURINIA S.R.L

Travi (AC) - Verifiche a taglio

Id _{Tr}	%L _{LI}	CS	A _v	₹T,Ed	V _{Ed}	$V_{c,Rd}$	P. Vrf.
	[%]		[mm²]	[N/mm²]	[N]	[N]	
	75,0%	NS	358	0,00	-303	46.259	-
	100%	NS	358	0,00	-274	46.259	-
Trave Acciaio 4-11	0%	NS	358	0,00	421	46.259	-
	25,0%	NS	358	0,00	237	46.259	-
	50,0%	NS	358	0,00	401	46.259	-
	75,0%	76,21	358	0,00	607	46.259	-
	100,0%	56,28	358	0,00	822	46.259	-
Trave Acciaio 4a-4	0%	NS	358	0,00	313	46.259	-
	25,0%	NS	358	0,00	354	46.259	-
	50,0%	NS	358	0,00	411	46.259	-
	75,0%	99,48	358	0,00	465	46.259	-
	100%	88,11	358	0,00	-525	46.259	-
Trave Acciaio 12-12a	0%	99,91	358	0,00	463	46.259	-
	25,0%	NS	358	0,00	390	46.259	-
	50,0%	NS	358	0,00	-341	46.259	-
	75,0%	NS	358	0,00	-308	46.259	-
	100%	NS	358	0,00	-278	46.259	-
Trave Acciaio 5-12	0%	NS	358	0,00	421	46.259	-
	25,0%	NS	358	0,00	237	46.259	-
	50,0%	NS	358	0,00	399	46.259	-
	75,0%	76,46	358	0,00	605	46.259	-
	100,0%	56,48	358	0,00	819	46.259	-
Trave Acciaio 5a-5	0%	NS	358	0,10	322	46.224	-
	25,0%	NS	358	0,10	363	46.224	-
	50,0%	NS	358	0,10	420	46.224	-
	75,0%	97,52	358	0,10	474	46.224	-
	100%	87,71	358	0,10	527	46.224	-
Trave Acciaio 13-13a	0%	NS	358	0,15	456	46.207	-
	25,0%	NS	358	0,15	383	46.207	-
	50,0%	NS	358	0,19	-333	46.190	-
	75,0%	NS	358	0,19	-299	46.190	-
	100%	NS	358	0,19	-270	46.190	-

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 106 di 127

Proponente: INE FICURINIA S.R.L

Travi (AC) - Verifiche a taglio

Id _{Tr}	%L _{LI}	CS	Δ		V		P. Vrf.
IUTr		LS	A _V	TT,Ed	V _{Ed}	V _{c,Rd}	P. VII.
Trava Arcticle C 12	[%]	NG	[mm²]	[N/mm²]	[N]	[N]	
Trave Acciaio 6-13	0%	NS	358	0,00	416	46.259	
	25,0%	NS	358	0,00	231	46.259	
	50,0%	NS	358	0,00	366	46.259	
	75,0%	80,73	358	0,00	573	46.259	
	100,0%	58,70	358	0,00	788	46.259	
Trave Acciaio 6a-6	0%	NS	358	0,00	321	46.259	
	25,0%	NS	358	0,00	362	46.259	
	50,0%	NS	358	0,00	419	46.259	-
	75,0%	97,80	358	0,00	473	46.259	-
	100%	88,11	358	0,00	525	46.259	-
Trave Acciaio 14-14a	0%	NS	358	0,97	270	45.912	-
	25,0%	NS	358	0,97	236	45.912	-
	50,0%	NS	358	0,97	199	45.912	-
	75,0%	NS	358	0,97	161	45.912	-
	100%	NS	358	0,19	-158	46.190	-
Trave Acciaio 7-14	0%	NS	358	0,05	263	46.242	-
	25,0%	NS	358	0,05	177	46.242	-
	50,0%	NS	358	0,10	250	46.224	-
	75,0%	NS	358	0,10	345	46.224	-
	100,0%	NS	358	0,10	448	46.224	-
Trave Acciaio 7a-7	0%	NS	358	0,10	-141	46.224	-
	25,0%	NS	358	0,19	156	46.190	-
	50,0%	NS	358	0,39	-182	46.120	-
	75,0%	NS	358	0,39	-242	46.120	-
	100%	NS	358	0,39	-300	46.120	-
Trave Acciaio 13a-14a	0%	NS	358	0,44	-136	46.103	-
	25,0%	NS	358	0,58	104	46.051	-
	50,0%	NS	358	0,58	104	46.051	-
	75,0%	NS	358	0,58	104	46.051	
	100%	NS	358	0,39	146	46.120	
Trave Acciaio 8a-9a	0%	NS	358	0,39	-145	46.120	
	25,0%	NS	358	0,58	-104	46.051	
	23,070	INJ	550	0,56	-104	70.051	

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 107 di 127

Proponente: INE FICURINIA S.R.L

Travi (AC) - Verifiche a taglio

Id _{Tr}	%L _{LI}	CS	Α _ν	₹T,Ed	V _{Ed}	V _{c,Rd}	P. Vrf.
	[%]		[mm²]	[N/mm²]	[N]	[N]	
	50,0%	NS	358	0,58	-104	46.051	-
	75,0%	NS	358	0,58	-104	46.051	-
	100,0%	NS	358	0,44	139	46.103	-
Trave Acciaio 9a-10a	0%	NS	358	0,10	-92	46.224	-
	25,0%	NS	358	0,05	-88	46.242	-
	50,0%	NS	358	0,05	-88	46.242	-
	75,0%	NS	358	0,05	-88	46.242	-
	100,0%	NS	358	0,10	108	46.224	-
Trave Acciaio 10a-11a	0%	NS	358	0,00	-98	46.259	-
	25,0%	NS	358	0,10	85	46.224	-
	50,0%	NS	358	0,10	85	46.224	-
	75,0%	NS	358	0,10	85	46.224	-
	100,0%	NS	358	0,00	101	46.259	-
Trave Acciaio 11a-12a	0%	NS	358	0,00	-101	46.259	-
	25,0%	NS	358	0,10	85	46.224	-
	50,0%	NS	358	0,10	85	46.224	-
	75,0%	NS	358	0,10	85	46.224	-
	100%	NS	358	0,00	98	46.259	-
Trave Acciaio 12a-13a	0%	NS	358	0,10	-108	46.224	-
	25,0%	NS	358	0,05	88	46.242	-
	50,0%	NS	358	0,05	88	46.242	-
	75,0%	NS	358	0,05	88	46.242	-
	100,0%	NS	358	0,10	92	46.224	-
Trave Acciaio 6a-7a	0%	NS	358	0,29	-165	46.155	-
	25,0%	NS	358	0,29	-108	46.155	-
	50,0%	NS	358	0,29	-46	46.155	-
	75,0%	NS	358	0,29	98	46.155	-
	100%	NS	358	0,29	148	46.155	-
Trave Acciaio 1a-2a	0%	NS	358	0,29	-148	46.155	-
	25,0%	NS	358	0,29	-98	46.155	-
	50,0%	NS	358	0,29	46	46.155	-
	75,0%	NS	358	0,29	109	46.155	-
	1	1	1		I .		

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 108 di 127

Proponente: INE FICURINIA S.R.L

Travi (AC) - Verifiche a taglio

Id _{Tr}	%L _{LI}	cs	A _v	τ _{τ,Ed}	V_{Ed}	V _{c,Rd}	P. Vrf.
	[%]		[mm²]	[N/mm²]	[N]	[N]	
	100,0%	NS	358	0,29	166	46.155	-
Trave Acciaio 2a-3a	0%	NS	358	0,05	-111	46.242	-
	25,0%	NS	358	0,05	-54	46.242	-
	50,0%	NS	358	0,05	-15	46.242	-
	75,0%	NS	358	0,05	71	46.242	-
	100,0%	NS	358	0,05	128	46.242	-
Trave Acciaio 3a-4a	0%	NS	358	0,00	-118	46.259	-
	25,0%	NS	358	0,00	-62	46.259	-
	50,0%	NS	358	0,10	11	46.224	-
	75,0%	NS	358	0,00	63	46.259	-
	100,0%	NS	358	0,00	121	46.259	-
Trave Acciaio 4a-5a	0%	NS	358	0,00	-120	46.259	_
	25,0%	NS	358	0,00	-62	46.259	-
	50,0%	NS	358	0,10	11	46.224	_
	75,0%	NS	358	0,00	63	46.259	_
	100%	NS	358	0,00	119	46.259	
Trave Acciaio 5a-6a	0%	NS	358	0,05	-128	46.242	
	25,0%	NS	358	0,05	-71	46.242	
	50,0%	NS	358	0,05	15	46.242	
	75,0%	NS	358	0,05	54	46.242	
	100,0%	NS	358	0,05	111	46.242	
	100,0%	CNI	336	0,05	111	70.242	-

LEGENDA:

Id_{Tr} Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato.

%LLI Posizione della sezione per la quale vengono forniti i valori di verifica, valutata come % della lunghezza libera d'inflessione (LLI), a partire dall'estremo iniziale.

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] = eccezionale; [S] = sismica; [N] = sismica non lineare).

Av Area resistente a taglio.

 $au_{\text{T,Ed}}$ Tensione tangenziale di calcolo per torsione.

V_{Ed} Taglio di progetto.

V_{c,Rd} Taglio resistente.

P. Vrf. Piano di minima resistenza.

Dotti Ingi Graseppe I armari	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A0)	Pag. 109 di 127

Proponente: INE FICURINIA S.R.L

TRAVI - VERIFICA DI SNELLEZZA (Elevazione)

Travi - VERIFICA DI SNELLEZZA

Id	P/S	L ₀	i	λο	λο,lim	CS
		[mm]	[mm]			
Piano Terra				Piano Terra		
Trave Acciaio 8-8a	P	1.011	23,10	44	200	4,55
Trave Acciaio 13-14	P	2.169	23,10	94	200	2,13
Trave Acciaio 11-12	P	2.169	23,10	94	200	2,13
Trave Acciaio 12-13	P	2.167	23,10	94	200	2,13
Trave Acciaio 8-9	P	2.167	23,10	94	200	2,13
Trave Acciaio 9-10	P	2.167	23,10	94	200	2,13
Trave Acciaio 10-11	P	2.167	23,10	94	200	2,13
Trave Acciaio 1-8	P	2.380	23,10	103	200	1,94
Trave Acciaio 6-7	P	2.169	23,10	94	200	2,13
Trave Acciaio 4-5	P	2.169	23,10	94	200	2,13
Trave Acciaio 5-6	P	2.167	23,10	94	200	2,13
Trave Acciaio 1-2	P	2.167	23,10	94	200	2,13
Trave Acciaio 2-3	P	2.167	23,10	94	200	2,13
Trave Acciaio 3-4	P	2.167	23,10	94	200	2,13
Trave Acciaio 1a-1	P	1.236	23,10	53	200	VNR
Trave Acciaio 9-9a	P	1.011	23,10	44	200	4,55
Trave Acciaio 2-9	P	2.380	23,10	103	200	1,94
Trave Acciaio 2a-2	P	1.236	23,10	53	200	VNR
Trave Acciaio 10-10a	P	1.011	23,10	44	200	4,55
Trave Acciaio 3-10	P	2.380	23,10	103	200	1,94
Trave Acciaio 3a-3	P	1.236	23,10	53	200	VNR
Trave Acciaio 11-11a	P	1.011	23,10	44	200	4,55
Trave Acciaio 4-11	P	2.380	23,10	103	200	1,94
Trave Acciaio 4a-4	P	1.236	23,10	53	200	VNR
Trave Acciaio 12-12a	P	1.011	23,10	44	200	4,55
Trave Acciaio 5-12	P	2.380	23,10	103	200	1,94
Trave Acciaio 5a-5	P	1.236	23,10	53	200	VNR
Trave Acciaio 13-13a	P	1.011	23,10	44	200	4,55
Trave Acciaio 6-13	P	2.380	23,10	103	200	1,94
Trave Acciaio 6a-6	P	1.236	23,10	53	200	VNR

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0 Pag. 110 di 127

Proponente: INE FICURINIA S.R.L

Travi - VERIFICA DI SNELLEZZA

Id	P/S	L ₀	i	λο	λο,lim	CS
		[mm]	[mm]			
Trave Acciaio 14-14a	Р	1.011	23,10	44	200	4,55
Trave Acciaio 7-14	P	2.380	23,10	103	200	1,94
Trave Acciaio 7a-7	P	1.236	23,10	53	200	VNR
Trave Acciaio 13a-14a	P	2.169	23,10	94	200	2,13
Trave Acciaio 8a-9a	P	2.167	23,10	94	200	2,13
Trave Acciaio 9a-10a	P	2.167	23,10	94	200	2,13
Trave Acciaio 10a-11a	P	2.167	23,10	94	200	2,13
Trave Acciaio 11a-12a	P	2.169	23,10	94	200	2,13
Trave Acciaio 12a-13a	P	2.167	23,10	94	200	2,13
Trave Acciaio 6a-7a	P	2.169	23,10	94	200	2,13
Trave Acciaio 1a-2a	P	2.167	23,10	94	200	2,13
Trave Acciaio 2a-3a	P	2.167	23,10	94	200	2,13
Trave Acciaio 3a-4a	P	2.167	23,10	94	200	2,13
Trave Acciaio 4a-5a	P	2.169	23,10	94	200	2,13
Trave Acciaio 5a-6a	P	2.167	23,10	94	200	2,13

LEGENDA:

Id Identificativo dell'elemento.

P/S Tipologia trave acciaio: Principale (P) o Secondaria (S)

Lunghezza di inflessione

i Raggio d'inerzia

λο Snellezza

λο,lim Snellezza limite

CS Coefficiente di sicurezza ([NS] = Non Significativo per valori di CS >= 100; [VNR]= Verifica Non Richiesta).

TRAVI (AC) - VERIFICHE INSTABILITÀ A PRESSOFLESSIONE DEVIATA (Elevazione)

Travi (AC) - Verifiche instabilità a pressoflessione deviata

Id _{Tr}	N _{eq,Ed}	M _{eq,Ed,3}	M _{eq,Ed,2}	CS	P. Vrf.	L _{Cr}	Dir	L _N	λ _{LT}	α	ф	χ	β	k c	χιτ	N _{cr}	
	[N]	[N·m]	[N·m]			[m]		[m]								[N]	
Piano Terra										Piano Terra							
Trave Acciaio 8-8a	184	152	40	17,26	Piano	1,01	x-x	1,01	0,120	0,210	0,636	0,935	1,000	0,940	1,000	775.368	
					YY		у-у	1,01	0,100	0,210	0,636	0,935	1,000	0,752	1,000		

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A	0	Pag. 111 di 127

Proponente: INE FICURINIA S.R.L

Travi (AC) - Verifiche instabilità a pressoflessione deviata

Id₁r	N _{eq,Ed}	M _{eq,Ed,3}	M _{eq,Ed,2}	cs	P. Vrf.	L _{Cr}	Dir	L _N	λιτ	α	ф	χ	β	k _c	χιτ	N _{cr}
	[N]	[N·m]	[N·m]			[m]		[m]								[N]
Trave Acciaio 13-14	18	76	17	26 21	Piano	2 17	х-х	2,17	0,176	0,210	1,084	0,666	1,000	0,910	1,000	168.297
	10	76	17	36,31	YY	2,17	у-у	2,17	0,121	0,210	1,084	0,666	1,000	0,617	1,000	100.297
Trave Acciaio 11-12					Piano		X-X	2,17	0,176	0,210	1,084	0,666	1,000	0,900	1,000	
	11	38	18	60,29	YY	2,17	у-у	2,17	0,160	0,210	1,084	0,666	1,000	0,860	1,000	168.303
Trave Acciaio 12-13					Diama		X-X	2,17	0,176	0,210	1,083	0,666	1,000	0,910	1,000	
	0	66	-14	42,52	Piano YY	2,17	у-у	2,17	0,117	0,210	1,083	0,666	1,000	0,636	1,000	168.599
Trave Acciaio 8-9							x-x	2,17	0,176	0,210	1,083	0,666	1,000	0,910	1,000	
Trave Accidio 6 3	55	75	17	36,14	Piano YY	2,17		2,17	0,117	0,210	1,083	0,666	1,000	0,623	1,000	168.598
Tues a Assisia 0.10							у-у			·		·				
Trave Acciaio 9-10	23	66	14	42,05	Piano YY	2,17	X-X	2,17	0,176	0,210	1,083	0,666	1,000	0,910	1,000	168.598
							у-у	2,17	0,117	0,210	1,083	0,666	1,000	0,627	1,000	
Trave Acciaio 10-11	17	37	18	61,12	Piano	2,17	X-X	2,17	0,176	0,210	1,083	0,666	1,000	0,910	1,000	168.593
					YY		у-у	2,17	0,160	0,210	1,083	0,666	1,000	0,860	1,000	
Trave Acciaio 1-8	796	-234	-20	11,75	Piano	2,38	х-х	2,38	0,185	0,210	1,196	0,598	1,000	0,910	1,000	139.730
	750	251	20	11,73	YY	2,30	у-у	2,38	0,126	0,210	1,196	0,598	1,000	0,607	1,000	155.750
Trave Acciaio 6-7	F.4	F2		F2 26	Piano	2.17	x-x	2,17	0,176	0,210	1,084	0,666	1,000	0,910	1,000	160 207
	54	52	11	52,26	YY	2,17	у-у	2,17	0,121	0,210	1,084	0,666	1,000	0,602	1,000	168.297
Trave Acciaio 4-5					Piano		X-X	2,17	0,176	0,210	1,084	0,666	1,000	0,910	1,000	
	45	44	8	63,30	YY	2,17	у-у	2,17	0,117	0,210	1,084	0,666	1,000	0,622	1,000	168.303
Trave Acciaio 5-6					Diano		X-X	2,17	0,176	0,210	1,083	0,666	1,000	0,910	1,000	
	45	48	-8	58,91	Piano YY	2,17	у-у	2,17	0,121	0,210	1,083	0,666	1,000	0,615	1,000	168.599
Trave Acciaio 1-2							x-x	2,17	0,176	0,210	1,083	0,666	1,000	0,910	1,000	
	54	50	12	53,08	Piano YY	2,17		2,17	0,117	0,210	1,083	0,666	1,000	0,635	1,000	168.598
Trova Assisia 2.2							у-у		·			, i				
Trave Acciaio 2-3	51	47	-8	59,71	Piano YY	2,17	X-X	2,17	0,176	0,210	1,083	0,666	1,000	0,910	1,000	168.598
							у-у	2,17	0,121	0,210	1,083	0,666	1,000	0,602	1,000	
Trave Acciaio 3-4	45	44	-8	63,30	Piano YY	2,17	х-х	2,17	0,176	0,210	1,083	0,666	1,000	0,910	1,000	168.593
					TT		у-у	2,17	0,121	0,210	1,083	0,666	1,000	0,615	1,000	
Trave Acciaio 1a-1	-170	0	n	VNR	Piano	0,00	x-x	0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
					XX		у-у	0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
Trave Acciaio 9-9a	75	-250	25	12,28	Piano	1.01	х-х	1,01	0,120	0,210	0,636	0,935	1,000	0,940	1,000	775 260
	75	-250	25	12,28	YY	1,01	у-у	1,01	0,080	0,210	0,636	0,935	1,000	0,622	1,000	775.368
Trave Acciaio 2-9	1.298	-393	9	7,37		2,38	x-x	2,38	0,185	0,210	1,196	0,598	1,000	0,910	1,000	139.730

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 112 di 127

Proponente: INE FICURINIA S.R.L

Travi (AC) - Verifiche instabilità a pressoflessione deviata

Id _{Tr}	N _{eq,Ed}	M _{eq,Ed,3}	M _{eq,Ed,2}	CS	P. Vrf.	L _{Cr}	Dir	L _N	λlτ	α	ф	χ	β	k _c	χιτ	N _{cr}
	[N]	[N·m]	[N·m]			[m]		[m]								[N]
					Piano YY		у-у	2,38	0,126	0,210	1,196	0,598	1,000	0,608	1,000	
Trave Acciaio 2a-2	-194	0	0	VNR	Piano	0,00	х-х	0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
	-194	U	U	VINK	XX	0,00	у-у	0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	. 0
Trave Acciaio 10-10a	134	-261	2	12,71	Piano	1,01	x-x	1,01	0,120	0,210	0,636	0,935	1,000	0,940	1,000	775.368
	134	-201	-3	12,71	YY	1,01	у-у	1,01	0,137	0,210	0,636	0,935	1,000	1,000	1,000	773.300
Trave Acciaio 3-10	1.384	-416	-2	7,06	Piano	2,38	x-x	2,38	0,185	0,210	1,196	0,598	1,000	0,910	1,000	139.730
	1.504	-410	-2	7,00	YY	2,30	у-у	2,38	0,210	0,210	1,196	0,598	1,000	1,000	0,992	139.730
Trave Acciaio 3a-3	-194	0	0	VNR	Piano	0,00	x-x	0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
	154		J	VIVIX	XX	0,00	у-у	0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	. 0
Trave Acciaio 11-11a	133	-259	0	12,95	Piano	1,01	х-х	1,01	0,120	0,210	0,636	0,935	1,000	0,940	1,000	775.368
				12,55	YY	1,01	у-у	1,01	0,137	0,210	0,636	0,935	1,000	1,000	1,000	. , , 5,500
Trave Acciaio 4-11	1.390	-417	0	7,08	Piano	2,38	х-х	2,38	0,185	0,210	1,196	0,598	1,000	0,910	1,000	139.730
			-	.,	YY	_,,,,	у-у	2,38	0,210	0,210	1,196	0,598	1,000	1,000	0,992	
Trave Acciaio 4a-4	-194	0	0	VNR	Piano	0,00	x-x	0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
		_	_		XX	1,55	у-у	0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
Trave Acciaio 12-12a	134	-261	3	12,71	Piano	1,01	x-x	1,01	0,120	0,210	0,636	0,935	1,000	0,940	1,000	775.368
				,	YY	, -	у-у	1,01	0,137	0,210	0,636	0,935	1,000	1,000	1,000	
Trave Acciaio 5-12	1.384	-415	2	7,08	Piano	2,38	x-x	2,38	0,185	0,210	1,196	0,598	1,000	0,910	1,000	139.730
				,	YY	,	у-у	2,38	0,210	0,210	1,196	0,598	1,000	1,000	0,992	
Trave Acciaio 5a-5	-194	0	0	VNR	Piano	0,00	x-x	0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
					XX	,	у-у	0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
Trave Acciaio 13-13a	75	-250	-25	12,28	Piano	1,01	х-х	1,01	0,120	0,210	0,636	0,935	1,000	0,940	1,000	775.368
					YY		у-у	1,01	0,080	0,210	0,636	0,935	1,000	0,622	1,000	
Trave Acciaio 6-13	1.300	-393	-9	7,37	Piano	2,38	х-х	2,38	0,185	0,210	1,196	0,598	1,000	0,910	1,000	139.730
					YY		у-у	2,38	0,126	0,210	1,196	0,598	1,000	0,608	1,000	
Trave Acciaio 6a-6	-194	0	0	VNR	Piano	0,00	х-х	0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
					XX		у-у	0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
Trave Acciaio 14-14a	184	152	-40	17,26	Piano	1,01	X-X	1,01	0,120	0,210	0,636	0,935	1,000	0,940	1,000	775.368
					YY		у-у	1,01	0,100	0,210	0,636	0,935	1,000	0,752	1,000	
Trave Acciaio 7-14	799	-236	20	11,66		2,38	х-х	2,38	0,185	0,210	1,196	0,598	1,000	0,910	1,000	139.730

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 113 di 127

Proponente: INE FICURINIA S.R.L

Travi (AC) - Verifiche instabilità a pressoflessione deviata

Id _{Tr}	N _{eq,Ed}	M _{eq,Ed,3}	M _{eq,Ed,2}	cs	P. Vrf.	L _{Cr}	Dir	L _N	λιτ	α	ф	χ	β	k _c	χιτ	N _{cr}
	[N]	[N·m]	[N·m]			[m]		[m]								[N]
					Piano YY		у-у	2,38	0,126	0,210	1,196	0,598	1,000	0,607	1,000	
Trave Acciaio 7a-7	-170	0	0	VNR	Piano	0,00	х-х	0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0
	1,0			71110	XX	0,00	у-у	0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
Trave Acciaio 13a-14a	88	32	94	26,28	Piano	2,17	х-х	2,17	0,176	0,210	1,084	0,666	1,000	0,940	1,000	168.297
				·	YY		у-у	2,17	0,160	0,210	1,084	0,666	1,000	0,860	1,000	
Trave Acciaio 8a-9a	96	32	100	25,06	Piano	2,17	х-х	2,17	0,176	0,210	1,083	0,666	1,000	0,940	1,000	168.598
					YY	_,	у-у	2,17	0,160	0,210	1,083	0,666	1,000	0,860	1,000	
Trave Acciaio 9a-10a	92	22	73	34,51	Piano	2,17	х-х	2,17	0,176	0,210	1,083	0,666	1,000	0,900	1,000	168.598
	32	22	,,	31,31	YY	2,17	у-у	2,17	0,160	0,210	1,083	0,666	1,000	0,860	1,000	100.550
Trave Acciaio 10a-11a	69	20	70	36,70	Piano	2,17	х-х	2,17	0,176	0,210	1,083	0,666	1,000	0,940	1,000	168.593
				30,7.0	YY		у-у	2,17	0,160	0,210	1,083	0,666	1,000	0,860	1,000	100.050
Trave Acciaio 11a-12a	69	20	-70	36,70	Piano	2,17	х-х	2,17	0,176	0,210	1,084	0,666	1,000	0,900	1,000	168.303
				·	YY		у-у	2,17	0,160	0,210	1,084	0,666	1,000	0,860	1,000	
Trave Acciaio 12a-13a	86	21	74	34,59	Piano	2,17	х-х	2,17	0,176	0,210	1,083	0,666	1,000	0,940	1,000	168.599
				,	YY		у-у	2,17	0,160	0,210	1,083	0,666	1,000	0,860	1,000	
Trave Acciaio 6a-7a	0	-20	11	NS	Piano	2,17	х-х	2,17	0,176	0,210	1,084	0,666	1,000	0,900	1,000	168.297
					YY		у-у	2,17	0,146	0,210	1,084	0,666	1,000	0,752	1,000	
Trave Acciaio 1a-2a	4	-20	12	NS	Piano	2,17	х-х	2,17	0,176	0,210	1,083	0,666	1,000	0,910	1,000	168.598
					YY	_,	у-у	2,17	0,146	0,210	1,083	0,666	1,000	0,752	1,000	
Trave Acciaio 2a-3a	9	18	5	NS	Piano	2,17	х-х	2,17	0,176	0,210	1,083	0,666	1,000	0,900	1,000	168.598
					YY	_,	у-у	2,17	0,146	0,210	1,083	0,666	1,000	0,752	1,000	
Trave Acciaio 3a-4a	5	21	4	NS	Piano	2,17	х-х	2,17	0,176	0,210	1,083	0,666	1,000	0,940	1,000	168.593
					YY		у-у	2,17	0,200	0,210	1,083	0,666	1,000	1,000	1,000	
Trave Acciaio 4a-5a	4	20	4	NS	Piano	2,17	х-х	2,17	0,176	0,210	1,084	0,666	1,000	0,900	1,000	168.303
	·		·		YY	,	у-у	2,17	0,200	0,210	1,084	0,666	1,000	1,000	1,000	
Trave Acciaio 5a-6a	10	19	7	NS	Piano	2,17	х-х	2,17	0,176	0,210	1,083	0,666	1,000	0,910	1,000	168.599
	_,				YY	,	у-у	2,17	0,200	0,210	1,083	0,666	1,000	1,000	1,000	

LEGENDA:

 $\textbf{Id}_{\textbf{Tr}} \hspace{1cm} \textbf{Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato.} \\$

 $\mathbf{N}_{\text{eq,Ed}}$ Sforzo Normale equivalente di progetto.

2 ott. ing. Gruseppe i urnuri	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A0)	Pag. 114 di 127

Proponente: INE FICURINIA S.R.L

Travi (AC) - Verifiche instabilità a pressoflessione deviata

Id _{Tr}	N _{eq,Ed}	M _{eq,Ed,3}	M _{eq,Ed,2}	CS	P. Vrf.	L _{Cr}	Dir	L _N	λιτ	α	ф	χ	β	k _c	χιτ	N _{cr}
	[N]	[N·m]	[N·m]			[m]		[m]								[N]

Meq,Ed,3 Momento equivalente di progetto intorno a 3.

 $\mathbf{M}_{eq,Ed,2}$ Momento equivalente di progetto intorno a 2.

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] = eccezionale; [S] = sismica; [N] = sismica non lineare).

P. Vrf. Piano di minima resistenza.

Lunghezza di libera inflessione laterale, misurata tra due ritegni torsionali successivi.

L_N Luce libera di inflessione.

 λ_{LT} Coefficiente di snellezza normalizzata (per il calcolo di Φ_{LT}).

α Fattore di imperfezione.

 ϕ Coefficiente per il calcolo di χ

χ Coefficiente di riduzione per instabilità a compressione

β Coefficiente di riduzione della luce libera di inflessione.

 $\mathbf{k_c}$ Coefficiente per il calcolo di χ_{LT}

χιτ Coefficiente di riduzione ai fini dell'instabilità flessotorsionale.

N_{cr} Sforzo Normale Critico Euleriano.

TRAVI (AC) - VERIFICHE DI DEFORMABILITÀ ALLO SLE (Elevazione)

Travi (AC) - Verifiche di deformabilità allo SLE

Id₁	Ca	arichi Permanenti -	+ Variabili		Carichi Var	iabili
Zu ir	CS	δ _{max}	δ_{amm}	CS	δ _{max}	δ _{amm}
		[cm]	[cm]		[cm]	[cm]
Piano Terra				Piano Ter	ra	
Trave Acciaio 8-8a	77,30	0,0052	0,4042	26,89	0,0125	0,3368
Trave Acciaio 13-14	30,83	0,0281	0,8676	20,92	0,0346	0,7230
Trave Acciaio 11-12	55,09	0,0157	0,8676	37,14	0,0195	0,7230
Trave Acciaio 12-13	58,02	0,0149	0,8668	38,85	0,0186	0,7223
Trave Acciaio 8-9	31,01	0,0280	0,8668	20,98	0,0344	0,7223
Trave Acciaio 9-10	61,50	0,0141	0,8668	40,27	0,0179	0,7223
Trave Acciaio 10-11	58,50	0,0148	0,8668	38,92	0,0186	0,7224
Trave Acciaio 1-8	18,67	0,0510	0,9522	18,93	0,0419	0,7935
Trave Acciaio 6-7	36,01	0,0241	0,8676	24,78	0,0292	0,7230
Trave Acciaio 4-5	54,68	0,0159	0,8676	36,39	0,0199	0,7230

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0 Pag. 115 di 127

Proponente: INE FICURINIA S.R.L

Travi (AC) - Verifiche di deformabilità allo SLE

Id _{Tr}	Ca	arichi Permanenti -	+ Variabili		Carichi Var	iabili
10Tr	cs	δ _{max}	δ_{amm}	CS	δ _{max}	δ _{amm}
		[cm]	[cm]		[cm]	[cm]
Trave Acciaio 5-6	51,95	0,0167	0,8668	36,35	0,0199	0,7223
Trave Acciaio 1-2	37,86	0,0229	0,8668	24,96	0,0289	0,7223
Trave Acciaio 2-3	55,00	0,0158	0,8668	36,50	0,0198	0,7223
Trave Acciaio 3-4	54,89	0,0158	0,8668	36,50	0,0198	0,7224
Trave Acciaio 1a-1	50,39	0,0098	0,4943	16,97	0,0243	0,4119
Trave Acciaio 9-9a	41,46	0,0098	0,4042	15,34	0,0220	0,3368
Trave Acciaio 2-9	12,68	0,0751	0,9522	12,51	0,0634	0,7935
Trave Acciaio 2a-2	21,27	0,0232	0,4943	9,00	0,0458	0,4119
Trave Acciaio 10-10a	38,24	0,0106	0,4042	14,40	0,0234	0,3368
Trave Acciaio 3-10	11,85	0,0804	0,9522	11,96	0,0664	0,7935
Trave Acciaio 3a-3	20,80	0,0238	0,4943	8,57	0,0480	0,4119
Trave Acciaio 11-11a	39,00	0,0104	0,4042	14,48	0,0233	0,3368
Trave Acciaio 4-11	11,58	0,0823	0,9522	11,85	0,0670	0,7935
Trave Acciaio 4a-4	21,32	0,0232	0,4943	8,67	0,0475	0,4119
Trave Acciaio 12-12a	38,49	0,0105	0,4042	14,44	0,0233	0,3368
Trave Acciaio 5-12	11,75	0,0810	0,9522	11,96	0,0664	0,7935
Trave Acciaio 5a-5	20,80	0,0238	0,4943	8,57	0,0480	0,4119
Trave Acciaio 13-13a	41,75	0,0097	0,4042	15,39	0,0219	0,3368
Trave Acciaio 6-13	12,68	0,0751	0,9522	12,51	0,0634	0,7935
Trave Acciaio 6a-6	21,27	0,0232	0,4943	9,00	0,0458	0,4119
Trave Acciaio 14-14a	77,30	0,0052	0,4042	26,89	0,0125	0,3368
Trave Acciaio 7-14	18,74	0,0508	0,9522	18,93	0,0419	0,7935
Trave Acciaio 7a-7	50,39	0,0098	0,4943	16,97	0,0243	0,4119
Trave Acciaio 13a-14a	56,52	0,0153	0,8676	26,99	0,0268	0,7230
Trave Acciaio 8a-9a	54,35	0,0159	0,8668	26,52	0,0272	0,7223
Trave Acciaio 9a-10a	NS	0,0065	0,8668	57,07	0,0127	0,7223
Trave Acciaio 10a-11a	NS	0,0037	0,8668	NS	0,0071	0,7224
Trave Acciaio 11a-12a	NS	0,0033	0,8676	99,75	0,0072	0,7230
Trave Acciaio 12a-13a	NS	0,0064	0,8668	56,24	0,0128	0,7223
Trave Acciaio 6a-7a	52,96	0,0164	0,8676	24,25	0,0298	0,7230
Trave Acciaio 1a-2a	53,39	0,0162	0,8668	24,88	0,0290	0,7223
I .	1	I	I	1	I	I .

Consulence.	Consul	lente:
-------------	--------	--------

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 116 di 127

Proponente: INE FICURINIA S.R.L

Travi (AC) - Verifiche di deformabilità allo SLE

Ιdτ	Ca	arichi Permanenti -	⊦ Variabili		Carichi Var	iabili
Adir	cs	δ _{max}	δ_{amm}	CS	δ _{max}	δ _{amm}
		[cm]	[cm]		[cm]	[cm]
Trave Acciaio 2a-3a	NS	0,0059	0,8668	61,99	0,0117	0,7223
Trave Acciaio 3a-4a	NS	0,0030	0,8668	NS	0,0068	0,7224
Trave Acciaio 4a-5a	NS	0,0031	0,8676	NS	0,0062	0,7230
Trave Acciaio 5a-6a	NS	0,0054	0,8668	60,75	0,0119	0,7223

LEGENDA:

Id_{Tr} Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato.

Coefficiente di sicurezza ([NS] = Non Significativo se $CS \ge 100$; [VNR] = Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] = eccezionale; [S] = sismica; [N] = sismica non lineare).

 δ_{max} Spostamento allo SLE.

δ_{amm} Spostamento Differenziale ammissibile.

PILASTRI (AC) - VERIFICHE A PRESSOFLESSIONE DEVIATA (Elevazione) allo SLU

Pilastri (AC) - Verifiche a pressoflessione deviata

Pilastro	%L _{LI}	N _{Ed}	V _{Ed}	M _{Ed,3}	M _{Ed,2}	CS	Tp Vr	max/m in	M _{c,Rd}	$V_{c,Rd}$	ρ	A _v	t _w	N _{pl,Rd}
	[%]	[N]	[N]	[N·m]	[N·m]				[N·m]	[N]		[mm²]	[mm]	[N]
ano Terra									<u> </u>					
Pilastro Acciaio 8	0%	883	-59	_	-61	55.77[PLS	Max	3.402	46.259	0,000	358	6,4	160.25
			-8			S]		Min	3.402	46.259	0,000	358	6,4	
	50,0%	720	7	-19	_	NS	PLS	Max	3.402	46.259	0,000	358	6,4	160.25
			-25					Min	3.402	46.259	0,000	358	6,4	
	100%	-953	71	-166	-100	NS	PLS	Max	3.402	46.259	0,000	358	6,4	160.25
			-176	-100 -100			Min	3.402	46.259	0,000	358	6,4		
Pilastro Acciaio 1	0%	278	237	823	72	10.36[PLS	Max	3.402	46.259	0,000	358	6,4	160.25
			-1.334	5_5		V]		Min	3.402	46.259	0,000	358	6,4	
	50,0%	245	237	218	-35	91.30[PLS	Max	3.402	46.259	0,000	358	6,4	160.25
			-1.334			V]		Min	3.402	46.259	0,000	358	6,4	
	100%	52	245	-408	-148	28.51[PLS	Max	3.402	46.259	0,000	358	6,4	160.25
		,_	-1.344			V]		Min	3.402	46.259	0,000	358	6,4	
Pilastro Acciaio 9	0%	-1.884	-	308	-2	53.86[PLS	Max	3.402	46.259	0,000	358	6,4	160.25
		,	-255		_	V]		Min	3.402	46.259	0,000	358	6,4	

Consulente:
Dott. Ing. Giuseppe Furnari
Viale del Rotolo, 44
95126 Catania

Conculonto

RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0 Pag. 117 di 127

Proponente: INE FICURINIA S.R.L

Pilastri (AC) - Verifiche a pressoflessione deviata

Pilastro	%L _{LI}	N _{Ed}	V_{Ed}	M _{Ed,3}	M _{Ed,2}	cs	Tp Vr	max/m in	M _{c,Rd}	$V_{c,Rd}$	ρ	A _v	t _w	$N_{pl,Rd}$
	[%]	[N]	[N]	[N·m]	[N·m]				[N·m]	[N]		[mm²]	[mm]	[N]
			28				PLS	Max	3.402	46.259	0,000	358	6,4	
	50,0%	1.077	-45	-19	-	NS		Min	3.402	46.259	0,000	358	6,4	160.25
			-1			16.43[PLS	Max	3.402	46.259	0,000	358	6,4	
	100%	-2.308	-232	-207	-	V]		Min	3.402	46.259	0,000	358	6,4	160.25
Pilastro Acciaio 10	00/	644	-	145		23.46[PLS	Max	3.402	46.259	0,000	358	6,4	160.25
Pilastio Accidio 10	0%	044	-144	145	-	V]		Min	3.402	46.259	0,000	358	6,4	160.25
	F0.00/	2 220	2	44		77.32[PLS	Max	3.402	46.259	0,000	358	6,4	160.25
	50,0%	-2.229	-248	44	-	V]		Min	3.402	46.259	0,000	358	6,4	160.25
	100%	489	-	-162		21.00[PLS	Max	3.402	46.259	0,000	358	6,4	160.25
	10070	103	-144	102		V]		Min	3.402	46.259	0,000	358	6,4	100.23
Pilastro Acciaio 11	0%	-1.875	-	333	_	10.22[PLS	Max	3.402	46.259	0,000	358	6,4	160.25
		21070	-276			V]		Min	3.402	46.259	0,000	358	6,4	100.20
	50,0%	-2.237	-	45	_	75.60[PLS	Max	3.402	46.259	0,000	358	6,4	160.25
	30,070	2.297	-251			V]		Min	3.402	46.259	0,000	358	6,4	100.20
	100%	-2.030	-	-255	_	13.34[PLS	Max	3.402	46.259	0,000	358	6,4	160.25
			-276			V]		Min	3.402	46.259	0,000	358	6,4	
Pilastro Acciaio 12	0%	644	-	145	-	23.46[PLS	Max	3.402	46.259	0,000	358	6,4	160.25
			-144			V]		Min	3.402	46.259	0,000	358	6,4	
	50,0%	-2.229	-2	44	-	77.32[PLS	Max	3.402	46.259	0,000	358	6,4	160.25
			-248			V]		Min	3.402	46.259	0,000	358	6,4	
	100%	489	-	-162	_	21.00[PLS	Max	3.402	46.259	0,000	358	6,4	160.25
			-144			V]		Min	3.402	46.259	0,000	358	6,4	
Pilastro Acciaio 13	0%	-1.885	-	308	2	53.86[PLS	Max	3.402	46.259	0,000	358	6,4	160.25
			-255			V]		Min	3.402	46.259	0,000	358	6,4	
	50,0%	1.077	24	-19	-	NS	PLS	Max	3.402	46.259	0,000	358	6,4	160.2
			-46					Min	3.402	46.259	0,000	358	6,4	
	100%	-2.309	1	-207		16.43[PLS	Max	3.402	46.259	0,000	358	6,4	160.25
			-232			V]		Min	3.402	46.259	0,000	358	6,4	
Pilastro Acciaio 14	0%	882	-43	-	61	55.77[PLS	Max	3.402	46.259	0,000	358	6,4	160.2
			-8			S]		Min	3.402	46.259	0,000	358	6,4	
	50,0%	719	23	-19	-	NS	PLS	Max	3.402	46.259	0,000	358	6,4	160.25

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 118 di 127

Proponente: INE FICURINIA S.R.L

Pilastri (AC) - Verifiche a pressoflessione deviata

Pilastro	%L _{LI}	N _{Ed}	V _{Ed}	M _{Ed,3}	M _{Ed,2}	cs	Tp Vr	max/m in	M _{c,Rd}	$V_{c,Rd}$	ρ	A _v	t _w	N _{pl,Rd}
	[%]	[N]	[N]	[N·m]	[N·m]				[N·m]	[N]		[mm²]	[mm]	[N]
			-25					Min	3.402	46.259	0,000	358	6,4	
	100%	-954	-71	-166	100	NS	PLS	Max	3.402	46.259	0,000	358	6,4	160.25
	100%	-954	-176	-100	100	INS		Min	3.402	46.259	0,000	358	6,4	160.23
			2			2.64[V	PLS	Max	3.402	46.259	0,000	358	6,4	
Pilastro Acciaio 2	0%	-427	-2.206	1.290	-]		Min	3.402	46.259	0,000	358	6,4	160.2
	F0 00/	171	3	200		11.12[PLS	Max	3.402	46.259	0,000	358	6,4	160.2
	50,0%	-171	-2.179	306	-	V]		Min	3.402	46.259	0,000	358	6,4	160.2
	100,0	-478	2	-717	-1	13.26[PLS	Max	3.402	46.259	0,000	358	6,4	160.2
	%	-470	-2.206	-/1/	-1	V]		Min	3.402	46.259	0,000	358	6,4	100.2
Pilastro Acciaio 3	0%	2	3	1.387		2.45[V	PLS	Max	3.402	46.259	0,000	358	6,4	160.2
ilastro Accialo 5	070	2	-2.316	1.507]		Min	3.402	46.259	0,000	358	6,4	100.2
	50,0%	-30	3	333		10.22[PLS	Max	3.402	46.259	0,000	358	6,4	160.2
	30,070	-30	-2.316	333		V]		Min	3.402	46.259	0,000	358	6,4	100.2
	100,0	-338	3	-755	-3	12.17[PLS	Max	3.402	46.259	0,000	358	6,4	160.2
	%	-330	-2.344	-/33	-5	V]		Min	3.402	46.259	0,000	358	6,4	100.2
Pilastro Acciaio 4	0%	15	-	1.396		2.44[V	PLS	Max	3.402	46.259	0,000	358	6,4	160.2
ilasti o Accialo 4	070	13	-2.324	1.550]		Min	3.402	46.259	0,000	358	6,4	100.2
	50,0%	-17	-	339		10.04[PLS	Max	3.402	46.259	0,000	358	6,4	160.2
	30,070	-17	-2.324	339		V]		Min	3.402	46.259	0,000	358	6,4	100.2
	100,0	-326	-	-753		4.52[V	PLS	Max	3.402	46.259	0,000	358	6,4	160.2
	%	-320	-2.350	-/33]		Min	3.402	46.259	0,000	358	6,4	100.2
Pilastro Acciaio 7	0%	279	-236	823	-72	10.36[PLS	Max	3.402	46.259	0,000	358	6,4	160.2
nasa o Accidio /	0.70	213	-1.334	023	-72	V]		Min	3.402	46.259	0,000	358	6,4	100.2
	50,0%	724	61	85		40.02[PLS	Max	3.402	46.259	0,000	358	6,4	160.2
	30,0 70	727	290	0.5		S]		Min	3.402	46.259	0,000	358	6,4	100.2
	100,0	53	-244	-408	148	28.51[PLS	Max	3.402	46.259	0,000	358	6,4	160.2
	%	55	-1.344	100	110	V]		Min	3.402	46.259	0,000	358	6,4	100.2
Pilastro Acciaio 6	0%	-427	-1	1.290		2.64[V	PLS	Max	3.402	46.259	0,000	358	6,4	160.2
	0,0	127	-2.206	1.250]		Min	3.402	46.259	0,000	358	6,4	100.2
	50,0%	-171	-2	306		11.12[PLS	Max	3.402	46.259	0,000	358	6,4	160.2
	30,0 70	1/1	-2.179	500	_	V]		Min	3.402	46.259	0,000	358	6,4	100.2

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 119 di 127

Proponente: INE FICURINIA S.R.L

Pilastri (AC) - Verifiche a pressoflessione deviata

Pilastro	%L _{LI}	N _{Ed}	V _{Ed}	M _{Ed,3}	M _{Ed,2}	cs	Tp Vr	max/m in	M _{c,Rd}	V _{c,Rd}	ρ	A _v	t _w	N _{pl,Rd}
	[%]	[N]	[N]	[N·m]	[N·m]				[N·m]	[N]		[mm²]	[mm]	[N]
	100,0	-478	-1	-717	_	4.74[V	PLS	Max	3.402	46.259	0,000	358	6,4	160.258
	%		-2.206]		Min	3.402	46.259	0,000	358	6,4	
Pilastro Acciaio 5	0%	2	-3	1.387		2.45[V	PLS	Max	3.402	46.259	0,000	358	6,4	160.258
Thustro Accidio 5	0,0	-	-2.318	1.507]		Min	3.402	46.259	0,000	358	6,4	
	50,0%	-30	-3	333		10.22[PLS	Max	3.402	46.259	0,000	358	6,4	160.258
	30,070	50	-2.318	333		V]		Min	3.402	46.259	0,000	358	6,4	100.230
	100,0	-338	-3	-757	3	12.11[PLS	Max	3.402	46.259	0,000	358	6,4	160.258
	%	330	-2.346	737	3	V]		Min	3.402	46.259	0,000	358	6,4	100.250

LEGENDA:

Pilastro Identificativo del pilastro. L'eventuale lettera tra parentesi distingue i diversi tratti della pilastrata al livello considerato.

%Lu Posizione della sezione per la quale vengono forniti i valori di verifica, valutata come % della lunghezza libera d'inflessione (LL), a partire dall'estremo iniziale.

N_{Ed} Sforzo normale di progetto.

 $\mathbf{V}_{\mathbf{Ed}}$ Taglio di progetto utilizzato per il calcolo di ρ .

M_{Ed,3} Momento flettente di progetto intorno a 3.

 $\mathbf{M}_{\mathbf{Ed,2}}$ Momento flettente di progetto intorno a 2.

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] =

eccezionale; [S] = sismica; [N] = sismica non lineare).

Tp Vr Tipo di verifica considerata: "PLS" = con Modulo di resistenza plastico; "ELA" = con modulo di resistenza elastico; "EFF" = con modulo di resistenza efficace.

max/mi [max] = valore per la verifica con modulo di resistenza maggiore; [min] = valore per la verifica con modulo di resistenza minore.

n

M_{c,Rd} Momento resistente.

V_{c,Rd} Taglio resistente.

Av Area resistente a taglio.

t_w Spessore anima.

N_{pl,Rd} Resistenza plastica a Sforzo Normale.

Consulente:

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0 Pag. 120 di 127

Proponente: INE FICURINIA S.R.L

PILASTRI (AC) - VERIFICHE A TAGLIO (Elevazione) per pressoflessione deviata allo SLU

Pilastri (AC) - Verifiche a taglio

Pilastro	%L _{LI}	CS	A _v	ТТ,Ed	V _{Ed}	V _{c,Rd}	P. Vrf.	Ω_{Min}
	[%]		[mm²]	[N/mm²]	[N]	[N]		
Piano Terra								
Pilastro Acciaio 8	0%	NS	358	0,19	-176	46.190	Piano XX	1,00
	50,0%	NS	358	0,19	-176	46.190	Piano XX	1,00
	100%	NS	358	0,19	-176	46.190	Piano XX	1,00
Pilastro Acciaio 1	0%	34,30	358	0,44	-1.344	46.103	Piano XX	1,00
	50,0%	34,30	358	0,44	-1.344	46.103	Piano XX	1,00
	100%	34,30	358	0,44	-1.344	46.103	Piano XX	1,00
Pilastro Acciaio 9	0%	NS	358	0,00	-255	46.259	Piano XX	1,00
	50,0%	NS	358	0,00	-255	46.259	Piano XX	1,00
	100%	NS	358	0,00	-255	46.259	Piano XX	1,00
Pilastro Acciaio 10	0%	NS	358	0,00	-273	46.259	Piano XX	1,00
	50,0%	NS	358	0,00	-273	46.259	Piano XX	1,00
	100%	NS	358	0,00	-273	46.259	Piano XX	1,00
Pilastro Acciaio 11	0%	NS	358	0,00	-276	46.259	Piano XX	1,00
	50,0%	NS	358	0,00	-276	46.259	Piano XX	1,00
	100%	NS	358	0,00	-276	46.259	Piano XX	1,00
Pilastro Acciaio 12	0%	NS	358	0,00	-273	46.259	Piano XX	1,00
	50,0%	NS	358	0,00	-273	46.259	Piano XX	1,00
	100%	NS	358	0,00	-273	46.259	Piano XX	1,00
Pilastro Acciaio 13	0%	NS	358	0,00	-255	46.259	Piano XX	1,00
	50,0%	NS	358	0,00	-255	46.259	Piano XX	1,00
	100%	NS	358	0,00	-255	46.259	Piano XX	1,00
Pilastro Acciaio 14	0%	NS	358	0,19	-176	46.190	Piano XX	1,00
	50,0%	NS	358	0,19	-176	46.190	Piano XX	1,00
	100%	NS	358	0,19	-176	46.190	Piano XX	1,00
Pilastro Acciaio 2	0%	20,95	358	0,10	-2.206	46.224	Piano XX	1,00
	50,0%	20,95	358	0,10	-2.206	46.224	Piano XX	1,00
	100,0%	20,95	358	0,10	-2.206	46.224	Piano XX	1,00
Pilastro Acciaio 3	0%	19,74	358	0,00	-2.344	46.259	Piano XX	1,00
	50,0%	19,74	358	0,00	-2.344	46.259	Piano XX	1,00

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania

RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0

Pag. 121 di 127

Proponente: INE FICURINIA S.R.L

Pilastri (AC) - Verifiche a taglio

Pilastro	%L _{LI}	CS	A _v	τ _{τ,Ed}	V _{Ed}	V _{c,Rd}	P. Vrf.	Ω_{Min}
	[%]		[mm²]	[N/mm²]	[N]	[N]		
	100,0%	19,74	358	0,00	-2.344	46.259	Piano XX	1,00
Pilastro Acciaio 4	0%	19,68	358	0,00	-2.350	46.259	Piano XX	1,00
	50,0%	19,68	358	0,00	-2.350	46.259	Piano XX	1,00
	100,0%	19,68	358	0,00	-2.350	46.259	Piano XX	1,00
Pilastro Acciaio 7	0%	34,30	358	0,44	-1.344	46.103	Piano XX	1,00
	50,0%	34,30	358	0,44	-1.344	46.103	Piano XX	1,00
	100,0%	34,30	358	0,44	-1.344	46.103	Piano XX	1,00
Pilastro Acciaio 6	0%	20,95	358	0,10	-2.206	46.224	Piano XX	1,00
	50,0%	20,95	358	0,10	-2.206	46.224	Piano XX	1,00
	100,0%	20,95	358	0,10	-2.206	46.224	Piano XX	1,00
Pilastro Acciaio 5	0%	19,72	358	0,00	-2.346	46.259	Piano XX	1,00
	50,0%	19,72	358	0,00	-2.346	46.259	Piano XX	1,00
	100,0%	19,72	358	0,00	-2.346	46.259	Piano XX	1,00

LEGENDA:

Pilastro Identificativo del pilastro. L'eventuale lettera tra parentesi distingue i diversi tratti della pilastrata al livello considerato.

%Lu Posizione della sezione per la quale vengono forniti i valori di verifica, valutata come % della lunghezza libera d'inflessione (LL), a partire dall'estremo iniziale.

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] = eccezionale; [S] = sismica; [N] = sismica non lineare).

 $\mathbf{A_v}$ Area resistente a taglio.

ττ,Ed Tensione tangenziale di calcolo per torsione.

V_{Ed} Taglio di progetto.

V_{c,Rd} Taglio resistente.

P. Vrf. Piano di minima resistenza.

 Ω_{Min} Rapporto minimo momento plastico/momento progetto travi concorrenti.

PILASTRI (AC) - VERIFICHE INSTABILITÀ A PRESSOFLESSIONE DEVIATA (Elevazione)

Pilastri (AC) - Verifiche instabilità a pressoflessione deviata

Pilastro	N _{eq,Ed}	M _{eq,Ed,3}	M _{eq,Ed,2}	CS	P. Vrf.	L _{Cr}	Dir	L _N	λιτ	α	ф	χ	β	k c	χιτ	N _{cr}
	[N]	[N·m]	[N·m]			[m]		[m]								[N]
Piano Terra																
Pilastro Acciaio 8	690	-30	-64	28,24	Piano YY	2,13	х-х	2,13	0,119	0,210	1,064	0,678	1,000	0,612	1,000	174.511
				·	YY		у-у	2,13	0,116	0,210	1,064	0,678	1,000	0,643	1,000	

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A	Pag. 122 di 127	

Proponente: INE FICURINIA S.R.L

Pilastri (AC) - Verifiche instabilità a pressoflessione deviata

[N]	[N·m]																							
	[iviii]	[N·m]			[m]		[m]								[N]									
				Piano		х-х	0,91	0,079	0,210	0,611	0,948	1,000	0,673	1,000										
245	338	338	-5/	8,47	YY	0,91	у-у	0,91	0,079	0,210	0,611	0,948	1,000	0,668	1,000	956.092								
				Diano		x-x	2,13	0,116	0,210	1,064	0,678	1,000	0,636	1,000										
1.062	-45	68	22,12	YY	2,13	у-у	2,13	0,116	0,210	1,064	0,678	1,000	0,621	1,000	174.511									
				Diama		X-X	2,13	0,116	0,210	1,064	0,678	1,000	0,633	1,000										
1.020	-48	67	22,06	YY	2,13	V-V	2.13	0.116	0.210	1.064	0.678	1.000	0.628	1.000	174.511									
							·		, i	i i	·	, i	<u>'</u>											
1.002	-46	67	22,45	Piano YY	2,13				, i	,	Ĺ	,	'	, ·	174.511									
							·		, i	,	·													
1.020	-48	67	22,06	Piano YY	2,13		·		ĺ	ĺ	·	,	'	, ·	174.511									
							·		, i	i i	Ĺ	, i	<u>'</u>	, ·										
1.074	-43	-68	22,34	22,34 Piano YY										/ / 1		·		, i	,	Ĺ	,	'	, ·	174.511
						у-у	·		, i	ĺ	Ĺ		<u>'</u>	, ·										
686	-30	64	28,28 Piano	2,13	х-х	2,13	0,119	0,210	1,064	0,678	1,000	0,612	1,000	174.511										
								у-у	2,13	0,116	0,210	1,064	0,678	1,000	0,643	1,000								
1.100	184	18	14,66	4.66 Piano	0,91	х-х	0,91	0,104	0,210	0,611	0,948	1,000	0,860	1,000	956.092									
				YY	,	у-у	0,91	0,076	0,210	0,611	0,948	1,000	0,630	1,000										
1.116	190	18	14.27	Piano	0.91	х-х	0,91	0,104	0,210	0,611	0,948	1,000	0,860	1,000	1,000 956.092									
			,	YY	1,5 =	у-у	0,91	0,079	0,210	0,611	0,948	1,000	0,658	1,000										
1 122	190	17	14 32	Piano	0.91	х-х	0,91	0,114	0,210	0,611	0,948	1,000	0,940	1,000	956.092									
1,122	150	1,	11,52	YY	0,51	у-у	0,91	0,079	0,210	0,611	0,948	1,000	0,664	1,000	330.032									
246	220	F7	0.47	Piano	0.01	х-х	0,91	0,079	0,210	0,611	0,948	1,000	0,673	1,000	056 007									
240	338	5/	0,4/	YY	0,91	у-у	0,91	0,079	0,210	0,611	0,948	1,000	0,668	1,000	956.092									
				Piano		х-х	0,91	0,104	0,210	0,611	0,948	1,000	0,860	1,000										
1.100	184	-18	14,66 YY	14 66	14 66	14 66	14,66	14,66	1 -	0,91	у-у	0,91	0,076	0,210	0,611	0,948	1,000	0,630	1,000	956.092				
				Piano		х-х	0,91	0,104	0,210	0,611	0,948	1,000	0,860	1,000										
1.116	190	190 18	14,27	YY	0,91	V-V	0,91	0,079	0,210	0,611	0,948	1,000	0,664	1,000	956.092									
	1.020 1.002 1.020 1.074 686 1.100 1.116 1.122 246 1.100	1.020 -48 1.002 -46 1.020 -48 1.074 -43 686 -30 1.100 184 1.116 190 1.122 190 246 338 1.100 184	1.020 -48 67 1.002 -46 67 1.020 -48 67 1.074 -43 -68 686 -30 64 1.100 184 18 1.116 190 18 1.122 190 17 246 338 57 1.100 184 -18	1.020 -48 67 22,06 1.002 -46 67 22,45 1.020 -48 67 22,06 1.074 -43 -68 22,34 686 -30 64 28,28 1.100 184 18 14,66 1.116 190 18 14,27 1.122 190 17 14,32 246 338 57 8,47 1.100 184 -18 14,66	1.020 -48 67 22,06 Piano YY 1.002 -46 67 22,45 Piano YY 1.020 -48 67 22,06 Piano YY 1.074 -43 -68 22,34 Piano YY 1.100 184 18 14,66 Piano YY 1.116 190 18 14,27 Piano YY 1.100 184 -18 14,66 Piano YY 1.100 184 -18 14,66 Piano YY 1.110 184 -18 14,66 Piano YY 1.110 184 -18 14,66 Piano YY	1.062	1.062	1.062	1.062	1.062 -45 68 22,12 Piano YY 2,13 0,116 0,210 1.020 -48 67 22,06 Piano YY 2,13 0,116 0,210 1.020 -46 67 22,45 Piano YY 2,13 0,116 0,210 1.020 -48 67 22,06 Piano YY 2,13 0,116 0,210 1.020 -48 67 22,06 Piano YY 2,13 0,116 0,210 1.020 -48 67 22,06 Piano YY 2,13 0,116 0,210 1.020 -48 67 22,06 Piano YY 2,13 0,116 0,210 1.074 -43 -68 22,34 Piano YY 2,13 0,116 0,210 1.074 -43 -68 22,34 Piano YY 2,13 0,116 0,210 1.075 -30 64 28,28 Piano YY 2,13 0,116 0,210 1.100 184 18 14,66 Piano YY 0,91 0,076 0,210 1.116 190 18 14,27 Piano YY 0,91 0,079 0,210 246 338 57 8,47 Piano YY 0,91 0,079 0,210 1.100 184 -18 14,66 Piano YY 0,91	1.062 -45 68 22,12 Piano YY 2,13 0,116 0,210 1,064 1.020 -48 67 22,06 Piano YY 2,13 0,116 0,210 1,064 1.021 -46 67 22,45 Piano YY 2,13 0,116 0,210 1,064 1.022 -46 67 22,45 Piano YY 2,13 0,116 0,210 1,064 1.024 -48 67 22,06 Piano YY 2,13 0,116 0,210 1,064 1.025 -48 67 22,06 Piano YY 2,13 0,116 0,210 1,064 1.026 -48 67 22,06 Piano YY 2,13 0,116 0,210 1,064 1.027 -48 67 22,06 Piano YY 2,13 0,116 0,210 1,064 1.028 -48 67 22,06 Piano YY 2,13 0,116 0,210 1,064 1.029 -48 67 22,06 Piano YY 2,13 0,116 0,210 1,064 1.020 -48 67 22,06 Piano YY 2,13 0,116 0,210 1,064 1.020 -48 67 22,06 Piano YY 2,13 0,116 0,210 1,064 1.020 -48 67 22,06 Piano YY 2,13 0,116 0,210 1,064 1.020 -48 67 22,06 Piano YY 2,13 0,116 0,210 1,064 1.021 0,064 1.022 0,064 0,064 0,064 0,064 0,064 0,064 0,064 0,064 0,064 0,064 0,064 0 1.024 0,064 0,	1.062	1.062	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.062 -45 68 22,12 Piano YY 2,13 0,116 0,210 1,064 0,678 1,000 0,621 1,000 1.020 -48 67 22,06 Piano YY 2,13 0,116 0,210 1,064 0,678 1,000 0,621 1,000 1.002 -46 67 22,45 Piano YY 2,13 0,116 0,210 1,064 0,678 1,000 0,628 1,000 1.002 -48 67 22,45 Piano YY 2,13 0,116 0,210 1,064 0,678 1,000 0,628 1,000 1.020 -48 67 22,45 Piano YY 2,13 0,116 0,210 1,064 0,678 1,000 0,628 1,000 1.004 -48 67 22,06 Piano YY 2,13 0,116 0,210 1,064 0,678 1,000 0,628 1,000 1.074 -43 -68 22,34 Piano YY 2,13 0,116 0,210 1,064 0,678 1,000 0,628 1,000 1.074 -43 -68 22,34 Piano YY 2,13 0,116 0,210 1,064 0,678 1,000 0,622 1,000 1.074 -43 -68 22,34 Piano YY 2,13 0,116 0,210 1,064 0,678 1,000 0,622 1,000 1.074 -43 -68 2,34 Piano YY 2,13 0,116 0,210 1,064 0,678 1,000 0,622 1,000 1.074 -43 -68 2,34 Piano YY 2,13 0,116 0,210 1,064 0,678 1,000 0,622 1,000 1.074 -43 -68 2,34 Piano YY 2,13 0,116 0,210 1,064 0,678 1,000 0,622 1,000 1.074 -43 -68 2,34 Piano YY 2,13 0,116 0,210 1,064 0,678 1,000 0,622 1,000 1.075 -40									

LEGENDA:

Pilastro Identificativo del pilastro. L'eventuale lettera tra parentesi distingue i diversi tratti della pilastrata al livello considerato.

Neq,Ed
 Sforzo Normale equivalente di progetto.
 Meq,Ed,3
 Momento equivalente di progetto intorno a 3.
 Meq,Ed,2
 Momento equivalente di progetto intorno a 2.

Consulente: Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M	
Codice elaborato: RS06REL092A	Pag. 123 di 127	

Proponente: INE FICURINIA S.R.L

Pilastri (AC) - Verifiche instabilità a pressoflessione deviata

Pilastro	$N_{eq,Ed}$	M _{eq,Ed,3}	M _{eq,Ed,2}	CS	P. Vrf.	L _{Cr}	Dir	L _N	λιτ	α	ф	χ	β	k _c	χιτ	N _{cr}
	[N]	[N·m]	[N·m]			[m]		[m]								[N]

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] = eccezionale; [S] = sismica; [N] = sismica non lineare).

P. Vrf. Piano di minima resistenza.

Lunghezza di libera inflessione laterale, misurata tra due ritegni torsionali successivi.

L_N Luce libera di inflessione.

 λ_{LT} Coefficiente di snellezza normalizzata (per il calcolo di Φ_{LT}).

α Fattore di imperfezione.

φ Coefficiente φ (per il calcolo di χ).

χ Coefficiente di riduzione per instabilità a compressione

 $oldsymbol{\beta}$ Coefficiente di riduzione della luce libera di inflessione.

 $\mathbf{k_c}$ Coefficiente per il calcolo di χ_{LT}

χ_{LT} Coefficiente di riduzione ai fini dell'instabilità flessotorsionale.

N_{cr} Sforzo Normale Critico Euleriano.

PILASTRI - VERIFICA DI SNELLEZZA (Elevazione)

Pilastri - VERIFICA DI SNELLEZZA

Id	P/S	L ₀	i	λο	λο,lim	CS					
		[mm]	[mm]								
Piano Terra											
Pilastro Acciaio 8	-	2130	23,10	92	200	2,17					
Pilastro Acciaio 1	-	910	23,10	39	200	5,13					
Pilastro Acciaio 9	-	2130	23,10	92	200	2,17					
Pilastro Acciaio 10	-	2130	23,10	92	200	2,17					
Pilastro Acciaio 11	-	2130	23,10	92	200	2,17					
Pilastro Acciaio 12	-	2130	23,10	92	200	2,17					
Pilastro Acciaio 13	-	2130	23,10	92	200	2,17					
Pilastro Acciaio 14	-	2130	23,10	92	200	2,17					
Pilastro Acciaio 2	-	910	23,10	39	200	5,13					
Pilastro Acciaio 3	-	910	23,10	39	200	5,13					
Pilastro Acciaio 4	-	910	23,10	39	200	5,13					
Pilastro Acciaio 7	-	910	23,10	39	200	5,13					
Pilastro Acciaio 6	-	910	23,10	39	200	5,13					
Pilastro Acciaio 5	-	910	23,10	39	200	5,13					

Consulente:	
Dott. Ing. Giuseppe Furnari	RELAZIONE DI CALCOLO - TABULATI -
Viale del Rotolo, 44	STRUTTURA DI SUPPORTO FV DA 24M
95126 Catania	

Codice elaborato: RS06REL092A0 Pag. 124 di 127

Proponente: INE FICURINIA S.R.L

Pilastri - VERIFICA DI SNELLEZZA

Id	P/S	Lo	i	λο	λ _{0,lim}	CS
		[mm]	[mm]			

LEGENDA:

Id Identificativo dell'elemento.

P/S Tipologia trave acciaio: Principale (P) o Secondaria (S)

Lunghezza di inflessione

i Raggio d'inerzia

λο Snellezza

λο,lim Snellezza limite

CS Coefficiente di sicurezza ([NS] = Non Significativo per valori di CS >= 100; [VNR]= Verifica Non Richiesta).

11 - VERIFICA ALLO SFILAMENTO

Si esegue la verifica a sfilamento del palo considerando l'azione del vento $p=882\ N/m^2$ (pressione normale) e le caratteristiche del terreno.

La forza agente sull'aria di influenza sarà: F= 882x(2,73-0,40)x2,17/10=445,95 daN

L'azione agisce in un telaio con 2 colonne quindi a singola colonna l'azione sarà:445,95/2=222,97 daN

Ogni colonna viene ancorata con 4 inserti di Ø20mm infissati nel terreno per una profondità di circa 1,5m,

in cui l'azione a singolo inserto sarà di 222,97/4= **56 daN**.

Il punto di applicazione della forza si considera nella quota intermedia a 1,37m.

Dalle indagini Geodiagnostiche vengono estrapolati i dati del "Settore 4" in cui i valori rappresentano una stratigrafia peggiore rispetto a tutti gli altri punti rilevati, questo ci consente di sviluppare le verifiche delle strutture cautelative in tutta l'area di progetto.

Secondo il livello di progettazione definitivo si è proceduto nelle verifiche secondo i valori indicati nella relazione.

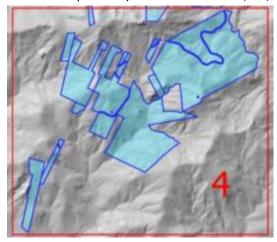


Figure 3: Settore 4

Il "Settore 4" include tutte le aree della parte centro-meridionale, appartenenti anch'esse al bacino del fiume Gornalunga. Sotto il profilo geologico affiora in gran parte il Flysch Numidico, in minor misura le Argille Scagliose e le Marne ed arenarie Glauconitiche. La morfologia di queste aree è analoga a quelle del settore 3, con acclività di versante media, con ridotte porzioni a bassa acclività e diverse pari di pendio più

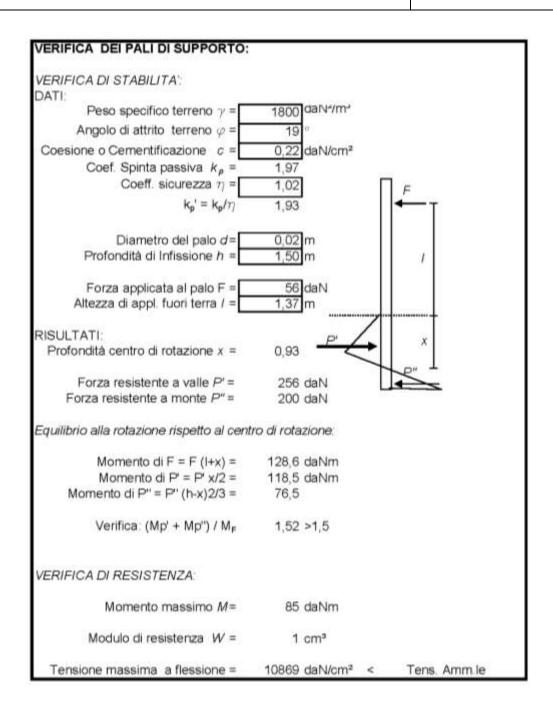
Sectore 37 con decrività di Versante media, con naocce porzioni a Bassa decrività e diverse pari di pendio pia								
2 ott. ing. Graseppe i armari	RELAZIONE DI CALCOLO - TABULATI - STRUTTURA DI SUPPORTO FV DA 24M							
Codice elaborato: RS06RFL092A		Pag 125 di 127						

Proponente: INE FICURINIA S.R.L

acclivi, oltre il 30%. Ad eccezione degli impluvi torrentizi e di alcune zone in dissesto, le aree sono idonee per l'impianto, anche qui tenendo in considerazione interventi di regimazione delle acque di ruscellamento.

I valori riscontrati attraverso le indagini sono mediamente più alti rispetto al settore 2 e di poco inferiori rispetto al settore 1 e, con riferimento alle NTC 2018, i terreni ricadono quasi esclusivamente nella Categoria B con valori di Vs,eq intorno a 400-440 m/s. Soltanto in un caso è stato evidenziato un sottosuolo di tipo C, in area di fondovalle.

I parametri fisico-meccanici rappresentativi del comportamento litotecnico medio dei terreni presenti sono leggermente superiori a quelli del settore 3, almeno per quanto riguarda il peso di volume e la Cu:


Peso per unità di volume
 Coesione non drenata
 Coesione efficace
 $\gamma = 18.0 \div 20,0 \text{ kN/m}^3$ $c_u = 80 \div 250 \text{ kPa}$ $c' = 10 \div 22 \text{ kPa}$

• Angolo di attrito efficace $\phi = 19^{\circ} \div 22^{\circ}$

• Coefficiente di permeabilità $k = 10^{-9} \div 10^{-6}$ m/s

Dott. Ing. Giuseppe Furnari Viale del Rotolo, 44 95126 Catania RELAZIONE DI CALCOLO - TABULATI -STRUTTURA DI SUPPORTO FV DA 24M

Codice elaborato: RS06REL092A0