

PRESIDENZA DEL CONSIGLIO DEI MINISTRI MESSA IN SICUREZZA DEL SISTEMA ACQUEDOTTISTICO DEL PESCHIERA PER L'APPROVVIGIONAMENTO IDRICO DI ROMA CAPITALE E DELL'AREA METROPOLITANA

IL COMMISSARIO STRAORDINARIO ING. PhD MASSIMO SESSA

SUB COMMISSARIO ING. MASSIMO PATERNOSTRO

IL RESPONSABILE DEL PROCEDIMENTO

Ing. PhD Alessia Delle Site

SUPPORTO AL RESPONSABILE DEL PROCEDIMENTO

Dott. Avv. Vittorio Gennari Sia.ra Claudia lacobelli Ing. Barnaba Paglia

CONSULENTE

Ing. Biagio Eramo

ELABORATO

A194PD R014 7

COD. ATO2 APE10116

SCALA DATA OTTOBRE 2019

AGG. N.	DATA	NOTE	FIRMA
1	DIC-19	AGGIORNAMENTO PER SIA	
2	MAR-20	AGGIORNAMENTO ELABORATI	
3	LUG-20	AGGIORNAMENTO ELABORATI	
4	GEN-21	AGGIORNAMENTO PARERE CSLLPP VOTO DEL 14/10/2020	
5	SETT-21	AGGIORNAMENTO ELABORATI	
6	GIU-22	AGGIORNAMENTO ELABORATI	
7	OTT-22	AGGIORNAMENTO UVP	

Progetto di sicurezza e ammodernamento dell'approvvigionamento della città metropolitana di Roma "Messa in sicurezza e ammodernamento del sistema idrico del Peschiera", L.n.108/2021, ex DL n.77/2021 art. 44 Allegato IV

NUOVO TRONCO SUPERIORE ACQUEDOTTO DEL PESCHIERA dalle Sorgenti alla Centrale di Salisano

CUP G33E17000400006

PROGETTO DEFINITIVO

RELAZIONE SULLA

GESTIONE DELLE MATERIE

TEAM DI PROGETTAZIONE

CAPO PROGETTO Ing. Angelo Marchetti

IDRAULICA

Ing. Eugenio Benedini

GEOLOGIA E IDROGEOLOGIA

Geol. Stefano Tosti

GEOTECNICA E STRUTTURE

Ing. Angelo Marchetti

ASPETTI AMBIENTALI

ng. Nicoletta Stracqualursi

ATTMTA' TECNICHE DI SUPPORTO Geom. Stefano Francisci Geol. Simone Febo Geol. Yousef Abu Sabha

ATTIVITA' PATRIMONIALI

Geom. Fabio Pompei

Hanno collaborato:

Ing. Geol. Eliseo Paolini

Ina. Viviana Angeloro

Ing. Matteo Botticelli

Ing. PhD Chiara Petrelli

Paes. Fabiola Gennaro Ing. Roberto Biagi

Ing. Claudio Lorusso

Geol. PhD Paolo Caporossi

Geol. Simone Febo

Geol. Filippo Arsie

Ing. Francesca Gizzi

Geom. Mirco Firinu Geom. Mariano Troisi

Geom. Valerio Di Carlo

Geom. Fabio Frezza

Geom. Irene Crialesi

Geom. Messito Roberto Zappalà

Geom. Veronica Ceccarelli

ACEA ATO 2 ACEA ELABORI S.P.A.

Nuovo Tronco Superiore dell'Acquedotto Peschiera

Progetto Definitivo

Relazione sulla gestione delle materie

INDICE

1		Pre	emessa	2
2		Asp	petti ambientali legati allo scavo delle gallerie	2
	2	.1	Indicazioni preliminari sulla gestione del materiale escavato	7
		2.1	.1 Riferimenti normativi	7
		2.1	.2 Indicazioni preliminari sulla gestione del materiale escavato	15
		2.1	.3 Bilancio materiali di scavo	23
		2.1	.4 Alternative per il riutilizzo del materiale escavato	25
3		Att	ività di gestione rifiuti e soggetti responsabili2	8
	3	.1	Generalità	28
	3	.2	Responsabilità	29
	3	.3	Deposito temporaneo	30
	3	. 4	Indicazioni per la corretta gestione dei rifiuti prodotti dalle attività di cantiere	31
	3	.5	Localizzazione delle aree per il deposito temporaneo	2
4		Ges	stione dei materiali3	34
	4	.1	Materiali di scavo	34
	4	.2	Analisi chimiche eseguite sulle terre e rocce da scavo gestite come rifiuto	36
	1	3	Produzione rifiuti	Ra

1 Premessa

La presente relazione si inserisce nell'ambito delle attività di progettazione definitiva per i lavori di realizzazione del "Nuovo Tronco Superiore dell'Acquedotto Peschiera" al fine di descrivere le modalità operative da adottare per il corretto utilizzo delle terre da roccia e scavo e dei materiali di risulta derivanti dalle lavorazioni previste individuando:

- Le diverse tipologie dei rifiuti producibili dalle attività di cantiere fissandone, dove possibile preliminarmente, le principali caratteristiche quali-quantitative;
- La definizione delle attività di gestione dei rifiuti;
- I soggetti interessati nelle attività di gestione dei rifiuti derivanti dall'esecuzione del progetto;
- Gli adempimenti normativi in capo ai soggetti responsabili individuati;
- Indicazioni tecniche per la corretta gestione dei rifiuti prodotti nella fase di esecuzione dell'opera.

Si rimanda, per ogni dettaglio, alle relazioni specialistiche e agli elaborati grafici. Gli interventi riguarderanno comporteranno lavorazioni che prevedono inevitabilmente la produzione di rifiuti, terre e rocce da scavo.

2 Aspetti ambientali legati allo scavo delle gallerie

Considerando l'orografia del territorio da attraversare, la nuova opera sarà realizzata prevalentemente in gallerie con elevate coperture caratterizzate da diametri e lunghezze differenti, in terreni e ammassi rocciosi con differenti caratteristiche litotecniche. Solo nei tratti di attraversamento della Piana di San Vittorino e del fondovalle dei fiumi Salto, Turano e Ariana le coperture saranno minori e l'acquedotto sarà costituito da tubazioni con funzionamento idraulico pressione. Tenendo quindi in considerazione le differenti condizioni in cui le gallerie devono essere realizzate, anche le modalità di scavo saranno a loro volta differenti. La gran parte delle gallerie verranno realizzate mediante lo scavo meccanizzato (con l'utilizzo di Tunnel Boring Machines) in grado di garantire i più elevati standard di sicurezza, precisione e velocità di scavo. Una serie di brevi tratti di collegamento tra manufatti esistenti e di progetto verranno realizzati "in tradizionale" mediante l'utilizzo di mezzi meccanici (martellone) e malte disgreganti; tutti i sottoattraversamenti del Fiume Salto,

del Fiume Turano e della Piana di Micciani verranno eseguiti mediante la tecnologia del microtunnelling. Alcuni manufatti particolari (pozzi di dissipazione PZ1 e PZ2) verranno realizzati, infine, con la tecnica dello scavo a foro cieco.

Con particolare riferimento alle tematiche ambientali, le tratte eseguite con la tecnologia del microtunnelling prevedono la miscelazione del terreno scavato con la bentonite e pertanto sarebbe estremamente complesso da un punto di vista tecnico ed ambientale riutilizzare il terreno stesso dopo lo scavo. Tale terreno, visti i modesti volumi e le problematiche accennate, verrà gestito, come dettagliatamente descritto nel prosieguo della presente relazione nel capitolo relativo alle indicazioni preliminari sulla gestione delle terre e rocce da scavo, come rifiuto.

Lo scavo meccanizzato di gallerie mediante TBM, invece, verrà realizzato con due differenti tecnologie di scavo:

- la tecnologia di scavo con Rock TBM per la galleria Monte Vecchio e per il Sorpasso di Salisano, la quale produrrà roccia frantumata già riutilizzabile come sottoprodotto (come dettagliatamente descritto in seguito) previa caratterizzazione;
- 2) la tecnologia di scavo con TBM-EPB, la quale richiede l'iniezione durante lo scavo di acqua e agenti chimici sotto forma di schiuma (processo di condizionamento), la quale produrrà roccia frantumata ma additivata con tali agenti chimici residui la quale potrà essere riutilizzata come sottoprodotto (come dettagliatamente descritto in seguito) previa caratterizzazione e previa studio dell'interazione tra gli agenti chimici iniettati e il terreno/roccia.

Nell'ambito dello scavo meccanizzato di gallerie con TBM-EPB, si definisce condizionamento l'insieme delle attività di iniezione e miscelazione del terreno durante lo scavo necessaria a modificare le caratteristiche fisiche e meccaniche dello stesso, per renderlo adatto all'applicazione della corretta pressione al fronte di scavo e agevolare le operazioni scavo (riduzione usura ed effetto clogging).

Gli agenti condizionanti più comunemente e largamente impiegati sono delle miscele acquose costituite da uno o più composti principali, i tensioattivi anionici, e da uno o più composti minoritari, gli additivi. I primi sono i composti schiumogeni, mentre i secondi possono avere diverse funzionalità, dall'incremento della semivita e della stabilità della

schiuma generata, alla conservazione delle caratteristiche chimico-fisiche del prodotto tal quale, quando si trova nelle zone di stoccaggio. A contatto con il terreno tali composti possono variarne le caratteristiche chimico-fisiche, così come possono modificare determinati equilibri biochimici.

Come dettagliatamente descritto nel capitolo relativo alle indicazioni sulla gestione delle terre e rocce da scavo, in base al DPR 120/2017 è possibile definire il terreno scavato quale sottoprodotto in funzione di determinate caratteristiche chimico-fisiche. Nel dettaglio, rispetto alla classe dei sottoprodotti, il DPR riporta quanto seque: il rispetto dei requisiti di qualità ambientale di cui all'articolo 184-bis, comma 1, lettera d), del decreto legislativo 3 aprile 2006, n. 152, per l'utilizzo delle terre e rocce da scavo come sottoprodotti, è garantito quando il contenuto di sostanze inquinanti all'interno delle terre e rocce da scavo, comprendenti anche gli additivi utilizzati per lo scavo, sia inferiore alle Concentrazioni Soglia di Contaminazione (CSC), di cui alle colonne A e B, Tabella 1, Allegato 5, al Titolo V, della Parte IV, del Decreto Legislativo 3 aprile 2006, n. 152, con riferimento alla specifica destinazione d'uso urbanistica, o ai valori di fondo naturali. Qualora per consentire le operazioni di scavo sia previsto l'utilizzo di additivi che contengono sostanze inquinanti non comprese nella citata tabella, il soggetto proponente fornisce all'Istituto Superiore di Sanità (ISS) e all'Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA) la documentazione tecnica necessaria a valutare il rispetto dei requisiti di qualità ambientale di cui all'articolo 4.

Parallelamente allo studio delle caratteristiche tecniche e chimiche dei singoli prodotti commerciali è stata eseguita una **sperimentazione** volta alla determinazione di un eventuale impatto ambientale degli additivi schiumogeni realmente impiegati nel tratto di scavo interessato (scavato quindi con EPB), utilizzando campioni di terreno prelevati direttamente in sito utilizzati per replicare il processo di condizionamento che avviene nella TBM durante lo scavo e preparare campioni di terreno rappresentativi del materiale estratto dalla camera di scavo sui quali eseguire prove di laboratorio chimiche ed ecotossicologiche. Lo studio degli impatti ambientali di tali agenti condizionanti non può prescindere dall'accoppiamento di uno <u>studio sulla biodegradazione e uno studio ecotossicologico</u>. La biodegradazione è un insieme di processi biochimici eseguiti da microrganismi presenti naturalmente nei comparti ambientali (terreno, acqua e aria) e

che si trovano nel terreno condizionato. Tali microrganismi sono principalmente batteri aerobici, cioè in grado di utilizzare l'ossigeno per ossidare (biodegradare) i composti organici presenti nel terreno (sia quelli naturalmente presenti nel suolo, sia quelli aggiunti dall'uomo, cioè i componenti degli agenti condizionanti).

È bene sottolineare che gli agenti condizionanti correntemente impiegati nello scavo meccanizzato sono generalmente considerati prontamente biodegradabili, ma la velocità del processo di biodegradazione (cinetica) dipende, a parità di concentrazione e tipologia di agente condizionante, da diversi fattori sito-specifici, quali il pH del suolo, la temperatura, la tipologia di microrganismi presenti nell'ambiente in cui avviene la biodegradazione, il tipo di terreno scavato, la presenza o meno di sostanze inquinanti e tossiche precedenti allo scavo, l'umidità e la quantità di ossigeno presente.

L'eco-tossicologia studia gli effetti misurabili e quantificabili (morte, inibizione della riproduzione ecc.) su organismi bersaglio, appartenenti a diversi comparti ambientali, causati dalla presenza di determinati quantità di composti o miscele con cui gli organismi sono messi a contatto (per via orale, per contatto, attraverso l'ambiente circostante, per via endovenosa ecc.). Lo studio eco-tossicologico può portare a ottenere dati sulla tossicità cronica o acuta di determinate sostanze su determinati organismi, a seconda delle condizioni operative (tempo di contatto e quantità di sostanza fornita all'organismo). Nel caso specifico degli agenti condizionanti, gli studi eco-tossicologici sono usualmente eseguiti entro le 48 ore, utilizzando dosi di prodotto a concentrazione decrescente, fino a che l'effetto misurabile causato sulla popolazione di organismi bersaglio si riduce oltre una determinata soglia (solitamente finché solo sul 50% o sul 20% della popolazione è possibile misurare un effetto dovuto alla potenziale tossicità dell'agente condizionante in esame). Tali studi, come quelli di biodegradazione, misurano direttamente gli effetti dovuti all'insieme di componenti presenti negli agenti condizionanti, prescindendo dalla conoscenza esatta dei formulati.

I componenti degli agenti condizionanti risultano particolarmente idro-solubili, conseguentemente gli organismi più interessati dalla loro presenza sono quelli acquatici. Gli organismi del comparto acquatico risultano essere gli organismi più delicati e sensibili alla presenza di qualsiasi composto organico potenzialmente tossico. Lo studio

eco-tossicologico è fortemente influenzato dalla tipologia di organismo considerato; quindi, la scelta della tipologia di test eco-tossicologico da eseguire è molto importante e dovrebbe essere funzione del destino finale del terreno condizionato.

In conclusione, lo studio è costituito da uno studio geotecnico preliminare necessario a stimare i prodotti e i dosaggi che verranno utilizzati durante lo scavo mediante l'esecuzione di prove di laboratorio e analisi in laboratori specificatamente attrezzati e da un successivo studio di carattere ambientale costituito da due parti integrate, lo studio di biodegradazione e lo studio eco-tossicologico.

Nel caso in esame, visto l'impiego della tecnologia TMB-EPB per lo scavo delle gallerie nelle tratte tra il Manufatto di Partenza del Nuovo Acquedotto e la Piana delle Molette (valle del Fosso Ariana), oltre alla caratterizzazione, è stato effettuato uno studio in collaborazione con Enti di Ricerca dotati di esperienza, personale ed apparecchiature necessari ad affrontare attività sperimentali sulle tematiche sopra descritte, al fine di confermare la possibilità e le modalità più idonee per l'utilizzo del materiale di scavo proveniente dallo scavo con TBM EPB come sottoprodotto, nel rispetto della normativa vigente.

Il protocollo sperimentale che viene seguito per tale studio prevede una prima caratterizzazione dei soli additivi schiumogeni diluiti in soluzione acquosa e un successivo studio della loro biodegradazione nel terreno condizionati secondo i parametri ottimali di condizionamento individuati in base agli studi e alle prove geotecniche preliminari. Più in dettaglio, è stato selezionato un numero congruo di additivi schiumogeni in funzione di una caratterizzazione iniziale, dei valori delle semivite delle schiume prodotte con tali additivi e delle caratteristiche ambientali deducibili dalle schede di sicurezza fornite dai vari produttori. Parallelamente alla caratterizzazione degli additivi schiumogeni è prevista la caratterizzazione del terreno vergine.

Successivamente, per eseguire le prove di biodegradazione, è stato predisposto un numero di campioni di terreno condizionato pari al numero di additivi selezionati+1 (il bianco del condizionamento, i.e. il terreno vergine miscelato con la sola acqua aggiunta usualmente durante il processo di condizionamento con additivo schiumogeno).

I condizionamenti, per ogni additivo schiumogeno, sono stati eseguiti adottando i parametri ottimali di condizionamento ricavati dai test geotecnici. Una volta allestito il set di campioni, si è proceduto ai campionamenti di terreno condizionato per la determinazione dei seguenti parametri: umidità, MBAS e cromatogramma in HPLC su estratto metanolico, TOC e risultati dei test eco-tossicologici su estratto acquoso, ottenuto secondo D.M. 05/02/1998, utilizzando come organismi bersaglio il Daphnia Magna e il Vibrio Fischeri, pH e specie anioniche (solfati, cloruri, nitrati e fluoruri). Parallelamente allo studio sul terreno condizionato, verranno raccolti i liquidi di percolazione per la determinazione degli stessi parametri monitorati nel terreno.

2.1 Indicazioni preliminari sulla gestione del materiale escavato

Nell'ambito della progettazione del nuovo acquedotto, che sarà realizzato prevalentemente in galleria, verrà prodotta una notevole quantità di materiale di scavo. In accordo a principi di sostenibilità ambientale, di economia circolare e di ottimizzazione dei costi di realizzazione dell'opera, il materiale derivante dalle attività di escavazione verrà gestito mediante le modalità di seguito riportate, in ordine decrescente di preferenza:

- riutilizzo in sito ex art.185, c.1 D.Lgs. 152/2006 (TUA);
- gestione come "sottoprodotto" ai sensi dell'art.184-bis del TUA e del DPR 120/2017;
- gestione come "rifiuto", ai sensi della Parte IV del TUA.

Di seguito si fornisce un inquadramento normativo relativo alle diverse modalità di gestione del materiale sopra riportate.

2.1.1 Riferimenti normativi

2.1.1.1 Terre e rocce da scavo qualificate come rifiuti

Secondo la definizione di "rifiuto", di cui all'articolo 183, comma 1, lettera a) del DIgs 152/2006 e s.m.i., le Terre e Rocce provenienti da operazioni di scavo devono essere

considerate tali laddove il soggetto che ha in carico l'opera "si disfa, ha intenzione di disfarsi o è obbligato a disfarsi" delle stesse.

In particolare, alla luce dell'elenco dei rifiuti, modificato con la Decisione UE 955/2014 e riportato nell'allegato D alla Parte IV del Dlgs 152/2006, queste possono essere ricercate all'interno della famiglia 17, relativa ai rifiuti delle operazioni di costruzione e demolizione, contenente i seguenti due codici CER:

- 17 05 03* terra e rocce, contenenti sostanze pericolose
- 17 05 04 terra e rocce, diverse da quelle di cui alla voce 17 05 03

Trattasi pertanto di un rifiuto con "codice a specchio", da classificarsi e caratterizzarsi secondo quanto riportato nella premessa all'Allegato D del D.Lgs.152/2006.

Pertanto, indipendentemente dal fatto che le terre e rocce siano o meno da considerarsi "pericolose", queste rientrano per definizione nel campo di applicazione della disciplina in materia di rifiuti.

Qualora qualificate come tali, esse vanno di conseguenza gestite secondo quanto previsto dalla Parte IV del D.Lgs.152/2006, con particolare riferimento alle modalità operative del "deposito temporaneo" ed avviate a recupero (operazioni R) o a smaltimento (operazioni D) in accordo con la normativa vigente.

Per il deposito temporaneo delle terre e rocce da scavo qualificate con i codici CER 170504 o 170503* valgono le disposizioni di cui all'art.183 lett.bb del D.Lgs.152/06 e s.m.i. così come modificate dal Titolo III del D.P.R. 120/2017.

2.1.1.2 Terre e rocce da scavo non qualificate come rifiuti

Esistono determinate condizioni alle quali le terre e rocce possono essere gestite in deroga alla normativa in materia di rifiuti, con ovvie conseguenze sui benefici economici ed operativi delle imprese di settore, fermi restando i principi quadro europei di rispetto di tutela della salute umana e dell'ambiente naturale sotto la cui egida muove la normativa nazionale.

Sinteticamente, le eccezioni possono essere di due generi:

- Esclusione effettiva dal campo di applicazione della normativa dei rifiuti (art. 185 del D.Lgs.152/2006, riutilizzo "in situ" materiale non contaminato);
- Gestione come "sottoprodotto" (art. 184-bis del D.Lgs.152/2006).

Riutilizzo in situ

Il riutilizzo delle terre e rocce nel medesimo sito è sempre consentito qualora le concentrazioni riscontrate siano inferiori alle concentrazioni soglia di contaminazione (CSC) con riferimento alla specifica destinazione d'uso urbanistica.

Nel caso in cui sia quindi verificata, con riferimento alle Concentrazioni Soglia di Contaminazione di cui al Titolo V della Parte IV del D.Lgs.152/2006, l'assenza di contaminazione per il suolo o altro materiale allo stato naturale, questo può pertanto essere riutilizzato a fini di costruzione nello stesso sito esulando dal campo di applicazione della normativa dei rifiuti.

Si ricorda infatti che l'art.185 permette la deroga alla gestione ai sensi della Parte IV per il solo "suolo non contaminato e altro materiale allo stato naturale escavato nel corso di attività di costruzione, ove sia certo che esso verrà riutilizzato a fini di costruzione allo stato naturale e nello stesso sito in cui è stato escavato".

Previa verifica dei requisiti di cui all'art.185 del D.Lgs. 152/06 e s.m.i. attraverso le procedure di cui all'Allegato 4 al DPR, le terre e rocce possono quindi essere utilmente riutilizzate nel sito di produzione senza particolari obblighi di adempimenti da parte del Proponente.

Qualora il riutilizzo sia invece previsto in siti diversi, il comma 4 del medesimo art.185 rimanda invece alla normativa sui rifiuti e alle definizioni di "rifiuto" e "sottoprodotto" da essa previste.

Qualora le concentrazioni non fossero conformi alle CSC, ma inferiori alle Concentrazioni Soglia di Rischio (CSR) di cui all'Analisi di Rischio sito specifica prevista dall'art.242, il riutilizzo nel medesimo sito è possibile alle seguenti condizioni:

- le CSR devono essere preventivamente approvate dall'Autorità Competente nell'ambito della CdS prevista dagli articoli 242 o 252 del D.Lgs.152/06. Le terre e rocce conformi alle CSR sono riutilizzate nella medesima area assoggettata all'analisi di rischio e nel rispetto del modello concettuale preso come riferimento per l'elaborazione dell'analisi di rischio. Non è consentito l'impiego di T&R conformi alle concentrazioni soglia di rischio in sub-aree nelle quali è stato accertato il rispetto delle concentrazioni soglia di contaminazione;
- qualora ai fini del calcolo delle CSR non sia stato preso in considerazione il percorso di lisciviazione in falda, l'utilizzo delle terre e rocce è consentito solo nel

rispetto delle condizioni e delle limitazioni d'uso indicate all'atto dell'approvazione dell'analisi di rischio da parte dell'Autorità Competente.

Utilizzo come sottoprodotti

In determinate condizioni, specificate nell'art. art. 184-bis del D.Lgs.152/2006 (TUA), la gestione del materiale escavato può essere effettuata in deroga alla parte IV del TUA, come "sottoprodotto", di cui all'articolo 183, comma 1, lettera qq), del medesimo decreto legislativo.

In particolare, ai sensi dell'art. 186 del TUA, "fatto salvo quanto previsto dall'articolo 185, le terre e rocce da scavo, anche di gallerie, ottenute quali sottoprodotti, possono essere utilizzate per reinterri, riempimenti, rimodellazioni e rilevati purché:

- a) siano impiegate direttamente nell'ambito di opere o interventi preventivamente individuati e definiti:
- b) sin dalla fase della produzione vi sia certezza dell'integrale utilizzo;
- c) l'utilizzo integrale della parte destinata a riutilizzo sia tecnicamente possibile senza necessità di preventivo trattamento o di trasformazioni preliminari per soddisfare i requisiti merceologici e di qualità ambientale idonei a garantire che il loro impiego non dia luogo ad emissioni e, più in generale, ad impatti ambientali qualitativamente e quantitativamente diversi da quelli ordinariamente consentiti ed autorizzati per il sito dove sono destinate ad essere utilizzate;
- d) sia garantito un elevato livello di tutela ambientale;
- e) sia accertato che non provengono da siti contaminati o sottoposti ad interventi di bonifica ai sensi del titolo V della parte quarta del presente decreto;
- f) le loro caratteristiche chimiche e chimico-fisiche siano tali che il loro impiego nel sito prescelto non determini rischi per la salute e per la qualità delle matrici ambientali interessate ed avvenga nel rispetto delle norme di tutela delle acque superficiali e sotterranee, della flora, della fauna, degli habitat e delle aree naturali protette. In particolare deve essere dimostrato che il materiale da utilizzare non è contaminato con riferimento alla destinazione d'uso del medesimo, nonché la compatibilità di detto materiale con il sito di destinazione;
- g) la certezza del loro integrale utilizzo sia dimostrata. L'impiego di terre da scavo nei processi industriali come sottoprodotti, in sostituzione dei materiali di cava, è

consentito nel rispetto delle condizioni fissate all'articolo 183, comma 1, lettera p)".

L'utilizzo delle terre e rocce come sottoprodotto è regolamentato nel dettaglio dal **D.P.R. 120 del 13/06/2017** "Regolamento recante la disciplina semplificata della gestione delle terre e rocce da scavo, ai sensi dell'articolo 8 del decreto-legge 12 settembre 2014, n. 133, convertito, con modificazioni, dalla legge 11 novembre 2014, n. 164" (G.U. n. 183 del 7 agosto 2017).

Ai sensi dell'art. 2 del suddetto D.P.R. 120/2017, si intende per "terre e rocce da scavo" il suolo escavato derivante da attività finalizzate alla realizzazione di un'opera, tra le quali: scavi in genere (sbancamento, fondazioni, trincee); perforazione, trivellazione, palificazione, consolidamento; opere infrastrutturali (gallerie, strade); rimozione e livellamento di opere in terra. Le terre e rocce da scavo possono contenere anche i seguenti materiali: calcestruzzo, bentonite, polivinilcloruro (PVC), vetroresina, miscele cementizie e additivi per scavo meccanizzato, purché le terre e rocce contenenti tali materiali non presentino concentrazioni di inquinanti superiori ai limiti di cui alle colonne A e B, Tabella 1, Allegato 5, al Titolo V, della Parte IV, del Decreto Legislativo 3 aprile 2006, n. 152 (TUA), per la specifica destinazione d'uso.

Ai sensi del c. 2 dell'art. 4 del DPR 120/2017 i requisiti generali da soddisfare, affinché le terre e rocce da scavo siano qualificati come sottoprodotti e non come rifiuti, sono individuabili in:

- a) sono generate durante la realizzazione di un'opera, di cui costituiscono parte integrante e il cui scopo primario non è la produzione di tale materiale;
- b) il loro utilizzo è conforme alle disposizioni del piano di utilizzo di cui all'articolo 9 o della dichiarazione di cui all'articolo 21, e si realizza:
 - nel corso dell'esecuzione della stessa opera nella quale è stato generato o di un'opera diversa, per la realizzazione di reinterri, riempimenti, rimodellazioni, rilevati, miglioramenti fondiari o viari, recuperi ambientali oppure altre forme di ripristini e miglioramenti ambientali;
 - 2. in processi produttivi, in sostituzione di materiali di cava;
- c) sono idonee ad essere utilizzate direttamente, ossia senza alcun ulteriore trattamento diverso dalla normale pratica industriale;

d) soddisfano i requisiti di qualità ambientale espressamente previsti dal Capo II o dal Capo IV del presente regolamento, per le modalità di utilizzo specifico di cui alla lettera b).

Il DPR 120/2017 rappresenta lo strumento normativo applicabile per consentire l'utilizzo delle terre e rocce da scavo quali sottoprodotti, sia provenienti dai piccoli che dai grandi cantieri, compresi quelli finalizzati alla costruzione e/o alla manutenzione di reti e infrastrutture.

Il campo di applicazione riguarda le terre e rocce da scavo provenienti da cantieri di:

- Capo II) grandi dimensioni (>6.000 m³) che riguardano opere in VIA/AIA;
- Capo III) piccole dimensioni (<6.000 m³) comprese anche opere in VIA/AIA;
- Capo IV) grandi dimensioni per opere non assoggettate a VIA/AIA.

II DPR 120/2017 individua tre possibili scenari di utilizzo come sottoprodotto. Per tutti gli scenari, i requisiti per la qualifica come sottoprodotto (art. 4 del DPR 120/2017) sono attestati dal proponente previa esecuzione di una caratterizzazione ambientale delle terre e rocce da scavo. Pertanto, è necessario che il proponente disponga di una certificazione analitica che attesti il non superamento delle Concentrazioni Soglia di Contaminazione (CSC), in riferimento alla specifica destinazione urbanistica del sito di produzione e destinazione o dei valori di fondo naturale.

- Terre e rocce da scavo prodotte in cantieri di grandi dimensioni sottoposti a VIA e/o AIA: I requisiti come sottoprodotto sono attestati dal proponente nel Piano di utilizzo (PdU) trasmesso all'autorità competente e all'Arpa, per via telematica, almeno 90 giorni prima dell'inizio dei lavori, in ogni caso prima della conclusione dell'eventuale procedimento di VIA o AIA. Nel PdU devono essere riportati, tra le altre informazioni, anche i risultati della caratterizzazione ambientale eseguita.
- Terre e rocce da scavo prodotte in cantieri di piccole dimensioni V<6000 mc: in analogia con quanto previsto in precedenza dall'art. 41bis, è previsto l'invio di dichiarazione sostitutiva di atto di notorietà (art. 21), ma almeno 15 giorni prima dell'avvio di lavori, a Comune ed Arpa
- Terre e rocce da scavo prodotte in cantieri di grandi dimensioni non sottoposti a
 VIA e/o AIA): in analogia con quanto previsto in precedenza dall'art. 41bis, è

previsto l'invio di dichiarazione sostitutiva di atto di notorietà (art. 21), ma almeno 15 giorni prima dell'avvio di lavori, a Comune ed Arpa.

2.1.1.3 II Piano di Utilizzo

I contenuti minimi del Piano di Utilizzo sono contenuti nell'Allegato 5 al DPR 120/2017 e possono essere così sintetizzati:

- l'ubicazione dei siti di produzione delle terre e rocce da scavo con l'indicazione dei relativi volumi in banco suddivisi nelle diverse litologie;
- l'ubicazione dei siti di destinazione e l'individuazione dei cicli produttivi di destinazione delle terre e rocce da scavo qualificate come sottoprodotti, con l'indicazione dei relativi volumi di utilizzo suddivisi nelle diverse tipologie;
- le operazioni di normale pratica industriale con riferimento a quanto indicato all'allegato 3;
- l'ubicazione degli eventuali siti di deposito intermedio in attesa di utilizzo, anche alternativi tra loro, con l'indicazione della classe di destinazione d'uso urbanistica e i tempi del deposito per ciascun sito;
- i percorsi previsti per il trasporto delle terre e rocce tra le diverse aree impiegate nel processo di gestione, nonché delle modalità di trasporto previste.

Vanno inoltre descritte nel dettaglio le modalità di esecuzione e le risultanze della caratterizzazione ambientale delle terre e rocce da scavo eseguita in fase progettuale in conformità a quanto disposto dagli allegati 1, 2 e 4 al DPR, ed in particolare:

- i risultati dell'indagine conoscitiva dell'area di intervento (ad esempio, fonti bibliografiche, studi pregressi, fonti cartografiche) con particolare attenzione alle attività antropiche svolte nel sito o di caratteristiche geologiche-idrogeologiche naturali dei siti che possono comportare la presenza di materiali con sostanze specifiche;
- le modalità di campionamento, preparazione dei campioni e analisi con indicazione del set dei parametri analitici considerati esplicitando quanto indicato agli allegati 2 e 4;
- la necessità o meno di ulteriori approfondimenti in corso d'opera e i relativi criteri generali da seguire, secondo quanto indicato nell'allegato 9.

Nell'Allegato 5 sono inoltre descritti nel dettaglio gli elaborati descrittivi e cartografici utili alla definizione dei contenuti di cui sopra.

2.1.1.4 Caratterizzazione delle terre e rocce da scavo in fase di progettazione

La caratterizzazione ambientale delle terre e rocce da scavo viene eseguita per accertare il rispetto dei requisiti ambientali di cui all'art.4 del DPR al fine della gestione dei materiali ai sensi dell'art.184-bis e viene svolta dal proponente, a sue spese, durante la fase progettuale dell'opera e, comunque, prima dell'inizio dello scavo, nel rispetto di quanto riportato agli allegati 2 e 4.

La caratterizzazione ambientale presenta un grado di approfondimento conoscitivo almeno pari a quello del livello progettuale soggetto all'espletamento della procedura di approvazione dell'opera e nella caratterizzazione ambientale sono esplicitate le informazioni necessarie, estrapolate anche da accertamenti documentali.

I criteri progettuali e le modalità esecutive delle operazioni di caratterizzazione ambientale vengono esaustivamente descritti nell'ambito del PdU, laddove necessario, congiuntamente alle risultanze analitiche ai fini della dimostrazione del rispetto dei requisiti di cui all'Allegato 4 del DPR.

Nel caso in cui si preveda il ricorso a metodologie di scavo che non determinano un rischio di contaminazione per l'ambiente, il piano di utilizzo può prevedere che, salva diversa determinazione dell'autorità competente, non sia necessario ripetere la caratterizzazione ambientale durante l'esecuzione dell'opera.

Qualora, già in fase progettuale, si ravvisi la necessità di effettuare una caratterizzazione ambientale in corso d'opera, il piano di utilizzo dovrà indicare le modalità di esecuzione secondo le indicazioni di cui all'Allegato 9.

Per le procedure di campionamento, da illustrare nell'ambito del PdU, laddove necessario, si rimanda a quanto esposto nell'Allegato 2 al DPR 120/2017.

2.1.1.5 Caratterizzazione delle terre e rocce da scavo in fase di esecuzione

La caratterizzazione ambientale è consentita in fase esecutiva solo se è dimostrata l'impossibilità ad eseguire l'indagine in fase progettuale secondo criteri che devono essere specificati nel Piano di Utilizzo.

La caratterizzazione in fase esecutiva dovrà comunque essere effettuata se i sistemi di scavo sono potenzialmente contaminanti.

Questa potrà essere condotta dall'Esecutore o da parte delle Agenzie di Protezione Ambientale territorialmente competenti in contraddittorio, direttamente sul sito di produzione e di destinazione del materiale.

L'attività di caratterizzazione in corso d'opera è effettuata dall'esecutore sotto la propria responsabilità, ciò in quanto in fase di corso d'opera, l'esecutore, una volta che il proponente ne comunica gli estremi all'Autorità competente, fa suo il Piano di Utilizzo e lo attua divenendone responsabile (art. 2, c. 1, lett. q per la definizione di "esecutore" e art. 9 in merito alla realizzazione del piano di utilizzo).

A tal fine, in conformità all'Allegato 9 parte A del Regolamento, vengono definiti i criteri generali di esecuzione della caratterizzazione ambientale in corso d'opera. La caratterizzazione durante l'esecuzione dell'opera potrà essere condotta, in base alle specifiche esigenze operative e logistiche della cantierizzazione, in una delle modalità indicate:

- su cumuli all'interno delle opportune aree di caratterizzazione;
- direttamente sull'area di scavo e/o sul fronte di avanzamento;
- sull'intera area di intervento.

Per il trattamento dei campioni al fine della loro caratterizzazione analitica, il set analitico, le metodologie di analisi, i limiti di riferimento ai fini del riutilizzo si applica quanto indicato negli allegati 2 e 4.

2.1.2 Indicazioni preliminari sulla gestione del materiale escavato

Nel presente paragrafo si identificano le principali operazioni messe in atto per la realizzazione delle opere che determineranno la produzione di materiali di scavo al fine di valutare, in funzione dell'origine e delle caratteristiche del materiale, sin da questa fase, le opzioni gestionali applicabili ai materiali di risulta.

2.1.2.1 Attività di scavo per preparazione aree cantiere e scavi a cielo aperto

Parte delle opere di progetto saranno eseguite con scavi a cielo aperto mediante l'esclusivo ricorso a mezzi meccanici e, dunque, senza l'impegno di altre metodologie di scavo che prevedono l'uso di additivi o sostanze chimiche.

Gli scavi all'aperto saranno eseguiti con le seguenti metodologie (per i dettagli delle diverse fasi di scavo e del tipo di intervento si rimanda agli elaborati di progetto relativi alla cantierizzazione):

- scavi di sbancamento eseguiti con mezzi meccanici (escavatori con benna e/o martellone, pale meccaniche e autocarri);
- scavi di fondazione a sezione obbligata eseguiti con mezzi meccanici (escavatori con benna e/o martellone, pale meccaniche e autocarri);
- scavi di fondazione con micropali o pali di grande diametro eseguiti con mezzi meccanici (trivelle di perforazione, escavatori con benna e/o martello, pala meccanica, autocarri, autobetoniera e pompa spritz).

È stata verificata l'assenza di interferenza dell'opera con aree contaminate di cui è nota l'ubicazione, mediante una sovrapposizione del tracciato e dei cantieri con eventuali siti contaminati o a potenziale rischio di contaminazione.

Il materiale escavato durante queste attività verrà gestito come **rifiuto** (conferimento a discarica di rifiuti inerti entro i limiti dell'allegato 4 del D.lgs. 36/2003 tab. 2, 3 e 4).

2.1.2.2 Attività di scavo con tecnologia microtunnelling

Come dettagliatamente descritto nella Relazione Generale, per l'attraversamento della Piana di San Vittorino e per l'attraversamento dei fondivalle delle valli Salto e Turano è previsto il ricorso alla tecnologia del microtunnelling, mediante la posa di due tubazioni DN2500 affiancate.

La tecnologia del "microtunnelling" rientra tra le tecnologie "no dig" e consente di effettuare la posa di condotte riducendo al minimo, o eliminando del tutto, lo scavo a cielo aperto.

La posa avviene mediante la spinta, da un pozzo di partenza fino ad uno di arrivo, di sezioni di tubo della lunghezza variabile da 1 a 3 metri. La sezione più avanzata del tubo è costituita da una fresa o da una trivella con testa orientabile, che disgrega il materiale durante l'avanzamento. Il materiale di risulta viene portato in superficie tramite un sistema chiuso di circolazione d' acqua e bentonite mantenuto in movimento da grosse pompe.

L'orientamento della testa di perforazione è controllato tramite un segnale laser inviato dal pozzo di partenza lungo la direzione della perforazione, che incide su un rivelatore solidale con la testa fresante, la quale può essere guidata da un operatore per mezzo di un sistema di martinetti idraulici.

La tecnologia viene prevalentemente impiegata per la posa di condotte idriche e fognarie, in generale di grandi dimensioni, e può essere utilizzata con buoni risultati su tutti i tipi di terreno.

Nel caso in esame, la tecnologia descritta prevede l'utilizzo di additivi e di fluidi bentonitici fluidificanti.

* * *

Alla luce di quanto sopra esposto in considerazione dell'eventuale utilizzo di additivi o fluidificanti, il materiale escavato sarà gestito come **rifiuto**.

2.1.2.3 Attività di scavo con tecnologia tunnel boring machine (TBM)

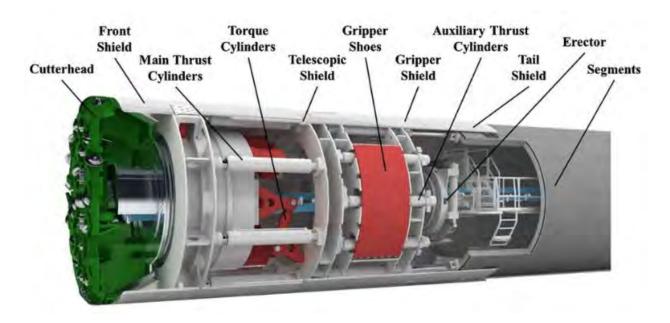
Gran parte del tracciato dell'opera verrà realizzato in galleria mediante scavo meccanizzato, ricorrendo all'utilizzo di un tunnel boring machine (TBM).

Come dettagliatamente descritto nella Relazione Generale e nelle relazioni specialistiche, in funzione delle caratteristiche geologiche e geotecniche dei litotipi attraversati, è previsto il ricorso a due differenti tipologie di rock TBM:

 Rock TBM EPB: nel tratto tra nuovo manufatto origine dell'acquedotto e San Giovanni Reatino, in particolare per le gallerie Ponzano, Cognolo, Zoccani e per il sorpasso generale di Salisano.

 Rock TBM – double shield: nel tratto tra San Giovanni Reatino e Salisano (galleria Monte Vecchio).

Rimandando alla Relazione Generale e alle relazioni specifiche la descrizione dettagliata delle due differenti tipologie di TBM, nel presente paragrafo ci si intende soffermare sulle differenze delle due TBM in relazione al materiale escavato.


Rock TBM - Double Shield

Le *TBM aperte* o *Gripper TBM* si utilizzano per lo scavo in ammassi rocciosi con buone caratteristiche meccaniche, dove si permette agli operatori di lavorare in sicurezza senza una installazione di opere di sostegno di prima fase.

Le rock TBM a singolo scudo o mono-scudate vengono impiegate in ammassi rocciosi con proprietà meccaniche non sufficienti a garantire lo sviluppo del contrasto richiesto per l'applicazione della forza di accostamento nelle TBM aperte. Inoltre, in ammassi rocciosi particolarmente fratturati, le TBM monoscudate offrono un'importante soluzione tecnologica in quanto, sfruttando l'azione dello scudo, consentono di realizzare in sicurezza il cavo della galleria.

Le TBM doppio scudate o frese a doppio scudo telescopico, sono una combinazione di una TBM aperta e di una TBM monoscudata. Sono composte da uno scudo anteriore, che protegge la testa fresante e il cuscinetto reggispinta, da uno scudo telescopico e da uno scudo posteriore, dal quale si estrudono i gripper, e nella cui coda vengono messi in opera, quando richiesto o necessario, i sostegni temporanei o i conci prefabbricati per mezzo di un erettore. La differenza sostanziale con una TBM monoscudata è che la fase di avanzamento e quella di erezione del sostegno possono essere svolte contemporaneamente aumentando notevolmente la velocità di avanzamento e conseguentemente le produzioni attese.

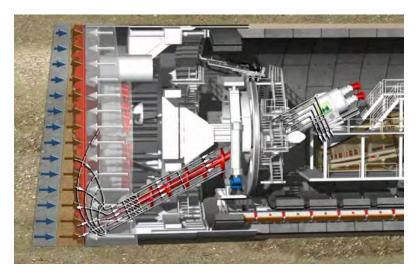
Caratteristiche della ROCK-TBM DN7500

D-scavo (mm)	8700
Sovrascavo sul raggio (mm)	20
Conicità sul raggio (mm)	20
D-ext fine scudo (mm)	8620
D-interno tubazione (mm)	7500
Spessore conci (mm)	400
D esterno conci (mm)	8300
Spessore malta di riempimento (mm)	160

Vengono sopra riportate le caratteristiche della ROCK-TBM che verrà usata per lo scavo della galleria il cui diametro nominale interno corrisponde a 7500 mm (galleria Montevecchio).

Rock TBM EPB

Le tipologie di tunnel boring machine EPB (*Earth Pressure Balance*) sono utilizzate principalmente per lo scavo di gallerie in terreni sciolti nei quali, oltre alla necessità di contenere eventuali fenomeni di instabilità del fronte mediante la testa fresante, è necessario applicare una pressione al fronte necessaria a ridurre la variazione dello stato tensionale indotto dallo scavo della galleria al fronte e nelle zone intorno alla galleria durante tutte le operazioni di scavo e di installazione del rivestimenti definitivo in conci. La realizzazione di gallerie mediante TBM-EPB si basa, quindi, sul principio del sostegno del fronte di scavo con il medesimo materiale scavato, transitante nella *camera di scavo*,



mantenuto in pressione mediante la spinta della macchina ed un sistema controllato di rimozione del terreno (coclea) dalla stessa camera di scavo.

Sotto l'impulso applicato allo scudo della TBM e, quindi, alla testa di scavo in rotazione, il terreno viene asportato dal fronte fluendo nella camera di scavo da cui viene estratto mediante la coclea nei volumi voluti. In questo processo, il materiale riceve costantemente la compressione necessaria tale che la pressione esercitata sia proprio quella necessaria a sostenere il fronte di scavo.

Contemporaneamente allo scavo, lo scudo della TBM si sfila dall'anello formato da elementi prefabbricati in calcestruzzo (conci) costituente il rivestimento definitivo, precedentemente montato, ed il vuoto anulare tra la superficie di estradosso dell'anello di rivestimento e il profilo naturale del terreno vengono riempiti con iniezioni di malta a pressione fino alla completa saturazione del vuoto anulare anzidetto. L'utilizzo della TBM-EPB prevede l'adozione di additivi e pertanto, nel caso di riutilizzo del materiale di scavo come sottoprodotto, la necessità di dimostrare la biodegradabilità e l'assenza di eco tossicità.

Vengono di seguito riportate le caratteristiche della TBM-EPB che verrà usata per lo scavo delle gallerie il cui diametro nominale interno corrisponde a 4000 mm (galleria Ponzano, Cognolo, Zoccani, Piana delle Molette-San Giovanni Reatino e Sorpasso di Salisano).

Caratteristiche della TBM-EPB DN4000

D-scavo (mm)	4940
sovrascavo sul raggio (mm)	20

conicità sul raggio (mm)	20
D-ext fine scudo (mm)	4860
D-interno tubazione (mm)	4000
Spessore conci (mm)	300
D esterno conci (mm)	4600
Spessore malta di riempimento (mm)	130

* * *

Alla luce di quanto sopra esposto, i volumi di terre e rocce provenienti dallo scavo delle gallerie saranno conferiti a specifici siti di destino in qualità di **sottoprodotto** ai sensi dell'art. 184-bis del D.Lgs. 152/2006 e come dettagliatamente descritto nell'Elaborato A194PD S8 R001 - Piano di utilizzo Terre e Rocce da scavo.

2.1.2.4 Attività di scavo a foro cieco

Per la realizzazione dei pozzi di dissipazione PZ1 e PZ2, e per i pozzi presenti al di sotto dei manufatti di accesso alle opere di collegamento con il tronco Peschiera Inferiore Destro e Peschiera Inferiore Sinistro è prevista l'esecuzione di scavi a foro cieco.

Questa tecnologia di scavo è molto simile a quella utilizzata normalmente per lo scavo di gallerie tradizionali, necessita della presenza di una adeguata area di cantiere sulla sommità del pozzo, in particolare è indispensabile l'utilizzo di carroponti o gru a cavalletto che consentano di eseguire in sicurezza le operazioni di smarino e di posizionamento dei macchinari necessari ad eseguire tutte le lavorazioni.

Fondamentale è anche la predisposizione di un adeguato sistema di ventilazione per consentire alle maestranze di operare in condizioni ottimali anche in prossimità del fronte di scavo.

le fasi lavorative possono essere così riassunte:

 Preparazione dell'area di cantiere e di tutte le attrezzature necessarie (autogru o carroponte, sistema di ventilazione, sistema di pompaggio per rimozione dell'acqua residua, posizionatore per l'inserimento di cariche esplosive o per l'esecuzione di consolidamenti e impermeabilizzazioni in caso di ingenti venute d'acqua)

- Scavo con benna mordente per i primi metri (fino a dove possibile)
- Realizzazione di un avampozzo in calcestruzzo armato
- Eventuali consolidamenti e impermeabilizzazioni del fronte di scavo, necessarie in presenza di ingenti venute d'acqua)
- Scavo con benna mordente, con esplosivo e/o mezzo meccanico puntuale, a seconda delle condizioni al contorno (caratteristiche del terreno da asportare, vicinanza con strutture esistenti, profondità di scavo)
- Smarino: una volta rimosso tutto il materiale al fronte sarà necessario raccoglierlo e, mediante cestelli calati con l'ausilio di un carroponte o autogru, trasferirlo all'esterno del pozzo
- Installazione del sistema di rivestimento provvisorio costituito da centine posizionate il più a ridosso possibile del fronte e calcestruzzo proiettato
- Installazione di telo in PVC impermeabilizzante

Una volta completato lo scavo e ultimato, per tutta la sua lunghezza, il rivestimento provvisorio si procederà al getto del rivestimento definitivo dal fondo del pozzo verso l'alto, grazie all'ausilio di un apposito cassero rampante.

* * *

Alla luce di quanto sopra esposto, il materiale escavato dalle attività sopra descritte, peraltro di volume trascurabile rispetto alle altre modalità di scavo, sarà gestito come rifiuto.

2.1.2.5 Attività di scavo delle gallerie "in tradizionale"

Per la realizzazione di brevi gallerie di collegamento tra le opere di progetto e quelle esistenti, è previsto il ricorso allo scavo in tradizionale. Si tratta in particolare della realizzazione del collegamento tra il nodo S e la vasca di carico esistente, per i collegamenti tra Nuovo Manufatto Bipartitore e gli acquedotti esistenti Peschiera inferiore Destro e Sinistro, per il collegamento dal Nuovo Manufatto Bipartitore al Pozzo PZ2 e per la finestra di accesso Cotilia, oltre ad un breve tratto iniziale, dell'ordine dei 100 m, della galleria Montevecchio.

Vista la vicinanza delle attività di scavo ad opere esistenti, al fine di minimizzare le vibrazioni indotte dalle attività di scavo, è previsto, ove necessario, l'utilizzo di malte disgreganti.

* * *

Alla luce di quanto sopra esposto, il materiale escavato dalle attività sopra descritte, peraltro di volume trascurabile rispetto alle altre modalità di scavo, sarà gestito come rifiuto.

2.1.2.6 Scavo dei manufatti – esecuzione paratie di contenimento

Le opere di contenimento degli scavi saranno eseguite con pali secanti ad elica continua che garantiscono un elevato controllo delle verticalità, una sicura compenetrazione e un getto di ottima qualità.

I pali di contenimento degli scavi saranno di diametro Ø800 mm e Ø1000 mm, oltre a pali trivellati classici, nelle zone dove è necessario limitare i livelli di vibrazione, sono previsti pali compenetrati CSP.

La tecnica CSP (Cased Secant Piles) consiste nell'eseguire pali trivellati isolati (palo primario) a distanza inferiore a 2 volte il diametro mediante un'elica continua coassiale ad un rivestimento esterno. La realizzazione di una seconda serie di pali intermedi (Palo secondario) consente di realizzare una paratia continua di pali secanti.

* * *

Alla luce di quanto sopra esposto, il materiale escavato dalle attività sopra descritte, peraltro di volume trascurabile rispetto alle altre modalità di scavo, sarà gestito come rifiuto.

2.1.3 Bilancio materiali di scavo

La tabella riportata nel seguito sintetizza i volumi dei materiali principali da movimentare (coefficiente moltiplicativo per il passaggio da banco a cumulo è stimabile pari a 1.20).

Tra tutte le aree di cantiere, quella che prevede le lavorazioni più impattanti è senz'altro quella di San Giovanni Reatino (SGR) dove sono previsti gli imbocchi della galleria Montevecchio (DN7500) e della galleria Zoccani (DN4000).

Parte del materiale scavato potrà essere utilizzato per la realizzazione del sottofondo della galleria Montevecchio o nel previsto impianto di betonaggio e di prefabbricazione dei conci (da utilizzare come rivestimento definitivo delle gallerie) direttamente all'interno dell'area di cantiere (per maggiori dettagli cfr. Par. 2.1.4.1).

I conci in calcestruzzo armato prefabbricato, una volta prodotti, verranno trasportati verso il fronte di scavo sfruttando il sistema di binari delle TBM, in questo modo i trasporti interesseranno solo ed esclusivamente l'area di cantiere.

L'impianto di smarino prevede l'installazione di un nastro trasportatore per tutta la lunghezza della galleria Montevecchio e delle gallerie Zoccani, Cognolo e Ponzano, compresi i tratti di attraversamento delle valli del fiume Salto e del fiume Turano; in corrispondenza di questi tratti vallivi le linee di trasporto dei conci prefabbricati su rotaia (interne alle gallerie) verranno interrotte, dei mezzi gommati che transiteranno su piste di cantiere dedicate garantendo comunque la continuità del sistema.

In questa configurazione tutto il materiale risultante dalle operazioni di scavo verrà convogliato nel cantiere SGR, opportunamente dimensionato per accogliere in cumuli il materiale scavato.

GALLERIA	LUNGHEZZA [m]	VOLUME SCAVO IN BANCO [mc]	VOLUME TOTALE IN CUMULO [mc]
PONZANO	4 694	84 896	101 875
COGNOLO	2 866	51 834	62 201
ZOCCANI	2 080	37 619	45 143
MONTE VECCHIO	13 170	746 950	896 340
SORPASSO SALISANO	1 521	27 509	33 011

TOTALE	24 331 m	948 808 mc	1 138 569 mc
<u> </u>			

2.1.4 Alternative per il riutilizzo del materiale escavato

Le alternative individuate per il riutilizzo dei materiali di scavo consistono fondamentalmente nel reimpiego in sostituzione dei materiali di cava appositamente approvvigionati allo scopo. È di tutta evidenza che tale circostanza dovrà essere preventivamente avallata da analisi e prove di laboratorio sui materiali di scavo per dimostrare l'idoneità degli stessi ai riutilizzi individuati.

2.1.4.1 Riutilizzo in situ e/o come sottoprodotti

Il riutilizzo in sito nell'ambito della realizzazione del Nuovo Acquedotto si concretizza fondamentalmente nelle seguenti possibilità:

- nella preparazione del rivestimento definitivo dei tratti in galleria realizzato attraverso conci di cls prefabbricati;
- in sostituzione di materiali approvvigionati allo scopo per dare compiuta realizzazione all'opera;
- in riempimenti e sottofondi necessari nelle aree di cantiere.

Il rivestimento definitivo in conci prefabbricati è costituito da un insieme di conci curvilinei che, affiancati, realizzano un anello circolare di spessore uguale a quello dei conci. Il rivestimento così assemblato risulta essere una struttura cilindrica continua di anelli successivi prefabbricati realizzati in calcestruzzo armato.

Il rivestimento definitivo è posto in opera direttamente dalla TBM mediante l'erettore posto all'interno dello scudo. Tale rivestimento svolge le seguenti funzioni:

- contenimento dei carichi a lungo termine durante la vita dell'opera;
- contrasto delle azioni transitorie in fase di spinta della macchina;
- tenuta idraulica:
- rispetto dell'andamento teorico del tracciato.

Le verifiche statiche dei conci prefabbricati dovranno effettuate con riferimento alla fase di scavo, alla fase di esercizio ed alla fase di produzione e di movimentazione.

Con riferimento alla possibilità di reimpiego dei materiali di scavo per la realizzazione dei conci, gli aggregati prodotti dovranno essere dovranno controllati per peso specifico, granulometria e umidità con prove previste dalla UNI 8520 da laboratorio ufficiale.

Particolare attenzione dovrà essere inoltre posta nello studio del sistema produttivo in funzione dell'elevato costo delle casseforme dei conci e quindi teso a minimizzarne il numero. I parametri da tenere in considerazione sono:

- Presunto avanzamento della fresa TBM (m/giorni);
- Possibilità di lavorare su più turni giornalieri;
- Capacità produttiva all'impianto di betonaggio (mc/ora);
- Percorsi dei mezzi di sollevamento (carriponte) con valutazione di tempi di movimentazione;
- Studio accurato del ciclo termico al fine di determinare i tempi di maturazione;
- Valutazione degli ingombri minimi in funzione delle varie lavorazioni.

Una buona porzione di materiale, pari a circa 190.000 mc, potrà così essere utilmente reimpiegata.

2.1.4.2 Colmatazione di vuoti

La colmatazione di vuoti, in particolare di cave, rappresenta l'attività primaria e preferenziale per il conferimento delle terre e rocce da scavo.

Al fine di individuare cave (in esercizio e/o dismesse) utili ai fini del conferimento dei materiali scavati e, in subordine, degli stessi qualora qualificati come rifiuti (CER 170504) si è preso a riferimento il Piano Regionale delle Attività Estrattive (PRAE).

Il documento è un importante atto di programmazione settoriale, stabilito dalla legge regionale 6 dicembre 2004, n.17 e s.m.i. relativa alle "Norme per la coltivazione delle cave e torbiere della Regione Lazio" e, in particolare, dall'art.9 "Piano regionale delle attività estrattive".

Il Piano Regionale delle Attività Estrattive è l'atto di programmazione settoriale che stabilisce, nell'ambito della programmazione socio-economica e territoriale regionale, gli indirizzi e gli obiettivi di riferimento per l'attività di ricerca di materiali di cava e torbiera e di coltivazione di cava e torbiera, nonché per il recupero ambientale delle aree interessate.

La documentazione presa a riferimento consta nelle "Schede censimento Sintesi" della Provincia di Rieti e nella Tavole 8/41 e 14/41 di "Censimento delle attività estrattive"; le aree estrattive censite sono classificate "in esercizio" o "non in esercizio" oltre a "Aree estrattive di cui non è stato possibile reperire documentazione amministrativa" che possono essere state ubicate o da fonti bibliografiche o non hanno una ubicazione certa.

Per una trattazione esaustiva dell'argomento, si rimanda a quanto dettagliato nell'elaborato A194PDS8R001 "Piano di Utilizzo Terre e Rocce da Scavo". I volumi di terre e rocce provenienti dallo scavo considerati come da conferire ai siti di destino in qualità di sottoprodotti ai sensi dell'art. 184-bis del D.Lgs. 152/2006, ammontano a complessivi 950.000 mc (in cumulo).

Pertanto, considerati i risultati analitici e le sperimentazioni eseguite e stante la delicatezza della problematica (che ha diretto impatto sull'esecuzione dell'intervento), ACEA ha indetto una procedura di gara per individuare operatori ai quali affidare il "servizio di conferimento a siti autorizzati di terre e rocce da scavo, di cui al D.P.R. 13 giugno 2017 n. 120, qualificate come sottoprodotti ai sensi dell'art. 184-bis del D.Lgs. 152/2006" (rif. Gara n. 8800002637/DZE - maggio 2020).

Al termine della procedura, sono stati individuati i tre operatori i cui estremi sono riportati nella tabella successiva congiuntamente ai volumi autorizzati disponibili per il conferimento dei materiali da scavo in oggetto.

Codice sito	Ragione Sociale	Comune	Tipologia attività	Volumi disponibili
			autorizzata	[mc]
SD_RI	RIRE Srl	Montopoli in	Recupero di cava	850.000
		Sabina (RI)	(R10)	
SD_PA	PANONE Srl	S. Pio delle	Ripristino	150.000
		Camere (AQ)	ambientale di	
			cava	
SD_SI	SICAP Srl	Poggio Catino	Ripristino	450.000
		(RI)	ambientale di	
			cava	

3 Attività di gestione rifiuti e soggetti responsabili

3.1 Generalità

Le tipologie di matrici producibili dalle attività di cantiere, pertanto collegate alle operazioni di "costruzione & demolizione", possono essere sintetizzate nelle seguenti categorie:

- rifiuti propri dell'attività di demolizione e costruzione (C&D);
- rifiuti prodotti nel cantiere connessi con l'attività svolta (ad esempio rifiuti da imballaggio...);
- terreno prodotto dalle attività di escavazione nel corso delle attività di costruzione (cfr. 2.1.1.1);

Alla prima categoria appartengo tutti i rifiuti strettamente correlati alle attività previste in progetto; a tal proposito la definizione qualitativa (previsione dell'attribuzione dei CER) delle tipologie producibili, nonché la definizione dei quantitativi (stima geometrica) è stata ottenuta sulla base di valutazioni oggettive delle attività previste in progetto (progettazione definitiva).

Per i rifiuti ricadenti nella seconda categoria, il presente documento non prevede la quantificazione e la definizione delle tipologie di rifiuti producibili, comunque fortemente legata alle scelte esecutive dell'opera non definibili in fase di progettazione definitiva, ma, non dimeno, fissa dei principi da rispettare in fase di progettazione esecutiva e di esecuzione dell'opera volte a determinare una riduzione dei rifiuti prodotti all'origine, nonché all'aumento delle frazioni avviabili al riciclo recupero. L'ultima categoria è rappresentata dai volumi di terre e rocce prodotte durante le attività di escavazione determinati sulla base di stime geometriche delle effettive attività di escavazione previste in progetto.

In linea del tutto generale, tutti i rifiuti prodotti durante la fase di cantiere saranno gestiti in conformità alla normativa vigente ed il trasporto dei rifiuti dovrà avvenire con automezzi a ciò autorizzati.

3.2 Responsabilità

La responsabilità delle attività di gestione dei rifiuti, nel rispetto di quanto individuato dall'impianto normativo ambientale, è posta in capo al soggetto produttore del rifiuto stesso, pertanto, in capo all'esecutore materiale dell'operazione da cui si genera il rifiuto (appaltatore e/o subappaltatore).

A tal proposito l'appaltatore, in materia di gestione dei rifiuti prodotti dalla propria attività di cantiere, opera in completa autonomia decisionale e gestionale, comunque nel rispetto di quanto previsto nella presente relazione.

Ove si presentano attribuzioni di attività in sub-appalto, il produttore viene identificato nel soggetto sub-appaltatore e l'appaltatore ha obblighi di vigilanza (le operazioni di vigilanza vengono dettate nei paragrafi successivi).

Le attività di gestione dei rifiuti pertanto sono degli oneri in capo al soggetto produttore, individuato secondo i criteri sopra indicati, e consistono in:

- Classificazione ed attribuzione dei CER corretti e relativa definizione della modalità gestionali;
- 2) Deposito dei rifiuti in attesa di avvio alle successive attività di recupero/smaltimento;
- 3) Avvio del rifiuto all'impianto di smaltimento previsto comportante:
 - Verifica l'iscrizione all'albo del trasportatore;
 - Verifica dell'autorizzazione del gestore dell'impianto a cui il rifiuto è conferito;
 - Tenuta del Registro di C/S (ove necessario), emissione del FIR e verificata del ritorno della quarta copia.

Il rifiuto dovrà, inoltre in questa fase, essere sottoposto a caratterizzazione chimicofisica, volta ad attestare la classificazione del CER attribuito e della classe di pericolosità (P o NP ove i codici presentano voci speculari) nonché alla verifica della sussistenza delle caratteristiche per la conformità al destino successivo selezionato (sia esso nell'ambito del D.Lgs. 152/06 di smaltimento/recupero, sia esso nell'ambito della procedura di recupero semplificata di cui al Dm Ambiente 5 febbraio 1998 per rifiuti non pericolosi e ss.ii.mm.).

3.3 Deposito temporaneo

In generale, l'attività di "stoccaggio" dei rifiuti ai fini della norma vigente si distingue in:

- deposito preliminare: operazione di smaltimento definita al punto D15 dell'Allegato D alla Parte Quarta del Codice Ambientale – che necessita di apposita autorizzazione dall'Autorità Competente;
- 2) deposito temporaneo (vedi oltre)
- 3) messa in riserva: operazione di recupero definita al punto R13 dell'Allegato C alla Parte Quarta del Codice Ambientale – che necessita di comunicazione all'Autorità Competente nell'ambito delle procedure di recupero dei rifiuti in forma semplificata.

I rifiuti di cui si tratta sono prodotti nella sola area di cantiere. In attesa di essere portato alla destinazione finale, il rifiuto sarà depositato temporaneamente nello stesso cantiere, nel rispetto di quanto indicato dall'artico 183, comma 1 lettera bb).

È opportuno porre il deposito dei rifiuti al riparo dagli agenti atmosferici ed è fondamentale provvedere al mantenimento del deposito dei rifiuti per comparti separati per tipologie (CER) in quanto, in caso di presenza di rifiuti pericolosi, ciò consente una accurata gestione degli scarti ed inoltre perché la norma italiana vieta espressamente la miscelazione dei rifiuti pericolosi tra loro e con i rifiuti non pericolosi (articolo 187 del D.Lgs. 152/06).

In generale, il deposito temporaneo dovrà rispettare le seguenti caratteristiche:

RIFIUTI NON PERICOLOSI		RIFIUTI PERICOLOSI	
Rifiuti distinti per tipologia		Rifiuti distinti per tipologia	
Rispetto delle buone pras	si in materia di deposito	Rispetto delle norme tecniche in materie di	
		deposito	
	Con cadenza		Con cadenza
	trimestrale		trimestrale
Limiti del deposito: una	indipendentemente	Limiti del deposito: una delle seguenti modalità alternative a scelta del produttore	indipendentemente
delle seguenti modalità	dalle quantita in deposito		dalle quantità in
alternative a scelta del			deposito
produttore	Al superamento dei 20		Al superamento dei 10
productore	mc TOTALI in deposito		mc TOTALI in deposito
	e comunque una volta		e comunque una volta
	all'anno		all'anno
·		Rispetto delle norme sull'etichettatura delle	
		sostanze pericolose	
		Rispetto sulle norme tecniche sul deposito dei	
		componenti pericolosi contenenti nei rifiuti	

3.4 Indicazioni per la corretta gestione dei rifiuti prodotti dalle attività di cantiere

Le presenti indicazioni sono rivolte principalmente alla figura del Coordinatore della Gestione Ambienta di cantiere (CGAc).

Tali indicazioni perseguono il raggiungimento dei seguenti obiettivi:

- · Riduzione dei quantitativi di rifiuti prodotti;
- Prevenire eventuali contaminazioni dei rifiuti tali da pregiudicarne l'effettivo destino al conferimento selezionato;
- Riduzione degli impatti ambientali determinati dalla fase di gestione del deposito temporaneo e delle successive operazioni di trasporto a destino finale.

Nello specifico le indicazioni di seguito riportate dovranno essere messe in atto da parte di tutti i soggetti interessati nelle attività di cantiere sotto il coordinamento del CGAC.

Il Coordinatore della gestione ambientale di cantiere è individuato nella figura dell'impresa appaltatrice, la quale, tra le atre cose, deve:

- coordinare la gestione ambientale rispetto alle diverse imprese sub-appaltatrici eventualmente presenti;
- indicare il nome del luogo di smaltimento ed i relativi costi di gestione;
- individuare le aree da destinare a deposito temporaneo e provvedere al coordinamento delle operazioni di gestione dello stesso.

Il CGAC deve provvedere alla riduzione della produzione di rifiuti in loco durante la costruzione, prendendo specifici accordi di collaborazione con i fornitori dei materiali per la minimizzazione del packaging e/o del ritiro dell'imballaggio e la consegna della merce solo nel momento di utilizzo della stessa (just-in-time

Il CGAc deve illustrare le misure da adottare in cantiere individuando i soggetti incaricati (il chi fa cosa).

Di seguito si riporta un elenco non esaustivo delle attività da attuare:

- Designare una zona all'interno del cantiere ove collocare cassoni/container per la raccolta differenziata. Su ogni cassone/container o zona specifica dovrà essere esposto il codice CER che identifica il materiale presente nello stoccaggio. Al fine di rendere maggiormente chiaro alle maestranze il tipo di materiale presente sarà buona norma apporre a lato del codice CER il nome del materiale nelle lingue più appropriate e la relativa rappresentazione grafica;
- Valutare sulla base degli spazi disponibili, la possibilità di attuare in turnover dei cassoni/containers o delle aree predisposte. Tali procedure deve essere pianificata sulla base dei reali spazi e delle operazioni di cantiere definite dal crono programma, da parte del Coordinatore gestione ambientale il quale svolgerà anche la funzione di ispettore sistematico del rispetto della pianificazione prevista.
- Fare in modo che i rifiuti non pericolosi siano contaminati da eventuali altri rifiuti pericolosi.
- Allestimento di adeguata area per la separazione dei rifiuti: predisporre ed identificare un'area in loco per facilitare la separazione dei materiali.
- Predisporre contenitori scarrabili di adeguate dimensioni situati nelle varie aree di lavoro, ben segnalati, provvedendo ogni qualvolta necessario al deposito temporaneo degli stessi nelle aree di cui al punto precedente.

3.5 Localizzazione delle aree per il deposito temporaneo

La produzione di rifiuti a seguito della realizzazione dell'opera può essere suddivisa, partendo da monte verso valle, in <u>tre direttrici principali</u>:

opere di derivazione – sorgenti – Piana di San Vittorino (PSV)

- Nuovo Tronco Superiore dell'Acquedotto del Peschiera (principalmente in SGR)
- Nodo di Salisano e sorpasso generale della centrale (SAL)

La maggior parte dei rifiuti generati sarà concentrata nelle aree di cantiere a servizio delle <u>tre direttrici principali</u>, all'interno delle quali saranno realizzate le aree di deposito temporaneo.

La localizzazione dell'area da adibire a deposito temporaneo dei rifiuti prodotti dalle attività di cantiere dovrà essere selezionata dalla figura del Coordinatore della gestione ambientale di cantiere sulla base dei seguenti criteri:

- La superficie dedicata al deposito temporaneo deve, in via preferenziale, essere individuata in un'area di impianto già adibita a piazzale, allo scopo di evitare l'eventuale contaminazione dei suoli; altrimenti, se non si individuano aree esistenti, il coordinatore dovrà provvedere alla sistemazione dell'area mettendo in atto opportuni sistemi per garantire una separazione fisica del piano di appoggio delle aree di deposito dai suoli interessati;
- le aree di deposito devono risultare poste planimetricamente in zone tali da minimizzare:
 - i percorsi dei mezzi interni al cantiere dalle aree di lavorazioni al deposito stesso;
 - o il percorso dei mezzi trasportatori a destino finale per le operazioni di carico, cercando di evitare interferenze dello stesso con le attività di cantiere;

L'area di deposito, indipendentemente dalla sua localizzazione dovrà:

- essere provvista di opportuni sistemi di isolamento dall'aree esterne, quali cordoli
 di contenimento e pendenze del fondo appropriato, volte al contenimento di
 eventuali acque di percolazione. Le acque di percolazioni eventualmente prodotte
 dovranno essere inviate alla rete di drenaggio delle acque meteoriche dilavanti
 eventualmente prevista in progetto;
- essere suddivisa per comparti dedicati all'accoglimento delle diverse tipologie di CER. Le dimensioni dei singoli comparti devono essere determinate sulla base delle stime dei quantitativi di CER producibili e dei tempi di produzione, correlate al rispetto delle limitazioni quantitative e temporali del deposito temporaneo;

 ove si prevede lo stoccaggio del materiale direttamente sul piano di appoggio dell'area di deposito, senza l'utilizzo di contenitori (cassoni, containers, bidoni, ecc...), si dovrà provvedere alla separazione del materiale dal fondo con opportuno materiale impermeabilizzante selezionato in funzione della tipologia di materiale stoccato e del grado di contaminazione dello stesso.

Il Coordinatore della gestione ambientale di cantiere provvederà a coordinare le operazioni di carico e scarico del deposito temporaneo nel rispetto delle prescrizioni poste dall'articolo 183, comma 1 lettera bb), provvedendo alla registrazione delle stesse secondo quanto indicato nelle norme del presente piano.

Inoltre il CGAc provvederà alla funzione di direzione e coordinamento delle attività di movimentazione dei rifiuti volta ad individuare ed applicare tecniche operative generanti il minor impatto ambientale sulle matrici Aria, Acqua, Suolo, Rumore in relazione ad ogni singola tipologia di rifiuto ed allo stato in cui si presenta (solido, polverulento, ecc...).

4 Gestione dei materiali

4.1 Materiali di scavo

Con riferimento alla nomenclatura individuata nella presente relazione ed utilizzata per la suddivisione in tratti di interesse, rispetto alla totalità delle lavorazioni previste nell'ambito del progetto per il "Nuovo Tronco Superiore dell'Acquedotto Peschiera", si riporta, nel seguito, una tabella riepilogativa sui quantitativi di materiali da scavo, calcolati in banco e in cumulo, prodotti.

Nella tabella che segue vengono individuate e riassunte le quantità di terreno gestite con le modalità di rifiuto (cod CER 17 05 04), sottoprodotti con utilizzo interno al cantiere, sottoprodotti con conferimento esterno al cantiere:

	VOLUMI TOTALI DI MATERIALE ESCAVATO		CLASSIFICAZIONE E GESTIONE DEL MATERIALE SCAVATO (Volumi in cumulo)			
MODALITA' DI SCAVO	VOLUME IN BANCO [mc]	VOLUME IN CUMULO [mc]	RIFIUTO [mc]	SOTTOPRODOTTO (DPR 120/17) CON UTILIZZO INTERNO AL CANTIERE (conci + sottofondo Montevecchio) [mc]	SOTTOPRODOTTO (DPR 120/17) CON CONFERIMENTO ESTERNO AL CANTIERE [mc]	
Rock TBM	750.000	900.000	-	150.000	750.000	
TBM EPB	200.000	240.000	-	40.000	200.000	
Microtunneling	70.000	80.000	80.000	-	-	
Scavo in tradizionale	60.000	70.000	70.000	-	-	
Manufatti	710.000	852.000	852.000	-	-	

TOTALE [mc] 1.790.000 2.142.000 1.002.000 190.000 950.000

La quantità complessiva di Terre e Rocce da Scavo che saranno prodotte assomma a 1.790.000 mc (in banco), di cui 950.000 mc gestiti ai sensi dell'art.184-bis (sottoprodotti) del D.Lgs 152/06 e s.m.i. in conformità al decreto 120/2017 esternamente al cantiere, mentre 190.000 mc sono riutilizzati sempre come sottoprodotti ma internamente al cantiere, nella preparazione dei conci e del sottofondo stradale (cfr Par. 2.1.4).

Gli utilizzi come sottoprodotto sono previsti:

- nella preparazione del rivestimento definitivo dei tratti in galleria realizzato attraverso conci di cls prefabbricati;
- nella preparazione di malte e/o calcestruzzi necessari alla realizzazione delle sezioni di progetto per le gallerie previste (riempimento a tergo dei conci, realizzazione piano di calpestio gallerie, etc.).

4.2 Analisi chimiche eseguite sulle terre e rocce da scavo gestite come rifiuto

In fase di progettazione è stata condotta un'analisi preventiva sui terreni attraversati dalle opere di progetto con lo scopo di caratterizzare dal punto di vista chimico-fisico lo smarino prodotto dallo scavo in microtunneling e definirne la corretta gestione del rifiuto.

In generale, lo smaltimento in discarica deve essere effettuato in conformità a quanto previsto dal D.Lgs. 13 gennaio 2003 n. 36 e dal D.M. 27 Settembre 2010, che definiscono i criteri di ammissibilità dei rifiuti in discarica. L'ammissibilità in discarica è subordinata alla non pericolosità del materiale e all'esclusione al rilascio di contaminati nell'ambiente circostante mediante analisi su eluato da test di cessione.

Lo smarino prodotto dal microtunneling consiste in una miscela composta dal terreno disgregato ed il fluido di perforazione, costituito, quest'ultimo, da acqua o acqua e bentonite. Durante la perforazione, lo smarino viene pompato all'esterno attraverso un sistema di tubazioni e convogliato nell'impianto di separazione posto in superficie.

RELAZIONE SULLA GESTIONE DELLE MATERIE "Nuovo Tronco Superiore Acquedotto del Peschiera"

Al fine di caratterizzare il materiale ottenuto dallo scavo in microtunneling sono stati predisposti n. 9 campioni rappresentativi, così come di seguito descritto:

- Prelievo di n. 3 campioni di terreno rappresentativi delle litologie incontrate dallo scavo in MT; il prelievo è stato effettuato lungo il tracciato di progetto e alle profondità di scavo tramite l'esecuzione di sondaggi geognostici a carotaggio continuo;
- Predistorsione di 3 sub-aliquote per ogni campione di terreno prelevato;
- Consultazione delle schede di sicurezza delle principali bentoniti disponibili in commercio, dalla quale è stato possibile assodare la loro non pericolosità;
- Preparazione in laboratorio delle miscele "terreno, acqua e bentonite" per un totale di n. 6 campioni (n. 3 terreni X n. 2 bentoniti tra le più diffuse in commercio). Le composizioni delle miscele sono state determinate sulla base dei rapporti in % di terreno, acqua e bentonite raccomandate dal settore. Successivamente tali campioni sono stati sottoposti a un processo di separazione fisica tramite centrifugazione al fine di simulare le normali pratiche di separazione che avvengono in cantiere tramite gli impianti di separazione.

Sui campioni così ottenuti sono stati eseguiti i test di cessione allo scopo di accertare le caratteristiche chimiche in rapporto ai limiti previsti dal D.M. 27 Settembre 2010, che definiscono i criteri di ammissibilità dei rifiuti in discarica. Le stesse analisi sono state eseguite su n. 3 sub-aliquote di terreno "vergine" ovvero non miscelato con bentonite, al fine di confrontare e valutare l'incidenza delle bentoniti sui terreni stessi.

Tabella 3 Limiti di accettabilità per i composti organici in discariche per rifiuti inerti

Parametro	1	Valore	1
	!	mg/kg	
TOC (*)		30.000 (*)	l l
BTEX	1	6	1
Olio minerale (da C10 a C40)	l L	500	1

(*) Tale parametro si riferisce alle sostanze organiche chimicamente attive, in grado di interferire con l'ambiente, con esclusione, quindi, di resine e polimeri od altri rifiuti chimicamente inerti. Per i terreni l'autorità competente può accettare un valore limite più elevato, purché non si superi il valore di 500 mg/kg per il carbonio organico disciolto a pH 7 (DOC7).

Figura 2: Tabella 2-3 Limiti di concentrazione nell'eluato e composti organici per l'accettabilità in discariche per rifiuti inerti.

Tabella 5 Limiti di concentrazione nell'eluato per l'accettabilità' in discariche per rifiuti non pericolosi

Parametro	L/S=101/kg (mg/1)
AS	10,2
Ba	110
cd .	10,1
Cr totale	11
Cu Cu	15
lg .	10,02
10	11
li .	11
ob .	11
Sb .	10,07
Se	10,05
in	15
Cloruri	12.500
luoruri	115
Solfati	15.000
OC (*) (**)	1100
DS (***)	110.000

^(*) Il limite di concentrazione per il parametro DOC non si applica alle seguenti tipologie di rifiuti:

Figura 3: Tabella 5 Limiti di concentrazione nell'eluato per l'accettabilità in discariche per rifiuti non pericolosi.

Comparando i risultati analitici con i limiti di concentrazione previsti per la gestione del rifiuto a discarica per rifiuti inerti, si è riscontrato che soltanto per una delle due

a. fanghi prodotti dal trattamento e dalla preparazione di alimenti individuati dai codici dell'elenco europeo dei rifiuti 020301, 020305, 020403, 020502, 020603, 020705, fanghi e rifiuti derivanti dalla produzione e dalla lavorazione di polpa carta e cartone (codici dell'elenco europeo dei rifiuti 030301, 030302, 030305, 030307, 030308, 030309, 030310, 030311 e 030399), fanghi prodotti dal trattamento delle acque reflue urbane (codice dell'elenco europeo dei rifiuti 190805) e fanghi delle fosse settiche (200304), purché trattati mediante processi idonei a ridurne in modo consistente l'attività biologica;

tipologie di bentoniti testate si è riscontrato un solo superamento dei limiti (n. 1 campione su 9 testati per il solo parametro Cromo) e che pertanto, per la fase esecutiva, si dovrà fare riferimento ai test analitici al fine di rientrare nei parametri che consentano la qualificazione del materiale di smarino quale rifiuto inerte.

I certificati analitici relativi ai risultati delle analisi condotte sui campioni investigati sono riportati in calce alla seguente relazione.

4.3 Produzione rifiuti

La produzione complessiva di rifiuti da C&D (comprese le TRS-rifiuto) è stata stimata pari a circa **1.438.635 tonnellate** e rappresentata da miscele bituminose, miscugli o scorie di cemento, fanghi di perforazione e/o trivellazione, cemento, laterizio (tegole, mattoni, forati), metalli, oltre a scarti di lavorazione, materiali fuori specifica e imballaggi.

Le demolizioni riguarderanno manufatti preesistenti come:

- muri di sostegno;
- opere di allaccio a vasche di carico e a collettori esistenti;
- baracche.

A causa degli spazi limitati, dell'organizzazione del cantiere, della limitata produzione di rifiuti C&D e del tipo di manufatti da demolire, non sarà praticabile la demolizione "selettiva". Alla luce delle ricognizioni eseguite e delle attuali informazioni reperite, non è ipotizzabile la presenza di amianto o FAV nei manufatti oggetto di demolizione. In fase di cantierizzazione saranno eseguiti ulteriori approfondimenti.

La percentuale di produzione di scarti di lavorazione, materiali fuori specifica e imballaggi è prevista < 1% del totale di rifiuto da C&D gestito.

La quantità di materiale qualificato come TRS-rifiuto è valutata pari a **1.325.000 tonnellate** complessive e riguarderà gli scavi delle gallerie in tradizionale, gli scavi e movimento terre dei manufatti e tutte le altre terre che non potranno essere assoggettate ai regimi giuridici definiti dagli art.184-bis e 185 del D.Lgs. 152/06 s.m.i.

RELAZIONE SULLA GESTIONE DELLE MATERIE "Nuovo Tronco Superiore Acquedotto del Peschiera"

e verranno, pertanto, avviate ad impianti debitamente autorizzati alle operazioni di recupero e/o smaltimento.

Nelle rispettive aree di cantiere saranno generati i volumi di rifiuti riportati in tabella; come è lecito attendersi la parte più rilevante in termini quantitativi è legata alla produzione di TRS –rifiuto.

Tipologia di Rifiuto	Codice C.E.R	Attività di provenienza	Recupero Smaltimento	Quantità Stimate (t)
Imballaggi in plastica	15 01 02	costruzione	riutilizzo/discarica	<1
Imballaggi in legno	15 01 03	costruzione	riutilizzo/recupero/disca rica	<1
Ferro e acciaio	17 04 05	demolizione	riutilizzo/riciclaggio	160
Materiali isolanti, diversi da quelli di cui alle voci 17 06 01e 17 06 03	17 06 04	costruzione	discarica	<1
Metalli misti	17 04 07	demolizione	riutilizzo/riciclaggio	<1
Rifiuti misti dell'attività di costruzione e demolizione, diversi da quelli di cui alle voci 17 09 01, 17 09 02 e 17 09 03	17 09 04	demolizione	recupero/discarica	<1
Terre e rocce, diverse da quelle di cui alla voce 17 05 03	17 05 04	operazioni di scavo	discarica per inerti	1.325.000
Rifiuti biodegradabili (sfalci, ramaglie e potature arbusti)	20 02 01	demolizione	riciclaggio/ recupero	<1
Miscele bituminose diverse da quelle di cui alla voce codice CER 17 03 01	17 03 02	demolizione	recupero/discarica	860
Miscugli o scorie di cemento, mattoni, mattonelle e ceramiche, diverse da quelle di cui alla voce codice CER 17 01 06	17 01 07	demolizione	recupero/discarica	610
Fanghi di perforazione e/o trivellazione	01 05 04	operazioni di scavo	discarica per inerti	112.000

Via Vitorchiano, 165 - 00189 Roma Tel. +39-06-57992600 Fax +39-06-57992629

Analisi di Terreno

N. di Riferimento 15804/22 Committente Acea Elabori Screening & Geologia

Data emissione 07/07/2022 N. di Accettazione: 108228

Punto di Prelievo Peschiera SA1 Imerys prof.4-5 m

Campione di Terreno

Localizzazione

(Non codificato)

Ricevuto il 17/05/2022

Data inizio prova 14/06/2022

Data fine prova 14/06/2022

Campionato da Acea Elabori S.p.A. - Innovazione

In data 17/05/2022

Parametro	Metodo	U.M.	Risultato
Nitrati	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L NO3	4,93
pH eluato	UNI EN 12457-2:2004 + UNI EN ISO 10523:2012	pН	8,5
Fluoruri	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L F	<0,50
Solfati	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L SO4	26,2
Cloruri	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L CI	<5,00
Cianuri	UNI EN 12457-2:2004 + APHA SM 4500-CN -	μg/L	<10
Bario	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Ba	0,0328
Rame	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cu	0,0119
Zinco	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Zn	0,0101
Berillio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Be	0,4
Cobalto	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Co	1,0
Nichel	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Ni	0.0074
Nichel	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Ni	7,4
Vanadio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L V	20,5
Arsenico	UNI EN 12457-2:2004 + APHA SM 3125	mg/L As	0,0058
Arsenico	UNI EN 12457-2:2004 + APHA SM 3125	μg/L As	5,8
Cadmio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cd	<0.0002
Cadmio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Cd	<0,2
Cromo totale	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cr	0.0011

Via Vitorchiano, 165 - 00189 Roma Tel. +39-06-57992600 Fax +39-06-57992629

Analisi di Terreno

15804/22 N. di Riferimento Committente Acea Elabori Screening & Geologia

Data emissione 07/07/2022 N. di Accettazione: 108228

Punto di Prelievo Peschiera SA1 Imerys prof.4-5 m

Campione di **Terreno**

17/05/2022 Localizzazione (Non codificato) Data inizio prova 17/05/2022 Data fine prova 14/06/2022

Campionato da Acea Elabori S.p.A. - Innovazione

17/05/2022 In data

RAPPORTO DI PROVA

Parametro	Metodo	U.M.	Risultato
Cromo totale	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Cr	11,0
Piombo	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Pb	0,0046
Piombo	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Pb	4,6
Selenio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Se	0.0029
Selenio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Se	2,9
Mercurio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Hg	<1,0
Mercurio	UNI EN 12457-2:2004 + APHA SM 3125	mg/l Hg	<0,0010
Carbonio organico disciolto	UNI EN 12457-2:2004 + UNI EN 1484:1999	mg/L C	20,5
Molibdeno	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Mo	0,0049
Antimonio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Sb	0.0010
Fenoli totali (come indice fenolo)	UNI EN ISO 14402:2004	mg/L	<0,01
Solidi disciolti totali (TDS)	UNI EN 12457-2:2004 + UNI EN 27888:1995	mg/L	124

Il risultato si riferiscono al solo campione sottoposto a prova. Il presente Rapporto di Prova non può essere riprodotto, anche parzialmente, salvo approvazione scritta del laboratorio. - I campioni, a meno di diverse disposizioni normative e di campioni deperibili, sono eliminati al termine delle prove. - Le registrazioni relative alle prove sono conservate presso il laboratorio per 5 anni. I valori inferiori al limite di quantificazione del metodo sono indicati sul presente Rapporto di Prova con il simbolo "<" seguito dal limite di quantificazione stesso. Qualora i metodi di prova prevedano la correzione per il fattore di recupero, lo stesso è riportato di seguito al rapporto di prova. Per le prove che prevedono la diluizione isotopica, il calcolo della concentrazione finale comprende il recupero degli isotopi addizionati; recuperi non rientranti nel range previsto dal metodo saranno segnalati. Per il calcolo delle somme, se non indicato diversamente, è utilizzato il metodo lower-bound, i dati inferiori al limite di rilevabilità sono considerati uguali a 0; in caso di somme di dati tutti inferiori al limite di rilevabilità, si riporta il simbolo - ; ove non espressamente indicato, il risultato si intende sul campione "Tal quale". Quando riportata, l'incertezza di misura se espressa come incertezza estesa è calcolata con livello di fiducia al 95% e fattore di copertura k=2; se espressa come intervallo di fiducia è calcolata con livello di fiducia al 95% e fattore di copertura k=2. Il laboratorio, in caso di emissione di giudizio di conformità/nota, non tiene conto dell'incertezza di misura. Il laboratorio declina ogni responsabilità sulle informazioni fornite dal cliente. Nel caso in cui il campione sia fornito dal Cliente i risultati di prova si riferiscono al campione così come ricevuto, inoltre le informazioni relative al campione (punto di prelievo, localizzazione, data e tipologia di campione, misure su campo) sono fornite dal Cliente sotto la sua responsabilità.

APHA SM: Standard Methods for the examination of water and wastewater ed 23rd 2017; Legenda:

> Il Responsabile Dott. Giancarlo Cecchini Ordine dei Chimici del Lazio-Umbria-Abruzzo-Molise Roma nº 1902

Ricevuto il

Documento firmato digitalmente ai sensi della normativa vigente

Via Vitorchiano, 165 - 00189 Roma Tel. +39-06-57992600 Fax +39-06-57992629

Analisi di Terreno

N. di Riferimento 15805/22 Committente Acea Elabori Screening & Geologia

Data emissione **07/07/2022** N. di Accettazione: **108228**

Punto di Prelievo Peschiera SA1 Laviosa prof.4-5 m

Campione di Terreno

Localizzazione

(Non codificato)

Ricevuto il 17/05/2022

Data inizio prova 14/06/2022

Data fine prova 14/06/2022

Campionato da Acea Elabori S.p.A. - Innovazione

In data 17/05/2022

Parametro	Metodo	U.M.	Risultato
Nitrati	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L NO3	5,46
pH eluato	UNI EN 12457-2:2004 + UNI EN ISO 10523:2012	рН	8,9
Fluoruri	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L F	<0,50
Solfati	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L SO4	6,48
Cloruri	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L CI	<5,00
Cianuri	UNI EN 12457-2:2004 + APHA SM 4500-CN -	μg/L	<10
Bario	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Ba	0,0353
Rame	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cu	0,0137
Zinco	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Zn	0,0124
Berillio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Be	0,4
Cobalto	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Co	2,1
Nichel	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Ni	0.0089
Nichel	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Ni	8,9
Vanadio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L V	26,0
Arsenico	UNI EN 12457-2:2004 + APHA SM 3125	mg/L As	0,0066
Arsenico	UNI EN 12457-2:2004 + APHA SM 3125	μg/L As	6,6
Cadmio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cd	<0.0002
Cadmio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Cd	<0,2
Cromo totale	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cr	0.0142

Via Vitorchiano, 165 - 00189 Roma Tel. +39-06-57992600 Fax +39-06-57992629

Analisi di Terreno

N. di Riferimento 15805/22 Committente Acea Elabori Screening & Geologia

Data emissione **07/07/2022** N. di Accettazione: **108228**

Punto di Prelievo Peschiera SA1 Laviosa prof.4-5 m

Campione di Terreno

Localizzazione (Non codificato) Ricevuto il 17/05/2022
Data inizio prova 17/05/2022
Data fine prova 14/06/2022

Campionato da Acea Elabori S.p.A. - Innovazione

In data 17/05/2022

RAPPORTO DI PROVA

Parametro	Metodo	U.M.	Risultato
Cromo totale	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Cr	14,2
Piombo	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Pb	0,0045
Piombo	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Pb	4,5
Selenio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Se	0.0030
Selenio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Se	3,0
Mercurio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Hg	<1,0
Mercurio	UNI EN 12457-2:2004 + APHA SM 3125	mg/l Hg	<0,0010
Carbonio organico disciolto	UNI EN 12457-2:2004 + UNI EN 1484:1999	mg/L C	16,4
Molibdeno	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Mo	0,0037
Antimonio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Sb	< 0.001
Fenoli totali (come indice fenolo)	UNI EN ISO 14402:2004	mg/L	<0,01
Solidi disciolti totali (TDS)	UNI EN 12457-2:2004 + UNI EN 27888:1995	mg/L	95

Il risultato si riferiscono al solo campione sottoposto a prova. Il presente Rapporto di Prova non può essere riprodotto, anche parzialmente, salvo approvazione scritta del laboratorio. - I campioni, a meno di diverse disposizioni normative e di campioni deperibili, sono eliminati al termine delle prove. - Le registrazioni relative alle prove sono conservate presso il laboratorio per 5 anni. I valori inferiori al limite di quantificazione del metodo sono indicati sul presente Rapporto di Prova con il simbolo "<" seguito dal limite di quantificazione stesso. Qualora i metodi di prova prevedano la correzione per il fattore di recupero, lo stesso è riportato di seguito al rapporto di prova. Per le prove che prevedono la diluizione isotopica, il calcolo della concentrazione finale comprende il recupero degli isotopi addizionati; recuperi non rientranti nel range previsto dal metodo saranno segnalati. Per il calcolo delle somme, se non indicato diversamente, è utilizzato il metodo lower-bound, i dati inferiori al limite di rilevabilità sono considerati uguali a 0; in caso di somme di dati tutti inferiori al limite di rilevabilità, si riporta il simbolo -; ove non espressamente indicato, il risultato si intende sul campione "Tal quale". Quando riportata, l'incertezza di misura se espressa come incertezza estesa è calcolata con livello di fiducia al 95% e fattore di copertura k=2; se espressa come intervallo di fiducia e calcolata con livello di fiducia al 95% e fattore di copertura k=2. Il laboratorio, in caso di emissione di giudizio di conformità/nota, non tiene conto dell'incertezza di misura. Il laboratorio declina ogni responsabilità sulle informazioni fornite dal cliente. Nel caso in cui il campione sia fornito dal Cliente i risultati di prova si riferiscono al campione così come ricevuto, inoltre le informazioni relative al campione, misure su campo) sono fornite dal Cliente sotto la sua responsabilità.

Legenda: APHA SM: Standard Methods for the examination of water and wastewater ed 23rd 2017;

Il Responsabile

Dott. Giancarlo Cecchini

Ordine dei Chimici del Lazio-Umbria-Abruzzo-Molise Roma n° 1902

Documento firmato digitalmente ai sensi della normativa vigente

Via Vitorchiano, 165 - 00189 Roma Tel. +39-06-57992600 Fax +39-06-57992629

Analisi di Terreno

N. di Riferimento 15806/22 Committente Acea Elabori Screening & Geologia

Data emissione **07/07/2022** N. di Accettazione: **108228**

Punto di Prelievo Peschiera SA1 bianco prof.4-5 m

Campione di Terreno

Localizzazione

(Non codificato)

Ricevuto il 17/05/2022

Data inizio prova 14/06/2022

Data fine prova 14/06/2022

Campionato da Acea Elabori S.p.A. - Innovazione

In data 17/05/2022

Parametro	Metodo	U.M.	Risultato
Nitrati	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L NO3	26,8
pH eluato	UNI EN 12457-2:2004 + UNI EN ISO 10523:2012	pН	8,2
Fluoruri	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L F	<0,50
Solfati	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L SO4	9,28
Cloruri	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L CI	<5,00
Cianuri	UNI EN 12457-2:2004 + APHA SM 4500-CN -	μg/L	<10
Bario	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Ba	0,0169
Rame	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cu	0.0035
Zinco	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Zn	0.0016
Berillio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Be	<0,2
Cobalto	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Co	<0,2
Nichel	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Ni	< 0.002
Nichel	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Ni	<2,0
Vanadio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L V	1,9
Arsenico	UNI EN 12457-2:2004 + APHA SM 3125	mg/L As	<0.0010
Arsenico	UNI EN 12457-2:2004 + APHA SM 3125	μg/L As	<1,0
Cadmio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cd	< 0.0002
Cadmio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Cd	<0,2
Cromo totale	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cr	< 0.005

Via Vitorchiano, 165 - 00189 Roma Tel. +39-06-57992600 Fax +39-06-57992629

Analisi di Terreno

15806/22 N. di Riferimento Committente Acea Elabori Screening & Geologia

Data emissione 07/07/2022 N. di Accettazione: 108228

Punto di Prelievo Peschiera SA1 bianco prof.4-5 m

Campione di **Terreno**

17/05/2022 Ricevuto il Localizzazione (Non codificato) Data inizio prova 17/05/2022 Data fine prova 14/06/2022

Campionato da Acea Elabori S.p.A. - Innovazione

17/05/2022 In data

RAPPORTO DI PROVA

Parametro	Metodo	U.M.	Risultato
Cromo totale	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Cr	<5,0
Piombo	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Pb	0.0002
Piombo	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Pb	0,2
Selenio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Se	< 0.001
Selenio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Se	<1,0
Mercurio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Hg	<1,0
Mercurio	UNI EN 12457-2:2004 + APHA SM 3125	mg/l Hg	<0,0010
Carbonio organico disciolto	UNI EN 12457-2:2004 + UNI EN 1484:1999	mg/L C	14,5
Molibdeno	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Mo	0,0035
Antimonio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Sb	< 0.001
Fenoli totali (come indice fenolo)	UNI EN ISO 14402:2004	mg/L	<0,01
Solidi disciolti totali (TDS)	UNI EN 12457-2:2004 + UNI EN 27888:1995	mg/L	107

Il risultato si riferiscono al solo campione sottoposto a prova. Il presente Rapporto di Prova non può essere riprodotto, anche parzialmente, salvo approvazione scritta del laboratorio. - I campioni, a meno di diverse disposizioni normative e di campioni deperibili, sono eliminati al termine delle prove. - Le registrazioni relative alle prove sono conservate presso il laboratorio per 5 anni. I valori inferiori al limite di quantificazione del metodo sono indicati sul presente Rapporto di Prova con il simbolo "<" seguito dal limite di quantificazione stesso. Qualora i metodi di prova prevedano la correzione per il fattore di recupero, lo stesso è riportato di seguito al rapporto di prova. Per le prove che prevedono la diluizione isotopica, il calcolo della concentrazione finale comprende il recupero degli isotopi addizionati; recuperi non rientranti nel range previsto dal metodo saranno segnalati. Per il calcolo delle somme, se non indicato diversamente, è utilizzato il metodo lower-bound, i dati inferiori al limite di rilevabilità sono considerati uguali a 0; in caso di somme di dati tutti inferiori al limite di rilevabilità, si riporta il simbolo - ; ove non espressamente indicato, il risultato si intende sul campione "Tal quale". Quando riportata, l'incertezza di misura se espressa come incertezza estesa è calcolata con livello di fiducia al 95% e fattore di copertura k=2; se espressa come intervallo di fiducia è calcolata con livello di fiducia al 95% e fattore di copertura k=2. Il laboratorio, in caso di emissione di giudizio di conformità/nota, non tiene conto dell'incertezza di misura. Il laboratorio declina ogni responsabilità sulle informazioni fornite dal cliente. Nel caso in cui il campione sia fornito dal Cliente i risultati di prova si riferiscono al campione così come ricevuto, inoltre le informazioni relative al campione (punto di prelievo, localizzazione, data e tipologia di campione, misure su campo) sono fornite dal Cliente sotto la sua responsabilità.

APHA SM: Standard Methods for the examination of water and wastewater ed 23rd 2017; Legenda:

> Il Responsabile Dott. Giancarlo Cecchini Ordine dei Chimici del Lazio-Umbria-Abruzzo-Molise Roma nº 1902

> > Documento firmato digitalmente ai sensi della normativa vigente

Via Vitorchiano, 165 - 00189 Roma Tel. +39-06-57992600 Fax +39-06-57992629

Analisi di Terreno

N. di Riferimento 15807/22 Committente Acea Elabori Screening & Geologia

Data emissione **07/07/2022** N. di Accettazione: **108228**

Punto di Prelievo Peschiera SA2 Imerys prof.14-15 m

Campione di Terreno

Localizzazione

(Non codificato)

Ricevuto il 17/05/2022

Data inizio prova 14/06/2022

Data fine prova 14/06/2022

Campionato da Acea Elabori S.p.A. - Innovazione

In data 17/05/2022

Parametro	Metodo	U.M.	Risultato
Nitrati	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L NO3	8,57
pH eluato	UNI EN 12457-2:2004 + UNI EN ISO 10523:2012	рН	9,3
Fluoruri	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L F	<0,50
Solfati	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L SO4	14,7
Cloruri	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L CI	<5,00
Cianuri	UNI EN 12457-2:2004 + APHA SM 4500-CN -	μg/L	<10
Bario	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Ba	0,0609
Rame	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cu	0,0115
Zinco	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Zn	0,0373
Berillio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Be	1,3
Cobalto	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Co	2,6
Nichel	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Ni	0,020
Nichel	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Ni	20,3
Vanadio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L V	82,5
Arsenico	UNI EN 12457-2:2004 + APHA SM 3125	mg/L As	0,0190
Arsenico	UNI EN 12457-2:2004 + APHA SM 3125	μg/L As	19,0
Cadmio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cd	<0.0002
Cadmio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Cd	<0,2
Cromo totale	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cr	0,0455

Via Vitorchiano, 165 - 00189 Roma Tel. +39-06-57992600 Fax +39-06-57992629

Analisi di Terreno

15807/22 N. di Riferimento Committente Acea Elabori Screening & Geologia

Data emissione 07/07/2022 N. di Accettazione: 108228

Punto di Prelievo Peschiera SA2 Imerys prof.14-15 m

Campione di **Terreno**

17/05/2022 Ricevuto il Localizzazione (Non codificato) Data inizio prova 17/05/2022 Data fine prova 14/06/2022

Campionato da Acea Elabori S.p.A. - Innovazione

17/05/2022 In data

RAPPORTO DI PROVA

Parametro	Metodo	U.M.	Risultato
Cromo totale	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Cr	45,5
Piombo	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Pb	0,0068
Piombo	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Pb	6,8
Selenio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Se	0.0031
Selenio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Se	3,1
Mercurio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Hg	<1,0
Mercurio	UNI EN 12457-2:2004 + APHA SM 3125	mg/l Hg	<0,0010
Carbonio organico disciolto	UNI EN 12457-2:2004 + UNI EN 1484:1999	mg/L C	15,1
Molibdeno	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Mo	0,0035
Antimonio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Sb	0.0016
Fenoli totali (come indice fenolo)	UNI EN ISO 14402:2004	mg/L	<0,01
Solidi disciolti totali (TDS)	UNI EN 12457-2:2004 + UNI EN 27888:1995	mg/L	102

Il risultato si riferiscono al solo campione sottoposto a prova. Il presente Rapporto di Prova non può essere riprodotto, anche parzialmente, salvo approvazione scritta del laboratorio. - I campioni, a meno di diverse disposizioni normative e di campioni deperibili, sono eliminati al termine delle prove. - Le registrazioni relative alle prove sono conservate presso il laboratorio per 5 anni. I valori inferiori al limite di quantificazione del metodo sono indicati sul presente Rapporto di Prova con il simbolo "<" seguito dal limite di quantificazione stesso. Qualora i metodi di prova prevedano la correzione per il fattore di recupero, lo stesso è riportato di seguito al rapporto di prova. Per le prove che prevedono la diluizione isotopica, il calcolo della concentrazione finale comprende il recupero degli isotopi addizionati; recuperi non rientranti nel range previsto dal metodo saranno segnalati. Per il calcolo delle somme, se non indicato diversamente, è utilizzato il metodo lower-bound, i dati inferiori al limite di rilevabilità sono considerati uguali a 0; in caso di somme di dati tutti inferiori al limite di rilevabilità, si riporta il simbolo - ; ove non espressamente indicato, il risultato si intende sul campione "Tal quale". Quando riportata, l'incertezza di misura se espressa come incertezza estesa è calcolata con livello di fiducia al 95% e fattore di copertura k=2; se espressa come intervallo di fiducia è calcolata con livello di fiducia al 95% e fattore di copertura k=2. Il laboratorio, in caso di emissione di giudizio di conformità/nota, non tiene conto dell'incertezza di misura. Il laboratorio declina ogni responsabilità sulle informazioni fornite dal cliente. Nel caso in cui il campione sia fornito dal Cliente i risultati di prova si riferiscono al campione così come ricevuto, inoltre le informazioni relative al campione (punto di prelievo, localizzazione, data e tipologia di campione, misure su campo) sono fornite dal Cliente sotto la sua responsabilità.

APHA SM: Standard Methods for the examination of water and wastewater ed 23rd 2017; Legenda:

> Il Responsabile Dott. Giancarlo Cecchini Ordine dei Chimici del Lazio-Umbria-Abruzzo-Molise Roma nº 1902

> > Documento firmato digitalmente ai sensi della normativa vigente

Via Vitorchiano, 165 - 00189 Roma Tel. +39-06-57992600 Fax +39-06-57992629

Analisi di Terreno

N. di Riferimento 15808/22 Committente Acea Elabori Screening & Geologia

Data emissione **07/07/2022** N. di Accettazione: **108228**

Punto di Prelievo Peschiera SA2 Laviosa prof.14-15 m

Campione di Terreno

Localizzazione

(Non codificato)

Ricevuto il 17/05/2022

Data inizio prova 14/06/2022

Data fine prova 14/06/2022

Campionato da Acea Elabori S.p.A. - Innovazione

In data 17/05/2022

Parametro	Metodo	U.M.	Risultato
Nitrati	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L NO3	9,93
pH eluato	UNI EN 12457-2:2004 + UNI EN ISO 10523:2012	pН	9,3
Fluoruri	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L F	<0,50
Solfati	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L SO4	6,59
Cloruri	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L CI	<5,00
Cianuri	UNI EN 12457-2:2004 + APHA SM 4500-CN -	μg/L	<10
Bario	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Ba	0,0863
Rame	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cu	0,0165
Zinco	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Zn	0,0564
Berillio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Be	1,8
Cobalto	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Co	5,2
Nichel	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Ni	0.0324
Nichel	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Ni	32,4
Vanadio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L V	101,5
Arsenico	UNI EN 12457-2:2004 + APHA SM 3125	mg/L As	0,0206
Arsenico	UNI EN 12457-2:2004 + APHA SM 3125	μg/L As	20,6
Cadmio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cd	0.0002
Cadmio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Cd	0,2
Cromo totale	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cr	0,0750

Via Vitorchiano, 165 - 00189 Roma Tel. +39-06-57992600 Fax +39-06-57992629

Analisi di Terreno

15808/22 N. di Riferimento Committente Acea Elabori Screening & Geologia

Data emissione 07/07/2022 N. di Accettazione: 108228

Punto di Prelievo Peschiera SA2 Laviosa prof.14-15 m

Campione di **Terreno**

17/05/2022 Localizzazione (Non codificato) Data inizio prova 17/05/2022 Data fine prova 14/06/2022

Campionato da Acea Elabori S.p.A. - Innovazione

17/05/2022 In data

RAPPORTO DI PROVA

Parametro	Metodo	U.M.	Risultato
Cromo totale	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Cr	75,0
Piombo	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Pb	0,0078
Piombo	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Pb	7,8
Selenio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Se	0.0037
Selenio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Se	3,7
Mercurio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Hg	<1,0
Mercurio	UNI EN 12457-2:2004 + APHA SM 3125	mg/l Hg	<0,0010
Carbonio organico disciolto	UNI EN 12457-2:2004 + UNI EN 1484:1999	mg/L C	14,8
Molibdeno	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Mo	0,0042
Antimonio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Sb	0.0021
Fenoli totali (come indice fenolo)	UNI EN ISO 14402:2004	mg/L	<0,01
Solidi disciolti totali (TDS)	UNI EN 12457-2:2004 + UNI EN 27888:1995	mg/L	111

Il risultato si riferiscono al solo campione sottoposto a prova. Il presente Rapporto di Prova non può essere riprodotto, anche parzialmente, salvo approvazione scritta del laboratorio. - I campioni, a meno di diverse disposizioni normative e di campioni deperibili, sono eliminati al termine delle prove. - Le registrazioni relative alle prove sono conservate presso il laboratorio per 5 anni. I valori inferiori al limite di quantificazione del metodo sono indicati sul presente Rapporto di Prova con il simbolo "<" seguito dal limite di quantificazione stesso. Qualora i metodi di prova prevedano la correzione per il fattore di recupero, lo stesso è riportato di seguito al rapporto di prova. Per le prove che prevedono la diluizione isotopica, il calcolo della concentrazione finale comprende il recupero degli isotopi addizionati; recuperi non rientranti nel range previsto dal metodo saranno segnalati. Per il calcolo delle somme, se non indicato diversamente, è utilizzato il metodo lower-bound, i dati inferiori al limite di rilevabilità sono considerati uguali a 0; in caso di somme di dati tutti inferiori al limite di rilevabilità, si riporta il simbolo - ; ove non espressamente indicato, il risultato si intende sul campione "Tal quale". Quando riportata, l'incertezza di misura se espressa come incertezza estesa è calcolata con livello di fiducia al 95% e fattore di copertura k=2; se espressa come intervallo di fiducia è calcolata con livello di fiducia al 95% e fattore di copertura k=2. Il laboratorio, in caso di emissione di giudizio di conformità/nota, non tiene conto dell'incertezza di misura. Il laboratorio declina ogni responsabilità sulle informazioni fornite dal cliente. Nel caso in cui il campione sia fornito dal Cliente i risultati di prova si riferiscono al campione così come ricevuto, inoltre le informazioni relative al campione (punto di prelievo, localizzazione, data e tipologia di campione, misure su campo) sono fornite dal Cliente sotto la sua responsabilità.

APHA SM: Standard Methods for the examination of water and wastewater ed 23rd 2017; Legenda:

> Il Responsabile Dott. Giancarlo Cecchini Ordine dei Chimici del Lazio-Umbria-Abruzzo-Molise Roma nº 1902

Ricevuto il

Documento firmato digitalmente ai sensi della normativa vigente

Via Vitorchiano, 165 - 00189 Roma Tel. +39-06-57992600 Fax +39-06-57992629

Analisi di Terreno

N. di Riferimento 15809/22 Committente Acea Elabori Screening & Geologia

Data emissione **07/07/2022** N. di Accettazione: **108228**

Punto di Prelievo Peschiera SA2 bianco prof.14-15 m

Campione di Terreno

Localizzazione

(Non codificato)

Ricevuto il 17/05/2022

Data inizio prova 14/06/2022

Data fine prova 14/06/2022

Campionato da Acea Elabori S.p.A. - Innovazione

In data 17/05/2022

Parametro	Metodo	U.M.	Risultato
Nitrati	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L NO3	5,38
pH eluato	UNI EN 12457-2:2004 + UNI EN ISO 10523:2012	pН	8,8
Fluoruri	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L F	<0,50
Solfati	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L SO4	4,19
Cloruri	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L CI	<5,00
Cianuri	UNI EN 12457-2:2004 + APHA SM 4500-CN -	μg/L	<10
Bario	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Ba	0,0065
Rame	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cu	0.0017
Zinco	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Zn	0.0010
Berillio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Be	<0,2
Cobalto	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Co	<0,2
Nichel	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Ni	< 0.002
Nichel	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Ni	<2,0
Vanadio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L V	6,5
Arsenico	UNI EN 12457-2:2004 + APHA SM 3125	mg/L As	0.0030
Arsenico	UNI EN 12457-2:2004 + APHA SM 3125	μg/L As	3,0
Cadmio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cd	< 0.0002
Cadmio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Cd	<0,2
Cromo totale	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cr	< 0.005

Via Vitorchiano, 165 - 00189 Roma Tel. +39-06-57992600 Fax +39-06-57992629

Analisi di Terreno

15809/22 N. di Riferimento Committente Acea Elabori Screening & Geologia

Data emissione 07/07/2022 N. di Accettazione: 108228

Punto di Prelievo Peschiera SA2 bianco prof.14-15 m

Campione di **Terreno**

17/05/2022 Localizzazione (Non codificato) Data inizio prova 17/05/2022 Data fine prova 14/06/2022

Campionato da Acea Elabori S.p.A. - Innovazione

17/05/2022 In data

RAPPORTO DI PROVA

Parametro	Metodo	U.M.	Risultato
Cromo totale	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Cr	<5,0
Piombo	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Pb	0.0002
Piombo	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Pb	0,2
Selenio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Se	0.0014
Selenio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Se	1,4
Mercurio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Hg	<1,0
Mercurio	UNI EN 12457-2:2004 + APHA SM 3125	mg/l Hg	<0,0010
Carbonio organico disciolto	UNI EN 12457-2:2004 + UNI EN 1484:1999	mg/L C	14,9
Molibdeno	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Mo	0,0023
Antimonio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Sb	<0.001
Fenoli totali (come indice fenolo)	UNI EN ISO 14402:2004	mg/L	<0,01
Solidi disciolti totali (TDS)	UNI EN 12457-2:2004 + UNI EN 27888:1995	mg/L	<57

Il risultato si riferiscono al solo campione sottoposto a prova. Il presente Rapporto di Prova non può essere riprodotto, anche parzialmente, salvo approvazione scritta del laboratorio. - I campioni, a meno di diverse disposizioni normative e di campioni deperibili, sono eliminati al termine delle prove. - Le registrazioni relative alle prove sono conservate presso il laboratorio per 5 anni. I valori inferiori al limite di quantificazione del metodo sono indicati sul presente Rapporto di Prova con il simbolo "<" seguito dal limite di quantificazione stesso. Qualora i metodi di prova prevedano la correzione per il fattore di recupero, lo stesso è riportato di seguito al rapporto di prova. Per le prove che prevedono la diluizione isotopica, il calcolo della concentrazione finale comprende il recupero degli isotopi addizionati; recuperi non rientranti nel range previsto dal metodo saranno segnalati. Per il calcolo delle somme, se non indicato diversamente, è utilizzato il metodo lower-bound, i dati inferiori al limite di rilevabilità sono considerati uguali a 0; in caso di somme di dati tutti inferiori al limite di rilevabilità, si riporta il simbolo - ; ove non espressamente indicato, il risultato si intende sul campione "Tal quale". Quando riportata, l'incertezza di misura se espressa come incertezza estesa è calcolata con livello di fiducia al 95% e fattore di copertura k=2; se espressa come intervallo di fiducia è calcolata con livello di fiducia al 95% e fattore di copertura k=2. Il laboratorio, in caso di emissione di giudizio di conformità/nota, non tiene conto dell'incertezza di misura. Il laboratorio declina ogni responsabilità sulle informazioni fornite dal cliente. Nel caso in cui il campione sia fornito dal Cliente i risultati di prova si riferiscono al campione così come ricevuto, inoltre le informazioni relative al campione (punto di prelievo, localizzazione, data e tipologia di campione, misure su campo) sono fornite dal Cliente sotto la sua responsabilità.

APHA SM: Standard Methods for the examination of water and wastewater ed 23rd 2017; Legenda:

> Il Responsabile Dott. Giancarlo Cecchini Ordine dei Chimici del Lazio-Umbria-Abruzzo-Molise Roma nº 1902

Ricevuto il

Documento firmato digitalmente ai sensi della normativa vigente

Via Vitorchiano, 165 - 00189 Roma Tel. +39-06-57992600 Fax +39-06-57992629

Analisi di Terreno

N. di Riferimento 15810/22 Committente Acea Elabori Screening & Geologia

Data emissione **07/07/2022** N. di Accettazione: **108228**

Punto di Prelievo Peschiera SA3 Imerys prof.10-11 m

Campione di Terreno

Localizzazione

(Non codificato)

Ricevuto il 17/05/2022

Data inizio prova 14/06/2022

Data fine prova 14/06/2022

Campionato da Acea Elabori S.p.A. - Innovazione

In data 17/05/2022

Parametro	Metodo	U.M.	Risultato
Nitrati	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L NO3	0,510
pH eluato	UNI EN 12457-2:2004 + UNI EN ISO 10523:2012	pН	9,6
Fluoruri	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L F	<0,50
Solfati	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L SO4	33,1
Cloruri	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L CI	<5,00
Cianuri	UNI EN 12457-2:2004 + APHA SM 4500-CN -	μg/L	<10
Bario	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Ba	0,0133
Rame	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cu	0.0028
Zinco	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Zn	0,0091
Berillio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Be	0,4
Cobalto	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Co	0,8
Nichel	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Ni	0.0040
Nichel	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Ni	4,0
Vanadio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L V	20,7
Arsenico	UNI EN 12457-2:2004 + APHA SM 3125	mg/L As	0,0168
Arsenico	UNI EN 12457-2:2004 + APHA SM 3125	μg/L As	16,8
Cadmio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cd	<0.0002
Cadmio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Cd	<0,2
Cromo totale	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cr	0.0065

Via Vitorchiano, 165 - 00189 Roma Tel. +39-06-57992600 Fax +39-06-57992629

Analisi di Terreno

N. di Riferimento 15810/22 Committente Acea Elabori Screening & Geologia

Data emissione **07/07/2022** N. di Accettazione: **108228**

Punto di Prelievo Peschiera SA3 Imerys prof.10-11 m

Campione di Terreno

Localizzazione (Non codificato) Ricevuto il 17/05/2022
Data inizio prova 14/06/2022
Data fine prova 14/06/2022

Campionato da Acea Elabori S.p.A. - Innovazione

In data 17/05/2022

RAPPORTO DI PROVA

Parametro	Metodo	U.M.	Risultato
Cromo totale	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Cr	6,5
Piombo	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Pb	0,0016
Piombo	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Pb	1,6
Selenio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Se	<0.001
Selenio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Se	<1,0
Mercurio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Hg	<1,0
Mercurio	UNI EN 12457-2:2004 + APHA SM 3125	mg/l Hg	<0,0010
Carbonio organico disciolto	UNI EN 12457-2:2004 + UNI EN 1484:1999	mg/L C	11,9
Molibdeno	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Mo	0,0042
Antimonio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Sb	< 0.001
Fenoli totali (come indice fenolo)	UNI EN ISO 14402:2004	mg/L	<0,01
Solidi disciolti totali (TDS)	UNI EN 12457-2:2004 + UNI EN 27888:1995	mg/L	142

Il risultato si riferiscono al solo campione sottoposto a prova. Il presente Rapporto di Prova non può essere riprodotto, anche parzialmente, salvo approvazione scritta del laboratorio. - I campioni, a meno di diverse disposizioni normative e di campioni deperibili, sono eliminati al termine delle prove. - Le registrazioni relative alle prove sono conservate presso il laboratorio per 5 anni. I valori inferiori al limite di quantificazione del metodo sono indicati sul presente Rapporto di Prova con il simbolo "<" seguito dal limite di quantificazione stesso. Qualora i metodi di prova prevedano la correzione per il fattore di recupero, lo stesso è riportato di seguito al rapporto di prova. Per le prove che prevedono la diluizione isotopica, il calcolo della concentrazione finale comprende il recupero degli isotopi addizionati; recuperi non rientranti nel range previsto dal metodo saranno segnalati. Per il calcolo delle somme, se non indicato diversamente, è utilizzato il metodo lower-bound, i dati inferiori al limite di rilevabilità sono considerati uguali a 0; in caso di somme di dati tutti inferiori al limite di rilevabilità, si riporta il simbolo -; ove non espressamente indicato, il risultato si intende sul campione "Tal quale". Quando riportata, l'incertezza di misura se espressa come incertezza estesa è calcolata con livello di fiducia al 95% e fattore di copertura k=2; se espressa come intervallo di fiducia è calcolata con livello di fiducia al 95% e fattore di copertura k=2. Il laboratorio, in caso di emissione di giudizio di conformità/nota, non tiene conto dell'incertezza di misura. Il laboratorio declina ogni responsabilità sulle informazioni fornite dal cliente. Nel caso in cui il campione sia fornito dal Cliente i risultati di prova si riferiscono al campione così come ricevuto, inoltre le informazioni relative al campione, misure su campo) sono fornite dal Cliente sotto la sua responsabilità.

Legenda: APHA SM: Standard Methods for the examination of water and wastewater ed 23rd 2017;

Il Responsabile

Dott. Giancarlo Cecchini

Ordine dei Chimici del Lazio-Umbria-Abruzzo-Molise Roma n° 1902

Documento firmato digitalmente ai sensi della normativa vigente

Via Vitorchiano, 165 - 00189 Roma Tel. +39-06-57992600 Fax +39-06-57992629

Analisi di Terreno

N. di Riferimento 15811/22 Committente Acea Elabori Screening & Geologia

Data emissione **07/07/2022** N. di Accettazione: **108228**

Punto di Prelievo Peschiera SA3 Laviosa prof.14-15 m

Campione di Terreno

Localizzazione

(Non codificato)

Ricevuto il 17/05/2022

Data inizio prova 14/06/2022

Data fine prova 14/06/2022

Campionato da Acea Elabori S.p.A. - Innovazione

In data 17/05/2022

Parametro	Metodo	U.M.	Risultato
Nitrati	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L NO3	0,310
pH eluato	UNI EN 12457-2:2004 + UNI EN ISO 10523:2012	рН	9,6
Fluoruri	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L F	<0,50
Solfati	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L SO4	7,21
Cloruri	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L CI	5,85
Cianuri	UNI EN 12457-2:2004 + APHA SM 4500-CN -	μg/L	<10
Bario	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Ba	0,0335
Rame	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cu	0,0123
Zinco	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Zn	0,0201
Berillio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Be	0,8
Cobalto	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Co	4,5
Nichel	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Ni	0,011
Nichel	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Ni	11,4
Vanadio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L V	32,4
Arsenico	UNI EN 12457-2:2004 + APHA SM 3125	mg/L As	0,0272
Arsenico	UNI EN 12457-2:2004 + APHA SM 3125	μg/L As	27,2
Cadmio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cd	<0.0002
Cadmio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Cd	<0,2
Cromo totale	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cr	0.0190

Via Vitorchiano, 165 - 00189 Roma Tel. +39-06-57992600 Fax +39-06-57992629

Analisi di Terreno

N. di Riferimento 15811/22 Committente Acea Elabori Screening & Geologia

Data emissione **07/07/2022** N. di Accettazione: **108228**

Punto di Prelievo Peschiera SA3 Laviosa prof.14-15 m

Campione di Terreno

Localizzazione (Non codificato)

Ricevuto il 17/05/2022

Data inizio prova 14/06/2022

Data fine prova 14/06/2022

Campionato da Acea Elabori S.p.A. - Innovazione

In data 17/05/2022

RAPPORTO DI PROVA

Parametro	Metodo	U.M.	Risultato
Cromo totale	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Cr	19,0
Piombo	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Pb	0,0037
Piombo	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Pb	3,7
Selenio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Se	0.0015
Selenio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Se	1,5
Mercurio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Hg	<1,0
Mercurio	UNI EN 12457-2:2004 + APHA SM 3125	mg/l Hg	<0,0010
Carbonio organico disciolto	UNI EN 12457-2:2004 + UNI EN 1484:1999	mg/L C	11,5
Molibdeno	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Mo	0,0015
Antimonio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Sb	< 0.001
Fenoli totali (come indice fenolo)	UNI EN ISO 14402:2004	mg/L	<0,01
Solidi disciolti totali (TDS)	UNI EN 12457-2:2004 + UNI EN 27888:1995	mg/L	117

Il risultato si riferiscono al solo campione sottoposto a prova. Il presente Rapporto di Prova non può essere riprodotto, anche parzialmente, salvo approvazione scritta del laboratorio. - I campioni, a meno di diverse disposizioni normative e di campioni deperibili, sono eliminati al termine delle prove. - Le registrazioni relative alle prove sono conservate presso il laboratorio per 5 anni. I valori inferiori al limite di quantificazione del metodo sono indicati sul presente Rapporto di Prova con il simbolo "<" seguito dal limite di quantificazione stesso. Qualora i metodi di prova prevedano la correzione per il fattore di recupero, lo stesso è riportato di seguito al rapporto di prova. Per le prove che prevedono la diluizione isotopica, il calcolo della concentrazione finale comprende il recupero degli isotopi addizionati; recuperi non rientranti nel range previsto dal metodo saranno segnalati. Per il calcolo delle somme, se non indicato diversamente, è utilizzato il metodo lower-bound, i dati inferiori al limite di rilevabilità sono considerati uguali a 0; in caso di somme di dati tutti inferiori al limite di rilevabilità, si riporta il simbolo -; ove non espressamente indicato, il risultato si intende sul campione "Tal quale". Quando riportata, l'incertezza di misura se espressa come incertezza estesa è calcolata con livello di fiducia al 95% e fattore di copertura k=2; se espressa come intervallo di fiducia e calcolata con livello di fiducia al 95% e fattore di copertura k=2. Il laboratorio, in caso di emissione di giudizio di conformità/nota, non tiene conto dell'incertezza di misura. Il laboratorio declina ogni responsabilità sulle informazioni fornite dal cliente. Nel caso in cui il campione sia fornito dal Cliente i risultati di prova si riferiscono al campione così come ricevuto, inoltre le informazioni relative al campione, misure su campo) sono fornite dal Cliente sotto la sua responsabilità.

Legenda: APHA SM: Standard Methods for the examination of water and wastewater ed 23rd 2017;

Il Responsabile

Dott. Giancarlo Cecchini

Ordine dei Chimici del Lazio-Umbria-Abruzzo-Molise Roma n° 1902

Documento firmato digitalmente ai sensi della normativa vigente

Via Vitorchiano, 165 - 00189 Roma Tel. +39-06-57992600 Fax +39-06-57992629

Analisi di Terreno

N. di Riferimento 15812/22 Committente Acea Elabori Screening & Geologia

Data emissione **07/07/2022** N. di Accettazione: **108228**

Punto di Prelievo Peschiera SA3 bianco prof.10-11 m

Campione di Terreno

Localizzazione

(Non codificato)

Ricevuto il 17/05/2022

Data inizio prova 14/06/2022

Data fine prova 14/06/2022

Campionato da Acea Elabori S.p.A. - Innovazione

In data 17/05/2022

Parametro	Metodo	U.M.	Risultato
Nitrati	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L NO3	0,240
pH eluato	UNI EN 12457-2:2004 + UNI EN ISO 10523:2012	pН	8,9
Fluoruri	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L F	<0,50
Solfati	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L SO4	<2,50
Cloruri	UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/L CI	<5,00
Cianuri	UNI EN 12457-2:2004 + APHA SM 4500-CN -	μg/L	<10
Bario	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Ba	0,0021
Rame	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cu	< 0.001
Zinco	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Zn	< 0.001
Berillio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Be	<0,2
Cobalto	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Co	<0,2
Nichel	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Ni	< 0.002
Nichel	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Ni	<2,0
Vanadio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L V	<1,0
Arsenico	UNI EN 12457-2:2004 + APHA SM 3125	mg/L As	0.0012
Arsenico	UNI EN 12457-2:2004 + APHA SM 3125	μg/L As	1,2
Cadmio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cd	< 0.0002
Cadmio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Cd	<0,2
Cromo totale	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Cr	< 0.005

Via Vitorchiano, 165 - 00189 Roma Tel. +39-06-57992600 Fax +39-06-57992629

Analisi di Terreno

15812/22 N. di Riferimento Committente Acea Elabori Screening & Geologia

Data emissione 07/07/2022 N. di Accettazione: 108228

Punto di Prelievo Peschiera SA3 bianco prof.10-11 m

Campione di **Terreno**

17/05/2022 Ricevuto il Localizzazione (Non codificato) Data inizio prova 17/05/2022 Data fine prova 14/06/2022

Campionato da Acea Elabori S.p.A. - Innovazione

17/05/2022 In data

RAPPORTO DI PROVA

Parametro	Metodo	U.M.	Risultato
Cromo totale	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Cr	<5,0
Piombo	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Pb	< 0.0002
Piombo	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Pb	<0,2
Selenio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Se	< 0.001
Selenio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Se	<1,0
Mercurio	UNI EN 12457-2:2004 + APHA SM 3125	μg/L Hg	<1,0
Mercurio	UNI EN 12457-2:2004 + APHA SM 3125	mg/l Hg	<0,0010
Carbonio organico disciolto	UNI EN 12457-2:2004 + UNI EN 1484:1999	mg/L C	11,5
Molibdeno	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Mo	0.0005
Antimonio	UNI EN 12457-2:2004 + APHA SM 3125	mg/L Sb	<0.001
Fenoli totali (come indice fenolo)	UNI EN ISO 14402:2004	mg/L	<0,01
Solidi disciolti totali (TDS)	UNI EN 12457-2:2004 + UNI EN 27888:1995	mg/L	<57

Il risultato si riferiscono al solo campione sottoposto a prova. Il presente Rapporto di Prova non può essere riprodotto, anche parzialmente, salvo approvazione scritta del laboratorio. - I campioni, a meno di diverse disposizioni normative e di campioni deperibili, sono eliminati al termine delle prove. - Le registrazioni relative alle prove sono conservate presso il laboratorio per 5 anni. I valori inferiori al limite di quantificazione del metodo sono indicati sul presente Rapporto di Prova con il simbolo "<" seguito dal limite di quantificazione stesso. Qualora i metodi di prova prevedano la correzione per il fattore di recupero, lo stesso è riportato di seguito al rapporto di prova. Per le prove che prevedono la diluizione isotopica, il calcolo della concentrazione finale comprende il recupero degli isotopi addizionati; recuperi non rientranti nel range previsto dal metodo saranno segnalati. Per il calcolo delle somme, se non indicato diversamente, è utilizzato il metodo lower-bound, i dati inferiori al limite di rilevabilità sono considerati uguali a 0; in caso di somme di dati tutti inferiori al limite di rilevabilità, si riporta il simbolo - ; ove non espressamente indicato, il risultato si intende sul campione "Tal quale". Quando riportata, l'incertezza di misura se espressa come incertezza estesa è calcolata con livello di fiducia al 95% e fattore di copertura k=2; se espressa come intervallo di fiducia è calcolata con livello di fiducia al 95% e fattore di copertura k=2. Il laboratorio, in caso di emissione di giudizio di conformità/nota, non tiene conto dell'incertezza di misura. Il laboratorio declina ogni responsabilità sulle informazioni fornite dal cliente. Nel caso in cui il campione sia fornito dal Cliente i risultati di prova si riferiscono al campione così come ricevuto, inoltre le informazioni relative al campione (punto di prelievo, localizzazione, data e tipologia di campione, misure su campo) sono fornite dal Cliente sotto la sua responsabilità.

APHA SM: Standard Methods for the examination of water and wastewater ed 23rd 2017; Legenda:

> Il Responsabile Dott. Giancarlo Cecchini Ordine dei Chimici del Lazio-Umbria-Abruzzo-Molise Roma nº 1902

> > Documento firmato digitalmente ai sensi della normativa vigente