

REGIONE CAMPANIA PROVINCIA DI BENEVENTO COMUNE DI PIETRELCINA

REALIZZAZIONE DI UN IMPIANTO PER LA PRODUZIONE DI ENERGIA ELETTRICA DA FONTE EOLICA NEL COMUNE DI PIETRELCINA (BN) DENOMINATO "ANDROMEDA"

PROGETTO DEFINITIVO

RELAZIONE IMPATTO ELETTROMAGNETICO

R 22

	N.	DATA		DESCRIZIONE	RED.	VER.	APP.	SCALA:		
Ξ	1	01/02/2022	PRIMA EMISSIONE							
NSIO!								CODIFICA:		
R										
								1 , , , , , , , , ,		

PROGETTAZIONE

IL PROGETTISTA

ENERGY & ENGINEERING S.R.L.

Via XXIII Luglio 139

83044 - Bisaccia (AV)

P.IVA 02618900647

Tel./Fax. 0827/81480

pec: energyengineering@legalmail.it

Ing. Davide G. Trivelli

PLC Power S.r.I.

Via delle Industrie n. 100

80011- Acerra (NA)

P.IVA 05192140654

Sommario

1.	PREMESSA	
2.	RICHIAMI NORMATIVI	2
3.	DESCRIZIONE DEL PROGETTO	5
4.	UBICAZIONE DEL PROGETTO	5
5.	L'IMPIANTO EOLICO	6
	5.1. CARATTERISTICHE DELL'IMPIANTO	
	5.2. CARATTERISTICHE TECNICHE DELL'AEROGENERATORE	
6.	CAMPI ELETTRICI E MAGNETICI	14
7.	OPERE ELETTRICHE PER IL COLLEGAMENTO ALLA RETE	14
8.	RETE MT 30 kV E CAMPI MAGNETICI	15
9.	STAZIONE ELETTRICA DI TRASFORMAZIONE 30/150 kV	20

1. PREMESSA

Nella seguente relazione viene descritto l'impianto eolico da installare nel comune di Pietrelcina (BN) con opere di connessione nei comuni di Pesco Sannita (BN) e Benevento, proposto dalla PLC Power S.r.I., con particolare attenzione alle caratteristiche elettriche e geometriche dei conduttori delle singole parti costituenti le opere elettriche al fine di determinare l'andamento dei campi elettrici e magnetici e la fascia di rispetto secondo le disposizioni del DPCM dell'08.07.03 e del Decreto Ministeriale M.A.T.T. 29 maggio 2008, "Metodologia di calcolo per la determinazione delle fasce di rispetto per elettrodotti".

Per l'andamento dei campi si è utilizzato il programma "EMF Vers 4.03" sviluppato per T.E.R.NA dal CESI di Milano in aderenza alla norma CEI 11-60.

Per il calcolo della distanza di prima approssimazione e la determinazione della fascia di rispetto è stata seguita la metodologia di calcolo di cui al Decreto Ministeriale M.A.T.T.M. del 29 maggio 2008 in conformità a quanto disposto dal D.P.C.M. 08.07.2003.

2. RICHIAMI NORMATIVI

Le linee guida per la limitazione dell'esposizione ai campi elettrici e magnetici variabili nel tempo ed ai campi elettromagnetici sono state indicate nel 1998 dalla ICNIRP1.

Il 12.07.99 il Consiglio dell'Unione Europea ha emesso una Raccomandazione agli Stati Membri volta alla creazione di un quadro di protezione della popolazione dai campi elettromagnetici, che si basa sui migliori dati scientifici esistenti; a tale proposito, il Consiglio ha avallato proprio le linee quida dell'ICNIRP.

Nel 2001, a seguito di un'ultima analisi condotta sulla letteratura scientifica, un Comitato di esperti della Commissione Europea ha raccomandato alla CE di continuare ad adottare tali linee guida.

Successivamente è intervenuta, con finalità di riordino e miglioramento della normativa allora vigente in materia, la Legge quadro 36/2001, che ha individuato (art.3) ben tre livelli di intensità dell'induzione magnetica e del campo elettrico, in relazione agli impianti suscettibili di provocare inquinamento elettromagnetico:

- limite di esposizione: è il valore di campo elettromagnetico da osservare ai fini della tutela della salute da effetti acuti;
- valore di attenzione: è quel valore del campo elettromagnetico da osservare quale misura di cautela ai fini della protezione da possibili effetti a lungo termine;
- obiettivo di qualità: è il criterio localizzativo e standard urbanistico, oltre che il valore di campo elettromagnetico da considerare ai fini della progressiva minimizzazione dell'esposizione e ha affidato allo Stato il compito di determinarne e di aggiornarne periodicamente i valori.

In esecuzione della predetta Legge, è stato infatti emanato il D.P.C.M. 08.07.2003 che ha fissato il limite di esposizione in $100~\mu T$ per l'induzione magnetica e 5~kV/m per il campo elettrico.

Inoltre il D.P.C.M. ha stabilito il valore di attenzione di 10 µT, per gli

impianti esistenti alla data di emanazione, a titolo di cautela per la protezione da possibili effetti a lungo termine nelle aree gioco per l'infanzia, in ambienti abitativi, in ambienti scolastici e nei luoghi adibiti a permanenze non inferiori a quattro ore giornaliere; e l'International Commission on Non-lonizing Radiation Protection ha fissato, quale obiettivo di qualità, da osservare nella progettazione di nuovi elettrodotti, il valore di 3 μT, in corrispondenza degli stessi punti sensibili.

Per la determinazione della fascia di rispetto (spazio all'esterno del quale in nessun punto si rileva un valore di induzione magnetica superiore ai $3~\mu T$) è stato emanato, in data 29 maggio 2008 dal Ministero dell'Ambiente e della Tutela del Territorio e del Mare, apposito decreto attuativo della legge 36/2001.

Al riguardo è opportuno anche ricordare che, in relazione ai campi elettromagnetici, la tutela della salute viene attuata – nell'intero territorio nazionale – esclusivamente attraverso il rispetto dei limiti prescritti dal D.P.C.M. 08.07.2003, al quale soltanto può farsi utile riferimento.

In tal senso, con sentenza n. 307 del 7.10.2003, la Corte Costituzionale ha dichiarato l'illegittimità di alcune leggi regionali, in materia di tutela dai campi elettromagnetici, per violazione dei criteri in tema di ripartizione di competenze fra Stato e Regione stabiliti dal nuovo Titolo V della Costituzione.

Come emerge dal testo della sentenza, una volta fissati i valori-soglia di cautela per la salute, a livello nazionale, non è consentito alla legislazione regionale derogarli neanche in melius.

3. DESCRIZIONE DEL PROGETTO

La società PLC Power S.r.I. richiederà l'autorizzazione presso gli Enti competenti, ai sensi della legge 387/03, per la realizzazione di un parco eolico costituito da n. 9 aerogeneratori da 6,69 MW nominali, alcuni dei quali saranno depotenziati per arrivare alla potenza complessiva di 60,00 MVA.

L'impianto verrà installato nel Comune di Pietrelcina in provincia di Benevento, alle località "Difesa" e "Maitine".

Un cavidotto interrato in media tensione collegherà gli aerogeneratori alla Stazione di Trasformazione MT/AT ubicata nel comune di Benevento e da qui alla Rete di Trasmissione Nazionale (RTN) attraverso un cavidotto AT interrato (Opere Utente).

In particolare per l'immissione sulla Rete di Trasmissione Nazionale (RTN) dell'energia prodotta dall'impianto eolico, secondo le indicazioni contenute nella Soluzione Tecnica Minima Generale (STMG) redatta dalla gestore di rete Terna S.p.A., si prevede che la centrale venga collegata in antenna a 150 kV sulla esistente Stazione Elettrica (SE) RTN a 380/150 kV denominata "Benevento 3" situata nell'omonimo comune.

4. UBICAZIONE DEL PROGETTO

Per l'ubicazione del campo eolico si rimanda alla tavola D28.A degli elaborati grafici di progetto.

5. L'IMPIANTO EOLICO

5.1. CARATTERISTICHE DELL'IMPIANTO

I 9 aerogeneratori sono disposti ad una distanza reciproca tale da permettere di incrementare la potenza installata evitando elevate perdite per l'effetto scia.

Gli aerogeneratori sono raggiunti tramite una rete stradale interna al parco costituita da strade vicinali esistenti e da nuove piste.

Le valutazioni tecniche ed economiche relative agli aspetti ambientali hanno portato ad individuare il layout di impianto suddetto avente le seguenti prerogative:

- Migliore efficienza del parco dovuta alla disposizione per minimizzare l'interferenza reciproca;
- Minore sviluppo della rete stradale interna di nuova realizzazione e della rete elettrica interna in cavo a media tensione interrato, con riduzione complessiva dell'impatto sul territorio.

L'impatto territoriale in termini di occupazione di suolo risulta ridotto in virtù della tipologia di impianto e delle scelte progettuali.

Si prevede infatti:

- Utilizzo di cavi interrati per lo più a lato delle strade e delle piste di accesso;
- Utilizzo della viabilità esistente, quando possibile;
- Trasformatori MT/BT ed apparecchiature elettriche interni all'aerogeneratore (assenza di cabine elettriche esterne alla base della torre).

La centrale eolica, la stazione elettrica e tutte le opere previste, accessorie e necessarie, oggetto della presente richiesta di autorizzazione,

saranno realizzate dal Proponente nella piena osservanza delle disposizioni e/o normative tecniche e legislative vigenti in materia.

5.2. CARATTERISTICHE TECNICHE DELL'AEROGENERATORE

L'aerogeneratore che sarà adoperato per il nuovo impianto eolico avrà le seguenti caratteristiche tecniche:

SPECIFICHE TECNICHE AEROGENERATORE							
	NORDEX N163/6.X						
AEROGENERATORE TIPO	Rotore tripala ad asse orizzontale sopravvento,						
ALTEZZA TOTALE	200 m						
ALTEZZA AL MOZZO	118 m						
RAGGIO ROTORE	81,5 m						
POTENZA NOMINALE	6.69 MW						
VELOCITA' CUT-IN	3 m/s						
VELOCITA' CUT-OUT	26 m/s						

Nordex N163/6.X - Noise level measurement requirements

<u>Basis:</u> The specified sound power levels are expected values in terms of statistics.

Results of single measurements will be within the confidence interval

according to IEC 61400-14 [4].

Remarks:

Verification according to: Measurements are to be carried out by a measuring institute accredi-

ted for noise emission measurements at wind turbines according to ISO/IEC 17025 [3] at the reference position as defined in IEC 61400-11 [1]. The data analysis must be carried out according to the preferred method 1 of IEC 61400-11 [1]. The tonal penalties in the vicinity of wind turbines K_{TN} based on these measurements are to be determined according to

"Technische Richtlinien für Windenergieanlagen" [2].

Tonality: The noise can be tonal in the vicinity of wind turbines. The specified sound

power level includes potential tonal penalties according to "Technische Richtlinien für Windenergieanlagen" [2], without taking into account any

tonality $K_{TN} \leq 2 dB$.

[1] IEC 61400-11 ed. 2: Wind Turbine Generator Systems - Part 11: Acoustic

Noise Measurement Techniques; 2002-12

[2] Technische Richtlinie für Windenergieanlagen - Teil 1: Bestimmung der

Schallemissionswerte, Revision 18; FGW 2008-02

[3] ISO/IEC 17025: General requirements for the competence of testing and

calibration laboratories; 2017-11

[4] IEC 61400-14, Wind turbines - Part 14: Declaration of apparent sound

power level and tonality values, first edition, 2005-03

Abbreviations:

L_{WA} ... A-weighted sound power level

STE ... Serrated Trailing Edge

Nordex N163/6.X - Noise level, rated power and available hub heights

operating mode	rated power [kW]	maximum sou over the comp range of the	available hub heights [m]					
mode		L _{WA} [dB(A)]	L _{WA} (STE) [dB(A)]	118	138	148	159	164
Mode 1	6800	108.4	106.4	•	•	•	•	•
Mode 2	6690	108.0	106.0	•	•	•	•	•
Mode 3	6530	107.5	105.5	•	•	•	•	•
Mode 4	6370	107.0	105.0	•	-	•	•	•
Mode 5	6240	106.5	104.5	•	-	•	•	•
Mode 6	6080	106.0	104.0	•	-	-	-	•
Mode 7	5940	105.5	103.5	0	-	-	_	0
Mode 8	5820	105.0	103.0	0	-	-	-	0
Mode 9	5270	103.0	101.0	0	0	0	0	0
Mode 10	5180	102.5	100.5	0	0	0	0	0
Mode 11	4810	102.0	100.0	•	•	•	•	•
Mode 12	4520	101.5	99.5	•	•	•	•	•
Mode 13	4230	101.0	99.0	•	•	•	•	•
Mode 14	3870	100.5	98.5	•	•	•	•	•
Mode 15	3620	100.0	98.0	•	•	•	•	•
Mode 16	3380	99.5	97.5	•	•	•	•	•
Mode 17	3180	99.0	97.0	•	•	•	•	•

- mode available
- o mode on request
- mode not available

Nordex N163/6.X - Verification conditions power curve

Basis: These power curve values are based on aerodynamic calculations by the

Nordex Energy SE & Co. KG.

Determinations for the power curve verification:

Verification according to: IEC 61400-12-1

Type of anemometer: Thies First Class Advanced or Vector A100

Type of LiDAR: Windcube V2 or ZX300 Measurement of power: low voltage side

Air density: normalization to the nearest air density shown in the table

Filter of turbulence intensity: $9 \% \le TI \le 12 \times (0.75 \times v_H + 5.6)/v_H \%$

Filter of wind shear: $0 \le \alpha \le 0.3$

Wind shear measurement and determination according to the requirements of MEASNET power performance measurement procedure, Version

5, December - 2009, chapter 3.3 and 3.8

Filter of inflow angle: $-2~^\circ \le \psi \le +2~^\circ$ Filter of temperature: $\vartheta \le 25~^\circ {\rm C}$

Ice / snow on the blades: No (determined with ice detectors)

Filter of grid reactive power: Power factor = 1.0

Status signal: Ready for unlimited operation in the corresponding operational mode

without consideration of the cut-out hysteresis

Abbreviations:

 $\begin{array}{ll} \text{TI ...} & \text{turbulence intensity} \\ \alpha \ ... & \text{Hellmann exponent} \\ \psi \ ... & \text{vertical inflow angle} \\ \vartheta \ ... & \text{air temperature} \end{array}$

v_H ... hub height wind speed

Nordex N163/6.X - Power curves - Mode 2

for hub heights 118 m, 138 m, 148 m, 159 m and 164 m										
wind speed		Power P _{el} [kW] at air density ρ [kg/m³]								
VH [m/s]	0.900	0.925	0.950	0.975	1.000	1.025	1.050	1.075	1.100	
3.0	5	7	10	12	14	16	18	20	22	
3.5	81	85	89	93	97	102	106	110	114	
4.0	183	190	197	204	211	218	225	232	239	
4.5	311	322	332	343	353	364	374	385	396	
5.0	465	480	495	509	524	539	554	569	583	
5.5	647	667	687	706	726	746	766	786	806	
6.0	862	887	913	939	965	991	1016	1042	1068	
6.5	1114	1146	1179	1212	1245	1277	1310	1343	1375	
7.0	1407	1448	1488	1529	1570	1611	1652	1692	1733	
7.5	1744	1794	1845	1895	1945	1995	2045	2095	2145	
8.0	2129	2190	2251	2311	2372	2432	2493	2553	2614	
8.5	2557	2630	2702	2774	2846	2919	2991	3063	3135	
9.0	3003	3088	3172	3257	3341	3425	3509	3594	3678	
9.5	3445	3542	3638	3735	3831	3927	4024	4120	4216	
10.0	3872	3980	4088	4196	4304	4412	4520	4627	4735	
10.5	4275	4394	4512	4631	4750	4868	4987	5105	5225	
11.0	4645	4774	4903	5032	5160	5289	5419	5544	5660	
11.5	4990	5129	5267	5405	5544	5674	5796	5909	6005	
12.0	5319	5466	5614	5751	5877	5991	6092	6185	6263	
12.5	5637	5785	5916	6035	6140	6234	6316	6391	6450	
13.0	5918	6046	6156	6255	6341	6416	6479	6535	6577	
13.5	6145	6252	6342	6421	6488	6545	6589	6628	6652	
14.0	6324	6412	6482	6543	6591	6629	6657	6678	6685	
14.5	6464	6532	6584	6626	6657	6677	6686	6690	6690	
15.0	6566	6616	6650	6673	6685	6690	6690	6690	6690	
15.5	6636	6667	6682	6690	6690	6690	6690	6690	6690	
16.0	6676	6689	6690	6690	6690	6690	6690	6690	6690	
16.5	6689	6690	6690	6690	6690	6690	6690	6690	6690	
17.0	6690	6690	6690	6690	6690	6690	6690	6690	6690	
17.5	6690	6690	6690	6690	6690	6690	6690	6690	6690	
18.0	6690	6690	6690	6690	6690	6690	6690	6690	6690	
18.5	6690	6690	6690	6690	6690	6690	6690	6690	6690	
19.0	6690	6690	6690	6690	6690	6690	6690	6690	6690	
19.5	6690	6690	6690	6690	6690	6690	6690	6690	6690	
20.0	6690	6690	6690	6690	6690	6690	6690	6690	6690	
20.5*	6603	6603	6603	6603	6603	6603	6603	6603	6603	
21.0*	6331	6331	6331	6331	6331	6331	6331	6331	6331	
21.5*	6059	6059	6059	6059	6059	6059	6059	6059	6059	
22.0*	5794	5794	5794	5794	5794	5794	5794	5794	5794	
22.5*	5528	5528	5528	5528	5528	5528	5528	5528	5528	
23.0*	5270	5270	5270	5270	5270	5270	5270	5270	5270	
23.5*	5012	5012	5012	5012	5012	5012	5012	5012	5012	
24.0*	4760	4760	4760	4760	4760	4760	4760	4760	4760	
24.5*	4508	4508	4508	4508	4508	4508	4508	4508	4508	
25.0*	4264	4264	4264	4264	4264	4264	4264	4264	4264	
25.5*	4019	4019	4019	4019	4019	4019	4019	4019	4019	
26.0*	3774	3774	3774	3774	3774	3774	3774	3774	3774	

^{*} These values are based on a yield and load optimized operation that is not feasible at all sites.

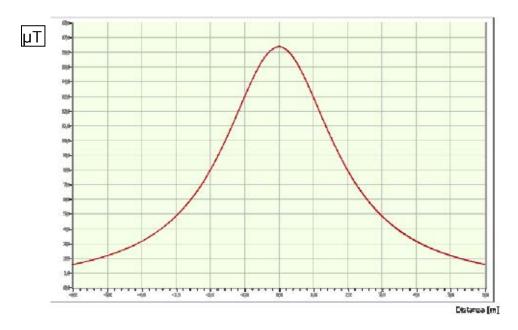
Nordex N163/6.X - Power curves - Mode 2

for hub heights 118 m, 138 m, 148 m, 159 m and 164 m										
wind speed	Power P _{el} [kW] at air density ρ [kg/m³]									
VH [m/s]	1.125	1.150	1.175	1.200	1.225	1.250	1.275	1.300		
3.0	24	26	28	30	32	34	37	39		
3.5	118	122	127	131	135	139	143	147		
4.0	246	253	260	267	274	281	288	295		
4.5	406	417	427	438	448	459	469	480		
5.0	598	613	628	643	657	672	687	702		
5.5	826	845	865	885	905	925	944	964		
6.0	1094	1119	1145	1171	1197	1222	1248	1274		
6.5	1408	1441	1473	1506	1539	1571	1604	1637		
7.0	1774	1814	1855	1896	1937	1977	2018	2059		
7.5	2195	2245	2294	2344	2394	2444	2494	2544		
8.0	2674	2734	2795	2855	2916	2976	3036	3096		
8.5	3207	3279	3351	3423	3494	3561	3627	3691		
9.0	3762	3846	3930	4014	4095	4164	4230	4293		
9.5	4312	4408	4503	4599	4692	4758	4821	4880		
10.0	4842	4950	5058	5166	5263	5322	5378	5430		
10.5	5344	5455	5564	5673	5752	5797	5838	5875		
11.0	5776	5870	5960	6049	6113	6144	6172	6199		
11.5	6100	6176	6249	6321	6368	6389	6409	6427		
12.0	6340	6398	6453	6508	6540	6553	6565	6576		
12.5	6509	6550	6588	6625	6642	6648	6654	6659		
13.0	6618	6642	6663	6684	6686	6687	6687	6688		
13.5	6677	6684	6688	6690	6690	6690	6690	6690		
14.0	6690	6690	6690	6690	6690	6690	6690	6690		
14.5	6690	6690	6690	6690	6690	6690	6690	6690		
15.0	6690	6690	6690	6690	6690	6690	6690	6690		
15.5	6690	6690	6690	6690	6690	6690	6690	6690		
16.0	6690	6690	6690	6690	6690	6690	6690	6690		
16.5	6690	6690	6690	6690	6690	6690	6690	6690		
17.0	6690	6690	6690	6690	6690	6690	6690	6690		
17.5	6690	6690	6690	6690	6690	6690	6690	6690		
18.0	6690	6690	6690	6690	6690	6690	6690	6690		
18.5	6690	6690	6690	6690	6690	6690	6690	6690		
19.0	6690	6690	6690	6690	6690	6690	6690	6690		
19.5	6690	6690	6690	6690	6690	6690	6690	6690		
20.0	6690	6690	6690	6690	6690	6690	6690	6690		
20.5*	6603	6603	6603	6603	6603	6603	6603	6603		
21.0*	6331	6331	6331	6331	6331	6331	6331	6331		
21.5*	6059	6059	6059	6059	6059	6059	6059	6059		
22.0*	5794	5794	5794	5794	5794	5794	5794	5794		
22.5*	5528	5528	5528	5528	5528	5528	5528	5528		
23.0* 23.5*	5270	5270	5270	5270	5270	5270	5270	5270 5012		
23.5*	5012 4760	5012 4760	5012 4760	5012 4760	5012 4760	5012 4760	5012 4760	4760		
24.5*	4508	4508	4508	4508	4508	4508	4508	4508		
25.0*		4264	4264	4264			4264	4264		
25.5*	4264 4019	4019	4019	4019	4264 4019	4264 4019	4019	4264		
								3774		
26.0*	3774	3774	3774	3774	3774	3774	3774	3//4		

^{*} These values are based on a yield and load optimized operation that is not feasible at all sites.

In ogni aerogeneratore è installato un sistema di controllo che gestisce l'automazione della macchina, le manovre di avviamento e arresto dell'aerogeneratore, la regolazione di potenza, la diagnostica, le funzioni di sicurezza e di telecontrollo.

La torre è costituita da più tronchi in acciaio a sezione circolare che vengono collegati tra di loro per mezzo di collegamenti flangiati; all'interno della torre vengono fissati la scala di risalita alla navicella, e le staffe di fissaggio dei cavi che scendono dalla navicella ai quadri elettrici a base torre.


La base della torre è anch'essa costituita da una flangia che viene solidalmente collegata alla fondazione mediante appositi tirafondi bullonati.

A seconda del tipo di aerogeneratore che sarà adottato il trasformatore elevatore 690/30000 V potrà essere installato nella navicella (a circa 118 metri dal suolo) oppure alla base della torre stessa.

Pertanto, la corrente massima circolante nel cavo di collegamento dalla navicella alla base della torre assumerà rispettivamente i valori di 91 A circa oppure di 3900 A circa.

6. CAMPI ELETTRICI E MAGNETICI

Il campo magnetico generato dalla corrente transitante all'interno della torre tra la navicella e la base della torre nella condizione più gravosa (3900 A) è il seguente:

Dal quale si rileva che il valore di 3 μT è a 5,1 metri dall'asse del piano di posa dei cavi.

Essendo, però, la struttura della torre realizzata in acciaio, questa ha un effetto schermante dei campi elettromagnetici tale da annullarli quasi totalmente all'esterno della torre.

7. OPERE ELETTRICHE PER IL COLLEGAMENTO ALLA RETE

La rete di collegamento interna al parco eolico è prevista dal Proponente per permettere l'immissione sulla Rete di Trasmissione Nazionale (RTN) dell'energia prodotta dalla futura Centrale Eolica.

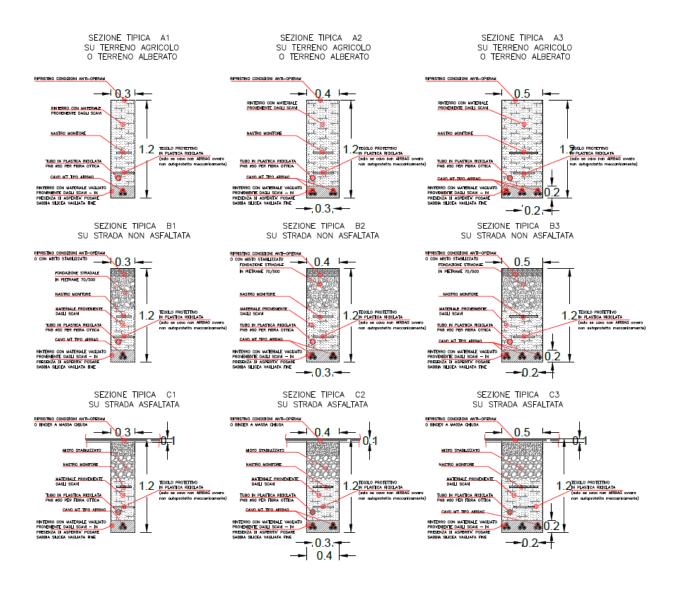
La rete di collegamento a 30 kV collegherà i 9 aerogeneratori della

potenza di 6,69 MW ciascuno circa, posti nel territorio del Comune di Pietrelcina, alla nuova stazione di trasformazione 30/150 kV che sarà realizzata in concomitanza alla realizzazione del parco eolico e che sarà a sua volta collegata in AT alla esistente stazione di smistamento 380/150 kV di Terna.

8. RETE MT 30 kV E CAMPI MAGNETICI

Per raccogliere l'energia prodotta dal campo eolico e convogliarla verso la SSE 30/150 kV è previsto un collegamento tramite un cavo trifase unipolare a 30 kV, con criterio entra-esci su ciascun aerogeneratore.

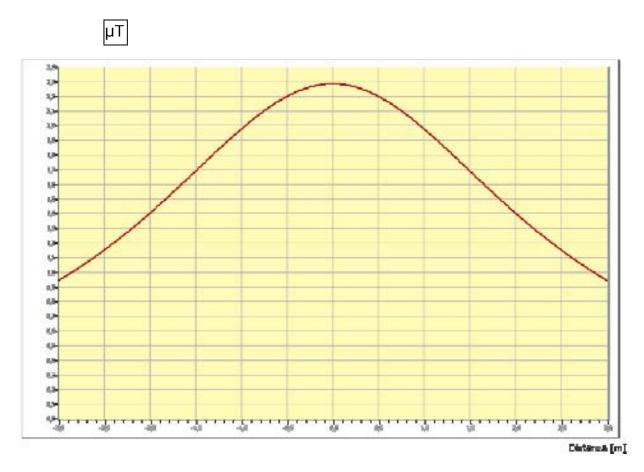
Nell'allegata planimetria D_29.g viene riportato il tracciato di tale collegamento a 30 kV.


La tipologia del cavo stante le potenze elettriche trasportate e le lunghezze, è unipolare, con conduttori in alluminio schermo metallico e guaina in PVC.

Tuttavia le caratteristiche tecniche definitive dei cavi saranno definite in fase di progettazione esecutiva.

Il cavo verrà interrato prevalentemente lungo la viabilità esistente Provinciale e Comunale ad una profondità non inferiore a 1,2 m.

L'installazione dovrà soddisfare tutti i requisiti imposti dalla normativa vigente e dalle norme tecniche ed in particolare le CEI 11-17 e CEI 11-1.

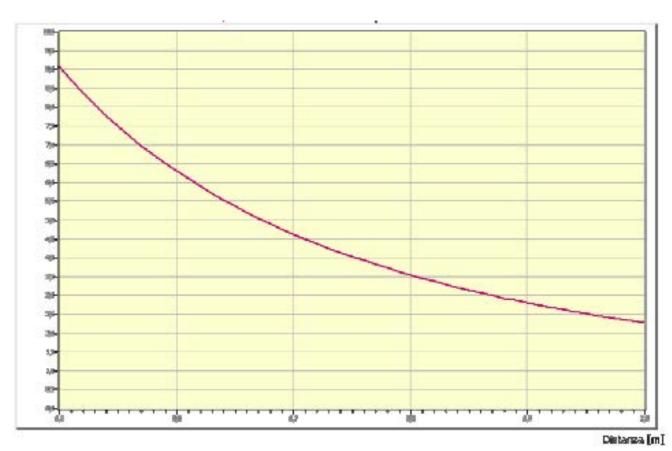

Di seguito sono rappresentati gli schemi di posa del cavo su strade sterrate e su strade asfaltate e gli accorgimenti necessari per una corretta posa.

Con le suddette premesse si passa a calcolare l'andamento dei campi elettrici e magnetici e la relativa fascia di rispetto. Per quanto riguarda le linee elettriche interrate a 30 kV il campo elettrico esterno risulta trascurabile in considerazione della tipologia di linea in cavo interrato, per l'effetto schermante del terreno e dello schermo metallico del cavo; mentre il campo magnetico è da considerare in generale estremamente ridotto rispetto a quello associato a linee elettriche aeree equivalenti, grazie alla disposizione particolarmente ravvicinata dei conduttori.

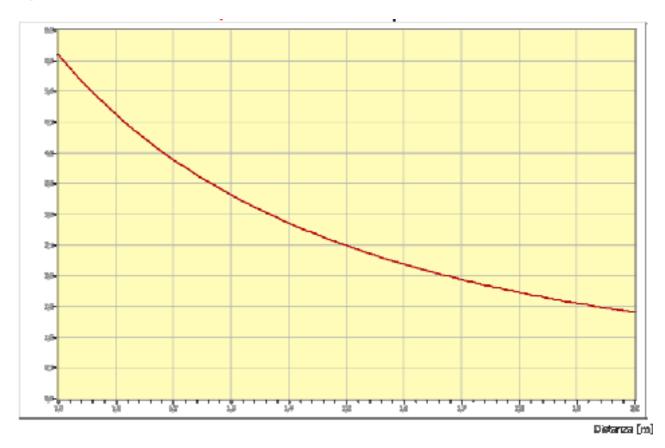
L'andamento del campo magnetico generato dal cavo di collegamento

del campo eolico alla stazione di trasformazione calcolato nel tratto finale (più gravoso) con n. 3 terne di cavi attraversati dalla corrente permanente è il seguente:

Dal diagramma si rileva che a 1 metro sul suolo la soglia dell'obbiettivo di qualità pari a 3 μT è sempre rispettato risultando in asse linea il valore massimo pari a 2,5 μT .


Per il calcolo della fascia di rispetto si è seguito la procedura dettata dal Decreto Ministeriale del 29.05.08 come qui di seguito illustrato.

Dalla sezione scelta nella tratta per la corrente nominale da condurre, con l'ipotesi cautelativa di assegnare il valore di 1 mK/W alla resistività del terreno e 1,2 m alla profondità di posa dal piano campagna, e con ipotesi di posa pari a D5 si è ricavato dalle norme CEI 17-11 la portata di corrente in regime permanente (Ip).


Con il valore di corrente pari a Ip, come stabilito nel decreto ministeriale del 29.05.08, con l'ausilio del su citato programma del CESI di Milano si sono calcolate le Dpa (distanze di prima approssimazione) e quindi le fasce di rispetto.

Si riporta qui di seguito l'andamento dei campi magnetici calcolati a quota conduttori per i cavi di 240 mm² e di 630 mm².

Per il cavo da 240 mm² si ha:

E per il cavo da 630 mm²

Dalle quali si rileva che la Dpa è a 0,89 m dall'asse linea e con fascia di rispetto +/-1 metri per il tratto con conduttore di 240 mm² ed è pari a 1,41 m dall'asse linea e con fascia di rispetto +/-1,5 metri per il tratto con conduttore di 630 mm².

Passando all'analisi di tutte le tratte di cavidotto si evince che: nella situazione più gravosa la abbiamo una Dpa pari a 2,1 mt e una Fascia di rispetto pari a +/- 5 mt.

9. STAZIONE ELETTRICA DI TRASFORMAZIONE 30/150 kV

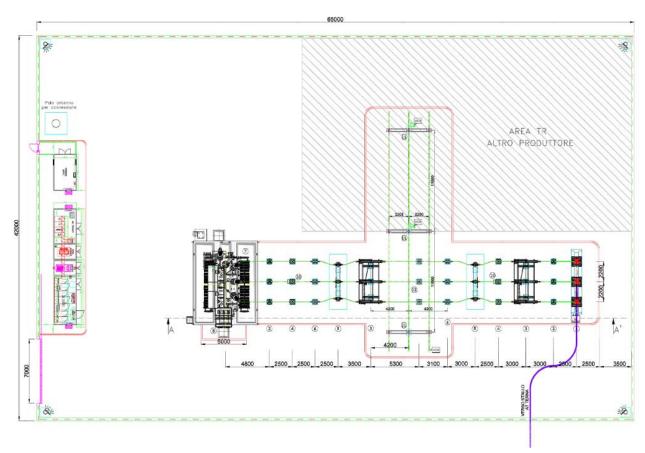
La nuova sottostazione sarà composta di una sezione a 150 kV e da una sezione a 30 kV.

La sezione a 150 kV sarà del tipo unificato TERNA in possibile condivisione con altre società con isolamento in aria/gas e sarà costituita da:

- n. 1 sistema a semplice sbarra;
- n. 1 stallo linea;

I macchinari previsti consistono in:

n. 1 TR 150/30 kV con potenza di 67-90 MVA con raffreddamento tipo
 ONAN-ONAF:


Il montante linea o stallo linea sarà equipaggiato con:

- n. 1 portale arrivo linea per posa interrata.
- n. 1 terna di scaricatori di sovratensione, per esterno a ossido di zinco tipo completi di contascariche;
- n. 1 sezionatore di linea tripolare rotativo, orizzontale con comando delle lame di linea motorizzato e comando delle lame di terra manuale;
- n. 1 terna di trasformatori di tensione induttivi per esterno, per misure fiscali (classe 0,2), misure e protezioni;
- n. 1 interruttore tripolare per esterno in SF6 equipaggiato con un comando a molla;
- n. 1 terna di trasformatori amperometrici per esterno per misure fiscali (classe 0,2), misure e protezioni;
 - n.1 supporto sbarre tripolari.

Il montante trasformatore o stallo TR sarà equipaggiato con:

- n. 1 sezionatore di linea tripolare rotativo, orizzontale con comando delle lame di linea motorizzato e comando delle lame di terra manuale;
- n. 1 terna di trasformatori di tensione induttivi per esterno, per misure fiscali (classe 0,2), misure e protezioni;
- n. 1 interruttore tripolare per esterno in SF6 equipaggiato con un comando a molla;
- n. 1 terna di trasformatori amperometrici per esterno per misure fiscali (classe 0,2), misure e protezioni,
- n. 1 terna di scaricatori di sovratensione, per esterno a ossido di zinco tipo completi di contascariche;
- n. 1 trasformatore trifase di potenza 150/30 kV, 67-90 MVA,
 ONAN/ONAF, gruppo vettoriale YNd11.

Il lay-out della stazione è rappresentato nella figura seguente:

Per questa tipologia di impianto la Dpa, e quindi la fascia di rispetto, rientrano generalmente nei confini dell'area di pertinenza dell'impianto stesso. Comunque, nel caso si ritenga necessario, si potranno calcolare le fasce di rispetto relativamente agli elementi perimetrali (portali, sbarre, ecc)

IL PROGETTISTA

