

# COMMISSARIO DELEGATO PER L'EMERGENZA DETERMINATASI NEL SETTORE DEL TRAFFICO E DELLA MOBILITÀ NEL

TERRITORIO DELLE PROVINCE DI TREVISO E VICENZA

# SUPERSTRADA A PEDAGGIO PEDEMONTANA VENETA



## COMMISSARIO DELEGATO PER L'EMERGENZA DETERMINATASI NEL SETTORE DEL TRAFFICO E DELLA MOBILITA' NEL TERRITORIO DELLE PROVINCE DI TREVISO E VICENZA

# SUPERSTRADA A PEDAGGIO PEDEMONTANA VENETA

#### PROGETTO DEFINITIVO

OPERE D'ARTE MINORI: OPERE DI ATTRAVERSAMENTO Cavalcavia Sv. Riese CA.3F.01 Relazione di calcolo muri in attacco alla spalla SP1

SIS Scpa 1 di 99

## **INDICE**

| INDICE                                                       | 2  |
|--------------------------------------------------------------|----|
|                                                              |    |
| 1. DESCRIZIONE DELL'OPERA                                    | 3  |
|                                                              |    |
| 2. ESAME DEI RISULTATI                                       | 4  |
|                                                              |    |
| 2.1. TRATTO F                                                | 4  |
| 2.1.1. TIPO F2 - MURO TRATTO F CON ALTEZZA FUORI TERRA DI 3M | 4  |
| 2.1.2. TIPO F5 - MURO TRATTO F CON ALTEZZA FUORI TERRA DI 6M | 52 |

#### 1. DESCRIZIONE DELL'OPERA

Nel presente elaborato sono riportati i calcoli statici (ottenuti mediante l'utilizzo del programma *MAX10.0*<sup>©</sup> Rel. 10.05a del 2010, distribuita dalla società AZTEC) delle strutture in calcestruzzo armato relativi alla realizzazione del muri di sostegno in c.a., compresi tra il km 54+755 e il km 55+495 della tratta F del lotto 3F della Superstrada a pedaggio Pedemontana Veneta.

L'opera sarà realizzata mediante una piastra di fondazione sulla quale si innesteranno i paramenti verticali costituiti da lastre prefabbricate in cemento armato, a spessore costante, o in cemento armato gettato in opera, solidarizzate tramite un cordolo di collegamento in testa, secondo quanto indicato negli elaborati grafici di progetto.

SIS Scpa 3 di 99

#### 2. ESAME DEI RISULTATI

# 2.1. TRATTO F

### 2.1.1. Tipo F2 - Muro tratto F con altezza fuori terra di 3m

#### **Normativa**

#### N.T.C. 2008 - Approccio 1

| o:  |     |       |    |        |   |
|-----|-----|-------|----|--------|---|
| Sim | bol | loaia | ad | ottata | ١ |

Coefficiente parziale sfavorevole sulle azioni permanenti γGsfav Coefficiente parziale favorevole sulle azioni permanenti YGfav Coefficiente parziale sfavorevole sulle azioni variabili γQsfav Coefficiente parziale favorevole sulle azioni variabili YQfav Coefficiente parziale di riduzione dell'angolo di attrito drenato γ<sub>tanφ</sub>' Coefficiente parziale di riduzione della coesione drenata γc' Coefficiente parziale di riduzione della coesione non drenata  $\gamma_{\text{cu}}$ Coefficiente parziale di riduzione del carico ultimo  $\gamma_{qu}$ 

Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

#### Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

| Effetto                                                                                                                      |                                                                                                         | A1                                                       | A2                                                        | EQU                                                       | HYD                                                       |  |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--|
| Favorevole                                                                                                                   | γGfav                                                                                                   | 1.00                                                     | 1.00                                                      | 0.90                                                      | 0.90                                                      |  |
| Sfavorevole                                                                                                                  | $\gamma_{\sf Gsfav}$                                                                                    |                                                          |                                                           | 1.10                                                      | 1.30                                                      |  |
| Favorevole                                                                                                                   | γQfav                                                                                                   | 0.00                                                     | 0.00                                                      | 0.00                                                      | 0.00                                                      |  |
| Sfavorevole                                                                                                                  | γQsfav                                                                                                  | 1.50                                                     | 1.30                                                      | 1.50                                                      | 1.50                                                      |  |
| oer i parametri geotecni                                                                                                     | ci del terreno:                                                                                         |                                                          |                                                           |                                                           |                                                           |  |
|                                                                                                                              |                                                                                                         | M1                                                       | M2                                                        | M2                                                        | M1                                                        |  |
| o di attrito                                                                                                                 | γ <sub>tanφ'</sub>                                                                                      |                                                          | 1.25                                                      |                                                           | 1.00                                                      |  |
|                                                                                                                              | γ <sub>c'</sub>                                                                                         |                                                          | 1.25                                                      |                                                           | 1.00                                                      |  |
| nata                                                                                                                         | $\gamma_{	extsf{cu}}$                                                                                   |                                                          |                                                           |                                                           | 1.00                                                      |  |
| essione uniassiale                                                                                                           | $\gamma_{ m qu}$                                                                                        |                                                          |                                                           |                                                           | 1.00                                                      |  |
| lume                                                                                                                         | $\gamma_{\gamma}$                                                                                       | 1.00                                                     | 1.00                                                      | 1.00                                                      | 1.00                                                      |  |
| Coefficienti di partecipazione combinazioni sismiche                                                                         |                                                                                                         |                                                          |                                                           |                                                           |                                                           |  |
|                                                                                                                              |                                                                                                         |                                                          |                                                           |                                                           |                                                           |  |
| per le azioni o per l'effe                                                                                                   |                                                                                                         |                                                          |                                                           |                                                           |                                                           |  |
| •                                                                                                                            |                                                                                                         | A1                                                       | A2                                                        | EQU                                                       | HYD                                                       |  |
| oer le azioni o per l'effe                                                                                                   |                                                                                                         |                                                          | <i>A2</i><br>1.00                                         | <i>EQU</i><br>1.00                                        | <i>HYD</i><br>0.90                                        |  |
| per le azioni o per l'effe<br>Effetto                                                                                        | tto delle azioni:                                                                                       | A1                                                       |                                                           |                                                           | –                                                         |  |
| <u>ber le azioni o per l'effe</u><br>Effetto<br>Favorevole                                                                   | tto delle azioni:<br>Y <sub>Gfav</sub>                                                                  | <i>A1</i><br>1.00                                        | 1.00                                                      | 1.00                                                      | 0.90                                                      |  |
| <u>per le azioni o per l'effe</u><br>Effetto<br>Favorevole<br>Sfavorevole                                                    | tto delle azioni:<br>ΥGfav<br>ΥGsfav                                                                    | <i>A1</i> 1.00 1.00                                      | 1.00                                                      | 1.00<br>1.00                                              | 0.90<br>1.30                                              |  |
| per le azioni o per l'effe<br>Effetto<br>Favorevole<br>Sfavorevole<br>Favorevole                                             | tto delle azioni:<br>ΥGfav<br>ΥGsfav<br>ΥQfav<br>ΥQsfav                                                 | A1<br>1.00<br>1.00<br>0.00                               | 1.00<br>1.00<br>0.00                                      | 1.00<br>1.00<br>0.00                                      | 0.90<br>1.30<br>0.00                                      |  |
| per le azioni o per l'effer<br>Effetto<br>Favorevole<br>Sfavorevole<br>Favorevole<br>Sfavorevole                             | tto delle azioni:<br>ΥGfav<br>ΥGsfav<br>ΥQfav<br>ΥQsfav                                                 | A1<br>1.00<br>1.00<br>0.00                               | 1.00<br>1.00<br>0.00                                      | 1.00<br>1.00<br>0.00                                      | 0.90<br>1.30<br>0.00                                      |  |
| per le azioni o per l'effer<br>Effetto<br>Favorevole<br>Sfavorevole<br>Favorevole<br>Sfavorevole                             | tto delle azioni:<br>ΥGfav<br>ΥGsfav<br>ΥQfav<br>ΥQsfav                                                 | A1<br>1.00<br>1.00<br>0.00<br>1.00                       | 1.00<br>1.00<br>0.00<br>1.00                              | 1.00<br>1.00<br>0.00<br>1.00                              | 0.90<br>1.30<br>0.00<br>1.50                              |  |
| per le azioni o per l'effer<br>Effetto<br>Favorevole<br>Sfavorevole<br>Favorevole<br>Sfavorevole                             | tto delle azioni:  ΥGfav  ΥGsfav  ΥQfav  ΥQsfav  ΥQsfav                                                 | A1<br>1.00<br>1.00<br>0.00<br>1.00                       | 1.00<br>1.00<br>0.00<br>1.00                              | 1.00<br>1.00<br>0.00<br>1.00                              | 0.90<br>1.30<br>0.00<br>1.50                              |  |
| per le azioni o per l'effer<br>Effetto<br>Favorevole<br>Sfavorevole<br>Favorevole<br>Sfavorevole                             | tto delle azioni:  ΥGfav  ΥGsfav  ΥQfav  ΥQsfav  ΥQsfav  (ci del terreno:  Υtanφ'                       | A1<br>1.00<br>1.00<br>0.00<br>1.00<br>M1<br>1.00         | 1.00<br>1.00<br>0.00<br>1.00<br><i>M2</i><br>1.25         | 1.00<br>1.00<br>0.00<br>1.00<br><i>M2</i><br>1.25         | 0.90<br>1.30<br>0.00<br>1.50<br><i>M1</i><br>1.00         |  |
| per le azioni o per l'effer<br>Effetto<br>Favorevole<br>Sfavorevole<br>Favorevole<br>Sfavorevole<br>Der i parametri geotecni | tto delle azioni:  YGfav YGsfav YQfav YQsfav Sci del terreno:  Ytanφ' Yc'                               | A1<br>1.00<br>1.00<br>0.00<br>1.00<br>M1<br>1.00<br>1.00 | 1.00<br>1.00<br>0.00<br>1.00<br><i>M2</i><br>1.25<br>1.25 | 1.00<br>1.00<br>0.00<br>1.00<br><i>M2</i><br>1.25<br>1.25 | 0.90<br>1.30<br>0.00<br>1.50<br><i>M1</i><br>1.00<br>1.00 |  |
|                                                                                                                              | Sfavorevole Favorevole Sfavorevole  per i parametri geotecni o di attrito  nata essione uniassiale lume | $\begin{array}{cccccccccccccccccccccccccccccccccccc$     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$      |  |

#### FONDAZIONE SUPERFICIALE

Coefficienti parziali  $\gamma_R$  per le verifiche agli stati limite ultimi STR e GEO

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 4 di 99

| Verifica                           | Co   | efficienti parz | ziali |
|------------------------------------|------|-----------------|-------|
|                                    | R1   | R2              | R3    |
| Capacità portante della fondazione | 1.00 | 1.00            | 1.40  |
| Scorrimento                        | 1.00 | 1.00            | 1.10  |
| Resistenza del terreno a valle     | 1.00 | 1.00            | 1.40  |
| Stabilità globale                  |      | 1.10            |       |

#### Geometria muro e fondazione

| Descrizione                                                                                                                                                                                                          | Muro a mensola in c.a.                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Altezza del paramento Spessore in sommità Spessore all'attacco con la fondazione Inclinazione paramento esterno Inclinazione paramento interno                                                                       | 3.00 [m]<br>0.10 [m]<br>0.10 [m]<br>0.00 [°]<br>0.00 [°]               |
| <u>Fondazione</u>                                                                                                                                                                                                    |                                                                        |
| Lunghezza mensola fondazione di valle Lunghezza mensola fondazione di monte Lunghezza totale fondazione Inclinazione piano di posa della fondazione Spessore fondazione Spessore magrone  Contrafforti prefabbricati | 0.50 [m]<br>2.10 [m]<br>2.70 [m]<br>0.00 [°]<br>0.50 [m]<br>0.10 [m]   |
| Altezza contrafforti Spessore contrafforti Larghezza in sommità Larghezza alla base Larghezza elemento Numero contrafforti Posizione:                                                                                | 3.00 [m]<br>0.20 [m]<br>0.30 [m]<br>0.30 [m]<br>1.20 [m]<br>8<br>Monte |

#### Materiali utilizzati per la struttura

| Calcestruzzo |  |
|--------------|--|
|--------------|--|

Peso specifico 25.000 [kN/mc] C25/30 Classe di Resistenza Resistenza caratteristica a compressione R<sub>ck</sub> 30.00 [MPa] Modulo elastico E 31447.048 [MPa] Acciaio B450C

Tipo Tensione di snervamento  $\sigma_{\text{fa}}$ 450 [MPa]

#### Geometria profilo terreno a monte del muro

#### Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

| N | X     | Υ    | Α    |
|---|-------|------|------|
| 1 | 30.00 | 0.00 | 0.00 |

#### Terreno a valle del muro

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 5 di 99

Inclinazione terreno a valle del muro rispetto all'orizzontale 0.00 [°] Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0.60 [m]

#### **Descrizione terreni**

#### Simbologia adottata

Indice del terreno Descrizione Descrizione terreno

Peso di volume del terreno espresso in [kN/mc] γ Peso di volume saturo del terreno espresso in [kN/mc]

Angolo d'attrito interno espresso in [°]  $\phi$ Angolo d'attrito terra-muro espresso in [°]  $\delta$ 

Coesione espressa in [MPa]

Adesione terra-muro espressa in [MPa]

| Descrizione | γ     | $\gamma_{s}$ | ф     | δ     | С      | Ca     |
|-------------|-------|--------------|-------|-------|--------|--------|
| RILEVATO    | 18.00 | 18.00        | 36.00 | 24.00 | 0.0000 | 0.0000 |
| FONDAZIONE  | 20.00 | 20.00        | 40.00 | 40.00 | 0.0000 | 0.0000 |

#### **Stratigrafia**

#### Simbologia adottata

Ν Indice dello strato

Н Spessore dello strato espresso in [m]

Inclinazione espressa in [°]

Kw Costante di Winkler orizzontale espressa in Kg/cm<sup>2</sup>/cm

Coefficiente di spinta Ks Terreno Terreno dello strato

| Nr. | Н     | а    | Kw    | Ks   | Terreno    |
|-----|-------|------|-------|------|------------|
| 1   | 3.50  | 0.00 | 0.00  | 0.00 | RILEVATO   |
| 2   | 10.00 | 0.00 | 15.52 | 0.00 | FONDAZIONE |

#### Condizioni di carico

#### Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

Ascissa del punto di applicazione del carico concentrato espressa in [m]

Componente orizzontale del carico concentrato espressa in [kN]

F<sub>x</sub> F<sub>y</sub> M X<sub>i</sub> X<sub>f</sub> Componente verticale del carico concentrato espressa in [kN]

Momento espresso in [kNm]

Ascissa del punto iniziale del carico ripartito espressa in [m]

Ascissa del punto finale del carico ripartito espressa in [m]

 $Q_i$ Intensità del carico per x=X<sub>i</sub> espressa in [kN/m] Intensità del carico per x=X<sub>f</sub> espressa in [kN/m]  $Q_f$ 

Tipo carico : D=distribuito C=concentrato

#### Condizione n° 1 (PERMANENTI)

| D   | Profilo          | $X_i = 1.50$    | $X_f = 10.50$  | $Q_i = 4.0000$  | $Q_f = 4.0000$   |                   |
|-----|------------------|-----------------|----------------|-----------------|------------------|-------------------|
| Con | ndizione n° 2 (M | OBILI)          |                |                 |                  |                   |
| С   | Paramento        | <b>X</b> =-0.05 | <b>Y</b> =0.00 | $F_x = 15.4000$ | $F_{v} = 0.0000$ | <b>M</b> =15.4000 |
| D   | Profilo          | $X_i = 1.50$    | $X_f = 4.50$   | $Q_i = 33.4000$ | $Q_f = 33.4000$  |                   |
| D   | Profilo          | $X_i = 4.50$    | $X_f = 7.50$   | $Q_i = 20.0000$ | $Q_f = 20.0000$  |                   |
| D   | Profilo          | $X_i = 7.50$    | $X_f = 10.50$  | $Q_i = 20.0000$ | $Q_f = 20.0000$  |                   |
| Con | idizione n° 3 (V | ento)           |                |                 |                  |                   |
| С   | Paramento        | <b>X</b> =0.00  | <b>Y</b> =0.00 | $F_x = 3.0000$  | $F_v = 0.0000$   | M=6.0000          |

#### Descrizione combinazioni di carico

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 6 di 99

Simbologia adottata
F/S Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)

Coefficiente di partecipazione della condizione  $\gamma$   $\Psi$ 

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

Coefficiente di combinazione della condizione

| Combinazione n° 1 - Caso A1-M1            | (STR)                      |              |              |              |
|-------------------------------------------|----------------------------|--------------|--------------|--------------|
|                                           | S/F                        | γ            | Ψ            | γ*Ψ          |
| Peso proprio muro Peso proprio terrapieno | FAV<br>FAV                 | 1.00<br>1.00 | 1.00<br>1.00 | 1.00<br>1.00 |
| Spinta terreno                            | SFAV                       | 1.30         | 1.00         | 1.30         |
| PERMANENTI                                | SFAV                       | 1.30         | 1.00         | 1.30         |
| 0 1: : : : : : : : :                      | \ (OFO)                    |              |              |              |
| Combinazione n° 2 - Caso A2-M2            | <u>S/F</u>                 | γ            | Ψ            | γ*Ψ          |
| Peso proprio muro                         | SFAV                       | 1.00         | 1.00         | 1.00         |
| Peso proprio terrapieno                   | SFAV                       | 1.00         | 1.00         | 1.00         |
| Spinta terreno                            | SFAV                       | 1.00         | 1.00         | 1.00         |
| PERMANENTI                                | SFAV                       | 1.00         | 1.00         | 1.00         |
| Combinazione n° 3 - Caso EQU (            | SLU)                       |              |              |              |
|                                           | S/F                        | γ            | Ψ            | γ*Ψ          |
| Peso proprio muro                         | FAV                        | 0.90         | 1.00         | 0.90         |
| Peso proprio terrapieno<br>Spinta terreno | FAV<br>SFAV                | 0.90<br>1.10 | 1.00<br>1.00 | 0.90<br>1.10 |
| PERMANENTI                                | SFAV                       | 1.10         | 1.00         | 1.10         |
|                                           | 0.7.0                      |              | 1.00         | 0            |
| Combinazione n° 4 - Caso A2-M2            |                            |              | )T(          | * 170        |
| Peso proprio muro                         | <b>S/F</b><br>SFAV         | γ<br>1.00    | Ψ<br>1.00    | γ*Ψ<br>1.00  |
| Peso proprio terrapieno                   | SFAV                       | 1.00         | 1.00         | 1.00         |
| Spinta terreno                            | SFAV                       | 1.00         | 1.00         | 1.00         |
| PERMANENTI                                | SFAV                       | 1.00         | 1.00         | 1.00         |
| Combinazione n° 5 - Caso A1-M1            | (STR)                      |              |              |              |
|                                           | S/F                        | γ            | Ψ            | γ*Ψ          |
| Peso proprio muro                         | FAV                        | 1.00         | 1.00         | 1.00         |
| Peso proprio terrapieno                   | FAV                        | 1.00         | 1.00         | 1.00         |
| Spinta terreno<br>PERMANENTI              | SFAV<br>SFAV               | 1.30<br>1.30 | 1.00<br>1.00 | 1.30<br>1.30 |
| MOBILI                                    | SFAV                       | 1.50         | 0.90         | 1.35         |
| Vento                                     | SFAV                       | 1.50         | 0.60         | 0.90         |
| 0 1: : : : : : : : : : : : : : : : : : :  | (050)                      |              |              |              |
| Combinazione n° 6 - Caso A2-M2            | <u>(GEO)</u><br><b>S/F</b> | 24           | Ψ            | γ*Ψ          |
| Peso proprio muro                         | SFAV                       | γ<br>1.00    | 1.00         | 1.00         |
| Peso proprio terrapieno                   | SFAV                       | 1.00         | 1.00         | 1.00         |
| Spinta terreno                            | SFAV                       | 1.00         | 1.00         | 1.00         |
| PERMANENTI                                | SFAV                       | 1.00         | 1.00         | 1.00         |
| MOBILI<br>Vente                           | SFAV                       | 1.30<br>1.30 | 0.90         | 1.17<br>0.78 |
| Vento                                     | SFAV                       | 1.30         | 0.60         | 0.76         |
| Combinazione n° 7 - Caso EQU (            | SLU)                       |              |              |              |
|                                           | S/F                        | γ            | Ψ            | γ*Ψ          |
| Peso proprio terranione                   | FAV<br>FAV                 | 0.90         | 1.00<br>1.00 | 0.90<br>0.90 |
| Peso proprio terrapieno<br>Spinta terreno | SFAV                       | 0.90<br>1.10 | 1.00         | 1.10         |
| PERMANENTI                                | SFAV                       | 1.10         | 1.00         | 1.10         |
| MOBILI                                    | SFAV                       | 1.50         | 0.90         | 1.35         |
| Vento                                     | SFAV                       | 1.50         | 0.60         | 0.90         |
|                                           |                            |              |              |              |

SIS Scpa 7 di 99

| Combinazione n° 8 - Caso A2-N | И2 (GEO-STA   | <u>(B)</u>   |                         |       |
|-------------------------------|---------------|--------------|-------------------------|-------|
|                               | S/F           | γ            | Ψ                       | γ*Ψ   |
| Peso proprio muro             | SFAV          | 1.00         | 1.00                    | 1.00  |
| Peso proprio terrapieno       | SFAV          | 1.00         | 1.00                    | 1.00  |
| Spinta terreno                | SFAV          | 1.00         | 1.00                    | 1.00  |
| PERMANENTI                    | SFAV          | 1.00         | 1.00                    | 1.00  |
| MOBILI                        | SFAV          | 1.30         | 0.90                    | 1.17  |
| Vento                         | SFAV          | 1.30         | 0.60                    | 0.78  |
| Combinazione n° 9 - Caso A1-N |               |              |                         |       |
| _                             | S/F           | Υ            | Ψ                       | γ*Ψ   |
| Peso proprio muro             | FAV           | 1.00         | 1.00                    | 1.00  |
| Peso proprio terrapieno       | FAV           | 1.00         | 1.00                    | 1.00  |
| Spinta terreno                | SFAV          | 1.30         | 1.00                    | 1.30  |
| PERMANENTI                    | SFAV          | 1.30         | 1.00                    | 1.30  |
| MOBILI                        | SFAV          | 1.50         | 0.68                    | 1.02  |
| Vento                         | SFAV          | 1.50         | 1.00                    | 1.50  |
| Combinazione n° 10 - Caso A2- |               |              |                         |       |
|                               | S/F           | γ            | Ψ                       | γ*Ψ   |
| Peso proprio muro             | SFAV          | 1.00         | 1.00                    | 1.00  |
| Peso proprio terrapieno       | SFAV          | 1.00         | 1.00                    | 1.00  |
| Spinta terreno                | SFAV          | 1.00         | 1.00                    | 1.00  |
| PERMANENTI                    | SFAV          | 1.00         | 1.00                    | 1.00  |
| MOBILI                        | SFAV          | 1.30         | 0.68                    | 0.88  |
| Vento                         | SFAV          | 1.30         | 1.00                    | 1.30  |
| Combinazione n° 11 - Caso EQ  | U (SLU)       |              |                         |       |
|                               | S/F           | γ            | Ψ                       | γ*Ψ   |
| Peso proprio muro             | FAV           | 0.90         | 1.00                    | 0.90  |
| Peso proprio terrapieno       | FAV           | 0.90         | 1.00                    | 0.90  |
| Spinta terreno                | SFAV          | 1.10         | 1.00                    | 1.10  |
| PERMANENTI                    | SFAV          | 1.10         | 1.00                    | 1.10  |
| MOBILI                        | SFAV          | 1.50         | 0.68                    | 1.02  |
| Vento                         | SFAV          | 1.50         | 1.00                    | 1.50  |
| Combinazione n° 12 - Caso A2- | -M2 (GEO-ST   | AR)          |                         |       |
| COMBINAZIONE II 12 - Caso AZ  | S/F           |              | Ψ                       | γ*Ψ   |
| Peso proprio muro             | SFAV          | γ<br>1.00    | 1.00                    | 1.00  |
| Peso proprio terrapieno       | SFAV          | 1.00         | 1.00                    | 1.00  |
| Spinta terreno                | SFAV          | 1.00         | 1.00                    | 1.00  |
| PERMANENTI                    | SFAV          | 1.00         | 1.00                    | 1.00  |
| MOBILI                        | SFAV          | 1.30         | 0.68                    | 0.88  |
| Vento                         | SFAV          | 1.30         | 1.00                    | 1.30  |
| Combinazione n° 13 - Caso A1- | -M1 (STR) - S | isma Vert na | agativo                 |       |
| Combinazione ii 13 - Caso A i | S/F           | γ            | <del>-gaιινο</del><br>Ψ | γ*Ψ   |
| Peso proprio muro             | SFAV          | 1.00         | 1.00                    | 1.00  |
| Peso proprio terrapieno       | SFAV          | 1.00         | 1.00                    | 1.00  |
| Spinta terreno                | SFAV          | 1.00         | 1.00                    | 1.00  |
| PERMANENTI                    | SFAV          | 1.00         | 1.00                    | 1.00  |
|                               | J. 7.14       | 1.00         |                         |       |
| Combinazione n° 14 - Caso A1- |               |              |                         | 4.197 |
| Dese manufe manue             | S/F           | γ            | Ψ                       | γ*Ψ   |
| Peso proprio muro             | SFAV          | 1.00         | 1.00                    | 1.00  |
| Peso proprio terrapieno       | SFAV          | 1.00         | 1.00                    | 1.00  |
| Spinta terreno                | SFAV          | 1.00         | 1.00                    | 1.00  |
| PERMANENTI                    | SFAV          | 1.00         | 1.00                    | 1.00  |
|                               |               |              |                         |       |

Combinazione n° 15 - Caso A2-M2 (GEO) - Sisma Vert. positivo

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 8 di 99

|                                |                |                     | •              |                 |
|--------------------------------|----------------|---------------------|----------------|-----------------|
|                                | S/F            | 24                  | Ψ              | γ*Ψ             |
| Dogo proprio muro              | SFAV           | γ<br>1.00           | 1.00           | 1.00            |
| Peso proprio muro              |                | 1.00                | 1.00           | 1.00            |
| Peso proprio terrapieno        | SFAV           |                     |                |                 |
| Spinta terreno                 | SFAV           | 1.00                | 1.00           | 1.00            |
| PERMANENTI                     | SFAV           | 1.00                | 1.00           | 1.00            |
| 0 1: : 0.40 0 40               | NO (OFO)       |                     |                |                 |
| Combinazione n° 16 - Caso A2-  |                |                     | -              |                 |
|                                | S/F            | γ                   | Ψ              | γ*Ψ             |
| Peso proprio muro              | SFAV           | 1.00                | 1.00           | 1.00            |
| Peso proprio terrapieno        | SFAV           | 1.00                | 1.00           | 1.00            |
| Spinta terreno                 | SFAV           | 1.00                | 1.00           | 1.00            |
| PERMANENTI                     | SFAV           | 1.00                | 1.00           | 1.00            |
|                                |                |                     |                |                 |
| Combinazione n° 17 - Caso EQ   |                | <u>ma Vert. neg</u> |                |                 |
|                                | S/F            | γ                   | Ψ              | γ*Ψ             |
| Peso proprio muro              | FAV            | 1.00                | 1.00           | 1.00            |
| Peso proprio terrapieno        | FAV            | 1.00                | 1.00           | 1.00            |
| Spinta terreno                 | SFAV           | 1.00                | 1.00           | 1.00            |
| PERMANENTI                     | SFAV           | 1.00                | 1.00           | 1.00            |
|                                |                |                     |                |                 |
| Combinazione n° 18 - Caso EQ   | U (SLU) - Sis  | ma Vert. pos        | <u>itivo</u>   |                 |
|                                | S/F            | γ                   | Ψ              | γ*Ψ             |
| Peso proprio muro              | FAV            | 1.00                | 1.00           | 1.00            |
| Peso proprio terrapieno        | FAV            | 1.00                | 1.00           | 1.00            |
| Spinta terreno                 | SFAV           | 1.00                | 1.00           | 1.00            |
| PERMANENTI                     | SFAV           | 1.00                | 1.00           | 1.00            |
|                                | 0.7.0          | 1.00                | 1.00           | 1.00            |
| Combinazione n° 19 - Caso A2-  | M2 (GEO-ST     | AB) - Sisma         | Vert. positivo | )               |
| COMBINAZIONO N. 10 CACO / N.Z. | S/F            | γ                   | Ψ              | <u>·</u><br>γ*Ψ |
| Peso proprio muro              | SFAV           | 1.00                | 1.00           | 1.00            |
| Peso proprio terrapieno        | SFAV           | 1.00                | 1.00           | 1.00            |
|                                | SFAV           | 1.00                | 1.00           | 1.00            |
| Spinta terreno<br>PERMANENTI   | SFAV           | 1.00                | 1.00           | 1.00            |
| PERMANENTI                     | SFAV           | 1.00                | 1.00           | 1.00            |
| Combinazione n° 20 - Caso A2-  | M2 (CEO ST     | AB) Siema           | Vort pogotiv   | •               |
| Combinazione ii 20 - Caso Az-  |                | •                   |                |                 |
| Dana anamaia assassa           | S/F            | γ                   | Ψ              | γ*Ψ             |
| Peso proprio muro              | SFAV           | 1.00                | 1.00           | 1.00            |
| Peso proprio terrapieno        | SFAV           | 1.00                | 1.00           | 1.00            |
| Spinta terreno                 | SFAV           | 1.00                | 1.00           | 1.00            |
| PERMANENTI                     | SFAV           | 1.00                | 1.00           | 1.00            |
| 0 1: : 004 0 : 5               | , (0)          |                     |                |                 |
| Combinazione n° 21 - Quasi Pe  |                | <u>.E)</u>          |                |                 |
|                                | S/F            | γ                   | Ψ              | γ*Ψ             |
| Peso proprio muro              |                | 1.00                | 1.00           | 1.00            |
| Peso proprio terrapieno        |                | 1.00                | 1.00           | 1.00            |
| Spinta terreno                 |                | 1.00                | 1.00           | 1.00            |
| PERMANENTI                     | SFAV           | 1.00                | 1.00           | 1.00            |
|                                |                |                     |                |                 |
| Combinazione n° 22 - Frequent  | <u>e (SLE)</u> |                     |                |                 |
|                                | S/F            | γ                   | Ψ              | γ*Ψ             |
| Peso proprio muro              |                | 1.00                | 1.00           | 1.00            |
| Peso proprio terrapieno        |                | 1.00                | 1.00           | 1.00            |
| Spinta terreno                 |                | 1.00                | 1.00           | 1.00            |
| PERMANENTI                     | SFAV           | 1.00                | 1.00           | 1.00            |
| MOBILI                         | SFAV           | 1.00                | 0.75           | 0.75            |
| <del></del> -                  | 2•             |                     | J J            | 5.1.0           |
| Combinazione n° 23 - Frequente | e (SLE)        |                     |                |                 |
|                                | S/F            | γ                   | Ψ              | γ*Ψ             |
| Peso proprio muro              |                | 1.00                | 1.00           | 1.00            |
| Peso proprio terrapieno        |                | 1.00                | 1.00           | 1.00            |
| . 300 proprio torrapiono       |                | 1.00                | 1.00           | 1.00            |
| PV_D_SR_AP_CA_3_F_001001       | _0_004_R_A_0   | )                   |                |                 |

SIS Scpa 9 di 99

| Cavalcavia Sv. Rlese CA.3F.01 – Relazione di calcolo muri in attacco alla spalla SP1 |          |      |      |      |  |  |  |
|--------------------------------------------------------------------------------------|----------|------|------|------|--|--|--|
| Spinta terreno                                                                       |          | 1.00 | 1.00 | 1.00 |  |  |  |
| PERMANENTI                                                                           | SFAV     | 1.00 | 1.00 | 1.00 |  |  |  |
| Vento                                                                                | SFAV     | 1.00 | 0.20 | 0.20 |  |  |  |
| Combinazione n° 24 - Rara (SLE                                                       | <u> </u> |      |      |      |  |  |  |
| •                                                                                    | S/F      | γ    | Ψ    | γ*Ψ  |  |  |  |
| Peso proprio muro                                                                    |          | 1.00 | 1.00 | 1.00 |  |  |  |
| Peso proprio terrapieno                                                              |          | 1.00 | 1.00 | 1.00 |  |  |  |
| Spinta terreno                                                                       |          | 1.00 | 1.00 | 1.00 |  |  |  |
| PERMANENTI                                                                           | SFAV     | 1.00 | 1.00 | 1.00 |  |  |  |
| MOBILI                                                                               | SFAV     | 1.00 | 1.00 | 1.00 |  |  |  |
| Vento                                                                                | SFAV     | 1.00 | 0.60 | 0.60 |  |  |  |
| Combinazione n° 25 - Rara (SLE                                                       | Ξ)       |      |      |      |  |  |  |
| •                                                                                    | S/F      | γ    | Ψ    | γ*Ψ  |  |  |  |
| Peso proprio muro                                                                    |          | 1.00 | 1.00 | 1.00 |  |  |  |
| Peso proprio terrapieno                                                              |          | 1.00 | 1.00 | 1.00 |  |  |  |
| Spinta terreno                                                                       |          | 1.00 | 1.00 | 1.00 |  |  |  |
| PERMANENTI                                                                           | SFAV     | 1.00 | 1.00 | 1.00 |  |  |  |
| Vento                                                                                | SFAV     | 1.00 | 1.00 | 1.00 |  |  |  |
| MOBILI                                                                               | SFAV     | 1.00 | 0.75 | 0.75 |  |  |  |
|                                                                                      |          |      |      |      |  |  |  |

#### Impostazioni di analisi

| Metodo verifica sezioni                                                                                                                                                                                                                                                                                                                                | Stato limite                                   |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|
| Impostazioni verifiche SLU                                                                                                                                                                                                                                                                                                                             |                                                |  |  |
| Coefficienti parziali per resistenze di calcolo dei materiali Coefficiente di sicurezza calcestruzzo a compressione Coefficiente di sicurezza calcestruzzo a trazione Coefficiente di sicurezza acciaio Fattore riduzione da resistenza cubica a cilindrica Fattore di riduzione per carichi di lungo periodo Coefficiente di sicurezza per la sezione | 1.60<br>1.60<br>1.15<br>0.83<br>0.85<br>1.00   |  |  |
| Impostazioni verifiche SLE                                                                                                                                                                                                                                                                                                                             |                                                |  |  |
| Condizioni ambientali<br>Armatura ad aderenza migliorata<br>Verifica fessurazione                                                                                                                                                                                                                                                                      | Ordinarie                                      |  |  |
| Sensibilità delle armature<br>Valori limite delle aperture delle fessure                                                                                                                                                                                                                                                                               | Poco sensibile<br>$w_1 = 0.20$<br>$w_2 = 0.30$ |  |  |

#### Calcolo della portanza metodo di Vesic

Metodo di calcolo aperture delle fessure

Coefficiente correttivo su N $\gamma$  per effetti cinematici (combinazioni sismiche SLU): 1.00 Coefficiente correttivo su N $\gamma$  per effetti cinematici (combinazioni sismiche SLE): 1.00

#### Impostazioni avanzate

<u>Verifica delle tensioni</u>
Combinazione di carico

Componente verticale della spinta nel calcolo delle sollecitazioni Influenza del terreno sulla fondazione di valle nelle verifiche e nel calcolo delle sollecitazioni Diagramma correttivo per eccentricità negativa con aliquota di parzializzazione pari a 0.00

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

S/S Scpa 10 di 99

 $w_3 = 0.40$ 

Circ. Min. 252 (15/10/1996)

Rara  $\sigma_c$  < 0.60  $f_{ck}$  -  $\sigma_f$  < 0.80  $f_{yk}$  Quasi permanente  $\sigma_c$  < 0.45  $f_{ck}$ 

#### Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione Sisma Combinazione sismica

 $\begin{array}{lll} CS_{SCO} & Coeff. \ di \ sicurezza \ allo \ scorrimento \\ CS_{RIB} & Coeff. \ di \ sicurezza \ al \ ribaltamento \\ CS_{OLIM} & Coeff. \ di \ sicurezza \ a \ carico \ limite \\ CS_{STAB} & Coeff. \ di \ sicurezza \ a \ stabilità \ globale \\ \end{array}$ 

| С  | Tipo        | Sisma                            | <b>CS</b> <sub>sco</sub> | <b>CS</b> <sub>rib</sub> | <b>cs</b> <sub>qlim</sub> | <b>CS</b> <sub>stab</sub> |
|----|-------------|----------------------------------|--------------------------|--------------------------|---------------------------|---------------------------|
| 1  | A1-M1 - [1] | <del></del>                      | 5.17                     |                          | 38.19                     |                           |
| 2  | A2-M2 - [1] |                                  | 4.04                     |                          | 15.21                     |                           |
| 3  | EQU - [1]   |                                  |                          | 5.41                     |                           |                           |
| 4  | STAB - [1]  | <del></del>                      |                          |                          |                           | 2.61                      |
| 5  | A1-M1 - [2] |                                  | 2.33                     |                          | 7.71                      |                           |
| 6  | A2-M2 - [2] |                                  | 1.77                     |                          | 2.89                      |                           |
| 7  | EQU - [2]   |                                  |                          | 1.47                     |                           |                           |
| 8  | STAB - [2]  |                                  |                          |                          |                           | 1.87                      |
| 9  | A1-M1 - [3] | <del></del>                      | 2.56                     |                          | 10.10                     |                           |
| 10 | A2-M2 - [3] | <del></del>                      | 1.96                     |                          | 3.91                      |                           |
| 11 | EQU - [3]   |                                  |                          | 1.59                     |                           |                           |
| 12 | STAB - [3]  | <del></del>                      |                          |                          |                           | 1.98                      |
| 13 | A1-M1 - [4] | Orizzontale + Verticale negativo | 3.35                     |                          | 25.04                     |                           |
| 14 | A1-M1 - [4] | Orizzontale + Verticale positivo | 3.46                     |                          | 24.19                     |                           |
| 15 | A2-M2 - [4] | Orizzontale + Verticale positivo | 2.34                     |                          | 7.82                      |                           |
| 16 | A2-M2 - [4] | Orizzontale + Verticale negativo | 2.27                     |                          | 8.04                      |                           |
| 17 | EQU - [4]   | Orizzontale + Verticale negativo |                          | 3.01                     |                           |                           |
| 18 | EQU - [4]   | Orizzontale + Verticale positivo |                          | 3.51                     |                           |                           |
| 19 | STAB - [4]  | Orizzontale + Verticale positivo |                          |                          |                           | 2.00                      |
| 20 | STAB - [4]  | Orizzontale + Verticale negativo |                          |                          |                           | 1.95                      |
| 21 | SLEQ - [1]  |                                  | 6.59                     |                          | 44.13                     |                           |
| 22 | SLEF - [1]  | <del></del>                      | 3.42                     |                          | 19.52                     |                           |
| 23 | SLEF - [1]  |                                  | 6.44                     |                          | 43.92                     |                           |
| 24 | SLER - [1]  | <del></del>                      | 2.93                     |                          | 13.68                     |                           |
| 25 | SLER - [1]  |                                  | 3.25                     |                          | 17.04                     |                           |

#### Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate :

Origine in testa al muro (spigolo di monte)

Ascisse X (espresse in [m]) positive verso monte

Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

#### Tipo di analisi

Calcolo della spinta metodo di Culmann
Calcolo del carico limite metodo di Vesic
Calcolo della stabilità globale metodo di Bishop
Calcolo della spinta in condizioni di Spinta attiva

#### Sisma

#### Combinazioni SLU

 $\begin{array}{ll} \mbox{Accelerazione al suolo $a_g$} & 3.20 \ [m/s^2] \\ \mbox{Coefficiente di amplificazione per tipo di sottosuolo (S)} & 1.09 \\ \mbox{Coefficiente di amplificazione topografica (St)} & 1.00 \\ \end{array}$ 

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 11 di 99

| Cavalcavia Sv | RIese CA.3F.01 - | - Relazione di | calcolo muri in | attacco all | la snalla SP1 |
|---------------|------------------|----------------|-----------------|-------------|---------------|
|               |                  |                |                 |             |               |

| Coefficiente riduzione ( $\beta_m$ )<br>Rapporto intensità sismica verticale/orizzontale<br>Coefficiente di intensità sismica orizzontale (percento)<br>Coefficiente di intensità sismica verticale (percento)                                                                                                                                                                                                                                                                                                                                                     | 0.31<br>0.50<br>$k_h=(a_g/g^*\beta_m^*St^*S) = 11.00$<br>$k_v=0.50 * k_h = 5.50$                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Combinazioni SLE<br>Accelerazione al suolo $a_g$<br>Coefficiente di amplificazione per tipo di sottosuolo (S)<br>Coefficiente di amplificazione topografica (St)<br>Coefficiente riduzione ( $\beta_m$ )<br>Rapporto intensità sismica verticale/orizzontale<br>Coefficiente di intensità sismica orizzontale (percento)<br>Coefficiente di intensità sismica verticale (percento)                                                                                                                                                                                 | 1.31 [m/s^2]<br>1.20<br>1.00<br>0.24<br>0.50<br>$k_h=(a_g/g^*\beta_m^*St^*S)=3.86$<br>$k_v=0.50^*k_h=1.93$                                                            |
| Forma diagramma incremento sismico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stessa forma diagramma statico                                                                                                                                        |
| Partecipazione spinta passiva (percento)<br>Lunghezza del muro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.0<br>9.60 [m]                                                                                                                                                      |
| Peso muro<br>Baricentro del muro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41.2500 [kN]<br>X=0.60 Y=-2.93                                                                                                                                        |
| Superficie di spinta Punto inferiore superficie di spinta Punto superiore superficie di spinta Altezza della superficie di spinta Inclinazione superficie di spinta(rispetto alla verticale)                                                                                                                                                                                                                                                                                                                                                                       | X = 2.10                                                                                                                                                              |
| COMBINAZIONE n° 1 Peso muro favorevole e Peso terrapieno favorevole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |
| Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche                                                                                                                                                                                                                                                                                              | 37.9125 [kN]<br>34.6348 [kN]<br>15.4204 [kN]<br>X = 2.10 [m] Y = -2.27 [m]<br>24.00 [°]<br>59.53 [°]                                                                  |
| Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro                                                                                                                                                                                                                                                                                                                                                     | 113.8200 [kN]<br>X = 1.05 [m] Y = -1.50 [m]<br>8<br>4.5000 [kN]<br>3.7500 [kN]                                                                                        |
| Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione | X = 0.15 [m] Y = -1.50 [m]  34.6348 [kN] 180.2404 [kN] -27.8234 [kN] 180.2404 [kN] 34.6348 [kN] 0.01 [m] 2.70 [m] 183.5379 [kN] 10.88 [°] 2.5969 [kNm] 6884.2102 [kN] |
| <u>Tensioni sul terreno</u> Lunghezza fondazione reagente Tensione terreno allo spigolo di valle PV_D_SR_AP_CA_3_F_001001_0_004_R_A_0                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.70 [m]<br>0.06889 [MPa]                                                                                                                                             |

S/S Scpa 12 di 99

Tensione terreno allo spigolo di monte 0.06462 [MPa]

#### Fattori per il calcolo della capacità portante

| Coeff. capacità portante        | $N_c = 75.31$ | $N_{q} = 64.20$ | $N_y = 109.41$      |
|---------------------------------|---------------|-----------------|---------------------|
| Fattori forma                   | $s_c = 1.00$  | $s_q = 1.00$    | $s_y = 1.00$        |
| Fattori inclinazione            | $i_c = 0.68$  | $i_{q} = 0.68$  | $i_{y} = 0.55$      |
| Fattori profondità              | $d_c = 1.16$  | $d_{q} = 1.09$  | $d_{y} = 1.00$      |
| Fattori inclinazione piano posa | $b_c = 1.00$  | $b_{q} = 1.00$  | $b_{y} = 1.00$      |
| Fattori inclinazione pendio     | $g_c = 1.00$  | $g_{q} = 1.00$  | $g_{\gamma} = 1.00$ |

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 59.46$   $N'_{q} = 47.73$   $N'_{y} = 60.45$ 

#### **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a scorrimento 5.17 Coefficiente di sicurezza a carico ultimo 38.19

#### Sollecitazioni fondazione di valle

#### Combinazione n° 1

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Х    | M                                                                            | I                                                                                                                                                                                                                                                           |
|------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.00 | 0.0000                                                                       | 0.0000                                                                                                                                                                                                                                                      |
| 0.05 | 0.0510                                                                       | 2.0377                                                                                                                                                                                                                                                      |
| 0.10 | 0.2037                                                                       | 4.0714                                                                                                                                                                                                                                                      |
| 0.15 | 0.4580                                                                       | 6.1012                                                                                                                                                                                                                                                      |
| 0.20 | 0.8138                                                                       | 8.1270                                                                                                                                                                                                                                                      |
| 0.25 | 1.2707                                                                       | 10.1488                                                                                                                                                                                                                                                     |
| 0.30 | 1.8286                                                                       | 12.1667                                                                                                                                                                                                                                                     |
| 0.35 | 2.4873                                                                       | 14.1806                                                                                                                                                                                                                                                     |
| 0.40 | 3.2466                                                                       | 16.1906                                                                                                                                                                                                                                                     |
| 0.45 | 4.1063                                                                       | 18.1966                                                                                                                                                                                                                                                     |
| 0.50 | 5.0662                                                                       | 20.1986                                                                                                                                                                                                                                                     |
|      | 0.00<br>0.05<br>0.10<br>0.15<br>0.20<br>0.25<br>0.30<br>0.35<br>0.40<br>0.45 | 0.00       0.0000         0.05       0.0510         0.10       0.2037         0.15       0.4580         0.20       0.8138         0.25       1.2707         0.30       1.8286         0.35       2.4873         0.40       3.2466         0.45       4.1063 |

#### Sollecitazioni fondazione di monte

#### Combinazione nº 1

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M        | Т        |
|-----|------|----------|----------|
| 1   | 0.00 | 0.0000   | 0.0000   |
| 2   | 0.21 | -0.5109  | -4.8542  |
| 3   | 0.42 | -2.0339  | -9.6387  |
| 4   | 0.63 | -4.5519  | -14.1973 |
| 5   | 0.84 | -7.9076  | -17.7500 |
| 6   | 1.05 | -12.0021 | -21.2330 |
| 7   | 1.26 | -16.8206 | -24.6461 |
| 8   | 1.47 | -22.3485 | -27.9894 |
| 9   | 1.68 | -28.5713 | -31.2629 |
| 10  | 1.89 | -35.4741 | -34.4666 |
| 11  | 2.10 | -43.0424 | -37.6005 |

#### Armature e tensioni nei materiali della fondazione

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

S/S Scpa 13 di 99

#### Combinazione n° 1

Simbologia adottata

B base della sezione espressa in [m]
H altezza della sezione espressa in [m]

A<sub>fi</sub> area di armatura in corrispondenza del lembo inferiore in [mq]

 $\begin{array}{ll} A_{fs} & \text{area di armatura in corrispondenza del lembo superiore in [mq]} \\ N_u & \text{sforzo normale ultimo espresso in [kN]} \end{array}$ 

 Nu
 storzo normale ultimo espresso in [l

 Mu
 momento ultimo espresso in [kNm]

 CS
 coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [k VRd Resistenza al taglio, espresso in [kN]

#### Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | Υ    | B, H          | $A_{fs}$  | $A_{fi}$ | $N_u$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------------|-----------|----------|-------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 1.00, 0.500.0 | 0.00000.0 | 00565    | 0.00  | 0.00        | 1000.00 | 173.53   |           |           |
| 2   | 0.05 | 1.00, 0.500.0 | 0.00000.0 | 00565    | 0.00  | 98.61       | 1935.08 | 173.53   |           |           |
| 3   | 0.10 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00  | 98.55       | 483.82  | 173.53   |           |           |
| 4   | 0.15 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00  | 98.55       | 215.17  | 173.53   |           |           |
| 5   | 0.20 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00  | 98.55       | 121.11  | 173.53   |           |           |
| 6   | 0.25 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00  | 98.55       | 77.56   | 173.53   |           |           |
| 7   | 0.30 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00  | 98.55       | 53.90   | 173.53   |           |           |
| 8   | 0.35 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00  | 98.55       | 39.62   | 173.53   |           |           |
| 9   | 0.40 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00  | 98.55       | 30.36   | 173.53   |           |           |
| 10  | 0.45 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00  | 98.55       | 24.00   | 173.53   |           |           |
| 11  | 0.50 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00  | 98.55       | 19.45   | 173.53   |           |           |

#### Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | Υ    | B, H          | $A_{fs}$   | $A_{fi}$ | $N_u$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------------|------------|----------|-------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 1.00, 0.500.0 | 0.000000.0 | 00565    | 0.00  | 0.00        | 1000.00 | 173.53   |           |           |
| 2   | 0.21 | 1.00, 0.500.0 | 0.010050   | 000565   | 0.00  | -172.73     | 338.08  | 173.53   |           |           |
| 3   | 0.42 | 1.00, 0.500.0 | 0010050.0  | 00565    | 0.00  | -172.73     | 84.93   | 173.53   |           |           |
| 4   | 0.63 | 1.00, 0.500.0 | 0010050.0  | 00565    | 0.00  | -172.73     | 37.95   | 173.53   |           |           |
| 5   | 0.84 | 1.00, 0.500.0 | 0010050.0  | 00565    | 0.00  | -172.73     | 21.84   | 173.53   |           |           |
| 6   | 1.05 | 1.00, 0.500.0 | 0010050.0  | 00565    | 0.00  | -172.73     | 14.39   | 173.53   |           |           |
| 7   | 1.26 | 1.00, 0.500.0 | 0.010050   | 00565    | 0.00  | -172.73     | 10.27   | 173.53   |           |           |
| 8   | 1.47 | 1.00, 0.500.0 | 0010050.0  | 00565    | 0.00  | -172.73     | 7.73    | 173.53   |           |           |
| 9   | 1.68 | 1.00, 0.500.0 | 0.010050   | 00565    | 0.00  | -172.73     | 6.05    | 173.53   |           |           |
| 10  | 1.89 | 1.00, 0.500.0 | 0.010050   | 00565    | 0.00  | -172.73     | 4.87    | 173.53   |           |           |
| 11  | 2.10 | 1.00, 0.500.0 | 0010050.0  | 000565   | 0.00  | -172.73     | 4.01    | 173.53   |           |           |

#### COMBINAZIONE n° 2

| Valore della spinta statica                                  | 36.7102  | [kN] |           |     |
|--------------------------------------------------------------|----------|------|-----------|-----|
| Componente orizzontale della spinta statica                  | 34.5820  | [kN] |           |     |
| Componente verticale della spinta statica                    | 12.3175  | [kN] |           |     |
| Punto d'applicazione della spinta                            | X = 2.10 | [m]  | Y = -2.27 | [m] |
| Inclinaz. della spinta rispetto alla normale alla superficie | 19.61    | [°]  |           |     |
| Inclinazione linea di rottura in condizioni statiche         | 56.17    | [°]  |           |     |
|                                                              |          |      |           |     |
| Peso terrapieno gravante sulla fondazione a monte            | 113.1000 | [kN] |           |     |
| Baricentro terrapieno gravante sulla fondazione a monte      | X = 1.05 | [m]  | Y = -1.50 | [m] |
| Numero contrafforti                                          | 8        |      |           |     |
| Peso del singolo contrafforte                                | 4.5000   | [kN] |           |     |
| Peso del contrafforte riferito ad un metro di muro           | 3.7500   | [kN] |           |     |
| Baricentro contrafforte                                      | X = 0.15 | [m]  | Y = -1.50 | [m] |

#### Risultanti

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 14 di 99

| Risultante dei carichi applicati in dir. orizzontale  | 34.5820   | [kN]  |
|-------------------------------------------------------|-----------|-------|
| Risultante dei carichi applicati in dir. verticale    | 176.4175  | [kN]  |
| Resistenza passiva a valle del muro                   | -21.2853  | [kN]  |
| Sforzo normale sul piano di posa della fondazione     | 176.4175  | [kN]  |
| Sforzo tangenziale sul piano di posa della fondazione | 34.5820   | [kN]  |
| Eccentricità rispetto al baricentro della fondazione  | 0.04      | [m]   |
| Lunghezza fondazione reagente                         | 2.70      | [m]   |
| Risultante in fondazione                              | 179.7750  | [kN]  |
| Inclinazione della risultante (rispetto alla normale) | 11.09     | [°]   |
| Momento rispetto al baricentro della fondazione       | 6.9367    | [kNm] |
| Carico ultimo della fondazione                        | 2682.9374 | [kN]  |

#### Tensioni sul terreno

| Lunghezza fondazione reagente          | 2.70    | [m]   |
|----------------------------------------|---------|-------|
| Tensione terreno allo spigolo di valle | 0.07105 | [MPa] |
| Tensione terreno allo spigolo di monte | 0.05963 | [MPa] |

#### Fattori per il calcolo della capacità portante

| Coeff. capacità portante        | $N_c = 75.31$ | $N_0 = 64.20$        | $N_{v} = 109.41$    |
|---------------------------------|---------------|----------------------|---------------------|
| Fattori forma                   | $s_c = 1.00$  | $\dot{s}_{q} = 1.00$ | $s_{y} = 1.00$      |
| Fattori inclinazione            | $i_c = 0.67$  | $i_{q} = 0.68$       | $i_{\gamma} = 0.55$ |
| Fattori profondità              | $d_c = 1.16$  | $d_{q} = 1.11$       | $d_{\gamma} = 1.00$ |
| Fattori inclinazione piano posa | $b_c = 1.00$  | $b_{q} = 1.00$       | $b_{\gamma} = 1.00$ |
| Fattori inclinazione pendio     | $g_c = 1.00$  | $g_{q} = 1.00$       | $g_{y} = 1.00$      |

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 59.46$$
  $N'_{q} = 47.73$   $N'_{y} = 60.45$ 

#### **COEFFICIENTI DI SICUREZZA**

| Coefficiente di sicurezza a scorrimento   | 4.04  |
|-------------------------------------------|-------|
| Coefficiente di sicurezza a carico ultimo | 15.21 |

#### Sollecitazioni fondazione di valle

 $\underline{\text{Combinazione n° 2}}_{\text{L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di$ 

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | Χ    | М      | Т       |
|-----|------|--------|---------|
| 1   | 0.00 | 0.0000 | 0.0000  |
| 2   | 0.05 | 0.0581 | 2.3222  |
| 3   | 0.10 | 0.2320 | 4.6338  |
| 4   | 0.15 | 0.5213 | 6.9348  |
| 5   | 0.20 | 0.9253 | 9.2252  |
| 6   | 0.25 | 1.4436 | 11.5051 |
| 7   | 0.30 | 2.0757 | 13.7744 |
| 8   | 0.35 | 2.8209 | 16.0331 |
| 9   | 0.40 | 3.6788 | 18.2813 |
| 10  | 0.45 | 4.6489 | 20.5189 |
| 11  | 0.50 | 5.7305 | 22.7459 |

#### Sollecitazioni fondazione di monte

#### Combinazione n° 2

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

T PV D SR AP CA 3 F 001- 001 0 004 R A 0

SIS Scpa 15 di 99

| 1  | 0.00 | 0.0000   | 0.0000  |
|----|------|----------|---------|
| 2  | 0.21 | -0.2331  | -2.1893 |
| 3  | 0.42 | -0.9065  | -4.1922 |
| 4  | 0.63 | -1.9790  | -5.8885 |
| 5  | 0.84 | -3.3018  | -6.6783 |
| 6  | 1.05 | -4.7708  | -7.2816 |
| 7  | 1.26 | -6.3470  | -7.6984 |
| 8  | 1.47 | -7.9911  | -7.9288 |
| 9  | 1.68 | -9.6640  | -7.9726 |
| 10 | 1.89 | -11.3265 | -7.8299 |
| 11 | 2.10 | -12.9395 | -7.5007 |

#### Armature e tensioni nei materiali della fondazione

#### Combinazione n° 2

Simbologia adottata

B base della sezione espressa in [m]
H altezza della sezione espressa in [m]

 $\begin{array}{ll} A_{\text{fi}} & \text{area di armatura in corrispondenza del lembo inferiore in [mq]} \\ A_{\text{fs}} & \text{area di armatura in corrispondenza del lembo superiore in [mq]} \end{array}$ 

 $\begin{array}{ll} N_u & \text{sforzo normale ultimo espresso in [kN]} \\ M_u & \text{momento ultimo espresso in [kNm]} \end{array}$ 

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

#### Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | Υ    | B, H          | $A_{fs}$ | $A_{fi}$ | $N_{\rm u}$ | $M_{\rm u}$ | cs      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------------|----------|----------|-------------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 1.00, 0.500.0 | 0.000000 | 00565    | 0.00        | 0.00        | 1000.00 | 173.53   |           |           |
| 2   | 0.05 | 1.00, 0.500.0 | 0.000000 | 00565    | 0.00        | 98.61       | 1697.28 | 173.53   |           |           |
| 3   | 0.10 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00        | 98.55       | 424.73  | 173.53   |           |           |
| 4   | 0.15 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00        | 98.55       | 189.06  | 173.53   |           |           |
| 5   | 0.20 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00        | 98.55       | 106.51  | 173.53   |           |           |
| 6   | 0.25 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00        | 98.55       | 68.27   | 173.53   |           |           |
| 7   | 0.30 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00        | 98.55       | 47.48   | 173.53   |           |           |
| 8   | 0.35 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00        | 98.55       | 34.94   | 173.53   |           |           |
| 9   | 0.40 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00        | 98.55       | 26.79   | 173.53   |           |           |
| 10  | 0.45 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00        | 98.55       | 21.20   | 173.53   |           |           |
| 11  | 0.50 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00        | 98.55       | 17.20   | 173.53   |           |           |

#### Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | Υ    | B, H           | $A_{fs}$   | $A_{fi}$ | $N_u$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|----------------|------------|----------|-------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 1.00, 0.500.00 | 0.00000.00 | 00565    | 0.00  | 0.00        | 1000.00 | 173.53   |           |           |
| 2   | 0.21 | 1.00, 0.500.00 | 010050.00  | 00565    | 0.00  | -172.73     | 740.87  | 173.53   |           |           |
| 3   | 0.42 | 1.00, 0.500.00 | 010050.00  | 00565    | 0.00  | -172.73     | 190.55  | 173.53   |           |           |
| 4   | 0.63 | 1.00, 0.500.00 | 010050.00  | 00565    | 0.00  | -172.73     | 87.28   | 173.53   |           |           |
| 5   | 0.84 | 1.00, 0.500.00 | 010050.00  | 00565    | 0.00  | -172.73     | 52.31   | 173.53   |           |           |
| 6   | 1.05 | 1.00, 0.500.00 | 010050.00  | 00565    | 0.00  | -172.73     | 36.21   | 173.53   |           |           |
| 7   | 1.26 | 1.00, 0.500.00 | 010050.00  | 00565    | 0.00  | -172.73     | 27.21   | 173.53   |           |           |
| 8   | 1.47 | 1.00, 0.500.00 | 010050.00  | 00565    | 0.00  | -172.73     | 21.62   | 173.53   |           |           |
| 9   | 1.68 | 1.00, 0.500.00 | 010050.00  | 00565    | 0.00  | -172.73     | 17.87   | 173.53   |           |           |
| 10  | 1.89 | 1.00, 0.500.00 | 010050.00  | 00565    | 0.00  | -172.73     | 15.25   | 173.53   |           |           |
| 11  | 2.10 | 1.00, 0.500.00 | 010050.00  | 00565    | 0.00  | -172.73     | 13.35   | 173.53   |           |           |

#### COMBINAZIONE n° 3

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 16 di 99

| Cavalcavia Sv. Rlese CA.3F.01 - | - Relazione di calcolo | muri in attacco | alla spalla SP1 |
|---------------------------------|------------------------|-----------------|-----------------|
|---------------------------------|------------------------|-----------------|-----------------|

| Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche | 40.3812<br>38.0402<br>13.5493<br>X = 2.10<br>19.61<br>56.17 | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°]<br>[°] | Y = -2.27 | [m] |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|-----------|-----|
| Peso terrapieno gravante sulla fondazione a monte<br>Baricentro terrapieno gravante sulla fondazione a monte<br>Numero contrafforti                                                                                                                                   | 102.2700<br>X = 1.05<br>8                                   | [kN]<br>[m]                               | Y = -1.50 | [m] |
| Peso del singolo contrafforte                                                                                                                                                                                                                                         | 4.0500                                                      | [kN]                                      |           |     |
| Peso del contrafforte riferito ad un metro di muro                                                                                                                                                                                                                    | 3.3750                                                      | [kN]                                      |           |     |
| Baricentro contrafforte                                                                                                                                                                                                                                               | X = 0.15                                                    | [m]                                       | Y = -1.50 | [m] |
| Picultonti                                                                                                                                                                                                                                                            |                                                             |                                           |           |     |
| Risultanti Risultante dei carichi applicati in dir. orizzontale                                                                                                                                                                                                       | 38.0402                                                     | [kN]                                      |           |     |
| Risultante dei carichi applicati in dir. orizzontale                                                                                                                                                                                                                  | 161.7193                                                    | [kN]                                      |           |     |
| Resistenza passiva a valle del muro                                                                                                                                                                                                                                   | -19.1568                                                    | [kN]                                      |           |     |
| Momento ribaltante rispetto allo spigolo a valle                                                                                                                                                                                                                      | 46.9099                                                     | [kNm]                                     |           |     |
| Momento stabilizzante rispetto allo spigolo a valle                                                                                                                                                                                                                   | 253.9286                                                    | [kNm]                                     |           |     |
| Sforzo normale sul piano di posa della fondazione                                                                                                                                                                                                                     | 161.7193                                                    | [kN]                                      |           |     |
| Sforzo tangenziale sul piano di posa della fondazione                                                                                                                                                                                                                 | 38.0402                                                     | [kN]                                      |           |     |
| Eccentricità rispetto al baricentro della fondazione                                                                                                                                                                                                                  | 0.07                                                        | [m]                                       |           |     |
| Lunghezza fondazione reagente                                                                                                                                                                                                                                         | 2.70                                                        | [m]                                       |           |     |
| Risultante in fondazione                                                                                                                                                                                                                                              | 166.1330                                                    | [kN]                                      |           |     |

13.24

5.41

11.3024

[°]

[kNm]

#### **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a ribaltamento

Inclinazione della risultante (rispetto alla normale)

Momento rispetto al baricentro della fondazione

#### Stabilità globale muro + terreno

#### Combinazione n° 4

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra) W peso della striscia espresso in [kN]

 $\alpha$  angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [MPa]

b larghezza della striscia espressa in [m]

u pressione neutra lungo la base della striscia espressa in [MPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= 0.00 Y[m]= 1.55

Raggio del cerchio R[m]= 5.47

Ascissa a valle del cerchio Xi[m]= -3.79 Ascissa a monte del cerchio Xs[m]= 5.25

Larghezza della striscia dx[m]= 0.36 Coefficiente di sicurezza C= 2.61

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

| Striscia | W      | α(°)  | Wsin $lpha$ | b/cosα | ф     | С     | u     |
|----------|--------|-------|-------------|--------|-------|-------|-------|
| 1        | 444.88 | 67.98 | 412.42      | 0.97   | 30.17 | 0.000 | 0.000 |
| 2        | 947.77 | 59.69 | 818.19      | 0.72   | 30.17 | 0.000 | 0.000 |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 17 di 99

595.15

457.55

293.65

98.64

| Cavalcavia Sv. Rlese CA.3F.01 – Relazione di calcolo muri in attacco alla spalla SP1 |         |        |         |      |       |       |       |
|--------------------------------------------------------------------------------------|---------|--------|---------|------|-------|-------|-------|
| 3                                                                                    | 1311.77 | 52.79  | 1044.75 | 0.60 | 30.17 | 0.000 | 0.000 |
| 4                                                                                    | 1598.52 | 46.88  | 1166.80 | 0.53 | 30.17 | 0.000 | 0.000 |
| 5                                                                                    | 1833.56 | 41.57  | 1216.64 | 0.48 | 30.17 | 0.000 | 0.000 |
| 6                                                                                    | 2029.72 | 36.67  | 1212.19 | 0.45 | 30.17 | 0.000 | 0.000 |
| 7                                                                                    | 2194.58 | 32.07  | 1165.19 | 0.43 | 30.17 | 0.000 | 0.000 |
| 8                                                                                    | 2333.01 | 27.69  | 1084.11 | 0.41 | 30.17 | 0.000 | 0.000 |
| 9                                                                                    | 2485.54 | 23.48  | 990.34  | 0.39 | 31.15 | 0.000 | 0.000 |
| 10                                                                                   | 2678.80 | 19.40  | 889.91  | 0.38 | 33.87 | 0.000 | 0.000 |
| 11                                                                                   | 2669.00 | 15.43  | 709.90  | 0.38 | 33.87 | 0.000 | 0.000 |
| 12                                                                                   | 2677.29 | 11.52  | 534.82  | 0.37 | 33.87 | 0.000 | 0.000 |
| 13                                                                                   | 2721.99 | 7.67   | 363.50  | 0.37 | 33.87 | 0.000 | 0.000 |
| 14                                                                                   | 2748.69 | 3.86   | 185.06  | 0.36 | 33.87 | 0.000 | 0.000 |
| 15                                                                                   | 2633.96 | 0.06   | 2.93    | 0.36 | 33.87 | 0.000 | 0.000 |
| 16                                                                                   | 1148.72 | -3.73  | -74.78  | 0.36 | 33.87 | 0.000 | 0.000 |
| 17                                                                                   | 1023.98 | -7.55  | -134.46 | 0.37 | 33.87 | 0.000 | 0.000 |
| 18                                                                                   | 958.44  | -11.39 | -189.32 | 0.37 | 33.87 | 0.000 | 0.000 |
| 19                                                                                   | 894.99  | -15.29 | -236.06 | 0.38 | 33.87 | 0.000 | 0.000 |
| 20                                                                                   | 811.76  | -19.27 | -267.86 | 0.38 | 33.87 | 0.000 | 0.000 |
| 21                                                                                   | 710.26  | -23.34 | -281.41 | 0.39 | 31.27 | 0.000 | 0.000 |

-275.23

-241.91

-174.72

-65.23

0.41

0.43

0.45

0.48

30.17

30.17

30.17

30.17

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

 $\Sigma W_i$ = 375.6225 [kN]  $\Sigma W_i$ sin $\alpha_i$ = 96.6535 [kN]  $\Sigma W_i$ tan $\phi_i$ = 237.5861 [kN]  $\Sigma$ tan $\alpha_i$ tan $\phi_i$ = 3.84

22

23

24

25

#### COMBINAZIONE n° 5

#### Peso muro favorevole e Peso terrapieno favorevole

-27.55

-31.92

-36.51

-41.40

| Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche                                                                                                                                                                                                                                                                                | 74.9711<br>68.4896<br>30.4935<br>X = 2.10<br>24.00<br>59.53                                                          | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°]<br>[°]  | Y = -2.01 | [m] |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------|-----|
| Peso terrapieno gravante sulla fondazione a monte<br>Baricentro terrapieno gravante sulla fondazione a monte<br>Numero contrafforti                                                                                                                                                                                                                                                                                                                                                                                                                  | 140.8740<br>X = 1.05<br>8                                                                                            | [kN]<br>[m]                                | Y = -1.50 | [m] |
| Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro Baricentro contrafforte                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5000<br>3.7500<br>X = 0.15                                                                                         | [kN]<br>[kN]<br>[m]                        | Y = -1.50 | [m] |
| Risultanti carichi esterni Componente dir. X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.49                                                                                                                | [kN]                                       |           |     |
| Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione PV_D_SR_AP_CA_3_F_001001_0_004_R_A_0 | 91.9796<br>222.3675<br>-27.8234<br>222.3675<br>91.9796<br>0.64<br>2.14<br>240.6399<br>22.47<br>141.7668<br>1715.3478 | [kN] [kN] [kN] [kN] [m] [m] [kN] [kN] [kN] |           |     |

SIS Scpa 18 di 99

#### Tensioni sul terreno

| Lunghezza fondazione reagente          | 2.14    | [m]   |
|----------------------------------------|---------|-------|
| Tensione terreno allo spigolo di valle | 0.20807 | [MPa] |
| Tensione terreno allo spigolo di monte | 0.00000 | [MPa] |

#### Fattori per il calcolo della capacità portante

| Coeff. capacità portante        | $N_c = 75.31$ | $N_{q} = 64.20$ | $N_{y} = 109.41$    |
|---------------------------------|---------------|-----------------|---------------------|
| Fattori forma                   | $s_c = 1.00$  | $s_q = 1.00$    | $s_y = 1.00$        |
| Fattori inclinazione            | $i_c = 0.38$  | $i_{q} = 0.39$  | $i_{\gamma} = 0.23$ |
| Fattori profondità              | $d_c = 1.16$  | $d_{q} = 1.09$  | $d_{\gamma} = 1.00$ |
| Fattori inclinazione piano posa | $b_c = 1.00$  | $b_{q} = 1.00$  | $b_{\gamma} = 1.00$ |
| Fattori inclinazione pendio     | $g_c = 1.00$  | $g_{q} = 1.00$  | $g_{y} = 1.00$      |

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 59.46$   $N'_{q} = 47.73$   $N'_{\gamma} = 60.45$ 

#### **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a scorrimento 2.33 Coefficiente di sicurezza a carico ultimo 7.71

#### Sollecitazioni fondazione di valle

#### Combinazione n° 5

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M       | Т       |
|-----|------|---------|---------|
| 1   | 0.00 | 0.0000  | 0.0000  |
| 2   | 0.05 | 0.2229  | 8.8770  |
| 3   | 0.10 | 0.8836  | 17.5106 |
| 4   | 0.15 | 1.9699  | 25.9008 |
| 5   | 0.20 | 3.4697  | 34.0476 |
| 6   | 0.25 | 5.3706  | 41.9511 |
| 7   | 0.30 | 7.6607  | 49.6112 |
| 8   | 0.35 | 10.3277 | 57.0280 |
| 9   | 0.40 | 13.3595 | 64.2013 |
| 10  | 0.45 | 16.7438 | 71.1313 |
| 11  | 0.50 | 20.4685 | 77.8179 |
|     |      |         |         |

#### Sollecitazioni fondazione di monte

#### Combinazione n° 5

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr.  | X          | M                | Т         |
|------|------------|------------------|-----------|
| 1    | 0.00       | 0.0000           | 0.0000    |
| 2    | 0.21       | -2.9324          | -27.9279  |
| 3    | 0.42       | -11.7297         | -55.8558  |
| 4    | 0.63       | -26.3643         | -82.0539  |
| 5    | 0.84       | -45.1242         | -95.8965  |
| 6    | 1.05       | -66.3403         | -105.4460 |
| 7    | 1.26       | -89.1110         | -110.7025 |
| 8    | 1.47       | -112.5348        | -111.6659 |
| 9    | 1.68       | -135.7102        | -108.3362 |
| 10   | 1.89       | -157.7355        | -100.7134 |
| 11   | 2.10       | -177.7093        | -88.7975  |
| PV_I | D_SR_AP_CA | _3_F_001001_0_00 | 4_R_A_0   |

SIS Scpa 19 di 99

#### Armature e tensioni nei materiali della fondazione

#### Combinazione n° 5

Simbologia adottata

В base della sezione espressa in [m] altezza della sezione espressa in [m] Н

area di armatura in corrispondenza del lembo inferiore in [mq]  $A_{\textrm{fi}}$ 

area di armatura in corrispondenza del lembo superiore in [mq]

A<sub>fs</sub> N<sub>u</sub> M<sub>u</sub> sforzo normale ultimo espresso in [kN] momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione **VRcd** Aliquota di taglio assorbito dal cls, espresso in [kN]

Aliquota di taglio assorbito dall'armatura, espresso in [kN] Resistenza al taglio, espresso in [kN] VRsd

VRd

#### Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | Υ    | B, H          | $A_{fs}$  | $A_{fi}$ | $N_{u}$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------------|-----------|----------|---------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 1.00, 0.500.0 | 0.00000.0 | 00565    | 0.00    | 0.00        | 1000.00 | 173.53   |           |           |
| 2   | 0.05 | 1.00, 0.500.0 | 0.00000.0 | 00565    | 0.00    | 98.61       | 442.31  | 173.53   |           |           |
| 3   | 0.10 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 111.53  | 173.53   |           |           |
| 4   | 0.15 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 50.03   | 173.53   |           |           |
| 5   | 0.20 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 28.40   | 173.53   |           |           |
| 6   | 0.25 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 18.35   | 173.53   |           |           |
| 7   | 0.30 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 12.86   | 173.53   |           |           |
| 8   | 0.35 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 9.54    | 173.53   |           |           |
| 9   | 0.40 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 7.38    | 173.53   |           |           |
| 10  | 0.45 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 5.89    | 173.53   |           |           |
| 11  | 0.50 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 4.81    | 173.53   |           |           |

#### Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | Υ    | B, H          | $A_{fs}$   | $A_{fi}$ | $N_u$ | $\mathbf{M}_{u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------------|------------|----------|-------|------------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 1.00, 0.500.0 | 0.000000.0 | 000565   | 0.00  | 0.00             | 1000.00 | 173.53   |           |           |
| 2   | 0.21 | 1.00, 0.500.0 | 0.0050.0   | 000565   | 0.00  | -172.73          | 58.90   | 173.53   |           |           |
| 3   | 0.42 | 1.00, 0.500.0 | 0.0050.0   | 000565   | 0.00  | -172.73          | 14.73   | 173.53   |           |           |
| 4   | 0.63 | 1.00, 0.500.0 | 0.0050.0   | 000565   | 0.00  | -172.73          | 6.55    | 173.53   |           |           |
| 5   | 0.84 | 1.00, 0.500.0 | 0.0050.0   | 000565   | 0.00  | -172.73          | 3.83    | 173.53   |           |           |
| 6   | 1.05 | 1.00, 0.500.0 | 0.0050.0   | 000565   | 0.00  | -172.73          | 2.60    | 173.53   |           |           |
| 7   | 1.26 | 1.00, 0.500.0 | 0.0050.0   | 000565   | 0.00  | -172.73          | 1.94    | 173.53   |           |           |
| 8   | 1.47 | 1.00, 0.500.0 | 0.0050.0   | 000565   | 0.00  | -172.73          | 1.53    | 173.53   |           |           |
| 9   | 1.68 | 1.00, 0.500.0 | 0.0050.0   | 000565   | 0.00  | -172.73          | 1.27    | 173.53   |           |           |
| 10  | 1.89 | 1.00, 0.500.0 | 0.0050.0   | 000565   | 0.00  | -172.73          | 1.10    | 173.53   |           |           |
| 11  | 2.10 | 1.00, 0.500.0 | 010050.0   | 000565   | 0.00  | -172.73          | 1.00    | 173.53   |           |           |

#### COMBINAZIONE n° 6

| Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche | 77.1388<br>72.6669<br>25.8827<br>X = 2.10<br>19.61<br>56.17 | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°] | Y = -2.00 | [m] |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------|-----------|-----|
| Peso terrapieno gravante sulla fondazione a monte<br>Baricentro terrapieno gravante sulla fondazione a monte<br>Numero contrafforti<br>Peso del singolo contrafforte                                                                                                  | 136.5468<br>X = 1.05<br>8<br>4.5000                         | [kN]<br>[m]<br>[kN]                | Y = -1.50 | [m] |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 20 di 99

| Ouvalous at 1. Niede Gri. or . Neideleine at outdoor man in attacce and spand Gr                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                     |                                                             |           |     |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------|-----|--|--|
| Peso del contrafforte riferito ad un metro di muro<br>Baricentro contrafforte                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.7500<br>X = 0.15                                                                                                  | [kN]<br>[m]                                                 | Y = -1.50 | [m] |  |  |
| Risultanti carichi esterni Componente dir. X                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.36                                                                                                               | [kN]                                                        |           |     |  |  |
| Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione | 93.0249<br>213.4295<br>-21.2853<br>213.4295<br>93.0249<br>0.67<br>2.05<br>232.8214<br>23.55<br>142.1712<br>616.3184 | [kN]<br>[kN]<br>[kN]<br>[kN]<br>[m]<br>[m]<br>[kN]<br>[kNm] |           |     |  |  |

#### Tensioni sul terreno

| Lunghezza fondazione reagente          | 2.05    | [m]   |
|----------------------------------------|---------|-------|
| Tensione terreno allo spigolo di valle | 0.20806 | [MPa] |
| Tensione terreno allo spigolo di monte | 0.00000 | [MPa] |

#### Fattori per il calcolo della capacità portante

| Coeff. capacità portante        | $N_c = 75.31$  | $N_q = 64.20$  | $N_{y} = 109.41$    |
|---------------------------------|----------------|----------------|---------------------|
| Fattori forma                   | $s_c = 1.00$   | $s_q = 1.00$   | $s_{y} = 1.00$      |
| Fattori inclinazione            | $i_c = 0.34$   | $i_q = 0.36$   | $i_{\gamma} = 0.20$ |
| Fattori profondità              | $d_{c} = 1.16$ | $d_{q} = 1.11$ | $d_{\gamma} = 1.00$ |
| Fattori inclinazione piano posa | $b_c = 1.00$   | $b_{q} = 1.00$ | $b_{\gamma} = 1.00$ |
| Fattori inclinazione pendio     | $g_c = 1.00$   | $g_{q} = 1.00$ | $g_{\gamma} = 1.00$ |

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 59.46$$
  $N'_{q} = 47.73$   $N'_{y} = 60.45$ 

#### **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a scorrimento 1.77
Coefficiente di sicurezza a carico ultimo 2.89

#### Sollecitazioni fondazione di valle

#### Combinazione n° 6

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M       | Т       |
|-----|------|---------|---------|
| 1   | 0.00 | 0.0000  | 0.0000  |
| 2   | 0.05 | 0.2273  | 9.0512  |
| 3   | 0.10 | 0.9009  | 17.8489 |
| 4   | 0.15 | 2.0080  | 26.3931 |
| 5   | 0.20 | 3.5360  | 34.6837 |
| 6   | 0.25 | 5.4721  | 42.7208 |
| 7   | 0.30 | 7.8038  | 50.5044 |
| 8   | 0.35 | 10.5184 | 58.0344 |
| 9   | 0.40 | 13.6030 | 65.3109 |
| 10  | 0.45 | 17.0452 | 72.3339 |
| 11  | 0.50 | 20.8322 | 79.1033 |

#### Sollecitazioni fondazione di monte

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 21 di 99

#### Combinazione n° 6

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M         | Т        |
|-----|------|-----------|----------|
| 1   | 0.00 | 0.0000    | 0.0000   |
| 2   | 0.21 | -2.4162   | -23.0114 |
| 3   | 0.42 | -9.6648   | -46.0228 |
| 4   | 0.63 | -21.7264  | -67.7418 |
| 5   | 0.84 | -37.2996  | -79.8450 |
| 6   | 1.05 | -54.9483  | -87.4930 |
| 7   | 1.26 | -73.7336  | -90.6688 |
| 8   | 1.47 | -92.7161  | -89.3722 |
| 9   | 1.68 | -110.9568 | -83.6034 |
| 10  | 1.89 | -127.5165 | -73.3623 |
| 11  | 2.10 | -141.4559 | -58.6489 |

#### Armature e tensioni nei materiali della fondazione

#### Combinazione n° 6

Simbologia adottata

B base della sezione espressa in [m]
H altezza della sezione espressa in [m]

 $A_{\rm fi}$  area di armatura in corrispondenza del lembo inferiore in [mq]  $A_{\rm fs}$  area di armatura in corrispondenza del lembo superiore in [mq]

N<sub>u</sub> sforzo normale ultimo espresso in [kN]

M<sub>u</sub> momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

#### Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | Υ    | B, H          | $A_{fs}$  | $A_{fi}$ | $N_u$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------------|-----------|----------|-------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 1.00, 0.500.0 | 000000.00 | 00565    | 0.00  | 0.00        | 1000.00 | 173.53   |           |           |
| 2   | 0.05 | 1.00, 0.500.0 | 000000.00 | 00565    | 0.00  | 98.61       | 433.76  | 173.53   |           |           |
| 3   | 0.10 | 1.00, 0.500.0 | 010050.00 | 00565    | 0.00  | 98.55       | 109.40  | 173.53   |           |           |
| 4   | 0.15 | 1.00, 0.500.0 | 010050.00 | 00565    | 0.00  | 98.55       | 49.08   | 173.53   |           |           |
| 5   | 0.20 | 1.00, 0.500.0 | 010050.00 | 00565    | 0.00  | 98.55       | 27.87   | 173.53   |           |           |
| 6   | 0.25 | 1.00, 0.500.0 | 010050.00 | 00565    | 0.00  | 98.55       | 18.01   | 173.53   |           |           |
| 7   | 0.30 | 1.00, 0.500.0 | 010050.00 | 00565    | 0.00  | 98.55       | 12.63   | 173.53   |           |           |
| 8   | 0.35 | 1.00, 0.500.0 | 010050.00 | 00565    | 0.00  | 98.55       | 9.37    | 173.53   |           |           |
| 9   | 0.40 | 1.00, 0.500.0 | 010050.00 | 00565    | 0.00  | 98.55       | 7.25    | 173.53   |           |           |
| 10  | 0.45 | 1.00, 0.500.0 | 010050.00 | 00565    | 0.00  | 98.55       | 5.78    | 173.53   |           |           |
| 11  | 0.50 | 1.00, 0.500.0 | 010050.00 | 00565    | 0.00  | 98.55       | 4.73    | 173.53   |           |           |

#### Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | Υ    | В, Н         | $A_{fs}$   | $A_{fi}$ | $N_u$ | $M_{\rm u}$ | cs      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|--------------|------------|----------|-------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 1.00, 0.500. | 0.000000.0 | 00565    | 0.00  | 0.00        | 1000.00 | 173.53   |           |           |
| 2   | 0.21 | 1.00, 0.500. | 0010050.0  | 00565    | 0.00  | -172.73     | 71.49   | 173.53   |           |           |
| 3   | 0.42 | 1.00, 0.500. | 0010050.0  | 00565    | 0.00  | -172.73     | 17.87   | 173.53   |           |           |
| 4   | 0.63 | 1.00, 0.500. | 0010050.0  | 00565    | 0.00  | -172.73     | 7.95    | 173.53   |           |           |
| 5   | 0.84 | 1.00, 0.500. | 0010050.0  | 00565    | 0.00  | -172.73     | 4.63    | 173.53   |           |           |
| 6   | 1.05 | 1.00, 0.500. | 0010050.0  | 00565    | 0.00  | -172.73     | 3.14    | 173.53   |           |           |
| 7   | 1.26 | 1.00, 0.500. | 0010050.0  | 00565    | 0.00  | -172.73     | 2.34    | 173.53   |           |           |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 22 di 99

| opo.o a                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                            |                                                                                            |                |         |                                                                                                                                   |                                                            | 0                      |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------|---------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------|-------|
| Cavalcavia Sv.                                                                                                                                                             | Rlese CA.3F.01 – Relazio                                                                                                                                                                                                                                                                                                                                   | ne di calcolo                                                                              | muri in        | attacco | alla spalla                                                                                                                       | SP1                                                        |                        |       |
| 8 1.47                                                                                                                                                                     | 1.00, 0.500.0010050.                                                                                                                                                                                                                                                                                                                                       | 000565                                                                                     | 0.00           | -172.73 | 3 1.8                                                                                                                             | 6 173.53                                                   | 3                      |       |
| 9 1.68                                                                                                                                                                     | 1.00, 0.500.0010050.                                                                                                                                                                                                                                                                                                                                       |                                                                                            |                | -172.73 |                                                                                                                                   |                                                            |                        |       |
| 10 1.89                                                                                                                                                                    | 1.00, 0.500.0010050.                                                                                                                                                                                                                                                                                                                                       |                                                                                            |                | -172.73 |                                                                                                                                   |                                                            |                        |       |
| 11 2.10                                                                                                                                                                    | 1.00, 0.500.0010050.                                                                                                                                                                                                                                                                                                                                       | 000565                                                                                     | 0.00           | -172.73 | 3 1.2                                                                                                                             | 2 173.53                                                   | 3                      |       |
| COMBINAZIO                                                                                                                                                                 | ONE n° 7                                                                                                                                                                                                                                                                                                                                                   |                                                                                            |                |         |                                                                                                                                   |                                                            |                        |       |
| Componente<br>Punto d'applio<br>Inclinaz. della                                                                                                                            | pinta statica<br>orizzontale della spinta s<br>verticale della spinta sta<br>cazione della spinta<br>spinta rispetto alla norn<br>nea di rottura in condizio                                                                                                                                                                                               | itica<br>nale alla sup                                                                     | erficie        | ,       | 87.0296<br>81.9844<br>29.2014<br>X = 2.10<br>19.61<br>56.17                                                                       | [kN]<br>[kN]                                               | Y = -1.99              | ) [m] |
| Baricentro ter<br>Numero contr<br>Peso del sing                                                                                                                            | olo contrafforte<br>trafforte riferito ad un me                                                                                                                                                                                                                                                                                                            | ondazione a                                                                                |                | Ð       | 129.3240<br>X = 1.05<br>8<br>4.0500<br>3.3750<br>X = 0.15                                                                         | [m]<br>[kN]<br>[kN]                                        | Y = -1.50<br>Y = -1.50 |       |
| Risultanti cari<br>Componente                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                            |                                                                                            |                |         | 23.49                                                                                                                             | [kN]                                                       |                        |       |
| Risultante dei<br>Resistenza pa<br>Momento riba<br>Momento stal<br>Sforzo norma<br>Sforzo tanger<br>Eccentricità ri<br>Lunghezza fo<br>Risultante in fi<br>Inclinazione di | i carichi applicati in dir. o<br>i carichi applicati in dir. v<br>assiva a valle del muro<br>altante rispetto allo spigo<br>pilizzante rispetto allo sp<br>le sul piano di posa della<br>aziale sul piano di posa della<br>espetto al baricentro della<br>indazione reagente<br>fondazione<br>lella risultante (rispetto a<br>petto al baricentro della fo | rerticale  lo a valle  igolo a valle a fondazione della fondazi a fondazione alla normale) | e<br>ione<br>e |         | 105.474-<br>204.425-<br>-19.1568<br>232.196-<br>340.828-<br>204.425-<br>105.474-<br>0.82<br>1.59<br>230.031-<br>27.29<br>167.342- | 4 [kN] 3 [kN] 4 [kNm] 5 [kNm] 4 [kN] 4 [kN] [m] [m] 7 [kN] |                        |       |
| COEFFICIEN                                                                                                                                                                 | TI DI SICUREZZA                                                                                                                                                                                                                                                                                                                                            |                                                                                            |                |         |                                                                                                                                   |                                                            |                        |       |

#### COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 1.47

#### Stabilità globale muro + terreno

#### Combinazione n° 8

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [MPa]

b larghezza della striscia espressa in [m]

pressione neutra lungo la base della striscia espressa in [MPa]

Metodo di Bishop

Numero di cerchi analizzati 36 Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= 0.00 Y[m]= 0.93

Raggio del cerchio R[m]= 4.90

Ascissa a valle del cerchio Xi[m]= -3.61

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 23 di 99

Ascissa a monte del cerchio Xs[m]= 4.82

Larghezza della striscia dx[m]= 0.34 Coefficiente di sicurezza C= 1.87

Le strisce sono numerate da monte verso valle

#### Caratteristiche delle strisce

| Striscia | w       | α(°)   | Wsinα   | b/cosα | ф     | С     | u     |
|----------|---------|--------|---------|--------|-------|-------|-------|
| 1        | 1290.03 | 72.ÌŚ  | 1228.13 | 1.10   | 30.17 | 0.000 | 0.000 |
| 2        | 2326.71 | 61.99  | 2054.21 | 0.72   | 30.17 | 0.000 | 0.000 |
| 3        | 2668.71 | 54.40  | 2170.06 | 0.58   | 30.17 | 0.000 | 0.000 |
| 4        | 2930.67 | 48.07  | 2180.22 | 0.50   | 30.17 | 0.000 | 0.000 |
| 5        | 3142.30 | 42.45  | 2120.73 | 0.46   | 30.17 | 0.000 | 0.000 |
| 6        | 3317.24 | 37.30  | 2010.08 | 0.42   | 30.17 | 0.000 | 0.000 |
| 7        | 3463.17 | 32.48  | 1859.89 | 0.40   | 30.17 | 0.000 | 0.000 |
| 8        | 3584.90 | 27.92  | 1678.36 | 0.38   | 30.17 | 0.000 | 0.000 |
| 9        | 3800.80 | 23.54  | 1517.73 | 0.37   | 33.57 | 0.000 | 0.000 |
| 10       | 3682.24 | 19.30  | 1216.89 | 0.36   | 33.87 | 0.000 | 0.000 |
| 11       | 2489.39 | 15.17  | 651.33  | 0.35   | 33.87 | 0.000 | 0.000 |
| 12       | 2542.97 | 11.12  | 490.31  | 0.34   | 33.87 | 0.000 | 0.000 |
| 13       | 2579.81 | 7.12   | 319.86  | 0.34   | 33.87 | 0.000 | 0.000 |
| 14       | 2600.47 | 3.16   | 143.45  | 0.34   | 33.87 | 0.000 | 0.000 |
| 15       | 2211.47 | -0.78  | -30.21  | 0.34   | 33.87 | 0.000 | 0.000 |
| 16       | 1102.63 | -4.73  | -90.95  | 0.34   | 33.87 | 0.000 | 0.000 |
| 17       | 973.93  | -8.70  | -147.36 | 0.34   | 33.87 | 0.000 | 0.000 |
| 18       | 921.05  | -12.72 | -202.75 | 0.35   | 33.87 | 0.000 | 0.000 |
| 19       | 859.88  | -16.80 | -248.48 | 0.35   | 33.87 | 0.000 | 0.000 |
| 20       | 780.45  | -20.97 | -279.25 | 0.36   | 33.87 | 0.000 | 0.000 |
| 21       | 682.67  | -25.26 | -291.26 | 0.37   | 32.04 | 0.000 | 0.000 |
| 22       | 572.51  | -29.70 | -283.69 | 0.39   | 30.17 | 0.000 | 0.000 |
| 23       | 441.63  | -34.36 | -249.25 | 0.41   | 30.17 | 0.000 | 0.000 |
| 24       | 284.88  | -39.29 | -180.42 | 0.44   | 30.17 | 0.000 | 0.000 |
| 25       | 96.53   | -44.61 | -67.79  | 0.47   | 30.17 | 0.000 | 0.000 |

 $\Sigma W_i = 483.9368 [kN]$ 

 $\Sigma W_i \sin \alpha_i = 172.3042 [kN]$ 

 $\Sigma W_{i} \tan \phi_{i} = 302.9705 [kN]$ 

 $\Sigma tan\alpha_i tan\phi_i = 4.12$ 

#### COMBINAZIONE n° 9

#### Peso muro favorevole e Peso terrapieno favorevole

| Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche | 65.9124<br>60.2139<br>26.8090<br>X = 2.10<br>24.00<br>59.53 | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°]<br>[°] | Y = -2.05              | [m] |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|------------------------|-----|
| Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro Baricentro contrafforte                                | 134.2608<br>X = 1.05<br>8<br>4.5000<br>3.7500<br>X = 0.15   | [kN]<br>[m]<br>[kN]<br>[kN]<br>[m]        | Y = -1.50<br>Y = -1.50 | [m] |
| <u>Risultanti carichi esterni</u><br>Componente dir. X                                                                                                                                                                                                                | 20.21                                                       | [kN]                                      |                        |     |

#### <u>Risultanti</u>

#### PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 24 di 99

| Risultante dei carichi applicati in dir. orizzontale  | 80.4219   | [kN]  |
|-------------------------------------------------------|-----------|-------|
| Risultante dei carichi applicati in dir. verticale    | 212.0698  | [kN]  |
| Resistenza passiva a valle del muro                   | -27.8234  | [kN]  |
| Sforzo normale sul piano di posa della fondazione     | 212.0698  | [kN]  |
| Sforzo tangenziale sul piano di posa della fondazione | 80.4219   | [kN]  |
| Eccentricità rispetto al baricentro della fondazione  | 0.57      | [m]   |
| Lunghezza fondazione reagente                         | 2.33      | [m]   |
| Risultante in fondazione                              | 226.8067  | [kN]  |
| Inclinazione della risultante (rispetto alla normale) | 20.77     | [°]   |
| Momento rispetto al baricentro della fondazione       | 121.2775  | [kNm] |
| Carico ultimo della fondazione                        | 2141.3547 | [kN]  |

#### Tensioni sul terreno

| Lunghezza fondazione reagente          | 2.33    | [m]   |
|----------------------------------------|---------|-------|
| Tensione terreno allo spigolo di valle | 0.18169 | [MPa] |
| Tensione terreno allo spigolo di monte | 0.00000 | [MPa] |

#### Fattori per il calcolo della capacità portante

| Coeff. capacità portante        | $N_c = 75.31$ | $N_{\rm g} = 64.20$ | $N_{y} = 109.41$        |
|---------------------------------|---------------|---------------------|-------------------------|
| Fattori forma                   | $s_c = 1.00$  | $s_{q} = 1.00$      | $s_v = 1.00$            |
| Fattori inclinazione            | $i_c = 0.42$  | $i_{q} = 0.43$      | $i_{v} = 0.27$          |
| Fattori profondità              | $d_c = 1.16$  | $d_{a} = 1.09$      | $d_{v}^{'} = 1.00$      |
| Fattori inclinazione piano posa | $b_c = 1.00$  | $b_{q} = 1.00$      | $b_{v}^{'} = 1.00$      |
| Fattori inclinazione pendio     | $g_c = 1.00$  | $g_{q} = 1.00$      | $g_{\gamma}^{'} = 1.00$ |

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 59.46$$
  $N'_{q} = 47.73$   $N'_{y} = 60.45$ 

#### **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a scorrimento 2.56 10.10 Coefficiente di sicurezza a carico ultimo

#### Sollecitazioni fondazione di valle

 $\underline{\text{Combinazione } n^\circ \ 9}\\ \text{L'ascissa X(espressa in m) \`e considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di$ 

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | Χ    | M       | Т       |
|-----|------|---------|---------|
| 1   | 0.00 | 0.0000  | 0.0000  |
| 2   | 0.05 | 0.1904  | 7.5824  |
| 3   | 0.10 | 0.7550  | 14.9701 |
| 4   | 0.15 | 1.6841  | 22.1633 |
| 5   | 0.20 | 2.9681  | 29.1619 |
| 6   | 0.25 | 4.5971  | 35.9660 |
| 7   | 0.30 | 6.5614  | 42.5754 |
| 8   | 0.35 | 8.8514  | 48.9903 |
| 9   | 0.40 | 11.4572 | 55.2105 |
| 10  | 0.45 | 14.3692 | 61.2362 |
| 11  | 0.50 | 17.5776 | 67.0673 |

#### Sollecitazioni fondazione di monte

#### Combinazione n° 9

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

T PV D SR AP CA 3 F 001- 001 0 004 R A 0

SIS Scpa 25 di 99

| 1  | 0.00 | 0.0000    | 0.0000   |
|----|------|-----------|----------|
| 2  | 0.21 | -2.6894   | -25.6133 |
| 3  | 0.42 | -10.7555  | -51.1115 |
| 4  | 0.63 | -23.9472  | -72.9418 |
| 5  | 0.84 | -40.5146  | -84.2713 |
| 6  | 1.05 | -59.1009  | -92.1684 |
| 7  | 1.26 | -78.9851  | -96.6330 |
| 8  | 1.47 | -99.4465  | -97.6652 |
| 9  | 1.68 | -119.7642 | -95.2649 |
| 10 | 1.89 | -139.2174 | -89.4321 |
| 11 | 2.10 | -157.0854 | -80.1668 |

#### Armature e tensioni nei materiali della fondazione

#### Combinazione n° 9

Simbologia adottata

B base della sezione espressa in [m]
H altezza della sezione espressa in [m]

 $A_{\rm f}$  area di armatura in corrispondenza del lembo inferiore in [mq]  $A_{\rm fs}$  area di armatura in corrispondenza del lembo superiore in [mq]

N<sub>u</sub> sforzo normale ultimo espresso in [kN] momento ultimo espresso in [kNm] CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

#### Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | Υ    | B, H          | $A_{fs}$ | $A_{fi}$ | $N_{u}$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------------|----------|----------|---------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 1.00, 0.500.0 | 0.000000 | 00565    | 0.00    | 0.00        | 1000.00 | 173.53   |           |           |
| 2   | 0.05 | 1.00, 0.500.0 | 0.000000 | 00565    | 0.00    | 98.61       | 517.99  | 173.53   |           |           |
| 3   | 0.10 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00    | 98.55       | 130.54  | 173.53   |           |           |
| 4   | 0.15 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00    | 98.55       | 58.52   | 173.53   |           |           |
| 5   | 0.20 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00    | 98.55       | 33.20   | 173.53   |           |           |
| 6   | 0.25 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00    | 98.55       | 21.44   | 173.53   |           |           |
| 7   | 0.30 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00    | 98.55       | 15.02   | 173.53   |           |           |
| 8   | 0.35 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00    | 98.55       | 11.13   | 173.53   |           |           |
| 9   | 0.40 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00    | 98.55       | 8.60    | 173.53   |           |           |
| 10  | 0.45 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00    | 98.55       | 6.86    | 173.53   |           |           |
| 11  | 0.50 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00    | 98.55       | 5.61    | 173.53   |           |           |

#### Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | Υ    | B, H          | $A_{fs}$   | $A_{fi}$ | $N_u$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------------|------------|----------|-------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 1.00, 0.500.0 | 0.000000.0 | 000565   | 0.00  | 0.00        | 1000.00 | 173.53   |           |           |
| 2   | 0.21 | 1.00, 0.500.0 | 0010050.0  | 000565   | 0.00  | -172.73     | 64.23   | 173.53   |           |           |
| 3   | 0.42 | 1.00, 0.500.0 | 0010050.0  | 000565   | 0.00  | -172.73     | 16.06   | 173.53   |           |           |
| 4   | 0.63 | 1.00, 0.500.0 | 0010050.0  | 000565   | 0.00  | -172.73     | 7.21    | 173.53   |           |           |
| 5   | 0.84 | 1.00, 0.500.0 | 0010050.0  | 000565   | 0.00  | -172.73     | 4.26    | 173.53   |           |           |
| 6   | 1.05 | 1.00, 0.500.0 | 0010050.0  | 000565   | 0.00  | -172.73     | 2.92    | 173.53   |           |           |
| 7   | 1.26 | 1.00, 0.500.0 | 0010050.0  | 000565   | 0.00  | -172.73     | 2.19    | 173.53   |           |           |
| 8   | 1.47 | 1.00, 0.500.0 | 0010050.0  | 000565   | 0.00  | -172.73     | 1.74    | 173.53   |           |           |
| 9   | 1.68 | 1.00, 0.500.0 | 0010050.0  | 000565   | 0.00  | -172.73     | 1.44    | 173.53   |           |           |
| 10  | 1.89 | 1.00, 0.500.0 | 0010050.0  | 000565   | 0.00  | -172.73     | 1.24    | 173.53   |           |           |
| 11  | 2.10 | 1.00, 0.500.0 | 0010050.0  | 000565   | 0.00  | -172.73     | 1.10    | 173.53   |           |           |

#### COMBINAZIONE n° 10

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 26 di 99

| Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche | 67.2563<br>63.3573<br>22.5668<br>X = 2.10<br>19.61<br>56.17 | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°] | Y = -2.03 | [m] |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------|-----------|-----|
| Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro                                                        | 130.8154<br>X = 1.05<br>8<br>4.5000<br>3.7500               | [kN]<br>[m]<br>[kN]<br>[kN]        | Y = -1.50 | [m] |
| Baricentro contrafforte                                                                                                                                                                                                                                               | X = 0.15                                                    | [m]                                | Y = -1.50 | [m] |
| Risultanti carichi esterni                                                                                                                                                                                                                                            |                                                             |                                    |           |     |
| Componente dir. X                                                                                                                                                                                                                                                     | 17.51                                                       | [kN]                               |           |     |
| <u>Risultanti</u>                                                                                                                                                                                                                                                     |                                                             |                                    |           |     |
| Risultante dei carichi applicati in dir. orizzontale                                                                                                                                                                                                                  | 80.8709                                                     | [kN]                               |           |     |
| Risultante dei carichi applicati in dir. verticale                                                                                                                                                                                                                    | 204.3821                                                    | [kN]                               |           |     |

| Risultante dei carichi applicati in dir. orizzontale  | 80.8709  | [kN]  |
|-------------------------------------------------------|----------|-------|
| Risultante dei carichi applicati in dir. verticale    | 204.3821 | [kN]  |
| Resistenza passiva a valle del muro                   | -21.2853 | [kN]  |
| Sforzo normale sul piano di posa della fondazione     | 204.3821 | [kN]  |
| Sforzo tangenziale sul piano di posa della fondazione | 80.8709  | [kN]  |
| Eccentricità rispetto al baricentro della fondazione  | 0.59     | [m]   |
| Lunghezza fondazione reagente                         | 2.28     | [m]   |
| Risultante in fondazione                              | 219.8003 | [kN]  |
| Inclinazione della risultante (rispetto alla normale) | 21.59    | [°]   |
| Momento rispetto al baricentro della fondazione       | 120.8399 | [kNm] |
| Carico ultimo della fondazione                        | 799.9301 | [kN]  |
|                                                       |          |       |

#### Tensioni sul terreno

| Lunghezza fondazione reagente          | 2.28    | [m]   |
|----------------------------------------|---------|-------|
| Tensione terreno allo spigolo di valle | 0.17958 | [MPa] |
| Tensione terreno allo spigolo di monte | 0.00000 | [MPa] |

#### Fattori per il calcolo della capacità portante

| Coeff. capacità portante        | $N_c = 75.31$ | $N_q = 64.20$  | $N_{y} = 109.41$    |
|---------------------------------|---------------|----------------|---------------------|
| Fattori forma                   | $s_c = 1.00$  | $s_{q} = 1.00$ | $s_{y} = 1.00$      |
| Fattori inclinazione            | $i_c = 0.39$  | $i_q = 0.41$   | $i_{\gamma} = 0.25$ |
| Fattori profondità              | $d_c = 1.16$  | $d_{q} = 1.11$ | $d_{\gamma} = 1.00$ |
| Fattori inclinazione piano posa | $b_c = 1.00$  | $b_{q} = 1.00$ | $b_{\gamma} = 1.00$ |
| Fattori inclinazione pendio     | $g_c = 1.00$  | $g_{q} = 1.00$ | $g_{\gamma} = 1.00$ |

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

| $N'_{c} = 59.46$ | $N'_{a} = 47.73$ | $N'_{y} = 60.45$ |
|------------------|------------------|------------------|
| 14 C - 00.40     | 14 a - +1.10     | 14 y = 00.40     |

#### **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a scorrimento 1.96 Coefficiente di sicurezza a carico ultimo 3.91

#### Sollecitazioni fondazione di valle

#### Combinazione n° 10

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M      | Т      |
|-----|------|--------|--------|
| 1   | 0.00 | 0.0000 | 0.0000 |
| 2   | 0.05 | 0.1922 | 7.6552 |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 27 di 99

| 3  | 0.10 | 0.7622  | 15.1132 |
|----|------|---------|---------|
| 4  | 0.15 | 1.7002  | 22.3740 |
| 5  | 0.20 | 2.9963  | 29.4375 |
| 6  | 0.25 | 4.6407  | 36.3038 |
| 7  | 0.30 | 6.6234  | 42.9729 |
| 8  | 0.35 | 8.9347  | 49.4448 |
| 9  | 0.40 | 11.5646 | 55.7194 |
| 10 | 0.45 | 14.5034 | 61.7968 |
| 11 | 0.50 | 17.7410 | 67.6770 |

#### Sollecitazioni fondazione di monte

#### Combinazione n° 10

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M         | Т        |
|-----|------|-----------|----------|
| 1   | 0.00 | 0.0000    | 0.0000   |
| 2   | 0.21 | -2.2056   | -21.0054 |
| 3   | 0.42 | -8.8223   | -42.0108 |
| 4   | 0.63 | -19.7196  | -60.3321 |
| 5   | 0.84 | -33.3751  | -69.1404 |
| 6   | 1.05 | -48.5150  | -74.4695 |
| 7   | 1.26 | -64.4088  | -76.3196 |
| 8   | 1.47 | -80.3257  | -74.6905 |
| 9   | 1.68 | -95.5353  | -69.5824 |
| 10  | 1.89 | -109.3068 | -60.9952 |
| 11  | 2.10 | -120.9097 | -48.9289 |

#### Armature e tensioni nei materiali della fondazione

#### Combinazione n° 10

Simbologia adottata

base della sezione espressa in [m] В

Н altezza della sezione espressa in [m]

area di armatura in corrispondenza del lembo inferiore in [mq]  $A_{fi}$ area di armatura in corrispondenza del lembo superiore in [mq]

 $A_{fs}$ 

 $N_u$ sforzo normale ultimo espresso in [kN]  $M_u$ momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

**VRsd** Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

#### Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | Υ    | B, H          | $A_{fs}$  | $A_{fi}$ | $N_{u}$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------------|-----------|----------|---------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 1.00, 0.500.0 | 0.00000.0 | 00565    | 0.00    | 0.00        | 1000.00 | 173.53   |           |           |
| 2   | 0.05 | 1.00, 0.500.0 | 0.00000.0 | 00565    | 0.00    | 98.61       | 513.05  | 173.53   |           |           |
| 3   | 0.10 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 129.30  | 173.53   |           |           |
| 4   | 0.15 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 57.97   | 173.53   |           |           |
| 5   | 0.20 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 32.89   | 173.53   |           |           |
| 6   | 0.25 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 21.24   | 173.53   |           |           |
| 7   | 0.30 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 14.88   | 173.53   |           |           |
| 8   | 0.35 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 11.03   | 173.53   |           |           |
| 9   | 0.40 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 8.52    | 173.53   |           |           |
| 10  | 0.45 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 6.80    | 173.53   |           |           |
| 11  | 0.50 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 5.56    | 173.53   |           |           |

#### Fondazione di monte

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 28 di 99

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mι                                     |                                                                                                                                   | $V_{Rd}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $V_{Rcd}$    | $V_{Rsd}$    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                                                                                                                   | 173.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -172.73                                | 8.76                                                                                                                              | 173.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |              |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                                                                                                                   | 173.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b></b>      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                                                                                                                   | 173.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |              |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                                                                                                                   | 173.53<br>173.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | 71.2425<br>25.3754                                                                                                                | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°]<br>[°]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Y = -2.03    | [m]          |
| Peso terrapieno gravante sulla fondazione a monte  Baricentro terrapieno gravante sulla fondazione a monte  X = 1.05  Numero contrafforti  8                                                                                                                                                                                                                                                                                                                                                    |                                        |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
| )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 3.3750                                                                                                                            | [kN]<br>[kN]<br>[m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y = -1.50    | [m]          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | 20.21                                                                                                                             | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |
| Resistenza passiva a valle del muro -19.1568  Momento ribaltante rispetto allo spigolo a valle 200.4341  Momento stabilizzante rispetto allo spigolo a valle 319.5863  Sforzo normale sul piano di posa della fondazione 193.9862  Sforzo tangenziale sul piano di posa della fondazione 91.4505  Eccentricità rispetto al baricentro della fondazione 0.74  Lunghezza fondazione reagente 1.84  Risultante in fondazione 214.4617  Inclinazione della risultante (rispetto alla normale) 25.24 |                                        |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 | 0.00 -172.73 0.00 -172.73 0.00 -172.73 0.00 -172.73 0.00 -172.73 0.00 -172.73 0.00 -172.73 0.00 -172.73 0.00 -172.73 0.00 -172.73 | 75.6267 71.2425 25.3754 X = 2.10 perficie a monte  122.7108 a mont | 0.00 -172.73 | 0.00 -172.73 |

#### COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento

1.59

#### Stabilità globale muro + terreno

#### Combinazione n° 12

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra) peso della striscia espresso in [kN] W

angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)  $\alpha$ 

angolo d'attrito del terreno lungo la base della striscia

coesione del terreno lungo la base della striscia espressa in [MPa]

#### PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 29 di 99

b larghezza della striscia espressa in [m]

*u* pressione neutra lungo la base della striscia espressa in [MPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= 0.00 Y[m]= 0.93

Raggio del cerchio R[m]= 4.90

Ascissa a valle del cerchio Xi[m]= -3.61 Ascissa a monte del cerchio Xs[m]= 4.82

Larghezza della striscia dx[m]= 0.34 Coefficiente di sicurezza C= 1.98

Le strisce sono numerate da monte verso valle

#### Caratteristiche delle strisce

| Striscia | W       | α(°)   | Wsin $\alpha$ | b/cosα | ф     | С     | u     |
|----------|---------|--------|---------------|--------|-------|-------|-------|
| 1        | 1087.66 | 72.18  | 1035.47       | 1.10   | 30.17 | 0.000 | 0.000 |
| 2        | 1998.25 | 61.99  | 1764.21       | 0.72   | 30.17 | 0.000 | 0.000 |
| 3        | 2340.24 | 54.40  | 1902.96       | 0.58   | 30.17 | 0.000 | 0.000 |
| 4        | 2602.21 | 48.07  | 1935.87       | 0.50   | 30.17 | 0.000 | 0.000 |
| 5        | 2813.83 | 42.45  | 1899.05       | 0.46   | 30.17 | 0.000 | 0.000 |
| 6        | 2988.77 | 37.30  | 1811.05       | 0.42   | 30.17 | 0.000 | 0.000 |
| 7        | 3134.70 | 32.48  | 1683.49       | 0.40   | 30.17 | 0.000 | 0.000 |
| 8        | 3256.43 | 27.92  | 1524.58       | 0.38   | 30.17 | 0.000 | 0.000 |
| 9        | 3472.33 | 23.54  | 1386.57       | 0.37   | 33.57 | 0.000 | 0.000 |
| 10       | 3401.96 | 19.30  | 1124.27       | 0.36   | 33.87 | 0.000 | 0.000 |
| 11       | 2489.39 | 15.17  | 651.33        | 0.35   | 33.87 | 0.000 | 0.000 |
| 12       | 2542.97 | 11.12  | 490.31        | 0.34   | 33.87 | 0.000 | 0.000 |
| 13       | 2579.81 | 7.12   | 319.86        | 0.34   | 33.87 | 0.000 | 0.000 |
| 14       | 2600.47 | 3.16   | 143.45        | 0.34   | 33.87 | 0.000 | 0.000 |
| 15       | 2211.47 | -0.78  | -30.21        | 0.34   | 33.87 | 0.000 | 0.000 |
| 16       | 1102.63 | -4.73  | -90.95        | 0.34   | 33.87 | 0.000 | 0.000 |
| 17       | 973.93  | -8.70  | -147.36       | 0.34   | 33.87 | 0.000 | 0.000 |
| 18       | 921.05  | -12.72 | -202.75       | 0.35   | 33.87 | 0.000 | 0.000 |
| 19       | 859.88  | -16.80 | -248.48       | 0.35   | 33.87 | 0.000 | 0.000 |
| 20       | 780.45  | -20.97 | -279.25       | 0.36   | 33.87 | 0.000 | 0.000 |
| 21       | 682.67  | -25.26 | -291.26       | 0.37   | 32.04 | 0.000 | 0.000 |
| 22       | 572.51  | -29.70 | -283.69       | 0.39   | 30.17 | 0.000 | 0.000 |
| 23       | 441.63  | -34.36 | -249.25       | 0.41   | 30.17 | 0.000 | 0.000 |
| 24       | 284.88  | -39.29 | -180.42       | 0.44   | 30.17 | 0.000 | 0.000 |
| 25       | 96.53   | -44.61 | -67.79        | 0.47   | 30.17 | 0.000 | 0.000 |

 $\Sigma W_i = 453.4339 [kN]$ 

 $\Sigma$ W<sub>i</sub>sin $\alpha$ <sub>i</sub>= 152.9967 [kN]

 $\Sigma W_i tan \phi_i$ = 284.7281 [kN]

 $\Sigma \tan \alpha_i \tan \phi_i = 4.12$ 

#### COMBINAZIONE n° 13

| Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche | 29.1635<br>26.6422<br>11.8619<br>X = 2.10<br>24.00<br>59.53 | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°]<br>[°] | Y = -2.27 | [m] |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|-----------|-----|
| Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta PV D SR AP CA 3 F 001- 001 0 004 R A 0                                                                                                                                         | 6.8149<br>X = 2.10                                          | [kN]<br>[m]                               | Y = -2.27 | [m] |

SIS Scpa 30 di 99

31 di 99

| Odvalcavia GV. Triese GA.St .GT - Trelazione di calcolo man in alla                                                                 | cco ana spana oi           | ,           |              |            |    |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------|--------------|------------|----|
| Inclinazione linea di rottura in condizioni sismiche                                                                                | 53.72                      | [°]         |              |            |    |
| Peso terrapieno gravante sulla fondazione a monte<br>Baricentro terrapieno gravante sulla fondazione a monte<br>Numero contrafforti | 113.1000<br>X = 1.05<br>8  | [kN]<br>[m] | Y = -1.50    | [m]        |    |
| Peso del singolo contrafforte                                                                                                       | 4.5000                     | [kN]        |              |            |    |
| Peso del contrafforte riferito ad un metro di muro                                                                                  | 3.7500                     | [kN]        |              |            |    |
| Baricentro contrafforte                                                                                                             | X = 0.15                   | [m]         | Y = -1.50    | [m]        |    |
| Inerzia del muro                                                                                                                    | 4.5375                     | [kN]        |              |            |    |
| Inerzia verticale del muro                                                                                                          | -2.2687                    | [kN]        |              |            |    |
| Inerzia del terrapieno fondazione di monte                                                                                          | 12.4410                    | [kN]        |              |            |    |
| Inerzia verticale del terrapieno fondazione di monte                                                                                | -6.2205                    | [kN]        |              |            |    |
| Inerzia del singolo contrafforte                                                                                                    | 0.4950                     | [kN]        |              |            |    |
| Inerzia del contrafforte riferita ad un metro di muro                                                                               | 0.4125                     | [kN]        |              |            |    |
| Inerzia verticale del singolo contrafforte                                                                                          | -0.2475                    | [kN]        |              |            |    |
| Inerzia verticale del contrafforte riferita ad un metro di muro                                                                     | -0.2062                    | [kN]        |              |            |    |
| Risultanti                                                                                                                          |                            |             |              |            |    |
| Risultante dei carichi applicati in dir. orizzontale                                                                                | 50.9188                    | [kN]        |              |            |    |
| Risultante dei carichi applicati in dir. verticale                                                                                  | 170.0382                   | [kN]        |              |            |    |
| Resistenza passiva a valle del muro                                                                                                 | -27.8234                   | [kN]        |              |            |    |
| Sforzo normale sul piano di posa della fondazione                                                                                   | 170.0382                   | [kN]        |              |            |    |
| Sforzo tangenziale sul piano di posa della fondazione                                                                               | 50.9188                    | [kN]        |              |            |    |
| Eccentricità rispetto al baricentro della fondazione                                                                                | 0.19                       | [m]         |              |            |    |
| Lunghezza fondazione reagente                                                                                                       | 2.70                       | [m]         |              |            |    |
| Risultante in fondazione                                                                                                            | 177.4985                   | [kN]        |              |            |    |
| Inclinazione della risultante (rispetto alla normale)                                                                               | 16.67                      | [°]         |              |            |    |
| Momento rispetto al baricentro della fondazione                                                                                     | 31.9215                    | [kNm]       |              |            |    |
| Carico ultimo della fondazione                                                                                                      | 4257.3131                  | [kN]        |              |            |    |
| Tensioni sul terreno                                                                                                                |                            |             |              |            |    |
| Lunghezza fondazione reagente                                                                                                       | 2.70                       | [m]         |              |            |    |
| Tensione terreno allo spigolo di valle                                                                                              | 0.08925                    | [MPa]       |              |            |    |
| Tensione terreno allo spigolo di monte                                                                                              | 0.03670                    | [MPa]       |              |            |    |
| Fattori per il calcolo della capacità portante                                                                                      |                            |             |              |            |    |
| Coeff. capacità portante $N_c = 75.31$                                                                                              | $N_{q} = 64.2$             | Λ           | $N_{y} = 10$ | 0 /1       |    |
| Fattori forma $s_c = 1.00$                                                                                                          | $s_q = 04.2$               |             |              | 1.00       |    |
| Fattori inclinazione $i_c = 0.52$                                                                                                   | $s_q = 1.0$<br>$i_q = 0.5$ |             |              | 0.37       |    |
| -                                                                                                                                   |                            |             |              |            |    |
| Fattori profondità d <sub>c</sub> = 1.16                                                                                            | $d_q = 1.0$                |             |              | 1.00       |    |
| Fattori inclinazione piano posa b <sub>c</sub> = 1.00                                                                               | $b_q = 1.0$                |             |              | 1.00       |    |
| <b>Fattori inclinazione pendio</b> g <sub>c</sub> = 1.00<br>I coefficienti N' tengono conto dei fattori di forma, profondita        | $g_q = 1.0$                |             |              | 1.00       | ,  |
| inclinazione pendio.                                                                                                                | a, momazione d             | anco, m     | лпадопе ріа  | no ui posa | а, |

 $N'_{c} = 59.46$  $N'_{q} = 47.73$  $N'_{y} = 60.45$ 

#### **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a scorrimento 3.35 Coefficiente di sicurezza a carico ultimo 25.04

#### Sollecitazioni fondazione di valle

 $\frac{Combinazione \ n^\circ \ 13}{L'ascissa} \ X (espressa \ in \ m) \ \grave{e} \ considerata \ positiva \ verso \ monte \ con \ origine \ in \ corrispondenza \ dell'estremo \ libero \ della \ fondazione \ di$ 

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | Χ    | M      | Т      |
|-----|------|--------|--------|
| 1   | 0.00 | 0.0000 | 0.0000 |
| 2   | 0.05 | 0.0805 | 3.2132 |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa

| 3  | 0.10 | 0.3205 | 6.3777  |
|----|------|--------|---------|
| 4  | 0.15 | 0.7175 | 9.4936  |
| 5  | 0.20 | 1.2691 | 12.5608 |
| 6  | 0.25 | 1.9728 | 15.5793 |
| 7  | 0.30 | 2.8262 | 18.5492 |
| 8  | 0.35 | 3.8269 | 21.4705 |
| 9  | 0.40 | 4.9724 | 24.3431 |
| 10 | 0.45 | 6.2604 | 27.1670 |
| 11 | 0.50 | 7.6883 | 29.9423 |

#### Sollecitazioni fondazione di monte

#### Combinazione n° 13

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M        | Т        |
|-----|------|----------|----------|
| 1   | 0.00 | 0.0000   | 0.0000   |
| 2   | 0.21 | -0.7152  | -6.6680  |
| 3   | 0.42 | -2.7405  | -12.4777 |
| 4   | 0.63 | -5.8939  | -17.3092 |
| 5   | 0.84 | -9.8855  | -20.5624 |
| 6   | 1.05 | -14.4701 | -22.9574 |
| 7   | 1.26 | -19.4675 | -24.4942 |
| 8   | 1.47 | -24.6975 | -25.1727 |
| 9   | 1.68 | -29.9799 | -24.9929 |
| 10  | 1.89 | -35.1345 | -23.9549 |
| 11  | 2.10 | -39.9809 | -22.0587 |

#### Armature e tensioni nei materiali della fondazione

#### Combinazione n° 13

Simbologia adottata

base della sezione espressa in [m] В

Н altezza della sezione espressa in [m]

area di armatura in corrispondenza del lembo inferiore in [mq]  $A_{fi}$ 

area di armatura in corrispondenza del lembo superiore in [mq]  $A_{fs}$ 

 $N_u$ sforzo normale ultimo espresso in [kN]  $M_u$ momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

**VRsd** Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

#### Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | Υ    | B, H          | $A_{fs}$  | $A_{fi}$ | $N_u$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------------|-----------|----------|-------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 1.00, 0.500.0 | 0.00000.0 | 00565    | 0.00  | 0.00        | 1000.00 | 173.53   |           |           |
| 2   | 0.05 | 1.00, 0.500.0 | 0.00000.0 | 00565    | 0.00  | 98.61       | 1224.47 | 173.53   |           |           |
| 3   | 0.10 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00  | 98.55       | 307.50  | 173.53   |           |           |
| 4   | 0.15 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00  | 98.55       | 137.36  | 173.53   |           |           |
| 5   | 0.20 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00  | 98.55       | 77.66   | 173.53   |           |           |
| 6   | 0.25 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00  | 98.55       | 49.96   | 173.53   |           |           |
| 7   | 0.30 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00  | 98.55       | 34.87   | 173.53   |           |           |
| 8   | 0.35 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00  | 98.55       | 25.75   | 173.53   |           |           |
| 9   | 0.40 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00  | 98.55       | 19.82   | 173.53   |           |           |
| 10  | 0.45 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00  | 98.55       | 15.74   | 173.53   |           |           |
| 11  | 0.50 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00  | 98.55       | 12.82   | 173.53   |           |           |

#### Fondazione di monte

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 32 di 99

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. 1 2 3 4 5 6 7 8 9 10 11                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y 0.00 0.21 0.42 0.63 0.84 1.05 1.26 1.47 1.68 1.89 2.10 | B, H 1.00, 0.500.00 1.00, 0.500.00 1.00, 0.500.00 1.00, 0.500.00 1.00, 0.500.00 1.00, 0.500.00 1.00, 0.500.00 1.00, 0.500.00 1.00, 0.500.00 1.00, 0.500.00 1.00, 0.500.00                                              | 010050.00<br>010050.00<br>010050.00<br>010050.00<br>010050.00<br>010050.00<br>010050.00                 | 0565<br>0565<br>0565<br>0565<br>0565<br>0565<br>0565<br>0565 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.0<br>-172.7<br>-172.7<br>-172.7<br>-172.7<br>-172.7<br>-172.7<br>-172.7<br>-172.7<br>-172.7 | 0 1 3 3 3 3 3 3 3 3 3 3 3 3                           | CS<br>000.00<br>241.53<br>63.03<br>29.31<br>17.47<br>11.94<br>8.87<br>6.99<br>5.76<br>4.92<br>4.32 | V <sub>Rd</sub> 173.53 173.53 173.53 173.53 173.53 173.53 173.53 173.53 173.53 173.53 | V <sub>Rcd</sub> | V <sub>Rsd</sub> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------|------------------|
| COMBI                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NAZIOI                                                   | NE n° 14                                                                                                                                                                                                               |                                                                                                         |                                                              |                                                      |                                                                                               |                                                       |                                                                                                    |                                                                                       |                  |                  |
| Compor<br>Compor<br>Punto d<br>Inclinaz                                                                                                                                                                                                                                                                                                                                                                                                                             | nente o<br>nente v<br>'applica<br>. della s              | inta statica<br>rizzontale della<br>erticale della sp<br>azione della spi<br>spinta rispetto a<br>ea di rottura in                                                                                                     | ointa static<br>nta<br>Illa norma                                                                       | a<br>le alla sup                                             | perficie                                             | ı                                                                                             | 26<br>11<br>X :<br>24                                 | .1635<br>.6422<br>.8619<br>= 2.10<br>.00                                                           | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°]                                                    | Y = -2.27        | [m]              |
| Punto d'applicazione dell'incremento sismico di spinta $X = 2.10$ [r                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                                                                                                                                                                                        |                                                                                                         |                                                              |                                                      |                                                                                               | [kN]<br>[m]<br>[°]                                    | Y = -2.27                                                                                          | [m]                                                                                   |                  |                  |
| Baricen<br>Numero                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tro terra<br>contra                                      |                                                                                                                                                                                                                        |                                                                                                         |                                                              |                                                      | e                                                                                             | X :                                                   | 3.1000<br>= 1.05                                                                                   | [kN]<br>[m]                                                                           | Y = -1.50        | [m]              |
| Peso del singolo contrafforte  Peso del contrafforte riferito ad un metro di muro  Baricentro contrafforte  X = 0.15 Inerzia del muro  Inerzia verticale del muro  Inerzia del terrapieno fondazione di monte  Inerzia verticale del terrapieno fondazione di monte  Inerzia del singolo contrafforte  Inerzia del contrafforte riferita ad un metro di muro  Inerzia verticale del singolo contrafforte  O.4950 Inerzia verticale del singolo contrafforte  O.2475 |                                                          |                                                                                                                                                                                                                        |                                                                                                         |                                                              |                                                      | 7500<br>= 0.15<br>5375<br>2687<br>.4410<br>2205<br>4950<br>4125                               | [kN] [kN] [m] [kN] [kN] [kN] [kN] [kN] [kN] [kN]      | Y = -1.50                                                                                          | [m]                                                                                   |                  |                  |
| Risultar<br>Resister<br>Sforzo r<br>Sforzo t<br>Eccentr<br>Lungher<br>Risultar<br>Inclinaz<br>Moment                                                                                                                                                                                                                                                                                                                                                                | nte dei dei dei dei dei dei dei dei dei de               | carichi applicati<br>carichi applicati<br>ssiva a valle de<br>e sul piano di po<br>ciale sul piano d<br>petto al baricen<br>dazione reager<br>ndazione<br>ella risultante (ri<br>tto al baricentro<br>lella fondazione | in dir. ver<br>I muro<br>osa della f<br>li posa del<br>tro della f<br>ote<br>spetto alla<br>o della fon | ticale<br>ondaziono<br>lla fondaz<br>ondaziono<br>n normale  | ione<br>e                                            |                                                                                               | 18<br>-27<br>18<br>53<br>0.1<br>2.7<br>19<br>15<br>30 |                                                                                                    | [kN] [kN] [kN] [kN] [m] [m] [m] [kN] [kN]                                             |                  |                  |
| Tension                                                                                                                                                                                                                                                                                                                                                                                                                                                             | zza fon<br>ie terrei                                     | rreno<br>dazione reager<br>no allo spigolo<br>no allo spigolo                                                                                                                                                          | di valle                                                                                                |                                                              |                                                      |                                                                                               |                                                       | 70<br>09530<br>04447                                                                               | [m]<br>[MPa]<br>[MPa]                                                                 |                  |                  |
| PV_D_S                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R_AP_0                                                   | CA_3_F_00100                                                                                                                                                                                                           | 01_0_004_I                                                                                              | R_A_0                                                        |                                                      |                                                                                               |                                                       |                                                                                                    |                                                                                       |                  |                  |

S/S Scpa 33 di 99

#### Fattori per il calcolo della capacità portante

| Coeff. capacità portante        | $N_c = 75.31$ | $N_{q} = 64.20$ | $N_y = 109.41$      |
|---------------------------------|---------------|-----------------|---------------------|
| Fattori forma                   | $s_c = 1.00$  | $s_{q} = 1.00$  | $s_{y} = 1.00$      |
| Fattori inclinazione            | $i_c = 0.54$  | $i_{q} = 0.55$  | $i_{\gamma} = 0.39$ |
| Fattori profondità              | $d_c = 1.16$  | $d_{q} = 1.09$  | $d_{y} = 1.00$      |
| Fattori inclinazione piano posa | $b_c = 1.00$  | $b_{q} = 1.00$  | $b_{y} = 1.00$      |
| Fattori inclinazione pendio     | $g_c = 1.00$  | $g_{q} = 1.00$  | $g_{\gamma} = 1.00$ |

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 59.46$   $N'_{q} = 47.73$   $N'_{y} = 60.45$ 

#### **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a scorrimento 3.46 Coefficiente di sicurezza a carico ultimo 24.19

#### Sollecitazioni fondazione di valle

#### Combinazione n° 14

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M      | Т       |
|-----|------|--------|---------|
| 1   | 0.00 | 0.0000 | 0.0000  |
| 2   | 0.05 | 0.0881 | 3.5164  |
| 3   | 0.10 | 0.3509 | 6.9857  |
| 4   | 0.15 | 0.7859 | 10.4079 |
| 5   | 0.20 | 1.3909 | 13.7831 |
| 6   | 0.25 | 2.1634 | 17.1112 |
| 7   | 0.30 | 3.1012 | 20.3922 |
| 8   | 0.35 | 4.2019 | 23.6262 |
| 9   | 0.40 | 5.4630 | 26.8131 |
| 10  | 0.45 | 6.8824 | 29.9530 |
| 11  | 0.50 | 8.4576 | 33.0458 |

#### Sollecitazioni fondazione di monte

#### Combinazione n° 14

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M        | T        |
|-----|------|----------|----------|
| 1   | 0.00 | 0.0000   | 0.0000   |
| 2   | 0.21 | -0.5449  | -5.0515  |
| 3   | 0.42 | -2.0635  | -9.2729  |
| 4   | 0.63 | -4.3796  | -12.5440 |
| 5   | 0.84 | -7.2091  | -14.2648 |
| 6   | 1.05 | -10.3127 | -15.1555 |
| 7   | 1.26 | -13.5163 | -15.2160 |
| 8   | 1.47 | -16.6453 | -14.4462 |
| 9   | 1.68 | -19.5256 | -12.8462 |
| 10  | 1.89 | -21.9826 | -10.4160 |
| 11  | 2.10 | -23.8422 | -7.1556  |

#### Armature e tensioni nei materiali della fondazione

#### Combinazione n° 14

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 34 di 99

#### Simbologia adottata

B base della sezione espressa in [m] H altezza della sezione espressa in [m]

 $\begin{array}{ll} A_{\text{fi}} & \text{area di armatura in corrispondenza del lembo inferiore in [mq]} \\ A_{\text{fs}} & \text{area di armatura in corrispondenza del lembo superiore in [mq]} \end{array}$ 

Nu sforzo normale ultimo espresso in [kN]
Mu momento ultimo espresso in [kNm]
CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

#### Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | Υ    | B, H          | $A_{fs}$  | $A_{fi}$ | $N_{u}$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------------|-----------|----------|---------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 1.00, 0.500.0 | 0.00000.0 | 00565    | 0.00    | 0.00        | 1000.00 | 173.53   |           |           |
| 2   | 0.05 | 1.00, 0.500.0 | 0.00000.0 | 00565    | 0.00    | 98.61       | 1119.21 | 173.53   |           |           |
| 3   | 0.10 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 280.90  | 173.53   |           |           |
| 4   | 0.15 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 125.41  | 173.53   |           |           |
| 5   | 0.20 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 70.86   | 173.53   |           |           |
| 6   | 0.25 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 45.56   | 173.53   |           |           |
| 7   | 0.30 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 31.78   | 173.53   |           |           |
| 8   | 0.35 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 23.46   | 173.53   |           |           |
| 9   | 0.40 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 18.04   | 173.53   |           |           |
| 10  | 0.45 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 14.32   | 173.53   |           |           |
| 11  | 0.50 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00    | 98.55       | 11.65   | 173.53   |           |           |

#### Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | Υ    | B, H          | $A_fs$   | $A_{fi}$ | $N_u$ | $\mathbf{M}_{u}$ | CS      | $V_Rd$ | $V_Rcd$ | $V_{Rsd}$ |
|-----|------|---------------|----------|----------|-------|------------------|---------|--------|---------|-----------|
| 1   | 0.00 | 1.00, 0.500.0 | 0.00000  | 00565    | 0.00  | 0.00             | 1000.00 | 173.53 |         |           |
| 2   | 0.21 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00  | -172.73          | 316.97  | 173.53 |         |           |
| 3   | 0.42 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00  | -172.73          | 83.71   | 173.53 |         |           |
| 4   | 0.63 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00  | -172.73          | 39.44   | 173.53 |         |           |
| 5   | 0.84 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00  | -172.73          | 23.96   | 173.53 |         |           |
| 6   | 1.05 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00  | -172.73          | 16.75   | 173.53 |         |           |
| 7   | 1.26 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00  | -172.73          | 12.78   | 173.53 |         |           |
| 8   | 1.47 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00  | -172.73          | 10.38   | 173.53 |         |           |
| 9   | 1.68 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00  | -172.73          | 8.85    | 173.53 |         |           |
| 10  | 1.89 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00  | -172.73          | 7.86    | 173.53 |         |           |
| 11  | 2.10 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.00  | -172.73          | 7.24    | 173.53 |         |           |
|     |      |               |          |          |       |                  |         |        |         |           |

#### COMBINAZIONE n° 15

| Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche | 36.7102<br>34.5820<br>12.3175<br>X = 2.10<br>19.61<br>56.17 | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°] | Y = -2.27 | [m] |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------|-----------|-----|
| Incremento sismico della spinta<br>Punto d'applicazione dell'incremento sismico di spinta<br>Inclinazione linea di rottura in condizioni sismiche                                                                                                                     | 11.3704<br>X = 2.10<br>50.48                                | [kN]<br>[m]<br>[°]                 | Y = -2.27 | [m] |
| Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro                                                        | 113.1000<br>X = 1.05<br>8<br>4.5000<br>3.7500               | [kN]<br>[m]<br>[kN]<br>[kN]        | Y = -1.50 | [m] |
| PV_D_SR_AP_CA_3_F_001001_0_004_R_A_0                                                                                                                                                                                                                                  |                                                             |                                    |           |     |

SIS Scpa 35 di 99

| Cavalcavia Sv | RIDSD CA 3F 01 _ | - Relazione di calcolo | muri in attacco | alla enalla CP1 |
|---------------|------------------|------------------------|-----------------|-----------------|
|               |                  |                        |                 |                 |

| Baricentro contrafforte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte Inerzia del singolo contrafforte Inerzia del contrafforte riferita ad un metro di muro Inerzia verticale del singolo contrafforte Inerzia verticale del contrafforte riferita ad un metro di muro                                                                                                                                           | X = 0.15<br>4.5375<br>2.2687<br>12.4410<br>6.2205<br>0.4950<br>0.4125<br>0.2475<br>0.2062                           | [m]<br>[kN]<br>[kN]<br>[kN]<br>[kN]<br>[kN]<br>[kN]         | Y = -1.50 | [m] |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------|-----|
| Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione | 63.3442<br>188.9282<br>-21.2853<br>188.9282<br>63.3442<br>0.22<br>2.70<br>199.2645<br>18.54<br>42.3957<br>1477.4809 | [kN]<br>[kN]<br>[kN]<br>[kN]<br>[m]<br>[m]<br>[kN]<br>[kNm] |           |     |
| Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte                                                                                                                                                                                                                                                                                                                                                                                | 2.70<br>0.10487<br>0.03508                                                                                          | [m]<br>[MPa]<br>[MPa]                                       |           |     |

## Fattori per il calcolo della capacità portante

| Coeff. capacità portante        | $N_c = 75.31$ | $N_{q} = 64.20$ | $N_y = 109.41$      |
|---------------------------------|---------------|-----------------|---------------------|
| Fattori forma                   | $s_c = 1.00$  | $s_q = 1.00$    | $s_{y} = 1.00$      |
| Fattori inclinazione            | $i_c = 0.46$  | $i_q = 0.48$    | $i_{\gamma} = 0.32$ |
| Fattori profondità              | $d_c = 1.16$  | $d_{q} = 1.11$  | $d_{y} = 1.00$      |
| Fattori inclinazione piano posa | $b_c = 1.00$  | $b_{q} = 1.00$  | $b_{y} = 1.00$      |
| Fattori inclinazione pendio     | $g_c = 1.00$  | $g_{q} = 1.00$  | $g_{\gamma} = 1.00$ |

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

| $N'_{c} = 59.46$ | $N'_{\alpha} = 47.73$ | $N'_{y} = 60.45$ |
|------------------|-----------------------|------------------|
| N c - 39.40      | $10^{\circ} - 41.13$  | 10.7 - 00.43     |

# **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a scorrimento 2.34
Coefficiente di sicurezza a carico ultimo 7.82

# Sollecitazioni fondazione di valle

# Combinazione n° 15

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M      | Т       |
|-----|------|--------|---------|
| 1   | 0.00 | 0.0000 | 0.0000  |
| 2   | 0.05 | 0.0999 | 3.9860  |
| 3   | 0.10 | 0.3975 | 7.9075  |
| 4   | 0.15 | 0.8896 | 11.7643 |
| 5   | 0.20 | 1.5729 | 15.5565 |
| 6   | 0.25 | 2.4442 | 19.2840 |
| 7   | 0.30 | 3.5002 | 22.9470 |
| 8   | 0.35 | 4.7378 | 26.5453 |
| 9   | 0.40 | 6.1537 | 30.0790 |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 36 di 99

| 10 | 0.45 | 7.7446 | 33.5481 |
|----|------|--------|---------|
| 11 | 0.50 | 9.5074 | 36.9526 |

#### Sollecitazioni fondazione di monte

#### Combinazione n° 15

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M        | T        |
|-----|------|----------|----------|
| 1   | 0.00 | 0.0000   | 0.0000   |
| 2   | 0.21 | -0.7411  | -6.8683  |
| 3   | 0.42 | -2.8049  | -12.5968 |
| 4   | 0.63 | -5.9502  | -17.0654 |
| 5   | 0.84 | -9.8278  | -19.6741 |
| 6   | 1.05 | -14.1335 | -21.1430 |
| 7   | 1.26 | -18.6280 | -21.4720 |
| 8   | 1.47 | -23.0719 | -20.6612 |
| 9   | 1.68 | -27.2259 | -18.7105 |
| 10  | 1.89 | -30.8506 | -15.6199 |
| 11  | 2.10 | -33.7065 | -11.3895 |

#### Armature e tensioni nei materiali della fondazione

#### Combinazione n° 15

Simbologia adottata

B base della sezione espressa in [m]
H altezza della sezione espressa in [m]

A<sub>fi</sub> area di armatura in corrispondenza del lembo inferiore in [mq] A<sub>fs</sub> area di armatura in corrispondenza del lembo superiore in [mq]

Nu sforzo normale ultimo espresso in [kN]
Mu momento ultimo espresso in [kNm]
CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

#### Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | Υ    | В, Н          | ${f A}_{\sf fs}$ | $A_{fi}$ | $N_u$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------------|------------------|----------|-------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 1.00, 0.500.0 | 0.000000         | 00565    | 0.00  | 0.00        | 1000.00 | 173.53   |           |           |
| 2   | 0.05 | 1.00, 0.500.0 | 0.000000         | 00565    | 0.00  | 98.61       | 986.87  | 173.53   |           |           |
| 3   | 0.10 | 1.00, 0.500.0 | 010050.0         | 00565    | 0.00  | 98.55       | 247.92  | 173.53   |           |           |
| 4   | 0.15 | 1.00, 0.500.0 | 010050.0         | 00565    | 0.00  | 98.55       | 110.79  | 173.53   |           |           |
| 5   | 0.20 | 1.00, 0.500.0 | 010050.0         | 00565    | 0.00  | 98.55       | 62.66   | 173.53   |           |           |
| 6   | 0.25 | 1.00, 0.500.0 | 010050.0         | 00565    | 0.00  | 98.55       | 40.32   | 173.53   |           |           |
| 7   | 0.30 | 1.00, 0.500.0 | 010050.0         | 00565    | 0.00  | 98.55       | 28.16   | 173.53   |           |           |
| 8   | 0.35 | 1.00, 0.500.0 | 010050.0         | 00565    | 0.00  | 98.55       | 20.80   | 173.53   |           |           |
| 9   | 0.40 | 1.00, 0.500.0 | 010050.0         | 00565    | 0.00  | 98.55       | 16.02   | 173.53   |           |           |
| 10  | 0.45 | 1.00, 0.500.0 | 010050.0         | 00565    | 0.00  | 98.55       | 12.73   | 173.53   |           |           |
| 11  | 0.50 | 1.00, 0.500.0 | 010050.0         | 00565    | 0.00  | 98.55       | 10.37   | 173.53   |           |           |

#### Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr.  | Υ       | B, H           | $A_{fs}$  | $A_{fi}$ | $N_u$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|------|---------|----------------|-----------|----------|-------|-------------|---------|----------|-----------|-----------|
| 1    | 0.00    | 1.00, 0.500.00 | 0.00000.0 | 00565    | 0.00  | 0.00        | 1000.00 | 173.53   |           |           |
| 2    | 0.21    | 1.00, 0.500.00 | 010050.0  | 00565    | 0.00  | -172.73     | 233.07  | 173.53   |           |           |
| 3    | 0.42    | 1.00, 0.500.00 | 010050.0  | 00565    | 0.00  | -172.73     | 61.58   | 173.53   |           |           |
| PV_D | _SR_AP_ | CA_3_F_0010    | 01_0_004  | _R_A_0   |       |             |         |          |           |           |

SIS Scpa 37 di 99

| Cavalcavia Sv. Rlese CA.3F.01 – R                                                                                                                                                                                                                                                                                                                                                      | elazione di calcolo                                                                                     | o muri in att                 | acco a | alla spalla SP                                                                                                      | 71                                                                 |                        |                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------|--------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------|-------------------------------|
| 4 0.63 1.00, 0.500.0010<br>5 0.84 1.00, 0.500.0010<br>6 1.05 1.00, 0.500.0010<br>7 1.26 1.00, 0.500.0010<br>8 1.47 1.00, 0.500.0010<br>9 1.68 1.00, 0.500.0010<br>10 1.89 1.00, 0.500.0010<br>11 2.10 1.00, 0.500.0010                                                                                                                                                                 | 050.000565<br>050.000565<br>050.000565<br>050.000565<br>050.000565<br>050.000565                        | 0.00 -1<br>0.00 -1<br>0.00 -1 | 72.73  | 3 17.58<br>3 12.22<br>3 9.27<br>3 7.49<br>3 6.34<br>3 5.60                                                          | 173.53<br>173.53<br>173.53<br>173.53<br>173.53<br>173.53<br>173.53 | <br><br><br><br>       | <br><br><br><br><br>          |
| COMBINAZIONE n° 16                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                         |                               |        |                                                                                                                     |                                                                    |                        |                               |
| Valore della spinta statica Componente orizzontale della spinta Componente verticale della spinta Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla Inclinazione linea di rottura in con                                                                                                                                                                          | a statica<br>normale alla su                                                                            |                               |        | 36.7102<br>34.5820<br>12.3175<br>X = 2.10<br>19.61<br>56.17                                                         | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°]                                 | Y = -2.27              | [m]                           |
| Incremento sismico della spinta<br>Punto d'applicazione dell'increme<br>Inclinazione linea di rottura in con                                                                                                                                                                                                                                                                           |                                                                                                         |                               |        | 7.4749<br>X = 2.10<br>49.79                                                                                         | [kN]<br>[m]<br>[°]                                                 | Y = -2.27              | [m]                           |
| Peso terrapieno gravante sulla fo<br>Baricentro terrapieno gravante si<br>Numero contrafforti                                                                                                                                                                                                                                                                                          |                                                                                                         |                               |        | 113.1000<br>X = 1.05<br>8                                                                                           | [kN]<br>[m]                                                        | Y = -1.50              | [m]                           |
| Peso del singolo contrafforte Peso del contrafforte riferito ad u Baricentro contrafforte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione Inerzia verticale del terrapieno fo Inerzia del singolo contrafforte Inerzia del contrafforte riferita ad Inerzia verticale del singolo contr Inerzia verticale del contrafforte ri                            | di monte<br>ndazione di mo<br>un metro di mu<br>rafforte                                                | nte<br>ro                     |        | 4.5000<br>3.7500<br>X = 0.15<br>4.5375<br>-2.2687<br>12.4410<br>-6.2205<br>0.4950<br>0.4125<br>-0.2475<br>-0.2062   | [kN] [kN] [m] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN               | Y = -1.50              | [m]                           |
| Risultanti Risultante dei carichi applicati in Risultante dei carichi applicati in Resistenza passiva a valle del m Sforzo normale sul piano di posa Sforzo tangenziale sul piano di p Eccentricità rispetto al baricentro Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispe Momento rispetto al baricentro d Carico ultimo della fondazione | dir. verticale<br>uro<br>della fondazion<br>osa della fondazion<br>della fondazion<br>etto alla normale | zione<br>ie                   |        | 59.6745<br>170.2301<br>-21.2853<br>170.2301<br>59.6745<br>0.25<br>2.70<br>180.3867<br>19.32<br>42.4597<br>1369.1347 | [kN] [kN] [kN] [kN] [m] [m] [kN] [kN] [kN] [kN]                    |                        |                               |
| Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di r Tensione terreno allo spigolo di r                                                                                                                                                                                                                                                               |                                                                                                         |                               |        | 2.70<br>0.09799<br>0.02810                                                                                          | [m]<br>[MPa]<br>[MPa]                                              |                        |                               |
| Fattori per il calcolo della capacia Coeff. capacità portante Fattori forma Fattori inclinazione Fattori profondità                                                                                                                                                                                                                                                                    | $N_c = 75$<br>$s_c = 1$<br>$i_c = 0$<br>$d_c = 1$                                                       | .00<br>.44                    |        | $N_q = 64.2$ $s_q = 1.0$ $i_q = 0.4$ $d_q = 1.1$                                                                    | 0<br>6                                                             | $i_{\gamma}^{\cdot} =$ | 09.41<br>1.00<br>0.30<br>1.00 |
| PV_D_SR_AP_CA_3_F_001001_                                                                                                                                                                                                                                                                                                                                                              | U_UU4_K_A_U                                                                                             |                               |        |                                                                                                                     |                                                                    |                        |                               |

S/S Scpa 38 di 99

| Fattori inclinazione piano posa | $b_c = 1.00$ | $b_{q} = 1.00$ | $b_{y} = 1.00$   |
|---------------------------------|--------------|----------------|------------------|
| Fattori inclinazione pendio     | $q_c = 1.00$ | $q_0 = 1.00$   | $a_{\nu} = 1.00$ |

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 59.46$$

$$N'_{q} = 47.73$$

$$N'_{y} = 60.45$$

39 di 99

# **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a scorrimento 2.27

Coefficiente di sicurezza a carico ultimo 8.04

#### Sollecitazioni fondazione di valle

#### Combinazione n° 16

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M      | Т       |
|-----|------|--------|---------|
| 1   | 0.00 | 0.0000 | 0.0000  |
| 2   | 0.05 | 0.0913 | 3.6424  |
| 3   | 0.10 | 0.3632 | 7.2200  |
| 4   | 0.15 | 0.8123 | 10.7329 |
| 5   | 0.20 | 1.4354 | 14.1812 |
| 6   | 0.25 | 2.2293 | 17.5647 |
| 7   | 0.30 | 3.1908 | 20.8835 |
| 8   | 0.35 | 4.3166 | 24.1375 |
| 9   | 0.40 | 5.6034 | 27.3269 |
| 10  | 0.45 | 7.0482 | 30.4515 |
| 11  | 0.50 | 8.6475 | 33.5115 |

#### Sollecitazioni fondazione di monte

# Combinazione n° 16

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | М        | Т        |
|-----|------|----------|----------|
| 1   | 0.00 | 0.0000   | 0.0000   |
| 2   | 0.21 | -0.8949  | -8.3328  |
| 3   | 0.42 | -3.4199  | -15.5240 |
| 4   | 0.63 | -7.3333  | -21.4537 |
| 5   | 0.84 | -12.2857 | -25.5217 |
| 6   | 1.05 | -17.9725 | -28.4482 |
| 7   | 1.26 | -24.1540 | -30.2331 |
| 8   | 1.47 | -30.5905 | -30.8765 |
| 9   | 1.68 | -37.0423 | -30.3782 |
| 10  | 1.89 | -43.2695 | -28.7384 |
| 11  | 2.10 | -49.0325 | -25.9570 |

# Armature e tensioni nei materiali della fondazione

#### Combinazione n° 16

Simbologia adottata

B base della sezione espressa in [m]

H altezza della sezione espressa in [m]

A<sub>fi</sub> area di armatura in corrispondenza del lembo inferiore in [mq] A<sub>fs</sub> area di armatura in corrispondenza del lembo superiore in [mq]

 $\begin{array}{ll} N_u & \text{sforzo normale ultimo espresso in [kN]} \\ M_u & \text{momento ultimo espresso in [kNm]} \end{array}$ 

CS coefficiente sicurezza sezione

## PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa

**VRcd** Aliquota di taglio assorbito dal cls, espresso in [kN] Aliquota di taglio assorbito dall'armatura, espresso in [kN] Resistenza al taglio, espresso in [kN] **VRsd** 

VRd

# Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | Υ    | B, H          | ${\sf A}_{\sf fs}$ | $A_{fi}$ | $N_{\rm u}$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $\mathbf{V}_{Rsd}$ |
|-----|------|---------------|--------------------|----------|-------------|-------------|---------|----------|-----------|--------------------|
| 1   | 0.00 | 1.00, 0.500.0 | 000000.00          | 00565    | 0.00        | 0.00        | 1000.00 | 173.53   |           |                    |
| 2   | 0.05 | 1.00, 0.500.0 | 000000.00          | 00565    | 0.00        | 98.61       | 1079.71 | 173.53   |           |                    |
| 3   | 0.10 | 1.00, 0.500.0 | 010050.00          | 00565    | 0.00        | 98.55       | 271.38  | 173.53   |           |                    |
| 4   | 0.15 | 1.00, 0.500.0 | 010050.00          | 00565    | 0.00        | 98.55       | 121.34  | 173.53   |           |                    |
| 5   | 0.20 | 1.00, 0.500.0 | 010050.00          | 00565    | 0.00        | 98.55       | 68.66   | 173.53   |           |                    |
| 6   | 0.25 | 1.00, 0.500.0 | 010050.00          | 00565    | 0.00        | 98.55       | 44.21   | 173.53   |           |                    |
| 7   | 0.30 | 1.00, 0.500.0 | 010050.00          | 00565    | 0.00        | 98.55       | 30.89   | 173.53   |           |                    |
| 8   | 0.35 | 1.00, 0.500.0 | 010050.00          | 00565    | 0.00        | 98.55       | 22.83   | 173.53   |           |                    |
| 9   | 0.40 | 1.00, 0.500.0 | 010050.00          | 00565    | 0.00        | 98.55       | 17.59   | 173.53   |           |                    |
| 10  | 0.45 | 1.00, 0.500.0 | 010050.00          | 00565    | 0.00        | 98.55       | 13.98   | 173.53   |           |                    |
| 11  | 0.50 | 1.00, 0.500.0 | 010050.00          | 00565    | 0.00        | 98.55       | 11.40   | 173.53   |           |                    |

# Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | Υ    | B, H          | $A_{fs}$  | $A_{fi}$ | $N_{\rm u}$ | $\mathbf{M}_{\mathrm{u}}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------------|-----------|----------|-------------|---------------------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 1.00, 0.500.0 | 0.00000.0 | 00565    | 0.00        | 0.00                      | 1000.00 | 173.53   |           |           |
| 2   | 0.21 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00        | -172.73                   | 193.01  | 173.53   |           |           |
| 3   | 0.42 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00        | -172.73                   | 50.51   | 173.53   |           |           |
| 4   | 0.63 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00        | -172.73                   | 23.55   | 173.53   |           |           |
| 5   | 0.84 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00        | -172.73                   | 14.06   | 173.53   |           |           |
| 6   | 1.05 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00        | -172.73                   | 9.61    | 173.53   |           |           |
| 7   | 1.26 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00        | -172.73                   | 7.15    | 173.53   |           |           |
| 8   | 1.47 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00        | -172.73                   | 5.65    | 173.53   |           |           |
| 9   | 1.68 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00        | -172.73                   | 4.66    | 173.53   |           |           |
| 10  | 1.89 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00        | -172.73                   | 3.99    | 173.53   |           |           |
| 11  | 2.10 | 1.00, 0.500.0 | 010050.0  | 00565    | 0.00        | -172.73                   | 3.52    | 173.53   |           |           |

# **COMBINAZIONE n° 17**

| Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche                                                         | 36.7102<br>34.5820<br>12.3175<br>X = 2.10<br>19.61<br>56.17                               | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°]                 | Y = -2.27              | [m] |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|-----|
| Incremento sismico della spinta<br>Punto d'applicazione dell'incremento sismico di spinta<br>Inclinazione linea di rottura in condizioni sismiche                                                                                                                                                                             | 7.4749<br>X = 2.10<br>49.79                                                               | [kN]<br>[m]<br>[°]                                 | Y = -2.27              | [m] |
| Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro Baricentro contrafforte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte | 113.1000<br>X = 1.05<br>8<br>4.5000<br>3.7500<br>X = 0.15<br>4.5375<br>-2.2687<br>12.4410 | [kN]<br>[m]<br>[kN]<br>[kN]<br>[m]<br>[kN]<br>[kN] | Y = -1.50<br>Y = -1.50 | [m] |
| Inerzia verticale del terrapieno fondazione di monte<br>Inerzia del singolo contrafforte                                                                                                                                                                                                                                      | -6.2205<br>0.4950                                                                         | [kN]<br>[kN]                                       |                        |     |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 40 di 99

| opere di attraversamento                                                                                   |                     | `            | or v i odenie | intana vono |
|------------------------------------------------------------------------------------------------------------|---------------------|--------------|---------------|-------------|
| Cavalcavia Sv. Rlese CA.3F.01 – Relazione di calcolo muri in attacc                                        | o alla spalla SF    | P1           |               |             |
| Inerzia del contrafforte riferita ad un metro di muro                                                      | 0.4125              | [kN]         |               |             |
| Inerzia verticale del singolo contrafforte                                                                 | -0.2475             | [kN]         |               |             |
| Inerzia verticale del contrafforte riferita ad un metro di muro                                            | -0.2062             | [kN]         |               |             |
|                                                                                                            |                     |              |               |             |
| <u>Risultanti</u>                                                                                          |                     |              |               |             |
| Risultante dei carichi applicati in dir. orizzontale                                                       | 59.6745             | [kN]         |               |             |
| Risultante dei carichi applicati in dir. verticale                                                         | 170.2301            | [kN]         |               |             |
| Resistenza passiva a valle del muro                                                                        | -21.2853            | [kN]         |               |             |
| Momento ribaltante rispetto allo spigolo a valle                                                           | 93.2932             | [kNm]        |               |             |
| Momento stabilizzante rispetto allo spigolo a valle                                                        | 280.6441            | [kNm]        |               |             |
| Sforzo normale sul piano di posa della fondazione<br>Sforzo tangenziale sul piano di posa della fondazione | 170.2301<br>59.6745 | [kN]<br>[kN] |               |             |
| Eccentricità rispetto al baricentro della fondazione                                                       | 0.25                | [m]          |               |             |
| Lunghezza fondazione reagente                                                                              | 2.70                | [m]          |               |             |
| Risultante in fondazione                                                                                   | 180.3867            | [kN]         |               |             |
| Inclinazione della risultante (rispetto alla normale)                                                      | 19.32               | [°]          |               |             |
| Momento rispetto al baricentro della fondazione                                                            | 42.4597             | [kNm]        |               |             |
| '                                                                                                          |                     |              |               |             |
| COEFFICIENTI DI SICUREZZA                                                                                  |                     |              |               |             |
| Coefficiente di sicurezza a ribaltamento                                                                   | 3.01                |              |               |             |
| COMPINIAZIONE 9 40                                                                                         |                     |              |               |             |
| COMBINAZIONE n° 18                                                                                         |                     |              |               |             |
| Valore della spinta statica                                                                                | 36.7102             | [kN]         |               |             |
| Componente orizzontale della spinta statica                                                                | 34.5820             | [kN]         |               |             |
| Componente verticale della spinta statica                                                                  | 12.3175             | [kN]         |               |             |
| Punto d'applicazione della spinta                                                                          | X = 2.10            | [m]          | Y = -2.27     | [m]         |
| Inclinaz. della spinta rispetto alla normale alla superficie                                               | 19.61               | [°]          |               |             |
| Inclinazione linea di rottura in condizioni statiche                                                       | 56.17               | [°]          |               |             |
|                                                                                                            |                     |              |               |             |
| Incremento sismico della spinta                                                                            | 11.3704             | [kN]         |               |             |
| Punto d'applicazione dell'incremento sismico di spinta                                                     | X = 2.10            | [m]          | Y = -2.27     | [m]         |
| Inclinazione linea di rottura in condizioni sismiche                                                       | 50.48               | [°]          |               |             |
| Peso terrapieno gravante sulla fondazione a monte                                                          | 113.1000            | [kN]         |               |             |
| Baricentro terrapieno gravante sulla fondazione a monte                                                    | X = 1.05            | [m]          | Y = -1.50     | [m]         |
| Numero contrafforti                                                                                        | 8                   | []           |               | []          |
| Peso del singolo contrafforte                                                                              | 4.5000              | [kN]         |               |             |
| Peso del contrafforte riferito ad un metro di muro                                                         | 3.7500              | [kN]         |               |             |
| Baricentro contrafforte                                                                                    | X = 0.15            | [m]          | Y = -1.50     | [m]         |
| Inerzia del muro                                                                                           | 4.5375              | [kN]         |               |             |
| Inerzia verticale del muro                                                                                 | 2.2687              | [kN]         |               |             |
| Inerzia del terrapieno fondazione di monte                                                                 | 12.4410             | [kN]         |               |             |
| Inerzia verticale del terrapieno fondazione di monte                                                       | 6.2205              | [kN]         |               |             |
| Inerzia del singolo contrafforte                                                                           | 0.4950              | [kN]         |               |             |
| Inerzia del contrafforte riferita ad un metro di muro<br>Inerzia verticale del singolo contrafforte        | 0.4125<br>0.2475    | [kN]         |               |             |
| Inerzia verticale del singolo contranorte  Inerzia verticale del contrafforte riferita ad un metro di muro | 0.2473              | [kN]<br>[kN] |               |             |
| morzia vorticale del contramorto menta da un metro di maro                                                 | 0.2002              | [1414]       |               |             |
| <u>Risultanti</u>                                                                                          |                     |              |               |             |
| Risultante dei carichi applicati in dir. orizzontale                                                       | 63.3442             | [kN]         |               |             |
| Risultante dei carichi applicati in dir. verticale                                                         | 188.9282            | [kN]         |               |             |
| Resistenza passiva a valle del muro                                                                        | -21.2853            | [kN]         |               |             |
| Momento ribaltante rispetto allo spigolo a valle                                                           | 84.6672             | [kNm]        |               |             |
| Momento stabilizzante rispetto allo spigolo a valle                                                        | 297.3246            | [kNm]        |               |             |
| Sforzo normale sul piano di posa della fondazione                                                          | 188.9282            | [kN]         |               |             |
| Sforzo tangenziale sul piano di posa della fondazione                                                      | 63.3442             | [kN]         |               |             |
| Eccentricità rispetto al baricentro della fondazione                                                       | 0.22                | [m]          |               |             |
| Lunghezza fondazione reagente Risultante in fondazione                                                     | 2.70<br>199.2645    | [m]<br>[kN]  |               |             |
| Inclinazione della risultante (rispetto alla normale)                                                      | 18.54               | [kN]<br>[°]  |               |             |
|                                                                                                            | 10.04               | r 1          |               |             |
| PV_D_SR_AP_CA_3_F_001001_0_004_R_A_0                                                                       |                     |              |               |             |

*SIS Scpa* 41 di 99

Momento rispetto al baricentro della fondazione 42.3957 [kNm]

#### **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a ribaltamento 3.51

# Stabilità globale muro + terreno

### Combinazione n° 19

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

 $\alpha$  angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [MPa]

b larghezza della striscia espressa in [m]

u pressione neutra lungo la base della striscia espressa in [MPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= 0.00 Y[m]= 2.79

Raggio del cerchio R[m]= 6.63

Ascissa a valle del cerchio Xi[m]= -4.14 Ascissa a monte del cerchio Xs[m]= 6.03

Larghezza della striscia dx[m]= 0.41 Coefficiente di sicurezza C= 2.00

Le strisce sono numerate da monte verso valle

#### Caratteristiche delle strisce

| Striscia | W       | α(°)   | Wsin $\alpha$ | b/cosα | ф     | С     | u     |
|----------|---------|--------|---------------|--------|-------|-------|-------|
| 1        | 438.49  | 60.88  | 383.08        | 0.84   | 30.17 | 0.000 | 0.000 |
| 2        | 926.94  | 54.88  | 758.18        | 0.71   | 30.17 | 0.000 | 0.000 |
| 3        | 1318.30 | 49.14  | 996.99        | 0.62   | 30.17 | 0.000 | 0.000 |
| 4        | 1640.45 | 44.01  | 1139.69       | 0.57   | 30.17 | 0.000 | 0.000 |
| 5        | 1911.33 | 39.29  | 1210.40       | 0.53   | 30.17 | 0.000 | 0.000 |
| 6        | 2141.40 | 34.88  | 1224.55       | 0.50   | 30.17 | 0.000 | 0.000 |
| 7        | 2337.35 | 30.69  | 1193.07       | 0.47   | 30.17 | 0.000 | 0.000 |
| 8        | 2503.77 | 26.68  | 1124.31       | 0.46   | 30.17 | 0.000 | 0.000 |
| 9        | 2643.93 | 22.81  | 1024.95       | 0.44   | 30.17 | 0.000 | 0.000 |
| 10       | 2810.96 | 19.04  | 917.18        | 0.43   | 31.36 | 0.000 | 0.000 |
| 11       | 3006.69 | 15.36  | 796.53        | 0.42   | 33.87 | 0.000 | 0.000 |
| 12       | 2942.59 | 11.74  | 598.97        | 0.42   | 33.87 | 0.000 | 0.000 |
| 13       | 2979.70 | 8.17   | 423.68        | 0.41   | 33.87 | 0.000 | 0.000 |
| 14       | 3017.15 | 4.64   | 243.86        | 0.41   | 33.87 | 0.000 | 0.000 |
| 15       | 3189.12 | 1.12   | 62.08         | 0.41   | 33.87 | 0.000 | 0.000 |
| 16       | 1397.99 | -2.40  | -58.57        | 0.41   | 33.87 | 0.000 | 0.000 |
| 17       | 1112.11 | -5.93  | -114.83       | 0.41   | 33.87 | 0.000 | 0.000 |
| 18       | 1026.62 | -9.48  | -169.00       | 0.41   | 33.87 | 0.000 | 0.000 |
| 19       | 959.33  | -13.06 | -216.79       | 0.42   | 33.87 | 0.000 | 0.000 |
| 20       | 869.59  | -16.70 | -249.88       | 0.42   | 33.79 | 0.000 | 0.000 |
| 21       | 762.71  | -20.41 | -265.97       | 0.43   | 30.17 | 0.000 | 0.000 |
| 22       | 637.95  | -24.21 | -261.62       | 0.45   | 30.17 | 0.000 | 0.000 |
| 23       | 488.51  | -28.13 | -230.32       | 0.46   | 30.17 | 0.000 | 0.000 |
| 24       | 311.72  | -32.20 | -166.11       | 0.48   | 30.17 | 0.000 | 0.000 |
| 25       | 103.92  | -36.46 | -61.76        | 0.51   | 30.17 | 0.000 | 0.000 |

 $\Sigma W_i = 406.7726 \text{ [kN]}$ 

 $\Sigma W_i \sin \alpha_i = 101.0360 [kN]$ 

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

*SIS Scpa* 42 di 99

 $\Sigma W_i tan \phi_i = 255.2939 [kN]$ 

 $\Sigma \tan \alpha_i \tan \phi_i = 3.41$ 

# Stabilità globale muro + terreno

#### Combinazione n° 20

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [MPa]

b larghezza della striscia espressa in [m]

*u* pressione neutra lungo la base della striscia espressa in [MPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= 0.00 Y[m]= 2.79

Raggio del cerchio R[m]= 6.63

Ascissa a valle del cerchio Xi[m]= -4.14 Ascissa a monte del cerchio Xs[m]= 6.03

Larghezza della striscia dx[m]= 0.41 Coefficiente di sicurezza C= 1.95 Le strisce sono numerate da monte verso valle

#### Caratteristiche delle strisce

| Striscia | W       | α(°)   | Wsin $lpha$ | b/cosα | ф     | С     | u     |
|----------|---------|--------|-------------|--------|-------|-------|-------|
| 1        | 438.49  | 60.88  | 383.08      | 0.84   | 30.17 | 0.000 | 0.000 |
| 2        | 926.94  | 54.88  | 758.18      | 0.71   | 30.17 | 0.000 | 0.000 |
| 3        | 1318.30 | 49.14  | 996.99      | 0.62   | 30.17 | 0.000 | 0.000 |
| 4        | 1640.45 | 44.01  | 1139.69     | 0.57   | 30.17 | 0.000 | 0.000 |
| 5        | 1911.33 | 39.29  | 1210.40     | 0.53   | 30.17 | 0.000 | 0.000 |
| 6        | 2141.40 | 34.88  | 1224.55     | 0.50   | 30.17 | 0.000 | 0.000 |
| 7        | 2337.35 | 30.69  | 1193.07     | 0.47   | 30.17 | 0.000 | 0.000 |
| 8        | 2503.77 | 26.68  | 1124.31     | 0.46   | 30.17 | 0.000 | 0.000 |
| 9        | 2643.93 | 22.81  | 1024.95     | 0.44   | 30.17 | 0.000 | 0.000 |
| 10       | 2810.96 | 19.04  | 917.18      | 0.43   | 31.36 | 0.000 | 0.000 |
| 11       | 3006.69 | 15.36  | 796.53      | 0.42   | 33.87 | 0.000 | 0.000 |
| 12       | 2942.59 | 11.74  | 598.97      | 0.42   | 33.87 | 0.000 | 0.000 |
| 13       | 2979.70 | 8.17   | 423.68      | 0.41   | 33.87 | 0.000 | 0.000 |
| 14       | 3017.15 | 4.64   | 243.86      | 0.41   | 33.87 | 0.000 | 0.000 |
| 15       | 3189.12 | 1.12   | 62.08       | 0.41   | 33.87 | 0.000 | 0.000 |
| 16       | 1397.99 | -2.40  | -58.57      | 0.41   | 33.87 | 0.000 | 0.000 |
| 17       | 1112.11 | -5.93  | -114.83     | 0.41   | 33.87 | 0.000 | 0.000 |
| 18       | 1026.62 | -9.48  | -169.00     | 0.41   | 33.87 | 0.000 | 0.000 |
| 19       | 959.33  | -13.06 | -216.79     | 0.42   | 33.87 | 0.000 | 0.000 |
| 20       | 869.59  | -16.70 | -249.88     | 0.42   | 33.79 | 0.000 | 0.000 |
| 21       | 762.71  | -20.41 | -265.97     | 0.43   | 30.17 | 0.000 | 0.000 |
| 22       | 637.95  | -24.21 | -261.62     | 0.45   | 30.17 | 0.000 | 0.000 |
| 23       | 488.51  | -28.13 | -230.32     | 0.46   | 30.17 | 0.000 | 0.000 |
| 24       | 311.72  | -32.20 | -166.11     | 0.48   | 30.17 | 0.000 | 0.000 |
| 25       | 103.92  | -36.46 | -61.76      | 0.51   | 30.17 | 0.000 | 0.000 |

 $\Sigma W_i = 406.7726 [kN]$ 

 $\Sigma W_i \sin \alpha_i = 101.0360 [kN]$ 

 $\Sigma W_{i} tan \phi_{i} = 255.2939 [kN]$ 

 $\Sigma \tan \alpha_i \tan \phi_i = 3.41$ 

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 43 di 99

#### Sollecitazioni fondazione di valle

#### Combinazione n° 21

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M      | Т       |
|-----|------|--------|---------|
| 1   | 0.00 | 0.0000 | 0.0000  |
| 2   | 0.05 | 0.0486 | 1.9431  |
| 3   | 0.10 | 0.1944 | 3.8896  |
| 4   | 0.15 | 0.4376 | 5.8396  |
| 5   | 0.20 | 0.7784 | 7.7929  |
| 6   | 0.25 | 1.2169 | 9.7497  |
| 7   | 0.30 | 1.7534 | 11.7098 |
| 8   | 0.35 | 2.3880 | 13.6734 |
| 9   | 0.40 | 3.1208 | 15.6404 |
| 10  | 0.45 | 3.9521 | 17.6108 |
| 11  | 0.50 | 4.8819 | 19.5847 |

#### Sollecitazioni fondazione di monte

#### Combinazione n° 21

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M       | Т       |
|-----|------|---------|---------|
| 1   | 0.00 | 0.0000  | 0.0000  |
| 2   | 0.21 | -0.0790 | -0.7621 |
| 3   | 0.42 | -0.3243 | -1.5845 |
| 4   | 0.63 | -0.7469 | -2.3470 |
| 5   | 0.84 | -1.2495 | -2.4498 |
| 6   | 1.05 | -1.7800 | -2.6128 |
| 7   | 1.26 | -2.3511 | -2.8360 |
| 8   | 1.47 | -2.9753 | -3.1193 |
| 9   | 1.68 | -3.6654 | -3.4629 |
| 10  | 1.89 | -4.4340 | -3.8667 |
| 11  | 2.10 | -5.2936 | -4.3307 |

# Armature e tensioni nei materiali della fondazione

# Combinazione n° 21

Simbologia adottata

B base della sezione espressa in [m]

H altezza della sezione espressa in [m]

A<sub>fi</sub> area di armatura in corrispondenza del lembo inferiore in [mq]

A<sub>fs</sub> area di armatura in corrispondenza del lembo superiore in [mq]

σ<sub>c</sub> tensione nel calcestruzzo espressa in [MPa]

τ<sub>c</sub> tensione tangenziale nel calcestruzzo espressa in [MPa]

tensione nell'armatura disposta in corrispondenza del lembo inferiore in [MPa]

tensione nell'armatura disposta in corrispondenza del lembo superiore in [MPa]

# Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | X    | B, H          | $A_fs$    | $A_{fi}$ | $\sigma_{c}$ | $	au_{	extsf{c}}$ | $\sigma_{fi}$ | $\sigma_{fs}$ |
|-----|------|---------------|-----------|----------|--------------|-------------------|---------------|---------------|
| 1   | 0.00 | 1.00, 0.500.0 | 0.00000.0 | 00565    | 0.000        | 0.000             | 0.000         | 0.000         |
| 2   | 0.05 | 1.00, 0.500.0 | 0.00000.0 | 00565    | 0.003        | 0.005             | 0.198         | 0.000         |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 44 di 99

| 3  | 0.10 | 1.00, 0.500.0010050.000565 | 0.010 | 0.010 | 0.794  | -0.070 |
|----|------|----------------------------|-------|-------|--------|--------|
| 4  | 0.15 | 1.00, 0.500.0010050.000565 | 0.023 | 0.015 | 1.788  | -0.159 |
| 5  | 0.20 | 1.00, 0.500.0010050.000565 | 0.041 | 0.020 | 3.180  | -0.282 |
| 6  | 0.25 | 1.00, 0.500.0010050.000565 | 0.064 | 0.025 | 4.972  | -0.441 |
| 7  | 0.30 | 1.00, 0.500.0010050.000565 | 0.092 | 0.030 | 7.164  | -0.636 |
| 8  | 0.35 | 1.00, 0.500.0010050.000565 | 0.125 | 0.035 | 9.756  | -0.866 |
| 9  | 0.40 | 1.00, 0.500.0010050.000565 | 0.164 | 0.040 | 12.750 | -1.132 |
| 10 | 0.45 | 1.00, 0.500.0010050.000565 | 0.207 | 0.045 | 16.146 | -1.433 |
| 11 | 0.50 | 1.00, 0.500.0010050.000565 | 0.256 | 0.050 | 19.945 | -1.770 |

# Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | X    | B, H          | $A_{fs}$ | $A_{fi}$ | $\sigma_{c}$ | $	au_{c}$ | $\sigma_{fi}$ | $\sigma_{fs}$ |
|-----|------|---------------|----------|----------|--------------|-----------|---------------|---------------|
| 1   | 0.00 | 1.00, 0.500.0 | 000000.  | 000565   | 0.000        | 0.000     | 0.000         | 0.000         |
| 2   | 0.21 | 1.00, 0.500.0 | 0010050. | 000565   | 0.003        | -0.002    | -0.030        | 0.184         |
| 3   | 0.42 | 1.00, 0.500.0 | 0010050. | 000565   | 0.014        | -0.004    | -0.125        | 0.757         |
| 4   | 0.63 | 1.00, 0.500.0 | 0010050. | 000565   | 0.032        | -0.006    | -0.287        | 1.743         |
| 5   | 0.84 | 1.00, 0.500.0 | 0010050. | 000565   | 0.054        | -0.006    | -0.480        | 2.916         |
| 6   | 1.05 | 1.00, 0.500.0 | 0010050. | 000565   | 0.076        | -0.007    | -0.684        | 4.154         |
| 7   | 1.26 | 1.00, 0.500.0 | 0010050. | 000565   | 0.101        | -0.007    | -0.903        | 5.487         |
| 8   | 1.47 | 1.00, 0.500.0 | 0010050. | 000565   | 0.128        | -0.008    | -1.143        | 6.943         |
| 9   | 1.68 | 1.00, 0.500.0 | 0010050. | 000565   | 0.157        | -0.009    | -1.408        | 8.554         |
| 10  | 1.89 | 1.00, 0.500.0 | 0010050. | 000565   | 0.190        | -0.010    | -1.703        | 10.347        |
| 11  | 2.10 | 1.00, 0.500.0 | 0010050. | 000565   | 0.227        | -0.011    | -2.033        | 12.354        |

# Sollecitazioni fondazione di valle

# Combinazione n° 22

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M       | Т       |
|-----|------|---------|---------|
| 1   | 0.00 | 0.0000  | 0.0000  |
| 2   | 0.05 | 0.1296  | 5.1661  |
| 3   | 0.10 | 0.5149  | 10.2304 |
| 4   | 0.15 | 1.1509  | 15.1928 |
| 5   | 0.20 | 2.0325  | 20.0534 |
| 6   | 0.25 | 3.1546  | 24.8121 |
| 7   | 0.30 | 4.5120  | 29.4689 |
| 8   | 0.35 | 6.0998  | 34.0239 |
| 9   | 0.40 | 7.9127  | 38.4771 |
| 10  | 0.45 | 9.9458  | 42.8283 |
| 11  | 0.50 | 12.1938 | 47.0778 |

# Sollecitazioni fondazione di monte

 $\frac{Combinazione \ n^{\circ} \ 22}{L'ascissa} \ X(espressa \ in \ m) \ \grave{e} \ considerata \ positiva \ verso \ valle \ con \ origine \ in \ corrispondenza \ dell'estremo \ libero \ della \ fondazione \ di$ 

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M        | Т        |
|-----|------|----------|----------|
| 1   | 0.00 | 0.0000   | 0.0000   |
| 2   | 0.21 | -1.6286  | -15.2113 |
| 3   | 0.42 | -6.2630  | -28.6259 |
| 4   | 0.63 | -13.5127 | -39.3722 |
| 5   | 0.84 | -22.2029 | -43.0929 |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 45 di 99

| 6  | 1.05 | -31.4859 | -45.0167 |
|----|------|----------|----------|
| 7  | 1.26 | -40.9842 | -45.1439 |
| 8  | 1.47 | -50.3206 | -43.4743 |
| 9  | 1.68 | -59.1177 | -40.0080 |
| 10 | 1.89 | -66.9982 | -34.7450 |
| 11 | 2.10 | -73.5848 | -27.6853 |

# Armature e tensioni nei materiali della fondazione

#### Combinazione n° 22

Simbologia adottata

- B base della sezione espressa in [m]
- H altezza della sezione espressa in [m]
- A<sub>fi</sub> area di armatura in corrispondenza del lembo inferiore in [mq]
- A<sub>fs</sub> area di armatura in corrispondenza del lembo superiore in [mq]
- $\sigma_c$  tensione nel calcestruzzo espressa in [MPa]
- $au_c$  tensione tangenziale nel calcestruzzo espressa in [MPa]
- $\sigma_{\text{fi}} \hspace{1cm} \text{tensione nell'armatura disposta in corrispondenza del lembo inferiore in [MPa]} \\$
- $\sigma_{fs}$  tensione nell'armatura disposta in corrispondenza del lembo superiore in [MPa]

#### Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | X    | B, H           | $A_{fs}$ | $A_{fi}$ | $\sigma_{c}$ | $	au_{c}$ | $\sigma_{fi}$ | $\sigma_{fs}$ |
|-----|------|----------------|----------|----------|--------------|-----------|---------------|---------------|
| 1   | 0.00 | 1.00, 0.500.00 | 0.0000.0 | 00565    | 0.000        | 0.000     | 0.000         | 0.000         |
| 2   | 0.05 | 1.00, 0.500.00 | 0.0000.0 | 00565    | 0.007        | 0.013     | 0.529         | 0.000         |
| 3   | 0.10 | 1.00, 0.500.00 | 10050.0  | 00565    | 0.027        | 0.026     | 2.104         | -0.187        |
| 4   | 0.15 | 1.00, 0.500.00 | 10050.0  | 00565    | 0.060        | 0.039     | 4.702         | -0.417        |
| 5   | 0.20 | 1.00, 0.500.00 | 10050.0  | 00565    | 0.107        | 0.051     | 8.304         | -0.737        |
| 6   | 0.25 | 1.00, 0.500.00 | 10050.0  | 00565    | 0.165        | 0.063     | 12.888        | -1.144        |
| 7   | 0.30 | 1.00, 0.500.00 | 10050.0  | 00565    | 0.237        | 0.075     | 18.434        | -1.636        |
| 8   | 0.35 | 1.00, 0.500.00 | 10050.0  | 00565    | 0.320        | 0.087     | 24.920        | -2.212        |
| 9   | 0.40 | 1.00, 0.500.00 | 10050.0  | 00565    | 0.415        | 0.098     | 32.327        | -2.869        |
| 10  | 0.45 | 1.00, 0.500.00 | 10050.0  | 00565    | 0.521        | 0.110     | 40.633        | -3.607        |
| 11  | 0.50 | 1.00, 0.500.00 | 10050.0  | 00565    | 0.639        | 0.120     | 49.818        | -4.422        |

### Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | X    | B, H          | $A_{fs}$ | $A_{fi}$ | $\sigma_{c}$ | $	au_{c}$ | $\sigma_{\text{fi}}$ | $\sigma_{fs}$ |
|-----|------|---------------|----------|----------|--------------|-----------|----------------------|---------------|
| 1   | 0.00 | 1.00, 0.500.0 | 0.000000 | 00565    | 0.000        | 0.000     | 0.000                | 0.000         |
| 2   | 0.21 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.070        | -0.039    | -0.625               | 3.801         |
| 3   | 0.42 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.268        | -0.073    | -2.405               | 14.616        |
| 4   | 0.63 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.579        | -0.101    | -5.189               | 31.534        |
| 5   | 0.84 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.952        | -0.110    | -8.527               | 51.814        |
| 6   | 1.05 | 1.00, 0.500.0 | 010050.0 | 00565    | 1.349        | -0.115    | -12.091              | 73.478        |
| 7   | 1.26 | 1.00, 0.500.0 | 010050.0 | 00565    | 1.756        | -0.115    | -15.739              | 95.644        |
| 8   | 1.47 | 1.00, 0.500.0 | 010050.0 | 00565    | 2.157        | -0.111    | -19.324              | 117.432       |
| 9   | 1.68 | 1.00, 0.500.0 | 010050.0 | 00565    | 2.534        | -0.102    | -22.703              | 137.961       |
| 10  | 1.89 | 1.00, 0.500.0 | 010050.0 | 00565    | 2.871        | -0.089    | -25.729              | 156.352       |
| 11  | 2.10 | 1.00, 0.500.0 | 010050.0 | 00565    | 3.154        | -0.071    | -28.259              | 171.723       |

# Sollecitazioni fondazione di valle

#### Combinazione n° 23

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

Nr. X M T

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

*SIS Scpa* 46 di 99

| 1  | 0.00 | 0.0000 | 0.0000  |
|----|------|--------|---------|
| 2  | 0.05 | 0.0519 | 2.0764  |
| 3  | 0.10 | 0.2076 | 4.1512  |
| 4  | 0.15 | 0.4670 | 6.2243  |
| 5  | 0.20 | 0.8300 | 8.2959  |
| 6  | 0.25 | 1.2966 | 10.3658 |
| 7  | 0.30 | 1.8666 | 12.4341 |
| 8  | 0.35 | 2.5400 | 14.5008 |
| 9  | 0.40 | 3.3166 | 16.5659 |
| 10 | 0.45 | 4.1965 | 18.6294 |
| 11 | 0.50 | 5.1795 | 20.6912 |

## Sollecitazioni fondazione di monte

#### Combinazione n° 23

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M       | Т       |
|-----|------|---------|---------|
| 1   | 0.00 | 0.0000  | 0.0000  |
| 2   | 0.21 | -0.1358 | -1.2882 |
| 3   | 0.42 | -0.5390 | -2.5478 |
| 4   | 0.63 | -1.2020 | -3.6589 |
| 5   | 0.84 | -2.0090 | -4.0215 |
| 6   | 1.05 | -2.8891 | -4.3556 |
| 7   | 1.26 | -3.8363 | -4.6611 |
| 8   | 1.47 | -4.8447 | -4.9382 |
| 9   | 1.68 | -5.9084 | -5.1867 |
| 10  | 1.89 | -7.0212 | -5.4067 |
| 11  | 2.10 | -8.1772 | -5.5982 |

# Armature e tensioni nei materiali della fondazione

### Combinazione n° 23

Simbologia adottata

B base della sezione espressa in [m]

H altezza della sezione espressa in [m]

A<sub>fi</sub> area di armatura in corrispondenza del lembo inferiore in [mq]

 $A_{fs}$  area di armatura in corrispondenza del lembo superiore in [mq]

 $\sigma_{\text{c}} \hspace{1cm} \text{tensione nel calcestruzzo espressa in [MPa]}$ 

 $\tau_{\text{c}}$  tensione tangenziale nel calcestruzzo espressa in [MPa]

 $\sigma_{\text{fi}}$  tensione nell'armatura disposta in corrispondenza del lembo inferiore in [MPa]

 $\sigma_{fs}$  tensione nell'armatura disposta in corrispondenza del lembo superiore in [MPa]

# Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | X    | B, H          | $A_{fs}$   | $A_{fi}$ | $\sigma_{c}$ | $	au_{	extsf{c}}$ | $\sigma_{fi}$ | $\sigma_{fs}$ |
|-----|------|---------------|------------|----------|--------------|-------------------|---------------|---------------|
| 1   | 0.00 | 1.00, 0.500.0 | 0.000000.0 | 00565    | 0.000        | 0.000             | 0.000         | 0.000         |
| 2   | 0.05 | 1.00, 0.500.0 | 0.000000.0 | 00565    | 0.003        | 0.005             | 0.212         | 0.000         |
| 3   | 0.10 | 1.00, 0.500.0 | 010050.0   | 00565    | 0.011        | 0.011             | 0.848         | -0.075        |
| 4   | 0.15 | 1.00, 0.500.0 | 010050.0   | 00565    | 0.024        | 0.016             | 1.908         | -0.169        |
| 5   | 0.20 | 1.00, 0.500.0 | 010050.0   | 00565    | 0.044        | 0.021             | 3.391         | -0.301        |
| 6   | 0.25 | 1.00, 0.500.0 | 010050.0   | 00565    | 0.068        | 0.027             | 5.297         | -0.470        |
| 7   | 0.30 | 1.00, 0.500.0 | 010050.0   | 00565    | 0.098        | 0.032             | 7.626         | -0.677        |
| 8   | 0.35 | 1.00, 0.500.0 | 010050.0   | 00565    | 0.133        | 0.037             | 10.377        | -0.921        |
| 9   | 0.40 | 1.00, 0.500.0 | 010050.0   | 00565    | 0.174        | 0.042             | 13.550        | -1.203        |
| 10  | 0.45 | 1.00, 0.500.0 | 010050.0   | 00565    | 0.220        | 0.048             | 17.145        | -1.522        |
| 11  | 0.50 | 1.00, 0.500.0 | 010050.0   | 00565    | 0.271        | 0.053             | 21.161        | -1.878        |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 47 di 99

#### Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | X    | B, H          | $A_fs$     | $A_{fi}$ | $\sigma_{c}$ | $	au_{	extsf{c}}$ | $\sigma_{fi}$ | $\sigma_{fs}$ |
|-----|------|---------------|------------|----------|--------------|-------------------|---------------|---------------|
| 1   | 0.00 | 1.00, 0.500.0 | 0.000000.0 | 000565   | 0.000        | 0.000             | 0.000         | 0.000         |
| 2   | 0.21 | 1.00, 0.500.0 | 0.010050   | 000565   | 0.006        | -0.003            | -0.052        | 0.317         |
| 3   | 0.42 | 1.00, 0.500.0 | 0.010050   | 000565   | 0.023        | -0.007            | -0.207        | 1.258         |
| 4   | 0.63 | 1.00, 0.500.0 | 0.010050   | 000565   | 0.052        | -0.009            | -0.462        | 2.805         |
| 5   | 0.84 | 1.00, 0.500.0 | 0.010050   | 000565   | 0.086        | -0.010            | -0.772        | 4.688         |
| 6   | 1.05 | 1.00, 0.500.0 | 0.010050   | 000565   | 0.124        | -0.011            | -1.109        | 6.742         |
| 7   | 1.26 | 1.00, 0.500.0 | 0.010050   | 000565   | 0.164        | -0.012            | -1.473        | 8.953         |
| 8   | 1.47 | 1.00, 0.500.0 | 0.010050   | 000565   | 0.208        | -0.013            | -1.861        | 11.306        |
| 9   | 1.68 | 1.00, 0.500.0 | 0.010050   | 000565   | 0.253        | -0.013            | -2.269        | 13.788        |
| 10  | 1.89 | 1.00, 0.500.0 | 0.010050   | 000565   | 0.301        | -0.014            | -2.696        | 16.385        |
| 11  | 2.10 | 1.00, 0.500.0 | 0010050.0  | 000565   | 0.350        | -0.014            | -3.140        | 19.083        |

#### Sollecitazioni fondazione di valle

#### Combinazione n° 24

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M       | Т       |
|-----|------|---------|---------|
| 1   | 0.00 | 0.0000  | 0.0000  |
| 2   | 0.05 | 0.1669  | 6.6498  |
| 3   | 0.10 | 0.6624  | 13.1470 |
| 4   | 0.15 | 1.4790  | 19.4916 |
| 5   | 0.20 | 2.6091  | 25.6837 |
| 6   | 0.25 | 4.0449  | 31.7231 |
| 7   | 0.30 | 5.7788  | 37.6100 |
| 8   | 0.35 | 7.8033  | 43.3443 |
| 9   | 0.40 | 10.1107 | 48.9261 |
| 10  | 0.45 | 12.6934 | 54.3552 |
| 11  | 0.50 | 15.5437 | 59.6318 |

# Sollecitazioni fondazione di monte

#### Combinazione n° 24

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M         | Т        |
|-----|------|-----------|----------|
| 1   | 0.00 | 0.0000    | 0.0000   |
| 2   | 0.21 | -2.2753   | -21.4118 |
| 3   | 0.42 | -8.8131   | -40.4044 |
| 4   | 0.63 | -19.0399  | -55.5835 |
| 5   | 0.84 | -31.3639  | -61.3390 |
| 6   | 1.05 | -44.6139  | -64.4030 |
| 7   | 1.26 | -58.2247  | -64.7755 |
| 8   | 1.47 | -71.6312  | -62.4564 |
| 9   | 1.68 | -84.2680  | -57.4458 |
| 10  | 1.89 | -95.5700  | -49.7437 |
| 11  | 2.10 | -104.9720 | -39.3500 |

# Armature e tensioni nei materiali della fondazione

# Combinazione n° 24

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 48 di 99

#### Simbologia adottata

- B base della sezione espressa in [m]
- H altezza della sezione espressa in [m]
- A<sub>fi</sub> area di armatura in corrispondenza del lembo inferiore in [mq]
- A<sub>fs</sub> area di armatura in corrispondenza del lembo superiore in [mq]
- $\sigma_c$  tensione nel calcestruzzo espressa in [MPa]
- τ<sub>c</sub> tensione tangenziale nel calcestruzzo espressa in [MPa]
- $\sigma_{\text{fi}}$  tensione nell'armatura disposta in corrispondenza del lembo inferiore in [MPa]
- $\sigma_{fs}$  tensione nell'armatura disposta in corrispondenza del lembo superiore in [MPa]

#### Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | X    | B, H           | $A_{fs}$ | $A_{fi}$ | $\sigma_{c}$ | $	au_{c}$ | $\sigma_{fi}$ | $\sigma_{fs}$ |
|-----|------|----------------|----------|----------|--------------|-----------|---------------|---------------|
| 1   | 0.00 | 1.00, 0.500.00 | 0.00000  | 00565    | 0.000        | 0.000     | 0.000         | 0.000         |
| 2   | 0.05 | 1.00, 0.500.00 | 0.00000  | 00565    | 0.010        | 0.017     | 0.681         | 0.000         |
| 3   | 0.10 | 1.00, 0.500.00 | 010050.0 | 00565    | 0.035        | 0.034     | 2.706         | -0.240        |
| 4   | 0.15 | 1.00, 0.500.00 | 010050.0 | 00565    | 0.078        | 0.050     | 6.043         | -0.536        |
| 5   | 0.20 | 1.00, 0.500.00 | 010050.0 | 00565    | 0.137        | 0.066     | 10.659        | -0.946        |
| 6   | 0.25 | 1.00, 0.500.00 | 010050.0 | 00565    | 0.212        | 0.081     | 16.525        | -1.467        |
| 7   | 0.30 | 1.00, 0.500.00 | 010050.0 | 00565    | 0.303        | 0.096     | 23.609        | -2.096        |
| 8   | 0.35 | 1.00, 0.500.00 | 010050.0 | 00565    | 0.409        | 0.111     | 31.880        | -2.830        |
| 9   | 0.40 | 1.00, 0.500.00 | 010050.0 | 00565    | 0.530        | 0.125     | 41.307        | -3.666        |
| 10  | 0.45 | 1.00, 0.500.00 | 010050.0 | 00565    | 0.665        | 0.139     | 51.859        | -4.603        |
| 11  | 0.50 | 1.00, 0.500.00 | 010050.0 | 00565    | 0.815        | 0.153     | 63.504        | -5.637        |

#### Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | X    | B, H          | $A_{fs}$ | $A_{fi}$ | $\sigma_{c}$ | $	au_{c}$ | $\sigma_{fi}$ | $\sigma_{fs}$ |
|-----|------|---------------|----------|----------|--------------|-----------|---------------|---------------|
| 1   | 0.00 | 1.00, 0.500.0 | 0.000000 | 00565    | 0.000        | 0.000     | 0.000         | 0.000         |
| 2   | 0.21 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.098        | -0.055    | -0.874        | 5.310         |
| 3   | 0.42 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.378        | -0.103    | -3.384        | 20.567        |
| 4   | 0.63 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.816        | -0.142    | -7.312        | 44.433        |
| 5   | 0.84 | 1.00, 0.500.0 | 010050.0 | 00565    | 1.344        | -0.157    | -12.045       | 73.193        |
| 6   | 1.05 | 1.00, 0.500.0 | 010050.0 | 00565    | 1.912        | -0.165    | -17.133       | 104.114       |
| 7   | 1.26 | 1.00, 0.500.0 | 010050.0 | 00565    | 2.495        | -0.166    | -22.360       | 135.877       |
| 8   | 1.47 | 1.00, 0.500.0 | 010050.0 | 00565    | 3.070        | -0.160    | -27.508       | 167.163       |
| 9   | 1.68 | 1.00, 0.500.0 | 010050.0 | 00565    | 3.611        | -0.147    | -32.361       | 196.654       |
| 10  | 1.89 | 1.00, 0.500.0 | 010050.0 | 00565    | 4.096        | -0.127    | -36.702       | 223.029       |
| 11  | 2.10 | 1.00, 0.500.0 | 010050.0 | 00565    | 4.499        | -0.101    | -40.312       | 244.970       |

# Sollecitazioni fondazione di valle

# Combinazione n° 25

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr.  | X        | M                   | Т       |
|------|----------|---------------------|---------|
| 1    | 0.00     | 0.0000              | 0.0000  |
| 2    | 0.05     | 0.1463              | 5.8326  |
| 3    | 0.10     | 0.5811              | 11.5381 |
| 4    | 0.15     | 1.2980              | 17.1167 |
| 5    | 0.20     | 2.2907              | 22.5682 |
| 6    | 0.25     | 3.5527              | 27.8928 |
| 7    | 0.30     | 5.0779              | 33.0903 |
| 8    | 0.35     | 6.8597              | 38.1609 |
| 9    | 0.40     | 8.8918              | 43.1044 |
| 10   | 0.45     | 11.1680             | 47.9209 |
| 11   | 0.50     | 13.6818             | 52.6105 |
| PV_D | _SR_AP_C | A_3_F_001001_0_004_ | R_A_0   |

SIS Scpa 49 di 99

#### Sollecitazioni fondazione di monte

#### Combinazione n° 25

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M        | Т        |
|-----|------|----------|----------|
| 1   | 0.00 | 0.0000   | 0.0000   |
| 2   | 0.21 | -1.9125  | -17.8413 |
| 3   | 0.42 | -7.3365  | -33.4423 |
| 4   | 0.63 | -15.7884 | -45.9315 |
| 5   | 0.84 | -26.0003 | -50.9513 |
| 6   | 1.05 | -37.0312 | -53.7307 |
| 7   | 1.26 | -48.4104 | -54.2698 |
| 8   | 1.47 | -59.6677 | -52.5686 |
| 9   | 1.68 | -70.3324 | -48.6270 |
| 10  | 1.89 | -79.9342 | -42.4450 |
| 11  | 2.10 | -88.0025 | -34.0227 |

#### Armature e tensioni nei materiali della fondazione

#### Combinazione n° 25

Simbologia adottata

- B base della sezione espressa in [m]
- H altezza della sezione espressa in [m]
- A<sub>fi</sub> area di armatura in corrispondenza del lembo inferiore in [mq]
- A<sub>fs</sub> area di armatura in corrispondenza del lembo superiore in [mq]
- $\sigma_c$  tensione nel calcestruzzo espressa in [MPa]
- $au_c$  tensione tangenziale nel calcestruzzo espressa in [MPa]
- $\sigma_{\text{fi}}$  tensione nell'armatura disposta in corrispondenza del lembo inferiore in [MPa]
- $\sigma_{\text{fs}}$  tensione nell'armatura disposta in corrispondenza del lembo superiore in [MPa]

#### Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | X    | В, Н          | $A_{fs}$ | $A_{fi}$ | $\sigma_{c}$ | $	au_{c}$ | $\sigma_{fi}$ | $\sigma_{fs}$ |
|-----|------|---------------|----------|----------|--------------|-----------|---------------|---------------|
| 1   | 0.00 | 1.00, 0.500.0 | 0.000000 | 00565    | 0.000        | 0.000     | 0.000         | 0.000         |
| 2   | 0.05 | 1.00, 0.500.0 | 0.000000 | 00565    | 0.008        | 0.015     | 0.597         | 0.000         |
| 3   | 0.10 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.030        | 0.030     | 2.374         | -0.211        |
| 4   | 0.15 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.068        | 0.044     | 5.303         | -0.471        |
| 5   | 0.20 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.120        | 0.058     | 9.359         | -0.831        |
| 6   | 0.25 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.186        | 0.071     | 14.515        | -1.288        |
| 7   | 0.30 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.266        | 0.085     | 20.746        | -1.841        |
| 8   | 0.35 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.360        | 0.098     | 28.025        | -2.488        |
| 9   | 0.40 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.466        | 0.110     | 36.327        | -3.224        |
| 10  | 0.45 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.585        | 0.123     | 45.627        | -4.050        |
| 11  | 0.50 | 1.00, 0.500.0 | 010050.0 | 00565    | 0.717        | 0.135     | 55.897        | -4.961        |

## Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | Χ    | B, H          | $A_{fs}$   | $A_{fi}$ | $\sigma_{c}$ | $	au_{c}$ | $\sigma_{fi}$ | $\sigma_{fs}$ |
|-----|------|---------------|------------|----------|--------------|-----------|---------------|---------------|
| 1   | 0.00 | 1.00, 0.500.0 | 0.000000.0 | 00565    | 0.000        | 0.000     | 0.000         | 0.000         |
| 2   | 0.21 | 1.00, 0.500.0 | 0.0050.0   | 00565    | 0.082        | -0.046    | -0.734        | 4.463         |
| 3   | 0.42 | 1.00, 0.500.0 | 0.0050.0   | 00565    | 0.314        | -0.086    | -2.817        | 17.121        |
| 4   | 0.63 | 1.00, 0.500.0 | 0.0050.0   | 00565    | 0.677        | -0.117    | -6.063        | 36.845        |
| 5   | 0.84 | 1.00, 0.500.0 | 0.0050.0   | 00565    | 1.114        | -0.130    | -9.985        | 60.676        |
| 6   | 1.05 | 1.00, 0.500.0 | 0.0050.0   | 00565    | 1.587        | -0.137    | -14.221       | 86.418        |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 50 di 99

| 7  | 1.26 | 1.00, 0.500.0010050.000565 | 2.075 | -0.139 | -18.591 | 112.974 |
|----|------|----------------------------|-------|--------|---------|---------|
| 8  | 1.47 | 1.00, 0.500.0010050.000565 | 2.557 | -0.134 | -22.914 | 139.245 |
| 9  | 1.68 | 1.00, 0.500.0010050.000565 | 3.014 | -0.124 | -27.010 | 164.133 |
| 10 | 1.89 | 1.00, 0.500.0010050.000565 | 3.426 | -0.109 | -30.697 | 186.540 |
| 11 | 2.10 | 1.00, 0.500.0010050.000565 | 3.772 | -0.087 | -33.795 | 205.369 |

S/S Scpa 51 di 99

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

# 2.1.2. Tipo F5 - Muro tratto F con altezza fuori terra di 6m

## **Normativa**

# N.T.C. 2008 - Approccio 1

| •   |    |       |     |        |
|-----|----|-------|-----|--------|
| Sim | ha | בוחחו | 200 | ottata |
|     |    |       |     |        |

 $\begin{array}{ccc} \gamma_{\text{Gsfav}} & \text{Coefficiente parziale sfavorevole sulle azioni permanenti} \\ \gamma_{\text{Gfav}} & \text{Coefficiente parziale favorevole sulle azioni permanenti} \\ \gamma_{\text{Osfav}} & \text{Coefficiente parziale sfavorevole sulle azioni variabili} \\ \gamma_{\text{Ofav}} & \text{Coefficiente parziale favorevole sulle azioni variabili} \\ \gamma_{\text{tan}\psi} & \text{Coefficiente parziale di riduzione dell'angolo di attrito drenato} \\ \gamma_{\text{c'}} & \text{Coefficiente parziale di riduzione della coesione drenata} \\ \gamma_{\text{cu}} & \text{Coefficiente parziale di riduzione della coesione non drenata} \\ \gamma_{\text{qu}} & \text{Coefficiente parziale di riduzione del carico ultimo} \\ \end{array}$ 

γ<sub>γ</sub> Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

#### Coefficienti di partecipazione combinazioni statiche

| Coefficienti parziali | <u>per le azioni o per l'eff</u> | etto delle azioni:   |      |      |      |      |
|-----------------------|----------------------------------|----------------------|------|------|------|------|
| Carichi               | Effetto                          |                      | A1   | A2   | EQU  | HYD  |
| Permanenti            | Favorevole                       | γGfav                | 1.00 | 1.00 | 0.90 | 0.90 |
| Permanenti            | Sfavorevole                      | $\gamma_{\sf Gsfav}$ | 1.30 | 1.00 | 1.10 | 1.30 |
| Variabili             | Favorevole                       | γ̈Qfav               | 0.00 | 0.00 | 0.00 | 0.00 |
| Variabili             | Sfavorevole                      | γ̈Qsfav              | 1.50 | 1.30 | 1.50 | 1.50 |
|                       | per i parametri geotec           | nici del terreno:    |      |      |      |      |
| Parametri             |                                  |                      | M1   | M2   | M2   | M1   |
| Tangente dell'angol   | o di attrito                     | γtanφ'               | 1.00 | 1.25 | 1.25 | 1.00 |
| Coesione efficace     |                                  | γ <sub>c'</sub>      | 1.00 | 1.25 | 1.25 | 1.00 |
| Resistenza non dre    |                                  | $\gamma_{cu}$        | 1.00 | 1.40 | 1.40 | 1.00 |
| Resistenza a compr    |                                  | $\gamma_{qu}$        | 1.00 | 1.60 | 1.60 | 1.00 |
| Peso dell'unità di vo | olume                            | $\gamma_{\gamma}$    | 1.00 | 1.00 | 1.00 | 1.00 |
| Coefficienti di part  | ecipazione combina               | zioni sismiche       |      |      |      |      |
| Coefficienti parziali | per le azioni o per l'eff        | etto delle azioni:   |      |      |      |      |
| Carichi               | Effetto                          |                      | A1   | A2   | EQU  | HYD  |
| Permanenti            | Favorevole                       | γGfav                | 1.00 | 1.00 | 1.00 | 0.90 |
| Permanenti            | Sfavorevole                      | γGsfav               | 1.00 | 1.00 | 1.00 | 1.30 |
| Variabili             | Favorevole                       | γ̈Qfav               | 0.00 | 0.00 | 0.00 | 0.00 |
| Variabili             | Sfavorevole                      | γ̈Qsfav              | 1.00 | 1.00 | 1.00 | 1.50 |
| Coefficienti parziali | per i parametri geotec           | nici del terreno:    |      |      |      |      |
| Parametri             |                                  |                      | M1   | M2   | M2   | M1   |
| Tangente dell'angol   | o di attrito                     | γtanφ'               | 1.00 | 1.25 | 1.25 | 1.00 |
| Coesione efficace     |                                  | γ <sub>c'</sub>      | 1.00 | 1.25 | 1.25 | 1.00 |
| Resistenza non dre    | nata                             | $\gamma_{cu}$        | 1.00 | 1.40 | 1.40 | 1.00 |
| D:-t                  |                                  |                      |      |      |      |      |
| Resistenza a compr    | ressione uniassiale              | $\gamma_{qu}$        | 1.00 | 1.60 | 1.60 | 1.00 |

# **FONDAZIONE SUPERFICIALE**

| Coefficienti | narziali va  | per le verifiche  | agli stati limite | ultimi STR 6   | GEO  |
|--------------|--------------|-------------------|-------------------|----------------|------|
| COCITICICITI | Dai Ziali YR | Del le vellilelle | aun Stati iiiiite | ululli o i i e | JULU |

| Verifica                           | Coefficienti parziali |      |      |  |
|------------------------------------|-----------------------|------|------|--|
|                                    | R1                    | R2   | R3   |  |
| Capacità portante della fondazione | 1.00                  | 1.00 | 1.40 |  |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 52 di 99

Muro a mensola in c.a.

Cavalcavia Sv. Rlese CA.3F.01 – Relazione di calcolo muri in attacco alla spalla SP1

| Scorrimento                    | 1.00 | 1.00 | 1.10 |
|--------------------------------|------|------|------|
| Resistenza del terreno a valle | 1.00 | 1.00 | 1.40 |
| Stabilità globale              |      | 1.10 |      |

### Geometria muro e fondazione

Descrizione

| Altezza del paramento Spessore in sommità Spessore all'attacco con la fondazione Inclinazione paramento esterno Inclinazione paramento interno | 6.00 [m]<br>0.15 [m]<br>0.15 [m]<br>0.00 [°]<br>0.00 [°] |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| <u>Fondazione</u>                                                                                                                              |                                                          |

| Lunghezza mensola fondazione di valle       | 0.50 [m] |
|---------------------------------------------|----------|
| Lunghezza mensola fondazione di monte       | 3.25 [m] |
| Lunghezza totale fondazione                 | 3.90 [m] |
| Inclinazione piano di posa della fondazione | 0.00 [°] |
| Spessore fondazione                         | 0.80 [m] |
| Spessore magrone                            | 0.10 [m] |

# Contrafforti prefabbricati

| Altezza contrafforti  | 6.00 [m] |
|-----------------------|----------|
| Spessore contrafforti | 0.20 [m] |
| Larghezza in sommità  | 0.20 [m] |
| Larghezza alla base   | 1.06 [m] |
| Larghezza elemento    | 1.20 [m] |
| Numero contrafforti   | 8        |
| Posizione:            | Monte    |

# Materiali utilizzati per la struttura

Calcestruzzo

| Peso specifico                                           | 25.000 [kN/mc]  |
|----------------------------------------------------------|-----------------|
| Classe di Resistenza                                     | C25/30          |
| Resistenza caratteristica a compressione R <sub>ck</sub> | 30.00 [MPa]     |
| Modulo elastico E                                        | 31447.048 [MPa] |
| Acciaio                                                  |                 |
| Tino                                                     | B450C           |

Tipo B450C Tensione di snervamento  $\sigma_{fa}$  450 [MPa]

# Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m] Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

| N | X     | Υ    | Α    |
|---|-------|------|------|
| 1 | 30.00 | 0.00 | 0.00 |

#### Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0.00 [°]

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 53 di 99

Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0.60 [m]

#### Descrizione terreni

#### Simbologia adottata

Indice del terreno Nr. Descrizione Descrizione terreno

Peso di volume del terreno espresso in [kN/mc] Peso di volume saturo del terreno espresso in [kN/mc]

Angolo d'attrito interno espresso in [°]  $\phi$ Angolo d'attrito terra-muro espresso in [°] 8 Coesione espressa in [MPa] Adesione terra-muro espressa in [MPa]

**Descrizione** δ C **RILEVATO** 18.00 18.00 36.00 24.00 0.0000 0.0000 **FONDAZIONE** 20.00 20.00 40.00 40.00 0.0000 0.0000

# **Stratigrafia**

## Simbologia adottata

Ν Indice dello strato

Spessore dello strato espresso in [m] Н

Inclinazione espressa in [°]

Costante di Winkler orizzontale espressa in Kg/cm<sup>2</sup>/cm Kw

Coefficiente di spinta Ks Terreno dello strato Terreno

| Nr. | Н     | а    | Kw    | Ks   | Terreno           |
|-----|-------|------|-------|------|-------------------|
| 1   | 6.80  | 0.00 | 0.00  | 0.00 | RILEVATO          |
| 2   | 10.00 | 0.00 | 15.46 | 0.00 | <b>FONDAZIONE</b> |

## Condizioni di carico

### Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso. Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

Ascissa del punto di applicazione del carico concentrato espressa in [m]

Componente orizzontale del carico concentrato espressa in [kN]

Componente verticale del carico concentrato espressa in [kN]

F<sub>x</sub> F<sub>y</sub> M Momento espresso in [kNm]

 $X_i$   $X_f$ Ascissa del punto iniziale del carico ripartito espressa in [m] Ascissa del punto finale del carico ripartito espressa in [m]

 $Q_i$ Intensità del carico per x=Xi espressa in [kN/m]

Intensità del carico per x=X<sub>f</sub> espressa in [kN/m]

 $Q_f$ D/C Tipo carico: D=distribuito C=concentrato

Condizione n° 1 (PERMANENTI)

| Conc | <u> IIZIONE N. I. (PE</u> | KIVIAINEINII)   |                |                 |                                           |                  |
|------|---------------------------|-----------------|----------------|-----------------|-------------------------------------------|------------------|
| D    | Profilo                   | $X_i = 1.50$    | $X_f = 10.50$  | $Q_i = 4.0000$  | $Q_f = 4.0000$                            |                  |
|      |                           |                 | •              | •               | •                                         |                  |
| Conc | dizione n° 2 (MC          | BILI)           |                |                 |                                           |                  |
| С    | Paramento                 | <b>X=-</b> 0.05 | <b>Y</b> =0.00 | $F_x = 8.0000$  | $F_v = 0.0000$                            | M=8.0000         |
| D    | Profilo                   | $X_i = 1.50$    | $X_f = 4.50$   | $Q_i = 23.1000$ | $\dot{\mathbf{Q}}_{\mathbf{f}} = 23.1000$ |                  |
| D    | Profilo                   | $X_i = 4.50$    | $X_f = 7.50$   | $Q_i = 20.0000$ | $Q_f = 20.0000$                           |                  |
| D    | Profilo                   | $X_i = 7.50$    | $X_f = 10.50$  | $Q_i = 20.0000$ | $Q_f = 20.0000$                           |                  |
|      |                           |                 | •              | •               | •                                         |                  |
| Cond | dizione n° 3 (Vei         | nto)            |                |                 |                                           |                  |
| С    | Paramento                 | <b>X</b> =0.00  | <b>Y</b> =0.00 | $F_x = 3.0000$  | $F_v = 0.0000$                            | <b>M</b> =6.0000 |
|      |                           |                 |                |                 |                                           |                  |

### Descrizione combinazioni di carico

Simbologia adottata

Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 54 di 99

 $\begin{array}{ll} \gamma & \quad & \text{Coefficiente di partecipazione della condizione} \\ \mathcal{\Psi} & \quad & \text{Coefficiente di combinazione della condizione} \end{array}$ 

| Combinazione n° 1 - Caso A1-              |                    |              |              |              |
|-------------------------------------------|--------------------|--------------|--------------|--------------|
| Dogo proprio muro                         | S/F                | γ            | Ψ            | γ*Ψ          |
| Peso proprio muro Peso proprio terrapieno | FAV<br>FAV         | 1.00<br>1.00 | 1.00<br>1.00 | 1.00<br>1.00 |
| Spinta terreno                            | SFAV               | 1.30         | 1.00         | 1.30         |
| PERMANENTI                                | SFAV               | 1.30         | 1.00         | 1.30         |
| LIXIMANLINII                              | OI AV              | 1.50         | 1.00         | 1.50         |
| Combinazione n° 2 - Caso A2-              |                    |              | )T(          | * 177        |
| Peso proprio muro                         | <b>S/F</b><br>SFAV | γ<br>1.00    | Ψ<br>1.00    | γ*Ψ<br>1.00  |
| Peso proprio terrapieno                   | SFAV               | 1.00         | 1.00         | 1.00         |
| Spinta terreno                            | SFAV               | 1.00         | 1.00         | 1.00         |
| PERMANENTI                                | SFAV               | 1.00         | 1.00         | 1.00         |
|                                           |                    | 1.00         | 1.00         |              |
| Combinazione n° 3 - Caso EQI              |                    |              | )Tf          | * )1(        |
| Peso proprio muro                         | <b>S/F</b><br>FAV  | γ<br>0.90    | Ψ<br>1.00    | γ*Ψ<br>0.90  |
| Peso proprio terrapieno                   | FAV                | 0.90         | 1.00         | 0.90         |
| Spinta terreno                            | SFAV               | 1.10         | 1.00         | 1.10         |
| PERMANENTI                                | SFAV               | 1.10         | 1.00         | 1.10         |
|                                           | 01711              | 1.10         | 1.00         | 1.10         |
| Combinazione n° 4 - Caso A2-              |                    |              | )T(          | <b>*</b> 177 |
| Peso proprio muro                         | <b>S/F</b><br>SFAV | γ<br>1.00    | Ψ<br>1.00    | γ*Ψ<br>1.00  |
| Peso proprio terrapieno                   | SFAV               | 1.00         | 1.00         | 1.00         |
| Spinta terreno                            | SFAV               | 1.00         | 1.00         | 1.00         |
| PERMANENTI                                | SFAV               | 1.00         | 1.00         | 1.00         |
| O                                         | M4 (OTD)           |              |              |              |
| Combinazione n° 5 - Caso A1-              | <u>S/F</u>         | γ            | Ψ            | γ*Ψ          |
| Peso proprio muro                         | FAV                | 1.00         | 1.00         | 1.00         |
| Peso proprio terrapieno                   | FAV                | 1.00         | 1.00         | 1.00         |
| Spinta terreno                            | SFAV               | 1.30         | 1.00         | 1.30         |
| PERMANENTI                                | SFAV               | 1.30         | 1.00         | 1.30         |
| MOBILI                                    | SFAV               | 1.50         | 0.90         | 1.35         |
| Vento                                     | SFAV               | 1.50         | 0.60         | 0.90         |
| Combinazione n° 6 - Caso A2-              | M2 (GEO)           |              |              |              |
|                                           | S/F                | γ            | Ψ            | γ*Ψ          |
| Peso proprio muro                         | SFAV               | 1.00         | 1.00         | 1.00         |
| Peso proprio terrapieno                   | SFAV               | 1.00         | 1.00         | 1.00         |
| Spinta terreno                            | SFAV               | 1.00         | 1.00         | 1.00         |
| PERMANENTI                                | SFAV               | 1.00         | 1.00         | 1.00         |
| MOBILI                                    | SFAV               | 1.30         | 0.90         | 1.17         |
| Vento                                     | SFAV               | 1.30         | 0.60         | 0.78         |
| Combinazione n° 7 - Caso EQI              |                    |              |              |              |
| _                                         | S/F                | γ            | Ψ            | γ*Ψ          |
| Peso proprio muro                         | FAV                | 0.90         | 1.00         | 0.90         |
| Peso proprio terrapieno                   | FAV                | 0.90         | 1.00         | 0.90         |
| Spinta terreno                            | SFAV               | 1.10         | 1.00         | 1.10         |
| PERMANENTI                                | SFAV               | 1.10         | 1.00         | 1.10         |
| MOBILI<br>Vento                           | SFAV<br>SFAV       | 1.50<br>1.50 | 0.90<br>0.60 | 1.35<br>0.90 |
| v Grill                                   | SCAV               | 1.00         | 0.00         | 0.90         |
| Combinazione n° 8 - Caso A2-              |                    | <u>B)</u>    |              |              |
| _                                         | S/F                | γ            | Ψ            | γ*Ψ          |
| Peso proprio muro                         | SFAV               | 1.00         | 1.00         | 1.00         |
| PV_D_SR_AP_CA_3_F_001001                  | I_U_UU4_R_A_0      | J            |              |              |
| SIS Scna                                  |                    |              |              |              |

SIS Scpa 55 di 99

| <u>-</u> -                       |                   |                 |                     |         |
|----------------------------------|-------------------|-----------------|---------------------|---------|
| Cavalcavia Sv. Rlese CA.3F.01 -  | - Relazione di ca | lcolo muri in a | ttacco alla spa     | lla SP1 |
| Peso proprio terrapieno          | SFAV              | 1.00            | 1.00                | 1.00    |
| Spinta terreno                   | SFAV              | 1.00            | 1.00                | 1.00    |
| PERMANENTI                       | SFAV              | 1.00            | 1.00                | 1.00    |
| MOBILI                           | SFAV              | 1.30            | 0.90                | 1.17    |
|                                  |                   |                 |                     |         |
| Vento                            | SFAV              | 1.30            | 0.60                | 0.78    |
| Combinazione n° 9 - Caso A1      |                   |                 |                     |         |
|                                  | S/F               | γ               | Ψ                   | γ*Ψ     |
| Peso proprio muro                | FAV               | 1.00            | 1.00                | 1.00    |
| Peso proprio terrapieno          | FAV               | 1.00            | 1.00                | 1.00    |
| Spinta terreno                   | SFAV              | 1.30            | 1.00                | 1.30    |
| PERMANENTI                       | SFAV              | 1.30            | 1.00                | 1.30    |
| MOBILI                           | SFAV              | 1.50            | 0.68                | 1.02    |
| Vento                            | SFAV              | 1.50            | 1.00                | 1.50    |
| Combinazione n° 10 - Caso A      | 2-M2 (GEO)        |                 |                     |         |
|                                  | S/F               | γ               | Ψ                   | γ*Ψ     |
| Peso proprio muro                | SFAV              | 1.00            | 1.00                | 1.00    |
| Peso proprio terrapieno          | SFAV              | 1.00            | 1.00                | 1.00    |
| Spinta terreno                   | SFAV              | 1.00            | 1.00                | 1.00    |
| PERMANENTI                       | SFAV              | 1.00            | 1.00                | 1.00    |
|                                  |                   |                 |                     |         |
| MOBILI                           | SFAV              | 1.30            | 0.68                | 0.88    |
| Vento                            | SFAV              | 1.30            | 1.00                | 1.30    |
| Combinazione n° 11 - Caso E      | QU (SLU)          |                 |                     |         |
|                                  | S/F               | γ               | Ψ                   | γ*Ψ     |
| Peso proprio muro                | FAV               | 0.90            | 1.00                | 0.90    |
| Peso proprio terrapieno          | FAV               | 0.90            | 1.00                | 0.90    |
| Spinta terreno                   | SFAV              | 1.10            | 1.00                | 1.10    |
| PERMANENTI                       | SFAV              | 1.10            | 1.00                | 1.10    |
| MOBILI                           | SFAV              | 1.50            | 0.68                | 1.02    |
| Vento                            | SFAV              | 1.50            | 1.00                | 1.50    |
| Combinazione n° 12 - Caso A      | 2-M2 (GEO-ST      | ΔR)             |                     |         |
| Combinazione II 12 - Caso A.     | S/F               |                 | Ψ                   | γ*Ψ     |
| Dogo proprio muro                | SFAV              | γ               |                     |         |
| Peso proprio muro                |                   | 1.00            | 1.00                | 1.00    |
| Peso proprio terrapieno          | SFAV              | 1.00            | 1.00                | 1.00    |
| Spinta terreno                   | SFAV              | 1.00            | 1.00                | 1.00    |
| PERMANENTI                       | SFAV              | 1.00            | 1.00                | 1.00    |
| MOBILI                           | SFAV              | 1.30            | 0.68                | 0.88    |
| Vento                            | SFAV              | 1.30            | 1.00                | 1.30    |
| Combinazione n° 13 - Caso A      | 1-M1 (STR) - S    | isma Vert. n    | <u>egativo</u>      |         |
|                                  | S/F               | γ               | Ψ                   | γ*Ψ     |
| Peso proprio muro                | SFAV              | 1.00            | 1.00                | 1.00    |
| Peso proprio terrapieno          | SFAV              | 1.00            | 1.00                | 1.00    |
| Spinta terreno                   | SFAV              | 1.00            | 1.00                | 1.00    |
| PERMANENTI                       | SFAV              | 1.00            | 1.00                | 1.00    |
| Combinazione n° 14 - Caso A      | 1-M1 (STR) - S    | isma Vert n     | neitivo             |         |
| 23/113/1142/01/01/11 14 - 0430 A | S/F               | isina veit. pi  | <u>υδιτίνο</u><br>Ψ | γ*Ψ     |
| Peso proprio muro                | SFAV              | 1.00            | 1.00                | 1.00    |
|                                  |                   |                 |                     | 1.00    |
| Peso proprio terrapieno          | SFAV              | 1.00            | 1.00                |         |
| Spinta terreno                   | SFAV              | 1.00            | 1.00                | 1.00    |
| PERMANENTI                       | SFAV              | 1.00            | 1.00                | 1.00    |
| Combinazione n° 15 - Caso A      |                   | Sisma Vert. p   |                     |         |
|                                  | S/F               | γ               | Ψ                   | γ*Ψ     |
| Peso proprio muro                | SFAV              | 1.00            | 1.00                | 1.00    |
| Peso proprio terrapieno          | SFAV              | 1.00            | 1.00                | 1.00    |
| PV_D_SR_AP_CA_3_F_00100          | 01_0_004_R_A_0    | )               |                     |         |

*SIS Scpa* 56 di 99

| Cavalcavia Sv. Rlese CA.3F.01 – | Relazione di cal | colo muri in a | ttacco alla spa | lla SP1         |
|---------------------------------|------------------|----------------|-----------------|-----------------|
| Spinta terreno                  | SFAV             | 1.00           | 1.00            | 1.00            |
| PERMANENTI                      | SFAV             | 1.00           | 1.00            | 1.00            |
| I LIMW MALIATI                  | 01711            | 1.00           | 1.00            | 1.00            |
| Combinazione n° 16 - Caso A2    | 2-M2 (GEO) - S   | Sisma Vert. n  | egativo         |                 |
|                                 | S/F              | γ              | Ψ               | γ*Ψ             |
| Peso proprio muro               | SFAV             | 1.00           | 1.00            | 1.00            |
| Peso proprio terrapieno         | SFAV             | 1.00           | 1.00            | 1.00            |
| Spinta terreno                  | SFAV             | 1.00           | 1.00            | 1.00            |
| PERMANENTI                      | SFAV             | 1.00           | 1.00            | 1.00            |
| Combinazione n° 17 - Caso E0    | )                | ma Vert nec    | ıativo          |                 |
| COMBINAZIONE II 17 - Caso Ex    | S/F              | γ              | Ψ               | γ*Ψ             |
| Peso proprio muro               | FAV              | 1.00           | 1.00            | 1.00            |
| Peso proprio terrapieno         | FAV              | 1.00           | 1.00            | 1.00            |
| Spinta terreno                  | SFAV             | 1.00           | 1.00            | 1.00            |
| PERMANENTI                      | SFAV             | 1.00           | 1.00            | 1.00            |
|                                 |                  |                |                 |                 |
| Combinazione n° 18 - Caso E0    |                  | ma Vert. pos   |                 | 4. 344          |
|                                 | S/F              | γ              | Ψ               | γ*Ψ             |
| Peso proprio muro               | FAV              | 1.00           | 1.00            | 1.00            |
| Peso proprio terrapieno         | FAV              | 1.00           | 1.00            | 1.00            |
| Spinta terreno                  | SFAV             | 1.00           | 1.00            | 1.00            |
| PERMANENTI                      | SFAV             | 1.00           | 1.00            | 1.00            |
| Combinazione n° 19 - Caso A2    | 2-M2 (GEO-ST     | AB) - Sisma    | Vert. positivo  | <u>)</u>        |
|                                 | S/F              | γ              | Ψ               | γ*Ψ             |
| Peso proprio muro               | SFAV             | 1.00           | 1.00            | 1.00            |
| Peso proprio terrapieno         | SFAV             | 1.00           | 1.00            | 1.00            |
| Spinta terreno                  | SFAV             | 1.00           | 1.00            | 1.00            |
| PERMANENTI                      | SFAV             | 1.00           | 1.00            | 1.00            |
| Combinazione n° 20 - Caso A2    | 2-M2 (GEO-ST     | AB) - Sisma    | Vert. negativ   | 'O              |
| COMBINALIONS II 20 CGCC / L     | S/F              | γ              | Ψ               | <u>~</u><br>γ*Ψ |
| Peso proprio muro               | SFAV             | 1.00           | 1.00            | 1.00            |
| Peso proprio terrapieno         | SFAV             | 1.00           | 1.00            | 1.00            |
| Spinta terreno                  | SFAV             | 1.00           | 1.00            | 1.00            |
| PERMANENTI                      | SFAV             | 1.00           | 1.00            | 1.00            |
|                                 |                  |                |                 |                 |
| Combinazione n° 21 - Quasi P    |                  | <u>E)</u>      |                 |                 |
|                                 | S/F              | γ              | Ψ               | γ*Ψ             |
| Peso proprio muro               |                  | 1.00           | 1.00            | 1.00            |
| Peso proprio terrapieno         |                  | 1.00           | 1.00            | 1.00            |
| Spinta terreno PERMANENTI       | <br>CEA\/        | 1.00           | 1.00            | 1.00            |
| PERMANENTI                      | SFAV             | 1.00           | 1.00            | 1.00            |
| Combinazione n° 22 - Frequer    | ite (SLE)        |                |                 |                 |
| •                               | S/F              | γ              | Ψ               | γ * Ψ           |
| Peso proprio muro               |                  | 1.00           | 1.00            | 1.00            |
| Peso proprio terrapieno         |                  | 1.00           | 1.00            | 1.00            |
| Spinta terreno                  |                  | 1.00           | 1.00            | 1.00            |
| PERMANENTI                      | SFAV             | 1.00           | 1.00            | 1.00            |
| MOBILI                          | SFAV             | 1.00           | 0.75            | 0.75            |
| 0                               | (0) 5)           |                |                 |                 |
| Combinazione n° 23 - Frequer    |                  |                | )T(             | ± 177           |
| Dana manais                     | S/F              | γ              | Ψ               | γ*Ψ             |
| Peso proprio muro               |                  | 1.00           | 1.00            | 1.00            |
| Peso proprio terrapieno         |                  | 1.00           | 1.00            | 1.00            |
| Spinta terreno                  | <br>OEA\/        | 1.00           | 1.00            | 1.00            |
| PERMANENTI                      | SFAV             | 1.00           | 1.00            | 1.00            |
| Vento                           | SFAV             | 1.00           | 0.20            | 0.20            |
| PV_D_SR_AP_CA_3_F_00100         | 1_0_004_R_A_0    | )              |                 |                 |

*SIS Scpa* 57 di 99

Cavalcavia Sv. Rlese CA.3F.01 – Relazione di calcolo muri in attacco alla spalla SP1

| Combinazione n° 24 - Rara (SL | <u>_E)</u>         |      |      |      |
|-------------------------------|--------------------|------|------|------|
|                               | S/F                | γ    | Ψ    | γ*Ψ  |
| Peso proprio muro             |                    | 1.00 | 1.00 | 1.00 |
| Peso proprio terrapieno       |                    | 1.00 | 1.00 | 1.00 |
| Spinta terreno                |                    | 1.00 | 1.00 | 1.00 |
| PERMANENTI                    | SFAV               | 1.00 | 1.00 | 1.00 |
| MOBILI                        | SFAV               | 1.00 | 1.00 | 1.00 |
| Vento                         | SFAV               | 1.00 | 0.60 | 0.60 |
| Combinazione n° 25 - Rara (SL | _ <u>E)</u><br>S/F | γ    | Ψ    | γ*Ψ  |
| Peso proprio muro             |                    | 1.00 | 1.00 | 1.00 |
| Peso proprio terrapieno       |                    | 1.00 | 1.00 | 1.00 |
| Chinta tarrana                |                    | 1.00 | 1.00 | 1.00 |
| Spinta terreno                | <b></b>            | 1.00 | 1.00 | 1.00 |
| PERMANENTI                    | SFAV               | 1.00 | 1.00 | 1.00 |
| •                             | SFAV<br>SFAV       |      |      |      |
| PERMANENTI                    |                    | 1.00 | 1.00 | 1.00 |

# Impostazioni di analisi

| Metodo verifica sezioni                                       | Stato limite |
|---------------------------------------------------------------|--------------|
| Impostazioni verifiche SLU                                    |              |
| Coefficienti parziali per resistenze di calcolo dei materiali |              |
| Coefficiente di sicurezza calcestruzzo a compressione         | 1.60         |
| Coefficiente di sicurezza calcestruzzo a trazione             | 1.60         |
| Coefficiente di sicurezza acciaio                             | 1.15         |
| Fattore riduzione da resistenza cubica a cilindrica           | 0.83         |
| Fattore di riduzione per carichi di lungo periodo             | 0.85         |
| Coefficiente di sicurezza per la sezione                      | 1.00         |

# Impostazioni verifiche SLE

| Condizioni ambientali<br>Armatura ad aderenza migliorata<br>Verifica fessurazione | Ordinarie                                                                  |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Sensibilità delle armature                                                        | Poco sensibile                                                             |
| Valori limite delle aperture delle fessure                                        | $w_1 = 0.20$                                                               |
|                                                                                   | $w_2 = 0.30$                                                               |
|                                                                                   | $w_3 = 0.40$                                                               |
| Metodo di calcolo aperture delle fessure                                          | Circ. Min. 252 (15/10/1996)                                                |
| <u>Verifica delle tensioni</u>                                                    |                                                                            |
| Combinazione di carico                                                            | Rara $\sigma_c$ < 0.60 f <sub>ck</sub> - $\sigma_f$ < 0.80 f <sub>vk</sub> |
|                                                                                   | Quasi permanente $\sigma_c$ < 0.45 $f_{ck}$                                |

# Calcolo della portanza metodo di Vesic

Coefficiente correttivo su  $N\gamma$  per effetti cinematici (combinazioni sismiche SLU): 1.00 Coefficiente correttivo su  $N\gamma$  per effetti cinematici (combinazioni sismiche SLE): 1.00

## Impostazioni avanzate

Componente verticale della spinta nel calcolo delle sollecitazioni Influenza del terreno sulla fondazione di valle nelle verifiche e nel calcolo delle sollecitazioni Diagramma correttivo per eccentricità negativa con aliquota di parzializzazione pari a 0.00

#### Quadro riassuntivo coeff. di sicurezza calcolati

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

S/S Scpa 58 di 99

# Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione Sisma Combinazione sismica

 $\begin{array}{lll} CS_{SCO} & Coeff. \ di \ sicurezza \ allo \ scorrimento \\ CS_{R/B} & Coeff. \ di \ sicurezza \ al \ ribaltamento \\ CS_{OLIM} & Coeff. \ di \ sicurezza \ a \ carico \ limite \\ CS_{STAB} & Coeff. \ di \ sicurezza \ a \ stabilità \ globale \\ \end{array}$ 

| С  | Tipo        | Sisma                            | <b>CS</b> sco | <b>CS</b> <sub>rib</sub> | <b>CS</b> <sub>qlim</sub> | <b>CS</b> <sub>stab</sub> |
|----|-------------|----------------------------------|---------------|--------------------------|---------------------------|---------------------------|
| 1  | A1-M1 - [1] |                                  | 3.66          |                          | 15.10                     |                           |
| 2  | A2-M2 - [1] |                                  | 2.86          |                          | 6.24                      |                           |
| 3  | EQU - [1]   |                                  |               | 3.36                     |                           |                           |
| 4  | STAB - [1]  |                                  |               |                          |                           | 1.99                      |
| 5  | A1-M1 - [2] |                                  | 2.85          |                          | 8.93                      |                           |
| 6  | A2-M2 - [2] |                                  | 2.16          |                          | 3.53                      |                           |
| 7  | EQU - [2]   |                                  |               | 2.07                     |                           |                           |
| 8  | STAB - [2]  |                                  |               |                          |                           | 1.77                      |
| 9  | A1-M1 - [3] |                                  | 2.96          |                          | 9.70                      |                           |
| 10 | A2-M2 - [3] |                                  | 2.26          |                          | 3.89                      |                           |
| 11 | EQU - [3]   |                                  |               | 2.16                     |                           |                           |
| 12 | STAB - [3]  |                                  |               |                          |                           | 1.81                      |
| 13 | A1-M1 - [4] | Orizzontale + Verticale negativo | 2.54          |                          | 9.11                      |                           |
| 14 | A1-M1 - [4] | Orizzontale + Verticale positivo | 2.64          |                          | 8.94                      |                           |
| 15 | A2-M2 - [4] | Orizzontale + Verticale positivo | 1.77          |                          | 2.75                      |                           |
| 16 | A2-M2 - [4] | Orizzontale + Verticale negativo | 1.71          |                          | 2.77                      |                           |
| 17 | EQU - [4]   | Orizzontale + Verticale negativo |               | 2.09                     |                           |                           |
| 18 | EQU - [4]   | Orizzontale + Verticale positivo |               | 2.31                     |                           |                           |
| 19 | STAB - [4]  | Orizzontale + Verticale positivo |               |                          |                           | 1.61                      |
| 20 | STAB - [4]  | Orizzontale + Verticale negativo |               |                          |                           | 1.57                      |
| 21 | SLEQ - [1]  |                                  | 4.63          |                          | 18.75                     |                           |
| 22 | SLEF - [1]  |                                  | 3.81          |                          | 14.06                     |                           |
| 23 | SLEF - [1]  |                                  | 4.61          |                          | 18.58                     |                           |
| 24 | SLER - [1]  |                                  | 3.56          |                          | 12.48                     |                           |
| 25 | SLER - [1]  | <del></del>                      | 3.72          |                          | 13.42                     |                           |

# Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate :

Origine in testa al muro (spigolo di monte) Ascisse X (espresse in [m]) positive verso monte

Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle

Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

## Tipo di analisi

Calcolo della spinta metodo di Culmann
Calcolo del carico limite metodo di Vesic
Calcolo della stabilità globale metodo di Bishop
Calcolo della spinta in condizioni di Spinta attiva

#### <u>Sisma</u>

#### Combinazioni SLU

Coefficiente di intensità sismica orizzontale (percento)  $k_h = (a_g/g^*\beta_m^*St^*S) = 11.00$ 

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 59 di 99

| Combinazioni SLE       Accelerazione al suolo ag       1.31 [m/s^2]         Coefficiente di amplificazione per tipo di sottosuolo (S)       1.20         Coefficiente di amplificazione topografica (St)       1.00         Coefficiente di riutzuone (In.m.)       0.24         Rapporto intensità sismica verticale (percento)       k,=(a,y'g'β,m'St'S) = 3.86         Coefficiente di intensità sismica verticale (percento)       k,=(-0.50* k, = 1.93*         Forma diagramma incremento sismico       Stessa forma diagramma statico         Partecipazione spinta passiva (percento)       50.0         Lunghezza del muro       9.60 [m]         Peso muro       100.5000 [kN]         Baricentro del muro       x=0.99 y=-5.64         Superficie di spinta       x=0.99 y=-5.64         Punto superfore superficie di spinta       x=3.25 y=-6.80         Punto superfore superficie di spinta       x=3.25 y=-6.80         Altezza della superficie di spinta       x=3.25 y=-6.80         Altezza della superficie di spinta       x=3.25 y=-6.80         Altezza della superficie di spinta       x=3.25 y=-6.80         Valore della spinta statica       135.2804 kRN         Componente verizionale della spinta statica       123.5848 kRN          Componente verticale della spinta statica       123.5848 kRN          Componente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Coefficiente di intensità sismica verticale (percento)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $k_v = 0.50 * k_h = 5.50$                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Partecipazione spinta passiva (percento)  Lunghezza del muro  Peso muro  Baricentro del muro  Superficie di spinta Punto inferiore superficie di spinta Punto inferiore superficie di spinta Punto superficie di spinta Punto superficie di spinta Punto superficie di spinta Punto superficie di spinta Altezza della superficie di spinta Inclinazione superficie di spinta (a.80 [m]) Inclinazione superficie di spinta (a.80 [m]) Inclinazione superficie di spinta (a.80 [m]) Peso muro favorevole e Peso terrapieno favorevole  Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinazi. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche Peso terrapieno gravante sulla fondazione a monte Numero contraffort Peso del singolo contrafforte firefrio ad un metro di muro Baricentro contrafforte Peso del singolo contrafforte (riefrio ad un metro di muro Baricentro contrafforte Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle della muro Sforzo tangenziale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione Fensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle  Descentricità rispetto al baricentro della fondazione Carico ultimo della fondazione C | Accelerazione al suolo $a_g$ Coefficiente di amplificazione per tipo di sottosuolo (S) Coefficiente di amplificazione topografica (St) Coefficiente riduzione ( $\beta_m$ ) Rapporto intensità sismica verticale/orizzontale Coefficiente di intensità sismica orizzontale (percento)                                                                                                                                                                                                                                                                    | 1.20<br>1.00<br>0.24<br>0.50<br>$k_h=(a_g/g^*\beta_m^*St^*S)=3.86$                                                              |
| Lunghezza del muro  Peso muro Baricentro del muro  Superficie di spinta Punto inferiore superficie di spinta Punto inferiore superficie di spinta Punto superiore superficie di spinta Altezza della superficie di spinta Inclinazione superficie di spinta Inclinazione superficie di spinta Inclinazione superficie di spinta Inclinazione superficie di spinta (a.80 [m] Inclinazione la finazione della finazione la finazione la finazione della finazione la finazione della finazione reagente Inclinazione della finazione reagente Inclinazione della finazione reagente Inclinazione della finazione la finazione della finazione eterreno allo spigolo di valle  Tensioni sul terreno Lunghezza fondazione reagente Inclinazione della finazione di valle Inclinazione della finazione della finazio | Forma diagramma incremento sismico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stessa forma diagramma statico                                                                                                  |
| Baricentro del muro    Superficie di spinta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                 |
| Punto inferiore superficie di spinta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                 |
| Valore della spinta statica Componente orizzontale della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche  Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti Peso del singolo contrafforte Peso del contrafforte ontrafforte Peso del contrafforte riferito ad un metro di muro Baricentro contrafforte Peso del contrafforte niferito ad un metro di muro Baricentro contrafforte Peso del contrafforte niferito ad un metro di muro Baricentro contrafforte Peso del contrafforte Peso d | Punto inferiore superficie di spinta<br>Punto superiore superficie di spinta<br>Altezza della superficie di spinta<br>Inclinazione superficie di spinta(rispetto alla verticale)                                                                                                                                                                                                                                                                                                                                                                         | X = 3.25 Y = 0.00<br>6.80 [m]                                                                                                   |
| Componente orizzontale della spinta statica Componente verticale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche  Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro Baricentro contrafforte Risultanti Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Risultante dei carichi applicati in dir. verticale Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Risultante in fondazione Risu |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                 |
| Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti Peso del singolo contrafforte Peso del contrafforte iferito ad un metro di muro Baricentro contrafforte Risultanti Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Lunghezza fondazione reagente Risultante in fondazione Risultante in fondazione Risultante in fondazione Risultante in fondazione Risultante del a fondazione Risultante in fondazione Risultante in fondazione Risultante della fondazione Risultante in fondazione Risultante della fondazione Risultante in fondazione Risultante della fondazione Risultante della fondazione Risultante in fondazione Risultante in fondazione Risultante della fondazione Risultante della fondazione Risultante in fondazione Risultante della fondazione Risultante in fondazione Risultante (rispetto alla normale) Risultante della fondazione Risultante (rispetto alla fondazione Risulta | Componente orizzontale della spinta statica<br>Componente verticale della spinta statica<br>Punto d'applicazione della spinta<br>Inclinaz. della spinta rispetto alla normale alla superficie                                                                                                                                                                                                                                                                                                                                                            | 123.5848 [kN]<br>55.0235 [kN]<br>X = 3.25 [m] Y = -4.46 [m]<br>24.00 [°]                                                        |
| Peso del contrafforte riferito ad un metro di muro Baricentro contrafforte  Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Sforzo normale sul piano di posa della fondazione Scorzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione Lunghezza fondazione Sultante in fondazione Sultante in fondazione Sultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione Sultante in fondazione Sultante in fondazione Sultante (rispetto alla normale) Sultante in fondazione Sultante (rispetto alla normale) Sultante in fondazione Sultante i | Baricentro terrapieno gravante sulla fondazione a monte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X = 1.63 [m] Y = -3.00 [m]                                                                                                      |
| Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Sesistenza passiva a valle del muro Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Scentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione reagente Sesione della risultante (rispetto alla normale) Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione Sesione della fondazione Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle  123.5848 [kN] S26.0335 [kN] S26.0335 [kN] S27.024 [m] S28.03559 [kN] S29.03559 [kN] S20.03559 [kN] S20.0359 [kN] S20.03559 [kN] S20 | Peso del contrafforte riferito ad un metro di muro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.7500 [kN]                                                                                                                    |
| rensione terreno ano spigolo di monte 0.06590 [MPa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione  Tensioni sul terreno Lunghezza fondazione reagente | 526.0335 [kN] -41.1967 [kN] 526.0335 [kN] 123.5848 [kN] 0.24 [m] 3.90 [m] 540.3559 [kN] 13.22 [°] 124.1601 [kNm] 7941.5011 [kN] |
| <u>Fattori per il calcolo della capacità portante</u><br>PV_D_SR_AP_CA_3_F_001001_0_004_R_A_0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                 |

S/S Scpa 60 di 99

61 di 99

Cavalcavia Sv. Rlese CA.3F.01 – Relazione di calcolo muri in attacco alla spalla SP1

| Coeff. capacità portante        | $N_c = 61.35$ | $N_{q} = 48.93$ | $N_{y} = 78.02$     |
|---------------------------------|---------------|-----------------|---------------------|
| Fattori forma                   | $s_c = 1.00$  | $s_q = 1.00$    | $s_{y} = 1.00$      |
| Fattori inclinazione            | $i_c = 0.62$  | $i_q = 0.63$    | $i_{\gamma} = 0.48$ |
| Fattori profondità              | $d_c = 1.14$  | $d_{q} = 1.08$  | $d_{\gamma} = 1.00$ |
| Fattori inclinazione piano posa | $b_c = 1.00$  | $b_{q} = 1.00$  | $b_{\gamma} = 1.00$ |
| Fattori inclinazione pendio     | $g_c = 1.00$  | $g_{q} = 1.00$  | $g_{\gamma} = 1.00$ |

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 43.83$   $N'_{q} = 33.51$   $N'_{\gamma} = 37.75$ 

# **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a scorrimento 3.66
Coefficiente di sicurezza a carico ultimo 15.10

## Sollecitazioni fondazione di valle

# Combinazione n° 1

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M       | Т       |
|-----|------|---------|---------|
| 1   | 0.00 | 0.0000  | 0.0000  |
| 2   | 0.05 | 0.1848  | 7.3815  |
| 3   | 0.10 | 0.7371  | 14.7003 |
| 4   | 0.15 | 1.6538  | 21.9562 |
| 5   | 0.20 | 2.9317  | 29.1494 |
| 6   | 0.25 | 4.5677  | 36.2798 |
| 7   | 0.30 | 6.5586  | 43.3474 |
| 8   | 0.35 | 8.9014  | 50.3521 |
| 9   | 0.40 | 11.5928 | 57.2941 |
| 10  | 0.45 | 14.6297 | 64.1733 |
| 11  | 0.50 | 18.0091 | 70.9897 |

# Sollecitazioni fondazione di monte

# Combinazione n° 1

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M         | Т         |
|-----|------|-----------|-----------|
| 1   | 0.00 | 0.0000    | 0.0000    |
| 2   | 0.32 | -4.0653   | -24.5753  |
| 3   | 0.65 | -15.6866  | -46.4977  |
| 4   | 0.98 | -34.0014  | -65.7670  |
| 5   | 1.30 | -58.1477  | -82.3834  |
| 6   | 1.63 | -87.2632  | -96.3468  |
| 7   | 1.95 | -120.3817 | -106.6171 |
| 8   | 2.27 | -156.2364 | -113.5845 |
| 9   | 2.60 | -193.9243 | -117.8989 |
| 10  | 2.92 | -232.5832 | -119.5603 |
| 11  | 3.25 | -271.3511 | -118.5687 |

# Armature e tensioni nei materiali della fondazione

# Combinazione n° 1

Simbologia adottata

B base della sezione espressa in [cm]
H altezza della sezione espressa in [cm]

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa

 $\begin{array}{ll} A_{\text{fi}} & \text{area di armatura in corrispondenza del lembo inferiore in [cmq]} \\ A_{\text{fs}} & \text{area di armatura in corrispondenza del lembo superiore in [cmq]} \\ N_{\text{u}} & \text{sforzo normale ultimo espresso in [kN]} \end{array}$ 

 Nu
 sforzo normale ultimo espresso in [kN]

 Mu
 momento ultimo espresso in [kNm]

 CS
 coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

### Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | Υ    | B, H    | $A_{fs}$ | $A_{fi}$ | $N_{u}$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------|----------|----------|---------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 100, 80 | 20.11    | 7.70     | 0.00    | 0.00        | 1000.00 | 249.62   |           |           |
| 2   | 0.05 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 1200.08 | 249.62   |           |           |
| 3   | 0.10 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 300.87  | 249.62   |           |           |
| 4   | 0.15 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 134.10  | 249.62   |           |           |
| 5   | 0.20 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 75.65   | 249.62   |           |           |
| 6   | 0.25 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 48.55   | 249.62   |           |           |
| 7   | 0.30 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 33.81   | 249.62   |           |           |
| 8   | 0.35 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 24.91   | 249.62   |           |           |
| 9   | 0.40 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 19.13   | 249.62   |           |           |
| 10  | 0.45 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 15.16   | 249.62   |           |           |
| 11  | 0.50 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 12.31   | 249.62   |           |           |

#### Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | Υ    | В, Н    | $A_{fs}$ | $A_{fi}$ | $N_{u}$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------|----------|----------|---------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 100, 80 | 10.05    | 7.70     | 0.00    | 0.00        | 1000.00 | 249.62   |           |           |
| 2   | 0.32 | 100, 80 | 10.05    | 7.70     | 0.00    | -289.07     | 71.10   | 249.62   |           |           |
| 3   | 0.65 | 100, 80 | 10.05    | 7.70     | 0.00    | -289.07     | 18.43   | 249.62   |           |           |
| 4   | 0.98 | 100, 80 | 10.05    | 7.70     | 0.00    | -289.07     | 8.50    | 249.62   |           |           |
| 5   | 1.30 | 100, 80 | 10.05    | 7.70     | 0.00    | -289.07     | 4.97    | 249.62   |           |           |
| 6   | 1.63 | 100, 80 | 10.05    | 7.70     | 0.00    | -289.07     | 3.31    | 249.62   |           |           |
| 7   | 1.95 | 100, 80 | 10.05    | 7.70     | 0.00    | -289.07     | 2.40    | 249.62   |           |           |
| 8   | 2.27 | 100, 80 | 20.11    | 7.70     | 0.00    | -570.75     | 3.65    | 249.62   |           |           |
| 9   | 2.60 | 100, 80 | 20.11    | 7.70     | 0.00    | -570.75     | 2.94    | 249.62   |           |           |
| 10  | 2.92 | 100, 80 | 20.11    | 7.70     | 0.00    | -570.75     | 2.45    | 249.62   |           |           |
| 11  | 3.25 | 100, 80 | 20.11    | 7.70     | 0.00    | -570.75     | 2.10    | 249.62   |           |           |

#### COMBINAZIONE n° 2

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

| <u> </u>                                                                                                                                                                                                                                                              |                                                               |                                           |                        |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|------------------------|-----|
| Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche | 130.9903<br>123.3965<br>43.9517<br>X = 3.25<br>19.61<br>56.17 | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°]<br>[°] | Y = -4.46              | [m] |
| Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro Baricentro contrafforte                                | 346.6600<br>X = 1.63<br>8<br>18.9000<br>15.7500<br>X = 0.36   | [kN]<br>[m]<br>[kN]<br>[kN]<br>[m]        | Y = -3.00<br>Y = -3.68 | [m] |
| Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro                                                                                                                | 123.3965<br>512.8617<br>-31.9036                              | [kN]<br>[kN]<br>[kN]                      |                        |     |

SIS Scpa 62 di 99

| Sforzo normale sul piano di posa della fondazione     | 512.8617  | [kN]  |
|-------------------------------------------------------|-----------|-------|
| Sforzo tangenziale sul piano di posa della fondazione | 123.3965  | [kN]  |
| Eccentricità rispetto al baricentro della fondazione  | 0.28      | [m]   |
| Lunghezza fondazione reagente                         | 3.90      | [m]   |
| Risultante in fondazione                              | 527.4977  | [kN]  |
| Inclinazione della risultante (rispetto alla normale) | 13.53     | [°]   |
| Momento rispetto al baricentro della fondazione       | 145.9924  | [kNm] |
| Carico ultimo della fondazione                        | 3198.9507 | [kN]  |

# Tensioni sul terreno

| Lunghezza fondazione reagente          | 3.90    | [m]   |
|----------------------------------------|---------|-------|
| Tensione terreno allo spigolo di valle | 0.18909 | [MPa] |
| Tensione terreno allo spigolo di monte | 0.07391 | [MPa] |

#### Fattori per il calcolo della capacità portante

| Coeff. capacità portante        | $N_c = 61.35$ | $N_q = 48.93$  | $N_{y} = 78.02$     |
|---------------------------------|---------------|----------------|---------------------|
| Fattori forma                   | $s_c = 1.00$  | $s_q = 1.00$   | $s_{y} = 1.00$      |
| Fattori inclinazione            | $i_c = 0.61$  | $i_q = 0.62$   | $i_{\gamma} = 0.47$ |
| Fattori profondità              | $d_c = 1.14$  | $d_{q} = 1.10$ | $d_{\gamma} = 1.00$ |
| Fattori inclinazione piano posa | $b_c = 1.00$  | $b_{q} = 1.00$ | $b_{\gamma} = 1.00$ |
| Fattori inclinazione pendio     | $g_c = 1.00$  | $g_{q} = 1.00$ | $g_{\gamma} = 1.00$ |

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

| $N'_{c} = 43.83$ $N'_{g} = 33.51$ | N' <sub>v</sub> = | 37.7 | 5 |
|-----------------------------------|-------------------|------|---|
|-----------------------------------|-------------------|------|---|

# **COEFFICIENTI DI SICUREZZA**

| Coefficiente di sicurezza a scorrimento   | 2.86 |
|-------------------------------------------|------|
| Coefficiente di sicurezza a carico ultimo | 6.24 |

# Sollecitazioni fondazione di valle

# Combinazione n° 2

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M       | Т       |
|-----|------|---------|---------|
| 1   | 0.00 | 0.0000  | 0.0000  |
| 2   | 0.05 | 0.1958  | 7.8178  |
| 3   | 0.10 | 0.7805  | 15.5617 |
| 4   | 0.15 | 1.7507  | 23.2318 |
| 5   | 0.20 | 3.1025  | 30.8281 |
| 6   | 0.25 | 4.8323  | 38.3505 |
| 7   | 0.30 | 6.9363  | 45.7991 |
| 8   | 0.35 | 9.4109  | 53.1739 |
| 9   | 0.40 | 12.2525 | 60.4748 |
| 10  | 0.45 | 15.4572 | 67.7019 |
| 11  | 0.50 | 19.0214 | 74.8551 |

# Sollecitazioni fondazione di monte

#### Combinazione n° 2

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr.                                  | X    | M        | Т        |  |  |
|--------------------------------------|------|----------|----------|--|--|
| 1                                    | 0.00 | 0.0000   | 0.0000   |  |  |
| 2                                    | 0.32 | -2.8988  | -17.3187 |  |  |
| 3                                    | 0.65 | -10.9192 | -31.5180 |  |  |
| PV_D_SR_AP_CA_3_F_001001_0_004_R_A_0 |      |          |          |  |  |

SIS Scpa 63 di 99

| 4  | 0.98 | -23.0475  | -42.5978 |
|----|------|-----------|----------|
| 5  | 1.30 | -38.2698  | -50.5580 |
| 6  | 1.63 | -55.5723  | -55.3988 |
| 7  | 1.95 | -73.8611  | -56.3201 |
| 8  | 2.27 | -91.8111  | -53.6218 |
| 9  | 2.60 | -108.3773 | -47.8041 |
| 10 | 2.92 | -122.5459 | -38.8669 |
| 11 | 3 25 | -133 3029 | -26 8102 |

# Armature e tensioni nei materiali della fondazione

# Combinazione n° 2

Simbologia adottata

B base della sezione espressa in [cm]
H altezza della sezione espressa in [cm]

 $A_{\rm fi}$  area di armatura in corrispondenza del lembo inferiore in [cmq]  $A_{\rm fs}$  area di armatura in corrispondenza del lembo superiore in [cmq]

 $\begin{array}{ll} N_u & \text{sforzo normale ultimo espresso in [kN]} \\ M_u & \text{momento ultimo espresso in [kNm]} \\ CS & \text{coefficiente sicurezza sezione} \end{array}$ 

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]
VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

#### Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | Υ    | B, H    | $A_{fs}$ | $A_{fi}$ | $N_u$ | $\mathbf{M}_{\mathrm{u}}$ | CS      | $V_Rd$ | $V_{Rcd}$ | $V_Rsd$ |
|-----|------|---------|----------|----------|-------|---------------------------|---------|--------|-----------|---------|
| 1   | 0.00 | 100, 80 | 20.11    | 7.70     | 0.00  | 0.00                      | 1000.00 | 249.62 |           |         |
| 2   | 0.05 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77                    | 1132.94 | 249.62 |           |         |
| 3   | 0.10 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77                    | 284.13  | 249.62 |           |         |
| 4   | 0.15 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77                    | 126.68  | 249.62 |           |         |
| 5   | 0.20 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77                    | 71.48   | 249.62 |           |         |
| 6   | 0.25 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77                    | 45.89   | 249.62 |           |         |
| 7   | 0.30 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77                    | 31.97   | 249.62 |           |         |
| 8   | 0.35 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77                    | 23.57   | 249.62 |           |         |
| 9   | 0.40 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77                    | 18.10   | 249.62 |           |         |
| 10  | 0.45 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77                    | 14.35   | 249.62 |           |         |
| 11  | 0.50 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77                    | 11.66   | 249.62 |           |         |

## Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | Υ    | B, H    | $A_{fs}$ | $A_{fi}$ | $N_{u}$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------|----------|----------|---------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 100, 80 | 10.05    | 7.70     | 0.00    | 0.00        | 1000.00 | 249.62   |           |           |
| 2   | 0.32 | 100, 80 | 10.05    | 7.70     | 0.00    | -289.07     | 99.72   | 249.62   |           |           |
| 3   | 0.65 | 100, 80 | 10.05    | 7.70     | 0.00    | -289.07     | 26.47   | 249.62   |           |           |
| 4   | 0.98 | 100, 80 | 10.05    | 7.70     | 0.00    | -289.07     | 12.54   | 249.62   |           |           |
| 5   | 1.30 | 100, 80 | 10.05    | 7.70     | 0.00    | -289.07     | 7.55    | 249.62   |           |           |
| 6   | 1.63 | 100, 80 | 10.05    | 7.70     | 0.00    | -289.07     | 5.20    | 249.62   |           |           |
| 7   | 1.95 | 100, 80 | 10.05    | 7.70     | 0.00    | -289.07     | 3.91    | 249.62   |           |           |
| 8   | 2.27 | 100, 80 | 20.11    | 7.70     | 0.00    | -570.75     | 6.22    | 249.62   |           |           |
| 9   | 2.60 | 100, 80 | 20.11    | 7.70     | 0.00    | -570.75     | 5.27    | 249.62   |           |           |
| 10  | 2.92 | 100, 80 | 20.11    | 7.70     | 0.00    | -570.75     | 4.66    | 249.62   |           |           |
| 11  | 3.25 | 100, 80 | 20.11    | 7.70     | 0.00    | -570.75     | 4.28    | 249.62   |           |           |

#### COMBINAZIONE n° 3

| Valore della spinta statica                 | 144.0893 | [kN] |
|---------------------------------------------|----------|------|
| Componente orizzontale della spinta statica | 135.7362 | [kN] |
| Componente verticale della spinta statica   | 48.3469  | [kN] |

## PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

S/S Scpa 64 di 99

| Cavalcavia Sv. | Rlese CA.3F.01 - | - Relazione di i | calcolo muri ir | n attacco all | la snalla SP1 |
|----------------|------------------|------------------|-----------------|---------------|---------------|

| Punto d'applicazione della spinta<br>Inclinaz. della spinta rispetto alla normale alla superficie<br>Inclinazione linea di rottura in condizioni statiche | X = 3.25<br>19.61<br>56.17 | [m]<br>[°]<br>[°] | Y = -4.46 | [m] |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|-----------|-----|
| Peso terrapieno gravante sulla fondazione a monte<br>Baricentro terrapieno gravante sulla fondazione a monte<br>Numero contrafforti                       | 313.3940<br>X = 1.63<br>8  | [kN]<br>[m]       | Y = -3.00 | [m] |
| Peso del singolo contrafforte<br>Peso del contrafforte riferito ad un metro di muro                                                                       | 17.0100<br>14.1750         | [kN]<br>[kN]      |           |     |
| Baricentro contrafforte                                                                                                                                   | X = 0.36                   | [m]               | Y = -3.68 | [m] |
| Risultanti Risultante dei carichi applicati in dir. orizzontale                                                                                           | 135.7362                   | [kN]              |           |     |

| Risultante dei carichi applicati in dir. orizzontale  | 135.7362  | [kN]  |
|-------------------------------------------------------|-----------|-------|
| Risultante dei carichi applicati in dir. verticale    | 471.7659  | [kN]  |
| Resistenza passiva a valle del muro                   | -28.7132  | [kN]  |
| Momento ribaltante rispetto allo spigolo a valle      | 317.3301  | [kNm] |
| Momento stabilizzante rispetto allo spigolo a valle   | 1065.7803 | [kNm] |
| Sforzo normale sul piano di posa della fondazione     | 471.7659  | [kN]  |
| Sforzo tangenziale sul piano di posa della fondazione | 135.7362  | [kN]  |
| Eccentricità rispetto al baricentro della fondazione  | 0.36      | [m]   |
| Lunghezza fondazione reagente                         | 3.90      | [m]   |
| Risultante in fondazione                              | 490.9047  | [kN]  |
| Inclinazione della risultante (rispetto alla normale) | 16.05     | [°]   |
| Momento rispetto al baricentro della fondazione       | 171.4934  | [kNm] |
|                                                       |           |       |

#### **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a ribaltamento 3.36

# Stabilità globale muro + terreno

### Combinazione n° 4

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [MPa]

b larghezza della striscia espressa in [m]

*u* pressione neutra lungo la base della striscia espressa in [MPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -0.57 Y[m]= 1.71

Raggio del cerchio R[m]= 9.33

Ascissa a valle del cerchio Xi[m]= -6.62 Ascissa a monte del cerchio Xs[m]= 8.61

Larghezza della striscia dx[m]= 0.61 Coefficiente di sicurezza C= 1.99

Le strisce sono numerate da monte verso valle

#### Caratteristiche delle strisce

| Striscia | W       | α(°)  | Wsin $\alpha$ | b/cosα | ф     | С     | u     |
|----------|---------|-------|---------------|--------|-------|-------|-------|
| 1        | 1353.35 | 72.86 | 1293.26       | 2.07   | 30.17 | 0.000 | 0.000 |
| 2        | 3116.79 | 62.65 | 2768.32       | 1.33   | 30.17 | 0.000 | 0.000 |
| 3        | 4267.13 | 55.28 | 3507.53       | 1.07   | 30.17 | 0.000 | 0.000 |
| 4        | 5152.68 | 49.14 | 3896.79       | 0.93   | 30.17 | 0.000 | 0.000 |
| 5        | 5871.91 | 43.69 | 4055.80       | 0.84   | 30.17 | 0.000 | 0.000 |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 65 di 99

| Opere d'Arte Minori – Opere di attraversamento                        |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |                                                                                                                                                                                      |                                                                                                                                                                                                                       |                                                                                                                                                      |                                                                                                                                                                                                    |                                                                                                                                     | SPV - Pedemo                                                                                                                        | ntana Veneta |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                                                       | Cavalcavia Sv. F                                                                                                                                                                                                                                                      | Rlese CA.3F.0                                                                                                                                                                                                          | 1 – Relazio                                                                                                                                                                          | ne di calcolo m                                                                                                                                                                                                       | uri in attacco                                                                                                                                       | o alla spalla SF                                                                                                                                                                                   | 71                                                                                                                                  |                                                                                                                                     |              |
|                                                                       | 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25                                                                                                                                                      | 6470.28<br>6973.41<br>7397.37<br>7825.09<br>8414.87<br>8678.07<br>8802.08<br>8789.88<br>8892.14<br>5767.92<br>2632.20<br>2524.87<br>2428.18<br>2279.93<br>2078.06<br>1819.54<br>1508.46<br>1159.33<br>744.70<br>252.55 | 38.70<br>34.04<br>29.63<br>25.41<br>21.33<br>17.36<br>13.47<br>9.65<br>5.87<br>2.11<br>-1.63<br>-5.38<br>-9.16<br>-12.97<br>-16.85<br>-20.81<br>-24.87<br>-29.08<br>-33.46<br>-38.08 | 4045.49<br>3903.81<br>3657.36<br>3357.21<br>3060.15<br>2588.64<br>2050.36<br>1473.06<br>909.09<br>212.76<br>-74.92<br>-236.86<br>-386.48<br>-511.88<br>-602.37<br>-646.37<br>-634.46<br>-563.42<br>-410.62<br>-155.77 | 0.78<br>0.74<br>0.70<br>0.67<br>0.65<br>0.64<br>0.63<br>0.62<br>0.61<br>0.61<br>0.61<br>0.62<br>0.63<br>0.64<br>0.65<br>0.67<br>0.70<br>0.73<br>0.77 | 30.17<br>30.17<br>30.17<br>30.52<br>32.01<br>32.01<br>32.01<br>32.01<br>32.01<br>32.01<br>32.01<br>32.01<br>32.01<br>32.01<br>32.01<br>32.01<br>32.01<br>32.01<br>32.01<br>32.01<br>32.01<br>32.01 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 |              |
|                                                                       | $\Sigma W_i = 1129.751$ $\Sigma W_i \sin \alpha_i = 358.$ $\Sigma W_i \tan \phi_i = 684.$ $\Sigma \tan \alpha_i \tan \phi_i = 5.$                                                                                                                                     | 8 [kN]<br>5021 [kN]<br>5841 [kN]                                                                                                                                                                                       |                                                                                                                                                                                      |                                                                                                                                                                                                                       |                                                                                                                                                      | ••••                                                                                                                                                                                               | 0.000                                                                                                                               |                                                                                                                                     |              |
|                                                                       | COMBINAZION<br>Peso muro fav                                                                                                                                                                                                                                          |                                                                                                                                                                                                                        | 'eso terra <sub>l</sub>                                                                                                                                                              | pieno favore                                                                                                                                                                                                          | vole                                                                                                                                                 |                                                                                                                                                                                                    |                                                                                                                                     |                                                                                                                                     |              |
|                                                                       | Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche |                                                                                                                                                                                                                        |                                                                                                                                                                                      |                                                                                                                                                                                                                       | 180.4959<br>164.8912<br>73.4143<br>X = 3.25<br>24.00<br>59.72                                                                                        | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°]                                                                                                                                                                 | Y = -4.17                                                                                                                           | [m]                                                                                                                                 |              |
|                                                                       | Peso terrapieno gravante sulla fondazione a monte<br>Baricentro terrapieno gravante sulla fondazione a monte<br>Numero contrafforti<br>Peso del singolo contrafforte<br>Peso del contrafforte riferito ad un metro di muro                                            |                                                                                                                                                                                                                        |                                                                                                                                                                                      |                                                                                                                                                                                                                       | 403.3337<br>X = 1.63<br>8<br>18.9000<br>15.7500<br>X = 0.36                                                                                          | [kN]<br>[m]<br>[kN]<br>[kN]<br>[m]                                                                                                                                                                 | Y = -3.00<br>Y = -3.68                                                                                                              | [m]                                                                                                                                 |              |
| Baricentro contrafforte  Risultanti carichi esterni Componente dir. X |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |                                                                                                                                                                                      |                                                                                                                                                                                                                       | 13.50                                                                                                                                                | [kN]                                                                                                                                                                                               | . 0.00                                                                                                                              | []                                                                                                                                  |              |
|                                                                       | Risultanti Risultante dei o Risultante dei o Resistenza pas Sforzo normale Sforzo tangenz Eccentricità ris Lunghezza fon Risultante in fo Inclinazione de Momento rispe Carico ultimo di                                                                              | carichi applic<br>carichi applic<br>ssiva a valle d<br>s sul piano di<br>ciale sul piano<br>petto al baric<br>dazione reag<br>ndazione<br>ella risultante<br>tto al baricer                                            | ati in dir. v del muro posa della o di posa de centro della gente (rispetto a tro della fo                                                                                           | erticale<br>a fondazione<br>della fondazio<br>a fondazione<br>ulla normale)                                                                                                                                           | ne                                                                                                                                                   | 178.3912<br>598.9980<br>-41.1967<br>598.9980<br>178.3912<br>0.54<br>3.90<br>624.9977<br>16.58<br>323.4882<br>5346.5566                                                                             | [kN] [kN] [kN] [kN] [m] [m] [kN] [kN] [kN]                                                                                          |                                                                                                                                     |              |
|                                                                       | Tensioni sul tei                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                        | gente                                                                                                                                                                                | 4 D A O                                                                                                                                                                                                               |                                                                                                                                                      | 3.90                                                                                                                                                                                               | [m]                                                                                                                                 |                                                                                                                                     |              |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0
SIS Scpa 66 di 99

| Tensione terreno allo spigolo di valle | 0.28120 | [MPa] |
|----------------------------------------|---------|-------|
| Tensione terreno allo spigolo di monte | 0.02598 | [MPa] |

#### Fattori per il calcolo della capacità portante

| Coeff. capacità portante        | $N_c = 61.35$ | $N_q = 48.93$  | $N_{\gamma} = 78.02$ |
|---------------------------------|---------------|----------------|----------------------|
| Fattori forma                   | $s_c = 1.00$  | $s_{q} = 1.00$ | $s_{y} = 1.00$       |
| Fattori inclinazione            | $i_c = 0.54$  | $i_{q} = 0.55$ | $i_{\gamma} = 0.38$  |
| Fattori profondità              | $d_c = 1.14$  | $d_{q} = 1.08$ | $d_{\gamma} = 1.00$  |
| Fattori inclinazione piano posa | $b_c = 1.00$  | $b_{q} = 1.00$ | $b_{y} = 1.00$       |
| Fattori inclinazione pendio     | $g_c = 1.00$  | $g_{q} = 1.00$ | $g_{\gamma} = 1.00$  |

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 43.83$   $N'_{q} = 33.51$   $N'_{\gamma} = 37.75$ 

## **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a scorrimento 2.85 Coefficiente di sicurezza a carico ultimo 8.93

# Sollecitazioni fondazione di valle

## Combinazione n° 5

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M       | Т        |
|-----|------|---------|----------|
| 1   | 0.00 | 0.0000  | 0.0000   |
| 2   | 0.05 | 0.3056  | 12.1981  |
| 3   | 0.10 | 1.2171  | 24.2326  |
| 4   | 0.15 | 2.7262  | 36.1035  |
| 5   | 0.20 | 4.8247  | 47.8108  |
| 6   | 0.25 | 7.5045  | 59.3545  |
| 7   | 0.30 | 10.7574 | 70.7346  |
| 8   | 0.35 | 14.5753 | 81.9511  |
| 9   | 0.40 | 18.9498 | 93.0040  |
| 10  | 0.45 | 23.8729 | 103.8933 |
| 11  | 0.50 | 29.3364 | 114.6190 |

# Sollecitazioni fondazione di monte

# Combinazione n° 5

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M         | Т         |
|-----|------|-----------|-----------|
| 1   | 0.00 | 0.0000    | 0.0000    |
| 2   | 0.32 | -8.6462   | -52.0554  |
| 3   | 0.65 | -33.0872  | -97.1987  |
| 4   | 0.98 | -71.0765  | -135.4298 |
| 5   | 1.30 | -120.3677 | -166.7487 |
| 6   | 1.63 | -178.7144 | -191.1556 |
| 7   | 1.95 | -243.1423 | -201.3733 |
| 8   | 2.27 | -308.5739 | -200.1307 |
| 9   | 2.60 | -372.4785 | -191.9760 |
| 10  | 2.92 | -432.6095 | -176.9091 |
| 11  | 3.25 | -486.7206 | -154.9301 |

# Armature e tensioni nei materiali della fondazione

PV D SR AP CA 3 F 001- 001 0 004 R A 0

SIS Scpa 67 di 99

# Combinazione n° 5

Simbologia adottata

B base della sezione espressa in [cm] H altezza della sezione espressa in [cm]

 $A_{\rm fi}$  area di armatura in corrispondenza del lembo inferiore in [cmq]  $A_{\rm fs}$  area di armatura in corrispondenza del lembo superiore in [cmq]

 $\begin{array}{ll} N_u & \text{sforzo normale ultimo espresso in [kN]} \\ M_u & \text{momento ultimo espresso in [kNm]} \\ \text{CS} & \text{coefficiente sicurezza sezione} \end{array}$ 

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN] VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

# Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | Υ    | B, H    | $A_{fs}$ | $A_{fi}$ | $N_{\rm u}$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------|----------|----------|-------------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 100, 80 | 20.11    | 7.70     | 0.00        | 0.00        | 1000.00 | 249.62   |           |           |
| 2   | 0.05 | 100, 80 | 20.11    | 7.70     | 0.00        | 221.77      | 725.62  | 249.62   |           |           |
| 3   | 0.10 | 100, 80 | 20.11    | 7.70     | 0.00        | 221.77      | 182.22  | 249.62   |           |           |
| 4   | 0.15 | 100, 80 | 20.11    | 7.70     | 0.00        | 221.77      | 81.35   | 249.62   |           |           |
| 5   | 0.20 | 100, 80 | 20.11    | 7.70     | 0.00        | 221.77      | 45.97   | 249.62   |           |           |
| 6   | 0.25 | 100, 80 | 20.11    | 7.70     | 0.00        | 221.77      | 29.55   | 249.62   |           |           |
| 7   | 0.30 | 100, 80 | 20.11    | 7.70     | 0.00        | 221.77      | 20.62   | 249.62   |           |           |
| 8   | 0.35 | 100, 80 | 20.11    | 7.70     | 0.00        | 221.77      | 15.22   | 249.62   |           |           |
| 9   | 0.40 | 100, 80 | 20.11    | 7.70     | 0.00        | 221.77      | 11.70   | 249.62   |           |           |
| 10  | 0.45 | 100, 80 | 20.11    | 7.70     | 0.00        | 221.77      | 9.29    | 249.62   |           |           |
| 11  | 0.50 | 100, 80 | 20.11    | 7.70     | 0.00        | 221.77      | 7.56    | 249.62   |           |           |

#### Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | Υ    | В, Н    | $A_{fs}$ | $A_{fi}$ | $N_{\rm u}$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------|----------|----------|-------------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 100, 80 | 10.05    | 7.70     | 0.00        | 0.00        | 1000.00 | 249.62   |           |           |
| 2   | 0.32 | 100, 80 | 10.05    | 7.70     | 0.00        | -289.07     | 33.43   | 249.62   |           |           |
| 3   | 0.65 | 100, 80 | 10.05    | 7.70     | 0.00        | -289.07     | 8.74    | 249.62   |           |           |
| 4   | 0.98 | 100, 80 | 10.05    | 7.70     | 0.00        | -289.07     | 4.07    | 249.62   |           |           |
| 5   | 1.30 | 100, 80 | 10.05    | 7.70     | 0.00        | -289.07     | 2.40    | 249.62   |           |           |
| 6   | 1.63 | 100, 80 | 10.05    | 7.70     | 0.00        | -289.07     | 1.62    | 249.62   |           |           |
| 7   | 1.95 | 100, 80 | 10.05    | 7.70     | 0.00        | -289.07     | 1.19    | 249.62   |           |           |
| 8   | 2.27 | 100, 80 | 20.11    | 7.70     | 0.00        | -570.75     | 1.85    | 249.62   |           |           |
| 9   | 2.60 | 100, 80 | 20.11    | 7.70     | 0.00        | -570.75     | 1.53    | 249.62   |           |           |
| 10  | 2.92 | 100, 80 | 20.11    | 7.70     | 0.00        | -570.75     | 1.32    | 249.62   |           |           |
| 11  | 3.25 | 100, 80 | 20.11    | 7.70     | 0.00        | -570.75     | 1.17    | 249.62   |           |           |

# COMBINAZIONE n° 6

| Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche | 180.0387<br>169.6015<br>60.4092<br>X = 3.25<br>19.61<br>56.42 | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°]<br>[°] | Y = -4.15 | [m] |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|-----------|-----|
| Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro                                                        | 393.9572<br>X = 1.63<br>8<br>18.9000<br>15.7500               | [kN]<br>[m]<br>[kN]                       | Y = -3.00 | [m] |
| Baricentro contrafforte                                                                                                                                                                                                                                               | X = 0.36                                                      | [m]                                       | Y = -3.68 | [m] |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 68 di 99

69 di 99

Cavalcavia Sv. Rlese CA.3F.01 – Relazione di calcolo muri in attacco alla spalla SP1

| Risultanti | carichi | esterni |
|------------|---------|---------|

Componente dir. X

|                                                      |          | []      |
|------------------------------------------------------|----------|---------|
| Risultanti                                           |          |         |
| Risultante dei carichi applicati in dir. orizzontale | 181.3015 | [kN]    |
| Risultante dei carichi applicati in dir. verticale   | 576.6164 | [kN]    |
|                                                      | 04.0000  | FI A 17 |

Resistenza passiva a valle del muro -31.9036 [kN] Sforzo normale sul piano di posa della fondazione 576.6164 [kN] Sforzo tangenziale sul piano di posa della fondazione 181.3015 [kN] Eccentricità rispetto al baricentro della fondazione 0.61 [m] Lunghezza fondazione reagente 3.90 [m] Risultante in fondazione 604.4475 [kN] Inclinazione della risultante (rispetto alla normale) 17.45 [°] Momento rispetto al baricentro della fondazione 353.9140 [kNm]

Carico ultimo della fondazione 2032.7418

Tensioni sul terreno

Lunghezza fondazione reagente3.90[m]Tensione terreno allo spigolo di valle0.28746[MPa]Tensione terreno allo spigolo di monte0.00824[MPa]

#### Fattori per il calcolo della capacità portante

| Coeff. capacità portante        | $N_c = 61.35$ | $N_0 = 48.93$        | $N_{v} = 78.02$      |
|---------------------------------|---------------|----------------------|----------------------|
| Fattori forma                   | $s_c = 1.00$  | $\dot{s}_{0} = 1.00$ | $\dot{s}_{v} = 1.00$ |
| Fattori inclinazione            | $i_c = 0.50$  | $i_{0} = 0.52$       | $i_{v}^{'} = 0.36$   |
| Fattori profondità              | $d_c = 1.14$  | $d_{0} = 1.10$       | $d_{v}^{'} = 1.00$   |
| Fattori inclinazione piano posa | $b_c = 1.00$  | $b_{0} = 1.00$       | $b_{v} = 1.00$       |
| Fattori inclinazione pendio     | $g_c = 1.00$  | $g_{q} = 1.00$       | $g_{y}^{'} = 1.00$   |

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 43.83$   $N'_{q} = 33.51$   $N'_{\gamma} = 37.75$ 

11.70

[kN]

[kN]

# **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a scorrimento 2.16 Coefficiente di sicurezza a carico ultimo 3.53

#### Sollecitazioni fondazione di valle

#### Combinazione nº 6

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | М       | Т        |
|-----|------|---------|----------|
| 1   | 0.00 | 0.0000  | 0.0000   |
| 2   | 0.05 | 0.3178  | 12.6836  |
| 3   | 0.10 | 1.2654  | 25.1882  |
| 4   | 0.15 | 2.8337  | 37.5138  |
| 5   | 0.20 | 5.0138  | 49.6604  |
| 6   | 0.25 | 7.7967  | 61.6280  |
| 7   | 0.30 | 11.1736 | 73.4166  |
| 8   | 0.35 | 15.1354 | 85.0263  |
| 9   | 0.40 | 19.6732 | 96.4569  |
| 10  | 0.45 | 24.7781 | 107.7086 |
| 11  | 0.50 | 30.4411 | 118.7813 |

#### Sollecitazioni fondazione di monte

### Combinazione n° 6

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M         | Т         |
|-----|------|-----------|-----------|
| 1   | 0.00 | 0.0000    | 0.0000    |
| 2   | 0.32 | -7.5539   | -45.2249  |
| 3   | 0.65 | -28.5769  | -82.8875  |
| 4   | 0.98 | -60.6114  | -112.9878 |
| 5   | 1.30 | -101.1997 | -135.5258 |
| 6   | 1.63 | -147.8840 | -150.5016 |
| 7   | 1.95 | -197.5860 | -151.7098 |
| 8   | 2.27 | -245.4337 | -141.4773 |
| 9   | 2.60 | -288.7270 | -123.6825 |
| 10  | 2.92 | -325.0081 | -98.3255  |
| 11  | 3.25 | -351.8193 | -65.4062  |

# Armature e tensioni nei materiali della fondazione

# Combinazione n° 6

Simbologia adottata

base della sezione espressa in [cm] В

altezza della sezione espressa in [cm]

 $A_{\text{fi}} \\$ area di armatura in corrispondenza del lembo inferiore in [cmq] area di armatura in corrispondenza del lembo superiore in [cmq]  $A_{\text{fs}}$ 

 $N_{\text{u}}$ sforzo normale ultimo espresso in [kN]

 $M_u$ momento ultimo espresso in [kNm]

CŠ coefficiente sicurezza sezione

**VRcd** Aliquota di taglio assorbito dal cls, espresso in [kN]

**VRsd** Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

#### Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | Υ    | B, H    | $A_{fs}$ | $A_{fi}$ | $N_{\rm u}$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------|----------|----------|-------------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 100, 80 | 20.11    | 7.70     | 0.00        | 0.00        | 1000.00 | 249.62   |           |           |
| 2   | 0.05 | 100, 80 | 20.11    | 7.70     | 0.00        | 221.77      | 697.77  | 249.62   |           |           |
| 3   | 0.10 | 100, 80 | 20.11    | 7.70     | 0.00        | 221.77      | 175.26  | 249.62   |           |           |
| 4   | 0.15 | 100, 80 | 20.11    | 7.70     | 0.00        | 221.77      | 78.26   | 249.62   |           |           |
| 5   | 0.20 | 100, 80 | 20.11    | 7.70     | 0.00        | 221.77      | 44.23   | 249.62   |           |           |
| 6   | 0.25 | 100, 80 | 20.11    | 7.70     | 0.00        | 221.77      | 28.44   | 249.62   |           |           |
| 7   | 0.30 | 100, 80 | 20.11    | 7.70     | 0.00        | 221.77      | 19.85   | 249.62   |           |           |
| 8   | 0.35 | 100, 80 | 20.11    | 7.70     | 0.00        | 221.77      | 14.65   | 249.62   |           |           |
| 9   | 0.40 | 100, 80 | 20.11    | 7.70     | 0.00        | 221.77      | 11.27   | 249.62   |           |           |
| 10  | 0.45 | 100, 80 | 20.11    | 7.70     | 0.00        | 221.77      | 8.95    | 249.62   |           |           |
| 11  | 0.50 | 100, 80 | 20.11    | 7.70     | 0.00        | 221.77      | 7.29    | 249.62   |           |           |

#### Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| $V_{Rsd}$ | $V_{Rcd}$ | $V_{Rd}$ | CS      | $\mathbf{M}_{\mathbf{u}}$ | $N_{\rm u}$ | $A_{fi}$ | $A_{fs}$ | B, H    | Υ    | Nr. |
|-----------|-----------|----------|---------|---------------------------|-------------|----------|----------|---------|------|-----|
|           |           | 249.62   | 1000.00 | 0.00                      | 0.00        | 7.70     | 10.05    | 100, 80 | 0.00 | 1   |
|           |           | 249.62   | 38.27   | -289.07                   | 0.00        | 7.70     | 10.05    | 100, 80 | 0.32 | 2   |
|           |           | 249.62   | 10.12   | -289.07                   | 0.00        | 7.70     | 10.05    | 100, 80 | 0.65 | 3   |
|           |           | 249.62   | 4.77    | -289.07                   | 0.00        | 7.70     | 10.05    | 100, 80 | 0.98 | 4   |
|           |           | 249.62   | 2.86    | -289.07                   | 0.00        | 7.70     | 10.05    | 100, 80 | 1.30 | 5   |
|           |           | 249.62   | 1.95    | -289.07                   | 0.00        | 7.70     | 10.05    | 100, 80 | 1.63 | 6   |
|           |           | 249.62   | 1.46    | -289.07                   | 0.00        | 7.70     | 10.05    | 100, 80 | 1.95 | 7   |
|           |           | 249.62   | 2.33    | -570.75                   | 0.00        | 7.70     | 20.11    | 100, 80 | 2.27 | 8   |
|           |           | 249 62   | 1 98    |                           | 0.00        | 7 70     | 20 11    | 100 80  | 2.60 | 9   |

PV D SR AP CA 3 F 001- 001 0 004 R A 0

SIS Scpa 70 di 99

71 di 99

| Opere                                                                                                                                                                                                                                                                 | a Aite Millo                                                                                                                                                               | iii – Opere ui                                                                                                                                                                                  | attraversar                                                                                                                    | iiciito                                                       |                   |                    |                                                                                                                                    | ,                                                     |           | nitaria |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------|---------|
| Cavalo                                                                                                                                                                                                                                                                | avia Sv. Rle                                                                                                                                                               | ese CA.3F.0                                                                                                                                                                                     | 1 – Relazior                                                                                                                   | ne di calcol                                                  | o muri ir         | attacco            | alla spalla SF                                                                                                                     | P1                                                    |           |         |
| 10<br>11                                                                                                                                                                                                                                                              | 2.92<br>3.25                                                                                                                                                               | 100, 80<br>100, 80                                                                                                                                                                              | 20.11<br>20.11                                                                                                                 | 7.70<br>7.70                                                  |                   | -570.75<br>-570.75 |                                                                                                                                    | 249.62<br>249.62                                      | <br>      | <br>    |
| COME                                                                                                                                                                                                                                                                  | BINAZIONI                                                                                                                                                                  | E n° 7                                                                                                                                                                                          |                                                                                                                                |                                                               |                   |                    |                                                                                                                                    |                                                       |           |         |
| Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche |                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                                                                |                                                               |                   |                    | 200.6841<br>189.0500<br>67.3364<br>X = 3.25<br>19.61<br>56.42                                                                      | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°]<br>[°]             | Y = -4.13 | [m]     |
| Peso terrapieno gravante sulla fondazione a monte<br>Baricentro terrapieno gravante sulla fondazione a monte<br>Numero contrafforti                                                                                                                                   |                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                                                                |                                                               |                   |                    | 367.9677<br>X = 1.63<br>8                                                                                                          | [kN]<br>[m]                                           | Y = -3.00 | [m]     |
| Peso                                                                                                                                                                                                                                                                  |                                                                                                                                                                            | contrafforte<br>forte riferito<br>afforte                                                                                                                                                       | 17.0100<br>14.1750<br>X = 0.36                                                                                                 | [kN]<br>[kN]<br>[m]                                           | Y = -3.68         | [m]                |                                                                                                                                    |                                                       |           |         |
| Risultanti carichi esterni Componente dir. X                                                                                                                                                                                                                          |                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                                                                |                                                               |                   |                    | 13.50                                                                                                                              | [kN]                                                  |           |         |
| Risult<br>Resis<br>Mome<br>Sforzo<br>Sforzo<br>Eccer<br>Lungh<br>Risult<br>Inclina                                                                                                                                                                                    | ante dei ca<br>ante dei ca<br>tenza pass<br>ento ribalta<br>ento stabilizo<br>o normale so<br>o tangenzia<br>atricità rispe<br>aezza fonda<br>ante in fon-<br>azione della | arichi applica<br>arichi applica<br>siva a valle o<br>nte rispetto<br>zzante rispe<br>sul piano di<br>ale sul piano<br>etto al barica<br>azione reag<br>dazione<br>a risultante<br>o al baricen | ati in dir. ve<br>del muro<br>allo spigol<br>etto allo spi<br>posa della<br>o di posa d<br>entro della<br>ente<br>(rispetto al | erticale o a valle golo a vall fondazior ella fonda fondazior | ne<br>zione<br>ne |                    | 202.5500<br>545.3291<br>-28.7132<br>612.0088<br>1263.9946<br>545.3291<br>202.5500<br>0.75<br>3.59<br>581.7305<br>20.38<br>411.4060 | [kN] [kN] [kNm] [kNm] [kN] [kN] [m] [m] [kN] [m] [kN] |           |         |
|                                                                                                                                                                                                                                                                       |                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                                                                |                                                               |                   |                    |                                                                                                                                    |                                                       |           |         |

# **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a ribaltamento

2.07

# Stabilità globale muro + terreno

#### Combinazione n° 8

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

 $\alpha$  angolo fra la base della striscia e l'orizzontale espresso in  $[\degree]$  (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

coesione del terreno lungo la base della striscia espressa in [MPa]

b larghezza della striscia espressa in [m]

u pressione neutra lungo la base della striscia espressa in [MPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -0.57 Y[m]= 1.71

Raggio del cerchio R[m]= 9.33

Ascissa a valle del cerchio Xi[m]= -6.62 Ascissa a monte del cerchio Xs[m]= 8.61

Larghezza della striscia dx[m]= 0.61

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa

Coefficiente di sicurezza

C= 1.77

Le strisce sono numerate da monte verso valle

# Caratteristiche delle strisce

| Striscia | W        | α(°)   | Wsinα   | b/cosα | ф     | С     | u     |
|----------|----------|--------|---------|--------|-------|-------|-------|
| 1        | 2807.18  | 72.86  | 2682.54 | 2.07   | 30.17 | 0.000 | 0.000 |
| 2        | 4570.62  | 62.65  | 4059.60 | 1.33   | 30.17 | 0.000 | 0.000 |
| 3        | 5720.96  | 55.28  | 4702.56 | 1.07   | 30.17 | 0.000 | 0.000 |
| 4        | 6606.51  | 49.14  | 4996.27 | 0.93   | 30.17 | 0.000 | 0.000 |
| 5        | 7325.75  | 43.69  | 5059.98 | 0.84   | 30.17 | 0.000 | 0.000 |
| 6        | 7924.12  | 38.70  | 4954.48 | 0.78   | 30.17 | 0.000 | 0.000 |
| 7        | 8485.15  | 34.04  | 4750.11 | 0.74   | 30.17 | 0.000 | 0.000 |
| 8        | 9076.55  | 29.63  | 4487.57 | 0.70   | 30.17 | 0.000 | 0.000 |
| 9        | 9504.27  | 25.41  | 4077.63 | 0.67   | 30.52 | 0.000 | 0.000 |
| 10       | 10094.05 | 21.33  | 3670.80 | 0.65   | 32.01 | 0.000 | 0.000 |
| 11       | 10357.25 | 17.36  | 3089.54 | 0.64   | 32.01 | 0.000 | 0.000 |
| 12       | 9921.67  | 13.47  | 2311.15 | 0.63   | 32.01 | 0.000 | 0.000 |
| 13       | 8789.88  | 9.65   | 1473.06 | 0.62   | 32.01 | 0.000 | 0.000 |
| 14       | 8892.14  | 5.87   | 909.09  | 0.61   | 32.01 | 0.000 | 0.000 |
| 15       | 5767.92  | 2.11   | 212.76  | 0.61   | 32.01 | 0.000 | 0.000 |
| 16       | 2632.20  | -1.63  | -74.92  | 0.61   | 32.01 | 0.000 | 0.000 |
| 17       | 2524.87  | -5.38  | -236.86 | 0.61   | 32.01 | 0.000 | 0.000 |
| 18       | 2428.18  | -9.16  | -386.48 | 0.62   | 32.01 | 0.000 | 0.000 |
| 19       | 2279.93  | -12.97 | -511.88 | 0.63   | 32.01 | 0.000 | 0.000 |
| 20       | 2078.06  | -16.85 | -602.37 | 0.64   | 32.01 | 0.000 | 0.000 |
| 21       | 1819.54  | -20.81 | -646.37 | 0.65   | 32.01 | 0.000 | 0.000 |
| 22       | 1508.46  | -24.87 | -634.46 | 0.67   | 30.74 | 0.000 | 0.000 |
| 23       | 1159.33  | -29.08 | -563.42 | 0.70   | 30.17 | 0.000 | 0.000 |
| 24       | 744.70   | -33.46 | -410.62 | 0.73   | 30.17 | 0.000 | 0.000 |
| 25       | 252.55   | -38.08 | -155.77 | 0.77   | 30.17 | 0.000 | 0.000 |

 $\Sigma W_i$ = 1306.9710 [kN]

 $\Sigma W_i \sin \alpha_i = 463.0184 [kN]$ 

 $\Sigma W_{i} tan \phi_{i} = 789.6483 [kN]$ 

 $\Sigma tan\alpha_i tan\phi_i = 5.14$ 

# COMBINAZIONE n° 9

# Peso muro favorevole e Peso terrapieno favorevole

| Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche | 169.4418<br>154.7928<br>68.9182<br>X = 3.25<br>24.00<br>59.72 | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°] | Y = -4.23              | [m] |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------|------------------------|-----|
| Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro Baricentro contrafforte                                | 389.9935<br>X = 1.63<br>8<br>18.9000<br>15.7500<br>X = 0.36   | [kN]<br>[m]<br>[kN]<br>[kN]<br>[m] | Y = -3.00<br>Y = -3.68 | [m] |
| Risultanti carichi esterni Componente dir. X                                                                                                                                                                                                                          | 12.66                                                         | [kN]                               |                        |     |
| Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale                                                                                                                                                    | 167.4528<br>581.1617                                          | [kN]<br>[kN]                       |                        |     |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 72 di 99

| Resistenza passiva a valle del muro                   | -41.1967  | [kN]  |
|-------------------------------------------------------|-----------|-------|
| Sforzo normale sul piano di posa della fondazione     | 581.1617  | [kN]  |
| Sforzo tangenziale sul piano di posa della fondazione | 167.4528  | [kN]  |
| Eccentricità rispetto al baricentro della fondazione  | 0.51      | [m]   |
| Lunghezza fondazione reagente                         | 3.90      | [m]   |
| Risultante in fondazione                              | 604.8052  | [kN]  |
| Inclinazione della risultante (rispetto alla normale) | 16.07     | [°]   |
| Momento rispetto al baricentro della fondazione       | 296.4020  | [kNm] |
| Carico ultimo della fondazione                        | 5637.3232 | [kN]  |

# Tensioni sul terreno

| Lunghezza fondazione reagente          | 3.90    | [m]   |
|----------------------------------------|---------|-------|
| Tensione terreno allo spigolo di valle | 0.26594 | [MPa] |
| Tensione terreno allo spigolo di monte | 0.03209 | [MPa] |

# Fattori per il calcolo della capacità portante

| Coeff. capacità portante        | $N_c = 61.35$ | $N_q = 48.93$  | $N_{\gamma} = 78.02$ |
|---------------------------------|---------------|----------------|----------------------|
| Fattori forma                   | $s_c = 1.00$  | $s_q = 1.00$   | $s_{\gamma} = 1.00$  |
| Fattori inclinazione            | $i_c = 0.55$  | $i_{q} = 0.56$ | $i_{y} = 0.40$       |
| Fattori profondità              | $d_c = 1.14$  | $d_{q} = 1.08$ | $d_{\gamma} = 1.00$  |
| Fattori inclinazione piano posa | $b_c = 1.00$  | $b_{q} = 1.00$ | $b_{\gamma} = 1.00$  |
| Fattori inclinazione pendio     | $g_c = 1.00$  | $g_{q} = 1.00$ | $g_{\gamma} = 1.00$  |

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 43.83$$
  $N'_{q} = 33.51$   $N'_{\gamma} = 37.75$ 

# **COEFFICIENTI DI SICUREZZA**

| Coefficiente di sicurezza a scorri | mento  | 2.96 |
|------------------------------------|--------|------|
| Coefficiente di sicurezza a carico | ultimo | 9.70 |

# Sollecitazioni fondazione di valle

#### Combinazione n° 9

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | Χ    | М       | Т        |
|-----|------|---------|----------|
| 1   | 0.00 | 0.0000  | 0.0000   |
| 2   | 0.05 | 0.2867  | 11.4420  |
| 3   | 0.10 | 1.1417  | 22.7342  |
| 4   | 0.15 | 2.5576  | 33.8764  |
| 5   | 0.20 | 4.5268  | 44.8687  |
| 6   | 0.25 | 7.0420  | 55.7111  |
| 7   | 0.30 | 10.0955 | 66.4037  |
| 8   | 0.35 | 13.6798 | 76.9463  |
| 9   | 0.40 | 17.7876 | 87.3390  |
| 10  | 0.45 | 22.4112 | 97.5818  |
| 11  | 0.50 | 27.5433 | 107.6747 |

# Sollecitazioni fondazione di monte

# Combinazione n° 9

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. |   |    | Χ   |    |   |   |      | M    |   |     |   |    |     | Т    |
|-----|---|----|-----|----|---|---|------|------|---|-----|---|----|-----|------|
| 1   |   | 0  | .00 |    |   |   | 0.0  | 0000 |   |     |   |    | 0.0 | 0000 |
| 2   |   | 0  | .32 |    |   |   | -7.9 | 9522 |   |     |   | -4 | 7.  | 8811 |
| PV  | D | SR | ΑP  | CA | 3 | F | 001- | 001  | 0 | 004 | R | Α  | 0   |      |

SIS Scpa 73 di 99

| 3  | 0.65 | -30.4366  | -89.4288  |
|----|------|-----------|-----------|
| 4  | 0.98 | -65.3948  | -124.6431 |
| 5  | 1.30 | -110.7685 | -153.5240 |
| 6  | 1.63 | -164.4993 | -176.0716 |
| 7  | 1.95 | -223.9537 | -186.5334 |
| 8  | 2.27 | -284.8352 | -187.0666 |
| 9  | 2.60 | -344.8608 | -181.2664 |
| 10 | 2.92 | -401.9722 | -169.1328 |
| 11 | 3.25 | -454.1111 | -150.6658 |

# Armature e tensioni nei materiali della fondazione

#### Combinazione n° 9

Simbologia adottata

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

 $A_{\rm fi}$  area di armatura in corrispondenza del lembo inferiore in [cmq]  $A_{\rm fs}$  area di armatura in corrispondenza del lembo superiore in [cmq]

N<sub>u</sub> sforzo normale ultimo espresso in [kN]
M<sub>u</sub> momento ultimo espresso in [kNm]
CS coefficiente sicurezza sezione

CS coefficiente sicurezza sezione
VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

# Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | Υ    | В, Н    | $A_{fs}$ | $A_{fi}$ | $N_u$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------|----------|----------|-------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 100, 80 | 20.11    | 7.70     | 0.00  | 0.00        | 1000.00 | 249.62   |           |           |
| 2   | 0.05 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77      | 773.61  | 249.62   |           |           |
| 3   | 0.10 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77      | 194.25  | 249.62   |           |           |
| 4   | 0.15 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77      | 86.71   | 249.62   |           |           |
| 5   | 0.20 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77      | 48.99   | 249.62   |           |           |
| 6   | 0.25 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77      | 31.49   | 249.62   |           |           |
| 7   | 0.30 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77      | 21.97   | 249.62   |           |           |
| 8   | 0.35 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77      | 16.21   | 249.62   |           |           |
| 9   | 0.40 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77      | 12.47   | 249.62   |           |           |
| 10  | 0.45 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77      | 9.90    | 249.62   |           |           |
| 11  | 0.50 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77      | 8.05    | 249.62   |           |           |

# Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | Υ    | B, H    | $A_{fs}$ | $A_{fi}$ | $N_u$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------|----------|----------|-------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 100, 80 | 10.05    | 7.70     | 0.00  | 0.00        | 1000.00 | 249.62   |           |           |
| 2   | 0.32 | 100, 80 | 10.05    | 7.70     | 0.00  | -289.07     | 36.35   | 249.62   |           |           |
| 3   | 0.65 | 100, 80 | 10.05    | 7.70     | 0.00  | -289.07     | 9.50    | 249.62   |           |           |
| 4   | 0.98 | 100, 80 | 10.05    | 7.70     | 0.00  | -289.07     | 4.42    | 249.62   |           |           |
| 5   | 1.30 | 100, 80 | 10.05    | 7.70     | 0.00  | -289.07     | 2.61    | 249.62   |           |           |
| 6   | 1.63 | 100, 80 | 10.05    | 7.70     | 0.00  | -289.07     | 1.76    | 249.62   |           |           |
| 7   | 1.95 | 100, 80 | 10.05    | 7.70     | 0.00  | -289.07     | 1.29    | 249.62   |           |           |
| 8   | 2.27 | 100, 80 | 20.11    | 7.70     | 0.00  | -570.75     | 2.00    | 249.62   |           |           |
| 9   | 2.60 | 100, 80 | 20.11    | 7.70     | 0.00  | -570.75     | 1.66    | 249.62   |           |           |
| 10  | 2.92 | 100, 80 | 20.11    | 7.70     | 0.00  | -570.75     | 1.42    | 249.62   |           |           |
| 11  | 3.25 | 100, 80 | 20.11    | 7.70     | 0.00  | -570.75     | 1.26    | 249.62   |           |           |

# COMBINAZIONE n° 10

Valore della spinta statica 168.0479 [kN] Componente orizzontale della spinta statica 158.3058 [kN]

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

S/S Scpa 74 di 99

Componente verticale della spinta statica

| Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche                  | X = 3.25<br>19.61<br>56.36           | [m]<br>[°]<br>[°]   | Y = -4.21 | [m] |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------|-----------|-----|
| Peso terrapieno gravante sulla fondazione a monte<br>Baricentro terrapieno gravante sulla fondazione a monte<br>Numero contrafforti<br>Peso del singolo contrafforte | 382.3957<br>X = 1.63<br>8<br>18.9000 | [kN]<br>[m]<br>[kN] | Y = -3.00 | [m] |
| Peso del contrafforte riferito ad un metro di muro Baricentro contrafforte                                                                                           | 15.7500<br>X = 0.36                  | [kN]<br>[m]         | Y = -3.68 | [m] |

56.3858

[kN]

# Risultanti carichi esterni

Componente dir. X 10.97 [kN]

#### Risultanti

| Risultante dei carichi applicati in dir. orizzontale  | 169.2778  | [kN]  |
|-------------------------------------------------------|-----------|-------|
| Risultante dei carichi applicati in dir. verticale    | 561.0315  | [kN]  |
| Resistenza passiva a valle del muro                   | -31.9036  | [kN]  |
| Sforzo normale sul piano di posa della fondazione     | 561.0315  | [kN]  |
| Sforzo tangenziale sul piano di posa della fondazione | 169.2778  | [kN]  |
| Eccentricità rispetto al baricentro della fondazione  | 0.57      | [m]   |
| Lunghezza fondazione reagente                         | 3.90      | [m]   |
| Risultante in fondazione                              | 586.0131  | [kN]  |
| Inclinazione della risultante (rispetto alla normale) | 16.79     | [°]   |
| Momento rispetto al baricentro della fondazione       | 321.8385  | [kNm] |
| Carico ultimo della fondazione                        | 2182.8659 | [kN]  |

# Tensioni sul terreno

| Lunghezza fondazione reagente          | 3.90    | [m]   |
|----------------------------------------|---------|-------|
| Tensione terreno allo spigolo di valle | 0.27081 | [MPa] |
| Tensione terreno allo spigolo di monte | 0.01690 | [MPa] |

#### Fattori per il calcolo della capacità portante

| r attorr per il carcore della capacità pe | rtarito       |                 |                     |
|-------------------------------------------|---------------|-----------------|---------------------|
| Coeff. capacità portante                  | $N_c = 61.35$ | $N_{q} = 48.93$ | $N_{y} = 78.02$     |
| Fattori forma                             | $s_c = 1.00$  | $s_q = 1.00$    | $s_{y} = 1.00$      |
| Fattori inclinazione                      | $i_c = 0.52$  | $i_{q} = 0.54$  | $i_{\gamma} = 0.38$ |
| Fattori profondità                        | $d_c = 1.14$  | $d_{q} = 1.10$  | $d_{y} = 1.00$      |
| Fattori inclinazione piano posa           | $b_c = 1.00$  | $b_{q} = 1.00$  | $b_{y} = 1.00$      |
| Fattori inclinazione pendio               | $g_c = 1.00$  | $g_{q} = 1.00$  | $g_{v} = 1.00$      |

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 43.83$$
  $N'_{g} = 33.51$   $N'_{y} = 37.75$ 

# **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a scorrimento 2.26 Coefficiente di sicurezza a carico ultimo 3.89

# Sollecitazioni fondazione di valle

# Combinazione n° 10

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M      | Т       |
|-----|------|--------|---------|
| 1   | 0.00 | 0.0000 | 0.0000  |
| 2   | 0.05 | 0.2972 | 11.8592 |
| 3   | 0.10 | 1.1832 | 23.5557 |
| 4   | 0.15 | 2.6500 | 35.0894 |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 75 di 99

| 5  | 0.20 | 4.6894  | 46.4603  |
|----|------|---------|----------|
| 6  | 0.25 | 7.2933  | 57.6685  |
| 7  | 0.30 | 10.4536 | 68.7139  |
| 8  | 0.35 | 14.1620 | 79.5965  |
| 9  | 0.40 | 18.4105 | 90.3164  |
| 10 | 0.45 | 23.1909 | 100.8735 |
| 11 | 0.50 | 28.4951 | 111.2678 |

# Sollecitazioni fondazione di monte

#### Combinazione n° 10

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M         | T         |
|-----|------|-----------|-----------|
| 1   | 0.00 | 0.0000    | 0.0000    |
| 2   | 0.32 | -6.7849   | -40.6069  |
| 3   | 0.65 | -25.6495  | -74.3369  |
| 4   | 0.98 | -54.3589  | -101.1900 |
| 5   | 1.30 | -90.6780  | -121.1663 |
| 6   | 1.63 | -132.3719 | -134.2656 |
| 7   | 1.95 | -176.7173 | -135.6040 |
| 8   | 2.27 | -219.5788 | -127.0129 |
| 9   | 2.60 | -258.5306 | -111.5449 |
| 10  | 2.92 | -291.3380 | -89.2001  |
| 11  | 3.25 | -315.7657 | -59.9783  |

# Armature e tensioni nei materiali della fondazione

# Combinazione n° 10

Simbologia adottata

B base della sezione espressa in [cm] H altezza della sezione espressa in [cm]

A<sub>fi</sub> area di armatura in corrispondenza del lembo inferiore in [cmq]

A<sub>fs</sub> area di armatura in corrispondenza del lembo superiore in [cmq]

 $\begin{array}{ll} N_u & \text{sforzo normale ultimo espresso in [kN]} \\ M_u & \text{momento ultimo espresso in [kNm]} \end{array}$ 

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

# Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | Υ    | B, H    | $A_{fs}$ | $A_{fi}$ | $N_{u}$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------|----------|----------|---------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 100, 80 | 20.11    | 7.70     | 0.00    | 0.00        | 1000.00 | 249.62   |           |           |
| 2   | 0.05 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 746.32  | 249.62   |           |           |
| 3   | 0.10 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 187.44  | 249.62   |           |           |
| 4   | 0.15 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 83.69   | 249.62   |           |           |
| 5   | 0.20 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 47.29   | 249.62   |           |           |
| 6   | 0.25 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 30.41   | 249.62   |           |           |
| 7   | 0.30 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 21.22   | 249.62   |           |           |
| 8   | 0.35 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 15.66   | 249.62   |           |           |
| 9   | 0.40 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 12.05   | 249.62   |           |           |
| 10  | 0.45 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 9.56    | 249.62   |           |           |
| 11  | 0.50 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 7.78    | 249.62   |           |           |

# Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

*SIS Scpa* 76 di 99

| <b>Nr.</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Y</b><br>0.00                  | <b>B, H</b> 100, 80                       | <b>A</b> <sub>fs</sub><br>10.05 | <b>A</b> <sub>fi</sub><br>7.70 | <b>N</b> <sub>u</sub><br>0.00 | <b>M</b> լ<br>0.00        | <b>CS</b> 1000.00                                                                                                                  | <b>V</b> <sub>Rd</sub> 249.62                         | V <sub>Rcd</sub> | V <sub>Rsd</sub> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|---------------------------------|--------------------------------|-------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------|------------------|
| 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.32<br>0.65                      | 100, 80<br>100, 80                        | 10.05<br>10.05                  | 7.70<br>7.70                   | 0.00                          | -289.07                   | 11.27                                                                                                                              | 249.62<br>249.62                                      |                  |                  |
| 4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.98<br>1.30                      | 100, 80<br>100, 80                        | 10.05<br>10.05                  | 7.70<br>7.70                   |                               | -289.07<br>-289.07        |                                                                                                                                    | 249.62<br>249.62                                      |                  |                  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.63                              | 100, 80                                   | 10.05                           | 7.70                           | 0.00                          | -289.07                   | 2.18                                                                                                                               | 249.62                                                |                  |                  |
| 7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.95<br>2.27                      | 100, 80<br>100, 80                        | 10.05<br>20.11                  | 7.70<br>7.70                   | 0.00                          | -289.07<br>-570.75        |                                                                                                                                    | 249.62<br>249.62                                      |                  |                  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.60                              | 100, 80                                   | 20.11                           | 7.70                           | 0.00                          | -570.75                   |                                                                                                                                    | 249.62                                                |                  |                  |
| 10<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.92<br>3.25                      | 100, 80<br>100, 80                        | 20.11<br>20.11                  | 7.70<br>7.70                   | 0.00                          | -570.75<br>-570.75        |                                                                                                                                    | 249.62<br>249.62                                      |                  |                  |
| COMB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INAZIONI                          | <u> E n° 11</u>                           |                                 |                                |                               |                           |                                                                                                                                    |                                                       |                  |                  |
| Valore della spinta statica  Componente orizzontale della spinta statica  Componente verticale della spinta statica  Componente verticale della spinta statica  Punto d'applicazione della spinta  Inclinaz. della spinta rispetto alla normale alla superficie  186.8483 [kN]  176.0163 [kN]  K = 3.25 [m]  Inclinaz. della spinta rispetto alla normale alla superficie                                                                                                                                                                                                  |                                   |                                           |                                 |                                |                               |                           | [kN]<br>[kN]<br>[m]                                                                                                                | Y = -4.20                                             | [m]              |                  |
| Baricentro terrapieno gravante sulla fondazione a monte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                                           |                                 |                                |                               | 354.6275<br>X = 1.63<br>8 | [kN]<br>[m]                                                                                                                        | Y = -3.00                                             | [m]              |                  |
| Peso d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   | contrafforte<br>forte riferito<br>afforte |                                 | tro di muro                    | )                             |                           | 17.0100<br>14.1750<br>X = 0.36                                                                                                     | [kN]<br>[kN]<br>[m]                                   | Y = -3.68        | [m]              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>nti carichi</i><br>onente dir. |                                           |                                 |                                |                               |                           | 12.66                                                                                                                              | [kN]                                                  |                  |                  |
| Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Momento ribaltante rispetto allo spigolo a valle Momento stabilizzante rispetto allo spigolo a valle Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione |                                   |                                           |                                 |                                |                               |                           | 188.6763<br>527.3465<br>-28.7132<br>561.6095<br>1215.5402<br>527.3465<br>188.6763<br>0.71<br>3.72<br>560.0831<br>19.69<br>374.3950 | [kN] [kN] [kNm] [kNm] [kN] [kN] [m] [m] [kN] [m] [kN] |                  |                  |
| COEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FICIENTI                          | DI SICUREZ                                | ZZA                             |                                |                               |                           |                                                                                                                                    |                                                       |                  |                  |

# COEFFICIENTI DI SICUREZZA

2.16 Coefficiente di sicurezza a ribaltamento

# Stabilità globale muro + terreno

Combinazione n° 12 Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

peso della striscia espresso in [kN]

- α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- angolo d'attrito del terreno lungo la base della striscia
- coesione del terreno lungo la base della striscia espressa in [MPa]
- larghezza della striscia espressa in [m]
- pressione neutra lungo la base della striscia espressa in [MPa]

# PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 77 di 99

Metodo di Bishop

Numero di cerchi analizzati 36 Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -0.57 Y[m]= 1.71

Raggio del cerchio R[m]= 9.33

Ascissa a valle del cerchio Xi[m]= -6.62 Ascissa a monte del cerchio Xs[m]= 8.61

Larghezza della striscia dx[m]= 0.61 Coefficiente di sicurezza C= 1.81

Le strisce sono numerate da monte verso valle

# Caratteristiche delle strisce

| Striscia | W       | α(°)   | Wsin $\alpha$ | b/cosα | ф     | С     | u     |
|----------|---------|--------|---------------|--------|-------|-------|-------|
| 1        | 2451.80 | 72.86  | 2342.93       | 2.07   | 30.17 | 0.000 | 0.000 |
| 2        | 4215.24 | 62.65  | 3743.96       | 1.33   | 30.17 | 0.000 | 0.000 |
| 3        | 5365.58 | 55.28  | 4410.44       | 1.07   | 30.17 | 0.000 | 0.000 |
| 4        | 6251.13 | 49.14  | 4727.51       | 0.93   | 30.17 | 0.000 | 0.000 |
| 5        | 6970.37 | 43.69  | 4814.51       | 0.84   | 30.17 | 0.000 | 0.000 |
| 6        | 7568.74 | 38.70  | 4732.28       | 0.78   | 30.17 | 0.000 | 0.000 |
| 7        | 8115.62 | 34.04  | 4543.23       | 0.74   | 30.17 | 0.000 | 0.000 |
| 8        | 8666.08 | 29.63  | 4284.63       | 0.70   | 30.17 | 0.000 | 0.000 |
| 9        | 9093.80 | 25.41  | 3901.52       | 0.67   | 30.52 | 0.000 | 0.000 |
| 10       | 9683.58 | 21.33  | 3521.53       | 0.65   | 32.01 | 0.000 | 0.000 |
| 11       | 9946.78 | 17.36  | 2967.10       | 0.64   | 32.01 | 0.000 | 0.000 |
| 12       | 9647.99 | 13.47  | 2247.40       | 0.63   | 32.01 | 0.000 | 0.000 |
| 13       | 8789.88 | 9.65   | 1473.06       | 0.62   | 32.01 | 0.000 | 0.000 |
| 14       | 8892.14 | 5.87   | 909.09        | 0.61   | 32.01 | 0.000 | 0.000 |
| 15       | 5767.92 | 2.11   | 212.76        | 0.61   | 32.01 | 0.000 | 0.000 |
| 16       | 2632.20 | -1.63  | -74.92        | 0.61   | 32.01 | 0.000 | 0.000 |
| 17       | 2524.87 | -5.38  | -236.86       | 0.61   | 32.01 | 0.000 | 0.000 |
| 18       | 2428.18 | -9.16  | -386.48       | 0.62   | 32.01 | 0.000 | 0.000 |
| 19       | 2279.93 | -12.97 | -511.88       | 0.63   | 32.01 | 0.000 | 0.000 |
| 20       | 2078.06 | -16.85 | -602.37       | 0.64   | 32.01 | 0.000 | 0.000 |
| 21       | 1819.54 | -20.81 | -646.37       | 0.65   | 32.01 | 0.000 | 0.000 |
| 22       | 1508.46 | -24.87 | -634.46       | 0.67   | 30.74 | 0.000 | 0.000 |
| 23       | 1159.33 | -29.08 | -563.42       | 0.70   | 30.17 | 0.000 | 0.000 |
| 24       | 744.70  | -33.46 | -410.62       | 0.73   | 30.17 | 0.000 | 0.000 |
| 25       | 252.55  | -38.08 | -155.77       | 0.77   | 30.17 | 0.000 | 0.000 |

$$\begin{split} \Sigma W_i &= 1263.6508 \text{ [kN]} \\ \Sigma W_i sin \alpha_i &= 437.4700 \text{ [kN]} \\ \Sigma W_i tan \phi_i &= 763.9660 \text{ [kN]} \\ \Sigma tan \alpha_i tan \phi_i &= 5.14 \end{split}$$

# **COMBINAZIONE** n° 13

| Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche | 104.0619<br>95.0652<br>42.3258<br>X = 3.25<br>24.00<br>59.53 | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°] | Y = -4.46 | [m] |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------|-----------|-----|
| Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta Inclinazione linea di rottura in condizioni sismiche                                                                                                                           | 24.3170<br>X = 3.25<br>53.72                                 | [kN]<br>[m]<br>[°]                 | Y = -4.46 | [m] |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 78 di 99

79 di 99

Cavalcavia Sv. Rlese CA.3F.01 – Relazione di calcolo muri in attacco alla spalla SP1

| Peso terrapieno gravante sulla fonda Baricentro terrapieno gravante sulla in Numero contrafforti Peso del singolo contrafforte Peso del contrafforte riferito ad un ma Baricentro contrafforte Inerzia del muro Inerzia verticale del muro Inerzia verticale del terrapieno fonda Inerzia del singolo contrafforte Inerzia del contrafforte riferita ad un in Inerzia verticale del singolo contrafforte Inerzia verticale del singolo contrafforte Inerzia verticale del contrafforte riferita inerzia verticale del cont | fondazione a monte etro di muro nonte zione di monte metro di muro rte                                                 | 346.6600<br>X = 1.63<br>8<br>18.9000<br>15.7500<br>X = 0.36<br>11.0550<br>-5.5275<br>38.1325<br>-19.0663<br>2.0790<br>1.7325<br>-1.0395<br>-0.8662 | [kN] [m] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN | Y = -3.00<br>Y = -3.68 | [m]           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------|---------------|
| Risultanti Risultante dei carichi applicati in dir. Risultante dei carichi applicati in dir. Resistenza passiva a valle del muro Sforzo normale sul piano di posa del Sforzo tangenziale sul piano di posa Eccentricità rispetto al baricentro del Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto Momento rispetto al baricentro della Carico ultimo della fondazione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 168.8599<br>495.6664<br>-41.1967<br>495.6664<br>168.8599<br>0.57<br>3.90<br>523.6400<br>18.81<br>283.1283<br>4517.9771 | [kN] [kN] [kN] [kN] [m] [m] [m] [kN] [kN] [kN]                                                                                                     |                                                 |                        |               |
| Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di moni Fattori per il calcolo della capacità po Coeff. capacità portante Fattori forma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | te                                                                                                                     | $3.90$ $0.23878$ $0.01541$ $N_q = 48.9$ $s_q = 1.0$                                                                                                |                                                 | $N_{\gamma} = 7$       | '8.02<br>1.00 |
| Fattori inclinazione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $i_c = 0.48$                                                                                                           | $i_q = 0.4$                                                                                                                                        |                                                 |                        | 0.32          |
| Fattori profondità                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $d_c = 1.14$                                                                                                           | $d_{q} = 0.4$                                                                                                                                      |                                                 | •                      | 1.00          |
| Fattori inclinazione piano posa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $b_c = 1.00$                                                                                                           | $b_{q} = 1.0$                                                                                                                                      |                                                 |                        | 1.00          |
| Fattori inclinazione pendio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $g_c = 1.00$                                                                                                           | $g_{q} = 1.0$                                                                                                                                      |                                                 |                        | 1.00          |
| I coefficienti N' tengono conto dei fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                        |                                                                                                                                                    |                                                 |                        |               |
| inclinazione pendio.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                                                                                                                      |                                                                                                                                                    | •                                               | •                      | . ,           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $N'_{c} = 43.83$                                                                                                       | $N'_{q} = 33.5$                                                                                                                                    | 1                                               | $N'_{\gamma} = 3$      | 37.75         |
| COEFFICIENTI DI CICUPETTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                        |                                                                                                                                                    |                                                 |                        |               |

# **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a scorrimento 2.54
Coefficiente di sicurezza a carico ultimo 9.11

# Sollecitazioni fondazione di valle

# Combinazione n° 13

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M      | Т       |
|-----|------|--------|---------|
| 1   | 0.00 | 0.0000 | 0.0000  |
| 2   | 0.05 | 0.2573 | 10.2675 |
| 3   | 0.10 | 1.0244 | 20.3918 |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa

| 4  | 0.15 | 2.2941  | 30.3729 |
|----|------|---------|---------|
| 5  | 0.20 | 4.0593  | 40.2108 |
| 6  | 0.25 | 6.3128  | 49.9055 |
| 7  | 0.30 | 9.0474  | 59.4571 |
| 8  | 0.35 | 12.2561 | 68.8654 |
| 9  | 0.40 | 15.9316 | 78.1306 |
| 10 | 0.45 | 20.0668 | 87.2526 |
| 11 | 0.50 | 24.6545 | 96.2313 |

# Sollecitazioni fondazione di monte

 $\frac{Combinazione \ n^\circ \ 13}{L'ascissa} \ X(espressa \ in \ m) \ e \ considerata \ positiva \ verso \ valle \ con \ origine \ in \ corrispondenza \ dell'estremo \ libero \ della \ fondazione \ di$ 

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M         | Т         |
|-----|------|-----------|-----------|
| 1   | 0.00 | 0.0000    | 0.0000    |
| 2   | 0.32 | -5.8299   | -34.8681  |
| 3   | 0.65 | -22.0089  | -63.6864  |
| 4   | 0.98 | -46.5707  | -86.4550  |
| 5   | 1.30 | -77.5492  | -103.1739 |
| 6   | 1.63 | -112.9783 | -113.8430 |
| 7   | 1.95 | -150.8118 | -117.6623 |
| 8   | 2.27 | -188.7722 | -114.9319 |
| 9   | 2.60 | -224.8621 | -106.1517 |
| 10  | 2.92 | -257.1154 | -91.3218  |
| 11  | 3.25 | -283.5659 | -70.4422  |

# Armature e tensioni nei materiali della fondazione

# Combinazione n° 13

Simbologia adottata

base della sezione espressa in [cm] В

Н altezza della sezione espressa in [cm]

area di armatura in corrispondenza del lembo inferiore in [cmq]  $A_{\text{fi}}$ 

area di armatura in corrispondenza del lembo superiore in [cmq]  $A_{\text{fs}} \\$ 

 $N_{\text{u}}$ sforzo normale ultimo espresso in [kN]  $M_{\text{u}}$ momento ultimo espresso in [kNm]

CS coefficiente sicurezza sezione **VRcd** 

Aliquota di taglio assorbito dal cls, espresso in [kN]

Aliquota di taglio assorbito dall'armatura, espresso in [kN] **VRsd** 

VRd Resistenza al taglio, espresso in [kN]

#### Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | Υ    | B, H    | ${\sf A_{fs}}$ | $A_{fi}$ | $N_{\rm u}$ | $M_{\rm u}$ | CS      | $V_Rd$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------|----------------|----------|-------------|-------------|---------|--------|-----------|-----------|
| 1   | 0.00 | 100, 80 | 20.11          | 7.70     | 0.00        | 0.00        | 1000.00 | 249.62 |           |           |
| 2   | 0.05 | 100, 80 | 20.11          | 7.70     | 0.00        | 221.77      | 861.99  | 249.62 |           |           |
| 3   | 0.10 | 100, 80 | 20.11          | 7.70     | 0.00        | 221.77      | 216.50  | 249.62 |           |           |
| 4   | 0.15 | 100, 80 | 20.11          | 7.70     | 0.00        | 221.77      | 96.67   | 249.62 |           |           |
| 5   | 0.20 | 100, 80 | 20.11          | 7.70     | 0.00        | 221.77      | 54.63   | 249.62 |           |           |
| 6   | 0.25 | 100, 80 | 20.11          | 7.70     | 0.00        | 221.77      | 35.13   | 249.62 |           |           |
| 7   | 0.30 | 100, 80 | 20.11          | 7.70     | 0.00        | 221.77      | 24.51   | 249.62 |           |           |
| 8   | 0.35 | 100, 80 | 20.11          | 7.70     | 0.00        | 221.77      | 18.10   | 249.62 |           |           |
| 9   | 0.40 | 100, 80 | 20.11          | 7.70     | 0.00        | 221.77      | 13.92   | 249.62 |           |           |
| 10  | 0.45 | 100, 80 | 20.11          | 7.70     | 0.00        | 221.77      | 11.05   | 249.62 |           |           |
| 11  | 0.50 | 100, 80 | 20.11          | 7.70     | 0.00        | 221.77      | 9.00    | 249.62 |           |           |

#### Fondazione di monte

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 80 di 99

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. 1 2 3 4 5 6 7 8 9 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y<br>0.00<br>0.32<br>0.65<br>0.98<br>1.30<br>1.63<br>1.95<br>2.27<br>2.60<br>2.92 | B, H<br>100, 80<br>100, 80<br>100, 80<br>100, 80<br>100, 80<br>100, 80<br>100, 80<br>100, 80 | A <sub>fs</sub> 10.05 10.05 10.05 10.05 10.05 10.05 10.05 20.11 20.11 | A <sub>fi</sub> 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.7 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | -289.07<br>-289.07<br>-289.07<br>-289.07<br>-570.75<br>-570.75 | 0 1000.00<br>7 49.58<br>7 13.13<br>7 6.21<br>7 3.73<br>7 2.56<br>7 1.92<br>5 3.02<br>5 2.54<br>5 2.22 | V <sub>Rd</sub> 249.62 249.62 249.62 249.62 249.62 249.62 249.62 249.62 249.62 | V <sub>Rcd</sub> | V <sub>Rsd</sub> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------|------------------|
| 11<br>COME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.25<br>BINAZIONE                                                                 | 100, 80<br>E n° 14                                                                           | 20.11                                                                 | 7.70                                                   | 0.00                                         | -570.7                                                         | 5 2.01                                                                                                | 249.62                                                                         |                  |                  |
| Valore<br>Comp<br>Comp<br>Punto<br>Inclina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e della spin<br>onente oriz<br>onente ver<br>d'applicaz<br>az. della sp           |                                                                                              | spinta stat<br>pinta<br>alla norm                                     | ica<br>ale alla su                                     |                                              | <b>)</b>                                                       | 104.0619<br>95.0652<br>42.3258<br>X = 3.25<br>24.00<br>59.53                                          | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°]<br>[°]                                      | Y = -4.46        | [m]              |
| Punto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d'applicaz                                                                        | ico della sp<br>ione dell'ind<br>a di rottura i                                              | remento s                                                             |                                                        |                                              |                                                                | 35.3305<br>X = 3.25<br>54.41                                                                          | [kN]<br>[m]<br>[°]                                                             | Y = -4.46        | [m]              |
| Peso terrapieno gravante sulla fondazione a monte  Baricentro terrapieno gravante sulla fondazione a monte  Numero contrafforti  Peso del singolo contrafforte  Peso del contrafforte riferito ad un metro di muro  Baricentro contrafforte  X = 1.63 [m]  8  Peso del singolo contrafforte  18.9000 [kN]  Paricentro contrafforte  X = 0.36 [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   |                                                                                              |                                                                       |                                                        |                                              |                                                                | Y = -3.00<br>Y = -3.68                                                                                | [m]                                                                            |                  |                  |
| Inerzia del muro Inerzia verticale del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte Inerzia del singolo contrafforte Inerzia del contrafforte riferita ad un metro di muro Inerzia verticale del singolo contrafforte Inerzia verticale del contrafforte riferita ad un metro di muro Inerzia verticale del contrafforte riferita ad un metro di muro Inerzia verticale del contrafforte riferita ad un metro di muro Inerzia verticale del contrafforte riferita ad un metro di muro Inerzia verticale del contrafforte riferita ad un metro di muro Inerzia verticale del contrafforte riferita ad un metro di muro Inerzia verticale del contrafforte riferita ad un metro di muro Inerzia verticale del contrafforte riferita ad un metro di muro Inerzia verticale del muro Inerzia verticale del singolo contrafforte Inerzia verticale del contrafforte riferita ad un metro di muro Inerzia verticale del contrafforte riferita ad un metro di muro Inerzia verticale del contrafforte riferita ad un metro di muro Inerzia verticale del contrafforte riferita ad un metro di muro Inerzia verticale del contrafforte riferita ad un metro di muro Inerzia verticale del contrafforte riferita ad un metro di muro |                                                                                   |                                                                                              |                                                                       |                                                        |                                              |                                                                |                                                                                                       |                                                                                |                  |                  |
| Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Resistenza passiva a valle del muro Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione  Risultante in fondazione  Momento rispetto al baricentro della fondazione  Carico ultimo della fondazione  Risultante in fondazione  4927.8925 [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                                                                                              |                                                                       |                                                        |                                              |                                                                |                                                                                                       |                                                                                |                  |                  |
| Lungh<br>Tensio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | one terrend                                                                       | <u>eno</u><br>azione reago<br>o allo spigolo<br>o allo spigolo                               | o di valle                                                            |                                                        |                                              |                                                                | 3.90<br>0.25591<br>0.02668                                                                            | [m]<br>[MPa]<br>[MPa]                                                          |                  |                  |

SIS Scpa 81 di 99

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

#### Fattori per il calcolo della capacità portante

| Coeff. capacità portante        | $N_c = 61.35$ | $N_q = 48.93$  | $N_{y} = 78.02$     |
|---------------------------------|---------------|----------------|---------------------|
| Fattori forma                   | $s_c = 1.00$  | $s_{q} = 1.00$ | $s_{y} = 1.00$      |
| Fattori inclinazione            | $i_c = 0.50$  | $i_q = 0.51$   | $i_{\gamma} = 0.34$ |
| Fattori profondità              | $d_c = 1.14$  | $d_{q} = 1.08$ | $d_{\gamma} = 1.00$ |
| Fattori inclinazione piano posa | $b_c = 1.00$  | $b_{q} = 1.00$ | $b_{\gamma} = 1.00$ |
| Fattori inclinazione pendio     | $g_c = 1.00$  | $g_{q} = 1.00$ | $g_{y} = 1.00$      |

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 43.83$   $N'_{q} = 33.51$   $N'_{\gamma} = 37.75$ 

# **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a scorrimento 2.64
Coefficiente di sicurezza a carico ultimo 8.94

# Sollecitazioni fondazione di valle

# Combinazione n° 14

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M       | T        |
|-----|------|---------|----------|
| 1   | 0.00 | 0.0000  | 0.0000   |
| 2   | 0.05 | 0.2787  | 11.1222  |
| 3   | 0.10 | 1.1098  | 22.0974  |
| 4   | 0.15 | 2.4860  | 32.9257  |
| 5   | 0.20 | 4.3999  | 43.6071  |
| 6   | 0.25 | 6.8442  | 54.1415  |
| 7   | 0.30 | 9.8116  | 64.5290  |
| 8   | 0.35 | 13.2947 | 74.7695  |
| 9   | 0.40 | 17.2861 | 84.8631  |
| 10  | 0.45 | 21.7785 | 94.8098  |
| 11  | 0.50 | 26.7646 | 104.6095 |

# Sollecitazioni fondazione di monte

#### Combinazione n° 14

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M         | Т        |
|-----|------|-----------|----------|
| 1   | 0.00 | 0.0000    | 0.0000   |
| 2   | 0.32 | -5.2257   | -31.1233 |
| 3   | 0.65 | -19.5576  | -56.0383 |
| 4   | 0.98 | -40.9780  | -74.7451 |
| 5   | 1.30 | -67.4693  | -87.2436 |
| 6   | 1.63 | -97.0138  | -93.5338 |
| 7   | 1.95 | -127.5137 | -92.8158 |
| 8   | 2.27 | -156.6402 | -85.3895 |
| 9   | 2.60 | -182.3443 | -71.7549 |
| 10  | 2.92 | -202.6083 | -51.9121 |
| 11  | 3.25 | -215.4146 | -25.8610 |

# Armature e tensioni nei materiali della fondazione

Combinazione n° 14

Simbologia adottata

B base della sezione espressa in [cm]

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 82 di 99

H altezza della sezione espressa in [cm]

 $A_{\rm fi}$  area di armatura in corrispondenza del lembo inferiore in [cmq]  $A_{\rm fs}$  area di armatura in corrispondenza del lembo superiore in [cmq]

 $\begin{array}{ll} N_u & \text{sforzo normale ultimo espresso in [kN]} \\ M_u & \text{momento ultimo espresso in [kNm]} \\ \text{CS} & \text{coefficiente sicurezza sezione} \end{array}$ 

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

#### Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | Υ    | В, Н    | $A_{fs}$ | $A_{fi}$ | $N_{u}$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------|----------|----------|---------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 100, 80 | 20.11    | 7.70     | 0.00    | 0.00        | 1000.00 | 249.62   |           |           |
| 2   | 0.05 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 795.84  | 249.62   |           |           |
| 3   | 0.10 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 199.84  | 249.62   |           |           |
| 4   | 0.15 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 89.21   | 249.62   |           |           |
| 5   | 0.20 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 50.40   | 249.62   |           |           |
| 6   | 0.25 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 32.40   | 249.62   |           |           |
| 7   | 0.30 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 22.60   | 249.62   |           |           |
| 8   | 0.35 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 16.68   | 249.62   |           |           |
| 9   | 0.40 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 12.83   | 249.62   |           |           |
| 10  | 0.45 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 10.18   | 249.62   |           |           |
| 11  | 0.50 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 8.29    | 249.62   |           |           |

### Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | Υ    | B, H    | $A_{fs}$ | $A_{fi}$ | $N_{\rm u}$ | $\mathbf{M}_{u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------|----------|----------|-------------|------------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 100, 80 | 10.05    | 7.70     | 0.00        | 0.00             | 1000.00 | 249.62   |           |           |
| 2   | 0.32 | 100, 80 | 10.05    | 7.70     | 0.00        | -289.07          | 55.32   | 249.62   |           |           |
| 3   | 0.65 | 100, 80 | 10.05    | 7.70     | 0.00        | -289.07          | 14.78   | 249.62   |           |           |
| 4   | 0.98 | 100, 80 | 10.05    | 7.70     | 0.00        | -289.07          | 7.05    | 249.62   |           |           |
| 5   | 1.30 | 100, 80 | 10.05    | 7.70     | 0.00        | -289.07          | 4.28    | 249.62   |           |           |
| 6   | 1.63 | 100, 80 | 10.05    | 7.70     | 0.00        | -289.07          | 2.98    | 249.62   |           |           |
| 7   | 1.95 | 100, 80 | 10.05    | 7.70     | 0.00        | -289.07          | 2.27    | 249.62   |           |           |
| 8   | 2.27 | 100, 80 | 20.11    | 7.70     | 0.00        | -570.75          | 3.64    | 249.62   |           |           |
| 9   | 2.60 | 100, 80 | 20.11    | 7.70     | 0.00        | -570.75          | 3.13    | 249.62   |           |           |
| 10  | 2.92 | 100, 80 | 20.11    | 7.70     | 0.00        | -570.75          | 2.82    | 249.62   |           |           |
| 11  | 3.25 | 100, 80 | 20.11    | 7.70     | 0.00        | -570.75          | 2.65    | 249.62   |           |           |

# COMBINAZIONE n° 15

| Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche | 130.9903<br>123.3965<br>43.9517<br>X = 3.25<br>19.61<br>56.17 | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°]<br>[°] | Y = -4.46 | [m] |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|-----------|-----|
| Incremento sismico della spinta<br>Punto d'applicazione dell'incremento sismico di spinta<br>Inclinazione linea di rottura in condizioni sismiche                                                                                                                     | 40.5722<br>X = 3.25<br>50.48                                  | [kN]<br>[m]<br>[°]                        | Y = -4.46 | [m] |
| Peso terrapieno gravante sulla fondazione a monte<br>Baricentro terrapieno gravante sulla fondazione a monte<br>Numero contrafforti                                                                                                                                   | 346.6600<br>X = 1.63<br>8                                     | [kN]<br>[m]                               | Y = -3.00 | [m] |
| Peso del singolo contrafforte Peso del contrafforte riferito ad un metro di muro Baricentro contrafforte                                                                                                                                                              | 18.9000<br>15.7500<br>X = 0.36                                | [kN]<br>[kN]<br>[m]                       | Y = -3.68 | [m] |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 83 di 99

| Cavalcavia Sv | RIese CA.3F.01 - | - Relazione di | calcolo muri in | attacco all | la snalla SP1 |
|---------------|------------------|----------------|-----------------|-------------|---------------|
|               |                  |                |                 |             |               |

| Inerzia del muro                                                | 11.0550 | [kN] |
|-----------------------------------------------------------------|---------|------|
| Inerzia verticale del muro                                      | 5.5275  | [kN] |
| Inerzia del terrapieno fondazione di monte                      | 38.1325 | [kN] |
| Inerzia verticale del terrapieno fondazione di monte            | 19.0663 | [kN] |
| Inerzia del singolo contrafforte                                | 2.0790  | [kN] |
| Inerzia del contrafforte riferita ad un metro di muro           | 1.7325  | [kN] |
| Inerzia verticale del singolo contrafforte                      | 1.0395  | [kN] |
| Inerzia verticale del contrafforte riferita ad un metro di muro | 0.8662  | [kN] |
|                                                                 |         |      |

# Risultanti

| Risultante dei carichi applicati in dir. orizzontale  | 213.1966  | [kN]  |
|-------------------------------------------------------|-----------|-------|
| Risultante dei carichi applicati in dir. verticale    | 551.9351  | [kN]  |
| Resistenza passiva a valle del muro                   | -31.9036  | [kN]  |
| Sforzo normale sul piano di posa della fondazione     | 551.9351  | [kN]  |
| Sforzo tangenziale sul piano di posa della fondazione | 213.1966  | [kN]  |
| Eccentricità rispetto al baricentro della fondazione  | 0.67      | [m]   |
| Lunghezza fondazione reagente                         | 3.84      | [m]   |
| Risultante in fondazione                              | 591.6799  | [kN]  |
| Inclinazione della risultante (rispetto alla normale) | 21.12     | [°]   |
| Momento rispetto al baricentro della fondazione       | 368.9825  | [kNm] |
| Carico ultimo della fondazione                        | 1518.8299 | ľkN1  |

# Tensioni sul terreno

| Lunghezza fondazione reagente          | 3.84    | [m]   |
|----------------------------------------|---------|-------|
| Tensione terreno allo spigolo di valle | 0.28714 | [MPa] |
| Tensione terreno allo spigolo di monte | 0.00000 | [MPa] |

# Fattori per il calcolo della capacità portante

| Coeff. capacità portante        | $N_c = 61.35$ | $N_{q} = 48.93$ | $N_{\gamma} = 78.02$ |
|---------------------------------|---------------|-----------------|----------------------|
| Fattori forma                   | $s_c = 1.00$  | $s_{q} = 1.00$  | $s_{y} = 1.00$       |
| Fattori inclinazione            | $i_c = 0.41$  | $i_q = 0.43$    | $i_{y} = 0.27$       |
| Fattori profondità              | $d_c = 1.14$  | $d_{q} = 1.10$  | $d_{\gamma} = 1.00$  |
| Fattori inclinazione piano posa | $b_c = 1.00$  | $b_{q} = 1.00$  | $b_{\gamma} = 1.00$  |
| Fattori inclinazione pendio     | $g_c = 1.00$  | $g_{q} = 1.00$  | $g_{\gamma} = 1.00$  |

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

# **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a scorrimento 1.77
Coefficiente di sicurezza a carico ultimo 2.75

# Sollecitazioni fondazione di valle

#### Combinazione n° 15

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M       | Т        |
|-----|------|---------|----------|
| 1   | 0.00 | 0.0000  | 0.0000   |
| 2   | 0.05 | 0.3174  | 12.6634  |
| 3   | 0.10 | 1.2632  | 25.1401  |
| 4   | 0.15 | 2.8283  | 37.4301  |
| 5   | 0.20 | 5.0031  | 49.5333  |
| 6   | 0.25 | 7.7785  | 61.4498  |
| 7   | 0.30 | 11.1450 | 73.1796  |
| 8   | 0.35 | 15.0933 | 84.7227  |
| 9   | 0.40 | 19.6141 | 96.0790  |
| 10  | 0.45 | 24.6981 | 107.2487 |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 84 di 99

11 0.50 30.3359 118.2316

# Sollecitazioni fondazione di monte

# Combinazione n° 15

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M         | T         |
|-----|------|-----------|-----------|
| 1   | 0.00 | 0.0000    | 0.0000    |
| 2   | 0.32 | -6.7278   | -40.1892  |
| 3   | 0.65 | -25.2705  | -72.6047  |
| 4   | 0.98 | -53.0662  | -97.1312  |
| 5   | 1.30 | -87.5511  | -113.7688 |
| 6   | 1.63 | -126.1613 | -122.5173 |
| 7   | 1.95 | -166.2527 | -122.5768 |
| 8   | 2.27 | -204.9503 | -114.2473 |
| 9   | 2.60 | -239.6589 | -98.0289  |
| 10  | 2.92 | -267.8144 | -73.9214  |
| 11  | 3.25 | -286.8531 | -41.9249  |

# Armature e tensioni nei materiali della fondazione

# Combinazione n° 15

Simbologia adottata

base della sezione espressa in [cm] В

altezza della sezione espressa in [cm] Н

area di armatura in corrispondenza del lembo inferiore in [cmq]  $A_{\textrm{fi}}$ area di armatura in corrispondenza del lembo superiore in [cmq]  $A_{\text{fs}} \\$ 

 $N_{\text{u}}$ sforzo normale ultimo espresso in [kN]

 $M_u$ momento ultimo espresso in [kNm]

CŠ coefficiente sicurezza sezione

**VRcd** Aliquota di taglio assorbito dal cls, espresso in [kN]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

# Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | Υ    | B, H    | $A_{fs}$ | $A_{fi}$ | $N_{u}$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------|----------|----------|---------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 100, 80 | 20.11    | 7.70     | 0.00    | 0.00        | 1000.00 | 249.62   |           |           |
| 2   | 0.05 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 698.80  | 249.62   |           |           |
| 3   | 0.10 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 175.56  | 249.62   |           |           |
| 4   | 0.15 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 78.41   | 249.62   |           |           |
| 5   | 0.20 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 44.33   | 249.62   |           |           |
| 6   | 0.25 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 28.51   | 249.62   |           |           |
| 7   | 0.30 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 19.90   | 249.62   |           |           |
| 8   | 0.35 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 14.69   | 249.62   |           |           |
| 9   | 0.40 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 11.31   | 249.62   |           |           |
| 10  | 0.45 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 8.98    | 249.62   |           |           |
| 11  | 0.50 | 100, 80 | 20.11    | 7.70     | 0.00    | 221.77      | 7.31    | 249.62   |           |           |

# Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | Υ    | B, H    | $A_{fs}$ | $A_{fi}$ | $N_{u}$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------|----------|----------|---------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 100, 80 | 10.05    | 7.70     | 0.00    | 0.00        | 1000.00 | 249.62   |           |           |
| 2   | 0.32 | 100, 80 | 10.05    | 7.70     | 0.00    | -289.07     | 42.97   | 249.62   |           |           |
| 3   | 0.65 | 100, 80 | 10.05    | 7.70     | 0.00    | -289.07     | 11.44   | 249.62   |           |           |
| 4   | 0.98 | 100, 80 | 10.05    | 7.70     | 0.00    | -289.07     | 5.45    | 249.62   |           |           |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 85 di 99

| Cavalo                                                                                                                                                                               | cavia Sv. R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lese CA.3F.0                                                    | 1 – Relazior                                                                                                      | ne di calcol                                                | o muri ir         | attacco                                                       | alla spalla SF                                                                                                         | P1                                                                  |                               |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------|-----|
| 5                                                                                                                                                                                    | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100, 80                                                         | 10.05                                                                                                             | 7.70                                                        | 0.00              | -289.0                                                        | 7 3.30                                                                                                                 | 249.62                                                              |                               |     |
| 6                                                                                                                                                                                    | 1.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100, 80                                                         | 10.05                                                                                                             | 7.70                                                        | 0.00              | -289.0                                                        |                                                                                                                        | 249.62                                                              |                               |     |
| 7                                                                                                                                                                                    | 1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100, 80                                                         | 10.05                                                                                                             | 7.70                                                        |                   | -289.0                                                        |                                                                                                                        | 249.62                                                              |                               |     |
| 8                                                                                                                                                                                    | 2.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100, 80                                                         | 20.11                                                                                                             | 7.70                                                        |                   | -570.7                                                        |                                                                                                                        | 249.62                                                              |                               |     |
| 9                                                                                                                                                                                    | 2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100, 80                                                         | 20.11                                                                                                             | 7.70                                                        |                   | -570.7                                                        |                                                                                                                        | 249.62                                                              |                               |     |
| 10<br>11                                                                                                                                                                             | 2.92<br>3.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100, 80<br>100, 80                                              | 20.11<br>20.11                                                                                                    | 7.70<br>7.70                                                | 0.00              | -570.7<br>-570.7                                              |                                                                                                                        | 249.62<br>249.62                                                    |                               |     |
| 11                                                                                                                                                                                   | 3.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100, 00                                                         | 20.11                                                                                                             | 7.70                                                        | 0.00              | -370.7                                                        | 3 1.99                                                                                                                 | 249.02                                                              | <b></b>                       |     |
| COM                                                                                                                                                                                  | BINAZION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>IE n° 16</u>                                                 |                                                                                                                   |                                                             |                   |                                                               |                                                                                                                        |                                                                     |                               |     |
| Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                                   |                                                             |                   | 130.9903<br>123.3965<br>43.9517<br>X = 3.25<br>19.61<br>56.17 | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°]                                                                                     | Y = -4.46                                                           | [m]                           |     |
| Punto                                                                                                                                                                                | d'applica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nico della sp<br>zione dell'ind<br>ea di rottura                | cremento s                                                                                                        |                                                             |                   |                                                               | 26.6720<br>X = 3.25<br>49.79                                                                                           | [kN]<br>[m]<br>[°]                                                  | Y = -4.46                     | [m] |
| Barice                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o gravante si<br>pieno grava<br>forti                           |                                                                                                                   |                                                             |                   | e                                                             | 346.6600<br>X = 1.63<br>8                                                                                              | [kN]<br>[m]                                                         | Y = -3.00                     | [m] |
| Peso<br>Peso<br>Barice<br>Inerzia<br>Inerzia<br>Inerzia<br>Inerzia<br>Inerzia<br>Inerzia                                                                                             | del singol<br>del contra<br>entro cont<br>a del mura<br>a verticala<br>a del terra<br>a del sing<br>a del cont<br>a verticala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | o contraffort<br>Ifforte riferito<br>rafforte                   | zione di me<br>eno fondazi<br>erte<br>ta ad un m<br>contraffort                                                   | onte<br>one di mo<br>etro di mu<br>e                        | onte<br>iro       | nuro                                                          | 18.9000<br>15.7500<br>X = 0.36<br>11.0550<br>-5.5275<br>38.1325<br>-19.0663<br>2.0790<br>1.7325<br>-1.0395<br>-0.8662  | [kN]<br>[kN]<br>[m]<br>[kN]<br>[kN]<br>[kN]<br>[kN]<br>[kN]<br>[kN] | Y = -3.68                     | [m] |
| Risult<br>Resis<br>Sforzo<br>Sforzo<br>Eccer<br>Lungh<br>Risult<br>Inclina<br>Mome<br>Carico                                                                                         | ante dei cante dei cante dei cante dei cante normale o tangenz ntricità rispezza foncazione del cante in for azione del canto rispeto ultimo de cante del canto cante del cante de | la risultante<br>to al baricer<br>ella fondazio                 | ati in dir. ve<br>del muro<br>posa della<br>o di posa d<br>centro della<br>gente<br>(rispetto al<br>atro della fo | erticale<br>fondazio<br>ella fonda<br>fondazio<br>la normal | zione<br>ne<br>e) |                                                               | 200.1023<br>496.3511<br>-31.9036<br>496.3511<br>200.1023<br>0.71<br>3.71<br>535.1686<br>21.96<br>354.8329<br>1375.3529 | [kN]<br>[kN]<br>[kN]<br>[kN]<br>[m]<br>[m]<br>[kN]<br>[°]<br>[kNm]  |                               |     |
| Lungh<br>Tensi                                                                                                                                                                       | one terrer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>reno</u><br>dazione reag<br>no allo spigol<br>no allo spigol | lo di valle                                                                                                       |                                                             |                   |                                                               | 3.71<br>0.26791<br>0.00000                                                                                             | [m]<br>[MPa]<br>[MPa]                                               |                               |     |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                                   |                                                             |                   | $N_q = 48.9$ $s_q = 1.0$ $i_q = 0.4$ $d_q = 1.1$ $b_q = 1.0$  | 00<br>11<br>10                                                                                                         | $i_{\gamma}^{\cdot} = d_{\gamma} = 0$                               | 78.02<br>1.00<br>0.25<br>1.00 |     |
| PV_D                                                                                                                                                                                 | _SK_AP_C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -A_3_F_UU1                                                      | _001_0_004                                                                                                        | _K_A_U                                                      |                   |                                                               |                                                                                                                        |                                                                     |                               |     |

S/S Scpa 86 di 99

### Fattori inclinazione pendio

$$g_c = 1.00$$

$$g_q = 1.00$$

$$g_v = 1.00$$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

$$N'_{c} = 43.83$$

$$N'_{q} = 33.51$$

$$N'_{y} = 37.75$$

87 di 99

# **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a scorrimento Coefficiente di sicurezza a carico ultimo 1.71 2.77

#### Sollecitazioni fondazione di valle

#### Combinazione n° 16

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M       | Т        |
|-----|------|---------|----------|
| 1   | 0.00 | 0.0000  | 0.0000   |
| 2   | 0.05 | 0.2934  | 11.7051  |
| 3   | 0.10 | 1.1675  | 23.2295  |
| 4   | 0.15 | 2.6133  | 34.5731  |
| 5   | 0.20 | 4.6218  | 45.7360  |
| 6   | 0.25 | 7.1839  | 56.7181  |
| 7   | 0.30 | 10.2906 | 67.5195  |
| 8   | 0.35 | 13.9328 | 78.1401  |
| 9   | 0.40 | 18.1016 | 88.5799  |
| 10  | 0.45 | 22.7878 | 98.8390  |
| 11  | 0.50 | 27.9825 | 108.9173 |

# Sollecitazioni fondazione di monte

# Combinazione n° 16

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M         | Т         |
|-----|------|-----------|-----------|
| 1   | 0.00 | 0.0000    | 0.0000    |
| 2   | 0.32 | -6.9446   | -42.2857  |
| 3   | 0.65 | -26.7472  | -78.3041  |
| 4   | 0.98 | -57.0149  | -106.6854 |
| 5   | 1.30 | -95.2654  | -127.4296 |
| 6   | 1.63 | -139.0168 | -140.5368 |
| 7   | 1.95 | -185.7070 | -145.2069 |
| 8   | 2.27 | -232.5427 | -141.7399 |
| 9   | 2.60 | -277.0106 | -130.6358 |
| 10  | 2.92 | -316.6286 | -111.8947 |
| 11  | 3.25 | -348.9148 | -85.5165  |

# Armature e tensioni nei materiali della fondazione

# Combinazione n° 16

Simbologia adottata

B base della sezione espressa in [cm]
H altezza della sezione espressa in [cm]

 $A_{\rm fi}$  area di armatura in corrispondenza del lembo inferiore in [cmq]  $A_{\rm fs}$  area di armatura in corrispondenza del lembo superiore in [cmq]

 Nu
 sforzo normale ultimo espresso in [kN]

 Mu
 momento ultimo espresso in [kNm]

 CS
 coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kN]

#### PV D SR AP CA 3 F 001- 001 0 004 R A 0

SIS Scpa

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kN]

VRd Resistenza al taglio, espresso in [kN]

# Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | Υ    | B, H    | $A_{fs}$ | $A_{fi}$ | $N_u$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------|----------|----------|-------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 100, 80 | 20.11    | 7.70     | 0.00  | 0.00        | 1000.00 | 249.62   |           |           |
| 2   | 0.05 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77      | 755.93  | 249.62   |           |           |
| 3   | 0.10 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77      | 189.96  | 249.62   |           |           |
| 4   | 0.15 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77      | 84.86   | 249.62   |           |           |
| 5   | 0.20 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77      | 47.98   | 249.62   |           |           |
| 6   | 0.25 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77      | 30.87   | 249.62   |           |           |
| 7   | 0.30 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77      | 21.55   | 249.62   |           |           |
| 8   | 0.35 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77      | 15.92   | 249.62   |           |           |
| 9   | 0.40 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77      | 12.25   | 249.62   |           |           |
| 10  | 0.45 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77      | 9.73    | 249.62   |           |           |
| 11  | 0.50 | 100, 80 | 20.11    | 7.70     | 0.00  | 221.77      | 7.93    | 249.62   |           |           |

# Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | Υ    | B, H    | $A_{fs}$ | $A_{fi}$ | $N_u$ | $M_{\rm u}$ | CS      | $V_{Rd}$ | $V_{Rcd}$ | $V_{Rsd}$ |
|-----|------|---------|----------|----------|-------|-------------|---------|----------|-----------|-----------|
| 1   | 0.00 | 100, 80 | 10.05    | 7.70     | 0.00  | 0.00        | 1000.00 | 249.62   |           |           |
| 2   | 0.32 | 100, 80 | 10.05    | 7.70     | 0.00  | -289.07     | 41.62   | 249.62   |           |           |
| 3   | 0.65 | 100, 80 | 10.05    | 7.70     | 0.00  | -289.07     | 10.81   | 249.62   |           |           |
| 4   | 0.98 | 100, 80 | 10.05    | 7.70     | 0.00  | -289.07     | 5.07    | 249.62   |           |           |
| 5   | 1.30 | 100, 80 | 10.05    | 7.70     | 0.00  | -289.07     | 3.03    | 249.62   |           |           |
| 6   | 1.63 | 100, 80 | 10.05    | 7.70     | 0.00  | -289.07     | 2.08    | 249.62   |           |           |
| 7   | 1.95 | 100, 80 | 10.05    | 7.70     | 0.00  | -289.07     | 1.56    | 249.62   |           |           |
| 8   | 2.27 | 100, 80 | 20.11    | 7.70     | 0.00  | -570.75     | 2.45    | 249.62   |           |           |
| 9   | 2.60 | 100, 80 | 20.11    | 7.70     | 0.00  | -570.75     | 2.06    | 249.62   |           |           |
| 10  | 2.92 | 100, 80 | 20.11    | 7.70     | 0.00  | -570.75     | 1.80    | 249.62   |           |           |
| 11  | 3.25 | 100, 80 | 20.11    | 7.70     | 0.00  | -570.75     | 1.64    | 249.62   |           |           |

# COMBINAZIONE n° 17

| Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche                                         | 130.9903<br>123.3965<br>43.9517<br>X = 3.25<br>19.61<br>56.17                        | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°]                  | Y = -4.46 | [m] |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------|-----------|-----|
| Incremento sismico della spinta<br>Punto d'applicazione dell'incremento sismico di spinta<br>Inclinazione linea di rottura in condizioni sismiche                                                                                                                                                             | 26.6720<br>X = 3.25<br>49.79                                                         | [kN]<br>[m]<br>[°]                                  | Y = -4.46 | [m] |
| Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Numero contrafforti Peso del singolo contrafforte                                                                                                                                                   | 346.6600<br>X = 1.63<br>8<br>18.9000                                                 | [kN]<br>[m]<br>[kN]                                 | Y = -3.00 | [m] |
| Peso del contrafforte riferito ad un metro di muro Baricentro contrafforte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte Inerzia del singolo contrafforte Inerzia del contrafforte riferita ad un metro di muro | 15.7500<br>X = 0.36<br>11.0550<br>-5.5275<br>38.1325<br>-19.0663<br>2.0790<br>1.7325 | [kN]<br>[m]<br>[kN]<br>[kN]<br>[kN]<br>[kN]<br>[kN] | Y = -3.68 | [m] |
| PV_D_SR_AP_CA_3_F_001001_0_004_R_A_0                                                                                                                                                                                                                                                                          |                                                                                      |                                                     |           |     |

SIS Scpa 88 di 99

| Opere d'Arte Minori – Ope                                                                                                                                                                                                     | re di attraversamento                                                                                                                                                                                                                            |                                                                                                                                    |                                                              | SPV – Pedemo | ntana Veneta |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------|--------------|
| Cavalcavia Sv. Rlese CA.3                                                                                                                                                                                                     | BF.01 – Relazione di calcolo muri in atta                                                                                                                                                                                                        | cco alla spalla SP                                                                                                                 | 1                                                            |              |              |
| Inerzia verticale del sing<br>Inerzia verticale del con                                                                                                                                                                       | olo contrafforte<br>trafforte riferita ad un metro di muro                                                                                                                                                                                       | -1.0395<br>-0.8662                                                                                                                 | [kN]<br>[kN]                                                 |              |              |
| Sforzo normale sul pian<br>Sforzo tangenziale sul p<br>Eccentricità rispetto al b<br>Lunghezza fondazione r<br>Risultante in fondazione                                                                                       | plicati in dir. verticale ille del muro etto allo spigolo a valle ispetto allo spigolo a valle o di posa della fondazione iano di posa della fondazione aricentro della fondazione eagente inte (rispetto alla normale)                          | 200.1023<br>496.3511<br>-31.9036<br>564.4208<br>1177.4725<br>496.3511<br>200.1023<br>0.71<br>3.71<br>535.1686<br>21.96<br>354.8329 | [kN] [kN] [kNm] [kNm] [kN] [kN] [kN] [m] [m] [kN] [kN]       |              |              |
| COEFFICIENTI DI SICU                                                                                                                                                                                                          |                                                                                                                                                                                                                                                  | 2.09                                                                                                                               |                                                              |              |              |
| COMBINAZIONE n° 18                                                                                                                                                                                                            |                                                                                                                                                                                                                                                  |                                                                                                                                    |                                                              |              |              |
|                                                                                                                                                                                                                               | e della spinta statica<br>ella spinta statica                                                                                                                                                                                                    | 130.9903<br>123.3965<br>43.9517<br>X = 3.25<br>19.61<br>56.17                                                                      | [kN]<br>[kN]<br>[kN]<br>[m]<br>[°]                           | Y = -4.46    | [m]          |
|                                                                                                                                                                                                                               | a spinta<br>Il'incremento sismico di spinta<br>ura in condizioni sismiche                                                                                                                                                                        | 40.5722<br>X = 3.25<br>50.48                                                                                                       | [kN]<br>[m]<br>[°]                                           | Y = -4.46    | [m]          |
| Baricentro terrapieno gra<br>Numero contrafforti                                                                                                                                                                              | e sulla fondazione a monte<br>avante sulla fondazione a monte                                                                                                                                                                                    | 346.6600<br>X = 1.63<br>8                                                                                                          | [kN]<br>[m]                                                  | Y = -3.00    | [m]          |
| Baricentro contrafforte<br>Inerzia del muro<br>Inerzia verticale del mur<br>Inerzia del terrapieno fo<br>Inerzia verticale del terra<br>Inerzia del singolo contr<br>Inerzia del contrafforte r<br>Inerzia verticale del sing | erito ad un metro di muro  o ndazione di monte apieno fondazione di monte afforte iferita ad un metro di muro                                                                                                                                    | 18.9000<br>15.7500<br>X = 0.36<br>11.0550<br>5.5275<br>38.1325<br>19.0663<br>2.0790<br>1.7325<br>1.0395<br>0.8662                  | [kN]<br>[kN]<br>[kN]<br>[kN]<br>[kN]<br>[kN]<br>[kN]<br>[kN] | Y = -3.68    | [m]          |
| Sforzo normale sul pian<br>Sforzo tangenziale sul p<br>Eccentricità rispetto al b<br>Lunghezza fondazione r<br>Risultante in fondazione                                                                                       | plicati in dir. verticale ille del muro etto allo spigolo a valle ispetto allo spigolo a valle o di posa della fondazione iano di posa della fondazione aricentro della fondazione eagente inte (rispetto alla normale) icentro della fondazione | 213.1966<br>551.9351<br>-31.9036<br>541.7022<br>1248.9931<br>551.9351<br>213.1966<br>0.67<br>3.84<br>591.6799<br>21.12<br>368.9825 | [kN] [kN] [kNm] [kNm] [kN] [kN] [m] [m] [kN] [kN]            |              |              |

S/S Scpa 89 di 99

# **COEFFICIENTI DI SICUREZZA**

Coefficiente di sicurezza a ribaltamento

2.31

# Stabilità globale muro + terreno

# Combinazione n° 19

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [MPa]

b larghezza della striscia espressa in [m]

u pressione neutra lungo la base della striscia espressa in [MPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -1.14 Y[m]= 4.56

Raggio del cerchio R[m]= 12.18

Ascissa a valle del cerchio Xi[m]= -8.17 Ascissa a monte del cerchio Xs[m]= 10.16

Larghezza della striscia dx[m]= 0.73
Coefficiente di sicurezza C= 1.61
Le strisce sono numerate da monte verso valle

#### Caratteristiche delle strisce

| Striscia | W        | α(°)   | Wsin $lpha$ | b/cosα | ф     | С     | u     |
|----------|----------|--------|-------------|--------|-------|-------|-------|
| 1        | 1305.29  | 63.89  | 1172.12     | 1.67   | 30.17 | 0.000 | 0.000 |
| 2        | 3071.22  | 57.01  | 2576.02     | 1.35   | 30.17 | 0.000 | 0.000 |
| 3        | 4441.88  | 51.10  | 3456.64     | 1.17   | 30.17 | 0.000 | 0.000 |
| 4        | 5561.29  | 45.87  | 3991.83     | 1.05   | 30.17 | 0.000 | 0.000 |
| 5        | 6499.94  | 41.11  | 4273.46     | 0.97   | 30.17 | 0.000 | 0.000 |
| 6        | 7297.35  | 36.67  | 4357.81     | 0.91   | 30.17 | 0.000 | 0.000 |
| 7        | 7978.33  | 32.47  | 4283.70     | 0.87   | 30.17 | 0.000 | 0.000 |
| 8        | 8559.56  | 28.47  | 4080.11     | 0.83   | 30.17 | 0.000 | 0.000 |
| 9        | 9052.83  | 24.61  | 3769.96     | 0.81   | 30.17 | 0.000 | 0.000 |
| 10       | 9712.60  | 20.87  | 3459.78     | 0.78   | 31.18 | 0.000 | 0.000 |
| 11       | 10261.50 | 17.22  | 3037.37     | 0.77   | 32.01 | 0.000 | 0.000 |
| 12       | 10505.39 | 13.64  | 2476.98     | 0.75   | 32.01 | 0.000 | 0.000 |
| 13       | 10490.36 | 10.11  | 1841.79     | 0.74   | 32.01 | 0.000 | 0.000 |
| 14       | 11076.67 | 6.62   | 1277.80     | 0.74   | 32.01 | 0.000 | 0.000 |
| 15       | 4013.39  | 3.16   | 221.34      | 0.73   | 32.01 | 0.000 | 0.000 |
| 16       | 3099.16  | -0.29  | -15.68      | 0.73   | 32.01 | 0.000 | 0.000 |
| 17       | 3060.55  | -3.74  | -199.75     | 0.73   | 32.01 | 0.000 | 0.000 |
| 18       | 2955.42  | -7.21  | -370.83     | 0.74   | 32.01 | 0.000 | 0.000 |
| 19       | 2782.58  | -10.70 | -516.69     | 0.75   | 32.01 | 0.000 | 0.000 |
| 20       | 2540.04  | -14.23 | -624.59     | 0.76   | 32.01 | 0.000 | 0.000 |
| 21       | 2224.85  | -17.83 | -681.06     | 0.77   | 32.01 | 0.000 | 0.000 |
| 22       | 1841.18  | -21.49 | -674.49     | 0.79   | 30.87 | 0.000 | 0.000 |
| 23       | 1411.31  | -25.25 | -602.01     | 0.81   | 30.17 | 0.000 | 0.000 |
| 24       | 903.93   | -29.13 | -440.03     | 0.84   | 30.17 | 0.000 | 0.000 |
| 25       | 306.87   | -33.16 | -167.87     | 0.88   | 30.17 | 0.000 | 0.000 |

 $\Sigma W_i = 1284.2355 [kN]$ 

 $\Sigma W_i \sin \alpha_i = 392.1124 [kN]$ 

 $\Sigma W_{i} tan \phi_{i} = 776.0750 [kN]$ 

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 90 di 99

 $\Sigma \tan \alpha_i \tan \phi_i = 4.27$ 

# Stabilità globale muro + terreno

# Combinazione n° 20

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

 $\alpha$  angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [MPa]

b larghezza della striscia espressa in [m]

pressione neutra lungo la base della striscia espressa in [MPa]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -1.14 Y[m]= 4.56

Raggio del cerchio R[m]= 12.18

Ascissa a valle del cerchio Xi[m]= -8.17 Ascissa a monte del cerchio Xs[m]= 10.16

Larghezza della striscia dx[m]= 0.73 Coefficiente di sicurezza C= 1.57 Le strisce sono numerate da monte verso valle

#### Caratteristiche delle strisce

| Striscia | W        | α(°)   | Wsin $lpha$ | b/cosα | φ     | С     | u     |
|----------|----------|--------|-------------|--------|-------|-------|-------|
| 1        | 1305.29  | 63.89  | 1172.12     | 1.67   | 30.17 | 0.000 | 0.000 |
| 2        | 3071.22  | 57.01  | 2576.02     | 1.35   | 30.17 | 0.000 | 0.000 |
| 3        | 4441.88  | 51.10  | 3456.64     | 1.17   | 30.17 | 0.000 | 0.000 |
| 4        | 5561.29  | 45.87  | 3991.83     | 1.05   | 30.17 | 0.000 | 0.000 |
| 5        | 6499.94  | 41.11  | 4273.46     | 0.97   | 30.17 | 0.000 | 0.000 |
| 6        | 7297.35  | 36.67  | 4357.81     | 0.91   | 30.17 | 0.000 | 0.000 |
| 7        | 7978.33  | 32.47  | 4283.70     | 0.87   | 30.17 | 0.000 | 0.000 |
| 8        | 8559.56  | 28.47  | 4080.11     | 0.83   | 30.17 | 0.000 | 0.000 |
| 9        | 9052.83  | 24.61  | 3769.96     | 0.81   | 30.17 | 0.000 | 0.000 |
| 10       | 9712.60  | 20.87  | 3459.78     | 0.78   | 31.18 | 0.000 | 0.000 |
| 11       | 10261.50 | 17.22  | 3037.37     | 0.77   | 32.01 | 0.000 | 0.000 |
| 12       | 10505.39 | 13.64  | 2476.98     | 0.75   | 32.01 | 0.000 | 0.000 |
| 13       | 10490.36 | 10.11  | 1841.79     | 0.74   | 32.01 | 0.000 | 0.000 |
| 14       | 11076.67 | 6.62   | 1277.80     | 0.74   | 32.01 | 0.000 | 0.000 |
| 15       | 4013.39  | 3.16   | 221.34      | 0.73   | 32.01 | 0.000 | 0.000 |
| 16       | 3099.16  | -0.29  | -15.68      | 0.73   | 32.01 | 0.000 | 0.000 |
| 17       | 3060.55  | -3.74  | -199.75     | 0.73   | 32.01 | 0.000 | 0.000 |
| 18       | 2955.42  | -7.21  | -370.83     | 0.74   | 32.01 | 0.000 | 0.000 |
| 19       | 2782.58  | -10.70 | -516.69     | 0.75   | 32.01 | 0.000 | 0.000 |
| 20       | 2540.04  | -14.23 | -624.59     | 0.76   | 32.01 | 0.000 | 0.000 |
| 21       | 2224.85  | -17.83 | -681.06     | 0.77   | 32.01 | 0.000 | 0.000 |
| 22       | 1841.18  | -21.49 | -674.49     | 0.79   | 30.87 | 0.000 | 0.000 |
| 23       | 1411.31  | -25.25 | -602.01     | 0.81   | 30.17 | 0.000 | 0.000 |
| 24       | 903.93   | -29.13 | -440.03     | 0.84   | 30.17 | 0.000 | 0.000 |
| 25       | 306.87   | -33.16 | -167.87     | 0.88   | 30.17 | 0.000 | 0.000 |

$$\begin{split} \Sigma W_i &= 1284.2355 \text{ [kN]} \\ \Sigma W_i &\sin\!\alpha_i \text{= } 392.1124 \text{ [kN]} \\ \Sigma W_i &\tan\!\varphi_i \text{= } 776.0750 \text{ [kN]} \end{split}$$

 $\Sigma tan\alpha_i tan\phi_i = 4.27$ 

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 91 di 99

# Sollecitazioni fondazione di valle

#### Combinazione n° 21

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M       | T       |
|-----|------|---------|---------|
| 1   | 0.00 | 0.0000  | 0.0000  |
| 2   | 0.05 | 0.1644  | 6.5690  |
| 3   | 0.10 | 0.6562  | 13.0961 |
| 4   | 0.15 | 1.4733  | 19.5812 |
| 5   | 0.20 | 2.6136  | 26.0244 |
| 6   | 0.25 | 4.0751  | 32.4257 |
| 7   | 0.30 | 5.8555  | 38.7850 |
| 8   | 0.35 | 7.9528  | 45.1023 |
| 9   | 0.40 | 10.3650 | 51.3778 |
| 10  | 0.45 | 13.0899 | 57.6113 |
| 11  | 0.50 | 16.1255 | 63.8028 |

# Sollecitazioni fondazione di monte

#### Combinazione n° 21

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M        | Т        |
|-----|------|----------|----------|
| 1   | 0.00 | 0.0000   | 0.0000   |
| 2   | 0.32 | -1.6800  | -10.0429 |
| 3   | 0.65 | -6.3359  | -18.3139 |
| 4   | 0.98 | -13.3920 | -24.8128 |
| 5   | 1.30 | -22.2723 | -29.5398 |
| 6   | 1.63 | -32.4010 | -32.4948 |
| 7   | 1.95 | -43.1220 | -32.8778 |
| 8   | 2.27 | -53.5483 | -30.9889 |
| 9   | 2.60 | -63.0728 | -27.3279 |
| 10  | 2.92 | -71.1195 | -21.8950 |
| 11  | 3.25 | -77.1126 | -14.6900 |

# Armature e tensioni nei materiali della fondazione

# Combinazione n° 21

Simbologia adottata

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

A<sub>fi</sub> area di armatura in corrispondenza del lembo inferiore in [cmq]

A<sub>fs</sub> area di armatura in corrispondenza del lembo superiore in [cmq]

 $\sigma_c$  tensione nel calcestruzzo espressa in [MPa]

 $\tau_{c}$  tensione tangenziale nel calcestruzzo espressa in [MPa]

 $\sigma_{\text{fi}}$  tensione nell'armatura disposta in corrispondenza del lembo inferiore in [MPa]

 $\sigma_{\text{fs}}$  tensione nell'armatura disposta in corrispondenza del lembo superiore in [MPa]

#### Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | X    | B, H    | $A_{fs}$ | $A_{fi}$ | $\sigma_{c}$ | $	au_{	extsf{c}}$ | $\sigma_{fi}$ | $\sigma_{fs}$ |
|-----|------|---------|----------|----------|--------------|-------------------|---------------|---------------|
| 1   | 0.00 | 100, 80 | 20.11    | 7.70     | 0.000        | 0.000             | 0.000         | 0.000         |
| 2   | 0.05 | 100, 80 | 20.11    | 7.70     | 0.003        | 0.010             | 0.295         | -0.030        |
| 3   | 0.10 | 100. 80 | 20.11    | 7.70     | 0.013        | 0.020             | 1.178         | -0.118        |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 92 di 99

| 4  | 0.15 | 100, 80 | 20.11 | 7.70 | 0.028 | 0.030 | 2.646  | -0.265 |
|----|------|---------|-------|------|-------|-------|--------|--------|
| 5  | 0.20 | 100, 80 | 20.11 | 7.70 | 0.050 | 0.040 | 4.693  | -0.471 |
| 6  | 0.25 | 100, 80 | 20.11 | 7.70 | 0.079 | 0.050 | 7.317  | -0.734 |
| 7  | 0.30 | 100, 80 | 20.11 | 7.70 | 0.113 | 0.060 | 10.514 | -1.054 |
| 8  | 0.35 | 100, 80 | 20.11 | 7.70 | 0.154 | 0.070 | 14.281 | -1.432 |
| 9  | 0.40 | 100, 80 | 20.11 | 7.70 | 0.200 | 0.080 | 18.612 | -1.866 |
| 10 | 0.45 | 100, 80 | 20.11 | 7.70 | 0.253 | 0.089 | 23.505 | -2.357 |
| 11 | 0.50 | 100. 80 | 20.11 | 7.70 | 0.312 | 0.099 | 28.956 | -2.903 |

# Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | X    | В, Н    | $A_{fs}$ | $A_fi$ | $\sigma_{c}$ | $	au_{c}$ | $\sigma_{fi}$ | $\sigma_{fs}$ |
|-----|------|---------|----------|--------|--------------|-----------|---------------|---------------|
| 1   | 0.00 | 100, 80 | 10.05    | 7.70   | 0.000        | 0.000     | 0.000         | 0.000         |
| 2   | 0.32 | 100, 80 | 10.05    | 7.70   | 0.032        | -0.016    | -0.333        | 2.331         |
| 3   | 0.65 | 100, 80 | 10.05    | 7.70   | 0.121        | -0.028    | -1.257        | 8.790         |
| 4   | 0.98 | 100, 80 | 10.05    | 7.70   | 0.256        | -0.038    | -2.657        | 18.579        |
| 5   | 1.30 | 100, 80 | 10.05    | 7.70   | 0.425        | -0.046    | -4.418        | 30.899        |
| 6   | 1.63 | 100, 80 | 10.05    | 7.70   | 0.619        | -0.050    | -6.427        | 44.950        |
| 7   | 1.95 | 100, 80 | 10.05    | 7.70   | 0.824        | -0.051    | -8.554        | 59.824        |
| 8   | 2.27 | 100, 80 | 20.11    | 7.70   | 0.776        | -0.048    | -9.035        | 37.924        |
| 9   | 2.60 | 100, 80 | 20.11    | 7.70   | 0.914        | -0.042    | -10.642       | 44.669        |
| 10  | 2.92 | 100, 80 | 20.11    | 7.70   | 1.031        | -0.034    | -12.000       | 50.368        |
| 11  | 3.25 | 100, 80 | 20.11    | 7.70   | 1.118        | -0.023    | -13.011       | 54.613        |

# Sollecitazioni fondazione di valle

# Combinazione n° 22

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M       | Т       |
|-----|------|---------|---------|
| 1   | 0.00 | 0.0000  | 0.0000  |
| 2   | 0.05 | 0.2251  | 8.9877  |
| 3   | 0.10 | 0.8972  | 17.8841 |
| 4   | 0.15 | 2.0120  | 26.6893 |
| 5   | 0.20 | 3.5647  | 35.4032 |
| 6   | 0.25 | 5.5508  | 44.0258 |
| 7   | 0.30 | 7.9657  | 52.5572 |
| 8   | 0.35 | 10.8050 | 60.9973 |
| 9   | 0.40 | 14.0639 | 69.3461 |
| 10  | 0.45 | 17.7381 | 77.6037 |
| 11  | 0.50 | 21.8228 | 85.7700 |

# Sollecitazioni fondazione di monte

 $\frac{Combinazione \ n^{\circ} \ 22}{L'ascissa} \ X (espressa \ in \ m) \ e \ considerata \ positiva \ verso \ valle \ con \ origine \ in \ corrispondenza \ dell'estremo \ libero \ della \ fondazione \ di \ dell'estremo \ libero \ della \ fondazione \ di \ dell'estremo \ libero \ della \ fondazione \ di \ dell'estremo \ libero \ della \ fondazione \ di \ dell'estremo \ libero \ della \ fondazione \ di \ dell'estremo \ libero \ della \ fondazione \ di \ dell'estremo \ libero \ della \ fondazione \ di \ dell'estremo \ libero \ della \ fondazione \ di \ dell'estremo \ libero \ della \ fondazione \ di \ dell'estremo \ libero \ della \ fondazione \ di \ dell'estremo \ libero \ della \ fondazione \ di \ dell'estremo \ libero \ della \ fondazione \ di \ dell'estremo \ libero \ della \ fondazione \ di \ dell'estremo \ libero \ dell'estremo \ libero \ della \ fondazione \ di \ dell'estremo \ libero \ della \ fondazione \ di \ dell'estremo \ libero \ della \ fondazione \ di \ dell'estremo \ libero \ della \ fondazione \ dell'estremo \ libero \ della \ dell'estremo \ libero \ della \ dell'estremo \ libero \ dell'estremo \ l'estremo \ l'$ 

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | М        | Т        |
|-----|------|----------|----------|
| 1   | 0.00 | 0.0000   | 0.0000   |
| 2   | 0.32 | -3.9650  | -23.7574 |
| 3   | 0.65 | -15.0246 | -43.6589 |
| 4   | 0.98 | -31.9256 | -59.7044 |
| 5   | 1.30 | -53.4148 | -71.8940 |
| 6   | 1.63 | -78.2390 | -80.2276 |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 93 di 99

| 7  | 4.05 | 404 7405  | 00 4400  |
|----|------|-----------|----------|
| 7  | 1.95 | -104.7185 | -80.4403 |
| 8  | 2.27 | -129.9408 | -74.1314 |
| 9  | 2.60 | -152.4862 | -63.9665 |
| 10 | 2.92 | -171.1013 | -49.9457 |
| 11 | 3.25 | -184.5332 | -32.0690 |

# Armature e tensioni nei materiali della fondazione

#### Combinazione n° 22

Simbologia adottata

B base della sezione espressa in [cm]
H altezza della sezione espressa in [cm]

 $A_{\rm fi}$  area di armatura in corrispondenza del lembo inferiore in [cmq]  $A_{\rm fs}$  area di armatura in corrispondenza del lembo superiore in [cmq]

 $\sigma_c$  tensione nel calcestruzzo espressa in [MPa]

τ<sub>c</sub> tensione tangenziale nel calcestruzzo espressa in [MPa]

 $\sigma_{\rm fi}$  tensione nell'armatura disposta in corrispondenza del lembo inferiore in [MPa]  $\sigma_{\rm fs}$  tensione nell'armatura disposta in corrispondenza del lembo superiore in [MPa]

# Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | X    | B, H    | $A_{fs}$ | $A_{fi}$ | $\sigma_{c}$ | $	au_{c}$ | $\sigma_{fi}$ | $\sigma_{fs}$ |
|-----|------|---------|----------|----------|--------------|-----------|---------------|---------------|
| 1   | 0.00 | 100, 80 | 20.11    | 7.70     | 0.000        | 0.000     | 0.000         | 0.000         |
| 2   | 0.05 | 100, 80 | 20.11    | 7.70     | 0.004        | 0.014     | 0.404         | -0.041        |
| 3   | 0.10 | 100, 80 | 20.11    | 7.70     | 0.017        | 0.028     | 1.611         | -0.162        |
| 4   | 0.15 | 100, 80 | 20.11    | 7.70     | 0.039        | 0.041     | 3.613         | -0.362        |
| 5   | 0.20 | 100, 80 | 20.11    | 7.70     | 0.069        | 0.055     | 6.401         | -0.642        |
| 6   | 0.25 | 100, 80 | 20.11    | 7.70     | 0.107        | 0.068     | 9.967         | -0.999        |
| 7   | 0.30 | 100, 80 | 20.11    | 7.70     | 0.154        | 0.081     | 14.304        | -1.434        |
| 8   | 0.35 | 100, 80 | 20.11    | 7.70     | 0.209        | 0.094     | 19.402        | -1.945        |
| 9   | 0.40 | 100, 80 | 20.11    | 7.70     | 0.272        | 0.107     | 25.254        | -2.532        |
| 10  | 0.45 | 100, 80 | 20.11    | 7.70     | 0.343        | 0.120     | 31.851        | -3.193        |
| 11  | 0.50 | 100, 80 | 20.11    | 7.70     | 0.422        | 0.133     | 39.186        | -3.929        |

### Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | X    | B, H    | $A_{fs}$ | $A_{fi}$ | $\sigma_{c}$ | $	au_{	extsf{c}}$ | $\sigma_{fi}$ | $\sigma_{fs}$ |
|-----|------|---------|----------|----------|--------------|-------------------|---------------|---------------|
| 1   | 0.00 | 100, 80 | 10.05    | 7.70     | 0.000        | 0.000             | 0.000         | 0.000         |
| 2   | 0.32 | 100, 80 | 10.05    | 7.70     | 0.076        | -0.037            | -0.787        | 5.501         |
| 3   | 0.65 | 100, 80 | 10.05    | 7.70     | 0.287        | -0.068            | -2.980        | 20.844        |
| 4   | 0.98 | 100, 80 | 10.05    | 7.70     | 0.610        | -0.092            | -6.333        | 44.291        |
| 5   | 1.30 | 100, 80 | 10.05    | 7.70     | 1.020        | -0.111            | -10.596       | 74.103        |
| 6   | 1.63 | 100, 80 | 10.05    | 7.70     | 1.494        | -0.124            | -15.520       | 108.542       |
| 7   | 1.95 | 100, 80 | 10.05    | 7.70     | 2.000        | -0.125            | -20.773       | 145.277       |
| 8   | 2.27 | 100, 80 | 20.11    | 7.70     | 1.884        | -0.115            | -21.925       | 92.026        |
| 9   | 2.60 | 100, 80 | 20.11    | 7.70     | 2.211        | -0.099            | -25.729       | 107.993       |
| 10  | 2.92 | 100, 80 | 20.11    | 7.70     | 2.480        | -0.077            | -28.870       | 121.177       |
| 11  | 3.25 | 100, 80 | 20.11    | 7.70     | 2.675        | -0.050            | -31.137       | 130.690       |

# Sollecitazioni fondazione di valle

# Combinazione n° 23

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

**Nr.** X M T 1 0.00 0.0000 0.0000

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 94 di 99

| 2  | 0.05 | 0.1670  | 6.6718  |
|----|------|---------|---------|
| 3  | 0.10 | 0.6664  | 13.2990 |
| 4  | 0.15 | 1.4961  | 19.8816 |
| 5  | 0.20 | 2.6539  | 26.4196 |
| 6  | 0.25 | 4.1374  | 32.9130 |
| 7  | 0.30 | 5.9444  | 39.3618 |
| 8  | 0.35 | 8.0728  | 45.7659 |
| 9  | 0.40 | 10.5203 | 52.1255 |
| 10 | 0.45 | 13.2846 | 58.4404 |
| 11 | 0.50 | 16.3636 | 64.7107 |

# Sollecitazioni fondazione di monte

# Combinazione n° 23

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M        | Т        |
|-----|------|----------|----------|
| 1   | 0.00 | 0.0000   | 0.0000   |
| 2   | 0.32 | -1.7839  | -10.6634 |
| 3   | 0.65 | -6.7271  | -19.4421 |
| 4   | 0.98 | -14.2170 | -26.3359 |
| 5   | 1.30 | -23.6412 | -31.3450 |
| 6   | 1.63 | -34.3871 | -34.4692 |
| 7   | 1.95 | -45.7620 | -34.9086 |
| 8   | 2.27 | -56.8422 | -32.9632 |
| 9   | 2.60 | -66.9839 | -29.1330 |
| 10  | 2.92 | -75.5745 | -23.4180 |
| 11  | 3.25 | -82.0014 | -15.8182 |

# Armature e tensioni nei materiali della fondazione

# Combinazione n° 23

Simbologia adottata

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

A<sub>fi</sub> area di armatura in corrispondenza del lembo inferiore in [cmq]

A<sub>fs</sub> area di armatura in corrispondenza del lembo superiore in [cmq]

 $\sigma_{\text{c}}$   $\,$  tensione nel calcestruzzo espressa in [MPa]

 $au_c$  tensione tangenziale nel calcestruzzo espressa in [MPa]

 $\sigma_{\text{fi}} \hspace{1cm} \text{tensione nell'armatura disposta in corrispondenza del lembo inferiore in [MPa]} \\$ 

σ<sub>fs</sub> tensione nell'armatura disposta in corrispondenza del lembo superiore in [MPa]

# Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| 0.000<br>0.030<br>0.120 |
|-------------------------|
|                         |
| 0 120                   |
| 0.120                   |
| 0.269                   |
| 0.478                   |
| 0.745                   |
| 1.070                   |
| 1.453                   |
| 1.894                   |
| 2.392                   |
| 2.946                   |
| -                       |

# Fondazione di monte

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 95 di 99

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | X    | B, H    | $A_{fs}$ | $A_{fi}$ | $\sigma_{c}$ | $	au_{c}$ | $\sigma_{fi}$ | $\sigma_{fs}$ |
|-----|------|---------|----------|----------|--------------|-----------|---------------|---------------|
| 1   | 0.00 | 100, 80 | 10.05    | 7.70     | 0.000        | 0.000     | 0.000         | 0.000         |
| 2   | 0.32 | 100, 80 | 10.05    | 7.70     | 0.034        | -0.017    | -0.354        | 2.475         |
| 3   | 0.65 | 100, 80 | 10.05    | 7.70     | 0.128        | -0.030    | -1.334        | 9.333         |
| 4   | 0.98 | 100, 80 | 10.05    | 7.70     | 0.272        | -0.041    | -2.820        | 19.723        |
| 5   | 1.30 | 100, 80 | 10.05    | 7.70     | 0.451        | -0.049    | -4.690        | 32.798        |
| 6   | 1.63 | 100, 80 | 10.05    | 7.70     | 0.657        | -0.053    | -6.821        | 47.706        |
| 7   | 1.95 | 100, 80 | 10.05    | 7.70     | 0.874        | -0.054    | -9.078        | 63.486        |
| 8   | 2.27 | 100, 80 | 20.11    | 7.70     | 0.824        | -0.051    | -9.591        | 40.257        |
| 9   | 2.60 | 100, 80 | 20.11    | 7.70     | 0.971        | -0.045    | -11.302       | 47.439        |
| 10  | 2.92 | 100, 80 | 20.11    | 7.70     | 1.096        | -0.036    | -12.752       | 53.523        |
| 11  | 3.25 | 100, 80 | 20.11    | 7.70     | 1.189        | -0.024    | -13.836       | 58.075        |

# Sollecitazioni fondazione di valle

# Combinazione n° 24

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M       | T       |
|-----|------|---------|---------|
| 1   | 0.00 | 0.0000  | 0.0000  |
| 2   | 0.05 | 0.2530  | 10.1025 |
| 3   | 0.10 | 1.0083  | 20.0894 |
| 4   | 0.15 | 2.2601  | 29.9604 |
| 5   | 0.20 | 4.0024  | 39.7158 |
| 6   | 0.25 | 6.2297  | 49.3555 |
| 7   | 0.30 | 8.9361  | 58.8794 |
| 8   | 0.35 | 12.1157 | 68.2876 |
| 9   | 0.40 | 15.7629 | 77.5801 |
| 10  | 0.45 | 19.8718 | 86.7568 |
| 11  | 0.50 | 24.4366 | 95.8179 |

# Sollecitazioni fondazione di monte

# Combinazione n° 24

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | Χ    | M         | T         |
|-----|------|-----------|-----------|
| 1   | 0.00 | 0.0000    | 0.0000    |
| 2   | 0.32 | -5.0385   | -30.1915  |
| 3   | 0.65 | -19.0948  | -55.4938  |
| 4   | 0.98 | -40.5798  | -75.9068  |
| 5   | 1.30 | -67.9046  | -91.4305  |
| 6   | 1.63 | -99.4800  | -102.0650 |
| 7   | 1.95 | -133.1751 | -102.3902 |
| 8   | 2.27 | -165.2922 | -94.4386  |
| 9   | 2.60 | -194.0305 | -81.5977  |
| 10  | 2.92 | -217.8011 | -63.8676  |
| 11  | 3.25 | -235.0148 | -41.2481  |

# Armature e tensioni nei materiali della fondazione

Combinazione n° 24

Simbologia adottata

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

S/S Scpa 96 di 99

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A<sub>fi</sub> area di armatura in corrispondenza del lembo inferiore in [cmq]
- A<sub>fs</sub> area di armatura in corrispondenza del lembo superiore in [cmq]
- $\sigma_c$  tensione nel calcestruzzo espressa in [MPa]
- $\tau_c$  tensione tangenziale nel calcestruzzo espressa in [MPa]
- $\sigma_{\mbox{\scriptsize fi}}$  tensione nell'armatura disposta in corrispondenza del lembo inferiore in [MPa]
- $\sigma_{fs}$  tensione nell'armatura disposta in corrispondenza del lembo superiore in [MPa]

# Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | X    | B, H    | $A_{fs}$ | $A_{fi}$ | $\sigma_{c}$ | $	au_{c}$ | $\sigma_{fi}$ | $\sigma_{fs}$ |
|-----|------|---------|----------|----------|--------------|-----------|---------------|---------------|
| 1   | 0.00 | 100, 80 | 20.11    | 7.70     | 0.000        | 0.000     | 0.000         | 0.000         |
| 2   | 0.05 | 100, 80 | 20.11    | 7.70     | 0.005        | 0.016     | 0.454         | -0.046        |
| 3   | 0.10 | 100, 80 | 20.11    | 7.70     | 0.019        | 0.031     | 1.811         | -0.182        |
| 4   | 0.15 | 100, 80 | 20.11    | 7.70     | 0.044        | 0.046     | 4.058         | -0.407        |
| 5   | 0.20 | 100, 80 | 20.11    | 7.70     | 0.077        | 0.061     | 7.187         | -0.721        |
| 6   | 0.25 | 100, 80 | 20.11    | 7.70     | 0.120        | 0.076     | 11.186        | -1.122        |
| 7   | 0.30 | 100, 80 | 20.11    | 7.70     | 0.173        | 0.091     | 16.046        | -1.609        |
| 8   | 0.35 | 100, 80 | 20.11    | 7.70     | 0.234        | 0.106     | 21.756        | -2.181        |
| 9   | 0.40 | 100, 80 | 20.11    | 7.70     | 0.305        | 0.120     | 28.305        | -2.838        |
| 10  | 0.45 | 100, 80 | 20.11    | 7.70     | 0.384        | 0.134     | 35.683        | -3.577        |
| 11  | 0.50 | 100, 80 | 20.11    | 7.70     | 0.472        | 0.148     | 43.880        | -4.399        |

# Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | X    | B, H    | $A_{fs}$ | $A_{fi}$ | $\sigma_{c}$ | $	au_{	extsf{c}}$ | $\sigma_{fi}$ | $\sigma_{fs}$ |
|-----|------|---------|----------|----------|--------------|-------------------|---------------|---------------|
| 1   | 0.00 | 100, 80 | 10.05    | 7.70     | 0.000        | 0.000             | 0.000         | 0.000         |
| 2   | 0.32 | 100, 80 | 10.05    | 7.70     | 0.096        | -0.047            | -0.999        | 6.990         |
| 3   | 0.65 | 100, 80 | 10.05    | 7.70     | 0.365        | -0.086            | -3.788        | 26.491        |
| 4   | 0.98 | 100, 80 | 10.05    | 7.70     | 0.775        | -0.118            | -8.050        | 56.297        |
| 5   | 1.30 | 100, 80 | 10.05    | 7.70     | 1.297        | -0.142            | -13.470       | 94.205        |
| 6   | 1.63 | 100, 80 | 10.05    | 7.70     | 1.900        | -0.158            | -19.733       | 138.010       |
| 7   | 1.95 | 100, 80 | 10.05    | 7.70     | 2.543        | -0.158            | -26.417       | 184.756       |
| 8   | 2.27 | 100, 80 | 20.11    | 7.70     | 2.396        | -0.146            | -27.890       | 117.063       |
| 9   | 2.60 | 100, 80 | 20.11    | 7.70     | 2.813        | -0.126            | -32.739       | 137.416       |
| 10  | 2.92 | 100, 80 | 20.11    | 7.70     | 3.157        | -0.099            | -36.750       | 154.251       |
| 11  | 3.25 | 100, 80 | 20.11    | 7.70     | 3.407        | -0.064            | -39.655       | 166.442       |

# Sollecitazioni fondazione di valle

### Combinazione n° 25

L'ascissa X(espressa in m) è considerata positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M       | Т       |
|-----|------|---------|---------|
| 1   | 0.00 | 0.0000  | 0.0000  |
| 2   | 0.05 | 0.2380  | 9.5017  |
| 3   | 0.10 | 0.9484  | 18.8988 |
| 4   | 0.15 | 2.1261  | 28.1913 |
| 5   | 0.20 | 3.7658  | 37.3792 |
| 6   | 0.25 | 5.8623  | 46.4625 |
| 7   | 0.30 | 8.4103  | 55.4411 |
| 8   | 0.35 | 11.4047 | 64.3152 |
| 9   | 0.40 | 14.8401 | 73.0846 |
| 10  | 0.45 | 18.7114 | 81.7494 |
| 11  | 0.50 | 23.0133 | 90.3096 |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 97 di 99

### Sollecitazioni fondazione di monte

# Combinazione n° 25

L'ascissa X(espressa in m) è considerata positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte

Momento positivo se tende le fibre inferiori, espresso in kNm

Taglio positivo se diretto verso l'alto, espresso in kN

| Nr. | X    | M         | Т        |
|-----|------|-----------|----------|
| 1   | 0.00 | 0.0000    | 0.0000   |
| 2   | 0.32 | -4.4845   | -26.8600 |
| 3   | 0.65 | -16.9802  | -49.2999 |
| 4   | 0.98 | -36.0506  | -67.3198 |
| 5   | 1.30 | -60.2592  | -80.9196 |
| 6   | 1.63 | -88.1695  | -90.0994 |
| 7   | 1.95 | -117.9185 | -90.5941 |
| 8   | 2.27 | -146.4103 | -84.0032 |
| 9   | 2.60 | -172.0417 | -72.9922 |
| 10  | 2.92 | -193.3763 | -57.5611 |
| 11  | 3.25 | -208.9776 | -37.7100 |

# Armature e tensioni nei materiali della fondazione

# Combinazione n° 25

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A<sub>fi</sub> area di armatura in corrispondenza del lembo inferiore in [cmq]
- A<sub>fs</sub> area di armatura in corrispondenza del lembo superiore in [cmq]
- σ<sub>c</sub> tensione nel calcestruzzo espressa in [MPa]
- $au_c$  tensione tangenziale nel calcestruzzo espressa in [MPa]
- $\sigma_{\text{fi}}$  tensione nell'armatura disposta in corrispondenza del lembo inferiore in [MPa]
- $\sigma_{fs}$  tensione nell'armatura disposta in corrispondenza del lembo superiore in [MPa]

#### Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

| Nr. | X    | В, Н    | $A_{fs}$ | $A_{fi}$ | $\sigma_{c}$ | $\tau_{c}$ | $\sigma_{fi}$ | $\sigma_{fs}$ |
|-----|------|---------|----------|----------|--------------|------------|---------------|---------------|
| 1   | 0.00 | 100, 80 | 20.11    | 7.70     | 0.000        | 0.000      | 0.000         | 0.000         |
| 2   | 0.05 | 100, 80 | 20.11    | 7.70     | 0.005        | 0.015      | 0.427         | -0.043        |
| 3   | 0.10 | 100, 80 | 20.11    | 7.70     | 0.018        | 0.029      | 1.703         | -0.171        |
| 4   | 0.15 | 100, 80 | 20.11    | 7.70     | 0.041        | 0.044      | 3.818         | -0.383        |
| 5   | 0.20 | 100, 80 | 20.11    | 7.70     | 0.073        | 0.058      | 6.762         | -0.678        |
| 6   | 0.25 | 100, 80 | 20.11    | 7.70     | 0.113        | 0.072      | 10.527        | -1.055        |
| 7   | 0.30 | 100, 80 | 20.11    | 7.70     | 0.162        | 0.086      | 15.102        | -1.514        |
| 8   | 0.35 | 100, 80 | 20.11    | 7.70     | 0.220        | 0.100      | 20.479        | -2.053        |
| 9   | 0.40 | 100, 80 | 20.11    | 7.70     | 0.287        | 0.113      | 26.648        | -2.672        |
| 10  | 0.45 | 100, 80 | 20.11    | 7.70     | 0.361        | 0.127      | 33.599        | -3.369        |
| 11  | 0.50 | 100, 80 | 20.11    | 7.70     | 0.445        | 0.140      | 41.324        | -4.143        |

# Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

| Nr. | X    | B, H    | $A_{fs}$ | $A_{fi}$ | $\sigma_{c}$ | $	au_{c}$ | $\sigma_{fi}$ | $\sigma_{fs}$ |
|-----|------|---------|----------|----------|--------------|-----------|---------------|---------------|
| 1   | 0.00 | 100, 80 | 10.05    | 7.70     | 0.000        | 0.000     | 0.000         | 0.000         |
| 2   | 0.32 | 100, 80 | 10.05    | 7.70     | 0.086        | -0.042    | -0.890        | 6.221         |
| 3   | 0.65 | 100, 80 | 10.05    | 7.70     | 0.324        | -0.076    | -3.368        | 23.557        |
| 4   | 0.98 | 100, 80 | 10.05    | 7.70     | 0.688        | -0.104    | -7.151        | 50.013        |
| 5   | 1.30 | 100, 80 | 10.05    | 7.70     | 1.151        | -0.125    | -11.953       | 83.598        |
| 6   | 1.63 | 100, 80 | 10.05    | 7.70     | 1.684        | -0.139    | -17.490       | 122.319       |

PV\_D\_SR\_AP\_CA\_3\_F\_001-\_001\_0\_004\_R\_A\_0

SIS Scpa 98 di 99

| 7  | 1.95 | 100, 80 | 10.05 | 7.70 | 2.252 | -0.140 | -23.391 | 163.590 |
|----|------|---------|-------|------|-------|--------|---------|---------|
| 8  | 2.27 | 100, 80 | 20.11 | 7.70 | 2.122 | -0.130 | -24.704 | 103.690 |
| 9  | 2.60 | 100, 80 | 20.11 | 7.70 | 2.494 | -0.113 | -29.029 | 121.843 |
| 10 | 2.92 | 100, 80 | 20.11 | 7.70 | 2.803 | -0.089 | -32.629 | 136.953 |
| 11 | 3.25 | 100, 80 | 20.11 | 7.70 | 3.030 | -0.058 | -35.261 | 148.002 |

SIS Scpa 99 di 99