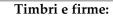


Realizzazione di un impianto agrofotovoltaico denominato "SAN GIUSEPPE", con potenza di generazione pari a 109,653 MWp e potenza nominale pari a 98,400 MW posizionato a terra, sito nel Comune di Ramacca (CT) e Castel di Judica (CT)

Codice elaborato	Data	Livello progettazione	Emesso	Verificato	Approvato	REV.
20 - RMCA - PD.20	GIU 2022	DEFINITIVO	ING. G. VICINO	ING. G. VICINO	ING. G. VICINO	0

ELABORATO: RELAZIONE TECNICA GENERALE E STIMA DI PRODUCIBILITA'

Società Proponente:


BAS ITALY QUATTORDICESIMA S.R.L.

Via Brescia 26

20063 Cernusco sul Naviglio (MI)

email: basitaly.quattordicesima@legalmail.it

Progettazione:

Timbri e firme:

E-PRIMA S.R.L.

Via Manganelli 20/G 95030 Nicolosi (CT) tel:095914116 - cell:3339533392 email:info@e-prima.eu

INDICE GENERALE

1	Prei	nessa
2		nmittente
3		alizzazione ed inquadramento catastale del sito di installazione
4		crizione sintetica dell'impianto fotovoltaico
5		nnessione alla RTN
6		eri adottati per le scelte progettuali
7		mativa di riferimento
8		atteristiche prestazionali dei materiali
	8.1	Moduli fotovoltaici
	8.2	Strutture fisse
	8.3	Conversione statica cc/ca –
	8.4	Cabine elettriche
	8.4.	1 Trasformatori
	8.5	Cavi elettrici
9	imp	ianto fotovoltaico – caratteristiche di dettaglio
	9.1	potenza di picco
	9.2	potenza nominale
	9.3	Generatore in corrente continua
	9.4	Campi fotovoltaici
	9.5	Definizione sottocampi
	9.6	Sezioni

potenza di generazione 109,653 MWp, potenza nominale 98,400 MW sito nei Comuni di Ramacca (CT) e Castel di Judica (CT) RELAZIONE TECNICA GENERALE

	9.7	Configurazione stringhe	21
	9.8	Configurazione inverter	21
	9.9	Trasformatori BT-MT	23
	9.10	rete di distribuzione utente	25
	9.11	SSE utente	26
10	Din	nensionamento e producibilità	28
	10.1	Effetto fotovoltaico	28
	10.2	Irraggiamento sul piano dei moduli	29
	10.3	Perdite di sistema	30
	10.4	Producibilità	32
11	Mis	sure di protezione e sicurezza	33
	11.1	Protezione dai contatti diretti	33
	11.2	Protezione dai contatti indiretti	33
	11.3	Protezione combinata dai contatti diretti e indiretti	34
	11.4	Protezione dei circuiti dalle sovracorrenti e sezionamento	34
	11.5	impianto di messa a terra	34
12	com	npatibilita' elettromagnetica (EMC)	34
13	veri	fiche tecnico - funzionali (collaudo)	35

1 PREMESSA

La presente relazione è tesa a definire gli aspetti tecnici relativi ad un impianto agrofotovoltaico denominato "San Giuseppe" di potenza di generazione pari a 109,653 MWp e potenza nominale pari a 98,4 MW da installare nei Comuni di Ramacca (CT) e Castel di Judica. Verranno forniti tutti i documenti e gli elementi atti a dimostrare la rispondenza del progetto definitivo alle finalità dell'intervento.

2 COMMITTENTE

SOCIETA': BAS ITALY QUATTORDICESIMA S.R.L.

SEDE LEGALE: Via Brescia 26 – 20063 Cernusco sul Naviglio (MI)

P.IVA: 11464260964

3 LOCALIZZAZIONE ED INQUADRAMENTO CATASTALE DEL SITO DI INSTALLAZIONE

Sito di installazione: Comuni di Ramacca (CT) e Castel di Judica, c.da Albospino.

Coordinate geografiche:

- Latitudine 37°28'10" N, Longitudine 14°38'11" E;
- Quota altimetrica massima 411 m s.l.m e minima 153 m s.l.m.

Sull'ortofoto seguente si riportano i poligoni delle aree di progetto relative all'impianto

Ortofoto con evidenza del poligono dell'area di progetto

L'area di progetto, la cui superficie è pari a circa 301,67 ha, è caratterizzata da un andamento collinare con variazioni di pendenza e da campi destinati prevalentemente a seminativo. Essa è censita all'interno del Nuovo Catasto Terreni (N.C.T.) del comune di Ramacca (CT) e di Castel di Judica (CT) e ricade nei seguenti fogli catastali:

- Comune di Castel di Judica: 29, 32, 44, 50;
- Comune di Ramacca: 37, 45, 74, 75, 82, 83, 84.

per maggiori approfondimenti circa le particelle catastali interessate dall'intervento si rimanda al piano particellare grafico e tabellare allegato.

4 DESCRIZIONE SINTETICA DELL'IMPIANTO FOTOVOLTAICO

Dati generali dell'impianto fotovoltaico:

- ♣ Numero di moduli fotovoltaici: 179.760 MF
- **↓** Tipologia di modulo fotovoltaico: HiKu6 mono 610
- ♣ Potenza modulo fotovoltaico: 610 W
- ♣ Potenza di generazione dell'impianto: 109,6536MW_p
- ♣ Inverter utilizzati: HUAWEI SUN2000-215KTL-H0
- ♣ Numero di inverter: 492
- **↓** Connessione alla rete elettrica: AT (150 kV)

Tipologia di installazione:

- Impianto a terra con
 - o Strutture Fisse;

Dati generali producibilità annua stimata:

- **Line 1** Esposizione del generatore fotovoltaico:
 - o Azimut 0°, tilt 20°
- Rendimento energetico impianto stimato:
 - 0 83,57%
- ♣ Producibilità specifica, per il 1° anno:
 - o 1502 kWh/kWp/anno
- ♣ Producibilità totale impianto, per il 1° anno: 165 GWh/anno

5 CONNESSIONE ALLA RTN

il progetto è ad oggi riferito al Preventivo di connessione TERNA del 10/06/2021 codice pratica 202100423. Tale soluzione prevederebbe la connessione in antenna a 150 kV con la sezione a 150 kV di una nuova stazione elettrica (SE) RTN 380/150 kV da inserire in entra – esce sulla linea RTN a 380 kV "Chiaramonte Gulfi - Paternò". Il proponente in data 21/05/2022 ha richiesto la modifica del suddetto preventivo per adeguamento potenza in immissione e variazione del punto di connessione in antenna a 150 kV con la sezione a 150 kV di una nuova stazione elettrica (SE) RTN 380/150 kV da inserire in entra – esce sulla futura linea RTN a 380 kV "Chiaramonte Gulfi- Ciminna", previsto nel Piano di Sviluppo Terna. I documenti progettuali proposti rappresentano pertanto l'ipotesi richiesta che comunque ad oggi non risulta ancora validata dal distributore. In ragione di ciò, il grado di approfondimento progettuale è da ritenersi allo stato di preliminare di fattibilità e verrà approfondito e integrato ad avvenuta ufficializzazione della soluzione tecnica di connessione da parte di TERNA

6 CRITERI ADOTTATI PER LE SCELTE PROGETTUALI

Il presente progetto definitivo nasce a valle di verifiche progettuali inerenti la fattibilità dell'intervento dal punto di vista tecnico-economico.

I criteri seguiti per la progettazione dell'impianto e delle strutture sono in linea con gli usali criteri di buona tecnica e di regola dell'arte applicati conformemente alle normative obbligatori vigenti.

In particolare, la progettazione è stata condotta conformemente alle disposizioni del D.M. 05/05/2011 e s.m.i. "Criteri e modalità per incentivare la produzione di energia elettrica mediante conversione fotovoltaica solare, in attuazione dell'articolo 7 del D.Lgs. del 29/12/2003, n. 387" come integrate dalle deliberazioni dell'Autorità per l'Energia elettrica e il Gas.

7 NORMATIVA DI RIFERIMENTO

L'impianto fotovoltaico e i relativi componenti rispettano, ove di pertinenza, le prescrizioni contenute nelle norme tecniche di seguite elencate.

Si applicano inoltre i documenti tecnici emanati dai gestori di rete e le delibere dell'*Autorità per l'Energia elettrica e il Gas*, riportanti disposizioni applicative per la connessione ed esercizio di impianto fotovoltaici collegati alla rete elettrica pubblica.

Si precisa che l'elenco sotto riportato non è da intendersi esaustivo; ulteriori disposizioni di legge, norme e deliberazioni in materia, anche se non espressamente richiamate, si considerano applicabili ove di pertinenza.

❖ Norme CEI:

- ← CEI 64-8: impianti elettrici utilizzatori a tensione nominale superiore a 1000 V in corrente alternata e a 1500 V in corrente continua;
- ♣ CEI 64-8 parte 7, sezione 712: i sistemi fotovoltaici solari (PV) di alimentazione;

- ← CEI 11-20;V1: impianti di produzione di energia elettrica e gruppi di continuità collegati a reti di I e II categoria;
- ♣ CEI EN 61727 (CEI 82-9): sistemi fotovoltaici (FV) caratteristiche dell'interfaccia di raccordo con la rete:
- ← CEI EN 61215 (CEI 82-8): moduli fotovoltaici in silicio cristallino per applicazioni terrestri. Qualifica del progetto e omologazione del tipo;
- ← CEI 82-25: guida alla realizzazione di sistemi di generazione fotovoltaica collegati alle reti elettriche di media e bassa tensione;
- ← CEI EN 60439-1 (CEI 17-13): apparecchiature assiemate di protezione e di manovra per bassa tensione (quadri BT);
- ← CEI EN 60099-1 (CEI 37-1): scaricatori a resistori non lineari con spinterometri per sistemi a corrente alternata;
- ♣ CEI EN 62305 (CEI 81-10): protezione contro i fulmini;
- ♣ CEI 0-2: guida per la definizione della documentazione di progetto per impianti elettrici;
- ♣ UNI 10349: riscaldamento e raffrescamento degli edifici; dati climatici;
- ≠ CEI 13-4: sistemi di misura dell'energia elettrica composizione, precisione e verifica;
- ♣ CEI EN 62053-21 (CEI 13-43): apparati per la misura dell'energia elettrica (c.a.);

8 CARATTERISTICHE PRESTAZIONALI DEI MATERIALI

L'impianto fotovoltaico è sostanzialmente un impianto elettrico, collegato alla rete di distribuzione locale.

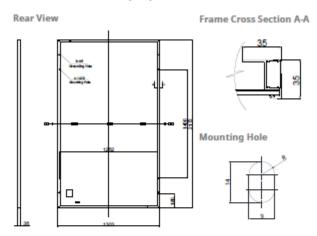
Questo tipo di impianti, come previsto dallo stesso D.M. 5-5-2011 e s.m.i., presentano un alto livello di regolamentazione tecnica obbligatoria, sia a riguardo dell'architettura della progettazione (documenti obbligatori, caratteristiche del progetto, ecc..), sia a riguardo dei materiali da utilizzare (compatibilità elettrica ed elettromagnetica, marchi di qualità, prestazioni, ecc..).

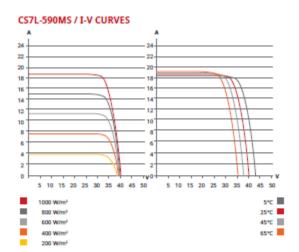
Le scelte dei materiali impiegati, quindi, sono correlati a questo quadro normativo obbligatorio che può essere considerato "standardizzato", il quale di per sé garantisce un'elevata qualità costruttiva e prestazionale dei materiali utilizzati.

La scelta della componentistica è stata effettua sulla base di quello che alla data odierna risulta essere il miglior compromesso tecnologico alla funzionalità dell'impianto; data la rapida evoluzione del mercato correlato alle energie rinnovabili, non si esclude che "i materiali indicati nei paragrafi seguenti (eg. inverter, moduli e strutture), in fase di progettazione esecutiva e di commissioning possano variare a seconda della disponibilità di mercato e dell'avanzamento tecnologico.

8.1 MODULI FOTOVOLTAICI

I moduli fotovoltaici presenti oggi sul mercato possono essere distinti in:


- Moduli in silicio policristallino;
- Moduli in silicio monocristallino;


Il modulo fotovoltaico scelto è un modulo in silicio monocristallino modello HiKu6 Mono 610 del produttore Canadian Solar con potenza massima pari a 610 Wp.

La superficie complessiva occupata dai 179.760 moduli fotovoltaici è 463.549,98 m² pari al prodotto del numero di moduli per la superficie del singolo modulo..

Si riportano nella figura in calce le caratteristiche elettriche e meccaniche del modulo.

ENGINEERING DRAWING (mm)

ELECTRICAL DATA | STC*

CS7L 580MS 585MS 590MS 595MS 600MS 605MS 610MS Nominal Max. Power (Pmax) 580 W 585 W 590 W 595 W 600 W 605 W 610 W Opt. Operating Voltage (Vmp) 34.1 V 34.3 V 34.5 V 34.7 V 34.9 V 35.1 V 35.3 V Opt. Operating Current (Imp) 17.02 A17.06 A17.11 A17.15 A17.20 A17.25 A17.29 A 40.5 V 40.7 V 40.9 V 41.1 V 41.3 V 41.5 V 41.7 V Open Circuit Voltage (Voc) Short Circuit Current (Isc) 18.27 A18.32 A18.37 A18.42 A18.47 A18.52 A18.57 A Module Efficiency 20.5% 20.7% 20.8% 21.0% 21.2% 21.4% 21.6% Operating Temperature -40°C ~ +85°C Max. System Voltage 1500V (IEC/UL)) or 1000V (IEC/UL)) TYPE 1 (UL 61730 1500V) or TYPE 2 (UL 61730 1000V) or CLASS C (IEC 61730) Module Fire Performance Max. Series Fuse Rating 30 A Application Classification Class A Power Tolerance 0 ~ + 10 W

MECHANICAL DATA

Specification	Data
Cell Type	Mono-crystalline
Cell Arrangement	120 [2 x (10 x 6)]
Dii	2172 × 1303 × 35 mm
Dimensions	(85.5 × 51.3 × 1.38 in)
Weight	31.0 kg (68.3 lbs)
Front Cover	3.2 mm tempered glass
Frame	Anodized aluminium alloy
J-Box	IP68, 3 bypass diodes
Cable	4 mm² (IEC), 10 AWG (UL)
Connector	T4 series or MC4-EVO2
Cable Length (Including Connector)	460 mm (18.1 in) (+) / 340 mm (13.4 in) (-) (supply additional jumper cable: 2 lines / Pallet) or customized length*
Per Pallet	31 pieces
Per Container (40' HQ)	527 pieces

^{*} For detailed information, please contact your local Canadian Solar sales and technical representatives.

ELECTRICAL DATA | NMOT*

CS7L	580MS	585MS	590MS	595MS	600MS	605MS	610MS
Nominal Max. Power (Pmax)	435 W	439 W	442 W	446 W	450 W	454 W	457 W
Opt. Operating Voltage (Vmp)	32.0 V	32.2 V	32.3 V	32.5 V	32.7 V	32.9 V	33.1 V
Opt. Operating Current (Imp)	13.60 A	13.64 A	13.70 A	13.73 A	13.77 A	13.80 A	13.83 A
Open Circuit Voltage (Voc)	38.3 V	38.5 V	38.7 V	38.8 V	39.0 V	39.2 V	39.4 V
Short Circuit Current (Isc)	14.73 A	14.77 A	14.80 A	14.85 A	14.89 A	14.93 A	14.97 A

 ^{*} Under Nominal Module Operating Temperature (NMOT), Irradiance of 800 W/m² spectrum AM 1.5, ambient temperature 20°C, wind speed 1 m/s.

TEMPERATURE CHARACTERISTICS

Specification	Data
Temperature Coefficient (Pmax)	-0.34 % / °C
Temperature Coefficient (Voc)	-0.26 % / °C
Temperature Coefficient (Isc)	0.05 % / °C
Nominal Module Operating Temperature	41 ± 3°C

^{*} Under Standard Test Conditions (STC) of Irradiance of 1000 W/m², spectrum AM 1.5 and cell temperature of 25°C.

8.2 STRUTTURE FISSE

I moduli fotovoltaici sono fissati sul terreno per mezzo di apposite strutture in acciaio zincato opportunamente dimensionate per ospitare ciascuna due file di moduli da 12 e permetterne il posizionamento con azimut 0° e tilt 20°. Ove necessario, per ottimizzare la disposizione del generatore, verranno realizzate mezze strutture da 12 MF Tale soluzione realizzativa permette di alloggiare una intera stringa su ciascuna struttura. Il piazzamento così realizzato garantisce una esposizione del modulo ottimale al recepimento della radiazione solare anche nelle zone ove l'orografia risulta più impervia

8.3 CONVERSIONE STATICA CC/CA –

Il gruppo di conversione da corrente continua a corrente alternata dell'energia elettrica prodotta sarà costituito complessivamente da n.492 inverter modello Huwaei SUN2000-215KTL-H0 di potenza attiva nominale lato alternata pari a 200 kW

8.4 CABINE ELETTRICHE

Si prevede l'utilizzo di:

- n.5 cabine di raccolta ove afferiranno, per la messa in parallelo, gli elettrodotti uscenti dalle varie sezioni.
- N. 60 cabine di trasformazione ove verrà effettuata la trasformazione 0,8/30kV; in esse saranno allogiati:
 - o 1 quadro BT per la protezione lato bassa tensione che include il sistema di protezione di interfaccia e il relativo DDI oltre che il rincalzo per la mancata apertura.
 - o 1 trasformatore per l'alimentazione dei servizi ausiliari dell'inverter
 - 1 trasformatore di potenza cin rapporto di trasformazione 800V/30.000V per la connesione in media tensione.
 - o 1 quadro MT

Le cabine saranno di tipo prefabbricato mono-blocco in c.a.v. prodotte ai sensi del DM 14/01/2008 e della Legge 5/11/71 n° 1086 art.9 – D.M. 3/12/87 n°39

I passaggi previsti per il transito delle persone saranno larghi almeno 80 cm, al netto di eventuali sporgenze. La cabina sarà posta su fondazione prefabbricata tipo vasca, che fungerà da vano per i cavi, e che sarà accessibile da apposita botola posta sul pavimento dei vari locali. Il calore prodotto dai quadri, sarà smaltito tramite ventilazione naturale per mezzo di griglie di areazione e da aspiratori ad asse verticale comandati in temperatura o di tipo eolico.

Per ogni cabina elettrica sarà realizzato un impianto di messa a terra tramite dispersore orizzontale ad anello in corda di rame nuda sez. 35 mmq e da min n. 6 dispersori verticali in acciaio zincato con profilo a croce 50x50x5 mm di lunghezza 2,5 m.

8.4.1 Trasformatori

La trasformazione bt-MT avverrà per mezzo di trasformatori di adeguata potenza del tipo Dy11; questi saranno del tipo in resina e saranno ubicati in apposito vano all'interno delle cabine di trasformazione.

8.5 CAVI ELETTRICI

Saranno impiegate le seguenti tipologie di cavi in funzione delle condizioni di posa:

- ♣ 1) cavo "solar" tipo H1Z2Z2-K, unipolare, resistente all'ozono e ai raggi UV, conforme alle Norme IMQ CPT065 / CEI 20-35 / 20-37P2 / EN 60332-1-2 / EN 50267-1-2 / EN 50267-2-2. Saranno utilizzati per l'interconnesione dei moduli fotovoltaici e per il collegamento delle stringhe ai quadri di campo;
- **↓** 2) cavo unipolare tipo FG16 0,6/1 kV o multipolare tipo FG16(O)R 0,6/1 kV, o equivalenti, adatti per pose in ambienti interni o esterni anche bagnati. Saranno utilizzati per pose prevalentemente in tubazioni interrate e/o per condutture in esterno;
- **↓** 3) cavo unipolare tipo FS17 o equivalente. Saranno utilizzati prevalentemente per i cablaggi all'interno dei quadri elettrici in bassa tensione e per realizzare le condutture elettriche in bassa tensione entro tubi in aria in interni;
- ↓ 4) cavo unipolare tipo FS17, o equivalente per collegamenti equipotenziali ai fini della messa a terra di sicurezza;
- ♣ 5) cavi unipolari, per posa interrata, con Conduttore a corda rotonda compatta di rame rosso, isolati con Mescola di gomma ad alto modulo G7, con schermo A filo di rame rosso sotto guaina in PVC, tipo RG7H1OR 26/45 kV per i collegmanti dei circuiti a 36 kV;

La scelta delle sezioni dei cavi va effettuata in base alla loro portata nominale (calcolata in base ai criteri di unificazione e di dimensionamento riportati nelle tabelle CEI-UNEL), alle condizioni di posa e di temperatura, al limite ammesso dalle Norme per quanto riguarda le cadute di tensione massime ammissibili (inferiori al 2%) ed alle caratteristiche di intervento delle protezioni secondo quanto previsto dalle vigenti Norme CEI 64-8. Particolare attenzione va riservata alla scelta delle sezioni dei cavi dei circuiti afferenti ai

potenza di generazione 109,653 MWp, potenza nominale 98,400 MW sito nei Comuni di Ramacca (CT) e Castel di Judica (CT)

RELAZIONE TECNICA GENERALE

gruppi di misura dell'energia prodotta al fine di rendere trascurabili le perdite energetiche per effetto joule sugli stessi.

9 IMPIANTO FOTOVOLTAICO – CARATTERISTICHE DI DETTAGLIO

9.1 POTENZA DI PICCO

L'impianto fotovoltaico in oggetto avrà una potenza di generazione installata pari a 109,6536 MWp ottenuta come il prodotto tra il numero di moduli installati e la potenza nominale di ciascun modulo; ovvero:

- ♣ Il numero di moduli installati è pari a 179.760;
- La potenza nominale del modulo fotovoltaico prescelto è pari a 610 Wp;
- **↓** La potenza di picco sarà pertanto pari a: (0,610 x 179.760)/1000 = 109,6536 MWp

9.2 POTENZA NOMINALE

La potenza nominale sarà pari a 98,4 MW; tale valore è pari alla somma delle potenze nominali dei singoli inverter, Ovvero:

- ♣ Il numero degli inverter installati è pari a 492;
- La potenza nominale dell'inverter prescelto è pari a 200 W;
- ♣ La potenza nominale sarà pertanto pari a: (200 x 492)/1000 = 98,4 MWp

Il rapporto potenza DC/AC risulta pertanto pari a circa 1,15%

9.3 GENERATORE IN CORRENTE CONTINUA

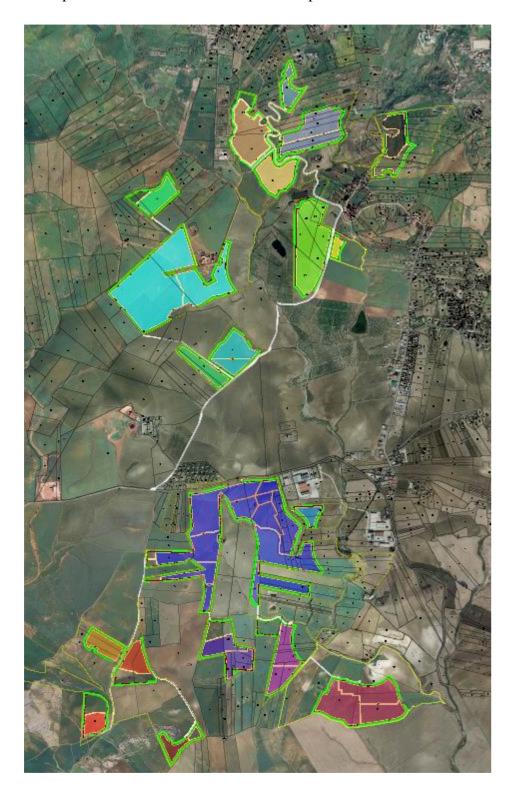
I moduli fotovoltaici verranno installati su:

- 7231 strutture fisse da 24 moduli fotovoltaici
- 518 strutture fisse da 12 moduli fotovoltaici

Su ciascuna struttura da 24 MF sarà installata una singola stringa; Si utilizzerà invece una coppia di strutture da 12 MF per ciascuna stringa. Si prevede in totale l'utilizzo di 179.760 MF

In calce si riporta la ripartizione del generatore in funzione delle varie tipologie di strutture

Tipolgia di installazione	strutture [n°]	MF [n°]	pot installata [kWp]
Strutture fisse 24 MF	7231	173.544	105.861,84
Strutture fisse 12 MF	518	9.324	5.687,64

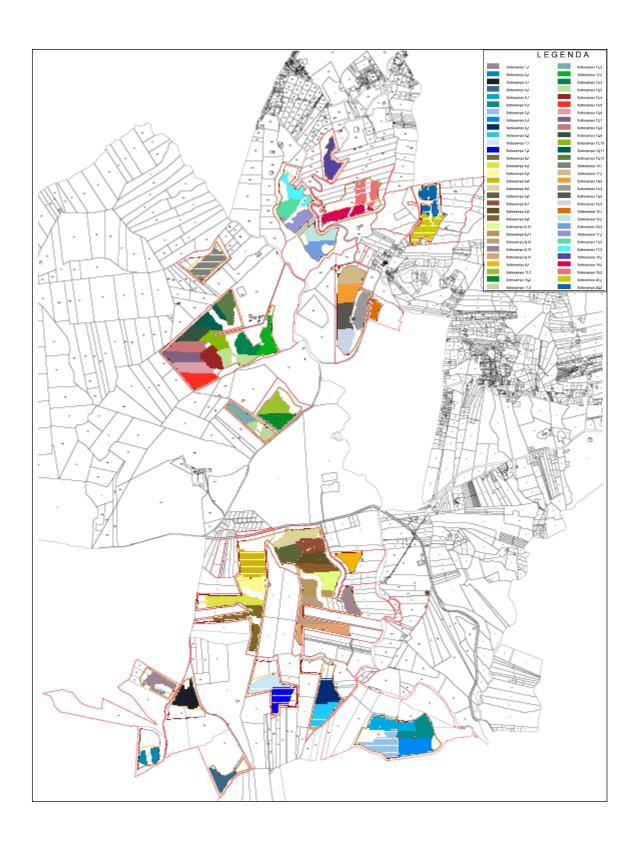

9.4 CAMPI FOTOVOLTAICI

La potenza installata sarà distribuita in 20 campi fotovoltaici delimitati; i campi risultano ubicati nell'agro dei comuni di Ramacca (CT) e Castel di Judica

Si riporta in tabella la distribuzione delle potenze per ciascun campo fotovoltaico

campo	Strutture da 24 MF [n°]	Strutture da 12 MF [n°]	MF [n°]	P inst. [kWp]
1	93	6	2304	1405,44
2	76	8	1920	1171,20
3	101	8	2520	1537,20
4	78	24	2160	1317,60
5	552	10	13368	8154,48
6	191	14	4752	2898,72
7	179	10	4416	2693,76
8	1750	130	43560	26571,6
9	86	8	2160	1317,60
10	205	6	4992	3045,12
11	166	20	4224	2576,64
12	1706	84	41952	25590,72
13	109	6	2688	1639,68
14	710	74	17928	10936,08
15	39	12	1080	658,80
16	268	18	6648	4055,28
17	346	36	8736	5328,96
18	122	12	3072	1873,92
19	268	12	6576	4011,36
20	186	20	4704	2869,44

Si riporta stralcio planimetrico della definizione dei campi FV

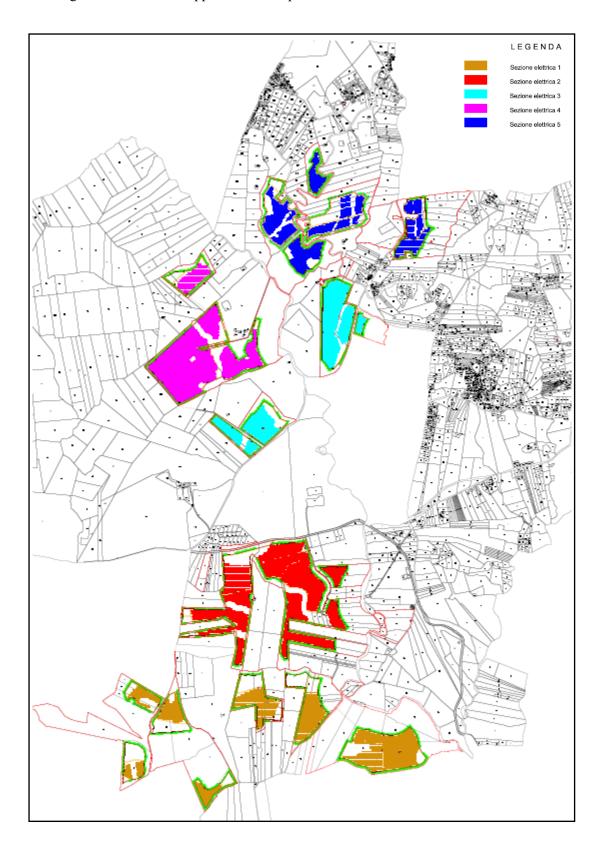

9.5 DEFINIZIONE SOTTOCAMPI

L'impianto è stata suddiviso in 60 sottocampi, in funzione delle potenze installate e della dislocazione dei vari campi. Di seguito si riporta la tabella riepilogativa delle potenze per ogni sottocampo

_	Strutture da 24 MF	strutture da 12 MF	Moduli fotovoltaici	P generatore FV
Sottocampo	[n°]	[n°]	[n°]	[kWp]
1,1	93	6	2304	1405,44
2,1	76	8	1920	1171,20
3,1	101	8	2520	1537,20
4,1	78	24	2160	1317,60
5,1	134	2	3240	1976,40
5,2	134	2	3240	1976,40
5,3	133	4	3240	1976,40
5,4	151	2	3648	2225,28
6,1	101	8	2520	1537,20
6,2	90	6	2232	1361,52
7,1	92	4	2256	1376,16
7,2	87	6	2160	1317,60
8.1	126	18	3240	1976,40
8,2	133	4	3240	1976,40
8,3	130	10	3240	1976,40
8,4	152	10	3768	2298,48
8,5	132	6	3240	1976,40
8,6	132	6	3240	1976,40
8,7	119	2	2880	1756,80
8,8	128	14	3240	1976,40
8,9	132	6	3240	1976,40
8,10	114	12	2880	1756,80
8,11	114	12	2880	1756,80
8,12	115	10	2880	1756,80
8,13	101	10	2544	1551,84
8.14	122	10	3048	1859,28
9,1	86	8	2160	1317,60
10,1	112		2688	1639,68
10,2	93	6	2304	1405,44
11,1	75	10	1920	1171,20
11,2	91	10	2304	1405,44
12,1	142	18	3624	2210,64
12,2	147	8	3624	2210,64
12,3	144	14	3624	2210,64

12,4	150	2	3624	2210,64
12,5	148	6	3624	2210,64
12,6	150	2	3624	2210,64
12,7	151		3624	2210,64
12,8	151		3624	2210,64
12,9	135		3240	1976,40
12,10	130	10	3240	1976,40
12,11	131	8	3240	1976,40
12,12	127	16	3240	1976,40
13,1	109	6	2688	1639,68
14,1	146	8	3600	2196,00
14,2	146	8	3600	2196,00
14,3	136	28	3600	2196,00
14,4	145	16	3672	2239,92
14,5	137	14	3456	2108,16
15,1	39	12	1080	658,80
16,1	129	12	3240	1976,40
16,2	139	6	3408	2078,88
17,1	116	8	2880	1756,80
17,2	120	8	2976	1815,36
17,3	110	20	2880	1756,80
18,1	122	12	3072	1873,92
19,1	133	4	3240	1976,40
19,2	135	8	3336	2034,96
20,1	102	6	2520	1537,20
20,2	84	14	2184	1332,24

Nell'immagine seguente viene rappresentata la ripartizione dei sottocampi


9.6 SEZIONI

Il parco fotovoltaico sarà elettricamente ripartito in 5 sezioni, ciascuna delle quali afferisce a una cabina di raccolta. Nella tabella in calce la ripartizione dei sottocampi nelle varie sezioni

Sezione Campo		Sottocampo
	1	1,1
	2	2,1
	3	3,1
	4	4,1
		5,1
1	5	5,2
1	3	5,3
		5,4
	6	6,1
	b	6,2
	7	7,1
	,	7,2
		8.1
		8,2
		8,3
		8,4
		8,5
		8,6
	8	8,7
2	0	8,8
2		8,9
		8,10
		8,11
		8,12
		8,13
		8.14
	9	9,1

	10	10,1
	10	10,2
	4.4	11,1
	11	11,2
3		14,1
		14,2
	14	14,3
		14,4
		14,5
	15	15,1
		12,1
		12,2
		12,3
		12,4
		12,5
		12,6
	12	12,7
4		12,8
		12,9
		12,10
		12,11
		12,12
	13	13,1
	4.6	16,1
	16	16,2
		17,1
	17	17,2
		17,3
_		
5	18	18,1
		19,1
	19	19,2
	20	20,1
	20	20,2

Nell'immagine in calce viene rappresentata la ripartizione delle sezioni

9.7 CONFIGURAZIONE STRINGHE

I 77.448 moduli fotovoltaici saranno collegati in serie in stringhe da 24 MF; ciascuna stringa confluirà al relativo gruppo di conversione statica

9.8 CONFIGURAZIONE INVERTER

Il gruppo di conversione da corrente continua a corrente alternata dell'energia elettrica prodotta sarà costituito complessivamente da n. 492 inverter del produttore produttore "HUAWEI" Modello SUN2000-215KTL-H0. A ciascun inverter afferiranno 15 o 16 stringhe da 24 MF. In calce la configurazione di ciascun inverter e delle stringhe ad essi afferenti

Sottocampo	P generatore FV [kWp]	Stringhe da 24 MF [n]	inverter 15 stringhe [n]	inverter 16 stringhe [n.]	inverter tot [n]	Potenza nominale [kW]
1,1	1405,44	96		6	6	1200
2,1	1171,20	80		5	5	1000
3,1	1537,20	105	7		7	1400
4,1	1317,60	90	6		6	1200
5,1	1976,40	135	9		9	1800
5,2	1976,40	135	9		9	1800
5,3	1976,40	135	9		9	1800
5,4	2225,28	152	8	2	10	2000
6,1	1537,20	105	7		7	1400
6,2	1361,52	93	3	3	6	1200
7,1	1376,16	94	2	4	6	1200
7,2	1317,60	90	6	0	6	1200
8.1	1976,40	135	9		9	1800
8,2	1976,40	135	9		9	1800
8,3	1976,40	135	9		9	1800
8,4	2298,48	157	3	7	10	2000
8,5	1976,40	135	9		9	1800
8,6	1976,40	135	9		9	1800
8,7	1756,80	120	8		8	1600
8,8	1976,40	135	9		9	1800

8,9	1976,40	135	9		9	1800
8,10	1756,80	120	8		8	1600
8,11	1756,80	120	8		8	1600
8,12	1756,80	120	8		8	1600
8,13	1551,84	106	6	1	7	1400
8.14	1859,28	127	1	7	8	1600
9,1	1317,60	90	6		6	1200
10,1	1639,68	112		7	7	1400
10,2	1405,44	96		6	6	1200
11,1	1171,20	80		5	5	1000
11,2	1405,44	96		6	6	1200
12,1	2210,64	151	9	1	10	2000
12,2	2210,64	151	9	1	10	2000
12,3	2210,64	151	9	1	10	2000
12,4	2210,64	151	9	1	10	2000
12,5	2210,64	151	9	1	10	2000
12,6	2210,64	151	9	1	10	2000
12,7	2210,64	151	9	1	10	2000
12,8	2210,64	151	9	1	10	2000
12,9	1976,40	135	9		9	1800
12,10	1976,40	135	9		9	1800
12,11	1976,40	135	9		9	1800
12,12	1976,40	135	9		9	1800
13,1	1639,68	112		7	7	1400
14,1	2196,00	150	10		10	2000
14,2	2196,00	150	10		10	2000
14,3	2196,00	150	10		10	2000
14,4	2239,92	153	7	3	10	2000
14,5	2108,16	144		9	9	1800
15,1	658,80	45	3		3	600
16,1	1976,40	135	9		9	1800
16,2	2078,88	142	2	7	9	1800
17,1	1756,80	120	8		8	1600
17,2	1815,36	124	4	4	8	1600
17,3	1756,80	120	8	0	8	1600
18,1	1873,92	128		8	8	1600
19,1	1976,40	135	9		9	1800
19,2	2034,96	139	5	4	9	1800
20,1	1537,20	105	7		7	1400
20,2	1332,24	91	5	1	6	1200

RELAZIONE TECNICA GENERALE

9.9 TRASFORMATORI BT-MT

Ciascuna cabina di trasformazione sarà equipaggiata con un trasformatore DY11 di adeguata potenza che innalzerà la tensione al livello MT di distribuzione utente pari a 30 kV. Si riporta in calce il prospetto riportante la potenza di ciascun trafo.

Sottocampo	P generatore FV [kWp]	Potenza nominale [kW]	TRAFO [kVA]
1,1	1405,44	1200	1600
2,1	1171,20	1000	1250
3,1	1537,20	1400	1600
4,1	1317,60	1200	1600
5,1	1976,40	1800	2000
5,2	1976,40	1800	2000
5,3	1976,40	1800	2000
5,4	2225,28	2000	2500
6,1	1537,20	1400	1600
6,2	1361,52	1200	1600
7,1	1376,16	1200	1600
7,2	1317,60	1200	1600
8.1	1976,40	1800	2000
8,2	1976,40	1800	2000
8,3	1976,40	1800	2000
8,4	2298,48	2000	2500
8,5	1976,40	1800	2000
8,6	1976,40	1800	2000
8,7	1756,80	1600	2000
8,8	1976,40	1800	2000
8,9	1976,40	1800	2000
8,10	1756,80	1600	2000
8,11	1756,80	1600	2000
8,12	1756,80	1600	2000
8,13	1551,84	1400	1600
8.14	1859,28	1600	2000
9,1	1317,60	1200	1600
10,1	1639,68	1400	1600
10,2	1405,44	1200	1600
11,1	1171,20	1000	1250
11,2	1405,44	1200	1600

12,1	2210,64	2000	2500
12,2	2210,64	2000	2500
12,3	2210,64	2000	2500
12,4	2210,64	2000	2500
12,5	2210,64	2000	2500
12,6	2210,64	2000	2500
12,7	2210,64	2000	2500
12,8	2210,64	2000	2500
12,9	1976,40	1800	2000
12,10	1976,40	1800	2000
12,11	1976,40	1800	2000
12,12	1976,40	1800	2000
13,1	1639,68	1400	1600
14,1	2196,00	2000	2500
14,2	2196,00	2000	2500
14,3	2196,00	2000	2500
14,4	2239,92	2000	2500
14,5	2108,16	1800	2000
15,1	658,80	600	800
16,1	1976,40	1800	2000
16,2	2078,88	1800	2000
17,1	1756,80	1600	2000
17,2	1815,36	1600	2000
17,3	1756,80	1600	2000
18,1	1873,92	1600	2000
19,1	1976,40	1800	2000
19,2	2034,96	1800	2000
20,1	1537,20	1400	1600
20,2	1332,24	1200	1600

9.10 RETE DI DISTRIBUZIONE UTENTE

Le potenze in uscita dalle cabine di trasformazione saranno convogliate a n.5 cabine di raccolta, ove verrà effettuato il parallello. I cavidotti di interconnessione saranno interrati a profondità minima pari a 1 m. in calce un prospetto di sintesi dei cavi e delle relative potenze

Sottocampo		cavo MT
1,1		Pot [kW]
2,1	1 1	4000
3,1	1,1	4800
4,1		
5,1		
5,2	1,2	7400
5,3	1,2	7400
5,4		
6,1	1,3	2600
6,2	1,3	2000
7,1	1,4	2400
7,2	1,4	2400
8.1		
8,2	2,1	7400
8,3	2,1	7400
8,4		
8,5		
8,6	2,2	7000
8,7	2,2	7000
8,8		
8,9		
8,10	2,3	6000
8,13	2,3	0000
9,1		
8,11		
8,12	2,4	4800
8.14		
10,1		
10,2	2 1	4900
11,1	3,1	4800
11,2		
14,1	3,2	4600

REL	AZIO	NE	TECNICA	GENE	RAL	E

İ	1	1
14,2		
15,1		
14,3		
14,4	3,3	5800
14,5		
12,1		
12,3	4,1	8000
12,5	4,1	8000
12,6		
12,11		
12,12	4,2	5800
13,1		
12,7		
12,8	4,3	5800
12,9		
12,2		
12,4	4,4	5800
12,10		
16,1	5,1	3600
16,2	3,1	3000
17,1		
17,2	5,2	4800
17,3		
18,1	5,3	1600
19,1	5,4	3600
19,2	3,4	3000
20,1	5,5	2600
20,2	ر, د	2000

9.11 SSE UTENTE

La linee in uscita dalle 5 cabine di raccolta confluiranno alla stazione di elevazione utente ove la tensione verrà innalzata a 150 kV. Da qui, attraverso linea in cavo interrata verrà realizzata la connessione alla RTN sulla costruenda SSE terna La cabina sarà in grado di gestire la potenza nominale dell'impianto e comprenderà sul lato MT, il quadro MT (QMT) con i seguenti scomparti:

- arrivo linee provenienti dal campo fotovoltaico;
- partenza linea e protezione trasformatore BT/MT per servizi ausiliari;
- partenza linea e protezione trasformatore MT/AT

RELAZIONE TECNICA GENERALE

Per la parte AT, saranno installati su piazzale i seguenti elementi:

- trasformatori trifase in olio minerale 150 kV/20 kV Ynd11 con neutro accessibile;
- terna di scaricatori AT, lato utente;
- terna di trasformatori di tensione fiscali;
- terna di trasformatori di corrente fiscali;
- interruttore AT;
- sezionatore di linea di terra AT;
- terna di trasformatori di tensione capacitivi;
- terna di terminali AT.

10 DIMENSIONAMENTO E PRODUCIBILITÀ

10.1 EFFETTO FOTOVOLTAICO

Un impianto fotovoltaico è composto in larga parte da pannelli fotovoltaici, chiamati anche moduli fotovoltaici. Un pannello (o "modulo") non è nient'altro che una struttura in grado di catturare la luce solare e di trasformarla in corrente elettrica alternata che poi viene utilizzata per gli scopi più comuni, come, ad esempio, la luce che abbiamo nelle nostre case.

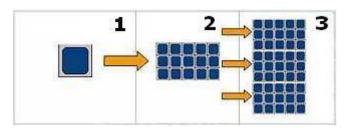
Gli impianti fotovoltaici si basano su un principio, storicamente e scientificamente conosciuto con il nome di effetto fotovoltaico, parola derivante dal greco che unisce i termini 'luce' e 'volt', l'unità di misura della tensione elettrica. Facciamo un breve *excursus*.

La tecnologia fotovoltaica (FV) consente di trasformare direttamente l'energia della radiazione solare in energia elettrica, con un'efficienza globale tra il 16% e il 22% per una singola cella fotovoltaica monocristallina.

Questi dispositivi sono fabbricati a partire da materiali semiconduttori, come il silicio (Si), l'arsenurio di gallio (GaAs) e il solfato di rame (Cu2S). In una cella fotovoltaica, i fotoni della luce solare incidente spezzano i legami degli elettroni del semiconduttore, consentendo così agli elettroni di muoversi liberamente nel semiconduttore. Le posizioni lasciate libere dagli elettroni agiscono come cariche positive e prendono il nome di "lacune".

Le celle fotovoltaiche consistono generalmente in due regioni sottili, una sopra l'altra, ognuna dotata di impurità aggiunte appositamente chiamate droganti. Il risultato è che una regione è di "tipo n", avendo un eccesso di elettroni (negativi), mentre l'altra è di "tipo p", avendo un eccesso di lacune positive.

Questa struttura a 2 regioni, chiamata giunzione p-n, produce un campo elettrico interno.


Quando i fotoni creano elettroni liberi e lacune in prossimità della *giunzione p-n*, il campo elettrico interno li fa muovere in direzioni opposte; gli elettroni si muovono verso il lato n e le lacune si muovono verso il lato p. Viene quindi generata una tensione (forza elettromotrice, f.e.m.) fra le regioni p ed n, con il lato p positivo ed il lato n negativo. Se tramite di fili si collegano il lato p ed il lato n ad un "carico", per esempio una lampadina, vi è una tensione ai capi del carico e una corrente elettrica scorre sul carico.

Cella fotovoltaica in silicio monocristallino

Il silicio in forma cristallina è il materiale maggiormente utilizzato per la fabbricazione di celle fotovoltaiche, che tipicamente hanno dimensioni di 12 cm x 12 cm. Le celle vengono assemblate in modo da ottenere moduli fotovoltaici di circa mezzo metro quadrato di superficie (Vedi **Figura**).

Celle di altro tipo sono quelle in silicio policristallino e amorfo che hanno un rendimento inferiore, e quelle con più di due giunzioni che possono avere un rendimento superiore, ma sono molto care. Al momento uno sforzo considerevole viene impiegato per sviluppare celle plastiche con polimeri che dovrebbero avere un basso costo, ma anche una bassa efficienza.

Cella fotovoltaica in silicio monocristallino. Singole celle fotovoltaiche (1) connesse in serie formano un modulo fotovoltaico (2). Più moduli assemblati realizzano un impianto fotovoltaico (3)

10.2 IRRAGGIAMENTO SUL PIANO DEI MODULI

La valutazione della risorsa solare disponibile è stata effettuata utilizzando il database METEONORM.

METEONORM si basa sull'utilizzo di un database di radiazione solare ricavato da dati climatici normalizzati su base europea e disponibili all'interno dell'*European Solar Radiation Atlas*.

L'algoritmo del modello stima l'irradianza/irradiazione globale (con componenti diretta, diffusa e riflessa), in assenza e in presenza di fenomeni meteorologici reali (quali ad esempio pioggia, nebbia, nuvole, etc..) calcolata su superfici orizzontali o inclinate.

L'irradiazione giornaliera totale [W_h/m²] viene calcolata mediante l'integrazione dei valori dell'irradianza oraria durante l'arco della giornata. A tal fine, vengono estrapolati i dati storici dal database

Nella **Figura** in calce è visibile il bilancio di irraggiamento calcolato con il Software PV-Syst per il sito oggetto dell'Intervento.

Balances and main results

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	GWh	GWh	ratio
January	63.2	27.73	9.91	88.3	83.9	8.83	8.66	0.894
February	82.0	39.83	9.99	103.9	98.9	10.33	9.43	0.828
March	127.8	60.04	12.49	148.2	140.9	14.46	14.18	0.873
April	162.0	67.42	14.99	174.5	166.0	16.75	16.43	0.859
May	197.2	85.95	19.10	198.8	189.2	18.78	18.42	0.845
June	199.4	86.54	23.37	195.0	185.5	18.12	17.77	0.831
July	215.7	75.13	26.87	213.9	203.6	19.54	17.65	0.752
August	190.7	76.60	27.12	201.0	191.3	18.47	18.11	0.822
September	147.4	54.79	23.44	167.3	159.1	15.63	15.33	0.836
October	107.8	51.92	19.98	132.0	125.6	12.68	12.44	0.859
November	69.8	35.02	15.14	92.7	88.0	9.11	8.94	0.879
December	58.7	29.35	11.47	82.0	77.8	8.20	7.36	0.818
Year	1621.8	690.31	17.87	1797.6	1709.8	170.92	164.72	0.836

Legends

GlobHor Global horizontal irradiation **EArray** Effective energy at the output of the array

E_Grid DiffHor Horizontal diffuse irradiation Energy injected into grid T Amb Ambient Temperature Performance Ratio

GlobInc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings

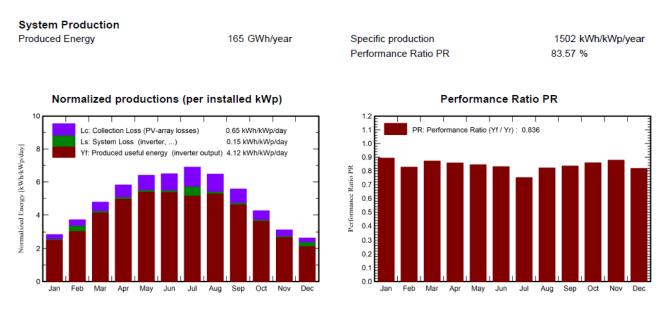
- Bilancio di irraggiamento output PV-Syst

10.3 PERDITE DI SISTEMA

Ai fini della valutazione della producibilità di un impianto fotovoltaico, bisogna sottolineare che tale dato è soggetto a perdite di diversa natura, le quali è necessario considerare ai fini della produzione complessiva.

Tali perdite possono essere riassunte nelle seguenti categorie:

- ♣ Perdite per riflessione: sono generate da una quota parte di radiazione luminosa riflessa dal vetro posto a protezione delle celle; la riflessione riduce di conseguenza la potenza radiante effettivamente captata dai moduli ed utilizzata per la conversione fotovoltaica. Sulla base dell'esperienza, tale perdita risulta in percentuale variabile tra 1 e 3 %;
- ♣ Perdite per ombreggiamento: sono prodotte da ostacoli esterni (costruzioni e vegetazione) sia prodotte dalle file di moduli del campo poste in successione. Anche l'ombreggiamento riduce la potenza radiante effettivamente captata dai moduli ed utilizzata per la conversione fotovoltaica;
- Perdite per sporcamento: sono dovute ai depositi di pulviscolo e calcare sulle superfici captanti e sono dipendenti dunque dal sito di installazione, dalle condizioni meteorologiche e dall'inclinazione dei moduli stessi. Per moduli fotovoltaici disposti con un'inclinazione superiore ai 20° ed installati in siti ubicati in aree normali, come per il sito in esame, tali perdite possono essere dell'ordine dell'1 %;
- Riduzione di potenza: è dovuta allo scostamento delle condizioni reali di funzionamento dei moduli fotovoltaici dalle condizioni STC ("Standard Test Conditions" ovvero irraggiamento diretto pari a


1000 W/m2, indice IAM pari a 1,5 e temperatura dei moduli pari a 25 °C). L'incremento della temperatura delle celle, che avviene durante il ciclo di funzionamento, ha come effetto una perdita di potenza generabile dal modulo; nello specifico, la tensione delle celle decresce con l'aumentare della temperatura mentre non si registrano variazioni significative della corrente. Tali perdite variano tra il 4 e il 7 %;

- ♣ Perdite di potenza dovute al "mismatching": sono causate dal collegamento in serie di più moduli fotovoltaici con caratteristiche elettriche non perfettamente identiche. La disomogeneità del comportamento elettrico delle celle è causato sia dal processo di produzione industriale che dalle differenti condizioni operative (temperatura e irraggiamento). In un sistema con moduli in serie, il valore della corrente di stringa è limitata dal modulo che eroga la tensione più bassa. Un valore attendibile per questo tipo di perdite può variare tra il 2 e 3 %. Si evidenzia che tali perdite potrebbero essere ridotte in fase di installazione, andando collegare i moduli in serie con caratteristiche similari, basandosi sul flash report dei moduli fotovoltaici fornito dal costruttore;
- ♣ Perdita di potenza lungo le tratte in CC: sono causate dalla dissipazione di energia elettrica in calore per effetto Joule nei cavi, sui diodi di blocco e sulle resistenze di contatto degli interruttori. Tali perdite sono correlate alla lunghezza devi e alla loro sezione. Conviene, in fase progettuale, limitare tali perdite tra il 2 e il 3 %, compatibilmente con valutazioni di carattere economico (costo dei cavi);
- ♣ Perdite per irraggiamento: sono causate dalle ore di inattività dell'inverter originate da livelli di irraggiamento troppo bassi sul piano dei moduli; ciò avviene maggiormente durante le prime ore del mattino, la sera o in momenti di nuvolosità particolarmente intensa quando l'energia irradiata sul piano dei moduli genera un voltaggio troppo basso e non compreso nel range di funzionamento dell'apparato di conversione. Tali perdite variano tra il 2 e il 5 % in funzione anche della latitudine del sito.

10.4 PRODUCIBILITÀ

La producibilità dell'impianto è stata ricavata mediante simulazione con software PV-Syst

Nella **Figura** seguente è visibile il prospetto di sintesi della produzione prevista dall'impianto fotovoltaico, calcolata mese per mese, per ogni kW di potenza installata derivante dalla simulazione eseguita dal software (Nell'Allegato alla presente relazione è visibile l'intero calcolo).

- Valori di producibilità output PV-Syst

Nella Tabella seguente è possibile prendere visione dei dati di Sintesi:

DATI DI SINTESI	
Producibilità complessiva (1 anno):	165 GWh/anno

sito nei Comuni di Ramacca (CT) e Castel di Judica (CT) **RELAZIONE TECNICA GENERALE**

11 MISURE DI PROTEZIONE E SICUREZZA

L'impianto in oggetto e tutte le parti che lo costituiscono sono progettati e realizzati in modo tale da assicurare, nelle condizioni che possono essere ragionevolmente previste, la protezione delle persone e dei beni contro i pericoli ed i danni derivanti dal loro utilizzo nonché garantire il loro corretto funzionamento per l'uso previsto.

Sono quindi adottate le seguenti misure di protezione:

- protezione relative ai contatti diretti e indiretti;
- protezione relativa alle sovracorrenti;
- protezione relativa alle sovratensioni.

Inoltre è opportunamente garantito il sezionamento del circuito ove necessario.

11.1 PROTEZIONE DAI CONTATTI DIRETTI

La protezione contro i pericoli derivanti da contatti con parti ordinariamente in tensione è realizzata conformemente alle disposizioni della Norma CEI 64-8 mediante opportuno isolamento delle parti attive, rimovibile solo mediante distruzione ed in grado di resistere a tutte le sollecitazioni meccaniche, termiche, elettriche alle quali può essere sottoposto nel normale esercizio e mediante l'utilizzo di involucri idonei ad assicurare complessivamente il grado di protezione IP XXB (parti in tensione non raggiungibili dal filo di prova) e, sulle superfici orizzontali superiori a portata di mano, il grado di protezione IP XXD (parti in tensione non raggiungibili dal filo di prova).

A tal fine saranno impiegati cavi a semplice isolamento posati entro canalizzazioni in materiale isolante e/o cavi a doppio isolamento; le connessioni verranno realizzate all'interno di apposite cassette con coperchio apribile esclusivamente mediante attrezzo.

11.2 PROTEZIONE DAI CONTATTI INDIRETTI

La protezione contro i pericoli derivanti dal contatto con parti conduttrici normalmente non in tensione ma che possono andare in tensione in caso di cedimento dell'isolamento principale è realizzata, sul lato a 400 Vac dell'impianto gestito come sistema TN-S, conformemente alle disposizioni della Norma CEI 64-8 mediante l'interruzione automatica dell'alimentazione impiegando interruttori magnetotermici e, all'occorrenza differenziali, inoltre essa è coordinata con l'impianto di terra, in modo da soddisfare le condizioni prescritta della stessa Norma CEI 64-8.

sito nei Comuni di Ramacca (CT) e Castel di Judica (CT)

RELAZIONE TECNICA GENERALE

11.3 PROTEZIONE COMBINATA DAI CONTATTI DIRETTI E INDIRETTI

Per quanto riguarda i circuiti di comando e segnalazione che collegano fra loro i vari quadri elettrici dell'impianto, verrà adottata una protezione combinata contro i pericoli derivanti dai contatti diretti con parti normalmente in tensione o indiretti con parti conduttrici che possono andare in tensione in caso di cedimento dell'isolamento principale, da realizzare mediante sistema a bassissima tensione di sicurezza (SELV) conformemente alle disposizioni della Norma CEI 64-8.

11.4 PROTEZIONE DEI CIRCUITI DALLE SOVRACORRENTI E SEZIONAMENTO

La protezione delle linee dagli effetti delle è realizzata mediante dispositivi di interruzione (interruttori magnetotermici o fusibili) installati a monte di ciascuna conduttura ed aventi caratteristiche tali da interrompere automaticamente l'alimentazione in occasione di un sovraccarico o di un cortocircuito, conformemente alle disposizioni della Norma CEI 64-8, in relazione alle portate dei cavi come indicate dalle tabelle CEI-UNEL relative alla portata dei cavi in regime permanente.

Per il sezionamento dei circuiti verranno impiegati dispositivi omnipolari. Tutti i quadri saranno dotati di interruttori generali omnipolari che rendano possibile il sezionamento completo delle sezioni.

11.5 IMPIANTO DI MESSA A TERRA

L'impianto fotovoltaico sarà dotato di un impianto di messa a terra, per la protezione dai contatti indiretti coordinato con le caratteristiche di intervento degli interruttori automatici magnetotermici differenziali. L'impianto sarà inoltre dotato di maglia di terra e collegamenti equipotenziali per la connessione delle masse alla stessa.

La configurazione geometrica e il dimensionamento dei conduttori della maglia di terra sarà determinata conformemente alle disposizioni della Norma CEI 11-37 e CEI 11-1 al fine di evitare che le tensioni di contatto e di passo superino i massimi valori ammissibili determinati in base ai valori della corrente di guasto e del tempo di eliminazione in media tensione.

12 COMPATIBILITA' ELETTROMAGNETICA (EMC)

Ai fini della protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti, sono state effettuate le necessarie valutazioni dei livelli dell'induzione magnetica generati dall'impianto in oggetto.

Le suddette valutazioni, effettuate conformemente alle disposizioni della legge quadro del 22 febbraio 2001 n. 36 e del decreto del Presidente del Consiglio dei Ministri del 8 luglio 2003, hanno condotto alla conclusione che le installazioni previste rispettano i limiti di legge con ampi margini di sicurezza e forniscono le necessarie garanzie sulla tutela della salute umana.

13 VERIFICHE TECNICO - FUNZIONALI (COLLAUDO)

Al termine dei lavori saranno effettuati tutte le verifiche tecnico-funzionali, in particolare:

- prova di continuità elettrica e connessione dei moduli;
- # efficacia messa a terra di masse e scaricatori;
- ➡ misura resistenza di isolamento dei circuiti elettrici e delle masse;
- ♣ prove di corretto funzionamento dell'impianto fotovoltaico nelle diverse condizioni di potenza generata e nelle varie modalità previste dai gruppi di conversione (accensione spegnimento, mancanza rete).

DATA

06/2022

PVsyst - Simulation report

Grid-Connected System

Project: Ramacca - San Giuseppe

Variant: Nuova variante di simulazione No 3D scene defined, no shadings System power: 109.7 MWp San Giuseppe - Italy

Variant: Nuova variante di simulazione

PVsyst V7.2.14

VC0, Simulation date: 03/06/22 11:00 with v7.2.14

-

Green Utility SAGL (Switzerland)

Project summary

Geographical Site Situation

San Giuseppe Latitude 37.47 °N Albedo 0.20

 $\begin{array}{ccc} \text{Italy} & \text{Longitude} & \text{14.63 °E} \\ & \text{Altitude} & \text{209 m} \end{array}$

Time zone UTC+1

Meteo data

San Giuseppe

Meteonorm 8.0 (1989-2003), Sat=100% - Sintetico

System summary

Grid-Connected System

No 3D scene defined, no shadings

Simulation for year no 1

PV Field OrientationNear ShadingsUser's needsFixed planeNo ShadingsUnlimited load (grid)

Tilt/Azimuth 20 / 0 °

System information

PV Array Inverters

Nb. of modules179760 unitsNb. of units492 unitsPnom total109.7 MWpPnom total98.40 MWac

Pnom ratio 1.114

Project settings

Results summary

Produced Energy 165 GWh/year Specific production 1502 kWh/kWp/year Perf. Ratio PR 83.57 %

Project and results summary General parameters, PV Array Characteristics, System losses Main results Loss diagram

Special graphs7Cost of the system8CO₂ Emission Balance9

2

3

5 6

Variant: Nuova variante di simulazione

PVsyst V7.2.14 VC0, Simulation date:

03/06/22 11:00 with v7.2.14

Tilt/Azimuth

Green Utility SAGL (Switzerland)

General parameters

Grid-Connected System No 3D scene defined, no shadings

PV Field Orientation

Orientation **Sheds configuration** Models used

Fixed plane No 3D scene defined Transposition Perez

> Diffuse Perez, Meteonorm

Circumsolar separate

Horizon **Near Shadings** User's needs Free Horizon No Shadings Unlimited load (grid)

PV Array Characteristics

PV module Inverter

Manufacturer CSI Solar Manufacturer Huawei Technologies Model Hiku 7 Mono PERC - 610MS Model SUN2000-215KTL-H0

(Custom parameters definition)

(Custom parameters definition) 610 Wp Unit Nom. Power Unit Nom. Power 200 kWac Number of PV modules 179760 units Number of inverters 492 units Nominal (STC) 109.7 MWp Total power 98400 kWac Modules 7490 Strings x 24 In series Operating voltage 500-1500 V 215 kWac At operating cond. (50°C) Max. power (=>30°C)

101.5 MWp **Pmpp**

20 / 0°

Pnom ratio (DC:AC) 1.11 765 V

U mpp I mpp 132584 A

Total PV power

Total inverter power Nominal (STC) 109654 kWp Total power 98400 kWac

Total 179760 modules Number of inverters 492 units Module area 508742 m² Pnom ratio 1.11

Array losses

Array Soiling Losses Thermal Loss factor DC wiring losses

Loss Fraction 3.0 % Module temperature according to irradiance Global array res. $0.096~\text{m}\Omega$

Uc (const) 29.0 W/m2K Loss Fraction 1.5 % at STC

Uv (wind) 0.0 W/m2K/m/s

Serie Diode Loss LID - Light Induced Degradation **Module Quality Loss**

Voltage drop 0.7 V Loss Fraction 2.0 % Loss Fraction -0.6 %

Loss Fraction 0.1 % at STC

Module mismatch losses **Strings Mismatch loss** Module average degradation

Loss Fraction 2.0 % at MPP Loss Fraction 0.1 % Year no

> Loss factor 0.4 %/year

Mismatch due to degradation

Imp RMS dispersion 0.4 %/year Vmp RMS dispersion 0.4 %/year

IAM loss factor

Incidence effect (IAM): User defined profile

10°	20°	30°	40°	50°	60°	70°	80°	90°
0.998	0.998	0.995	0.992	0.986	0.970	0.917	0.763	0.000

Variant: Nuova variante di simulazione

Green Utility SAGL (Switzerland)

PVsyst V7.2.14 VC0, Simulation date: 03/06/22 11:00 with v7.2.14

Array losses

Spectral correction

FirstSolar model

Precipitable water estimated from relative humidity

Coefficient Set	C0	C1	C2	C3	C4	C5
Monocrystalline Si	0,85914	-0,02088	-0,0058853	0,12029	0,026814	-0,001781

System losses

Unavailability of the system

Time fraction

7.3 days,

Variant: Nuova variante di simulazione

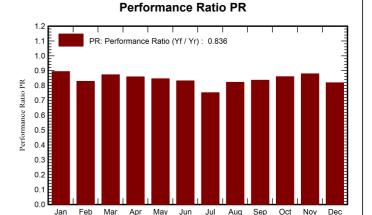
Green Utility SAGL (Switzerland)

PVsyst V7.2.14 VC0, Simulation date: 03/06/22 11:00 with v7.2.14

Main results

System Production

Produced Energy


165 GWh/year

Specific production Performance Ratio PR 1502 kWh/kWp/year

83.57 %

Normalized productions (per installed kWp)

Balances and main results

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	GWh	GWh	ratio
January	63.2	27.73	9.91	88.3	83.9	8.83	8.66	0.894
February	82.0	39.83	9.99	103.9	98.9	10.33	9.43	0.828
March	127.8	60.04	12.49	148.2	140.9	14.46	14.18	0.873
April	162.0	67.42	14.99	174.5	166.0	16.75	16.43	0.859
May	197.2	85.95	19.10	198.8	189.2	18.78	18.42	0.845
June	199.4	86.54	23.37	195.0	185.5	18.12	17.77	0.831
July	215.7	75.13	26.87	213.9	203.6	19.54	17.65	0.752
August	190.7	76.60	27.12	201.0	191.3	18.47	18.11	0.822
September	147.4	54.79	23.44	167.3	159.1	15.63	15.33	0.836
October	107.8	51.92	19.98	132.0	125.6	12.68	12.44	0.859
November	69.8	35.02	15.14	92.7	88.0	9.11	8.94	0.879
December	58.7	29.35	11.47	82.0	77.8	8.20	7.36	0.818
Year	1621.8	690.31	17.87	1797.6	1709.8	170.92	164.72	0.836

Legends

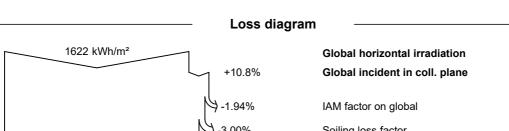
GlobHor Global horizontal irradiation DiffHor Horizontal diffuse irradiation

T_Amb **Ambient Temperature**

GlobInc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings **EArray** Effective energy at the output of the array

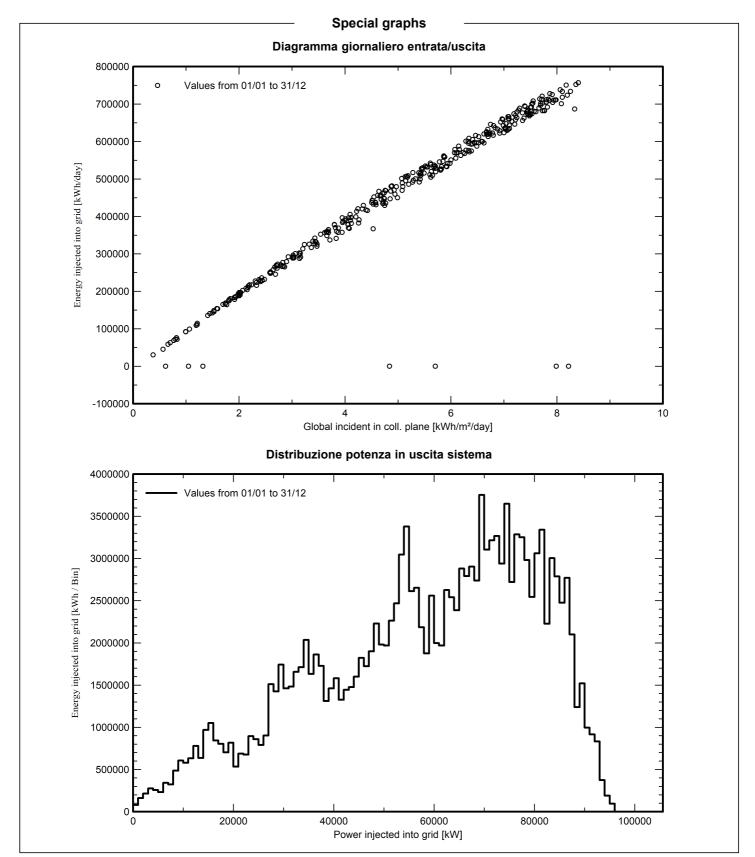
E Grid Energy injected into grid PR


Performance Ratio

Variant: Nuova variante di simulazione

Green Utility SAGL (Switzerland)

PVsyst V7.2.14 VC0, Simulation date: 03/06/22 11:00 with v7.2.14


PVsyst V7.2.14

Project: Ramacca - San Giuseppe

Variant: Nuova variante di simulazione

Green Utility SAGL (Switzerland)

VC0, Simulation date: 03/06/22 11:00 with v7.2.14

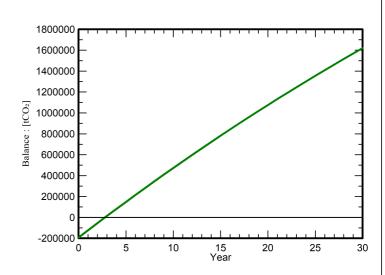
Variant: Nuova variante di simulazione

Green Utility SAGL (Switzerland)

PVsyst V7.2.14 VC0, Simulation date: 03/06/22 11:00 with v7.2.14

CO₂ Emission Balance

Total: 1620630.2 tCO₂


Generated emissionsTotal: 193015.20 tCO₂

Source: Detailed calculation from table below:

Replaced Emissions

Total:2090258.9 tCO₂System production:164717.01 MWh/yrGrid Lifecycle Emissions:423 gCO₂/kWh

Source: IEA List
Country: Italy
Lifetime: 30 years
Annual degradation: 1.0 %

Saved CO₂ Emission vs. Time

System Lifecycle Emissions Details

Item	LCE	Quantity	Subtotal
			[kgCO₂]
Modules	1713 kgCO2/kWp	109654 kWp	187805914
Supports	2.82 kgCO2/kg	1797600 kg	5071767
Inverters	280 kgCO2/units	492 units	137523