

(Prov. di Sassari)

RELAZIONE GEOLOGICA E GEOTECNICA

REALIZZAZIONE IMPIANTO FOTOVOLTAICO A TERRA DA 29,51 MW IN IMMISSIONE, TIPO AD INSEGUIMENTO MONOASSIALE "ARDARA" COMUNE DI ARDARA (SS)

Studio Tecnico Geologico

Servizi & Consulenze - Dott. Mario STRINNA

Sede legale: Viale Diaz, 48 - 09125 CAGLIARI - Tel.Fax 070.303083

 $\textbf{Portatile} \ \ \textbf{+39} \ \ 328.7906284 \ \textbf{-} \ \ \textbf{E-mail} \ \ \text{mariostrinna@libero.it} \ \ \textbf{PEC} \ \ \text{mariostrinna@epap.sicurezzapostale.it}$

web: www.mariostrinna.com

 ${\it Committente:}$

ENERGYARDARA1 SRL

Via Simplicio Spano 10 - 07026 Olbia (OT)

CF: 02842130904

Oggetto:

RELAZIONE GEOLOGICA E GEOTECNICA

Data:

Scala:

03/2022

Aggiornamenti:

Tavola:

Geologo [0.R.C. n. 441 - Sez. A]

Dott. Mario STRINNA

Collaboratore:

OBUINT DED GEOLOGI
PEGIONE SAMPBONA
SEZIONE A
N. 441/Dott. Geol. MARIO STRINNA

File: mario/geologia/2022/Impianto fotovoltaico Ardara

II Geologo: Dott. Mario STRINNA O.R.G Sardegna n. 441 [Sez. A]

(Prov. di Sassari)

RELAZIONE GEOLOGICA E GEOTECNICA

REALIZZAZIONE IMPIANTO FOTOVOLTAICO A TERRA DA 29,51 MW IN IMMISSIONE, TIPO AD INSEGUIMENTO MONOASSIALE "ARDARA" COMUNE DI ARDARA (SS)

COMMITTENTE

ENERGYARDARA1 SRL

Via Simplicio Spano 10 - 07026 Olbia (OT)

CF: 02842130904

GEOLOGO [SEZ. A]

Dott. Mario STRINNA

PYO OBDINE DED GEOLOGI REGIONE SARBEGNA SEZIONE A N. 441/Dott. Geol. MARIO STRINNA

La presente relazione non può essere né copiata né riprodotta, anche parzialmente, se non con il consenso del professionista incaricato, previa autorizzazione scritta. Eventuali mancanze saranno punite ai sensi di legge (Art.2578 C.C. - L.22.4.1941 N.6331)

This report can be neither copied nor reproduced, even partially, except with the consent of the professional person in charge, prior written permission. Any deficiencies will be punished according to the law (Art.2578 CC - L.22.4.1941 N.6331)

INDICE

RELAZIONE GEOLOGICA	pag. 3
A. PREMESSA	pag. 3
B. INQUADRAMENTO AEREO E GEOGRAFICO	pag. 4
C. BREVE DESCRIZIONE DELL'INTERVENTO	pag. 8
1. CARATTERISTICHE GEOLOGICHE E SEDIMENTOLOGICHE GENERALI	pag. 10
1.1 – Assetto geologico dell'area di sedime	pag. 14
1.1.1 - Ciclo vulcanico ad affinità alcalina Plio Pleistocene	pag. 15
1.1.2 - Successione marina e depositi continentali	pag. 16
1.1.3 - Successione sedimentaria oligo miocenica del Logudoro – Sassarese	pag. 17
1.1.4 - Depositi Olocenici	pag. 17
1.2 - Inquadramento idrologico e idrogeologico generale	pag. 18
1.3 - Lineamenti climatici generali dell'areale	pag. 21
1.4 – Pericolosità geologica	pag. 24
1.4.1 - Pericolosità Idrogeologica	pag. 24
1.4.2 - Progetto P.S.F.F	pag. 26
1.4.3 - Progetto I.F.F.I	pag. 26
1.4.4 - Pericolosità sismica di base	pag. 26
1.4.4.1- Dati sismici sul sito (spettri di risposta)	pag. 32
RELAZIONE GEOTECNICA	pag. 34
2. CONSIDERAZIONI GEOTECNICHE E STRATIGRAFICHE SUL SEDIME	pag. 34
2.1 - Verifica degli SL secondo le NTC 2018	pag. 37
2.2 – Considerazioni sulla scavabilità e tenuta dei fronti di scavo	pag. 41
	P ~ 9
3. CONCLUSIONI	pag. 43
Appendice	
- Inquadramento Geologico su base cartografica 1:10.000	pag. 51
- Carta delle permeabilità su base cartografica 1:10.000	pag. 52

RELAZIONE GEOLOGICA

Competenze professionali: la redazione relazione geologica (L. 9.07.1908, n. 445; D.P.R. 7.01.1956 n. 164; L. 25.11.1962, n. 1684; L. 2.02.1974 n. 64; D. LL. PP. 15.05.1985; D.M. LL. PP. del 12.12.1985; D.M. 11.3.1988; L. R. 7.06.1989, n. 30; D.M. 04.05.1990; D.P.R. 10.09.1990, n. 285; D.P.C.M. 29.09.1998; D.P.R. 6.06.2001, n. 380; D.Lgs 12.04.2006, n. 163 e ss. mm. ii.; D. Lgs 3.04.2006, n. 152; D.M. 14.01.2008; Ord. P.C.M. del 20.03.2003 n. 3274; PRESIDENZA DEL CONSIGLIO DEI MINISTRI DIPARTIMENTO DELLA PROTEZIONE CIVILE D. 21.10.2003; D. Ass. LL.PP. 21.02.005 n. 3 - Esecutività della Del. di G.R. n. 54/33 del 30.12.2004, Del. G.R.15/31 2004) è nella piena ed esclusiva competenza del geologo [Consiglio di Stato (V Sezione giurisdizionale) Decisione 4 maggio 1995, n°701]. Il divieto di subappalto della relazione geologica è sancito dalla Determinazione n. 3 del 27.02.2002 dell'Autorità per la Vigilanza sui Contratti Pubblici di Lavori, Servizi e Forniture. Sull'obbligatorietà dell'acquisizione della relazione geologica come elaborato di progetto (punto B.5. DM 11.3.1988 "I risultati delle indagini devono essere oggetto di apposite relazioni, parte integrante del progetto") si è espresso il Consiglio di Stato sezione VI con sentenza 5666/2009.

A. PREMESSA

Per lo studio dei terreni interessati dal progetto di un impianto fotovoltaico da realizzarsi a NNW del tessuto urbano di Ardara, direzione C.se Ena de Sòrighes, percorrendo la SP 20 verso Ardara, è stato richiesto un accertamento geologico e geotecnico, con particolare riferimento alla caratterizzazione lito-stratigrafica e idrogeologica dei terreni che insistono nell'areale come substrato di appoggio delle fondazioni su palo infisso dove dovrà essere realizzato l'impianto, con particolare riferimento alla:

- Ricostruzione dell'assetto litostratigrafico del sedime di intervento sulla base di stratigrafie ricavate da specifici studi geologici svolti sul territorio, su uno stesso contesto litologico, al fine di definire la sequenza dei terreni;
- Problematica geotecnica connessa all'interazione opera-geologia locale;
- Definizione delle caratteristiche litotecniche attraverso la loro definizione, sulla base di documentazione disponibile, edita e inedita, documentabile dallo stesso scrivente sulla base di lavori pregressi svolti nel medesimo assetto territoriale supportate da dati bibliografici e conoscenze dei luoghi.

Tale lavoro è stato eseguito in ottemperanza del D.M. 11.03.1988 (Norme Tecniche riguardanti le indagini sui terreni e sulle rocce, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione). Le indagini sono state svolte in ottemperanza alle norme fissate dall'A.N.I.S.I.G. (Ass. Naz. Imprese Specializzate in Indagini Geognostiche). Testo integrato con la Circ. LL.PP. 24 Settembre 1988 n. 30483 (punto A3): istruzioni riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri

generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione, Circolare n. 218/24/3 del 09.01.1996 e n. 617 del 02.02.2009 – OPCM n. 3274 del 20.03.2003 - Nuove NTC 2018 sulle costruzioni (§ 2.6 - § 3.2. ÷ 3.2.2. - § 7.11.3.), secondo le seguenti fasi:

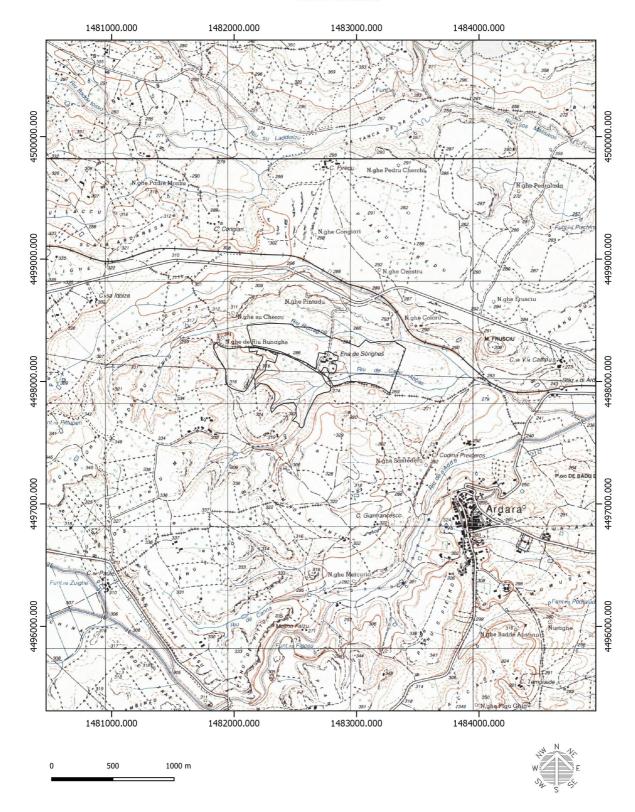
- Sopralluogo nell'area in esame ed esame critico della situazione attuale;
- Ricostruzione dell'assetto litostratigrafico e definizione delle caratteristiche litotecniche attraverso la loro definizione basata sulla base di documentazione disponibile, edita e inedita, documentabile dallo stesso scrivente sulla base di lavori pregressi svolti nel medesimo assetto litologico territoriale;
- Problematica geotecnica connessa all'interazione opera-geologia locale.

B. INQUADRAMENTO GEOGRAFICO E AEREO

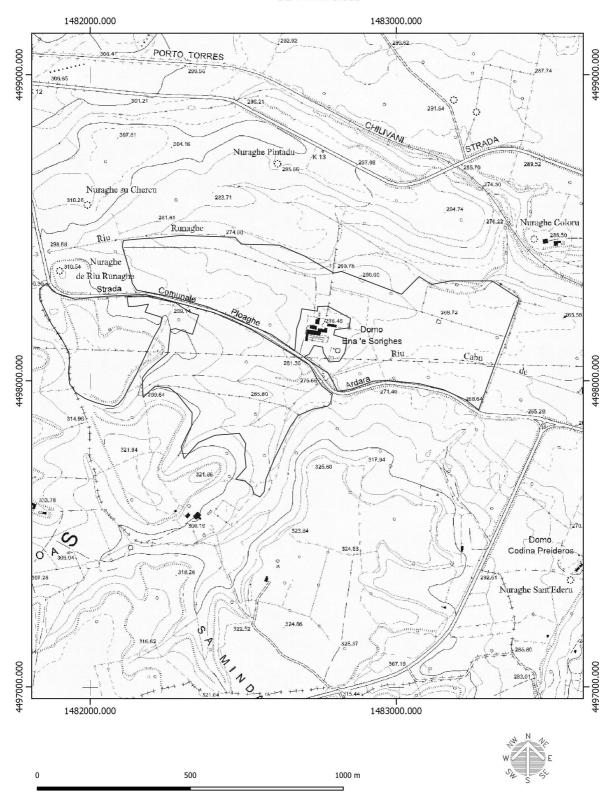
L'area interessata dallo studio ricade nel territorio Comunale di Ardara, nella località C.se Ena Sorighes, lungo la SP 20 in direzione di Ardara. Morfologicamente trattasi di un'area sub pianeggiante di natura sedimentaria oligo miocenica del Logudoro Sassarese: RESb → Litofacies nella Formazione di Mores − arenarie e conglomerati a cemento carbonatico con intercalazione sabbiose arenacee quarzose feldspatiche a grana medio grossa, a diretto contatto con la stessa formazione ma con facies calcarenitica (RESa), calcarea bioclastica, calcarea nodulare con componente terrigena. Ad esse si contrappongono verso nord i Basalti dei Plateaux (BGD3/4) oltre la Formazione di Oppia Nuova (OPN) sabbiosa quarzosa, conglomeratica eterometrica ad elementi basaltici. Le pendenze del territorio, variabili da circa 260.0m a circa 300.0m s.l.m.m., risultano (medie) del 10% degradanti verso il Rio Cabu de Abbas e Rio Runaghe.

<u>Corograficamente</u> è inquadrabile nei seguenti Fogli Regionali:

- Foglio **I.G.M.** N. 460 Sez. III° quadrante [Ploaghe] alla scala 1:25.000;
- Foglio **C.T.R.** N. 460-140 [Ardara] alla scala 1:10.000.


Coordinate Km Gauss-Boaga areale sensibile (Fuso 32)

X = 8° 47' 38.15" longitudine **E Y** = 43° 38' 01.05" latitudine **N**


INQUADRAMENTO AEREO SU BASE CTR FOGLIO 460 - 140 [ARDARA] SCALA 1:10.000

INQUADRAMENTO CARTOGRAFICO REGIONALE SU BASE IGM FOGLIO 460 SEZ. III° QUADRANTE [PLOAGHE] SCALA 1:25.000

INQUADRAMENTO CARTOGRAFICO REGIONALE SU BASE CTR FOGLIO 460 - 140 [ARDARA] SCALA 1:10.000

C. BREVE DESCRIZIONE DELL'INTERVENTO

La presente relazione fa parte del progetto esecutivo "REALIZZAZIONE IMPIANTO FOTOVOLTAICO A TERRA DA 29,51 MW IN IMMISSIONE - TIPO AD INSEGUIMENTO MONOASSIALE "ARDARA" – COMUNE DI ARDARA (SS)".

La società proponente del progetto è la ENERGYARDARA1 SRL, con sede legale Via Simplicio Scano 10, Olbia (SS), Codice Fiscale: 02842130904, partner tramite lo Studio Alchemist di Enel Green Power primario operatore italiano del mercato, presente in 28 paesi nei 5 continenti e gestisce più di 1.200 impianti, per una potenza totale di circa 47 GW.

L'area di intervento è ubicata all'interno di terreni siti nel Comune di Ardara. L'area in esame risulta inclusa nella cartografia catastale al foglio 1, particelle 88, 99, 102, 103, 63, , 26, 98, 100 e al foglio 4 particelle 70, 72, 74 del comune di Ardara ed in particolare in terreni adibiti a Zona Agricola E.

Figura 1 - Area intervento fotovoltaico

Il sito interessato alla realizzazione dell'impianto, si trova ad un'altitudine media di 273 m s.l.m. e ricopre un'area netta di 40 Ha.

L'intervento contempla la realizzazione di un impianto fotovoltaico di potenza nominale in immissione pari a 29.513 kW di picco per la produzione di energia elettrica posato sul terreno livellato mediante l'istallazione di inseguitori solari.

II Geologo: Dott. Mario STRINNA O.R.G Sardegna n. 441 [Sez. A]

L'impianto sarà costituito da 53.984 moduli fotovoltaici monocristallini da 545 Wp di tipo bifacciale, organizzati in stringhe e collegati in serie tramite 12 Power Station (TIPO 2) da 2000 kVA posizionate in maniera baricentrica rispetto alle strutture di supporto dei pannelli.

La tipologia e la configurazione delle strutture fotovoltaiche è caratterizzata da 872 tracker da 28x2 Portrait e da 184 tracker da 14x2 Portrait , disposti con rotazione +/- 55° in direzione Nord-Sud. L'impianto verrà connesso alla rete mediante una linea di alta tensione interrata fino alla (futura) sottostazione, che si trova entro gli stessi confini di progetto che verrà realizzata dal gestore della rete. La connessione dell'impianto avverrà attraverso la cabina di trasformazione di nuova realizzazione, costituita da n° 1 interruttore MT, posizionato nel locale in aderenza alla cabina di consegna, trasformatore in resina da 2000 KVA, in, un quadro generale completo di interruttore sezionatore ed un quadro di distribuzione con le varie utenze, posizionati nella cabina elettrica a nord dell'impianto. Nel presente progetto si utilizzeranno dei moduli fotovoltaici tipo LONGI HI-MO5 LR5-72HBD da 545 W, tra i più recenti disponibili in commercio, le cui caratteristiche di massima sono riportate nelle schede tecniche allegate. I moduli sono costituiti da 144 celle, incapsulate tra due strati di EVA e protetti frontalmente da una lastra di vetro temperato di 32.0 mm. La cornice di fissaggio è caratterizzata da robusti profilati di alluminio anodizzato di colore chiaro.

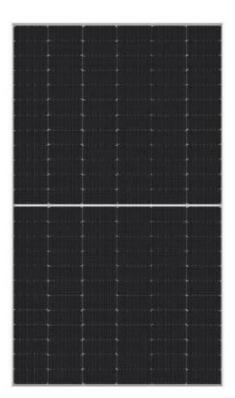


Figura 2 - Pannelli LONGI HI-MO5 LR5-72HBD da 545 W.

1. CARATTERISTICHE GEOLOGICHE E SEDIMENTOLOGICHE GENERALI

Il settore insiste nella sub regione del Logudoro che si estende da Mores, a Sud, fino a Ploaghe a Nord e ad Ovest fino a Florinas, nell'area morfologicamente più regolare del settore meridionale della Sardegna nord-occidentale. Questo territorio compreso tra il Sassarese,

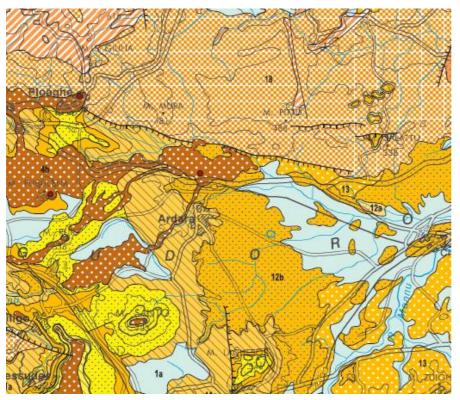
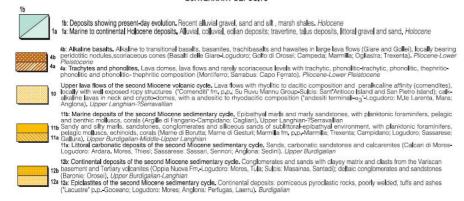
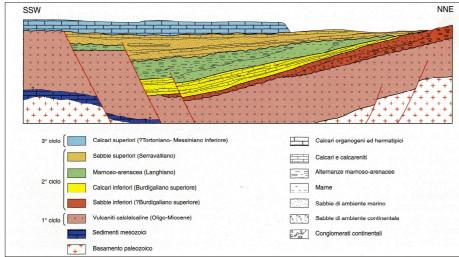



Figura 3 - Geological Map of Sardinia - Carmignani et altrii - 2015

l'Anglona, il Monteacuto ed il Meilogu è caratterizzato in eguale misura dai numerosi piani inclinati di origine sedimentaria e vulcanica, e dalla depressione a fondo quasi piatto che, considerata nel suo complesso, si estende dal bordo dell'altopiano di Campeda fino agli altopiani di Oschiri, per circa 25 Km, raggiungendo i 15 Km larghezza. L'andamento delle superfici è in genere sub-orizzontale con pendenza decrescente da Sud-Sud-Ovest a Nord-Nord-Est, dai circa 340 m s.l.m. del bacino di Santa Lucia ai 168 m s.l.m. di Pedras De Fogu nei pressi del Lago del Coghinas.

I rilievi vulcanici sono sparsi un po' dovunque, sia nella depressione che sopra

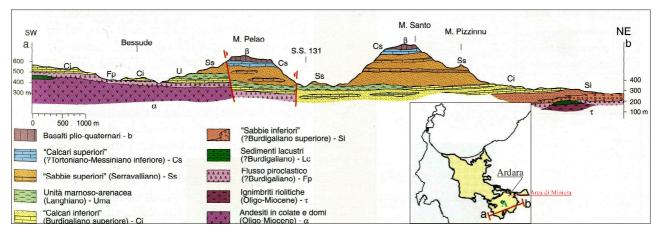
gli altopiani calcarei e le mesas elevate dominano praticamente tutto il paesaggio. Le manifestazioni vulcaniche della fine del Terziario hanno edificato, tra la parte alta del Meilogu ed il Logudoro, il Monte Pelao (733 m), la cui bocca di emissione è situata nel Monte Mannu (731 m) e presenta un cratere la cui parte meridionale è stata erosa. Le copiose colate laviche si spinsero fino a Siligo, a Nord, per circa 6 chilometri, raggiungendo i 599 metri nel Monte Sant'Antonio. A breve distanza, a Nord-Est, si staglia netta sulla piana la mesa più spettacolare e più alta, il


Monte Santo (735 m), una piramide tronca costituita da uno strato di basalto di circa una trentina di metri di spessore, poggiato su una potente base di depositi miocenici. Alle eruzioni che diedero luogo al Monte Pelao e al Monte Santo, ne seguirono altre di maggiore intensità, che si estesero su una morfologia più complessa rispetto alle precedenti. Nel Logudoro, come nel resto della Sardegna nord-occidentale, affiorano depositi continentali e marini del miocene appartenenti a tre cicli sedimentari, vulcaniti calcalcaline oligo-mioceniche e subalcaline plio-pleistoceniche, localmente ricoperti da depositi continentali olocenici.

L'associazione di prodotti vulcanici, da basaltico-andesitici a dacitici, principalmente in colate laviche e cupole di ristagno, e da dacitici a riolitici, essenzialmente in espandimenti ignimbritici, presenta una grande estensione e consistenti spessori che testimoniano, unitamente all'assenza di sedimenti marini fino all'Oligocene superiore-Miocene inferiore, l'energico ringiovanimento del rilievo che ha favorito la deposizione di potenti sequenze clastiche fluvio-lacustri sintettoniche. La variabilità composizionale e le modalità di emissione hanno portato all'individuazione di due diversi complessi: la "Serie Andesitica", prevalente nella parte basale delle successioni, caratterizzata generalmente dall'alternanza di prodotti a composizione da basica ad intermedia e la "Serie Ignimbritica", caratterizzata invece dall'alternanza di prodotti a composizione da intermedia ad acida.

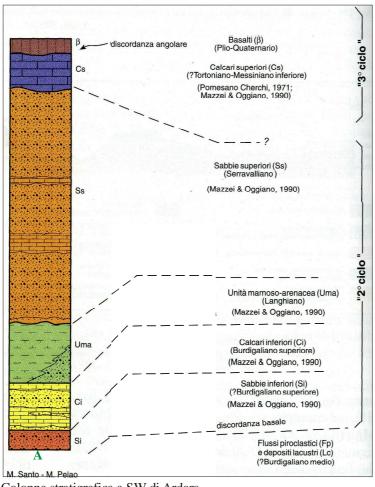
Talvolta ai prodotti vulcanici calcalcalini si alternano depositi clastici singenetici di ambiente lacustre, che localmente evolvono ad ambiente marino transizionale e sub-litorale. Queste formazioni post eoceniche, con spessori assai variabili, anche superiori al centinaio di metri, contengono di norma abbondanti resti fossili. Tra questi i più frequenti sono molluschi d'acqua dolce, ostracodi, alghe, abbondanti resti vegetali ed eccezionalmente anfibi e vertebrati, che documentano per il primo ciclo sedimentario miocenico un'età compresa tra l'Oligocene superiore e l'Aquitaniano. Questo potente complesso vulcano-sedimentario è in parte associato a un'importante tettonica trascorrente responsabile delle più evidenti strutture terziarie che caratterizzano tutta la Sardegna centro-settentrionale: faglie trascorrenti sinistre, orientate NE-SW, coniugate con un sistema di faglie destre di minore importanza, orientate E-W, che individuano una direzione di raccorciamento con andamento meridiano testimone della più importante fase compressiva che ha interessato la Sardegna dopo l'orogenesi ercinica.

Le prime formazioni marine successive all'Eocene medio sono riferite all'Oligocene sommitale, ma solo l'Aquitaniano marino è diffuso e ben documentato. Il cambiamento del "Clima geodinamico" che ha dato luogo allo sviluppo di una serie di fosse tettoniche si è manifestato in quest'area dal Burdigaliano superiore al Serravalliano con una più ampia trasgressione, a sedimentazione silicoclastica e carbonatica d'ambiente marino, nota in letteratura come "secondo


ciclo sedimentario miocenico". sequenza che inizia con conglomerati continentali e prosegue con depositi silicoclastici e carbonatici prevalentemente d'ambiente marino poggia, in discordanza angolare, sui termini del ciclo precedente. In particolare al di sopra delle Marne di Gesturi, rappresentate da una monotona successione (potente diverse centinaia di metri) costituita da un'alternanza di marne arenacee e siltitiche con subordinate intercalazioni di arenarie e calcari (ad es. calcari a Lithothamnium), poggiano le marne argillose che verso l'alto diventano sempre più arenacee fino a diventare arenarie marnose. Il contenuto paleontologico è estremamente ricco e vario ed è composto da abbondanti foraminiferi planctonici e bentonica, da nanoplancton calcareo e da cefalopodi, brachiopodi, bivalvi, pteropodi, echinidi, ostracodi, ecc.

Schema dei rapporti stratigrafici dei cicli sedimentari miocenici nel Logudoro. Da Memorie Descrittive della Carta Geologica d'Italia - Vol LX - Funedda et alii, 2000 -

Alla successione del secondo ciclo sedimentario, che termina facies con regressive costituite prevalentemente sabbie е arenaria serravalliane. si sovrappone quella dovuta alla pulsazione trasgressiva tortonianomessiniana (3° ciclo sedimentario),


caratterizzata da sedimentazione carbonatica di mare basso, controllata dalla tettonica distensiva che nel Miocene superiore ha interessato tutta l'area tirrenica. Nel settore cartografato sono

Sezione geologica a S di Ardara nel Bacino miocenico del Logudoro. Da Memorie Descrittive della Carta Geologica d'Italia - Vol LX - Funedda et alii, 2000 - II Geologo: Dott. Mario STRINNA O.R.G Sardegna n. 441 [Sez. A]

presenti affioramenti del 2° ciclo sedimentario del Cenozoico, del vulcanismo Ceno-Neozoico, entrambi associati alla fase distensiva che ha portato all'apertura del bacino balearico e del Tirreno, e della sedimentazione continentale Neozoica.

I depositi silicoclastici e carbonatici del 2° ciclo" sedimentario miocenico segnano, a partire dal Burdigaliano superiore, il cambiamento del clima geodinamico che si manifesta con lo sviluppo di una serie di fosse tettoniche, ad andamento sub-meridiano, e la conseguente ingressione del mare. La deposizione di sabbie e arenarie di fase regressiva contrassegna inoltre la variazione eustatica serravalliana.

Colonna stratigrafica a SW di Ardara.

Da Memorie Descrittive della Carta Geologica d'Italia - Vol LX - Funedda et alii, 2000 -

sedimenti continentali е transizionali alla della base successione trasgressiva del Burdigaliano superiore, che presentano Sardegna settentrionale nella gli maggiori (fino spessori un centinaio di metri), sono localizzati all'intersezione le fosse tra burdigaliane (orientate circa NNW-SSE) ed il bacino di trascorrenza del "1° ciclo" (diretto circa NE-SW) tra Ploaghe e Chilivani-Mores

La successione depositatasi in questa fase trasgressivo-regressiva, poggiante con discordanza angolare sui termini del ciclo precedente, come si evince dalla sezione sopra riportata inizia con conglomerati e sabbie di ambiente continentale e transizionale e prosegue con depositi

marini marnoso-arenacei e calcarei.

La tettonica distensiva che ha caratterizzato l'area sarda a partire dal Burdigaliano superiore e controllato la sedimentazione del 2° e 3° ciclo sedimentario (quest'ultimo dovuto alla successiva pulsazione trasgressiva tortoniano-messiniana caratterizzata da sedimentazione carbonatica di mare basso) continua anche nel Plio-Quaternario. A testimoniare questa fase sono principalmente gli espandimenti di basalti intraplacca localizzati, in discordanza, sui depositi

sedimentari antecedenti. Si tratta di prodotti costituiti essenzialmente da lave basaltiche subalcaline, talvolta associate a differenziati più evoluti, dell'attività vulcanica più recente manifestatasi nel Logudoro-Meilogu, ossia quella compresa tra 0,9-0,14 Ma. I caratteri giaciturali generali riflettono un'attività essenzialmente fessurale, legata a direttrici tettoniche con orientazione submeridiana o anche NE-SW, lungo le quali si allineano colate di modeste dimensioni associate a piccoli coni di scorie.

Distribuiti in tutto il settore occidentale e in quello nord-orientale, frammentati dall'erosione lineare, sono cartografati: Colate e dicchi a composizione basaltica alcalina. Plio-Pleistocene.

Questi prodotti vulcanici plio-quaternari sono rappresentati da prodotti femici in prevalenza alcalini. I termini più rappresentati sono alcali e trachibasalti, hawaiti e basaniti.

Il generale ringiovanimento che ha caratterizzato l'Olocene è comunemente rappresentato da depositi ghiaioso-sabbiosi di fondovalle e delle piane alluvionali, dagli accumuli detritici spigolosi e più o meno grossolani situati al piede dei versanti più acclivi delle pareti subverticali dei "Tacchi" carbonatici mesozoici e delle "Giare" basaltiche plioceniche. In particolare nell'area cartografata si distinguono: depositi clastici olocenici di ambiente fluviale e detriti di versante olocenici.

1.1 - Assetto geologico dell'area di sedime

L'assetto stratigrafico-strutturale dell'area è stato ricostruito integrando i dati ottenuti dal

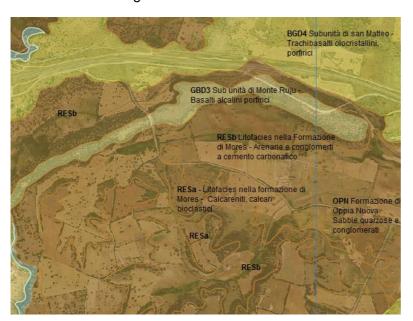


Figura 4 – Inquadramento geologico (fonte Sardegna geopoertale)

rilevamento geologico di superficie effettuato con tutte le informazioni ricavate dalla miscellanea presente, dalle fonti bibliografiche disponibili e dalle indagini di sito simili esistenti su contesti territoriali. Le analisi effettuate ed i rilievi di campo condotti hanno permesso di distinguere differenti unità geologiche, relative sia a sequenze vulcaniche e sedimentarie di substrato che a successioni clastiche di copertura.

In particolare, le perimetrazioni e le descrizioni geologico-strutturali delle unità individuate nell'area derivano da un'integrazione tra le informazioni riportate in letteratura ed i dati raccolti dal rilevamento geologico di superficie.

II Geologo: Dott. Mario STRINNA O.R.G Sardegna n. 441 [Sez. A]

In particolare gli affioramenti nell'area cartografata, dal più antico al più recente, sono:

- Sabbie quarzoso-feldspatiche e conglomerati eterometrici con elementi del basamento paleozoico e di vulcaniti oligo-mioceniche, di ambiente da conoide alluvionale a fluviodeltizio. "Formazione di Oppia Nuova". Burdigaliano ?medio-superiore.
- Sabbie poco cementate, silicee, con livelli conglomeratici discontinui intercalati a biocalcareniti e calcari fossiliferi litorali. "Calcari di Mores". Burdigaliano superiore
- Biocalcareniti e calcari fossiliferi litorali. "Calcari di Mores". Burdigaliano superiore
- Marne e calcareniti alternate a siltiti."Marne di Borutta". Langhiano.
- Sabbie silicee di colore chiaro poco cementate, di ambiente fluvio-marino con alla base siltiti scure e conglomerati continentali. ? Serravalliano.

1.1.1 - Ciclo vulcanico ad affinità alcalina Plio Pleistocene

La dinamica estensionale che ha interessato la Sardegna e il Tirreno nel Pliocene e Pleistocene trova riscontro in un nuovo ciclo vulcanico noto nella letteratura come "post-elveziano" (VARDABASSO, 1937). Si tratta di prodotti ascrivibili ad un vulcanismo intraplacca, costituiti essenzialmente da lave basaltiche, da alcaline ad alcaline-transizionali e subalcaline (BGD) talvolta associati a differenziati più evoluti (BECCALUVA et alii, 1985).

Le manifestazioni vulcaniche inizialmente hanno interessato la Sardegna sud-orientale per poi estendersi in altri settori dell'Isola come la Planargia (Montiferro: 3,9-1,6 Ma), la Marmilla (M. Arci: 3,7-2,8 Ma), le aree centro-meridionali (3,8-1,7 Ma) ed infine le aree settentrionali dove, nel Logudoro-Mejlogu, si registra l'attività vulcanica più recente, compresa tra 0,9 e 0,14 Ma (BECCALUVA et alii, 1985, con bibliografia). I caratteri giaciturali delle vulcaniti pliopleistoceniche presentano un'attività fessurale, legata a direttrici tettoniche con orientazione submeridiana o anche NE-SW, lungo le quali si allineano colate di modeste dimensioni associate a piccoli coni di scorie, modesti edifici isolati e plateaux basaltici. In due casi il vulcanismo pliocenico ha dato luogo ad apparati vulcanici complessi: il M. Arci, allungato secondo faglie a direzione NW-SE (direzione "campidanese") (ASSORGIA et alii, 1981), che si eleva sul margine nord-orientale della Fossa del Campidano fino ad oltre 800 m di quota, e il Montiferro, un massiccio vulcanico che supera i 1000 m di quota e si trova all'incrocio tra le faglie dell'alto Campidano e la Faglia del Marghine ad andamento NE-SW (BECCALUVA et alii, 1976; VERNIA et alii, 1977). Alla base delle colate basaltiche, ed intercalate ad esse, affiorano dei sedimenti di ambiente fluvio-lacustre attribuiti nella Sardegna orientale alla Formazione di Nuraghe Casteddu (DIENI & MASSARI,1973). In genere l'appoggio dei depositi sottostanti le colate basaltiche è direttamente sul basamento ercinico, solo raramente poggiano su sedimenti terziari. DIENI &

MASSARI (1973) attribuiscono questa formazione al periodo interglaciale Donau-Gunz in base ai rapporti stratigrafici.

Basalti del Logudoro (BGD)

Le vulcaniti di questo ciclo affiorano in prossimità del Rio Runaghe e Riu de S'Adde presso Ardara. Gli affioramenti sono costituiti da alcalibasalti in giacitura di colata che caratterizzano il rilievo che sovrasta il rio omonimo. La potenza media delle colate è intorno ai 10 m; si osservano porzioni basali autobrecciate scoriacee centrali caratterizzate da lava bollosa. La roccia si presenta porfirica per cristalli di plagioclasio, olivina e raro pirosseno in massa di fondo microcristallina. Talora si rinvengono piccoli noduli peridotitici. Mostra fessurazione colonnare tipica di effusioni una laviche plateau, legata a sistemi eruttivi indipendenti che talvolta vanno a colmare paleo depressioni dando luogo poi, con l'intervento degli agenti erosivi, ad evidenti fenomeni di inversione del rilievo.

1.1.2 - Successione marina e depositi continentali ("2° ciclo": Burdigaliano superiore-Serravalliano <u>inferiore)</u>

Si tratta di una successione che inizia con conglomerati e arenarie (9a) e prosegue con depositi silicoclastici e carbonatici prevalentemente di ambiente marino (9b di interesse, 9c, 9d). In quest'area il "2° ciclo" poggia con discordanza angolare sui termini precedenti del 1° ciclo precedente. Tra i sedimenti marini dei due cicli s'interpongono potenti depositi continentali e vulcanici (MAXIA & PECORINI, 1969; SPANO & ASUNIS, 1984; OGGIANO, 1987; MARTINI et alii, 1992). Il "2°ciclo" inizia con conglomerati continentali (9a), che raggiungono notevoli spessori nella Sardegna centro-settentrionale, come a Mores (Logudoro) (MARTINI et alii, 1992). In questo ciclo si esaurisce l'attività vulcanica calcalcalina in Sardegna. Nella Sardegna centrosettentrionale, i primi sedimenti marini del "2° ciclo" (9b) affiorano molto estesamente nel Logudoro e nel Sassarese dove la successione stratigrafica è più completa, oltrechè in Anglona, in Gallura e, sotto gli espandimenti basaltici plio-quaternari, nel Bosano e nella media valle del Tirso.

Nella Media Valle del Tirso (ODIN et alii, 1994), nel Logudoro (CHERCHI & SCHROEDER, 1985b; ASSORGIA et alii, 1988; MAZZEI & OGGIANO, 1990), nell'Anglona (MAXIA & PECORINI, 1969; SPANO, 1983; SPANO & ASUNIS, 1984; ODIN et alii, 1994); ecc.), la successione poggia sui depositi clastici basali continentali (9a) o direttamente in discordanza su un substrato costituito da rocce vulcaniche "oligo-mioceniche" (ignimbriti e subordinatamente andesiti) o vulcanoclastiche-epiclastiche (tufi o tufiti lacustri). L'ingressione marina è rappresentata da

arenarie e calciruditi, da conglomerati a cemento calcareo, con elementi di basamento paleozoico e di vulcaniti cenozoiche (Cossoine, Uri, Castelsardo, ecc.) e da tufiti (Paulilatino, Castelsardo, Chiaramonti, ecc.), che indicano ambienti litorali o lagunari. Al di sopra di tali depositi, in particolari condizioni di mare protetto, caldo e poco profondo, si sviluppa una piattaforma carbonatica che raggiunge normalmente una decina di metri di spessore.

Lateralmente e superiormente ai calcari di piattaforma affiorano con grande diffusione depositi marnosi e marnoso-arenacei, talora torbiditici (Logudoro, Sassarese, Campeda) (9c).

1.1.3 - Successione sedimentaria oligo miocenica del Logudoro – Sassarese

La successione sedimentaria miocenica è caratterizzata dalla presenza di due sequenze deposizionali delimitate da discordanze riconoscibili a scala bacinale. Il substrato di questi depositi è costituito da vulcaniti ed epiclastiti. La sequenza deposizionale è costituita da depositi continentali fluviali e di piana alluvionale, deltizi e marini di piattaforma; la seconda sequenza è costituita da depositi fluvio-marini e carbonatici di piattaforma (MAZZEI & OGGIANO , 1990). Formazione di Oppia Nuova (OPN): è costituita da deposti continentali di arenarie e depositi conglomeratici in matrice sabbiosa e argillosa, massivi o con strutture tipo cut-and-fill (FUNEDDA et alii, 2003); localmente prevalgono depositi limoso-argillosi senza evidenze di stratificazione.

I ciottoli, in genere ben elaborati, di dimensioni sino a decimetriche, sono rappresentati soprattutto da calcari della serie mesozoica della Nurra e da vulcaniti terziarie, mentre negli scarsi affioramenti della valle del Riu Mascari la natura granitica dei ciottoli indica un'alimentazione dai rilievi granitici presenti negli alti strutturali tra la Gallura e Alà dei Sardi.

1.1.4 – Depositi Olocenici

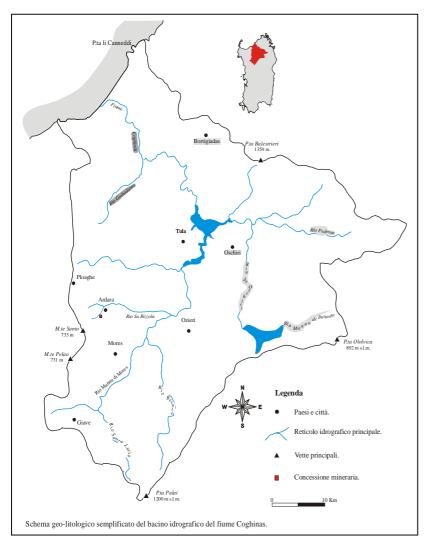
Questi depositi comprendono sia i sedimenti attuali sia quelli messi in posto nell'Olocene durante le complesse modificazioni dell'ambiente fisico, caratterizzate essenzialmente da gradi variabili di inattività e seppellimento. Si tratta principalmente di depositi connessi alla gravità (depositi di frana e di versante, coltri eluvio-colluviali), depositi alluvionali e di precipitazione chimica (travertini). Sono rappresentati anche i depositi legati alle attività antropiche.

Depositi di frana (a1): trattasi di accumuli di blocchi derivanti dall'arretramento di cornici rocciose, carbonatiche o di vulcaniti, per frane di crollo e/o ribaltamento. I blocchi hanno dimensioni variabili da pochi decimetri cubi ad alcune decine di metri cubi e sono sovente parzialmente immersi in una matrice fine pedogenizzata che include detriti angolosi di varia granulometria.

Depositi alluvionali (b): la presenza dei corsi d'acqua tra cui ad esempio Riu Badde de Ardara, Riu Runaghe, Riu de S'Adde, Riu Su Rizzolu in grande, durante la maggior parte dell'anno sono

interessati da scorrimento idrico estremamente esiguo, che viene fortemente attivato durante gli eventi piovosi eccezionali. Nei piccoli corsi d'acqua affluenti di quelli sopraccitati, i depositi alluvionali sono sempre di modesto spessore e spesso affiora il substrato roccioso. I depositi sono costituiti da ghiaie e sabbie grossolane. Verso valle gli alvei sono più ampi, e sulla pianura di esondazione prevalgono i sedimenti fini, costituiti da sabbie con rare ghiaie. Le strutture sono rappresentate da stratificazione piano parallela o incrociata concava, con riempimento di canali a bassa profondità.

1.2 - Inquadramento idrologico e idrogeologico generale


Dal punto di vista idrologico il settore di studio ricade nel Bacino Idrografico del Coghinas. Questo, secondo solo al Tirso come estensione, è la somma di tre bacini, quello del Riu Mannu di Ozieri, del Riu Mannu di Oschiri e del Riu Mannu di Berchidda. L'idronimo più noto, quello appunto di Coghinas, viene assunto dal corso d'acqua all'uscita dell'omonimo lago artificiale e mantenuto sino alla foce, nella spiaggia detta di Campo Coghinas.

Il bacino del fiume Coghinas, il più vasto della Sardegna settentrionale, raccoglie le acque di drenaggio di un'area di circa 2477 Kmq. Il corso d'acqua principale trae le sue origini dalle falde settentrionali della catena del Marghine, a Nord di Bolotona, e dopo un percorso tortuoso e irregolare sfocia nel bordo orientale del Golfo dell'Asinara. Il suo tracciato, che mantiene prevalentemente direzione SO-NE, attraversa per una lunghezza di circa 123 Km la Sardegna centro-settentrionale. Il Fiume scorre quasi per intero nella provincia di Sassari, su un'area che comprende, totalmente e/o parzialmente, il territorio di 47 comuni. Confina con otto bacini e precisamente nella sua parte orientale con uno minore, con il Liscia, con il Padrongiano e con il Posada; a Sud con il Tirso e nella parte occidentale con il Temo, con il Mannu di Porto Torres e con il Silis.

Il suo spartiacque è costituito dagli alti morfologici più importanti della provincia di Sassari. In particolare ad occidente è costituito dai rilievi trachiandesitici e calcarei dell'Anglona, più a Sud dal complesso vulcanico plioquaternario del Logudoro, mentre nella parte meridionale dalla la Catena del Marghine ed dai monti di Alà e Buddusò ed infine, nella zona nord-orientale dal massiccio del Limbara. Le quote massime si raggiungono ad occidente a M. Eiscoba (629 m), P.ta Ottiosa (523 m) e P.ta Giunnalias (534 m), a sud M. Rasu (1259 m) e M. Fraidorzu (1004 m), ad Est P.ta Senalonga (1076 m), a Nord P.ta Balestrieri (1259 m) e P.ta Bandiera (1336 m). Le aree pianeggianti sono limitate alla piana di Valledoria, in prossimità della foce, alla piana di Chilivani e al limitato altopiano di Campo Giavesu. L'area interessata dal progetto è localizzata nella destra idrografica del Rio Cabu De Abbas e Riu Runaghes affluenti di sinistra del più

importante Riu su Rizzolu che si svilupa a nord dell'abitato di Ardara. Il Riu Rizzolu, uno degli affluenti di maggior rilievo del Riu Mannu di Ozieri, nasce tra il Monte Ruju e il Monte Sa Da Figu e percorre 22 Km in dirczione Ovest-Est prima di raggiungere il corso principale presso Punta Donadu (221 m), nelle adiacenze della strada ferrata. Il suo bacino idrografico occupa quasi tutta l'area del territorio in esame ed è drenato da due importanti affluenti, il Badu Ruju (Riu Sos Massaios), che proviene dalla sinistra idrografica, ed il Riu Badde Dianesu dalla destra

Il Riu Mannu di Ozieri nasce tra i rilievi del Monte Traessu (717 m) e del Monte Rispisu (602 m) e drena l'altopiano di Campu Giavesu, una superficie di spianamento estesa circa 1,5 Kmq che, tramite superfici di debole inclinazione, si raccorda ai rilievi circostanti. I corsi d'acqua seguono in genere le linee di influenza tettonica, la cui geologia è caratterizzata da una successione vulcanica di età oligo-miocenica, costituita da riodaciti, ignimbriti, andesiti con intercalazioni tufacee, che poggia sul basamento cristallino (scisti e graniti) affiorante in tutto il settore orientale dell'intero bacino. La morfologia, condizionata dai diversi tipi litologici, è piuttosto varia e passa

dalle forme aspre delle vulcaniti oligo-mioceniche, dove le alternanze lavlche e tufacee danno luogo a dorsali conversanti asimmetrici, alle superfici tabulari della Campeda e del Pranu Mannu; ed ancora dalle cuestas originate dalle intercalazioni calcaree e marnose, osservabili nelle vicinanze di Cheremule, alle piane alluvionali di Campu Giavesu e Santa Lucia, per giungere ai coni di scorie basaltiche (Monte Cuccuruddu, Monte Cujaru, Monte Fruscu).

Il bacino è costituito da sei unità idrogeologiche fra le quali prevalgono gli Acquiferi delle Vulcaniti Oligo-Mioceniche della Sardegna Nord-Occidentale e l' Acquifero Detritico-Carbonatico II Geologo: Dott. Mario STRINNA O.R.G Sardegna n. 441 [Sez. A]

Oligo-Miocenico del Sassarese. In misura minore sono presenti l'Acquifero delle Vulcaniti Plio-Pleistoceniche della Sardegna Centro-Occidentale, l'Acquifero Detritico Alluvionale Plio-Quaternario della Piana di Chilivani-Oschiri e l'Acquifero Detritico Alluvionale Plio-Quaternario della Piana di Valledoria. Mediamente si riscontrano valori medio-bassi di permeabilità degli acquiferi, eccezionalmente e localmente si registrano valori medio alti, ove compaiono livelli a matrice grossolana (es: l'Acquifero Detritico Alluvionale Plio-Quaternario della Piana di Valledoria) o nei sistemi a fratturazione marcata (es: Acquifero delle Vulcaniti Oligo-Mioceniche della Sardegna Nord-Occidentale

Le rocce di diversa natura che costituiscono il bacino del Fiume Coghinas ed i suoi sub bacini caratterizzano in maniera diversa la sua idrogeologia. Si possono distinguere diverse unità idrogeologiche, ciascuna delle quali corrisponde a requisiti di permeabilità diversi che passano da alta fino a permeabilità tendente a zero. Nella parte orientale del bacino, dove prevalgono le formazioni granitiche, le strutture acquifere sono esclusivamente legate a coltri sabbiose di modesta entità le cui falde freatiche sono perciò molto scarse sia per estensione che per potenzialità idrica. Nelle vulcaniti oligo-mioceniche, si hanno acquiferi estremamente modesti, legati principalmente alle fratture presenti. Gli acquiferi più importanti sono legati agli affioramenti alluvionali estesi sia alla destra che alla sinistra idrografica del Fiume Coghinas. In particolare, la piana di foce del Coghinas presenta una falda acquifera di subalveo, sostenuta dal basamento impermeabile formato dal complesso paleozoico ad Est e dalle vulcaniti terziarie ad Ovest. Su questo basamento poggiano le alluvioni antiche, recenti ed attuali, che costituiscono un rilevante bacino serbatoio, il cui livello freatico si innalza in funzione diretta delle variazioni del livello del fiume.

I terreni rilevati, in base alle caratteristiche geolitologiche, con particolare riferimento alla capacità d'assorbimento (tab. 1) possono essere suddivisi in:

GRADO DI PERMEABILITÀ	VALORE DI K (M/S)
alto	superiore a 10 ⁻³
medio	10 ⁻³ – 10 ⁻⁵
basso	10 ⁻⁵ – 10 ⁻⁷
molto basso	10 ⁻⁷ – 10 ⁻⁹
impermeabile	minore di 10 ⁻⁹

<u>Classe 1</u> → [Alluvionale]: depositi alluvionali recenti e attuali dell'unità b. Si tratta di ghiaie poligeniche ed eterometriche, da sub-arrotondate ad arrotondate, in matrice sabbiosa e sabbioso-limosa generalmente abbondante; a luoghi si rinvengono passaggi di sabbie, sabbie

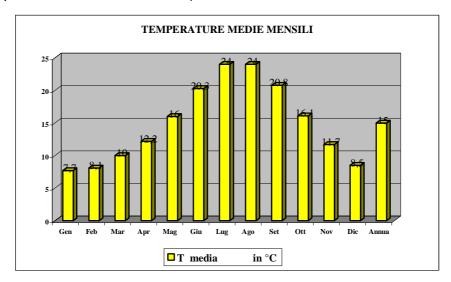
limose e limi sabbiosi a struttura indistinta, con abbondanti ghiaie poligeniche da sub-angolose ad arrotondate. Costituiscono acquiferi porosi a bassa trasmissività, sono sede di falde idriche sotterranee di modesta rilevanza, generalmente a deflusso unitario, che possono avere interscambi con i corpi idrici superficiali e/o con quelli sotterranei delle strutture idrogeologiche limitrofe. La permeabilità, esclusivamente per porosità, è variabile da media ad alta $[10^{-2} \ge \text{K} \ge 10^{-5}]$.

Classe 2 → [Detritico eluvio colluviale]: terreni di copertura sabbioso, sabbioso limoso e/o limoso sabbioso, con presenza di ghiaie poligeniche da angolose a sub-arrotondate – angolose, con locali clasti di dimensioni da decimetriche a metriche; localmente si rileva la presenza di argille limose e limi argilloso-sabbiosi a struttura indistinta, con diffusi resti vegetali e sporadiche ghiaie poligeniche da angolose a sub-arrotondate. Costituiscono acquiferi porosi di scarsa trasmissività, moderatamente eterogenei ed anisotropi; sono privi di corpi idrici sotterranei di importanza significativa, a meno di piccole falde a carattere stagionale. La permeabilità, esclusivamente per porosità, è variabile da bassa a media $[10^{-4} \ge K \ge 10^{-6}]$.

Classe 3 → [Vulcanico]: basalti, da mediamente a ben cementati, massivi o in strati da spessi a molto spessi, immersi nella massa di fondo si rinvengono passaggi di ceneri grossolane, pomici e litici lavici con dimensioni da centimetriche a decimetriche, da scarsi a molto abbondanti. Trattasi di acquiferi di modesta trasmissività, con sede di falde idriche sotterranee di modesta rilevanza, localmente frazionate dagli orizzonti litoidi più compatti e meno fratturati. La permeabilità, per porosità e fessurazione, è variabile da molto bassa a bassa [$10^{-6} \ge K \ge 10^{-8}$].

1.3 - Lineamenti climatici generali dell'areale

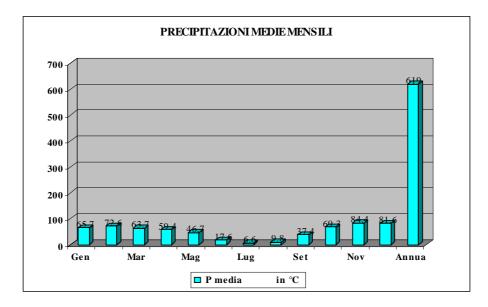
La caratterizzazione climatica del sito è stata eseguita avvalendosi dei dati rilevati dalla stazione di Ardara e da quella di Ozieri.

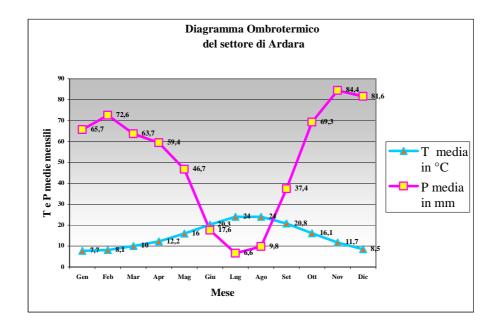

Temperature e Precipitazioni

Le temperature medie mensili e media annua sono determinate utilizzando i dati rilevati nella stazione di Ozieri tra il 1922 e il 1992, per numero di osservazioni comprese tra 69 in arco di tempo di 70 anni. In Tabella si riportano, oltre ai valori medi di temperatura mensile ed annua, il numero di osservazioni.

Relazione geologica e geotecnica

Stazione di M	lisura: Ozieri Quota s.l.m.: m												
	TEMPERATURE MEDIE MENSILI ED ANNUA												
Tipo di app	parecchio: Tm Altezza dell'apparecchio dal suolo: m												
	Gen	Feb	Feb Mar Apr Mag Giu Lug Ago Set Ott Nov Dic Annua										
N.Oss.	69	69 69 69 69 69 69 69 69 69 69 69 69							69				
Dev.St.	1.3	1.5	1.3	1.1	1.4	1.3	1.6	1.4	1.1	1.3	1.3	1.5	
T media in °C	7.7	8.1	10	12.2	16	20.3	24	24	20.8	16.1	11.7	8.5	15


L'andamento delle temperature medie mensili è visualizzato nel seguente grafico (istogramma delle temperature medie mensili, con riportati nell'asse delle ascisse i 12 mesi e nell'asse delle ordinate le temperature medie mensili in °C).


Dalla tabella e dal compendio grafico si evince che la temperatura media annua, calcolata con i valori mensili, è 15,0 °C. Inoltre, il mese più freddo è Gennaio con 7,7 °C e quelli più caldi sono Luglio e Agosto entrambi con 24 °C. Le precipitazioni medie mensili e media annua sono determinate utilizzando i dati misurati tra il 1922 e il 1992 nella stazione di Ardara, quindi per un periodo di 71 anni. In tabella si riportano, oltre ai valori medi di precipitazione mensile ed annua, il numero di osservazioni e la deviazione standard.

Stazione d	Stazione di Misura: Ardara Quota s.l.m.: 297 m												
	PRECIPITAZIO NI MEDIE MENSILI ED ANNUA												
Tipo di ap	Tipo di apparecchio: P Altezza dell'apparecchio dal suolo: 1.50 m					1.50 m							
	Gen	Fe b	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	Annua
N.Oss.	54	54	54	54	54	54	54	55	55	55	54	54	53
Dev.St.	39	47.8	39.1	46.3	36.2	19.2	13.3	1					
P media in °C	65.7	72.6	63.7	59.4	46.7	17.6	6.6	9.8	37.4	69.3	84.4	81.6	619

L'andamento delle precipitazioni medie mensili può essere meglio analizzato grazie alla grafico (Istogramma delle precipitazioni medie mensili, con riportati sull'asse delle ascisse i 12 mesi e sull'asse delle ordinate le precipitazioni medie in mm).

Dalla tabella e dal compendio grafico si deduce che il modulo pluviometrico annuo, calcolato con i valori mensili, è 619 mm, che il mese più piovoso è novembre con 84.4 mm e quello più asciutto è luglio con 6,6 mm.. I valori di temperatura e precipitazione medi mensili hanno consentito la ricostruzione del diagramma ombrotermico che riproduce il regime termo-pluviometrico medio annuo. Infatti, riportando in ascisse i 12 mesi e in ordinate i corrispondenti valori medi mensili di T e P si può visualizzare il loro andamento nel corso dell'anno.

L'andamento delle curve consente di affermare che nei mesi estivi di Luglio e Agosto, dove la temperatura media mensile raggiunge il valore massimo 24 °C, si hanno minimi di piovosità (rispettivamente 6,6 mm e 9.8 mm), mentre nei mesi di Novembre, Dicembre, Gennaio e Febbraio, dove le temperature medie mensili oscillano tra i 7,7 e gli 11,7 °C, si raggiungono le piovosità più elevate (rispettivamente 84.4 mm, 81.6 mm, 104,5 mm e 65.7).

Le medie di temperatura e piovosità hanno consentito inoltre di individuare il tipo di clima. Infatti, per la temperatura media annua con valori compresi tra 15,0 e 16,9 °C, la media del mese più freddo variabile tra 6,5 e 9,9 °C, e per i 4 mesi con temperatura superiore a 20,0 °C, il clima presente è di tipo "temperato-caldo". Anche le precipitazioni annue sono comprese tra 500 e 800 i accordo con il clima temperato caldo.

1.4 – Pericolosità geologica

L'insieme dei fenomeni geologici e dei loro effetti su una determinata zona rappresenta quella che si definisce la pericolosità geologica, che comprende i fenomeni naturali quali ad esempio le frane, le alluvioni, i terremoti, le eruzioni vulcaniche ect. Nella fattispecie in questione, il quadro normativo di riferimento della Regione Sardegna disciplina la pericolosità idrogeologica e la pericolosità sismica.

1.4.1 - Pericolosità Idrogeologica

In riferimento al rischio idrogeologico la Regione Sardegna ha elaborato dei piani cui bisogna rapportarsi per qualsiasi opera e/o intervento da realizzarsi.

- Il Piano Stralcio per l'Assetto Idrogeologico (P.A.I.), elaborato dalla Regione Sardegna ai sensi della L. 18.05.1989 n. 183 e dalla L. 03.08.1998 n. 267, approvato con D.P.G.R. n. 67 del 10.07.2006 e aggiornato con D.P.G.R. 148 del 26.10.2012, è lo strumento conoscitivo, normativo e tecnico-operativo mediante il quale sono pianificate e programmate le azioni e le norme d'uso finalizzate alla conservazione, alla difesa ed alla *valorizzazione del suolo, alla prevenzione del rischio idrogeologico, sulla base delle caratteristiche fisiche ed ambientali del territorio interessato.*
- Il Piano Stralcio delle Fasce Fluviali (P.S.F.F.) approvato definitivamente dal Comitato istituzionale con Delibera n.2 del 17.12.2015, è lo strumento conoscitivo, normativo e tecnico-operativo, mediante il quale sono pianificate e programmate le azioni e le norme d'uso riguardanti le fasce fluviali; costituisce un approfondimento ed una integrazione del Piano di Assetto Idrogeologico (P.A.I.)
- Il Piano di Gestione del Rischio di Alluvione (PGRA)

Il Comune di Ardara è ricompreso all'interno del U.I.O Coghinas, così come individuato dal P.A.I. Sardegna e dal P.S.F.F. Sardegna. Nella fattispecie il sito oggetto di intervento ricade nella cartografia attualmente disponibile on-line e consultabile tramite la piattaforma "Sardegna Geoportale" (sulla base di quanto disposto dalla normativa P.A.I per il Piano Stralcio per l'Assetto Idrogeologico della Sardegna "Allegato E/F" (criteri per la predisposizione degli studi di compatibilità idraulica e geologica-geotecnica di cui agli articoli 24/25 delle norme di attuazione del PAI Titolo III cap. I/II/III), in un'area con assenza di pericolosità idraulica Hi (Art. 8 - Rev. 41), e presenza di pericolosità geomorfologia (Rev. 42).

Figura 5 - Perimetrazioni delle aree caratterizzate da pericolosita' geomorfologica mappate in ambito P.A.I. aggiornate alla data del 31.01.2018

Figura 6 - Fasce Art. 30 ter NTA PAI

1.4.2 - Progetto P.S.F.F

Da una analisi del Piano Stralcio delle Fasce Fluviali (PSFF) relativo al bacino del fiume Coghinas, non sono emersi per l'area esaminata rischi compatibili con i corsi d'acqua in funzione della sicurezza idraulica.

1.4.3 - Progetto I.F.F.I

Da una analisi dell'Inventario dei Fenomeni Franosi in Sardegna (IFFI) relativo al bacino del fiume Coghinas nell'area non sono emersi per l'area esaminata rischi compatibili con eventi franosi.

1.4.4 - Pericolosità sismica di base

Per ridurre gli effetti del terremoto, l'azione dello Stato si è manifestata attraverso la Classificazione Sismica del Territorio, che si basa sull'intensità e frequenza dei terremoti del passato, e l'applicazione di speciali norme tecniche per le costruzioni (NTC) nelle zone classificate sismiche. Ai fini della caratterizzazione del territorio o di porzioni di esso è pertanto importante individuare l'appartenenza di ciascun comune o porzione di esso ad una delle zone sismiche definite sulla base del valore massimo del parametro di pericolosità sismica valutato all'interno dell'area considerata.

Quadro Normativo e Caratterizzazione Sismica del Territorio

La legislazione antisismica italiana, sino al 2003 classificava il territorio nazionale in tre categorie sismiche. I Decreti Ministeriali emanati dal Ministero dei Lavori Pubblici tra il 1981 ed il 1984 avevano classificato complessivamente 2.965 comuni italiani su di un totale di 8.102,

Decreti fino al 1984	GdL 1998	Classifi cazione 2003
S=12	Prima categoria	zona 1
S=9	Seconda categoria	zona 2
S=6	terza categoria	zona 3
non classificato	N.C.	zona 4

corrispondente al 45% della superficie del territorio nazionale nel quale risiede il 40% della popolazione. Nei Decreti emessi fino al 1984 la sismicità fu definita attraverso il "grado di sismicità" S; nella proposta di riclassificazione del

GdL del 1998 si utilizzarono 3 categorie sismiche più una categoria di Comuni Non Classificati (NC). La corrispondenza fra le diverse definizioni succedutesi nel tempo è sintetizzata in tabella. Nella Classificazione 2003 la sismicità fu definita da quattro zone omogenee numerate da 1 a 4. I criteri di classificazione sismica del territorio nazionale contenuti nell'Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003, furono basati sugli studi e le elaborazioni relative alla pericolosità sismica del territorio, ossia sull'analisi della probabilità che il territorio

fosse interessato in un certo periodo (generalmente 50 anni) da un evento che superava una determinata soglia di intensità o magnitudo.

L'Ordinanza n. 3274 del 20 marzo 2003 della Presidenza del Consiglio dei Ministri "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica", affidò alle Regioni l'individuazione, la formazione e

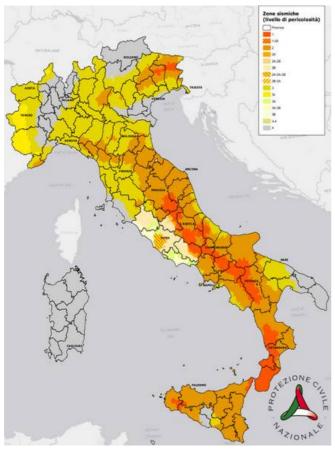


Figura 7 - Livello di pericolosità sismica dei Comuni italiani (2020)

l'aggiornamento dell'elenco delle zone sismiche dando in questo modo attuazione al D. Lgs. 112/1998 ed in particolare agli articoli 93 comma 1g e 94 comma 2a, indicanti la ripartizione tra Stato e Regioni delle competenze in materia di riduzione rischio sismico. L'Ordinanza, del allineando il sistema normativo per le costruzioni in zona sismica al sistema dei (EC8), codici europei consentì la razionalizzazione del processo d'individuazione delle zone sismiche.

L'allegato 1 di tale Ordinanza, il cui aggiornamento dello studio di pericolosità di riferimento nazionale (Gruppo di Lavoro, 2004) previsto dall'O.P.C.M. 3274/03 fu adottato con l' dall'O.P.C.M. n. 3519 del 28 aprile 2006, stabilì che le zone sismiche erano individuate da 4 valori

dell'accelerazione orizzontale di picco del suolo [ag] con probabilità di superamento del 10% in 50 anni. In particolare le "Norme tecniche" indicarono 4 valori di accelerazioni orizzontali (ag/g) di ancoraggio dello spettro di risposta elastico e le norme progettuali e costruttive da applicare; pertanto la sismicità fu definita mediante zone omogenee numerate da 1 a 4 in ordine crescente di pericolosità.

- Zona 1 È la zona più pericolosa, dove possono verificarsi forti terremoti. Comprende 708 Comuni o porzioni di essi per i quali[ag/g] ≥ 0,25g.
- Zona 2 Nei 2.345 Comuni o porzioni di essi per i quali 0,25g > [ag/g] ≥ 0,15g possono verificarsi terremoti abbastanza forti.

II Geologo: Dott. Mario STRINNA O.R.G Sardegna n. 441 [Sez. A]

- Zona 3 Nei 1.560 Comuni o porzioni di essi per i quali 0,15g > [ag/g] ≥ 0,05g possono essere soggetti a scuotimenti modesti.
- Zona 4 È la meno pericolosa. Nei 3.488 Comuni o porzioni di essi per i quali [ag/g] < 0,05g le possibilità di danni sismici sono basse.

Nella Carta della Zonazione Sismica del territorio nazionale (2003-2004) e nella Classificazione Sismica dei Comuni Italiani (OPCM 3274 20/03/2003 Allegato A), il Comune di Ardara ricadeva in zona 4. Per la presenza di alcuni errori ed imprecisioni nel testo dell'Ordinanza 3274 furono emendate dalla successiva Ordinanza 3316 del 2 ottobre 2003 "Modifiche ed integrazioni al testo dell'Ordinanza 3274". L'Ordinanza 3431, pubblicata sulla G.U. del 10 maggio 2005, apportò inoltre ulteriori modifiche, integrazioni e, a volte, semplificazioni all'Ordinanza 3274 del 2003, ne prorogò di ulteriori 3 mesi il periodo sperimentale di applicazione e traslò l'entrata in vigore, a carattere vincolante delle nuove norme sismiche al 8 agosto 2005 (adottato con l'Ordinanza del presidente del Consiglio dei Ministri n. 3519 del 28 Aprile 2006). Il periodo di proroga fu ulteriormente esteso da Ordinanze successive fino all'emanazione del "Testo Unitario per la Normativa Tecnica sulle Costruzioni (Testo Unico)" del 23 settembre 2005.

L'Ordinanza 3274 del 20 marzo 2003 non entrò mai in vigore come norma vincolante, ma il suo impianto generale fu tuttavia confermato dalle norme successive. Il DM 14/09/2005 "Testo Unitario per la Normativa Tecnica sulle Costruzioni", pubblicato sulla Gazzetta Ufficiale del 23 settembre 2005, che rappresentò la legge di riferimento per l'ingegneria civile, identificò i livelli di sicurezza e le prestazioni delle costruzioni, unificando sia le norme relative al comportamento e alla resistenza dei materiali e delle strutture sia quelle relative alla definizione delle azioni e dei loro effetti. Più specificamente per l'analisi sismica il decreto riprese la caratterizzazione delle azioni con l'impostazione generale introdotta dalle Ordinanze 3274 e 3431. Le procedure operative di dettaglio descritte in queste ultime erano da intendersi solo come suggerimenti esemplificativi e non come imposizioni prescrittive. In particolare ai fini della definizione dell'azione sismica di progetto il D.M. 14 settembre 2005 prescrisse "la necessità di valutare l'influenza delle condizioni litologiche e morfologiche locali sulle caratteristiche del moto del suolo in superficie, mediante studi specifici di risposta sismica locale". Qualora tali valori non fossero disponibili, poteva essere utilizzata "la classificazione basata sulla stima dei valori della velocità media delle onde sismiche di taglio Vs o il numero medio di colpi NSPT ottenuti in una prova penetrometrica dinamica ovvero sulla coesione non drenata media Cu". Nella mappa della pericolosità sismica del territorio nazionale 2005, edita dall'Istituto Nazionale di Geofisica e Vulcanologia, il Comune di Ardara come l'intero territorio isolano, non presentò variazione: tutti i Comuni furono inseriti nella classe 4. L'O.P.C.M. 3274 del 20 marzo 2003 al

Il Geologo: Dott. Mario STRINNA O.R.G Sardegna n. 441 [Sez. A]

_Relazione geologica e geotecnica

comma 2.1. "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica", dispone che "In zona 4 è lasciata facoltà alle singole regioni di introdurre o meno l'obbligo della progettazione antisismica", confermando quanto prescritto nelle precedenti ordinanze. Il D.G.R. 15/31 del 30 marzo 2004, stabilisce di recepire in via transitoria, fino a nuova determinazione conseguente all'aggiornamento della nuova mappa di rischi sismico nazionale, la classificazione sismica dei Comuni della Sardegna, così come riportato nell'allegato A dell'O.P.C.M. 3274 del 20 marzo 2003 in cui tutti i Comuni isolani sono inseriti in zona 4 rimane in vigore il D.G.R. 15/31 del 30 marzo 2004, che consente per i Comuni della Sardegna la "non introduzione dell'obbligo della progettazione antisismica. Per meglio adattare le norme alle caratteristiche di sismicità, nel rispetto degli indirizzi e criteri stabiliti a livello nazionale, alcune Regioni hanno classificato il territorio nelle quattro zone proposte, altre Regioni hanno classificato diversamente il proprio territorio, ad esempio adottando solo tre zone e introducendo, in alcuni casi, delle sottozone. Qualunque sia stata la scelta regionale, a ciascuna zona o sottozone è attribuito un valore di pericolosità di base, espressa in termini di accelerazione massima su suolo rigido (ag). Tale valore di pericolosità di base non ha però influenza sulla progettazione. Le Norme Tecniche per le Costruzioni (Decreto Ministeriale del 14 gennaio 2008), che sostituiscono quelle approvate con D.M. del 14 settembre 2005, hanno, infatti, modificato il ruolo che la classificazione sismica aveva ai fini progettuali: per ciascuna zona - e quindi territorio comunale - precedentemente veniva fornito un valore di accelerazione di picco e quindi di spettro di risposta elastico da utilizzare per il calcolo delle azioni sismiche. Dal 1 luglio 2009 con l'entrata in vigore delle Norme Tecniche per le Costruzioni del 2008, per ogni costruzione ci si deve riferire ad una accelerazione di riferimento "propria" individuata sulla base delle coordinate geografiche dell'area di progetto e in funzione della vita nominale dell'opera. Un valore di pericolosità di base, dunque, definito per ogni punto del territorio nazionale, su una maglia quadrata di 5 km di lato, indipendentemente dai confini Amministrativi Comunali. Va precisato che, in seguito a tale classificazione, tutte le regioni italiane (compresa la Sardegna) risultano a rischio sismico. In tutto il territorio nazionale vige quindi l'obbligo di progettare le nuove costruzioni e intervenire sulle esistenti con il metodo di calcolo semiprobabilistico agli stati limite e tenendo conto dell'azione sismica. Limitatamente alle costruzioni ordinarie presenti nei siti ricadenti in zona 4, per le costruzioni di tipo 1 e 2 e di classe d'uso I e II, la norma consente l'utilizzo della "vecchia" metodologia di calcolo alle tensioni ammissibili di cui al D.M. 16 gennaio 1996, ma obbliga comunque a tenere conto dell'azione sismica con l'assunzione di un grado di sismicità convenzionale S=5. La Classificazione Sismica (Zona Sismica di Appartenenza del Comune) rimane utile solo per la gestione della pianificazione

e per il controllo del territorio da parte degli Enti preposti. L'entrate in vigore della revisione della norma NTC08, nel 2018, segna il definitivo abbandono della metodologia delle tensioni ammissibili: dal 22/03/2018, con l'entrata in vigore delle NTC08 non sarà più possibile utilizzare questa metodologia, neanche per le ex-zone 4, a favore del metodo semiprobabilistico agli Stati Limite. Inoltre nella norma NTC2018 sparisce ogni riferimento alla classificazione in zone sismiche, un refuso di stampa contenuto nelle NTC08 che contrastava fortemente con la metodologia della norma e con il calcolo a nodi degli scuotimenti attesi.

a) Pericolosità Sismica Locale

L'obiettivo delle Norme Tecniche per le Costruzioni (NTC) nella progettazione di nuove strutture è il controllo del livello di danneggiamento della costruzione a fronte dei terremoti che possono verificarsi nel sito. L'azione sismica di progetto è definita dalla "pericolosità sismica di base" del sito di costruzione descritta dalla probabilità che, in un fissato intervallo (periodo di riferimento "VR" espresso in anni), in detto sito si verifichi un evento sismico di entità almeno pari ad un valore prefissato; la probabilità è denominata "Probabilità di eccedenza o di superamento nel periodo di riferimento PVR".

La pericolosità sismica è definita in termini di:

- accelerazione orizzontale massima attesa "ag" in condizioni di campo libero su sito di riferimento rigido (categoria A - NTC), con superficie topografica orizzontale (categoria T1);
- ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se(T), con riferimento a prefissate probabilità di eccedenza PVR nel periodo di riferimento VR.

Ai fini delle NTC le forme spettrali sono definite, per ciascuna delle probabilità di superamento nel periodo di riferimento PVR, a partire dai valori dei seguenti parametri sul sito di riferimento rigido orizzontale:

- ag accelerazione orizzontale massima al sito;
- F₀ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale.
- T_C* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Poiché le probabilità PVR di superamento nel periodo di riferimento VR variano al variare dello stato limite considerato, nelle verifiche devono essere presi in considerazione tutti i meccanismi di stato limite ultimo e di esercizio. In particolare, sono da valutare gli Stati Limite di Esercizio SLO (Stato Limite di Operatività) e SLD (Stato Limite di Danno) e gli Stati Limite Ultimi SLV (Stato Limite di salvaguardia della Vita) e SLC (Stato Limite di prevenzione del Collasso). Per la determinazione di ag (accelerazione orizzontale massima attesa su sito di riferimento rigido) è

II Geologo: Dott. Mario STRINNA O.R.G Sardegna n. 441 [Sez. A]

Relazione geologica e geotecnica

indispensabile conoscere le coordinate geografiche decimali dell'opera da verificare. Si determina, quindi, la maglia di riferimento con l'ausilio delle tabelle dei parametri spettrali fornite dal ministero e, sulla base della maglia interessata, si determinano i valori di riferimento del punto come media pesata dei valori nei vertici della maglia moltiplicati per le distanze dal punto: si ottengono in tal modo tre valori: ag (g/10), F_0 e $Tc^* \rightarrow$ [definiscono le forme spettrali]. I valori di ag, Fo e Tc* per gli "stati limite di esercizio", SLO e SLD, e per gli "stati limite ultimi", SLC e SLD, sono calcolati con interpolazione basata sulle distanze, per maglie di riferimento rappresentative dell'intera area nella quale dovrà essere realizzato l'impianto utilizzando la classe d'uso I (presenza occasionale di persone)

b) Categorie di Sottosuolo

Per identificare la categoria di sottosuolo (§ 3.2.2. NTC 2018) finalizzata alla definizione dell'azione sismica di progetto, qualora le condizioni stratigrafiche e le proprietà dei terreni siano chiaramente riconducibili alle categorie definite nella Tab. 3.2.II, si può fare riferimento a un approccio semplificato che si basa sulla classificazione del sottosuolo in funzione dei valori della velocità di propagazione delle onde di taglio, VS. I valori di Vs eq possono essere ottenuti mediante specifiche prove oppure, con giustificata motivazione e limitatamente all'approccio semplificato, sono valutati tramite relazioni empiriche di comprovata affidabilità con i risultati di altre prove in sito, quali ad esempio le prove penetrometriche dinamiche per i terreni a grana grossa e le prove penetrometriche statiche. Per velocità equivalente di propagazione delle onde di taglio si intende la media pesata delle velocità delle onde S negli strati nei primi metri di profondità dal piano di posa della fondazione, dove per le fondazioni superficiali è riferita al piano di posa delle stesse: secondo lo schema presente nell'Ordinanza (NTC 2018) si tratta di un suolo appartenente alla Classe C. Di seguito si riportano le categorie di sottosuolo di riferimento (Tab. 3.2.II - NTC 2018).

Tab. 3.2.II – Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.						
Categoria	Caratteristiche della superficie topografica					
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.					

c) Condizione Topografica

Il moto generato da un terremoto, oltre che dalle caratteristiche stratigrafiche dei depositi di terreno e degli ammassi rocciosi e dalle proprietà fisiche e meccaniche dei materiali che li costituiscono, dipende dalle caratteristiche topografiche del sito. Nel caso specifico la superficie interessata dall'opera in progetto rientra nella Categoria topografia T1 - (Tab. 3.2.III - §.3.2.2 NTC 2018 di seguito riportata) per la quale la normativa (§ 7.11.3.3 delle NTC 2008) prevede che

Relazione geologica e geotecnica

"Gli effetti topografici possono essere trascurati" poiché presentano "un'inclinazione media inferiore a 15°".

Caratteristiche della superficie topografica	CATEGORIE TOPOGRAFICHE	Valori minimi di V _N (anni)
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°	T1

Classe d'uso	I	П	III	IV
Coefficiente C _u	0,7	1,0	1,5	2,0

	TIPI DI COSTRUZIONE	Valori minimi di V _N (anni)
1	Costruzioni temporanee e provvisorie	10
2	Costruzioni con livelli di prestazioni ordinarie	50
3	Costruzioni con livelli di prestazioni elevate	100

1.4.4.1 - Dati sismici sul sito (spettri di risposta)

Le forme spettrali sono definite, per ciascuna probabilità di superamento P_{VR} nel periodo di riferimento, a partire dai tre parametri validi: ag = accelerazione massima del terreno [g/10]; F0 = valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale; TC^* = valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale

Dati sull'area SENSIBILE: $\mathbf{X} = 8^{\circ} 47' 38.15''$ longitudine $\mathbf{E} - \mathbf{Y} = 43^{\circ} 38' 01.05''$ latitudine \mathbf{N}

Dati sulla costruzione:

Classe d'uso: 1 (presenza occasionale di persone)

Vita Nominale: 50 anni

Coefficiente d'uso: 0.700000

Vita di riferimento: 35.000000 anni

SLE (N.T.C 2018)

Dati sulla costruzione (SLO) Probabilità di superamento nella vita di riferimento: 0.810000 (SLO) Periodo di ritorno: 30.00 (anni): <u>Valori finali calcolati</u>: ag = 0.0180 g → Fo = 2.6325 → Tc*= 0.1700 sec

Dati sulla costruzione (SLD) Probabilità di superamento nella vita di riferimento: 0.630000
 (SLD) Periodo di ritorno: 35.20 (anni): Valori finali calcolati: ag = 0.0191 g → Fo = 2.6317
 → Tc*= 0.1751 sec

SLU (N.T.C 2018)

- Dati sulla costruzione (SLV) Probabilità di superamento nella vita di riferimento: 0.100000 (SLV) Periodo di ritorno: 332.19 (anni): <u>Valori finali calcolati</u>: ag = 0.0363 g → Fo = 2.7651 → Tc*= 0.2750 sec
- Dati sulla costruzione (SLC) Probabilità di superamento nella vita di riferimento: 0.050000 (SLC) Periodo di ritorno: 682.35 (anni): <u>Valori finali calcolati</u>: ag = 0.0427 g → Fo = 2.8025 → Tc*= 0.3036 sec

RELAZIONE GEOTECNICA

Competenze professionali: la redazione relazione geotecnica come riportato all'art. 41, comma 1, lett. e), del citato D.P.R., dispone che formano oggetto dell'attività professionale degli iscritti nella sezione A dell'Albo dei geologi "le indagini e la relazione geotecnica". La competenza del geologo è stata inoltre riconosciuta dal Consiglio di Stato (V Sezione giurisdizionale) Decisione 4 maggio 1995, n°701 e dal Consiglio di Stato, IV Sezione n. 1473 del 12.03.2009. Le competenze degli ingegneri in materia di geotecnica sono circoscritte ai soli iscritti alla sezione A dell'Albo, settore "ingegneria civile ed ambientale", ai sensi dell'art. 46, comma 1, lett. a) [Parere del Ministero delle Infrastrutture e dei Trasporti Ufficio Legislativo prot. n. 1849/500 del 24.07.2002]

Tale lavoro è stato eseguito in ottemperanza del D.M. 11.03.1988 (Norme Tecniche riguardanti le indagini sui terreni e sulle rocce, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione). Le indagini sono state svolte in ottemperanza alle norme fissate dall'A.N.I.S.I.G. (Ass. Naz. Imprese Specializzate in Indagini Geognostiche). Testo integrato con la Circ. LL.PP. 24 Settembre 1988 n. 30483 (punto A3): istruzioni riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione, Circolare n. 218/24/3 del 09.01.1996 e n. 617 del 02.02.2009 – OPCM n. 3274 del 20.03.2003 - Nuove NTC 2018 sulle costruzioni (§ 2.6 - § 3.2. ÷ 3.2.2. - § 7.11.3.), secondo le seguenti fasi:

- Sopralluogo nell'area in esame ed esame critico della situazione attuale;
- Stesura di una relazione geotecnica sulla base dalle conoscenze dei luoghi litologici per esperienze pregresse svolte dallo scrivente sull'areale sensibile. I dati di dettaglio sono stati acquisiti tramite evidenze litologiche in affioramento nell'area sensibile [(Basalti dei Plateaux: BGD4 → trachibasalti olocristallini, porfirici a diretto contatto con la subunità di Monte Ruju BGD3 verso NW; Successione sedimentaria oligo miocenica del Logudoro Sassarese Formazione di Oppia Nuova OPN → Sabbie quarzose feldspatiche e conglomerati; Litofacies nella Formazione di Mores RESa → calcareniti, calcari bioclastici; Litofacies nella Formazione di Mores RESb → arenarie e conglomerati a cemento carbonatico; e presenza verso ESE di depositi alluvionali olocenici (b → depositi alluvionali sabbiosi ghiaiosi con subordinati limi e argille, e sedimenti legati alla gravità (a1).

2. CONSIDERAZIONI GEOTECNICHE E STRATIGRAFICHE SUL SEDIME

L'analisi dell'area sensibile conferma una situazione geomorfologica locale stabile, essendo il progetto ubicato in una zona sub pianeggiante leggermente degradante da WNW verso ESE, e una condizione litologica e geostrutturale piuttosto definita con ottima caratterizzazione

meccanica del substrato essenzialmente sabbioso arenaceo, conglomeratico eterometrico a cemento carbonatico ad elementi del basamento paleozoico. Allo stesso è associata la presenza di una copertura quaternaria a giacitura orizzontale e omogenea di materiale detritico alluvionale e/o eluvio - colluviale, costituito essenzialmente da livelli ghiaiosi sabbiosi alluvionali, a grana grossa, in matrice fine coesiva diversamente distribuita. Le opere previste in progetto non comporteranno scavi importanti per la posa delle fondazioni, né sbancamenti, né determineranno una modificazione nell'equilibrio morfologico dell'area d'intervento. Più precisamente le strutture verranno realizzate mediante infissione di un palo del diametro massimo di 20cm, con incastro di punta massimo a -2.0m da p.c..

Nel nostro contesto specifico, andrà ad interessare essenzialmente una diffusa copertura superficiale di materiale detritico eluvio colluviale di alterazione delle parti di substrato sedimentario arenaceo sabbioso, con parti ad elementi basaltici, di spessore decisamente plurimetrico, per lo più incoerente in matrice coesiva. In particolare sono rilevabili: sabbie quarzoso-feldspatiche e conglomerati eterometrici con elementi del basamento paleozoico e di vulcaniti oligo-mioceniche, di ambiente da conoide alluvionale a fluvio-deltizio (OPN) "Formazione di Oppia Nuova", Sabbie poco cementate, silicee, con livelli conglomeratici discontinui intercalati a biocalcareniti e calcari fossiliferi litorali. "Calcari di Mores" Biocalcareniti e calcari fossiliferi litorali, Sabbie silicee di colore chiaro poco cementate, di ambiente fluvio-marino con alla base siltiti scure e conglomerati continentali.

Allo stato attuale, l'area di progetto inserita in un paesaggio morfologico sub pianeggiante, non è interessata da processi gravitativi, vista la modesta pendenza né da fenomeni di erosione idrica concentrata. Pertanto, i processi morfogenetici attivi si limitano a fenomeni di dilavamento diffuso lungo le aree di compenetrazione, durante i periodi intensamente piovosi, ed a localizzata sedimentazione eluvio-colluviale. In sintesi: sono qui presenti le tipologie di terreni descritti in relazione e che possono essere raggruppati secondo il seguente criterio di resistenza geotecnica: Terreni del substrato Terziario oligo miocenico:

Formazione di Oppia Nuova OPN → Sabbie quarzose feldspatiche e conglomerati; Litofacies nella Formazione di Mores RESa → calcareniti, calcari bioclastici; Litofacies nella Formazione di Mores RESb → arenarie e conglomerati a cemento carbonatico.

Terreni di copertura Quaternari:

Depositi Quaternari recenti: depositi alluvionali, deposti da corsi d'acqua allo sbocco delle valli che incidono i rilievi della zona. Sono costituiti da ghiaie grossolane poligeniche, con clasti a spigoli da sub-angolosi a subarrotondati, subordinate sabbie e ghiaie, detriti di versante e brecce a clasti con spigoli angolosi, sabbiosi arenacei grossi. Costituiscono le pianure alluvionali nel

II Geologo: Dott. Mario STRINNA O.R.G Sardegna n. 441 [Sez. A]

contesto del nostro territorio, che si raccordano ai rilievi tramite fasce colluviali, detritiche. La natura litologica dei clasti è rappresentata da rocce vulcano-sedimentarie terziarie, affiorano negli areali limitrofi alle vulcaniti terziarie sono costituiti da percentuali variabili di sedimenti fini (sabbie e silt) più o meno pedogenizzati, arricchiti di frazione organica e mescolati a sedimenti più grossolani, in genere detriti.

Nel nostro caso, ci si potrà attestare, con lo scavo per la realizzazione delle fondazioni su palo, sempre all'interno di una stessa litologia, detritica grossolana, conglomeratica eterometrica, per la minima profondità di infissione.

Le caratteristiche geomeccaniche, utili alla determinazione del carico limite e della generale idoneità del terreno riguardo all'opera d'intervento, sono state ricavate da esperienze lavorative eseguite in aree limitrofe, litologicamente omogenee, oltre dalle verifiche puntuali (osservazioni litologiche) svolte sui luoghi.

I valori di NSPT (indice di portanza standard per la resistenza del terreno correlabile con la formula di "Parry – 30NSPT/3" in daN/cm²) sono risultano a seconda dello stato di addensamento e/o consistenza dei materiali.

I parametri geotecnici dell'unità litostratigrafica che insiste al piano di fondazione sono indicati nella tabella sottostante:

Unità A → arenarie sabbiose ghiaiose, paraconglomerati, da addensate a molto addensate sino a dure, con clasti eterometrici da centimetrici e pluricentimetrici, in matrice fine coesiva, colore nocciola giallastro, con presenza di screziature carbonatiche biancastre, e ocracee.

PESO DI VOLUME SECCO (γ _D)	18,65KN/M ³
Peso di volume saturo (γ _w)	19,80 KN/m ³
Angolo di attrito interno (φ)	27.6° ± 5 (Japanese National Railway)
Coesione n.d.	19.61 kN/m ²
Modulo Edometrico (M)	24222,42 kN/m² (Menzebach e Malcev)
Modulo Elastico (E)	33832,94 kN/m ² (D'Appolonia et Alii.)
Coefficiente di Winkler [Q = 1.0 Kg/cm]	2.56 Kg/cm ³
N/SPT	≥ 20
Resistenza del terreno da SPT (Parry)	≥ 1.96 daN/cm²
NTC 2018 Meyerhof and Hanna (1978)	[Qult] 1119.37 kN/m² ÷ Resistenza di progetto [Rd] 486.68 kN/m²
Caratteristiche strato	addensato – molto addensato/duro

Nota: i parametri geotecnici sono stati calcolati con un valore medio di N/SPT di 20

2.1 - Verifica degli SL secondo le NTC 2018

Premessa: Nelle Norme Tecniche per le Costruzioni (N.T.C 2008) la verifica di sicurezza nei confronti degli stati limite ultimi (S.L.U) di resistenza, si ottiene con il "Metodo semiprobabilistico dei Coefficienti parziali" di sicurezza tramite la disequazione: $E_d \le R_d$, dove $Ed \ earline il valore di progetto (risultante della combinazione delle azioni agenti sulle costruzioni), <math>Rd \ earline il valore di progetto del terreno, che equivale al carico limite calcolato con il metodo delle tensioni ammissibili (D.M.11/03/88) ridotto di un certo coefficiente parziale (<math>\gamma R$). Il valore di progetto si ottiene con una combinazione delle azioni sulle costruzioni e di coefficienti parziali, che tiene conto del massimo carico d'esercizio trasmesso sulla fondazione, dato da N = G + Q, che e la somma dei carichi permanenti sfavorevoli (e) e dei carichi variabili sfavorevoli (e). La combinazione delle azioni e0 funzione del tipo di calcolo, se finalizzato agli stati limite ultimi (e1. Valore di progetto si ottiene conto di 2 combinazioni: e1. Nelle verifiche nei confronti degli stati limite ultimi (e1. SLU) si possono adottare 2 metodi: e2. Il primo metodo tiene conto di 2 combinazioni:

- Strutturale (STR): è lo stato limite di resistenza della struttura e riguarda gli elementi di fondazione e di sostegno del terreno; è definito dalla combinazione A1+M1+R1;
- Geotecnico (GEO): è lo stato limite di resistenza del terreno, si utilizza per il dimensionamento geotecnico delle opere di fondazione e di sostegno che interagiscono con il terreno; è definito dalla combinazione A2+M2+R2;

<u>Il secondo metodo</u> si basa su di una combinazione unica, che considera sia gli stati limite ultimi strutturali che geotecnici, definita da $A_1+M_1+R_3$.

Le combinazioni sono formate da gruppi di coefficienti parziali y con:

- A = coefficienti parziali per le azioni, γ_F;
- M = coefficienti parziali per i parametri geotecnici del terreno, γ_M (resistenza dei materiali);
- R = coefficienti parziali per le verifiche agli stati limite ultimi delle fondazioni superficiali γ_R
 (resistenza globale del sistema)

Con le nuove Norme Tecniche per le Costruzioni (N.T.C 2018) le verifiche di sicurezza relative agli stati limite ultimi (SLU) e le analisi relative alle condizioni di esercizio (SLE) devono essere effettuate nel rispetto dei principi e delle procedure indicate al § 2.6. Per ogni stato limite per perdita di equilibrio (EQU), come definito al §2.6.1, deve essere rispettata la condizione:

$$E_{inst d} \leq E_{stb d}$$

dove E_{inst,d} è il valore di progetto dell'azione instabilizzante, E_{stb,d} è il valore di progetto dell'azione stabilizzante. La verifica della suddetta condizione deve essere eseguita impiegando come fattori parziali per le azioni i valori γ_F riportati nella colonna EQU della tabella 6.2.I. Per ogni stato limite

ultimo che preveda il raggiungimento della resistenza di un elemento strutturale (STR) o del terreno (GEO), come definiti al § 2.6.1, deve essere rispettata la condizione: Ed \leq Rd [§ 6.2.1] essendo Ed il valore di progetto dell'azione o dell'effetto dell'azione, definito dalle relazioni [6.2.2a] o [6.2.2b]. Effetto delle azioni e resistenza di progetto sono espresse nelle [6.2.2a] e [6.2.3] rispettivamente in funzione delle azioni di progetto γ FFk, dei parametri geotecnici di progetto χ FV/ γ M e dei parametri geometrici di progetto χ B li coefficiente parziale di sicurezza χ B opera direttamente sulla resistenza del sistema. L'effetto delle azioni di progetto può anche essere valutato direttamente con i valori caratteristici delle azioni come indicato dalla [6.2.2b] con χ E = χ F . In accordo a quanto stabilito al §2.6.1, la verifica della condizione [6.2.1] deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3). I diversi gruppi di coefficienti di sicurezza parziali sono scelti nell'ambito di due approcci progettuali distinti e alternativi.

<u>Nel primo approccio</u> progettuale (Approccio 1) le verifiche si eseguono con due diverse combinazioni di gruppi di coefficienti ognuna delle quali può essere critica per differenti aspetti dello stesso progetto.

<u>Nel secondo approccio</u> progettuale (Approccio 2) le verifiche si eseguono con un'unica combinazione di gruppi di coefficienti.

La verifica della stabilità globale deve essere effettuata secondo quanto previsto nel capitolo 6.8 secondo la combinazione 2 dell'approccio 1 tenendo conto dei coefficienti parziali delle tabelle 6.2.1 e 6.2II per le azioni e i parametri geotecnici, e nella tabella 6.8.1 per le resistenze globali.

Per la **verifica della capacità portante secondo le N.T.C 2018** è stato scelto il secondo metodo con la combinazione unica $[A_1+M_1+R_3]$ in condizioni drenate (piano di posa): la verifica è stata svolta per un palo del diametro massimo di 20cm, con incastro di punta a -2.0m da p.c..

DATI GENERALI

=======================================	=======================================
Normativa	NTC 2018
Diametro della fondazione	0,2 m
Profondità piano di posa	2,0 m
SISMA	
Accelerazione massima (amax/g)	0,03

Effetto sismico secondo Paolucci e Pecker (1997)

Coefficiente sismico orizzontale 0,006

II Geologo: Dott. Mario STRINNA O.R.G Sardegna n. 441 [Sez. A]

Relazione geologica e geotecnica

STRATIGRAFIA TERRENO

Spessor	Peso	Peso	Angolo di	Coesion	Coesion	Modulo	Modulo	Poisson	Descrizione
e strato	unità di	unità di	attrito	е	e non	Elastico	Edometric		
[m]	volume	volume	[°]	$[kN/m^2]$	drenata	[kN/m²]	0		
	[kN/m³]	saturo			[kN/m ²]		[kN/m²]		
		[kN/m³]							
0,5	17,65	18,63	26			7354,04		0,3	Copertura frammista a
	•	,				•		·	suolo
6,0	18.65	19.80	30	9,81	19.61	33832.94	24222.42	0,35	Unità A

Carichi di progetto agenti sulla fondazione

	Nr.	Nome	Pressione	N	Mx	Mv	Hx	Ну	Tipo
	INI.					,			Про
		combinazio	normale di	[kN]	[kN⋅m]	[kN⋅m]	[kN]	[kN]	
		ne	progetto						
			[kN/m²]						
ŀ	1	A1+M1+R3	98,06	0.00	0.00	0.00	0.00	0,00	Progetto
L	'		90,00	0,00	0,00	0,00	0,00	0,00	1 Togetto
	2	SISMA	98,06	0,00	0,00	0,00	0,00	0,00	Progetto
	3	S.L.E.	98,06	0,00	0,00	0,00	0,00	0,00	Servizio
	4	S.L.D.	98,06	0,00	0,00	0,00	0,00	0,00	Servizio

Sisma + Coeff. parziali parametri geotecnici terreno + Resistenze

Nr	Correzione	Tangente	Coesione	Coesione	Peso Unità	Peso unità	Coef. Rid.	Coef.Rid.Capacit
	Sismica	angolo di	efficace	non drenata	volume in	volume	Capacità	à portante
		resistenza			fondazione	copertura	portante	orizzontale
		al taglio					verticale	
1	No	1	1	1	1	1	2,3	1,1
2	Si	1	1	1	1	1	1,8	1,1
3	No	1	1	1	1	1	1	1
4	No	1	1	1	1	1	1	1

CARICO LIMITE FONDAZIONE COMBINAZIONE...A1+M1+R3

Autore: Meyerhof and Hanna (1978)

Carico limite [Qult]
 Resistenza di progetto [Rd]
 1119.37 kN/m²
 486.68 kN/m²

- Tensione [Ed] 373.12 kN/m² (ipotesi di verifica cedimenti 98,06 KN/m²)

- Fattore sicurezza [Fs=Qult/Ed] 3,0

Autore: Meyerhof and Hanna (1978) (Condizione drenata)

========== A1 + M1 + R3

Strato 1 sopra, strato 2 sotto

Fattori di capacità portante strato 1
Fattore [Nq] 18.4
Fattore [Nc] 30.14
Fattore [Ng] 4.66

Fattori di capacità portante strato 2

Fattore [Nq]
Fattore [Nc]
Carico limite strato 2 (qb)
Carico limite strato 1 (qt)
Incremento carico limite strato 1
Coefficiente di punzonamento (ks)
Rapporto (q1/q2)

1.0
5.14
121.23 kN/m²
1119.37 kN/m²
12356.6 kN/m²
0.93
0.0

Carico limite 1119.37 kN/m² Resistenza di progetto 486.68 kN/m²

Autore: Meyerhof and Hanna (1978) (Condizione drenata)

Strato 1 sopra, strato 2 sotto

Fattori di capacità portante strato 1

Fattore [Nq] 18.4 Fattore [Nc] 30.14 Fattore [Na] 4.66 Fattori di capacità portante strato 2

Fattore [Nq] 1.0 Fattore [Nc] 5.14 Carico limite strato 2 (qb) 121.23 kN/m²

Carico limite strato 1 (qt) 1119.37 kN/m² Incremento carico limite strato 1 2356.6 kN/m² Coefficiente di punzonamento (ks) 0.93 Rapporto (q1/q2) 0.0

Carico limite 1119.37 kN/m² Resistenza di progetto 621.87 kN/m²

CEDIMENTI PER OGNI STRATO

*Cedimento edometrico calcolato con: Metodo consolidazione monodimensionale di Terzaghi

Pressione normale di progetto 98,06 kN/m² Cedimento dopo T anni 15,0 0,06 m Distanza 45,04° Angolo Cedimento totale 0,003 cm

Z: Profondità media dello strato; Dp: Incremento di tensione; Wc: Cedimento consolidazione; Ws:Cedimento secondario; Wt: Cedimento totale.

Strato	Z	Tensione	Dp	Metodo	Wc	Ws	Wt
	(m)	(kN/m²)	(kN/m²)		(cm)	(cm)	(cm)
1	3,65	69,347	0,215	Edometrico	0,0033		0,033

CEDIMENTI ELASTICI

Pressione normale di progetto 98,06 kN/m2 (ipotesi di verifica)

Cedimento al centro della fondazione 0,17 mm Cedimento al bordo 0,08 mm

CEDIMENTI BURLAND E BURBIDGE

Pressione normale di progetto 98,06 kN/m²

15,0 Tempo Profondità significativa Zi (m) 2,5 Media dei valori di Nspt all'interno di Zi 20 Cedimento 1,028 mm

VERIFICA A LIQUEFAZIONE - Metodo del C.N.R. - GNDT Da Seed e Idriss:

Livello non liquefacibile

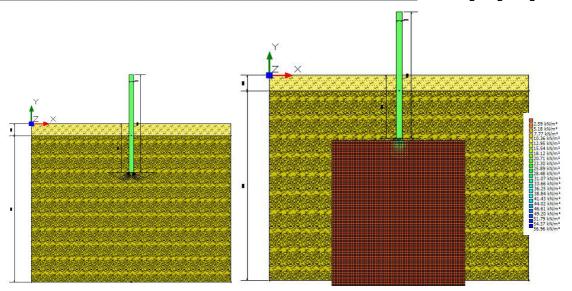


Figura 8 - Cuneo di intrusione / Bulbo delle pressioni

2.2 - Considerazioni sulla scavabilità e tenuta dei fronti di scavo

L'area è costituita da depositi sedimentari ghiaiosi sabbiosi, conglomeratici eterometrici ed arenacei grossolani, diversamente saldati in matrice a composizione disomogenea, che conferisce agli stessi una colorazione variabile; da livelli di ghiaie poligeniche e sabbie, a matrice generalmente limosa argillosa, mediamente costipate. Le litologie presentando caratteristiche incoerenti con intercalazioni coesive per la presenza di limo e argilla, saranno facilmente asportabili con il semplice uso di un escavatore (terna) dotato di singola benna nei livelli più superficiali interessati dalla posa di una eventuale fondazione su "palo infisso" superficiale. La capacità della parete di scavo di autosostenersi in assenza di opere di stabilizzazione dipende dalle caratteristiche fisico-meccaniche del terreno interessato. E' infatti possibile dare allo scavo un'inclinazione (inclinazione di sicurezza) tale per cui essa risulti stabile nel breve periodo senza che vi sia pericolo di crollo. La stabilità nei livelli sedimentari oligo - miocenici diversamente essendo materiali a comportamento attrattivo e/o coesivo, indipendentemente dall'altezza dello scavo, al valore dell'angolo di attrito interno del materiale.

<u>Il fattore di sicurezza</u> (FS) di una parete di scavo viene definito come **FS** = tg ϕ / tg β , dove ϕ = angolo di attrito interno del materiale e β = inclinazione della parete di scavo, per cui lo scavo può essere considerato stabile, in assenza di significative variazioni delle condizioni al contorno, per valori di FS maggiori o uguali a 1. Nel nostro caso, avendo le coperture Oloceniche un ϕ da N/SPT = 27.6° ± 5 per lavorare in condizioni di sicurezza, si potrà tener conto di un'inclinazione della parete di scavo min. di circa 29°. Per questi terreni, si può verificare l'<u>altezza critica di scavo</u>, che è l'altezza massima alla quale una scarpata verticale è stabile per un certo periodo di tempo

senza bisogno di sostegni. Nel nostro caso, considerando i seguenti parametri geotecnici accorpabili per uniformità litologiche locali (riconducibili ad un unico livello) \rightarrow c_u = 19.61 KN/m² - γ_n = 18.65 KN/m³ e utilizzando la seguente relazione: $Hc = 4 \text{ c}/\gamma_n$ si ottiene un'altezza critica di scavo $Hc = \sim$ 4.0m. Tenendo conto delle "tensioni di trazione" di altezza (y), che si generano in seguito allo scavo, ed in presenza di eventuale acqua a breve profondità legata alla stagionalità del periodo, il valore dell'altezza critica (Hc) (Terzaghi) risulta ridotto per y = $Hc/2 \rightarrow Hc$ ° = \sim 2.0m

Si consiglia, comunque, in presenza di materiali ciottolosi granulari in matrice coesiva, di eseguire l'apertura del terreno, in condizioni di sicurezza, con una maggiore larghezza della base e una minore pendenza della parete di scavo, per abbattere l'incidenza di eventuali crolli, a causa dei fenomeni di rilassamento per diminuzione della spinta litostatica delle terre, conseguente lo sbancamento. Generalmente, per profondità di scavo superiori a 1.0/1.5mt, trattandosi di materiali granulari poco coerenti (D.lgs 81/2008), si consiglia di provvedere ad armare provvisoriamente i fronti di scavo. Da non dimenticare che, se si dovesse decidere di impiantare il cantiere durante il periodo invernale o comunque in previsione di eventi pluviometrici importanti, sarà opportuno predisporre degli adeguati sistemi di allontanamento sia delle acque superficiali dal fondo scavo, se presente, sia da quelle (eventuali) di debole faldina idrica se risalita per incremento idrico.

3. CONCLUSIONI

In conformità a quanto fin qui esposto si possono trarre le seguenti conclusioni:

- L'analisi dell'area sensibile conferma una situazione geomorfologica locale stabile, essendo il progetto ubicato in una zona sub pianeggiante leggermente degradante da WNW verso ESE, e una condizione litologica e geostrutturale piuttosto definita con ottima caratterizzazione meccanica del substrato essenzialmente sabbioso arenaceo, conglomeratico eterometrico a cemento carbonatico. Allo stesso è associata la presenza di una copertura quaternaria a giacitura orizzontale e omogenea di materiale detritico alluvionale e/o eluvio - colluviale, costituito essenzialmente da livelli ghiaiosi sabbiosi alluvionali, a grana grossa, in matrice fine coesiva diversamente distribuita. Le opere previste in progetto non comporteranno scavi importanti per la posa delle fondazioni, né sbancamenti, né determineranno una modificazione nell'equilibrio morfologico dell'area d'intervento. Più precisamente le strutture verranno realizzate mediante infissione di un palo del diametro massimo di 20cm, con incastro di punta massimo a -2.0m da p.c.. Le verifiche geo-litologiche effettuate nell'areale dallo scrivente ha confermato una certa omogeneità litologica e geomeccanica nelle unità stratigrafiche rilevabili. Dal punto di vista del loro comportamento geomeccanico, presentano caratteristiche di litologia incoerente, diversamente addensata nelle parti arenacee grossolane, a molto addensata/dura nei termini conglomeratici ad elementi paleozoici. In funzione di ciò, i terreni mostrano una certa variabilità nella resistenza alla penetrazione da prove S.P.T (Standard Penetration Test). Questa disomogeneità è congruente alla tipica variabilità litologica dei depositi di ambiente sedimentario da conoide alluvionale a fluviale, presentandosi nei nostri casi diversamente addensati e/o consistenti e/o cementati. Essi, presentano negli strati più superficiali, o comunque dove sono presenti i livelli ghiaiosi grossi sabbiosi in matrice fine limosa discrete caratteristiche geotecniche, andando verso valori concretamente superiori con la profondità, dove è maggiore la presenza dei livelli conglomeratici duri e cementati.
- Nell'area d'interesse non sono stati rilevati fenomeni franosi in atto né segni che ne lascino presagire l'occorrenza; non è stata riscontrata la presenza d'alcun elemento tettonico attivo, quali faglie o dislocazioni in genere, che possa favorire l'innescarsi di dissesti di qualsiasi natura e provocare ripercussioni sulla stabilità delle opere in progetto. Essa, inoltre, non è interessata da fenomeni di subsidenza, né sono stati rilevati altri fenomeni morfogenetici attivi in grado di influire in maniera significativa sulla stabilità dell'area. In considerazione delle

caratteristiche tecniche dei terreni unitamente ai valori di pendenza su cui giacciono, l'area rimane caratterizzata da buone condizioni di stabilità.

Geologicamente nell'area affiorano terreni quaternari di facies fluviale oligo-miocenici, costituite essenzialmente da alternanze di livelli conglomeratici poligenici ed eterometrici, ghiaie con intercalazioni di sabbie e limi/argille, arenarie grossolane. La distinzione tra le varie sedimentazioni è legata alle caratteristiche morfometriche della frazione grossolana, al grado di compattazione, al contenuto e alla ferrettizzazione della matrice fine. In funzione di ciò, i terreni rilevati con particolare riferimento alla capacità d'assorbimento possono essere suddivisi in:

Classe 1 → [Alluvionale]: depositi alluvionali recenti e attuali dell'unità b. Si tratta di ghiaie poligeniche ed eterometriche, da sub-arrotondate ad arrotondate, in matrice sabbiosa e sabbioso-limosa generalmente abbondante; a luoghi si rinvengono passaggi di sabbie, sabbie limose e limi sabbiosi a struttura indistinta, con abbondanti ghiaie poligeniche da sub-angolose ad arrotondate. Costituiscono acquiferi porosi a bassa trasmissività, sono sede di falde idriche sotterranee di modesta rilevanza, generalmente a deflusso unitario, che possono avere interscambi con i corpi idrici superficiali e/o con quelli sotterranei delle strutture idrogeologiche limitrofe. La permeabilità, esclusivamente per porosità, è variabile da media ad alta $[10^{-2} \ge K \ge 10^{-5}]$.

- Classe 2 → [Detritico eluvio colluviale]: terreni di copertura sabbioso, sabbioso limoso e/o limoso sabbioso, con presenza di ghiaie poligeniche da angolose a sub-arrotondate angolose, con locali clasti di dimensioni da decimetriche a metriche; localmente si rileva la presenza di argille limose e limi argilloso-sabbiosi a struttura indistinta, con diffusi resti vegetali e sporadiche ghiaie poligeniche da angolose a sub-arrotondate. Costituiscono acquiferi porosi di scarsa trasmissività, moderatamente eterogenei ed anisotropi; sono privi di corpi idrici sotterranei di importanza significativa, a meno di piccole falde a carattere stagionale. La permeabilità, esclusivamente per porosità, è variabile da bassa a media [10⁻⁴ ≥ K ≥ 10⁻⁶].
- Classe 3 → [Vulcanico]: basalti, da mediamente a ben cementati, massivi o in strati da spessi a molto spessi, immersi nella massa di fondo si rinvengono passaggi di ceneri grossolane, pomici e litici lavici con dimensioni decimetriche, da scarsi a molto abbondanti. Trattasi di acquiferi di modesta trasmissività, con sede di falde idriche sotterranee di modesta rilevanza, localmente frazionate dagli orizzonti litoidi più compatti e meno fratturati. La permeabilità, per porosità e fessurazione, è variabile da molto bassa a bassa [10⁻⁶ ≥ K ≥ 10⁻⁸].

Sulla base di quanto disposto dalla normativa P.A.I per il Piano Stralcio per l'Assetto Idrogeologico della Sardegna "Allegato E/F", il Comune di Ardara è ricompreso all'interno del U.I.O del Coghinas, così come individuato dal P.A.I. Sardegna e dal P.S.F.F. Sardegna. Nella fattispecie il sito oggetto di intervento ricade nella cartografia attualmente disponibile on-line e consultabile tramite la piattaforma "Sardegna Geoportale" (sulla base di quanto disposto dalla normativa P.A.I per il Piano Stralcio per l'Assetto Idrogeologico della Sardegna "Allegato E/F" (criteri per la predisposizione degli studi di compatibilità idraulica e geologica-geotecnica di cui agli articoli 24/25 delle norme di attuazione del PAI Titolo III cap. I/II/III), in un'area con assenza di pericolosità idraulica Hi (Art. 8 - Rev. 41), e presenza di pericolosità geomorfologia (Rev. 42). Da una analisi del Piano Stralcio delle Fasce Fluviali (PSFF) relativo al bacino del fiume Coghinas, non sono emersi per l'area esaminata rischi compatibili con i corsi d'acqua in funzione della sicurezza idraulica. Da una analisi dell'Inventario dei Fenomeni Franosi in Sardegna (IFFI) relativo al bacino Coghinas non sono emersi per l'area esaminata rischi compatibili con eventi franosi. Da una analisi degli elementi idrici secondo Strahler Art. 30 ter sono emersi fasce di rispetto da 25m (Rio Rizzolu) a 50m (Rio Runaghe, Rio Cabu De Abbas).

Pericolosità Sismica Locale

Ai fini delle NTC le forme spettrali sono definite, per ciascuna delle probabilità di superamento nel periodo di riferimento PVR, a partire dai valori dei seguenti parametri sul sito di riferimento rigido orizzontale:

- ag accelerazione orizzontale massima al sito;
- F_O valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale.
- T_C periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

I valori di ag, F₀ e Tc* per gli "stati limite di esercizio", SLO e SLD, e per gli "stati limite ultimi", SLC e SLD, sono calcolati con interpolazione basata sulle distanze, per maglie di riferimento rappresentative dell'intera area nella quale dovranno essere attuati gli interventi, utilizzando la classe d'uso II (Normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziale. Industrie con attività non pericolose per l'ambiente [...]).

Dati sull'area SENSIBILE:

X = 8° 47' 38.15" longitudine **E**

Y = 43° 38' 01.05" latitudine **N**

Dati sulla costruzione:

Classe d'uso: 1 (presenza occasionale di persone)

Vita Nominale: 50 anni

Coefficiente d'uso: 0.700000

Vita di riferimento: 35.000000 anni

SLE (N.T.C 2018)

- Dati sulla costruzione (**SLO**) Probabilità di superamento nella vita di riferimento: 0.810000 (**SLO**) Periodo di ritorno: 30.00 (anni): <u>Valori finali calcolati</u>: ag = 0.0180 $g \rightarrow Fo = 2.6325 \rightarrow Tc* = 0.1700$ sec
- Dati sulla costruzione (**SLD**) Probabilità di superamento nella vita di riferimento: 0.630000 (**SLD**) Periodo di ritorno: 35.20 (anni): <u>Valori finali calcolati</u>: ag = 0.0191 $g \rightarrow Fo = 2.6317 \rightarrow Tc^* = 0.1751$ sec

SLU (N.T.C 2018)

- Dati sulla costruzione (**SLV**) Probabilità di superamento nella vita di riferimento: 0.100000 (**SLV**) Periodo di ritorno: 332.19 (anni): <u>Valori finali calcolati</u>: ag = 0.0363 g \rightarrow Fo = $2.7651 \rightarrow Tc^* = 0.2750$ sec
- Dati sulla costruzione (**SLC**) Probabilità di superamento nella vita di riferimento: 0.050000 (**SLC**) Periodo di ritorno: 682.35 (anni): <u>Valori finali calcolati</u>: ag = 0.0427 g → Fo = 2.8025 → Tc*= 0.3036 sec

Categorie di Sottosuolo (Tab. 3.2.II - NTC 2018).

Tab. 3.2.I	Tab. 3.2.II – Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.					
Categoria	Caratteristiche della superficie topografica					
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.					

Condizioni topografiche (Tab. 3.2.III)

CATEGORIE TOPOGRAFICHE					
Categoria Caratteristiche della superficie topografica					
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°				

Tab. 2.4.I.

	TIPI DI COSTRUZIONE	Valori minimi di V _N (anni)
1	Costruzioni temporanee e provvisorie	10
2	Costruzioni con livelli di prestazioni ordinarie	50
3	Costruzioni con livelli di prestazioni elevate	100

Tab. 2.4.II.

	~ · _ · · · ·	• •		
Classe d'uso	ı	П	III	IV
Coefficiente C _u	0,7	1,0	1,5	2,0

Classe I	Presenza occasionale di persone, edifici agricoli		
Classe II Normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzion pubbliche e sociali essenziale. Industrie con attività non pericolose per l'ambiente			
Classe III	Affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti con attività particolarmente pericolose per l'ambiente		
Classe IV	Funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente []		

Considerazioni geotecniche preliminari: si tratta di materiali da incoerenti a semicoerenti, con caratteristiche di resistenza meccanica generalmente discrete/buone sia per composizione granulometrica, sia per grado di costipamento e/o cementazione dei sedimenti, confermate dai valori di resistenza alla punta (Parry) ottenuti da prove penetrometriche dinamiche discontinue su litologie correlabili (N/SPT), da verificarsi in sede definitiva. Nelle tabelle sottostanti sono riportati i parametri geotecnici dei principali livelli che insistono nell'area analizzata:

Unità A → arenarie sabbiose ghiaiose, paraconglomerati, da addensate a molto addensate sino a dure, con clasti eterometrici da centimetrici e pluricentimetrici, in matrice fine coesiva, colore nocciola giallastro, con presenza di screziature carbonatiche biancastre, e ocracee.

PESO DI VOLUME SECCO (γ)	18,65KN/M ³
Peso di volume saturo (γ _w)	19,80 KN/m ³
Angolo di attrito interno (φ)	27.6° ± 5 (Japanese National Railway)
Coesione n.d.	19.61 kN/m ²
Modulo Edometrico (M)	24222,42 kN/m² (Menzebach e Malcev)
Modulo Elastico (E)	33832,94 kN/m ² (D'Appolonia et Alii.)
Coefficiente di Winkler [Q = 1.0 Kg/cm]	2.56 Kg/cm ³
N/SPT	≥ 20
Resistenza del terreno da SPT (Parry)	≥ 1.96 daN/cm²

Committente: ENERGYARDARA1 SRL Via Simplicio Spano 10 – 07026 Olbia (SS) **Progetto**: Impianto fotovoltaico a terra da 29.51 MW ad inseguimento monoassiale - Ardara

II Geologo: Dott. Mario STRINNA O.R.G Sardegna n. 441 [Sez. A]

Relazione geologica e geotecnica

NTC 2018 Meyerhof and Hanna (1978)	[Qult] 1119.37 kN/m² - Resistenza di progetto [Rd] 486.68 kN/m²
Caratteristiche strato	addensato – molto addensato/duro

Nota: i parametri geotecnici sono stati calcolati con un valore medio di N/SPT di 20

- Per la <u>verifica della capacità portante secondo le N.T.C 2018</u> è stato scelto il secondo metodo con la combinazione unica [A₁+M₁+R₃] in condizioni drenate (piano di posa): la <u>verifica</u> è stata svolta per un palo del diametro massimo di 20cm, con incastro di punta a -2.0m da p.c.. Dai calcoli effettuati (utilizzando i valori minimi possibili di resistenza alla compressione e con i massimi coefficienti di sicurezza) si ottiene:
 - Combinazione A1+M1+R3 Meyerhof and Hanna (1978) condizione non drenata II valore minimo del carico limite ultimo Qult = 1119.37 kN/m², con una resistenza di progetto (Rd) = 486.68 KN/m^2 , ed una Tensione (Ed) = 373.12 kN/m^2 (ipotesi di verifica cedimenti $98,06 \text{ KN/m}^2$)
 - <u>- I cedimenti Elastici</u> relativi al substrato di terreno interessato dal sovraccarico, si attesterebbero a valori inferiori al centimetro (centro 0,17mm / bordo 0,08mm), in corrispondenza di una pressione normale di progetto pari a 98,06 KN/m² (ipotesi di verifica).
 - Cedimenti secondo Burland e Burbidge relativi al substrato di terreno interessato dal sovraccarico, si attesterebbero a valori inferiori al centimetro (1.028mm), in corrispondenza di una pressione normale di progetto pari a 98,06 KN/m² (ipotesi di verifica).
 - I terreni presenti nell'area in oggetto non sono suscettibili al fenomeno di liquefazione in seguito a sollecitazioni dinamiche, in considerazione delle caratteristiche granulometriche, nonché dell'assenza di una vera e propria falda nei primi metri dal piano calpestio Metodo del C.N.R. GNDT Da Seed e Idriss
- L'area è costituita da depositi sedimentari ghiaiosi sabbiosi, conglomeratici eterometrici ed arenacei grossolani, diversamente saldati in matrice a composizione disomogenea, che conferisce agli stessi una colorazione variabile; da livelli di ghiaie poligeniche e sabbie, a matrice generalmente limosa argillosa, mediamente costipate. Le litologie presentando caratteristiche incoerenti con intercalazioni coesive per la presenza di limo e argilla, saranno facilmente asportabili con il semplice uso di un escavatore (terna) dotato di singola benna nei livelli più superficiali interessati dalla posa di una eventuale fondazione su "palo infisso" superficiale. La capacità della parete di scavo di autosostenersi in assenza di opere di stabilizzazione dipende dalle caratteristiche fisico-meccaniche del terreno interessato. La

stabilità nei livelli sedimentari oligo - miocenici diversamente addensati, essendo materiali a comportamento attrattivo e/o coesivo, è legata, indipendentemente dall'altezza dello scavo, al valore dell'angolo di attrito interno del materiale. Il fattore di sicurezza (FS) di una parete di scavo viene definito come **FS** = tg φ / tg β , dove φ = angolo di attrito interno del materiale e β = inclinazione della parete di scavo, per cui lo scavo può essere considerato stabile, in assenza di significative variazioni delle condizioni al contorno, per valori di FS maggiori o uquali a 1. Nel nostro caso, avendo le coperture Oloceniche un φ da N/SPT = 27.6° \pm 5 per lavorare in condizioni di sicurezza, si potrà tener conto di un'inclinazione della parete di scavo min. di circa 29°. Per questi terreni, si può verificare l'altezza critica di scavo, che è l'altezza massima alla quale una scarpata verticale è stabile per un certo periodo di tempo senza bisogno di sostegni. Nel nostro caso, considerando i seguenti parametri geotecnici accorpabili per uniformità litologiche locali (riconducibili ad un unico livello) $\rightarrow c_u = 19.61 \text{ KN/m}^2 - v_n = 18.65$ KN/m^3 e utilizzando la seguente relazione: Hc = 4 c/ γ_n si ottiene un'altezza critica di scavo Hc = ~ 4.0m. Tenendo conto delle "tensioni di trazione" di altezza (y), che si generano in seguito allo scavo, ed in presenza di eventuale acqua a breve profondità legata alla stagionalità del periodo, il valore dell'altezza critica (Hc) (Terzaghi) risulta ridotto per y = Hc/2 → Hc' = ~ 2.0m Si consiglia, comunque, in presenza di materiali ciottolosi granulari in matrice coesiva, di eseguire l'apertura del terreno, in condizioni di sicurezza, con una maggiore larghezza della base e una minore pendenza della parete di scavo, per abbattere l'incidenza di eventuali crolli, a causa dei fenomeni di rilassamento per diminuzione della spinta litostatica delle terre, conseguente lo sbancamento. Generalmente, per profondità di scavo superiori a 1.0/1.5mt, trattandosi di materiali granulari poco coerenti (D.lgs 81/2008), si consiglia di provvedere ad armare provvisoriamente i fronti di scavo. Da non dimenticare che, se si dovesse decidere di impiantare il cantiere durante il periodo invernale o comunque in previsione di eventi

L'area, che ospiterà l'opera in progetto, non evidenzia ostacoli di:

faldina idrica se risalita per incremento idrico.

- Natura geologica, idrogeologica o morfologica che impediscano l'utilizzazione prevista dal progetto, a meno delle normali prescrizioni ingegneristiche;

pluviometrici importanti, sarà opportuno predisporre degli adeguati sistemi di allontanamento sia delle acque superficiali dal fondo scavo, se presente, sia da quelle (eventuali) di debole

- Turbamento alle caratteristiche morfologiche del paesaggio. La stratigrafia, tipica dei terreni locali analizzati in situ, evidenzia la compatibilità della stessa in funzione delle

Committente: ENERGYARDARA1 SRL Via Simplicio Spano 10 – 07026 Olbia (SS) Progetto: Impianto fotovoltaico a terra da 29.51 MW ad inseguimento monoassiale - Ardara

Il Geologo: Dott. Mario STRINNA O.R.G Sardegna n. 441 [Sez. A]

Relazione geologica e geotecnica

opere (interventi) da realizzarsi, a supporto del progetto "Impianto Fotovoltaico a terra - Ardara".

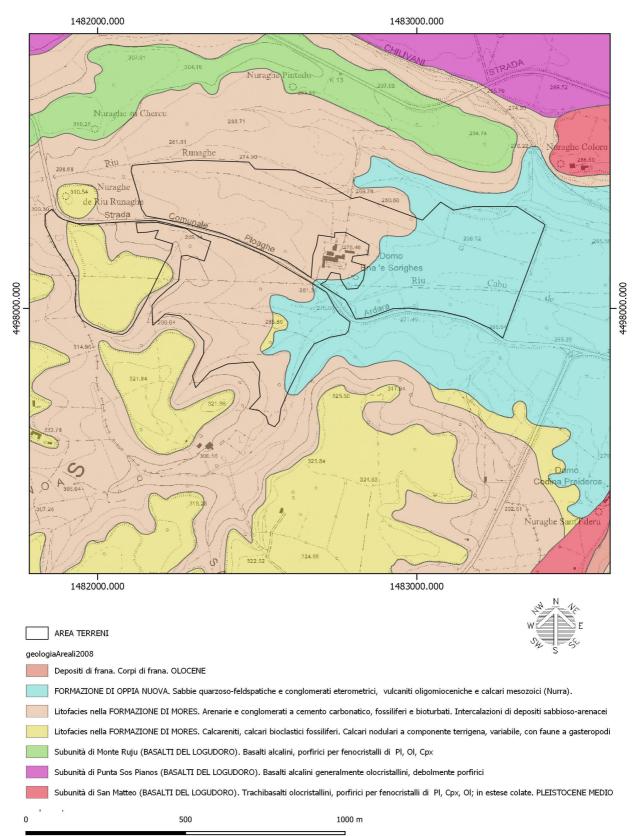
- Natura geotecnica che impedisca l'utilizzazione prevista dal progetto a meno delle normali prescrizioni ingegneristiche. Il progettista, verificata la compatibilità degli interventi previsti con la stessa natura del terreno, secondo le esigenze di progetto e di sue considerazioni di prudenza, potrà intervenire per avere l'opera finita a regola d'arte.

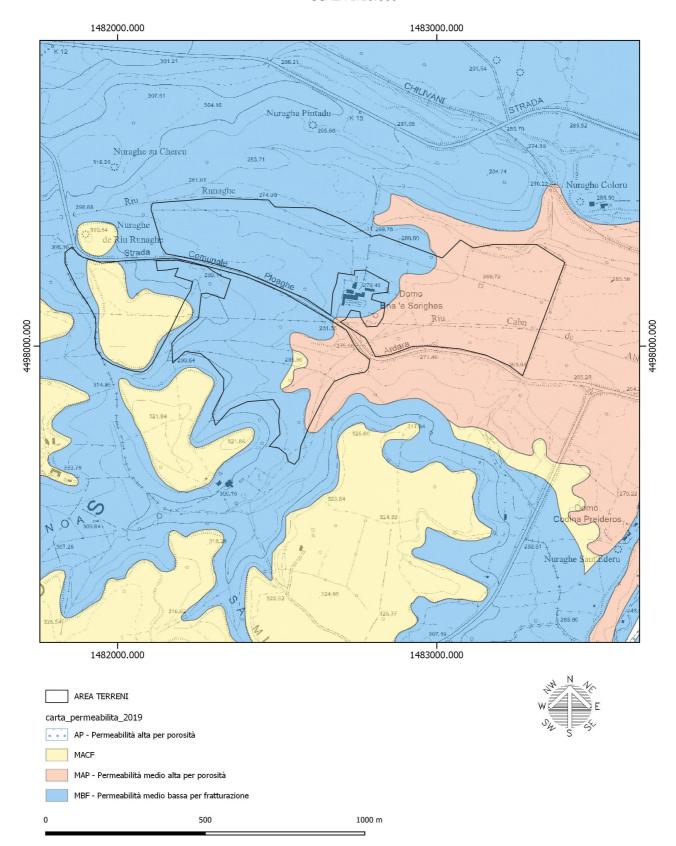
Cagliari lì 29 Marzo 2022

GEOLOGO [sez. A]

CEOLOGI

Dott. Geol. MARIO STRININA


Dott. Mario STRINNA


This report can be neither copied nor reproduced, even partially, except with the consent of the professional person in charge, prior written permission. Any deficiencies will be punished according to the law (Art.2578 CC - L.22.4.1941 N.6331)

previa autorizzazione scritta. Eventuali mancanze saranno punite ai sensi di legge (Art.2578 C.C. - L.22.4.1941 N.6331)

INQUADRAMENTO GEOLOGICO SU BASE CTR FOGLIO 460 - 140 [ARDARA] SCALA 1:10.000

CARTA DELLE PERMEABILITA' SU BASE CTR FOGLIO 460 - 140 [ARDARA] SCALA 1.10.000

