

SOGGETTO ATTUATORE - Art.7 D.L. 11 novembre 2016, n. 205 (già art. 15ter del D.L. 17 ottobre 2016, n.189, anas convertito dalla L.15 dicembre 2016, n. 229)

ex OCDPC 408/2016 - art.4 OCDPC 475/2017 - art.3

S.S.4 "SALARIA"

Adeguamento nel tratto tra Rieti e Sigillo — 3º Lotto 1º Stralcio — Tratto di adeguamento in sede e variante dal km 83+400 al km 87+400

PROGETTO FATTIBILITA' TECNICO ECONOMICA

COD. **ATMSRM01100**

PROGETTAZIONE: VIA INGEGNERIA S.R.L.

PROGETTISTA E RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI | GRUPPO DI PROGETTAZIONE SPECIALISTICHE:

Dott. Ing. MariaAntonietta Merendino (Ord. Ing. Prov. Roma 28481A) Dott. Ing. Giulio Filippucci (Ord. Ing. Prov. Roma 14711)

RESPONSABILI D'AREA:

Responsabile Tracciato stradale: Dott. Ing. Massimo Capasso (Ord. Ing. Prov. Roma 26031)

Responsabile Strutture: Dott. Ing. Giovanni Piazza (Ord. Ing. Prov. Roma 27296)

GEOLOGO:

Dott. Geol. Maurizio Lanzini (Ord. Geologi Lazio 385)

VISTO: IL RESPONSABILE DEL PROCEDIMENTO:

Dott. Ing. Paolo Nardocci ((Ord. Ing. Prov. Roma 22714)

PROTOCOLLO DATA

OPERE D'ARTE OPERE MAGGIORI

ST-E36 SOTTOPASSO - POO2 - PONTE FORNACE 2

Relazione di calcolo

CODICE PROGETTO PROGETTO		NOME FILE TOOVIO2STRRE01_B	REVISIONE	SCALA:		
S1R102 P 2201		CODICE TOOVIO2S1	RE01		В	_
D			-	-	-	-
С			-	-	-	-
В	REVISIONE A SEGUITO DI RAF	PPORTO DI VERIFICA DEL 1/06/2022	GIU. 2022	E. STRAMACCI	G.PIAZZA	M.MERENDINO
Α	EMISSIONE		MAG. 2022	E. STRAMACCI	G. PIAZZA	M.MERENDINO
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

INDICE

1	GE	NER	ALITA'	5
	1.1	OG	GETTO	5
	1.2	VIT	A NOMINALE DI PROGETTO, CLASSE D'USO E PERIODO DI RIFERIMENTO DELL'OPERA	5
	1.2	. 1	Vita Nominale V _n	5
	1.2	2.2	Classi d'Uso	5
	1.2	2.3	Periodo di Riferimento per l'azione sismica	6
	1.3	DES	SCRIZIONE DELLE OPERE	6
	1.4	Cor	NSIDERAZIONI SULLE METODOLOGIE COSTRUTTIVE	8
2	NO	RMA	TIVE E RIFERIMENTI	9
3	NO	RME	TECNICHE	9
4	CA	RAT	TERISTICHE DEI MATERIALI E RESISTENZE DI PROGETTO	10
	4.1	CAL	LCESTRUZZI	10
	4.1	.1	Caratteristiche ai fini della durabilità	10
	4.1	.2	Copriferri nominali	11
	4.1	.3	Resistenze di progetto	12
	4.1	.4	Verifiche a fessurazione	14
	4.2	Acc	CIAIO IN BARRE PER CEMENTO ARMATO E RETI ELETTROSALDATE	16
	4.2	2.1	Qualità dell'acciaio	16
	4.2	2.2	Resistenze di progetto	17
	4.3	Acc	CIAIO PER CARPENTERIA METALLICA	17
	4.3	3. 1	Qualità dell'acciaio	17
	4.3	3.2	Resistenze di progetto	18
	4.4	Cor	NNETTORI A PIOLO TIPO NELSON	18
	4.4	l. 1	Qualità dell'acciaio	18
	4.4	1.2	Resistenze di progetto	18
	4.5	Giu	INZIONI BULLONATE	18
	4.5	5.1	Qualità dell'acciaio	18

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

	4.5	5.2	Resistenze di progetto	19
	4.6	Giui	NZIONI SALDATE	19
5	ΑZ	IONI E	E COMBINAZIONI DI PROGETTO20)
	5.1	ELE	NCO DELLE AZIONI SUI PONTI STRADALI	20
	5.2	Ana	LISI DEI CARICHI	20
	5.2	.1	Azioni permanenti - Peso proprio degli elementi strutturali – g1	21
	5.2	.2	Azioni permanenti - Carichi permanenti portati – g2	21
	5.2	.3	Azioni permanenti - Spinta delle terre in condizioni statiche – g3	22
	5.2	.4	Distorsioni e deformazioni impresse - Effetti reologici: ritiro e viscosità $ \varepsilon 2$ e $\varepsilon 3$	23
	5.2	.5	Distorsioni e deformazioni impresse - Cedimenti vincolari – ε4	25
	5.2	.6	Azioni variabili da traffico - Carichi verticali comprensivi degli effetti dinamici – q1	25
	5.2	.7	Azioni variabili da traffico – Azione longitudinale di frenamento o di accelerazione – q3.	28
	5.2	.8	Azioni variabili da traffico – Azione centrifuga – q4	28
	5.2	.9	Azioni di Neve e di Vento – q5	29
	5.2	.10	Azioni della temperatura – q7	32
	5.2	.11	Resistenze parassite dei vincoli – q9	34
	5.2	.12	Azioni sismiche – E	35
	5.3	Con	IBINAZIONI DI CARICO	41
	5.3	3.1	Combinazioni di carico in esercizio	41
	5.3	2.2	Combinazioni di carico in fase sismica	44
6	AN	ALISI	E VERIFICHE DELLE STRUTTURE D'IMPALCATO45	5
	6.1	CRIT	TERI DI CALCOLO	45
	6.1	.1	Analisi globale	45
	6.1	.2	Analisi locali	47
	6.2	Ana	LISI STATICA GLOBALE	47
	6.2	.1	Caratteristiche geometrico-inerziali delle sezioni in fase di analisi	47
	6.2	.2	Applicazione dei carichi al modello	48
	6.2	.3	Sollecitazioni di progetto	49
	6.3	VER	IFICHE DELLE TRAVI PRINCIPALI	55
	6.3	3.1	Verifiche di resistenza SLU	55

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

	6.4	4	VERI	FICHE SLE DI DEFORMABILITÀ DELLA STRUTTURA	64
7		AZIO	т іис	RASMESSE DALL'IMPALCATO ALLE SOTTOSTRUTTURE66	
	7.1	1	Anai	LISI IN FASE SISMICA	67
8		VER	IFICI	HE SPALLE	
	8.1	1	Anai	LISI DELLA PALIFICATA	69
	8.2	2	CAR	ATTERISTICHE DELLA SOLLECITAZIONE PER VERIFICHE PALI DI FONDAZIONE	.70
	8.3	3	VERI	FICHE DI RESISTENZA DEI PALI DI FONDAZIONE	.71
	8.4	4	DIME	NSIONAMENTO DELLE SINGOLE MEMBRATURE DELLE SPALLE	.76
		8.4.	1	Zattera di fondazione	. 76
		8.4.2	2	Mensola posteriore	. 76
		8.4.3	3	Muro frontale	. 76
		8.4.4	4	Paraghiaia	. 76
		8.4.	5	Muri di risvolto	. 77
		8.4.6	6	Verifiche di resistenza a taglio	. 78
9		VER	IFICI	HE DISPOSITIVI DI APPOGGIO E ISOLAMENTO E GIUNTI DI DILATAZIONE 79	
	9.1	1	ISOL	ATORI ELASTOMERICI	.79
		9.1. ⁻	1	Carichi verticali trasmessi dall'impalcato	. 79
		9.1.2	2	Verifica degli spostamenti orizzontali degli isolatori in fase sismica	. 80
	9.2	2	GIUN	ITI DI DILATAZIONE	.83
10)	VER	IFICI	HE GEOTECNICHE SLU ED SLE DELLE FONDAZIONI SU PALI84	
	10	.1	CRIT	ERI DI CALCOLO	.84
				Verifiche SLU di collasso per carico limite del palo singolo nei riguardi del carico assiale di	
		10.1 com		Verifiche SLU di collasso per carico limite della palificata nei riguardi del carico assiale di sione	. 89
		10.1 trazi		Verifiche SLU di collasso per sfilamento del palo singolo nei riguardi del carico assiale di 90	
		10.1	.4	Verifiche SLU di collasso per carico limite del palo singolo nei riguardi del carico trasversa 90	ale
		10.1	.5	Verifiche SLU di collasso per carico limite della palificata nei riguardi del carico trasversale 96	9
	10	.2	Appl	ICAZIONE AL CASO IN ESAME	. 99

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

	10.2	.1	Caratteristiche delle opere di fondazione su pali	99
	10.2	.2	Parametri geotecnici e stratigrafie di progetto	99
	10.2 cario	_	Verifiche SLU di collasso per carico limite del palo singolo e della palificata nei rigua siale di compressione e di trazione (sfilamento)	
	10.2	.4	Verifiche SLU di collasso per carico limite del palo singolo nei riguardi del carico tra 100	sversale
11	DIC	HIAR	AZIONE ACCETTABILITÀ RISULTATI (PAR. 10.2 N.T.C. 2018)	. 102
1	1.1	TIPO	DI ANALISI SVOLTE	102
1	1.2	ORIG	INE E CARATTERISTICHE DEI CODICI DI CALCOLO	102
1	1.3	AFFIC	DABILITÀ DEI CODICI DI CALCOLO	102
1	1.4	Mod	ALITÀ DI PRESENTAZIONE DEI RISULTATI	102
1	1.5	INFO	RMAZIONI GENERALI SULL'ELABORAZIONE	102
1	1.6	GIUD	IZIO MOTIVATO DI ACCETTABILITÀ DEI RISULTATI	103
		_	TO 1 – IMPALCATO - ANALISI STATICA GLOBALE – CARATTERISTICHE) – INERZIALI IN FASE DI ANALISI	. 104
			ΓΟ 2 – IMPALCATO - ANALISI STATICA GLOBALE – CARATTERISTICHE) – INERZIALI IN FASE DI VERIFICA	. 105
14	ALL	EGA	TO 3 – IMPALCATO - TRAVI PRINCIPALI - SOLLECITAZIONI PER VERIFICHE S	LU106
15	ALL	EGA	TO 4 – IMPALCATO - VERIFICHE SLU TRAVI PRINCIPALI	. 107
16	ALL	EGA	TO 5 – SOTTOSTRUTTURE: SPA	. 108
17 DEI			TO 6 – FONDAZIONI SU PALI – VERIFICHE SLU DI COLLASSO PER CARICO L NGOLO E DELLA PALIFICATA PER CARICHI ASSIALI	
18 DEI			TO 7 – FONDAZIONI SU PALI – VERIFICHE SLU DI COLLASSO PER CARICO L NGOLO E DELLA PALIFICATA PER CARICHI TRASVERSALI	

T00VI02STRRE01A.docx 4 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

1 GENERALITA'

1.1 Oggetto

La presente relazione illustra l'analisi e le verifiche relative alle strutture del Ponte "PO02 – Fornace" dalla progressiva km 3+678.73 alla progressiva km 3+700.73, previsto nell'ambito dei lavori di realizzazione della "Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400".

Il ponte è composto da 1 campata, per una lunghezza complessiva pari a 22.0 m misurata in asse appoggi spalle.

Le analisi e le verifiche statiche sono condotte conformemente al livello di Progettazione Preliminare.

Le analisi e le verifiche degli aspetti di dettaglio, saranno sviluppate nella successiva fase di Progettazione Definitiva.

1.2 Vita Nominale di progetto, Classe d'uso e Periodo di Riferimento dell'opera

1.2.1 Vita Nominale V_n

La vita nominale di progetto V_N di un'opera è convenzionalmente definita come il numero di anni nel quale è previsto che l'opera, purché soggetta alla necessaria manutenzione, mantenga specifici livelli prestazionali.

I valori minimi di V_N da adottare per i diversi tipi di costruzione sono riportati nella Tab. 2.4.I. (§ 2.4.1 NTC2018). Tali valori possono essere anche impiegati per definire le azioni dipendenti dal tempo.

Tab. 2.4.I – Valori minimi della Vita nominale V_N di progetto per i diversi tipi di costruzioni

	TIPI DI COSTRUZIONI	Valori minimi di V _N (anni)
1	Costruzioni temporanee e provvisorie	10
2	Costruzioni con livelli di prestazioni ordinari	50
3	Costruzioni con livelli di prestazioni elevati	100

Tabella 1.1 – Valori minimi della Vita nominale Vn di progetto per i diversi tipi di costruzioni

In accordo con la Committenza Anas è stato assunto:

- Vita Nominale di progetto: $V_N = 100$ anni (costruzioni con livelli di prestazione elevati).

1.2.2 Classi d'Uso

Con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso così definite (§2.4.2 NTC2018):

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non

T00VI02STRRE01A.docx 5 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III:

Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV:

Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Relativamente alle conseguenze di una interruzione di operatività o di un eventuale collasso, delle opere di cui trattasi, vi si attribuisce:

- Classe d'Uso: IV;

- Coefficiente d'Uso: $C_U = 2.0$.

1.2.3 Periodo di Riferimento per l'azione sismica

Il periodo di riferimento, impiegato nella valutazione delle azioni sismiche risulta pari a:

- Periodo di Riferimento: $V_R = V_N \times C_U = 100 \times 2.0 = 200$ anni.

1.3 Descrizione delle opere

Il tracciato planimetrico dell'asse principale, nel tratto lungo il quale si inserisce l'opera, si sviluppa in curva con un raggio 400.00 m.

L'impalcato ha larghezza variabile con un massimo di 16.46 m ed un minimo di 16.01 m. La piattaforma stradale ha larghezza variabile con un minimo di 14.60 m ed un massimo di 14.96 m (strada Extraurbana secondaria di Categoria C1, ai sensi del DM2001), fiancheggiata da elementi marginali costituiti da cordoli di larghezza 0.75 m all'estremità.

L'impalcato è a struttura mista acciaio-calcestruzzo, inclinato di 11° rispetto all'asse trasversale al ponte, con sezione "aperta" con tre travi metalliche principali di altezza pari a 1.30 m.

La distanza trasversale tra le travi è 5.0 m x 2. Gli sbalzi laterali di sinistra hanno luce variabile tra 3.24 e 3.04 m, gli sbalzi laterali di destra hanno luce variabile tra 3.22 e 3.0 m.

Le strutture in carpenteria metallica sono previste in acciaio autopatinabile (COR-TEN).

Le travi principali saranno realizzate mediante lamiere saldate.

T00VI02STRRE01A.docx 6 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Le anime delle travi principali saranno irrigidite da stiffners trasversali, composti da semplici piatti saldati, disposti in corrispondenza dei traversi.

Il graticcio d'impalcato è completato dai traversi, del tipo ad anima piena, posti in campata ed in corrispondenza degli allineamenti di appoggio. L'interasse tra i traversi è 5.00 m. Anche i traversi hanno sezione a doppio T composta mediante lamiere saldate.

Per quanto attiene i collegamenti, i conci delle travi principali saranno interamente saldati con saldature a Piena Penetrazione, mentre i collegamenti tra trasversi e travi principali saranno di tipo bullonato.

Le unioni bullonate previste per i collegamenti tra traversi e travi principali saranno del tipo "AD ATTRITO", mentre le unioni relative ai controventi saranno "A TAGLIO".

I controventi a croce hanno esclusiva funzione di irrigidimento della struttura in fase di montaggio. Al termine della maturazione dei getti della soletta d'impalcato i controventi saranno rimossi.

La soletta di impalcato, solidarizzata alle travi principali, ha spessore costante pari a 31 cm. E' previsto l'impiego di lastre prefabbricate autoportanti (predalles) in c.a. di spessore pari a 7 cm tessute in direzione trasversale.

La solidarizzazione della soletta alla trave metallica sarà garantita tramite connettori a piolo tipo Nelson Ø22 con altezza di 220 mm.

Lo schema statico, con riferimento ai carichi verticali, è di trave appoggiata di 1 campata su 2 allineamenti di appoggio.

SEZIONE TIPO IMPALCATO PONTE PO-02 (FORNACE)

Nella figura seguente è riportata le sezioni rappresentative dell'impalcato:

VAR. 15.95+16.50 VAR. 15.95+16.50 VAR. 15.0 375 375 150 75 Var. 150 S25 Pand. traw. PREDALLE PREPABRICATE S=7om WENCOLE DI SOSTEONO CAMALETTA PASSACAM DI PRATTAFORMA ACQUE DI PARTAFORMA VAR. 500 S00 VAR.

Figura 1.1. Sezione trasversale impalcato

T00VI02STRRE01A.docx 7 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Lo schema di vincolo prevede l'adozione di dispositivi di appoggio costituiti da isolatori elastomerici.

Pertanto, le azioni orizzontali trasversali e longitudinali vengono trasmesse a tutte le sottostrutture.

Gli isolatori elastomerici essendo caratterizzati da un ridotto valore della rigidezza orizzontale garantiscono un disaccoppiamento del moto orizzontale della struttura rispetto a quello del terreno ed una conseguente riduzione della risposta sismica della struttura. Inoltre, i dispositivi sono dotati di una certa capacità dissipativa che è determinata dalla mescola elastomerica da cui sono costituiti e che è utile a ridurre gli spostamenti della struttura isolata.

Alle estremità dell'impalcato sono previsti giunti di dilatazione in elastomero armato in corrispondenza della piattaforma carrabile e giunti di cordolo in corrispondenza degli elementi marginali.

Le spalle del ponte sono di tipo tradizionale con:

- muro frontale di altezza pari a 6.0 m per SPA e spessore del paramento pari a 1.90 m;
- muro frontale di altezza pari a 6.0 m per SPB e spessore del paramento pari a 1.90 m;
- paraghiaia di spessore 60 cm, debitamente arretrato rispetto alle travi d'impalcato in modo da garantire un varco di ampiezza adeguata alla manutenzione.

Per il dimensionamento dei muri d'ala e delle eventuali opere provvisionali necessarie alla realizzazione delle sottostrutture si rimanda al livello di progettazione successivo.

Le fondazioni sono di tipo indiretto, costituite da zattere di spessore pari a 2.0 m e palificate di:

- Spalla A: pali trivellati di diametro φ1200 in numero di 15 (5 x 3);
- Spalla B: pali trivellati di diametro φ1200 in numero di 15 (5 x 3).

1.4 Considerazioni sulle metodologie costruttive

La struttura in carpenteria metallica sarà montata a terra per macroconci, successivamente varati in quota con l'ausilio di autogru di adeguata portata. Le travi principali di ciascun macroconcio, saranno collegate alle porzioni già in opera mediante saldatura di testa a completa penetrazione.

La soletta in c.a. è prevista gettata in opera utilizzando coppelle prefabbricate autoportanti in c.a. contenenti le armature trasversali d'intradosso. Le coppelle sono provviste di aree libere in corrispondenza delle piattabande superiori delle travi, dove saranno posizionati i connettori a piolo.

Una volta disposte le coppelle sulla travata metallica si provvede alla posa dell'armatura integrativa e quindi al getto di completamento.

T00VI02STRRE01A.docx 8 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

2 NORMATIVE E RIFERIMENTI

Le analisi e le verifiche delle strutture sono state effettuate nel rispetto della seguente normativa vigente:

- [D_1]. DM 17 gennaio 2018: Aggiornamento delle <<Norme tecniche per le costruzioni>> (nel seguito indicate come NTC18).
- [D_2]. Circolare 21 gennaio 2019 n.7: Istruzioni per l'applicazione dell' "Aggiornamento delle Norme tecniche per le costruzioni" di cui al DM 17 gennaio 2018, supplemento ordinario n° 5 alla G. U. n° 35 del 11/02/2019 (nel seguito indicate come CNTC18).
- [D_3]. Norma Europea UNI EN 206: Calcestruzzo Specificazione, prestazione, produzione e conformità (Dicembre 2016).
- [D_4]. Norma Italiana UNI 11104: Calcestruzzo Specificazione, prestazione, produzione e conformità Specificazioni complementari per l'applicazione della EN 206 (luglio 2016).

Altresì, ci si è riferiti agli Eurocodici secondo quanto specificato nel prosieguo della relazione.

Ulteriori riferimenti sono rappresentati dai seguenti documenti:

- [D_5]. Sètra Eurocodes 3 and 4. Application to steel-concrete composite road bridges (july 2007).
- [D_6]. Sètra –Abaques pour la flexion locale de la dalle d'un bipoutre à entretois. Ouvrages d'art. (n.54 mars 2007).

3 NORME TECNICHE

Il metodo di calcolo adottato è quello semiprobabilistico agli stati limite, con applicazione di coefficienti parziali per le azioni o per l'effetto delle azioni, variabili in ragione dello stato limite indagato.

T00VI02STRRE01A.docx 9 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

4 CARATTERISTICHE DEI MATERIALI E RESISTENZE DI PROGETTO

4.1 Calcestruzzi

4.1.1 Caratteristiche ai fini della durabilità

Al fine di valutare le caratteristiche vincolanti delle miscele di calcestruzzo nei confronti della durabilità viene fatto riferimento alle norme [D_3] e [D_4] .

Di seguito, per ciascun elemento viene riportata la classe di esposizione che risulta vincolante ai fini delle caratteristiche della miscela. Inoltre, sono riportati la classe di resistenza, i range previsti per le dimensioni massime degli aggregati, la classe di consistenza, il valore massimo del rapporto acqua/cemento, il tipo di cemento da impiegare in funzione della parte d'opera e il contenuto minimo di cemento:

CA	ARATTERIS	STICHE DE	HE DEI CALCESTRUZZI (UNI EN 206-1 / UNI 11104)						
CALCESTRUZZO PE	Magrone	Sottofondazioni Pali trivellati	Fondazioni Spalle*	Elevazioni Spalle	Elevazioni Baggioli	Solette impalcato Predalle prefabbricate	Solette impalcato Getti in opera e cordoli marginali		
Classe di resistenza (fck/Rck)	(Mpa)	C12/15	C25/30	C25/30	C32/40	C35/45	C35/45	C35/45	
Classe di esposizione ambient	ale	-	XC2	XC2	XC4	XC4	XC4	XC4	
φ max inerti (mm)	Dupper	32		32	25	25	12	25	
ψ max mem (mm)	Dlower	20		20	16	16	8	16	
Classe di consistenza		-	S5	S4	S4	S5	S5	S5	
Rapporto max acqua/cemento	-	0.60	0.60	0.50	0.45	0.45	0.45		
Tipo di cemento (secondo UNI 1)	-	CEM IV	CEM IV	CEM I÷V	CEM I÷V	CEM I÷V	CEM I÷V		
Contenuto minimo di cemento	(kg/m³)	150	300	300**	340**	360	360	360	

Tabella 4.1 – Caratteristiche dei Calcestruzzi

- δT_{3gg} ≤ 35° per getti di spessore non superiore a 2 m;
- δT_{7gg} ≤ 35° per getti di spessore superiore a 2 m.

In ogni caso, dovrà essere garantito il rispetto delle classi di esposizione e resistenza sopra indicate.

T00VI02STRRE01A.docx 10 di 111

^{*} Cemento LH (Low Heat) a basso calore di idratazione.

^{**} I contenuti di cemento indicati saranno verificati in sede di prequalifica, imponendo che il riscaldamento del calcestruzzo del nucleo in condizioni adiabatiche rispetti le seguenti condizioni:

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

4.1.2 Copriferri nominali

I valori minimi dello spessore dello strato di ricoprimento di calcestruzzo (copriferro), ai fini della protezione delle armature dalla corrosione, sono riportati nella Tab. C4.1.IV delle circolari applicative §[D_2], nella quale sono distinte le tre condizioni ambientali di Tab. 4.1.IV delle NTC:

Tabella C4.1.IV - Copriferri minimi in mm

		barre da c.a. elementi a piastra		barre da c.a. altri elementi		cavi da c.a.p. elementi a piastra		cavi da ca.p. altri elementi		
Cmin	Co	ambiente	C≥Co	C _{min} ≤C <c<sub>o</c<sub>	C≥C₀	C _{min} ≤C <c<sub>o</c<sub>	C≥C₀	C _{min} ≤C <c<sub>o</c<sub>	C≥C _o	C _{min} ≤C∢C _o
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C30/37	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

I valori della tabella C4.1.IV si riferiscono a costruzioni con Vita Nominale di 50 anni (tipo 2 della Tab. 2.4.1 delle NTC). Per costruzioni con vita nominale di 100 anni (tipo 3 della citata Tab. 2.4.1), i valori della Tab. C4.1.IV vanno aumentati di 10 mm.

Per la definizione del calcestruzzo nominale, ai valori minimi di copriferro vanno aggiunte le tolleranze di posa, pari a 10 mm o minore, secondo indicazioni di norme di comprovata validità.

La tabella seguente illustra, i valori del calcestruzzo nominale, richiesti in base all'applicazione dei criteri sopra esposti e specializzati al caso in esame:

Elemento		Sottofondazioni - Pali trivellati	Fondazioni - Spalle e pile	Elevazioni - Spalle	Elevazioni - Pile, pulvini	Elevazioni - Baggioli	Solette Impalcato predalle	Solettta Impalcato getti in opera e cordoli marginali
Tipo di armatura (1=barre da c.a.; 2=cavi da c.a.p.)		1	1	1	1	1	1	1
Elemento a piastra		NO	SI	SI	NO	NO	SI	SI
Classe di esposizione		XC2	XC2	XC4	XC4	XC4	XC4	XC4
Ambiente		ordinario	ordinario	aggressivo	aggressivo	aggressivo	aggressivo	aggressivo
Rck	Mpa	30	30	40	40	45	45	45
Check Rck min		OK	oĸ	ok	oĸ	OK	OK	OK
copriferro minimo (Tab. C4.1.IV NTC)	mm	25	20	30	35	35	30	30
incremento Per Vn=100 (tipo di costruzione 3)	mm	0	0	0	0	0	0	0
elem. prefabbricato con ver. Copriferri*		NO	NO	NO	NO	NO	SI	NO
riduzione per produzioni con ver. Copriferri		0	0	0	0	0	-5	0
Tolleranza di posa		10	10	10	10	10	5	10
copriferro nominale	mm	35	30	40	45	45	30	40

Tabella 4.2 – Valori dei copriferri nominali in base alle NTC2018

Relativamente alle predalle prefabbricate, trattandosi di elementi prodotti con sistemi sottoposti a controlli di qualità che comprendono la verifica dei copriferri, i valori minimi della Tab. C4.1.IV sono stati ridotti di 5 mm. Analogamente, per questi elementi le tolleranze di posa sono state limitate a 5 mm.

I valori effettivamenti adottati per i copriferri nominali di progetto tengono conto anche di criteri di uniformità e della volontà di garantire valori maggiori dei minimi di norma per superfici contro-terra.

T00VI02STRRE01A.docx 11 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Elemento		Sottofondazioni - Pali trivellati	Fondazioni - Spalle e pile	Elevazioni - Spalle	Elevazioni - Pile, pulvini	Elevazioni - Baggioli	Solette Impalcato predalle	Solettta Impalcato getti in opera e cordoli marginali
copriferro nominale di progetto	mm	75	40	40	45	45	30	40

Tabella 4.3 – Valori dei copriferri nominali adottati in progetto

4.1.3 Resistenze di progetto

Calcestruzzo C25/30:

Caratteristiche Calcestruzzo	Var	unità	C25/30
Resistenza a compressione caratteristica cubica	R _{ck}	Мра	30
Resistenza a compressione caratteristica cilindrica	$f_{ck} = 0.83 R_{ck}$	Мра	25
Resistenza media a compressione cilindrica	$f_{cm} = f_{ck} + 8$	Мра	33.00
Resistenza media a trazione semplice	$f_{\sf ctm}$	Мра	2.56
Resistenza caratteristica a trazione semplice	$f_{ctk5\%}=0.7 f_{ctm}$	Мра	1.80
Resistenza caratteristica a trazione semplice	$f_{ctk95\%}$ =1.3 f_{ctm}	Мра	3.33
Resistenza media a trazione per flessione	$f_{cfm} = 1.2 f_{ctm}$	Мра	3.08
Modulo elastico	$E_{cm}=22000x(f_{cm}/10)^{0.3}$	Мра	31476
STATI LIMITE ULTIMI	Var	unità	
coefficiente γ _c	γς	umu	1.50
coefficiente α_{cc}	$lpha_{ m cc}$		0.85
Resistenza a compressione di calcolo	$f_{cd} = \alpha_{cc} f_{ck} / \gamma_{c}$	Мра	14.17
Resistenza a trazione di calcolo	$f_{ctd} = f_{ctk}/\gamma_c$	Мра	1.20
STATI LIMITE DI ESERCIZIO	Var	unità	
$\sigma_{c, \; max}$ - combinazione di carico caratteristica	$\sigma_{c,max}$ =0.60 f_{ck}	Мра	15.00
$\sigma_{\!c,\;max}$ - combinazione di carico quasi permanente	$\sigma_{c,max}$ =0.45 f_{ck}	Мра	11.25
$\sigma_{\!t}$ - stato limite di formazione delle fessure	$\sigma_t = f_{ctm}/1.2$	Мра	2.14
ANCORAGGIO DELLE BARRE	Var	unità	
Tensione tan. ultima di ad. $\phi \le 32$ mm - buona ad.	f_{bd} =2.25 x 1.0 x 1.0 x f_{ctk}/g_c	Мра	2.69
Tensione tan. ultima di ad. $\phi \le 32 \text{ mm}$ - non buona ad.	f_{bd} =2.25 x 0.7 x 1.0 x f_{ctk}/g_c	MPa	1.89

T00VI02STRRE01A.docx 12 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Calcestruzzo C32/40:

Caratteristiche Calcestruzzo	Var	C32/40
Resistenza a compressione caratteristica cubica	R_{ck}	40
Resistenza a compressione caratteristica cilindrica	$f_{ck} = 0.83 R_{ck}$	32
Resistenza media a compressione cilindrica	$f_{cm} = f_{ck} + 8$	40.00
Resistenza media a trazione semplice	f_{ctm}	3.02
Resistenza caratteristica a trazione semplice	$f_{ctk5\%}$ =0.7 f_{ctm}	2.12
Resistenza caratteristica a trazione semplice	$f_{ctk95\%}=1.3 f_{ctm}$	3.93
Resistenza media a trazione per flessione	$f_{cfm} = 1.2 f_{ctm}$	3.63
Modulo elastico	$E_{cm}=22000x(f_{cm}/10)^{0.3}$	33346
STATI LIMITE ULTIMI	Var	
coefficiente γ_c	γс	1.50
coefficiente α_{cc}	$lpha_{ t cc}$	0.85
Resistenza a compressione di calcolo	$f_{cd} = \alpha_{cc} f_{ck} / \gamma_c$	18.13
Resistenza a trazione di calcolo	$f_{ctd} = f_{ctk}/\gamma_c$	1.41
STATI LIMITE DI ESERCIZIO	Var	
σ _{c, max} - combinazione di carico caratteristica	$\sigma_{c,max}$ =0.60 f_{ck}	19.20
$\sigma_{\text{c, max}}$ - combinazione di carico quasi permanente	$\sigma_{c,max}$ =0.45 f_{ck}	14.40
$\sigma_{\!t}$ - stato limite di formazione delle fessure	$\sigma_t = f_{ctm}/1.2$	2.52
ANCORAGGIO DELLE BARRE	Var	
Tensione tan. ultima di ad.	f_{bd} =2.25 x 1.0 x 1.0 x f_{ctk}/g_c	3.18
Tensione tan. ultima di ad. $\varphi\!<=\!32$ mm - non buona ad.	f_{bd} =2.25 x 0.7 x 1.0 x f_{ctk}/g_c	2.22

T00VI02STRRE01A.docx 13 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Calcestruzzo C35/45:

Caratteristiche Calcestruzzo	Var	unità	C35/45
Resistenza a compressione caratteristica cubica	R_{ck}	Мра	45
Resistenza a compressione caratteristica cilindrica	$f_{ck} = 0.83 R_{ck}$	Мра	35
Resistenza media a compressione cilindrica	$f_{cm} = f_{ck} + 8$	Мра	43.00
Resistenza media a trazione semplice	$f_{\sf ctm}$	Мра	3.21
Resistenza caratteristica a trazione semplice	$f_{ctk5\%}=0.7 f_{ctm}$	Мра	2.25
Resistenza caratteristica a trazione semplice	$f_{ctk95\%}$ =1.3 f_{ctm}	Мра	4.17
Resistenza media a trazione per flessione	$f_{cfm} = 1.2 f_{ctm}$	Мра	3.85
Modulo elastico	$E_{cm}=22000x(f_{cm}/10)^{0.3}$	Мра	34077
STATI LIMITE ULTIMI	Var	unità	
coefficiente γ_c	γс		1.50
coefficiente α_{cc}	$lpha_{ t cc}$		0.85
Resistenza a compressione di calcolo	$f_{cd} = \alpha_{cc} f_{ck} / \gamma_c$	Мра	19.83
Resistenza a trazione di calcolo	$f_{ctd} = f_{ctk}/\gamma_c$	Мра	1.50
STATI LIMITE DI ESERCIZIO	Var	unità	
σ _{c, max} - combinazione di carico caratteristica	$\sigma_{c.max}$ =0.60 f _{ck}	Mpa	21.00
$\sigma_{c, max}$ - combinazione di carico quasi permanente	$\sigma_{c,max}$ =0.45 f _{ck}	Мра	15.75
σ_t - stato limite di formazione delle fessure	$\sigma_t = f_{ctm}/1.2$	Мра	2.67
	of John 112		
ANCORAGGIO DELLE BARRE	Var	unità	
Tensione tan. ultima di ad. φ<=32 mm - buona ad.	f_{bd} =2.25 x 1.0 x 1.0 x f_{ctk}/g_c	Мра	3.37
Tensione tan. ultima di ad. $\varphi\!<=\!32$ mm - non buona ad.	f_{bd} =2.25 x 0.7 x 1.0 x f_{ctk}/g_c	MPa	2.36

4.1.4 Verifiche a fessurazione

Le condizioni ambientali, ai fini della protezione contro la corrosione delle armature, sono suddivise in ordinarie, aggressive e molto aggressive in relazione a quanto indicato dalla Tab. 4.1.III delle NTC2018:

Tab. 4.1.III - Descrizione delle condizioni ambientali

Condizioni ambientali	Classe di esposizione		
Ordinarie	X0, XC1, XC2, XC3, XF1		
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3		
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4		

Nel caso in esame si considerano:

- Condizioni ordinarie: per le verifiche a fessurazione delle fondazioni e delle sottofondazioni (classe di esposizione XC2).
- Condizioni aggressive: per le verifiche a fessurazione delle elevazioni spalle (classe di esposizione XC4).

T00VI02STRRE01A.docx 14 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

La Tab. 4.1.IV stabilisce i criteri per la scelta degli stati limite di fessurazione in funzione delle condizioni ambientali e del tipo di armatura:

Tab. 4.1.IV - Criteri di scelta dello stato limite di fessurazione

pi ze	Condizioni	Combinazione di	Armatura				
Gruppi di Esigenze	ambientali	azioni	Sensibile		Poco sensibile		
Gr Esi			Stato limite	$\mathbf{w_k}$	Stato limite	$\mathbf{w_k}$	
	Outionsia	frequente	apertura fessure	≤ w ₂	apertura fessure	≤ w ₃	
Α	Ordinarie	quasi permanente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂	
Б	A	frequente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂	
В	Aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁	
)	Molto	frequente	formazione fessure	-	apertura fessure	≤ w ₁	
С	aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁	

Pertanto, nel caso in esame si ha:

 Verifiche a fessurazione delle fondazioni e delle sottofondazioni – condizioni ambientali ordinarie – Armatura poco sensibile:

○ Combinazione di azioni frequente: $wk \le w3 = 0.4 \text{ mm}$

○ Combinazione di azioni quasi permanente: $wk \le w2 = 0.3 \text{ mm}$

 Verifiche a fessurazione della soletta e delle elevazioni delle spalle – condizioni ambientali Aggressive – Armatura poco sensibile:

○ Combinazione di azioni frequente: $wk \le w2 = 0.3 \text{ mm}$

○ Combinazione di azioni quasi permanente: $wk \le w1 = 0.2 \text{ mm}$

In alcuni casi, in accordo al par. §4.1.2.2.4.5, le verifiche allo stato limite di apertura delle fessure sono state condotte senza calcolo diretto, verificando che la tensione di trazione dell'armatura, valutata nella sezione parzializzata per la combinazione di carico pertinente, sia contenuta entro i valori limite specificati nelle seguenti tabelle:

Tabella C4.1.II Diametri massimi delle barre per il controllo di fessurazione

Tensione nell'acciaio	Diametro massimo φ delle barre (mm)					
σ _S [MPa]	w3 = 0,4 mm	w ₁ = 0,2 mm				
160	40	32	25			
200	32	25	16			
240	20	16	12			
280	16	12	8			
320	12	10	6			
360	10	8	-			

T00VI02STRRE01A.docx 15 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Tabella C4.1.III -Spaziatura massima delle barre per il controllo di fessurazione

Tensione nell'acciaio	Spaziatura massima s delle barre (mm)				
σ _s [MPa]	$w_3 = 0.4 \text{ mm}$	w ₁ = 0,2 mm			
160	300	300	200		
200	300	250	150		
240	250	200	100		
280	200	150	50		
320	150	100	-		
360	100	50	-		

In rapporto a quanto specificato nelle precedenti tabelle è possibile individuare le tensioni limite dell'acciaio per ciascun diametro delle barre:

Tensioni limite in funzione diametro barre						
	Tensione max acciaio					
Diametro barre		σ _s [Mpa]				
φ [mm]	w ₃ =0.4mm	w ₁ =0.2mm				
40	160	114	93			
36	180	137	111			
32	200	160	129			
30	207	171	138			
28	213	183	147			
26	220	194	156			
24	227	204	164			
22	233	213	173			
20	240	222	182			
18	260	231	191			
16	280	240	200			
14	300	260	220			
12	320	280	240			
10	360	320	260			
8	360	360	280			
6	360	360	320			

4.2 Acciaio in barre per cemento armato e Reti Elettrosaldate

4.2.1 Qualità dell'acciaio

Acciaio in barre B450C in accordo a DM 17/01/2018 (Capitolo 11).

Le Reti Elettrosaldate (RES), potranno essere realizzate impiegando acciaio B450A con le limitazioni all'impiego previste nel capitolo 11 delle NTC2018.

T00VI02STRRE01A.docx 16 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

4.2.2 Resistenze di progetto

Caratteristiche Acciaio per Calcestruzzo armato	Var	unità		
Qualità dell'acciaio			B450C	B450A
Tensione caratteristica di snervamento nominale	f_{yk}	Мра	450	450
Tensione caratteristica a carico ultimo nominale	f_{tk}	Мра	540	450
Modulo elastico	Es	Мра	210000	210000
diametro minimo della barra impiegabile	ϕ_{min}	mm	6	5
diametro massimo della barra impiegabile	∳ _{max}	mm	40	10
STATI LIMITE ULTIMI	Var	unità		
coefficiente γ_s	γs		1.15	1.15
Resistenza di calcolo	$f_{yd} = f_{yk}/\gamma_s$	Мра	391.3	391.3
STATI LIMITE DI ESERCIZIO	Var	unità		
σ _{s,max} - combinazione di carico caratteristica	$\sigma_{s,max}=0.8 f_{yk}$	Мра	360.0	360.0

4.3 Acciaio per carpenteria metallica

4.3.1 Qualità dell'acciaio

La carpenteria metallica sarà realizzata in Acciaio del tipo autoprotetto (COR-TEN) delle seguenti caratteristiche:

Acciaio per strutture principali:

Elementi principali composti per saldatura o soggetti a saldatura:

- Acciaio S355J0 W +N − UNI EN10025-5/2005 per spessori \leq 20 mm; Acciaio S355J2 W +N − UNI EN10025-5/2005 per spessori 20 mm < t \leq di 40 mm;
- Acciaio S355K2 W +N UNI EN10025-5/2005 per spessori t > di 40 mm.

Elementi non soggetti a saldature (angolari, profilati e piastre bullonate):

Acciaio S355J0 W+N – UNI EN10025-5/2005.

Elementi non soggetti a saldature (angolari, profilati e piastre bullonate):

- Acciaio S355J0 W+N - UNI EN10025-5/2005.

T00VI02STRRE01A.docx 17 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

4.3.2 Resistenze di progetto

Caratteristiche Acciaio da carpenteria metallica		Var	unità	UNI EN 10025
Qualità dell'acciaio				S355
Tensione caratteristica di snervamento	t ≤ 40 mm	f_{yk}	Мра	355
Tensione caratteristica di rottura	t = 40 mm	f_{tk}	Мра	510
Tensione caratteristica di snervamento	40 mm < t ≤ 80 mm	f _{yk}	Мра	335
Tensione caratteristica di rottura	40 IIIII < t ≤ 60 IIIIII	f_{tk}	Мра	510
Modulo elastico		Es	Мра	210000
STATI LIMITE ULTIMI		Var	unità	
coeff. di sicurezza per resistenza delle sezioni γ_{m0}		γm0		1.05
coeff. di sicurezza per resistenza all'instabilità dellle membrature γ_{m}	1	γm1		1.05
coeff. di sicurezza per resistenza all'instabilità dellle membrature de	i ponti γ _{m1}	γm1		1.10
coeff. di sicurezza per resistenza alla frattura, delle sez. Tese indeb	olite dai fori γ _{m2}	γm2		1.25
Resistenza plastica di calcolo		$f_{yd}=f_{yk}/\gamma_{m0}$	Мра	338.1
Resistenza all'instabilità delle membrature	t ≤ 40 mm	$f_{yd}=f_{yk}/\gamma_{m1}$	Мра	338.1
Resistenza all'instabilità delle membrature dei ponti	t ≤ 40 mm	$f_{yd}=f_{yk}/\gamma_{m1}$	Мра	322.7
Resistenza alla frattura delle sez. Tese (indebolite dai fori)		f_{yd} =0.9 f_{tk}/γ_{m2}	Мра	367.2
Resistenza plastica di calcolo		$f_{yd}=f_{yk}/\gamma_{m0}$	Мра	319.0
Resistenza all'instabilità delle membrature	40 mm < t ≤ 80 mm		Мра	319.0
Resistenza all'instabilità delle membrature dei ponti			Мра	304.5
Resistenza alla frattura delle sez. Tese (indebolite dai fori)		f_{yd} =0.9 f_{tk}/γ_{m2}	Мра	408.0

4.4 Connettori a piolo tipo Nelson

4.4.1 Qualità dell'acciaio

Acciaio secondo UNI EN ISO 13918.

Acciaio S235J2G3 + C450 o similare (ST37 – 3K DIN 50049).

4.4.2 Resistenze di progetto

CONNETTORI A PIOLO	Var	unità	
Qualità dell'acciaio		ex ST3	7-3K (S235J2+C
Tensione caratteristica di snervamento	f_{yk}	Мра	≥ 350
Tensione caratteristica di rottura	f_{uk}	Мра	≥ 450
Allungamento percentuale a rottura	Α	%	≥ 15
Strizione	St	%	≥ 50

4.5 Giunzioni bullonate

4.5.1 Qualità dell'acciaio

Tutte le giunzioni bullonate saranno realizzate con bulloneria da precarico ad Alta Resistenza (AR), conforme alla norma UNI EN 14399-1 e alle NTC2018 e recante marchiatura CE.

I bulloni avranno le seguenti caratteristiche:

Viti di Classe 10.9 secondo UNI EN 14399-4 e UNI EN ISO 898-1;
Dadi Classe 10 secondo UNI EN 14399-4 e UNI EN ISO 20898-2;

Rondelle (rosette) secondo UNI EN 14399-6.

Le giunzioni bullonate dei collegamenti tra travi principali e traversi saranno del tipo ad attrito.

T00VI02STRRE01A.docx 18 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Le giunzioni bullonate dei controventi a croce saranno del tipo a taglio.

In ogni caso i collegamenti bullonati devono essere a **serraggio controllato** con bulloni caratterizzati da classe k pari a K_2 (bulloneria da precarico).

4.5.2 Resistenze di progetto

Classe di resistenza della vite			10.9
Tensione caratteristica di snervamento	f_{ybk}	Мра	900
Tensione caratteristica di rottura	\mathbf{f}_{tbk}	Мра	1000
STATI LIMITE ULTIMI	Var	unità	
coeff. di sicurezza per resistenza dei bulloni γ_{m2}	γm2		1.25
Resistenza unitaria a taglio - gambo filettato della vite (A_{res}) $f_{v,Rd}$ = fac f_{tbk} / γ_{M2}	$f_{v,Rd}$	MPa	400
Resistenza unitaria a taglio - gambo NON filettato della vite (A) $f_{v,Rd}$ = 0.6 f_{tbk} / γ_{M2}	$f_{v,Rd}$	MPa	480
Resistenza unitaria a trazione - $f_{t,Rd} = 0.9 f_{tbk} / \gamma_{M2}$	$f_{t,Rd}$	MPa	720
Unioni ad attrito - coeff. di sicurezza per resistenza dei bulloni a scorrimento SLU γ_{m3}	γ̃m3 SLU		1.25
Unioni ad attrito - coeff. di sicurezza per resistenza dei bulloni a scorrimento SLE γ_{m3}	γm3 SLE		1.10
Unioni ad attrito - coefficiente γ_{m7} - Precarico dei bulloni ad Alta Resistenza	γm7		1.00
Unioni ad attrito - Forza unitaria di "precarico" $f_{p,Cd} = 0.7 f_{tbk} / \gamma_{M7}$	$f_{p,Cd}$	MPa	700
Unioni ad attrito - coefficiente di attrito $\boldsymbol{\mu}$	μ		0.30
Unioni ad attrito - Resistenza unitaria allo scorrimento SLU f s,Rd = μ f p,Cd / γ M3	$f_{s,Rd\ SLU}$	MPa	168
Unioni ad attrito - Resistenza unitaria allo scorrimento SLE $f_{s,Rd}$ = μ $f_{p,Cd}$ / γ_{M3}	$f_{s,Rd\;SLE}$	MPa	191

4.6 Giunzioni saldate

Tutte le giunzioni per l'assemblaggio dei conci delle travi principali, sia quelle da eseguire in officina che quelle da eseguire in cantiere, <u>saranno di tipo saldato a completa penetrazione di 1° classe</u>.

I procedimenti di saldatura, i materiali di apporto e i controlli dovranno essere conformi a quanto stabilito dalle NTC2018.

Le specifiche e la sequenza esecutiva delle saldature a completa penetrazione saranno concordate con l'I.I.S.

T00VI02STRRE01A.docx 19 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

Α

RM8401

Relazione tecnica e di calcolo PO02

5 AZIONI E COMBINAZIONI DI PROGETTO

5.1 Elenco delle azioni sui ponti stradali

Le azioni di progetto, in accordo con quanto previsto dal capitolo 5 "Ponti" delle NTC2018, vengono di seguito elencate:

Azioni permanenti:

Azioni permanenu.	
 Peso proprio degli elementi strutturali: Carichi permanenti portati (pavimentazione, cordoli/marciapiedi, barriere acustiche (parriere di sicurezza stradale, parapetti, finiture, sistema di smaltimento acque, stradali, rinfianchi e simili) Altre azioni permanenti (spinta delle terre, spinte idrauliche, etc.) 	
Distorsioni e deformazioni impresse:	
 Distorsioni e presollecitazioni di progetto: Effetti reologici - ritiro: Effetti reologici - viscosità: Cedimenti vincolari: 	ε1 ε2 ε3 ε4
Azioni Variabili da traffico:	
 Carichi verticali comprensivi degli effetti dinamici (Schemi di carico 1 ÷ 5): Incremento dinamico addizionale in presenza di discontinuità strutturale: Azione longitudinale di frenamento o di accelerazione: Azione centrifuga: 	q1 q2 q3 q4
Altre Azioni Variabili:	
 Azioni di Neve e di Vento: Azioni idrodinamiche: Azioni della temperatura: Azioni sui parapetti e urto di veicolo in svio: Resistenze parassite dei vincoli: 	q5 q6 q7 q8 q9
Azioni sismiche:	Е

Nel prosieguo vengono analizzate solo le azioni prese in considerazione ai fini della progettazione delle strutture in esame.

5.2 Analisi dei carichi

Azioni eccezionali:

Nella determinazione dei valori delle azioni si è tenuto conto dei seguenti pesi unitari dei materiali:

- Strutture in cemento armato: $\gamma_{cls} = 25.0 \text{ kN/m}^3$

- Strutture in acciaio: $\gamma_{acciaio} = 78.5 \text{ kN/m}^3$

- Pavimentazione: $\gamma_{pav} = 24.0 \text{ kN/m}^3$

Di seguito si riporta l'analisi delle azioni agenti sulle strutture con riferimento al loro valore caratteristico (k).

E' stata considerata la sola sezione di larghezza massima corrispondente al massimo sbalzo laterale.

T00VI02STRRE01A.docx 20 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

5.2.1 Azioni permanenti - Peso proprio degli elementi strutturali - g1

5.2.1.1 Peso proprio delle strutture d'impalcato

Nell'ambito dell'analisi globale delle travi principali d'impalcato, il peso proprio della carpenteria metallica è stato computato in automatico dal codice di calcolo utilizzato, a partire dalle aree degli elementi che rappresentano le travi principali, considerando un coefficiente maggiorativo pari a 1.60 che tiene conto dell'incidenza delle strutture secondarie (traversi, controventi, saldature, bullonature etc.).

Il peso proprio della soletta comprensiva delle predalle è pari a:

- Soletta in c.a.: $(16.50 \times 0.31) \times 25.0 = 127.9 \text{ kN/ml}$

Tenendo conto dell'eccentricità della soletta rispetto al baricentro delle travi principali, il carico agente su ciascuna trave, generato dal peso della soletta, risulta pari a:

Carichi agenti sulle travi		Trsx	Trcen	Trdx
Peso soletta in c.a.	kN/m	42.63	42.63	42.63

Nell'ambito dell'analisi delle sottostrutture è stato considerato il seguente peso proprio delle strutture di carpenteria metallica d'impalcato:

Strutture in carpenteria metallica impalcato : 1.70 x 16.50 = 28.05 kN/ml

Si ottiene pertanto un peso proprio complessivo delle strutture d'impalcato pari a:

Pg1a = 28.05 + 127.9 = 156 kN/m

5.2.1.2 Peso proprio delle sottostrutture e relative fondazioni

Il peso proprio delle sottostrutture e delle relative fondazioni è stato computato nell'ambito delle rispettive analisi e verifiche, condotte con l'ausilio di specifici fogli di calcolo di Excel.

5.2.2 Azioni permanenti - Carichi permanenti portati – g2

5.2.2.1 Carichi permanenti agenti sulle strutture d'impalcato

Il peso della pavimentazione, comprensivo dello strato di impermeabilizzazione estradossale, è pari a:

 $g2,pav = 0.11 \times 24.0 = 2.64 \text{ kN/mq}$

approssimando per eccesso, nelle analisi si considera il valore di 3.0 kN/mq.

Sono state prese in considerazione due configurazioni:

- la prima (g2max_tr), relativa alla sezione trasversale d'impalcato con tubazioni di smaltimento e carter metallici montate solo da un lato, determina il massimo carico verticale sulla singola trave principale ed è stata implementata nelle analisi globali delle strutture d'impalcato.
- la seconda (g2max_imp), relativa alla sezione trasversale d'impalcato completa di tubazioni di smaltimento e carter metallici su entrambi i lati, corrisponde al massimo carico verticale complessivamente agente sulle strutture d'impalcato ed è stata implementata nelle analisi delle sottostrutture;

Le analisi dei carichi permanenti portati relative all'impalcato sono appresso illustrate:

T00VI02STRRE01A.docx 21 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Analisi dei carichi		p (kN/m)	ecc (m)	M (kNm/m)
cordolo sx	kN/m	3.75	-7.88	-29.53
cordolo dx	kN/m	3.75	7.88	29.53
pavimentazione	kN/m	45.00	0.00	0.00
barriera integrata / guard-rail sx	kN/m	1.50	-8.00	-12.00
barriera integrata / guard-rail dx	kN/m	1.50	8.00	12.00
rete /parapetto sx	kN/m	0.50	-8.10	-4.05
rete /parapetto dx	kN/m	0.50	8.10	4.05
Tubazione smaltimento acque di piattaforma in sx	kN/m	1.50	-7.50	-11.25
Tubazione smaltimento acque di piattaforma in dx	kN/m	0.00	7.50	0.00
veletta sx+carter	kN/m	2.90	-8.25	-23.93
veletta dx+carter	kN/m	2.90	8.25	23.93
Sommano		63.80	-0.18	-11.25

Carichi agenti sulle travi		Trsx	Trcen	Trdx
cordoli	kN/m	2.50	2.50	2.50
pavimentazione	kN/m	15.00	15.00	15.00
guard-rail	kN/m	1.00	1.00	1.00
rete/parapetti	kN/m	0.33	0.33	0.33
Tubazione smaltimento acque di piattaforma	kN/m	1.63	0.50	-0.63
velette	kN/m	1.93	1.93	1.93
Totale permanenti portati	kN/m	22.39	21.27	20.14

5.2.2.2 Rinterro sulle spalle

Gli effetti del rinterro sono stati determinati considerando un peso specifico del terreno:

 $\gamma_{rin} = 18.0 \text{ kN/m}^3$

5.2.3 Azioni permanenti - Spinta delle terre in condizioni statiche – g3

La spinta delle terre sulle spalle fondate su pali è stata valutata in esercizio con riferimento al coefficiente di spinta a riposo del terreno retrostante.

Sono stati considerati i seguenti parametri:

peso di volume del materiale da rilevato stradale: $\gamma = 18.0 \text{ kN/m}^3$

angolo d'attrito interno del rilevato stradale: $\phi = 35^{\circ}$

coefficiente di spinta a riposo : $K0 = 1 - sen \phi = 0.426$

In condizioni sismiche, la spinta delle terre è stata valutata in accordo alla teoria di Mononobe-Okabe.

Il calcolo dei coefficienti di spinta è esplicitato nell'ambito delle verifiche delle spalle.

T00VI02STRRE01A.docx 22 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

5.2.4 Distorsioni e deformazioni impresse - Effetti reologici: ritiro e viscosità $- \varepsilon 2$ e $\varepsilon 3$

5.2.4.1 Deformazione da ritiro a tempo infinito

La deformazione totale per ritiro si può esprimere come:

 $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$

Dove:

 ϵ_{cs} è la deformazione totale per ritiro

 ϵ_{cd} è la deformazione per ritiro da essiccamento

εca è la deformazione per ritiro autogeno

La valutazione delle deformazioni sopra elencate è stata effettuata in accordo al punto §11.2.10.6 delle NTC2018 pervenendo ai seguenti valori:

Ritiro del calcestruzzo (ε2)	var	unità	
Modulo elastico calcestruzzo	Ec	MPa	34077
spessore dei getti in opera	hc	m	0.24
area del calcestruzzo soggetta a ritiro	Ac	mq	3.960
perimetro della sezione a contatto con l'atmosfera	u	m	16.38
coefficiente h0 = 2 x Ac / u	h0	mm	484
umidità relativa atmosfera	RH	%	75%
deformazione finale da ritiro per essiccamento	εc		0.00020
deformazione finale per ritiro autogeno	ϵ ca		0.00006
deformazione totale finale per ritiro	εcs		0.00027

Gli effetti dovuti al ritiro iperstatico sono stati schematizzati attraverso le seguenti azioni equivalenti applicate alle estremità:

 $Nr = - \varepsilon_{cs} x Ac x Ea / nr$

 $Mr = Nr \times z$

Essendo:

 ε_{cs} la deformazione totale finale per ritiro;

Ac l'area del calcestruzzo soggetta a ritiro;

Ea modulo elastico dell'acciaio;

n_r coefficiente di omogeneizzazione acciaio-cls relativo alle azioni del ritiro.

z distanza tra baricentro della soletta e baricentro della sezione composta relativo alle azioni

di lungo termine dovute al ritiro.

Di seguito il dettaglio dei valori relativo al caso in esame:

T00VI02STRRE01A.docx 23 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Effetti dovuti al ritiro del calcestruzzo (ε 2) var unità							
distanza tra il baricentro della soletta in cls e il							
baricentro della sezione composta a tinf estremità sx	Z	m	0.4493				
baricentro della sezione composta a tinf estremità dx	Z	m	0.449				
Forza assiale d'estremità	Ncr	kN	-14076.9				
Momento flettente d'estremità sx	Mcrsx	kNm	6325.2				
Momento flettente d'estremità dx	Mcrdx	kNm	6325.2				
Carichi agenti sulle travi		Trsx	Trdx				
Forza assiale d'estremità sx	kN	-4692.3	-4692.3				
Momento flettente d'estremità sx	kNm	2108.4	2108.4				
Forza assiale d'estremità dx	kN	-4692.3	-4692.3				
Momento flettente d'estremità dx	kNm	2108.4	2108.4				

5.2.4.2 Coefficienti di omogeneizzazione acciaio-cls a lungo termine

Gli effetti del ritiro e della viscosità sono valutati mediante l'adozione di un modulo elastico del calcestruzzo corretto:

$$E_c^* = \frac{E_{c0}}{1 + \psi_L \cdot \phi(t, t_0)}$$

Dove:

 E_{c0} è il modulo elastico del cls a 28 giorni;

 ψ_L è un coefficiente correttivo dipendente dal tipo di azione che per la valutazione degli effetti isostatici ed iperstatici del ritiro vale 0.55 mentre per la valutazione degli effetti

indotti dai carichi permanenti vale 1.10;

 $\phi(t,t_0)$ è il coefficiente di viscosità definito in accordo alle tabelle 11.2.VI e 11.2.VII delle

NTC2018 in funzione di t0

 t_{θ} è assunto pari ad 1 giorno per la valutazione degli effetti dovuti dal ritiro, mentre è

assunto pari a 60 giorni per la valutazione degli effetti dovuti ai carichi permanenti.

Le caratteristiche geometriche-inerziali delle sezioni trasversali composte che schematizzano l'impalcato sono state definite omogeneizzando la soletta alla trave metallica. Per le azioni di lunga durata, sono stati definiti i rapporti modulati n_L in funzione del tipo di azione mediante la:

$$n_{L} = \frac{E_{a}}{E_{c}^{*}} = \frac{E_{a}}{E_{c0}/1 + \psi_{L} \cdot \phi(t, t_{0})} = n_{0} (1 + \psi_{L} \cdot \phi(t, t_{0}))$$

Avendo indicato con $n_0 = E_a / E_{c0}$ il rapporto modulare per azioni di breve durata.

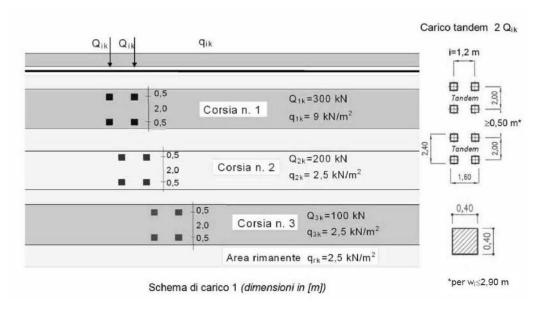
In ultima analisi si ottiene:

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Condizione di carico	Ψ_{L}	t _o (giorni)	ϕ_c (inf,t0)	n_L
Ritiro	0.55	1	2.85	15.74
Carichi permanenti portati	1.10	60	1.32	15.07


5.2.5 Distorsioni e deformazioni impresse - Cedimenti vincolari – ε4

Trattadosi di impalcati a trave poggiata, gli effetti legati ai cedimenti degli appoggi sono nulli.

5.2.6 Azioni variabili da traffico - Carichi verticali comprensivi degli effetti dinamici - q1

I carichi variabili da traffico sono definiti dagli Schemi di Carico descritti nel punto 5.1.3.3.3 delle NTC2018.

Per le analisi globali finalizzate al dimensionamento delle strutture di impalcato e delle sottostrutture si è fatto riferimento allo Schema di Carico 1 costituito da carichi concentrati su due assi tandem, applicati su impronte di pneumatico di forma quadrata e lato 0.40 m, e da carichi uniformemente distribuiti come mostrato nella seguente figura:

Si considera un solo carico tandem per corsia, disposto in asse alla corsia stessa.

Le intensità dei carichi concentrati e distribuiti considerate sono quelle richiamate nella Tab. 5.1.II delle NTC2018:

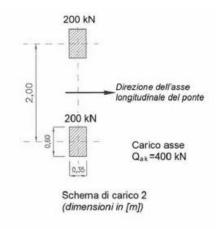
 $\textbf{Tab. 5.1.II} \text{ -} \textit{Intensità dei carichi } Q_{ik} \textit{ e } q_{ik} \textit{ per le diverse corsie}$

Posizione	Carico asse Q _{ik} [kN]	q _{ik} [kN/m²]
Corsia Numero 1	300	9,00
Corsia Numero 2	200	2,50
Corsia Numero 3	100	2,50
Altre corsie	0,00	2,50

I suddetti carichi mobili includono gli effetti dinamici.

T00VI02STRRE01A.docx 25 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400



RM8401

Relazione tecnica e di calcolo PO02

Nel caso in esame, non essendo previsti marciapiedi, non è stato considerato lo Schema di carico 5, relativo alla folla, uniformemente distribuito di intensità pari a 5.0 kN/m².

Per le verifiche locali della soletta d'impalcato è stato considerato anche lo Schema di carico 2 costituito da un singolo asse applicato su specifiche impronte di pneumatico di forma rettangolare, di larghezza 0.60 m ed altezza 0.35 m, come mostrato nella figura seguente:

Questo schema è stato considerato autonomamente con asse longitudinale nella posizione più gravosa.

Le larghezze wl delle corsie convenzionali su una carreggiata ed il massimo numero (intero) possibile di tali corsie su di essa sono indicati nel prospetto seguente (fig. 5.1.1 e Tab. 5.1.I delle NTC2018):



Fig. 5.1.1 - Esempio di numerazione delle corsie

Tab. 5.1.I - Numero e larghezza delle corsie

Larghezza della superfi- cie carrabile "w"	Numero di corsie con- venzionali	Larghezza di una corsia convenzionale [m]	Larghezza della zona rimanente [m]
w < 5,40 m	n _l = 1	3,00	(w-3,00)
$5.4 \le w \le 6.0 \text{ m}$	$n_1 = 2$	w/2	0
6,0 m ≤ w	$n_l = Int(w/3)$	3,00	w - (3,00 X n _l)

T00VI02STRRE01A.docx 26 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

5.2.6.1 Disposizione trasversale delle corsie convenzionali per analisi globali impalcato

La disposizione delle corsie convenzionali nella carreggiata è stata scelta in modo da ottenere la situazione più gravosa sulla singola trave principale esaminata.

Sono state esaminate le seguenti configurazioni:

- C1-sx: 1 colonna di carico (Corsia Numero 1), disposta a partire dal margine sinistro della carreggiata;
- C2-sx: 2 colonne di carico (Corsia Numero 1 e n.2), disposte a partire dal margine sinistro della carreggiata;
- *C3-sx:* 3 colonne di carico (Corsia Numero 1, n.2 e n.3), disposte a partire dal margine sinistro della carreggiata;
- *C4-sx:* 3 colonne di carico (Corsia Numero 1, n.2 e n.3), disposte a partire dal margine sinistro della carreggiata e parte rimanente;
- C1-dx: 1 colonna di carico (Corsia Numero 1), disposta a partire dal margine destro della carreggiata;
- C2-dx: 2 colonne di carico (Corsia Numero 1 e n.2), disposte a partire dal margine destro della carreggiata;
- C3-dx: 3 colonne di carico (Corsia Numero 1, n.2 e n.3), disposte a partire dal margine destro della carreggiata;
- *C4-dx:* 3 colonne di carico (Corsia Numero 1, n.2 e n.3), disposte a partire dal margine destro della carreggiata e parte rimanente;

La distribuzione dei carichi accidentali sulle travi è determinata risolvendo il sistema isostatico costituito dalla soletta d'impalcato appoggiata in corrispondenza delle travi e determinando le reazioni di appoggio.

La tabella seguente sintetizza la ripartizione dei carichi mobili per le combinazioni dei carichi mobili in sinistra:

Carichi agenti sulle travi		Trsx	Trcen	Trdx
1 colonna di carico (Q1k)	kN/m	280.00	100.00	-80.00
2 colonne di carico (Q1k + Q2k)	kN/m	406.67	166.67	-73.33
3 colonne di carico (Q1k + Q2k + Q3k)	kN/m	440.00	200.00	-40.00
1 colonna di carico (q1k)	kN/m	25.20	9.00	-7.20
2 colonne di carico (q1k + q2k)	kN/m	29.95	11.50	-6.95
3 colonne di carico (q1k + q2k + q3k)	kN/m	32.45	14.00	-4.45
3 colonne di carico (q1k + q2k + q3k)+ parte rimanente	kN/m	32.52	16.92	1.31

Come è possibile evincere, gli effetti più gravosi per la singola trave, sono relativi al caso di piattaforma impegnata da tre colonne di carico con parte rimanente.

5.2.6.2 Disposizione trasversale delle corsie convenzionali per analisi globali sottostrutture

Per la determinazioni dei massimi effetti generati dai carichi mobili sulle sottostrutture, sono state esaminate le seguenti configurazioni:

- *C1:* impalcato impegnato da 3 colonne di carico (Corsia Numero 1, n.2 e n.3), disposte a partire dal margine sinistro della carreggiata, e carico distribuito qik sulla rimanente larghezza dell'impalcato, questa configurazione massimizza lo sforzo normale sulle sottostrutture;
- C2: impalcato impegnato da 2 colonne di carico (Corsia Numero 1 e n.2), disposte a partire dal margine sinistro della carreggiata, questa configurazione massimizza la coppia trasversale sulle sottostrutture;

T00VI02STRRE01A.docx 27 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

- *C3:* impalcato impegnato da 3 colonne di carico (Corsia Numero 1, n.2 e n.3), disposte a partire dal margine destro della carreggiata, e carico distribuito qik sulla rimanente larghezza dell'impalcato, questa configurazione massimizza lo sforzo normale sulle sottostrutture;
- C4: impalcato impegnato da 2 colonne di carico (Corsia Numero 1 e n.2), disposte a partire dal margine destro della carreggiata, questa configurazione massimizza la coppia trasversale sulle sottostrutture.

5.2.6.3 Disposizione longitudinale dei carichi mobili

In direzione longitudinale, i carichi sono stati applicati come suggerito dalle linee d'influenza in modo da ottenere gli effetti più sfavorevoli.

5.2.7 Azioni variabili da traffico – Azione longitudinale di frenamento o di accelerazione – q3

L'azione longitudinale di frenamento o di accelerazione q3 è funzione del carico verticale totale agente sulla corsia convenzionale n.1:

$$180 \text{ kN} \le q3 = 0.6 (2Q_{ik}) + 0.10 q_{ik} w_1 L \le 900 \text{ kN}$$

La forza, applicata a livello della pavimentazione ed agente lungo l'asse della corsia, è assunta uniformemente distribuita sulla lunghezza caricata e include gli effetti di interazione.

Nel caso in esame si ha:

q3 = 419.4 kN

5.2.8 Azioni variabili da traffico – Azione centrifuga – q4

Nei ponti con asse curvo di raggio R (in metri), l'azione centrifuga corrispondente ad ogni colonna di carico si valuta convenzionalmente come indicato nella Tab. 5.1.III delle NTC2018, essendo $Q_v=\Sigma_i$ $2Q_{ik}$ il carico totale dovuto agli assi tandem dello schema di carico 1 agenti sul ponte.

Il carico concentrato q4, applicato a livello della pavimentazione, agisce in direzione normale all'asse del ponte.

Tab. 5.1.III - Valori caratteristici delle forze centrifughe

Raggio di curvatura [m]	q ₄ [kN]
R < 200	0,2 Q _v
200 ≤ R ≤ 1500	40 Q _v /R
1500 ≤ R	0

Nel caso in esame il ponte ricade lungo una curva di raggio R=400 m.

T00VI02STRRE01A.docx 28 di 111

\circ	\circ	1	"S	ΛΙ	٨		ı۸	"
	\sim	4	- 51	41	А	ĸ	ΙА	

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

5.2.9 Azioni di Neve e di Vento – q5

Il carico di neve, non concomitante con i carichi da traffico, non risulta in alcun modo dimensionante nel caso in esame e non viene preso in considerazione.

Le azioni da vento sono state valutate secondo quanto specificato nel par. 3.3 delle NTC2018.

L'azione del vento è stata assimilata ad un carico orizzontale statico, diretto ortogonalmente all'asse del ponte. Tale azione è stata considerata agente sulla proiezione nel piano verticale delle superfici direttamente investite.

La superficie dei carichi transitanti sul ponte esposte al vento si assimila ad una parete rettangolare continua dell'altezza di 3 m a partire dal piano stradale.

Per il calcolo dei coefficienti di forma si è fatto riferimento alla UNI-ENV 1991-2-4/1997:

$$c_{f,x} = c_{fx,0}$$

Dove:

 $c_{fx,0}$ è il coefficiente di forma per snellezza infinita da determinarsi in base alle caratteristiche geometriche dell'impalcato ed al rapporto d/b in base alle figure sotto riportate:

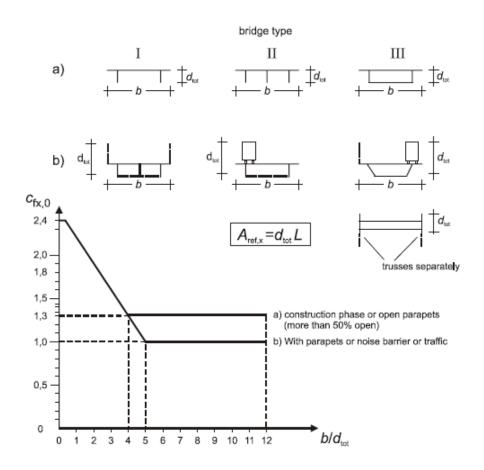


Figure 8.3 — Force coefficient for bridges, c_{fx.0}

T00VI02STRRE01A.docx 29 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Il valore del fattore di riduzione $\Psi_{\lambda,x}$ si ricava in funzione della snellezza effettiva λ e del rapporto di solidità ϕ dal grafico sottostante:

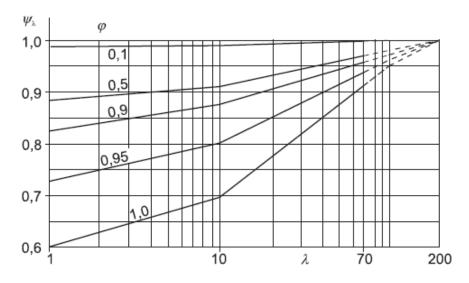


Figure 7.36 — Indicative values of the end-effect factor ψ_{λ} as a function of solidity ratio φ versus slenderness λ

Di seguito si riporta il calcolo delle azioni esercitate dal vento sulle strutture d'impalcato:

T00VI02STRRE01A.docx

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Effetti dovuti al Vento (q5)	var	unità	
parametro vb,0	vb0	m/sec	27
parametro a0	a0	m	500
parametro ka	ka	I/sec)	0.02
altitudine del viadotto s.l.m.	as	m	400
velocità di riferimento vb	vb	m/sec	27.0
		1/	
pressione cinetica del vento	qb	kN/m2	0.46
Classe di rugosità del terreno			D
Categoria di esposizione del sito			II
coefficiente kr	kr		0.19
altezza di riferimento z0	z0	m	0.05
altezza di riferimento zmin	zmin	m	4.00
altezza dal suolo z	Z	m	5.0
coefficiente di topografia	ct		1.0
coefficiente di esposizione ce(z)	ce		1.93
coefficiente dinamico cd	cd		1.00
coefficiente di forma cp impalcato scarico	cp1		1.30
coefficiente di forma cp impalcato carico	cp2		1.46
coefficiente di forma cp pile	ср3		1.20
pressione del vento impalcato scarico		kN/m2	1.14
pressione del vento impalcato carico		kN/m2	1.28
pressione del vento pile		kN/m2	1.05
Lunghezza complessiva impalcato	Ltot	m	22
altezza impalcato scarico	Hp1	m	3.81
Altezza impalcato scarico	Hp2	m	4.71
Altezza centro di taglio	-	m	1.46
Artezza centro di tagno	zg	111	1.40
Carichi dovuti al vento	qt (kN/m)	b (m)	Mt (kNm/m)
Impalcato scarico (braccio al baricentro impalcato)	4.4	0.45	2.0
Impalcato carico (braccio rispetto al baricentro impalcato)	6.0	0.90	5.4
Impalcato scarico (braccio rispetto agli appoggi)	4.4	1.91	8.3
Impalcato carico (braccio rispetto agli appoggi)	6.0	2.36	14.2

I momenti Mt determinano i seguenti carichi verticali sulle travi:

Carichi verticali agenti sulle travi			Trcen	Trdx
Vento ad impalcato scarico - rispetto al baricentro impalcato	kN/m	-0.20	0.00	0.20
Vento ad impalcato carico - rispetto al baricentro impalcato	kN/m	-0.54	0.00	0.54
Vento ad impalcato scarico - rispetto al piano appoggi	kN/m	-0.83	0.00	0.83
Vento ad impalcato carico - rispetto al piano appoggi	kN/m	-1.42	0.00	1.42

T00VI02STRRE01A.docx 31 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

5.2.10 Azioni della temperatura – q7

Le variazioni termiche agenti sulle strutture d'impalcato sono state adottate in accordo alla norma EN 1991-1-5.

Nell'analisi globale delle strutture d'impalcato e delle sottostrutture sono state considerate:

- una variazione termica positiva tra soletta e travi metalliche pari a +10°;
- una variazione termica negativa tra soletta e travi metalliche pari a -10°.

La differenza di temperatura uniforme agente sulle strutture d'impalcato, considerata ai fini del dimensionamento dell'escursione longitudinale di dispositivi di appoggio e giunti di dilatazione, è stata valutata in base ai seguenti parametri:

Dati	Var	unità	
Tipologia di impalcato	Туре		2
Coefficiente di dilatazione termica	α		1.00E-05
Temperatura iniziale	T0		15
Temperatura massima dell'aria all'ombra al livello del mare	Tmax	[°]	41.43
Temperatura minima dell'aria all'ombra al livello del mare	Tmin	[°]	-7.59
altitudine del sito sul livello del mare	as	m	400
Zona climatica	Z		II
deformazione totale finale per ritiro	εcs		0.00015

La tipologia d'impalcato fa riferimento alla classificazione della EN 1991-1-5 (tipo 2 per impalcati a struttura mista acciaio-calcestruzzo).

La zona climatica fa riferimento alla zonizzazione del territorio nazionale di seguito illustrata:

Al tine della valutazione della temperatura dell'aria all'ombra a quote diverse da quella del mare, il territorio italiano è suddiviso in 4 zone climatiche:

- zona I (Valle d'Aosta, Piemonte Lombardia, Emilia Romagna, Veneto, Friuli Venezia Giulia, Trentino Alto Adige);
- zona II (Liguria, Toscana, Umbria, Lazio, Sardegna, Campania, Basilicata);
- zona III (Marche, Abruzzo, Molise, Puglia);
- zona IV (Calabria, Sicilia).

Figura 5.1: Zonizzazione del territorio nazionale per valutazioni azioni climatiche

T00VI02STRRE01A.docx 32 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

I valori delle temperature massime e minime all'ombra al livello del mare, sono state desunte dalle seguenti mappe:

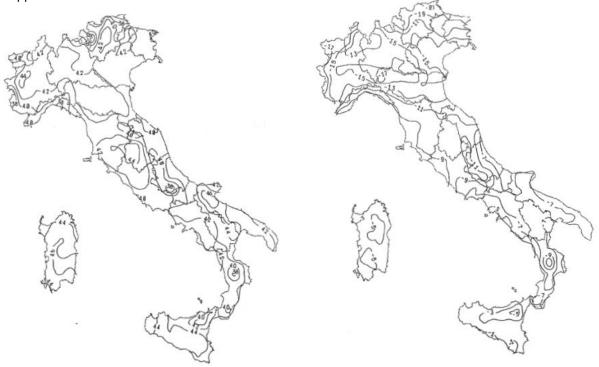


Figura 5.2: Temperature dell'aria massime Tmax (sx) e minime Tmin (dx) dell'aria all'ombra al livello del mare

Gli effetti dovuti alle variazioni termiche differenziali sono stati schematizzati attraverso le seguenti azioni equivalenti applicate alle estremità:

Variazioni termiche positive:

 $N\Delta T$ + = $\alpha \Delta T x Ac x Ea / n_0$

 $M\Delta T + = - N\Delta T + x z$

Variazioni termiche negative:

 $N\Delta T$ - = - $\alpha \Delta T \times Ac \times Ea / n_0$

 $M\Delta T$ - = $N\Delta T$ + x z

Essendo:

 α il coefficiente di dilatazione termica;

Ac l'area della soletta gettata in opera;

Ea modulo elastico dell'acciaio;

n₀ coefficiente di omogeneizzazione acciaio-cls relativo alle azioni di breve termine.

T00VI02STRRE01A.docx 33 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

z distanza tra baricentro della soletta e baricentro della sezione composta relativo alle azioni di breve termine.

Di seguito il dettaglio dei valori relativo al caso in esame:

Effetti dovuti alle Variazioni termiche (q7)	var	unità	
variazione termica positiva	ΔT +	o	10.0
variazione termica negativa	$\DeltaT ext{-}$	o	-10.0
coefficiente di dilatazione termica	α		1.00E-05
coefficiente di omogeneizzazione a t0	n0		6.16
distanza tra il baricentro della soletta in cls e il			
baricentro della sezione composta a t0 estremità sx	Z	m	0.269
baricentro della sezione composta a t0 estremità dx	Z	m	0.269
Forza assiale d'estremità DT+	NcdT+	kN	13494.5
Momento flettente d'estremità sx	McdT+sx	kNm	-3627.3
Momento flettente d'estremità sx	McdT+dx	kNm	-3627.3
Forza assiale d'estremità DT-	NcdT-	kN	-13494.5
Momento flettente d'estremità sx	McdT-sx	kNm	3627.3
Momento flettente d'estremità sx	McdT-dx	kNm	3627.3
Carichi agenti sulle travi		Trsx	Trdx
Forza assiale d'estremità - DT+	kN	4498.2	4498.2
Momento flettente d'estremità sx	kNm	-1209.1	-1209.1
Momento flettente d'estremità dx	kNm	-1209.1	-1209.1
Forza assiale d'estremità - DT-	kN	-4498.2	-4498.2
Momento flettente d'estremità sx	kNm	1209.1	1209.1
Momento flettente d'estremità dx	kNm	1209.1	1209.1

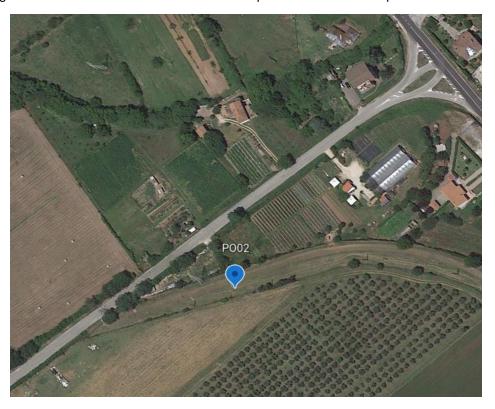
5.2.11 Resistenze parassite dei vincoli – q9

Le resistenze parassite dei dispositivi disposti sulle spalle sono state valutate sulla base delle caratteristiche di rigidezza degli isolatori elastomerici impiegati ed in base agli spostamenti previsti.

Queste azioni sono sempre associate alla condizione di carico che le produce (Dilatazione termiche, ritiro).

T00VI02STRRE01A.docx 34 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400


RM8401

Relazione tecnica e di calcolo PO02

5.2.12 Azioni sismiche - E

5.2.12.1 Coordinate di riferimento e parametri sismici fondamentali

Le figure seguenti illustrano le coordinate di riferimento per la valutazione dei parametri sismici di base:

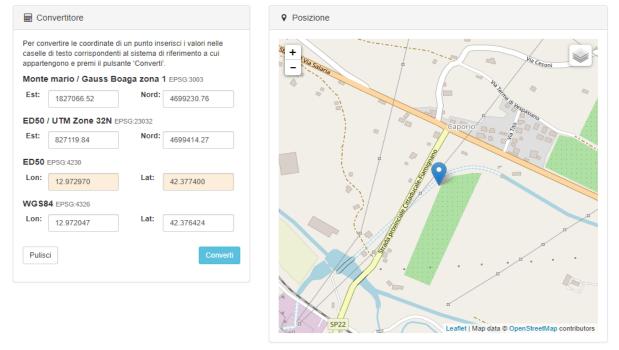


Figura 5.3: Coordinate di riferimento per la determinazione dei parametri sismici di base

T00VI02STRRE01A.docx 35 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

I parametri sismici fondamentali sono stati determinati con l'ausilio del software-free SPETTRI-NTC ver. 1.0.3 (prodotto dal Consiglio Superiore dei Lavori Pubblici www.cslp.it).

PO02

WGS	S84	ED5	0
Lon	Lat	Lon	Lat
12.972047	42.376424	12.97297	42.3774

Periodo di riferimen	100 anni	
Coefficiente d'uso	C.u. =	2.0
Classe d'uso	CI =	IV
Vita Nominale	$V_N =$	50 anni

PARAMETRI SISMICI

STATO	T_R	ag	F ₀	T* _C
LIMITE	[anni]	[g]	[-]	[s]
SLO	60	0.091	2.400	0.285
SLD	101	0.114	2.349	0.296
SLV	949	0.266	2.391	0.349
SLC	1950	0.333	2.423	0.362

L'azione sismica viene considerata mediante spettri di risposta elastici in accelerazione delle componenti orizzontali e verticale, definiti in base al §3.2 delle NTC 2018.

5.2.12.2 Spettri di risposta in accelerazione delle componenti orizzontali

Gli spettri di risposta elastici delle componenti orizzontali sono definiti dalle espressioni seguenti:

$$\begin{split} 0 &\leq T < T_{B} \qquad S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left[\frac{T}{T_{B}} + \frac{1}{\eta \cdot F_{o}} \left(1 - \frac{T}{T_{B}} \right) \right] \\ T_{B} &\leq T < T_{C} \qquad S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \\ T_{C} &\leq T < T_{D} \qquad S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \frac{T_{C}}{T} \\ T_{D} &\leq T \qquad S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \frac{T_{C}T_{D}}{T^{2}} \end{split}$$

In cui:

T è il periodo di vibrazione;

S_e (T) è l'accelerazione spettrale orizzontale;

 a_g è l'accelerazione orizzontale massima al sito su suolo rigido, determinata in funzione della probabilità di superamento nel periodo di riferimento P_{VR} ;

S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente $S = S_S \times S_T$, essendo S_S il coefficiente di amplificazione

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

stratigrafica (Tabella 5.1) e S_T il coefficiente di amplificazione topografica (Tabella 5.2);

- η è il fattore che altera lo spettro elastico per coefficienti di smorzamento viscosi convenzionali ξ diversi dal 5%, mediante la relazione η=10/(5+ξ)≥0,55, dove ξ (espresso in percentuale) è valutato sulla base di materiali, tipologia strutturale e terreno di fondazione;
- F₀ è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale, ed ha valore minimo pari a 2,2;
- Tc è il periodo corrispondente all'inizio del tratto a velocità costante dello spettro, dato da Tc=CcxT*c dove T*c è definito al § 3.2 e Cc è un coefficiente funzione della categoria di sottosuolo (Tabella 5.1);
- T_B è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante e vale: $T_{B}=T_{C}/3$
- T_D è il periodo corrispondente all'inizio del tratto a spostamento costante dello spettro, espresso in secondi mediante la relazione: T_D =4.0x(a_g/g)+1.6

Categoria sottosuolo	S_{S}	\mathbf{c}_{c}
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10 \cdot (T_{\rm C}^*)^{-0,20}$
C	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0.33}$
D	$0,90 \le 2,40-1,50 \cdot F_o \cdot \frac{a_g}{g} \le 1,80 \cdot$	$1,25 \cdot (T_{\mathrm{C}}^{*})^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1.15 \cdot (T_{\rm C}^*)^{-0.40}$

Tabella 5.1 – Espressioni per S_S e C_C

Categoria topografica	Ubicazione dell'opera o dell'intervento	S_T
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta del rilievo	1,2
T4	In corrispondenza della cresta del rilievo	1,4

Tabella 5.2 – Valori massimi del coefficiente di amplificazione topografica S_T

T00VI02STRRE01A.docx 37 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Nel caso in esame si ha:

Categoria di sottosuolo:

Categoria stratigrafica: T1

Gli effetti delle azioni sismiche sulle strutture sono stati determinati attraverso **Analisi Statiche Lineari** con spettro elastico ridotto per tutto il campo di periodi $T \ge 0.8~T_{is}$, in accordo a quanto previsto al punto § 7.10.5.3.2 delle NTC2018, assumendo per il coefficiente riduttivo η il valore corrispondente al coefficiente di smorzamento viscoso equivalente ξ_{esi} del sistema di isolamento.

Si assume un coefficiente di smorzamento viscoso equivalente del sistema di isolamento pari a:

$$\xi_{esi} = 10\%$$
 cui corrisponde: $\eta = 0.82$

Il valore del periodo proprio del sistema isolato, più avanti dettagliato è pari a:

- Tis = 1.82 sec

La figura seguente illustra gli spettri di risposta in accelerazione delle componenti orizzontali di progetto:

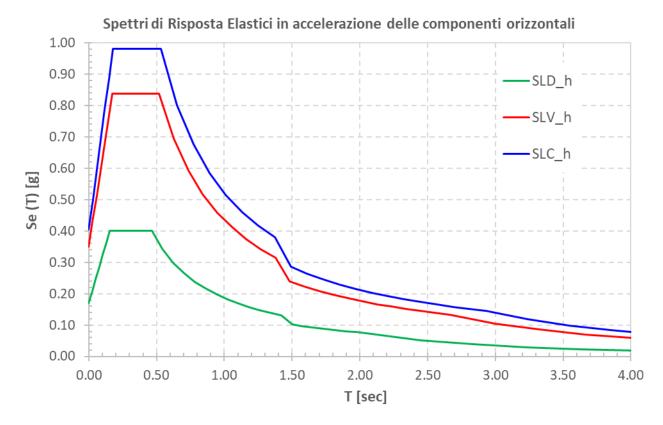


Figura 5.4 – Spettri elastici di risposta in accelerazione delle componenti orizzontali

T00VI02STRRE01A.docx 38 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

La tabella seguente illustra i parametri caratteristici degli spettri di risposta.

STATO LIMITE	a _g [g]	F ₀ [-]	T _c * [sec]	T _B [sec]	T _c [sec]	T _D [sec]	S s [-]	S _τ [-]	S [-]	C _c [-]	d _g [m]	v _g [m/s]
SLD	0.114	2.349	0.296	0.155	0.464	2.056	1.50	1.00	1.50	1.57	0.040	0.125
SLV	0.266	2.391	0.349	0.173	0.519	2.664	1.32	1.00	1.32	1.49	0.119	0.285
SLC	0.333	2.423	0.362	0.177	0.532	2.932	1.22	1.00	1.22	1.47	0.155	0.338

Tabella 5.3 – Parametri caratteristici degli spettri di risposta

5.2.12.3 Spettri di risposta in accelerazione della componente verticale

Gli spettri di risposta elastici della componente verticale sono definiti dalle espressioni seguenti:

$$\begin{split} 0 &\leq T < T_B & S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D & S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \end{split}$$

 F_v è il fattore che quantifica l'amplificazione spettrale massima, in termini di accelerazione orizzontale massima del terreno a_g su sito di riferimento rigido orizzontale, mediante la relazione:

$$F_{v} = 1.35 \cdot F_{o} \cdot \left(\frac{a_{g}}{g}\right)^{0.5}$$
 [3.2.9]

In cui:

T è il periodo di vibrazione;

S_{ve} (T) è l'accelerazione spettrale verticale;

 F_v II fattore che quantifica l'amplificazione spettrale massima in termini di accelerazione orizzontale massima del terreno a_g su sito di riferimento rigido orizzontale, mediante la relazione $F_v = 1.35 \text{ x } F_0 \text{ x } (a_g/g)^{0.5}$;

I valori di a_g , F_0 , S, η sono quelli precedentemente definiti per le componenti orizzontali del moto sismico; i valori di S_S , T_B , T_C e T_D , sono quelli riportati nella Tab. 3.2.VI delle NTC2018:

Tab. 3.2.VI - Valori dei parametri dello spettro di risposta elastico della componente verticale

Categoria di sottosuolo	S _S	T _B	T _C	T _D
A, B, C, D, E	1,0	0,05 s	0,15 s	1,0 s

T00VI02STRRE01A.docx 39 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

La figura sequente illustra gli spettri di risposta in accelerazione della componente verticale di progetto:

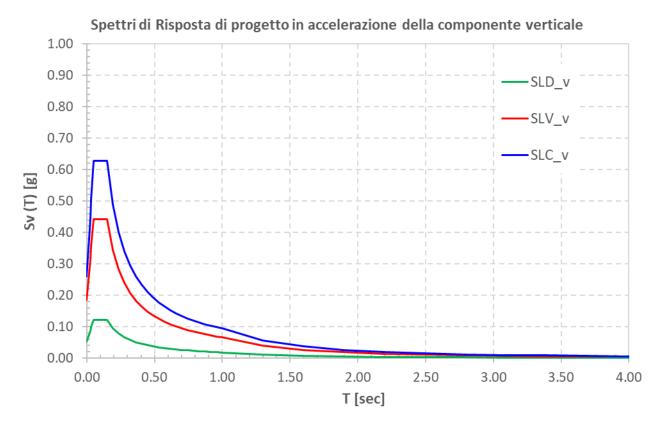


Figura 5.5 – Spettri elastici di risposta in accelerazione della componente verticale

La tabella seguente illustra i parametri caratteristici degli spettri di risposta.

STATO LIMITE	a _g [g]	F ₀ [-]	F _v [-]	T _B [sec]	T _c [sec]	T _D	S _s [-]	S _T [-]	S [-]
SLD	0.114	2.349	1.071	0.050	0.150	1.000	1.00	1.00	1.00
SLV	0.266	2.391	1.665	0.050	0.150	1.000	1.00	1.00	1.00
SLC	0.333	2.423	1.888	0.050	0.150	1.000	1.00	1.00	1.00

Tabella 5.4 – Parametri caratteristici degli spettri di risposta

5.2.12.4 Masse sismiche

In accordo al punto §5.1.3.12 delle NTC2018, Per determinare gli effetti delle azioni sismiche sulle strutture si è fatto riferimento alle sole masse corrispondenti ai pesi propri ed ai sovraccarichi permanenti portati, considerando nullo il valore quasi permanente delle masse corrispondenti ai carichi da traffico.

T00VI02STRRE01A.docx 40 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

5.3 Combinazioni di Carico

5.3.1 Combinazioni di carico in esercizio

Ai fini della determinazione dei valori caratteristici delle azioni dovute al traffico, sono state considerate le combinazioni di cui ai gruppi di azioni 1, 2a e 2b della tabella 5.1.IV delle NTC2018:

Tab. 5.1.IV – Valori caratteristici delle azioni dovute al traffico

		Carich	i sulla superfic	Carichi su marciapiedi e piste ciclabili non sormontabili		
		Carichi verticalı	i	Carichi	orizzontali	Carichi verticali
Gruppo di azioni	Modello principale (schemi di carico 1, 2, 3, 4 e 6)	Veicoli spe- ciali	Folla (Sche- ma di carico 5)	Frenatura	Forza centrifuga	Carico uniformemente distribuito
1	Valore carat- teristico					Schema di carico 5 con valore di combinazione 2,5KN/m²
2a	Valore fre- quente			Valore carat- teristico		
2b	Valore fre- quente				Valore caratteri- stico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0KN/m²
4 (**)			Schema di carico 5 con valore carat- teristico 5,0KN/m²			Schema di carico 5 con valore caratteristico 5,0KN/m²
5 (***)	Da definirsi per il singo- lo progetto	Valore carat- teristico o nominale				
(*) Ponti pe		·				
(**) Da cons	iderare solo se ri	ichiesto dal part	icolare progetto	(ad es. ponti in a	zona urbana)	

^(**) Da considerare solo se richiesto dal particolare progetto (ad es. ponti in zona urbana)

La tabella 5.1.V fornisce i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche SLU:

T00VI02STRRE01A.docx 41 di 111

^(***) Da considerare solo se si considerano veicoli speciali

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Tab. 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ^(t)	A1	A2
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	Ϋ́G2	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	ΥQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Υ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Υε2· Υε3· Υε 4	0,00 1,20	0,00 1,20	0,00 1,00

⁽i) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

Nel caso in esame, essendo i carichi permanenti non strutturali compitamente definiti sono stati adottati gli stessi coefficienti validi per le azioni permanenti.

I valori dei coefficienti ψ_{0j} , ψ_{1j} e ψ_{2j} per le diverse categorie di azioni sono riportati nella tabella 5.1.VI delle NTC2018:

⁽a) Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Tab. 5.1.VI - Coefficienti ψ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni	Coefficiente	Coefficiente	Coefficiente ψ ₂
	(Tab. 5.1.IV)	ψ ₀ di combi-	Ψ ₁ (valori	(valori quasi
		nazione	frequenti)	permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
iveve	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

5.3.1.1 Combinazioni per verifiche strutture d'impalcato

Le combinazioni di carico adottate per le verifiche di resistenza agli SLU sono le seguenti:

- 1. $Fd = 1.35 \times G_1 + 1.35 \times G_2 + 1.2 \times \varepsilon_2 + 1.2 \times \varepsilon_4 + 1.35 \times G_1 + 1.50 \times 0.60 \times G_{7b} + 1.50 \times 0.6 \times G_5$;
- 2. $Fd = 1.35 \times G_1 + 1.35 \times G_2 + 1.2 \times \varepsilon_4 + 1.35 \times G_1 + 1.50 \times 0.60 \times G_{7a} + 1.50 \times 0.6 \times G_5$;

Le combinazioni di carico adottate per le verifiche di resistenza agli SLE-Rara sono le seguenti:

- 3. $Fd = G_1 + G_2 + \varepsilon_2 + \varepsilon_4 + Q_1 + 0.60 \times q_{7b} + 0.6 \times q_5$;
- 4. $Fd = G_1 + G_2 + \varepsilon_4 + Q_1 + 0.60 \times q_{7a} + 0.6 \times q_5$;

Le combinazioni di carico adottate per le verifiche di resistenza agli SLE-FRequente sono le seguenti:

- 5. $Fd = G_1 + G_2 + \varepsilon_2 + \varepsilon_4 + \varepsilon_4 + 0.75 \times Q_{1C} + 0.40 \times Q_{1D} + 0.50 \times Q_{7b}$;
- 6. $Fd = G_1 + G_2 + \varepsilon_4 + 0.75 \times Q_{1C} + 0.40 \times Q_{1D} + 0.50 \times Q_{7a}$

Dove:

G₁ sono le caratteristiche della sollecitazione dovute ai pesi propri;

G₂ sono le caratteristiche della sollecitazione dovute ai permanenti portati;

ε₂ sono le caratteristiche della sollecitazione dovute al ritiro;

ε₄ sono le caratteristiche della sollecitazione dovute ai cedimenti dei vincoli (ove previsti);

T00VI02STRRE01A.docx 43 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401	Relazione tecnica e di calcolo PO02
--------	-------------------------------------

Q 7a	sono le caratteristiche della sollecitazione dovute alla variazione termica positiva;
q 7b	sono le caratteristiche della sollecitazione dovute alla variazione termica negativa;
Q ₁	sono le caratteristiche della sollecitazione dovute alle azioni variabili da traffico (C carichi concentrati – D carichi distribuiti – F folla);
Q_5	sono le caratteristiche della sollecitazione dovute al vento.

5.3.1.2 Combinazioni per sottostrutture

Si rimanda ai capitoli relativi ai dimensionamento delle spalle.

5.3.2 Combinazioni di carico in fase sismica

La risposta della struttura è stata calcolata per sisma agente in direzione orizzontale trasversale e longitudinale ed in direzione verticale.

Sono state considerate le seguenti combinazioni:

$$EI = E_{EI} \pm 0.30 \; E_{Et} \pm \; 0.30 \; E_{Ev}$$

$$Et = 0.30 E_{El} \pm E_{Et} \pm 0.30 E_{Ev}$$

$$Ev = 0.30 E_{El} \pm 0.30 E_{Et} \pm E_{Ev}$$

Essendo:

E_{EI} Azione sismica in direzione orizzontale longitudinale;

E_{Et} Azione sismica in direzione orizzontale trasversale;

E_{Ev} Azione sismica in direzione verticale.

Le azioni sismiche sono state combinate con i carichi permanenti secondo la seguente espressione:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

Nelle verifiche di resistenza delle strutture d'impalcato è omessa la combinazione sismica in quanto non dimensionante.

T00VI02STRRE01A.docx 44 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

6 ANALISI E VERIFICHE DELLE STRUTTURE D'IMPALCATO

6.1 Criteri di calcolo

6.1.1 Analisi globale

6.1.1.1 Definizione del modello di calcolo

L'impalcato ha uno schema statico di trave appoggiata con luci pari agli interassi delle spalle misurati sull'asse stradale.

L'analisi strutturale è condotta <u>su una singola trave principale</u>, sottoposta al peso proprio, ai sovraccarichi permanenti, alle distorsioni, all'aliquota dei carichi mobili che discende dalla ripartizione trasversale dei carichi ed alle azioni del vento.

La trave è discretizzata in conci di sezione costante, in modo da tener conto delle variazioni geometriche e della fessurazione della soletta.

La trave è stata vincolata rigidamente in corrispondenza degli allineamenti delle spalle.

6.1.1.2 Caratteristiche geometrico-inerziali in fase di analisi

L'analisi è stata condotta per fasi distinte per tenere conto dell'evoluzione dello schema statico e dell'evoluzione delle caratteristiche geometrico-inerziali della struttura nel tempo. In particolare, sono stati analizzati i seguenti modelli:

- 1. *Modello* 1: In cui le caratteristiche geometrico-inerziali delle sezioni sono ottenute considerando la sola struttura metallica. Con questo modello si valutano gli effetti dovuti ai pesi propri. Per quanto attiene l'impalcato il peso proprio è quello complessivo relativo alla carpenteria metallica, al peso delle predalles ed al peso del getto di completamento della soletta in c.a.;
- 2. Modello 2: In cui sono considerate le caratteristiche geometrico-inerziali della sezione composta costituita dalle travi metalliche e dalla soletta in c.a. omogeneizzata all'acciaio mediante il rapporto modulare n_L = n_{inf}. Con questo modello si valutano gli effetti dovuti alle azioni di lunga durata: i carichi permanenti.
- 3. Modello 3: In cui sono considerate le caratteristiche geometrico-inerziali della sezione composta costituita dalle travi metalliche e dalla soletta in c.a. omogeneizzata all'acciaio mediante il rapporto modulare n_L = n₀. Con questo modello si valutano gli effetti dovuti alle azioni di breve durata o impulsive: Azioni variabili da traffico, Vento.

Nei modelli 2 e 3 si è tenuto conto della riduzione di rigidezza della sezione composta in prossimità degli appoggi interni per la fessurazione della soletta, trascurando il contributo inerziale del calcestruzzo su un tratto di lunghezza pari al 15% delle luci delle campate adiacenti e considerando comunque il contributo inerziale delle armature presenti entro la soletta collaborante.

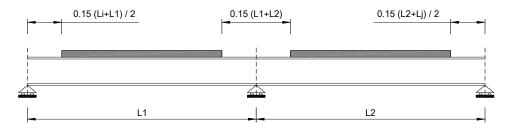
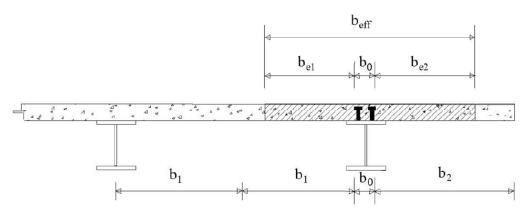


Figura 6.1. Modellazione degli effetti dovuti alla fessurazione

T00VI02STRRE01A.docx 45 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401


Relazione tecnica e di calcolo PO02

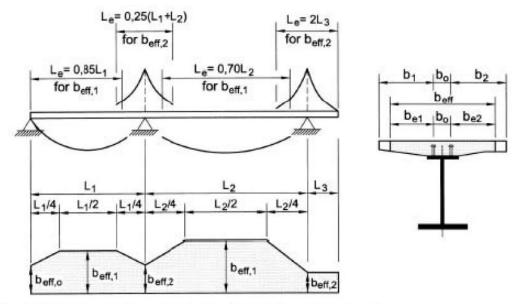
6.1.1.3 Larghezze collaboranti in fase di analisi e di verifica

Le larghezze collaboranti della soletta da considerare in fase di verifica delle sezioni composte sono state determinate come precisato nel par. §4.3.2.3 delle NTC2018.

La larghezza efficace beff della soletta è stata determinata con l'espressione:

$$b_{eff} = b_0 + b_{e1} + b_{e2}$$

Fig. 4.3.1. - Definizione della larghezza efficace $b_{
m eff}$ e delle aliquote $b_{
m ei}$


dove:

Le

b₀ è la distanza tra gli assi dei connettori;

 b_{ei} è il valore della larghezza collaborante da ciascun lato della sezione composta pari al minimo tra b_i e $L_e/8$;

nelle travi poggiate è la luce della trave, nelle travi continue è la distanza indicata nella fig. 4.3.2. delle NTC2018:

 ${f Fig.~4.3.2}$ - Larghezza efficace, $b_{f eff}$, e luci equivalenti, $L_{f e}$, per le travi continue

T00VI02STRRE01A.docx 46 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Per gli appoggi di estremità la formula diviene:

 $b_{eff} = \beta_1 b_{e1} + \beta_2 b_{e2}$

dove:

 $\beta_i = (0.55 + 0.25 \text{ Le/bei}) \le 1.0$

In fase di analisi è stata considerata una larghezza efficace costante sull'intera lunghezza di ogni campata e pari al valore ottenuto in mezzeria (beff1) così come esposto in precedenza.

6.1.2 Analisi locali

Per il dimensionamento della soletta e dei traversi si rimanda alla progettazione definitiva.

6.2 Analisi statica globale

L'analisi statica globale della trave continua è stata condotta con l'ausilio del noto programma agli elementi finiti SAP2000®.

La figura seguente illustra la geometria del modello di calcolo:

Figura 6.2. Geometria del modello di calcolo

6.2.1 Caratteristiche geometrico-inerziali delle sezioni in fase di analisi

In allegato si riepilogano le caratteristiche geometriche-inerziali delle sezioni che compongono le sezioni d'impalcato considerate in fase di analisi.

I simboli corrispondono allo schema seguente:

T00VI02STRRE01A.docx 47 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

SCHEMA DI RIFERIMENTO Bcoll (F) As1 → Gc TC Brsup As2 (E) Brint (D)В1 B2 G ₹ spy 온 Ga

Figura 6.3. Schema di riferimento per la valutazione delle caratteristiche geometrico-inerziali delle sezioni delle travi d'impalcato

В4

6.2.2 Applicazione dei carichi al modello

6.2.2.1 Peso proprio della struttura (Load G1) – fase 1

Il peso proprio della carpenteria metallica dell'impalcato è stato computato in automatico dal codice di calcolo utilizzato a partire dalle aree degli elementi che rappresentano le travi principali, considerando il coefficiente maggiorativo specificato al par. 5.2.1.1 che tiene conto dell'incidenza delle strutture secondarie (traversi, controventi, saldature, bullonature etc.).

Il peso proprio della soletta, specificato al par. 5.2.1.1, è stato applicato quale carico uniformemente distribuito agli elementi che schematizzano la trave.

6.2.2.2 Carichi permanenti portati (Load G2) – fase 2

I carichi permanenti portati, specificato al par. 5.2.2.1, sono stati applicati quali carichi uniformemente distribuiti sugli elementi che schematizzano la trave.

6.2.2.3 Cedimenti vincolari (Load CED1, CED2, CED3 – Inviluppi Comb: CED) – fase 2

Trattadosi di impalcati a trave poggiata, gli effetti legati ai cedimenti degli appoggi sono nulli.

T00VI02STRRE01A.docx 48 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

6.2.2.4 Ritiro (LOAD RIT) - fase 2

Gli effetti dovuti alle azioni isostatiche non sono applicati al modello ma sono conteggiati direttamente in fase di verifica delle sezioni. Gli effetti del ritiro iperstatico, trattandosi di impalcati a trave poggiata, sono nulli.

6.2.2.5 Carichi mobili verticali (MOVE MVDX, MVSX) – fase 3

L'applicazione dei treni di carico nel modello avviene attraverso un apposito modulo del programma di calcolo che permette di valutare gli effetti in termini di sollecitazioni e deformazioni dovuti a uno o più treni di carico viaggianti lungo linee di carico (lanes) prefissate, che nel caso in esame corrispondono <u>all'asse</u> della trave.

In particolare, è stato utilizzato l'apposito modulo del programma di calcolo che permette di valutare gli effetti in termini di sollecitazioni e deformazioni dovuti ad un treno di carico viaggiante lungo la struttura.

Sono stati considerati i seguenti treni di carico viaggiante relativi alla trave complessivamente più sollecitata:

- V2018-C: Carichi concentrati dello Schema di carico 1.
- V2018-D: Carichi distribuiti dello Schema di carico 1

6.2.2.6 Variazioni termiche (LOAD DT+, DT-) - fase 3

Gli effetti dovuti alle azioni isostatiche non sono applicati al modello ma sono conteggiati direttamente in fase di verifica delle sezioni. Gli effetti iperstatici dalle variazioni termiche tra soletta e struttura metallica, trattandosi di impalcati a trave poggiata, sono nulli.

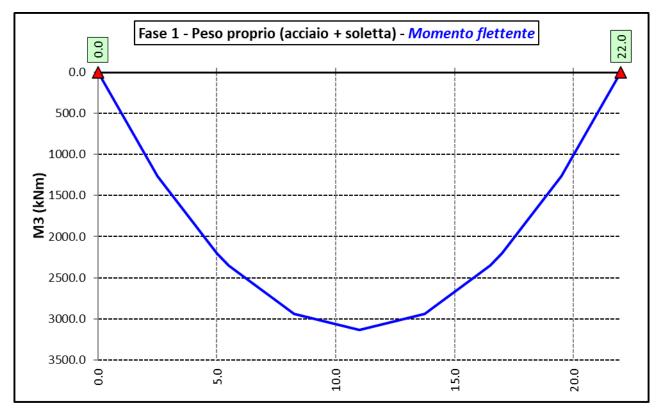
6.2.2.7 Vento trasversale (LOAD Q5-TR, Q5-APP) - fase 3

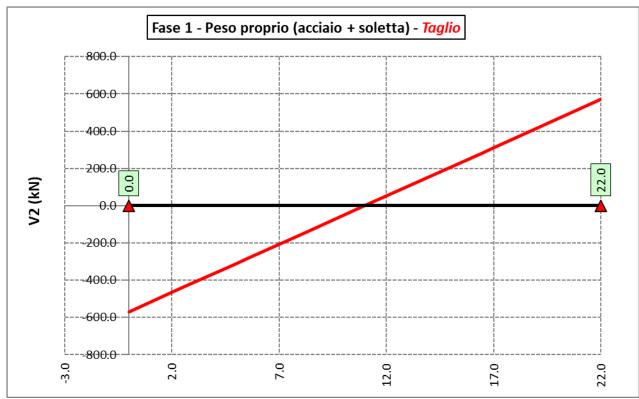
Le azioni dovute al vento, specificate al par. 0, sono state applicate quali carichi verticali uniformemente distribuiti sugli elementi che schematizzano la trave.

6.2.3 Sollecitazioni di progetto

Le figure seguenti rappresentano le sollecitazioni agenti sulla trave principale maggiormente sollecitata, in termini di Momento flettente M3 e sforzo di taglio V2 per ciascuna condizione di carico esaminata:

T00VI02STRRE01A.docx 49 di 111


Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

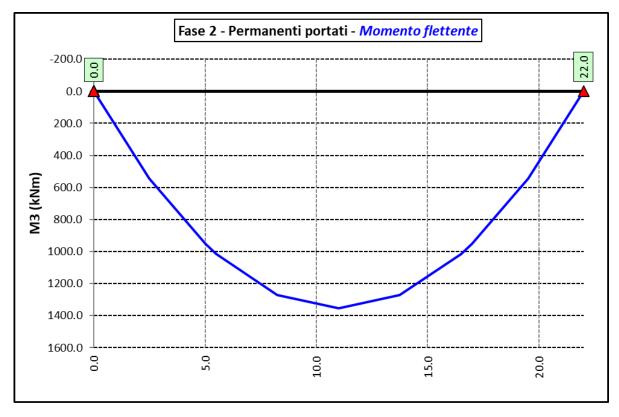


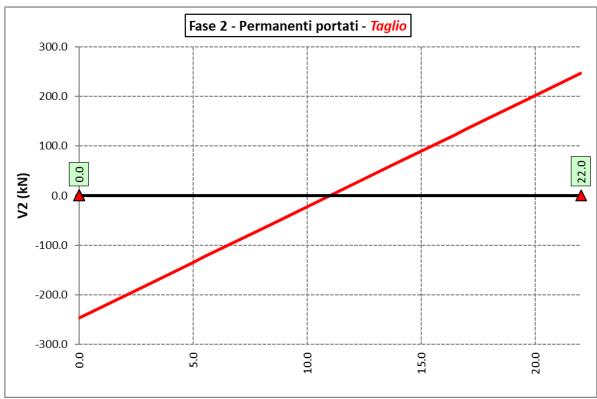
RM8401

Relazione tecnica e di calcolo PO02

6.2.3.1 Peso proprio (acciaio + soletta) – Modello 1

T00VI02STRRE01A.docx


Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

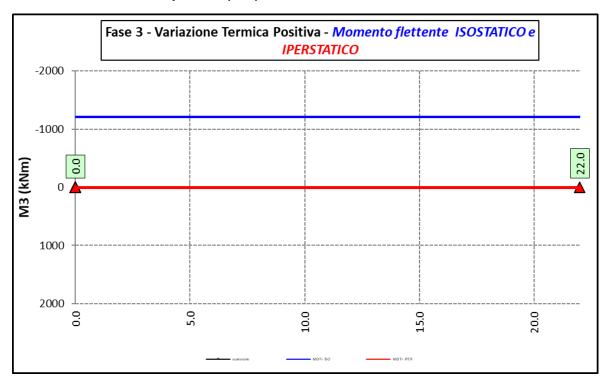


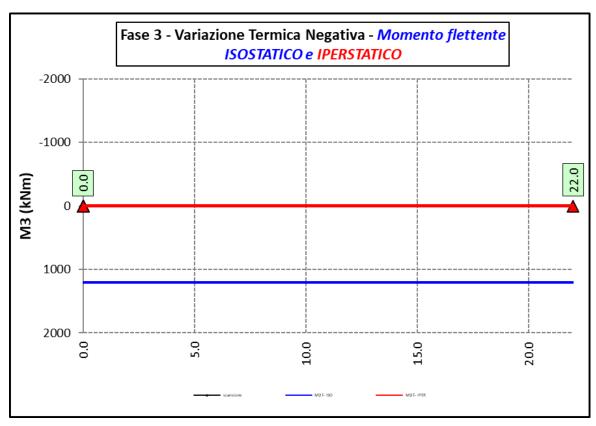
RM8401

Relazione tecnica e di calcolo PO02

6.2.3.2 Permanenti portati – Modello 2

T00VI02STRRE01A.docx 51 di 111


Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

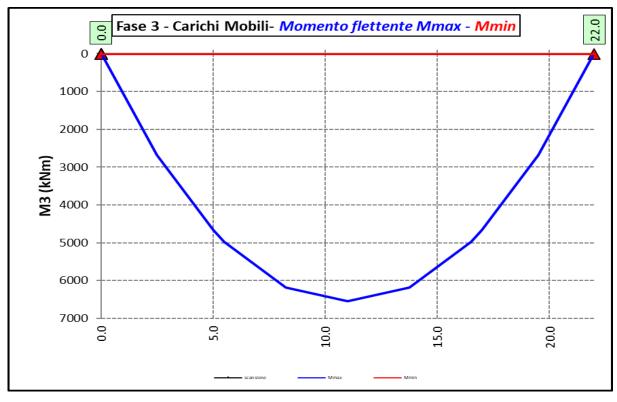

RM8401

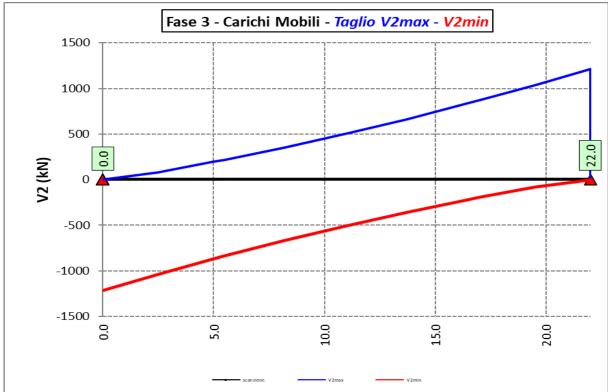
Relazione tecnica e di calcolo PO02

6.2.3.3 Variazioni termiche positive (∆T+) - Modello 3

6.2.3.4 Variazioni termiche negative (△T-) - Modello 3

T00VI02STRRE01A.docx 52 di 111


Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

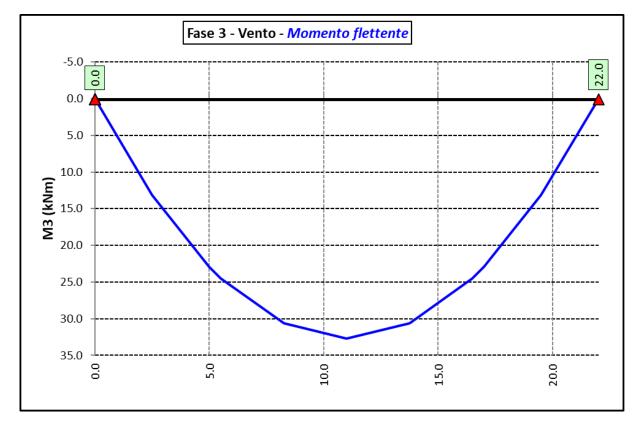


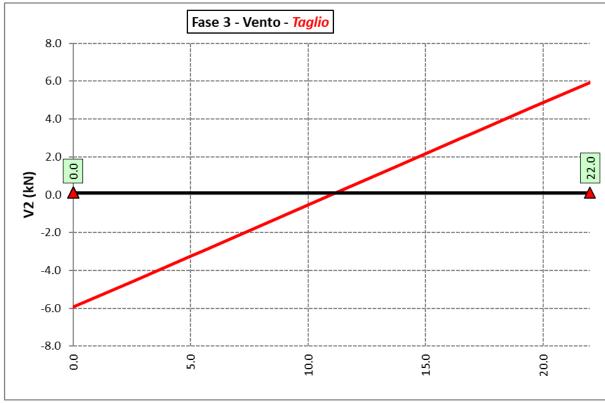
RM8401

Relazione tecnica e di calcolo PO02

6.2.3.5 Azioni variabili da traffico (Inviluppi) – Modello 3

T00VI02STRRE01A.docx


Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400



RM8401

Relazione tecnica e di calcolo PO02

6.2.3.6 Vento - Modello 3

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

6.3 Verifiche delle travi principali

6.3.1 Verifiche di resistenza SLU

6.3.1.1 Classificazione delle sezioni resistenti

In base al par. 4.2.3.1 delle NTC2018 le sezioni trasversali degli elementi strutturali in acciaio si classificano in funzione della loro capacità rotazionale C_{θ} definita come:

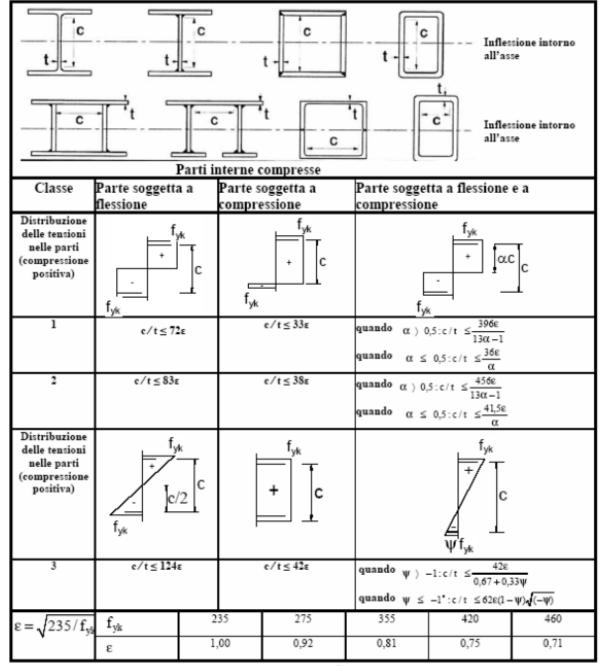
$$C_{\theta} = \vartheta_r / \vartheta_y - 1$$

Essendo ϑ_r e ϑ_y le curvature corrispondenti rispettivamente al raggiungimento della deformazione ultima ed allo snervamento. Si distinguono le seguenti classi di sezioni:

- Classe 1: quando la sezione è in grado di sviluppare una cerniera plastica avente la capacità rotazionale richiesta per l'analisi strutturale condotta con il metodo plastico di cui al §4.2.3.2 senza subire riduzioni della resistenza. Possono generalmente classificarsi come tali le sezioni con capacità rotazionale $C_{\theta} \ge 3$;
- Classe 2: quando la sezione è in grado di sviluppare il proprio momento resistente plastico, ma con capacità rotazionale limitata. Possono generalmente classificarsi come tali le sezioni con capacità rotazionale C_θ ≥ 1,5;
- Classe 3: quando nella sezione le tensioni calcolate nelle fibre estreme compresse possono raggiungere la tensione di snervamento, ma l'instabilità locale impedisce lo sviluppo del momento resistente plastico;
- Classe 4: quando, per determinarne la resistenza flettente, tagliante o normale, è necessario tener conto degli effetti dell'instabilità locale in fase elastica nelle parti compresse che compongono la sezione. In tal caso nel calcolo della resistenza la sezione geometrica effettiva può sostituirsi con una sezione efficace.

Le sezioni di classe 1 e 2 si definiscono compatte, quelle di classe 3 moderatamente snelle e quelle di classe 4 snelle. Per i casi più comuni delle forme delle sezioni e delle modalità di sollecitazione, le Tab. 4.2.III, 4.2.IV e 4.2.IV delle NTC2018, di seguito riportate, forniscono indicazioni per la classificazione delle sezioni:

T00VI02STRRE01A.docx 55 di 111


Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

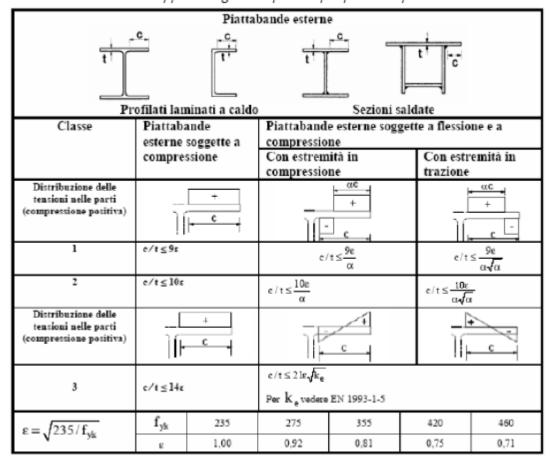
RM8401

Relazione tecnica e di calcolo PO02

Tab. 4.2.III - Massimi rapporti larghezza spessore per parti compresse

^{*)} $\psi \le -1$ si applica se la tensione di compressione $\sigma \le f_{yk}$ o la deformazione a trazione $\epsilon_y > f_{yk}/E$

T00VI02STRRE01A.docx

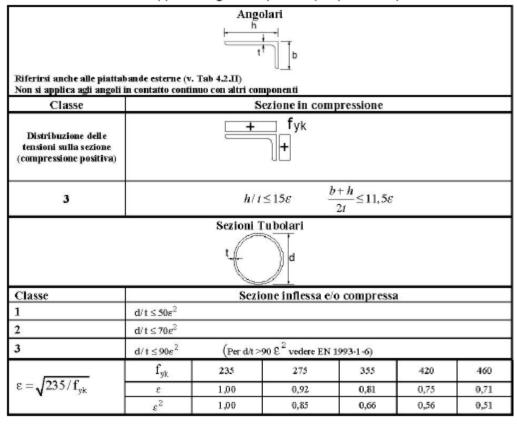

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Tab. 4.2.IV - Massimi rapporti larghezza spessore per parti compresse

T00VI02STRRE01A.docx 57 di 111


Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Tab. 4.2.V - Massimi rapporti larghezza spessore per parti compresse

La classe di una sezione composta corrisponde al valore di classe più alto tra quelli degli elementi componenti.

Il sistema di classificazione utilizzato per le travi in acciaio vale anche per le sezioni composte. La classe di una sezione composta è la più alta classe tra quella degli elementi in acciaio compressi che la compongono.

È possibile che una sezione trasversale con anima in classe 3 e flange in classe classe 1 o 2, venga riclassificata in classe 2 equivalente come definito in EN 1993-2.

6.3.1.2 Resistenza alla flessione

Le sezioni in classe 1 o 2 possono essere verificate utilizzando sia la loro resistenza a flessione plastica che elastica. Le sezioni di classe 3 possono attingere alla sola resistenza elastica, o eventualmente essere riclassificate in classe 2 equivalente e poi verificate con la resistenza a flessione plastica. Le sezioni in classe 4 attingono alla sola resistenza elastica, ma utilizzando la sola sezione trasversale efficace, ridotta per tener conto dell'instabilità. Tutti i metodi di verifica sono basati sulle ipotesi di:

- conservazione delle sezioni piane (connessione rigida)
- perfetta aderenza acciaio-calcestruzzo;
- resistenza a trazione del calcestruzzo trascurabile.

T00VI02STRRE01A.docx 58 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Per le sezioni di classe 1 e 2 le verifiche a pressoflessione agli SLU sono state condotte controllando che il momento di progetto M_{Ed} sia minore del momento resistente plastico di progetto, ridotto per effetto dello sforzo normale di progetto M_{NR,d}, ovvero in termini adimensionali verificando che:

$$\eta_{1, plast} = \frac{M_{Ed}}{M_{NR, d}} \le 1.0$$

Per le sezioni di classe 3 e 4 la verifica a pressoflessione è condotta in campo elastico verificando che le tensioni normali nelle fibre estreme della sezione risultino non superiori alle resistenze tensionali di progetto. Per le sezioni di classe 4 si tiene conto degli effetti dell'instabilità locale nella definizione delle proprietà efficaci della sezione trasversale, secondo le indicazioni dell'EN 1993-1-5. Anche in questo caso i risultati delle verifiche sono presentati in forma adimensionale, controllando che risulti:

$$\eta_{1 \, elast} \leq 1.0$$

6.3.1.3 Resistenza al taglio

La resistenza di progetto a taglio è definita considerando il solo contributo fornito dall'anima $V_{bw,Rd}$, e trascurando a favore di sicurezza il contributo fornito dalle flange $V_{bf,Rd}$ di entità estremamente ridotta:

$$V_{b,Rd} = V_{bw,Rd} \le \frac{\eta \cdot f_{yk} \cdot h_w \cdot t_w}{\sqrt{3} \cdot \gamma_{M1}}$$

Tenuto conto del rapporto h_w/t_w che caratterizza le travi di ponte, si ricade nella seguente fattispecie, relativa ad anime dotate di irrigidimenti verticali:

$$\frac{h_w}{t_w} \ge \frac{31\varepsilon}{\eta} \cdot \sqrt{k_\tau}$$

Pertanto, la resistenza al taglio dell'anima deve essere valutata in termini di resistenza all'instabilità:

$$V_{bw,Rd} = \frac{\chi_w \cdot f_{yw}}{\gamma_{M1} \cdot \sqrt{3}} h_w \cdot t_w$$

dove:

 $\eta = 1,20$ per gradi di acciaio inferiori a S460;

 h_w e t_w sono rispettivamente l'altezza e lo spessore dell'anima;

 γ_{M1} è il fattore parziale di sicurezza assunto pari a 1.10;

 χ_w è un fattore di resistenza all'instabilità dell'anima a taglio fornito dalla seguente tabella in funzione del parametro di snellezza adimensionale $\bar{\lambda}_w$:

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

	Rigid end post	Non-rigid end post
$\overline{\lambda}_{\rm w} < 0.83/\eta$	η	η
$0.83 / \eta \le \overline{\lambda}_{w} < 1.08$	$0.83 / \overline{\lambda}_{\mathrm{w}}$	$0.83 / \overline{\lambda}_{\mathrm{w}}$
$\overline{\lambda}_{\rm w} \ge 1,08$	$1,37/\left(0,7+\overline{\lambda}_{w}\right)$	$0.83 / \overline{\lambda}_{\mathrm{w}}$

Tabella 6.1 – Fattore χ_w di resistenza all'instabilità dell'anima a taglio

$$\bar{\lambda}_w = 0.76 \cdot \sqrt{\frac{f_{yw}}{\tau_{cr}}}$$

Dove:

$$\tau_{cr} = k_{\tau} \cdot \sigma_E$$

$$\sigma_E = \frac{\pi^2 \cdot E \cdot t_w^2}{12 \cdot (1 - v^2) \cdot h_w^2}$$

Per anime dotate di irrigidimenti trasversali e senza irrigidimenti longitudinali, il fattore di k_{τ} è fornito dalle seguenti espressioni in funzione del rapporto tra l'interasse degli irrigidimenti trasversali a e l'altezza dell'anima h_w :

per a / $h_w \ge 1$:

$$k_{\tau} = 5.34 + 4.0 \cdot \left(\frac{h_w}{a}\right)^2$$

per a / $h_w < 1$:

$$k_{\tau} = 4.0 + 5.34 \cdot \left(\frac{h_w}{a}\right)^2$$

La verifica è posta in forma adimensionale come rapporto tra le azioni sollecitanti e la capacità resistente:

$$\eta_3 = \frac{V_{Ed}}{V_{b,Rd}} \le 1.0$$

dove $V_{\rm\scriptscriptstyle Ed}\,$ è la sollecitazione tagliante di progetto.

6.3.1.4 Interazione taglio-momento flettente

Per valori di $\frac{-}{\eta_3} = \frac{V_{Ed}}{V_{bw,Rd}} \le 0.50$ non è necessario controllare l'interazione tra le sollecitazioni normali e

tangenziali.

Per valori di $\overline{\eta_3} > 0.50$ superiori:

- per sezioni di classe 1 e 2 la tensione di snervamento dell'anima, considerata nel calcolo del momento resistente plastico della sezione, viene ridotta in accordo alla norma EN 1994-2;
- Per sezioni di classe 3 e 4 si adotta la seguente espressione del dominio di resistenza:

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

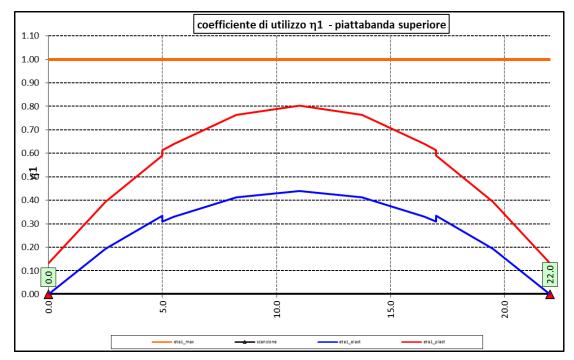
Relazione tecnica e di calcolo PO02

$$\overline{\eta_1} + \left(1 - \frac{M_{f,Rd}}{M_{Pl,Rd}}\right) \cdot \left(2 \cdot \overline{\eta_3} - 1\right)^2 \le 1,0$$

in cui:

 $M_{f,Rd}$

è il momento resistente di progetto delle sole flange efficaci;

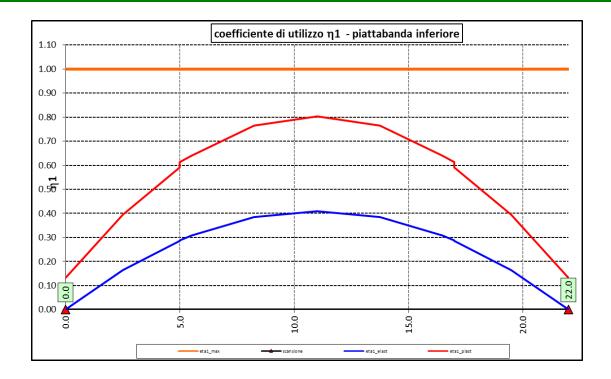

 $M_{Pl,Rd}$

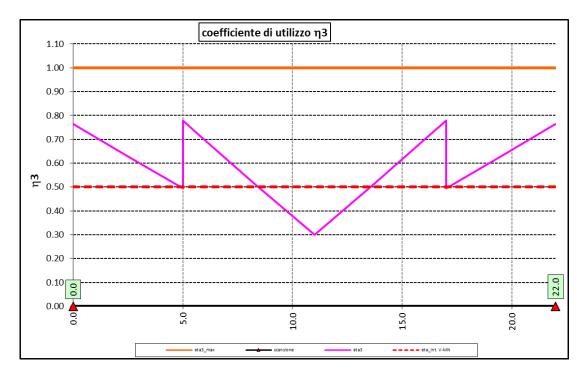
è la resistenza plastica della sezione trasversale composta dall'area effettiva delle flange e dall'intera anima senza tener conto della classe di quest'ultima;

$$\overline{\eta_1} = \frac{M_{Ed}}{M_{Pl,Rd}}$$

6.3.1.5 Risultati verifiche travi principali agli SLU per pressoflessione, taglio e interazione tagliomomento

Si riportano nel seguito le rappresentazioni grafiche delle verifiche per l'inviluppo delle combinazioni di carico precedentemente individuate, che come è possibile evincere sono tutte soddisfatte.


T00VI02STRRE01A.docx 61 di 111


Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

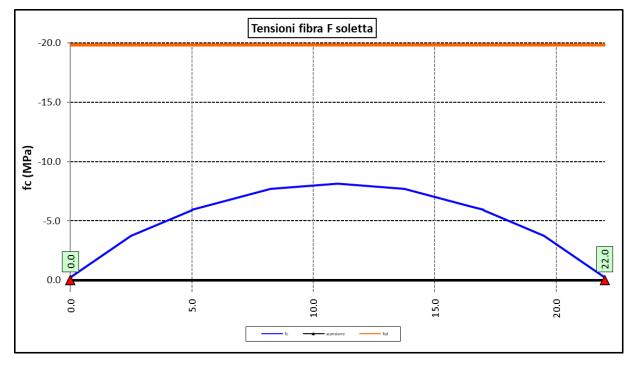
Relazione tecnica e di calcolo PO02

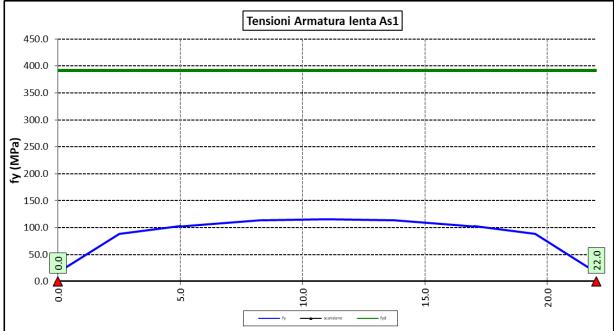
Per quanto attiene la soletta (fibra F) è stato verificato che:

$$f_{\text{Ed}} \le f_{\text{ck}} = \alpha_{\text{cc}} \times f_{\text{ck}} / \gamma_{\text{C}}$$

Per le armature longitudinali della soletta (fibra As1) è stato verificato che:

$$f_{Ed} \le f_{sd} = f_{sk} / \gamma_s$$


Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400



RM8401

Relazione tecnica e di calcolo PO02

Nel seguito si riportano i risultati delle verifiche svolte in forma grafica. Per ciascuna fibra si riportano i valori delle tensioni di calcolo di progetto ed i valori delle resistenze di progetto.

Come è possibile evincere le verifiche sono sempre soddisfatte.

T00VI02STRRE01A.docx 63 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

6.4 Verifiche SLE di deformabilità della struttura

E' stato verificato che la somma delle deflessioni dovute ai carichi permanenti fosse inferiore di 1/150 della luce delle campate.

Inoltre, è stato effettuato un controllo delle deflessioni generate in fase di esercizio dai carichi mobili, verificando che queste risultano sempre non maggiori di 1/500 la luce delle campate.

I risultati a delle verifiche svolte sono riepilogati nella seguente tabella:

						Luce									
		peso	permanenti	Ritiro	Totale	campate			Carichi	Carichi	Carichi	Carichi			Controfreccia
		proprio	portati	iperstatico	permanenti	(m)	1/150 L	Verifica	mobili - C	mobili - D	mobili - F	mobili	1/500 L	Verifica	teorica
Nodo	Progr (m)	fg1 (m)	fg2 (m)	fr (m)	fperm (m)	L(m)						fq1 (m)			fCf-t (m)
1	0.00	0.000	0.000	0.000	0.000	22	-0.147	OK!	0.000	0.000	0.000	0.000	-0.044	OK!	0.000
2	2.50	-0.012	-0.002	0.000	-0.014	22	-0.147	OK!	-0.005	-0.003	0.000	-0.007	-0.044	OK!	0.016
3	5.00	-0.022	-0.004	0.000	-0.026	22	-0.147	OK!	-0.009	-0.005	0.000	-0.014	-0.044	OK!	0.029
4	5.50	-0.023	-0.004	0.000	-0.028	22	-0.147	OK!	-0.010	-0.005	0.000	-0.015	-0.044	OK!	0.031
5	8.25	-0.030	-0.005	0.000	-0.036	22	-0.147	OK!	-0.013	-0.007	0.000	-0.020	-0.044	OK!	0.041
6	11.00	-0.033	-0.006	0.000	-0.039	22	-0.147	OK!	-0.014	-0.007	0.000	-0.021	-0.044	OK!	0.044
7	13.75	-0.030	-0.005	0.000	-0.036	22	-0.147	OK!	-0.013	-0.007	0.000	-0.020	-0.044	OK!	0.041
8	16.50	-0.023	-0.004	0.000	-0.028	22	-0.147	OK!	-0.010	-0.005	0.000	-0.015	-0.044	OK!	0.031
9	17.00	-0.022	-0.004	0.000	-0.026	22	-0.147	OK!	-0.009	-0.005	0.000	-0.014	-0.044	OK!	0.029
10	19.50	-0.012	-0.002	0.000	-0.014	22	-0.147	OK!	-0.005	-0.003	0.000	-0.007	-0.044	OK!	0.016
11	22.00	0.000	0.000	0.000	0.000	22	-0.147	OK!	0.000	0.000	0.000	0.000	-0.044	OK!	0.000

La figura seguente fornisce evidenza dei risultati ottenuti:

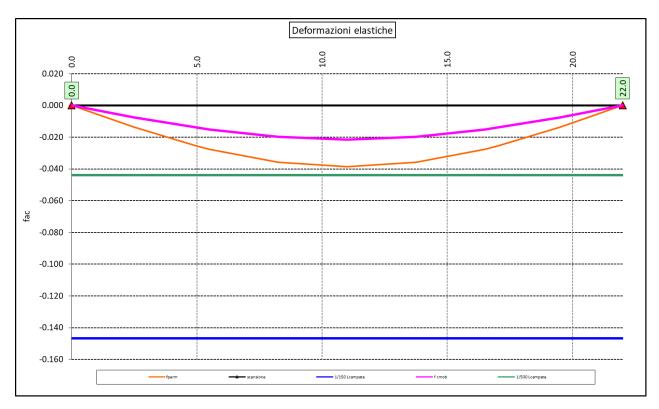


Figura 6.4. Travi principali – Verifiche di deformabilità

T00VI02STRRE01A.docx 64 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Le deflessioni delle travi dovute ai carichi permanenti saranno recuperate mediante opportune controfreccie di montaggio. La contro freccia teorica f_{Cf} è stabilita pari a:

$$f_{Cf} = f_{G1} + f_{G2} + f_{rit} + 25\% f_{Cmob}$$

essendo:

f_{G1}: la deflessione dovuta ai pesi propri;

f_{G2}: la deflessione dovuta ai permanenti portati;

f_{rit}: la deflessione dovuta al ritiro iperstatico;

f_{Cmob}: la deflessione dovuta ai carichi mobili.

La figura seguente riporta l'andamento della contro freccia teorica in base alla quale sarà costruita la controfreccia di montaggio:

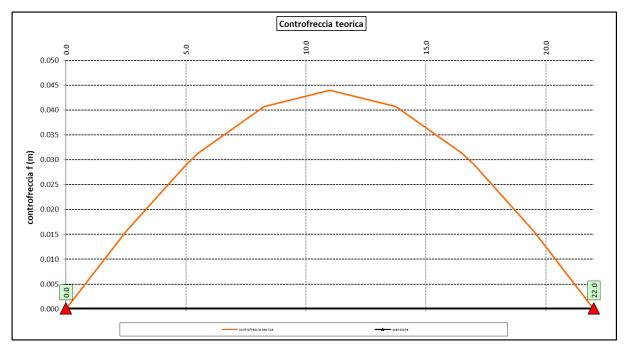


Figura 6.5. Travi principali – controfreccia teorica

T00VI02STRRE01A.docx 65 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

7 AZIONI TRASMESSE DALL'IMPALCATO ALLE SOTTOSTRUTTURE

Le azioni verticali trasmesse dall'impalcato alle sottostrutture per effetto dei <u>carichi verticali relativi al peso</u> <u>proprio, ai permanenti portati ed ai carichi mobili,</u> sono state determinate attraverso la seguente espressione:

P = p x Laff x fac

Dove:

p rappresenta il carico unitario agente sulla larghezza dell'impalcato, relativo all'azione verticale presa in considerazione;

Laff rappresenta la luce delle campate afferenti alla sottostruttura considerata;

fac è un fattore amplificativo che tiene conto dello schema di trave continua, assegnato con criterio cautelativo in rapporto ai risultati forniti dai modelli di analisi dell'impalcato precedentemente descritti.

A partire dalle azioni verticali P, sono state valutati i relativi momenti trasversali, moltiplicando P per la relativa eccentricità del punto di applicazione rispetto all'asse della sottostruttura considerata.

Le reazioni orizzontali longitudinali sui dispositivi di isolamento, generate dal <u>ritiro e dalle variazioni termiche uniformi</u> agenti sulle strutture d'impalcato, sono state determinate moltiplicando lo spostamento orizzontale in corrispondenza dell'iesimo allineamento di vincolo per la rigidezza orizzontale degli isolatori relativi.

La rigidezza dei dispositivi e influenzata dalle caratteristiche geometriche e dalle caratteristiche delle mescole elastomeriche previste.

Inoltre, il modulo di elasticità tangenziale G delle mescole elastomeriche diminuisce all'aumentare del livello di deformazione. Si può assumere che al di sotto del 50% della deformazione massima di progetto il valore di G risulta circa 2.5 volte superiore al valore corrispondente alla deformazione massima. Pertanto, nelle analisi in condizioni statiche e sismiche, sono stati considerati valori differenti per le rigidezze orizzontali equivalenti relative agli isolatori dipendenti dal livello di deformazione a taglio.

Gli effetti della frenatura si distribuiscono sulle sottostrutture in misura proporzionale alle rigidezze del sistema di isolamento.

Infine, anche le azioni orizzontali trasmesse dall'impalcato alle sottostrutture per effetto delle azioni del vento, sono state determinate secondo il medesimo criterio precedentemente descritto relativamente agli effetti dei carichi verticali.

Le azioni trasmesse dall'impalcato alle sottostrutture sono riportate negli allegati di calcolo relativi alle singole sottostrutture.

T00VI02STRRE01A.docx 66 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

7.1 Analisi in fase sismica

Per la determinazione degli effetti indotti dalle azioni sismiche sulle sottostrutture sono state effettuate analisi statiche lineari su modelli separati:

- Il primo relativo all'impalcato più sistema di isolamento;
- Il secondo relativo alle singole sottostrutture (spalle).

L'azione sismica relativa al primo modello è caratterizzata dal coefficiente di smorzamento equivalente del sistema isolamento; quella relativa al secondo modello, da un coefficiente di smorzamento equivalente pari al 5%, tipico di strutture non isolate.

La risoluzione del primo modello, relativo ad un oscillatore semplice aventi le seguenti caratteristiche:

- Massa pari a quella dell'impalcato;
- Rigidezza pari a quella complessiva del sistema di isolamento;

permette di valutare la forza complessiva trasmessa dal sistema di isolamento alle sottostrutture, e successivamente, la forza trasmessa in corrispondenza di ciascun allineamento di vincolo in misura proporzionale alla rigidezza dei relativi dispositivi di isolamento.

Nel caso in esame si ha:

Viadotto/Ponte			
Carreggiata			PO02
Dati impalcato			Analisi SLV
Lunghezza dell'impalcato	Limp	[m]	23.2
Peso dell'impalcato al metro lineare	Pv	[kN]	213.9
Peso complessivo dell'impalcato	Pv	[kN]	4963.1
Massa dell'impalcato	М	[kN / (m/sec ²)]	505.9
Dati Sistema di isolamento			
Fattore di smorzamento viscoso	ζ	[%]	10%
Fattore η	η	[-]	0.82
Isolatori tipo 1	Tipiso_1	[-]	SI-N400/200
Numero isolatori tipo 1	niso_1	[-]	6
Rigidezza isolatori tipo 1	Kh iso_1	[kN/m]	1010
Rigidezza equivalente	Kh tot	[kN/m]	6060
Periodo equivalente della struttura isolata	T _{is}	[sec]	1.82

T00VI02STRRE01A.docx 67 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

68 di 111

RM8401

Relazione tecnica e di calcolo PO02

Dati Sisma			SLV
Accelerazione al suolo	a_{g}	[g]	0.266
Parametro F ₀	F_0	[-]	2.391
Tempo T* _C	T* _C	[sec]	0.349
accelerazione al suolo	\mathbf{a}_{g}	[m/sec ²]	2.61
Categoria di Sottosuolo	Cat_S	[-]	С
Parametro S _S	$S_{\mathbb{S}}$	[-]	1.32
Parametro C _C	C_{C}	[-]	1.49
Categoria topografica	Cat_T	[-]	T1
Parametro S _T	S_T	[-]	1.00
Parametro S	S	[-]	1.32
Periodo T _B	T_B	[sec]	0.173
Periodo T _C	T_C	[sec]	0.519
Periodo T _D	T_D	[sec]	2.664
Accelerazione spettrale per $T=T_B$ $a_g S \eta F_0$	$Se(T_B)$	[m/sec ²]	6.72
Accelerazione spettrale per T= T_C a_g S η F_0	$Se(T_C)$	[m/sec ²]	6.72
Accelerazione spettrale per $T=T_D$ a _g S η 2.5 T_O/T_D	$Se(T_D)$	[m/sec ²]	1.31
Spostamento assoluto orizzontale massimo del terreno	dg	[m]	0.119
Spostamento relativo massimo del terreno tra 2 punti indipendenti	dijmax	[m]	0.210
Distanza tra due punti oltre la quale il moto può considerarsi indipendent	te		Lg
Lunghezza dell'impalcato continuo oltre la quale considerare gli effetti de	ella var. spaz	iale del moto	Llim
Spostamento relativo orizzontale massimo del terreno	dri	[m]	0.000

Risultati			
accelerazione spettrale per T=T _{is}	Se (T _{is})	[m/sec ²]	1.92
Forza complessiva trasmessa alle sottostrutture	F _{sis}	[kN]	971
Rapporto tra Forza orizzontale e peso dell'impalcato	$F_{\text{sis}}\!/P_{\text{imp}}$	[%]	20%
spostamento del centro di rigidezza	d_{dc}	[m]	0.160
Distanza massima da asse sistema isolamento	Lmax	[m]	11.00
Coefficiente di dilatazione termica impalcato	α		1.00E-05
Allungamento per dilatazione termica positiva	$d_{\Delta T+}$	[m]	0.006
Contrazione per dilatazione termica negativa	$d_{\!\scriptscriptstyle \DeltaT ext{-}}$	[m]	-0.004
deformazione totale finale per ritiro			0.00027
Area soletta soggetta a ritiro			3.110
coefficiente di omogeneizzazione a tinf (ritiro)	n_{rit}		15.8
Area sezione resistente omogeneizzata all'acciaio			0.470
Contrazione complessiva per ritiro del cls			-0.00011
Contrazione per ritiro	$d_{\scriptscriptstyle{\mathrm{gr}}}$	[m]	-0.001
spost. di progetto iso: $d_{Ed} = (d_{dc}^2 + dri^2)^{0.5} + max[ass(d_{sr} + 0.5d_{\Delta T.}); 0.5d_{\Delta T+}]$	$d_{E\!d}$	m	0.164
Azioni trasmesse agli isolatori di tipo 1	Fsis_1	kN	161.8

Pertanto, le azioni trasmesse alle sottostrutture dal sistema di isolamento per analisi agli SLV sono pari a:

- Spalle: $Fh = 161.8 \times 3 = 485.4 \text{ kN}$

T00VI02STRRE01A.docx

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

8 VERIFICHE SPALLE

Le analisi e verifiche delle spalle sono state effettuate attraverso l'implementazione di specifici fogli di calcolo di excel.

I tabulati di calcolo sono riportati in allegato.

Si riportano le verifiche della spalla SPA. I risultati si estendono anche alla spalla SPB.

8.1 Analisi della palificata

Il calcolo delle sollecitazioni in fondazione delle spalle è stato effettuato facendo riferimento ad un sistema di coordinate ortogonali destrogiro, avente origine in corrispondenza del filo di monte del plinto di fondazione (a metà del lato posto lungo la direzione trasversale al ponte), a livello dell'intradosso del plinto stesso, asse x parallelo all'asse longitudinale dell'impalcato ed asse z diretto verso il basso.

Le azioni orizzontali (Fx ed Fy) e verticali (Fz) si assumono positive se di verso concorde con quello degli assi. Si indicheranno inoltre con Mx i momenti aventi asse-momento parallelo all'asse x (momenti trasversali) e con My (momenti longitudinali) i momenti aventi asse-momento parallelo all'asse y. I momenti si assumono positivi se di senso antiorario rispetto all'asse-momento cui si riferiscono.

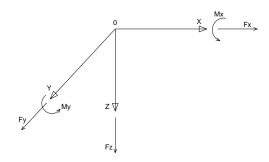


Figura 8.1. Sistema di riferimento

Le azioni trasmesse al baricentro della palificata, sono state determinate con riferimento alle singole condizioni di carico elementari e successivamente combinate.

I coefficienti moltiplicativi delle singole condizioni elementari, relativi alle combinazioni di carico SLU ed SLE considerate sono chiaramente illustrati nei tabulati.

Le azioni trasmesse dall'impalcato sono valutati in asse appoggi, alla quota di intradosso delle travi; successivamente vengono calcolate le azioni elementari al baricentro della palificata considerando i contributi dovuti al trasporto.

Le forze d'inerzia agenti sulla massa della spalla e del terreno presenti sulla zattera di fondazione sono state determinate considerando un'accelerazione pari ad a_g x S, in virtù dell'elevata rigidezza della spalla.

La risoluzione della palificata è stata effettuata nell'ipotesi di plinto di fondazione rigido. Pertanto, Le azioni risultanti in testa ai pali risultano pari a:

T00VI02STRRE01A.docx 69 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

$$N_i = \frac{F_z}{n_p} \pm Mx \cdot \frac{y_{pi}}{\sum_{i}^{n} y_{pi}^2} \pm My \cdot \frac{x_{pi}}{\sum_{i}^{n} x_{pi}^2}$$

$$V_{xi} = \frac{F_x}{n_p}$$

$$V_{yi} = \frac{F_y}{n_p}$$

$$V = \sqrt{{V_{xi}}^2 + {V_{yi}}^2}$$

Essendo:

Fx, Fy, Fz, Mx, My azioni e coppie risultanti al baricentro della palificata, determinate con analisi

globale;

Ni, Vxi, Vyi, Vi azioni assiale e orizzontali agenti in testa al palo iesimo;

n_p numero di pali della palificata;

x_{pi}, y_{pi} coordinate del palo iesimo rispetto al baricentro della palificata.

Di seguito si riepilogano gli inviluppi delle azioni massime e minime agenti in testa ai pali di fondazione:

Spalla SPA

RIEPILOGO AZIONI IN TESTA AI PALI		ENV	SLU	SLV	SLE-CAR	SLE-FR	SLE-QP
Azione assiale massima (compressione)	Nmax	4548	4024	4548	2980	2837	2431
Azione assiale minima	Nmin	-734	1766	-734	1309	1368	1473
Azione trasversale massima	Vmax	1240	764	1240	566	543	474

8.2 Caratteristiche della sollecitazione per verifiche pali di fondazione

Per il calcolo delle sollecitazioni agenti sui pali è stato ipotizzato un modello di palo immerso in suolo alla Winkler, caratterizzato da costante di reazione orizzontale kh costante con la profondità.

Nell'ipotesi di palo incastrato in sommità, il momento massimo viene attinto all'incastro con il plinto di fondazione e vale:

 $M_{max} = V_i x (L_0+H)/2$

Essendo L₀ la lunghezza elastica del palo pari a:

 $L_0 = [4 \text{ x } E_p \text{ x } I_p / E_s]^{0.25}$

Ep il modulo di elasticità del palo;

Ip il momento d'inerzia del palo;

Es Modulo di reazione orizzontale del terreno costante con la profondità, relativo agli strati superficiali, pari a:

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

 $Es = 1.5 k_h d;$

H l'eventuale altezza non collaborante del palo di fondazione.

La costante di reazione orizzontale è stata assunta in accordo a Broms (1964), che ha correlato k_h al modulo seconte E₅₀ a metà tensione limite in una prova non drenata:

$$kh = 1.67 E_{50} / d$$

Usando un valore di E_{50} compreso tra 50 e 200 volte la resistenza al taglio non drenata c_u (Skempton 1951), si ha:

$$k_h = (80 \div 320) c_u / d$$

Nel caso in esame, considerando una coesione non drenata pari a 110 kPa, che si colloca tra i valori minimi dei range caratteristici dei terreni più superficiali (litotipo SLm), si ha:

 $k_h = 200 \text{ x } 110 \text{ / } 1.20 = 18333 \text{ kN/m}^3$

LUNGHEZZA LIBERA D'INFLESSIONE PALI DI FONDAZIONE

Modulo di elasticità normale del calcestruzzo/malta	Ec	Мра	31476
Modulo di Poisson del terreno	ν		0.30
Diametro del palo	Dp	m	1.20
Momento d'inerzia della sezione in cls/malta	lc	m4	0.1018
Kt Costante di reazione orizzontale (Vesic)	kt	kN/mc	18333
Lunghezza libera d'inflessione	L0	m	4.44

Spalla SPA:

RIEPILOGO CARATTERISTICHE DELLA	A SOLLECITAZION	NI MASSIME SU	SLU	SLV	SLE-CAR	SLE-FR	SLE-QP
Sforzo normale massimo	Nmax	kN	4024	4548	2980	2837	2431
Sforzo normale minimo	Nmin	kN	1766	-734	1309	1368	1473
Momento flettente massimo - 1° gabbia	Mmax_1a	kNm	1696	2752	1256	1205	1051
Momento amplificato del 20%	Mmax_1a	kNm	2035	3302	1507	1446	1261
Sforzo di taglio massimo - 1° gabbia	Vmax_1a	kN	764	1240	566	543	474

RIEPILOGO AZIONI VERTICALI AGLI SLU SULLA PALIFICATA	SLU	SLV
Carico verticale massimo agente sulla palificata	43729	32268
Carico verticale medio agente sui pali	2915	2151

8.3 Verifiche di resistenza dei pali di fondazione

Spalla SPA

I pali di fondazione delle spalle saranno armati come segue:

1° gabbia:

- Armature longitudinali: 24\phi26+24\phi26+24\phi26 accoppiati (rinforzo solo per i primi 6.0 m);
- Armature trasversali: spirale φ12/10 (per i primi 6 m) + spirale φ12/20

Di seguito si riportano le verifiche a pressoflessione e taglio relative alle prima gabbia.

T00VI02STRRE01A.docx 71 di 111

Adequamento nel tratto tra Rieti e Sigillo - 3º Lotto 1º Stralcio - Tratto di adequamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Nelle verifiche si considerano 24 barre di diametro equivalente pari a deq = 26 x 3⁰.5 = 45 mm:

DATI GENERALI SEZIONE GENERICA IN C.A. **CARATTERISTICHE DOMINIO CONGLOMERATO**

Forma del Dominio: Circolare C25/30 Classe Conglomerato:

Raggio circ.: 60.0 cm 0.0 cm X centro circ.: Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen.

Numero assegnato alla singola generazione circolare di barre Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Xcentro Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Raggio [cm] della circonferenza lungo cui sono disposte le barre generate Raggio Numero di barre generate equidist. disposte lungo la circonferenza N°Barre

Diametro [mm] della singola barra generata Ø

N°Gen. N°Barre Ø **Xcentro** Ycentro Raggio 1 0.0 0.0 49.0 24 45

ARMATURE A TAGLIO

Diametro staffe: 12 mm Passo staffe: 10.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	My	Vy	Vx
1	4024.00	1729.00	0.00	764.00	0.00
2	1766.00	1729.00	0.00	764.00	0.00
3	2915.00	1729.00	0.00	764.00	0.00
4	4540.00	2799.00	0.00	1236.00	0.00
5	-726.00	2799.00	0.00	1236.00	0.00
6	2151.00	2799.00	0.00	1236.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) My

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν My

T00VI02STRRE01A.docx 72 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3º Lotto 1º Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

Relazione tecnica e di calcolo PO02

1.95 381.7(33.9)

2.12 381.7(33.9)

1	2980.00	1281.00	0.00
2	1309.00	1281.00	0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)						
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione						
Му	Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione						
N°Comb.	N	Mx	My				
1	2837.00	1229.00 (1183.25)	0.00 (0.00)				
2	1368.00	1229.00 (893.49)	0.00 (0.00)				

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione					
N°Comb.	N	Mx	Му			
1	2431.00	1072.00 (1170.34)	0.00 (0.00)			
2	1473.00	1072.00 (943.96)	0.00 (0.00)			

RISULTATI DEL CALCOLO

Ver

N°

5

S

S

-726.00

2151.00

RM8401

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.7 cm Interferro netto minimo barre longitudinali: 8.3 cm Copriferro netto minimo staffe: 7.5 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata

N		Sforzo norm	ale assegnato [kl	N] nel baricentr	B sezione cls.(positiv	o se di compressione)					
Mx		Componente	Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia								
My		Componente	Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia								
N Res		Sforzo norm	Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)								
Mx Res		Momento fle	ttente resistente	[kNm] riferito a	ll'asse x princ. d'inerzia	·					
My Res		Momento fle	ttente resistente	[kNm] riferito al	l'asse y princ. d'inerzia						
Mis.Sic.		Misura sicur	ezza = rapporto v	vettoriale tra (N	r,Mx Res,My Res) e (N	N,Mx,My)					
		Verifica posi	tiva se tale rappo	orto risulta >=1.	000						
As Totale		Area totale b	parre longitudinali	i [cm²]. [Tra par	entesi il valore minimo	di normativa]					
N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Totale		
1	S	4024.00	1729.00	0.00	4024.09	6121.33	0.00	3.54 3	81.7(33.9)		
2	S	1766.00	1729.00	0.00	1765.85	5889.36	0.00	3.41 3	81.7(33.9)		
3	S	2915.00	1729.00	0.00	2914.88	6010.95	0.00	3.48 3	81.7(33.9)		
4	S	4540.00	2799.00	0.00	4540.28	6156.15	0.00		81.7(33.9)		

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

0.00

0.00

Deform. unit. massima del conglomerato a compressione ec max

2799.00

2799.00

T00VI02STRRE01A.docx 73 di 111

-726.27

2150.84

5453.02

5930.91

0.00

0.00

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

$N^{\circ}Comb$	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.0	60.0	0.00279	0.0	49.0	-0.00358	0.0	-49.0
2	0.00350	0.0	60.0	0.00273	0.0	49.0	-0.00356	0.0	-49.0
3	0.00350	0.0	60.0	0.00274	0.0	49.0	-0.00404	0.0	-49.0
4	0.00350	0.0	60.0	0.00281	0.0	49.0	-0.00338	0.0	-49.0
5	0.00350	0.0	60.0	0.00254	0.0	49.0	-0.00605	0.0	-49.0
6	0.00350	0.0	60.0	0.00271	0.0	49.0	-0.00437	0.0	-49.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C Di4	Coeff di riduz, momenti per cole fleccione in travi continue

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

C.Rid.	x/d	С	b	а	N°Comb
		-0.000399289	0.000064988	0.000000000	1
		-0.000928921	0.000073815	0.000000000	2
		-0.000652356	0.000069206	0.000000000	3
		-0.000285501	0.000063092	0.000000000	4
		-0.001758473	0.000087641	0.000000000	5
		-0.000834501	0.000072242	0.000000000	6

VERIFICHE A TAGLIO

Diam. Staffe: 12 mm

Passo staffe: 10.0 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Ved Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro

Vcd Taglio resistente ultimo [kN] lato conglomerato compresso [(4.1.28) NTC]

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]
d|z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio cop
Vengono prese nella media le strisce con almeno un estremo compresso.
I pesi della media sono costituiti dalle stesse lunghezze delle strisce.
bw Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro
E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.
Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato
Acw Coefficiente maggiorativo della resistenza a taglio per compressione
Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]

Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	764.00	2446.62	1632.32	91.1 73.8	108.7	2.500	1.250	10.6	22.6(0.0)
2	S	764.00	2255.54	1684.61	91.1 76.1	109.3	2.500	1.110	10.3	22.6(0.0)
3	S	764.00	2358.28	1658.92	91.1 75.0	109.0	2.500	1.182	10.4	22.6(0.0)
4	S	1236.00	2423.30	1619.23	91.1 73.2	108.5	2.500	1.250	17.3	22.6(0.0)
5	S	1236.00	2096.81	1758.35	91.9 79.5	108.1	2.500	1.000	15.9	22.6(0.0)
6	S	1236.00	2290.87	1676.20	91.1 75.8	109.2	2.500	1.134	16.7	22.6(0.0)

Adequamento nel tratto tra Rieti e Sigillo - 3º Lotto 1º Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (DM96)

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure D barre

Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	6.83	0.0	150.0	-46.7	0.0	-49.0	1468	79.5	12.8	1.00
2	S	6.36	0.0	0.0	-84.5	0.0	-49.0	2316	111.3	12.8	1.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (DM96)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	6.55	0.0	150.0	-45.2	0.0	-49.0	1468	79.5	12.8	0.50
2	S	6.13	0.0	0.0	-78.3	0.0	-49.0	2264	111.3	12.8	0.50

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

	La sezione viene assunta sempre tessurata anche nei caso in cui ia trazione minima dei caicestruzzo sia interiore a totm
Ver.	Esito della verifica

Massima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione non fessurata S1 S2 Minima tensione [Mpa] di trazione nel calcestruzzo valutata in sezione fessurata k2 = 0.4 per barre ad aderenza migliorata

= 0.125 per flessione e presso-flessione; =(e1 + e2)/(2*e1) per trazione eccentrica k3 Diametro [mm] medio delle barre tese comprese nell'area efficace Ac eff Ø Copriferro [mm] netto calcolato con riferimento alla barra più tesa Cf

= 1-Beta12*(Ssr/Ss)² = 1-Beta12*(fctm/S2)² = 1-Beta12*(Mfess/M)² [B.6.6 DM96] Psi Deformazione unitaria media tra le fessure [4.3.1.7.1.3 DM96]. Il valore limite = 0.4*Ss/Es è tra parentesi e sm

Distanza media tra le fessure [mm] srm

Valore caratteristico [mm] dell'apertura fessure = 1.7 * e sm * srm . Valore limite tra parentesi wk

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] My fess.

Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-2.7	0	0.125	45	88	0.537	0.00012 (0.00009)	242	0.048 (0.40)	1183.25	0.00
2	S	-3.5	0	0.125	45	88	0.736	0.00027 (0.00015)	246	0.115 (0.40)	893.49	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (DM96)

N°Comb	Ver	Sc max	Xc max `	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.	D barre	Beta12
1	S	5.70	0.0	150.0	-40.3	0.0	-49.0	1515	79.5	12.8	0.50
2	S	5.43	0.0	0.0	-61.4	0.0	-49.0	2108	111.3	12.8	0.50

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§B.6.6 DM96]

Comb.	Ver	S1	S2	k3	Ø	Cf	Psi	e sm	srm	wk	Mx fess	My fess
1	S	-2.3	0	0.125	45	88	0.404	0.00008 (0.00008)	243	0.032 (0.30)	1170.34	0.00
2	S	-2.9	0	0.125	45	88	0.612	0.00018 (0.00012)	243	0.074 (0.30)	943.96	0.00

Come è possibile evincere tutte le verifiche agli SLU ed SLE sono soddisfatte.

T00VI02STRRE01A.docx 75 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

8.4 Dimensionamento delle singole membrature delle spalle

Il dimensionamento delle singole membrature è stato effettuato attraverso la risoluzione di schemi locali appresso dettagliati.

In tutti i casi, le verifiche a fessurazione sono state effettuate per via indiretta confrontando le tensioni agenti sull'acciaio con le tensioni ammissibili funzione dell'aggressività dell'ambiente e del diametro delle barre adottate.

I risultati delle verifiche sono riportate tra gli allegati.

Come è possibile evincere tutte le verifiche sono soddisfatte.

8.4.1 Zattera di fondazione

Il dimensionamento della mensola anteriore della zattera di fondazione è stato effettuato con riferimento allo schema di mensola tozza (tirante-puntone), sollecitata dalla reazione del palo maggiormente caricato (palo di spigolo).

8.4.2 Mensola posteriore

La verifica della mensola posteriore della zattera di fondazione è stata eseguita con riferimento al modello di trave a mensola soggetta al peso proprio ed al peso del rinterro, e soggetta alle azioni stabilizzanti trasmesse dai pali di fondazione.

8.4.3 Muro frontale

Il dimensionamento del muro frontale è stato effettuato considerando il modello di trave a mensola incastrata alla quota di estradosso della zattera di fondazione.

Le analisi e le verifiche sono relative ad una sezione di larghezza unitaria.

Per semplicità ed a favore di sicurezza, le verifiche del muro frontale sono state condotte a flessione semplice trascurando il contributo stabilizzante offerto dallo sforzo normale.

8.4.4 Paraghiaia

La verifica del Paraghiaia è stata effettuata considerando le sollecitazioni derivanti dal peso proprio, dalla spinta delle terre, dalle spinte esercitate dal sovraccarico accidentale sul terrapieno, da un asse di carico Qik da 300 kN supposto agente in testa al paraghiaia e da una forza di frenatura convenzionale pari a 180 kN (60% di Qik) sempre applicata in testa al paraghiaia (vedi figura seguente).

T00VI02STRRE01A.docx 76 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

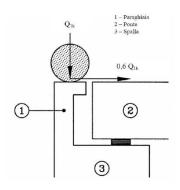


Figura 8.2. Carichi da traffico su muri paraghiaia

Inoltre, sono state valutate le sollecitazioni relative alla fase sismica, generate dalle forze inerziali, dall'incremento di spinta delle terre e dalle azioni direttamente trasmesse dal ritegno longitudinale.

La spinta delle terre in condizioni di esercizio, è stata valutata con riferimento al coefficiente di spinta a riposo K0.

Conformemente alle circolari alle NTC2018 (§C.5.1.3.3.5.1), il sovraccarico accidentale da traffico è costituito dal carico Qik supposto distribuito su un impronta di 3.0 x 2.20.

Questo carico è stato supposto diffuso a 30° lungo il terrapiano fino alla base del paraghiaia.

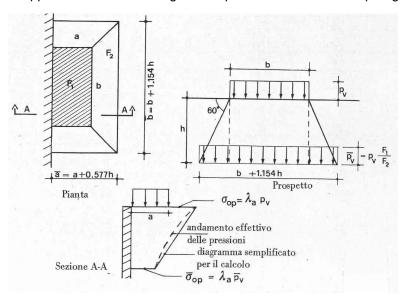


Figura 8.3. Schema di diffusione del sovraccarico accidentale.

La pressione dovuta al sovraccarico quindi decresce come indicato nella sezione A-A di Figura 8.3 interessando però una larghezza sempre maggiore di paraghiaia. Considerando il contributo di una sola colonna di carico, la larghezza collaborante di muro è pari a (b + 1.154h + 2.00).

8.4.5 Muri di risvolto

Il calcolo è relativo al muro di maggiore altezza. Lo schema di calcolo adottato è quello di piastre rettangolari incastrate alla base in corrispondenza della zattera di fondazione e su un lato in

T00VI02STRRE01A.docx 77 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

corrispondenza del muro frontale. I muri sono soggetti alla spinta delle terre, alle spinte dovute ai sovraccarichi accidentali sul terrapieno in esercizio, ed alle forze inerziali ed all'incremento di spinta delle terre in fase sismica.

Il calcolo delle sollecitazioni generate dalla spinta delle terre, dal sovraccarico accidentale, ipotizzato presente a livello del piano viario, e dal sisma, è stato effettuato utilizzando le tabelle proposte da R. Bares nel testo "Calcolo di Lastre e Piastre con la teoria elastica lineare" (vedi Tab. 1.41 – 1.97). Il calcolo della spinta delle terre è stato condotto con riferimento al coefficiente di spinta a riposo k0.

Nel caso in cui è presente una bandiera all'estremità verticale libera del muro si considerano i momenti orizzontali trasmessi al muro di risvolto, valutati con schema di trave a mensola:

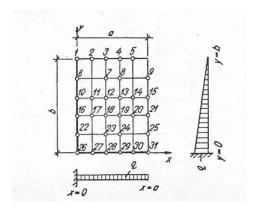


Figura 8.4. Schema di calcolo piastra e punti notevoli (Carico variabile linearmente con la profondità).

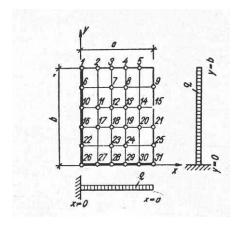


Figura 8.5. Schema di calcolo piastra e punti notevoli (Carico uniformemente ripartito).

8.4.6 Verifiche di resistenza a taglio

Le verifiche a taglio sono state condotte per tutte le membrature, ad eccezione delle mensole anteriori delle spalle, caratterizzate da comportamento a mensola tozza.

I tagli di calcolo sono stati confrontati con le resistenza delle singole membrature, valutate in assenza di specifiche armature trasversali; laddove la verifica fornisce esito negativo, sono state dimensionate le armature trasversali in grado di garantire la soddisfazione delle verifiche.

T00VI02STRRE01A.docx 78 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

9 VERIFICHE DISPOSITIVI DI APPOGGIO E ISOLAMENTO E GIUNTI DI DILATAZIONE

9.1 Isolatori elastomerici

Come precedentemente illustrato l'impalcato sarà isolato dalle sottostrutture mediante isolatori elastomerici posizionati in corrispondenza di ciascun allineamento di appoggio delle travi principali.

Di seguito sono riepilogate le caratteristiche degli isolatori elastomerici prescelti:

PO02 - CITTADUCALE

	CARATTERISTICHE ISOLATORI ELASTOMERICI										
Allineamento	ξ [%]	smax ± [mm]	Ned [kN]	Fzd [kN]	Ke [kN/mm]	Kv [kN/mm]	n iso				
SPA	10	200	1180	3720	1.01	912	3				
SPB	10	200	1180	3720	1.01	912	3				

Essendo:

ξ	Coefficiente di smorzamento viscoso equivalente
smax	spostamento massimo di progetto d ₂ per azioni sismiche agli SLC (par. 7.10.6.2.2 NTC2018)
NEd	Carico verticale massimo ammesso in presenza di sisma che provoca uno spostamento smax
Fzd	Carico verticale massimo ammesso allo SLU in condizioni statiche
Ke	Rigidezza orizzontale equivalente dell'isolatore allo spostamento smax
Kv	Rigidezza verticale
Niso	Numero isolatori elastomerici per allineamento di appoggio

9.1.1 Carichi verticali trasmessi dall'impalcato

I carichi verticali sono stati valutati con i specifici modelli di calcolo utilizzati per il dimensionamento dell'impalcato.

Di seguito si riepilogano i carichi verticali trasmessi agli appoggi per ciascuna azione elementare, e la successiva combinazione secondo quanto precedentemente illustrato:

T00VI02STRRE01A.docx 79 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Condizione n.	1	2	3	4	5	6	7	8	9	10		
oondizione n.	Peso	Permanenti	_	Cedimenti	Ritiro	Variazione termica	Variazione termica	Ü	Carichi	Carichi		
Allineamenti	proprio	portati	vincolari 1	vincolari 2	iperstatico	positiva	negativa	Vento		mobili Min		
SPA	570.3	246.4	0.0	0.0	0.0	0.0	0.0	15.6	1213.3	0.0		
SPB	570.3	246.4	0.0	0.0	0.0	0.0	0.0	15.6	1213.3	0.0		
Carichi trasmess	si agli appog	gi - Combinazi	oni									
Fattori moltiplicativ	<i>i</i>											
Combinazione n.												
SLE-QP	1.00	1.00	1.00	1.00	1.00	0.50	0.50	0.00	0.00	0.00		
SLE-RARA	1.00	1.00	1.00	1.00	1.00	0.60	0.60	0.60	1.00	1.00		
SLU-STR	1.35	1.35	1.20	1.20	1.20	0.90	0.90	0.90	1.35	1.35		
SLU-SIS	1.00	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00		
SLE-FREQ	1.00	1.00	1.00	1.00	1.00	0.50	0.50	0.00	0.75	0.75		
Carichi trasmessi											MAX	MIN
Allineamenti	Peso proprio	Permanenti portati	Cedimenti vincolari 1	Cedimenti vincolari 2	Ritiro iperstatico	Variazione termica positiva	Variazione termica negativa	Vento	Carichi mobili	Carichi mobili	Sommano	Sommano
SPA	570.3	246.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	816.7	816.7
SPB	570.3	246.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	816.7	816.7
Combinazione SL	LE-RARA											
						Variazione	Variazione					
Allineamenti	Peso proprio	Permanenti portati	Cedimenti vincolari 1	Cedimenti vincolari 2	Ritiro iperstatico	termica positiva	termica negativa	Vento	Carichi mobili	Carichi mobili	Sommano	Sommano
SPA	570.3	246.4	0.0	0.0	0.0	0.0	0.0	9.4	1213.3	0.0	2039.3	807.3
SPB	570.3	246.4	0.0	0.0	0.0	0.0	0.0	9.4	1213.3	0.0	2039.3	807.3
Combinazione SL	LU-STR											
	_					Variazione	Variazione					
Allineamenti	Peso proprio	Permanenti portati	Cedimenti vincolari 1	Cedimenti vincolari 2	Ritiro iperstatico	termica positiva	termica negativa	Vento	Carichi mobili	Carichi mobili	Sommano	Sommano
						•						
SPA SPB	769.9	332.6	0.0	0.0	0.0	0.0	0.0	14.1	1638.0	0.0	2754.5	1088.5
SPB	769.9	332.6	0.0	0.0	0.0	0.0	0.0	14.1	1638.0	0.0	2754.5	1088.5
Combinazione SL	LU-SIS					Variazione	Variazione					
Allineamenti	Peso proprio	Permanenti portati	Cedimenti vincolari 1	Cedimenti vincolari 2	Ritiro iperstatico	termica positiva	termica negativa	Vento	Carichi mobili	Carichi mobili	Sommano	Sommano
SPA	570.3	246.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	816.7	816.7
SPB	570.3	246.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	816.7	816.7
	F-FRFQ											
Combinazione SI						Varianiana	Variazione					
Combinazione SL						Variazione						
Combinazione SL Allineamenti	Peso proprio	Permanenti portati	Cedimenti vincolari 1	Cedimenti vincolari 2	Ritiro iperstatico	termica positiva	termica negativa	Vento	Carichi mobili	Carichi mobili	Sommano	Sommano
	Peso					termica	termica	Vento			Sommano 1726.6	Sommano 816.7

I carichi verticali sono ampiamente compatibili con le resistenze Fzd dei dispositivi di appoggio previsti.

9.1.2 Verifica degli spostamenti orizzontali degli isolatori in fase sismica

La tabella seguente riepiloga gli spostamenti orizzontali agli SLC in direzione longitudinale, combinati secondo quanto precedentemente illustrato, e combinati con gli spostamenti generati dal ritiro e dalle variazioni termiche,quest'ultimi conteggiati al 50%.

L'EC8-2 impone di considerare la variabilità spaziale del moto per i ponti a travata continua quando:

- fra due punti di contatto con il suolo varia la categoria stratigrafica o topografica
- anche in presenza di sottosuolo omogeneo, la lunghezza del segmento di impalcato continuo è maggiore del valore limite L_{lim}= L_g/1,5 dove L_g è la distanza oltre cui il moto di due punti può ritenersi indipendente, definito nella seguente tabella:

T00VI02STRRE01A.docx 80 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Tabella - Distanza oltre cui il moto può ritenersi indipendente

Categoria di sottosuolo	A	В	С	D	E
L _g [m]	600	500	400	300	500

Nel caso in esame la categoria di sottosuolo è C. Pertanto si ha L_{lim}=400/1.5=266.7 m.

Essendo la lunghezza d'impalcato massima pari a 23.2 minore della lunghezza limite Lmin= 266.7 m, si trascurano gli effetti dovuti alla variabilità spaziale del moto.

Il modello di riferimento è di SDOF:

Viadotto/Ponte			
Carreggiata			PO02
Dati impalcato			Analisi SLC
Lunghezza dell'impalcato	Limp	[m]	23.2
Peso dell'impalcato al metro lineare	Pv	[kN]	213.9
Peso complessivo dell'impalcato	Pv	[kN]	4963.1
Massa dell'impalcato	М	[kN / (m/sec ²)]	505.9
Dati Sistema di isolamento			
Fattore di smorzamento viscoso	ζ	[%]	10%
Fattore η	η	[-]	0.82
Isolatori tipo 1	Tipiso_1	[-]	SI-N400/200
Numero isolatori tipo 1	niso_1	[-]	6
Rigidezza isolatori tipo 1	Kh iso_1	[kN/m]	1010
Rigidezza equivalente	Kh tot	[kN/m]	6060
Periodo equivalente della struttura isolata	T _{is}	[sec]	1.82

T00VI02STRRE01A.docx 81 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Dati Sisma			SLC
Accelerazione al suolo	a_g	[g]	0.331
Parametro F ₀	F_0	[-]	2.424
Tempo T* _C	T* _C	[sec]	0.362
accelerazione al suolo	\mathbf{a}_{g}	[m/sec ²]	3.25
Categoria di Sottosuolo	Cat_S	[-]	С
Parametro S _S	S_S	[-]	1.22
Parametro C _C	C_{C}	[-]	1.47
Categoria topografica	Cat_T	[-]	T1
Parametro S _T	S_T	[-]	1.00
Parametro S	S	[-]	1.22
Periodo T _B	T_B	[sec]	0.177
Periodo T _C	T_{C}	[sec]	0.532
Periodo T _D	T_D	[sec]	2.924
Accelerazione spettrale per $T=T_B$ $a_g S \eta F_0$	Se(T _B)	[m/sec ²]	7.83
Accelerazione spettrale per $T=T_C$ a_g S η F_0	Se(T _C)	[m/sec ²]	7.83
Accelerazione spettrale per $T=T_D$ a_g S η 2.5 T_O/T_D	$Se(T_D)$	[m/sec ²]	1.42
Spostamento assoluto orizzontale massimo del terreno	dg	[m]	0.154
Spostamento relativo massimo del terreno tra 2 punti indipendenti	dijmax	[m]	0.272
Distanza tra due punti oltre la quale il moto può considerarsi indipendente			400.0
Lunghezza dell'impalcato continuo oltre la quale considerare gli effetti d	lella var. spaz	iale del moto	266.7
Spostamento relativo orizzontale massimo del terreno	dri	[m]	0.000

Risultati			
accelerazione spettrale per T=T _{is}	Se (T _{is})	[m/sec ²]	2.29
Forza complessiva trasmessa alle sottostrutture	F _{sis}	[kN]	1160
Rapporto tra Forza orizzontale e peso dell'impalcato	$F_{\text{sis}}/P_{\text{imp}}$	[%]	23%
spostamento del centro di rigidezza	d_{dc}	[m]	0.191
Distanza massima da asse sistema isolamento	Lmax	[m]	11.00
Coefficiente di dilatazione termica impalcato	α		1.00E-05
Allungamento per dilatazione termica positiva	$d_{\Delta T+}$	[m]	0.006
Contrazione per dilatazione termica negativa	$d_{\!\scriptscriptstyle \DeltaT ext{-}}$	[m]	-0.004
deformazione totale finale per ritiro			0.00027
Area soletta soggetta a ritiro			3.110
coefficiente di omogeneizzazione a tinf (ritiro)	n_{rit}		15.760
Area sezione resistente omogeneizzata all'acciaio			0.470
Contrazione complessiva per ritiro del cls			-0.00011
Contrazione per ritiro	d_{gr}	[m]	-0.001
spost. di progetto iso: $d_{Ed} = (d_{dc}^2 + dri^2)^{0.5} + max[ass(d_{gr} + 0.5d_{\Delta T-}); 0.5d_{\Delta T+}]$	d_{Ed}	m	0.195

Il massimo spostamento dell'isolatore è pari a 195 mm, inferiore quindi al massimo spostamento di progetto, pari a \pm 400 mm.

T00VI02STRRE01A.docx 82 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

9.2 Giunti di dilatazione

Alle estremità dell'impalcato saranno disposti giunti di dilatazione in elastomero armato in grado di garantire una escursione complessiva di 400 mm in direzione longitudinale e di 400 mm in direzione trasversale (valori calcolati allo SLC).

CARATTERISTICHE GIUNTI DI DILATAZIONE							
Allineamento sl_tot str_tot Bcord_sx Bpiat Bcord_e							
	[mm]	[mm]	[m]	[m]	[m]		
SPA	400	400	0.75	15.3	0.75		
SPB	400	400	0.75	14.9	0.75		

T00VI02STRRE01A.docx 83 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

10 VERIFICHE GEOTECNICHE SLU ED SLE DELLE FONDAZIONI SU PALI

In accordo alle NTC2018 le verifiche SLU di tipo geotecnico (GEO) delle fondazioni su pali sono state effettuate con riferimento ai seguenti stati limite, accertando che la condizione Ed ≤ Rd sia soddisfatta per ogni stato limite considerato:

- Collasso per carico limite del palo singolo nei riguardi dei carichi assiali;
- Collasso per carico limite della palificata nei riguardi dei carichi assiali;
- Collasso per carico limite di sfilamento del palo singolo nei riguardi dei carichi assiali di trazione;
- Collasso per carico limite del palo singolo nei riguardi dei carichi trasversali;
- Collasso per carico limite della palificata nei riguardi dei carichi trasversali;
- Stabilità globale.

Le verifiche di stabilità globale vengono effettuate esclusivamente nel caso di fondazioni posizionate su o in prossimità di pendii naturali o artificiali, mentre vengono omesse per fondazioni che ricadono su aree in piano o a pendenza estremamente modesta.

Le verifiche SLU di tipo strutturale (STR) sono illustrate nei capitoli relativi alle sottostrutture.

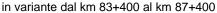
Relativamente agli stati limite di esercizio (SLE) è stata effettuata una stima del cedimento del palo singolo e della palificata soggetti a carichi verticali.

10.1 Criteri di Calcolo

Le verifiche di stabilità globale vengono effettuate seguendo l'Approccio 1 con la combinazione dei coefficienti parziali (A2, M2, R2) definiti dalle tabelle 6.2.I, 6.2.II e 6.8.I delle NTC2018:

Tab. 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale $\gamma_{ extsf{F}}$ (o $\gamma_{ extsf{E}}$)	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	γ_{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2 (1)	Favorevole	$\gamma_{\scriptscriptstyle G2}$	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	γ _{Qi}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3


⁽i) Per i carichi permanenti G: si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti yoi

Tab. 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	tan φ' _k	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	$\gamma_{c'}$	1,0	1,25
Resistenza non drenata	c_{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

T00VI02STRRE01A.docx 84 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3º Lotto 1º Stralcio - Tratto di adeguamento in sede e

RM8401

Relazione tecnica e di calcolo PO02

Tab. 6.8.I - Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo

COEFFICIENTE	R2
$\gamma_{ m R}$	1,1

Le altre verifiche agli stati limite ultimi finalizzate al dimensionamento geotecnico (carico limite della palificatanei riguardi dei carichi assiali, trasversali e di sfilamento), sono state effettuate riferendosi all'Approccio 2 con i gruppi parziali A1, M1, R3 definiti dalle tabelle 6.2.I, 6.2.II, precedentemente illustrate, 6.4.II e 6.4.VI:

 $ext{Tab. 6.4.II}$ – Coefficienti parziali $ext{$\gamma_R$}$ da applicare alle resistenze caratteristiche a carico verticale dei pali

Resistenza	Simbolo	Pali infissi	Pali trivellati	Pali ad elica continua
	γ_{R}	(R3)	(R3)	(R3)
Base		1.15	1,35	1,3
Laterale in compressione	γь	1.15	1,15	1,15
	γs	-/		,
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	γ_{st}	1,25	1,25	1,25

[🖱] da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Tab. 6.4.VI - Coefficiente parziale γ_T per le verifiche agli stati limite ultimi di pali soggetti a carichi trasversali

Coefficiente parziale (R3)
$\gamma_T = 1.3$

10.1.1 Verifiche SLU di collasso per carico limite del palo singolo nei riguardi del carico assiale di compressione

Deve essere:

Fcd ≤ Rcd

Dove:

Fcd è il carico assiale di compressione assunto in progetto nelle verifiche allo SLU

agente sul palo singolo;

Rcd la Resistenza di progetto allo SLU per il palo singolo fornita dalla seguente

espressione:

Rcd = Rbd + Rsd - Wp

Essendo:

 $Rbd = Rbk / \gamma b$ la resistenza alla base di progetto;

 $Rsd = Rsk / \gamma s$ la resistenza laterale di progetto;

Wp il peso del palo alleggerito;

γb,γs coefficienti di sicurezza parziali da applicare alle resistenze caratteristiche a carico

verticale dei pali, forniti dalla Tab. 6.4.II delle NTC2018 precedentemente illustrata;

 $Rbk = Min [(Rbc, cal)_{media} / \xi_3; (Rbc, cal)_{min} / \xi_4]$ la resistenza alla punta caratteristica;

 $Rsk = Min [(Rsc, cal)_{media} / \xi_3; (Rsc, cal)_{min} / \xi_4]$ la resistenza laterale caratteristica;

T00VI02STRRE01A.docx 85 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

$\xi_3, \, \xi_4$

coefficienti di riduzione che dipendono dal numero di verticali indagate, determinati in base alla Tab. 6.4.IV delle NTC2018:

Tab. 6.4.IV - Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ ₃	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ_4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Rb,cal ed Rs,cal rappresentano le resistenze alla base e laterale di calcolo del palo valutate con la seguenti espressioni:

Rb,cal = qb Ap

la resistenza alla punta e:

 $Rs,cal = \sum_{i=1}^{n} qs_i Al_i$

la resistenza laterale

i è lo strato iesimo attraversato dal palo ed n il numero totale degli strati.

10.1.1.1 Unità a comportamento coesivo (Argille e limi)

La verifica è effettuata in termini di tensioni totali.

La <u>resistenza unitaria alla base</u> viene determinata attraverso la seguente espressione:

$$qb = \sigma v + 9 cu$$

essendo σv la tensione verticale totale alla quota della base del palo e cu la coesione non drenata del terreno di fondazione alla base.

Relativamente alla resistenza laterale, Il valore di qsi viene determinato come:

 $qs_i = \alpha_i c_{ui}$

Essendo:

 α un coefficiente riduttivo della coesione non drenata c_u , variabile secondo quanto suggerito da AGI (1984) per pali trivellati:

Tipo di palo	Valori di cu [kPa]	Valori di α
	c _u < 25	0.9
Tobal Baka	25 ≤ c _u < 50	0.8
Trivellato	50 ≤ c _u < 75	0.6
	c _u ≥ 75	0.4

Tabella 10.1 – Valori di α (AGI 1984)

10.1.1.2 Unità a comportamento incoerente (Sabbie, Sabbie limose e Ghiaie)

La verifica è effettuata in termini di tensioni efficaci.

T00VI02STRRE01A.docx 86 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Per pali trivellati di grande diametro <u>la resistenza unitaria alla base</u> viene determinata attraverso la seguente espressione:

$$qb = Nq^* x \sigma v'$$

 Nq^* è il coefficiente di capacità portante corrispondente all'insorgere di un cedimento alla base del palo pari a (0.06-0.1) D valutato secondo Berezantzev (1965), e $\sigma v'$ la tensione verticale alla base del palo in termini di tensioni efficaci.

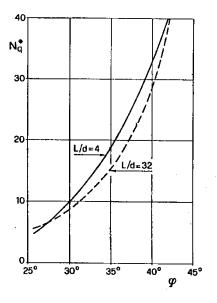


Figura 10.1 – Coefficienti Nq* (Berezantzev, 1965), corrispondenti all'insorgere delle deformazioni plastiche alla base

In ogni caso è stato assunto per qb un valore limite *qb,max* pari al minimo tra i valori forniti dalla seguente espressione [Gwizdala (1984), Reese&O'Neill (1988) e Matsui (1993)]:

 $qb,max1 = (Nspt)_m x \alpha_N (kPa)$

Essendo:

 α_N un coefficiente empirico pari a:

 α_N = 150 per ghiaie α_N = 120 per sabbie α_N = 85 per sabbie limose

(Nspt)_m Il valore di Nspt medio su un tratto pari a 1.5 D al di sopra e al di sotto della base del palo.

e dalla seguente tabella:

qb,max2 = 7500 per ghiaie qp,max2 = 5800 per sabbie qp,max2 = 4300 per sabbie limose

<u>La resistenza unitaria laterale</u> qs_i viene determinato in accordo a Reese e O'Neill (1988) e O'Neill&Hassan (1994) come:

 $qs_i = \sigma v'_m \beta(z) \le qs, max$

essendo:

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

М		

Relazione tecnica e di calcolo PO02

 $\sigma v'_m$ il valore della tensione verticale determinata alla quota media dello strato

considerato;

 β coefficiente empirico;

qs,max tensione tengenziale ultima consigliabile.

In accordo a Reese e O'Neill (1988) e O'Neill&Hassan (1994) al coefficiente empirico β possono essere assegnati i seguenti valori:

 $1.2 \ge \beta = 1.5 - 0.42 \ z^{0.34} \ge 0.25 \ \text{per i depositi sabbiosi}$

 $1.8 \ge \beta = 2.0 - 0.15 z^{0.75} \ge 0.25$ per i depositi sabbioso-ghiaiosi e ghiaiosi

In accordo a Reese & Wright (1977) nel caso di pali trivellati a fango, il valore di *qs,max* è ricavabile dalle seguenti espressioni:

 $qs,max = 3 \times Nspt (kPa)$ per Nspt ≤ 53

 $qs,max = 142 + 0.32 \times Nspt (kPa)$ per Nspt > 53

10.1.1.3 Unità rocciose

Per pali trivellati di grande diametro in roccia, il Canadian Foundation Manual (1978) suggerisce questa espressione per la portata ammissibile alla base:

 $qb_{amm} = K_{sp} x q_u$

con:

$$K_{sp} = \frac{3 + c/B}{10 \cdot \sqrt{1 + 300 \cdot \frac{\delta}{c}}}$$

Dove:

 K_{sp} coefficiente empirico compreso tra 0.1 e 0.4, che dipende dalla spaziatura e include un

fattore di sicurezza pari a 3;

 q_u valore medio della resistenza a compressione monoassiale della matrice rocciosa

(determinata su campioni di roccia intatta);

c spaziatura delle discontinuità;

 δ apertura delle discontinuità;

B diametro del palo.

Poulos e Davis in "Analisi e progettazione di fondazioni su pali, 1980", sulla base dei dati empirici forniti da Thorne (1977), suggeriscono una pressione massima ammissibile alla punta dell'ordine di $0.3~q_{um}$ (resistenza monoassiale alla compressione) che sembrerebbe abbastanza prudente per quasi tutte le argilliti rigonfie. Anche in questo caso, il riferimento alle soluzioni teoriche mostra che, tali valori, generalmente, implicano un coefficiente di sicurezza di almeno 3~per le rocce fratturate o con fratture a brevi intervalli, e 12~o~più~per~rocce~integre.

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Sulla base di quanto sopra, la resistenza unitaria alla base è stata assunta pari a:

$$qb_{amm} = 3 K x q_u$$

dove K è un coefficiente cautelativamente assunto pari a 0.20, sulla scorta di quanto precedentemente espresso.

<u>La resistenza unitaria laterale</u> *qs*, per pali trivellati in roccia, viene determinata impiegando l'espressione suggerita da Horvath e Kenney (1989):

$$qs = 6.656 \cdot \sqrt{q_u} \qquad (kPa)$$

10.1.2 Verifiche SLU di collasso per carico limite della palificata nei riguardi del carico assiale di compressione

L'interasse tra i pali è fissato ad un valore non minore di tre volte il loro diametro.

La resistenza ai carichi verticali Rcd,gr del gruppo di pali viene determinata in base alla seguente espressione:

 $Rcd,gr = \eta n Rcd$

In cui:

 η è l'efficienza del gruppo di pali;

n Il numero complessivo di pali del gruppo.

Rcd la Resistenza di progetto allo SLU per il palo singolo definito in accordo a quanto

illustrato nel paragrafo 10.1.1.

Per <u>palificate in terreni incoerenti</u> e interassi usuali (non minori di tre volte il diametro dei pali), l'efficienza è sempre maggiore dell'unità e nel progetto viene assunta pari ad uno. In questi casi, la verifica di collasso per carico limite del palo singolo è certamente più gravosa di quella relativa al gruppo che, pertanto, viene omessa.

Per palificate in terreni coesivi, l'efficienza del gruppo di pali risulta minore dell'unità.

Il valore dell'efficienza è stato determinato attraverso la nota formula empirica di Converse-Labarre:

$$\eta = 1 - \frac{\arctan(d/i)}{\pi/2} \frac{(m-1)n + (n-1)m)}{m \, n}$$

In cui:

d diametro dei pali;

i interasse tra i pali;

m numero di file di pali;

n numero di pali per ciascuna fila.

La verifica si ritiene soddisfatta se:

 $N_{\text{max SLU}} \leq Rcd, gr$

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e

in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Dove:

N_{max SLU} è il massimo carico verticale agli SLU-STR o SLV agente sulla palificata.

10.1.3 Verifiche SLU di collasso per sfilamento del palo singolo nei riguardi del carico assiale di trazione

Deve essere:

Ftd ≤ Rtd

Dove:

Ftd è il carico assiale di trazione assunto in progetto nelle verifiche allo SLU agente sul

palo singolo;

Rtd la Resistenza di progetto allo SLU per il palo singolo fornita dalla seguente

espressione:

Rcd = 0.7 Rsd + Wp

Essendo:

 $Rsd = Rsk / \gamma s$ la resistenza laterale di progetto;

Wp il peso del palo alleggerito;

γb,γs coefficienti di sicurezza parziali da applicare alle resistenze caratteristiche a carico

verticale dei pali, forniti dalla Tab. 6.4.II delle NTC2018 precedentemente illustrata;

Rsk la resistenza laterale caratteristica, valutata secondo quanto illustrato al paragrafo

10.1.1.

Come è possibile evincere per le verifiche a carichi di trazione si assume una resistenza laterale pari al 70% della corrispondente valutata per pali in compressione.

10.1.4 Verifiche SLU di collasso per carico limite del palo singolo nei riguardi del carico trasversale

Deve essere:

Ftrd ≤ Rtr.d

Dove:

Ftrd è il carico orizzontale di progetto nelle verifiche allo SLU agente sul palo singolo;

Rtr,d la Resistenza di progetto ai carichi orizzontali allo SLU per il palo singolo fornita

dalla seguente espressione:

 $Rtr,d = Rtr,k / \gamma_T$ la resistenza caratteristica ai carichi orizzontali;

 γ_T coefficiente di sicurezza parziale per le verifiche agli stati limite ultimi di apli

soggetti a carichi trasversali, fornito dalla Tab. 6.4.VI delle NTC2018,

precedentemente illustrata;

T00VI02STRRE01A.docx 90 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

 $Rtr,k = Min [(Rtr,cal)_{media} / \xi_3; (Rtr,cal)_{min} / \xi_4]$ la resistenza laterale caratteristica ai carichi orizzontali allo SLU;

 ξ_3 , ξ_4 coefficienti di riduzione che dipendono dal numero di verticali indagate, determinati in base alla Tab. 6.4.IV delle NTC2018:

Rtr,cal rappresenta la resistenza di calcolo del palo ai carichi orizzontali *Hlim* valutata in accordo alla teoria proposta da Broms (1984).

Le ipotesi assunte da Broms sono le seguenti:

- Terreno omogeneo;
- Comportamento dell'interfaccia palo-terreno di tipo rigido-perfettamente plastico;
- la forma del palo è ininfluente e l'interazione palo-terreno è determinata solo dalla dimensione caratteristica D della sezione del palo (il diametro per sezioni circolari, il lato per sezioni quadrate, etc.) misurata normalmente alla direzione del movimento;
- il palo ha comportamento rigido-perfettamente plastico, cioè si considerano trascurabili le deformazioni elastiche del palo.

Questa ultima ipotesi comporta che il palo abbia solo moti rigidi finchè non si raggiunge il momento di plasticizzazione *My* del palo. A questo punto si ha la formazione di una cerniera plastica in cui la rotazione continua indefinitamente con momento costante.

In accordo alla condizione di vincolo dei pali nei plinti di fondazione, il palo è considerato impedito di ruotare in testa.

I meccanismi di rottura del complesso palo-terreno sono condizionati dalla lunghezza del palo, dal momento di plasticizzazione della sezione e dalla resistenza esercitata dal terreno. I possibili meccanismi di rottura sono riportati nella figura seguente e sono solitamente indicati come "palo corto", "intermedio" e "lungo".

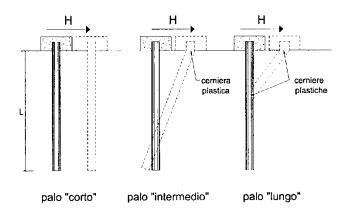


Figura 10.2 – meccanismi di rottura del complesso palo-terreno per pali impediti di ruotare alla testa soggetti a carichi orizzontali (Broms, 1984).

T00VI02STRRE01A.docx 91 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

10.1.4.1 Unità a comportamento coesivo

Il diagramma di distribuzione della resistenza p offerta dal terreno lungo il fusto del palo è quello riportato nella figura seguente (a). Broms adotta al fine delle analisi una distribuzione semplificata (b) con reazione nulla fino a 1.5 D e costante con valore 9 cu D per profondità maggiori.

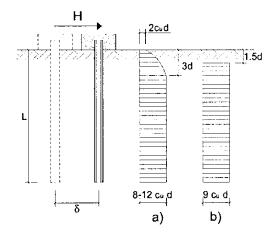


Figura 10.3 – distribuzione della resistenza offerta dal terreno a carichi orizzontali per pali impediti di ruotare alla testa (Broms, 1984).

Nella figura seguente si riportano gli schemi di calcolo per i tre meccanismi di rottura precedentemente illustrati:

T00VI02STRRE01A.docx 92 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

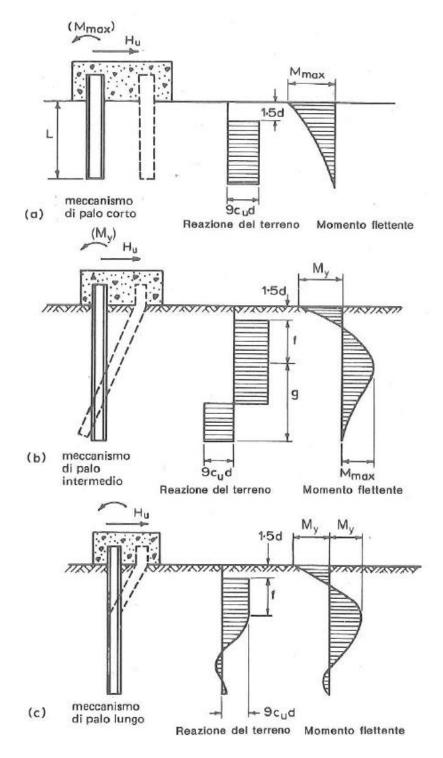


Figura 10.4 – Schemi di calcolo per pali impediti di ruotare in testa e soggetti ad azioni trasversali in terreni coesivi (Broms, 1984).

Facendo ricorso a semplici equazioni di equilibrio ed imponendo la formazione di una cerniera plastica nelle sezioni che raggiungono un momento pari a My, è possibile calcolare il carico limite orizzontale corrispondente ai tre meccanismi di rottura:

T00VI02STRRE01A.docx 93 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

$$H \lim = 9c_u D^2 \left(\frac{L}{D} - 1.5\right)$$
 palo corto
$$H \lim = -9c_u D^2 \left(\frac{L}{D} - 1.5\right) + 9c_u D^2 \sqrt{2\left(\frac{L}{D}\right)^2 + \frac{4}{9} \frac{My}{c_u D^3} + 4.5}$$
 palo intermedio
$$H \lim = -13.5c_u D^2 + c_u D^2 \sqrt{182.25 + 36 \frac{My}{c_u D^3}}$$
 palo lungo

Nel caso di palo scalzato (ove presente) e per il caso di palo lungo, il valore di *Hlim* si ottiene risolvendo le seguenti equazioni:

$$H \lim_{s \to 0} = 9c_u D \times (f - 1.5D)$$

$$H \lim_{s \to 0} (d_s + f) - 4.5c_u D(f - 1.5D)^2 - 2M_y = 0$$

Essendo:

- f la profondità della cerniera plastica dal piano di campagna
- d_s l'altezza della testa del palo rispetto al piano di campagna

10.1.4.2 Unità a comportamento incoerente

Per un terreno incoerente si assume che la resistenza opposta dal terreno alla traslazione del palo vari linearmente con la profondità con legge:

$$p = 3 k_p \gamma z D$$

essendo:

- k_p il coefficiente di spinta passiva;
- z la profondità da piano campagna;
- γ il peso di volume del terreno, nel caso in cui il terreno sia sotto falda si assume γ' .

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

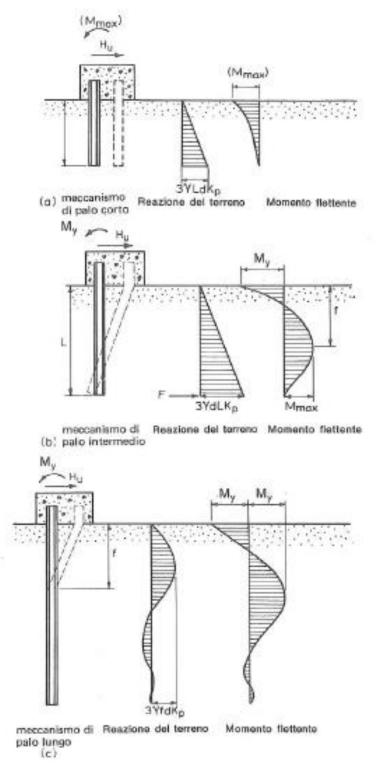


Figura 10.5 – Schemi di calcolo per pali impediti di ruotare in testa e soggetti ad azioni trasversali in terreni incoerenti (Broms, 1984).

I valori del carico limite corrispondenti ai diversi meccanismi di rottura sono di seguito riportati:

T00VI02STRRE01A.docx 95 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

$$H \lim_{n \to \infty} 1.5 k_p \gamma D^3 \left(\frac{L}{D}\right)^2$$
 palo corto

$$H \lim_{n \to \infty} = \frac{1}{2} k_p \gamma D^3 \left(\frac{L}{D}\right)^2 + \frac{My}{L}$$
 palo intermedio

$$H \lim_{p} = k_p \gamma D^3 \sqrt[3]{\left(3.676 \frac{My}{k_p \gamma D^4}\right)^2}$$
 palo lungo

Nel caso di palo scalzato (ove presente) e per il caso di palo lungo, il valore di *Hlim* si ottiene risolvendo le seguenti equazioni:

$$H \lim = 1.5k_p \gamma D f^2$$

$$f^3 + 1.5Df^2 - \left(\frac{2M_y}{\gamma k_p D}\right) = 0$$

Essendo:

f la profondità della cerniera plastica dal piano di campagna

d_s l'altezza della testa del palo rispetto al piano di campagna

10.1.5 Verifiche SLU di collasso per carico limite della palificata nei riguardi del carico trasversale

La resistenza ai carichi trasversali Rcd,gr del gruppo di pali viene determinata in base alla seguente espressione:

 $Rtr, dgr = \eta n Rtr, d1$

In cui:

ηtr è l'efficienza del gruppo di pali;

n Il numero complessivo di pali del gruppo.

Rtr,d1 la Resistenza di progetto allo SLU per il palo singolo definito in accordo a quanto

illustrato nel paragrafo 10.1.1, per un valore del momento di plasticizzazione

corrispondente allo sforzo normale medio agente sui pali della palificata

Il carico limite orizzontale di un gruppo può essere notevolmente inferiore alla somma dei valori relativi ai singoli pali; l'efficienza di un gruppo di pali rispetto ai carichi orizzontali è sempre inferiore all'unità.

Dalle "raccomandazioni sui pali di fondazione" AGI, 1984, si riporta quanto segue:

"Sulla base dei risultati sperimentali disponibili sembra che l'efficienza tenda all'unità per un interasse fra i pali del gruppo pari a cinque volte il diametro dei pali; per interasse minore, l'efficienza diminuisce fino a 0.5."

T00VI02STRRE01A.docx 96 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

È possibile anche affermare che risulta più vantaggioso disporre il gruppo di pali normalmente alla direzione della forza orizzontale ovvero, a parità di numero di pali di un gruppo rettangolare resiste meglio se la forza orizzontale agisce parallelamente al lato corto.

Per il caso di interesse, relativo a pali disposti ad interasse non minore di 3 diametri si ritiene possibile considerare $\eta tr = 80\%$.

Nel caso di gruppo di pali soggetti ad azioni orizzontali possono manifestarsi le due seguenti tipologie di interazione:

- interazione tra pali in linea, caricati in direzione parallela alla fila (Figura 10.6 Schema A);
- interazione tra pali affiancati, caricati in direzione perpendicolare alla fila (Figura 10.9 Schema B).

L'interazione del primo tipo si esplica in una diminuzione delle caratteristiche meccaniche del terreno retrostante il palo di testa della fila, con conseguente incremento degli spostamenti dei pali retrostanti.

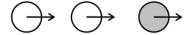


Figura 10.6 - Schema A - Pali in linea

Studi sperimentali condotti sull'argomento hanno mostrato che l'interazione dipende principalmente dalla posizione relativa dei pali. Molti autori (Dunnavant & O'Neill, 1986) raccomandano fattori di riduzione distinti per pali frontali e pali retrostanti. Tali fattori sono dati in funzione della spaziatura tra i pali nella direzione del carico.

I fattori di riduzione per pali frontali possono essere ricavati dalle indicazioni fornite in Figura 10.7.

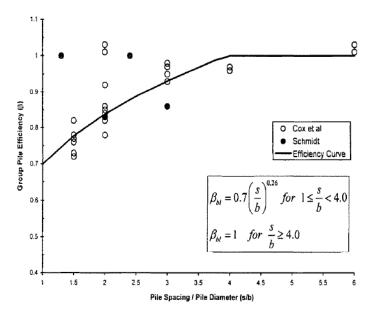


Figura 10.7 – Fattori di riduzione per pali disposti parallelamente alla direzione di carico – Pali frontali I fattori di riduzione per pali retrostanti possono essere ricavati dalle indicazioni fornite in Figura 10.8.

T00VI02STRRE01A.docx 97 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

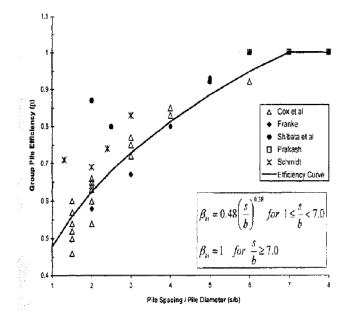


Figura 10.8 – Fattori di riduzione per pali disposti parallelamente alla direzione di carico – Pali retrostanti

L'interazione del secondo tipo si esplica invece con un incremento degli spostamenti del palo centrale per effetto della presenza dei pali laterali.

FIGURA 6-12: SCHEMA B - PALI AFFIANCATI

Figura 10.9 – Schema B – Pali affiancati

Tale riduzione di "p" in funzione del rapporto s/D (s = interasse dei pali, D = diametro del palo) può essere ricavata dalle indicazioni fornite in Figura 10.10.

T00VI02STRRE01A.docx 98 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

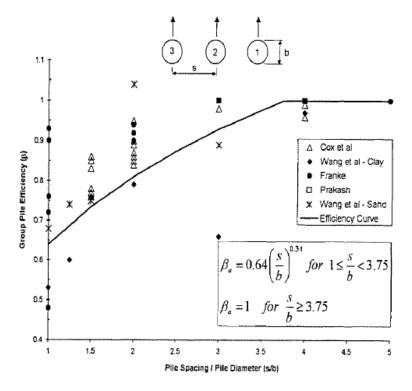


Figura 10.10 – Fattori di riduzione per pali disposti su file perpendicolari alla direzione del carico

Con riferimento alle geometrie maggiormente ricorrenti per i sistemi di fondazione profondi, gli incrementi medi delle sollecitazioni lungo i pali a causa degli effetti gruppo sono dell'ordine del 10-20%.

Nel caso in esame si considera un incremento massimo delle sollecitazioni sul palo singolo pari al 20%.

10.2 Applicazione al caso in esame

Si omettono le verifiche di stabilità globale delle fondazioni su pali del ponte, che ricadono su aree in piano o a pendenza estremamente modesta.

10.2.1 Caratteristiche delle opere di fondazione su pali

Le fondazioni delle spalle sono di tipo indiretto su pali trivellati ϕ 1200, collegati in testa da rigide zattere di fondazione di altezza pari a 2.0 m.

Per le spalle sono previsti pali disposti secondo una maglia rettangolare, garantendo una distanza minima tra gli assi dei pali pari a 3.60 m (3D), come segue:

Spalla A: 15 (5 x 3);

• Spalla B: 15 (5 x 3).

10.2.2 Parametri geotecnici e stratigrafie di progetto

Di seguito si riepilogano le stratigrafie ed i parametri geotecnici di progetto impiegati nel dimensionamento delle fondazioni su pali.

Inoltre, è indicato il numero delle verticali indagate, utile al dimensionamento dei pali.

T00VI02STRRE01A.docx 99 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

VIADOTTO:	PO02		1	Numero delle verticali indagate spinte a profondità utile al dimensionamento dei pali	1
Allineamento:	SPA - SPB				
Profondità falda da	piano di campagna	ZW	m	0.0	

Relazione tecnica e di calcolo PO02

STRATIGE	RAFIA E PA	ARAMETRI	GEOTECNICI DI PROG	SETTO		PARAMET	TRI DI RES	SISTENZA	
						V	ALORI ME	DI	
Strato	Da	Α	Unità		γ _{med}	CU med	C' _{med}	φ' _{med}	NSPT
n.	[m]	[m]			[kPa]	[kPa]	[kPa]	[°]	
1	0.00	3.00	SLm		18.5	110			
2	3.00	23.00	G		19.5			38.0	100

RM8401

Tabella 10.2 – Stratigrafie e parametri geotecnici per il progetto delle fondazioni

10.2.3 Verifiche SLU di collasso per carico limite del palo singolo e della palificata nei riguardi del carico assiale di compressione e di trazione (sfilamento)

In allegato si riportano le curve Resistenza di progetto Rcd – Lunghezza del palo (Lp), che consentono il dimensionamento della lunghezza del palo in funzione dei carichi di progetto Fcd.

I valori di Fcd, Ftd e Fcd_{gr} considerati nelle verifiche, sono quelli illustrati nei capitoli relativi alle sottostrutture.

La tabelle seguenti illustrano i risultati delle verifiche effettuate in termini di coefficienti di utilizzo, dati dal rapporto tra le azioni agenti e le resistenze di calcolo; affinchè le verifiche siano soddisfatte è necessario che il valore del coefficiente di utilizzo sia non maggiore di uno.

		PALI SOG	RAZIONE										
RIEPILOGO	RISULTATI		PAR	RAMETRI N	/IEDI			MEDI					
Stratigrafia	Allineamenti	Lp	Rsd	Rbd	Rcd	Edc	c.u.	Rtd	Edt	c.u.			
		[m]	[kN]	[kN]	[kN]	[kN]	%	[kN]	[kN]	%			
STR1	SPALLE	25.0	3180	1774	4805	4550	95%	2376	726	31%			

Tabella 10.3 – Riepilogo risultati verifiche di collasso per carico limite del palo singolo nei riguardi dei carichi assiali di compressione e di trazione (sfilamento)

RIEPILOGO	RISULTATI					MEDI		
Stratigrafia	Allineamenti	D	i	npali	η	Rcd,gr med	Edc	c.u.
		[m]	[m]		(%)	[kN]	[kN]	%
STR1	SPALLE	1.20	3.60	15	70%	50418	43750	87%

Tabella 10.4 – Riepilogo risultati verifiche di collasso per carico limite della palificata nei riguardi dei carichi assiali di compressione

10.2.4 Verifiche SLU di collasso per carico limite del palo singolo nei riguardi del carico trasversale

In allegato si riportano le curve Resistenza di progetto Rtr,d – Momento di plasticizzazione testa palo (MRd), che consentono il dimensionamento della lunghezza del palo in funzione dei carichi di progetto Ftr,d.

I valori di Ftr,d considerati nelle verifiche sono quelli illustrati nei capitoli relativi alle sottostrutture.

T00VI02STRRE01A.docx 100 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

Per la verifica del palo singolo, come illustrato in precedenza, si considera un valore della forza trasversale di progetto SLU amplificata del 20% rispetto a quella fornita dalla risoluzione della palificata.

Il momento ultimo, considerato per la valutazione della resistenza media della palificata è quello corrispondente allo sforzo normale medio.

La tabella seguente illustra i risultati delle verifiche effettuate in termini di coefficienti di utilizzo, dati dal rapporto tra le azioni e le resistenze di calcolo; affinchè le verifiche siano soddisfatte è necessario che il valore del coefficiente di utilizzo sia non maggiore di uno.

RIEPILOGO I	RISULTATI		PALO S	INGOLO		PALIFICATA										
Stratigrafia	Allineamenti	My	Rtr,d	r,d Ftr,d c.u		My	Rtr,d1	npali	η	Rtr,dgr	Ftr,dgr	c.u.gr				
		(kNm)	(kN)	(kN)		(kNm)	(kN)		(%)	(kN)	(kN)					
STR1	SPALLE	5453	1520	1236	81%	5931	1616	15	80%	19396	18540	96%				

Tabella 10.5 – Riepilogo risultati verifiche di collasso per carico limite del palo singolo e della palificata nei riguardi dei carichi trasversali

T00VI02STRRE01A.docx 101 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

11 DICHIARAZIONE ACCETTABILITÀ RISULTATI (PAR. 10.2 N.T.C. 2018)

11.1 Tipo di analisi svolte

Le analisi strutturali e le verifiche per il dimensionamento delle strutture sono state condotte con l'ausilio di codici di calcolo automatico.

Il calcolo delle sollecitazioni è stato effettuato ricorrendo a modelli piani in cui gli elementi strutturali sono stati schematizzati come elementi monodimensionali di tipo "beam".

I vincoli esterni sono costituiti da semplici appoggi.

Le sollecitazioni sismiche sono calcolate attraverso analisi dinamica lineare.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui le opere saranno soggette.

11.2 Origine e caratteristiche dei codici di calcolo

ANALISI STRUTTURALE

Nome del Software: SAP2000 14 Advanced

Produttore CSI Computer & Structures, Inc 1995 University Avenue Berkley, CA

Licenza concessa a VIA INGEGNERIA s.r.l. - Licenza N° S15307

11.3 Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dai produttori del software contiene esaurienti descrizioni delle basi teoriche e degli algoritmi impiegati con l'individuazione dei campi d'impiego.

11.4 Modalità di presentazione dei risultati

Le relazioni di calcolo strutturale presentano i dati di calcolo tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità. Le relazioni di calcolo illustrano in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare.

11.5 Informazioni generali sull'elaborazione

Il codice di calcolo SAP2000 consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

T00VI02STRRE01A.docx 102 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

11.6 Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In base a quanto sopra, il Progettista delle Strutture asserisce che l'elaborazione è corretta ed idonea al caso specifico, pertanto i risultati di calcolo sono da ritenersi validi ed accettabili.

T00VI02STRRE01A.docx 103 di 111

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

12 ALLEGATO 1 – IMPALCATO - ANALISI STATICA GLOBALE – CARATTERISTICHE GEOMETRICO – INERZIALI IN FASE DI ANALISI

T00VI02STRRE01A.docx 104 di 111

Analisi della struttura - Caratteristiche geometrico-inerziali sezioni

Rck = 45 Mpa n0 = 6.16 ninf= 15.07 nrit.= 15.74

					eps= 0.81 (c/t)max= 11.39 eps= 0.81 (c/t)max= 11.39												11.39																
								Piattabano	da superiore	2			Anima Piattabanda inferiore									Soletta in c.a larghezza collaborante									ante		
		Larghezza	Dis.trave-																														
	n.travi	soletta	asse						1						1								Int tr sx		Int tr dx	tipo	Lcampata			1 '			
Sez	impalcato	impalcato	impalcato	soletta	B1 (m)	H1 (m)	B2 (m)	H2 (m)	Beq (m)	Htot (m)	c/t	Classe	spw (m)	Hw (m)	B3 (m)	H3 (m)	B4 (m)	H4 (m)	Beq (m)	Htot (m)	c/t	Classe	(m)	bconn (m)	(m)	campata	(m)	b1 (m)	b2 (m)	bcoll (m)	Hc (m)	Hcr (m)	Brsup (m)
1	3	16.50	5.000	reagente	0.700	0.030	0.000	0.000	0.700	0.030	11.367	<4	0.018	1.235	0.000	0.000	0.800	0.035	0.800	0.035	11.171	<4	6.500	0.360	5.000	ca	22.000	3.070	2.320	5.430	0.240	0.070	0.560
2	3	16.50	5.000	reagente	0.700	0.030	0.000	0.000	0.700	0.030	11.367	<4	0.018	1.235	0.000	0.000	0.800	0.035	0.800	0.035	11.171	<4	6.500	0.360	5.000	ca	22.000	3.070	2.320	5.430	0.240	0.070	0.560
3	3	16.50	5.000	reagente	0.700	0.035	0.000	0.000	0.700	0.035	9.800	<4	0.014	1.230	0.000	0.000	0.800	0.035	0.800	0.035	11.229	<4	6.500	0.360	5.000	ca	22.000	3.070	2.320	5.430	0.240	0.070	0.560
4	3	16.50	5.000	reagente	0.700	0.035	0.000	0.000	0.700	0.035	9.800	<4	0.014	1.230	0.000	0.000	0.800	0.035	0.800	0.035	11.229	<4	6.500	0.360	5.000	ca	22.000	3.070	2.320	5.430	0.240	0.070	0.560
5	3	16.50	5.000	reagente	0.700	0.035	0.000	0.000	0.700	0.035	9.800	<4	0.014	1.230	0.000	0.000	0.800	0.035	0.800	0.035	11.229	<4	6.500	0.360	5.000	ca	22.000	3.070	2.320	5.430	0.240	0.070	0.560
6	3	16.50	5.000	reagente	0.700	0.035	0.000	0.000	0.700	0.035	9.800	<4	0.014	1.230	0.000	0.000	0.800	0.035	0.800	0.035	11.229	<4	6.500	0.360	5.000	ca	22.000	3.070	2.320	5.430	0.240	0.070	0.560
7	3	16.50	5.000	reagente	0.700	0.035	0.000	0.000	0.700	0.035	9.800	<4	0.014	1.230	0.000	0.000	0.800	0.035	0.800	0.035	11.229	<4	6.500	0.360	5.000	ca	22.000	3.070	2.320	5.430	0.240	0.070	0.560
8	3	16.50	5.000	reagente	0.700	0.035	0.000	0.000	0.700	0.035	9.800	<4	0.014	1.230	0.000	0.000	0.800	0.035	0.800	0.035	11.229	<4	6.500	0.360	5.000	ca	22.000	3.070	2.320	5.430	0.240	0.070	0.560
9	3	16.50	5.000	reagente	0.700	0.030	0.000	0.000	0.700	0.030	11.367	<4	0.018	1.235	0.000	0.000	0.800	0.035	0.800	0.035	11.171	<4	6.500	0.360	5.000	ca	22.000	3.070	2.320	5.430	0.240	0.070	0.560
10	3	16.50	5.000	reagente	0.700	0.030	0.000	0.000	0.700	0.030	11.367	<4	0.018	1.235	0.000	0.000	0.800	0.035	0.800	0.035	11.171	<4	6.500	0.360	5.000	ca	22.000	3.070	2.320	5.430	0.240	0.070	0.560

Analisi della struttura - Caratteristiche geometrico inerziali

							Arm	atura sole	tta in c.a.			Trave isolata						Trave composta - n=ninf.							Trave composta - n=n0							
Sez	Brinf (m)	A (mq)	yGc (m)	Ix (m4)	As1 (mq)	Hs1 (m)	As2 (mq)	Hs2 (m)	As (mq)	yGs (m)	Ixs (m4)	Ha (m)	Aa (mq)	yGa (m)	Ixa (m4)	Iya (m4)	Ja (m4)	Ai (mq)	yG (m)	Ixi (m4)	lyi (m4)	Ji (m4)	Ar (mq)	yG (m)	Ixr (m4)	lyr (m4)	Ji (m4)	A0 (mq)	yG (m)	lx0 (m4)	ly0 (m4)	Ji (m4)
1	0.560	1.3424	0.185	0.007185645	0.008482	0.260	0.008482	0.080	0.016965	0.170	0.000137414	1.300	0.0712	0.589	0.022237	0.002351	0.000020	0.177302	1.124	0.056886	3.770984	0.000024	0.173455	1.116	0.056352	3.685168	0.000023	0.306029	1.276	0.067321	6.642746	0.000069
2	0.560	1.3424	0.185	0.007185645	0.008482	0.260	0.008482	0.080	0.016965	0.170	0.000137414	1.300	0.0712	0.589	0.022237	0.002351	0.000020	0.177302	1.124	0.056886	3.770984	0.000024	0.173455	1.116	0.056352	3.685168	0.000023	0.306029	1.276	0.067321	6.642746	0.000069
3	0.560	1.3424	0.185	0.007185645	0.008482	0.260	0.008482	0.080	0.016965	0.170	0.000137414	1.300	0.0697	0.618	0.023109	0.002494	0.000023	0.175792	1.140	0.055186	3.733376	0.000026	0.171945	1.132	0.054696	3.647561	0.000026	0.304519	1.286	0.064742	6.605138	0.000072
4	0.560	1.3424	0.185	0.007185645	0.008482	0.260	0.008482	0.080	0.016965	0.170	0.000137414	1.300	0.0697	0.618	0.023109	0.002494	0.000023	0.175792	1.140	0.055186	3.733376	0.000026	0.171945	1.132	0.054696	3.647561	0.000026	0.304519	1.286	0.064742	6.605138	0.000072
5	0.560	1.3424	0.185	0.007185645	0.008482	0.260	0.008482	0.080	0.016965	0.170	0.000137414	1.300	0.0697	0.618	0.023109	0.002494	0.000023	0.175792	1.140	0.055186	3.733376	0.000026	0.171945	1.132	0.054696	3.647561	0.000026	0.304519	1.286	0.064742	6.605138	0.000072
6	0.560	1.3424	0.185	0.007185645	0.008482	0.260	0.008482	0.080	0.016965	0.170	0.000137414	1.300	0.0697	0.618	0.023109	0.002494	0.000023	0.175792	1.140	0.055186	3.733376	0.000026	0.171945	1.132	0.054696	3.647561	0.000026	0.304519	1.286	0.064742	6.605138	0.000072
7	0.560	1.3424	0.185	0.007185645	0.008482	0.260	0.008482	0.080	0.016965	0.170	0.000137414	1.300	0.0697	0.618	0.023109	0.002494	0.000023	0.175792	1.140	0.055186	3.733376	0.000026	0.171945	1.132	0.054696	3.647561	0.000026	0.304519	1.286	0.064742	6.605138	0.000072
8	0.560	1.3424	0.185	0.007185645	0.008482	0.260	0.008482	0.080	0.016965	0.170	0.000137414	1.300	0.0697	0.618	0.023109	0.002494	0.000023	0.175792	1.140	0.055186	3.733376	0.000026	0.171945	1.132	0.054696	3.647561	0.000026	0.304519	1.286	0.064742	6.605138	0.000072
9	0.560	1.3424	0.185	0.007185645	0.008482	0.260	0.008482	0.080	0.016965	0.170	0.000137414	1.300	0.0712	0.589	0.022237	0.002351	0.000020	0.177302	1.124	0.056886	3.770984	0.000024	0.173455	1.116	0.056352	3.685168	0.000023	0.306029	1.276	0.067321	6.642746	0.000069
10	0.560	1.3424	0.185	0.007185645	0.008482	0.260	0.008482	0.080	0.016965	0.170	0.000137414	1.300	0.0712	0.589	0.022237	0.002351	0.000020	0.177302	1.124	0.056886	3.770984	0.000024	0.173455	1.116	0.056352	3.685168	0.000023	0.306029	1.276	0.067321	6.642746	0.000069

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

13 ALLEGATO 2 – IMPALCATO - ANALISI STATICA GLOBALE – CARATTERISTICHE GEOMETRICO – INERZIALI IN FASE DI VERIFICA

T00VI02STRRE01A.docx 105 di 111

Rck = 45 Mpa n0 = 6.16 ninf= 15.07 nrit.= 15.74

eps= 0.814 (c/t)max= 11.39 eps= 0.814 (c/t)max= 11.39

														Piattabano	la superiore				Ar	ima				Piattabar	nda inferiore	2									So	letta in c.a.	- larghezza	a collaborante	.e
Se	. FR	RAME	LOC (m)	Progr (m) n.campata	X campata (m)	n.travi impalcato	Larghezza soletta impalcato	asse		B1 (m)	H1 (m)	B2 (m)	H2 (m)	Beg (m)	Htot (m)	c/t	Classe	spw (m)	Hw (m)	B3 (m)	H3 (m)	B4 (m)	H4 (m)	Beg (m)	Htot (m)	c/t	Classe	Int tr sx (m)	hconn (m)	Int tr dx (m)	tipo campata	Lsx (m)	Lcampata	I dx (m)	b1 (m)	b2 (m)	bcoll (m)	Hc (m)
1	- 	1	0.000	0.000	1	0.000	3	16.500	5,000	reagente	0.700	0.030	0.000	0.000	0.700	0.030	11.667	4	0.018	1.235	0.000	0.000	0.900	0.035	0.900	0.035	12.600	4	6.500	0.360	5,000	campata	LOX (III)	22.000	Eux (III)	3.070	2.320	4.191	0.240
2	- 1	1	2.500	2.500	1	2.500	3	16.500	5.000	reagente	0.700	0.030	0.000	0.000	0.700	0.030	11.667	4	0.018	1.235	0.000	0.000	0.900	0.035	0.900	0.035	12.600	4	6.500	0.360	5.000	ca		22.000		3.070	2.320	4 754	0.240
3	- 1	2	0.000	2.500	1	2.500	3	16.500	5.000	reagente	0.700	0.030	0.000	0.000	0.700	0.030	11.667	4	0.018	1.235	0.000	0.000	0.900	0.035	0.900	0.035	12.600	4	6.500	0.360	5.000	ca		22.000		3.070	2.320	4.754	0.240
4	- 1	2	2.500	5.000	1	5.000	3	16.500	5.000	reagente	0.700	0.030	0.000	0.000	0.700	0.030	11.667	4	0.018	1.235	0.000	0.000	0.900	0.035	0.900	0.035	12.600	4	6.500	0.360	5.000	ca		22.000		3.070	2.320	5.317	0.240
5	······	3	0.000	5.000	1	5.000	3	16.500	5.000	reagente	0.700	0.035	0.000	0.000	0.700	0.035	10.000	<4	0.014	1.230	0.000	0.000	0.900	0.035	0.900	0.035	12.657	4	6.500	0.360	5.000	ca		22.000		3.070	2.320	5.317	0.240
6	- 1	3	0.500	5.500	1	5.500	3	16.500	5.000	reagente	0.700	0.035	0.000	0.000	0.700	0.035	10.000	<4	0.014	1.230	0.000	0.000	0.900	0.035	0.900	0.035	12.657	4	6.500	0.360	5.000	ca		22.000		3.070	2.320	5.430	0.240
7	- 1	4	0.000	5.500	1	5.500	3	16.500	5.000	reagente	0.700	0.035	0.000	0.000	0.700	0.035	10.000	<4	0.014	1.230	0.000	0.000	0.900	0.035	0.900	0.035	12.657	4	6.500	0.360	5.000	ca		22.000		3.070	2.320	5.430	0.240
8	- 1	4	2.750	8.250	1	8.250	3	16.500	5.000	reagente	0.700	0.035	0.000	0.000	0.700	0.035	10.000	<4	0.014	1.230	0.000	0.000	0.900	0.035	0.900	0.035	12.657	4	6.500	0.360	5.000	ca		22.000		3.070	2.320	5.430	0.240
9	- 1	5	0.000	8.250	1	8.250	3	16.500	5.000	reagente	0.700	0.035	0.000	0.000	0.700	0.035	10.000	<4	0.014	1.230	0.000	0.000	0.900	0.035	0.900	0.035	12.657	4	6.500	0.360	5.000	ca		22.000		3.070	2.320	5.430	0.240
10	- 1	5	2.750	11.000	1	11.000	3	16.500	5.000	reagente	0.700	0.035	0.000	0.000	0.700	0.035	10.000	<4	0.014	1.230	0.000	0.000	0.900	0.035	0.900	0.035	12.657	4	6.500	0.360	5.000	ca		22.000		3.070	2.320	5.430	0.240
11	- 1	6	0.000	11.000	1	11.000	3	16.500	5.000	reagente	0.700	0.035	0.000	0.000	0.700	0.035	10.000	<4	0.014	1.230	0.000	0.000	0.900	0.035	0.900	0.035	12.657	4	6.500	0.360	5.000	ca		22.000		3.070	2.320	5.430	0.240
12	- 1	6	2.750	13.750	1	13.750	3	16.500	5.000	reagente	0.700	0.035	0.000	0.000	0.700	0.035	10.000	<4	0.014	1.230	0.000	0.000	0.900	0.035	0.900	0.035	12.657	4	6.500	0.360	5.000	ca		22.000		3.070	2.320	5.430	0.240
13	- 1	7	0.000	13.750	1	13.750	3	16.500	5.000	reagente	0.700	0.035	0.000	0.000	0.700	0.035	10.000	<4	0.014	1.230	0.000	0.000	0.900	0.035	0.900	0.035	12.657	4	6.500	0.360	5.000	ca		22.000		3.070	2.320	5.430	0.240
14	- 1	7	2.750	16.500	1	16.500	3	16.500	5.000	reagente	0.700	0.035	0.000	0.000	0.700	0.035	10.000	<4	0.014	1.230	0.000	0.000	0.900	0.035	0.900	0.035	12.657	4	6.500	0.360	5.000	ca		22.000		3.070	2.320	5.430	0.240
15	- 1	8	0.000	16.500	1	16.500	3	16.500	5.000	reagente	0.700	0.035	0.000	0.000	0.700	0.035	10.000	<4	0.014	1.230	0.000	0.000	0.900	0.035	0.900	0.035	12.657	4	6.500	0.360	5.000	ca		22.000		3.070	2.320	5.430	0.240
16		8	0.500	17.000	1	17.000	3	16.500	5.000	reagente	0.700	0.035	0.000	0.000	0.700	0.035	10.000	<4	0.014	1.230	0.000	0.000	0.900	0.035	0.900	0.035	12.657	4	6.500	0.360	5.000	ca		22.000		3.070	2.320	5.317	0.240
17		9	0.000	17.000	1	17.000	3	16.500	5.000	reagente	0.700	0.030	0.000	0.000	0.700	0.030	11.667	4	0.018	1.235	0.000	0.000	0.900	0.035	0.900	0.035	12.600	4	6.500	0.360	5.000	ca		22.000		3.070	2.320	5.317	0.240
18	- 1	9	2.500	19.500	1	19.500	3	16.500	5.000	reagente	0.700	0.030	0.000	0.000	0.700	0.030	11.667	4	0.018	1.235	0.000	0.000	0.900	0.035	0.900	0.035	12.600	4	6.500	0.360	5.000	ca		22.000		3.070	2.320	4.754	0.240
19	- 1	10	0.000	19.500	1	19.500	3	16.500	5.000	reagente	0.700	0.030	0.000	0.000	0.700	0.030	11.667	4	0.018	1.235	0.000	0.000	0.900	0.035	0.900	0.035	12.600	4	6.500	0.360	5.000	ca		22.000		3.070	2.320	4.754	0.240
20	- 1	10	2.500	22.000	1	22.000	3	16.500	5.000	reagente	0.700	0.030	0.000	0.000	0.700	0.030	11.667	4	0.018	1.235	0.000	0.000	0.900	0.035	0.900	0.035	12.600	4	6.500	0.360	5.000	ca	l	22.000		3.070	2.320	4.191	0.240

Verifica della struttura - Caratteristiche geometrico inerziali

									Arn	natura sole	tta in c.a.									Trave isolat	a												Tra	ve compost	a - n=ninf.			
																					Sx/Ix B	Sx/Ix C							yG-yGc				Sx/Ix (m·					
Sez	Hcr (m)	Brsup (m)	Brinf (m)	A (mq)	yGc (m)	lx (m4)	As1 (mq)	Hs1 (m)	As2 (mq)	Hs2 (m)	As (mq)	yGs (m)	lxs (m4)	Ha (m)	Aa (mq)	yGa (m)	Ixa (m4) I	ya (m4)	Ja (m4)	Aw (mq)	(m-1)	(m-1)	WA (m3)	WB (m3)	- (- /	WD (m3)	Ai (mq)	yG (m)	(m)	lxi (m4)	lyi (m4)	Ji (m4)		(- /	(- /	WCi (m3)	(- /	- /
1	0.070	0.560	0.560	1.0451	0.184	0.005751	0.006283	0.260	0.006283	0.080	0.012566	0.170	0.000101788	1.300	0.0747	0.563	0.023329 0	.002984	0.000022	0.022230	0.735998	0.650309	0.041468	0.044219	0.032977	0.031635	0.156668	1.043	0.427	0.056854	3.859117	0.000025	0.632056	0.054487	0.056378	0.250950	0.221606	6 0
2	0.070	0.560	0.560	1.1802	0.185	0.006403	0.007226	0.260	0.007226	0.080	0.014451	0.170	0.000117056	1.300	0.0747	0.563	0.023329 0	.002984	0.000022	0.022200		0.650309			0.032977			1.072	0.398							0.297742		
3	0.070	0.560	0.560	1.1802	0.185	0.006403	0.007226	0.260	0.007226	0.080	0.014451	0.170	0.000117056	1.300	0.0747	0.563	0.023329 0	.002984	0.000022	0.022230	0.735998	0.650309				0.031635	0.167523	1.072	0.398	0.058907	3.859117	0.000025	0.646463	0.054942	0.056796	0.297742	0.258539	9 (
4	0.070	0.560	0.560	1.3154	0.185	0.007055	0.008168	0.26	0.008168	0.080	0.016336	0.170	0.000132324	1.300	0.0747	0.563				0.022230						0.031635		1.097	0.373							0.351719		
5	0.070	0.560	0.560	1.3154	0.185	0.007055	0.008168	0.260	0.008168	0.080	0.016336	0.170	0.000132324	1.300	0.0732	0.590										0.034220		1.113	0.357							0.389501		
6	0.070	0.560	0.560	1.3424	0.185	0.007186	0.008482	0.260	0.008482	0.080	0.016965	0.170	0.000137414	1.300	0.0732	0.590	0.024312 0									0.034220		1.118	0.352							0.405162		
7	0.070	0.560	0.560	1.3424	0.185	0.007186	0.008482	0.260	0.008482	0.080	0.016965	0.170	0.000137414	1.300	0.0732	0.590											0.179292	1.118	0.352							0.405162		
8	0.070	0.560	0.560	1.3424	0.185	0.007186	0.008482	0.260	0.008482	0.080	0.016965	0.170	0.000137414	1.300	0.0732	0.590	0.024312 0								0.035993	0.034220	0.179292	1.118	0.352	0.05951	3.821509	0.000027	0.650365	0.053223	0.054943	0.405162	0.327195	5
9	0.070	0.560	0.560	1.3424	0.185	0.007186	0.008482	0.260	0.008482	0.080	0.016965	0.170	0.000137414	1.300	0.0732	0.590	0.024312 0								0.035993	0.034220	0.179292	1.118	0.352							0.405162		
10	0.070	0.560	0.560	1.3424	0.185	0.007186	0.008482	0.260	0.008482	0.080	0.016965	0.170	0.000137414	1.300	0.0732	0.590									0.035993	0.034220	0.179292	1.118	0.352	0.05951	3.821509	0.000027	0.650365	0.053223	0.054943	0.405162	0.327195	5
11	0.070	0.560	0.560	1.3424	0.185	0.007186	0.008482	0.260	0.008482	0.080	0.016965	0.170	0.000137414	1.300	0.0732	0.590	0.024312 0	.003127	0.000024	0.017220	0.741152	0.698323	0.041240	0.043843	0.035993	0.034220	0.179292	1.118	0.352	0.05951	3.821509	0.000027	0.650365	0.053223	0.054943	0.405162	0.327195	5
12	0.070	0.560	0.560	1.3424	0.185	0.007186	0.008482	0.260	0.008482	0.080	0.016965	0.170	0.000137414	1.300	0.0732	0.590	0.024312 0	.003127	0.000024	0.017220	0.741152	0.698323	0.041240	0.043843	0.035993	0.034220	0.179292	1.118	0.352	0.05951	3.821509	0.000027	0.650365	0.053223	0.054943	0.405162	0.327195	5
13	0.070	0.560	0.560	1.3424	0.185	0.007186	0.008482	0.260	0.008482	0.080	0.016965	0.170	0.000137414	1.300	0.0732	0.590	0.024312 0									0.034220	0.179292	1.118	0.352							0.405162		
14	0.070	0.560	0.560	1.3424	0.185	0.007186	0.008482	0.260	0.008482	0.080	0.016965	0.170	0.000137414	1.300	0.0732	0.590	0.024312 0	.003127	0.000024	0.017220	0.741152	0.698323	0.041240	0.043843	0.035993	0.034220	0.179292	1.118	0.352	0.05951	3.821509	0.000027	0.650365	0.053223	0.054943	0.405162	0.327195	5
15	0.070	0.560	0.560	1.3424	0.185	0.007186	0.008482	0.260	0.008482	0.080	0.016965	0.170	0.000137414	1.300	0.0732	0.590	0.024312 0	.003127	0.000024	0.017220	0.741152	0.698323	0.041240	0.043843	0.035993	0.034220	0.179292	1.118	0.352	0.05951	3.821509	0.000027	0.650365	0.053223	0.054943	0.405162	0.327195	5
16	0.070	0.560	0.560	1.3154	0.185	0.007055	0.008168	0.26	0.008168	0.080	0.016336	0.170	0.000132324	1.300	0.0732	0.590	0.024312 0	.003127	0.000024	0.017220	0.741152	0.698323	0.041240	0.043843	0.035993	0.034220	0.176869	1.113	0.357	0.059166	3.821509	0.000027	0.647932	0.053154	0.054880	0.389501	0.316562	2
17	0.070	0.560	0.560	1.3154	0.185	0.007055	0.008168	0.260	0.008168	0.080	0.016336	0.170	0.000132324	1.300	0.0747	0.563	0.023329 0	.002984	0.000022	0.022230	0.735998	0.650309	0.041468	0.044219	0.032977	0.031635	0.178379	1.097	0.373	0.060716	3.859117	0.000025	0.658235	0.055328	0.057151	0.351719	0.299645	5
18	0.070	0.560	0.560	1.1802	0.185	0.006403	0.007226	0.260	0.007226	0.080	0.014451	0.170	0.000117056	1.300	0.0747	0.563	0.023329 0	.002984	0.000022	0.022230	0.735998	0.650309	0.041468	0.044219	0.032977	0.031635	0.167523	1.072	0.398							0.297742		
19	0.070	0.560	0.560	1.1802	0.185	0.006403	0.007226	0.260	0.007226	0.080	0.014451	0.170	0.000117056	1.300	0.0747	0.563				0.022230					0.032977				0.398							0.297742		
20	0.070	0.560	0.560	1.0451	0.184	0.005751	0.006283	0.260	0.006283	0.080	0.012566	0.170	0.000101788	1.300	0.0747	0.563	0.023329 0	.002984	0.000022	0.022230	0.735998	0.650309	0.041468	0.044219	0.032977	0.031635	0.156668	1.043	0.427	0.056854	3.859117	0.000025	0.632056	0.054487	0.056378	0.250950	0.221606	6

											Tra	ive compost	a - n=nrit.														Trave compo	osta - n=n0						
			11/5: / 2)	11/51/	. , ,		yG-yGc				Sx/Ix (m-		14D (2)		·			(2)	145 ()		6()	yG-yGc				Sx/Ix (m-			20 / 2) 145					14/50 /
\vdash	Sez	- (-,	, ,	, -,	\ '1/	yG (m)	(m)	Ixr (m4)	lyr (m4)	, ,	1)	. ,	. ,	WCr (m3) W	. ,		. ,	. ,	WFr (mc)	, ,	, , ,	(m)		ly0 (m4)		_	. ,	WB0 (m3) W	· <i>′</i>	. ,	, ,	WAs10 (mc)	. ,	<u> </u>
1	1	0.110064	2.622864		0.153673	1.035	0.435	0.056245			I			0.239192 0.		0.162960	0.107103	2.642314	1.539714	0.256884	1.215	0.255					0.057001				0.420858	0.201033	2.761273	1.081892
1	2		2.979505		0.164141		0.406	0.0583						0.282535 0.				2.996342		0.280699	1.239	0.231						0.059012 2.			0.502123	0.220952	3.329731	1.178328
1	3	0.120749	2.979505		0.164141		0.406	0.0583						0.282535 0.		0.184292	0.117459	2.996342		0.280699		0.231				1 *		0.059012 2.			0.502123	0.220952		1.178328
	4		3.355096		0.17461	1.089	0.381							0.332129 0.		0.206583	0.127634	3.368337		0.304514		0.212						0.059289 6.			0.594849	0.240194	3.993320	1.269884
1	5	0.132391	3.469562	1.793789	0.1731	1.105	0.365							0.366306 0.		0.213128	0.128815	3.482265		0.303004		0.202						0.056807 ##			0.625824	0.239946	4.235003	1.262441
1	6		3.559324		0.175445		0.360	0.058959						0.380543 0.			0.131039	3.571264		0.308019	1.272	0.198						0.056856 ##			0.648890	0.243834	4.405341	1.280574
1	′ I	0.134675 0.134675	3.559324 3.559324		0.175445		0.360	0.058959		0.000027		0.053113		0.380543 0. 0.380543 0.		0.218420	0.131039 0.131039	3.571264 3.571264		0.308019	1.272 1.272	0.198						0.056856 ##			0.648890	0.243834	4.405341 4.405341	1.280574
1	*				0.175445		0.360	0.058959		0.000027						0.218420		3.571264		0.308019	1.272	0.198				I		0.056856 ##			0.648890	0.243834	4.405341	1.280574
1	9	0.134675	3.559324	1.822643			0.360	0.058959		0.000027	I			0.380543 0.		0.218420	0.131039	3.571264		0.308019		0.198				I		0.056856 ##				0.243834		1.280574
1	10	0.134675	3.559324		0.175445		0.360	0.058959				0.053113				0.218420	0.131039	3.571264		0.308019	1.272	0.198				I		0.056856 ##			0.648890	0.243834	4.405341	1.280574
1	11		3.559324 3.559324		0.175445		0.360	0.058959						0.380543 0.		0.218420		3.571264		0.308019	1.272 1.272	0.198						0.056856 ##			0.648890		4.405341	1.280574 1.280574
1	12	0.134675	3.559324	1.822643	0.175445		0.360	0.058959						0.380543 0.		0.218420	0.131039	3.571264		0.308019	1.272	0.198						0.056856 ##			0.648890	0.243834 0.243834	4.405341 4.405341	1.280574
1	13		3.559324		0.175445		0.360	0.058959		0.000027				0.380543 0. 0.380543 0.		0.218420	0.131039	3.571264		0.308019 0.308019	1.272	0.198						0.056856 ##			0.648890	0.243834		1.280574
1	15		3.559324	1.822643			0.360							0.380543 0. 0.380543 0.		0.218420	0.131039	3.571264		0.308019	1.272	0.198						0.056856 ##			0.648890	0.243834	4.405341	1.280574
1	16		3.469562	1.793789	0.173445	1.110	0.365							0.366306 O.		0.218420	0.131039	3.482265		0.303004		0.198						0.056807 ##			0.625824	0.239946	4.235003	1.262441
	17	0.132391	3.355096		0.17461	1.105	0.303							0.332129 0.		0.215128	0.128815	3.368337		0.303004		0.202						0.059289 6.		730404	0.594849	0.239946	3.993320	1.269884
1	10	0.131242	2.979505		0.17461		0.361	0.000110	3.77330					0.332129 0. 0.282535 0.		0.200363	0.127634	2.996342		0.304514	1.236	0.212						0.059289 6.			0.594849	0.220952	3.329731	1.178328
1	10	0.120749	2.979505		0.164141		0.406	0.0583	3.77330		ı			0.282535 U. 0.282535 O.		0.184292	0.117459	2.996342		0.280699	1.239	0.231				1 -		0.059012 2.			0.502123	0.220952	3.329731	1.178328
1	20	0.120749	2.622864	1.511788			0.400	0.0303			ı			0.232333 0. 0.239192 0.			0.117433	2.642314	1.539714		1.215	0.231				I	0.057343				0.420858	0.220932	2.761273	1.081892
ı	20	0.110004	2.022804	1.511/00	0.1330/3	1.035	0.433	0.030243	3.77330.	0.000025	0.02/494	0.034331	0.030233	0.233192 0.	.212120	0.102900	0.10/103	2.042314	1.555/14	0.230004	1.215	0.255	0.009279	0.730879	0.0000/1	0.704179	0.03/001	0.030091 1.	0.0	010//1	0.420000	0.201033	2./012/3	1.001092

S.S.4 "SALARIA"

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

14 ALLEGATO 3 — IMPALCATO - TRAVI PRINCIPALI - SOLLECITAZIONI PER VERIFICHE SLU

T00VI02STRRE01A.docx 106 di 111

LAVORO: SS4 - CITTADUCALE L=22 m - 3 Travi RIEPILOGO CARATTERISTICHE DELLA SOLLECITAZIONE - VERIFICHE SLU

Coefficienti parziali verifiche SLU (STR)

	parzian ven		1.35	5	1.3	5		1	.20					1.	35				0.	90			1.20					0.90					0.90		
								Cedimen	ti vincolari				C	arichi mobi	li dinamizza	ti					Ritir	o: Effetti iso	statici	Ritiro: effet	tti iperstatic	Var.Tern	n.+: Effetti	isostatici	V.T.+.: effet	ti iperstatic	Var.Ter	rm: Effetti is	sostatici	V.T: effett	ci iperstatici
FRAME	LOC	Progr.	peso pro	oprio	perm. P	ortati	Ced	d Max	Ced	Min	Mn	nax	Mr	min	Vn	nax	Vn	nin	Azione d	del vento	Soletta	Struttura	composta	Struttura	composta	Soletta	Struttura	composta	Struttura	composta	Soletta	Struttura	composta	Struttura	composta
	(m)	(m)	M (kNm)	V (kN)	M (kNm)	V (kN)	M (kNm)	V (kN)	M (kNm)	V (kN)	M (kNm)	V (kN)	M (kNm)	V (kN)	M (kNm)	V (kN)	M (kNm)	V (kN)	M (kNm)	V (kN)	N (kN)	N (kN)	M (kNm)	M (kN)	V (kN)	N (kN)	N (kN)	M (kNm)	M (kN)	V (kN)	N (kN)	N (kN)	M (kNm)	M (kN)	V (kN)
1	0.00	0.00	0.0	-769.9	0.0	-332.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1638.0	0.0	-5.3	4458.0	-4458.0	2003.1	0.0	0.0	-3205.2	3205.2	-861.6	0.0	0.0	3205.2	-3205.2	861.6	0.0	0.0
1	2.50	2.50	1705.5	-594.5	737.1	-257.0	0.0	0.0	0.0	0.0	3620.6	-1393.4	0.0	0.0	2119.4	108.7	3499.3	-1399.6	11.8	-4.1	5034.5	-5034.5	2120.5	0.0	0.0	-3619.7	3619.7	-891.5	0.0	0.0	3619.7	-3619.7	891.5	0.0	0.0
2	0.00	2.50	1705.5	-594.5	737.1	-257.0	0.0	0.0	0.0	0.0	3620.6	-1393.4	0.0	0.0	2119.4	108.7	3499.3	-1399.6	11.8	-4.1	5034.5	-5034.5	2120.5	0.0	0.0	-3619.7	3619.7	-891.5	0.0	0.0	3619.7	-3619.7	891.5	0.0	0.0
2	2.50	5.00	2972.7	-419.2	1285.2	-181.4	0.0	0.0	0.0	0.0	6292.1	-1148.7	0.0	0.0	4460.5	262.4	5868.5	-1173.6	20.7	-2.9	5611.0	-5611.0	2224.1	0.0	0.0	-4034.2	4034.2	-916.9	0.0	0.0	4034.2	-4034.2	916.9	0.0	0.0
3	0.00	5.00	2972.7	-419.2	1285.2	-181.4	0.0	0.0	0.0	0.0	6292.1	-1148.7	0.0	0.0	4460.5	262.4	5868.5	-1173.6	20.7	-2.9	5611.0	-5611.0	2134.4	0.0	0.0	-4034.2	4034.2	-876.7	0.0	0.0	4034.2	-4034.2	876.7	0.0	0.0
3	0.50	5.50	3173.6	-384.3	1372.1	-166.3	0.0	0.0	0.0	0.0	6712.4	-1099.8	0.0	0.0	4861.2	294.6	6215.0	-1129.9	22.1	-2.7	5726.3	-5726.3	2149.7	0.0	0.0	-4117.1	4117.1	-880.3	0.0	0.0	4117.1	-4117.1	880.3	0.0	0.0
4	0.00	5.50	3173.6	-384.3	1372.1	-166.3	0.0	0.0	0.0	0.0	6712.4	-506.1	0.0	0.0	4861.2	294.6	6215.0	-1129.9	22.1	-2.7	5726.3	-5726.3	2149.7	0.0	0.0	-4117.1	4117.1	-880.3	0.0	0.0	4117.1	-4117.1	880.3	0.0	0.0
4	2.75	8.25	3966.2	-192.1	1715.2	-83.2	0.0	0.0	0.0	0.0	8346.0	-831.0	0.0	0.0	6612.2	480.8	7413.2	-898.8	27.6	-1.3	5726.3	-5726.3	2149.7	0.0	0.0	-4117.1	4117.1	-880.3	0.0	0.0	4117.1	-4117.1	880.3	0.0	0.0
5	0.00	8.25	3966.2	-192.1	1715.2	-83.2	0.0	0.0	0.0	0.0	8346.6	-236.9	0.0	0.0	6611.4	480.8	7412.7	-898.5	27.6	-1.3	5726.3	-5726.3	2149.7	0.0	0.0	-4117.1	4117.1	-880.3	0.0	0.0	4117.1	-4117.1	880.3	0.0	0.0
5	2.75	11.00	4230.4	0.0	1829.5	0.0	0.0	0.0	0.0	0.0	8832.2	-561.8	0.0	0.0	7504.5	682.1	7505.3	-682.5	29.4	0.0	5726.3	-5726.3	2149.7	0.0	0.0	-4117.1	4117.1	-880.3	0.0	0.0	4117.1	-4117.1	880.3	0.0	0.0
6	0.00	11.00	4230.4	0.0	1829.5	0.0	0.0	0.0	0.0	0.0	8832.1	-32.3	0.0	0.0	7503.4	682.1	7503.4	-682.1	29.4	0.0	5726.3	-5726.3	2149.7	0.0	0.0	-4117.1	4117.1	-880.3	0.0	0.0	4117.1	-4117.1	880.3	0.0	0.0
6	2.75	13.75	3966.2	192.1	1715.2	83.2	0.0	0.0	0.0	0.0	8347.9	236.5	0.0	0.0	7414.3	898.4	6614.6	-481.2	27.6	1.3	5726.3	-5726.3	2149.7	0.0	0.0	-4117.1	4117.1	-880.3	0.0	0.0	4117.1	-4117.1	880.3	0.0	0.0
7	0.00	13.75	3966.2	192.1	1715.2	83.2	0.0	0.0	0.0	0.0	8346.6	236.9	0.0	0.0	7412.7	898.5	6611.4	-480.8	27.6	1.3	5726.3	-5726.3	2149.7	0.0	0.0	-4117.1	4117.1	-880.3	0.0	0.0	4117.1	-4117.1	880.3	0.0	0.0
7	2.75	16.50	3173.6	384.3	1372.1	166.3	0.0	0.0	0.0	0.0	6715.2	505.7	0.0	0.0	6217.1	1129.9	4865.6	-294.9	22.1	2.7	5726.3	-5726.3	2149.7	0.0	0.0	-4117.1	4117.1	-880.3	0.0	0.0	4117.1	-4117.1	880.3	0.0	0.0
8	0.00	16.50	3173.6	384.3	1372.1	166.3	0.0	0.0	0.0	0.0	6712.4	506.1	0.0	0.0	6215.0	1129.9	4861.2	-294.6	22.1	2.7	5726.3	-5726.3	2149.7	0.0	0.0	-4117.1	4117.1	-880.3	0.0	0.0	4117.1	-4117.1	880.3	0.0	0.0
8	0.50	17.00	2972.7	419.2	1285.2	181.4	0.0	0.0	0.0	0.0	6292.1	1148.7	0.0	0.0	5868.5	1173.6	4460.5	-262.4	20.7	2.9	5611.0	-5611.0	2134.4	0.0	0.0	-4034.2	4034.2	-876.7	0.0	0.0	4034.2	-4034.2	876.7	0.0	0.0
9	0.00	17.00	2972.7	419.2	1285.2	181.4	0.0	0.0	0.0	0.0	6292.1	1148.7	0.0	0.0	5868.5	1173.6	4460.5	-262.4	20.7	2.9	5611.0	-5611.0	2224.1	0.0	0.0	-4034.2	4034.2	-916.9	0.0	0.0	4034.2	-4034.2	916.9	0.0	0.0
9	2.50	19.50	1705.5	594.5	737.1	257.0	0.0	0.0	0.0	0.0	3620.6	1393.4	0.0	0.0	3499.3	1399.6	2119.4	-108.7	11.8	4.1	5034.5	-5034.5	2120.5	0.0	0.0	-3619.7	3619.7	-891.5	0.0	0.0	3619.7	-3619.7	891.5	0.0	0.0
10	0.00	19.50	1705.5	594.5	737.1	257.0	0.0	0.0	0.0	0.0	3620.6	1393.4	0.0	0.0	3499.3	1399.6	2119.4	-108.7	11.8	4.1	5034.5	-5034.5	2120.5	0.0	0.0	-3619.7	3619.7	-891.5	0.0	0.0	3619.7	-3619.7	891.5	0.0	0.0
10	2.50	22.00	0.0	769.9	0.0	332.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1638.0	0.0	0.0	0.0	5.3	4458.0	-4458.0	2003.1	0.0	0.0	-3205.2	3205.2	-861.6	0.0	0.0	3205.2	-3205.2	861.6	0.0	0.0

S.S.4 "SALARIA"

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

15 ALLEGATO 4 - IMPALCATO - VERIFICHE SLU TRAVI PRINCIPALI

T00VI02STRRE01A.docx 107 di 111

 $\begin{array}{c|cccc} \textbf{Dati} & & \textbf{Var} & \textbf{unita} \\ \textbf{coefficiente di sicurezza per la resistenza all'instabilità} & & \gamma M1 & & 1.10 \\ \textbf{coefficiente eta} & & \eta & & 1.20 \\ \textbf{pannelli irrigiditi (0) - non irrigiditi (1)} & & \textbf{pan} & & 0 \\ \textbf{Resistenza di progetto soletta} & & \textbf{fcd} & MPa & 19.83 \\ \textbf{Tensione di snervamento acciaio armature soletta} & & \textbf{fya} & MPa & 450 \\ \end{array}$

	<u> </u>				sol	etta			Armatı	ıre soletta		piattaband	a superiore	an	ima	piattaband	a inferiore				TENSIONI A	AGENTI SU S	EZIONE LOI	RDA								CA	ARATTERISTICH	IE DELLE SEZI
Sez	FRAME	LOC (m)) Progr (m)	Bcoll (m)	Hc (m)	Hcr (m)	Bcr (m)	Assup (m2)	yGs sup (m)	Asinf (m2)	yGs inf (m)	Beq (m)	tf (m)	hw (m)	tw (m)	Beq (m)	tf (m)	Status soletta	σA (Mpa)	σВ (Мра)	σC (Mpa)	σD (Mpa)	σAs_inf (Mpa)	σAs_sup (Mpa)	τ (Mpa)	fyfs (Mpa)	fyw (Mpa)	fyfi (Mpa)	PNA (m)	Classe	Aeff (m2)	yGa_eff (m)	Ixa_eff (m4)	WA_eff (m3)
1	1	0.000	0.000	4.191	0.240	0.070	0.560	0.006	0.260	0.006	0.080	0.700	0.030	1.235	0.018	0.900	0.035	fessurata	0.0	0.0	0.0	0.0	0.0	0.0	-49.8	355.0	355.0	355.0	0.765	4	0.0721	0.582	0.0225	0.0387
2	1	2.500	2.500	4.754	0.240	0.070	0.560	0.007	0.260	0.007	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	128.6	122.1	-107.3	-112.8	-67.9	-88.2	-101.2	355.0	355.0	355.0	1.402	1				
3	2	0.000	2.500	4.754	0.240	0.070	0.560	0.007	0.260	0.007	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	128.6	122.1	-107.3	-112.8	-67.9	-88.2	-101.2	355.0	355.0	355.0	1.402	1				
4	2	2.500	5.000	5.317	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	215.3	205.3	-147.1	-155.6	-74.3	-102.7	-78.8	355.0	355.0	355.0	1.431	1				
5	3	0.000	5.000	5.317	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	220.9	211.0	-137.1	-147.0	-73.0	-102.0	-101.8	355.0	355.0	355.0	1.436	1				
6	3	0.500	5.500	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	234.9	224.5	-142.5	-152.9	-73.6	-103.8	-96.0	355.0	355.0	355.0	1.380	1				
7	4	0.000	5.500	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	234.9	224.5	-142.5	-152.9	-73.6	-103.8	-61.5	355.0	355.0	355.0	1.380	1				
8	4	2.750	8.250	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	290.2	277.6	-165.2	-177.8	-77.7	-113.1	-64.3	355.0	355.0	355.0	1.380	1				
9	5	0.000	8.250	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	290.2	277.6	-165.2	-177.8	-77.7	-113.1	-29.8	355.0	355.0	355.0	1.380	1				
10	5	2.750	11.000	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	307.6	294.3	-172.8	-186.1	-78.9	-115.9	-32.6	355.0	355.0	355.0	1.380	1				
11	6	0.000	11.000	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	307.6	294.3	-172.8	-186.1	-78.9	-115.9	-1.9	355.0	355.0	355.0	1.380	1				
12	6	2.750	13.750	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	290.3	277.7	-165.2	-1//.8	-77.7	-113.1	29.8	355.0	355.0	355.0	1.380	1				
13		0.000	13.750	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	290.2	277.6	-165.2	-177.8	-77.7	-113.1	29.8	355.0	355.0	355.0	1.380	1				
14	,	2.750	16.500	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	235.0	224.5	-142.5	-152.9	-73.6	-103.8 -103.8	61.5	355.0 355.0	355.0	355.0	1.380 1.380	1				
15	8	0.000	16.500	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	234.9	224.5	-142.5	-152.9	-73.6		61.5	1	355.0	355.0		1				
17	8	0.500	17.000	5.317	0.240	0.070	0.560	0.008	0.260 0.260	0.008	0.080	0.700 0.700	0.035	1.230 1.235	0.014 0.018	0.900 0.900	0.035	reagente	220.9	211.0 205.3	-137.1 -147.1	-147.0 -155.6	-73.0	-102.0 -102.7	101.8 78.8	355.0 355.0	355.0 355.0	355.0 355.0	1.436 1.431	1				
17	9	0.000 2.500	19.500	5.317 4.754	0.240	0.070	0.560 0.560	0.008 0.007	0.260	0.008 0.007	0.080	0.700	0.030 0.030	1.235	0.018	0.900	0.035 0.035	reagente reagente	215.3 128.6	122.1	-147.1	-155.6	-74.3 -67.9	-102.7	78.8 101.2	355.0	355.0	355.0	1.431	1				
10	10	0.000	19.500	4.754	0.240	0.070	0.560	0.007	0.260	0.007	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	128.6	122.1	-107.3	-112.8	-67.9	-88.2	101.2	355.0	355.0	355.0	1.402	1				
20	10	2.500	22.000	4.191	0.240	0.070	0.560	0.007	0.260	0.007	0.080	0.700	0.030	1.235	0.018	0.900	0.035	fessurata	0.0	0.0	0.0	0.0	0.0	0.0	49.8	355.0	355.0	355.0	0.765	4	0.0721	0.582	0.0225	0.0387

COMBINAZIONE C1Mmax

	c	NI EFFICAC	1								Analisi	elastica						Α	nalisi plast	ica																	
			-																,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										Ver.							\top	
- 1								σA'	σB'	σC'	σD'																		stabilità								
- 1		WB_eff	WC_eff	WD_eff	MEd			C1Mmax	C1Mmax	C1Mmax	C1Mmax			η1,inf	η1,sup	Mf,Rd	MPI,Rd	NPI,Rd							n.irr.			(hw/t)	pannelli			Vbw,Rd	Vb,Rd				
	Sez	(m3)	(m3)	(m3)	(kNm)	NEd (kN)	eN (m)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	η1,inf	η1,sup	grafico	grafico	(kNm)	(kNm)	(kN)	MEd (kN)	Ned (kN)	MN,Rd	η1,plast	η1	a (m)	Long	Isl (m4)	kτ	max	d'anima	lw	Xw	(kN)	(kN)	VEd (kN)) η3 η1	.1_s η1	_inter
	1	0.0412	0.0328	0.0314	0.0	0.0	0.020	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	8413.1	16827.8	29303	2864.7	-7663.2	15677.0	0.00	0.00	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	1108	0.31 0.	J.54 (0.00
	2							128.6	122.1	-107.3	-112.8	0.37	0.33	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	2249	0.63	(0.00
	3							128.6	122.1	-107.3	-112.8	0.37	0.33	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	2249	0.63	(0.00
	4							215.3	205.3	-147.1	-155.6	0.62	0.45	0.00	0.00	14473.5	23880.3	57747	13711.7	-9645.2	23214.1	0.59	0.59	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	1752	0.49	(0.00
	5							220.9	211.0	-137.1	-147.0	0.64	0.42	0.00	0.00	14721.0	22768.4	57236	13581.7	-9645.2	22121.9	0.61	0.61	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1752	0.77	(0.00
	6							234.9	224.5	-142.5	-152.9	0.68	0.44	0.00	0.00	14746.4	23014.3	58018	14310.3	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1653	0.72	(0.00
	7							234.9	224.5	-142.5	-152.9	0.68	0.44	0.00	0.00	14746.4	23014.3	58018	14310.3	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1059	0.46	(0.00
	8							290.2	277.6	-165.2	-177.8	0.84	0.51	0.00	0.00	14746.4	23014.3	58018	17085.0	-9843.4	22351.8	0.76	0.76	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1108	0.49	(0.00
	9							290.2	277.6	-165.2	-177.8	0.84	0.51	0.00	0.00	14746.4	23014.3	58018	17085.6	-9843.4	22351.8	0.76	0.76	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	514	0.23	(0.00
	10							307.6	294.3	-172.8	-186.1	0.89	0.53	0.00	0.00	14746.4	23014.3	58018	17951.6	-9843.4	22351.8	0.80	0.80	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	562	0.25	(0.00
	11							307.6	294.3	-172.8	-186.1	0.89	0.53	0.00	0.00	14746.4	23014.3	58018	17951.5	-9843.4	22351.8	0.80	0.80	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	32	0.01	(0.00
	12							290.3	277.7	-165.2	-177.8	0.84	0.51	0.00	0.00	14746.4	23014.3	58018	17086.9	-9843.4	22351.8	0.76	0.76	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	513	0.22	(0.00
	13							290.2	277.6	-165.2	-177.8	0.84	0.51	0.00	0.00	14746.4	23014.3	58018	17085.6	-9843.4	22351.8	0.76	0.76	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	514	0.23	(0.00
	14							235.0	224.5	-142.5	-152.9	0.68	0.44	0.00	0.00	14746.4	23014.3	58018	14313.1	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1059	0.46	'	0.00
	15							234.9	224.5	-142.5	-152.9	0.68	0.44	0.00	0.00	14746.4	23014.3	58018	14310.3	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1059	0.46	'	0.00
	16							220.9	211.0	-137.1	-147.0	0.64	0.42	0.00	0.00	14721.0	22768.4	57236	13581.7	-9645.2	22121.9	0.61	0.61	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1752	0.77	1	0.00
	17							215.3	205.3	-147.1	-155.6	0.62	0.45	0.00	0.00	14473.5	23880.3	57747	13711.7	-9645.2	23214.1	0.59	0.59	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	1752	0.49	1	0.00
	18							128.6	122.1	-107.3	-112.8	0.37	0.33	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	2249	0.63	1	0.00
	19							128.6	122.1	-107.3	-112.8	0.37	0.33	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	2249	0.63	'	0.00
	20	0.0412	0.0328	0.0314	0.0	0.0	0.020	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	8413.1	16827.8	29303	2864.7	-7663.2	15677.0	0.00	0.00	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	1108	0.31 0.	1.54 1	0.00

 $\begin{array}{c|cccc} \textbf{Dati} & & \textbf{Var} & \textbf{unita} \\ \textbf{coefficiente di sicurezza per la resistenza all'instabilità} & & \gamma M1 & & 1.10 \\ \textbf{coefficiente eta} & & \eta & & 1.20 \\ \textbf{pannelli irrigiditi (0) - non irrigiditi (1)} & & \textbf{pan} & & 0 \\ \textbf{Resistenza di progetto soletta} & & \textbf{fcd} & MPa & 19.83 \\ \textbf{Tensione di snervamento acciaio armature soletta} & & \textbf{fya} & MPa & 450 \\ \end{array}$

	_				sol	etta			Armatı	ıre soletta		piattaband	a superiore	an	ima	piattaband	a inferiore				TENSIONI A	AGENTI SU S	EZIONE LO	RDA								CA	RATTERISTICH	IE DELLE SEZI
505	FRAME	LOC (m)	Progr (m)	Paul (m)	Hc (m)	Hcr (m)	Bcr (m)	Assup (m2)	yGs sup	Asinf (m2)	yGs inf (m)	Pow (m)	tf (m)	hw (m)	**** (mm)	Pos (m)	tf (m)	Status soletta	σΛ (Mna)	σR (Mna)	σC (Mpa)	σD (Mna)	σAs_inf (Mpa)	σAs_sup (Mpa)	τ (Mpa)	fyfs (Mpa)	fyw (Mpa)	fyfi (Mpa)	PNA (m)	Classe	Aeff (m2)	yGa_eff (m)	lxa_eff (m4)	WA_eff (m3)
Sez	FRAIVIE	0.000	0.000	4 101	0.240	0.070	0.560	0.006	0.260	0.006	0.080	0.700	0.030	1.235	0.018	0.900	0.035	fessurata	OA (WIPA)	OD (IVIPA)	0.0	0.0	0.0	0.0	-49.8	355.0	355.0	355.0	0.765	/ /	0.0721	0.582	0.0225	0.0387
2	1 1	2.500	2.500	4.754	0.240	0.070	0.560	0.006	0.260	0.006	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	102.4	96.6	-106.6	-111.5	-64.9	-81.4	-49.6	355.0	355.0	355.0	1.402	1	0.0721	0.362	0.0225	0.0367
2	2	0.000	2.500	4.754	0.240	0.070	0.560	0.007	0.260	0.007	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	102.4	96.6	-106.6	-111.5	-64.9	-81.4	-33.6	355.0	355.0	355.0	1.402	1				
4	2	2.500	5.000	5.317	0.240	0.070	0.560	0.008	0.260	0.007	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	183.5	174.4	-146.8	-154.6	-71.2	-95.1	-15.3	355.0	355.0	355.0	1.431	1				
5	3	0.000	5.000	5.317	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	187.8	178.8	-137.2	-146.2	-70.1	-94.3	-19.8	355.0	355.0	355.0	1.436	1				
6	3	0.500	5.500	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	201.4	191.9	-142.7	-152.2	-70.8	-96.2	-15.0	355.0	355.0	355.0	1.380	1				
7	4	0.000	5.500	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	201.4	191.9	-142.7	-152.2	-70.8	-96.2	-15.0	355.0	355.0	355.0	1.380	1				
8	4	2.750	8.250	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	258.9	247.1	-165.4	-177.1	-75.0	-106.0	12.0	355.0	355.0	355.0	1.380	1				
9	5	0.000	8.250	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	258.9	247.1	-165.4	-177.1	-75.0	-106.0	12.0	355.0	355.0	355.0	1.380	1				
10	5	2.750	11.000	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	283.6	271.0	-172.9	-185.5	-76.9	-110.5	39.6	355.0	355.0	355.0	1.380	1				
11	6	0.000	11.000	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	283.6	271.0	-172.9	-185.5	-76.9	-110.5	39.6	355.0	355.0	355.0	1.380	1				
12	6	2.750	13.750	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	273.4	261.2	-165.3	-177.4	-76.2	-109.3	68.2	355.0	355.0	355.0	1.380	1				
13	7	0.000	13.750	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	273.4	261.2	-165.3	-177.4	-76.2	-109.3	68.2	355.0	355.0	355.0	1.380	1				
14	7	2.750	16.500	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	226.0	215.8	-142.5	-152.7	-72.9	-101.8	97.7	355.0	355.0	355.0	1.380	1				
15	8	0.000	16.500	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	225.9	215.7	-142.5	-152.7	-72.9	-101.8	97.7	355.0	355.0	355.0	1.380	1				
16	8	0.500	17.000	5.317	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	213.3	203.6	-137.2	-146.8	-72.4	-100.2	103.2	355.0	355.0	355.0	1.436	1				
17	9	0.000	17.000	5.317	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	207.9	198.1	-147.0	-155.4	-73.6	-100.9	79.9	355.0	355.0	355.0	1.431	1				
18	9	2.500	19.500	4.754	0.240	0.070	0.560	0.007	0.260	0.007	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	126.4	120.0	-107.2	-112.7	-67.7	-87.7	101.5	355.0	355.0	355.0	1.402	1				
19	10	0.000	19.500	4.754	0.240	0.070	0.560	0.007	0.260	0.007	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	126.4	120.0	-107.2	-112.7	-67.7	-87.7	101.5	355.0	355.0	355.0	1.402	1				
20	10	2.500	22.000	4.191	0.240	0.070	0.560	0.006	0.260	0.006	0.080	0.700	0.030	1.235	0.018	0.900	0.035	fessurata	0.0	0.0	0.0	0.0	0.0	0.0	123.5	355.0	355.0	355.0	0.765	4	0.0721	0.582	0.0225	0.0387

COMBINAZIONE

C1Vmax

	ONI EFFICA	ACI								Analisi	elastica						А	nalisi plast	ica																
								-n!	-cı	σD'																		Ver.							
	WB eff	WC eff	WD eff	MEd			σA' C1Mmax	C1Mmax	C1Mmax	C1Mmax			m1 inf	m1	Mf.Rd	MPI.Rd	NPI.Rd							- :			(h/+)	stabilità pannelli			Vbw,Rd	Vb.Rd			
ا	(m3)	/m2)	(m3)	(kNm)	NEd (kN)	eN (m)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	n1,inf	η1,sup	η1,inf grafico	η1,sup grafico	(kNm)	(kNm)	(kN)	MEd (kN)	Ned (kN)	MN.Rd	n1,plast	n1	a (m)	n.irr. Long	Isl (m4)	kτ	(hw/t) max	d'anima	har	Xw	(kN)	(kN)	VEd (kN)	m2 m1	s m1 inter
Sez	()	0.0220	,	` '	,		+		· · ·				<u> </u>		. ,	٠,	()					-1	,	LUIIG	131 (1114)			u allilla	0.00		. ,	` '			L_s η1_inter
1	0.0412	0.0328	0.0314	0.0	0.0	0.020	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	8413.1	16827.8 23633.0	29303	2864.7	-7663.2	15677.0	0.00	0.00	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	1108	0.31 0.5	
2							102.4	96.6	-106.6	-111.5	0.29	0.32	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2 -8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	747	0.21	0.00
3							102.4	96.6	-106.6	-111.5	0.29	0.32	0.00	0.00	14424.0	23833.0	54329	9087.2		23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	747	0.21	0.00
4							183.5	174.4	-146.8 -137.2	-154.6	0.53	0.45	0.00	0.00	14473.5	25000.5	57747	13711.7	-9645.2	23214.1	0.59	0.59	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	341	0.10	0.00
5							187.8	178.8		-146.2 -152.2	0.54	0.42	0.00	0.00	14721.0 14746.4	22768.4 23014.3	57236 58018	13581.7	-9645.2	22121.9 22351.8	0.61 0.64	0.61 0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	341	0.15	0.00
7							201.4	191.9	-142.7		0.58	0.44	0.00	0.00	14746.4	23014.3	58018	14310.3 14310.3	-9843.4 -9843.4				5.500	0	0	5.540	49.5	SI	1.23	0.711	2282 2282	2282	259	0.11	0.00
\							201.4	191.9	-142.7	-152.2 -177.1	0.58	0.44	0.00	0.00	14746.4	23014.3	58018		-9843.4 -9843.4	22351.8 22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711		2282	259 207	0.11	0.00
8							258.9	247.1	-165.4		0.75	0.51	0.00	0.00		23014.3		17085.0			0.76	0.76	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282		0.09	0.00
10							258.9	247.1 271.0	-165.4 -172.9	-177.1 -185.5	0.75 0.82	0.51 0.53	0.00	0.00	14746.4 14746.4	23014.3	58018 58018	17085.6 17951.6	-9843.4 -9843.4	22351.8 22351.8	0.76 0.80	0.76	5.500 5.500	0	0	5.540 5.540	49.5 49.5	SI	1.23 1.23	0.711	2282 2282	2282 2282	207 682	0.09	0.00
10							283.6 283.6	271.0	-172.9 -172.9	-185.5 -185.5	0.82	0.53	0.00	0.00	14746.4	23014.3	58018	17951.5	-9843.4 -9843.4	22351.8	0.80	0.80 0.80	5.500	0	0	5.540	49.5 49.5	SI	1.23	0.711	2282	2282	682	0.30	0.00
							1	261.2		-105.5	l		l		14746.4	23014.3	58018	17931.3	-9843.4 -9843.4				1	0	0			31	1.23	0.711					
12 13							273.4 273.4	261.2	-165.3 -165.3	-177.4 -177.4	0.79 0.79	0.51	0.00	0.00	14746.4	23014.3	58018	17085.9	-9843.4 -9843.4	22351.8 22351.8	0.76 0.76	0.76 0.76	5.500 5.500	0	0	5.540 5.540	49.5 49.5	SI	1.23 1.23	0.711	2282 2282	2282 2282	1175 1175	0.51 0.51	0.00
							1				l	0.51	l		14746.4	23014.3	58018	1/085.6	-9843.4				1	0	0			SI	1.23	0.711				0.51	
14							226.0	215.8	-142.5	-152.7	0.65	0.44	0.00	0.00		23014.3		14313.1	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1683	0.74	0.00
15							225.9	215.7	-142.5	-152.7	0.65	0.44	0.00	0.00	14746.4		58018	14310.3	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1683		0.00
16							213.3	203.6	-137.2	-146.8	0.62	0.42	0.00	0.00	14721.0	22768.4	57236 57747	13581.7	-9645.2 -9645.2	22121.9	0.61	0.61	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1777	0.78	0.00
17							207.9	198.1	-147.0	-155.4	0.60	0.45	0.00	0.00	14473.5	23633.0	• · · · · ·	13711.7		23214.1	0.59	0.59	5.500	0	0	5.542	49.5	SI CI	0.96	0.867	3591	3591	1777	0.49	0.00
18							126.4	120.0	-107.2	-112.7	0.36	0.33	0.00	0.00	14424.0		54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI SI	0.96	0.867	3591	3591	2255	0.63	0.00
19	0.0412	0.0220	0.0214		0.0	0.020	126.4	120.0	-107.2	-112.7	0.36	0.33	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	2255	0.63	0.00
20	0.0412	0.0328	0.0314	J 0.0	0.0	0.020	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	8413.1	16827.8	29303	2864.7	-7663.2	15677.0	0.00	0.00	5.500	U	0	5.542	49.5	SI	0.96	0.867	3591	3591	2746	0.76 0.5	54 0.67

 $\begin{array}{c|cccc} \textbf{Dati} & & \textbf{Var} & \textbf{unita} \\ \textbf{coefficiente di sicurezza per la resistenza all'instabilità} & & \gamma M1 & & 1.10 \\ \textbf{coefficiente eta} & & \eta & & 1.20 \\ \textbf{pannelli irrigiditi (0) - non irrigiditi (1)} & & \textbf{pan} & & 0 \\ \textbf{Resistenza di progetto soletta} & & \textbf{fcd} & MPa & 19.83 \\ \textbf{Tensione di snervamento acciaio armature soletta} & & \textbf{fya} & MPa & 450 \\ \end{array}$

	_				sol	etta			Armatu	ıre soletta		piattaband	a superiore	an	ima	piattaband	a inferiore				TENSIONI A	AGENTI SU S	EZIONE LO	RDA								CA	RATTERISTICH	1E DELLE SEZI
Sez	FRAME	LOC (m)	Progr (m)	Rcall (m)	Hc (m)	Hcr (m)	Bcr (m)	Assup (m2)	yGs sup	Asinf (m2)	yGs inf (m)	Beg (m)	tf (m)	hw (m)	tw (m)	Beg (m)	tf (m)	Status soletta	σΔ (Mna)	σR (Mna)	σC (Mpa)	σD (Mna)	σAs_inf (Mpa)	σAs_sup (Mpa)	τ (Mpa)	fyfs (Mpa)	fyw (Mpa)	fyfi (Mpa)	PNA (m)	Classe	Aeff (m2)	yGa_eff (m)	lxa_eff (m4)	WA_eff (m3)
1	1 1	0.000	0.000	/ 101	0.240	0.070	0.560	0.006	0.260	0.006	0.080	0.700	0.030	1.235	0.018	0.900	0.035	fessurata		0.0	0.0	0.0	0.0	0.0	-123.5	355.0	355.0	355.0	0.765	/	0.0721	0.582	0.0225	0.0387
2	1	2.500	2.500	4.754	0.240	0.070	0.560	0.007	0.260	0.007	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	126.4	120.0	-107.2	-112.7	-67.7	-87.7	-101.5	355.0	355.0	355.0	1.402	1	0.0721	0.302	0.0223	0.0367
3	2	0.000	2.500	4.754	0.240	0.070	0.560	0.007	0.260	0.007	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	126.4	120.0	-107.2	-112.7	-67.7	-87.7	-101.5	355.0	355.0	355.0	1.402	1				
4	2	2.500	5.000	5.317	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	207.9	198.1	-147.0	-155.4	-73.6	-100.9	-79.9	355.0	355.0	355.0	1.431	1				
5	3	0.000	5.000	5.317	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	213.3	203.6	-137.2	-146.8	-72.4	-100.2	-103.2	355.0	355.0	355.0	1.436	1				
6	3	0.500	5.500	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	225.9	215.7	-142.5	-152.7	-72.9	-101.8	-97.7	355.0	355.0	355.0	1.380	1				
7	4	0.000	5.500	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	225.9	215.7	-142.5	-152.7	-72.9	-101.8	-97.7	355.0	355.0	355.0	1.380	1				
8	4	2.750	8.250	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	273.4	261.2	-165.3	-177.4	-76.2	-109.3	-68.3	355.0	355.0	355.0	1.380	1				
9	5	0.000	8.250	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	273.4	261.2	-165.3	-177.4	-76.2	-109.3	-68.2	355.0	355.0	355.0	1.380	1				
10	5	2.750	11.000	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	283.6	271.0	-172.9	-185.5	-76.9	-110.5	-39.6	355.0	355.0	355.0	1.380	1				
11	6	0.000	11.000	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	283.6	271.0	-172.9	-185.5	-76.9	-110.5	-39.6	355.0	355.0	355.0	1.380	1				
12	6	2.750	13.750	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	258.9	247.2	-165.4	-177.1	-75.0	-106.0	-12.0	355.0	355.0	355.0	1.380	1				
13	7	0.000	13.750	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	258.9	247.1	-165.4	-177.1	-75.0	-106.0	-12.0	355.0	355.0	355.0	1.380	1				
14	7	2.750	16.500	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	201.5	192.0	-142.7	-152.2	-70.8	-96.3	15.0	355.0	355.0	355.0	1.380	1				
15	8	0.000	16.500	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	201.4	191.9	-142.7	-152.2	-70.8	-96.2	15.0	355.0	355.0	355.0	1.380	1				
16	8	0.500	17.000	5.317	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	187.8	178.8	-137.2	-146.2	-70.1	-94.3	19.8	355.0	355.0	355.0	1.436	1				
17	9	0.000	17.000	5.317	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	183.5	174.4	-146.8	-154.6	-71.2	-95.1	15.3	355.0	355.0	355.0	1.431	1				
18	9	2.500	19.500	4.754	0.240	0.070	0.560	0.007	0.260	0.007	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	102.4	96.6	-106.6	-111.5	-64.9	-81.4	33.6	355.0	355.0	355.0	1.402	1				
19	10	0.000	19.500	4.754	0.240	0.070	0.560	0.007	0.260	0.007	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	102.4	96.6	-106.6	-111.5	-64.9	-81.4	33.6	355.0	355.0	355.0	1.402	1				
20	10	2.500	22.000	4.191	0.240	0.070	0.560	0.006	0.260	0.006	0.080	0.700	0.030	1.235	0.018	0.900	0.035	fessurata	0.0	0.0	0.0	0.0	0.0	0.0	49.8	355.0	355.0	355.0	0.765	4	0.0721	0.582	0.0225	0.0387

COMBINAZIONE

C1Vmin

	ONI EFFICA	ACI								Analisi	elastica						А	nalisi plasti	ica																
							σA'	σВ'	σC'	σD'																		Ver. stabilità							
	WB eff	WC eff	WD eff	MEd			C1Mmax	C1Mmax	C1Mmax	C1Mmax			η1,inf	η1,sup	Mf,Rd	MPI,Rd	NPI,Rd							n.irr.			(hw/t)	pannelli			Vbw,Rd	Vb,Rd			
Sez	(m3)	(m3)	(m3)	(kNm)	NEd (kN)	eN (m)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	η1,inf	η1,sup	grafico	grafico	(kNm)	(kNm)	(kN)	MEd (kN)	Ned (kN)	MN,Rd	η1,plast	η1	a (m)	Long	Isl (m4)	kτ	max	d'anima	lw	Xw	(kN)	(kN)	VEd (kN)	η3 η1	l_s η1_inter
1	0.0412	0.0328	0.0314	0.0	0.0	0.020	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	8413.1	16827.8	29303	2864.7	-7663.2	15677.0	0.00	0.00	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	2746		54 0.67
2							126.4	120.0	-107.2	-112.7	0.36	0.33	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	2255	0.63	0.00
3							126.4	120.0	-107.2	-112.7	0.36	0.33	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	2255	0.63	0.00
4							207.9	198.1	-147.0	-155.4	0.60	0.45	0.00	0.00	14473.5	23880.3	57747	13711.7	-9645.2	23214.1	0.59	0.59	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	1777	0.49	0.00
5	1						213.3	203.6	-137.2	-146.8	0.62	0.42	0.00	0.00	14721.0	22768.4	57236	13581.7	-9645.2	22121.9	0.61	0.61	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1777	0.78	0.00
6							225.9	215.7	-142.5	-152.7	0.65	0.44	0.00	0.00	14746.4	23014.3	58018	14310.3	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1683	0.74	0.00
7							225.9	215.7	-142.5	-152.7	0.65	0.44	0.00	0.00	14746.4	23014.3	58018	14310.3	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1683	0.74	0.00
8							273.4	261.2	-165.3	-177.4	0.79	0.51	0.00	0.00	14746.4	23014.3	58018	17085.0	-9843.4	22351.8	0.76	0.76	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1175	0.52	0.00
9							273.4	261.2	-165.3	-177.4	0.79	0.51	0.00	0.00	14746.4	23014.3	58018	17085.6	-9843.4	22351.8	0.76	0.76	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1175	0.51	0.00
10							283.6	271.0	-172.9	-185.5	0.82	0.53	0.00	0.00	14746.4	23014.3	58018	17951.6	-9843.4	22351.8	0.80	0.80	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	682	0.30	0.00
11							283.6	271.0	-172.9	-185.5	0.82	0.53	0.00	0.00	14746.4	23014.3	58018	17951.5	-9843.4	22351.8	0.80	0.80	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	682	0.30	0.00
12							258.9	247.2	-165.4	-177.1	0.75	0.51	0.00	0.00	14746.4	23014.3	58018	17086.9	-9843.4	22351.8	0.76	0.76	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	207	0.09	0.00
13							258.9	247.1	-165.4	-177.1	0.75	0.51	0.00	0.00	14746.4	23014.3	58018	17085.6	-9843.4	22351.8	0.76	0.76	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	207	0.09	0.00
14							201.5	192.0	-142.7	-152.2	0.58	0.44	0.00	0.00	14746.4	23014.3	58018	14313.1	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	258	0.11	0.00
15							201.4	191.9	-142.7	-152.2	0.58	0.44	0.00	0.00	14746.4	23014.3	58018	14310.3	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	259	0.11	0.00
16	.]						187.8	178.8	-137.2	-146.2	0.54	0.42	0.00	0.00	14721.0	22768.4	57236	13581.7	-9645.2	22121.9	0.61	0.61	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	341	0.15	0.00
17							183.5	174.4	-146.8	-154.6	0.53	0.45	0.00	0.00	14473.5	23880.3	57747	13711.7	-9645.2	23214.1	0.59	0.59	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	341	0.10	0.00
18							102.4	96.6	-106.6	-111.5	0.29	0.32	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	747	0.21	0.00
19							102.4	96.6	-106.6	-111.5	0.29	0.32	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	747	0.21	0.00
20	0.0412	0.0328	0.0314	0.0	0.0	0.020	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	8413.1	16827.8	29303	2864.7	-7663.2	15677.0	0.00	0.00	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	1108	0.31 0.	54 0.00

 Dati
 Var
 unità

 coefficiente di sicurezza per la resistenza all'instabilità
 γM1
 1.10

 coefficiente eta
 η
 1.20

 pannelli irrigiditi (0) - non irrigiditi (1)
 pan
 0

 Resistenza di progetto soletta
 fcd
 MPa
 19.83

 Tensione di snervamento acciaio armature soletta
 fya
 MPa
 450

	1				sol	letta			Armatı	ıre soletta		piattaband	a superiore	an	ima	piattaband	a inferiore				TENSIONI A	AGENTI SU S	EZIONE LOI	RDA								CA	ARATTERISTICH	IE DELLE SEZI
Sez	FRAME	E LOC (n	n) Progr (m) Bcoll (m)	Hc (m)	Hcr (m)	Bcr (m)	Assup (m2)	yGs sup (m)	Asinf (m2)	yGs inf (m)	Beg (m)	tf (m)	hw (m)	tw (m)	Beg (m)	tf (m)	Status soletta	σA (Mpa)	σB (Mpa)	σC (Mpa)	σD (Mpa)	σAs_inf (Mpa)	σAs_sup (Mpa)	τ (Mpa)	fyfs (Mpa)	fyw (Mpa)	fyfi (Mpa)	PNA (m)	Classe	Aeff (m2)	yGa_eff (m)	Ixa_eff (m4)	WA_eff (m3)
1	1	0.000	0.000	4.191	0.240	0.070	0.560	0.006	0.260	0.006	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	-2.6	-2.2	13.2	13.5	14.5	16.8	-49.8	355.0	355.0	355.0	1.334	1				
2	1	2.500	2.500	4.754	0.240	0.070	0.560	0.007	0.260	0.007	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	115.2	110.9	-42.5	-46.2	3.6	-5.6	-101.2	355.0	355.0	355.0	1.402	1				
3	2	0.000	2.500	4.754	0.240	0.070	0.560	0.007	0.260	0.007	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	115.2	110.9	-42.5	-46.2	3.6	-5.6	-101.2	355.0	355.0	355.0	1.402	1				
4	2	2.500	5.000	5.317	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	201.8	194.0	-81.4	-88.1	-1.8	-19.0	-78.8	355.0	355.0	355.0	1.431	1				
5	3	0.000	5.000	5.317	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	208.0	200.2	-72.3	-80.1	-1.2	-19.0	-101.8	355.0	355.0	355.0	1.436	1				
6	3	0.500	5.500	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	222.0	213.7	-77.6	-85.9	-1.7	-20.8	-96.0	355.0	355.0	355.0	1.380	1				
7	4	0.000		5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	222.0	213.7	-77.6	-85.9	-1.7	-20.8	-61.5	355.0	355.0	355.0	1.380	1				
8	4	2.750	8.250	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	277.3	266.8	-100.4	-110.8	-5.7	-30.1	-64.3	355.0	355.0	355.0	1.380	1				
9	5	0.000	8.250	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	277.3	266.9	-100.4	-110.8	-5.7	-30.1	-29.8	355.0	355.0	355.0	1.380	1				
10	5	2.750		5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	294.7	283.5	-107.9	-119.1	-7.0	-33.0	-32.6	355.0	355.0	355.0	1.380	1				
11	6	0.000		5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	294.7	283.5	-107.9	-119.1	-7.0	-33.0	-1.9	355.0	355.0	355.0	1.380	1				
12	5	2.750		5.430	0.240	0.070	0.560 0.560	0.008	0.260 0.260	0.008 0.008	0.080	0.700 0.700	0.035 0.035	1.230 1.230	0.014 0.014	0.900 0.900	0.035 0.035	reagente	277.3 277.3	266.9 266.9	-100.4 -100.4	-110.8	-5.7	-30.1 -30.1	29.8 29.8	355.0 355.0	355.0 355.0	355.0 355.0	1.380 1.380	1				
13	7	2.750	20.750	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente reagente	277.3	213.7	-77.6	-110.8 -85.9	-5.7 -1.7	-30.1	61.5	355.0	355.0	355.0	1.380	1				
15	y 8	0.000		5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	222.0	213.7	-77.6	-85.9 -85.9	-1.7 -1.7	-20.8	61.5	355.0	355.0	355.0	1.380	1				
16	8	0.500		5.317	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	208.0	200.2	-77.3	-80.1	-1.2	-19.0	101.8	355.0	355.0	355.0	1.436	1				
17	9	0.000		5.317	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.033	1.235	0.014	0.900	0.035	reagente	201.8	194.0	-81.4	-88.1	-1.8	-19.0	78.8	355.0	355.0	355.0	1.431	1				
18	9	2.500	19.500	4.754	0.240	0.070	0.560	0.007	0.260	0.007	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	115.2	110.9	-42.5	-46.2	3.6	-5.6	101.2	355.0	355.0	355.0	1.402	1				
19	10	0.000	19.500	4.754	0.240	0.070	0.560	0.007	0.260	0.007	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	115.2	110.9	-42.5	-46.2	3.6	-5.6	101.2	355.0	355.0	355.0	1.402	1				
20	10	2.500	22.000	4.191	0.240	0.070	0.560	0.006	0.260	0.006	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	-2.6	-2.2	13.2	13.5	14.5	16.8	49.8	355.0	355.0	355.0	1.334	1				

COMBINAZIONE C2Mmax

	ONI EFFICA	CI								Analisi	elastica						А	nalisi plasti	ca																
							σA'	σВ'	σC'	σD'								•										Ver. stabilità							
	WB_eff	WC_eff	WD_eff	MEd			C1Mmax	C1Mmax	C1Mmax	C1Mmax			η1,inf	η1,sup	Mf,Rd	MPI,Rd	NPI,Rd							n.irr.			(hw/t)	pannelli			Vbw,Rd	Vb,Rd			
Sez	(m3)	(m3)	(m3)	(kNm)	NEd (k	:N) eN (m)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	η1,inf	η1,sup	grafico	grafico	(kNm)	(kNm)	(kN)	MEd (kN)	Ned (kN)	MN,Rd	η1,plast	η1	a (m)	Long	Isl (m4)	kτ	max	d'anima	lw	Xw	(kN)	(kN)	VEd (kN)	η3 η	1_s η1_inte
1							-2.6	-2.2	13.2	13.5	0.01	0.04	0.00	0.00	13306.4	22094.7	50031	2864.7	-7663.2	21576.3	0.13	0.13	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	1108	0.31	0.00
2							115.2	110.9	-42.5	-46.2	0.33	0.13	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	2249	0.63	0.00
3							115.2	110.9	-42.5	-46.2	0.33	0.13	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	2249	0.63	0.00
4							201.8	194.0	-81.4	-88.1	0.59	0.25	0.00	0.00	14473.5	23880.3	57747	13711.7	-9645.2	23214.1	0.59	0.59	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	1752	0.49	0.00
5	1						208.0	200.2	-72.3	-80.1	0.60	0.23	0.00	0.00	14721.0	22768.4	57236	13581.7	-9645.2	22121.9	0.61	0.61	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1752	0.77	0.00
6							222.0	213.7	-77.6	-85.9	0.64	0.24	0.00	0.00	14746.4	23014.3	58018	14310.3	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1653	0.72	0.00
7							222.0	213.7	-77.6	-85.9	0.64	0.24	0.00	0.00	14746.4	23014.3	58018	14310.3	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1059	0.46	0.00
8							277.3	266.8	-100.4	-110.8	0.80	0.31	0.00	0.00	14746.4	23014.3	58018	17085.0	-9843.4	22351.8	0.76	0.76	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1108	0.49	0.00
9							277.3	266.9	-100.4	-110.8	0.80	0.31	0.00	0.00	14746.4	23014.3	58018	17085.6	-9843.4	22351.8	0.76	0.76	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	514	0.23	0.00
10							294.7	283.5	-107.9	-119.1	0.86	0.34	0.00	0.00	14746.4	23014.3	58018	17951.6	-9843.4	22351.8	0.80	0.80	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	562	0.25	0.00
11							294.7	283.5	-107.9	-119.1	0.86	0.34	0.00	0.00	14746.4	23014.3	58018	17951.5	-9843.4	22351.8	0.80	0.80	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	32	0.01	0.00
12							277.3	266.9	-100.4	-110.8	0.80	0.31	0.00	0.00	14746.4	23014.3	58018	17086.9	-9843.4	22351.8	0.76	0.76	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	513	0.22	0.00
13							277.3	266.9	-100.4	-110.8	0.80	0.31	0.00	0.00	14746.4	23014.3	58018	17085.6	-9843.4	22351.8	0.76	0.76	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	514	0.23	0.00
14							222.0	213.7	-77.6	-85.9	0.64	0.24	0.00	0.00	14746.4	23014.3	58018	14313.1	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1059	0.46	0.00
15							222.0	213.7	-77.6	-85.9	0.64	0.24	0.00	0.00	14746.4	23014.3	58018	14310.3	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1059	0.46	0.00
16							208.0	200.2	-72.3	-80.1	0.60	0.23	0.00	0.00	14721.0	22768.4	57236	13581.7	-9645.2	22121.9	0.61	0.61	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1752	0.77	0.00
17	1						201.8	194.0	-81.4	-88.1	0.59	0.25	0.00	0.00	14473.5	23880.3	57747	13711.7	-9645.2	23214.1	0.59	0.59	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	1752	0.49	0.00
18							115.2	110.9	-42.5	-46.2	0.33	0.13	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	2249	0.63	0.00
19							115.2	110.9	-42.5	-46.2	0.33	0.13	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	2249	0.63	0.00
20							-2.6	-2.2	13.2	13.5	0.01	0.04	0.00	0.00	13306.4	22094.7	50031	2864.7	-7663.2	21576.3	0.13	0.13	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	1108	0.31	0.00

1 1 0.000 0.000 4.191 0.240 0.070 0.560 0.006 0.260 0.006 0.800 0.700 0.030 1.235 0.018 0.900 0.035 reagente 89.1 85.5 41.8 44.9 6.6 1.3 -33.6 355.0 355.0 355.0 355.0 1.002 4.754 0.240 0.070 0.560 0.007 0.260 0.007 0.260 0.007 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	CARATTERISTICHE DELLE SEZI
1 1 0.000 0.000 4.191 0.240 0.070 0.560 0.006 0.260 0.006 0.080 0.700 0.030 1.235 0.018 0.900 0.035 reagente -2.6 -2.2 13.2 13.5 14.5 16.8 -49.8 355.0 355.0 355.0 1.334 2 1 2.500 2.500 4.754 0.240 0.070 0.560 0.007 0.260 0.007 0.080 0.700 0.030 1.235 0.018 0.900 0.035 reagente 89.1 85.5 -41.8 -44.9 6.6 1.3 -33.6 355.0 355.0 355.0 355.0 355.0 1.402 4 2 2.500 5.000 5.317 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.030 1.235 0.018 0.900 0.035 reagente 170.0 163.1 -81.1 -87.1 1.3 -11.4 -15.3 355.0 355.0 355.0 355.0 1.431 5 3 0.000 5.000 5.317 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 174.8 168.0 -72.4 -79.3 1.8 -11.4 -19.8 355.0 355.0 355.0 355.0 1.436 6 3 0.500 5.500 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 188.5 181.1 -77.8 -85.2 1.2 -13.2 -15.0 355.0 355.0 355.0 1.380 7 4 0.000 5.500 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 188.5 181.1 -77.8 -85.2 1.2 -13.2 -15.0 355.0 355.0 355.0 1.380 8 4 2.750 8.250 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 188.5 181.1 -77.8 -85.2 1.2 -13.2 -15.0 355.0 355.0 355.0 1.380 9 5 0.000 8.250 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 188.5 181.1 -77.8 -85.2 1.2 -13.2 -15.0 355.0 355.0 355.0 1.380 9 5 0.000 8.250 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 245.9 236.3 -100.5 -110.1 -3.1 -23.0 12.0 355.0 355.0 355.0 1.380 10 5 2.750 11.000 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 245.9 236.3 -100.5 -110.1 -3.1 -23.0 12.0 355.0 355.0 355.0 1.380 11 6 0.000 11.000 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 245.9 236.3 -100.5 -110.1 -3.1 -23.0 12.0 355.0 355.0 355.0 355.0 1.380 12 6 2.750 11.000 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014	yGa_eff WA_eff \(m) Classe Aeff (m2) (m)
2 1 2.500 2.500 4.754 0.240 0.070 0.560 0.007 0.260 0.007 0.260 0.007 0.080 0.700 0.030 1.235 0.018 0.900 0.035 reagente 89.1 85.5 -41.8 -44.9 6.6 1.3 -33.6 35.0 35.0 35.0 35.0 1.402 3 2 0.000 2.500 4.754 0.240 0.070 0.560 0.008 0.260 0.007 0.260 0.007 0.080 0.700 0.030 1.235 0.018 0.900 0.035 reagente 89.1 85.5 -41.8 -44.9 6.6 1.3 -33.6 35.0 35.0 35.0 35.0 1.402 4 2 2.500 5.000 5.317 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.030 1.235 0.018 0.900 0.035 reagente 170.0 163.1 -81.1 -87.1 1.3 -11.4 -15.3 35.0 35.0 35.0 35.0 35.0 35.0 1.402 5 3 0.000 5.000 5.317 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 174.8 168.0 -72.4 -79.3 1.8 -11.4 -19.8 35.0 35.0 35.0 35.0 1.436 6 3 0.500 5.500 5.330 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 188.5 181.1 -77.8 -85.2 1.2 -13.2 -15.0 35.0 35.0 355.0 1380 8 4 2.750 8.250 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 188.5 181.1 -77.8 -85.2 1.2 -13.2 -15.0 355.0 355.0 355.0 1380 9 5 0.000 8.250 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 245.9 236.3 -100.5 -110.1 -3.1 -23.0 12.0 355.0 355.0 355.0 1380 10 5 2.750 11.000 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 245.9 236.3 -100.5 -110.1 -3.1 -23.0 12.0 355.0 355.0 355.0 1380 11 6 0.000 11.000 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 270.7 260.2 -108.1 -118.5 -4.9 -27.5 39.6 355.0 355.0 355.0 1380 12 6 2.750 11.000 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 270.7 260.2 -108.1 -118.5 -4.9 -27.5 39.6 355.0 355.0 355.0 1380 12 6 2.750 11.000 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 260.4 250.4 -100.4 -110.4 -4.3 -26.3 68.2 355.0 355.0 355.0 1380 13 7 0.000 13.750 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035	
3 2 0.000 2.500 4.754 0.240 0.070 0.560 0.007 0.260 0.007 0.260 0.007 0.080 0.700 0.030 1.235 0.018 0.900 0.035 reagente 89.1 85.5 -41.8 -44.9 6.6 1.3 -33.6 355.0 355.0 355.0 1.402 2 2.500 5.000 5.000 5.317 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.235 0.018 0.900 0.035 reagente 170.0 163.1 -81.1 -87.1 1.3 -11.4 -15.3 355.0 355.0 355.0 355.0 1.431 5 3 0.000 5.000 5.000 5.301 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 188.5 181.1 -77.8 -85.2 1.2 -13.2 -15.0 355.0 355.0 355.0 1.380 7 4 0.000 5.500 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 188.5 181.1 -77.8 -85.2 1.2 -13.2 -15.0 355.0 355.0 355.0 1.380 8 4 2.750 8.250 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 188.5 181.1 -77.8 -85.2 1.2 -13.2 -15.0 355.0 355.0 355.0 1.380 9 5 0.000 8.250 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 245.9 236.3 -100.5 -110.1 -3.1 -23.0 12.0 355.0 355.0 355.0 1.380 10 5 2.750 11.000 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 245.9 236.3 -100.5 -110.1 -3.1 -23.0 12.0 355.0 355.0 355.0 1.380 11 6 0.000 11.000 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 245.9 236.3 -100.5 -110.1 -3.1 -23.0 12.0 355.0 355.0 355.0 1.380 11 6 0.000 11.000 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 270.7 260.2 -108.1 -118.5 -4.9 -27.5 39.6 355.0 355.0 355.0 1.380 12 6 2.750 11.000 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 270.7 260.2 -108.1 -118.5 -4.9 -27.5 39.6 355.0 355.0 355.0 1.380 13 7 0.000 13.750 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 260.4 250.5 -100.4 -110.4 -4.3 -26.3 68.2 355.0 355.0 355.0 1.380 14 7 2.750 16.500 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.0	
4 2 2.500 5.000 5.317 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.235 0.018 0.900 0.035 reagente 170.0 163.1 -81.1 -87.1 1.3 -11.4 -15.3 35.0 355.0 355.0 1.431 5 0.000	
5 3 0.000 5.000 5.317 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 174.8 168.0 -72.4 -79.3 1.8 -11.4 -19.8 355.0 355.0 355.0 355.0 1.380 0.008 0	431 1
7 4 0.000 5.500 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 188.5 181.1 -77.8 -85.2 1.2 -13.2 -15.0 355.0 355.0 355.0 1.380 9 5 0.000 8.250 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 245.9 236.3 -100.5 -110.1 -3.1 -23.0 12.0 355.0 355.0 355.0 1.380 1.200 0.008	436 1
8 4 2.750 8.250 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 245.9 236.3 -100.5 -110.1 -3.1 -23.0 12.0 355.0 355.0 355.0 1.380 9 5 0.000 8.250 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 245.9 236.3 -100.5 -110.1 -3.1 -23.0 12.0 355.0 355.0 355.0 1.380 10 5 2.750 11.000 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 270.7 260.2 -108.1 -118.5 -4.9 -27.5 39.6 355.0 355.0 355.0 355.0 1.380 11 6 0.000 11.000 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 270.6 260.2 -108.1 -118.5 -4.9 -27.5 39.6 355.0 355.0 355.0 1.380 12 6 2.750 13.750 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 270.4 -100.4 -110.4 -4.3 -26.3 68.2 355.0 355.0 355.0 1.380 13 7 0.000 13.750 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 260.4 250.4 -100.4 -110.4 -4.3 -26.3 68.2 355.0 355.0 355.0 1.380 14 7 2.750 16.500 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 260.4 250.4 -100.4 -110.4 -4.3 -26.3 68.2 355.0 355.0 355.0 1.380 1.380 0.000 0.000 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	380 1
9 5 0.000 8.250 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 245.9 236.3 -10.5 -110.1 -3.1 -23.0 12.0 355.0 355.0 355.0 1.380 10 5 2.750 11.000 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 270.7 260.2 -108.1 -118.5 -4.9 -27.5 39.6 355.0 355.0 355.0 1.380 11 6 0.000 11.000 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 270.6 260.2 -108.1 -118.5 -4.9 -27.5 39.6 355.0 355.0 355.0 1.380 12 6 2.750 13.750 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 260.4 250.5 -100.4 -110.4 -4.3 -26.3 68.2 355.0 355.0 355.0 1.380 13 7 0.000 13.750 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 260.4 250.4 -100.4 -110.4 -4.3 -26.3 68.2 355.0 355.0 355.0 1.380 14 7 2.750 16.500 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 213.0 205.0 -77.7 -85.7 -0.9 -18.8 97.7 355.0 355.0 355.0 1.380	380 1
10 5 2.750 11.000 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 270.7 260.2 -108.1 -118.5 -4.9 -27.5 39.6 355.0 355.0 355.0 1.380 11 6 0.000 11.000 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 270.6 260.2 -108.1 -118.5 -4.9 -27.5 39.6 355.0 355.0 355.0 355.0 1.380 12 6 2.750 13.750 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 260.4 250.5 -100.4 -110.4 -4.3 -26.3 68.2 355.0 355.0 355.0 1.380 13 7 0.000 13.750 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 260.4 250.4 -100.4 -110.4 -4.3 -26.3 68.2 355.0 355.0 355.0 1.380 14 7 2.750 16.500 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 213.0 205.0 -77.7 -85.7 -0.9 -18.8 97.7 355.0 355.0 355.0 1.380 1.380	380 1
11 6 0.000 11.000 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 270.6 260.2 -108.1 -118.5 -4.9 -27.5 39.6 355.0 355.0 355.0 1.380 12 6 2.750 13.750 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 260.4 250.5 -100.4 -110.4 -4.3 -26.3 68.2 355.0 355.0 355.0 1.380 13 7 0.000 13.750 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 260.4 250.4 -100.4 -110.4 -4.3 -26.3 68.2 355.0 355.0 355.0 1.380 14 7 2.750 16.500 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 213.0 205.0 -77.7 -85.7 -0.9 -18.8 97.7 355.0 355.0 355.0 1.380 1.380	380 1
12 6 2.750 13.750 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 260.4 250.5 -100.4 -110.4 -4.3 -26.3 68.2 355.0 355.0 355.0 1.380 13 7 0.000 13.750 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 260.4 250.4 -100.4 -110.4 -4.3 -26.3 68.2 355.0 355.0 355.0 1.380 14 7 2.750 16.500 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 213.0 205.0 -77.7 -85.7 -0.9 -18.8 97.7 355.0 355.0 355.0 1.380	380 1
13 7 0.000 13.750 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 260.4 250.4 -100.4 -110.4 -4.3 -26.3 68.2 355.0 355.0 355.0 1.380 14 7 2.750 16.500 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 213.0 205.0 -77.7 -85.7 -0.9 -18.8 97.7 355.0 355.0 355.0 1.380	380 1
14 7 2.750 16.500 5.430 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 213.0 205.0 -77.7 -85.7 -0.9 -18.8 97.7 355.0 355.0 355.0 1.380	
l l	
1 15 0 0.000 16:000 0.00	
16 8 0.500 17.000 5.317 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.035 1.230 0.014 0.900 0.035 reagente 200.3 192.8 -72.4 -79.9 -0.5 -17.3 103.2 355.0 355.0 355.0 1.436	
17 9 0.000 17.000 5.317 0.240 0.070 0.560 0.008 0.260 0.008 0.080 0.700 0.030 1.235 0.018 0.900 0.035 reagente 194.4 186.8 -81.4 -87.9 -1.1 -17.2 79.9 355.0 355.0 355.0 1.431	
18 9 2.500 19.500 4.754 0.240 0.070 0.560 0.007 0.260 0.007 0.080 0.700 0.030 1.235 0.018 0.900 0.035 reagente 113.1 108.8 -42.5 -46.1 3.9 -5.1 101.5 355.0 355.0 355.0 1.402	
19 10 0.000 19.500 4.754 0.240 0.070 0.560 0.007 0.260 0.007 0.260 0.007 0.080 0.700 0.030 1.235 0.018 0.900 0.035 reagente 113.1 108.8 -42.5 -46.1 3.9 -5.1 101.5 355.0 355.0 355.0 355.0 1.402 20 10 2.500 22.000 4.191 0.240 0.070 0.560 0.060 0.060 0.060 0.080 0.700 0.030 1.235 0.018 0.900 0.035 reagente -2.6 -2.2 13.2 13.5 14.5 16.8 123.5 355.0 355.0 355.0 1.334	

COMBINAZIONE

C2Vmax

	ONI EFFICA	CI									Analisi	elastica						А	nalisi plast	ica																
		_						σA'	σB'	σC'	σD'																		Ver. stabilità							
	WB eff	WC eff	WD_eff	MEd				-	C1Mmax	C1Mmax	C1Mmax			η1,inf	η1,sup	Mf.Rd	MPI.Rd	NPI.Rd							n.irr.			(hw/t)	pannelli			Vbw,Rd	Vb.Rd			
Sez	(m3)	(m3)	(m3)	(kNm)	NEd	(kN) eN	I (m)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	η1,inf	η1,sup	grafico	grafico	(kNm)	(kNm)	(kN)	MEd (kN)	Ned (kN)	MN,Rd	η1,plast	η1	a (m)	Long	Isl (m4)	kτ	max	d'anima	lw	Xw	(kN)	(kN)	VEd (kN)	, η3 r	η1_s η1_inte
1								-2.6	-2.2	13.2	13.5	0.01	0.04	0.00	0.00	13306.4	22094.7	50031	2864.7	-7663.2	21576.3	0.13	0.13	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	1108	0.31	0.00
2								89.1	85.5	-41.8	-44.9	0.26	0.13	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	747	0.21	0.00
3								89.1	85.5	-41.8	-44.9	0.26	0.13	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	747	0.21	0.00
4								170.0	163.1	-81.1	-87.1	0.49	0.25	0.00	0.00	14473.5	23880.3	57747	13711.7	-9645.2	23214.1	0.59	0.59	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	341	0.10	0.00
5	1							174.8	168.0	-72.4	-79.3	0.51	0.22	0.00	0.00	14721.0	22768.4	57236	13581.7	-9645.2	22121.9	0.61	0.61	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	341	0.15	0.00
6								188.5	181.1	-77.8	-85.2	0.55	0.24	0.00	0.00	14746.4	23014.3	58018	14310.3	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	259	0.11	0.00
7								188.5	181.1	-77.8	-85.2	0.55	0.24	0.00	0.00	14746.4	23014.3	58018	14310.3	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	259	0.11	0.00
8								245.9	236.3	-100.5	-110.1	0.71	0.31	0.00	0.00	14746.4	23014.3	58018	17085.0	-9843.4	22351.8	0.76	0.76	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	207	0.09	0.00
9								245.9	236.3	-100.5	-110.1	0.71	0.31	0.00	0.00	14746.4	23014.3	58018	17085.6	-9843.4	22351.8	0.76	0.76	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	207	0.09	0.00
10								270.7	260.2	-108.1	-118.5	0.79	0.34	0.00	0.00	14746.4	23014.3	58018	17951.6	-9843.4	22351.8	0.80	0.80	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	682	0.30	0.00
11								270.6	260.2	-108.1	-118.5	0.78	0.34	0.00	0.00	14746.4	23014.3	58018	17951.5	-9843.4	22351.8	0.80	0.80	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	682	0.30	0.00
12								260.4	250.5	-100.4	-110.4	0.76	0.31	0.00	0.00	14746.4	23014.3	58018	17086.9	-9843.4	22351.8	0.76	0.76	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1175	0.51	0.00
13								260.4	250.4	-100.4	-110.4	0.76	0.31	0.00	0.00	14746.4	23014.3	58018	17085.6	-9843.4	22351.8	0.76	0.76	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1175	0.51	0.00
14								213.0	205.0	-77.7	-85.7	0.62	0.24	0.00	0.00	14746.4	23014.3	58018	14313.1	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1683	0.74	0.00
15								213.0	204.9	-77.7	-85.7	0.62	0.24	0.00	0.00	14746.4	23014.3	58018	14310.3	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1683	0.74	0.00
16								200.3	192.8	-72.4	-79.9	0.58	0.23	0.00	0.00	14721.0	22768.4	57236	13581.7	-9645.2	22121.9	0.61	0.61	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1777	0.78	0.00
17								194.4	186.8	-81.4	-87.9	0.56	0.25	0.00	0.00	14473.5	23880.3	57747	13711.7	-9645.2	23214.1	0.59	0.59	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	1777	0.49	0.00
18								113.1	108.8	-42.5	-46.1	0.33	0.13	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	2255	0.63	0.00
19								113.1	108.8	-42.5	-46.1	0.33	0.13	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	2255	0.63	0.00
20								-2.6	-2.2	13.2	13.5	0.01	0.04	0.00	0.00	13306.4	22094.7	50031	2864.7	-7663.2	21576.3	0.13	0.13	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	2746	0.76	0.00

	1				sol	etta			Armatu	ıre soletta		piattabanda	a superiore	an	ima	piattaband	a inferiore				TENSIONI A	GENTI SU SI	EZIONE LOI	RDA								CA	RATTERISTICH	IE DELLE SEZI
Sez	FRAME	LOC (m)	Progr (m)	Bcoll (m)	Hc (m)	Hcr (m)	Bcr (m)	Assup (m2)	yGs sup (m)	Asinf (m2)	yGs inf (m)	Beq (m)	tf (m)	hw (m)	tw (m)	Beq (m)	tf (m)	Status soletta	σA (Mpa)	σB (Mpa)	σC (Mpa)	σD (Mpa)	σAs_inf (Mpa)	σAs_sup (Mpa)	τ (Mpa)	fyfs (Mpa)	fyw (Mpa)	fyfi (Mpa)	PNA (m)	Classe	Aeff (m2)	yGa_eff (m)	Ixa_eff (m4)	WA_eff (m3)
1	1	0.000	0.000	4.191	0.240	0.070	0.560	0.006	0.260	0.006	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	-2.6	-2.2	13.2	13.5	14.5	16.8	-123.5	355.0	355.0	355.0	1.334	1				
2	1	2.500	2.500	4.754	0.240	0.070	0.560	0.007	0.260	0.007	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	113.1	108.8	-42.5	-46.1	3.9	-5.1	-101.5	355.0	355.0	355.0	1.402	1				
3	2	0.000	2.500	4.754	0.240	0.070	0.560	0.007	0.260	0.007	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	113.1	108.8	-42.5	-46.1	3.9	-5.1	-101.5	355.0	355.0	355.0	1.402	1				
4	2	2.500	5.000	5.317	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	194.4	186.8	-81.4	-87.9	-1.1	-17.2	-79.9	355.0	355.0	355.0	1.431	1				
5	3	0.000	5.000	5.317	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	200.3	192.8	-72.4	-79.9	-0.5	-17.3	-103.2	355.0	355.0	355.0	1.436	1				
6	3	0.500	5.500	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	213.0	204.9	-77.7	-85.7	-0.9	-18.8	-97.7	355.0	355.0	355.0	1.380	1				
/	4	0.000	5.500	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	213.0	204.9	-77.7	-85.7	-0.9	-18.8	-97.7	355.0	355.0	355.0	1.380	1				
8	4	2.750	8.250 8.250	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	260.4	250.4	-100.4	-110.4	-4.3	-26.3	-68.3	355.0 355.0	355.0 355.0	355.0 355.0	1.380 1.380	1				
10	5	0.000 2.750	8.250 11 000	5.430	0.240	0.070	0.560 0.560	0.008	0.260 0.260	0.008 0.008	0.080	0.700 0.700	0.035 0.035	1.230 1.230	0.014 0.014	0.900 0.900	0.035 0.035	reagente reagente	260.4 270.7	250.4 260.2	-100.4 -108.1	-110.4 -118.5	-4.3 -4.9	-26.3 -27.5	-68.2 -39.6	355.0	355.0 355.0	355.0	1.380	1				
11	6	0.000	11.000	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	270.7	260.2	-108.1	-118.5	-4.9	-27.5	-39.6	355.0	355.0	355.0	1.380	1				
12	6	2.750	13 750	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	246.0	236.4	-100.5	-110.1	-3.1	-23.0	-12.0	355.0	355.0	355.0	1.380	1				
13	7	0.000	13.750	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	245.9	236.3	-100.5	-110.1	-3.1	-23.0	-12.0	355.0	355.0	355.0	1.380	1				
14	7	2.750	16.500	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	188.6	181.2	-77.8	-85.2	1.2	-13.3	15.0	355.0	355.0	355.0	1.380	1				
15	8	0.000	16.500	5.430	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	188.5	181.1	-77.8	-85.2	1.2	-13.2	15.0	355.0	355.0	355.0	1.380	1				
16	8	0.500	17.000	5.317	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.035	1.230	0.014	0.900	0.035	reagente	174.8	168.0	-72.4	-79.3	1.8	-11.4	19.8	355.0	355.0	355.0	1.436	1				
17	9	0.000	17.000	5.317	0.240	0.070	0.560	0.008	0.260	0.008	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	170.0	163.1	-81.1	-87.1	1.3	-11.4	15.3	355.0	355.0	355.0	1.431	1				
18	9	2.500	19.500	4.754	0.240	0.070	0.560	0.007	0.260	0.007	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	89.1	85.5	-41.8	-44.9	6.6	1.3	33.6	355.0	355.0	355.0	1.402	1				
19	10	0.000	19.500	4.754	0.240	0.070	0.560	0.007	0.260	0.007	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	89.1	85.5	-41.8	-44.9	6.6	1.3	33.6	355.0	355.0	355.0	1.402	1				
20	10	2.500	22.000	4.191	0.240	0.070	0.560	0.006	0.260	0.006	0.080	0.700	0.030	1.235	0.018	0.900	0.035	reagente	-2.6	-2.2	13.2	13.5	14.5	16.8	49.8	355.0	355.0	355.0	1.334	1				

COMBINAZIONE C2Vmin

	ONI EFFICA	.CI									Analisi	elastica						Α	nalisi plast	ica																
								σA'	σB'	σC'	σD'																		Ver. stabilità							
	WB eff	WC eff	WD_eff	MEd			c	1Mmax	C1Mmax	C1Mmax	C1Mmax			η1,inf	η1,sup	Mf,Rd	MPI,Rd	NPI,Rd							n.irr.			(hw/t)	pannelli			Vbw,Rd	Vb,Rd			
Sez	(m3)	(m3)	(m3)	(kNm)	NEd ((kN) eN	(m)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	η1,inf	η1,sup	grafico	grafico	(kNm)	(kNm)	(kN)	MEd (kN)	Ned (kN)	MN,Rd	η1,plast	η1	a (m)	Long	Isl (m4)	kτ	max	d'anima	lw	Xw	(kN)	(kN)	VEd (kN)	η3 τ	η1_s η1_inte
1								-2.6	-2.2	13.2	13.5	0.01	0.04	0.00	0.00	13306.4	22094.7	50031	2864.7	-7663.2	21576.3	0.13	0.13	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	2746	0.76	0.00
2								113.1	108.8	-42.5	-46.1	0.33	0.13	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	2255	0.63	0.00
3								113.1	108.8	-42.5	-46.1	0.33	0.13	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	2255	0.63	0.00
4								194.4	186.8	-81.4	-87.9	0.56	0.25	0.00	0.00	14473.5	23880.3	57747	13711.7	-9645.2	23214.1	0.59	0.59	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	1777	0.49	0.00
5	1							200.3	192.8	-72.4	-79.9	0.58	0.23	0.00	0.00	14721.0	22768.4	57236	13581.7	-9645.2	22121.9	0.61	0.61	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1777	0.78	0.00
6								213.0	204.9	-77.7	-85.7	0.62	0.24	0.00	0.00	14746.4	23014.3	58018	14310.3	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1683	0.74	0.00
7								213.0	204.9	-77.7	-85.7	0.62	0.24	0.00	0.00	14746.4	23014.3	58018	14310.3	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1683	0.74	0.00
8								260.4	250.4	-100.4	-110.4	0.76	0.31	0.00	0.00	14746.4	23014.3	58018	17085.0	-9843.4	22351.8	0.76	0.76	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1175	0.52	0.00
9								260.4	250.4	-100.4	-110.4	0.76	0.31	0.00	0.00	14746.4	23014.3	58018	17085.6	-9843.4	22351.8	0.76	0.76	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	1175	0.51	0.00
10								270.7	260.2	-108.1	-118.5	0.79	0.34	0.00	0.00	14746.4	23014.3	58018	17951.6	-9843.4	22351.8	0.80	0.80	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	682	0.30	0.00
11								270.6	260.2	-108.1	-118.5	0.78	0.34	0.00	0.00	14746.4	23014.3	58018	17951.5	-9843.4	22351.8	0.80	0.80	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	682	0.30	0.00
12								246.0	236.4	-100.5	-110.1	0.71	0.31	0.00	0.00	14746.4	23014.3	58018	17086.9	-9843.4	22351.8	0.76	0.76	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	207	0.09	0.00
13								245.9	236.3	-100.5	-110.1	0.71	0.31	0.00	0.00	14746.4	23014.3	58018	17085.6	-9843.4	22351.8	0.76	0.76	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	207	0.09	0.00
14								188.6	181.2	-77.8	-85.2	0.55	0.24	0.00	0.00	14746.4	23014.3	58018	14313.1	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	258	0.11	0.00
15								188.5	181.1	-77.8	-85.2	0.55	0.24	0.00	0.00	14746.4	23014.3	58018	14310.3	-9843.4	22351.8	0.64	0.64	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	259	0.11	0.00
16	.[174.8	168.0	-72.4	-79.3	0.51	0.22	0.00	0.00	14721.0	22768.4	57236	13581.7	-9645.2	22121.9	0.61	0.61	5.500	0	0	5.540	49.5	SI	1.23	0.711	2282	2282	341	0.15	0.00
17								170.0	163.1	-81.1	-87.1	0.49	0.25	0.00	0.00	14473.5	23880.3	57747	13711.7	-9645.2	23214.1	0.59	0.59	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	341	0.10	0.00
18								89.1	85.5	-41.8	-44.9	0.26	0.13	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	747	0.21	0.00
19								89.1	85.5	-41.8	-44.9	0.26	0.13	0.00	0.00	14424.0	23633.0	54329	9087.2	-8654.2	23033.4	0.39	0.39	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	747	0.21	0.00
20								-2.6	-2.2	13.2	13.5	0.01	0.04	0.00	0.00	13306.4	22094.7	50031	2864.7	-7663.2	21576.3	0.13	0.13	5.500	0	0	5.542	49.5	SI	0.96	0.867	3591	3591	1108	0.31	0.00

					IN	IVILUPPI					
						η1,inf	η1,sup				
Sez	FRAME	LOC (m)	Progr (m)	η1,inf	η1,sup	grafico	grafico	η1,plast	η1	η3	η1_inter
1	1	0.000	0.000	0.01	0.04	0.00	0.00	0.13	0.13	0.76	0.67
2	1	2.500	2.500	0.37	0.33	0.16	0.19	0.39	0.39	0.63	0.00
3	2	0.000	2.500	0.37	0.33	0.16	0.19	0.39	0.39	0.63	0.00
4	2	2.500	5.000	0.62	0.45	0.28	0.33	0.59	0.59	0.49	0.00
5	3	0.000	5.000	0.64	0.42	0.29	0.31	0.61	0.61	0.78	0.00
6	3	0.500	5.500	0.68	0.44	0.31	0.33	0.64	0.64	0.74	0.00
7	4	0.000	5.500	0.68	0.44	0.31	0.33	0.64	0.64	0.74	0.00
8	4	2.750	8.250	0.84	0.51	0.38	0.41	0.76	0.76	0.52	0.00
9	5	0.000	8.250	0.84	0.51	0.38	0.41	0.76	0.76	0.51	0.00
10	5	2.750	11.000	0.89	0.53	0.41	0.44	0.80	0.80	0.30	0.00
11	6	0.000	11.000	0.89	0.53	0.41	0.44	0.80	0.80	0.30	0.00
12	6	2.750	13.750	0.84	0.51	0.38	0.41	0.76	0.76	0.51	0.00
13	7	0.000	13.750	0.84	0.51	0.38	0.41	0.76	0.76	0.51	0.00
14	7	2.750	16.500	0.68	0.44	0.31	0.33	0.64	0.64	0.74	0.00
15	8	0.000	16.500	0.68	0.44	0.31	0.33	0.64	0.64	0.74	0.00
16	8	0.500	17.000	0.64	0.42	0.29	0.31	0.61	0.61	0.78	0.00
17	9	0.000	17.000	0.62	0.45	0.28	0.33	0.59	0.59	0.49	0.00
18	9	2.500	19.500	0.37	0.33	0.16	0.19	0.39	0.39	0.63	0.00
19	10	0.000	19.500	0.37	0.33	0.16	0.19	0.39	0.39	0.63	0.00
20	10	2.500	22.000	0.01	0.04	0.00	0.00	0.13	0.13	0.76	0.67

S.S.4 "SALARIA"

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

16 ALLEGATO 5 - SOTTOSTRUTTURE: SPA

T00VI02STRRE01A.docx 108 di 111

i e risoluzione della palificata							
atteristiche geometriche elevazione							
N.B. Origine mezzeria spigolo anteriore muro fro Descrizione	ntale Lx sup (m)	Lx inf (m)	Ly (m)	h (m)	Dx (m)	Dy (m)	Dz (m
Paraghiaia - 1	0.60	0.60	15.45	2.50	-2.30	0.00	6.00
Muro frontale - 2	2.90	2.90	15.45	1.50	0.00	0.00	4.50
Muro frontale - 3	2.90	1.90	15.45	1.00	0.00	0.00	3.50
Muro frontale - 4 Muro risvolto posteriore sx - 1	1.90 4.90	1.90 4.90	15.45 0.75	3.50 2.15	0.00 -2.90	0.00 -7.35	0.00 6.00
Muro risvolto posteriore sx - 2	4.90	4.90	0.75	1.50	-2.90	-7.35	4.50
Muro risvolto posteriore sx - 3	4.90	5.90	0.75	1.00	-1.90	-7.35	3.50
Muro risvolto posteriore sx - 4	5.90	5.90	0.75	3.50	-1.90	-7.35	0.00
Muro risvolto posteriore dx - 1 Muro risvolto posteriore dx - 2	4.90 4.90	4.90 4.90	0.75 0.75	3.15 1.50	-2.90 -2.90	7.35 7.35	6.00 4.50
Muro risvolto posteriore dx - 2	4.90	5.90	0.75	1.00	-1.90	7.35	3.50
Muro risvolto posteriore dx - 4	5.90	5.90	0.75	3.50	-1.90	7.35	0.00
Cordolo risvolto sx	4.90	4.90	0.00	0.00	-2.90	-6.97	8.15
Cordolo risvolto dx Orecchia sx - 1	4.90 0.00	4.90 0.00	0.00 0.75	0.00 0.00	-2.90 -7.80	6.97 -7.35	9.18 8.18
Orecchia sx - 2	0.00	0.00	0.75	0.00	-7.80	-7.35	8.15
Orecchia dx - 1	0.00	0.00	0.75	0.00	-7.80	7.35	9.15
Orecchia dx - 2	0.00	0.00	0.75	0.00	-7.80	7.35	9.15
atteristiche geometriche fondazione							
N.B. Origine mezzeria spigolo anteriore muro fro Descrizione	ntale Lx (m)		Ly (m)	h (m)	Disx (m)	Disy (m)	
Zattera di fondazione	9.20		16.79	2.00	-1.40	0.00	
atteristiche geometriche complessive muro frontale	(Paraghiaia+Muro	frontale)					
Coordinate baricentro rispetto a mezzeria spigolo	anteriore muro fror	ntale					
Altezza complessiva elevazione	Hfron	m	8.50				
Area sezione trasversale Volume c.a.	Afron Vfron	mq mc	14.90 230.21				
Xbaricentro	Xg fron	m	-1.31				
Ybaricentro	Yg fron	m	0.00				
Zbaricentro	Zg fron	m	3.69				
Dis. spigolo ant. Baric. spiccato	Lxinf/2	m	0.95				
atteristiche geometriche complessive elevazione (P	araghiaia+Muro fro	ntale+muri risvo	olto				
Coordinate baricentro rispetto a mezzeria spigolo							
Volume c.a. Xbaricentro	Vele Xg ele	mc m	299.78 -2.17				
Ybaricentro	Yg ele	m	0.09				
Zbaricentro	Zg ele	m	3.80				
atteristiche geometriche complessive fondazione Coordinate baricentro rispetto a mezzeria spigolo	anteriore zattera di	fondazione					
Volume c.a.	Vfon	mc	308.94				
Xbaricentro Ybaricentro	Xg fon	m	-4.60 0.00				
Zbaricentro	Yg fon Zg fon	m m	1.00				
Note: Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infei h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. Y tra mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca	riore a muro frontale do e mezzeria muro	frontale					
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. Y tra mezzeria parallelepipe	riore a muro frontale do e mezzeria muro to muro frontale eriore muro frontale	rispetto a mezze					
Lx sup: Iunghezza in direzione x della faccia sup Lx inf: Iunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci. Dy: distanza in dir. X tra faccia anteriore e facci. Dy: distanza in dir. Y tra mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca. Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale	rispetto a mezze rispetto a mezze	ria faccia anteri				
Lx sup: lunghezza in direzione x della faccia sup k: inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. Y tra mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale fir	rispetto a mezze rispetto a mezze deg	ria faccia anteri				
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale	rispetto a mezze rispetto a mezze	35.0 18.0				
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci. Dy: distanza in dir. Y tra mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant Angolo d'attrito Angolo d'attrito	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale fir	rispetto a mezze rispetto a mezze deg	ria faccia anteri				
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta attiva (Rankine) Coefficiente di spinta a riposo Condizioni di spinta: 1 - attiva; 2 - riposo	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale fir γ ka k0 Tip, spinta	rispetto a mezze rispetto a mezze deg	35.0 18.0 0.271 0.426				
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta attiva (Rankine) Coefficiente di spinta a riposo	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale fir γ ka k0	rispetto a mezze rispetto a mezze deg	35.0 18.0 0.271 0.426				
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e faccio Dy: distanza in dir. X tra faccia anteriore e faccio Dy: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta attiva (Rankine) Coefficiente di spinta a riposo Condizioni di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta di calcolo atteristiche geometriche complessive rinterro	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fir γ ka k0 Tip, spinta K	rispetto a mezze rispetto a mezze deg kN/mc	35.0 18.0 0.271 0.426 2 0.426	ore zattera di f	ondazione		
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci. Dy: distanza in dir. X tra faccia anteriore e spicca Disx: Disassamento in dir. X mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta attiva (Rankine) Coefficiente di spinta a riposo Coefficiente di spinta a riposo Coefficiente di spinta 1 - attiva; 2 - riposo Coefficiente di spinta 1 - attiva; 2 - riposo Coefficiente di spinta di calcolo atteristiche geometriche complessive rinterro Descrizione	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale fir γ ka k0 Tip_spinta K	rispetto a mezze rispetto a mezze deg kN/mc	35.0 18.0 0.271 0.426 2 0.426 Ly (m)	ore zattera di f	Dx (m)	Dy (m) 0.00	
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e faccio Dy: distanza in dir. X tra faccia anteriore e faccio Dy: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta attiva (Rankine) Coefficiente di spinta a riposo Condizioni di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta di calcolo atteristiche geometriche complessive rinterro	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fir γ ka k0 Tip, spinta K	rispetto a mezze rispetto a mezze deg kN/mc	35.0 18.0 0.271 0.426 2 0.426	ore zattera di f	ondazione	Dy (m) 0.00	6.00
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci. Dy: distanza in dir. X tra faccia anteriore e facci. Dy: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta attiva (Rankine) Coefficiente di spinta a riposo Coefficiente di Riposo Coefficiente di spinta a riposo Coefficiente di Riposo Riposo Coefficiente di Riposo Ri	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fiir	rispetto a mezze rispetto a mezze deg kN/mc Lx inf (m) 4.90 4.90 5.90	35.0 18.0 0.271 0.426 2 0.426 Ly (m) 13.95 13.95	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.00 4.50 3.50
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. X tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta attiva (Rankine) Coefficiente di spinta a riposo Coefficiente di spinta i - attiva; 2 - riposo Coefficiente di spinta di calcolo Descrizione Rinterro - 1 Rinterro - 1 Rinterro - 2	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fir	rispetto a mezze rispetto a mezze deg kN/mc Lx inf (m) 4.90 4.90	35.0 18.0 0.271 0.426 2 0.426 Ly (m) 13.95	h (m) 2.50 1.50	Dx (m) -2.90 -2.90	0.00	6.00 4.50 3.50
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta attiva (Rankine) Coefficiente di spinta a riposo Condizioni di spinta: 1 - attiva: 2 - riposo Coefficiente di spinta di calcolo atteristiche geometriche complessive rinterro Descrizione Rinterro - 1 Rinterro - 2 Rinterro - 3 Rinterro - 4 Coordinate baricentro rispetto a mezzeria spigole	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fir	rispetto a mezze rispetto a mezze deg kN/mc Lx inf (m) 4.90 4.90 5.90 5.90	35.0 18.0 0.271 0.426 2 0.426 Ly (m) 13.95 13.95 13.95	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.00 4.50 3.50
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. X tra faccia anteriore e spicca Dis: Disassamento in dir. X mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta attiva (Rankine) Coefficiente di spinta a riposo Condizioni di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta di calcolo Descrizione Rinterro - 1 Rinterro - 2 Rinterro - 3 Rinterro - 3 Rinterro - 3 Rinterro - 4 Coordinate baricentro rispetto a mezzeria spigole	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fir γ ka k0 Tip, spinta K Lx sup (m) 4.90 4.90 4.90 5.90 p anteriore zattera di	rispetto a mezze rispetto a mezze rispetto a mezze deg kN/mc Lx inf (m) 4.90 4.90 5.90 fondazione mc	35.0 18.0 0.271 0.426 2 0.426 Ly (m) 13.95 13.95 13.95	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.00 4.50 3.50
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci. Dy: distanza in dir. X tra faccia anteriore e facci. Dy: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta ativa (Rankine) Coefficiente di spinta a riposo Coefficiente di Rintero Descrizione Rinterro - 1 Rinterro - 2 Rinterro - 3 Rinterro - 4 Coordinate baricentro rispetto a mezzeria spigole Volume rinterro Xbaricentro	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fir γ ka k0 Tip spinta K Lx sup (m) 4.90 4.90 4.90 5.90 D anteriore zattera di Xg rin	rispetto a mezze rispetto a mezze rispetto a mezze deg kN/mc Lx inf (m) 4.90 4.90 5.90 5.90 fondazione mc m	35.0 18.0 0.271 0.426 2 0.426 Ly (m) 13.95 13.95 13.95 13.95	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.00 4.50 3.50
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. Y tra mezzeria parallelepipe Dz: distanza in dir. Y tra mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta attiva (Rankine) Coefficiente di spinta a riposo Condizioni di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta di calcolo Descrizione Rinterro - 1 Rinterro - 2 Rinterro - 3 Rinterro - 3 Rinterro - 4 Coordinate baricentro rispetto a mezzeria spigole Volume rinterro	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fir γ ka k0 Tip, spinta K Lx sup (m) 4.90 4.90 4.90 5.90 p anteriore zattera di	rispetto a mezze rispetto a mezze rispetto a mezze deg kN/mc Lx inf (m) 4.90 4.90 5.90 fondazione mc	35.0 18.0 0.271 0.426 2 0.426 Ly (m) 13.95 13.95 13.95	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.00 4.50 3.50
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci. Dy: distanza in dir. X tra faccia anteriore e facci. Dy: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta attiva (Rankine) Coefficiente di spinta a riposo Coefficiente di spinta a	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fir γ ka k0 Tip_spinta K Lx sup (m) 4.90 4.90 4.90 4.90 5.90 De anteriore zattera di Vrin Xg rin Yg rin	rispetto a mezze rispetto a mezze rispetto a mezze deg kN/mc Lx inf (m) 4.90 4.90 5.90 fondazione mc m m	35.0 18.0 0.271 0.426 2 0.426 Ly (m) 13.95 13.95 13.95 13.95	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.00 4.50 3.50
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci. Dy: distanza in dir. X tra faccia anteriore e facci. Dy: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant exteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta attiva (Rankine) Coefficiente di spinta a riposo Condizioni di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta al ciolo di steristiche geometriche complessive rinterro Descrizione Rinterro - 1 Rinterro - 2 Rinterro - 3 Rinterro - 4 Coordinate baricentro rispetto a mezzeria spigoli Volume rinterro Xbaricentro Ybaricentro Zbaricentro	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fir γ ka k0 Tip_spinta K Lx sup (m) 4.90 4.90 4.90 4.90 5.90 De anteriore zattera di Vrin Xg rin Yg rin	rispetto a mezze rispetto a mezze rispetto a mezze deg kN/mc Lx inf (m) 4.90 4.90 5.90 fondazione mc m m	35.0 18.0 0.271 0.426 2 0.426 Ly (m) 13.95 13.95 13.95 13.95	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	Dz (n 6.000 4.500 0.000
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. X tra faccia inferiore e spicca Dis: Disassamento in dir. X mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Dis:: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta attiva (Rankine) Coefficiente di spinta a riposo Condizioni di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta di calcolo Descrizione Rinterro - 1 Rinterro - 2 Rinterro - 3 Rinterro - 3 Rinterro - 3 Rinterro - 4 Coordinate baricentro rispetto a mezzeria spigole Volume rinterro Xbaricentro Zbaricentro Sovraccarico terrapieno SONI TRASMESSE DALLA SPALLA	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fir γ ka k0 Tip_spinta K Lx sup (m) 4.90 4.90 4.90 5.90 De anteriore zattera di Vrin Xg rin Yg rin Zg rin	rispetto a mezze rispetto a mezze rispetto a mezze deg kN/mc Lx inf (m) 4.90 4.90 5.90 5.90 fondazione mc m m	35.0 18.0 0.271 0.426 2 0.426 Ly (m) 13.95 13.95 13.95 13.95 13.95 13.95	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.00 4.50 3.50
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta attiva (Rankine) Coefficiente di spinta a riposo Coefficiente di spinta a riposo Coefficiente di spinta di calcolo atteristiche geometriche complessive rinterro Descrizione Rinterro - 1 Rinterro - 2 Rinterro - 2 Rinterro - 3 Rinterro - 4 Coordinate baricentro rispetto a mezzeria spigole Volume rinterro Xbaricentro Ybaricentro Zbaricentro is sovraccarico terrapieno sovraccarico	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fir γ ka k0 Tip_spinta K Lx sup (m) 4.90 4.90 4.90 5.90 De anteriore zattera di Vrin Xg rin Yg rin Zg rin	rispetto a mezze rispetto a mezze rispetto a mezze deg kN/mc Lx inf (m) 4.90 4.90 5.90 5.90 fondazione mc m m	35.0 18.0 0.271 0.426 2 0.426 Ly (m) 13.95 13.95 13.95 13.95 13.95 13.95	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.00 4.50 3.50
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. X tra faccia anteriore e spicca Dis: Disassamento in dir. X mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Dis:: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta ariposo Condizioni di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta a riposo Coefficiente di spinta a riposo Coefficiente di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta a riposo Atteristiche geometriche complessive rinterro Descrizione Rinterro - 1 Rinterro - 2 Rinterro - 3 Rinterro - 3 Rinterro - 3 Rinterro - 4 Coordinate baricentro rispetto a mezzeria spigole Volume rinterro Xbaricentro Zbaricentro Zbaricentro Jbaricentro Sovraccarico terrapieno sovraccarico terrapieno SONI TRASMESSE DALLA SPALLA Rispetto al baricentro della palificata	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fir γ ka k0 Tip spinta K Lx sup (m) 4.90 4.90 4.90 5.90 D anteriore zattera di Vrin Xg rin Yg rin Zg rin	rispetto a mezze rispetto a mezze rispetto a mezze deg kN/mc Lx inf (m) 4.90 4.90 5.90 5.90 fondazione mc m m m	35.0 18.0 0.271 0.426 1.	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.00 4.50 3.50
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci. Dy: distanza in dir. X tra faccia anteriore e facci. Dy: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta attiva (Rankine) Coefficiente di spinta attiva (Rankine) Coefficiente di spinta a riposo Condizioni di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta a riposo Co	riore a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fiir γ ka k0 Tip spinta K Lx sup (m) 4.90 4.90 4.90 5.90 p anteriore zattera di Vrin Xg rin Yg rin Zg rin Q	rispetto a mezze rispetto a mezze rispetto a mezze deg kN/mc Lx inf (m) 4.90 4.90 5.90 5.90 fondazione mc m m kN/mq kN/mq	35.0 18.0 0.271 0.426 2 0.426 Ly (m) 13.95 13.95 13.95 13.95 13.95 2.6.44 0.00 6.05	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.00 4.50 3.50
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. X tra faccia anteriore e spicca Dis: Disassamento in dir. X mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Dis:: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta ariposo Condizioni di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta a riposo Coefficiente di spinta a riposo Coefficiente di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta a riposo Atteristiche geometriche complessive rinterro Descrizione Rinterro - 1 Rinterro - 2 Rinterro - 3 Rinterro - 3 Rinterro - 3 Rinterro - 4 Coordinate baricentro rispetto a mezzeria spigole Volume rinterro Xbaricentro Zbaricentro Zbaricentro Jbaricentro Sovraccarico terrapieno sovraccarico terrapieno SONI TRASMESSE DALLA SPALLA Rispetto al baricentro della palificata	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fir γ ka k0 Tip spinta K Lx sup (m) 4.90 4.90 4.90 5.90 D anteriore zattera di Vrin Xg rin Yg rin Zg rin	rispetto a mezze rispetto a mezze rispetto a mezze deg kN/mc Lx inf (m) 4.90 4.90 5.90 5.90 fondazione mc m m m	35.0 18.0 0.271 0.426 1.	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.00 4.50 3.50
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci. Dy: distanza in dir. X tra faccia anteriore e facci. Dy: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta attiva (Rankine) Coefficiente di spinta a riposo. Condizioni di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta a riposo. Coefficiente di spinta a riposo Coefficiente di spinta a riposo Coefficiente di spinta a riposo Rondizioni di spinta ri - attiva; 2 - riposo Coefficiente di spinta di acloolo atteristiche geometriche complessive rinterro Descrizione Rinterro - 1 Rinterro - 2 Rinterro - 3 Rinterro - 4 Coordinate baricentro rispetto a mezzeria spigole Volume rinterro Xbaricentro Zbaricentro rispetto a mezzeria spigole volume rinterro ybaricentro zbaricentro rispetto a mezzeria spigole voraccarico terrapieno sovraccarico terrapieno sovraccarico terrapieno sovraccarico terrapieno sovraccarico terrapieno sovraccarico terrapieno sovraccarico del palaficata Peso proprio spalla Momento longitudinale Momento trasversale	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fir γ ka k0 Tip_spinta K Lx sup (m) 4.90 4.90 4.90 4.90 5.90 De anteriore zattera di Vrin Xg rin Yg rin Zg rin Q Fzg1 Myg1	rispetto a mezze rispetto a mezze rispetto a mezze deg kN/mc Lx inf (m) 4.90 4.90 5.90 5.90 fondazione mc m m kN/mq kN/mq	35.0 18.0 0.271 0.426 2 0.426 Ly (m) 13.95 13.95 13.95 13.95 13.95 2.00 6.05	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.00 4.50 3.50
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. X tra faccia anteriore e spicca Dis: Disassamento in dir. X mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Dis:: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta ativa (Rankine) Coefficiente di spinta a riposo Condizioni di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta a riposo Atteristiche geometriche complessive rinterro Descrizione Rinterro - 1 Rinterro - 2 Rinterro - 3 Rinterro - 3 Rinterro - 3 Rinterro - 3 Rinterro - 4 Coordinate baricentro rispetto a mezzeria spigole Volume rinterro Xbaricentro Ybaricentro Zbaricentro Zbaricentro Jbaricentro Sovraccarico terrapieno sovraccarico terrapieno sovraccarico terrapieno sovraccarico spalla Peso proprio spalla Peso proprio spalla Peso proprio spalla Momento longitudinale Momento trasversale	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fir γ ka k0 Tip_spinta K Lx sup (m) 4.90 4.90 4.90 5.90 De anteriore zattera di Vrin Xg rin Yg rin Zg rin Q Fzg1 Myg1 Mxg1	rispetto a mezze rispetto a mezze rispetto a mezze deg kN/mc Lx inf (m) 4.90 4.90 5.90 5.90 fondazione mc m m kN/mq kN/mq	35.0 18.0 0.271 0.426 2 0.426 Ly (m) 13.95 13.95 13.95 13.95 2.044 0.00 6.05	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.00 4.50 3.50
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci. Dy: distanza in dir. X tra faccia inferiore e facci. Dy: distanza in dir. Y tra mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta ativa (Rankine) Coefficiente di spinta a riposo. Coefficiente di spinta a riposo. Coefficiente di spinta a riposo Coefficiente di spinta 1 - attiva; 2 - riposo Coefficiente di spinta 1 - attiva; 2 - riposo Coefficiente di spinta 1 - attiva; 2 - riposo Coefficiente di spinta a riposo Volumica di calcolo atteristiche geometriche complessive rinterro Descrizione Rinterro - 1 Rinterro - 2 Rinterro - 3 Rinterro - 3 Rinterro - 4 Coordinate baricentro rispetto a mezzeria spigole Volume rinterro Xbaricentro Ybaricentro Zbaricentro della palificata Peso proprio spalla Peso proprio spalla Momento longitudinale Momento trasversale Peso terreno su fondazione Peso rinterro	riore a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fiir	rispetto a mezze rispetto a mezze rispetto a mezze deg kN/mc Lx inf (m) 4.90 4.90 5.90 5.90 fondazione mc m m kN/mq kN/mq kN kNm kNm	uria faccia anteri 35.0 18.0 0.271 0.426 2 0.426 Ly (m) 13.95 13.95 13.95 13.95 2.0.00 15218 7703 675.3	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.00 4.50 3.50
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. Y tra mezzeria parallelepipe Dz: distanza in dir. Y tra mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta attiva (Rankine) Coefficiente di spinta a riposo Condizioni di spinta i - attiva; 2 - riposo Coefficiente di spinta di calcolo Descrizione Rinterro - 1 Rinterro - 2 Rinterro - 3 Rinterro - 3 Rinterro - 3 Rinterro - 4 Coordinate baricentro rispetto a mezzeria spigole Volume rinterro Xbaricentro Ybaricentro Zbaricentro Sovraccarico terrapieno sovraccarico terrapieno sovraccarico terrapieno sovraccarico spalla Peso proprio spalla Peso proprio spalla Peso proprio spalla Momento longitudinale Momento trasversale	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fir γ ka k0 Tip_spinta K Lx sup (m) 4.90 4.90 4.90 5.90 De anteriore zattera di Vrin Xg rin Yg rin Zg rin Q Fzg1 Myg1 Mxg1	rispetto a mezze rispetto a mezze rispetto a mezze deg kN/mc Lx inf (m) 4.90 4.90 5.90 5.90 fondazione mc m m kN/mq kN/mq	35.0 18.0 0.271 0.426 2 0.426 Ly (m) 13.95 13.95 13.95 13.95 2.044 0.00 6.05	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.00 4.50 3.50
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci. Dy: distanza in dir. X tra faccia anteriore e facci. Dy: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta attiva (Rankine) Coefficiente di spinta a riposo. Condizioni di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta a riposo. Coefficiente di spinta a riposo. Coefficiente di spinta a riposo. Coefficiente di spinta a riposo Coefficiente di spinta	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fir γ ka k0 Tip. spinta K Lx sup (m) 4.90 4.90 4.90 4.90 5.90 anteriore zattera di Vrin Xg rin Yg rin Zg rin Q Fzg1 Myg1 Mxg1 Fzg2 Myg1	rispetto a mezze rispetto a mezze rispetto a mezze deg kN/mc Lx inf (m) 4.90 4.90 5.90 5.90 fondazione m m m kN/mq kN kNm kNm	uria faccia anteri 35.0 18.0 0.271 0.426 2 0.426 Ly (m) 13.95 13.95 13.95 13.95 13.95 20.0 15218 7703 675.3	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.0 4.5 3.5
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. X tra faccia anteriore e spicca Dis: Disassamento in dir. X mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Dis: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta attiva (Rankine) Coefficiente di spinta a riposo Condizioni di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta di calcolo Descrizione Rinterro - 1 Rinterro - 2 Rinterro - 3 Rinterro - 3 Rinterro - 3 Rinterro - 3 Rinterro - 4 Coordinate baricentro rispetto a mezzeria spigole Volume rinterro Xbaricentro Ybaricentro Zbaricentro Isovraccarico terrapieno sovraccarico terrapieno sovraccarico terrapieno sovraccarico terrapieno sovraccarico terrapieno sovraccarico terrapieno peso proprio spalla Peso proprio spalla Peso proprio spalla Peso proprio spalla Peso rinterro Momento longitudinale Momento longitudinale Momento longitudinale Momento longitudinale Momento trasversale Spinta statica del terreno	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale K Lx sup (m) 4.90 4.90 4.90 4.90 5.90 anteriore zattera di Vrin Xg rin Yg rin Zg rin Q Fzg1 Myg1 Mxg1 Fzg2 Myg1 Mxg1	rispetto a mezze rispetto a mezze rispetto a mezze deg kN/mc Lx inf (m) 4.90 4.90 5.90 5.90 fondazione mc m m kN/mq kN/mq kN kNm kNm	35.0 18.0 0.271 0.426 2 0.426 Ly (m) 13.95 13.95 13.95 13.95 20.00 15218 7703 675.3	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.0 4.5 3.5
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci. Dy: distanza in dir. X tra faccia anteriore e spicca Dis: Disassamento in dir. X mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Dis: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta ariposo Coefficiente di spinta a riposo Coefficiente di spinta	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale K Lx sup (m) 4.90 4.90 4.90 5.90 anteriore zattera di Vrin Xg rin Yg rin Zg rin Q Fzg1 Myg1 Mxg1 Fzg2 Myg1 Mxg1 Fxg3	rispetto a mezze rispet	15218 15218 1703 1704 1704	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.00 4.50 3.50
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. X tra faccia anteriore e spicca Dis: Disassamento in dir. X mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Dis:: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta ativa (Rankine) Coefficiente di spinta a riposo Condizioni di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta di calcolo Descrizione Rinterro - 1 Rinterro - 2 Rinterro - 3 Rinterro - 3 Rinterro - 3 Rinterro - 3 Rinterro - 4 Coordinate baricentro rispetto a mezzeria spigole Volume rinterro Xbaricentro Ybaricentro Zbaricentro Zbaricentro is sovraccarico terrapieno sovraccarico terrapieno sovraccarico terrapieno sovraccarico terrapieno Peso proprio spalla Peso proprio spalla Peso proprio spalla Peso proprio spalla Peso terreno su fondazione Peso rinterro Momento longitudinale Momento longitudinale Momento trasversale Spinta statica del terreno	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale K Lx sup (m) 4.90 4.90 4.90 4.90 5.90 anteriore zattera di Vrin Xg rin Yg rin Zg rin Q Fzg1 Myg1 Mxg1 Fzg2 Myg1 Mxg1	rispetto a mezze rispetto a mezze rispetto a mezze deg kN/mc Lx inf (m) 4.90 4.90 5.90 5.90 fondazione mc m m kN/mq kN/mq kN kNm kNm	35.0 18.0 0.271 0.426 2 0.426 Ly (m) 13.95 13.95 13.95 13.95 20.00 15218 7703 675.3	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.0 4.5 3.5
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci. Dy: distanza in dir. X tra faccia anteriore e spicca Dis: Disassamento in dir. X mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Dis: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta ariposo Coefficiente di spinta a riposo Coefficiente di spinta	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale K Lx sup (m) 4.90 4.90 4.90 5.90 anteriore zattera di Vrin Xg rin Yg rin Zg rin Q Fzg1 Myg1 Mxg1 Fzg2 Myg1 Mxg1 Fxg3	rispetto a mezze rispet	15218 15218 1703 1704 1704	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.0 4.5 3.5
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. X tra faccia anteriore e spicca Dis: distanza in dir. Y tra mezzeria parallelepipe Dz: distanza in dir. Y tra mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant Obisy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta ativa (Rankine) Coefficiente di spinta a riposo Condizioni di spinta a riposo Condizioni di spinta i - attiva; 2 - riposo Coefficiente di spinta di calcolo Descrizione Rinterro - 1 Rinterro - 2 Rinterro - 3 Rinterro - 4 Coordinate baricentro rispetto a mezzeria spigole Volume rinterro Xbaricentro Ybaricentro Zbaricentro Suraccarico terrapieno sovraccarico terrapieno sovraccarico terrapieno sovraccarico terrapieno Peso proprio spalla Momento longitudinale	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fir γ ka k0 Tip_spinta K Lx sup (m) 4.90 4.90 4.90 4.90 5.90 anteriore zattera di Vrin Xg rin Yg rin Yg rin Zg rin Q Fzg1 Myg1 Mxg1 Fzg2 Myg1 Mxg1 Fxg3 Myg3 Fxg3	rispetto a mezze rispet	15218 7703 675.3 11463 -21046 1384	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.00 4.50 3.50
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. Y tra mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta atriva (Rankine) Coefficiente di spinta a riposo Condizioni di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta a riposo Coefficiente di spinta ri ne riposo Coefficiente di spinta ri ne riposo Coefficiente di spinta ri ne riposo Coefficiente di spinta riposo Coefficiente di	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale K Lx sup (m) 4.90 4.90 4.90 4.90 5.90 D anteriore zattera di Vrin Xg rin Xg rin Zg rin Q Fzg1 Myg1 Mxg1 Fzg2 Myg1 Mxg1 Fzg3 Myg3 Fxg3 Fzg3 Fzg3 Fzg3	rispetto a mezze rispet	35.0 35.0 18.0 0.271 0.426 2 0.426 Ly (m) 13.95 13.95 13.95 13.95 13.95 20.0 636.82 -6.44 0.00 6.05 20.0 15218 7703 675.3 11463 -21046 0.0 7104 24865	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.00 4.50 3.50
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. X tra faccia anteriore e spicca Dis: distanza in dir. Y tra mezzeria parallelepipe Dz: distanza in dir. Y tra mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant Obisy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta ativa (Rankine) Coefficiente di spinta a riposo Condizioni di spinta a riposo Condizioni di spinta i - attiva; 2 - riposo Coefficiente di spinta di calcolo Descrizione Rinterro - 1 Rinterro - 2 Rinterro - 3 Rinterro - 4 Coordinate baricentro rispetto a mezzeria spigole Volume rinterro Xbaricentro Ybaricentro Zbaricentro Suraccarico terrapieno sovraccarico terrapieno sovraccarico terrapieno sovraccarico terrapieno Peso proprio spalla Momento longitudinale	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale eriore muro frontale eriore muro frontale eriore muro frontale fir γ ka k0 Tip_spinta K Lx sup (m) 4.90 4.90 4.90 4.90 5.90 anteriore zattera di Vrin Xg rin Yg rin Yg rin Zg rin Q Fzg1 Myg1 Mxg1 Fzg2 Myg1 Mxg1 Fxg3 Myg3 Fxg3	rispetto a mezze rispet	15218 7703 675.3 11463 -21046 1384	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.00 4.50 3.50
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. Y tra mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Disx: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant Disy: Disassamento in dir. Y mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta atriva (Rankine) Coefficiente di spinta a riposo Condizioni di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta a riposo Coefficiente di spinta ri ne riposo Coefficiente di spinta ri ne riposo Coefficiente di spinta ri ne riposo Coefficiente di spinta riposo Coefficiente di	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale K Lx sup (m) 4.90 4.90 4.90 4.90 5.90 D anteriore zattera di Vrin Xg rin Xg rin Zg rin Q Fzg1 Myg1 Mxg1 Fzg2 Myg1 Mxg1 Fzg3 Myg3 Fxg3 Fzg3 Fzg3 Fzg3	rispetto a mezze rispet	35.0 35.0 18.0 0.271 0.426 2 0.426 Ly (m) 13.95 13.95 13.95 13.95 13.95 20.0 636.82 -6.44 0.00 6.05 20.0 15218 7703 675.3 11463 -21046 0.0 7104 24865	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.00 4.50 3.50
Lx sup: lunghezza in direzione x della faccia sup Lx inf: lunghezza in direzione y della faccia infe h: altezza del parallelepipedo Dx: distanza in dir. X tra faccia anteriore e facci Dy: distanza in dir. X tra faccia inferiore e spicca Dis: Disassamento in dir. X mezzeria parallelepipe Dz: distanza in dir. Z tra faccia inferiore e spicca Dis: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant Disy: Disassamento in dir. X mezzeria faccia ant atteristiche terreno di rinterro a tergo spalla Angolo d'attrito peso di volume Coefficiente di spinta attiva (Rankine) Coefficiente di spinta ariosoo Condizioni di spinta: 1 - attiva; 2 - riposo Coefficiente di spinta a riosoo Coefficiente di spinta a riosoo Coefficiente di spinta di calcolo Descrizione Rinterro - 1 Rinterro - 2 Rinterro - 3 Rinterro - 3 Rinterro - 3 Rinterro - 3 Rinterro - 4 Coordinate baricentro rispetto a mezzeria spigole Volume rinterro Xbaricentro Ybaricentro Zbaricentro Zbaricentro Sovraccarico terrapieno sovraccarico terrapieno sovraccarico terrapieno sovraccarico terrapieno sovraccarico terrapieno peso proprio spalla Peso proprio spa	a muro frontale do e mezzeria muro to muro frontale eriore muro frontale K Lx sup (m) 4.90 4.90 4.90 4.90 5.90 D anteriore zattera di Vrin Xg rin Xg rin Zg rin Q Fzg1 Myg1 Mxg1 Fzg2 Myg1 Mxg1 Fzg3 Myg3 Fxg3 Fzg3 Fzg3 Fzg3	rispetto a mezze rispet	35.0 35.0 18.0 0.271 0.426 2 0.426 Ly (m) 13.95 13.95 13.95 13.95 13.95 20.0 636.82 -6.44 0.00 6.05 20.0 15218 7703 675.3 11463 -21046 0.0 7104 24865	h (m) 2.50 1.50	Dx (m) -2.90 -1.90	0.00 0.00 0.00	6.00 4.50 3.50

Fattore Ss		1.3
Fattore St		1.0
Fattore S	S	1.3
Valore di ag/g	ag/g	0.266
fattore bm	βm	1.00
Coefficiente sismico orizzontale	kh	0.333
Coefficiente sismico verticale	kv	0.166

Struttura che ammette spostamenti: 1 - si; 2 - no Tip_spost

K0 statica e Mononobe-Okabe Sismica - OK

Spinta del terreno in caso sismico (Mononobe-Okabe) - ipotesi struttura che ammette spostamenti (q6.1) angolo d'inclinazione rispetto all'orizzontale del paramento \$\psi\$ deg 0 angolo d'inclinazione rispetto all'orizzontale del terrapieno \$\beta\$ deg 0 angolo d'attrito terra-muro \$\beta\$ deg 0 Altezza del terrapieno \$\mathbb{H}\$ m \$\mathbb{m}\$ deg 0 angolo d'attrito terra-muro \$\beta\$ deg 0 Altezza del terrapieno \$\mathbb{H}\$ m \$\mathbb{m}\$ 10.50	0-14-14-14-14-14-14-14-14-14-14-14-14-14-		. 45	
angolo d'inclinazione rispetto all'orizzontale del terrapieno β deg 0 angolo d'attrito terra-muro δ deg 0 Altezza del terrapieno γ* kN/mc 18.0 peso specifico del terreno γ* kN/mc 18.0 tangente teta a= kh/(1+kv) tanθa 0.285 angolo teta θa deg 15.9 coefficiente di spinta attiva Ka-a tanθb 0.399 tangente teta b= kh/(1-kv) tanθb deg 21.7 coefficiente di spinta attiva Ka-b Ka-b 0.580 Spinta totale del terreno -a Bc kB-b deg 21.7 coefficiente di spinta attiva Ka-b Ka-b 0.580				90
angolo d'attrito terra-muro δ deg 0 Altezza del terrapieno H m 10.50 peso specifico del terreno γ* kN/mc 18.0 tangente teta a e kh(1+kv) tanêa 0.285 angolo teta a θa deg 15.9 coefficiente di spinta attiva Ka-a Ka-a 0.465 tangente teta b = kh(1+kv) tanêb 0.399 angolo teta b θb deg 21.7 coefficiente di spinta attiva Ka-b Ka-b 0.580 Spinta totale del terreno -a Ed-a kN 9027.8 Spinta totale del terreno -a Ed-b kN 8052.0 Spinta totale del terreno -a Ed-b kN 9027.8 Spinta totale del terreno -a Ed-b kN 9027.8 Spinta dotale del terreno -a Ed-b kN 9027.8 Spinta dotale del terreno -a Ed-b kN 9027.8 Momento longitudinale MyDP kNm 47396 Spinta complessive del terreno in caso sismico di calcolo				
Altezza del terrapieno				-
Peso specifico del terreno tangente teta a= kh/(1+kv) tanθa 0.285 angolo teta a 6a deg 15.9 coefficiente di spinta attiva Ka-a Ka-a 0.465 tangente teta b= kh/(1-kv) tanθb 0.399 angolo teta a Ka-b 0.580 0.5				_
tangente teta a= kh/(1+kv) tanθa deg 15.9 angolo teta a deg 15.9 coefficiente di spinta attiva Ka-a 0.465 tangente teta b= kh/(1-kv) tanθb 0.399 angolo teta b deg 21.7 coefficiente di spinta attiva Ka-b 0.680 Age 21.7 coefficiente di spinta attiva Ka-b 0.580 Spinta totale del terreno -a Ed-a kN 9027.8 Spinta totale del terreno -b Ed-b kN 8052.0 Spinta totale del terreno -b Ed-b kN 9027.8 Spinta totale del terreno -b Ed-b kN 9027.8 Spinta massima in caso sismico Ed kN 9027.8 Momento longitudinale MyDP kNm 47396 Spinte complessive del terreno in caso sismico di calcolo Condizioni di spinta adottate: Struttura che ammette spostamenti (Mononobe - Okabe) Spinta del terreno Momento longitudinale FxE.2x kN 9028 Momento longitudinale FxE.2x kN 8871 Momento longitudinale FxE.2x kN 8051 Sisma trasversale Forza orizzontale longitudinale Sisma trasversale Forza orizzontale FzE.2x kN 8871 Momento tongitudinale FxE.2x kN 8871 Momento trasversale Forza orizzontale trasversale FxE.2x kN 8871 Momento trasversale	Altezza del terrapierio	п	""	10.50
angolo teta a 0a deg 15.9 coefficiente di spinta attiva Ka-a Ka-a 0.465 tangente teta be kh/(1-kv) tanêb 0.399 angolo teta b 0b deg 21.7 coefficiente di spinta attiva Ka-b Ka-b 0.580 Spinta totale del terreno -a Ed-a kN 9027.8 Spinta totale del terreno -b Ed-b kN 8052.0 Spinta massima in caso sismico Ed kN 9027.8 altezza di applicazione H kN 5.25 Momento longitudinale MyDP kNm 47396 Spinte complessive del terreno in caso sismico di calcolo Condizioni di spinta adottate: Struttura che ammette spostamenti (Mononobe - Okabe) Spinta del terreno Es kN 9028 Momento longitudinale FXE.2x kN 8871 Forza orizzontale longitudinale FXE.2x kNm 4086 Sisma trasversale Forza orizzontale trasversale FYE.2y kN 8871 M	peso specifico del terreno	γ*	kN/mc	18.0
Coefficiente di spinta attiva Ka-a	tangente teta a= kh/(1+kv)	tanθa		0.285
tangente teta b = kh/(1-kv) tanθb deg 21.7 coefficiente di spinta attiva Ka-b deg 21.7 coefficiente di spinta attiva Ka-b (Ka-b 0.580 Spinta totale del terreno -a Spinta totale del terreno -b Spinta massima in caso sismico Altezza di applicazione Beta kn 9027.8 MyDP kn 47396 Spinte complessive del terreno in caso sismico di calcolo Condizioni di spinta adottate: Struttura che ammette spostamenti (Mononobe - Okabe) Spinta del terreno Spinta del terreno Spinta complessive del terreno in caso sismico di calcolo Condizioni di spinta adottate: Struttura che ammette spostamenti (Mononobe - Okabe) Spinta del terreno S	angolo teta a	θa	deg	15.9
tangente teta b= kh/(1-kv) tanθb 0.399 angolo teta b θb deg 21.7 coefficiente di spinta attiva Ka-b 0.580 0.580 Spinta totale del terreno -a Ed-a kN 9027.8 Spinta totale del terreno -b Ed-b kN 8052.0 Spinta massima in caso sismico Ed kN 9027.8 altezza di applicazione H kN 5.25 Momento longitudinale MyDP kNm 47396 Spinte complessive del terreno in caso sismico di calcolo Condizioni di spinta adottate: Struttura che ammette spostamenti (Mononobe - Okabe) - Okabe) Spinta del terreno Es kN 9028 Momento longitudinale FxE.2x kN 9028 Forza orizzontale longitudinale FxE.2x kN 8871 Momento longitudinale MyE.2x kNm 40086 Sisma trasversale FyE.2y kN 8871 Momento longitudinale FxE.2x kNm 40086 Sisma verticale	coefficiente di spinta attiva Ka-a	Ka-a	Ü	0.465
Spinta totale del terreno -a		tan0b		0.399
coefficiente di spinta attiva Ka-b Ka-b 0.580 Spinta totale del terreno -a Ed-a kN 9027.8 Spinta totale del terreno -b Ed-b kN 8052.0 Spinta massima in caso sismico Ed kN 9027.8 altezza di applicazione H kN 5.25 Momento longitudinale MyDP kNm 47396 Spinte complessive del terreno in caso sismico di calcolo Condizioni di spinta adottate: Struttura che ammette spostamenti (Mononobe - Okabe) - Okabe) Spinta del terreno Es kN 9028 Momento longitudinale Be kNm 47396 Forze inerziali Sisma trasversale FxE.2x kN 8871 Momento longitudinale FyE.2y kN 8871 Forza orizzontale trasversale FyE.2y kN 8871 Momento trasversale FyE.2y kNm 40086 Sisma verticale FzE.2z kN 4436 Forza verticale FyE.2y kN 44	angolo teta b	θЬ	dea	21.7
Spinta totale del terreno - b Ed-b kN 8052.0 8052.8 Spinta massima in caso sismico Ed kN 9027.8 altezza di applicazione H kN 5.25 Momento longitudinale MyDP kNm 47396 Spinte complessive del terreno in caso sismico di calcolo Condizioni di spinta adottate: Struttura che ammette spostamenti (Mononobe - Okabe) - Okabe) Spinta del terreno Es kN 47396 Momento longitudinale Bs kNm 47396 Forze inerziali Sisma longitudinale FxE.2x kN 8871 Momento longitudinale MyE.2x kNm 4086 Sisma trasversale FyE.2y kN 8871 Forza orizzontale trasversale FyE.2y kN 8871 Momento trasversale FyE.2y kNm 40086 Sisma verticale FzE.2z kNm 4086 Forza verticale FzE.2z kN 4436 Momento longitudinale KyE.2z kNm 2218	coefficiente di spinta attiva Ka-b	Ka-b	Ü	0.580
Spinta totale del terreno - b Ed-b kN 8052.0 8052.8 Spinta massima in caso sismico Ed kN 9027.8 altezza di applicazione H kN 5.25 Momento longitudinale MyDP kNm 47396 Spinte complessive del terreno in caso sismico di calcolo Condizioni di spinta adottate: Struttura che ammette spostamenti (Mononobe - Okabe) - Okabe) Spinta del terreno Es kN 47396 Momento longitudinale Bs kNm 47396 Forze inerziali Sisma longitudinale FxE.2x kN 8871 Momento longitudinale MyE.2x kNm 4086 Sisma trasversale FyE.2y kN 8871 Forza orizzontale trasversale FyE.2y kN 8871 Momento trasversale FyE.2y kNm 40086 Sisma verticale FzE.2z kNm 4086 Forza verticale FzE.2z kN 4436 Momento longitudinale KyE.2z kNm 2218	·			
Spinta massima in caso sismico Ed kN 9027.8 altezza di applicazione H kN 5.25 Momento longitudinale MyDP kNm 47396 Spinte complessive del terreno in caso sismico di calcolo Condizioni di spinta adottate: Struttura che ammette spostamenti (Mononobe - Okabe) Spinta del terreno Es kN 9028 Momento longitudinale Es kN 47396 Forza enizzontale longitudinale FxE.2x kN 8871 Momento longitudinale MyE.2x kNm 40086 Sisma trasversale FyE.2y kN 8871 Momento trasversale FyE.2y kN 40086 Sisma verticale FxE.2x kNm 40086 Porza orizzontale trasversale FxE.2x kNm 40086 Sisma verticale FxE.2x kNm 4036 Forza verticale FxE.2x kNm 4036 Momento longitudinale KNm 2218	Spinta totale del terreno -a	Ed-a	kN	9027.8
altezza di applicazione H kN 5.25 Momento longitudinale MyDP kNm 47396 Spinte complessive del terreno in caso sismico di calcolo Condizioni di spinta adottate: Struttura che ammette spostamenti (Mononobe - Okabe) Spinta del terreno Es kN 9028 Momento longitudinale MyEs kNm 47396 Forza inerziali Sisma longitudinale FxE.2x kN 8871 Momento longitudinale MyE.2x kNm 40086 Sisma trasversale FyE.2y kN 8871 Forza orizzontale trasversale FyE.2y kN 40086 Sisma verticale FzE.2z kNm 40086 Forza verticale FzE.2z kN -4436 Forza verticale FzE.2z kN -4436 Momento longitudinale MyE.2z kNm 2218	Spinta totale del terreno -b	Ed-b	kN	8052.0
Momento longitudinale MyDP kNm 47396 Spinte complessive del terreno in caso sismico di calcolo Condizioni di spinta adottate: Struttura che ammette spostamenti (Mononobe - Okabe) Spinta del terreno Es kN 9028 Momento longitudinale MyEs kNm 47396 Forza inerziali Sisma longitudinale FxE.2x kN 8871 Forza orizzontale longitudinale FxE.2x kNm 40086 Sisma trasversale FyE.2y kN 8871 Momento longitudinale trasversale FyE.2y kN 40086 Sisma verticale FyE.2y kNm 40086 Forza orizzontale trasversale FyE.2y kNm 40086 Sisma verticale FzE.2z kNm 4036 Forza orticale FzE.2z kN -4436 Momento longitudinale MyE.2z kNm 2218	Spinta massima in caso sismico	Ed	kN	9027.8
Spinte complessive del terreno in caso sismico di calcolo Condizioni di spinta adottate: Struttura che ammette spostamenti (Mononobe - Okabe) Spinta del terreno Es kN 9028 Momento longitudinale MyEs kNm 47396 Eorze inerziali Sisma longitudinale FxE.2x kN 8871 Momento longitudinale MyE.2x kNm 40086 Sisma trasversale FyE.2y kN 8871 Momento trasversale FyE.2y kN 40086 Sisma verticale MxE.2y kNm 40086 Forza orizzontale trasversale FzE.2z kNm 4086 Momento lotaversale FzE.2z kNm 4436 Momento longitudinale MyE.2z kNm 2218	altezza di applicazione	Н	kN	5.25
Condizioni di spinta adottate: Struttura che ammette spostamenti (Mononobe - Okabe) Spinta del terreno Es kN 9028 Momento longitudinale MyEs kNm 47396 Eorze inerziali Sisma longitudinale FxE.2x kN 8871 Forza orizzontale longitudinale FxE.2x kNm 40086 Sisma trasversale FyE.2y kN 8871 Momento irasversale itrasversale FyE.2y kN 8871 Momento trasversale MxE.2y kNm 40086 Sisma verticale FzE.2z kN -4436 Forza verticale FzE.2z kN -4436 Momento longitudinale MyE.2z kNm 2218	Momento longitudinale	MyDP	kNm	47396
Condizioni di spinta adottate: Struttura che ammette spostamenti (Mononobe - Okabe) Spinta del terreno Es kN 9028 Momento longitudinale MyEs kNm 47396 Eorze inerziali Sisma longitudinale FxE.2x kN 8871 Forza orizzontale longitudinale FxE.2x kN 40086 Sisma trasversale FyE.2y kN 8871 Momento irasversale arizzontale trasversale FyE.2y kN 8871 Momento trasversale MxE.2y kNm 40086 Sisma verticale FzE.2z kN -4436 Forza verticale FzE.2z kN -4436 Momento longitudinale MyE.2z kNm 2218				
Spinta del terreno Es kN 9028 Momento longitudinale 9028 kNm 9028 47396 Forze inerziali Sisma longitudinale Sisma longitudinale FxE.2x kN 8871 Momento longitudinale 8871 Momento longitudinale 40086 Sisma trasversale FyE.2y kN 8871 Momento trasversale FyE.2y kN 8871 Momento trasversale 40086 Sisma verticale FyE.2y kN 40086 40086 Sisma verticale FzE.2x kN 40086 40086 Forza orizzontale trasversale FzE.2z kN 40086 40086				
Momento longitudinale MyEs kNm 47396 Forze inerziali Sisma longitudinale Forza orizzontale longitudinale FxE.2x kN 8871 Momento longitudinale MyE.2x kNm 40086 Sisma trasversale Forza orizzontale trasversale FyE.2y kN 8871 Momento trasversale FyE.2y kN 40086 Sisma verticale Forza verticale Forza verticale FzE.2z kN -4436 Momento longitudinale MyE.2z kNm -2218		· ·	•	
Forze inerziali Sisma longitudinale FXE.2x kN 8871 Momento longitudinale MyE.2x kNm 40086 Sisma trasversale FOTZA orizzontale trasversale FYE.2y kN 8871 Momento trasversale FYE.2y kN 40086 Sisma verticale Sisma verticale Forza verticale FZE.2z kN -4436 Momento longitudinale MyE.2z kNm -2218				
Sisma longitudinale FxE.2x kN 8871 Forza orizzontale longitudinale fxE.2x kN 40086 Sisma trasversale Forza orizzontale trasversale FyE.2y kN 8871 Momento trasversale FyE.2y kN 40086 Sisma verticale Fzez.2z kN -4436 Momento longitudinale MyE.2z kNm -218	Momento longitudinale	MyEs	KINM	47396
Sisma longitudinale FxE.2x kN 8871 Forza orizzontale longitudinale fxE.2x kNm 40086 Sisma trasversale Forza orizzontale trasversale FyE.2y kN 8871 Momento trasversale FyE.2y kN 40086 Sisma verticale FzE.2z kN -4436 Momento longitudinale MyE.2z kNm -248	Forze inerziali			
Forza orizzontale longitudinale FxE.2x kN 40086 Momento longitudinale MyE.2x kNm 40086 Sisma trasversale FyE.2y kN 8871 Momento trasversale MxE.2y kNm 40086 Sisma verticale FzE.2x kN 40086 Forza verticale FzE.2z kN 436 Momento longitudinale MyE.2z kNm 2218				
Momento longitudinale MyE.2x kNm 40086 Sisma trasversale FyE.2y kN 8871 Forza orizzontale trasversale FyE.2y kN 40086 Sisma verticale kNm 40086 Forza verticale FzE.2z kN -4436 Momento longitudinale MyE.2z kNm 2218		FxE.2x	kN	8871
Sisma trasversale FyE.2y kN 8871 Forza orizzontale trasversale MxE.2y kNm 40086 Sisma verticale FzE.2z kN -4436 Momento longitudinale MyE.2z kNm 2218		MvE.2x	kNm	40086
Forza orizzontale trasversale FyE.2y kN 8871 Momento trasversale MxE.2y kNm 40086 Sisma verticale FzE.2z kN -4436 Forza verticale FzE.2z kN -4436 Momento longitudinale MyE.2z kNm 2218		,		
Momento trasversale MxE.2y kNm 40086 Sisma verticale FzE.2z kN -4436 Forza verticale FzE.2z kN -2436 Momento longitudinale MyE.2z kNm 2218	Sisma trasversale			
Sisma verticale FzE.2z kN -4436 Forza verticale MyE.2z kNm 2218	Forza orizzontale trasversale	FyE.2y	kN	8871
Forza verticale FzE.2z kN -4436 Momento longitudinale MyE.2z kNm 2218	Momento trasversale	MxE.2y	kNm	40086
Forza verticale FzE.2z kN -4436 Momento longitudinale MyE.2z kNm 2218				
Momento longitudinale MyE.2z kNm 2218				
,				
Momento trasversale MxE.2z kNm -112		,		
	Momento trasversale	MxE.2z	kNm	-112

х

0.017453293

AZIONI TRASMESSE DALL'IMPALCATO (RIFERITE AL BARICENTRO APPOGGI)

fattore conversione angoli

Altezza appoggi + baggioli + muro frontale + fondazioni Distanza asse appoggi - asse fondazione

		Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]
	Barrier de l'acceptant	[KI4]	[KIA]		[KINII]	[KIAIII]
g1a	Peso proprio impalcato	U	U	1832	U	U
g2a	Perm. portati - impalcato	0	0	767	0	0
e4	Cedimenti differenziali - MAX	0	0	0	0	0
e2	ritiro	0	0	0	0	0
q1a	CMOB-Nmax - sx	0	0	1744	5917	0
q1b	CMOB-Mtmax - sx	0	0	1329	6562	0
q1c	CMOB-Nmax - dx	0	0	1744	-5917	0
q1d	CMOB-Mtmax - dx	0	0	1329	-6562	0
q3	Frenatura	212	0	0	0	0
q4a	Forza centrifuga Nmax	0	0	0	0	0
q4b	Forza centrifuga Mtmax	0	0	0	0	0
q5a	Vento Impalcato scarico	0	42	0	79	0
q5b	Vento Impalcato carico	0	59	0	138	0
q7a	Var. termica positiva	0	0	0	0	0
q7b	Var. termica negativa	0	0	0	0	0
q9	Resistenze passive vincoli	0	0	0	0	0
Ex	Sisma longitudinale	485	0	0	0	0
Ey	Sisma trasversale	0	485	0	705	0
Ez	Sisma verticale	0	0	1448	0	0

RIEPILOGO SOLLECITAZIONI RISPETTO A BARICENTRO PALI

Coordinate baricentro pali coordinata x coordinata y coordinata z 0.00

		Fx	Fy	Fz	Mx	My
		[kN]	[kN]	[kN]	[kNm]	[kNm]
g1a	Peso proprio impalcato	0	0	1832	0	-4031
g1b-sp	Peso proprio spalla	0	0	15218	0	-7703
g2a	Perm. portati - impalcato	0	0	767	0	-1688
g2b-sp	Perm.portati - Rinterro	0	0	11463	0	21046
g3-sp	spinta statiche del terreno	7104	0	0	0	-24865
e4	Cedimenti differenziali - MAX	0	0	0	0	0
e2	ritiro	0	0	0	0	0
q1a	CMOB-Nmax - sx	0	0	1744	5918	-3838
q1b	CMOB-Mtmax - sx	0	0	1329	6562	-2925
q1c	CMOB-Nmax - dx	0	0	1744	-5917	-3838
q1d	CMOB-Mtmax - dx	0	0	1329	-6562	-2925
q1e-sp	carico vert. Da traffico sul rilevato	1384	0	1367	0	-4324
q3	Frenatura	212	0	0	0	-1853
q4a	Forza centrifuga Nmax	0	0	0	0	0
q4b	Forza centrifuga Mtmax	0	0	0	0	0
q5a	Vento Impalcato scarico	0	42	0	444	0
q5b	Vento Impalcato carico	0	59	0	651	0
q7a	Var. termica positiva	0	0	0	0	0
q7b	Var. termica negativa	0	0	0	0	0
q9	Resistenze passive vincoli	0	0	0	0	0

LAVORO: SS4 - SPALLA SU PALI - PO02 - SPALLA A

	O: SS4 - SPALLA SU P isoluzione della palifica		- SPALLA A													
Ex Ey Ez E.1x-sp E.2x-sp E.2y-sp	Sisma longitudinale Sisma trasversale Sisma verticale spinta del terreno in fase Forze inerziali longitudin Forze inerziali trasversal	ali spalla i spalla	485 0 0 9028 8871 0	0 485 0 0 0 8871	0 0 1448 0 0	0 4944 0 0 0 0 40086	-4239 0 -3185 -47396 -40086 0									
E.2z-sp	Forze inerziali verticali s	palla	0	0	-4436	0	-2218									
	E COEFFICIENTI DI COM	IBINAZIONE	DEI CARICHI				S.L	u								
g1a	1.35	1.35	1.35	1.35	q1 1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
g1b-sp g2a g2b-sp	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35
g3-sp e4	1.35 1.20	1.35 1.20	1.35 1.20	1.35 1.20	1.35 1.20	1.35 1.20	1.35 1.20	1.35 1.20	1.35 1.20	1.35 1.20	1.35 1.20	1.35 1.20	1.35 1.20	1.35 1.20	1.35 1.20	1.35 1.20
e2 q1a q1b	1.20 1.35 0.00	1.20 1.35 0.00	1.20 0.00 1.35	1.20 0.00 1.35	1.20 0.00 0.00	1.20 0.00 0.00	1.20 0.00 0.00	1.20 0.00 0.00	1.20 1.01 0.00	1.20 1.01 0.00	1.20 0.00 1.01	1.20 0.00 1.01	1.20 0.00 0.00	1.20 0.00 0.00	1.20 0.00 0.00	1.20 0.00 0.00
q1c q1d	0.00 0.00	0.00	0.00	0.00	1.35 0.00	1.35 0.00	0.00 1.35	0.00 1.35	0.00	0.00	0.00	0.00	1.01	1.01 0.00	0.00 1.01	0.00
q1e-sp q3 q4a	1.35 0.00 0.00	1.35 0.00 0.00	1.35 0.00 0.00	1.35 0.00 0.00	1.35 0.00 0.00	1.35 0.00 0.00	1.35 0.00 0.00	1.35 0.00 0.00	1.01 1.35 0.00	1.01 1.35 0.00	1.01 1.35 0.00	1.01 1.35 0.00	1.01 1.35 0.00	1.01 1.35 0.00	1.01 1.35 0.00	1.01 1.35 0.00
q4b q5a	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00
q5b q7a q7b	0.90 0.90 0.00	0.90 0.00 0.90	0.90 0.90 0.00	0.90 0.00 0.90	-0.90 0.90 0.00	-0.90 0.00 0.90	-0.90 0.90 0.00	-0.90 0.00 0.90	0.90 0.90 0.00	0.90 0.00 0.90	0.90 0.90 0.00	0.90 0.00 0.90	-0.90 0.90 0.00	-0.90 0.00 0.90	-0.90 0.90 0.00	-0.90 0.00 0.90
q9 Ex	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00
Ey Ez	0.00 0.00 0.00	0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
E.1x-sp E.2x-sp E.2y-sp	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00
E.2z-sp	0.00	0.00	0.00	0.00	0.00	0.00	0.00 S.L	0.00 .U.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
g1a	1.35	1.35	1.35	1.35	q4 1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
g1b-sp g2a g2b-sp	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35	1.35 1.35 1.35
g3-sp e4	1.35 1.20	1.35 1.20	1.35 1.20	1.35 1.20	1.35 1.20	1.35 1.20	1.35 1.20	1.35 1.20	1.35	1.35 1.20	1.35 1.20	1.35	1.35	1.35	1.35 1.20	1.35
e2 q1a q1b	1.20 1.01 0.00	1.20 1.01 0.00	1.20 0.00 1.01	1.20 0.00 1.01	1.20 0.00 0.00	1.20 0.00 0.00	1.20 0.00 0.00	1.20 0.00 0.00	1.20 1.01 0.00	1.20 1.01 0.00	1.20 0.00 1.01	1.20 0.00 1.01	1.20 0.00 0.00	1.20 0.00 0.00	1.20 0.00 0.00	1.20 0.00 0.00
q1c q1d	0.00 0.00	0.00	0.00	0.00	1.01 0.00	1.01 0.00	0.00 1.01	0.00	0.00	0.00	0.00	0.00	1.01	1.01 0.00	0.00	0.00
q1e-sp q3 q4a	1.01 0.00 1.35	1.01 0.00 1.35	1.01 0.00 0.00	1.01 0.00 0.00	1.01 0.00 1.35	1.01 0.00 1.35	1.01 0.00 0.00	1.01 0.00 0.00	1.01 0.00 0.00	1.01 0.00 0.00	1.01 0.00 0.00	1.01 0.00 0.00	1.01 0.00 0.00	1.01 0.00 0.00	1.01 0.00 0.00	1.01 0.00 0.00
q4b q5a	0.00 0.00	0.00	1.35 0.00	1.35 0.00	0.00 0.00	0.00 0.00	1.35 0.00	1.35 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00
q5b q7a q7b	0.90 0.90 0.00	0.90 0.00 0.90	0.90 0.90 0.00	0.90 0.00 0.90	-0.90 0.90 0.00	-0.90 0.00 0.90	-0.90 0.90 0.00	-0.90 0.00 0.90	1.50 0.90 0.00	1.50 0.00 0.90	1.50 0.90 0.00	1.50 0.00 0.90	-1.50 0.90 0.00	-1.50 0.00 0.90	-1.50 0.90 0.00	-1.50 0.00 0.90
q9 Ex	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00	1.20 0.00
Ey Ez E.1x-sp	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
E.2x-sp E.2y-sp	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
E.2z-sp	0.00	0.00	0.00	0.00	S.L.U.	0.00	0.00	0.00			S.I	L.V.	-		0.00	0.00
g1a g1b-sp	1.35 1.35	1.35 1.35	1.35 1.35	1.35 1.35	q7 1.35 1.35	1.35 1.35	1.35 1.35	1.35 1.35	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00		
g2a g2b-sp	1.35 1.35	1.35 1.35	1.35 1.35	1.35 1.35	1.35 1.35	1.35 1.35	1.35 1.35	1.35 1.35	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00		
g3-sp e4 e2	1.35 1.20 1.20	1.35 1.20 1.20	1.35 1.20 1.20	1.35 1.20 1.20	1.35 1.20 1.20	1.35 1.20 1.20	1.35 1.20 1.20	1.35 1.20 1.20	0.00 1.00 1.00	0.00 1.00 1.00	0.00 1.00 1.00	0.00 1.00 1.00	0.00 1.00 1.00	0.00 1.00 1.00		
q1a q1b	1.01 0.00	1.01 0.00	0.00 1.01	0.00 1.01	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00		
q1c q1d q1e-sp	0.00 0.00 1.01	0.00 0.00 1.01	0.00 0.00 1.01	0.00 0.00 1.01	1.01 0.00 1.01	1.01 0.00 1.01	0.00 1.01 1.01	0.00 1.01 1.01	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00		
q3 q4a	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00		
q4b q5a q5b	0.00 0.00 0.90	0.00 0.00 0.90	0.00 0.00 0.90	0.00 0.00 0.90	0.00 0.00 -0.90	0.00 0.00 -0.90	0.00 0.00 -0.90	0.00 0.00 -0.90	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00		
q7a q7b	1.50 0.00	0.00 1.50	1.50 0.00	0.00 1.50	1.50 0.00	0.00 1.50	1.50 0.00	0.00 1.50	0.00 0.50	0.00 0.50	0.00 0.50	0.00 0.50	0.00 0.50	0.00 0.50		
q9 Ex Ey	1.20 0.00 0.00	1.20 0.00 0.00	1.20 0.00 0.00	1.20 0.00 0.00	1.20 0.00 0.00	1.20 0.00 0.00	1.20 0.00 0.00	1.20 0.00 0.00	1.00 1.00 0.30	1.00 1.00 0.30	1.00 0.30 1.00	1.00 0.30 1.00	1.00 0.30 0.30	1.00 0.30 0.30		
Ez E.1x-sp	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.30 1.00	-0.30 1.00	0.30 0.30	-0.30 0.30	1.00 0.30	-1.00 0.30		
E.2x-sp E.2y-sp E.2z-sp	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	1.00 0.30 0.30	1.00 0.30 -0.30	0.30 1.00 0.30	0.30 1.00 -0.30	0.30 0.30 1.00	0.30 0.30 -1.00		
op	3.30	2.20		5.55			S.L.E.		1	50			•	50		
g1a g1b-sp	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	q1 1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00
g2a g2b-sp	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00	1.00 1.00	1.00 1.00
g3-sp e4 e2	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00
q1a	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.75	0.75	0.00	0.00	0.00	0.00	0.00	0.00

0.00 0.00 0.75 0.75 0.00 0.00 0.00 -0.60 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Dati e risoluzione d	ella palifica	ta													
q1b	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.75	0.75	0.00	0.00	0.00
q1c	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.75	0.75	0.00
q1d q1e-sp	0.00 1.00	0.00 1.00	0.00 1.00	0.00 1.00	0.00 1.00	0.00 1.00	1.00 1.00	1.00 1.00	0.00 0.75	0.00 0.75	0.00 0.75	0.00 0.75	0.00 0.75	0.00 0.75	0.75 0.75
q3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
q4a q4b	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
q5a	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
q5b	0.60 0.60	0.60	0.60 0.60	0.60 0.00	-0.60 0.60	-0.60 0.00	-0.60	-0.60 0.00	0.60 0.60	0.60	0.60 0.60	0.60	-0.60	-0.60 0.00	-0.60 0.60
q7a q7b	0.00	0.60	0.00	0.60	0.00	0.60	0.60 0.00	0.60	0.00	0.60	0.00	0.60	0.60	0.60	0.00
q9	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ex Ey	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ez	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E.1x-sp E.2x-sp	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E.2y-sp	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E.2z-sp	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
							S.L.E	. CAR	1				_		
g1a	1.00	1.00	1.00	1.00	q4 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	75 1.00	1.00	1.00
g1b-sp	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
g2a g2b-sp	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00
g3-sp	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
e4 e2	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00
q1a	0.75	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.75	0.75	0.00	0.00	0.00	0.00	0.00
q1b	0.00 0.00	0.00	0.75 0.00	0.75 0.00	0.00 0.75	0.00 0.75	0.00 0.00	0.00 0.00	0.00	0.00	0.75 0.00	0.75 0.00	0.00 0.75	0.00 0.75	0.00
q1c q1d	0.00	0.00	0.00	0.00	0.00	0.75	0.75	0.75	0.00	0.00	0.00	0.00	0.75	0.75	0.00
q1e-sp	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
q3 q4a	0.00 1.00	0.00 1.00	0.00 0.00	0.00	0.00 1.00	0.00 1.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
q4b	0.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
q5a q5b	0.00 0.60	0.00 0.60	0.00 0.60	0.00 0.60	0.00 -0.60	0.00 -0.60	0.00 -0.60	0.00 -0.60	0.00 1.00	0.00 1.00	0.00 1.00	0.00 1.00	0.00 -1.00	0.00 -1.00	0.00 -1.00
q7a	0.60	0.00	0.60	0.00	0.60	0.00	0.60	0.00	0.60	0.00	0.60	0.00	0.60	0.00	0.60
q7b q9	0.00 1.00	0.60 1.00	0.00 1.00	0.60 1.00	0.00 1.00	0.60 1.00	0.00 1.00	0.60 1.00	0.00 1.00	0.60 1.00	0.00 1.00	0.60 1.00	0.00 1.00	0.60 1.00	0.00 1.00
Ex	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ey Ez	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E.1x-sp	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E.2x-sp E.2y-sp	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E.2z-sp	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					S.L.E. CAR										
					q7				1						
g1a g1b-sp	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00							
g2a	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00							
g2b-sp g3-sp	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00							
e4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00							
e2 q1a	1.00 0.75	1.00 0.75	1.00 0.00	1.00 0.00	1.00 0.00	1.00 0.00	1.00 0.00	1.00 0.00							
q1b	0.00	0.00	0.75	0.75	0.00	0.00	0.00	0.00							
q1c	0.00 0.00	0.00	0.00 0.00	0.00	0.75 0.00	0.75 0.00	0.00 0.75	0.00 0.75							
q1d q1e-sp	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75							
q3	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00							
q4a q4b	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00 0.00							
q5a	0.00 0.60	0.00 0.60	0.00 0.60	0.00 0.60	0.00 -0.60	0.00 -0.60	0.00 -0.60	0.00 -0.60							
q5b q7a	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00							
q7b	0.00	1.00	0.00	1.00	0.00 1.00	1.00	0.00	1.00							
q9 Ex	1.00 0.00	1.00 0.00	1.00 0.00	1.00 0.00	0.00	1.00 0.00	1.00 0.00	1.00 0.00							
Ey	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00							
Ez E.1x-sp	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00							
E.2x-sp	0.00 0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00							
E.2y-sp E.2z-sp	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00							
					615	from							61	Ean	
					S.L.E q1	req			1 .	q 7	0	1 5	S.L.	.E.qp	
g1a	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
g1b-sp g2a	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	
g2b-sp	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
g3-sp e4	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	
e2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
q1a	0.75	0.75 0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	
q1b q1c	0.00 0.00	0.00	0.75 0.00	0.75 0.00	0.00	0.00 0.75	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
q1d	0.00	0.00	0.00	0.00	0.00	0.00	0.75	0.75	0.00	0.00	0.00	0.00	0.00	0.00	
q1e-sp q3	0.75 0.00	0.75 0.00	0.75 0.00	0.75 0.00	0.75 0.00	0.75 0.00	0.75 0.00	0.75 0.00	0.00	0.00	0.00	0.00	0.00	0.00	
q4a	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
q4b q5a	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.20	0.00 -0.20	0.00	0.00	
q5b	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
q7a q7b	0.50 0.00	0.00 0.50	0.50 0.00	0.00 0.50	0.50 0.00	0.00 0.50	0.50 0.00	0.00 0.50	0.60	0.00	0.50 0.00	0.00 0.50	0.50 0.00	0.00 0.50	
q9	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Éx Ey	0.00 0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Ey Ez	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
E.1x-sp	0.00	0.00													
E.1x-sp E.2x-sp E.2y-sp	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	
E.1x-sp E.2x-sp	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

SOLLECITA	ייופ ויוסאו פויי	I A PALIEIO	ATA NELLE	E COMBINAZION	I DI CAPICO												
SULLECITA	AZIONI SUL	LA PALIFIC	AIA NELLI	ECOMBINAZION	I DI CARICO			S.L	U.	ĺ				-2			
Fx		11458	11458	11458	11458	q1 11458	11458	11458	11458	11277	11277	11277	11277	13 11277	11277	11277	11277
Fy		53	53	53	53	-53	-53	-53	-53	53	53	53	53	-53	-53	-53	-53
Fz Mx		43729 8576	43729 8576	43169 9446	43169 9446	43729 -8573	43729 -8573	43169 -9444	43169 -9444	42679 6578	42679 6578	42258 7231	42258 7231	42679 -6576	42679 -6576	42258 -7229	42258 -7229
My		-34293	-34293	-33061	-33061	-34293	-34293	-33061	-33061	-34039	-34039	-33115	-33115	-34039	-34039	-33115	-33115
								S.L	U.								
						q4				1				ļ 5			
Fx Fy		10991 53	10991 53	10991 53	10991 53	10991 -53	10991 -53	10991 -53	10991 -53	10991 88	10991 88	10991 88	10991 88	10991 -88	10991 -88	10991 -88	10991 -88
Fz		42679	42679	42258	42258	42679	42679	42258	42258	42679	42679	42258	42258	42679	42679	42258	42258
Mx		6578	6578	7231	7231	-6576	-6576	-7229	-7229	6969	6969	7622	7622	-6967	-6967	-7620	-7620
Му		-31538	-31538	-30614	-30614	-31538	-31538	-30614	-30614	-31538	-31538	-30614	-30614	-31538	-31538	-30614	-30614
						S.L.U. e3				l e	.x		L.V. .y		z		
Fx		10991	10991	10991	10991	10991	10991	10991	10991	18384	18384	5515	5515	5515	5515		
Fy		53	53	53	53 42258	-53 43670	-53 43670	-53 42258	-53 42258	2807 28384	2807	9356	9356	2807	2807		
Fz Mx		42679 6579	42679 6579	42258 7231	7231	42679 -6576	42679 -6576	-7229	-7229	13510	30176 13510	28384 45031	30176 45031	26292 13510	32268 13510		
Му		-31538	-31538	-30614	-30614	-31538	-31538	-30614	-30614	-85718	-82476	-21513	-18271	-25296	-14489		
								S.L.E	E.car	1				_			
Fx		8488	8488	8488	8488	q1 8488	8488	8488	8488	8354	8354	8354	8354	13 8354	8354	8354	8142
Fy		35	35	35	35	-35	-35	-35	-35	35	35	35	35	-35	-35	-35	-35
Fz Mx		32392 6309	32392 6309	31977 6953	31977 6953	32392 -6307	32392 -6307	31977 -6952	31977 -6952	31614 4829	31614 4829	31303 5313	31303 5313	31614 -4828	31614 -4828	31303 -5311	31303 -5311
My		-25402	-25402	-24489	-24489	-25402	-25402	-24489	-24489	-25214	-25214	-24530	-24530	-25214	-25214	-24530	-22677
								S.L.E	E.car								
Fx		8142	8142	8142	8142	q4 8142	8142	8142	8142	8142	8142	8142	8142	15 8142	8142	8142	8142
Fy		35	35	35	35	-35	-35	-35	-35	59	59	59	59	-58	-58	-58	-58
Fz		31614	31614	31303	31303	31614	31614	31303	31303	31614	31614	31303	31303	31614	31614	31303	31303
Mx My		4829 -23362	4829 -23362	5313 -22677	5313 -22677	-4828 -23362	-4828 -23362	-5311 -22677	-5311 -22677	5090 -23362	5090 -23362	5573 -22677	5573 -22677	-5088 -23362	-5088 -23362	-5572 -22677	-5572 -22677
-						S.L.E.car				•							
						e3											
Fx Fy		8142 35	8142 35	8142 35	8142 35	8142 -35	8142 -35	8142 -35	8142 -35								
Fz		31614	31614	31303	31303	31614	31614	31303	31303								
Mx		4830 -23362	4830 -23362	5313 -22677	5313 -22677	-4828 -23362	-4828 -23362	-5311 -22677	-5311 -22677								
Му		-23302	-23302	-22011	-22011	-23302		-22011	-22011								
						q1	S.L.freq			e	3	0	1 5	S.L	qp		
Fx		8142	8142	8142	8142	8142	8142	8142	8142	7104	7104	7104	7104	7104	7104		
Fy Fz		0 31614	0 31614	0 31303	0 31303	0 31614	0 31614	0 31303	0 31303	0 29280	0 29280	8 29280	-8 29280	0 29280	0 29280		
Mx		4439	4439	4922	4922	-4437	-4437	-4921	-4921	1	1	89	-88	0	0		
Му		-23362	-23362	-22677	-22677	-23362	-23362	-22677	-22677	-17240	-17240	-17240	-17240	-17240	-17240		
CALCOLO	AZIONI SUI	PALI															
Geometria	della palific		e· 1° fila se	mpre posteriore		trasv	long		trasv	long							
PALO	Fila	X	Υ	Хр	Yp	Jxi	Jyi		Yp/SJxi	Xp/SJyi		Plinto	X	Υ			
1 2	1	1.00 1.00	7.34 3.67	-3.60 -3.60	7.34 3.67	53.88 13.47	12.9600 12.9600		0.018 0.009	-0.028 -0.028			0.00 9.20	8.55 8.55			
3	1	1.00	0.00	-3.60	0.00	0.00	12.9600		0.000	-0.028			9.20	-8.55			
4	1	1.00	-3.67	-3.60	-3.67	13.47	12.96		-0.009	-0.028			0.00	-8.55			
5 6	1 2	1.00 4.60	-7.34 7.34	-3.60 0.00	-7.34 7.34	53.88 53.88	12.96 0.00		-0.018 0.018	-0.028 0.000			0.00	8.55			
7	2	4.60	3.67	0.00	3.67	13.47	0.00		0.009	0.000							
8 9	2 2	4.60 4.60	0.00 -3.67	0.00	0.00 -3.67	0.00 13.47	0.00 0.00		0.000 -0.009	0.000							
10	2	4.60	-7.34	0.00	-7.34	53.88	0.00		-0.018	0.000							
11 12	3 3	8.20 8.20	7.34 3.67	3.60 3.60	7.34 3.67	53.88 13.47	12.96 12.96		0.018 0.009	0.028 0.028							
13	3	8.20	0.00	3.60	0.00	0.00	12.96		0.000	0.028							
14 15	3 3	8.20 8.20	-3.67 -7.34	3.60 3.60	-3.67 -7.34	13.47 53.88	12.96 12.96		-0.009 -0.018	0.028 0.028							
10	3	0.20	-1.34	0.00	0.00	0.00	0.00		0.000	0.028							
				0.00 0.00	0.00	0.00	0.00 0.00		0.000 0.000	0.000							
15	3			0.00	0.00	404.07	129.60		0.000	0.000							
								S.L	U.	1							
PALO	SSIALE FILA					q1							•	13			
1	1	2118	2118	2131	2131	1807	1807	1788	1788	2019	2019	2029	2029	1780	1780	1766	1766
2	1	2041 1963	2041 1963	2045 1960	2045 1960	1885 1963	1885 1963	1874 1960	1874 1960	1959 1900	1959 1900	1963 1897	1963 1897	1840 1900	1840 1900	1832 1897	1832 1897
4	1	1885	1885	1874	1874	2041	2041	2045	2045	1840	1840	1832	1832	1959	1959	1963	1963
5 6	1 2	1807 3071	1807 3071	1788 3049	1788 3049	2118 2760	2118 2760	2131 2706	2131 2706	1780 2965	1780 2965	1766 2949	1766 2949	2019 2726	2019 2726	2029 2686	2029 2686

								S.L	U.								
CARICO AS	SIALE					q1							q	3			
PALO	FILA																
1	1	2118	2118	2131	2131	1807	1807	1788	1788	2019	2019	2029	2029	1780	1780	1766	1766
2	1	2041	2041	2045	2045	1885	1885	1874	1874	1959	1959	1963	1963	1840	1840	1832	1832
3	1	1963	1963	1960	1960	1963	1963	1960	1960	1900	1900	1897	1897	1900	1900	1897	1897
4	1	1885	1885	1874	1874	2041	2041	2045	2045	1840	1840	1832	1832	1959	1959	1963	1963
5	1	1807	1807	1788	1788	2118	2118	2131	2131	1780	1780	1766	1766	2019	2019	2029	2029
6	2	3071	3071	3049	3049	2760	2760	2706	2706	2965	2965	2949	2949	2726	2726	2686	2686
7	2	2993	2993	2964	2964	2837	2837	2792	2792	2905	2905	2883	2883	2786	2786	2752	2752
8	2	2915	2915	2878	2878	2915	2915	2878	2878	2845	2845	2817	2817	2845	2845	2817	2817
9	2	2837	2837	2792	2792	2993	2993	2964	2964	2785	2785	2752	2752	2905	2905	2883	2883
10	2	2759	2759	2706	2706	3071	3071	3049	3049	2726	2726	2686	2686	2965	2965	2949	2949
11	3	4024	4024	3968	3968	3712	3712	3625	3625	3910	3910	3868	3868	3671	3671	3606	3606
12	3	3946	3946	3882	3882	3790	3790	3710	3710	3851	3851	3803	3803	3731	3731	3671	3671
13	3	3868	3868	3796	3796	3868	3868	3796	3796	3791	3791	3737	3737	3791	3791	3737	3737
14	3	3790	3790	3710	3710	3946	3946	3882	3882	3731	3731	3671	3671	3850	3850	3803	3803
15	3	3712	3712	3625	3625	4024	4024	3968	3968	3671	3671	3606	3606	3910	3910	3868	3868
16	0	2915	2915	2878	2878	2915	2915	2878	2878	2845	2845	2817	2817	2845	2845	2817	2817
17	0	2915	2915	2878	2878	2915	2915	2878	2878	2845	2845	2817	2817	2845	2845	2817	2817
18	0	2915	2915	2878	2878	2915	2915	2878	2878	2845	2845	2817	2817	2845	2845	2817	2817
Nmax		4024	4024	3968	3968	4024	4024	3968	3968	3910	3910	3868	3868	3910	3910	3868	3868
Nmin		1807	1807	1788	1788	1807	1807	1788	1788	1780	1780	1766	1766	1780	1780	1766	1766
TAGLIO																	
taglio Vx		764	764	764	764	764	764	764	764	752	752	752	752	752	752	752	752
taglio Vy		4	4	4	4	-4	-4	-4	-4	4	4	4	4	-4	-4	-4	-4
V		764	764	764	764	764	764	764	764	752	752	752	752	752	752	752	752

								S.L	.U.								
PALO	SIALE					q4							c	₁ 5			
1	1	2089	2089	2098	2098	1850	1850	1836	1836	2096	2096	2105	2105	1843	1843	1828	1828
2	1	2029	2029	2033	2033	1909	1909	1901	1901	2032	2032	2036	2036	1906	1906	1898	1898
3	1	1969	1969	1967	1967	1969	1969	1967	1967	1969	1969	1967	1967	1969	1969	1967	1967
4	1	1909	1909	1901	1901	2029	2029	2032	2032	1906	1906	1898	1898	2032	2032	2036	2036
5	1	1850	1850	1835	1835	2089	2089	2098	2098	1843	1843	1828	1828	2096	2096	2105	2105
6	2	2965	2965	2949	2949	2726	2726	2686	2686	2972	2972	2956	2956	2719	2719	2679	2679
7	2	2905	2905	2883	2883	2786	2786	2752	2752	2909	2909	2886	2886	2782	2782	2748	2748
8	2	2845	2845	2817	2817	2845	2845	2817	2817	2845	2845	2817	2817	2845	2845	2817	2817
9	2	2785	2785	2752	2752	2905	2905	2883	2883	2782	2782	2748	2748	2909	2909	2886	2886
10	2	2726	2726	2686	2686	2965	2965	2949	2949	2719	2719	2679	2679	2972	2972	2956	2956
11	3	3841	3841	3799	3799	3602	3602	3536	3536	3848	3848	3806	3806	3595	3595	3529	3529
12	3	3781	3781	3733	3733	3662	3662	3602	3602	3785	3785	3737	3737	3658	3658	3598	3598
13	3	3721	3721	3668	3668	3721	3721	3668	3668	3721	3721	3668	3668	3721	3721	3668	3668
14	3	3662	3662	3602	3602	3781	3781	3733	3733	3658	3658	3598	3598	3785	3785	3737	3737
15	3	3602	3602	3536	3536	3841	3841	3799	3799	3595	3595	3529	3529	3848	3848	3806	3806
16	0	2845	2845	2817	2817	2845	2845	2817	2817	2845	2845	2817	2817	2845	2845	2817	2817
17	0	2845	2845	2817	2817	2845	2845	2817	2817	2845	2845	2817	2817	2845	2845	2817	2817
18	0	2845	2845	2817	2817	2845	2845	2817	2817	2845	2845	2817	2817	2845	2845	2817	2817
Nmax		3841	3841	3799	3799	3841	3841	3799	3799	3848	3848	3806	3806	3848	3848	3806	3806
Nmin		1850	1850	1835	1835	1850	1850	1836	1836	1843	1843	1828	1828	1843	1843	1828	1828
TAGLIO																	
taglio Vx		733	733	733	733	733	733	733	733	733	733	733	733	733	733	733	733
taglio Vy		4	4	4	4	-4	-4	-4	-4	6	6	6	6	-6	-6	-6	-6
V		733	733	733	733	733	733	733	733	733	733	733	733	733	733	733	733

						S.L.U.						S.I	V.		
CARICO AS	SIALE					q7				Е	.х	E	.y	E	.z
PALO															
1	1	2089	2089	2098	2098	1850	1850	1836	1836	-243	-34	2113	2322	1296	1994
2	1	2029	2029	2033	2033	1909	1909	1901	1901	-366	-157	1704	1913	1173	1871
3	1	1969	1969	1967	1967	1969	1969	1967	1967	-489	-279	1295	1504	1050	1749
4	1	1909	1909	1901	1901	2029	2029	2032	2032	-612	-402	886	1095	927	1626
5	1	1850	1850	1835	1835	2089	2089	2098	2098	-734	-525	477	686	805	1503
6	2	2965	2965	2949	2949	2726	2726	2686	2686	2138	2257	2710	2830	1998	2397
7	2	2905	2905	2883	2883	2786	2786	2752	2752	2015	2134	2301	2421	1876	2274
8	2	2845	2845	2817	2817	2845	2845	2817	2817	1892	2012	1892	2012	1753	2151
9	2	2785	2785	2752	2752	2905	2905	2883	2883	1770	1889	1483	1603	1630	2028
10	2	2726	2726	2686	2686	2965	2965	2949	2949	1647	1766	1074	1194	1507	1906
11	3	3841	3841	3799	3799	3602	3602	3536	3536	4519	4548	3308	3337	2701	2799
12	3	3781	3781	3733	3733	3662	3662	3602	3602	4396	4425	2899	2928	2578	2676
13	3	3721	3721	3668	3668	3721	3721	3668	3668	4273	4303	2490	2519	2455	2554
14	3	3662	3662	3602	3602	3781	3781	3733	3733	4151	4180	2081	2110	2333	2431
15	3	3602	3602	3536	3536	3841	3841	3799	3799	4028	4057	1672	1701	2210	2308
16	0	2845	2845	2817	2817	2845	2845	2817	2817	1892	2012	1892	2012	1753	2151
17	0	2845	2845	2817	2817	2845	2845	2817	2817	1892	2012	1892	2012	1753	2151
18	0	2845	2845	2817	2817	2845	2845	2817	2817	1892	2012	1892	2012	1753	2151
Nmax		3841	3841	3799	3799	3841	3841	3799	3799	4519	4548	3308	3337	2701	2799
Nmin		1850	1850	1835	1835	1850	1850	1836	1836	-734	-525	477	686	805	1503
TAGLIO															
taglio Vx		733	733	733	733	733	733	733	733	1226	1226	368	368	368	368
taglio Vy		4	4	4	4	-4	-4	-4	-4	187	187	624	624	187	187
V		733	733	733	733	733	733	733	733	1240	1240	724	724	413	413

								S.L.I	E.car								
PALO	SIALE					q1							q	3			
1	1	1568	1568	1578	1578	1339	1339	1325	1325	1495	1495	1502	1502	1319	1319	1309	1360
2	1	1511	1511	1515	1515	1397	1397	1388	1388	1451	1451	1454	1454	1363	1363	1357	1409
3	1	1454	1454	1452	1452	1454	1454	1452	1452	1407	1407	1405	1405	1407	1407	1405	1457
4	1	1397	1397	1388	1388	1511	1511	1515	1515	1363	1363	1357	1357	1451	1451	1454	1505
5	1	1339	1339	1325	1325	1568	1568	1578	1578	1319	1319	1309	1309	1495	1495	1502	1553
6	2	2274	2274	2258	2258	2045	2045	2005	2005	2195	2195	2183	2183	2020	2020	1990	1990
7	2	2217	2217	2195	2195	2102	2102	2069	2069	2151	2151	2135	2135	2064	2064	2039	2039
8	2	2159	2159	2132	2132	2159	2159	2132	2132	2108	2108	2087	2087	2108	2108	2087	2087
9	2	2102	2102	2069	2069	2217	2217	2195	2195	2064	2064	2039	2039	2151	2151	2135	2135
10	2	2045	2045	2005	2005	2274	2274	2258	2258	2020	2020	1990	1990	2195	2195	2183	2183
11	3	2980	2980	2938	2938	2750	2750	2686	2686	2896	2896	2865	2865	2720	2720	2672	2620
12	3	2922	2922	2875	2875	2808	2808	2749	2749	2852	2852	2816	2816	2764	2764	2720	2669
13	3	2865	2865	2812	2812	2865	2865	2812	2812	2808	2808	2768	2768	2808	2808	2768	2717
14	3	2808	2808	2749	2749	2922	2922	2875	2875	2764	2764	2720	2720	2852	2852	2816	2765
15	3	2750	2750	2686	2686	2980	2980	2938	2938	2720	2720	2672	2672	2896	2896	2865	2813
16	0	2159	2159	2132	2132	2159	2159	2132	2132	2108	2108	2087	2087	2108	2108	2087	2087
17	0	2159	2159	2132	2132	2159	2159	2132	2132	2108	2108	2087	2087	2108	2108	2087	2087
18	0	2159	2159	2132	2132	2159	2159	2132	2132	2108	2108	2087	2087	2108	2108	2087	2087
Nmax		2980	2980	2938	2938	2980	2980	2938	2938	2896	2896	2865	2865	2896	2896	2865	2813
Nmin		1339	1339	1325	1325	1339	1339	1325	1325	1319	1319	1309	1309	1319	1319	1309	1360
TAGLIO																	
taglio Vx		566	566	566	566	566	566	566	566	557	557	557	557	557	557	557	543
taglio Vy		2	2	2	2	-2	-2	-2	-2	2	2	2	2	-2	-2	-2	-2
V		566	566	566	566	566	566	566	566	557	557	557	557	557	557	557	543

								S.L.I	.car								
PALO	SIALE					q4							q	5			
1	1	1546	1546	1553	1553	1371	1371	1360	1360	1551	1551	1558	1558	1366	1366	1356	1356
2	1	1503	1503	1505	1505	1415	1415	1409	1409	1505	1505	1508	1508	1412	1412	1406	1406
3	1	1459	1459	1457	1457	1459	1459	1457	1457	1459	1459	1457	1457	1459	1459	1457	1457
4	1	1415	1415	1409	1409	1502	1502	1505	1505	1412	1412	1406	1406	1505	1505	1508	1508
5	1	1371	1371	1360	1360	1546	1546	1553	1553	1366	1366	1356	1356	1551	1551	1558	1558
6	2	2195	2195	2183	2183	2020	2020	1990	1990	2200	2200	2188	2188	2015	2015	1986	1986
7	2	2151	2151	2135	2135	2064	2064	2039	2039	2154	2154	2137	2137	2061	2061	2036	2036
8	2	2108	2108	2087	2087	2108	2108	2087	2087	2108	2108	2087	2087	2108	2108	2087	2087
9	2	2064	2064	2039	2039	2151	2151	2135	2135	2061	2061	2036	2036	2154	2154	2137	2137
10	2	2020	2020	1990	1990	2195	2195	2183	2183	2015	2015	1986	1986	2200	2200	2188	2188
11	3	2844	2844	2813	2813	2669	2669	2620	2620	2849	2849	2818	2818	2664	2664	2616	2616
12	3	2800	2800	2765	2765	2713	2713	2669	2669	2803	2803	2767	2767	2710	2710	2666	2666
13	3	2757	2757	2717	2717	2757	2757	2717	2717	2757	2757	2717	2717	2757	2757	2717	2717
14	3	2713	2713	2669	2669	2800	2800	2765	2765	2710	2710	2666	2666	2803	2803	2767	2767
15	3	2669	2669	2620	2620	2844	2844	2813	2813	2664	2664	2616	2616	2849	2849	2818	2818
16	0	2108	2108	2087	2087	2108	2108	2087	2087	2108	2108	2087	2087	2108	2108	2087	2087
17	0	2108	2108	2087	2087	2108	2108	2087	2087	2108	2108	2087	2087	2108	2108	2087	2087
18	0	2108	2108	2087	2087	2108	2108	2087	2087	2108	2108	2087	2087	2108	2108	2087	2087
Nmax		2844	2844	2813	2813	2844	2844	2813	2813	2849	2849	2818	2818	2849	2849	2818	2818
Nmin		1371	1371	1360	1360	1371	1371	1360	1360	1366	1366	1356	1356	1366	1366	1356	1356
TAGLIO																	
taglio Vx		543	543	543	543	543	543	543	543	543	543	543	543	543	543	543	543
taglio Vy		2	2	2	2	-2	-2	-2	-2	4	4	4	4	-4	-4	-4	-4

V		543	543	543	543	543	543	543	543	543	543	543	543	543	543
						S.L.E.car				_					
ARICO AS	SSIALE					q7				_					
PALO 1	1	1546	1546	1553	1553	1371	1371	1360	1360	-					
2	1	1503	1503	1505	1505	1415	1415	1409	1409						
3	1	1459	1459	1457	1457	1459	1459	1457	1457						
4 5	1	1415	1415	1409	1409	1502	1502	1505	1505						
6	2	1371 2195	1371 2195	1360 2183	1360 2183	1546 2020	1546 2020	1553 1990	1553 1990						
7	2	2151	2151	2135	2135	2064	2064	2039	2039						
8	2	2108	2108	2087	2087	2108	2108	2087	2087						
9	2	2064	2064	2039	2039	2151	2151	2135	2135						
10	2	2020	2020	1990	1990	2195	2195	2183	2183						
11	3	2844	2844	2813	2813	2669	2669	2620	2620						
12	3	2800	2800	2765	2765	2713	2713	2669	2669						
13 14	3 3	2757 2713	2757 2713	2717 2669	2717 2669	2757 2800	2757 2800	2717 2765	2717 2765						
15	3	2669	2669	2620	2620	2844	2844	2813	2813						
16	0	2108	2108	2087	2087	2108	2108	2087	2087						
17	Ö	2108	2108	2087	2087	2108	2108	2087	2087						
18	0	2108	2108	2087	2087	2108	2108	2087	2087	_					
max		2844	2844	2813	2813	2844	2844	2813	2813						
lmin		1371	1371	1360	1360	1371	1371	1360	1360						
AGLIO															
aglio Vx		543	543	543	543	543	543	543	543						
aglio Vy /		2 543	2 543	2 543	2 543	- <u>2</u> 543	-2 543	-2 543	- <u>2</u> 543						
		343	343	343	343	545	343	343	343	-					
							S.L.freq							S.L	qp
ARICO AS PALO	SSIALE					q1				q	7	c	5		
1	1	1539	1539	1546	1546	1378	1378	1368	1368	1473	1473	1475	1472	1473	1473
2	1	1499	1499	1502	1502	1418	1418	1412	1412	1473	1473	1474	1472	1473	1473
3	1	1459	1459	1457	1457	1459	1459	1457	1457	1473	1473	1473	1473	1473	1473
4	1	1418	1418	1412	1412	1499	1499	1502	1502	1473	1473	1472	1474	1473	1473
5	1	1378	1378	1368	1368	1539	1539	1546	1546	1473	1473	1471	1475	1473	1473
6	2	2188	2188	2176	2176	2027	2027	1997	1997	1952	1952	1954	1950	1952	1952
7 8	2	2148 2108	2148 2108	2132 2087	2132 2087	2067 2108	2067 2108	2042 2087	2042 2087	1952 1952	1952 1952	1953 1952	1951 1952	1952 1952	1952 1952
9	2	2067	2067	2042	2042	2148	2148	2132	2132	1952	1952	1952	1952	1952	1952
10	2	2027	2027	1997	1997	2188	2188	2176	2176	1952	1952	1950	1954	1952	1952
11	3	2837	2837	2806	2806	2676	2676	2627	2627	2431	2431	2433	2429	2431	2431
12	3	2797	2797	2761	2761	2716	2716	2672	2672	2431	2431	2432	2430	2431	2431
13	3	2757	2757	2717	2717	2757	2757	2717	2717	2431	2431	2431	2431	2431	2431
14	3	2716	2716	2672	2672	2797	2797	2761	2761	2431	2431	2430	2432	2431	2431
15	3	2676	2676	2627	2627	2837	2837	2806	2806	2431	2431	2429	2433	2431	2431
16	0	2108	2108	2087	2087	2108	2108	2087	2087	1952	1952	1952	1952	1952	1952
17	0 0	2108	2108	2087	2087	2108	2108	2087	2087	1952	1952	1952	1952	1952	1952
18 max		2108 2837	2108 2837	2087 2806	2087 2806	2108 2837	2108 2837	2087 2806	2087 2806	1952 2431	1952 2431	1952 2433	1952 2433	1952 2431	1952 2431
min		1378	1378	1368	1368	1378	1378	1368	1368	1473	1473	1471	1472	1473	1473
AGLIO															
aglio Vx		543	543	543	543	543	543	543	543	474	474	474	474	474	474
aglio Vy		0	0	0	0	0	0	0	0	0	0	1	-1	0	0
'		543	543	543	543	543	543	543	543	474	474	474	474	474	474
		TESTA AI F			ENV	SLU	SLV	SLE-CAR	SLE-FR	SLE-QP					
		(compression	one)	Nmax	4548	4024	4548	2980	2837	2431					
zione assia		nima		Nmin	-734 4240	1766	-734 1240	1309	1368	1473					
zione trasv	versale mas	sima		Vmax	1240	764	1240	566	543	474					
				I DI FONDAZION				_							
	lacticità norr	nale del calc	estruzzo/r	malta	Ec	Мра	31476								
lodulo di el		erreno			V		0.30								
Modulo di el Modulo di Pe	oisson del te				Dp	m m4	1.20								
Modulo di el Modulo di Po Diametro de	oisson del te el palo				lc b+	m4 kN/mc	0.1018 18333								
lodulo di el lodulo di Pe liametro de lomento d'i	oisson del to el palo inerzia della	sezione in c				KIWIIIC	4.44								
lodulo di el lodulo di Pi iametro de lomento d'i t Costante	oisson del to el palo inerzia della e di reazione	orizzontale			kt L0	m									
lodulo di el lodulo di Po iametro de lomento d'i t Costante unghezza I	oisson del to el palo inerzia della e di reazione libera d'infle	orizzontale ssione	(Vesic)		L0	m	4.44								
Modulo di el Modulo di Po Diametro de Momento d'i (t Costante Lunghezza I	Poisson del tre el palo l'inerzia della e di reazione libera d'infle	e orizzontale ssione RISTICHE D	(Vesic)	DLLECITAZIONI	L0 Massime sui i	SLU	SLV	SLE-CAR	SLE-FR	SLE-QP					
Modulo di el Modulo di Po Diametro de Momento d'i (t Costante Lunghezza I RIEPILOGO Sforzo norm	Poisson del tre el palo l'inerzia della e di reazione libera d'infle D CARATTE nale massim	e orizzontale ssione RISTICHE E	(Vesic)	Nmax	L0 MASSIME SUI I kN	SLU 4024	SLV 4548	2980	2837	2431					
Modulo di el Modulo di Po Diametro de Momento d'i (t Costante Lunghezza I RIEPILOGO Sforzo norm	Poisson del tre el palo l'inerzia della e di reazione libera d'infle D CARATTE nale massim	e orizzontale ssione ERISTICHE E	(Vesic)	Nmax Nmin	L0 MASSIME SUI I kN kN	SLU 4024 1766	SLV 4548 -734	2980 1309	2837 1368	2431 1473					
Modulo di el Modulo di Po Diametro de Momento d'i (t Costante unghezza l REPILOGO Gorzo norm Momento fle	roisson del tre palo l'inerzia della e di reazione libera d'infle D CARATTE nale massimale minimo ettente mass	e orizzontale ssione ERISTICHE D o simo - 1° gab	(Vesic)	Nmax Nmin Mmax_1a	L0 MASSIME SUI I kN kN kNm	SLU 4024 1766 1696	SLV 4548 -734 2752	2980 1309 1256	2837 1368 1205	2431 1473 1051					
lodulo di el lodulo di Poliametro de lomento d'i t Costante unghezza I IEPILOGO forzo norm forzo norm lomento fle lomento an	roisson del tre palo inerzia della e di reazione libera d'infle D CARATTE nale massimale minimo ettente massimplificato de massimplicato de massimpl	e orizzontale ssione ERISTICHE D o simo - 1° gab el 20%	(Vesic)	Nmax Nmin Mmax_1a Mmax_1a	L0 MASSIME SUI I kN kN kNm	SLU 4024 1766 1696 2035	SLV 4548 -734 2752 3302	2980 1309 1256 1507	2837 1368 1205 1446	2431 1473 1051 1261					
odulo di el odulo di Po iametro de omento d'i t Costante unghezza I IEPILOGO forzo norm forzo norm omento fle omento an	roisson del tre palo inerzia della e di reazione libera d'infle D CARATTE nale massimale minimo ettente massimplificato de massimplicato de massimpl	e orizzontale ssione ERISTICHE D o simo - 1° gab	(Vesic)	Nmax Nmin Mmax_1a	L0 MASSIME SUI I kN kN kNm	SLU 4024 1766 1696	SLV 4548 -734 2752	2980 1309 1256	2837 1368 1205	2431 1473 1051					
odulo di el lodulo di Pi iametro de iametro de iomento d'i t Costante unghezza I IEPILOGO forzo norm forzo norm forzo norm forzo di tag IEPILOGO di Tagui IEPILOGO di Tagui IEPILOGO di Tagui IEPILOGO di Pi iamento di Iepilogo di Tagui IEPILOGO di Pi iamento di Iepilogo di Tagui IEPILOGO	Poisson del tre le palo inerzia della e di reazione libera d'infle D CARATTE nale massimale minimo ettente massimplificato de glio massimo D AZIONI VI	e orizzontale essione ERISTICHE D 0 o simo - 1° gab el 20% o - 1° gabbia	(Vesic) DELLA SC bia GLI SLU S	Nmax Nmin Mmax_1a Mmax_1a Vmax_1a	L0 MASSIME SUI I kN kN kNm kNm kNm	SLU 4024 1766 1696 2035	SLV 4548 -734 2752 3302	2980 1309 1256 1507	2837 1368 1205 1446	2431 1473 1051 1261					

Modello di calcolo:				Tirante - pu	intone	
Dati				var	unità	
Altezza della mensola				h	m	2.00
numero di file che caricano la mensola				np		1
distanza tra palo 1° fila e sezione di incastro				a1	m	0.42
distanza tra palo 2° fila e sezione di incastro				a2	m	
copriferro				С	m	0.112
larghezza puntone				b	m	2.02
larghezza collaborante				bt	m	2.02
resistenza a compressione caratteristica cls				Rck	Мра	30
resistenza a compressione caratteristica cls				fck	Мра	25
resistenza di calcolo cls				fcd	Мра	14.2
resistenza di calcolo acciaio armatura				fyd	MPa	391
altezza della mensola ridotta				d	m	1.89
lunghezza del tirante 1° palo				l1	m	0.80
fattore lambda (l1 / 0.9d) = arctan ψ				λ1		0.47
lunghezza del tirante 2° palo				12	m	0.38
fattore lambda ($12 / 0.9d$) = arctan ψ				λ2		0.22
fattore c (1.0 no staffe - 1.5 staffe)				С		1.0
Classe di esposizione				CIE		XC2
Condizioni ambientali				Cond_Am		Ordinarie
Armatura mensola anteriore	passo	n.barre	ф	С	As	
sezione di larghezza pari a bt	cm	bt/passo	mm	m	mmq	
primo strato dal basso	20	10	26	0.079	5309	
secondo strato dal basso	20	10	26	0.145	5309	
terzo strato dal basso	0	0	26	0.211	0	
quarto strato dal basso	0	0	26	0.277	0	
Armatura effettivamente disposta			26	0.112	10619	
VERIFICA SLU						
Sollecitazioni massime	P1max	P2max	Hmax	Tmax	Asmin	Nmax
Combinazione di carico	kN	kN	kN	kN	mmq	kN
SLU-STR	4023.6	0.0	763.9	2463.7	6296	5798.1
SLU-SIS	4548.2	0.0	1239.8	3161.2	8079	7439.6
				3161.2	8079	7439.6
Armatura effettivamente adottata			As	mmq	10619	OK!
Resistenza del tirante			AS Rt	kN	4155.1	OK!
Coefficiente di utilizzo lato acciaio				KIN		OVI
			c.u.acc	LAI	76%	OK!
Resistenza del puntone			Rc	kN	19563.3	01/1
Coefficiente di utilizzo lato calcestruzzo			c.u.cls		38%	OK!
VERIFICA SLE-CARATTERISTICA						
Sollecitazioni massime	P1max	P2max	Hmax	Tmax	σs	
Combinazione di carico	kN	kN	kN	kN	Мра	
SLE-CARATTERISTICA	2979.7	0.0	565.8	1824.6	172	

MENSOLA ANTERIORE

Tensione massima ammissibile			σs,max	MPa	360	
coefficiente di utilizzo - Stato limite limitazion	e tensioni		c.u.		48%	OK!
VERIFICA SLE-FREQUENTE						
Sollecitazioni massime	P1max	P2max	Hmax	Tmax	σs	
Combinazione di carico	kN	kN	kN	kN	Мра	
SLE-FREQUENTE	2837.1	0.0	542.8	1741.4	164	
valore limite di apertura delle fessure per arm	natura poco s	sensibile	wlim	mm	0.40	w3
Tensione limite ammissibile per barre f	26.0		σslim	MPa	220.0	
coefficiente di utilizzo - Stato limite di apertur	a delle fessu	re	c.u.		75%	OK!
VERIFICA SLE-QUASI PERMANENTE						
Sollecitazioni massime	P1max	P2max	Hmax	Tmax	σs	
Combinazione di carico	kN	kN	kN	kN	Mpa	
SLE-QUASI PERMANENTE	2430.9	0.0	473.6	1500.6	141	
ualara limita di amantuna dalla fassura manana	natura poco s	sensibile	wlim	mm	0.30	w2
valore limite di apertura delle fessure per arm			σslim	MPa	194.3	
valore limite di apertura delle lessure per arm Tensione limite ammissibile per barre f	26.0		0311111		137.3	
·	a delle fessu	POSTERIORE	c.u.		73%	OK!
Tensione limite ammissibile per barre f	a delle fessu			Trave a mei	73%	OK!
Tensione limite ammissibile per barre f coefficiente di utilizzo - Stato limite di apertur Modello di calcolo:	a delle fessu			Trave a mei	73%	OK!
Tensione limite ammissibile per barre f coefficiente di utilizzo - Stato limite di apertur Modello di calcolo: Dati	a delle fessu			Trave a mei	73%	
Tensione limite ammissibile per barre f coefficiente di utilizzo - Stato limite di apertur Modello di calcolo: Dati Altezza della mensola	MENSOLA F			Trave a men	73% nsola unità m	2.00
Tensione limite ammissibile per barre f coefficiente di utilizzo - Stato limite di apertur Modello di calcolo: Dati Altezza della mensola distanza tra palo 1° fila posteriore e sezione d	MENSOLA F			Trave a mer var h a1	73% nsola unità m m	2.00 3.90
Tensione limite ammissibile per barre f coefficiente di utilizzo - Stato limite di apertur Modello di calcolo: Dati Altezza della mensola distanza tra palo 1° fila posteriore e sezione d distanza tra palo 2° fila posteriore e sezione d	MENSOLA F i incastro i incastro			Trave a mer var h a1 a2	73% nsola unità m m m	2.00
Tensione limite ammissibile per barre f coefficiente di utilizzo - Stato limite di apertur Modello di calcolo: Dati Altezza della mensola distanza tra palo 1° fila posteriore e sezione d distanza tra palo 2° fila posteriore e sezione d distanza tra palo 3° fila posteriore e sezione d distanza tra palo 3° fila posteriore e sezione d	MENSOLA F i incastro i incastro i incastro			Trave a mer var h a1 a2 a3	73% nsola unità m m m m	2.00 3.90
Tensione limite ammissibile per barre f coefficiente di utilizzo - Stato limite di apertur Modello di calcolo: Dati Altezza della mensola distanza tra palo 1° fila posteriore e sezione d distanza tra palo 3° fila posteriore e sezione d distanza tra palo 3° fila posteriore e sezione d distanza tra palo 4° fila posteriore e sezione d distanza tra palo 4° fila posteriore e sezione d	MENSOLA F i incastro i incastro i incastro			Var h a1 a2 a3 a4	73% nsola unità m m m m	2.00 3.90 0.30
Tensione limite ammissibile per barre f coefficiente di utilizzo - Stato limite di apertur Modello di calcolo: Dati Altezza della mensola distanza tra palo 1° fila posteriore e sezione di distanza tra palo 3° fila posteriore e sezione di distanza tra palo 4° fila posteriore e sezione di distanza tra palo 4° fila posteriore e sezione di distanza tra palo 4° fila posteriore e sezione di larghezza sezione di calcolo	MENSOLA F i incastro i incastro i incastro			Var h a1 a2 a3 a4 b	73% nsola unità m m m m m m	2.00 3.90 0.30
Tensione limite ammissibile per barre f coefficiente di utilizzo - Stato limite di apertur Modello di calcolo: Dati Altezza della mensola distanza tra palo 1° fila posteriore e sezione d distanza tra palo 3° fila posteriore e sezione d distanza tra palo 3° fila posteriore e sezione d distanza tra palo 4° fila posteriore e sezione d distanza tra palo 4° fila posteriore e sezione d	MENSOLA F i incastro i incastro i incastro			Trave a mer var h a1 a2 a3 a4 b Rck	nsola unità m m m m m m m Mpa	2.00 3.90 0.30 3.60 30
Tensione limite ammissibile per barre f coefficiente di utilizzo - Stato limite di apertur Modello di calcolo: Dati Altezza della mensola distanza tra palo 1° fila posteriore e sezione di distanza tra palo 2° fila posteriore e sezione di distanza tra palo 3° fila posteriore e sezione di distanza tra palo 4° fila posteriore e sezione di distanza tra palo 4° fila posteriore e sezione di distanza tra palo 4° fila posteriore e sezione di calcolo resistenza a compressione caratteristica cls	MENSOLA F i incastro i incastro i incastro			Var h a1 a2 a3 a4 b Rck fcd	73% nsola unità m m m m m m	2.00 3.90 0.30
Tensione limite ammissibile per barre f coefficiente di utilizzo - Stato limite di apertur Modello di calcolo: Dati Altezza della mensola distanza tra palo 1° fila posteriore e sezione di distanza tra palo 2° fila posteriore e sezione di distanza tra palo 3° fila posteriore e sezione di distanza tra palo 4° fila posteriore e sezione di distanza tra palo 4° fila posteriore e sezione di larghezza sezione di calcolo resistenza a compressione caratteristica cls resistenza di calcolo acciaio armatura	MENSOLA F i incastro i incastro i incastro			Var h a1 a2 a3 a4 b Rck fcd fyd	nsola unità m m m m m Mpa Mpa	2.00 3.90 0.30 3.60 30 14.2 391
Tensione limite ammissibile per barre f coefficiente di utilizzo - Stato limite di apertur Modello di calcolo: Dati Altezza della mensola distanza tra palo 1° fila posteriore e sezione di distanza tra palo 3° fila posteriore e sezione di distanza tra palo 3° fila posteriore e sezione di distanza tra palo 4° fila posteriore e sezione di distanza tra palo 4° fila posteriore e sezione di calcolo resistenza a compressione caratteristica cls resistenza di calcolo cls	MENSOLA F i incastro i incastro i incastro			Var h a1 a2 a3 a4 b Rck fcd	nsola unità m m m m m Mpa Mpa	2.00 3.90 0.30 3.60 30 14.2 391 XC2
Tensione limite ammissibile per barre f coefficiente di utilizzo - Stato limite di apertur Modello di calcolo: Dati Altezza della mensola distanza tra palo 1° fila posteriore e sezione di distanza tra palo 2° fila posteriore e sezione di distanza tra palo 3° fila posteriore e sezione di distanza tra palo 4° fila posteriore e sezione di distanza tra palo 4° fila posteriore e sezione di larghezza sezione di calcolo resistenza a compressione caratteristica cls resistenza di calcolo acciaio armatura Classe di esposizione	MENSOLA F i incastro i incastro i incastro			Trave a men var h a1 a2 a3 a4 b Rck fcd fyd CIE	nsola unità m m m m m Mpa Mpa	2.00 3.90 0.30 3.60 30 14.2 391 XC2
Tensione limite ammissibile per barre f coefficiente di utilizzo - Stato limite di apertur Modello di calcolo: Dati Altezza della mensola distanza tra palo 1° fila posteriore e sezione di distanza tra palo 2° fila posteriore e sezione di distanza tra palo 3° fila posteriore e sezione di distanza tra palo 4° fila posteriore e sezione di larghezza sezione di calcolo resistenza a compressione caratteristica cls resistenza di calcolo cls resistenza di calcolo acciaio armatura Classe di esposizione Condizioni ambientali	i incastro i incastro i incastro i incastro i incastro i incastro	POSTERIORE	c.u.	var h a1 a2 a3 a4 b Rck fcd fyd CIE Cond_Am	nsola unità m m m m m Mpa Mpa MPa	2.00 3.90 0.30 3.60 30 14.2 391
Tensione limite ammissibile per barre f coefficiente di utilizzo - Stato limite di apertur Modello di calcolo: Dati Altezza della mensola distanza tra palo 1° fila posteriore e sezione di distanza tra palo 2° fila posteriore e sezione di distanza tra palo 3° fila posteriore e sezione di distanza tra palo 4° fila posteriore e sezione di distanza tra palo 4° fila posteriore e sezione di larghezza sezione di calcolo resistenza a compressione caratteristica cls resistenza di calcolo cls resistenza di calcolo acciaio armatura Classe di esposizione Condizioni ambientali Armatura superiore mensola posteriore	i incastro i incastro i incastro i incastro i incastro i incastro	n.barre	с.u. ф	Trave a mer var h a1 a2 a3 a4 b Rck fcd fyd CIE Cond_Am	nsola unità m m m m Mpa Mpa MPa	2.00 3.90 0.30 3.60 30 14.2 391 XC2
Tensione limite ammissibile per barre f coefficiente di utilizzo - Stato limite di apertur Modello di calcolo: Dati Altezza della mensola distanza tra palo 1° fila posteriore e sezione di distanza tra palo 2° fila posteriore e sezione di distanza tra palo 3° fila posteriore e sezione di distanza tra palo 4° fila posteriore e sezione di larghezza sezione di calcolo resistenza a compressione caratteristica cls resistenza di calcolo cls resistenza di calcolo acciaio armatura Classe di esposizione Condizioni ambientali Armatura superiore mensola posteriore sezione di larghezza unitaria	i incastro i incastro i incastro i incastro i incastro i incastro cm	n.barre 1.0/passo	¢ mm	Trave a mer var h a1 a2 a3 a4 b Rck fcd fyd CIE Cond_Am c m	nsola unità m m m m Mpa Mpa MPa	2.00 3.90 0.30 3.60 30 14.2 391 XC2

0

0

passo

cm

0

0

n.barre

1.0/passo

26

26

26

ф

mm

0.211

0.277

0.112

С

m

0

0

10619

As

mmq

terzo strato dall'alto

quarto strato dall'alto

Armatura effettivamente disposta

sezione di larghezza unitaria

Armatura inferiore mensola posteriore

primo strato dal basso	20	5	26	0.079	2655	
secondo strato dal basso	0	0	26	0.145	0	
terzo strato dal basso	0	0	26	0.211	0	
quarto strato dal basso	0	0	26	0.277	0	
Armatura effettivamente disposta			26	0.079	2655	
VERIFICA SLU			fac	р	V	M
				kN/ml	kN	kNm
sollecitazioni dovute al peso proprio zattera	(SLU-STR)		1.35	243.0	1434	4229.4
sollecitazioni dovute al peso del rinterro (SL	U-STR)		1.35	743.6	4387	12942.0
sommano					5820.8	17171.4
sollecitazioni dovute al peso proprio zattera	(SLU-SIS)		1.0	180.0	1062	3132.9
sollecitazioni dovute al peso del rinterro (SL	U-SIS)		1.0	550.8	3250	9586.7
sommano					4311.7	12719.6
sollecitazioni dovute ai pali	R1	R2	R3	R4	V	M
	kN	kN	kN	kN	kN	kNm
SLU-STR (MIN)	-1766.0	-2678.8	0.0	0.0	-4445	-7691.1
SLU-STR (MAX)	-2131.1	-3071.0	0.0	0.0	-5202	-9232.7
SLU-SIS (MIN)	734.2	-1074.2	0.0	0.0	-340	2541.2
SLU-SIS (MAX)	-2322.2	-2829.8	0.0	0.0	-5152	-9905.7
sollecitazioni risultanti					V	M
					kN	kNm
SLU-STR (MIN)					1376	9480
SLU-STR (MAX)					619	7939
SLU-SIS (MIN)					3972	15261
SLU-SIS (MAX)					-840	2814
sollecitazioni risultanti per sezione di largh	ezza unitaria				V	M
CLU CTD (AMA)					kN/m	kNm/m
SLU-STR (MIN)					382	2633
SLU-STR (MAX)					172	2205
SLU-SIS (MIN)					1103	4239
SLU-SIS (MAX)					233	782
Armatura minima superiore richiesta			Afc min	mma/ml	6376	
Armatura effettivamente adottata:			Afs_min Afs	mmq/ml	10619	OK!
Momento Resistente			MR_sup	mmq/ml kNm/ml	7060	UK!
Coefficiente di utilizzo				KINIII/IIII	60%	OK!
Coefficiente di utilizzo			c.u.		00%	UK:
Armatura minima inferiore			Afs_min	mmq/ml	0	
Si dispongono f26/20			Als_IIIIII	шицип	U	
Armatura effettivamente adottata:			Afs	mmq/ml	2655	OK!
Momento Resistente			MR_inf	kNm/ml	- 1796	OK:
Coefficiente di utilizzo			c.u.	KINIII/IIII	0%	OK!
Coemiciante di dilli220			c.u.		0 /0	OK:
VERIFICA SLE-CARATTERISTICA			fac	р	V	M
				kN/ml	kN	kNm
				,	••••	

sollecitazioni dovute al peso proprio zattera			1.0	180.0	1062	3132.9
sollecitazioni dovute al peso del rinterro			1.0	550.8	3250	9586.7
sommano			1.0	330.0	4 311.7	12719.6
Soffinatio					4311.7	12/13.0
sollecitazioni dovute ai pali	R1	R2	R3	R4	V	М
	kN	kN	kN	kN	kN	kNm
SLE-CARATTERISTICA (MIN)	-1308.9	-1985.6	0.0	0.0	-3295	-5700.6
SLE-CARATTERISTICA (MAX)	-1577.8	-2274.0	0.0	0.0	-3852	-6835.8
sollecitazioni risultanti					V	М
					kN	kNm
SLE-CARATTERISTICA (MIN)					1017	7019
SLE-CARATTERISTICA (MAX)					460	5884
sollecitazioni risultanti per sezione di larghezz	za unitaria				V	М
					kN/m	kNm/m
SLE-CARATTERISTICA (MIN)					283	1950
SLE-CARATTERISTICA (MAX)					128	1634
Tasso di lavoro armature superiori			σssup	Mpa	108	
Tasso di lavoro armature inferiori			σsinf	Мра	0	
			03	pa		
Tensione massima ammissibile			σs,max	MPa	360	
coefficiente di utilizzo arm.superiori- Stato lim			c.u.		30%	OK!
coefficiente di utilizzo arm.inferiori- Stato limit	te limit. tens	ioni	c.u.		0%	OK!
						0
VERIFICA SLE-FREQUENTE			fac	р	V	M
VERIFICA SLE-FREQUENTE			fac	p kN/ml		
			fac 1.0	-	v	М
sollecitazioni dovute al peso proprio zattera				kN/ml	V kN	M kNm
sollecitazioni dovute al peso proprio zattera			1.0	kN/ml 180.0	V kN 1062	M kNm 3132.9
sollecitazioni dovute al peso proprio zattera sollecitazioni dovute al peso del rinterro sommano	R1	R2	1.0	kN/ml 180.0	V kN 1062 3250	M kNm 3132.9 9586.7
sollecitazioni dovute al peso proprio zattera sollecitazioni dovute al peso del rinterro sommano	R1 kN	R2 kN	1.0 1.0	kN/ml 180.0 550.8	V kN 1062 3250 4311.7	M kNm 3132.9 9586.7 12719.6
sollecitazioni dovute al peso proprio zattera sollecitazioni dovute al peso del rinterro sommano sollecitazioni dovute ai pali			1.0 1.0	kN/ml 180.0 550.8	V kN 1062 3250 4311.7 V	M kNm 3132.9 9586.7 12719.6 M
sollecitazioni dovute al peso proprio zattera sollecitazioni dovute al peso del rinterro sommano sollecitazioni dovute ai pali	kN	kN	1.0 1.0 R3 kN	kN/ml 180.0 550.8 R4 kN	V kN 1062 3250 4311.7 V kN	M kNm 3132.9 9586.7 12719.6 M kNm
sollecitazioni dovute al peso proprio zattera sollecitazioni dovute al peso del rinterro sommano sollecitazioni dovute ai pali SLE-FREQUENTE (MIN) SLE-FREQUENTE (MAX)	kN -1367.5	kN -1950.4	1.0 1.0 R3 kN	kN/ml 180.0 550.8 R4 kN 0.0	V kN 1062 3250 4311.7 V kN	M kNm 3132.9 9586.7 12719.6 M kNm -5918.4
sollecitazioni dovute al peso proprio zattera sollecitazioni dovute al peso del rinterro sommano sollecitazioni dovute ai pali SLE-FREQUENTE (MIN) SLE-FREQUENTE (MAX)	kN -1367.5	kN -1950.4	1.0 1.0 R3 kN	kN/ml 180.0 550.8 R4 kN 0.0	V kN 1062 3250 4311.7 V kN -3318 -3735	M kNm 3132.9 9586.7 12719.6 M kNm -5918.4 -6687.2
sollecitazioni dovute al peso proprio zattera sollecitazioni dovute al peso del rinterro sommano sollecitazioni dovute ai pali SLE-FREQUENTE (MIN) SLE-FREQUENTE (MAX) sollecitazioni risultanti	kN -1367.5	kN -1950.4	1.0 1.0 R3 kN	kN/ml 180.0 550.8 R4 kN 0.0	V kN 1062 3250 4311.7 V kN -3318 -3735	M kNm 3132.9 9586.7 12719.6 M kNm -5918.4 -6687.2
sollecitazioni dovute ai pali SLE-FREQUENTE (MIN) SLE-FREQUENTE (MAX) sollecitazioni risultanti	kN -1367.5	kN -1950.4	1.0 1.0 R3 kN	kN/ml 180.0 550.8 R4 kN 0.0	V kN 1062 3250 4311.7 V kN -3318 -3735 V kN	M kNm 3132.9 9586.7 12719.6 M kNm -5918.4 -6687.2 M kNm
sollecitazioni dovute al peso proprio zattera sollecitazioni dovute al peso del rinterro sommano sollecitazioni dovute ai pali SLE-FREQUENTE (MIN) SLE-FREQUENTE (MAX) sollecitazioni risultanti SLE-FREQUENTE (MIN) SLE-FREQUENTE (MIN) SLE-FREQUENTE (MAX)	kN -1367.5 -1546.3	kN -1950.4	1.0 1.0 R3 kN	kN/ml 180.0 550.8 R4 kN 0.0	V kN 1062 3250 4311.7 V kN -3318 -3735 V kN 994	M kNm 3132.9 9586.7 12719.6 M kNm -5918.4 -6687.2 M kNm
sollecitazioni dovute al peso proprio zattera sollecitazioni dovute al peso del rinterro sommano sollecitazioni dovute ai pali SLE-FREQUENTE (MIN) SLE-FREQUENTE (MAX) sollecitazioni risultanti SLE-FREQUENTE (MIN) SLE-FREQUENTE (MIN) SLE-FREQUENTE (MAX)	kN -1367.5 -1546.3	kN -1950.4	1.0 1.0 R3 kN	kN/ml 180.0 550.8 R4 kN 0.0	V kN 1062 3250 4311.7 V kN -3318 -3735 V kN 994 577	M kNm 3132.9 9586.7 12719.6 M kNm -5918.4 -6687.2 M kNm 6801 6032
sollecitazioni dovute al peso proprio zattera sollecitazioni dovute al peso del rinterro sommano sollecitazioni dovute ai pali SLE-FREQUENTE (MIN) SLE-FREQUENTE (MAX) sollecitazioni risultanti SLE-FREQUENTE (MIN) SLE-FREQUENTE (MIN) SLE-FREQUENTE (MIN) SLE-FREQUENTE (MAX)	kN -1367.5 -1546.3	kN -1950.4	1.0 1.0 R3 kN	kN/ml 180.0 550.8 R4 kN 0.0	V kN 1062 3250 4311.7 V kN -3318 -3735 V kN 994 577	M kNm 3132.9 9586.7 12719.6 M kNm -5918.4 -6687.2 M kNm 6801 6032
sollecitazioni dovute al peso proprio zattera sollecitazioni dovute al peso del rinterro sommano sollecitazioni dovute ai pali SLE-FREQUENTE (MIN) SLE-FREQUENTE (MAX) sollecitazioni risultanti SLE-FREQUENTE (MIN) SLE-FREQUENTE (MAX) sollecitazioni risultanti per sezione di larghezz SLE-FREQUENTE (MIN)	kN -1367.5 -1546.3	kN -1950.4	1.0 1.0 R3 kN	kN/ml 180.0 550.8 R4 kN 0.0	V kN 1062 3250 4311.7 V kN -3318 -3735 V kN 994 577 V kN/m	M kNm 3132.9 9586.7 12719.6 M kNm -5918.4 -6687.2 M kNm 6801 6032 M kNm/m
sollecitazioni dovute al peso proprio zattera sollecitazioni dovute al peso del rinterro sommano sollecitazioni dovute ai pali SLE-FREQUENTE (MIN) SLE-FREQUENTE (MAX) sollecitazioni risultanti SLE-FREQUENTE (MIN) SLE-FREQUENTE (MAX) sollecitazioni risultanti per sezione di larghezz SLE-FREQUENTE (MIN) SLE-FREQUENTE (MIN) SLE-FREQUENTE (MIN) SLE-FREQUENTE (MIN)	kN -1367.5 -1546.3	kN -1950.4	1.0 1.0 R3 kN 0.0 0.0	kN/ml 180.0 550.8 R4 kN 0.0 0.0	V kN 1062 3250 4311.7 V kN -3318 -3735 V kN 994 577 V kN/m 276 160	M kNm 3132.9 9586.7 12719.6 M kNm -5918.4 -6687.2 M kNm 6801 6032 M kNm/m
sollecitazioni dovute al peso proprio zattera sollecitazioni dovute al peso del rinterro sommano sollecitazioni dovute ai pali SLE-FREQUENTE (MIN) SLE-FREQUENTE (MAX) sollecitazioni risultanti SLE-FREQUENTE (MIN)	kN -1367.5 -1546.3	kN -1950.4	1.0 1.0 R3 kN	kN/ml 180.0 550.8 R4 kN 0.0	V kN 1062 3250 4311.7 V kN -3318 -3735 V kN 994 577 V kN/m 276	M kNm 3132.9 9586.7 12719.6 M kNm -5918.4 -6687.2 M kNm 6801 6032 M kNm/m

valore limite di apertura delle fessure per arma	atura noco s	sensihile	wlim	mm	0.40	w3
Tensione limite ammissibile per barre f	26.0	(arm.sup)	σslim	MPa	220.0	***
coefficiente di utilizzo - Stato limite di apertura			c.u.		48%	OK!
Tensione limite ammissibile per barre f	26.0	(arm.sup)	σslim	MPa	220.0	O 11.1
coefficiente di utilizzo - Stato limite di apertura			c.u.		0%	OK!
VERIFICA SLE-QUASI PERMANENTE			fac	р	V	M
				kN/ml	kN	kNm
sollecitazioni dovute al peso proprio zattera			1.0	180.0	1062	3132.9
sollecitazioni dovute al peso del rinterro			1.0	550.8	3250	9586.7
sommano					4311.7	12719.6
sollecitazioni dovute ai pali	R1	R2	R3	R4	V	М
	kN	kN	kN	kN	kN	kNm
SLE-QUASI PERMANENTE (MIN)	-1473.1	-1952.0	0.0	0.0	-3425	-6330.7
SLE-QUASI PERMANENTE (MAX)	-1473.1	-1952.0	0.0	0.0	-3425	-6330.8
·						
sollecitazioni risultanti					V	M
					kN	kNm
SLE-QUASI PERMANENTE (MIN)					887	6389
SLE-QUASI PERMANENTE (MAX)					887	6389
sollecitazioni risultanti per sezione di larghezz	a unitaria				V	M
					kN/m	kNm/m
SLE-QUASI PERMANENTE (MIN)					246	1775
SLE-QUASI PERMANENTE (MAX)					246	1775
Tasso di lavoro armature superiori			sfsup	Мра	98	
Tasso di lavoro armature inferiori			sfinf	Мра	0	
valore limite di apertura delle fessure per arma	atura noco c	concibilo	wlim	mm	0.30	w2
Tensione limite ammissibile per barre f	26.0	(arm.sup)	σslim	MPa	1 94.3	WZ
coefficiente di utilizzo - Stato limite di apertura			C.U.	IVIFA	51%	OK!
•						UK:
	26.0	(arm cup)	~slim	MDa	10/12	
Tensione limite ammissibile per barre f coefficiente di utilizzo - Stato limite di apertura	26.0	(arm.sup)	σslim c.u.	MPa	194.3 0%	OK!

LAVORO: SS4 - SPALLA SU PALI - PO02 - SPALLA A

Calcolo e Verifica muro frontale

ati	var	unità		
essore muro frontale	smur	m	1.90	
sistenza di calcolo acciaio armatura	fyd	MPa	391	
asse di esposizione	CIE		XC4	
ondizioni ambientali	Cond_Am		Aggressive	
ZIONI TRASMESSE DAL MURO FRONTALE				
Peso proprio spalla				
Peso proprio spalla	Fzg1	kN	373	
Momento longitudinale	Myg1	kNm	-132	
Spinta statica del terreno				
Spinta in direzione longitudinale	Fxg3	kN	277	
Momento longitudinale	Myg3	kNm	786	
Effetti del sovraccarico stradale sul rilevato				
Spinta in direzione longitudinale	Fxg3	kN	72	
Momento longitudinale	Myg3	kNm	308	
Azioni sismiche				
parametri sismici				
Categoria di suolo fondazione	Cat		С	
Fattore Ss			1.25	
Fattore St			1.00	
Fattore S	S		1.25	
Valore di ag/g	ag/g		0.266	
fattore bm	βm		1.00	
Coefficiente sismico orizzontale	kh		0.333	
Coefficiente sismico verticale	kv		0.166	
Struttura che ammette spostamenti: 1 - si; 2 - no	Tip_spost		1	K0 statica e Mononobe-Okabe Sismica -
Spinte del terreno in caso sismico (Mononobe-Okabe) - ipotesi s		ette soc	ostamenti (g6 1)	
angolo d'inclinazione rispetto all'orizzontale del paramento	Ψ	deg	90	
angolo d'inclinazione rispetto all'orizzontale del terrapieno	β	deg	0	
angolo d'attrito terra-muro	δ	deg	0	
Altezza del terrapieno	Н	m	8.50	
peso specifico del terreno	γ*	kN/mc	18.0	
tangente teta a= kh/(1+kv)	tanθa		0.285	
angolo teta a	θа	deg	15.913	
coefficiente di spinta attiva Ka-a	Ka-a	acg	0.465	
tangente teta b= kh/(1-kv)	tanθb		0.399	
	θb	deg	21.742	
angolo teta b coefficiente di spinta attiva Ka-a	Ka-b	ueg	0.580	
·				
Spinta totale del terreno -a	Ed-a	kN	352.4	Spinta massima in caso sismico
Spinta totale del terreno -b	Ed-b	kN	314.3	
Spinta massima in caso sismico	Ed	kN	352.4	
altezza di applicazione Momento longitudinale	H MyDP	m kNm	4.3 1497.5	
	•			
Spinte del terreno in caso sismico Wood) - ipotesi struttura che Incremento di spinta del terreno	non ammette spor	stament kN	ti (q6.1) 432	
altezza di applicazione	Н	m KIN	4.3	
Momento longitudinale	MyDP	kNm	4.3 1838	
Spinte complessive del terreno in caso sismico di calcolo			i (Mononobe - O	kabe)
Spinte complessive del terreno in caso sismico di calcolo Condizioni di spinta adottate: Struttura ch	e ammette spos	tament		
Condizioni di spinta adottate: Struttura ch			352	•
	e ammette spos Es MyEs	kN kNm	352 1498	,
Condizioni di spinta adottate: Struttura ch Spinta del terreno Momento longitudinale	Es	kN		·
Condizioni di spinta adottate: Struttura ch Spinta del terreno Momento longitudinale Forze inerziali (q6.2)	Es	kN		·
Condizioni di spinta adottate: Struttura ch Spinta del terreno Momento longitudinale Forze inerziali (q6.2) Sisma longitudinale	Es MyEs	kN kNm	1498	
Condizioni di spinta adottate: Struttura ch Spinta del terreno Momento longitudinale Forze inerziali (q6.2)	Es MyEs Fxq6.2x	kN		
Condizioni di spinta adottate: Struttura ch Spinta del terreno Momento longitudinale Forze inerziali (q6.2) Sisma longitudinale Forza orizzontale longitudinale Momento longitudinale	Es MyEs	kN kNm kN	1498 124	
Condizioni di spinta adottate: Spinta del terreno Momento longitudinale Forze inerziali (q6.2) Sisma longitudinale Forza orizzontale longitudinale Momento longitudinale Sisma verticale	Es MyEs Fxq6.2x Myq6.2x	kN kNm kN kN kNm	1498 124 457	
Condizioni di spinta adottate: Struttura ch Spinta del terreno Momento longitudinale Forze inerziali (q6.2) Sisma longitudinale Forza orizzontale longitudinale Momento longitudinale	Es MyEs Fxq6.2x	kN kNm kN	1498 124	

6.75

Distanza asse appoggi - asse muro frontale							
		Fx [kN]	Fz [kN]				
g1a	Peso proprio impalcato	0	119				
g2a	Perm. portati - impalcato	0	50				
e4	Cedimenti differenziali - MAX	0	0				
e2	ritiro	0	0				
q1a	CMOB-Nmax - sx	0	113				
q1b	CMOB-Mtmax - sx	0	86				
q1c	CMOB-Nmax - dx	0	113				
q1d	CMOB-Mtmax - dx	0	86				
q3	Frenatura	14	0				
q7a	Var. termica positiva	0	0				
q7b	Var. termica negativa	0	0				
q9	Resistenze passive vincoli	0	0				
Ex	Sisma longitudinale	31	0				
Ez	Sisma verticale	0	94				

Altezza appoggi + muro frontale

RIEPILOGO SOLLECITAZIONI RISPETTO A BARICENTRO MURO FRONTALE

g1a g1-sp g2a g3-sp e4 e2 q1a q1b q1c q1d q1e-sp q3 q7a q7b q9 Ex E2-sp E.2x-sp E.2x-sp	Peso proprio impalcato Peso proprio spalla Perm. portati - impalcato g3-sp Cedimenti differenziali - N ritiro CMOB-Nmax - sx CMOB-Nmax - sx CMOB-Nmax - dx CMOB-Nmax - dx cMOB-Ntmax - dx carico vert. Da traffico sul Frenatura Var. termica positiva Var. termica negativa Resistenze passive vinco Sisma longitudinale Sisma verticale spinta del terreno in fase i Forze inerziali longitudina Forze inerziali verticali sp.	rilevato li sismica li spalla	Fx [kN] 0 0 0 0 2777 0 0 0 0 0 0 0 0 0 0 0 0 0	Fz [kN] 119 373 50 0 0 0 113 86 113 86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	My [kNm] 0 132 0 0 7786 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
MATRICI	E COEFFICIENTI DI COMB	SINAZIONE DE	I CARICHI				S.L.U.								
g1a g1-sp g2a g3-sp e4 e2 q7a q7b q1c q1d q1e-sp q3 Ez Ez E.1x-sp E.2x-sp g9	1.35 1.1 1.35 1.3 1.35 1.3 1.35 1.3 1.35 1.3 1.20 1.2 1.20 1.2 1.20 1.3 1.20 0.0 0.00 0.0	35 1.35 35 1.35 35 1.35 20 1.20 00 0.90 90 0.00 35 0.00 00 1.35 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00	1.35 1.35 1.35 1.35 1.20 0.00 0.90 0.00 1.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	1.35 1.35 1.35 1.35 1.35 1.20 0.90 0.00 0.00 0.00 1.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.35 1.35 1.35 1.35 1.20 0.00 0.90 0.00 1.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.35 1.35 1.35 1.35 1.20 1.20 0.90 0.00 0.00 0.00 1.35 0.00 0.00 0.00 0.00 0.00 0.00	1.35 1.35 1.35 1.35 1.20 0.00 0.90 0.00 0.00 0.00 1.35 0.00 0.00 0.00 0.00 0.00 0.00	1.35 1.35 1.35 1.35 1.20 1.20 1.20 0.90 0.00 1.01 0.00 0.00 0.00 1.01 1.35 0.00 0.00 0.00 0.00	1.35 1.35 1.35 1.35 1.20 1.20 0.00 0.90 1.01 0.00 0.00 0.00 1.01 1.35 0.00 0.00 0.00 0.00	1.35 1.35 1.35 1.35 1.20 1.20 0.90 0.00 1.01 0.00 0.00 1.01 1.35 0.00 0.00 0.00 0.00	1.35 1.35 1.35 1.35 1.20 0.00 0.90 0.00 1.01 0.00 0.00 1.01 1.35 0.00 0.00 0.00 0.00	1.35 1.35 1.35 1.35 1.35 1.20 0.90 0.00 0.00 1.01 0.00 1.01 1.35 0.00 0.00 0.00	1.35 1.35 1.35 1.35 1.20 0.00 0.90 0.00 1.01 1.35 0.00 0.00 1.01 1.35 0.00 0.00 0.00	1.35 1.35 1.35 1.35 1.20 1.20 0.90 0.00 0.00 0.00 1.01 1.35 0.00 0.00 0.00 0.00	1.35 1.35 1.35 1.35 1.20 1.20 0.00 0.00 0.00 0.00 1.01 1.35 0.00 0.00 0.00 0.00 0.00
				S.L.U. e3			İ	E	S.I .x	V.	.z				
g1a g1-sp g2a g3-sp e4 e2 q7a q7b q1a q1b q1c q1d q1e-sp q3 Ez Ez.1x-sp E.2x-sp g9	1.35 1.3 1.35 1.3 1.35 1.3 1.20 1.3 1.20 1.3 1.50 0.0	35 1.35 335 1.35 335 1.35 302 1.20 20 1.20 00 1.50 0.00 01 0.00 00 1.01 00 0.00 01 1.01 0.00 0.00	1.35 1.35 1.35 1.35 1.20 1.20 1.20 1.50 0.00 1.51 0.00 0.00 1.01 0.00 0.00	1.35 1.35 1.35 1.35 1.35 1.20 1.20 1.50 0.00 0.00 1.01 0.00 0.00 0.00 0.0	1.35 1.35 1.35 1.35 1.20 1.20 0.00 1.50 0.00 1.01 0.00 1.01 0.00 0.00	1.35 1.35 1.35 1.35 1.20 1.20 1.50 0.00 0.00 0.00 1.01 1.01 0.00 0.00	1.35 1.35 1.35 1.35 1.20 1.20 0.00 1.50 0.00 0.00 1.01 1.01 0.00 0.00	1.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00	1.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00	1.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00	1.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00				
g1a	1.00 1.0	00 1.00	1.00	q1	1.00	1.00	1.00	1.00	1.00	1.00	q	1.00	1.00	1.00	1.00
g1-sp g2a g3-sp e4 e2 q7a q7b q1a q1b q1c q1d q1e-sp q3 Ex Ez E.2x-sp e.2z-sp	1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 0.60 0.0 0.00 0.0	000 1.00 000 1.00 000 1.00 000 1.00 000 1.00 000 0.60 60 0.00 000 0.00 000 0.00 000 0.00 000 0.00 000 0.00 000 0.00 000 0.00 000 0.00 000 0.00 000 0.00 000 0.00 000 0.00 000 0.00 000 0.00	1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 0.60 0.00 0.00	1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 0.60 0.00 0.00	1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 0.60 0.00 0.75 0.00 0.00 0.75 1.00 0.00 0.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 0.60 0.00 0.75 0.00 0.75 1.00 0.00 0.00 0.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.75 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1.00 1.00 1.00 1.00 1.00 0.60 0.00 0.75 0.00 0.75 1.00 0.00 0.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 0.60 0.00 0.00	1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00

LAVORO: SS4 - SPALLA SU PALI - PO02 - SPALLA A

g1a	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.75 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.75 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.00 0.75 0.00 0.00 0.00 0.00 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.75 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1	\$.L 1.00 1.00 1.00 1.00 0.50 0.00 0.00 0.00	.qp 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.0	466		13	466	466	
92a 1.00 93-sp 1.00 94 1.00 94 1.00 92 1.00 97a 1.00 97b 0.00 97t	1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 0.75 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00 1.00 1.00 0.00 0.75 0.00 0.00 0.75 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00 1.00 0.00 1.00 0.75 0.00 0.75 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 0.00 1.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 0.00 0.0				466		
94	1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00	1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00	1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00	1.00 1.00 1.00 0.00 0.00 0.00 0.75 0.00 0.00 0.00 0	1.00 1.00 0.00 1.00 0.00 0.00 0.75 0.00 0.00 0.00 0.00 0	1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00	1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 0.00 0.0				466		
122 1.00 17a 1.00 17b 0.00 17c	1.00 0.00 1.00 1.00 0.75 0.00 0.00 0.75 0.00 0.00 0.00 0	1.00 1.00 0.00 0.75 0.00 0.00 0.75 0.00 0.00 0	1.00 0.00 0.00 0.75 0.00 0.00 0.75 0.00 0.00	1.00 1.00 0.00 0.00 0.00 0.75 0.00 0.00 0.00 0	1.00 0.00 0.00 0.00 0.75 0.00 0.00 0.00 0	1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00	1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 0.00 0.0				466		
7a	1.00 1.00 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0	1.00 0.00 0.00 0.75 0.00 0.00 0.00 0.00 0	0.00 1.00 0.00 0.75 0.00 0.00 0.00 0.00 0.00 0	1.00 0.00 0.00 0.00 0.75 0.00 0.75 0.00 0.00	0.00 1.00 1.00 0.00 0.05 0.00 0.75 0.00 0.00 0.00 0	1.00 0.00 0.00 0.00 0.00 0.75 0.00 0.00 0	0.00 1.00 0.00 0.00 0.00 0.75 0.00 0.00 0.00 0	1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 0.00 0.0				466		
7b	1.00 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.00 0.00 0.75 0.00 0.00 0.00 0.00	1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.75 0.00 0.75 0.00 0.00	1.00 0.00 0.00 0.75 0.00 0.75 0.00 0.00 0	0.00 0.00 0.00 0.00 0.75 0.75 0.00 0.00	1.00 0.00 0.00 0.00 0.75 0.75 0.00 0.00 0	1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 0.00 0.0				466		
1b	1.00 0.00 0.00 0.75 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.0	0.75 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.0	0.75 0.00 0.75 0.00 0.75 0.00 0.00 0.00	0.00 0.75 0.00 0.75 0.00 0.75 0.00 0.00	0.00 0.75 0.00 0.75 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.75 0.75 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00	0.00 0.00 0.075 0.75 0.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 0.00 0.0				466		
11c	1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.75 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.75 0.00 0.075 0.00 0.00 0.00 0.00 0.00	0.75 0.00 0.75 0.00 0.00 0.00 0.00 0.00	0.00 0.75 0.75 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.0	0.00 0.75 0.75 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 0.00 0.0				466		
11d	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.75 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.75 0.00 0.00 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00	0.00 0.75 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.75 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.0	0.00 0.75 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.0	0.75 0.75 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.0	0.75 0.75 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.0	1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 0.00 0.0				466		
	0.75 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.0	0.75 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.0	0.75 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.0	0.75 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.0	0.75 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.0	0.75 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.0	0.75 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.0	1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 0.00 0.0				466		
3	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 0.00 0.0				466		
EX	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 0.00 0.0				466		
E.1x-sp	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 1.00 1.00 5.L.freq 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.00 0.0	0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 0.00 0.0				466		
E.2x-sp	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 0.00 0.0				466		
E.2z-sp 0.00 19 1.00 11a 1.00 11-sp 1.00 12a 1.00 13-sp 1.00 13a-sp 1.00 14a 1.00 17a 0.60 17a 0.60 17b 0.00 11a 0.75 11b 0.00 11d 0.00 11d 0.00 11d 0.00 11d 0.00 11c 0.00 1	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.75 0.00 0.00 0.75 0.00 0.00 0	0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.75 0.75 0.00 0.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 0.00 0.0				466		
99 1.00 91a 1.00 91a 1.00 91-sp 1.00 92a 1.00 93-sp 1.00 94 1.00 94 1.00 94 1.00 97b 0.00 91t 0.00 92 0.00 Ex 0.	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 CCCATO DI	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.75 0.00 0.75 0.00 0.00 0.75 0.00 0.00 0.75 0.00 0.00 0.75 0.00 0.00 0.00 0.00 1.00 FRONTALE	1.00 5.L.freq 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.75 0.00 0.00 0.00 0.00 0	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.75 0.00 0.00 0.00 0	1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 0.00 0.0				466		
11-sp 1.00 1	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.75 0.00 0.00 0.75 0.00 0.00 0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.00 0.75 0.00 0.00 0.00 0.00 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 0.00 0.0				466		
11-sp 1.00 1	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.75 0.00 0.00 0.75 0.00 0.00 0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.00 0.75 0.00 0.00 0.00 0.00 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 0.00 0.0				466		
1-sp 1.00	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.75 0.00 0.00 0.75 0.00 0.00 0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.00 0.0	1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 0.50 0.00 0.00	1.00 1.00 1.00 1.00 0.00 0.50 0.00 0.00				466		
1.00 3-sp	1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 0.60 0.00 0.75 0.00 0.07 0.00 0.00 0.00 0.0	1.00 1.00 1.00 1.00 0.00 0.60 0.00 0.75 0.00 0.75 0.00 0.00 0.00 0.0	1.00 1.00 1.00 1.00 0.60 0.00 0.00 0.75 0.00 0.75 0.00 0.00 0.0	1.00 1.00 1.00 1.00 0.00 0.60 0.00 0.75 0.00 0.75 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.0	1.00 1.00 1.00 1.00 0.60 0.00 0.00 0.75 0.75 0.75 0.00 0.00 0.0	1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 0.50 0.00 0.00 0.00	1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00				466		
1.00 17a 1.00 17a 1.00 17a 1.00 17b 1.00 17b 1.00 17b 1.00 17b 1.00 11c 11c 1.00 11c 11c 1.00 11c 11c 11c 11c 11c 11c 11c 11c 11c 1	1.00 1.00 0.00 0.60 0.75 0.00 0.00 0.05 0.00 0.00 0.00 0.0	1.00 1.00 0.60 0.00 0.00 0.00 0.75 0.00 0.00 0.00 0.0	1.00 1.00 0.00 0.00 0.60 0.00 0.75 0.00 0.00 0.00 0.00 0.00 0.0	1.00 1.00 0.60 0.00 0.00 0.00 0.75 0.00 0.75 0.00 0.00	1.00 1.00 0.00 0.60 0.00 0.75 0.00 0.75 0.00 0.00 0.00 0.0	1.00 1.00 0.60 0.00 0.00 0.00 0.75 0.75 0.00 0.00 0.0	1.00 1.00 0.00 0.60 0.00 0.00 0.75 0.75 0.00 0.00 0.00 0.0	1.00 1.00 0.50 0.00 0.00 0.00 0.00 0.00	1.00 1.00 0.00 0.50 0.00 0.00 0.00 0.00				466		
1.00 1.00	1.00 0.00 0.60 0.75 0.00 0.00 0.75 0.00 0.00 0.00 0.0	1.00 0.60 0.00 0.00 0.75 0.00 0.75 0.00 0.00 0.00 0.00 0.00 1.00 EL MURO	1.00 0.00 0.00 0.60 0.00 0.75 0.00 0.75 0.00 0.00 0.00 0.0	1.00 0.60 0.00 0.00 0.00 0.75 0.00 0.75 0.00 0.00	1.00 0.00 0.60 0.00 0.00 0.75 0.00 0.75 0.00 0.00 0.0	1.00 0.60 0.00 0.00 0.00 0.00 0.75 0.75 0.00 0.00 0.00 0.00 1.00	1.00 0.00 0.60 0.00 0.00 0.00 0.75 0.75 0.00 0.00 0.0	1.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00	1.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00				466		
	0.00 0.60 0.75 0.00 0.00 0.00 0.75 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00	0.60 0.00 0.00 0.75 0.00 0.00 0.00 0.00 0.0	0.00 0.60 0.00 0.75 0.00 0.75 0.00 0.00 0.00 0.00 0.00 0.00 1.00 FRONTALE	0.60 0.00 0.00 0.00 0.75 0.00 0.75 0.00 0.00	0.00 0.60 0.00 0.00 0.75 0.00 0.75 0.00 0.00 0.00 0.00 1.00 BINAZIONI D	0.60 0.00 0.00 0.00 0.00 0.75 0.75 0.00 0.00	0.00 0.60 0.00 0.00 0.00 0.75 0.00 0.00 0.00 0.0	0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00				466		
17b	0.60 0.75 0.00 0.00 0.00 0.75 0.00 0.00 0.0	0.00 0.00 0.75 0.00 0.05 0.00 0.00 0.00	0.60 0.00 0.75 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.75 0.00 0.75 0.00 0.00	0.60 0.00 0.00 0.75 0.00 0.75 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.75 0.75 0.00 0.00	0.60 0.00 0.00 0.00 0.75 0.75 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00				466		
11a	0.75 0.00 0.00 0.00 0.75 0.00 0.00 0.00	0.00 0.75 0.00 0.00 0.75 0.00 0.00 0.00	0.00 0.75 0.00 0.75 0.00 0.00 0.00 0.00	0.00 0.00 0.75 0.00 0.75 0.00 0.75 0.00 0.00	0.00 0.00 0.75 0.00 0.75 0.00 0.00 0.00	0.00 0.00 0.00 0.75 0.75 0.00 0.00 0.00	0.00 0.00 0.00 0.75 0.75 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0				466		
11b	0.00 0.00 0.00 0.75 0.00 0.00 0.00 0.00	0.75 0.00 0.00 0.75 0.00 0.00 0.00 0.00	0.75 0.00 0.00 0.75 0.00 0.00 0.00 0.00	0.00 0.75 0.00 0.75 0.00 0.75 0.00 0.00	0.00 0.75 0.00 0.75 0.00 0.00 0.00 0.00	0.00 0.00 0.75 0.75 0.00 0.00 0.00 0.00	0.00 0.00 0.75 0.75 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0				466		
10 0.00 11 10 10 11 10	0.00 0.75 0.00 0.00 0.00 0.00 0.00 1.00 CCATO DI	0.00 0.75 0.00 0.00 0.00 0.00 0.00 1.00 EL MURO	0.00 0.75 0.00 0.00 0.00 0.00 0.00 1.00 FRONTALE	0.00 0.75 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.75 0.00 0.00 0.00 0.00 0.00 1.00 BINAZIONI D	0.75 0.75 0.00 0.00 0.00 0.00 0.00 1.00	0.75 0.75 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0				466		
11e-sp	0.75 0.00 0.00 0.00 0.00 0.00 1.00 CCATO DI	0.75 0.00 0.00 0.00 0.00 0.00 0.00 1.00 EL MURO	0.75 0.00 0.00 0.00 0.00 0.00 1.00 FRONTALE	0.75 0.00 0.00 0.00 0.00 0.00 1.00 **NELLE COM** 472 882	0.75 0.00 0.00 0.00 0.00 0.00 1.00 BINAZIONI D	0.75 0.00 0.00 0.00 0.00 0.00 0.00 1.00	0.75 0.00 0.00 0.00 0.00 0.00 1.00 S.L.U.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00				466		
3	0.00 0.00 0.00 0.00 0.00 0.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 1.00 EL MURO	0.00 0.00 0.00 0.00 0.00 0.00 1.00 FRONTALE 472 846 -1298	0.00 0.00 0.00 0.00 0.00 0.00 1.00 **NELLE COM** q1	0.00 0.00 0.00 0.00 0.00 0.00 1.00 BINAZIONI D	0.00 0.00 0.00 0.00 0.00 0.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 1.00 S.L.U.	0.00 0.00 0.00 0.00 0.00 0.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 1.00				466		
Ex	0.00 0.00 0.00 0.00 0.00 1.00 CCATO DI	0.00 0.00 0.00 0.00 0.00 1.00 EL MURO	0.00 0.00 0.00 0.00 0.00 1.00 FRONTALE 472 846 -1298	0.00 0.00 0.00 0.00 0.00 1.00 **NELLE COM** q1** 472 882	0.00 0.00 0.00 0.00 0.00 1.00 BINAZIONI D	0.00 0.00 0.00 0.00 0.00 1.00	0.00 0.00 0.00 0.00 0.00 1.00 S.L.U.	0.00 0.00 0.00 0.00 0.00 1.00	0.00 0.00 0.00 0.00 0.00 1.00				466		
Ez 0.00 E.1x-sp 0.00 E.2x-sp 0.00 E.2z-sp 0.00 E.2z-sp 1.00 E.2z-sp 1.00 E.2z-sp 1.00 E.2z-sp 1.00 E.2z-sp 1.00 Ex 472 Ex 472 Ex 472 Ex 882 My -1298 Ex 448 Ex 448 Ex 448 Ex 350 Ex 350 Ex 654	0.00 0.00 0.00 0.00 1.00 CCATO DI	0.00 0.00 0.00 0.00 1.00 EL MURO 472 846	0.00 0.00 0.00 1.00 1.00 FRONTALE 472 846 -1298	0.00 0.00 0.00 0.00 1.00 NELLE COM q1 472 882	0.00 0.00 0.00 0.00 1.00 BINAZIONI D	0.00 0.00 0.00 0.00 1.00	0.00 0.00 0.00 0.00 1.00 S.L.U.	0.00 0.00 0.00 0.00 1.00	0.00 0.00 0.00 0.00 1.00				466		
E.1x-sp 0.00 E.2x-sp 0.00 E.2x-sp 0.00 1.00 BOLLECITAZIONI ALLO SPIC Ex 472 Fz 882 My -1298 Ex 448 Fz 448 My -1194	0.00 0.00 0.00 1.00 CCATO DI	0.00 0.00 0.00 1.00 EL MURO 472 846	0.00 0.00 0.00 1.00 FRONTALE 472 846 -1298	0.00 0.00 0.00 1.00 ENELLE COM q1 472 882	0.00 0.00 0.00 1.00 BINAZIONI D	0.00 0.00 0.00 1.00	0.00 0.00 0.00 1.00 S.L.U.	0.00 0.00 0.00 1.00	0.00 0.00 0.00 1.00				466		
E.2z-sp 0.00 1.00	0.00 1.00 CCATO DI 472 882	0.00 1.00 EL MURO 472 846	0.00 1.00 FRONTALE 472 846 -1298	0.00 1.00 NELLE COM q1 472 882	0.00 1.00 BINAZIONI D 472 882	0.00 1.00 I CARICO	0.00 1.00 S.L.U.	0.00 1.00	0.00				466		
Tx 472 Fx 472 Fx 882 My -1298 Fx 448 Fz 844 My -1194 Fx 350 Fz 654	1.00 CCATO DI 472 882	472 846	1.00 FRONTALE 472 846 -1298	1.00 NELLE COM q1 472 882	1.00 BINAZIONI D 472 882	1.00 I CARICO 472	1.00 S.L.U.	1.00	1.00				466		
Ex 472	472 882	EL MURO 472 846	472 846 -1298	q1 472 882	472 882	CARICO 472	S.L.U.	466					466		
=z 844 My -1194 ==x 350 =z 654					-1290	-1298	-1298	844 -1319	844 -1319	817 -1319	817 -1319	844 -1319	844 -1319	817 -1319	817 -131
Fz 844 My -1194 Fx 350 Fz 654				S.L.U.						V.					
My -1194 Fx 350 Fz 654	448	448	448	q7 448	448	448	448	508	. x 508	152	. z 152				
Fx 350 Fz 654	844	817	817	844	844	817	817	550	531	573	509				
Fz 654	-1194	-1194	-1194	-1194	-1194	-1194	-1194	-2041	-2028	-540	-496				
Fz 654				q1			S.L.E.car				c	13			
	350	350	350	350	350	350	350	345	345	345	345	345	345	345	34
,	654 -961	627 -961	627 -961	654 -961	654 -961	627 -961	627 -961	625 -977	625 -977	605 -977	605 -977	625 -977	625 -977	605 -977	605 -97
			3.	.L.E.car q7											
x 332	332	332	332	332	332	332	332								
⁼ z 625 My -884	625 -884	605 -884	605 -884	625 -884	625 -884	605 -884	605 -884								
, 304	30.	20.		50.											
				L.E.freq				S.L.I		_					
x 332	332	332	332	332	332	332	332	277	277						
Fz 625 My -884	625 -884	605 -884	605 -884	625 -884	625 -884	605 -884	605 -884	541 -653	541 -653						
, -004	004	554	304	004	504	554	304	300	000						
Armatura zona tesa muro fro	ontale			passo	n.barre	ф	С	As							
sezione di larghezza unitaria orimo strato	1			10	1.0/passo 10	mm 26	m 0.081	mmq 5309							
secondo strato	_1_			0	0	26	0.137	0							
Armatura effettivamente dispo	sta					26	0.081	5309							
VERIFICHE AGLI SLU					Var	unità	40.1-								
Momento di calcolo SLU Momento di calcolo SLV Armatura minima richiesta					MEd_SLU MEd_SLV Afs_min	kNm/ml	1319 2041 3186								
Armatura offattivareanta a larr	oto:				۸4-	mm-	E200	CVI							
Armatura effettivamente adotti Momento Resistente	ald:				Afs MR sun	mmq kNm/ml	5309 3401	OK!							
Coefficiente di utilizzo					MR_sup c.u.	KINIH/IIII	60%	OK!							
					o.u.		5576	J.K.							
Taglio di calcolo SLU					VEd_SLU		472								
Taglio di calcolo SLV					VEd_SLV	kN/ml	508								
VERIFICHE AGLI SLE-CAR Tasso di lavoro armature in zo															

LAVORO: SS4 - SPALLA SU PALI - PO02 - SPALLA A Calcolo e Verifica muro frontale

Tensione massima ammissibile coefficiente di utilizzo armature - Stato limite limitazione tensioni	σs,max c.u.	MPa	360 31%	OK!
VERIFICHE AGLI SLE-FR Tasso di lavoro armature in zona tesa	σS	Мра	102	
valore limite di apertura delle fessure per armatura poco sensibile Tensione limite ammissibile per barre f 26.0 coefficiente di utilizzo - Stato limite di apertura delle fessure	wlim oslim c.u.	mm MPa	0.30 194 52%	w2 OK!
VERIFICHE AGLI SLE-QP Tasso di lavoro armature in zona tesa	σS	Мра	75	
valore limite di apertura delle fessure per armatura poco sensibile Tensione limite ammissibile per barre f 26.0 coefficiente di utilizzo - Stato limite di apertura delle fessure	wlim oslim c.u.	mm MPa	0.20 156 48%	w1 OK!

LAVORO: SS131 - SPALLA SU PALI - VI05 SPALLA B CARREGGIATA DESTRA Calcolo e Verifica del muro paraghiaia

Dati			var	unità	
Altezza paraghiaia			h	m	3.15
spessore paraghiaia			spar	m	0.60
spessore pavimentazione			spav	m	0.10
resistenza di calcolo acciaio armatura			fyd	MPa	391
Classe di esposizione			CIE		XC4
Condizioni ambientali			Cond_Am		Aggressive
Effetti dovuti al sovraccarico accidentale					
larghezza dell'impronta del carico Qik in sommità			b1	m	3.20
lunghezza dell'impronta di carico Qik in sommità			a1	m	2.40
larghezza dell'impronta del carico Qik alla base			b2	m	6.84
lunghezza dell'impronta di carico Qik alla base			a2	m	4.22
pressione orizzontale dovuta al carico Qik in sommità			sh1	kPa	33.3
pressione orizzontale dovuta al carico Qik alla base			sh2	kPa	8.9
pressione orizzontale dovuta al carico qik distribuito			shd	kPa	3.8
Taglio alla base complessivo			Vmax	kNm	322.2
Momento alla base complessivo			Mmax	kNm	545.5
Effetti dovuti al carico Qik sul paraghiaia					
larghezza dell'impronta di carico Qik in sommità			b1	m	2.6
larghezza dell'impronta di carico alla base			b2	m	8.9
Carico verticale in testa al paraghiaia			Qik	kN	300
Azione orizzontale in testa al paraghiaia			Н	kN	180
Sollecitazioni alla base del paraghiaia			N	٧	М
Condizione			kN	kN	kNm
Peso proprio			47.3	0.0	0.0
Spinta statica del terreno			0.0	38.1	40.0
Spinta dovuta al carico Qik			0.0	47.1	79.8
Carico Qik sul paraghiaia			33.7	20.2	65.7
Sisma - forze inerziali			0.0	15.7	24.7
Spinta sismica del terreno			0.0	41.5	65.4
Armatura zona tesa paraghiaia	passo	n.barre	ф	С	As
sezione di larghezza unitaria	cm	1.0/passo	mm	m	mmq
primo strato	10	10	20	0.076	3142
secondo strato	0	0	20	0.126	0
Armatura effettivamente disposta			20	0.076	3142
VEDIFICUE OLU					

VERIFICHE SLU

	fattori parziali per azioni
Condizione di carico	SLU-STR SLU-SIS
Peso proprio	1.00 1.00
Spinta statica del terreno	1.35 0.00
Spinta dovuta al carico Qik	1.35 0.00
Carico Qik sul paraghiaia	1.35 0.00
Sisma - forze inerziali	0.00 1.00
Spinta sismica del terreno	0.00 1.00
Combinazioni SLU-STR	N V M
Combinazione	kN kN kN
SLU-STR	92.8 142.3 250.4
SLU-SIS	47.3 57.2 90.1
Armatura minima richiesta	Afs_min mmq/ml 1357
Armatura effettivamente adottata:	Afs mmq 3142 OK!
Momento Resistente	MR_sup kNm/ml 580
Coefficiente di utilizzo	c.u. 43% OK!

VERIFICHE SLE-RARA

Condizione di caricoSLE-RARAPeso proprio1.00

LAVORO: SS131 - SPALLA SU PALI - VI05 SPALLA B CARREGGIATA DESTRA Calcolo e Verifica del muro paraghiaia

Spinta statica del terreno	1.00			
Spinta dovuta al carico Qik	1.00			
Carico Qik sul paraghiaia	1.00			
Sisma - forze inerziali	0.00			
Spinta sismica del terreno	0.00			
Combinazioni SLE-RARA	N	V	М	
Combinazione	kN	kN	kN	
SLE-RARA	81.0	105.4	185.5	
Tasso di lavoro armature	σs	Мра	125	
Tensione massima ammissibile	σs,max	MPa	360	
coefficiente di utilizzo armature - Stato limite limitazione tensioni	c.u.		35%	OK!

VERIFICHE SLE-FREQUENTE

Condizione di carico	fattori par SLE-FRE	ziali per a	zioni	
Peso proprio	1.00			-
Spinta statica del terreno	1.00			
Spinta dovuta al carico Qik	0.75			
Carico Qik sul paraghiaia	0.75			
Sisma - forze inerziali	0.00			
Spinta sismica del terreno	0.00			
Combinazioni SLE-FREQUENTE	N	V	М	
Combinazione	kN	kN	kN	
SLE-FRE	72.5	88.6	149.1	
Tasso di lavoro armature	σs	Мра	101	
valore limite di apertura delle fessure per armatura poco sensibile	wlim	mm	0.30	w2
Tensione limite ammissibile per barre f 20.0	σslim	MPa	222	
coefficiente di utilizzo - Stato limite di apertura delle fessure	c.u.		45%	OK!

VERIFICHE SLE-QUASI PERMANENTE

Condizione di carico	fattori par SLE-QP	ziali per a	zioni	
Peso proprio	1.00			•
Spinta statica del terreno	1.00			
Spinta dovuta al carico Qik	0.00			
Carico Qik sul paraghiaia	0.00			
Sisma - forze inerziali	0.00			
Spinta sismica del terreno	0.00			
Combinazioni SLE-QUASI PERMANENTE	N	V	М	
Combinazione	kN	kN	kN	
SLE-QP	47.3	38.1	40.0	
Tasso di lavoro armature	σs	Мра	27	
valore limite di apertura delle fessure per armatura poco sensibile Tensione limite ammissibile per barre f 20.0	wlim σslim	mm MPa	0.20 182	w1
coefficiente di utilizzo - Stato limite di apertura delle fessure	c.u.	IVII a	15%	OK!

LAVORO: SS131 - SPALLA SU PALI - VI05 SPALLA B CARREGGIATA DESTRA Calcolo e Verifica dei muri di risvolto

Dati		var	unità	
Altezza muro di risvolto		h	m	8.15
larghezza muro di risvolto		а	m	5.90
spessore muro di risvolto		S	m	0.75
coefficiente gamma		γ		0.72
spessore pavimentazione		spav	m MD-	0.10
resistenza di calcolo acciaio armatura		fyd	MPa	391
Muro con bandiera Classe di esposizione		band CIE		no XC4
Condizioni ambientali		Cond_Am		Aggressive
Condizioni ambientaii		Cond_Am		Aggressive
Momento massimo orizzontale: Mx = facx * q * a ²				
Momento massimo verticale: $My = facy * q * h^2$ N.B. i coefficienti facx e facy sono ricavati da: "Calcolo di lastre e piastre" - Richard Ba	res - Ed.	CittàStudi		
Effetti dovuti alla spinta delle terre				
pressione orizzontale alla base		q	kN/mq	62.6
direzione orizzontale	γ	0.500	0.750	0.72
coefficiente facx	facMx	0.134	0.082	0.087
coefficiente facVx	facVx	0.462	0.318	0.333
Momento flettente in direzione orizzontale		Mxmax	kNm	189.5
Momento flettente in direzione orizzontale da bandiera		Mxband	kNm	0.0
Sforzo di taglio in direzione orizzontale		Vxmax	kN	122.8
Sforzo di taglio in direzione orizzontale da bandiera		Vxband	kN	0.0
direzione verticale	γ	0.50	0.75	0.72
coefficiente facy	facMy	0.055	0.090	0.09
coefficiente facVy	facVy	0.483	0.551	0.543
Momento flettente in direzione verticale		Mymax	kNm	357.1
Sforzo di taglio in direzione verticale		Vymax	kN	277.1
Effetti dovuti ai sovraccarichi accidentali				
larghezza dell'impronta del carico Qik in sommità		b1	m	2.40
lunghezza dell'impronta di carico Qik in sommità		a1	m	3.10
larghezza dell'impronta del carico Qik alla base		b2	m	7.11
lunghezza dell'impronta di carico Qik alla base		a2	m	7.81
pressione orizzontale dovuta al carico Qik in sommità		sh1	kPa	34.4
pressione orizzontale dovuta al carico Qik alla base		sh2	kPa	4.6
pressione orizzontale di calcolo		q	kN/mq	19.5
direzione orizzontale	γ	0.50	0.75	0.72
coefficiente facx	facMx	0.360	0.234	0.25
coefficiente facVx	facVx	1.114	1.043	1.051
Momento flettente in direzione orizzontale		Mxmax	kNm	167.9
Momento flettente in direzione orizzontale da bandiera		Mxband	kNm	0.0
Sforzo di taglio in direzione orizzontale		Vxmax	kN	120.9
Sforzo di taglio in direzione orizzontale da bandiera		Vxband	kN	0.0
direzione verticale	γ	0.50	0.75	0.72
coefficiente facx	facMy	0.105	0.208	0.197
coefficiente facVy	facVy	0.874	1.129	1.102
Momento flettente in direzione verticale		Mymax	kNm	255.1
Sforzo di taglio in direzione verticale		Vymax	kN	175.2
Effetti dovuti al sisma				
forza inerziale		q1	kN/mq	6.23
incremento di spinta delle terre		q2	kN/mq	48.8
pressione orizzontale di calcolo		q	kN/mq	55.0
direzione orizzontale	٠,	0.50	0.75	0.72
coefficiente facx	γ facMx	0.360	0.73	0.72 0.25

LAVORO: SS131 - SPALLA SU PALI - VI05 SPALLA B CARREGGIATA DESTRA Calcolo e Verifica dei muri di risvolto

Calculate Value de l'indir de l'event						
coefficiente facVx		facVx	1.114	1.043	1.05	
Momento flettente in direzione orizzontale			Mxmax	kNm	473.5	
Momento flettente in direzione orizzontale da bandiera			Mxband	kNm	0.0	
Sforzo di taglio in direzione orizzontale			Vxmax	kN	341.0	
Sforzo di taglio in direzione orizzontale da bandiera			Vxband	kN	0.0	
diameter and controlled			0.50	0.75	0.70	
direzione verticale		γ	0.50	0.75	0.72	
coefficiente facx		facMy	0.105	0.208	0.197	
coefficiente facVy		facVy	0.874	1.129	1.102	
Momento flettente in direzione verticale			Mymax	kNm	719.5	
Sforzo di taglio in direzione verticale			Vymax	kN	494.2	
Riepilogo sollecitazioni sul muro		Mx	Му	Vx	Vy	
Condizione		kNm	kNm	kN	kŃ	
Spinta del terreno		189.5	357.1	122.8	277.1	
Spinta sovraccarichi accidentali		167.9	255.1	120.9	175.2	
Spinta dovuta al sisma		473.5	719.5	341.0	494.2	
Armatura zona tesa - dir. Orizzontale	passo	n.barre	ф	С	As	
sezione di larghezza unitaria	cm	1.0/passo	Ψ mm	m	mmq	
primo strato	10	10/passo	20	0.062	3142	
secondo strato	10	10	20	0.112	3142	
Armatura effettivamente disposta			20	0.087	6283	
Annuation was too die Vestinale				_	A =	
Armatura zona tesa - dir. Verticale sezione di larghezza unitaria	passo cm	n.barre 1.0/passo	ф mm	c m	As mmq	
primo strato	10	10/passo	24	0.084	4524	
secondo strato	20	5	24	0.138	2262	
Armatura effettivamente disposta	20		24	0.102	6786	
VERIFICHE SLU		fattori par				
Condizione di carico		SLU-STR				
Spinta del terreno Spinta sovraccarichi accidentali		1.35	1.00			
Spinta dovuta al sisma		1.35 0.00	0.00 1.00			
Opinia dovata di didina		0.00	1.00			
Combinazioni SLU-STR		Mx	My	Vx	Vy	
Combinazione		kNm	kNm	kN	kN	
SLU-STR SLU-SIS		482.4 663.0	826.5 1076.7	329.0 463.8	610.5 771.2	
		000.0				
Armatura minima richiesta in dir. Orizzontale			Afh_min	•	2840	
Armatura effettivamente adottata:			Afs	mmq	6283	OK!
Momento Resistente dir. Orizzontale			MR_h	kNm/ml	1467	
Coefficiente di utilizzo			c.u.		45%	OK!
Armatura minima richiesta in dir. Verticale			Afh_min	mmq/ml	4718	
Armatura effettivamente adottata:			Afs	mmq	6786	OK!
Momento Resistente dir. Verticale			MR_v	kNm/ml	1549	
Coefficiente di utilizzo			c.u.		70%	OK!
VERIFICHE SLE-RARA				fattari nar	-:-!:	-ii
Condizione di carico				fattori para SLE-RARA	-	ZiUIII
Spinta del terreno				1.00		
				1.00		
Spinta sovraccarichi accidentali						
Spinta sovraccarichi accidentali Spinta dovuta al sisma				0.00		
					Μv	
Spinta dovuta al sisma				0.00	My kNm	
Spinta dovuta al sisma Combinazioni SLE-RARA				0.00 M x	-	
Spinta dovuta al sisma Combinazioni SLE-RARA Combinazione SLE-RARA				0.00 Mx kNm 357.4	kNm 612.2	
Spinta dovuta al sisma Combinazioni SLE-RARA Combinazione SLE-RARA Tasso di lavoro armature orizzontali			σsh	0.00 Mx kNm 357.4 Mpa	kNm 612.2	
Spinta dovuta al sisma Combinazioni SLE-RARA Combinazione SLE-RARA			σsh σsv	0.00 Mx kNm 357.4	kNm 612.2	

0.30

222

38%

204

68%

w2

OK!

OK!

mm

MPa

MPa

wlim

 σ slim

c.u.

 σslim

c.u.

LAVORO: SS131 - SPALLA SU PALI - VI05 SPALLA B CARREGGIATA DESTRA Calcolo e Verifica dei muri di risvolto

Tensione massima ammissibile	σs,max	MPa	360	
coefficiente di utilizzo armature orizzontali - Stato limite limitazione tensioni	c.u.		26%	OK!
coefficiente di utilizzo armature verticali - Stato limite limitazione tensioni	c.u.		43%	OK!
VERIFICHE SLE-FREQUENTE				
		fattori pa	ziali per a	zioni
Condizione di carico		SLE-FRE		
Spinta del terreno		1.00		
Spinta sovraccarichi accidentali		0.75		
Spinta dovuta al sisma		0.00		
Combinazioni SLE-FREQUENTE		Mx	My	
Combinazione		kNm	kNm	
SLE-FRE		315.4	548.4	
Tasso di lavoro armature orizzontali	σsh	Мра	84	
Tasso di lavoro armature verticali	σsv	Мра	139	
rasso di lavoro affiature verticali	034	ivipa	133	

20.0 (arm.orizzontale)

24.0 (arm.verticale)

VERIFICHE SLE-QUASI PERMANENTE

Tensione limite ammissibile per barre f

Tensione limite ammissibile per barre f

valore limite di apertura delle fessure per armatura poco sensibile

coefficiente di utilizzo - Stato limite di apertura delle fessure

coefficiente di utilizzo - Stato limite di apertura delle fessure

Condizione di carico	fattori parziali per azioni SLE-QP
Spinta del terreno	1.00
Spinta sovraccarichi accidentali	0.00
Spinta dovuta al sisma	0.00
Combinazioni SLE-QUASI PERMANENTE	Mx My
Combinazione	kNm kNm
SLE-QP	189.5 357.1
Tasso di lavoro armature orizzontali	σsh Mpa 51
Tasso di lavoro armature verticali	σsv Mpa 90
valore limite di apertura delle fessure per armatura poco sensibile	wlim mm 0.20 w1
Tensione limite ammissibile per barre f 20.0 (arm.orizzontale)	σslim MPa 182
coefficiente di utilizzo - Stato limite di apertura delle fessure	c.u. 28% OK
Tensione limite ammissibile per barre f 24.0 (arm.verticale)	σslim MPa 164
coefficiente di utilizzo - Stato limite di apertura delle fessure	c.u. 55% OK

LAVORO: SS4 - SPALLA SU PALI - PO02 - SPALLA A Verifica bandiera muri di risvolto

Deti				!43	
Dati			var	unità	0.00
Altezza bandiera - parte a lunghezza costante Altezza bandiera - parte a lunghezza variabile			h1 h2	m	0.00 0.00
spessore bandiera			sban	m m	0.00
lunghezza bandiera			Lban	m	0.75
copriferro			С	m	0.07
resistenza di calcolo acciaio armatura			fyd	MPa	391
Classe di esposizione			CIE	IVII a	XC4
Condizioni ambientali			Cond_Am		Aggressive
Effetti dovuti alla spinta delle terre					
pressione alla base della parte a lunghezza costante			sht1	kPa	0.00
pressione alla base della parte a lunghezza costante			sht2	kPa	0.00
Sforzo di taglio nella parte a lunghezza costante			Vt1	kN	0.00
Momento flettente nella parte a lunghezza costante			Mt1	kNm	0.00
Sforzo di taglio nella parte a lunghezza variabile			Vt2	kN	0.00
Momento flettente nella parte a lunghezza variabile			Mt2	kNm	0.00
momento notonto nona parto a languezza variabilo					0.00
Effetti dovuti al sovraccarico accidentale					
sovraccarico accidentale sul piano viario			q	kPa	20
pressione dovuta al sovraccarico accidentale			sq	kPa	8.53
Sforzo di taglio nella parte a lunghezza costante			Vq1	kN	0.00
Momento flettente nella parte a lunghezza costante			Mq1	kNm	0.00
Sforzo di taglio nella parte a lunghezza variabile			Vq2	kN	0.00
Momento flettente nella parte a lunghezza variabile			Mq2	kNm	0.00
Effetti dovuti al sisma					
spinta inerziale unitaria			ss1	kPa	6.23
Sforzo di taglio nella parte a lunghezza costante			Vs1	kN	0.00
Momento flettente nella parte a lunghezza costante			Ms1	kNm	0.00
Sforzo di taglio nella parte a lunghezza variabile			Vs2	kN	0.00
Momento flettente nella parte a lunghezza variabile			Ms2	kNm	0.00
incremento di spinta del terreno unitario			ss2	kPa	0.00
Sforzo di taglio nella parte a lunghezza costante			Vs3	kN	0.00
Momento flettente nella parte a lunghezza costante			Ms3	kNm	0.00
Sforzo di taglio nella parte a lunghezza variabile			Vs4	kN	0.00
Momento flettente nella parte a lunghezza variabile			Ms4	kNm	0.00
Sollecitazioni all'incastro della bandiera				V	М
Condizione				kN	kNm
Spinta delle terre				0.0	0.0
Spinta dovuta al sovraccarico accidentale				0.0	0.0
Sisma - forze inerziali				0.0	0.0
Sisma - incremento di spinta delle terre				0.0	0.0
Armatura orizzontale zona tesa orecchia	passo	n.barre	ф	С	As
sezione di larghezza unitaria	cm	1.0/passo		m	mmq
primo strato	20	5	16	0.068	1005
secondo strato	0	0	16	0.114	0
Armatura effettivamente disposta			16	0.068	1005
·					

VERIFICHE SLU

	fattori parziali per azioni
Condizione di carico	SLU-STR SLU-SIS
Spinta delle terre	1.35 1.00
Spinta dovuta al sovraccarico accidentale	1.35 0.00
Sisma - forze inerziali	0.00 1.00
Sisma - incremento di spinta delle terre	0.00 1.00
Combinazioni SLU-STR	V M
Combinazione	kN kN
SLU-STR	0.0 0.0
SLU-SIS	0.0 0.0

LAVORO: SS4 - SPALLA SU PALI - PO02 - SPALLA A Verifica bandiera muri di risvolto

Armatura minima richiesta	Afs_min	mmq/ml	0	
Armatura effettivamente adottata:	Afs	mmq	1005	OK!
Momento Resistente	MR_sup	kNm/ml	241	OK
Coefficiente di utilizzo	c.u.	KINIII/IIII	0%	OK!
poemolenie di dunizzo	C.u.		0 /6	UK
ERIFICHE SLE-RARA		fattori nar	ziali nor a	zioni
Condizione di carico		fattori para SLE-RARA	-	ZIOIII
Spinta delle terre		1.00		
Spinta dovuta al sovraccarico accidentale		1.00		
Sisma - forze inerziali		0.00		
Sisma - incremento di spinta delle terre		0.00		
Combinazioni SLE-RARA		V	М	
Combinazione		kN	kNm	
SLE-RARA		0.0	0.0	
asso di lavoro armature superiori	σs	Мра	0	
ensione massima ammissibile	σs,max	MPa	360	
coefficiente di utilizzo armature - Stato limite limitazione tensioni	C.U.	🐱	0%	OK!
ERIFICHE SLE-FREQUENTE		fattori para	ziali per a	zioni
Condizione di carico		SLE-FRE		
Spinta delle terre		1.00		
Spinta dovuta al sovraccarico accidentale		0.75		
Sisma - forze inerziali		0.00		
Sisma - incremento di spinta delle terre		0.00		
Combinazioni SLE-FREQUENTE		V	M	
Combinazione		kN	kNm	
CLE-FRE		0.0	0.0	
asso di lavoro armature superiori	σs	Мра	0	
alore limite di apertura delle fessure per armatura poco sensibile	wlim	mm	0.30	w2
ensione limite ammissibile per barre f 16.0	σslim	MPa	240	
oefficiente di utilizzo - Stato limite di apertura delle fessure	c.u.		0%	OK
- Clare S. Sportala dollo 1000410				
· ·				
/ERIFICHE SLE-QUASI PERMANENTE		fattori para	ziali per a	zioni
/ERIFICHE SLE-QUASI PERMANENTE		SLE-QP	ziali per a	zioni
VERIFICHE SLE-QUASI PERMANENTE Condizione di carico Spinta delle terre		1.00	ziali per a	zioni
VERIFICHE SLE-QUASI PERMANENTE Condizione di carico Spinta delle terre Spinta dovuta al sovraccarico accidentale		1.00 0.00	ziali per a	zioni
VERIFICHE SLE-QUASI PERMANENTE Condizione di carico Spinta delle terre Spinta dovuta al sovraccarico accidentale Sisma - forze inerziali		1.00 0.00 0.00	ziali per a	zioni
Condizione di carico Spinta delle terre Spinta dovuta al sovraccarico accidentale Sisma - forze inerziali Sisma - incremento di spinta delle terre		SLE-QP 1.00 0.00 0.00 0.00	ziali per a	zioni
Condizione di carico Spinta delle terre Spinta dovuta al sovraccarico accidentale Sisma - forze inerziali Sisma - incremento di spinta delle terre Combinazioni SLE-QUASI PERMANENTE		1.00 0.00 0.00	M	zioni
Combinazione	SLE-QP 1.00 0.00 0.00 0.00	<u> </u>	zioni	
Condizione di carico Spinta delle terre Spinta dovuta al sovraccarico accidentale Sisma - forze inerziali Sisma - incremento di spinta delle terre		1.00 0.00 0.00 0.00 V	M	zioni
PERIFICHE SLE-QUASI PERMANENTE Condizione di carico Spinta delle terre Spinta dovuta al sovraccarico accidentale Sisma - forze inerziali Sisma - incremento di spinta delle terre Combinazioni SLE-QUASI PERMANENTE Combinazione SLE-QP	σs	\$LE-QP 1.00 0.00 0.00 0.00 V kN	M kNm	zioni
erifiche sle-quasi permanente ondizione di carico pinta delle terre pinta dovuta al sovraccarico accidentale isma - forze inerziali isma - incremento di spinta delle terre combinazioni sle-quasi permanente combinazione LE-QP asso di lavoro armature superiori		SLE-QP 1.00 0.00 0.00 0.00 V kN 0.00	M kNm 0.0	z ioni w1
Combinazione σs	\$LE-QP 1.00 0.00 0.00 0.00 V kN 0.00	M kNm 0.0		

			Zattera -				
			Mensola				
Sollecitazioni di calcolo	Var	unità kN	posteriore	Mfron	Paraghiaia	Mrisv_h	Mrisv_v
Taglio di calcolo	V _{Ed}	KN	1103.2	507.6	142.3	463.8	771.2
Dati	Var	unità					
Resistenza a compressione cubica caratteristica	Rck	Мра	30	40	40	40	40
Resistenza a compressione cilindrica caratteristica	fck	Mpa	25	32	32	32	32
Coefficiente parziale γ c	γс		1.50	1.50	1.50	1.50	1.50
Coefficiente parziale αcc	αςς		0.85	0.85	0.85	0.85	0.85
Resistenza a compressione di calcolo	fcd	Mpa	14.2	18.1	18.1	18.1	18.1
Tensione caratteristica di snervamento acciaio di armatura	fyk	Мра	450	450	450	450	450
tensione di calcolo acciaio	fywd	Mpa	391.3	391.3	391.3	391.3	391.3
Caratteristiche geometriche sezione							
Altezza (porre = 0 in caso di sezione circolare)	Н	m	2.00	1.90	0.60	0.75	0.75
Larghezza/ Diametro	В	m	1.00	1.00	1.00	1.00	1.00
Area calcestruzzo	Ac	m^2	2.00	1.90	0.60	0.75	0.75
Larghezza anima	bw	m	1.00	1.00	1.00	1.00	1.00
copriferro	C	m	0.112	0.081	0.076	0.087	0.102
altezza utile della sezione	d	m	1.89	1.82	0.52	0.66	0.65
Compressione agente nella sezione							
Sforzo normale di calcolo	N_{Ed}	kN	0.0	0.0	0.0	0.0	0.0
Elementi senza armature trasversali resistenti al taglio							
Area dell'armatura longitudinale di trazione ancorata al di là							
dell'intersezione dell'asse dell'armatura con una eventuale fessura a	A . I		10010	5000	04.40	0000	0700
45° che si inneschi nella sezione considerata	Asl	mmq	10619	5309	3142	6283	6786
Coefficiente k vmin	k vmin	m	1.33 0.3	1.33 0.3	1.62 0.4	1.55 0.4	1.56 0.4
rapporto geometrico di armatura longitudinale	ρ1		0.00562	0.00292	0.00600	0.00948	0.01047
tensione media di compressione nella sezione	σср	Мра	0.00	0.00	0.00	0.00	0.00
Resistenza a taglio	V_{Rd}	kN	724.8	612.1	272.3	384.4	390.0
Floring Comment of the Comment of th			N.V.	OK	ок	N.V.	N.V.
Elementi con armature trasversali resistenti al taglio Verifica del conglomerato							
	V_{Rcd}	kN	9024.0	9895.4	2050.6	2606.7	3525.1
Resistenza a taglio del conglomerato	V Rcd	KIN	8024.0	9095.4	2850.6	3606.7	3525.1
Verifica dell'armatura trasversale							
diametro staffe	fsw	mm	24	12	10	14	14
passo staffe	scp	m	1.20	0.40	0.40	0.20	0.20
numero di bracci	nb		2.5	2.5	2.5	2.5	2.5
Armatura a taglio (staffe)	Asw	mmq	1131	283	196	385	385
Inclinazione dell'armatura trasversale rispetto all'asse della trave	α	deg	90	90	90	90	90
Inclinazione dei puntoni in cls rispetto all'asse della trave	θ	deg	21.8	21.8	21.8	21.8	21.8
tensione media di compressione nella sezione	σср	kPa	0	0	0	0	0
coefficiente alpha	α_{c}		1.00	1.00	1.00	1.00	1.00
Resistenza a "taglio trazione"	V_{Rsd}	kN	1566.8	1132.1	226.5	1123.3	1097.9
Resistenza a "taglio compressione"	V_{Rcd}	kN	4150.1	5118.0	1474.4	1865.4	1823.2
Resistenza a taglio	V _{Rd}	kN	1566.8	1132.1	226.5	1123.3	1097.9
			OK	OK	OK	OK	ОК

S.S.4 "SALARIA"

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

17 ALLEGATO 6 - FONDAZIONI SU PALI - VERIFICHE SLU DI COLLASSO PER CARICO LIMITE DEL PALO SINGOLO E DELLA PALIFICATA PER CARICHI ASSIALI

T00VI02STRRE01A.docx 109 di 111

LAVORO: SS4 CITTADUCALE OPERA: ALLINEAMENTI: SPALLE PO02 RESISTENZA DI UN PALO TRIVELLATO SOGGETTO AD AZIONI ASSIALI DI COMPRESSIONE/TRAZIONE VALORI DEI PARAMETRI GEOTECNICI: **MEDI**

Rcd = Rbd + Rsd - Wp II valore di progetto Rtd	dalla Basia	tonzo di noli i	ooggotti o oo	riohi oppiali d	li traziana à nari	0.				
Rtd = 0.7 Rsd + Wp	uella INESIS	teriza di pali s	soggetti a ca	ilicili assiali (ii iiazione e pan	a.				
in cui:										
Rbd = Rbk / γb:			Resistenza alla base di progetto							
Rsd = Rsk / γ s:				a laterale di proq						
Rbk = Min [(Rbc,cal) _{medi}	. / £3: (Rbc	.cal) _{min} / 84			a alla punta cara					
Rsk = Min [(Rsc,cal) _{medi}					a laterale caratte					
Rsc.calc = Qb:	1. 50, (1.00,	/min / S*			a alla base di cal					
Rsc.calc = Qs:					a laterale di calco					
Wp:					io del palo alleg					
I Coefficienti parziali gR	da applica	e alle	Pali	Pali	Pali ad elica					
resistenze Rk a carico v	erticale sor	no forniti	infissi	trivellati	continua					
dalla presente tabella:		γR	(R3)	(R3)	(R3)					
			1	2	3					
Base		γь	1.15	1.35	1.30					
Laterale in compression	е	γ_{s}	1.15	1.15	1.15					
Totale (*)		γ	1.15	1.30	1.25					
Laterale in trazione		γst	1.25	1.25	1.25					
I Fattori di correlazione	per la det	erminazione d	della resister	nza caratteris	stica					
in funzione del numero d	di verticali ir	ndagate sono	dati dalla se	eguente tabe	lla					
n. Vert. 1	2	3	4	5	7	10				
ξ_3 1.70	1.65	1.60	1.55	1.50	1.45	1.40				
ξ ₄ 1.70	1.55	1.48	1.42	1.34	1.28	1.21				

reso	aeı	paio

Si considera il peso del palo dovuto alla differenza tra il peso di volume del cls e quello del volume di terreno asportato:

LIVELLO DELLA FALDA E AFF. DELLA TESTA DEL PALO (DA P.C.)

 $Wp(z) = (\gamma_{cls} - \gamma_{nat}) Ap \Delta z$

CARATTERISTICHE GEOMETRICHE DEL PALO	unità	var	
Diametro palo	m		1.20
Superficie resistente alla base	mq	Ab	1.13
Superficie laterale per lunghezza unitaria	mq	As	3.77
peso specifico del palo	kN/m ³	γp	25.00
·			

unità

var

La Resistenza alla base di calcolo è pari a: $Qb = qb \times Ab$

dove:

Ab: Area della superficie di base del palo

qb: resistenza unitaria alla base appresso specificata per terreni

coesivi e granulari

La Resistenza laterale di calcolo è pari a:

 $Qs = As \times \Sigma (qsi \times dzi)$

dove:

Area della superficie laterale del palo resistenza laterale unitaria dell'iesimo strato

altezza dell'iesimo strato dzi:

Terreni coesivi (c<>0)

Il calcolo è svolto in termini di Tensioni Totali

Resistenza unitaria alla base

La resistenza alla base viene espressa come:

 $qb = \sigma v + 9 c_u$

Resistenza laterale unitaria

con:

 α variabile in funzione di cu secondo la seguente tabella [AGI]

cu (kPa)	α
<=25	0.9
da 26 a 50	0.8
da 50 a 75	0.6
>75	0.4

In ogni caso non viene superato il valore limite di:

qs,max = 100 kPa (AGI 1984).

Terreni granulari (c' = 0, b' <> 0)

Il calcolo è svolto in termini di Tensioni Efficaci

Resistenza unitaria alla base

In accordo alla teoria di Berenzantsev(*):

 $qb = Nq^* \times \sigma'v$

Nq*: coefficiente di capacità portante corrispondente all'insorgere

delle prime deformazioni plastiche (dp = 0,06-0,1 D)

In ogni caso viene assunto per qp il valore limite qp, max pari al minimo

tra i valori forniti dalla seguente espressione:

 $qbmax1 = Nspt x \alpha_N$

α_N = 150 per Ghiaie, 120 per Sabbie e 85 per Sabbie limose [Gwizdala (1984), Reese & O'Neill (1988), Matsui (1993)]

e dalla seguente tabella

Ghiaie: qb,max = 7500 kPaSabbie: qb,max = 5800 kPaSabbie limose: qb,max = 4300 kPa

Resistenza laterale unitaria

 $ql = \beta \sigma' v$

 $1.20 >= \beta = 1.50 - 0.42 z^{0.34} >= 0.25$ per i depositi sabbiosi

 $1.80 >= \beta = 2.0 - 0.15 \text{ z}^{0.75} >= 0.25$ per i depositi sabbioso-ghiaiosi e ghiaiosi In ogni caso non viene superato il valore limite di gl,max, ricavabile

R3

dalle seguenti espressioni per pali trivellati con uso di fanghi

(Reese&Wright 1977):

gsmax = 3 x Nspt

per Nspt <= 53

qsmax = 142 + 0.32 x Nspt per Nspt > 53

SOVRACCARICO A PIANO TESTA PALO

Tensione totale in testa palo	kPa	σvi	46.3
Tensione efficace in testa palo	kPa	σv'i	46.3

Metodologia realizzativa (1 = Pali infissi; 2 = Pali trivellati; 3 =pali ad elica)						
coefficiente γb	1.35					
coefficiente γs	1.15					

FATTORI DI CORREI AZIONE RESISTENZA CARATTERISTICA

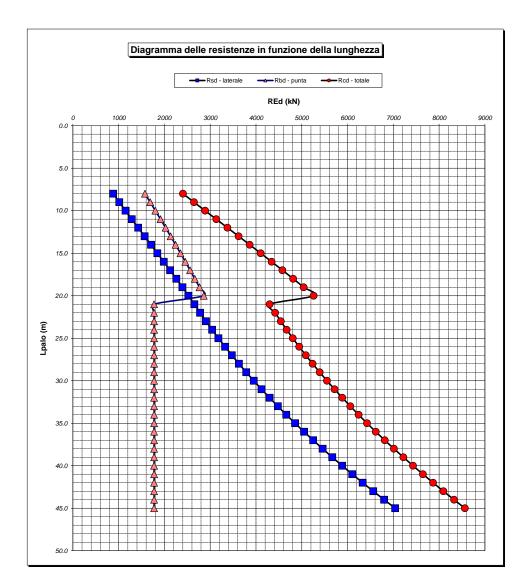
TATION DI CONNELLALIONE REGIOTENEA CANATTERIOTICA		
Valori dei parametri geotecnici (MEDI - MINIMI)	MEDI	
Numero delle verticali indagate spinte a profondità superiore della lunghezza dei pali	1	
coefficients #	1.70	

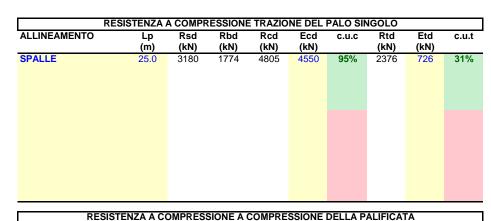
STRATIGRAFIA DI PROGETTO (DA p.c.)

COMBINAZIONE M1

Unità	DESCRIZIONE	DA	Α	Tip	cuk - quk	φ'k	γcu	γφ'	cud-qud	φ'd	γ	Nspt	ql,max	α_{N}	Nspt*α _N	qp,max	Nspt
n.		m	m		kPa	deg			kPa	deg	kN/m ³	side	kPa			kPa	base
1	SLm	0.0	3.0	С	110		1.00	1.00	110.0	0.0	18.5		100			4000	
2	G	3.0	23.0	S		38.0	1.00	1.00	0.0	38.0	19.5	100	174	120	12000	5800	100
3	SG	23.0	60.0	S		36.0	1.00	1.00	0.0	36.0	20.5	65	163	120	3600	3600	30
4																	
5																	
6																	
7																	
8																	

Tip = C: Terreni coesivi - S: sabbie - G: ghiaie - SL: sabbie limose - R: roccia


Profondità della falda da piano di campagna ZW 2.50 Affondamento della testa del palo da piano di compagna 2.50 m ztp


N.B. Per palo che emerge da p.c. valore negativo

LAVORO: SS4 CITTADUCALE OPERA: PO02 ALLINEAMENTI: SPALLE RESISTENZA DI UN PALO TRIVELLATO SOGGETTO AD AZIONI ASSIALI DI COMPRESSIONE/TRAZIONE VALORI DEI PARAMETRI GEOTECNICI: MEDI

	Tip	z	Lp	cud - qud	φ'd	γ	γ'	qa	σv	σv'	В	qs,max	qs	Qs	Ng*	9*cu	qb,max	qb	Qb	Rsd	Rbd	Wp	Rcd	Rtd
Unità	116	m m	(m)	kPa	deg	kN/m³	kN/m³	kPa	kPa	kPa	P	kPa	kPa	kN		kPa	kPa	kPa	kN	kN	kN	kN	kN	kN
1	С	2.5	0.0	III G	l	18.5	18.5	INI U	46.3	46.3		Ni u	I I	1014		I I	N. U	- Ni W	M	13.13	1114	0	IM V	
2	S	3.5	1.0	0.0	38.0	19.5	9.7	0.0	65.8	55.9	0.857	174	43.8	165	26.7		5800	1494.8	1691	84	737	6	815	65
2	S	4.5	2.0	0.0	38.0	19.5	9.7	0.0	85.3	65.6	0.800	174	48.6	348	26.6		5800	1745.1	1974	178	860	12	1026	137
2	S	5.5	3.0	0.0	38.0	19.5	9.7	0.0	104.8	75.3	0.750	174	52.9	548	26.5		5800	1992.8	2254	280	982	19	1244	215
2	S	6.5	4.0	0.0	38.0	19.5	9.7	0.0	124.3	85.0	0.706	174	56.6	761	26.3		5800	2238.0	2531	389	1103	25	1467	297
2	S	7.5	5.0	0.0	38.0	19.5	9.7	0.0	143.8	94.7	0.667	174	59.9	987	26.2		5800	2480.7	2806	505	1222	31	1696	384
2	S	8.5	6.0	0.0	38.0	19.5	9.7	0.0	163.3	104.4	0.631	174	62.8	1224	26.1		5800	2720.9	3077	626	1341	37	1929	475
2	S	9.5	7.0	0.0	38.0	19.5	9.7	0.0	182.8	114.1	0.597	174	65.2	1469	25.9		5800	2958.5	3346	752	1458	44	2166	570
2	S	10.5	8.0	0.0	38.0	19.5	9.7	0.0	202.3	123.8	0.566	174	67.3	1723	25.8		5800	3193.5	3612	881	1574	50	2405	667
2	S	11.5	9.0	0.0	38.0	19.5	9.7	0.0	221.8	133.5	0.536	174	69.0	1983	25.7		5800	3426.0	3875	1014	1688	56	2647	766
2	S	12.5	10.0	0.0	38.0	19.5	9.7	0.0	241.3	143.2	0.509	174	70.4	2248	25.5		5800	3656.0	4135	1150	1802	62	2890	867
2	S	13.5	11.0	0.0	38.0	19.5	9.7	0.0	260.8	152.8	0.482	174	71.4	2518	25.4		5800	3883.4	4392	1288	1914	68	3133	970
2	S	14.5	12.0	0.0	38.0	19.5	9.7	0.0	280.3	162.5	0.457	174	72.1	2789	25.3		5800	4108.3	4646	1427	2025	75	3377	1073
2	S	15.5	13.0	0.0	38.0	19.5	9.7	0.0	299.8	172.2	0.433	174	72.6	3063	25.1		5800	4330.6	4898	1567	2134	81	3620	1178
2	S	16.5	14.0	0.0	38.0	19.5	9.7	0.0	319.3	181.9	0.411	174	72.7	3337	25.0		5800	4550.4	5146	1707	2242	87	3862	1282
2	S	17.5	15.0	0.0	38.0	19.5	9.7	0.0	338.8	191.6	0.389	174	72.6	3611	24.9		5800	4767.6	5392	1847	2349	93	4103	1386
2	S	18.5	16.0	0.0	38.0	19.5	9.7	0.0	358.3	201.3	0.367	174	72.2	3883	24.8		5800	4982.3	5635	1986	2455	100	4342	1490
2	S	19.5	17.0	0.0	38.0	19.5	9.7	0.0	377.8	211.0	0.347	174	71.5	4152	24.6		5800	5194.5	5875	2124	2560	106	4578	1593
2	S	20.5	18.0	0.0	38.0	19.5	9.7	0.0	397.3	220.7	0.327	174	70.6	4418	24.5		5800	5404.1	6112	2260	2663	112	4811	1694
2	S	21.5	19.0	0.0	38.0	19.5	9.7	0.0	416.8	230.4	0.308	174	69.5	4680	24.4		5800	5611.1	6346	2394	2765	118	5041	1794
2	S	22.5	20.0	0.0	38.0	19.5	9.7	0.0	436.3	240.1	0.289	174	68.1	4937	24.2		5800	5800.0	6560	2525	2858	124	5259	1892
3	S	23.5	21.0	0.0	36.0	20.5	10.7	0.0	456.8	250.7	0.271	163	66.6	5188	18.9		3600	3600.0	4072	2654	1774	129	4298	1987
3	S	24.5	22.0	0.0	36.0	20.5	10.7	0.0	477.3	261.4	0.254	163	65.0	5433	18.8		3600	3600.0	4072	2779	1774	135	4419	2080
3	S	25.5	23.0	0.0	36.0	20.5	10.7	0.0	497.8	272.1	0.250	163	66.7	5685	18.7		3600	3600.0	4072	2908	1774	140	4542	2175
3	S	26.5	24.0	0.0	36.0	20.5	10.7	0.0	518.3	282.8	0.250	163	69.4	5946	18.6		3600	3600.0	4072	3041	1774	145	4671	2274
3	S	27.5	25.0	0.0	36.0	20.5	10.7	0.0	538.8	293.5	0.250	163	72.0	6218	18.4		3600	3600.0	4072	3180	1774	150	4805	2376
3	S	28.5	26.0	0.0	36.0	20.5	10.7	0.0	559.3	304.2	0.250	163	74.7	6499	18.3		3600	3600.0	4072	3324	1774	155	4944	2482
3	S	29.5	27.0	0.0	36.0	20.5	10.7	0.0	579.8	314.9	0.250	163	77.4	6791	18.2		3600	3600.0	4072	3474	1774	160	5088	2592
3	S	30.5	28.0	0.0	36.0	20.5	10.7	0.0	600.3	325.6	0.250	163	80.1	7093	18.1		3600	3600.0	4072	3628	1774	165	5237	2705
3	S	31.5	29.0	0.0	36.0	20.5	10.7	0.0	620.8	336.3	0.250	163	82.7	7405	18.0		3600	3600.0	4072	3788	1774	170	5391	2822
3	S	32.5	30.0	0.0	36.0	20.5	10.7	0.0	641.3	347.0	0.250	163	85.4	7727	17.9		3600	3600.0	4072	3952	1774	175	5551	2942
3	S	33.5	31.0	0.0	36.0	20.5	10.7	0.0	661.8	357.6	0.250	163	88.1	8059	17.8		3600	3600.0	4072	4122	1774	180	5716	3066
3	S	34.5	32.0	0.0	36.0	20.5	10.7	0.0	682.3	368.3	0.250	163	90.7	8401	17.6		3600	3600.0	4072	4297	1774	185	5886	3193
3	S	35.5	33.0	0.0	36.0	20.5	10.7	0.0	702.8	379.0	0.250	163	93.4	8753	17.5		3600	3600.0	4072	4477	1774	191	6061	3325
3	S	36.5	34.0	0.0	36.0	20.5	10.7	0.0	723.3	389.7	0.250	163	96.1	9115	17.4		3600	3600.0	4072	4663	1774	196	6241	3459
3	S	37.5	35.0	0.0	36.0	20.5	10.7	0.0	743.8	400.4	0.250	163	98.8	9488	17.3		3600	3600.0	4072	4853	1774	201	6426	3598
3	S	38.5	36.0	0.0	36.0	20.5	10.7	0.0	764.3	411.1	0.250	163	101.4	9870	17.2		3600	3600.0	4072	5049	1774	206	6617	3740
3	S	39.5	37.0	0.0	36.0	20.5	10.7	0.0	784.8	421.8	0.250	163	104.1	10262	17.2		3600	3600.0	4072	5249	1774	211	6812	3885
3	S	40.5	38.0	0.0	36.0	20.5	10.7	0.0	805.3	432.5	0.250	163	106.8	10665	17.2		3600	3600.0	4072	5455	1774	216	7013	4035
3	S	41.5	39.0	0.0	36.0	20.5	10.7	0.0	825.8	443.2	0.250	163	109.5	11078	17.2		3600	3600.0	4072	5666	1774	221	7219	4188
3	S	42.5	40.0	0.0	36.0	20.5	10.7	0.0	846.3	453.9	0.250	163	112.1	11500	17.2		3600	3600.0	4072	5883	1774	226	7430	4344
3	S	43.5	41.0	0.0	36.0	20.5	10.7	0.0	866.8	464.5	0.250	163	114.8	11933	17.2		3600	3600.0	4072	6104	1774	231	7647	4504
3	S	44.5	42.0	0.0	36.0	20.5	10.7	0.0	887.3	475.2	0.250	163	117.5	12376	17.2		3600	3600.0	4072	6330	1774	236	7868	4668
3	S	45.5	43.0	0.0	36.0	20.5	10.7	0.0	907.8	485.9	0.250	163	120.1	12829	17.2		3600	3600.0	4072	6562	1774	241	8095	4835
3	S	46.5	44.0	0.0	36.0	20.5	10.7	0.0	928.3	496.6	0.250	163	122.8	13292	17.2		3600	3600.0	4072	6799	1774	247	8326	5006
3	S	47.5	45.0	0.0	36.0	20.5	10.7	0.0	948.8	507.3	0.250	163	125.5	13765	17.2		3600	3600.0	4072	7041	1774	252	8563	5180

ALLINEAMENTI: SPALLE **VALORI DEI PARAMETRI GEOTECNICI:** MEDI

La resistenza ai carichi assiali di compressione del gruppo Rcd,gr viene determinata in base alla seguente espressione:

Rcd,gr = npali x η x Rcd

in cui: npali:

Rcd

è il numero complessivo di pali presenti nella palificata

efficienza della palificata

L'efficienza della pa Resistenza di progetto del palo singolo ai carichi assiali di compressione

Relativamente ai terreni coesivi aventi interasse tra i pali non inferiore a 3D, l'efficienza viene determinata mediante la nota espressione di Converse- Labarre:

 $\arctan(d/i)(m-1)n+(n-1)m$

nella quale: interasse tra i pali diametro dei pali numero di file

numero massimo di pali in ciascuna fila

RESISTENZA DELLA PALIFICATA

ALLINEAMENTO	Dp	i	npali	m	n	η	Rcd,gr	Ecd,gr	c.u.gr
	(m)	(m)					(kN)	(kN)	
SPALLE	1.20	3.60	15	3	5	0.70	50418	43750	87%

S.S.4 "SALARIA"

Adeguamento nel tratto tra Rieti e Sigillo - 3° Lotto 1° Stralcio - Tratto di adeguamento in sede e in variante dal km 83+400 al km 87+400

RM8401

Relazione tecnica e di calcolo PO02

18 ALLEGATO 7 - FONDAZIONI SU PALI - VERIFICHE SLU DI COLLASSO PER CARICO LIMITE DEL PALO SINGOLO E DELLA PALIFICATA PER CARICHI TRASVERSALI

T00VI02STRRE01A.docx 110 di 111

PO02

SPALLE

OPERA:

ALLINEAMENTI:

LAVORO: SS4 CITTADUCALE RESISTENZA DI UN PALO SOGGETTO AD AZIONI TRASVERSALI

Il valore di progetto Rcd della Resistenza di pali soggetti a carichi trasversali ${f Rtr,d}$ è pari a:

 $\begin{array}{ll} \text{Rtr,d} = \text{Rtr,k} \ / \ \gamma \text{T}: & \text{Resistenza ai carichi trasversali di progetto} \\ \text{Rtr,k} = \text{Min} \left[\left(\text{Rtr,cal} \right)_{\text{media}} \ / \ \xi 3; \left(\text{Rtr,cal} \right)_{\text{min}} \ / \ \xi 4 & \text{Resistenza ai carichi trasversali caratteristica} \\ \text{Rtr,calc} = \text{Hlim:} & \text{Resistenza ai carichi trasversali di calcolo} \\ \end{array}$

Il coefficiente parziale γ_T per verifiche SLU di pali soggetti ad azioni trasversali è pari a:

Coefficiente parziale (R3) γ_T 1.30

La resistenza ai carichi trasversali di calcolo è valutata in accordo a Broms (1984):

Terreni coesivi:

palo corto: Hlim = 9 cu D (L - 1.5 D)

palo intermedio: Hlim = -9 cu D^2 (L/D + 1.5) + 9 cu D^2 (2 (L/D)² + 4/9 My /(cu D^3) + 4.5)^{0.5}

palo lungo: Hlim = -13.5 cu D^2 + cu D^2 (182.25 + 36 My /(cu D^3))^{0.5}

Terreni incoerenti:

palo lungo: Hlim = Kp γ' D³ ((3.681 My / (Kp γ' D⁴))²)^{1/3}

I Fattori di correlazione $\boldsymbol{\xi}$ per la determinazione della resistenza caratteristica

in funzione del numero di verticali indagate sono dati dalla seguente tabella

n. Vert.	1	2	3	4	5	7	10	
ξ_3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	
ξ ₄	1.70	1.55	1.48	1.42	1.34	1.28	1.21	

CARATTERISTICHE GEOMETRICHE DEL PALO

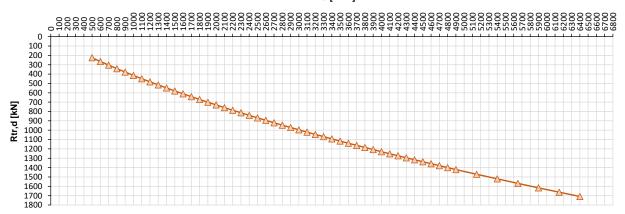
Dia	netro del palo	D	m	1.20	
Lur	ghezza minima del palo	L	m	25.00	

FATTORI DI CORRELAZIONE RESISTENZA CARATTERISTICA

Numero delle verticali indagate spinte a profondità superiore della lunghezza dei pali	1
coefficiente ξ3	1.70
coefficiente ξ4	1.70

PARAMETRI GEOTECNICI

	TERRENI COE	SIVI	TERRENI INCOERENTI						
DESCRIZIONE	cu,med kPa	γ',med kN/m³	φ'med deg	kp,med	γ',min kN/m³	φ'min deg	kp,min		
SLm	110.0			1.00			1.00		


^{*} Per terreni incoerenti impostare cu,med = cu,min = ""

		PA	RAMETRI ME	EDI			PAF	RAMETRI MII	NIMI		
	palo corto	palo intermedio	palo lungo			palo corto	palo intermedio	palo lungo			
My=MRd	H _{lim1,med}	$H_{lim2,med}$	$H_{lim3,med}$	H _{lim}	Rtr,d _{med}	$H_{lim1,min}$	$H_{lim2,min}$	H _{lim3,min}	H _{lim}	Rtr,d _{min}	Rtr,d
(kNm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
500	27562	10301	498	498	225	27562	10301	498	498	225	225
600	27562	10306	586	586	265	27562	10306	586	586	265	265
700	27562	10312	672	672	304	27562	10312	672	672	304	304
800	27562	10318	755	755	342	27562	10318	755	755	342	342
900	27562	10323	836	836	378	27562	10323	836	836	378	378
1000	27562	10329	915	915	414	27562	10329	915	915	414	414
1100	27562	10334	992	992	449	27562	10334	992	992	449	449
1200	27562	10340	1067	1067	483	27562	10340	1067	1067	483	483
1300	27562	10346	1140	1140	516	27562	10346	1140	1140	516	516
1400	27562	10351	1212	1212	548	27562	10351	1212	1212	548	548
1500	27562	10357	1282	1282	580	27562	10357	1282	1282	580	580
1600	27562	10363	1351	1351	611	27562	10363	1351	1351	611	611
1700	27562	10368	1418	1418	642	27562	10368	1418	1418	642	642
1800	27562	10374	1485	1485	672	27562	10374	1485	1485	672	672
1900	27562	10380	1550	1550	701	27562	10380	1550	1550	701	701
2000	27562	10385	1614	1614	730	27562	10385	1614	1614	730	730
2100	27562	10391	1676	1676	759	27562	10391	1676	1676	759	759
2200	27562	10396	1738	1738	786	27562	10396	1738	1738	786	786
2300	27562	10402	1799	1799	814	27562	10402	1799	1799	814	814
2400	27562	10408	1859	1859	841	27562	10408	1859	1859	841	841
2500	27562	10413	1918	1918	868	27562	10413	1918	1918	868	868
2600	27562	10419	1976	1976	894	27562	10419	1976	1976	894	894
2700	27562	10425	2033	2033	920	27562	10425	2033	2033	920	920
2800	27562	10430	2090	2090	946	27562	10430	2090	2090	946	946
2900	27562	10436	2146	2146	971	27562	10436	2146	2146	971	971
3000	27562	10441	2201	2201	996	27562	10441	2201	2201	996	996
3100	27562	10447	2255	2255	1020	27562	10447	2255	2255	1020	1020
3200	27562	10453	2309	2309	1045	27562	10453	2309	2309	1045	1045
3300	27562	10458	2362	2362	1069	27562	10458	2362	2362	1069	1069

	: SS4 CITT NZA DI UN		_	AD A710A	II TD ACVE	DCALL		OPERA: ALLINEA	MENTI.	PO02 SPALLE	
KESISTE	NZA DI UN	SPALLE									
3400	27562	10464	2415	2415	1093	27562	10464	2415	2415	1093	1093
3500	27562	10469	2466	2466	1116	27562	10469	2466	2466	1116	1116
3600	27562	10475	2518	2518	1139	27562	10475	2518	2518	1139	1139
3700	27562	10481	2569	2569	1162	27562	10481	2569	2569	1162	1162
3800	27562	10486	2619	2619	1185	27562	10486	2619	2619	1185	1185
3900	27562	10492	2668	2668	1207	27562	10492	2668	2668	1207	1207
4000	27562	10498	2718	2718	1230	27562	10498	2718	2718	1230	1230
4100	27562	10503	2766	2766	1252	27562	10503	2766	2766	1252	1252
4200	27562	10509	2814	2814	1274	27562	10509	2814	2814	1274	1274
4300	27562	10514	2862	2862	1295	27562	10514	2862	2862	1295	1295
4400	27562	10520	2910	2910	1317	27562	10520	2910	2910	1317	1317
4500	27562	10526	2956	2956	1338	27562	10526	2956	2956	1338	1338
4600	27562	10531	3003	3003	1359	27562	10531	3003	3003	1359	1359
4700	27562	10537	3049	3049	1380	27562	10537	3049	3049	1380	1380
4800	27562	10542	3094	3094	1400	27562	10542	3094	3094	1400	1400
4900	27562	10548	3140	3140	1421	27562	10548	3140	3140	1421	1421
5150	27562	10562	3251	3251	1471	27562	10562	3251	3251	1471	1471
5400	27562	10576	3360	3360	1520	27562	10576	3360	3360	1520	1520
5650	27562	10590	3467	3467	1569	27562	10590	3467	3467	1569	1569
5900	27562	10604	3572	3572	1616	27562	10604	3572	3572	1616	1616
6150	27562	10618	3675	3675	1663	27562	10618	3675	3675	1663	1663
6400	27562	10632	3776	3776	1709	27562	10632	3776	3776	1709	1709

Resistenza di progetto del palo singolo alle azioni trasversali Palo impedito di ruotare in testa (incastro)

MRd [kNm]

	PALO SINGOLO						PALIFICATA							
ALLINEAMENTO	My (kNm)	Rtr,d (kN)	Ftr,d (kN)	c.u.1	My (kNm)	Rtr,d1 (kN)	npali	η (%)	Rtr,dgr (kN)	Ftr,dgr (kN)	c.u.gr			
SPALLE	5453.0	1520	1236.0	81%	5931.0	1616	15.0	80%	19396	18540.0	96%			