							1					
02 SET	2012	Conferimento materiali di risulta	a alla co	ava Truncafila	FRESIA	FRESIA	BUSOLA					
01 MAR	2011	Adeguamento Nor	rmativa		FRESIA	FRESIA	BUSOLA					
00 LUG	2004	Emissione	е		FRESIA	FRESIA	BUSOLA					
REV. N. D	ATA	DESCRIZION	NE		ELABORATO	VERIFICATO	APPROVATO					
SOSTITUISC	e l'ela	BORATO N°		SOSTITUITO	DALL'ELABOR	ATO N°						
С	ONS	SORZIO PER LE	: AL	JTOSTR	ADE S	ICILIAN	E					
		AUTOSTRADA SI	IRAC	USA –	GELA							
		2° TRONCO:	ROSC)LINI — F	RAGUSA							
		LOTTO	9:	"SCICLI"								
		PROGETT	ΌΕ	SECUTI	VO							
				GLUIL								
		RELAZIOI	NE (GEOTECN	NICA							
ELABORATO	N.	A18-9-gl60										
			PRO	GETTAZIONE			A. A.					
DATA		LUGLIO 2004										
CODICE CAD-FILE		A18-9-gl60.doc	ILR	ESPONSABILE:	DOTT. ING.	F. BUSOLA						
	QUALS	OPERA PROTETTA AI SENSI DELLA LEGGE IASI RIPRODUZIONE ED UTILIZZAZIONE NO	OPERA PROTETTA AI SENSI DELLA LEGGE 22 APRILE 1941 N. 633 TUTTI I DIRITTI RISERVATI OLIAI SIASI, RIPRODUZIONE, ED. LITUIZZAZIONE, NON, ALIZOPIZZATE, SARANNO, RERSEGUITE A, RICORE, DI LEGGE									

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O REGIMINET	Rev.	2	Settembre 2012			Pag. n. 1

INDICE

1	. F	PREMESSA	3
2	. N	IORMATIVA DI RIFERIMENTO	4
3	. N	ITC 2008	6
4	. C	COMPORTAMENTO MECCANICO DEI TERRENI	13
	4.1.	Copertura detritica	14
	4.2.	Depositi alluvionali attuali e recenti	14
	4.3.	<u>Terrazzi fluviali e marini</u>	17
	4.4	Milonite	17
	4.5.	Calcari marnosi (Trubi)	19
	4.6.	Marne argillose ed argille marnose (Formazione Tellaro)	20
	4	.6.1. Facies alterata	21
	4	.6.2. Formazione integra	23
	4.7.	Calcari e calcareniti	26
	4.7.1	Rilievo geostrutturale	29
	4.7.2.	Resistenza al taglio lungo i giunti	37
	4.7.3.	Criterio di rottura di Hoek-Brown	46
	4.7.4.	Formazione Ragusa lungo il Viadotto Modica	52
	4.7.5.	Classificazione della roccia secondo Bieniawsky e Barton	53
5	. V	ERIFICHE DI STABILITA'	65
	5.1.	Stabilità delle scarpate in trincea	71
	5.2.	Stabilità scavi galleria artificiale	72
	5.3.	Stabilità scarpate del rilevato	74
	5.4.	Stabilità globale dei muri di sostegno e di sottoscarpa	76
	5.5.	Stabilità Berlinese Opera N° 41	77
6	. V	ERIFICHE DI CAPACITA' PORTANTE	80

С честатела Rev. 2 Settembre 2012 Pag. n. 2	O Azerijaart	Rev. Rev.	0	Luglio 2004 Settembre 2012	EI.	A18-9-gl60		Pag. n. 2
---	--------------	--------------	---	-------------------------------	-----	------------	--	-----------

6.1	1.	Sottovia	82				
6.1	1.1.	Opera N° 83	84				
7.	VA	LUTAZIONE DEI CEDIMENTI TEORICI PREVEDIBILI	88				
8.	RII	LEVATI	93				
8.1	1.	Bonifiche	93				
8.2	2.	Piano di posa del rilevato	93				
8.3	3.	Corpo del rilevato autostradale	94				
8.4	4.	Fondazione del corpo stradale	95				
8.5	5.	Rilevati fuori sede autostradale	95				
9.	TR	RINCEE	96				
10.	SC	CATOLARI E SOTTOVIA	98				
11.	М	URI DI SOSTEGNO E DI SOTTOSCARPA	99				
12.	P	ONTI E CAVALCAVIA	100				
12	.1. <u>S</u>	ottovia e cavalcavia	100				
12	.2. <u>P</u>	onti e viadotti	100				
13.	G	ALLERIA ARTIFICIALE "SCICLI"	102				
APPE	ENDI	CE "A" - PROGRAMMA DI CALCOLO DI STABILITA'	104				
APPE	APPENDICE "B" – CALCOLO DELLA CAPACITA' PORTANTE 120						
APPE	ENDI	CE "B" – CALCOLO DELLA CAPACITA' PORTANTE	120				

APPENDICE "C" - RILEVATO - CALCOLO DEI CEDIMENTI	146

1. PREMESSA

Nel presente rapporto vengono illustrate le caratteristiche geotecniche dei terreni che interessati dalle opere del Lotto 9° "Scicli", le cui peculiarità geologiche e litologiche sono illustrate nella *Relazione geo-logica*.

Le verifiche geotecniche sono effettuate riportando, nelle tavole relative a ciascuna opera o a ciascun gruppo di opere, la successione stratigrafica del sito estesa sino alla profondità di interesse geotecnico, il comportamento meccanico di ciascun litotipo e la sintesi dei risultati.

I tabulati di calcolo, per ciascun tipo di verifica, sono esposti in allegato a parte o in Appendice.

Le verifiche effettuate, eseguite per gruppi di opere con analoga tipologia e con riferimento alla successione stratigrafica più sfavorevole, sono:

- → rilievo geostrutturale della formazione lapidea (alternanza calcarenitico-calcarea) in N° 5 stazioni;
- \rightarrow verifiche di stabilità delle scarpate dei tratti in trincea;
- → determinazione dei cedimenti teorici prevedibili, immediati e di consolidazione, per i tratti in rilevato, in corrispondenza degli scatolari e sottovia;
- → valutazione della capacità portante per tutte le tipologie di muri di sostegno e di sottoscarpa;
- → verifiche di stabilità globale per tutte le tipologie di muri di sostegno e di sottoscarpa;
- → valutazione della capacità portante per tutti gli scatolari e sottovia;
- \rightarrow valutazione della capacità portante per i ponti e cavalcavia;

Nei paragrafi successivi verranno trattati i sottoelencati argomenti:

- \rightarrow normativa di riferimento;
- → comportamento meccanico dei terreni;
- \rightarrow verifiche di stabilità;
- \rightarrow verifiche di capacità portante;
- → valutazione dei cedimenti teorici prevedibili.

EI.

2. NORMATIVA DI RIFERIMENTO

Per tutte le verifiche geotecniche si fa riferimento alle seguenti normative:

- a) Eurocodice 7.1 (1997) Progettazione geotecnica Parte I : Regole Generali . UNI
- b) Eurocodice 7, "Geotechnical design" (EN 1997-1:2002);
- c) Eurocodice 8 (1998) Indicazioni progettuali per la resistenza fisica delle strutture Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici (stesura finale 2003)
- d) D.P.R. 21 dicembre 1999 n. 554: "Regolamento di Attuazione della legge quadro in materia di Lavori Pubblici 11 febbraio 1994 n. 109 e s.m.i.";
- e) Eurocodice 7.2 (2002) Progettazione geotecnica Parte II : Progettazione assistita da prove di laboratorio (2002). UNI
- f) Eurocodice 7.3 (2002) Progettazione geotecnica Parte II : Progettazione assistita con prove in sito(2002). UNI
- g) O.P.C.M. 3274 del 20 marzo 2003: "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica" e s.m.i.;
- h) Decreto Legislativo 12 aprile 2006, n.163 e s.m.i. (1°, 2° e 3° decreto correttivo): "Codice dei contratti pubblici relativi a lavori, servizi e forniture in attuazione delle direttive 2004/17/Ce e 2004/18/Ce";
- i) Consiglio Superiore dei Lavori Pubblici Pericolosità sismica e Criteri generali per la classificazione sismica del territorio nazionale. Allegato al voto n. 36 del 27.07.2007
- Decreto del Ministero delle Infrastrutture del 14 gennaio 2008: "Approvazione delle nuove norme tecniche per le costruzioni".;
- m) Decreto Ministeriale 14.01.2008 Testo Unitario Norme Tecniche per le Costruzioni
- n) Circolare esplicativa n. 617 del 26/02/2009 del Ministero delle Infrastrutture e Trasporti, contenente " Istruzioni per l'applicazione delle nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008".
- consiglio Superiore dei Lavori Pubblici Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008. Circolare 2 febbraio 2009.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O RECENTRET	Rev.	2	Settembre 2012			Pag. n. 5

Adottando la nuova normativa NTC 2008 i valori dell'accelerazione attesa al suolo sono ricavabili sulla base delle coordinate geografiche (nel caso specifico è stato utilizzato il programma fornito dal Consiglio Superiore del Lavori Pubblici - Spettri di risposta sismica – Versione 1.03) oltre ad altre informazioni sulla litologia e sul comportamento elastico del sottosuolo (vedi capitolo successivo).

Nel presente lavoro la fascia di territorio in esame, su cui si snoda il lotto autostradale in questione, viene analizzata determinando l'accelerazione massima attesa al suolo in N° 37 siti in corrispondenza dei quali si dispone di dati geognostici utili ai calcoli.

3. NTC 2008

La valutazione della risposta sismica locale (RSL)¹ viene effettuata secondo quanto suggerito nelle NTC 2008 ove, in assenza di specifiche analisi, si può fare riferimento ad un approccio semplificato che si basa sull'individuazione di categorie di sottosuolo di riferimento e sulle condizioni topografiche dei sito.

Le azioni sismiche di cui tener conto in progetto e nelle verifiche geotecniche vengono definite muovendo dalla *pericolosità sismica di base* del sito in esame, che può essere valutata dalla *probabili-tà che nel periodo di riferimento* (V_R in anni) *si verifichi un evento sismico di entità almeno pari ad un valore prefissato*; tale *probabilità* viene designata come "*Probabilità di eccedenza o superamento nel periodo di riferimento* P_{VR} ".

La pericolosità sismica viene definita da:

- ⇒ accelerazione orizzontale massima attesa ag in condizioni di campo libero su sito di riferimento rigido (categoria di suolo "A" – cfr. Tabella N° 1) con superficie topografica orizzontale (categoria topografica T1 – cfr. Tabella N° 2);
- ⇒ ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se(T), con riferimento a prefissate probabilità di eccedenza P_{VR} nel periodo di riferimento V_R.

Le norme spettrali sono definite, per ciascuna delle probabilità di superamento nel periodo di riferimento P_{VR} , a partire dai seguenti parametri su sito di riferimento rigido orizzontale:

- \Rightarrow ag accelerazione orizzontale massima al sito
- ⇒ Fo valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale
- ⇒ T*C periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Le verifiche sono effettuate con il metodo degli *stati limiti*, individuati con riferimento alle prestazioni delle costruzioni nel loro complesso includendo tutti gli elementi sia strutturali che non strutturali (cfr. Tabella N° 3).

¹ Risposta Sismica Locale: azione sismica rilevabile in superficie a seguito delle modifiche in ampiezza, durata e frequenza, subite trasmettendosi dal substrato rigido

0

2

Tabella N° 1

EI.

Tabella 3.2	\mathbf{II} – Categorie di sottosuolo
Categoria	Descrizione
А	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di $V_{s,30}$ superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 360 m/s e 800 m/s (ovvero $N_{SPT,30} > 50$ nei terreni a grana grossa e $c_{n,30} > 250$ kPa nei terreni a grana fina).
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori super.ori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 180 m/s e 360 m/s (ovvero 15 < $N_{SPT,30}$ < 50 nei terreni a grana grossa e 70 < $c_{u,30}$ < 250 kPa nei terreni a grana fina).
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ inferiori a 180 m/s (ovvero $N_{SPT,30} < 15$ nei terreni a grana grossa e $c_{u,30} < 70$ kPa nei terreni a grana fina).
E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con $V_s > 800 \text{ m/s}$).

Tabella N° 2

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i $\leq 15^{\circ}$
T2	Pendii con inclinazione media i > 15°
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^\circ \le i \le 30^\circ$
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

Tabella N° 3

Stati Limite		P_{v_R} : Probabilità di superamento nel periodo di riferimento v_R					
Stati limite di	SLO	81%					
esercizio	SLD	63%					
Stati limite	SLV	10%					
ultimi	SLC	5%					

Nel caso di verifiche geotecniche si adotta lo stato SLV (Stato Limite di salvaguardia della Vita), con probabilità di superamento del periodo di riferimento V_R = 100 anni del 10%.

Mediante il programma "*Spettri NTC versione 1.0.3.*" si sono ottenute le informazioni necessarie a definire i parametri sismici relativi al caso in esame.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O Azerilari	Rev.	2	Settembre 2012			Pag. n. 8

Per un'acquisizione automatica dei parametri sismici necessari ai calcoli si è fatto uso del programma on-line della GEOSTRU, nel quale per ogni sito di interesse, corrispondente all'opera per la quale effettuare le verifiche geotecniche, sono stati inseriti i seguenti dati (le coordinate geografiche sono riportate in valori decimali):

- \Rightarrow Latitudine del sito
- \Rightarrow Longitudine del sito
- \Rightarrow Classe del terreno
- \Rightarrow Categoria topografica
- \Rightarrow Vita nominale Vn
- \Rightarrow Classe d'uso Cu

I valori di riferimento di ciascun sito sono calcolati sulla base della maglia di riferimento, fornita dal Ministero delle Infrastrutture, come media pesata dei valori nei vertici della maglia moltiplicati per le distanze dal punto stesso.

A titolo di esempio in Figura N° 1 si riporta l'output dell'immagine relativa al sito della Sezione N° 324 con indicata la posizione dei nodi della maglia di riferimento.

Sempre a titolo di esempio per il sito di cui alla sezione 324 (Figura N° 1) sulla base dei dati di input si ottengono i seguenti dati.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ARGUITAT	Rev.	2	Settembre 2012			Pag. n. 9

Param	etri sismici	>					
Tipo d	i elaborazione: Stabilit	a dei pe	endii				
SITO IN	esame. Iotitudino:		26 77/	1200			
	landitudine.		11 606	290 2068			
	Classe		14,090 1	0000			
	Vita nominale [.]		+ 17				
Siti di	riferimento		.,				
Old di	Sito 1 ID: 51190	l at [.] 36	7785 I	on [.] 14	6716	Distanza [.]	2230.679
	Sito 2 ID: 51191	Lat: 36.	.7778 L	on: 14	.7337	Distanza:	3373.860
	Sito 3 ID: 51412	Lat: 36.	7285 L	on: 14	.6707	Distanza:	5573,188
	Sito 4 ID: 51413	Lat: 36,	7278 L	on: 14	7328	Distanza:	6119,469
Param	netri sismici	,		,			,
	Categoria sottosuolo:			В			
	Categoria topografica	:		T1			
	Periodo di riferimento	:		34 anr	าเ		
	Coefficiente Cu:			2			
	Operatività (SLO):						
	Probabilità di superan	nento:	81	%			
	Ir:			30	[annı]		
	ag:			0,026	g		
	F0: To*:			2,441	[0]		
				0,208	[S]		
	Danna (SLD):						
	Danno (SLD). Probabilità di suporan	nonto:	62	0/			
	Tr·	iento.	03	70 34	[anni]		
	au.			0.028	a		
	En [.]			2 462	9		
	Tc*·			0.217	[s]		
				0,277	[0]		
	Salvaguardia della vit	a (SLV)	:				
	Probabilità di superan	nento: (10	%			
	Tr:			323	[anni]		
	ag:			0,102	g		
	Fo:			2,445	-		
	Tc*:			0,396	[s]		
	Prevenzione dal colla	sso (SL	C):				
	Probabilità di superan	nento:	5	%	f		
	<i>IT:</i>			003	[anni]		
	ag:			0,155	g		
	ГU. То*:			2,303	[0]		
	10.			0,404	[8]		
Coeffi	cienti Sismici						
Coom	SLO:						

Ss: 1,200

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O Azguntar	Rev.	2	Settembre 2012			Pag. n. 10

	Cc:	1,510
	St:	1,000
	Kh:	0,006
	Kv:	0,003
	Amax:	0,308
	Beta:	0.200
SLD:		
	Ss:	1,200
	Cc:	1,490
	St:	1,000
	Kh:	0,007
	Kv:	0,003
	Amax:	0,331
	Beta:	0,200
SLV:		
	Ss:	1,200
	Cc:	1,320
	St:	1,000
	Kh:	0,029
	Kv:	0,015
	Amax:	1,202
	Beta:	0,240
SLC:		
	Ss:	1,200
	Cc:	1,280
	St:	1,000
	Kh:	0,045
	Kv:	0,022
	Amax:	1,819
	Beta:	0,240

Per la determinazione del $V_{s,30}$ è stata effettuata una apposita indagine MASW che, correlata con tutti i dati stratigrafici ricavabili dai sondaggi geognostici, ha consentito di individuare la categoria di sottosuolo di ciascuna tratto simicamente omogeneo in cui può essere suddiviso il tracciato, come esemplificato in Tabella N° 4.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O azernarrı	Rev.	2	Settembre 2012			Pag. n. 11

Tabella N° 4

AUTOSTRADA SIRACUSA GELA - LOTTO 9 DETERMINAZIONE DELLA CATEGORIA DI SUOLO DI FONDAZIONE IN BASE AGLI ESITI DELL'INDAGINE MEDIANTE MASW									
Da	а	Litotipo	Categoria suolo di fondazione	NOTE					
Inizio lotto 9	sez. 181	Formazione Ragusa	A	E' presente una sottile coltre detritica o di materiale alterato. Si consideri categoria B solo per pianti di posa posti a profondità < 1 m da p.c. La Vs della Ragusa in posto è compresa fra 800 - 1.400 m/sec					
sez. 181	sez. 208	Formazione Tellaro	В	E' presente una coltre superficiale detritica. La Vs delle Tellaro è compresa fra 500 - 1.000 m/sec. Ad esse soggiace la Formazione Ragusa					
sez 208	sez 222	Formazione Ragusa	A	E' presente una sottile coltre detritica o di materiale alterato. Si consideri categoria B solo per pianti di posa posti a profondità < 1 m da p.c. La Vs della Ragusa in posto è compresa fra 800 - 1.400 m/sec					
sez 222	sez 236	Calcareniti	В	E' presente una coltre superficiale detritica. La Vs delle Calcareniti è compresa fra 500 - 1.000 m/sec. Ad esse soggiace la Formazione Ragusa					
sez 236	sez 242	Trubi	С	E' presente una coltre superficiale detritica					
sez 242	sez 268	Formazione Tellaro	С	E' spesso presente una coltre superficiale detritica					
sez 268	sez 307	Formazione Ragusa	A	E' presente una sottile coltre detritica o di materiale alterato. Si consideri categoria B per pianti di posa posti a profondità < 1 m da p.c. La Vs della Ragusa in posto è compresa fra 800 - 1.400 m/sec					
sez 307	sez 396	Milonite + Formazione Tellaro	С	E' spesso presente una potente coltre superficiale con valori di Vscompresi fra 250 - 350 m/sec alle massime profondità indagate					
sez 396	sez 410	Formazione Ragusa	A	La Vs della Ragusa, che affiora estesamente lungo il versante, è compresa fra 800 - 1.400 m/sec					
Attraversament	o Fiume Modica	Alluvioni e Formazione Ragusa	A - B	A per spalle e pila 2. La pila 1 ricade in alluvioni poggianti sulla Ragusa; lo strutturista valuterà la categoria più opportuna fra A e B.					
Fiume Modica	Fine lotto 9	Formazione Ragusa	A	E' presente una sottile coltre detritica o di materiale alterato. Si consideri categoria B per pianti di posa posti a profondità < 1 m da p.c. La Vs della Ragusa in posto è compresa fra 800 - 1.400 m/sec					
Bretella c	li svincolo	Formazione Ragusa e depositi detritico alluvionali	AeB	A dall'asse principale sino alla SP39. B a valle della SP 39 dove sono presenti depositi detritico alluvionali poggianti sulla Ragusa					

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ascentare	Rev.	2	Settembre 2012			Pag. n. 12

I dati della tabella di cui sopra sono graficamente visualizzati nelle tavole annesse alla relazione geologica (Tavole N° 18, 19 e 20 su base cartografica in scala 1:4.000), dove sono stati riportati, per ciascuno dei 37 siti analizzati, i valori dell'accelerazione massima attesa al suolo; i risultati sono sinte-tizzati nella seguente Tabella N° 5.

	SIT	O N°	Amax	ag (Amax/g)	Sottosuolo tipo	Categoria topografica	St	Ss	ag*St*Ss
1	Lat.	36,788420	2 909	0.297	Δ	Т1	1	1	0.297
	Long.	14,779866	2,000	0,201	~			•	0,201
2	Lat.	36,786203	2 902	0.296	Δ	Т1	1	1	0.296
-	Long.	14,776637	2,002	0,200				•	0,200
3	Lat.	36,782640	2 892	0.295	Δ	Т1	1	1	0.295
0	Long.	14,769072	2,002	0,200				•	0,200
4	Lat.	36,782139	2 888	0.295	Δ	Т1	1	1	0.295
	Long.	14,763891	_,	-,					-,
5	Lat.	36,778878	2.88	0.294	Α	T1	1	1	0.294
-	Long.	14,765333	_,	-,					-,
6	Lat.	36,777937	2.873	0.293	Α	T1	1	1	0.293
	Long.	14,761586	_,	-,					-,
7	Lat.	36,777135	2.870	0.293	Α	T1	1	1	0.293
	Long.	14,760714	_,	-,					-,
8	Lat.	36,770031	2.593	0.265	Α	T1	1	1	0.265
-	Long.	14,739064	_,	-,					-,
9	Lat.	36,770895	2.560	0.261	А	T1	1	1	0,261
-	Long.	14,727304	_,	-,					
10	Lat.	36,768250	2.589	0.264	А	т1	1	1	0.264
	Long.	14,732942	_,	-,					-,
11	Lat.	36,770169	2.887	0.258	в	T1	1	1.14	0.295
	Long.	14,723084		.,					.,
12	Lat.	36,767894	2.857	0,254	в	T1	1	1.15	0.292
	Long.	14,713778							
13	Lat.	36,767549	2.847	0.253	В	T1	1	1.15	0.291
	Long.	14,711240		-,••					
14	Lat.	36,768956	3,279	0,252	с	T1	1	1,33	0,335
	Long.	14,705038		,				-	
15	Lat.	36,769538	2,464	0,251	А	T1	1	1	0,251
	Long.	14,703529							
16	Lat.	36,772053	2,466	0,252	А	T1	1	1	0,252
	Long.	14,701497							
17	Lat.	36,772563	2,465	0,252	А	T1	1	1	0,252
	Long.	14,700459							
18	Lat.	36,772935	3,278	0,251	с	T1	1	1,33	0,334
	Long.	14,699255							
19	Lat.	36,773452	3,278	0,251	с	T1	1	1,33	0,334
	Long.	14,698231							
20	Lat.	36,774176	3,278	0,251	с	T1	1	1,33	0,334
	Long.	14,696905							
21	Lat.	36,774899	3,279	0,252	с	T1	1	1,33	0,335
	Long.	14,696165							
22	Lat.	36,775569	3,278	0,251	с	T1	1	1,33	0,334
	Long.	14,693807							
23	Lat.	36,775460	3,278	0,251	с	T1	1	1,33	0,334
	Long.	14,691481							

Tabella N° 5

EI.

4. COMPORTAMENTO MECCANICO DEI TERRENI

Il comportamento meccanico dei terreni interessati dalla realizzazione del lotto autostradale in questione è stato definito mediante le seguenti indagini:

- analisi geotecniche di laboratorio su campioni indisturbati, rimaneggiati ed a disturbo limitato prelevati nel corso di specifici sondaggi a carotaggio continuo;
- prove Standard Penetration Test condotte sempre nel corso dei sondaggi.

Mediante le suddette indagini sono stati ricavati i *valori caratteristici* dei parametri geotecnici di ciascun litotipo; nelle verifiche geotecniche si adoperano i parametri di calcolo che risultano essere un'aliquota dei precedenti secondo le relazioni proposte dall'NTC 2008:

Coesione $C_{calcolo} = 1/1,25 C_{caratteristico}$

Angolo di attrito interno $\varphi_{calcolo}$ = arctang ($\varphi_{caratteristico}/1,25$)

Per maggiori dettagli sugli esiti e contenuti della campagna geognostica si rimanda alla Relazione Geologica ed alla documentazione specifica allegata al progetto (in particolare agli elaborati da 7.2 a 7/7: monografie punti d'indagine, stratigrafie sondaggi, documentazione fotografica sondaggi, prove geotecniche in situ, indagini geofisiche, analisi e prove di laboratorio).

Nei paragrafi successivi verranno elencate le caratteristiche geotecniche dei seguenti litotipi:

- copertura detritica;
- depositi alluvionali attuali e recenti;
- terrazzi fluviali;
- marne argillose ed argille marnose;
- trubi;
- calcari e calcareniti.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O RECENTED	Rev.	2	Settembre 2012			Pag. n. 14

4.1. Copertura detritica

In genere presenta spessore molto ridotto o è del tutto assente. Solo sulla formazione Tellaro la copertura detritica risulta talvolta maggiormente evidente e costituita da limi e limi sabbiosi ai quali si ritiene di poter affidare, sulla base delle prove effettuate, i seguenti parametri geotecnici medi:

a) valori caratteristici

- peso di volume $\gamma = 1,9 \text{ ton/m}^3$
- coesione (sforzi efficaci) C' = 0,05 Kg/cm²

-angolo di attrito (sforzi efficaci) $\phi' = 28^{\circ}$

b) valori di calcolo:

- peso di volume $\gamma = 1,9 \text{ ton/m}^3$

- coesione (sforzi efficaci) C' = 0,04 Kg/cm²

-angolo di attrito (sforzi efficaci) $\phi' = 23^{\circ}$

4.2. Depositi alluvionali attuali e recenti

I suddetti litotipi, riscontrati nei sondaggi 24B e 27, sono costituiti da materiali granulari non campionabili in maniera effettivamente indisturbata. Per la relativa caratterizzazione si è pertanto fatto ricorso alle prove Standard Penetration Test, i cui esiti sono riepilogati in Tabella N° 6.

Sondaggio	Profondità	Numero colpi	Colpi utili
	3,4	6;3;3	6
24	6,9	9;6;6	12
	10	9;10;13	23
27	3,5	15;30;40	70
	7,5	14;27;35	62

Tabella	a N° 6
---------	--------

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O Azginitar	Rev.	2	Settembre 2012			Pag. n. 15

La <u>profondità della prova</u> influenza il valore di N_{spt} , giacchè al variare della profondità varia la *tensione litostatica efficace* ($\sigma_v = \gamma xh$). Tra le tante proposte formulate da molti AA. quella che sembra correntemente più utilizzata è quella di **GIBBS & HOLTZ (1957)**, che introducono un fattore di correzione " C_N ", ricavabile dalla seguente relazione, al fine di riportare tutte le prove ad una tensione litostatica efficace pari a $\sigma_v = 1 \text{ Kg/cm}^2$:

$$C_{N} = N_{spt} \times 0,77 \times \log_{10} [20/\sigma_{v}]$$

La **presenza di acqua** viene valutata da **TERZAGHI & PECK (1948)**, i quali suggeriscono, per sabbie fini e/o limose sature, di adottare la seguente relazione:

$$Nc = 15 + \frac{1}{2} [N_{spt} - 15]$$

La <u>granulometria dei sedimenti</u> influenza decisamente i risultati delle prove S.P.T.; numerosi studi sono stati effettuati in tal senso (GIBBS & HOLTZ, 1957; BURMISTER, 1962; DESAI, 1970; MAR-CUSON & BIEGANOUSKI, 1977; CERRUTI, 1979) senza però portare ad una definizione quantitativa del problema.

Per una valutazione dei parametri di taglio in termini di sforzi efficaci si adottano le correlazioni proposte da YUKITAKE SHIOI E JIRO FUKUNI (1982), attualmente utilizzate in Giappone dallo "*Road Bridge Specification*" e dallo "*Japanese National Railway*":

$$\varphi = \sqrt{15 \cdot \text{Nspt}} + 15$$
$$\varphi = 0.3 \cdot \text{Nspt} + 27$$

Per quanto concerne invece il grado di addensamento una valu-tazione può essere effettuata ricorrendo alla relazione proposta da **MEYE-RHOF (1957)**, basata sui dati sperimentali di **GIBBS & HOLTZ (1957)**, che fornisce il valore stimato della densità relativa:

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ascillar	Rev.	2	Settembre 2012			Pag. n. 16

$$D_{r} = 21 \cdot \sqrt{N_{spt} / (\sigma_{v} + 0,7)}$$

La valutazione del modulo di compressibilità (E) può essere formulata sulla scorta della correlazione proposta da **DENVER (1982)**:

$$\mathbf{E} = \mathbf{S}_1 \, \mathbf{N}_{\rm spt} + \mathbf{S}_2$$

in cui $\mathbf{s_1}$ ed $\mathbf{s_2}$ sono costanti e dipendono dalla granulometria dei sedimenti.

Nel caso in esame le costanti assumono i seguenti valori, suggeriti da **D'APOLLONIA et Al. (1970)** per depositi prevalentemente sabbiosi saturi:

$$s_1 = 4,78 \text{ Kg/cm}^2$$

 $s_2 = 71,7 \text{ Kg/cm}^2$

Considerando che è sempre presente una frazione fina, sotto forma di matrice limosa, ai seguenti litotipi si ritiene di poter affidare i seguenti parametri geotecnici:

a) valori caratteristici:

- peso di volume $\gamma = 1,85 \text{ ton/m}^3$
- coesione (sforzi efficaci) $C' = 0.0 \text{ Kg/cm}^2$
- angolo di attrito (sforzi efficaci) $\phi' = 30^{\circ}$
- modulo edometrico Eed = 124 Kg/cm²
- modulo di Young drenato E = 200 Kg/cm²
- b) valori di calcolo:
- peso di volume $\gamma = 1,85 \text{ ton/m}^3$
- coesione (sforzi efficaci) C' = 0,0 Kg/cm²
- angolo di attrito (sforzi efficaci) $\phi' = 24.8^{\circ}$

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O azannar	Rev.	2	Settembre 2012			Pag. n. 17

- modulo edometrico $Eed = 124 \text{ Kg/cm}^2$

- modulo di Young drenato $E = 200 \text{ Kg/cm}^2$

4.3. Terrazzi fluviali e marini

Questi litotipi hanno caratteristiche e comportamento analogo ai depositi alluvionali recenti ed attuali e si ritengono caratterizzati dai seguenti parametri:

a) valori caratteristici:

- peso di volume $\gamma = 1,9 \text{ ton/m}^3$
- coesione (sforzi efficaci) C' = 0,0 Kg/cm²

- angolo di attrito (sforzi efficaci) $\phi' = 30^{\circ} \div 32^{\circ}$

b) valori di calcolo:

- peso di volume $\gamma = 1,9 \text{ ton/m}^3$
- coesione (sforzi efficaci) C' = 0,0 Kg/cm²
- angolo di attrito (sforzi efficaci) $\phi' = 24.8^{\circ} \div 26.6^{\circ}$

4.4 <u>Milonite</u>

Questi litotipi sono stati caratterizzati sia mediante le prove S.P.T., riepilogate in Tabella N° 7, sia sulla scorta delle analisi geotecniche di laboratorio effettuate su n° 4 campioni rimaneggiati e N° 1 campione indisturbato prelevati nei sondaggio S.15B ed S.16 (cfr. Tabella N° 8)

Le prove S.P.T. evidenziano che si tratta di terreni consistenti, così come peraltro risulta dalla prova scissometrica eseguita in foro, che ha comportato il bloccaggio dello strumento e la deformazione delle aste.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O REGULTER.	Rev.	2	Settembre 2012			Pag. n. 18

Tabella N° 7

Sondaggio	Profondità	Numero colpi	Colpi utili
	3,3	16-20-22	42
15B	5,3	21-20-24	44
	12	23-25-30	55
	3	18-18-24	42
16	6,5	20-28-25	53
	9,5	27-26-26	52

Tabella N° 8

	MILONITE																				
						-			Prove sulle terre												
D	ATI DE	EL CAN	NPION	ίΕ	Caratteristiche fisiche		iche	Limiti di Atterberg		Limiti di Ca Atterberg gra		Caratteristiche granulometriche			Taglio CD Prova ELL			Prova ed	ometrica		
Sondaggio	Denominazione Campione	da metri	a metri	I Indisturbato R Rimameggiato	Umidità naturale	Peso di volume	Peso specifico	Limite liquido	Limite plastico	Ghiaia	Sabbia	Limo	Argilla	Coesione	Angolo di attrito	Coesione non drenata	Modulo edometrico	Coefficiente di Compressibilità	Coefficiente di Consolidazione	Coefficiente di Permeabilità	
	\square	<u>لــــــا</u>			%	g/cm³	g/cm³	%	%	%	%	%	%	Kg/cm ²	•	Kg/cm²	Kg/cm ²	Kg/cm ²	cm²/s	cm/s	
S.15B	1	7,40	7,60	R			2,706	43,715	22,928	8,00	36,00	34,00	22,00								
S.15b	2	15,30	15,50	R			2,711	42,831	23,002	6,00	38,00	35,00	21,00								
S.16	1	11,00	11,50		26,204	2,019	2,764	55,388	31,227	0,00	35,00	37,00	28,00	0,010	22,00	2,671	98			1,40E-06	

Sulla scorta dei dati sopra riportati, e tenendo presente che nelle prove Standard Penetration Test la resistenza all'infissione è da imputare anche alla coesione del litotipo attraversato (riferimento: correlazione proposta da Stroud 1974, dove Cu = $f N_{SPT}$) ai terreni in esame possono affidarsi i seguenti parametri geotecnici:

a) valori caratteristici:

- peso di volume γ = 2,0 ton/m³
- coesione (sforzi efficaci) $C' = 0,10 \text{ Kg/cm}^2$
- angolo di attrito interno $\phi' = 25^{\circ}$
- coesione non drenata $Cu = 0.7 \text{ Kg/cm}^2$
- modulo edometrico Eed = 100 Kg/cm²

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O azannarr	Rev.	2	Settembre 2012			Pag. n. 19

b) valori di calcolo:

- peso di volume γ = 2,0 ton/m³
- coesione (sforzi efficaci) $C' = 0,08 \text{ Kg/cm}^2$
- angolo di attrito interno ϕ' = 20,5°
- coesione non drenata Cu = 0,56 Kg/cm²
- modulo edometrico Eed = 100 Kg/cm²

4.5. Calcari marnosi (Trubi)

Poiché sui suddetti litotipi, presenti con spessori ridotti nel lotto 9, non è stato possibile prelevare campioni indisturbati, per la relativa caratterizzazione geotecnica si fa riferimento alle prove di laboratorio effettuate in corso d'opera e nell'ambito delle campagne geognostiche condotte sui lotti limitrofi (lotti 3-4-5-6-7-8), dai quali risultano i seguenti valori medi:

a) valori caratteristici:

- peso di volume	γ = 1,95 ton/m ³
- coesione (sforzi efficaci)	C' = 0,6 – 0,7 Kg/cm ²
- angolo di attrito (sforzi efficaci)	φ' = 26° - 28°
- coesione non drenata (sforzi totali)	$Cu = 1.8 - 2.0 \text{ Kg/cm}^2$
- modulo edometrico	Eed = 250 Kg/cm ²
b) valori di calcolo;	
- peso di volume	γ = 1,95 ton/m ³
- coesione (sforzi efficaci)	C' = 0,48 - 0,0.56 Kg/cm ²
- angolo di attrito (sforzi efficaci)	φ' = 21,30° - 23°
- coesione non drenata (sforzi totali)	$Cu = 1,44 - 1,6 \text{ Kg/cm}^2$
- modulo edometrico	Eed = 250 Kg/cm ²

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ARCHAILT	Rev.	2	Settembre 2012			Pag. n. 20

4.6. Marne argillose ed argille marnose (Formazione Tellaro)

Per la definizione del comportamento meccanico della suddetta formazione si analizzano i risultati delle seguenti indagini geognostiche e geotecniche:

- \rightarrow campagna di indagini del 2003 nel Lotto 9;
- \rightarrow campagna di indagini del 1998 e del 2002 sui lotti 6,7 ed 8, di prossimo appalto;
- → indagini progettuali ed in corso d'opera nei lotti già realizzati (Lotti 4° e 5°)

Si dispone quindi, complessivamente, di un numero sufficiente di dati geotecnici per poterne valutare il grado di omogeneità e/o di dispersione.

Poiché il numero di dati, soprattutto inerenti ai valori di coesione non drenata (Cu), $\dot{e} \ge 30$, viene elaborata la curva della distribuzione di **GAUSS** secondo la relazione:

$$f(x) = \sqrt{\frac{e^{-t}}{2\pi S}}$$

in cui:

$$t = \frac{|x_i - x|}{S}$$

dove:

x = media aritmetica dei valori;

S = scarto quadratico medio, dato dalla seguente espressione:

$$S = \frac{\sqrt{\sum_{i=1}^{i=n} (x_i - \bar{x})^2}}{n-1}$$

La definizione dei "frattili" superiore ed inferiore, viene eseguita con i valori caratteristici:

$$\mathbf{x}_{k} = \mathbf{x} \pm \mathbf{K} \cdot \mathbf{S}$$

in cui il valore **K** dipende sia dal numero delle prove che dalla percentuale di probabilità che il valore medio sia rappresentativo del comportamento meccanico d'insieme del litotipo ; per un numero pari a 40 prove si assume **K** = 1,50 e per un numero di prove pari a 15 si assume **K** = 2,14, in modo da avere

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ascentary	Rev.	2	Settembre 2012			Pag. n. 21

la probabilità del 90% che i valori ricadenti nell'intervallo delimitato dai "valori caratteristici" siano rappresentativi.

Dai dati stratigrafici di tutte le indagini geognostiche nella formazione in esame sono distinguibili due facies: una facies alterata superficiale, estesa da piano campagna fino alla profondità massima di m 10 dal p.c., ed una integra più profonda.

4.6.1. Facies alterata

Nell'ambito della fascia alterata sono stati analizzati N° 10 campioni indisturbati ritenuti rappresentativi (cfr. Tabella N° 9) integrati da n° 9 prove Standard Penetration Test, i cui risultati sono sintetizzati nella Tabella N° 10.

FORMAZIONE TELLARO																		
					_							Pi	ove s	ulle terre	e			
DA	TIDE	EL CAN	MPION	IE	Caratteristiche fisiche			Lim Atte	iti di rberg	Caratteristiche granulometriche			ie he	Taglio CD		Prova ELL	Prova ed	lometrica
Sondaggio	Denominazione Campione	da metri	a metri	I Indisturbato R Rimameggiato	Umidità naturale	Peso di volume	Peso specifico	Limite liquido	Limite plastico	Ghiaia	Sabbia	Limo	Argilla	Coesione	Angolo di attrito	Coesione non drenata	Modulo edometrico	Coefficiente di Permeabilità
					%	g/cm³	g/cm³	%	%	%	%	%	%	Kg/cm ²	۰	Kg/cm ²	Kg/cm ²	cm/s
S.8	1	3.00	3.50	1	21.869	2.057	2.772	58,608	32.365	0.00	21.00	43.00	36.00	0.050	21.00	3.222		
S.11	1	5,00	5,50	1	26,944	1,861	2,718	57,850	28,138	0,00	38,00	33,00	29,00	0,050	28,00	0,536		
S.11	2	11,00	11,50	1	35,569	2,017	2,712	52,855	29,340	0,00	30,00	37,00	33,00	0,080	23,00	0,397	146,67	1,55E-05
S.17	1	2,00	2,50	1	29,532	1,974	2,710	58,623	30,388	0,00	24,00	40,00	36,00	0,110	26,00	1,874		
S.17	2	7,50	7,90	1	25,919	2,005	2,733	57,959	30,821	0,00	23,00	42,00	35,00	0,080	17,00	0,976	146,67	1,61E-06
S.18	1	3,00	3,40	1	23,865	1,989	2,767	52,630	27,612	0,00	30,00	42,00	28,00	0,030	22,00	3,197	147,80	1,74E-06
S.18	2	5,50	5,90	I	23,571	2,087	2,718	52,124	28,730	0,00	25,00	45,00	30,00			1,424		
S.19	1	2,30	2,70	1	20,147	2,070	2,726	52,247	27,433	0,00	25,00	41,00	34,00	0,020	20,00	2,592		

Tabella N° 9

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ascentarer	Rev.	2	Settembre 2012			Pag. n. 22

Tabella N° 10

Sondaggio	Profondità	Numero colpi	Colpi utili
	3	9-15-19	34
11	6	9-13-17	30
11	9	10-13-16	29
	12	12-17-2	19
17	4	6;9;14	23
17	7,9	10-14-20	34
10	3,5	12-18-24	42
10	4,7	14-23-28	51
20	4,6	6;10;12	22

Secondo la correlazione proposta da SHIOI-FUKUNI (1982), da cui ricava la resistenza a compressione secondo l'espressione

$q_u = k.N_{spt}$

con K variabile in relazione al litotipo, adottando K = 0,05 si ottiene una coesione non drenata media

$C_u = 0.8 \text{ Kg/cm}^2$

Considerando la variabilità dei fenomeni di alterazione, talora molto spinti, si ritiene giustamente cautelativo affidare alla fascia alterata e degradata della Formazione Tellaro i seguenti valori dei parametri geotecnici:

a) valori caratteristici:

- peso di volume	γ = 2,0 ton/m ³
- coesione (sforzi efficaci)	C' = 0,1 Kg/cm ²
- angolo di attrito (sforzi efficaci)	φ' = 22°
- coesione non drenata (sforzi totali)	Cu = 0,8 ÷ 1,0 Kg/cm ²
- modulo edometrico ²	Eed <u>~</u> 150,0 Kg/cm ²

b) valori di calcolo:

² nell'intervallo di carico 1-2 Kg/cm²

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O RECENTATY	Rev.	2	Settembre 2012			Pag. n. 23

- peso di volume	γ = 2,0 ton/m ³
- coesione (sforzi efficaci)	C' = 0,08 Kg/cm ²
- angolo di attrito (sforzi efficaci)	φ' = 17,9°
- coesione non drenata (sforzi totali)	Cu = 0,64 \div 0,8 Kg/cm ²
- modulo edometrico ³	Eed <u>~</u> 150,0 Kg/cm ²

4.6.2. Formazione integra

Per la definizione del comportamento meccanico dei suddetti terreni si prendono in considerazione sia i risultati delle prove di laboratorio effettuate su n° 9 campioni ritenuti rappresentativi (cfr. Tabella N° 11), sia i dati geotecnici relativi ai lotti 4,5,6,7 ed 8.

	FORMAZIONE TELLARO																					
					_				Prove sulle terre													
DATI DEL CAMPIONE					iche	Lim	iti di		Caratte	ristich	е			Prova	Prova Tr	iassiale						
	fisiche				Atte	rberg	granulometriche			he	laglio	CD	ELL	CID		Prova edometrica						
Sondaggio	Denominazione Campione	da metri	a metri	I Indisturbato R Rimameggiato	Umidità naturale	Peso di volume	Peso specifico	Limite liquido	Limite plastico	Ghiaia	Sabbia	Limo	Argilla	Coesione	Angolo di attrito	Coesione non drenata	Coesione non drenata	Angolo di attrito	Modulo edometrico	Coefficiente di Compressibilità	Coefficiente di Consolidazione	Coefficiente di Permeabilità
					%	g/cm³	g/cm³	%	%	%	%	%	%	Kg/cm ²	0	Kg/cm ²	Kg/cm ²	(°)	Kg/cm ²	Kg/cm ²	cm²/s	cm/s
S.8	4	12,00	12,50	1	21,138	2,047	2,667	55,974	30,801	0,00	28,00	35,00	37,00			3,238						
S.9	1	8,00	8,50	1	15,691	2,171	2,732	51,696	28,430	0,00	22,00	38,00	40,00	0,000	45,00	0,742			343,00			5,23E-06
S.10	3	10,00	10,50	1	22,551	1,929	2,710	48,604	26,270	0,00	31,00	37,00	32,00						111,36			8,15E-06
S.10	5	19,60	20,10	1	18,677	2,120	2,752	46,202	24,538	0,00	30,00	37,00	33,00	0,100	24,00	4,375						
S.11	3	15,00	15,50	1	22,075	2,139	2,757	45,594	23,617	0,00	36,00	34,00	30,00			2,060	0,040	24,00				
S.18	3	8,50	9,00	1	26,446	1,983	2,730	50,532	27,579	0,00	33,00	35,00	32,00			2,408						
S.18	4	14,30	14,60	1	17,882	2,223	2,718	48,311	24,819	0,00	33,00	34,00	33,00	0,020	32,00	1,785			320,73			2,43E-06
S.19	2	5,40	5,70	1	12,484	2,099	2,626	55,690	31,364	0,00	22,00	36,00	42,00	0,020	38,00	2,391			56,11			2,99E-05
S.19	3	14,00	14,60	1	10,153	2,347	2,669	57,317	31,131	0,00	20,00	42,00	38,00	2,930	34,00	14,929			97,52			9,46E-06

Tabella N° 11

Per valutare la dispersione dei valori della coesione non drenata (Cu) è stata elaborata la curva di GAUSS della Figura N° 2, i cui valori sono riportati nella Tabella N° 12.

Sulla scorta dei dati disponibili si ritiene di poter affidare alla formazione Tellaro – facies integra, i seguenti valori dei parametri geotecnici:

³ nell'intervallo di carico 1-2 Kg/cm²

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O RECENTRAT	Rev.	2	Settembre 2012			Pag. n. 24

a) valori caratteristici:

- peso di volume	γ = 2,0 ton/m ³
- coesione (sforzi efficaci)	C' = 0,6 Kg/cm ²
- angolo di attrito (sforzi efficaci)	φ' = 26°
- coesione non drenata (sforzi totali)	$Cu = 1,5 - 1,7 \text{ Kg/cm}^2$
- modulo edometrico ⁴	Eed ~ 200,0 Kg/cm ²
b) valori di calcolo:	
- peso di volume	γ = 2,0 ton/m ³
- coesione (sforzi efficaci)	C' = 0,48 Kg/cm ²
- angolo di attrito (sforzi efficaci)	$\phi' = 21,5^{\circ}$
- coesione non drenata (sforzi totali)	Cu = 1,2 – 1,36 Kg/cm ²
- modulo edometrico ⁵	Eed <u>~</u> 200,0 Kg/cm ²

Figura N° 2

 $^{^4}$ nell'intervallo di carico 1-2 Kg/cm 2 nell'intervallo di carico 1-2 Kg/cm 2

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O azerniat	Rev.	2	Settembre 2012			Pag. n. 25

Valori	Scarti quadratici parziali	t	f(x)		
39,70	15996,62827	10,28314547	0,000665456		
45,10	14659,82827	9,844104027	0,000828812		
53,60	12673,75605	9,153020281	0,001170909		
70,70	9116,00605	7,762722392	0,002346509		
74,20	8459,91160	7,478158496	0,002705295		
80,10	7409,38383	6,998465072	0,003438576		
89,60	5864,15605	6,226077356	0,005059418		
90,60	5712,00049	6,144773386	0,005269331		
96,60	4841,06716	5,656949565	0,006724888		
97,60	4702,91160	5,575645595	0,007003901		
108,00	3384,65383	4,730084306	0,01068935		
110,50	3100,01494	4,526824381	0,01183283		
110,90	3055,63272	4,494302793	0,012026814		
116,90	2428,29938	4,006478972	0,015349004		
125,10	1687,38383	3,339786417	0,021421538		
130,00	1308,83160	2,941396963	0,026143265		
130,00	1308,83160	2,941396963	0,026143265		
130,00	1308,83160	2,941396963	0,026143265		
135.00	972.05383	2.534877113	0.03203572		
140,00	685,27605	2,128357262	0,039256281		
142.40	565.38272	1.933227734	0.043279376		
148.20	323,20049	1.461664707	0.054787262		
148.90	298.52160	1.404751928	0.056368704		
150.00	261,72049	1.315317561	0.058946561		
168.50	5.39272	0.188805886	0.103532661		
171.10	24.22827	0.400196208	0.093148218		
173,20	49,31160	0,570934546	0,085526203		
175.40	85.04938	0.74980328	0.07820929		
175,90	94,52160	0,790455265	0,076635655		
178,50	151,83716	1,001845587	0,068949012		
181,20	225,66716	1,221366307	0,061781683		
187,40	450,38272	1,725450921	0,048017456		
195,40	853,93827	2,375882682	0,034686437		
206.00	1585.80938	3.237704766	0.022543295		
200,00	1143,94272	2,749880945	0,028770473		
216.40	2522.27160	4.083266055	0.014770871		
239.10	5317.65049	5.928866177	0.005870014		
240,80	5568,47605	6,067082926	0,005478047		
250,00	7026,16494	6,815079451	0,003768776		
259,20	8653,13383	7,563075976	0,002592836		
293.00	16083.87605	10.31115017	0.000656203		
319,70	23569,07272	12,48196617	0,000221642		
322.20	24342.93383	12,68522609	0,000200223		
323.80	24844.76494	12,81531245	0,000187614		
437.50	73615.74827	22.05957385	1.84459E-06		
Media aritmetica	Scarto guadratico medio	Frattile superiore	Frattile inferiore		
166.18	12.29952238	184.6270613	147.7284942		
,	,	,•= • •	··· ,·· == ··= ·· =		

Tabella N° 12

4.7. Calcari e calcareniti

Per la definizione del comportamento meccanico dei terreni lapidei che costituiscono le varie facies della Formazione Ragusa, date da calcari sabbiosi, calcareniti e calcari marnosi, è necessario fare riferimento ai criteri che governano la meccanica delle rocce.

Nell'ammasso lapideo fessurato il comportamento meccanico è condizionato dalle discontinuità presenti, costituite da fessurazioni variamente orientate, che si rinvengono con interdistanza variabile.

La "massa rocciosa" va quindi intesa come un insieme di elementi "roccia" definiti, giustapposti e combacianti, di forma grossolanamente prismatica, parallelepipeda o appiattita, le cui proprietà meccaniche risultano decisamente inferiori a quelle del singolo elemento e dipendono da tanti fattori strutturali, legati alla dislocazione spaziale dei sistemi di discontinuità.

Appare quindi necessario richiamare alcuni concetti di fondamentale importanza, che consentono di valutare i parametri rappresentativi dello stato di fratturazione dell'ammasso roccioso.

In genere le "famiglie" di discontinuità sono limitate, da 1 a 5, più frequentemente 3, e vengono indicate con:

K1, K2,Kn

Le superfici di stratificazione vengono invece indicate con altre sigle (es.: Ks).

Di ciascuna porzione di ammasso roccioso in esame sono determinati i sottoelencati parametri:

e2 *estensione bidimensionale*, che rappresenta la superficie (in m²) della discontinuità in oggetto; si ottiene anche moltiplicando la estensione monodimensionale (I) di un sistema di fratture in due piani all'incirca tra essi ortogonali:

 $e2 = I1 \times I2 (m^2)$

le2 *indice di estensione bidimensionale*, che è dato dal rapporto tra l'area (A) di tutte le discontinuità complanari e l'area totale della sezione rocciosa (As) in cui si effettua la misura:

le2 = (AK1 + AK2 +AKn)/As

Val la pena rammentare che:

 $0,75 \le le2 \le 1$ individua porzioni di roccia in cui, lungo le discontinuità analizzate, si mobilitano solo forze di attrito; सहयस्य स्ट्राय सहय

 $le2 \le 0,75$ individua invece porzioni di roccia in cui, lungo le discontinuità analizzate, oltre alle forze di attrito si mobilitano anche forze di resistenza al taglio della roccia integra;

EI.

- s *frequenza*: rappresenta il numero delle discontinuità presenti per unità di superficie analizzata; la frequenza si misura in piani ortogonali alle superfici di discontinuità;
- d *spaziatura*: viene espressa in cm e rappresenta la distanza tra le discontinuità; si determinano una spaziatura massima, media e minima; il valore della spaziatura media è pari all'inverso della frequenza: d = 1/s;
- e3 estensione tridimensionale: si ottiene come prodotto dell'estensione bidimensionale per la frequenza:

e3 = e2 x s

Vu volume roccioso unitario: rappresenta il più piccolo volume di roccia integra estraibile dalla porzione di ammasso roccioso considerata; si esprime in mc ed è anche ricavabile dalla seguente relazione:

Vu = (1/s1) x (1/s2) x (1/s3)

Da quanto esposto deriva che si possono avere, per ciascuna formazione litoide, varie zone a diversa "omogeneità", ciascuna delle quali caratterizzata da differenti parametri.

Ai fini del presente studio sono riportati i principali parametri riferiti agli affioramenti in cui sono stati riscontrati i più frequenti sistemi di discontinuità. I valori qui di seguito riportati vanno comunque intesi come valori orientativi di massima, e servono unicamente a fornire un ordine di grandezza dello stato e del tipo di fratturazione osservato.

Altri fattori molto importanti nella determinazione del comportamento meccanico di un ammasso roccioso sono la "scabrezza" dei giunti ed il materiale di "riempimento" degli stessi.

La scabrezza dei giunti viene indicata distinguendo pareti di tipo: a scalini, ondulato, planare.

Ciascun tipo è poi individuato come: levigato, liscio, scabro.

Sono stati quindi acquisiti i caratteri strutturali generali e rappresentativi dei litotipi in questione, al fine di poter formulare una valutazione del loro comportamento meccanico d'insieme.

In corrispondenza delle pareti dei giunti sono stati rilevati i valori della resistenza alla compressione mediante l'impiego del *martello di Schmidt*, ricavando la stessa dal diagramma della Figura N° 3.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O azennart	Rev.	2	Settembre 2012			Pag. n. 28

FIGURA N° 3

Il profilo di ciascun giunto è stato annotato sulla scorta della schematizzazione proposta da **BARTON (1973)**, evidenziata in Figura N° 4.

FIGURA N° 4

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O RECENTER .	Rev.	2	Settembre 2012			Pag. n. 29

4.7.1 Rilievo geostrutturale

Il rilievo geostrutturale è stato effettuato in *N*° *5 Stazioni* in corrispondenza di affioramenti significativi e rappresentativi, esposti su 2 o 3 lati.

a) Stazione Nº 1

Sono state rilevate n° 6 famiglie di discontinuità principali: K_1 , K_2 , K_3 , K_4 , K_5 e Ks con le caratteristiche riassunte nella seguente Tabella N° 13.

Famiglia	Immersione	Inclinazione	e_2 - Estensione bi-	le ₂	S	d Crassisture (m)
-	()	()	dimensionale (m.)	indice di est. bid.	Frequenza	Spaziatura (m)
K 1	190	60	50	0.8	1.4	0.7
K ₂	170	80	60	0.8	1.4	0.7
K₃	250	90	4	0.2	2.5	0.4
K ₄	270	80	4	0.2	2.5	0.4
K₅	80	55	1	0.1	1	1
Ks	270	0	100	1	3.3	0.3
Volume	e roccioso uni	tario (m ³)	0.048			

Tabella N° 13

I giunti di strato sono combacianti e chiusi; i giunti K1 e K2 hanno apertura 0 ÷ 1 mm ed assenza di riempimento; i giunti K3 e K4 hanno apertura 1 ÷ 3 mm con riempimento sabbioso-limoso; i giunti K5 risultano chiusi e combacianti.

Le giaciture delle discontinuità sono state riportate nel reticolo *polare di Schmidt* (cfr. Figura N° 5), ove sono evidenziate le campiture con densità crescente dei poli dei piani, e nel reticolo *equatoriale di Wulff* (cfr. Figura N° 6), ove sono evidenziate le giaciture di tutti i piani e del fronte.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O wegennant	Rev.	2	Settembre 2012			Pag. n. 30

b) <u>Stazione N° 2</u>

Sono state rilevate n° 6 famiglie di discontinuità principali: K_1 , K_2 , K_3 , K_4 , K_5 e Ks con le caratteristiche riassunte nella seguente Tabella N° 14.

180 Proiezione equiangolare di WULFF - emisfero inferiore

$$\label{eq:response} \begin{split} & \textbf{n} = 2 \; (\text{K1: 180/65; 190/60}) \\ & \textbf{n} = 3 \; (\text{K2: 165/90; 170/80; 175/90}) \\ & \textbf{n} = 2 \; (\text{K3: 250/90, 260/90}) \\ & \textbf{m} = 2 \; (\text{K3: 270/70; 270/90}) \\ & \textbf{v} = 2 \; (\text{K5: 80/55; 70/50}) \\ & \textbf{r} = 1 \; (\text{Ks: 270:0}) \end{split}$$

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O Azeriliari	Rev.	2	Settembre 2012			Pag. n. 31

Tabella N° 14

Famiglia	Immersione	Inclinazione	e2 - Estensione bi-	le ₂		s	d
	(°)	(°)	dimensionale (m ²)	Indi	ce di est. bid.	Frequenza	Spaziatura (m)
K 1	260	90	30	1		0.4	2.5
K ₂	290	90	30	1		0.33	3.0
K ₃	330	90	30	1		0.33	3.0
K4	205	90	1	0.03		5	0.2
K₅	220	90	1	0.03	3	5	0.2
Ks	170	3	100	1		1.6	0.6
		Volume roco	cioso unitario (m ³)		0.30		

I giunti di strato sono combacianti e chiusi; i giunti K1 e K2 hanno apertura 1 ÷ 2 mm ed assenza di riempimento; i giunti K3, K4 e K5 hanno apertura 2 ÷ 3 mm senza riempimento.

Le giaciture delle discontinuità sono state riportate nel reticolo *polare di Schmidt* (cfr. Figura N° 7), ove sono evidenziate le campiture con densità crescente dei poli dei piani, e nel reticolo *equatoriale di Wulff* (cfr. Figura N° 8), ove sono evidenziate le giaciture di tutti i piani e del fronte.

FIGURA N° 7

Proiezione equiangolare di Shmidt - emisfero inferiore

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O RECENTET	Rev.	2	Settembre 2012			Pag. n. 32

c) Stazione N° 3

Sono state rilevate n° 4 famiglie di discontinuità principali: K_1 , K_2 , K_3 e Ks con le caratteristiche riassunte nella seguente Tabella N° 15.

Tabella I	N° 1	5
-----------	------	---

Famiglia	Immersione	Inclinazione	e ₂ - Estensione bi-	le ₂		s		d
	(°)	(°)	dimensionale (m ²)	Indi	ce di est. bid.	Freque	enza	Spaziatura (m)
K ₁	190	90	16	0.32	0.32			0.5
K ₂	220	90	9	0.32	0.32			0.5
K ₃	135	90	1	0.02	0.02			0.33
Ks	130	2	100	1		1.4		0.70
		Volume roco	cioso unitario (m ³)		0.115			

I giunti di strato sono combacianti e chiusi; i giunti K1 e K2 hanno apertura 3 ÷ 4 mm ed assenza di riempimento; i giunti K3 hanno apertura 0 ÷ 1 mm con locale riempimento di calcite secondaria.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O azannarr	Rev.	2	Settembre 2012			Pag. n. 33

Le giaciture delle discontinuità sono state riportate nel reticolo *polare di Schmidt* (cfr. Figura N° 9), ove sono evidenziate le campiture con densità crescente dei poli dei piani, e nel reticolo *equatoriale di Wulff* (cfr. Figura N° 10), ove sono evidenziate le giaciture di tutti i piani e del fronte.

Proiezione equiangolare di Shmidt - emisfero inferiore

Proiezione equiangolare di WULFF - emisfero inferiore

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O azeritari	Rev.	2	Settembre 2012			Pag. n. 34

d) Stazione N° 4

Sono state rilevate n° 4 famiglie di discontinuità principali: K_1 , K_2 , K_3 e Ks con le caratteristiche riassunte nella seguente Tabella N° 16.

Famiglia	Immersione	Inclinazione	e2 - Estensione bi-	le ₂		s	d
	(°)	(°)	dimensionale (m ²)	Indio	ce di est. bid.	Frequenza	Spaziatura (m)
K 1	90	85	4	0.3		3	0.33
K ₂	270	90	4	0.3		3	0.33
K ₃	165	80	1.4	0.2		2	0.5
Ks	270	10	100	1		2.8	0.35
		Volume roco	cioso unitario (m³)		0.057		

Tabella N° 16

I giunti di strato sono combacianti e chiusi; i giunti K1, K2 e K3 risultano anch'essi combacianti e chiusi.

Le giaciture delle discontinuità sono state riportate nel reticolo *polare di Schmidt* (cfr. Figura N° 11), ove sono evidenziate le campiture con densità crescente dei poli dei piani, e nel reticolo *equatoriale di Wulff* (cfr. Figura N° 12), ove sono evidenziate le giaciture di tutti i piani e del fronte.

Proiezione equiangolare di Shmidt - emisfero inferiore

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O RECIENTET	Rev.	2	Settembre 2012			Pag. n. 35

Proiezione equiangolare di WULFF - emisfero inferiore

n = 2 (K1: 90/85;85/85)
n = 5 (K2: 265/90;275/90;290/90;270/90;260/85)
n = 7 (K3: 160/60;170/80;165/80;170/90;180/80;160/70;165/75)
n = 4 (Ks: 270/5;270/10;220/15;240/5)

e) Stazione N° 5

Sono state rilevate n° 5 famiglie di discontinuità principali: K_1 , K_2 , K_3 e Ks con le caratteristiche riassunte nella seguente Tabella N° 17.

Famialia	Immersione	Inclinazione	e2 - Estensione bi-	le ₂	s	d
Famiglia	(°)	(°)	dimensionale (m ²)	Indice di est. bid.	Frequenza	Spaziatura (m)
K ₁	15	80	4	0.3	3	0.33
K ₂	25	90	4	0.3	3	0.33
K ₃	280	90	100	1	2	0.5
K₄	120	85	100	1	2	0.5
Ks	180	5	100	1	2.8	0.35
Volume roccioso unitario (m ³)		0.057				

Tabella N° 17

I giunti di strato sono combacianti e chiusi; i giunti K1, K2, K3 e K4 risultano combacianti e chiusi, raramente con apertura di circa 1 mm .
	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O	Rev.	2	Settembre 2012			Pag. n. 36

Le giaciture delle discontinuità sono state riportate nel reticolo *polare di Schmidt* (cfr. Figura N° 13), ove sono evidenziate le campiture con densità crescente dei poli dei piani, e nel reticolo *equatoriale di Wulff* (cfr. Figura N° 14), ove sono evidenziate le giaciture di tutti i piani e del fronte.

Proiezione equiangolare di Shmidt - emisfero inferiore

• सद्यत्र स्टट

EI.

4.7.2. Resistenza al taglio lungo i giunti

In ordine a quanto esposto in precedenza è possibile stabilire, in linea di massima e con riferimento ai sistemi di discontinuità rilevati e più rappresentativi dell'ammasso roccioso in studio, il comportamento meccanico dei terreni in questione.

Il criterio più adatto per la determinazione della resistenza al taglio lungo i suddetti piani di discontinuità sembra essere quello proposto da **BARTON (1973)** con la seguente espressione:

$$\tau = \sigma_n \tan(\phi^\circ + i)$$

dove:

τ è la resistenza al taglio mobilitata,

 σ_n è la tensione normale;

 ϕ° è l'angolo di attrito di base;

i è l'angolo di inclinazione delle asperità.

L'angolo di attrito di base " ϕ° " è quello corrispondente allo scorrimento tra superfici lisce dello stesso materiale; ad esso, sulla base di numerose prove sperimentali, condotte da vari AA., viene assegnato un valore compreso tra 25° e 35°, in assenza di alterazioni delle pareti dei giunti; se le pareti dei giunti sono alterate il suddetto valore può scendere sino a 15° - 20°.

Per la definizione dell'angolo di attrito di base sono state effettuate N° 13 prove di taglio diretto su provini di roccia appositamente tagliati, i cui risultati sono riportati in Tabella N° 18.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O Azerilar	Rev.	2	Settembre 2012			Pag. n. 38

Tabella N° 18

DATI	DEL	CAMPI	IONE		Prova di taglio	asssiale su roccia
Sondaggio	Denominazione Campione	da metri a metri		Peso di volume	Coesione	Angolo di attrito
				g/cm³	Kg/cm ²	(°)
			4 = 0	0.005		10.00
S.1	1	1,50	1,70	2,385	0,803	43,00
S.4	2	7,60	7,95	2,019	<u>0,185</u>	<u>37,00</u>
S.6	1	3,50	3,80	1,894	<u>0,257</u>	<u>38,00</u>
S.22	2	14,40	14,75	2,628	0,631	<u>33,00</u>
S.22	3	18,70	19,00	2,186	0,097	45,00
S.22	4	23,40	23,60	2,204	0,194	35,00
S.24B	1	19,60	19,75	2,232	0,194	35,00
S.24B	2	28,60	28,80	1,984	0,024	37,00
S.24C	1	8,00	8,40	2,477	0,291	42,00
S.24C	4	29,85	30,00	2,338	0,146	34,00
S.26	2	13,45	14,00	2,269	2,296	30,00
S.26	3	24,25	24,60	2,125	0,243	46,00
S.27	1	5,10	5,35	2,632	0,555	34,00
S.29	2	9.40	9.80	2.463	0.370	36.00

Nel caso in esame si assume:

 $\phi^\circ = 32^\circ$

L'angolo di inclinazione delle asperità "i" è definito dalla seguente espressione:

in cui: $i = JRC \log (JCS/\sigma_n)$

JRC (JOINT ROUGHNESS COEFFICIENT), esprime l'entità delle irregolarità delle pareti del giunto;
JCS (JOINT WALL COMPRESSIVE STRENGHT), rappresenta la resistenza del materiale

 $\sigma_n \qquad \qquad \mbox{che costituisce le pareti del giunto e viene misurata con il martello di SHMIDT; conven$ zionalmente viene anche espressa come la resistenza monoassiale a compressione; $<math display="block">\sigma_n \qquad \qquad \mbox{tensione normale agente sul piano di discontinuità, in Kg/cm^2.}$

Poichè il criterio di rottura di **BARTON** così espresso è del tutto analogo a quello proposto da **MOHR-COULOMB** per i terreni, si ritiene di poter assumere un valore:

$$\varphi = \varphi^{\circ} + i$$

Sui campioni litoidi prelevati nel corso dei sondaggi sono state effettuate delle prove di compressione semplice i cui risultati sono esposti in Tabella N° 19.

Rev.	0	Luglio 2004	EI.	A18-9-gl60	
Rev.	2	Settembre 2012			Pag. n. 39

Tabella N° 19

DATI DEL CAMPIONE					Prova di compressione su roccia
Sondaggio	Denominazione Campione	da metri	a metri	Peso di volume	
				g/cm³	Kg/cm ²
S.1	1	1,50	1,70	2,385	563,710
S.4	2	7,60	7,95	2,019	85,900
S.6	1	3,50	3,80	1,894	
S.22	2	14,40	14,75	2,628	112,560
S.22	3	18,70	19,00	2,186	349,310
S.22	4	23,40	23,60	2,204	213,470
S.24B	1	19,60	19,75	2,232	87,330
S.24B	2	28,60	28,80	1,984	83,710
S.24C	1	8,00	8,40	2,477	258,750
S.24C	4	29,85	30,00	2,338	39,790
S.26	2	13,45	14,00	2,269	504,560
S.26	3	24,25	24,60	2,125	97,030
S.27	1	5,10	5,35	2,632	277,230
S.29	2	9,40	9,80	2,463	217,760

Per la definizione quantitativa dell'indice JRC si adotta la relazione proposta da **BANDIS**, **LUMSDEN E BARTON (1981)**:

$$JRC = \sum_{i=0}^{n} \arctan \frac{|y_i - y_{(i-1)}|}{|x_i - x_{(i-1)}|} \frac{1}{n}$$

che implica il rilievo delle parti iniziali e finali di ciascun segmento che compone la spezzata del profilo di rugosità, rispetto ad un sistema di assi cartesiani di riferimento (cfr. Figura N° 15), in cui:

- n numero dei segmenti
- x_i ascissa del segmento i-esimo
- yi ordinata del segmento i-esimo

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O wecentrer	Rev.	2	Settembre 2012			Pag. n. 40

L'angolo di attrito effettivo lungo le discontinuità diventa, quindi, funzione della rugosità (JRC), della resistenza a compressione (JCS) e della tensione normale al piano di taglio (σ_n).

In particolare l'angolo di attrito decresce all'aumentare della tensione normale, giacchè per tensioni normali molto alte si verifica la rottura delle asperità dei giunti, sino al caso limite in cui si ha la totale rottura delle asperità e l'angolo di attrito tende a raggiungere il valore dell'attrito di base (ϕ°); nelle Figure N° 16, 17, 18,19 e 20 sono riportate le variazioni dell'angolo di attrito lungo le discontinuità per le 5 stazioni di rilievo geostrutturale.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ascintar	Rev.	2	Settembre 2012			Pag. n. 41

FIGURA N° 16

FIGURA N° 17

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O azernari	Rev.	2	Settembre 2012			Pag. n. 42

FIGURA N° 18

FIGURA N° 19

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O RECENTRET	Rev.	2	Settembre 2012			Pag. n. 43

Nelle Figure N° 21, 22, 23, 24, 25 sono riportati i profili di rugosità dei giunti delle singole stazioni strutturali ed il rispettivo valore calcolato dell'indice JRC.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O RECENTER T	Rev.	2	Settembre 2012			Pag. n. 44

FIGURA N° 22

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O azeratar	Rev.	2	Settembre 2012			Pag. n. 45

Il peso di volume medio risulta:

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O azannarr	Rev.	2	Settembre 2012			Pag. n. 46

```
\gamma \approx 2,3 \text{ ton/m}^3
```

La resistenza al taglio lungo i giunti delle discontinuità risulta quindi schematizzabile come segue:

 \Rightarrow per i giunti di strato

\rightarrow	angolo di attrito	φ <u>></u> 36°
\rightarrow	coesione	$C \rightarrow 0 \ \text{Kg/cm}^2$
\Rightarrow	per tutti gli altri giunti	
\rightarrow	angolo di attrito	φ <u>></u> 45°
\rightarrow	coesione	$C \rightarrow 0 \text{ Kg/cm}^2$

Per quanto attiene al modulo di elasticità (Young) nelle prove di resistenza alla compressione, eseguite in laboratorio su provini cilindrici dio roccia, sono stati riscontrati valori compresi nel seguente range:

I valori più bassi si riferiscono agli strati marnosi mentre quelli più alti a quelli calcarei. Considerato che l'ammasso risulta costituito da un'alternanza irregolare di strati suborizzontali con diverse facies litologiche (calcareniti, calcari sabbiosi, calcari marnosi, marne calcaree, ecc...) si ritiene di poter indicare come rappresentativo di tutta la formazione il seguente valore medio:

$$E = 25.000 \text{ Kg/cm}^2$$

4.7.3. Criterio di rottura di Hoek-Brown

Hoek e Brown hanno introdotto il loro criterio di rottura nel tentativo di fornire dei dati per le analisi necessarie alla progettazione di scavi sotterranei in roccia dura. Il criterio è stato derivato dai risultati della ricerca sulla rottura fragile della roccia intatta di Hoek, e su studi del modello del comportamento dell'ammasso roccioso giuntato condotti da Brown.

La caratterizzazione parte dalle proprietà della roccia intatta con l'introduzione di fattori per ridurne le relative proprietà sulla base della distribuzione e caratteristiche dei giunti in un ammasso roccioso. Gli autori hanno cercato di collegare il criterio empirico ad osservazioni geologiche per mezzo di uno degli

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O Azennarr	Rev.	2	Settembre 2012			Pag. n. 47

schemi di classificazione disponibili dell'ammasso roccioso e, a tal fine, hanno scelto la classificazione proposta da Bieniawski.

A causa della mancanza di alternative adeguate il criterio è stato presto adottato ed il suo utilizzo si è diffuso rapidamente al di là dei limiti originali usati nel derivare le relazioni per la riduzione della resistenza.

Di conseguenza si è reso necessario riesaminare queste relazioni ed introdurre di volta in volta nuovi elementi in ragione della vasta gamma di problemi pratici a cui il criterio è stato applicato. Tipiche di questi miglioramenti sono state l'introduzione del concetto di ammassi rocciosi 'indisturbati' e 'disturbati' di Hoek e Brown, e l'introduzione di un criterio modificato per imporre a zero la resistenza a trazione dell'ammasso roccioso per gli ammassi di qualità molto scarsa (Hoek, Wood and Shah).

Una delle prime difficoltà derivava dal fatto che molti problemi geotecnici, in particolare problemi di stabilità dei pendii, sono più convenientemente affrontati in termini di tensioni tangenziali e normali piuttosto che con le relazioni della tensione principale del criterio originale di Hoek-Brown, definita con l'equazione:

$$\sigma'_1 = \sigma'_3 + \sigma_{ci} \left(m \frac{\sigma'_3}{\sigma_{ci}} + s \right)^{0.5}$$
 [1]

dove σ_1 e σ_3 sono rispettivamente la maggiore e minore tensione efficace a rottura principale, σ_{ci} è la resistenza alla compressione uniassiale del materiale roccioso intatto e m ed s sono costanti del materiale, dove s = 1 per la roccia intatta.

Una relazione esatta tra l'equazione 1 e le tensioni a rottura normali e tangenziali è stata ottenuta da J. W. Bray e successivamente da Ucar e Londe.

Hoek ha discusso la derivazione di angoli di attrito equivalenti e forze coesive per varie situazioni pratiche. Queste derivazioni si basavano sulle tangenti all'inviluppo di Mohr ottenuto da Bray. Hoek ha suggerito che la forza coesiva determinata inserendo una tangente all'inviluppo curvilineo di Mohr è un valore limite superiore e può dare risultati ottimistici nei calcoli di stabilità. Di conseguenza un valore medio, determinato dall'inserimento di una relazione lineare di Mohr-Coulomb con il metodo dei minimi quadrati, potrebbe essere più appropriato. In questo lavoro Hoek ha introdotto anche il concetto del Criterio Generalizzato di Hoek-Brown nel quale la forma del piano della tensione principale o dell'inviluppo di Mohr poteva essere modificata per mezzo di un coefficiente variabile a in luogo del termine della radice quadrata nell'equazione 1.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O RECENTRET	Rev.	2	Settembre 2012			Pag. n. 48

Hoek e Brown hanno cercato di consolidare tutti i precedenti miglioramenti in una presentazione completa del criterio di rottura e hanno dato un certo numero di esempi concreti per illustrare la sua applicazione pratica.

In aggiunta ai cambiamenti nelle equazioni è stato anche riconosciuto che la classificazione dell'ammasso roccioso di Bieniawski non era più adeguata come veicolo di relazione tra il criterio di rottura e le osservazioni geologiche nel settore, in particolare per gli ammassi rocciosi molto deboli. Ciò ha comportato l'introduzione dell'indice GSI di Hoek, Wood e Shah, Hoek e Hoek, Kaiser e Bawden. Questo indice fu successivamente esteso per gli ammassi rocciosi deboli in una serie di articoli scritti da Hoek, Marinos e Benissi, Hoek e Marinos e Marinos e Hoek.

Il Criterio Generalizzato di Hoek-Brown è espresso come

$$\sigma'_1 = \sigma'_3 + \sigma_{ci} \left(m_b \frac{\sigma'_3}{\sigma_{ci}} + s \right)^a$$
 [2]

dove mb è un valore ridotto della costante del materiale mi ed è dato da

$$m_{b} = m_{i} \exp\left(\frac{GSI - 100}{28 - 14D}\right)$$
 [3]

s ed a sono costanti per l'ammasso roccioso date dalle seguenti relazioni:

$$s = exp\left(\frac{GSI - 100}{9 - 3D}\right) \qquad [4]$$

$$a = \frac{1}{2} + \frac{1}{6} \left(e^{-GSI/15} - e^{-20/3} \right)$$
 [5]

D è un fattore che dipende dal grado di disturbo a cui la massa rocciosa è sottoposta dal danneggiamento dell'esplosione e dal rilassamento della tensione. Esso varia da 0 per masse rocciose in situ indisturbate a 1 per masse rocciose molto disturbate.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O Azernara	Rev.	2	Settembre 2012			Pag. n. 49

La resistenza alla compressione uniassiale è ottenuta fissando nella [2]

$$\sigma_3 = 0$$

 $\sigma_c = \sigma_{ci} \cdot s^a$ [6]

e, la resistenza a trazione è data da:

$$\sigma_{t} = \frac{s\sigma_{ci}}{m_{b}}$$
 [7]

Quest'ultima equazione è stata ottenuta impostando

$$\sigma_1 = \sigma_3 = \sigma_t$$

nell'equazione del criterio generalizzato [2]. Questa rappresenta una condizione di tensione biassiale. Hoek ha dimostrato che, per materiali fragili, la resistenza a trazione uniassiale è uguale alla resistenza a trazione biassiale.

Si noti che il 'passaggio' a GSI = 25 per i coefficienti *s* e *a* è stato eliminato nelle equazioni [4] e [5] che danno transizioni continue uniformi per l'intera gamma dei valori di GSI. I valori numerici di *a* ed *s*, dati da queste equazioni, sono molto simili a quelli dati dalle precedenti equazioni.

Le tensioni normali e tangenziali sono correlate alle tensioni principali attraverso le equazioni pubblicate da Balmer.

$$\sigma_{n}^{'} = \frac{\sigma_{1}^{'} + \sigma_{3}^{'}}{2} - \frac{\sigma_{1}^{'} - \sigma_{3}^{'}}{2} - \frac{\frac{d\sigma_{1}^{'}}{d\sigma_{3}^{'} - 1}}{\frac{d\sigma_{1}^{'}}{d\sigma_{3}^{'} + 1}}$$
[8]

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O REGIMENT	Rev.	2	Settembre 2012			Pag. n. 50

$$\tau = \sigma_{1}^{'} - \sigma_{3}^{'} \cdot \frac{\sqrt{\frac{d\sigma_{1}^{'}}{d\sigma_{3}^{'}}}}{\frac{d\sigma_{1}^{'}}{d\sigma_{3}^{'}} + 1}$$
[9]

$$\frac{d\sigma_1'}{d\sigma_3'} = 1 + am_b \left(\frac{m_b\sigma_3'}{\sigma_{ci} + s}\right)^{a-1}$$
[10]

Il modulo di deformazione dell'ammasso roccioso è dato da:

$$\mathsf{E}_{\mathsf{m}}(\mathsf{GPa}) = \left(1 - \frac{\mathsf{D}}{2}\right) \sqrt{\frac{\sigma_{\mathsf{ci}}}{100}} \cdot 10^{[(\mathsf{GSI}-10)/40]} \qquad [11a]$$

L'equazione [11°] è valida per

/IPa σ_{ci} > 100MPa

Nel caso di

Si adotta la seguente equazione

$$E_{m}(GPa) = \left(1 - \frac{D}{2}\right) \cdot 10^{[(GSI-10)/40]}$$
 [11b]

Il fattore D consente di tener conto degli effetti dei danni provocati dalle esplosioni e del conseguente rilassamento della tensione.

Per determinare i parametri geotecnici dei calcari in questione è stato impiegato il programma RockLab della Geostru, in cui sono stati inseriti i seguenti dati di input:

Resistenza alla compressione uniassiale	[sigi]	10,000	Мра
Geological Strength Index	[GSI]	50	
Costante ammasso roccioso	[mi]	8,000	
Fattore di disturbo	[D]	0,0	
Modulo di elasticità	[Ēi]	3000,00	MPa

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O RECENTATION	Rev.	2	Settembre 2012			Pag. n. 51

Modulo MR	[MR]	900	
Limite superiore tensione confinamento Applicazione Profondità Peso unità di volume		pendio 15,00 23,000	m KN/m³
Criterio di Hoek-Brown Valore ridotto di mi Costanti ammasso roccioso Constant rock mass Tensione confinamento	[mb] [s] [a] [sig3max]	1,341 0,0039 0,506 0,3	Мра
Parametri ammasso roccioso [sigt] [sigc] [sigcm] [Erm]		0,0 0,6 1,6 923,26	Мра Мра Мра Мра

Parametri geotecnici dell'ammasso

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O azannarr	Rev.	2	Settembre 2012			Pag. n. 52

Peso unità di volume	23,00	KN/m3
Angolo di resistenza a taglio	45,72°	
Coesione	0,14	Мра
Resistenza compress. uniassiale	10,00	Мра
Modulo di elasticità	3000,00	Мра

I suddetti parametri confermano il valore della resistenza al taglio per attrito individuata nel paragrafo precedente. Nelle verifiche di stabilità degli scavi si è prudentemente fatto riferimento a valori nulli di coesione e ad un angolo d'attrito pari a 45°. Per le fondazioni del viadotto Modica si è utilizzata la caratterizzazione stratigrafica e geotecnica proposta nel seguente paragrafo 4.7.4.

4.7.4. Formazione Ragusa lungo il Viadotto Modica

a) calcari superficiali

Per il dimensionamento delle fondazioni del Viadotto Modica nell'ambito della Formazione di Ragusa è stata prevista una suddivisione in n° 3 orizzonti aventi caratteristiche geomeccaniche differenti con valori di coesione progressivamente crescenti verso il basso (*valori caratteristici*):

α)	oulour oupornolui	
\rightarrow	angolo di attrito	$\phi = 35^{\circ}$
\rightarrow	coesione	C = 30 kPa
b)	calcari intermedi	
\rightarrow	angolo di attrito	$\phi = 37^{\circ}$
\rightarrow	coesione	C = 50 kPa
c)	calcari profondi	
\rightarrow	angolo di attrito	$\phi = 37^{\circ}$
\rightarrow	coesione	C = 60 kPa

💽 सहदस्यायस्यर

EI.

4.7.5. Classificazione della roccia secondo Bieniawsky e Barton

Nel corso dei sondaggi è stato rilevato l'indice R.Q.D., che risulta generalmente alto; nelle Figura N° 26, 27, 28 e 29 è riportata la variazione dei valori di R.Q.D. per i sondaggi più significativi (S. 1, S. 2, S.4 ed S. 5).

Sulla scorta dei dati delle indagini geognostiche (R.Q.D.) e dei rilievi ed osservazioni di campagna è stata effettuata la classificazione della roccia, per le cinque stazioni di rilievo geostrutturale, secondo **Z.T. BIENIAWSKI (1989)** e **N. BARTON (1987)**.

FIGURA N° 26

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ascanterr	Rev.	2	Settembre 2012			Pag. n. 54

FIGURA N° 27

FIGURA N° 28

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O azannarr	Rev.	2	Settembre 2012			Pag. n. 55

FIGURA N° 29

a) Classificazione di BIENIAWSKI

Il metodo si basa sulla determinazione di nº 5 parametri, ad ognuno dei quali è assegnato un valore:

A₁ resistenza a compressione uniassiale della roccia integra;

A₂ indice R.Q.D.;

- A₃ spaziatura delle discontinuità;
- A₄ condizioni delle discontinuità;
- A₅ condizioni idrauliche;

La classificazione individua due valori dell'indice RMR, denominati rispettivamente "*di base*" e "*corretto*":

 $RMR_{base} = A_1 + A_2 + A_3 + A_4 + A_5$

 $RMR_{corretto} = A_1 + A_2 + A_3 + A_4 + A_5 - A_6$

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ARGHAIAT T	Rev.	2	Settembre 2012			Pag. n. 56

in cui A_6 = orientamento delle discontinuità rispetto al versante e/o al fronte di scavo.

Nelle Tabelle N° 20 – 21 – 22 - 23 - 24 sono riportate, rispettivamente, le classificazioni per le cinque stazioni strutturali.

CLASSIFICAZIONE DI BIENIAWSKI - STAZIONE N° 1 - Dise	continuità K1	
A1 = Resistenza a compressione monoassiale	A1	0,15
Resistenza a compressione monoassiale rilevata	Мра	20
	·	
A2 = R.Q.D.	A2	11,24
R.Q.D.	%	50
A3 = Spaziatura delle discontinuità	A3	15,32
Spaziatura	m	1,00
A4 = Condizione dei giunti		
Rugosità (JRC)	6,79	11,84
Apertura delle discontinuità (mm)	3,89	1
Alterazione (EEL roccia/Martello Schmidt)	ELL roccia	20
	Schmidt	20
	9,15	
Riempimento (assente, incoerente, coesivo)	5	assente
Persistenza laterale (%)	0,85	100
	A4	21,11
Si dispone di misure di acqua in galleria ? (si/no)		no
A5 = Condizioni acqua (asciutto, umido, bagnato, stillicidio, venute)	-	umido
	A5	10
Somma indici A1, A2, A3, A4, A5	RMR _{base} =	57,81
A6 = Indice di correzione		
Immersione degli strati rispetto al verso di avanzamento del fronte di scavo		-
Immersione parallela al fronte di scavo (reggipoggio/franapoggio/ortogonale/altro)		franapoggio
Immersione (°)	90	
	A6	10
Immersione ortogonale al fronte di scavo (°)		
Immersione qualsiasi (°)		
	RMR _{corretto} =	47,81

Rev.	0	Luglio 2004	EI.	A18-9-gl60	
Rev.	2	Settembre 2012			Pag. n.

57

CLASSIFICAZIONE DI BIENIAWSKI - STAZIONE N° 2 - Dise	continuità K5	
A1 = Resistenza a compressione monoassiale	A1	1,15
Resistenza a compressione monoassiale rilevata	Мра	16,8
A2 = R.Q.D.	A2	13,46
R.Q.D.	%	60
A3 = Spaziatura delle discontinuità	A3	9,11
Spaziatura	m	0,20
A4 = Condizione dei giunti		
Rugosità (JRC)	5,30	9,95
Apertura delle discontinuità (mm)	1,19	3
Alterazione (EEL roccia/Martello Schmidt)	ELL roccia	16,8
	Schmidt	16,8
	9,15	
Riempimento (assente, incoerente, coesivo)	5	assente
Persistenza laterale (%)	0,85	100
	A4	17,54
Si dispone di misure di acqua in galleria ? (si/no)		no
AE - Condizioni comuna (consista sumido hormoto atilizidio sensito)		, una i al a
AS = Condizioni acqua (asciutto, umido, bagnato, stillicidio, venute)	A 5	umido
Somma indiai 11 12 12 14 15	A5	10
	RMR _{base} =	51,26
A6 = Indice di correzione		
Immersione degli strati rispetto al verso di avanzamento dei fronte di scavo		6
Immersione parallela al fronte di scavo (reggipoggio/franapoggio/ortogonale/altro)	00	franapoggio
	90	40
lumment and the start of the start (0)	AQ	10
Immersione ortogonale al tronte di scavo (°)		
	B 115	44.00
	RMR _{corretto} =	41,26

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ARCHAIATT	Rev.	2	Settembre 2012			Pag. n. 58

CLASSIFICAZIONE DI BIENIAWSKI - STAZIONE N° 3 - Disc	continuità K1	
A1 = Resistenza a compressione monoassiale	A1	2,46
Resistenza a compressione monoassiale rilevata	Мра	31,5
A2 = R.Q.D.	A2	12,40
R.Q.D.	%	55
A3 = Spaziatura delle discontinuità	A3	12,64
Spaziatura	m	0,50
A4 = Condizione dei giunti		
Rugosità (JRC)	4,98	9,59
Apertura delle discontinuità (mm)	1,19	3
Alterazione (EEL roccia/Martello Schmidt)	ELL roccia	31,5
	Schmidt	31,5
	9,15	
Riempimento (assente, incoerente, coesivo)	5	assente
Persistenza laterale (%)	0,85	100
	A4	17,27
Si dispone di misure di acqua in galleria ? (si/no)		no
A5 = Condizioni acqua (asciutto, umido, bagnato, stillicidio, venute)		umido
	A5	10
Somma Indici A1, A2, A3, A4, A5	RMR _{base} =	54,78
A6 = Indice di correzione		
Immersione degli strati rispetto al verso di avanzamento del fronte di scavo		
Immersione parallela al fronte di scavo (reggipoggio/franapoggio/ortogonale/altro)		franapoggio
Immersione (°)	90	
	A6	10
Immersione ortogonale al fronte di scavo (°)		
Immersione qualsiasi (°)		
	RMR _{corretto} =	44,78

*#####################################

CLASSIFICAZIONE DI BIENIAWSKI - STAZIONE N° 4 - Dis	continuità K3	
A1 = Resistenza a compressione monoassiale	A1	0,24
Resistenza a compressione monoassiale rilevata	Мра	21,4
A2 = R.Q.D.	A2	13,46
R.Q.D.	%	60
A3 = Spaziatura delle discontinuità	A3	12,64
Spaziatura	m	0,50
A4 = Condizione dei giunti		
Rugosità (JRC)	5,85	10,61
Apertura delle discontinuità (mm)	9,55	0,1
Alterazione (EEL roccia/Martello Schmidt)	ELL roccia	21,4
	Schmidt	21,4
	9,15	
Riempimento (assente, incoerente, coesivo)	5	assente
Persistenza laterale (%)	0,85	100
	A4	25,12
Si dispone di misure di acqua in galleria ? (si/no)		no
A5 = Condizioni acqua (asciutto, umido, bagnato, stillicidio, venute)		umido
	A5	10
Somma indici A1, A2, A3, A4, A5	RMR _{base} =	61,47
A6 = Indice di correzione		
Immersione degli strati rispetto al verso di avanzamento del fronte di scavo		
Immersione parallela al fronte di scavo (reggipoggio/franapoggio/ortogonale/altro)		franapoggio
Immersione (°)	80	
	A6	10
Immersione ortogonale al fronte di scavo (°)		
Immersione qualsiasi (°)		
	RMR _{corretto} =	51,47

CLASSIFICAZIONE DI BIENIAWSKI - STAZIONE N° 5 - Dise	continuità K4	
A1 = Resistenza a compressione monoassiale	A1	2,06
Resistenza a compressione monoassiale rilevata	Мра	29,4
A2 = R.Q.D.	A2	8,52
R.Q.D.	%	40
A3 = Spaziatura delle discontinuità	A3	12,64
Spaziatura	m	0,50
A4 = Condizione dei giunti		
Rugosità (JRC)	3,19	7,78
Apertura delle discontinuità (mm)	3,89	1
Alterazione (EEL roccia/Martello Schmidt)	ELL roccia	29,4
	Schmidt	29,4
	9,15	
Riempimento (assente, incoerente, coesivo)	5	assente
Persistenza laterale (%)	0,85	100
	A4	18,05
Si dispone di misure di acqua in galleria ? (si/no)		no
A5 = Condizioni acqua (asciutto, umido, bagnato, stillicidio, venute)		umido
	A5	10
Somma indici A1, A2, A3, A4, A5	RMR _{base} =	51,28
A6 = Indice di correzione		
Immersione degli strati rispetto al verso di avanzamento del fronte di scavo		
Immersione parallela al fronte di scavo (reggipoggio/franapoggio/ortogonale/altro)		franapoggio
Immersione (°)	90	
	A6	10
Immersione ortogonale al fronte di scavo (°)		
Immersione qualsiasi (°)		
	RMR _{corretto} =	41,28

0	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
	Rev.	2	Settembre 2012			Pag. n. 61

Dall'indice RMR_{base} è possibile desumere i parametri caratteristici di resistenza e di elasticità dell'ammasso roccioso (cfr. Tabella N° 25), secondo le seguenti relazioni:

 $C' = 5 \cdot RMR$ (kPa)

$$\phi' = 5 + \frac{RMR_{base}}{2}$$
 (°)

 $Ed = 10^{(RMR_{base}-10)/40}$ (GPa)

Tabella N 25

PARAMETRI GEOTECNICI DELL'AMMASSO ROCCIOSO										
Stazione di rilievo	RMR.	C_{a}	Angolo di attrito (°)	Modulo di deformabilità						
N°	T NWI Sbase	Coesione (Kg/cm)		(GPa)						
1	57,81	2,89	34	15,68						
2	51,26	2,56	31	10,75						
3	54,78	2,74	32	13,17						
4	61,47	3,07	36	19,35						
5	51,28	2,56	31	10,76						

b) **Classificazione di BARTON**

Il metodo di **BARTON (1974)** si basa sulla determinazione dell'indice di qualità Q, definito dalla seguente espressione:

$$\mathbf{Q} = \frac{\mathbf{R}\mathbf{Q}\mathbf{D}}{\mathbf{J}_{n}} \cdot \frac{\mathbf{J}_{r}}{\mathbf{J}_{a}} \cdot \frac{\mathbf{J}_{w}}{\mathbf{S}\mathbf{R}\mathbf{F}}$$

in cui:

RQD indice di qualità della roccia;

- J_n indice relativo al numero di sistemi di fratture;
- J_r fattore di scabrezza delle discontinuità;

o ascentaret	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
	Rev.	2	Settembre 2012			Pag. n. 62

- J_a fattore relativo al riempimento delle fratture;
- J_w indice che individua le condizioni idrauliche;
- SRF fattore di riduzione per il carico litostatico.

L'indice di qualità della roccia R.Q.D. si ottiene o dai carotaggi o dalla formula di **PALMSTROM** (1982):

RQD = 115 – 3,3n

con n = numero di fratture per m^3 .

Nelle Tabelle N° 26 – 27 – 28 - 29 - 30 è riportata la classificazione di BARTON in corrispondenza delle singole stazioni geostrutturali.

CLASSIFICAZIONE DI BARTON (1979) - STAZIONE N° 1 - DISCONTINUITA' K1									
RQD max	%	40	Tabella Jn		Tabella S.R.F.				
RQD min	%	60	Roccia compatta o poche discontinuità	0 - 1	Zona di scavo, distacchi di volumi di roccia nel cavo	deboli			
RQD med	%	50	Una famiglia di discontinuità	2	Zone deboli multiple con rocce disgregate chimicamente	10			
Numero di famiglie di discontinuità (Joint Set	1	0			Singole zone deboli con rocce disgregate chimicamente	-			
Number)	Jn	0	Una famiglia di discontinuità + random	3	(profondità di scavo < 50 m)	5			
Rugosità delle discontinuità (Joint	le.	2			Singole zone deboli con rocce disgregate chimicamente	2.5			
Roughness Number)	JI	3	Due famiglie di discontinuità	4	(profondità di scavo > 50 m	2,5			
Grado di alterazione dei giunti (Joint	la	1							
Alteration Number)	Ja		Due famiglie di discontinuità + random	9	Zona di frattura multiple in rocce competenti, senza argilla	7,5			
Condizioni idrogeologiche (Joint Water	har	1			Singole zone di frattura in rocce competenti, senza argilla	5			
Number)	JW	1	Tre famiglie di discontinuità 6		(profondità di scavo < 50 m)	5			
Tensioni in galleria (Stress Reduction	SDE	1			Singole zone di frattura in rocce competenti, senza argilla	2.5			
Factor)	SKF	1	Tre famiglie di discontinuità + random	12	(profondità di scavo > 50 m)	2,5			
			Quattro famiglie di discontinuità + random	15	Giunti allentati, aperti, rocce intensamente fratturate	5			
			Rocce fratturate terrose	20	Problemi di tensioni in rocce competenti				
			Tabella Ja		Tensione bassa vicino alla superficie 2				
			Riempimento impermeabile, duro, cicatrizzato	0,75	Tensione media	1			
Indice Qsystem	Q	25,0	Bordi inalterati, superfici autoreggentesi	1	Tensione alta, struttura molto compatta	0,5 - 2			
			Bordi leggermente alterati, rivestiti di sabbia	2	Scoppi di roccia moderati	10 - 20			
(RQD)(Jr)(Jw))		Rivestimento limoso-argilloso o sabbioso-argilloso	3					
$\mathbf{Q} = \left \frac{1}{\mathbf{L}_{\mathrm{T}}} \right \mathbf{X} \left \frac{1}{\mathbf{L}_{\mathrm{T}}} \right \mathbf{X} \left \frac{1}{\mathbf{C}\mathbf{D}\mathbf{F}} \right $	-		Materiali ammorbiditi con argille rigonfianti 4		Flusso plastico di rocce incompetenti sotto pressio	one			
)		Particelle sabbiose, roccia disgregata	4	Flusso plastico medio, pressione moderata	5 - 10			
			Minerali argillosi non rigonfianti, continui	6	Flusso plastico forte, pressione forte	10 - 20			
Modulo di deformabilità dell'ammasso									
roccioso E	Kg/cm ²	20969,10	Minerali argillosi ammorbiditi	8					
			Minerali argillosi rigonfianti	8 - 12	Roccia rigonfiante per presenza di acqua				
Indice Q	Descrizione	Classe	Tabella Jr		Pressione di rigonfiamento media	5 - 10			
1000 – 400	Ottimo	I	Fratture discontinue	4	Pressione di rigonfiamento forte	10 - 20			
400 - 100	Buonissimo	11	Rugose, irregolari, ondulate	3					
100 – 40	Molto buono	111	Ondulate, lisce	2	Tabella Jw				
40 – 10	Buono	IV	Ondulate a facce levigate	1,5	Scavo secco o afflussi minimi	1			
10 – 4	Discreto	V	Planari, ruvide o irregolari	1,5	Sporadici getti di materiali di riempimento dei giunti	0,66			
4 – 1	Scadente	VI	Planari, lisce	1	Pressioni elevate in rocce competenti con giunti non riemp	0,5			
1 – 0,1	Molto	VII	Planari a facce levigate	0,5	Idem,, consistenti getti di materiali dai giunti	0,33			
0.1 0.01	Scadentis-	MIL	Minereli errilleei nei siunti	1		0.2 0.1			
0,1-0,01	sima	VIII				0,2 - 0,1			
0,01 - 0,001	Pessima	IX	Zone sappiose, ghialose o tratturate	1	Colpi d acqua costanti nel tempo	0,1 - 0,05			

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ARGINIANT	Rev.	2	Settembre 2012			Pag. n. 63

	CLASSIFICAZIONE DI BARTON (1979) - STAZIONE N° 2 - DISCONTINUITA' K5										
RQD max	%	30	Tabella Jn		Tabella S.R.F.						
RQD min	%	70	Roccia compatta o poche discontinuità	0 - 1	Zona di scavo, distacchi di volumi di roccia nel cavo o	deboli					
RQD med	%	50	Una famiglia di discontinuità	2	Zone deboli multiple con rocce disgregate chimicamente	10					
Numero di famiglie di discontinuità (Joint Set	In	6	Una famiglia di discontinuità + random		Singole zone deboli con rocce disgregate chimicamente	F					
Number)	JII	0			(profondità di scavo < 50 m)	5					
Rugosità delle discontinuità (Joint	1				Singole zone deboli con rocce disgregate chimicamente	0.5					
Roughness Number)	Jr	4	Due famiglie di discontinuità	4	(profondità di scavo > 50 m	2,5					
Grado di alterazione dei giunti (Joint	la.	1									
Alteration Number)	Ja	1	Due famiglie di discontinuità + random	9	Zona di frattura multiple in rocce competenti, senza argilla	7,5					
Condizioni idrogeologiche (Joint Water	hu	1			Singole zone di frattura in rocce competenti, senza argilla	F					
Number)	JW	1	Tre famiglie di discontinuità	6	(profondità di scavo < 50 m)	5					
Tensioni in galleria (Stress Reduction	CDF.	4			Singole zone di frattura in rocce competenti, senza argilla	25					
Factor)	SKF	1	Tre famiglie di discontinuità + random	12	(profondità di scavo > 50 m)	2,5					
			Quattro famiglie di discontinuità + random	15	Giunti allentati, aperti, rocce intensamente fratturate	5					
			Rocce fratturate terrose	20	Problemi di tensioni in rocce competenti						
			Tabella Ja		Tensione bassa vicino alla superficie	2,5					
			Riempimento impermeabile, duro, cicatrizzato	0,75	Tensione media	1					
Indice Qsystem	Q	33,3	Bordi inalterati, superfici autoreggentesi	1	Tensione alta, struttura molto compatta	0,5 - 2					
			Bordi leggermente alterati, rivestiti di sabbia	2	Scoppi di roccia moderati	10 - 20					
(RQD) (Jr) (Jw)		Rivestimento limoso-argilloso o sabbioso-argilloso	3							
$Q = \left \frac{1}{10} \right \left x \right \frac{1}{10} \left x \right \frac{1}{500} $	·]		Materiali ammorbiditi con argille rigonfianti 4		Flusso plastico di rocce incompetenti sotto pressio	one					
)		Particelle sabbiose, roccia disgregata	4	Flusso plastico medio, pressione moderata	5 - 10					
			Minerali argillosi non rigonfianti, continui	6	Flusso plastico forte, pressione forte	10 - 20					
Modulo di deformabilità dell'ammasso											
roccioso E	Kg/cm ²	22843,18	Minerali argillosi ammorbiditi	8							
			Minerali argillosi rigonfianti	8 - 12	Roccia rigonfiante per presenza di acqua						
Indice Q	Descrizione	Classe	Tabella Jr		Pressione di rigonfiamento media	5 - 10					
1000 - 400	Ottimo	1	Fratture discontinue	4	Pressione di rigonfiamento forte	10 - 20					
400 – 100	Buonissimo		Rugose, irregolari, ondulate	3							
100 - 40	Molto buono	111	Ondulate, lisce	2	Tabella Jw						
40 – 10	Buono	IV	Ondulate a facce levigate	1,5	Scavo secco o afflussi minimi	1					
10 – 4	Discreto	V	Planari, ruvide o irregolari	1,5	Sporadici getti di materiali di riempimento dei giunti	0,66					
4 – 1	Scadente	VI	Planari, lisce	1	Pressioni elevate in rocce competenti con giunti non riemp	0,5					
1 0.1 Molto		VII	Planari a facce levigate	0.5	Idem consistenti getti di materiali dai giunti	0 33					
1 = 0,1	scadente	VII	Fidilali a lacce levigate	0,5	ident,, consistenti getti di matenali dai giditti	0,55					
0.1 0.01	Scadentis-	VIII	Minorali argillogi poj gjupti	1	Colni d'acqua decrescenti nel tempo	02 01					
0, 1 – 0,01	sima	VIII	winerali arginosi nergiunu		Colpi d'acqua decrescenti nei tempo						
0,01 - 0,001	Pessima	IX	Zone sabbiose, ghiaiose o fratturate	1	Colpi d'acqua costanti nel tempo	0,1 - 0,05					

CLASSIFICAZIONE DI BARTON (1979) - STAZIONE N° 3 - DISCONTINUITA' K1										
RQD max	%	35	Tabella Jn		Tabella S.R.F.					
RQD min	%	70	Roccia compatta o poche discontinuità	0 - 1	Zona di scavo, distacchi di volumi di roccia nel cavo	deboli				
RQD med	%	52,5	Una famiglia di discontinuità	2	Zone deboli multiple con rocce disgregate chimicamente	10				
Numero di famiglie di discontinuità (Joint Set Number)	Jn	6	Una famiglia di discontinuità + random	3	Singole zone deboli con rocce disgregate chimicamente (profondità di scavo < 50 m)	5				
Rugosità delle discontinuità (Joint Roughness Number)	Jr	4	Due famiglie di discontinuità	4	Singole zone deboli con rocce disgregate chimicamente (profondità di scavo > 50 m	2,5				
Grado di alterazione dei giunti (Joint Alteration Number)	Ja	1	Due famiglie di discontinuità + random	9	Zona di frattura multiple in rocce competenti, senza argilla	7,5				
Condizioni idrogeologiche (Joint Water Number)	Jw	1	Tre famiglie di discontinuità	6	Singole zone di frattura in rocce competenti, senza argilla (profondità di scavo < 50 m)	5				
Tensioni in galleria (Stress Reduction Factor)	SRF	1	Tre famiglie di discontinuità + random	12	Singole zone di frattura in rocce competenti, senza argilla (profondità di scavo > 50 m)	2,5				
			Quattro famiglie di discontinuità + random	15	Giunti allentati, aperti, rocce intensamente fratturate	5				
			Rocce fratturate terrose	20	Problemi di tensioni in rocce competenti					
			Tabella Ja		Tensione bassa vicino alla superficie	2,5				
			Riempimento impermeabile, duro, cicatrizzato	0,75	Tensione media	1				
Indice Qsystem	Q	35,0	Bordi inalterati, superfici autoreggentesi	1	Tensione alta, struttura molto compatta	0,5 - 2				
			Bordi leggermente alterati, rivestiti di sabbia	2	Scoppi di roccia moderati	10 - 20				
$(RQD)_(Jr)_(Jw)$)		Rivestimento limoso-argilloso o sabbioso-argilloso 3							
$Q = \left \frac{1}{10} \right x \left \frac{1}{10} \right x \left \frac{1}{500} \right x \left \frac{1}{$	·		Materiali ammorbiditi con argille rigonfianti 4 Flusso plastico di rocce incompetenti		Flusso plastico di rocce incompetenti sotto pressio	one				
)		Particelle sabbiose, roccia disgregata	4	Flusso plastico medio, pressione moderata	5 - 10				
			Minerali argillosi non rigonfianti, continui	6	Flusso plastico forte, pressione forte	10 - 20				
Modulo di deformabilità dell'ammasso										
roccioso E	Kg/cm ²	23161,02	Minerali argillosi ammorbiditi	8						
			Minerali argillosi rigonfianti	8 - 12	Roccia rigonfiante per presenza di acqua					
Indice Q	Descrizione	Classe	Tabella Jr		Pressione di rigonfiamento media	5 - 10				
1000 – 400	Ottimo	-	Fratture discontinue	4	Pressione di rigonfiamento forte	10 - 20				
400 – 100	Buonissimo	=	Rugose, irregolari, ondulate	3						
100 – 40	Molto buono	===	Ondulate, lisce	2	Tabella Jw					
40 – 10	Buono	IV	Ondulate a facce levigate	1,5	Scavo secco o afflussi minimi	1				
10 – 4	Discreto	V	Planari, ruvide o irregolari	1,5	Sporadici getti di materiali di riempimento dei giunti	0,66				
4 – 1	Scadente	VI	Planari, lisce	1	Pressioni elevate in rocce competenti con giunti non riemp	0,5				
1 – 0,1	Molto scadente	VII	Planari a facce levigate	0,5	ldem,, consistenti getti di materiali dai giunti	0,33				
0,1 - 0,01	Scadentis- sima	VIII	Minerali argillosi nei giunti	1	Colpi d'acqua decrescenti nel tempo	0,2 - 0,1				
0,01 - 0,001	Pessima	IX	Zone sabbiose, ghiaiose o fratturate	1	Colpi d'acqua costanti nel tempo	0,1 - 0,05				

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O HEGHUHET	Rev.	2	Settembre 2012			Pag. n. 64

CLASSIFICAZIONE DI BARTON (1979) - STAZIONE N° 4 - DISCONTINUITA' K3										
RQD max	%	30	Tabella Jn		Tabella S.R.F.					
RQD min	%	72	Roccia compatta o poche discontinuità	0 - 1	Zona di scavo, distacchi di volumi di roccia nel cavo	deboli				
RQD med	%	51	Una famiglia di discontinuità	2	Zone deboli multiple con rocce disgregate chimicamente	10				
Numero di famiglie di discontinuità (Joint Set		6			Singole zone deboli con rocce disgregate chimicamente	5				
Number)	JII	0	Una famiglia di discontinuità + random		(profondità di scavo < 50 m)	5				
Rugosità delle discontinuità (Joint		4			Singole zone deboli con rocce disgregate chimicamente	2.5				
Roughness Number)	JI	4	Due famiglie di discontinuità	4	(profondità di scavo > 50 m	2,5				
Grado di alterazione dei giunti (Joint		1								
Alteration Number)	Ja	1	Due famiglie di discontinuità + random	9	Zona di frattura multiple in rocce competenti, senza argilla 7,5					
Condizioni idrogeologiche (Joint Water	ha	1			Singole zone di frattura in rocce competenti, senza argilla	5				
Number)	310	1	Tre famiglie di discontinuità	6	(profondità di scavo < 50 m)	5				
Tensioni in galleria (Stress Reduction	SDE	1			Singole zone di frattura in rocce competenti, senza argilla	2.5				
Factor)	SKE	1	Tre famiglie di discontinuità + random	12	(profondità di scavo > 50 m)	2,5				
			Quattro famiglie di discontinuità + random	15	Giunti allentati, aperti, rocce intensamente fratturate	5				
			Rocce fratturate terrose	20	Problemi di tensioni in rocce competenti					
			Tabella Ja		Tensione bassa vicino alla superficie	2,5				
			Riempimento impermeabile, duro, cicatrizzato	0,75	Tensione media	1				
Indice Qsystem	Q	34,0	Bordi inalterati, superfici autoreggentesi	1	Tensione alta, struttura molto compatta	0,5 - 2				
			Bordi leggermente alterati, rivestiti di sabbia	2	Scoppi di roccia moderati	10 - 20				
$(RQD)_(Jr)_(Jw)$)		Rivestimento limoso-argilloso o sabbioso-argilloso	3						
$Q = \left \frac{1}{1_{\text{P}}} \right X \left \frac{1}{1_{\text{P}}} \right X \left \frac{1}{\text{SPE}} \right $	-		Materiali ammorbiditi con argille rigonfianti 4		Flusso plastico di rocce incompetenti sotto pressio	one				
)		Particelle sabbiose, roccia disgregata	4	Flusso plastico medio, pressione moderata	5 - 10				
			Minerali argillosi non rigonfianti, continui	6	Flusso plastico forte, pressione forte	10 - 20				
Modulo di deformabilità dell'ammasso										
roccioso E	Kg/cm ²	22972,18	Minerali argillosi ammorbiditi	8						
			Minerali argillosi rigonfianti	8 - 12	Roccia rigonfiante per presenza di acqua					
Indice Q	Descrizione	Classe	Tabella Jr		Pressione di rigonfiamento media	5 - 10				
1000 – 400	Ottimo	1	Fratture discontinue	4	Pressione di rigonfiamento forte	10 - 20				
400 – 100	Buonissimo	11	Rugose, irregolari, ondulate	3						
100 – 40	Molto buono	111	Ondulate, lisce	2	Tabella Jw					
40 – 10	Buono	IV	Ondulate a facce levigate	1,5	Scavo secco o afflussi minimi	1				
10 – 4	Discreto	V	Planari, ruvide o irregolari	1,5	Sporadici getti di materiali di riempimento dei giunti	0,66				
4 – 1	Scadente	VI	Planari, lisce	1	Pressioni elevate in rocce competenti con giunti non riemp	0,5				
1-01	Molto	VII	Planari a facce levigate	0.5	Idem consistenti getti di materiali dai giunti	0.33				
1 - 0, 1	scadente	VII		0,0		0,00				
0.1-0.01	Scadentis-	VIII	Minerali argillosi nei giunti	1	Colni d'acqua decrescenti nel tempo	02-01				
0,1 = 0,01	sima	VIII				0,2 - 0,1				
0,01 - 0,001	Pessima	IX	Zone sabbiose, ghiaiose o fratturate	1	Colpi d'acqua costanti nel tempo	0,1 - 0,05				

	CLASSIFICAZIONE DI BARTON (1979) - STAZIONE N° 5 - DISCONTINUITA' K4										
RQD max	%	30	Tabella Jn		Tabella S.R.F.						
RQD min	%	60	Roccia compatta o poche discontinuità	0 - 1	Zona di scavo, distacchi di volumi di roccia nel cavo e	deboli					
RQD med	%	45	Una famiglia di discontinuità	2	Zone deboli multiple con rocce disgregate chimicamente	10					
Numero di famiglie di discontinuità (Joint Set Number)	Jn	6	Una famiglia di discontinuità + random	3	Singole zone deboli con rocce disgregate chimicamente (profondità di scavo < 50 m)	5					
Rugosità delle discontinuità (Joint Roughness Number)	Jr	4	Due famiglie di discontinuità	4	Singole zone deboli con rocce disgregate chimicamente (profondità di scavo > 50 m	2,5					
Grado di alterazione dei giunti (Joint Alteration Number)	Ja	1	Due famiglie di discontinuità + random	9	Zona di frattura multiple in rocce competenti, senza argilla	7,5					
Condizioni idrogeologiche (Joint Water Number)	Jw	1	Tre famiglie di discontinuità	6	Singole zone di frattura in rocce competenti, senza argilla (profondità di scavo < 50 m)	5					
Tensioni in galleria (Stress Reduction Factor)	SRF	1	Tre famiglie di discontinuità + random	12	Singole zone di frattura in rocce competenti, senza argilla (profondità di scavo > 50 m)	2,5					
			Quattro famiglie di discontinuità + random	15	Giunti allentati, aperti, rocce intensamente fratturate	5					
			Rocce fratturate terrose	20	Problemi di tensioni in rocce competenti						
			Tabella Ja		Tensione bassa vicino alla superficie						
			Riempimento impermeabile, duro, cicatrizzato	0,75	Tensione media	1					
Indice Qsystem	Q	30,0	Bordi inalterati, superfici autoreggentesi	1	Tensione alta, struttura molto compatta	0,5 - 2					
			Bordi leggermente alterati, rivestiti di sabbia	2	Scoppi di roccia moderati	10 - 20					
(RQD) (Jr) (Jw)		Rivestimento limoso-argilloso o sabbioso-argilloso	3							
$Q = \left \frac{1}{10} \right x \left \frac{1}{10} \right x \left \frac{1}{500} \right x \left \frac{1}{$	·		Materiali ammorbiditi con argille rigonfianti 4		Flusso plastico di rocce incompetenti sotto pressio	one					
)		Particelle sabbiose, roccia disgregata	4	Flusso plastico medio, pressione moderata	5 - 10					
			Minerali argillosi non rigonfianti, continui	6	Flusso plastico forte, pressione forte	10 - 20					
Modulo di deformabilità dell'ammasso											
roccioso E	Kg/cm ²	22156,82	Minerali argillosi ammorbiditi	8							
			Minerali argillosi rigonfianti	8 - 12	Roccia rigonfiante per presenza di acqua						
Indice Q	Descrizione	Classe	Tabella Jr		Pressione di rigonfiamento media	5 - 10					
1000 – 400	Ottimo	-	Fratture discontinue	4	Pressione di rigonfiamento forte	10 - 20					
400 – 100	Buonissimo	11	Rugose, irregolari, ondulate	3							
100 – 40	Molto buono	=	Ondulate, lisce	2	Tabella Jw						
40 – 10	Buono	IV	Ondulate a facce levigate	1,5	Scavo secco o afflussi minimi	1					
10 – 4	Discreto	V	Planari, ruvide o irregolari	1,5	Sporadici getti di materiali di riempimento dei giunti	0,66					
4 – 1	Scadente	VI	Planari, lisce	1	Pressioni elevate in rocce competenti con giunti non riemp	0,5					
1 – 0,1	Molto scadente	VII	Planari a facce levigate	0,5	ldem,, consistenti getti di materiali dai giunti	0,33					
0,1-0,01	Scadentis- sima	VIII	Minerali argillosi nei giunti	1	Colpi d'acqua decrescenti nel tempo	0,2 - 0,1					
0,01 - 0,001	Pessima	IX	Zone sabbiose, ghiaiose o fratturate	1	Colpi d'acqua costanti nel tempo	0,1 - 0,05					

EI.

5. VERIFICHE DI STABILITA'

Le verifiche di stabilità sono state effettuate per terreni incoerenti e/o coesivi e per rocce, adoperando programmi di calcolo dedicati di ultima generazione, in grado di tener conto della normativa NTC 2008. In particolare sono state eseguite le seguenti verifiche:

- → stabilità delle scarpate in trincea, sia in terreni incoerenti che coesivi;
- \rightarrow stabilità globale dei muri di sostegno e di sottoscarpa:
- → stabilità delle scarpate dei rilevati;

In particolare per le verifiche è stato a adoperato il programma "Slope" della Geostru Software (versione 2012.18.1.916), che consente di verificare pendii in terra ed in roccia con molteplici metodi di calcolo, la cui descrizione dettagliata è riportata in "*Appendice A*".

Nel suddetto programma, in ambiente WINDOWS XP, l'input dei dati è il seguente:

- ⇒ profilo del pendio: viene assegnato mediante una poligonale, introducendo le coordinate di ciascuno dei segmenti che la compone, o importando il file direttamente da Autocad;
- ⇒ discontinuità litologiche (strati): vengono anch'esse assegnate come poligonali che definiscono il tetto di ciascuno strato;
- ⇒ profilo della falda: il programma prevede l'introduzione di più di una falda idrica, mediante l'inserimento delle coordinate di ciascuna poligonale che ne individua la superficie; è possibile inserire anche il valore di una o più piezometriche;
- ⇒ caratteristiche geotecniche: vengono inseriti, per ciascun litotipo, il peso di volume, la coesione sia in termini di tensioni efficaci che totali; può essere inserito, oltre al valore di picco, anche il valore residuo; l'angolo di attrito di picco e residuo;
- ⇒ superfici di scorrimento: il programma può analizzare superfici di scorrimento circolari o di forma qualunque; le superfici di scorrimento circolari possono essere assegnate con le seguenti opzioni:
 - o random, assegnando una maglia di centri;
 - o passanti per un punto, assegnando una maglia di centri;
 - o passanti per due punti, assegnando una maglia di centri;
 - o tangenti ad una retta, assegnando una maglia di centri;

o random, assegnando un intervallo di ascisse ed ordinate sia a valle che a monte.

⇒ metodi di calcolo: vengono offerte le seguenti opzioni:

a) FELLENIUS: consente di analizzare superfici di rottura circolare in ambiente sia statico che dinamico;

b) JAMBU: consente di analizzare superfici di rottura circolare o di forma qualunque, in ambiente sia statico che dinamico;

c) BISHOP: consente di analizzare superfici di rottura circolare, in ambiente sia statico che dinamico;

d) SARMA: consente di analizzare superfici di rottura circolare o di forma qualunque, in ambiente sia statico che dinamico;

e) MORGERNSTERN & PRICE: consente di analizzare superfici di rottura circolare, in ambiente sia statico che dinamico;

f) SPENCER: consente di analizzare superfici di rottura circolare, in ambiente sia statico che dinamico;

g) ELEMENTI DISCRETI: consente di analizzare superfici di rottura circolare o di forma qualunque, in ambiente sia statico che dinamico;

⇒ sisma: può essere inserito il coefficiente sismico sia orizzontale che verticale, con riferimento alle seguenti normative:

- DM 88/96
- Eurocodice 7/8
- NTC 2008
- British Standard
- O.P.C.M. 3274
- Opzione utente (personalizzabile)
- → sovraccarichi: è previsto l'inserimento di sovraccarichi sia puntuali che distribuiti, di cui vengono richiesti la forza verticale e le ascisse che ne delimitano l'applicazione sul pendio;
- \rightarrow conci: è possibile scegliere un numero di conci compreso tra 1 e 50;
- \rightarrow opere di stabilizzazione: è prevista l'introduzione delle seguenti opere:

A18-9-gl60

a) *tiranti di ancoraggio*, per ciascuno dei quali vengono richieste la lunghezza ed il diametro della parte libera, la lunghezza ed il diametro del bulbo, il punto di applicazione nel pendio e la forza applicata;

b) *muri di contenimento*, per ciascuno dei quali vengono richieste la geometria e la resistenza al taglio del calcestruzzo;

c) *pali e micropali*, per ciascuno dei quali vengono richiesti il diametro, la lunghezza e la resistenza al taglio del calcestruzzo o dell'armatura;

d) <u>terre rinforzate</u>, per le quali vengono richieste le caratteristiche delle geogriglie di rinforzo e la relativa geometria.

Dopo il calcolo è possibile visualizzare e stampare la superficie critica, un numero definito di superfici più critiche o tutte le superfici calcolate.

Il programma prevede la stampa del listato dei dati di input e la stampa dei grafici che evidenziano le superfici di scorrimento ed i rispettivi coefficienti di sicurezza.

Per l'algoritmo di calcolo si rimanda all'Appendice "A".

Come già accennato in precedenza per valutare l'azione sismica secondo quanto stabilito dalla nuova normativa (NTC 2008) è necessario tenere conto delle condizioni stratigrafiche del volume di terreno interessato dall'opera ed anche delle condizioni topografiche, poiché entrambi questi fattori concorrono a modificare l'azione sismica in superficie rispetto a quella attesa su un sito rigido con superficie orizzontale.

Tali modifiche, in ampiezza, durata e contenuto in frequenza, sono il risultato della risposta sismica locale. Si denomina "risposta sismica locale" l'azione sismica quale emerge in "superficie" a seguito delle modifiche in ampiezza, durata e contenuto in frequenza subite trasmettendosi dal substrato rigido.

Le verifiche di stabilità sono effettuate con i coefficienti di sicurezza parziali nella combinazione

A2+M2+R2

con:

A2 coefficienti parziali per le azioni o per l'effetto delle azioni:

- carichi permanenti – effetto sfavorevole A2 = 1,00

M2 coefficienti parziali per i parametri geotecnici del terreno

- tangente dell'angolo di attrito $g_{tan\phi} = 1,25$

0	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
	Rev.	2	Settembre 2012			Pag. n. 68

- coesione efficace $g_{c'} = 1,25$
- peso dell'unità di volume $g_g = 1,00$

R2 coefficiente per la resistenza globale del sistema

Tutte le verifiche sono state effettuate con i metod di BISHOP (1955) e di JAMBU (1967).

Con il metodo di BISHOP non viene trascurato nessun contributo di forze agenti sui blocchi; le equazioni usate per risolvere il problema sono:

 $\Sigma F_V = 0$, $\Sigma M_0 = 0$, Criterio di rottura

$$F = \frac{\sum \{c_i \times b_i + (W_i - u_i \times b_i + \Delta X_i) \times \tan \varphi_i\} \times \frac{\sec \alpha_i}{1 + \tan \alpha_i \times \tan \varphi_i / F}}{\sum W_i \times \sin \alpha_i}$$

I valori di *F* e di ΔX per ogni elemento che soddisfano questa equazione danno una soluzione rigorosa al problema. Come prima approssimazione conviene porre $\Delta X=0$ ed iterare per il calcolo del fattore di sicurezza, tale procedimento è noto come metodo di *Bishop ordinario*, gli errori commessi rispetto al metodo completo sono di circa 1 %.

Il metodo di JAMBU estende il metodo di Bishop a superfici si scorrimento di forma qualsiasi.

Quando vengono trattate superfici di scorrimento di forma qualsiasi il braccio delle forze cambia (nel caso delle superfici circolari resta costante e pari al raggio) e per tal motivo risulta più conveniente valutare l'equazione del momento rispetto allo spigolo di ogni blocco.

$$F = \frac{\sum \{c_i \times b + (W_i - u_i \times b_i + \Delta X_i) \times \tan \varphi_i\} \times \frac{\sec^2 \alpha_i}{1 + \tan \alpha_i \times \tan \varphi_i / F}}{\sum W_i \times \tan \alpha_i}$$

Assumendo ΔX_i = 0 si ottiene il metodo ordinario.

C Azeniiter	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
	Rev.	2	Settembre 2012			Pag. n. 69

Janbu propose inoltre un metodo per la correzione del fattore di sicurezza ottenuto con il metodo ordinario secondo la seguente:

$F_{corretto} = f_0 F$

dove f_0 è riportato in grafici funzione di geometria e parametri geotecnici; tale correzione è molto attendibile soprattutto per pendii poco inclinati.

Nelle verifiche agli Stati Limite Ultimi la stabilità dei pendii nei confronti dell'azione sismica viene eseguita con il metodo pseudo-statico. Per i terreni che sotto l'azione di un carico ciclico possono sviluppare pressioni interstiziali elevate viene considerato un aumento in percento delle pressioni neutre che tiene conto di questo fattore di perdita di resistenza.

Ai fini della valutazione dell'azione sismica, nelle verifiche agli stati limite ultimi, vengono considerate le seguenti forze statiche equivalenti:

$$F_{\rm H} = K_{\rm o} \cdot W$$
$$F_{\rm V} = K_{\rm v} \cdot W$$

Essendo:

 $F_{H} e F_{V}$ rispettivamente la componente orizzontale e verticale della forza d'inerzia applicata al baricentro del concio;

W: peso concio

K₀: Coefficiente sismico orizzontale

K_V: Coefficiente sismico verticale.

Tali coefficienti K₀ e K_V vengono calcolati copme segue:

$$K_V = \pm 0.5 \times K_O$$

Con

βs coefficiente di riduzione dell'accelerazione massima attesa al sito;

amax accelerazione orizzontale massima attesa al sito;

g accelerazione di gravità.

O GREENLATT	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
	Rev.	2	Settembre 2012			Pag. n. 70

Per i versanti in roccia, diversamente da quelli in terra, il criterio di rottura di Mohr-Coulomb non può essere impiegato per definire la resistenza del materiale; tuttavia con questo metodo viene descritta una procedura che consente l'applicazione dei metodi classici dell'Equilibrio Limite anche nei versanti rocciosi. A tale scopo vengono definiti l'angolo di resistenza a taglio e la coesione che si mobilitano lungo la superficie di scorrimento secondo le seguenti espressioni:

$$tg\phi = AB \left(\frac{N}{\sigma_{c}} - T\right)^{B-1}$$
$$c = A\sigma_{c} \left(\frac{N}{\sigma_{c}} - T\right)^{B} - Ntg\phi$$

dove:

s_C è la resistenza a compressione monassiale della roccia;

A, B, T costanti in funzione del litotipo e della qualità della roccia, riportati in Tabella N° 32.

N sforzo normale alla base del concio.

Le costanti A, B e T sono determinate in funzione della classificazione della roccia secondo **BIENIAWSKI** (indice **RMR**) e secondo **BARTON** (indice **Q**). Tra i due sistemi di classificazione è stata adottata la seguente correlazione:

$$RMR = 9 \ln Q + 44$$

6	uu u	<u>+</u>	<u> 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 </u>

EI.

	Calcari Dolomie	Argilliti Siltiti	Areniti Quarziti	Andesiti Basalti	Anfiboliti Gneiss
	Marne	Scisti		Rioliti	Graniti
RMR =100	A = 0.816	A = 0.918	A = 1.044	A = 1.086	A = 1.220
Q = 500	B = 0.658	B = 0.677	B = 0.692	B = 0.696	B = 0.705
	T = -0.140	T = -0.099	T = -0.067	T = -0.059	T = -0.040
RMR = 85	A = 0.651	A = 0.739	A = 0.848	A = 0.883	A = 0.998
Q = 100	B = 0.679	B = 0.692	B = 0.702	B = 0.705	B = 0.712
	T = -0.028	T = -0.020	T = -0.013	T = -0.012	T = -0.008
RMR = 65	A = 0.369	A = 0.427	A = 0.501	A = 0.525	A = 0.603
Q = 10	B = 0.669	B = 0.683	B = 0.695	B = 0.698	B = 0.707
	T = -0.006	T = -0.004	T = -0.003	T = -0.002	T = -0.002
RMR = 44	A = 0.198	A = 0.234	A = 0.280	A = 0.295	A = 0.346
Q = 1	B = 0.662	B = 0.675	B = 0.688	B = 0.691	B = 0.700
	T = -0.0007	T = -0.0005	T = -0.0003	T = -0.003	T = -0.0002
RMR = 3	A = 0.115	A = 0.129	A = 0.162	A = 0.172	A = 0.203
Q = 0.1	B = 0.646	B = 0.655	B = 0.672	B = 0.676	B = 0.686
	T = -0.0002	T = -0.0002	T = -0.0001	T = -0.0001	T = -0.0001
RMR = 3	A = 0.042	A = 0.050	A = 0.061	A = 0.065	A = 0.078
Q = 0.01	B = 0.534	B = 0.539	B = 0.546	B = 0.548	B = 0.556
	T = 0	T = 0	T = 0	T = 0	T = 0

Tabella N° 32

5.1. Stabilità delle scarpate in trincea

Sono state analizzate le seguenti sezioni (riferimento. Allegato 7/9, tavola 33) :

- \Rightarrow Sezione alla progressiva 677.804 (Asse 1)
- \Rightarrow Sezione alla progressiva 11314.954 (Asse 1)

Per ciascuna verifica sono stati assegnati i seguenti dati relativi ad opere provvisionali:

- \Rightarrow Latitudine
- \Rightarrow Longitudine
| | Rev. | 0 | Luglio 2004 | EI. | A18-9-gl60 | |
|-------------|------|---|----------------|-----|------------|------------|
| O ascantarr | Rev. | 2 | Settembre 2012 | | | Pag. n. 72 |

- ⇒ Tipo di opera: 3 Grandi Opere
- \Rightarrow Classe d'uso: Classe IV
- \Rightarrow Vita Nominale 10 anni
- \Rightarrow Vita di riferimento 20 anni

I parametri sismici per lo Stato Limite Ultimo SLV sono riportati nella seguente Tabella N° 31:

Tabella N° 31

	Amax (m/sec ²)	(Kh)	(Kv)	Categoria suolo	Categoria Topo- grafica
Sezione alla progressiva 677.804 (Asse 1)	2,89	0,088	0,044	A	T1
Sezione alla progressiva 11314.954 (Asse 1)	2,54	0,078	0,039	A	T1

Nella Tabella N° 32 sono riportati i risultati delle verifiche.

Tabella N° 32

Sezione N°	Condizioni	Tipo di verifica	Fattore di stabili- tà Fs
Sezione alla progressiva 677.804 (Asse 1)	Sismiche	Globale	2,17
Sezione alla progressiva 11314.954 (Asse 1)	Sismiche	Globale	2,66

5.2. Stabilità scavi galleria artificiale

Poiché la realizzazione della galleria artificiale (Opera N° 58) comporta scavi di notevole altezza sono state analizzate le condizioni di equilibrio nella fase provvisionale per scavi eseguiti fino alla massima profondità e con galleria artificiale ancora da realizzare.

Laddove è prevista la realizzazione di berlinesi è stata analizzata la stabilità della scarpata sia globale (riportata nella relativa relazione di calcolo delle berlinesi) che relativa al tratto a monte della paratia.

Secondo cronoprogramma e secondo le previsioni progettuali gli scavi per la galleria artificiale debbono essere completati entro un periodo di due anni. Ciò significa che, ai sensi di quanto stabilito al paragrafo 2.4.1 delle NTC 2008, trattandosi di opere provvisionali (con durata inferiore a 2 anni) le verifiche sismiche possono essere omesse.

Le verifiche, riportate graficamente in allegato 7/9, tavole da 36 a 41, sono state comunque effettuate nella condizione statica e con sisma, intendendo il risultato di quest'ultime (caratterizzato da

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O RECTATETT	Rev.	2	Settembre 2012			Pag. n. 73

coefficienti di sicurezza inferiori) non come elemento dimensionante ma come una procedura adottata nella verifica di stabilità degli scavi a vantaggio di sicurezza.

Le sezioni verificate sono le seguenti:

- Sezione N° 357, ricadente per intero nell'ambito della milonite;
- Sezione N° 361, ricadente per intero nell'ambito della milonite;
- Sezione N° 385, ricadente nell'ambito delle marne della Formazione Tellaro;
- Sezione N° 401, ricadente nell'ambito delle marne della Formazione Tellaro;
- Sezione N° 406, ricadente nell'ambito delle marne della Formazione Tellaro;
- Sezione N° 414, ricadente nell'ambito delle marne della Formazione Tellaro con sottostanti calcari della Formazione Ragusa.

Per ciascuna verifica sono stati assegnati i seguenti dati, relativi ad opere provvisionali:

- \Rightarrow Latitudine
- \Rightarrow Longitudine
- ⇒ Tipo di opera: 3 Grandi Opere
- \Rightarrow Classe d'uso: Classe IV
- \Rightarrow Vita Nominale 10 anni
- \Rightarrow Vita di riferimento 20 anni (si adotta comunque 35 anni come da par 2.4.3 NTC 2008).

I parametri sismici per lo Stato Limite Ultimo SLV sono riportati nella seguente Tabella N° 33:

	Amax (m/sec ²)	(Kh)	(Kv)	Categoria suolo	Categoria Topo- grafica
Galleria artificiale – Sezione N° 357	1,50	0,037	0,018	С	T1
Galleria artificiale – Sezione N° 361	1,50	0,037	0,018	С	T1
Galleria artificiale – Sezione N° 385	1,20	0,029	0,015	В	T1
Galleria artificiale – Sezione N° 401	1,095	0,022	0,011	С	T1
Galleria artificiale – Sezione N° 406	1,50	0,037	0,018	С	T1
Galleria artificiale – Sezione N° 414	1,50	0,037	0,018	С	T1

Tabella N° 33

Nella Tabella N° 34 sono riportati i risultati delle verifiche.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O azeratart	Rev.	2	Settembre 2012			Pag. n. 74

Tabella N° 34

Galleria artificiale	Condizioni	Tipo di verifica	Fattore di stabili- tà Fs
Seriene Nº 257	Statiche	Locale a monte paratia	1,70
Sezione in 357	Sismiche	Locale a monte paratia	1,55
	Statiche	Locale a monte paratia	1,67
Sezione IN Sol	Sismiche	Sismiche Locale a monte paratia	
Continue Nº 205	Statiche	Globale	1,31
Sezione in Ses	Sismiche	Globale	1,16
Soziono Nº 401	Statiche	Globale	1,17
Sezione IN 401	Sismiche	Globale	1,09
Soziono Nº 406	Statiche	Globale	1,34
Sezione in 400	Sismiche	Globale	1,18
Soziono Nº 414	Statiche	Globale	1,35
	Sismiche	Globale	1,21

5.3. <u>Stabilità scarpate del rilevato</u>

E' stata verificata la sezione N° 220, con rilevato più alto, sia in condizioni statiche che sismiche (riferimento: elaborato 7/9 tavola 34).

Nella verifica sono stati assegnati i seguenti dati relativi a grandi opere:

- \Rightarrow Latitudine
- \Rightarrow Longitudine
- ⇒ Tipo di opera: 3 Grandi Opere
- \Rightarrow Classe d'uso: Classe IV
- \Rightarrow Vita Nominale 100 anni
- \Rightarrow Vita di riferimento 200 anni

I parametri sismici per lo Stato Limite Ultimo SLV sono riportati nella seguente Tabella N° 35:

Tabella N° 35

	Amax (m/sec ²)	(Kh)	(Kv)	Categoria suolo	Categoria Topo- grafica
Sezione N° 191	2,921	0,0834	0,0417	В	T1

In Tabella N° 36 sono riportati i risultati delle verifiche.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O RECENTRET	Rev.	2	Settembre 2012			Pag. n. 75

	Condizioni	Tipo di verifica	Fattore di stabili- tà Fs
Sociena Nº 101	Statiche	Globale	1,72
Sezione n 191	Sismiche	Globale	1,31

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O <u>ascentar</u>	Rev.	2	Settembre 2012			Pag. n. 76

5.4. Stabilità globale dei muri di sostegno e di sottoscarpa

Per le varie tipologie di muri di sostegno e di sottoscarpa sono state effettuate le verifiche di stabilità globale in ambiente sismico, assumendo, per ciascuna tipologia di muro, la successione litologica più gravosa.

Lo schema grafico generico di verifica è riportato nella Figura N° 30.

Sono state verificate in condizioni sismiche le tipologie di muro esposte in Tabella N° 37.

Tabella N° 37

Opera N°	Tipo di muro
29	MSS – 0,35L
37bis	MSO – 0,35L
85	MSS – 0,35P
86	MSS – 0,35P
87	MSO – 0,35P

Per ciascuna verifica sono stati assegnati i seguenti dati:

- \Rightarrow Latitudine
- \Rightarrow Longitudine

	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
O ascentary	Rev.	2	Settembre 2012			Pag. r	า. 77

- ⇒ Tipo di opera: 3 Grandi Opere
- \Rightarrow Classe d'uso: Classe IV
- \Rightarrow Vita Nominale 100 anni
- \Rightarrow Vita di riferimento 200 anni

I parametri sismici per lo Stato Limite Ultimo SLV sono riportati nella seguente Tabella N° 38:

Tabella N° 38

	Amax (m/sec ²)	(Kh)	(Kv)	Categoria suolo	Categoria Topogra- fica
Opera N° 29	2,5900	0,0819	0,0409	А	T1
Opera N° 37bis	2,9474	0,0932	0,0466	В	T1
Opera N° 41bis	2,5800	0,0816	0,0408	A	T1
Opera N° 85	2,8252	0,0893	0,0447	В	T1
Oipera N° 86	2,8252	0,0893	0,0447	В	T1
Opera N° 87	2,8252	0,0893	0,0447	В	T1

Nella Tabella N° 39 sono riportati i risultati delle verifiche.

Tabella N° 39

Opera N°	Condizioni	Tipo di verifica	Fattore di stabilità Fs
Opera N° 29			2,40
Opera N° 37bis	- Sismiche		2,70
Opera N° 41bis		Clobalo	1,77
Opera N° 85		Giobale	1,47
Oipera N° 86			1,54
Opera N° 87			1,81

Le verifiche sono riportate graficamente in allegato 7/9, tavola 42, 43, 44.

5.5. Stabilità Berlinese Opera N° 41

L'Opera N° 41 è costituita da una berlinese di micropali, vincolata da più ordini di tiranti, ricadente in una zona all'incrocio di due faglie che mettono a contatto laterale le argille della Formazione Tellaro ed i sottostanti calcari della Formazione Ragusa (cfr. Figura N° 31).

La berlinese è formata da micropali tubolari, con le seguenti caratteristiche:

- \Rightarrow diametro esterno \varnothing = 193,7 mm
- \Rightarrow spessore S = 20 mm
- \Rightarrow interasse i = 0,60 m

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O RECENTATY	Rev.	2	Settembre 2012			Pag. n. 78

Poichè immediatamente a monte dell'opera si rinvengono dei fabbricati si è ritenuto opportuno effettuare delle verifiche delle condizioni di equilibrio lungo due sezioni rappresentative (Sezione N° 292 e 301, come rappresentato graficamente in allegato 7/9, tavola 45.

Per ciascuna verifica sono stati assegnati i seguenti dati:

- \Rightarrow Latitudine
- \Rightarrow Longitudine
- \Rightarrow Tipo di opera: 3 Grandi Opere
- \Rightarrow Classe d'uso: Classe IV
- \Rightarrow Vita Nominale 100 anni
- \Rightarrow Vita di riferimento 200 anni

I parametri sismici per lo Stato Limite Ultimo SLV sono riportati nella seguente Tabella N° 39:

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O wecentrer	Rev.	2	Settembre 2012			Pag. n. 79

Tabella N° 39

	Amax (m/sec ²)	(Kh)	(Kv)	Categoria suolo	Categoria Topo- grafica
Opera N° 41	2,8408	0,0811	0,0406	В	T1

In Tabella N° 40 sono riportati i risultati delle verifiche.

Tabella N° 40

Opera N°	Condizioni	Tipo di verifica	Fattore di stabili- tà Fs	
Sezione N° 292	Sigmicho	Clobala	1,72	
Sezione N° 301	Sistiliche	Giobale	1,38	

EI.

6. VERIFICHE DI CAPACITA' PORTANTE

La determinazione della capacità portante viene effettuata per le varie tipologie di opere d'arte, scegliendo, per ciascuna tipologia, quella che induce sul terreno di fondazione una maggiore tensione. Le verifiche sono riportate nell'ambito dei calcoli strutturali di ciascuna delle seguenti opere:

 \rightarrow muri;

 \rightarrow ponti, cavalcavia e viadotti.

Nell'allegato 7/9 sono riportati i profili geotecnici d elle opere principali. In particolare:

- → Opera N° 16 Sottovia per incrocio S.P. 41 e 122 (progressiva 3+268.260) (tavola 6);
- \rightarrow Opera N° 37 Cavalcavia S.P.40 (tavola 7);
- \rightarrow Opera N° 42 Cavalcavia S.P: 56 (tavola 8);
- \rightarrow Opera N° 49 Cavalcavia Strada Vicinale (tavola 9);
- \rightarrow Opera 70 Viadotto Modica (tavola 10 11)
- → Opera N° 79 Cavalcavia Pista Doppia Stazione di Scicli (tavola 12);
- \rightarrow Opera N° 84 Viadotto sulla S.P. 39 (tavola 13).

Per i muri si fa riferimento alle tavole da 25 a 31.

Secondo le indicazioni contenute nelle Norme Tecniche per le Costruzioni (NTC 2008) le verifiche di sicurezza relative agli stati limiti ultimi (SLU) devono soddisfare la seguente condizione:

$$E_d \leq R_d$$

essendo

 E_d = valore di progetto dell'azione o degli effetti delle azioni

 \mathbf{R}_{d} = valore di progetto della resistenza del terreno.

Per le verifiche geotecniche di capacità portante delle fondazioni si adotta l'Approccio 1:

Combinazione 2: (A2 + M2 + R2)

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O RECENTER.	Rev.	2	Settembre 2012			Pag. n. 81

in cui i valori dei coefficienti parziali sono rispettivamente (cfr. Tabelle N° 41, 42 e 43):

A2 = azioni permanenti e variabili

M2 = parametri del terreno

R2 = resistenze

Tabella N° 41

Verifiche a SLU. Coefficienti parziali per le azioni o per l'effetto delle azioni

Cariahi	Simbolo	Coefficiente parziale		
Caricii	31110010	(A2)		
Permanente Favorevole		1,0		
Permanente Sfavorevole	γGT	1,3		
Variabile Favorevole		0,0		
Variabile Sfavorevole	γQI	1,3		

Tabella N° 42

Verifiche a SLU. Coefficienti parziali per i parametri geotecnici del terreno (M2)

Parametro	Coefficiente parziale γ _m (M2)		
Tangente dell'angolo di resistenza al taglio	1,25		
Coesione efficace	1,25		
Resistenza non drenata	1,40		
Peso dell'unità di volume	1,0		

Tabella N° 43

Verifiche a SLU. Capacità portante per fondazioni superficiali - Coefficiente parziale per rottura del terreno

Coefficiente	R2
γR	1,8

Un quadro riepilogativo dei valori dei coefficienti parziali per l'Approccio 1 (Combinazione 1 e 2) e per l'Approccio 2 è riportato in Tabella N° 44 (Ridisegnata da **G. SCARPELLI, 2009**).

Le verifiche di capacità portante per le fondazioni superficiali sono effettuate a S.L.U. nelle condizioni S.L.V.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ascantarr	Rev.	2	Settembre 2012			Pag. n. 82

				Á	pproceio d	i ocosetto	1	1	Anterior	nio di nro	antto 2
			Ea	mbinariore	1 7	Ce	mhinariona	2	reppi ou	cio un pro	deuo s
			A1	Mt	R1	A2 1	1.02	RZ	At I	841	R3
	namananti	stav.	1,3	- 101- 50	1000	1	1100-01	100	1.35	10.12	
Amon	permanent	1g.v.	1			1		1			
A.O.M.	perman, non struttural	sfav.	1.5			1.3					
	variabē	stare.	1,6	X		.1,3			1,5		
	S			1	1						
	tan o'						1,25				
Terreno	cossione efficace of			2			1,25			_	
1000	coesione non drenate cu						.1.4				
	resistenza a compressione						1,6				-
fondazioni	tottura del terreno							1.6			2,
dirette.	acorrimento							1,1			1,
	stabilità globala		-					1,1			
	resistenza alla base	-						1,45			1,1
pell bettuti	registenza laterale							1,45			1,1
	resistenza totale							1.45			1,1
	laterale a tracione			-	_			1,0			1,2
	resistenza alla base	-						1,7			1,3
ball trivolipti	restatoriza latorale							1,45			1,1
	resistenza totale							1,6			1,
	laterale a tracione							1,6			1,2
in the second	resistenza alla base							1,6			1,
peli a elica	resistenza laterale						1	1,45			1,1
continua	resistenza totale							1,55			1,2
	lotorale a trazione						-	1,6			1,2
ancoraggi	temporanei					-	-			_	- 1,
	Permanent	1				1				-	1.
	nottura in tondazione										
munica	scontmenta										1,
sostegno	resistenza del terreno		-					144		-	1,
	stabilità globalo		-					1.1			
paratie				-				-			-
	stabilità globale					-		1,1		-	
andii maturali	1000 CO. 100										
erre in terre	1.1				2			1,1		201 0	
STE DI SCRYD								. 1.1			

Tabella N° 44

6.1. <u>Sottovia</u>

Per i sottovia non si è ritenuto necessario effettuare alcuna verifica della capacità portante dei terreni di fondazione laddove, in relazione all'altezza degli scavi ed alla quota del piano di posa, si ottengono le condizioni di *"fondazioni compensate"* o addirittura *"galleggianti"*, che non necessitano, quindi, di alcuna verifica.

Come è noto una fondazione si definisce *compensata*, o addirittura *galleggiante*, quando la tensione litostatica preesistente (σ_v), agente alla quota d'imposta della fondazione, compensa totalmente o supera il carico indotto dall'opera (p):

 $\sigma_v \cong p$ fondazione compensata $\sigma_v > p$ fondazione galleggiante

Con

 $\sigma_v = \gamma h$ = tensione litostatica preesistente, agente al piano d'imposta della fondazione;

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ARCHAILT	Rev.	2	Settembre 2012			Pag. n. 83

p = tensione indotta dall'opera alla quota d'imposta della fondazione

Quando la differenza tra σ_v e p è molto piccola (con p > σ_v) allora si ha una fondazione *parzial*mente compensata.

In altre parole si valuta la tensione netta al piano di fondazione, data dalla differenza tra la tensione litostatica preesistente ed il carico applicato:

 σ_{net} = p - σ_v

Nel caso in esame si hanno N° 11 sottovia di cui N° 9 ricadono nell'ambito dei calcari della Formazione Ragusa, N° 1 nelle marne della Formazione Tellaro e N° 1 nelle alluvioni (Cfr. Tabella N° 45).

Tabella N° 45

OPERA N°	1	4	11	12	22	25	28	30	35	83	88
Ferreno di fondazione	Calcare	Marne	Calcare	Alluvioni							

Per ciascuna opera è stata valutata la tensione netta agente sul piano d'imposta delle fondazioni, come da Tabella N° 46.

OPERA N°				4	11	12	22	25	28	30	35	83	88
Altezza scavo	Hs	m	8,60	6,40	4,80	2,35	1,55	4,30	3,20	2,97	6,00	2,00	6,82
Peso di volume del terreno	[1]9	ton/m ³	2,30	2,30	2,30	2,30	2,30	2,30	2,30	2,30	2,00	2,30	1,90
Tensione litostatica a quota fondazione	Ξv	ton/m ²	19,78	14,72	11,04	5,41	3,57	9,89	7,36	6,83	12,00	4,60	12,96
Altezza esterna	H _{ex}	m	5,50	8,20	5,50	5,50	6,00	6,90	8,00	5,50	8,00	7,80	6,40
Larghezza esterna	L _{ex}	m	5,00	13,20	5,00	5,00	5,00	7,40	11,00	5,00	11,00	10,80	7,40
Altezza interna	H _{in}	m	4,50	6,00	4,50	4,50	5,00	5,50	6,00	4,50	6,00	6,00	5,00
Larghezza interna	Lin	m	4,00	11,00	4,00	4,00	4,00	6,00	9,00	4,00	9,00	9,00	6,00
Superficie esterna	S _{ex}	m²	27,50	108,24	27,50	27,50	30,00	51,06	88,00	27,50	88,00	84,24	47,36
Superficie interna	Sin	m²	18,00	66,00	18,00	18,00	20,00	33,00	54,00	18,00	54,00	54,00	30,00
Superficie calcestruzzo	Scis	m²	9,50	42,24	9,50	9,50	10,00	18,06	34,00	9,50	34,00	30,24	17,36
Tensione sul terreno	t _s	ton/m ²	4,75	8,00	4,75	4,75	5,00	6,10	7,73	4,75	7,73	7,00	5,86
Altezza rilevato sopra scatolare	h _r	m	1,50	2,20	1,00	0,70	1,00	1,27	0,95	1,00	1,50	1,30	0,50
Peso di volume del rilevato	Ę	ton/m ³	1,90	1,90	1,90	1,90	1,90	1,90	1,90	1,90	1,90	1,90	1,90
Peso del rilevato sopra lo scatolare	tr	ton/m ²	2,85	4,18	1,90	1,33	1,90	2,41	1,81	1,90	2,85	2,47	0,95
Sovraccarico	t _m	ton/m ²	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
Totale tensione scatolare + rilevato+ sovraccarico	T _{tot}	ton/m ²	9,60	14,18	8,65	8,08	8,90	10,51	11,53	8,65	12,58	11,47	8,81
Tensione netta a quota imposta fondazione	Ξnet	ton/m ²	-10,18	-0,54	-2,39	2,68	5,34	0,62	4,17	1,82	0,58	6,87	-4,14
· · · · · · · · · · · · · · · · · · ·		Kg/cm ²	-1,02	-0,05	-0,24	0,27	0,53	0,06	0,42	0,18	0,06	0,69	-0,41
	Terreno di	Kg/cm ²	-1,02 Calcare	-0,05 Calcare	-0,24 Calcare	0,27 Calcare	0,53 Calcare	0,06 Calcare	0,42 Calcare	0,18 Calcare	0,06 Marne	0,69 Calcare	-0,4 Alluvio

Tabella N° 46

I sottovia delle Opere N° 1 - 4 - 11 - 12 - 22 - 25 - 28 - 30 - 83 ricadono nell'ambito dei calcari della Formazione Ragusa:

 \Rightarrow Le fondazioni delle Opere N° 1 – 4 – 11 risultano di tipo "galleggiante" con $\sigma v > p$;

Rev.	0	Luglio 2004	EI.	A18-9-gl60	
Rev.	2	Settembre 2012			Pag. n. 84

- ⇒ le fondazioni delle Opere N° 12 25 30 risultano quasi totalmente compensate con una tensione netta positiva al piano di posa del tutto trascurabile (0,06 – 0,27 Kg/cm2);
- ⇒ le fondazioni delle Opere N° 22 28 83 inducono sui calcari tensioni positive molto basse (p = 0,42 0,69 Kg/cm²). In corrispondenza dell'Opera N° 83, che induce il carico maggiore (0,69 Kg/cm²), viene comunque effettuata la verifica di capacità portante (vedi paragrafo 6.1.1).

Il sottovia dell'Opera N° 35 ricade nell'ambito delle marne ed argille marnose grigie della Formazione Tellaro. e risulta *compensata*, con una tensione netta al piano d'imposta pari a $\sigma_v = 0,06$ Kg/cm²;

Infine il sottovia dell'Opera N° 88, ricadente nell'ambito dei depositi alluvionali, ed ha una fondazione di tipo *galleggiante* con una tensione netta negativa $\sigma_v = -0.41 \text{ Kg/cm}^2$.

I profili geotecnici dei sottovia sono riportati in allegato 7/9, tavole da n° 14 a n° 24.

6.1.1. Opera N° 83

Si tratta di un sottovia di una strada comunale, ricadente nell'ambito dei calcari sabbiosi della Formazione Ragusa (cfr. Figura N° 32).

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O Azennarr	Rev.	2	Settembre 2012			Pag. n. 85

Per il calcolo della capacità portante del manufatto in esame, secondo le indicazioni della vigente normativa NTC 2008, è stato adoperato il programma **LoadCap** della Geostru, che consente di verificare la capacità portante con le seguenti relazioni:

- ⇒ TERZAGHI (1955)
- ⇒ MEYERHOF (1963)
- ⇒ BRINCH HANSEN (1970)
- \Rightarrow VESIC (1975)
- \Rightarrow RICHARD et All.

Inoltre il suddetto programma è in grado di calcolare i cedimenti elastici e di consolidazione, nel caso di terreni compressibili.

L'input dei dati del programma, per il cui algoritmo di calcolo si rimanda all'Appendice "B", è il seguente:

- \Rightarrow *Tipo di terreno* (sciolto, roccia)
- ⇒ Azione sismica: è possibile scegliere tra le seguenti opzioni: DM 88/96, Eurocodice 7/8, NTC 2008, British Standard, O.P.C. M. 3274, dati scelti dall'utente
- ⇒ Geometria della fondazione: vengono richiesti i dati di cui si riporta un esempio in Figura N° 33.

Figura N° 33

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ARCHAIANT	Rev.	2	Settembre 2012			Pag. n. 86

- ⇒ Stratigrafia del terreno: viene richiesto il numero di strati di cui è composto il terreno di fondazione ed i parametri geotecnici che li caratterizzano;
- \Rightarrow Falda: è possibile inserire la presenza della falda e la quota di rinvenimento dal p.c.
- ⇒ Carichi di progetto: vengono richiesti tutti i carichi di progetto (permanenti, variabili, ecc..) ed il programma è in grado di generare le combinazioni di carico previste dallo NTC 2008;
- ⇒ Sovraccarichi distribuiti: è possibile inserire dei sovraccarichi ai lati della fondazione;
- \Rightarrow *Metodo di calcolo*: è possibile scegliere tra i metodi di calcolo sopra accennati.

Nel caso in esame il terreno di fondazione risulta costituito da roccia calcarea. Per la valutazione della capacità portante ammissibile delle rocce si deve tener conto di alcuni parametri significativi quali le caratteristiche geologiche, il tipo di roccia e la sua qualità, misurata con l'RQD. Nella capacità portante delle rocce si utilizzano normalmente fattori di sicurezza molto alti e legati in qualche modo al valore del coefficiente RQD: ad esempio, per una roccia con RQD pari al massimo a 0.75 il fattore di sicurezza varia tra 6 e 10.

Per la determinazione della capacità portante di una roccia si possono usare le formule di Terzaghi, usando angolo d'attrito e coesione della roccia, o quelle proposte da **STAGG** E **ZIENKIEWICZ** (1968) in cui i coefficienti della formula della capacità portante valgono:

$$N_{q} = \tan^{6} \left(45 + \frac{\phi}{2} \right)$$
$$N_{c} = 5 \tan^{4} \left(45 + \frac{\phi}{2} \right)$$
$$N_{\gamma} = N_{q} + 1$$

Con tali coefficienti vanno usati i fattori di forma impiegati nella formula di Terzaghi.

La capacità portante ultima calcolata è comunque funzione del coefficiente RQD secondo la seguente espressione:

$$q' = q_{ult} (RQD)^2$$

I dati di calcolo sono i seguenti:

\Rightarrow	Tipologia di fondazione:	platea
\Rightarrow	Larghezza fondazione	B = 35 m
\Rightarrow	Lunghezza fondazione	L = 10,80 m

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ascentarer	Rev.	2	Settembre 2012			Pag. n. 87

\Rightarrow Altezza d'incastro nel terreno	D = 2,00 m
\Rightarrow Valore di progetto dell'azione o effetti delle azioni	$E_{d} = 67,66 \text{ kN/m}^{2}$
\Rightarrow Eccentricità nelle due direzioni	e = 0

Dal calcolo, evidenziato nei Tabulati dell'Appendice "B", risultano i seguenti dati:

Da notare l'elevato coefficiente di sicurezza ottenuto in quella che, a tutti gli effetti, fra i sottovia rappresenta la fondazione più sollecitata.

In Figura N° 34 è riportato lo schema dell'andamento dei bulbi di pressione.

Figura N° 34

5	सन्द्र स <u>न्त्र प्रसन्त</u> प्र

EI.

7. VALUTAZIONE DEI CEDIMENTI TEORICI PREVEDIBILI

Poiché la verifica di capacità portante prescinde dalla deformabilità dei terreni si ritiene utile valutare i cedimenti indotti dal carico dei rilevati più alti ricadenti sui litotipi compressibili delle marne della Formazione Tellaro.

I calcoli vengono eseguiti secondo il metodo di **SKEMPTON e BJERRUM** che considera il cedimento totale come somma di un cedimento immediato, di natura elastica, e di un cedimento lento di consolidazione:

Wt = Wi + Ws

La relazione che si utilizza per il cedimento immediato è la seguente:

$$Wi = \sum \frac{1}{Eu} \left[\Delta \sigma_z - \mu \left(\Delta \sigma_x + \Delta \sigma_y \right) \right] \Delta h$$

in cui:

Eu modulo di deformazione non drenato; $\sigma_x, \sigma_y, \sigma_z$ tensioni principali indotte nel semispazio;

 $\sigma_x, \sigma_y, \sigma_z$ tensioni principali indotte nel se

μ modulo di Poisson;

h spessore dello strato.

Il cedimento di consolidazione è invece dato da:

$$Ws = \sum \frac{\sigma_z}{E_{ed}} \Delta h.\beta$$

con β = coefficiente correttivo che tiene conto della tridimensionalità del problema:

$$\beta = A + \alpha (1 - A)$$

con α = rapporto tra le tensioni principali nella mezzeria dello strato;

A = parametro di **SKEMPTON**, ricavabile anche dal grafico della Figura N° 35.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O RECIENTET	Rev.	2	Settembre 2012			Pag. n. 89

FIGURA N° 35

Il calcolo è stato effettuato mediante apposito programma, in cui si assegna la geometria del problema ed i punti lungo la cui verticale si vogliono conoscere i cedimenti; la pianta della fondazione viene scomposta in più rettangoli ed il programma calcola i valori delle tensioni indotte con il metodo di **STEINBRENNER** e, successivamente, calcola i cedimenti secondo le espressioni sopra riportate.

I calcoli sono stato effettuati mediante apposito programma, in cui:

- → stratigrafia: vengono assegnati n numeri strati e lo spessore di ciascuno di essi in cm;
- → inclinazione degli strati: è possibile assegnare l'inclinazione della base di ciascuno strati nelle due direzioni (x ed y) in gradi;
- → base della fondazione: vengono assegnate le dimensioni della fondazione (A e B) in cm;
- → la fondazione viene scomposta in n rettangoli fittizi rispetto ad un sistema di coordinate cartesiane (x,y);
- → carichi applicati: per ciascuno dei rettangoli fittizi viene richiesto un carico unitario;

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
1.1.477	Rev.	2	Settembre 2012			Pag. n. 90

- → tensioni indotte: il programma calcola automaticamente le tensioni principali (σ_z, σ_x, σ_y) nella mezzeria di ciascuno strato, in corrispondenza delle verticali passanti per i vertici dei rettangoli con il metodo di STEINBRENNER;
- → moduli edometrici (Eed): per ciascuno strato viene richiesto l'inserimento dei valori dei moduli edometrici (in Kg/cm²);
- → modulo elastico non drenato (Eu): per ciascuno strato viene richiesto il valore del modulo elastico non drenato;
- \rightarrow modulo di Poisson (v): per ciascuno strato è necessario inserire il valore del modulo di Poisson.
- \rightarrow *Parametro di* **SKEMPTON** (β): viene richiesto l'inserimento del valore di β .

Il programma, quindi, calcola i cedimenti immediati, di consolidazione e totali secondo le espressioni sopra riportate, come sommatoria dei cedimenti che si verificano per ciascuno degli strati ed in corrispondenza di ciascuna delle verticali passanti per punti appositamente scelti.

Alla fine viene vengono forniti i grafici dei cedimenti immediati, di consolidazione e totali lungo gli allineamenti passanti per i punti scelti.

La verifica è stata effettuata in corrispondenza della Sezione di massima altezza corrispondente alla N° 217.

In Figura N° 36 è riportato lo schema planimetrico di calcolo.

🔍 सन्दरसः

Figura N° 36

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O azannari	Rev.	2	Settembre 2012			Pag. n. 91

In corrispondenza della scarpate (carico triangolare o trapezoidale) è stato assunto un carico pari a quello di metà dell'altezza massima (cfr. Figura N° 37).

Lo schema del grafico di calcolo è riportato nella Figura N° 38.

La successione stratigrafica è composta da due strati ed i parametri geotecnici assegnati ai vari litotipi sono i seguenti:

a) Argille alterate

_	modulo elastico	$E = 146,67 \text{ Kg/cm}^2$
_	modulo elastico non drenato	$Eu = 400 \text{ Kg/cm}^2$
_	modulo di Poisson	v = 0,40
_	parametro di Skempton	β = 0,80

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
🖸 सद्भवत्रायस्यर	Rev.	2	Settembre 2012			Pag. n. 92

b) Calcari e calcareniti

_	modulo elastico	$E = 250.000 \text{ Kg/cm}^2$
_	modulo elastico non drenato	Eu = 250.000 Kg/cm ²
_	modulo di Poisson	v = 0,25
_	parametro di Skempton	β = 0,20

Per la sezione verificata è stata fissata una lunghezza di rilevato pari alla larghezza dello stesso.

I risultati dei calcoli, esposti nell'*Appendice "C"* e visualizzati nella Tav. 32 di allegato 7/9, sono riassunti nella seguente Tabella N° 47.

Punti	Coordinate X	Cedimenti immediati	Cedimenti di consolidazione	Cedimenti totali
	cm	cm	cm	cm
1	0	0,000	0,452	0,452
2	650	0,185	1,244	1,429
3	1150	0,212	1,588	1,800
4	1543	0,328	2,062	2,390
5	2993	0,476	2,775	3,251
6	4443	0,360	2,102	2,462
7	5193	0,14	1,09	1,230
8	5393	0,059	0,784	0,843
9	5767	0,000	0,308	0,308

Tabella N° 47

I cedimenti immediati sono trascurabili e, comunque, si esauriranno nel corso dei lavori.

I *cedimenti di consolidazione,* che si esplicheranno, nelle quantità determinate, a tempo infinito, sono anch'essi trascurabili.

8. RILEVATI

Dallo studio geologico e litologico dei terreni interessati dagli scavi risulta che essi sono costituiti, per la maggior parte, da calcari, calcari marnosi e calcareniti della Formazione Ragusa, appartenenti al gruppo A1 della classifica CNR UNI 10006/1963, ed in minima parte da depositi sabbiosolimosi o limoso sabbiosi (detrito e/o coperture eluviali o terrazzi fluviali), appartenenti ai gruppi A4 ed A6. Gli scavi in corrispondenza della galleria artificiale saranno invece costituiti, per la maggior parte, da marne argillose della Formaizone Tellaro attribuibili al gruppo A6 – A7 della CNR UNI 10006.

I rilevati entro e fuori la sede autostradale saranno realizzati impiegando in massima parte materiale proveniente da scavi in roccia e costituito dai calcari e calcareniti della Formazione Ragusa.

In fase di esecuzione dei lavori, conformemente alle prescrizioni di Capitolato, sarà necessario procedere preliminarmente alla determinazione della natura e delle caratteristiche dei terreni provenienti dagli scavi e da porre a rilevato. Questo avverrà mediante un numero adeguato di prove di costipamento, di verifiche del grado di umidità, e di classificazioni delle terre secondo la predetta norma (C.N.R. U.N.I. 10006), in modo da valutare possibilità e modalità di impiego delle stesse.

Vengono di seguito brevemente sintetizzate le principali caratteristiche del piano di posa, del corpo del rilevato e della fondazione del corpo stradale così come previsti in progetto.

8.1. Bonifiche

Nell'ambito della preparazione dei piani di posa dei rilevati è previsto solo lo scotico e l'asportazione del terreno vegetale per una profondità media di 20 cm.

In ogni caso in fase esecutiva, sulla base delle verifiche e delle prove condotte, sarà necessario verificare puntualmente la natura dei piani di posa.

8.2. Piano di posa del rilevato

Nella maggior parte dei casi il piano di posa sarà costituito dai termini calcarei della Formazione Ragusa; in subordine dalle marne alterate della Formazione Tellaro (Tratto tra le Sezioni N° 212 ÷ 230).

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O RECENTANT	Rev.	2	Settembre 2012			Pag. n. 94

Laddove il piano di posa è costituito da questi ultimi terreni, appartenenti ai gruppi A6 ed A7, dovrà essere posto in opera un materasso drenante costituito da un doppio strato di geotessuto avente funzione anticontaminante, con all'interno uno strato di cm 30 di materiale lapideo proveniente da cava $Ø 5 \div 50 \text{ mm}$ (cfr. Figura N° 39) con funzione anticapillare.

8.3. Corpo del rilevato autostradale

Poiché la maggior parte del materiale proveniente dagli scavi e destinato al reimpiego, ed appartenente al gruppo A1, proviene dalla Formazione Ragusa e si prevede avrà un volume roccioso unitario nell'ordine di alcuni decimetri cubi, esso dovrà essere opportunamente ridotto ad idonea pezzatura preventivamente alla stesa a rilevato.

 La posa in opera del suddetto materiale dovrà avvenire per strati di idoneo spessore fermo restando che la massima pezzatura non superi le dimensioni del singolo strato e ferme restando le prescrizioni di capitolato, fra cui in particolare il raggiungimento del 90% della densità massima ricavata secondo la prova AASHO Mod, nonché il prescritto modulo M_E ricavato da prova di carico con piastra. <u>) aschulast</u>

EI.

8.4. Fondazione del corpo stradale

La fondazione del corpo stradale sarà costituita da misto granulare stabilizzato; lo spessore dello strato stabilizzato dovrà essere non inferiore a cm 35; esso sarà costituito da terreni granulari del gruppo A1-a, compattati sino al raggiungimento almeno del 95% della densità secca ottimale, determinata mediante prova AASHO Mod.

8.5. Rilevati fuori sede autostradale

Per l'esecuzione di rilevati non espressamente di corpo stradale così come individuati negli elaborati di progetto, quali ad esempio terrapieni, argini, riempimento di incisioni vallive, ricoprimenti di gallerie artificiali, riempimenti di cavi, barriere "pararumore" in terra, nelle sistemazioni idrauliche ed in altre opere similari saranno utilizzati, a meno di diverse e/o specifiche prescrizioni e previa approvazione della Direzione Lavori, materiali provenienti da qualsiasi genere di scavo (sbancamento, fondazioni) appartenenti ai gruppi A1 – A2 – A3 – A4 - A5 - A6 ed A7.

La compattazione, qualora prevista, dovrà avvenire per mezzo di un rullo liscio o a piede di montone in ragione del materiale utilizzato (rispettivamente granulare o coesivo); gli strati successivi da costipare saranno di spessore conforme alle prescrizioni di capitolato. Il materiale dovrà essere steso in opera asciutto, e comunque con un contenuto d'acqua inferiore al limite di plasticità.

Prescrizioni più restrittive, sia in fase esecutiva che di verifica in corso d'opera, possono essere previste in progetto nell'ambito di opere di particolare importanza per le quali, in ogni caso, si rimanda agli specifici elaborati ed alle Norme Tecniche di Capitolato.

EI.

9. TRINCEE

Dallo studio geologico e litologico dei terreni interessati dagli scavi in trincea risulta che essi sono costituiti per la massima parte dai calcari della Formazione Ragusa, ed in subordine dalle marne bianche (Trubi) e dalle marne argillose (Formazione Tellaro).

Come si evince dal profilo litologico (riferimento: elaborato 7/1, tavola 22 - 23 - 24) il tratto in trincea cui si rinvengono le marne bianche e le marne argillose è quello comprese tra le Sezioni N° 267 ÷ 293 (pk 7.047m – pk 7.648).

Per garantire la stabilità delle scarpate sono stati adottati differenti profilature in relazione alla litologia dei terreni. In particolare:

- Argille alterate ed integre e marne bianche (Formazione Tellaro e Trubi): si adotta un angolo di scarpa 2/3, pari ad un angolo sull'orizzontale di circa 33°;
- Calcari e calcareniti (Formazione Ragusa): si adotta un angolo di scarpa 2/1, pari ad un angolo sull'orizzontale di circa 63°.
- Laddove la parte superiore della scarpata è formata da coperture detritiche-eluviali è stato adottato un angolo di scarpa di 2/3, pari ad un angolo sull'orizzontale di circa 33°.

In corrispondenza delle trincee più alte è prevista una berma ogni m 5 di altezza, con larghezza di m 2,0.

Nel tratto tra le Sezioni N° 267 ÷ 293 il fondo scavo sarà costituito da materiali argillosi appartenenti ai gruppi A6 – A7. Qui fra terreno in situ e fondazione del corpo stradale viene interposto un materasso drenante ed anticapillare costituito da due strati di geotessuto, con funzione di separazione e filtrazione, a racchiudere uno strato di materiale arido con pezzatura 3 ÷ 50 mm.

Il fondo scavo, prima della posa in opera del materasso drenante, dovrà essere opportunamente preparato, mediante compattazione con rulli a punte e/o gommati. La preparazione del piano di posa dovrà avvenire in condizioni meteoriche favorevoli; un'eventuale imbibizione delle argille, dovuta a precipitazioni meteoriche, comporterebbe infatti un aumento del contenuto in acqua dello strato più superficiale con conseguente e possibile ammaloramento dello stesso, e riduzione della capacità portante. Si consiglia, a tale scopo, di scavare gli ultimi 50 cm di terreno, per il raggiungimento della quota di progetto, solo in condizioni meteoriche favorevoli.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ARCHILGAT	Rev.	2	Settembre 2012			Pag. n. 97

Al di sopra del geotessuto con interposto materiale arido verrà posata la fondazione del corpo stradale in misto granulare stabilizzato dello spessore minimo di cm 60 (cfr. Figura N° 40).

Laddove il fondo scavo sarà costituito dall'alternanza calcarenitico-calcarea della Formazione Ragusa non sarà necessario porre in opera il geotessuto con interposto materiale arido, e si potrà procedere a porre direttamente la fondazione del corpo stradale in misto granulare stabilizzato sul terreno in sito.

Poiché nella quasi totalità dei casi il fondo scavo delle trincee sarà costituito da calcari non sarà necessario prevedere alcuna bonifica e si potrà procedere a porre direttamente la fondazione del corpo stradale in misto granulare stabilizzato.

EI.

Pag. n. 98

10. SCATOLARI E SOTTOVIA

Nel lotto in studio è prevista la realizzazione di numerosi scatolari e sottovia per l'attraversamento di strade comunali, statali, provinciali, strade vicinali e corsi d'acqua secondari.

La maggior parte ricade nell'ambito dell'alternanza calcarenitico-calcarea della Formazione Ragusa; alcuni ricadono nell'ambito delle marne argillose della Formazione Tellaro.

I profili geotecnici dei sottovia sono riportati in allegato 7/9, tavole da n° 14 a n° 24.

Come anticipato nel paragrafo 6.1 la quota del piano d'imposta della fondazione è prevista, nella maggior parte dei casi, più bassa dell'attuale piano di campagna da qualche metro sino a parecchi metri ; quanto sopra configura, ai fini della capacità portante e dei cedimenti, una tipologia di fondazione da *parzialmente a totalmente compensata* o addirittura di tipo *galleggiante.*; Nel paragrafo 6.1.1 viene comunque proposta la verifica di capacità portante relativa all'Opera N° 83, che rappresenta anche quella che indice sul terreno il carico maggiore.

EI.

11. MURI DI SOSTEGNO E DI SOTTOSCARPA

I muri previsti in progetto sono di due tipologie, ciascuna delle quali con varie altezze:

- \rightarrow muri di sostegno, tipo MSO, con estradosso orizzontale;
- \rightarrow muri di sottoscarpa, tipo MSS.

I profili stratigrafici e geotecnici dei muri sono riportati in allegato 7/9, tavole da n° 25 a n° 31. Dagli elaborati grafici si evince come la maggior parte dei muri siano fondati in terreni calcarei o calcarenitici; i muri di opera 85 – 86 – 87, ubicati nella parte terminale della bretella di svincolo, sono in depositi alluvionali.

Per ciascuna tipologia e per le varie altezze dei muri da realizzare nel lotto in esame le verifiche di capacità portante sono esposte nell'elaborato dei relativi calcoli strutturali.

In tutte le verifiche le condizioni di stabilità sono risultate ampiamente soddisfatte.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
0 439331477	Rev.	2	Settembre 2012			Pag. n. 100

12. PONTI E CAVALCAVIA

Nel lotto in esame sono previsti nº 5 cavalcavia e nº 2 ponti:

- \rightarrow Opera N° 16 Sottovia per incrocio S.P. 41 e 122;
- \rightarrow Opera N° 37 Cavalcavia S.P. 40;
- \rightarrow Opera N° 42 Cavalcavia S.P. 56;
- → Opera N° 49 Cavalcavia Strada Vicinale;
- \rightarrow Opera N° 70 Viadotto Modica;
- → Opera N° 79 Cavalcavia Pista Doppia Stazione di Scicli;
- \rightarrow Opera N° 84 Viadotto sulla S.P. 39.

12.1. Sottovia e cavalcavia

Le Opere N° 16 – 49 – 79 ricadono nell'ambito dell'alternanza di calcari e calcareniti della Formazione Ragusa, affiorante o sub affiorante al di sotto di una modestissima coltre di terreno vegetale. Le fondazioni sono di tipo diretto. Con riferimento all'elaborato 7/9 le opere in argomento sono rappresentate nei profili geologici geotecnici di tavola 6, tavola 9, tavola 12.

Nell'Opera N° 37, di cui alla tavola 7, le fondazioni di spalle e pile ricadono nell'ambito delle calcareniti poggianti sulla Formazione Ragusa mediante una sottile interposizione di argille marnose. La soluzione fondale scelta è di tipo diretto integrata da micropali metallici.

L'Opera N° 42 di cui alla ricade 8 ricade a cavallo di una faglia che mette a contatto laterale le marne argillose dellaTellaro con i calcari della Formazione Ragusa. Le fondazioni ricadenti sulle marne sono in appoggio diretto integrate da micropali metallici. La pila in calcari è in appoggio diretto. La spalla nord, posta anch'essa su calcari in corrispondenza di una sezione in scavo, è cautelativamente prevista su micropali.

12.2. Ponti e viadotti

a) Viadotto Modica

Q RECHICKAL	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
	Rev.	2	Settembre 2012			Pag. n. 101

Rappresentato in tavola 10 – 11 dell'allegato 7/9 è costituito da n° 3 campate di 90 m per ogni senso di marcia. Ricade quasi interamente nell'ambito dell'alternanza calcareo-calcarenitica della Formazione Ragusa, peraltro estesamente affiorante lungo ambo le sponde. Solo in zona d'alveo le indagini hanno messo in luce la presenza di un materasso alluvionale di spessore metrico con massimo approfondimento, nella parte sinistra, fino ad un massimo di circa 14 m. All'interno delle alluvioni è stata individuata una falda di subalveo con escursione molto variabile in funzione del periodo stagionale e compresa fra il contatto roccia – alluvioni e circa piano campagna.

Per le spalle sono previste fondazioni di tipo diretto. Le pile N° 1 e 2 ricadono in alveo e sono fondate su pozzi aventi diametro m 14 ed altezza m 11,00. Per lo scavo del pozzo è prevista la preventiva realizzazione di una coronella di micropali con armatura Ø 127 mm ed altezza m 14,50.

Tutte le verifiche delle fondazioni ed il dimensionamento dei micropali fanno parte integrante delle specifiche relazioni di calcolo.

Per il dimensionamento delle fondazioni nell'ambito della Formazione di Ragusa è stata ipotizzata la suddivisione in n° 3 livelli, con caratteristiche geomeccaniche differenti, come da Tabella N° 48.

	Peso volume	C'	φ'
	KN/mc	Кра	(°)
Alluvioni	20		35
Calcare superficiale	23	30	35
Calcare intermedio	24	50	37
Calcare profondo	25	60	37

Tabella N° 48

b) Opera N° 84 - Viadotto sulla S.P. 39

Rappresentato in tavola 13 dell'allegato 7/9 è costituito da 3 campate centrali di lunghezza 41 m e due campate laterali da 26,50 m. Rappresenta il collegamento fra la bretella di svincolo e la viabilità locale. Ricade per la metà settentrionale sull'alternanza calcareo-calcarenitica della Formazione Ragusa, e per la metà meridionale su depositi alluvionali a loro volta poggianti sui calcari della Ragusa. In tale contesto le fondazioni di Spalla A, Pila N° 1 e 2 ricadenti nei calcari, sono di tipo diretto. Per le Pile N° 3 e 4 e Spalla B, ricadenti in depositi alluvionali aventi spessori metrici (in spalla B 14,5 m) sono previste fondazioni su pali di grande diametro di lunghezza pari a circa 14 m. o ascallar

EI.

13. GALLERIA ARTIFICIALE "SCICLI"

La galleria Scicli è rappresentata graficamente nel profilo geolitologico e geotecnico di cui all'allegato 7/9, tavola 35. Come si evince dal citato elaborato grafico l'opera si sviluppa per la maggior parte nell'ambito delle marne della Formazione Tellaro. Si segnala la presenza di un'ampia zona milonitizzata, dovuta a faglie inverse che determinano una struttura tettonicamente complessa, nella parte iniziale indicativamente fra le sezioni 357 – 366 (pk 8675 m – 8.810 m). Nella parte terminale dell'opera, a partire dalla sezione 414 (pk 9592 m), alle marne si sostituiscono progressivamente i sottostanti calcari della Formazione di Ragusa.

La galleria, che attraversa un'area relativamente priva di insediamenti antropici (vedi carta litologica in scala 1:2.000, allegato 7/1, tavola 9) si sviluppa tra le progressive m 8.487.0 \div 9.922.0 per una lunghezza complessiva di m 1435.0. I ricoprimenti in asse stradale fra quota progetto e profilo del terreno sono nell'ordine di 16 – 20 m, con punte massime intorno a 23 – 24 m fra le progressive 8.600 – 8.700 m, e valori minimi compresi fra 15 – 10 m fra 9.500 – 9.922 m. Le pendenze trasversali sono molto modeste o trascurabili.

La presenza di terreni prevalentemente marnoso argillosi ha indotto a prevedere:

- → tratti contenuti da paratie tipo berlinese, posizionati generalmente in corrispondenza delle massime altezze di scavo e/o laddove in superficie sono presenti elementi/strutture che costituiscono vincoli all'apertura degli scavi;
- → tratti costituiti da scarpate in scavo sagomate a mezzo di banche aventi generalmente pendenza 2/3, con berma di larghezza 5 m ogni 5 m di altezza.

I litotipi che si rinverranno negli scavi, a partire dall'imbocco lato Siracusa (progressiva 8487.0) sono:

- → progressiva 8487.0 ÷ 8548.0: per una lunghezza di circa m 61 marne argillose alterate della Formazione Tellaro e marne bianche (Trubi) molto alterate e disarticolate;
- → progressiva m 8548.0 ÷ 8617.0: per una lunghezza di circa m 69 marne bianche (Trubi) molto alterate e disarticolate;

C Azatatat	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
	Rev.	2	Settembre 2012			Pag. n. 103	

- → progressiva m 8617.0 ÷ 8810.0: per una lunghezza di circa m 193 milonite costituita da argille sabbiose rosse molto consistenti con elementi lapidei eterogenei. Questo materiale sembra essere costituito da un'intima mescolanza tettonica di marne della Tellaro e calcari della Ragusa;
- → progressiva m 8810.0 ÷ 9447.0: per una lunghezza di circa m 637, marne argillose alterate superficialmente ed integre (Formazione Tellaro) alla base degli scavi;
- → progressiva m 9447.0 ÷ 9922.0: per una lunghezza di circa m 475 argille marnose alterate e sane della Formazione Tellaro passanti inferiormente ai calcari della Formazione Ragusa.

I tratti contenuti da paratie provvisionali tipo berlinese sono i seguenti:

- → fra le progressive 8487.00 ÷ 8849.00 m, ricadente nell'ambito dei trubi alterati e disarticolati, marne argillose della Formazione Tellaro e milonite (paratia berlinese di Opera N° 58/1 e 58/2);
- → tratto tra le progressive 9006.00 ÷ 9111.00 circa, ricadente nell'ambito delle marne alterate ed integre della Formazione Tellaro (paratia berlinese di Opera N° 58/3);

Nella rimanente parte sono previste scarpate provvisionali sagomate con banche di altezza 5 m e berma di larghezza 5 m, pendenza generalmente 2/3. Come riportato nel paragrafo 5.2 sono state eseguite verifiche di stabilità in corrispondenza dei tratti di maggiore altezza (Sezioni N° 357, 361, 385, 401, 406, 414, tavole da 36 a 41 di allegato 7/9). Trattandosi di scavi provvisionali la cui durata in progetto è prevista inferiore a 2 anni le verifiche potrebbero essere effettuate nella sola configurazione statica, in assenza di sisma. Cautelativamente ed a vantaggio di sicurezza le verifiche sono state effettuate comunque in presenza di sisma (configurazione maggiormente critica); i coefficienti di sicurezza risultano congruenti con i minimi valori richiesti da normativa.

Al fine di proteggere le scarpate di scavo dall'azione degli agenti atmosferici, evitando in particolare erosione superficiale e trasporto solido a carico dei materiali argillosi si è previsto di ricoprire gli scavi mediante un biotessile – biostuoia anti erosione in fibra di cocco, yuta o altro materiale naturale, completamente biodegradabile, da lasciare sul posto a fine lavori durante la fase di ritombamento al di sopra dell'opera.

O Azeitati	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
	Rev.	2	Settembre 2012			Pag. n. 104

APPENDICE "A" - PROGRAMMA DI CALCOLO DI STABILITA'

Rev.	0	Luglio 2004	EI.	A18-9-gl60	
Rev.	2	Settembre 2012			

PROGRAMMA SLOPE

Definizione

Per pendio s'intende una porzione di versante naturale il cui profilo originario è stato modificato da interventi artificiali rilevanti rispetto alla stabilità. Per frana s'intende una situazione di instabilità che interessa versanti naturali e coinvolgono volumi considerevoli di terreno.

Introduzione all'analisi di stabilità

La risoluzione di un problema di stabilità richiede la presa in conto delle equazioni di campo e dei legami costitutivi. Le prime sono di equilibrio, le seconde descrivono il comportamento del terreno. Tali equazioni risultano particolarmente complesse in quanto i terreni sono dei sistemi multifase, che possono essere ricondotti a sistemi monofase solo in condizioni di terreno secco, o di analisi in condizioni drenate.

Nella maggior parte dei casi ci si trova a dover trattare un materiale che se saturo è per lo meno bifase, ciò rende la trattazione delle equazioni di equilibrio notevolmente complicata. Inoltre è praticamente impossibile definire una legge costitutiva di validità generale, in quanto i terreni presentano un comportamento non-lineare già a piccole deformazioni, sono anisotropi ed inoltre il loro comportamento dipende non solo dallo sforzo deviatorico ma anche da quello normale. A causa delle suddette difficoltà vengono introdotte delle ipotesi semplificative:

(a) Si usano leggi costitutive semplificate: modello rigido perfettamente plastico. Si assume che la resistenza del materiale sia espressa unicamente dai parametri coesione (c) e angolo di resistenza al taglio (ϕ), costanti per il terreno e caratteristici dello stato plastico; quindi si suppone valido il criterio di rottura di Mohr-Coulomb.

(b) In alcuni casi vengono soddisfatte solo in parte le equazioni di equilibrio.

Metodo equilibrio limite (LEM)

Il metodo dell'equilibrio limite consiste nello studiare l'equilibrio di un corpo rigido, costituito dal pendio e da una superficie di scorrimento di forma qualsiasi (linea retta, arco di cerchio, spirale logaritmica); da tale equilibrio vengono calcolate le tensioni da taglio (τ) e confrontate con la resistenza disponibile (τ f), valutata secondo il criterio di rottura di *Coulomb*, da tale confronto ne scaturisce la prima indicazione sulla stabilità attraverso il coefficiente di sicurezza *F* = τ f / τ .

O Azentiant	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
	Rev.	2	Settembre 2012			Pag. n. 106	

Tra i metodi dell'equilibrio limite alcuni considerano l'equilibrio globale del corpo rigido (*Culman*), altri a causa della non omogeneità dividono il corpo in conci considerando l'equilibrio di ciascuno (*Fellenius, Bishop, Janbu ecc.*).

Di seguito vengono discussi i metodi dell'equilibrio limite dei conci.

Metodo dei conci

La massa interessata dallo scivolamento viene suddivisa in un numero conveniente di conci. Se il numero dei conci è pari a *n*, il problema presenta le seguenti incognite:

n valori delle forze normali N_i agenti sulla base di ciascun concio;

n valori delle forze di taglio alla base del concio Ti

(n-1) forze normali E_i agenti sull'interfaccia dei conci;

(*n-1*) forze tangenziali X_i agenti sull'interfaccia dei conci;

n valori della coordinata a che individua il punto di applicazione delle E_i;

(n-1) valori della coordinata che individua il punto di applicazione delle X_i;

una incognita costituita dal fattore di sicurezza F.

Complessivamente le incognite sono (6n-2).

mentre le equazioni a disposizione sono: Equazioni di equilibrio dei momenti *n* Equazioni di equilibrio alla traslazione verticale *n* Equazioni di equilibrio alla traslazione orizzontale *n* Equazioni relative al criterio di rottura *n* Totale numero di equazioni *4n*

Il problema è staticamente indeterminato ed il grado di indeterminazione è pari a

C Azeratart	Rev.	0	Luglio 2004	El.	A18-9-gl60	
	Rev.	2	Settembre 2012			Pag. n. 107

```
i = (6n-2)-(4n) = 2n-2.
```

Il grado di indeterminazione si riduce ulteriormente a (n-2) in quando si fa l'assunzione che

N_i sia applicato nel punto medio della striscia, ciò equivale ad ipotizzare che le tensioni normali totali siano uniformemente distribuite.

I diversi metodi che si basano sulla teoria dell'equilibrio limite si differenziano per il modo in cui vengono eliminate le (n-2) indeterminazioni.

Metodo di FELLENIUS (1927)

Con questo metodo (valido solo per superfici di scorrimento di forma circolare) vengono trascurate le forze di interstriscia pertanto le incognite si riducono a:

n valori delle forze normali N_i;

n valori delle forze da taglio T_i ;

1 fattore di sicurezza.

Incognite (2n+1)

Le equazioni a disposizione sono:

n equazioni di equilibrio alla traslazione verticale;

n equazioni relative al criterio di rottura;

1 equazione di equilibrio dei momenti globale.

$$F = \frac{\sum \{ c_i \times l_i + (W_i \times \cos \alpha_i - u_i \times l_i) \times \tan \varphi_i \}}{\Sigma W_i \times \sin \alpha_i}$$

Questa equazione è semplice da risolvere ma si è trovato che fornisce risultati conservativi (fattori di sicurezza bassi) soprattutto per superfici profonde.
	Rev.	0	Luglio 2004	El.	A18-9-gl60		
O RECENTER	Rev.	2	Settembre 2012			Pag. n. 108	

Metodo di BISHOP (1955)

Con tale metodo non viene trascurato nessun contributo di forze agenti sui blocchi e fu il primo a descrivere i problemi legati ai metodi convenzionali.

Le equazioni usate per risolvere il problema sono:

 $\Sigma F_V = 0$, $\Sigma M_0 = 0$, Criterio di rottura.

$$F = \frac{\sum \{c_i \times b_i + (W_i - u_i \times b_i + \Delta X_i) \times \tan \varphi_i\} \times \frac{\sec \alpha_i}{1 + \tan \alpha_i \times \tan \varphi_i / F}}{\sum W_i \times \sin \alpha_i}$$

I valori di *F* e di ΔX per ogni elemento che soddisfano questa equazione danno una soluzione rigorosa al problema. Come prima approssimazione conviene porre $\Delta X=0$ ed iterare per il calcolo del fattore di sicurezza, tale procedimento è noto come metodo di *Bishop ordinario*, gli errori commessi rispetto al metodo completo sono di circa 1 %.

Metodo di JANBU (1967)

Janbu estese il metodo di Bishop a superfici si scorrimento di forma qualsiasi.

Quando vengono trattate superfici di scorrimento di forma qualsiasi il braccio delle forze cambia (nel caso delle superfici circolari resta costante e pari al raggio) a tal motivo risulta più conveniente valutare l'equazione del momento rispetto allo spigolo di ogni blocco.

$$F = \frac{\sum \{c_i \times b + (W_i - u_i \times b_i + \Delta X_i) \times \tan \varphi_i\} \times \frac{\sec^2 \alpha_i}{1 + \tan \alpha_i \times \tan \varphi_i / F}}{\sum W_i \times \tan \alpha_i}$$

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ascanteer	Rev.	2	Settembre 2012			Pag. n. 109

Assumendo ΔX_i = 0 si ottiene il metodo ordinario.

Janbu propose inoltre un metodo per la correzione del fattore di sicurezza ottenuto con il metodo ordinario secondo la seguente:

 $F_{corretto} = f_0 F$

dove f_0 è riportato in grafici funzione di geometria e parametri geotecnici.

Tale correzione è molto attendibile per pendii poco inclinati.

Metodo di BELL (1968)

Le forze agenti sul corpo che scivola includono il peso effettivo del terreno, *W*, le forze sismiche pseudostatiche orizzontali e verticali K_XW e K_ZW , le forze orizzontali e verticali *X* e *Z* applicate esternamente al profilo del pendio, infine, la risultante degli sforzi totali normali e di taglio σ e τ agenti sulla superficie potenziale di scivolamento.

Lo sforzo totale normale può includere un eccesso di pressione dei pori *u* che deve essere specificata con l'introduzione dei parametri di forza efficace.

In pratica questo metodo può essere considerato come un'estensione del metodo del cerchio di attrito per sezioni omogenee precedentemente descritto da *Taylor*.

In accordo con la legge della resistenza di *Mohr-Coulomb* in termini di tensione efficace, la forza di taglio agente sulla base dell'i-esimo concio è data da:

$$T_i = \frac{c_i L_i + (N_i - u_{ci} L_i) \tan \phi_i}{F}$$

in cui

F = il fattore di sicurezza;

ci = la coesione efficace (o totale) alla base dell'i-esimo concio;

 ϕ_i = l'angolo di attrito efficace (= 0 con la coesione totale) alla base dell'i-esimo concio;

	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
O RECENTATION	Rev.	2	Settembre 2012			Pag. n. 110	

L_i = la lunghezza della base dell'i-esimo concio;

 u_{ci} = la pressione dei pori al centro della base dell'i-esimo concio.

L'equilibrio risulta uguagliando a zero la somma delle forze orizzontali, la somma delle forze verticali e la somma dei momenti rispetto all'origine.

Viene adottata la seguente assunzione sulla variazione della tensione normale agente sulla potenziale superficie di scorrimento:

$$\sigma_{ci} = \left[C_1 \left(1 - K_z\right) \frac{W_i \cos \alpha_i}{L_i}\right] + C_2 f\left(x_{ci}, y_{ci}, z_{ci}\right)$$

in cui il primo termine dell'equazione include l'espressione:

W_i cos α_i / L_i = valore dello sforzo normale totale associato con il metodo ordinario dei conci.

Il secondo termine dell'equazione include la funzione:

$$f = \sin 2\pi \left(\frac{x_n - x_{ci}}{x_n - x_0}\right)$$

Dove x_0 ed x_n sono rispettivamente le ascisse del primo e dell'ultimo punto della superficie di scorrimento, mentre x_{ci} rappresenta l'ascissa del punto medio della base del concio i-esimo.

Una parte sensibile di riduzione del peso associata con una accelerazione verticale del terreno K_Z g può essere trasmessa direttamente alla base e ciò è incluso nel fattore (1 - K_Z).

Lo sforzo normale totale alla base di un concio è dato da:

	Rev.	0	Luglio 2004	El.	A18-9-gl60	
O RECTATET	Rev.	2	Settembre 2012			Pag. n. 111

$$N_i = \sigma_{ci} L_i$$

La soluzione delle equazioni di equilibrio si ricava risolvendo un sistema lineare di tre equazioni ottenute moltiplicando le equazioni di equilibrio per il fattore di sicurezza F, sostituendo l'espressione di N_i e moltiplicando ciascun termine della coesione per un coefficiente arbitrario C₃.

Si assume una relazione di linearità tra detto coefficiente, determinabile tramite la regola di Cramer, ed il fattore di sicurezza *F*. Il corretto valore di F può essere ottenuto dalla formula di interpolazione lineare:

$$F = F(2) + \left(\frac{1 - C_3(2)}{C_3(2) - C_3(1)}\right) \left(F(2) - F(1)\right)$$

dove i numeri in parentesi (1) e (2) indicano i valori iniziale e successivo dei parametri F e C₃.

Qualsiasi coppia di valori del fattore di sicurezza nell'intorno di una stima fisicamente ragionevole può essere usata per iniziare una soluzione iterativa.

Il numero necessario di iterazioni dipende sia dalla stima iniziale sia dalla desiderata precisione della soluzione; normalmente, il processo converge rapidamente.

Metodo di SARMA (1973)

Il metodo di **Sarma** è un semplice, ma accurato metodo per l'analisi di stabilità dei pendii, che permette di determinare l'accelerazione sismica orizzontale richiesta affinché l'ammasso di terreno, delimitato dalla superficie di scivolamento e dal profilo topografico, raggiunga lo stato di equilibrio limite (accelerazione critica *Kc*) e, nello stesso tempo, consente di ricavare l'usuale fattore di sicurezza ottenuto come per gli altri metodi più comuni della geotecnica.

Si tratta di un metodo basato sul principio dell'equilibrio limite e delle strisce, pertanto viene considerato l'equilibrio di una potenziale massa di terreno in scivolamento suddivisa in *n* strisce verticali di spessore sufficientemente piccolo da ritenere ammissibile l'assunzione che lo sforzo normale N_i agisce nel punto medio della base della striscia.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O RECENTERT	Rev.	2	Settembre 2012			Pag. n. 112

Le equazioni da prendere in considerazione sono:

L'equazione di equilibrio alla traslazione orizzontale del singolo concio;

L'equazione di equilibrio alla traslazione verticale del singolo concio;

L'equazione di equilibrio dei momenti.

Condizioni di equilibrio alla traslazione orizzontale e verticale:

 $N_i \cos \alpha_i + T_i \sin \alpha_i = W_i - \Delta X_i$ $T_i \cos \alpha_i - N_i \sin \alpha_i = KW_i + \Delta E_i$

Viene, inoltre, assunto che in assenza di forze esterne sulla superficie libera dell'ammasso si ha:

$$\Sigma \Delta E_{i} = 0$$
$$\Sigma \Delta X_{i} = 0$$

dove *Eì* e *Xi* rappresentano, rispettivamente, le forze orizzontale e verticale sulla faccia i-esima del concio generico *i*.

L'equazione di equilibrio dei momenti viene scritta scegliendo come punto di riferimento il baricentro dell'intero ammasso; sicché, dopo aver eseguito una serie di posizioni e trasformazioni trigonometriche ed algebriche, nel metodo di **Sarma** la soluzione del problema passa attraverso la risoluzione di due equazioni:

$$*\sum \Delta X_i \cdot tg(\psi'_i - \alpha_i) + \sum \Delta E_i = \sum \Delta_i - K \cdot \sum W_i$$

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O azernart	Rev.	2	Settembre 2012			Pag. n. 113

$$**\sum \Delta X_{i} \cdot [(y_{mi} - y_{G}) \cdot tg(\psi_{i} - \alpha') + (x_{i} - x_{G})] = \sum W_{i} \cdot (x_{mi} - x_{G}) + \sum \Delta_{i} \cdot (y_{mi} - y_{G})$$

Ma l'approccio risolutivo, in questo caso, è completamente capovolto: il problema infatti impone di trovare un valore di *K* (accelerazione sismica) corrispondente ad un determinato fattore di sicurezza; ed in particolare, trovare il valore dell'accelerazione *K* corrispondente al fattore di sicurezza F = 1, ossia l'*accelerazione critica*.

Si ha pertanto:

K = Kc accelerazione critica se F = 1

F = Fs fattore di sicurezza in condizioni statiche se K = 0

La seconda parte del problema del Metodo di Sarma è quella di trovare una distribuzione di forze interne *Xi* ed *Ei* tale da verificare l'equilibrio del concio e quello globale dell'intero ammasso, senza violazione del criterio di rottura.

E' stato trovato che una soluzione accettabile del problema si può ottenere assumendo la seguente distribuzione per le forze *Xi*:

$$\Delta X_{i} = \lambda \cdot \Delta Q_{i} = \lambda \cdot (Q_{i+1} - Q_{i})$$

dove Qi è una funzione nota, in cui vengono presi in considerazione i parametri geotecnici medi sulla *i*-esima faccia del concio *i*, e λ rappresenta un'incognita.

La soluzione completa del problema si ottiene pertanto, dopo alcune iterazioni, con i valori di *Kc*, λ e *F*, che permettono di ottenere anche la distribuzione delle forze di interstriscia.

Metodo di SPENCER

Il metodo è basato sull'assunzione:

Le forze d'interfaccia lungo le superfici di divisione dei singoli conci sono orientate parallelamente fra loro ed inclinate rispetto all'orizzontale di un angolo θ . tutti i momenti sono nulli $M_i = 0$ i=1,...,n

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ascentarer	Rev.	2	Settembre 2012			Pag. n. 114

Sostanzialmente il metodo soddisfa tutte le equazioni della statica ed equivale al metodo di Morgenstern e Price quando la funzione f(x) = 1.

Imponendo l'equilibrio dei momenti rispetto al centro dell'arco descritto dalla superficie di scivolamento si ha:

$$\sum Q_i R \cos(\alpha - \theta) = 0$$

dove:

$$Q_{i} = \frac{\frac{c}{F_{s}} (W \cos \alpha - \gamma_{w} hl \sec \alpha) \frac{tg\alpha}{F_{s}} - Wsen\alpha}{\cos(\alpha - \theta) \left[\frac{F_{s} + tg\phi tg(\alpha - \theta)}{F_{s}} \right]}$$

forza d'interazione fra i conci;

R = raggio dell'arco di cerchio;

 θ = angolo d'inclinazione della forza Qi rispetto all'orizzontale.

Imponendo l'equilibrio delle forze orizzontali e verticali si ha rispettivamente:

$$\sum (Q_i \cos \theta) = 0 \quad \sum (Q_i \sin \theta) = 0$$

Con l'assunzione delle forze Qi parallele fra loro, si può anche scrivere:

$$\sum Q_i = 0$$

	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
O RECENTATION	Rev.	2	Settembre 2012			Pag. n. 115	

Il metodo propone di calcolare due coefficienti di sicurezza: il primo (F_{sm}) ottenibile dalla 1), legato all'equilibrio dei momenti; il secondo (F_{sf}) dalla 2) legato all'equilibrio delle forze. In pratica si procede risolvendo la 1) e la 2) per un dato intervallo di valori dell'angolo θ , considerando come valore unico del coefficiente di sicurezza quello per cui si abbia $F_{sm} = F_{sf}$.

Metodo di MORGENSTERN e PRICE

Si stabilisce una relazione tra le componenti delle forze di interfaccia del tipo X = λ f(x)E, dove λ è un fattore di scala e f(x), funzione della posizione di E e di X, definisce una relazione tra la variazione della forza X e della forza E all'interno della massa scivolante. La funzione f(x) è scelta arbitrariamente (costante, sinusoide, semisinusoide, trapezia, spezzata...) e influenza poco il risultato, ma va verificato che i valori ricavati per le incognite siano fisicamente accettabili.

La particolarità del metodo è che la massa viene suddivisa in strisce infinitesime alle quali vengono imposte le equazioni di equilibrio alla traslazione orizzontale e verticale e di rottura sulla base delle strisce stesse. Si perviene ad una prima equazione differenziale che lega le forze d'interfaccia incognite E, X, il coefficiente di sicurezza _{FS}, il peso della striscia infinitesima dW e la risultante delle pressioni neutra alla base dU.

Si ottiene la cosiddetta "equazione delle forze":

$$c'\sec^2\frac{\alpha}{F_s} + tg\varphi'\left(\frac{dW}{dx} - \frac{dX}{dx} - tg\alpha\frac{dE}{dx} - \sec\alpha\frac{dU}{dx}\right) =$$

$$=\frac{dE}{dx} - tg\alpha \left(\frac{dX}{dx} - \frac{dW}{dx}\right)$$

Una seconda equazione, detta "equazione dei momenti", viene scritta imponendo la condizione di equilibrio alla rotazione rispetto alla mezzeria della base:

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O	Rev.	2	Settembre 2012			Pag. n. 116

$$X = \frac{d(E_{\gamma})}{dx} - \gamma \frac{dE}{dx}$$

queste due equazioni vengono estese per integrazione a tutta la massa interessata dallo scivolamento.

Il metodo di calcolo soddisfa tutte le equazioni di equilibrio ed è applicabile a superfici di qualsiasi forma, ma implica necessariamente l'uso di un calcolatore.

VALUTAZIONE DELL'AZIONE SISMICA

Nelle verifiche agli Stati Limite Ultimi la stabilità dei pendii nei confronti dell'azione sismica viene eseguita con il metodo pseudo-statico. Per i terreni che sotto l'azione di un carico ciclico possono sviluppare pressioni interstiziali elevate viene considerato un aumento in percento delle pressioni neutre che tiene conto di questo fattore di perdita di resistenza.

Ai fini della valutazione dell'azione sismica, nelle verifiche agli stati limite ultimi, vengono considerate le seguenti forze statiche equivalenti:

$$F_H = K_o \cdot W$$
$$F_V = K_v \cdot W$$

Essendo:

 $F_{H} e F_{V}$ rispettivamente la componente orizzontale e verticale della forza d'inerzia applicata al baricentro del concio;

W: peso concio

Ko: Coefficiente sismico orizzontale

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O REGISTER	Rev.	2	Settembre 2012			Pag. n. 117

K_V: Coefficiente sismico verticale.

Calcolo coefficienti sismici

Le NTC 2008 calcolano i coefficienti K_0 e K_V in dipendenza di vari fattori:

 $K_0 = \beta s \times (a_{max}/g)$

 $K_V = \pm 0.5 \times K_O$

Con

βs coefficiente di riduzione dell'accelerazione massima attesa al sito;

amax accelerazione orizzontale massima attesa al sito;

g accelerazione di gravità.

Tutti i fattori presenti nelle precedenti formule dipendono dall'accelerazione massima attesa sul sito di riferimento rigido e dalle caratteristiche geomorfologiche del territorio.

S_S (effetto di amplificazione stratigrafica): 0.90 ≤Ss≤ 1.80; è funzione di F₀ (Fattore massimo di amplificazione dello spettro in accelerazione orizzontale) e della categoria di suolo (A, B, C, D, E). S_T (effetto di amplificazione topografica).

Il valore di S_T varia con il variare delle quattro categorie topografiche introdotte:

$$T1(S_T = 1.0) T2(S_T = 1.20) T3(S_T = 1.20) T4(S_T = 1.40).$$

	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
O REGISTRET	Rev.	2	Settembre 2012			Pag. n. 118	

Questi valori sono calcolati come funzione del punto in cui si trova il sito oggetto di analisi. Il parametro di entrata per il calcolo è il tempo di ritorno dell'evento sismico che è valutato come segue:

$T_R = -V_R / \ln(1 - PVR)$

Con V_R vita di riferimento della costruzione e PVR probabilità di superamento, nella vita di riferimento, associata allo stato limite considerato. La vita di riferimento dipende dalla vita nominale della costruzione e dalla classe d'uso della costruzione (in linea con quanto previsto al punto 2.4.3 delle NTC). In ogni caso V_R dovrà essere maggiore o uguale a 35 anni.

Ricerca della superficie di scorrimento critica

In presenza di mezzi omogenei non si hanno a disposizione metodi per individuare la superficie di scorrimento critica ed occorre esaminarne un numero elevato di potenziali superfici. Nel caso vengano ipotizzate superfici di forma circolare, la ricerca diventa più semplice, in quanto dopo aver posizionato una maglia dei centri costituita da m righe e n colonne saranno esaminate tutte le superfici aventi per centro il generico nodo della maglia m×n e raggio variabile in un determinato range di valori tale da esaminare superfici cinematicamente ammissibili.

Pendii in roccia (Metodo di Hoeck e Bray)

Per i versanti in roccia, diversamente da quelli in terra, il criterio di rottura di Mohr-Coulomb non può essere impiegato per definire la resistenza del materiale; tuttavia con questo metodo viene descritta una procedura che consente l'applicazione dei metodi classici dell'Equilibrio Limite anche nei versanti rocciosi. A tale scopo vengono definiti l'angolo di resistenza a taglio e la coesione che si mobilitano lungo la superficie di scorrimento secondo le seguenti espressioni:

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O REGIAILET	Rev.	2	Settembre 2012			Pag. n. 119

$$tg\phi = AB \left(\frac{N}{\sigma_{c}} - T\right)^{B-1}$$
$$c = A\sigma_{c} \left(\frac{N}{\sigma_{c}} - T\right)^{B} - Ntg\phi$$

dove:

 σ_c è la resistenza a compressione monassiale della roccia;

A, B, T costanti in funzione del litotipo e della qualità della roccia (riportati in tabella);

N sforzo normale alla base del concio.

Le costanti A, B e T sono vengono determinate in funzione della classificazione della roccia secondo Bieniawski (indice RMR) e secondo Barton (indice Q). Tra i due sistemi di classificazione, sulla base di 111 esempi analizzati, è stata trovata la seguente correlazione:

$$RMR = 9 \ln Q + 44$$

	Calcari Dolomie Marne	Argilliti Siltiti Scisti	Areniti Quarziti	Andesiti Basalti Rioliti	Anfiboliti Gneiss Graniti
RMR =100 Q = 500	A = 0.816 B = 0.658 T = -0.140	A = 0.918 B = 0.677 T = -0.099	A = 1.044 B = 0.692 T = -0.067	A = 1.086 B = 0.696 T = -0.059	A = 1.220 B = 0.705 T = -0.040
RMR = 85 Q = 100	A = 0.651 B = 0.679 T = -0.028	A = 0.739 B = 0.692 T = -0.020	A = 0.848 B = 0.702 T = -0.013	A = 0.883 B = 0.705 T = -0.012	A = 0.998 B = 0.712 T = -0.008
RMR = 65 Q = 10	A = 0.369 B = 0.669 T = -0.006	A = 0.427 B = 0.683 T = -0.004	A = 0.501 B = 0.695 T = -0.003	A = 0.525 B = 0.698 T = -0.002	A = 0.603 B = 0.707 T = -0.002
RMR = 44 Q = 1	A = 0.198 B = 0.662 T = -0.0007	A = 0.234 B = 0.675 T = -0.0005	A = 0.280 B = 0.688 T = -0.0003	A = 0.295 B = 0.691 T = -0.003	A = 0.346 B = 0.700 T = -0.0002
RMR = 3 Q = 0.1	A = 0.115 B = 0.646 T = -0.0002	A = 0.129 B = 0.655 T = -0.0002	A = 0.162 B = 0.672 T = -0.0001	A = 0.172 B = 0.676 T = -0.0001	A = 0.203 B = 0.686 T = -0.0001
RMR = 3 Q = 0.01	A = 0.042 B = 0.534 T = 0	A = 0.050 B = 0.539 T = 0	A = 0.061 B = 0.546 T = 0	A = 0.065 B = 0.548 T = 0	A = 0.078 B = 0.556 T = 0

Per i tabulati di calcolo relativi alle singole verifiche di stabilità discusse nel testo si rimanda allo specifico allegato.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O	Rev.	2	Settembre 2012			Pag. n. 120

APPENDICE "B" – CALCOLO DELLA CAPACITA' PORTANTE PROGRAMMA DI CALCOLO "LOAD CAP" - TABULATI DI CALCOLO

G	<u> REGERIGRAT</u>

NORMATIVE DI RIFERIMENTO

Norme tecniche per le Costruzioni 2008

Norme tecniche per le costruzioni D.M. 14 gennaio 2008.

Eurocodice 7

Progettazione geotecnica – Parte 1: Regole generali.

Eurocodice 8

Indicazioni progettuali per la resistenza sismica delle strutture - Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.

CARICO LIMITE DI FONDAZIONI SU TERRENI

Il carico limite di una fondazione superficiale può essere definito con riferimento a quel valore massimo del carico per il quale in nessun punto del sottosuolo si raggiunge la condizione di rottura (metodo di Frolich), oppure con riferimento a quel valore del carico, maggiore del precedente, per il quale il fenomeno di rottura si è esteso ad un ampio volume del suolo (metodo di Prandtl e successivi).

Prandtl ha studiato il problema della rottura di un semispazio elastico per effetto di un carico applicato sulla sua superficie con riferimento all'acciaio, caratterizzando la resistenza a rottura con una legge del tipo:

 $\tau = c + \sigma \times tg \phi$ valida anche per i terreni.

Le ipotesi e le condizioni introdotte dal Prandtl sono le seguenti:

- Materiale privo di peso e quindi γ=0
- Comportamento rigido plastico
- Resistenza a rottura del materiale esprimibile con la relazione $\tau=c + \sigma \times tg\varphi$
- Carico uniforme, verticale ed applicato su una striscia di lunghezza infinita e di larghezza 2b (stato di deformazione piana)
- Tensioni tangenziali nulle al contatto fra la striscia di carico e la superficie limite del semispazio.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
O ARCHULT	Rev.	2	Settembre 2012			Pag. n. 122	

All'atto della rottura si verifica la plasticizzazione del materiale racchiuso fra la superficie limite del semispazio e la superficie *GFBCD*.

Nel triangolo *AEB* la rottura avviene secondo due famiglie di segmenti rettilinei ed inclinati di $45^{\circ}+\varphi/2$ rispetto all'orizzontale.

Nelle zone *ABF* e *EBC* la rottura si produce lungo due famiglie di linee, l'una costituita da segmenti rettilinei passanti rispettivamente per i punti A ed E e l'altra da archi di de famiglie di spirali loga-ritmiche.

I poli di queste sono i punti *A* ed *E*. Nei triangoli *AFG e ECD* la rottura avviene su segmenti inclinati di $\pm(45^\circ + \varphi/2)$ rispetto alla verticale.

Individuato così il volume di terreno portato a rottura dal carico limite, questo può essere calcolato scrivendo la condizione di equilibrio fra le forze agenti su qualsiasi volume di terreno delimitato in basso da una qualunque delle superfici di scorrimento.

Si arriva quindi ad una equazione q =B \times c, dove il coefficiente B dipende soltanto dall'angolo di attrito ϕ del terreno.

$$B = \cot g \varphi \left[e^{\pi t g \varphi} \frac{2}{t g} (45^\circ + \varphi/2) - 1 \right]$$

Per ϕ =0 il coefficiente B risulta pari a 5.14, quindi q=5.14 × c.

Nell'altro caso particolare di terreno privo di coesione (c=0, $\gamma \neq 0$) risulta q=0, secondo la teoria di **Prandtl**, non sarebbe dunque possibile applicare nessun carico sulla superficie limite di un terreno incoerente.

Da questa teoria, anche se non applicabile praticamente, hanno preso le mosse tutte le ricerche

	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
O Azeratar	Rev.	2	Settembre 2012			Pag. n. 123	

ed i metodi di calcolo successivi.

Infatti *Caquot* si pose nelle stesse condizioni di Prandtl ad eccezione del fatto che la striscia di carico non è più applicata sulla superficie limite del semispazio, ma a una profondità h, con h \leq 2b; il terreno compreso tra la superficie e la profondità h ha le seguenti caratteristiche: $\gamma \neq 0$, $\varphi=0$, c=0

e cioè sia un mezzo dotato di peso ma privo di resistenza.

Risolvendo le equazioni di equilibrio si arriva all'espressione:

$$q = A \times \gamma 1 + B \times c$$

che è sicuramente è un passo avanti rispetto a Prandtl, ma che ancora non rispecchia la realtà.

Metodo di Terzaghi (1955)

Terzaghi, proseguendo lo studio di Caquot, ha apportato alcune modifiche per tenere conto delle effettive caratteristiche dell'insieme opera di fondazione-terreno.

Sotto l'azione del carico trasmesso dalla fondazione il terreno che si trova a contatto con la fondazione stessa tende a sfuggire lateralmente, ma ne è impedito dalle resistenze tangenziali che si sviluppano fra la fondazione ed il terreno. Ciò comporta una modifica dello stato tensionale nel terreno posto direttamente al di sotto della fondazione; per tenerne conto **Terzaghi** assegna ai lati AB ed EB del cuneo di Prandtl una inclinazione ψ rispetto all'orizzontale, scegliendo il valore di ψ in funzione delle caratteristiche meccaniche del terreno al contatto terreno-opera di fondazione.

L'ipotesi γ_2 =0 per il terreno sotto la fondazione viene così superata ammettendo che le superfici di rottura restino inalterate, l'espressione del carico limite è quindi:

$$q = A \times \gamma \times h + B \times c + C \times \gamma \times b$$

in cui C è un coefficiente che risulta funzione dell'angolo di attrito ϕ del terreno posto al di sotto del piano di posa e dell'angolo ϕ prima definito;

b è la semilarghezza della striscia.

Inoltre, basandosi su dati sperimentali, *Terzaghi* passa dal problema piano al problema spaziale introducendo dei fattori di forma.

Un ulteriore contributo è stato apportato da Terzaghi sull'effettivo comportamento del terreno.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
O ARCHIIGUT	Rev.	2	Settembre 2012			Pag. n. 124	

Nel metodo di Prandtl si ipotizza un comportamento del terreno rigido-plastico, *Terzaghi* invece ammette questo comportamento nei terreni molto compatti.

In essi, infatti, la curva carichi-cedimenti presenta un primo tratto rettilineo, seguito da un breve tratto curvilineo (comportamento elasto-plastico); la rottura è istantanea ed il valore del carico limite risulta chiaramente individuato (rottura generale).

In un terreno molto sciolto invece la relazione carichi-cedimenti presenta un tratto curvilineo accentuato fin dai carichi più bassi per effetto di una rottura progressiva del terreno (rottura locale); di conseguenza l'individuazione del carico limite non è così chiara ed evidente come nel caso dei terreni compatti.

Per i terreni molto sciolti, Terzaghi consiglia di prendere in considerazione il carico limite il valore che si calcola con la formula precedente introducendo però dei valori ridotti delle caratteristiche meccaniche del terreno e precisamente:

$$tg\varphi_{rid} = 2/3 \times tg\varphi \in c_{rid} = 2/3 \times c$$

Esplicitando i coefficienti della formula precedente, la formula di Terzaghi può essere scritta:

$$q_{ult} = c \times N_C \times s_C + \gamma \times D \times N_Q + 0.5 \times \gamma \times B \times N_\gamma \times s_\gamma$$

dove:

$$N_q = \frac{a^2}{2\cos^2(45 + \varphi/2)}$$
$$a = e^{(0.75\pi - \varphi/2)\tan\varphi}$$
$$N_c = (N_q - 1)\cot\varphi$$
$$N_\gamma = \frac{\tan\varphi}{2} \left(\frac{K_{p\gamma}}{\cos^2\varphi} - 1\right)$$

Formula di Meyerhof (1963)

Meyerhof propose una formula per il calcolo del carico limite simile a quella di *Terzaghi*.; le differenze consistono nell'introduzione di ulteriori coefficienti di forma.

Egli introdusse un coefficiente s_q che moltiplica il fattore N_q, fattori di profondità d_i e di pendenza

	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
O RECENTATI	Rev.	2	Settembre 2012			Pag. n. 125	

 $i_{\mbox{\scriptsize I}}$ per il caso in cui il carico trasmesso alla fondazione è inclinato sulla verticale.

I valori dei coefficienti N furono ottenuti da Meyerhof ipotizzando vari archi di prova BF (v. meccanismo Prandtl), mentre il taglio lungo i piani AF aveva dei valori approssimati.

I fattori di forma tratti da Meyerhof sono di seguito riportati, insieme all'espressione della formula.

Carico verticale

$$q_{ult} = c \times N_c \times s_c \times d_c + \gamma \times D \times N_q \times s_q \times d_q + 0.5 \times \gamma \times B \times N_\gamma \times s_\gamma \times d_\gamma$$

Carico inclinato

$$q_{ul} = c \times N_c \times i_c \times d_c + \gamma \times D \times N_q \times i_q \times d_q + 0.5 \times \gamma \times B \times N_{\gamma} \times i_{\gamma} \times d_{\gamma}$$

$$N_q = e^{\pi \tan \varphi} \tan^2 (45 + \varphi/2)$$
$$N_c = (N_q - 1) \cot \varphi$$
$$N_{\gamma} = (N_q - 1) \tan(1.4\varphi)$$

fattore di forma:

$$s_{c} = 1 + 0.2k_{p} \frac{B}{L} \qquad \text{per } \varphi > 10$$

$$s_{q} = s_{\gamma} = 1 + 0.1k_{p} \frac{B}{L} \qquad \text{per } \varphi = 0$$

fattore di profondità:

$$d_{c} = 1 + 0.2\sqrt{k_{p}} \frac{D}{B}$$

$$d_{q} = d_{\gamma} = 1 + 0.1\sqrt{k_{p}} \frac{D}{B} \qquad \text{per } \varphi > 10$$

$$d_{q} = d_{\gamma} = 1 \qquad \text{per } \varphi = 0$$

inclinazione:

$$\begin{split} i_{c} &= i_{\gamma} = \left(1 - \frac{\theta}{90}\right)^{2} \\ i_{\gamma} &= \left(1 - \frac{\theta}{\varphi}\right)^{2} \qquad \text{per } \varphi > 0 \\ i_{\gamma} &= 0 \qquad \text{per } \varphi = 0 \end{split}$$

dove :

O ascallavy	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
	Rev.	2	Settembre 2012			Pag. n. 126	

$$K_p = tan^2(45^\circ + \varphi/2)$$

 θ = Inclinazione della risultante sulla verticale.

Formula di Hansen (1970)

E' una ulteriore estensione della formula di *Meyerhof*, le estensioni consistono nell'introduzione di bi che tiene conto della eventuale inclinazione sull'orizzontale del piano di posa e un fattore gi per terreno in pendenza.

La formula di Hansen vale per qualsiasi rapporto *D/B*, quindi sia per fondazioni superficiali che profonde, ma lo stesso autore introdusse dei coefficienti per meglio interpretare il comportamento reale della fondazione, senza di essi, infatti, si avrebbe un aumento troppo forte del carico limite con la profondità.

Per valori di D/B <1

$$d_{c} = 1 + 0.4 \frac{D}{B}$$
$$d_{q} = 1 + 2 \tan \varphi (1 - \sin \varphi)^{2} \frac{D}{B}$$

Per valori D/B>1:

$$d_c = 1 + 0.4 \tan^{-1} \frac{D}{B}$$
$$d_q = 1 + 2 \tan \varphi (1 - \sin \varphi)^2 \tan^{-1} \frac{D}{B}$$

Nel caso $\varphi = 0$

 D/B	0	1	1.1	2	5	10	20	100
d'c	0	0.40	0.33	0.44	0.55	0.59	0.61	0.62

Nei fattori seguenti le espressioni con apici (') valgono quando $\varphi=0$.

Fattore di forma:

O Azennart	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
O RECITICET	Rev.	2	Settembre 2012			Pag. n. 127	

$$s'_{c} = 0.2 \frac{B}{L}$$

$$s_{c} = 1 + \frac{N_{q}}{N_{c}} \frac{B}{L}$$

$$s_{c} = 1 \qquad \text{per fondazioni nastriformi}$$

$$s_{q} = 1 + \frac{B}{L} \tan \varphi$$

$$s_{\gamma} = 1 - 0.4 \frac{B}{L}$$

.

Fattore di profondità:

$$d'_{c} = 0.4k$$

$$d_{c} = 1 + 0.4k$$

$$d_{q} = 1 + 2 \tan \varphi (1 - \sin \varphi)k$$

$$d_{\gamma} = 1 \quad \text{per qualsiasi } \varphi$$

$$k = \frac{D}{B} \quad \text{se } \frac{D}{B} \le 1$$

$$k = \tan^{-1} \frac{D}{B} \quad \text{se } \frac{D}{B} > 1$$

Fattori di inclinazione del carico

$$\begin{split} \dot{i_c} &= 0.5 - 0.5 \sqrt{1 - \frac{H}{A_f c_a}} \\ \dot{i_c} &= i_q - \frac{1 - i_q}{N_q - 1} \\ \dot{i_q} &= \left(1 - \frac{0.5H}{V + A_f c_a \cot \varphi}\right)^5 \\ \dot{i_\gamma} &= \left(1 - \frac{0.7H}{V + A_f c_a \cot \varphi}\right)^5 \quad (\eta = 0) \\ \dot{i_\gamma} &= \left(1 - \frac{(0.7 - \eta/450)H}{V + A_f c_a \cot \varphi}\right)^5 \quad (\eta > 0) \end{split}$$

Fattori di inclinazione del terreno (fondazione su pendio):

o ascentary.	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O REGISTRY	Rev.	2	Settembre 2012			Pag. n. 128

$$g'_{c} = \frac{\beta}{147}$$

$$g_{c} = 1 - \frac{\beta}{147}$$

$$g_{a} = g_{\gamma} = (1 - 0.5 \tan \beta)^{5}$$

Fattori di inclinazione del piano di fondazione (base inclinata)

$$b'_{c} = \frac{\eta^{\circ}}{147^{\circ}}$$
$$b_{c} = 1 - \frac{\eta^{\circ}}{147^{\circ}}$$
$$b_{q} = \exp(-2\eta \tan \varphi)$$
$$b_{q} = \exp(-2.7\eta \tan \varphi)$$

Formula di Vesic (1975)

La formula di Vesic è analoga alla formula di Hansen, con Nq ed Nc come per la formula di Meyerhof ed N γ come sotto riportato:

$$N\gamma=2(Nq+1)*tan(\phi)$$

I fattori di forma e di profondità che compaiono nelle formule del calcolo della capacità portante sono uguali a quelli proposti da Hansen; alcune differenze sono invece riportate nei fattori di inclinazione del carico, del terreno (fondazione su pendio) e del piano di fondazione (base inclinata).

Formula Brich-Hansen (EC 7 – EC 8)

Affinché una fondazione possa resistere il carico di progetto con sicurezza nei riguardi della rottura generale, per tutte le combinazioni di carico relative allo SLU (stato limite ultimo), deve essere soddisfatta la seguente disuguaglianza:

Vd ≤ Rd

Dove Vd è il carico di progettto allo SLU, normale alla base della fondazione, comprendente anche il peso della fondazione stessa; mentre Rd è il carico limite di progetto della fondazione nei confronti di carichi normali, tenendo conto anche dell'effetto di carichi inclinati o eccentrici.

Nella valutazione analitica del carico limite di progetto Rd si devono considerare le situazioni a breve e a lungo termine nei terreni a grana fine.

Il carico limite di progetto in condizioni non drenate si calcola come:

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O RECENTATION	Rev.	2	Settembre 2012			Pag. n. 129

$$R/A' = (2 + \pi) c_u s_c i_c + q$$

Dove:

A' = B' L' area della fondazione efficace di progetto, intesa, in caso di carico eccentrico, come l'area ridotta al cui centro viene applicata la risultante del carico.

cu Coesione non drenata.

- q pressione litostatica totale sul piano di posa.
- sc Fattore di forma

 $s_{C} = 1 + 0.2 (B'/L')$ per fondazioni rettangolari $s_{C} = 1.2$ Per fondazioni quadrate o circolari.

ic Fattore correttivo per l'inclinazione del carico dovuta ad un carico H.

$$i_{c} = 0.5(1 + \sqrt{1 - H/A'c_{u}})$$

Per le condizioni drenate il carico limite di progetto è calcolato come segue.

$$R/A' = c' N_c s_c i_c + q' N_q s_q i_q + 0.5 \gamma' B' N_\gamma s_\gamma i_\gamma$$

Dove:

$$N_q = e^{\pi \tan \phi'} \tan^2 (45 + \phi'/2)$$
$$N_c = (N_q - 1) \cot \phi'$$
$$N_{\gamma} = 2(N_q - 1) \tan \phi'$$

Fattori di forma

 $s_q = 1 + (B'/L')sen\phi'$ per forma rettangolare

 $s_q = 1 + sen\phi'$ per forma quadrata o circolare

 $s_{\gamma} = 1 - 0.3 (B'/L')$ per forma rettangolare

 $s_{\gamma} = 0,7$ per forma quadrata o circolare

 $s_c = (s_q \cdot N_q - 1)/(N_q - 1)$ per forma rettangolare, quadrata o circolare.

Fattori inclinazione risultante dovuta ad un carico orizzontale H parallelo a L'

$$i_q = i \cdot = 1 - H / (V + A' c' cot \cdot ')$$

 $i_c = (i_q N_q - 1) / (N_q - 1)$

A MARTIN STOLEN AND A	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O Azernarr	Rev.	2	Settembre 2012			Pag. n. 130

Fattori inclinazione risultante dovuta ad un carico orizzontale H parallelo a B'

$$\begin{split} \dot{\mathbf{i}}_{q} &= \left[\mathbf{l} - \mathbf{0}, 7\mathrm{H} / \left(\mathrm{V} + \mathrm{A'} \cdot \mathbf{c'} \cdot \cot \phi' \right) \right]^{3} \\ \dot{\mathbf{i}}_{\gamma} &= \left[\mathbf{l} - \mathrm{H} / \left(\mathrm{V} + \mathrm{A'} \cdot \mathbf{c'} \cdot \cot \phi' \right) \right]^{3} \\ \dot{\mathbf{i}}_{c} &= \left(\mathbf{i}_{q} \cdot \mathrm{N}_{q} - 1 \right) / \left(\mathrm{N}_{q} - 1 \right) \end{split}$$

Oltre ai fattori correttivi di cui sopra sono considerati quelli complementari della profondità del piano di posa e dell'inclinazione del piano di posa e del piano campagna (Hansen).

Metodo di Richards et. Al.

Richards, Helm e Budhu (1993) hanno sviluppato una procedura che consente, in condizioni sismiche, di valutare sia il carico limite sia i cedimenti indotti, e quindi di procedere alle verifiche di entrambi gli stati limite (ultimo e di danno). La valutazione del carico limite viene perseguita mediante una semplice estensione del problema del carico limite al caso della presenza di forze di inerzia nel terreno di fondazione dovute al sisma, mentre la stima dei cedimenti viene ottenuta mediante un approccio alla Newmark (cfr. Appendice H di "Aspetti geotecnici della progettazione in zona sismica" – Associazione Geotecnica Italiana). Glia autori hanno esteso la classica formula trinomia del carico limite:

$$q_L = N_q \cdot q + N_c \cdot c + 0.5 N_{\gamma} \cdot \gamma \cdot B$$

Dove i fattori di capacità portante vengono calcolati con le seguenti formule:

$$N_c = (N_a - 1) \cdot \cot(\phi)$$

$$N_q = \frac{K_{pE}}{K_{AE}}$$

$$N_{\gamma} = \left(\frac{K_{pE}}{K_{AE}} - 1\right) \cdot \tan(\rho_{AE})$$

Esaminando con un approccio da equilibrio limite, un meccanismo alla Coulomb e portando in conto le forze d'inerzia agenti sul volume di terreno a rottura. In campo statico, il classico meccanismo di Prandtl può essere infatti approssimato come mostrato nella figura che segue, eliminando la zona di

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O	Rev.	2	Settembre 2012			Pag. n. 131

transizione (ventaglio di Prandtl) ridotta alla sola linea AC, che viene riguardata come una parete ideale in equilibrio sotto l'azione della spinta attiva e della spinta passiva che riceve dai cunei I e III:

Schema di calcolo del carico limite (qL)

Gli autori hanno ricavato le espressioni degli angoli $\rho A e \rho P$ che definiscono le zone di spinta attiva e passiva, e dei coefficienti di spinta attiva e passiva KA e KP in funzione dell'angolo di attrito interno f del terreno e dell'angolo di attrito d terreno – parete ideale:

$$\rho_{A} = \varphi + \tan^{-1} \cdot \left\{ \frac{\sqrt{\tan(\varphi) \cdot (\tan(\varphi) \cdot \cot(\varphi)) \cdot (1 + \tan(\delta) \cdot \cot(\varphi))} - \tan(\varphi)}{1 + \tan(\delta) \cdot (\tan(\varphi) + \cot(\varphi))} \right\}$$

$$\rho_{P} = \varphi + \tan^{-1} \cdot \left\{ \frac{\sqrt{\tan(\varphi) \cdot (\tan(\varphi) \cdot \cot(\varphi)) \cdot (1 + \tan(\delta) \cdot \cot(\varphi))} + \tan(\varphi)}{1 + \tan(\delta) \cdot (\tan(\varphi) + \cot(\varphi))} \right\}$$

$$K_{A} = \frac{\cos^{2}(\varphi)}{\cos(\delta) \left\{ 1 + \sqrt{\frac{\sin(\varphi + \delta) \cdot \sin(\varphi)}{\cos(\delta)}} \right\}^{2}}$$

$$K_{P} = \frac{\cos^{2}(\varphi)}{\cos(\delta) \left\{ 1 - \sqrt{\frac{\sin(\varphi + \delta) \cdot \sin(\varphi)}{\cos(\delta)}} \right\}^{2}}$$

E' comunque da osservare che l'impiego delle precedenti formule assumendo ϕ =0.5 δ , conduce a valore dei coefficienti di carico limite molto prossimi a quelli basati su un analisi alla Prandtl. Richards et. Al. hanno quindi esteso l'applicazione del meccanismo di Coulomb al caso sismico, por-

O Azcistar	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
O Azernary	Rev.	2	Settembre 2012			Pag. n. 132	

tando in conto le forze d'inerzia agenti sul volume di terreno a rottura. Tali forze di massa, dovute ad accelerazioni kh g e kv g, agenti rispettivamente in direzione orizzontale e verticale, sono a loro volta pari a kh γ e kv γ . Sono state così ottenute le estensioni delle espressioni di ρ a e ρ p, nonché di KA e KP, rispettivamente indicate come ρ AE e ρ PE e come KAE e KPE per denotare le condizioni sismiche:

$$\rho_{AE} = (\varphi - \vartheta) + \tan^{-1} \cdot \left\{ \frac{\sqrt{(1 + \tan^2(\varphi - \vartheta)) \cdot [1 + \tan(\delta + \vartheta) \cdot \cot(\varphi - \vartheta)]} - \tan(\varphi - \vartheta)}{1 + \tan(\delta + \vartheta) \cdot (\tan(\varphi - \vartheta) + \cot(\varphi - \vartheta))} \right\}$$
$$\rho_{PE} = (\varphi - \vartheta) + \tan^{-1} \cdot \left\{ \frac{\sqrt{(1 + \tan^2(\varphi - \vartheta)) \cdot [1 + \tan(\delta + \vartheta) \cdot \cot(\varphi - \vartheta)]} - \tan(\varphi - \vartheta)}{1 + \tan(\delta + \vartheta) \cdot (\tan(\varphi - \vartheta) + \cot(\varphi - \vartheta))} \right\}$$

$$K_{AE} = \frac{\cos^{2}(\varphi - \vartheta)}{\cos(\vartheta) \cdot \cos(\delta + \vartheta) \left\{ 1 + \sqrt{\frac{\sin(\varphi + \delta) \cdot \sin(\varphi - \vartheta)}{\cos(\delta + \vartheta)}} \right\}^{2}}$$

$$K_{PE} = \frac{\cos^{2}(\varphi - \vartheta)}{\cos(\vartheta) \cdot \cos(\delta + \vartheta) \left\{ 1 - \sqrt{\frac{\sin(\varphi + \delta) \cdot \sin(\varphi - \vartheta)}{\cos(\delta + \vartheta)}} \right\}^{2}}$$

I valori di Nq e N γ sono determinabili ancora avvalendosi delle formule precedenti, impiegando naturalmente le espressioni degli angoli ρ AE e ρ PE e dei coefficienti KAE e KPE relative al caso sismico. In tali espressioni compare l'angolo θ definito come:

$$\tan(\theta) = \frac{k_h}{1 - k_v}$$

Nella tabella che segue sono mostrati i fattori di capacità portante calcolati per i seguenti valori dei parametri:

$$- \phi = 30^{\circ} \delta = 15^{\circ}$$

	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
O ARCHUIGTT	Rev.	2	Settembre 2012			Pag. n. 133	

Per diversi valori dei coefficienti di spinta sismica:

kh/(1-kv)	Nq	Νγ	Nc
0	16.51037	23.75643	26.86476
0.087	13.11944	15.88906	20.9915
0.176	9.851541	9.465466	15.33132
0.268	7.297657	5.357472	10.90786
0.364	5.122904	2.604404	7.141079
0.466	3.216145	0.879102	3.838476
0.577	1.066982	1.103E-03	0.1160159

Tabella dei fattori di capacità portante per $\phi=30^{\circ}$

VERIFICA A SLITTAMENTO

In conformità con i criteri di progetto allo SLU, la stabilità di un plinto di fondazione deve essere verificata rispetto al collasso per slitta Per la valutazione della capacità portante ammissibile delle rocce si deve tener conto di di alcuni parametri significativi quali le caratteristiche geologiche, il tipo di roccia e la sua qualità, misurata con l'RQD. Nella capacità portante delle rocce si utilizzano normalmente fattori di sicurezza molto alti e legati in qualche modo al valore del coefficiente RQD: ad esempio, per una roccia con RQD pari al massimo a 0.75 il fattore di sicurezza varia tra 6 e 10. Per la determinazione della capacità portante di una roccia si possono usare le formule di Terzaghi, usando angolo d'attrito e coesione della roccia, o quelle proposte da Stagg e Zienkiewicz (1968) in cui i coefficienti della formula della capacità portante valgono:

$$N_{q} = \tan^{6} \left(45 + \frac{\phi}{2} \right)$$
$$N_{c} = 5 \tan^{4} \left(45 + \frac{\phi}{2} \right)$$
$$N_{\gamma} = N_{q} + 1$$

Con tali coefficienti vanno usati i fattori di forma impiegati nella formula di Terzaghi.

La capacità portante ultima calcolata è comunque funzione del coefficiente RQD secondo la seguente espressione:

$$q' = q_{ult} (RQD)^2$$

Se il carotaggio in roccia non fornisce pezzi intatti (RQD tende a 0), la roccia viene trattata come un terreno stimando al meglio i parametri c e ϕ

Q 439333377	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
	Rev.	2	Settembre 2012			Pag. n. 134

mento oltre a quello per rottura generale. Rispetto al collasso per slittamento la resistenza viene valutata come somma di una componente dovuta all'adesione e una dovuta all'attrito fondazioneterreno; la resistenza laterale derivante dalla spinta passiva del terreno può essere messa in conto secondo una percentuale indicata dell'utente.

La resistenza di calcolo per attrito ed adesione è valutata secondo l'espressione:

$$F_{Rd} = N_{sd} \tan \delta + c_a A'$$

Nella quale N_{sd} è il valore di calcolo della forza verticale, è l'angolo di resistenza a taglio alla base del plinto, c_a è l'adesione plinto-terreno e A' è l'area della fondazione efficace, intesa, in caso di carichi eccentrici, come area ridotta al centro della quale è applicata la risultante.

CARICO LIMITE DI FONDAZIONI SU ROCCIA

Per la valutazione della capacità portante ammissibile delle rocce si deve tener conto di di alcuni parametri significativi quali le caratteristiche geologiche, il tipo di roccia e la sua qualità, misurata con l'RQD. Nella capacità portante delle rocce si utilizzano normalmente fattori di sicurezza molto alti e legati in qualche modo al valore del coefficiente RQD: ad esempio, per una roccia con RQD pari al massimo a 0.75 il fattore di sicurezza varia tra 6 e 10. Per la determinazione della capacità portante di una roccia si possono usare le formule di Terzaghi, usando angolo d'attrito e coesione della roccia, o quelle proposte da Stagg e Zienkiewicz (1968) in cui i coefficienti della formula della capacità portante valgono:

$$N_{q} = \tan^{6} \left(45 + \frac{\phi}{2} \right)$$
$$N_{c} = 5 \tan^{4} \left(45 + \frac{\phi}{2} \right)$$
$$N_{\chi} = N_{q} + 1$$

Con tali coefficienti vanno usati i fattori di forma impiegati nella formula di Terzaghi.

La capacità portante ultima calcolata è comunque funzione del coefficiente RQD secondo la seguente espressione:

$$q' = q_{ult} (RQD)^2$$

Se il carotaggio in roccia non fornisce pezzi intatti (RQD tende a 0), la roccia viene trattata come un terreno stimando al meglio i parametri c e ϕ

FATTORI CORRETTIVI SISMICI: PAOLUCCI E PECKER

	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
O RECIENT	Rev.	2	Settembre 2012			Pag. n. 135	

Per tener conto degli effetti inerziali indotti dal sisma sulla determinazione del q_{lim} vengono introdotti i fattori correttivi z:

$$z_q = \left(1 - \frac{k_h}{tg\phi}\right)^{0.35}$$
$$z_c = 1 - 0.32 \cdot k_h$$
$$z_{\gamma} = z_q$$

Dove Kh è il coefficiente sismico orizzontale.

Calcolo coefficienti sismici

Le NTC 2008 calcolano i coefficienti Kh e Kv in dipendenza di vari fattori:

Kh =
$$\beta \times (a_{max}/g)$$

 β = coefficiente di riduzione accelerazione massima attesa al sito;

a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità;

Tutti i fattori presenti nelle precedenti formule dipendono dall'accelerazione massima attesa sul sito di riferimento rigido e dalle caratteristiche geomorfologiche del territorio.

$$a_{max} = S_S S_T a_g$$

 S_S (effetto di amplificazione stratigrafica): 0.90 ≤Ss≤ 1.80; è funzione di F_0 (Fattore massimo di amplificazione dello spettro in accelerazione orizzontale) e della categoria di suolo (A, B, C, D, E).

ST (effetto di amplificazione topografica) per fondazioni in prossimità di pendi.

Il valore di ST varia con il variare delle quattro categorie topografiche introdotte:

T1 (
$$S_T = 1.0$$
) T2 ($S_T = 1.20$) T3($S_T = 1.20$) T4($S_T = 1.40$).

O HEGHIJHAL	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O azentarz	Rev.	2	Settembre 2012			Pag. n. 136

Questi valori sono calcolati come funzione del punto in cui si trova il sito oggetto di analisi. Il parametro di entrata per il calcolo è il tempo di ritorno dell'evento sismico che è valutato come segue:

$$T_R = -V_R / \ln(1 - PVR)$$

Con V_R vita di riferimento della costruzione e PVR probabilità di superamento, nella vita di riferimento, associata allo stato limite considerato. La vita di riferimento dipende dalla vita nominale della costruzione e dalla classe d'uso della costruzione (in linea con quanto previsto al punto 2.4.3 delle NTC). In ogni caso V_R dovrà essere maggiore o uguale a 35 anni.

Per l'applicazione dell'**Eurocodice 8** (progettazione geotecnica in campo sismico) il coefficiente sismico orizzontale viene così definito:

Kh =
$$a_{gR} \cdot \gamma_I \cdot S / (g)$$

 a_{gR} : accelerazione di picco di riferimento su suolo rigido affiorante, yl: fattore di importanza,

S: soil factor e dipende dal tipo di terreno (da A ad E).

è la "design ground acceleration on type A ground".

Il coefficiente sismico verticale Kv è definito in funzione di Kh, e vale:

$$Kv = \pm 0.5 \cdot Kh$$

CEDIMENTI ELASTICI

I cedimenti di una fondazione rettangolare di dimensioni B×L posta sulla superficie di un semispazio elastico si possono calcolare in base aduna equazione basata sulla teoria dell'elasticità (Timoshenko e Goodier (1951)):

$$\Delta H = q_0 B' \frac{1 - \mu^2}{E_s} \left(I_1 + \frac{1 - 2\mu}{1 - \mu} I_2 \right) I_F \tag{1}$$

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O azernart	Rev.	2	Settembre 2012			Pag. n. 137

dove:

q₀ = Intensità della pressione di contatto

B' = Minima dimensione dell'area reagente,

E e μ = *Parametri* elastici del terreno.

 $I_i = Coefficienti di influenza dipendenti da: L'/B', spessore dello strato H, coefficiente di Poisson <math>\mu$, profondità del piano di posa D;

I coefficienti $I_1 e I_2$ si possono calcolare utilizzando le equazioni fornite da *Steinbrenner (1934)* (V. Bowles), in funzione del rapporto L'/B' ed H/B, utilizzando B'=B/2 e L'=L/2 per i coefficienti relativi al centro e B'=B e L'=L per i coefficienti relativi al bordo.

Il coefficiente di influenza IF deriva dalle equazioni di *Fox* (1948), che indicano il cedimento si riduce con la profondità in funzione del coefficiente di *Poisson* e del rapporto *L/B*.

In modo da semplificare l'equazione (1) si introduce il coefficiente IS:

$$I_{S} = I_{1} + \frac{1 - 2\mu}{1 - \mu}I_{2}$$

Il cedimento dello strato di spessore H vale:

$$\Delta H = q_0 B' \frac{1 - \mu^2}{E_S} I_S I_F$$

Per meglio approssimare i cedimenti si suddivide la base di appoggio in modo che il punto si trovi in corrispondenza di uno spigolo esterno comune a più rettangoli. In pratica si moltiplica per un fattore pari a 4 per il calcolo dei cedimenti al centro e per un fattore pari a 1 per i cedimenti al bordo.

Nel calcolo dei cedimenti si considera una profondità del bulbo delle tensioni pari a 5B, se il substrato roccioso si trova ad una profondità maggiore.

A tal proposito viene considerato substrato roccioso lo strato che ha un valore di E pari a 10 volte dello strato soprastante.

Il modulo elastico per terreni stratificati viene calcolato come media pesata dei moduli elastici degli strati interessati dal cedimento immediato.

CEDIMENTI EDOMETRICI

Il calcolo dei cedimenti con l'approccio edometrico consente di valutare un cedimento di consolidazione di tipo monodimensionale, prodotto dalle tensioni indotte da un carico applicato in condizioni di espansione laterale impedita. Pertanto la stima effettuata con questo metodo va considerata come empirica, piuttosto che teorica.

Tuttavia la semplicità d'uso e la facilità di controllare l'influenza dei vari parametri che intervengono nel calcolo, ne fanno un metodo molto diffuso.

L'approccio edometrico nel calcolo dei cedimenti passa essenzialmente attraverso due fasi:

a) il calcolo delle tensioni verticali indotte alle varie profondità con l'applicazione della teoria dell'elasticità;

b) la valutazione dei parametri di compressibilità attraverso la prova edometrica.

In riferimento ai risultati della prova edometrica, il cedimento è valutato come:

$$\Delta H = H_0 \cdot RR \cdot \log \frac{\sigma'_{v0} + \Delta \sigma_v}{\sigma'_{v0}}$$

se si tratta di un terreno sovraconsolidato (OCR>1), ossia se l'incremento di tensione dovuto all'applicazione del carico non fa superare la pressione di preconsolidazione σ'_{p} ($\sigma'_{v0} + \Delta \sigma_{v} < \sigma'_{p}$).

Se invece il terreno è normalconsolidato ($\sigma_{v_0} = \sigma_p^{i}$) le deformazioni avvengono nel tratto di compressione e il cedimento è valutato come:

$$\Delta H = H_0 \cdot CR \cdot \log \frac{\sigma'_{v0} + \Delta \sigma_v}{\sigma'_{v0}}$$

dove:

RR Rapporto di ricompressione;

CR Rapporto di compressione;

H₀ spessore iniziale dello strato;

 σ'_{v0} tensione verticale efficace prima dell'applicazione del carico.

 $\Delta \sigma_V$ incremento di tensione verticale dovuto all'applicazione del carico.

O Azettatet	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
O Azgazitazi	Rev.	2	Settembre 2012			Pag. n. 139	

In alternativa ai parametri *RR* e *CR* si fa riferimento al modulo edometrico M; in tal caso però occorre scegliere opportunamente il valore del modulo da utilizzare, tenendo conto dell'intervallo tensionale ($\sigma_{v0}^{'} + \Delta \sigma_{v}$) significativo per il problema in esame.

L'applicazione corretta di questo tipo di approccio richiede:

la suddivisione degli strati compressibili in una serie di piccoli strati di modesto spessore (< 2.00 m);

- la stima del modulo edometrico nell'ambito di ciascuno strato;

 il calcolo del cedimento come somma dei contributi valutati per ogni piccolo strato in cui è stato suddiviso il banco compressibile.

Molti usano le espressioni sopra riportate per il calcolo del cedimento di consolidazione tanto per le argille quanto per le sabbie di granulometria da fina a media, perché il modulo di elasticità impiegato è ricavato direttamente da prove di consolidazione. Tuttavia, per terreni a grana più grossa le dimensioni dei provini edometrici sono poco significative del comportamento globale dello strato e, per le sabbie, risulta preferibile impiegare prove penetrometriche statiche e dinamiche.

Cedimento secondario

Il cedimento secondario è calcolato facendo riferimento alla relazione:

$$\Delta H_s = H_c \cdot C_{\alpha} \cdot \log \frac{T}{T_{100}}$$

in cui:

 H_C è l'altezza dello strato in fase di consolidazione;

 C_{α} è il coefficiente di consolidazione secondaria come pendenza nel tratto secondario della curva *cedimento-logaritmo tempo*;

T tempo in cui si vuole il cedimento secondario;

 T_{100} tempo necessario all'esaurimento del processo di consolidazione primaria.

CEDIMENTI di Schmertmann

	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
O Azeratar	Rev.	2	Settembre 2012			Pag. n. 140	

Un metodo alternativo per il calcolo dei cedimenti è quello proposto da Schmertmann (1970) il quale ha correlato la variazione del bulbo delle tensioni alla deformazione. Schmertmann ha quindi proposto di considerare un diagramma delle deformazioni di forma triangolare in cui la profondità alla quale si hanno deformazioni significative è assunta pari a 4B, nel caso di fondazioni nastriformi, e pari a 2B per fondazioni quadrate o circolari.

Secondo tale approccio il cedimento si esprime attraverso la seguente espressione:

$$w = C_1 \cdot C_2 \cdot \Delta q \cdot \sum \frac{I_z \cdot \Delta z}{E}$$

nella quale:

 Δq rappresenta il carico netto applicato alla fondazione;

Iz è un fattore di deformazione il cui valore è nullo a profondità di 2B, per fondazione circolare o quadrata, e a profondità 4B, per fondazione nastriforme.

Il valore massimo di I_Z si verifica a una profondità rispettivamente pari a:

B/2 per fondazione circolare o quadrata

B per fondazioni nastriformi

e vale

$$I_{z\max} = 0.5 + 0.1 \cdot \left(\frac{\Delta q}{\sigma_{vi}}\right)^{0.5}$$

dove σ'_{VI} rappresenta la tensione verticale efficace a profondità B/2 per fondazioni quadrate o circolari, e a profondità B per fondazioni nastriformi.

E_i rappresenta il modulo di deformabilità del terreno in corrispondenza dello strato **i-esimo** considerato nel calcolo;

 Δ_{zi} rappresenta lo spessore dello strato i-esimo;

C₁ e C₂ sono due coefficienti correttivi.

Il modulo E viene assunto pari a **2.5** q_C per fondazioni circolari o quadrate e a **3.5** q_C per fondazioni nastriformi. Nei casi intermedi, si interpola in funzione del valore di L/B.

F Pert transference	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O <u>ascallar</u>	Rev.	2	Settembre 2012			Pag. n. 141

Il termine **q**_C che interviene nella determinazione di **E** rappresenta la resistenza alla punta fornita dalla prova CPT.

Le espressioni dei due coefficienti C₁ e C₂ sono:

$$C_1 = 1 - 0.5 \cdot \frac{\sigma_{v0}}{\Delta q} > 0.5$$

che tiene conto della profondità del piano di posa.

$$C_2 = 1 + 0.2 \cdot \log \frac{t}{0.1}$$

che tiene conto delle deformazioni differite nel tempo per effetto secondario.

Nell'espressione **t** rappresenta il tempo, espresso in anni dopo il termine della costruzione, in corrispondenza del quale si calcola il cedimento.

CEDIMENTI DI BURLAND e BURBIDGE

Qualora si disponga di dati ottenuti da prove penetometriche dinamiche per il calcolo dei cedimenti è possibile fare affidamento al metodo di Burland e Burbidge (1985), nel quale viene correlato un indice di compressibilità *lc* al risultato N della prova penetrometrica dinamica. L'espressione del cedimento proposta dai due autori è la seguente:

$$\mathbf{S} = \mathbf{f}_{S} \cdot \mathbf{f}_{H} \cdot \mathbf{f}_{t} \cdot \left[\boldsymbol{\sigma}_{v0}^{'} \cdot \mathbf{B}^{0.7} \cdot \mathbf{I}_{C} \, / \, 3 + \left(\boldsymbol{q}^{'} - \boldsymbol{\sigma}_{v0}^{'} \right) \cdot \mathbf{B}^{0.7} \cdot \mathbf{I}_{C} \right]$$

nella quale:

q' = pressione efficace lorda;

s'vo = tensione verticale efficace alla quota d'imposta della fondazione;

B = larghezza della fondazione;

Ic = indice di compressibilità;

fs, fH, ft = fattori correttivi che tengono conto rispettivamente della forma, dello spessore dello strato compressibile e del tempo, per la componente viscosa.

L'indice di compressibilità Ic è legato al valore medio Nav di Nspt all'interno di una profondità significativa z:

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ascentert	Rev.	2	Settembre 2012			Pag. n. 142

$$I_{\rm C} = \frac{1.706}{N_{\rm AV}^{1.4}}$$

Per quanto riguarda i valori di Nspt da utilizzare nel calcolo del valore medio N_{AV} va precisato che i valori vanno corretti, per sabbie con componente limosa sotto falda e Nspt>15, secondo l'indicazione di Terzaghi e Peck (1948)

Nc = 15 + 0.5 (Nspt - 15)

dove Nc è il valore coretto da usare nei calcoli.

Per depositi ghiaiosi o sabbioso-ghiaiosi il valore corretto è pari a:

Le espressioni dei fattori correttivi $\mathsf{f}_S,\,\mathsf{f}_H$ ed f_t sono rispettivamente:

$$\begin{split} f_{S} &= \left(\frac{1.25 \cdot L / B}{L / B + 0.25}\right)^{2} \\ f_{H} &= \frac{H}{z_{i}} \left(2 - \frac{H}{z_{i}}\right) \\ f_{t} &= \left(1 + R_{3} + R \cdot \log \frac{t}{3}\right) \end{split}$$

Con:

t = tempo in anni > 3;

R3 = costante pari a 0.3 per carichi statici e 0.7 per carichi dinamici;

R = 0.2 nel caso di carichi statici e 0.8 per carichi dinamici.

	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
O RECENTET	Rev.	2	Settembre 2012			Pag. n. 143	

OPERA N° 83

DATI GENERALI

=======================================	
Larghezza fondazione	10,8 m
Lunghezza fondazione	35,0 m
Profondità piano di posa	2,0 m
Altezza di incastro	2,0 m
=======================================	

SISMA

=======================================	
Accelerazione massima (ag/g) Coefficiente sismico orizzontale	0,251 0.0753
Coefficiente sismico verticale	0,0376
=======================================	

Coefficienti sismici [N.T.C.]

Dati	gene	rali

Descrizione:	
Latitudine:	36,77
Longitudine:	14,68
Tipo opera:	3 - Grandi opere
Classe d'uso:	Classe IV
Vita nominale:	100,0 [anni]
Vita di riferimento:	200,0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo:	
Categoria topografica:	

A T1

S.L. Stato limite	TR Tempo ritorno [anni]	ag [m/s²]	F0 [-]	TC* [sec]
S.L.O.	120,0	0,57	2,52	0,31
S.L.D.	201,0	0,76	2,52	0,35
S.L.V.	1898,0	2,46	2,47	0,53
S.L.C.	2475,0	2,75	2,52	0,54

Coefficienti sismici orizzontali e verticali

Opera: Stabilità dei pendii

S.L. Stato limite	amax [m/s²]	beta [-]	kh [-]	kv [sec]		
S.L.O.	0,57	0,2	0,0116	0,0058		
S.L.D.	0,76	0,2	0,0155	0,0078		
S.L.V.	2,46	0,3	0,0753	0,0376		
	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
------------	------	---	----------------	-----	------------	-------------
O REGISTRY	Rev.	2	Settembre 2012			Pag. n. 144

	S.L.C.	2,75	0,3	0,0841	0,0421
--	--------	------	-----	--------	--------

STRATIGRAFIA TERRENO

Corr: Parametri con fattore di correzione (TERZAGHI)

DH	Gam	Gams	Fi	С	Е	RQD	Ni	Lit.	Desc.
(m)	(kN/m³)	(kN/m³)	(°)	(kN/m²)	(kN/m²)				
5,0	23,0	23,0	45,0	0,0	1500000	0,35	0,15		Calcare
					0,0				frat.

Carichi di progetto agenti sulla fondazione

Nr.	Nome	Pressione	N	Mx	My	Hx	Hy	Tipo
	combina-	normale di	(kN)	(kN·m)	(kN)·m	(kN)	(kN)	
	zione	progetto						
		(kN/m²)						
1	A1+M1+R	0,00	0,00	0,00	0,00	0,00	0,00	Progetto
	1							_
2	A2+M2+R	67,66	0,00	0,00	0,00	0,00	0,00	Progetto
	2							

Sisma + Coeff. parziali parametri geotecnici terreno + Resistenze

Nr	Correzio-	Tangente	Coesione	Coesione	Peso Uni-	Peso uni-	Coef. Rid.	Co-
	ne Sismi-	angolo di	efficace	non dre-	tà volume	tà volume	Capacità	ef.Rid.Ca
	ca	resistenza		nata	in fonda-	copertura	portante	pacità
		al taglio			zione		verticale	portante
								orizzonta-
								le
1	No	1	1	1	1	1	1	1
2	Si	1,25	1,25	1,4	1	1	1,8	1,1

CARICO LIMITE FONDAZIONE COMBINAZIONE...A2+M2+R2

Autore: **Zienkiewicz**

Carico limite	
Resistenza di progetto[Rd]	
Condizione di verifica [Ed<=Rd]	

1648,62 kN/m² 915,9 kN/m² **Verificata**

A1+M1+R1

Autore: Zienkiewicz

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O AECHIIAT	Rev.	2	Settembre 2012			Pag. n. 145

Fattore [Nq]	198,0	
Fattore [Nc]	169,85	
Fattore [Ng]	199,0	
Fattore forma [Sc]	1,0	
Fattore forma [Sg]	1,0	
		========
Carico limite	4143,31 kN/m²	
Resistenza di progetto	4143,31 kN/m²	
=======================================		========

A2+M2+R2

Autore: Zienkiewicz		
Fattore [Nq] Fattore [Nc] Fattore [Ng] Fattore forma [Sc] Fattore forma [So]	======================================	
Carico limite Resistenza di progetto	======================================	
Condizione di verifica [Ed<=Rd]	Verificata	

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O	Rev.	2	Settembre 2012			Pag. n. 146

APPENDICE "C" - RILEVATO - CALCOLO DEI CEDIMENTI TABULATI DI CALCOLO

	Rev.	0	Luglio 2004	El.	A18-9-gl60		
O RECENTATY	Rev.	2	Settembre 2012			Pag. n. 147	

	:			
CAL	COLO DEI CEDI	MENTI TEORICI	I PREVEDIBI	LI
				==============
COMMITTEN	TE: CONSORZIO	AUTOSTRADE S	GICILIANE	
LOCALITA'	: LOTTO 9º	"SCICLI"		
FONDAZION	E : RILEVATO	SEZIONE Nº 21	L7	
				===============
	EL	ENCO DATI		
				==============
				==============
	AREE	DI CARICO		
				============
RETTANGOLO		COORDINA	ATE (cm)	
	==============	=============		=============
N°	X1	X2	Y1	Y2
				============
1	0	650	0	5767
2	650	1150	0	5767
3	1150	1543	0	5767
4	1543	2993	0	5767
5	2993	4443	0	5767
б	4443	5193	0	5767
7	5193	5393	0	5767
8	5393	5767	0	5767
9	0	650	5767	11534
10	650	1150	5767	11534
11	1150	1543	5767	11534
12	1543	2993	5767	11534
13	2993	4443	5767	11534

	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
<u> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</u>	Rev.	2	Settembre 2012				Pag. n. 14
	1			•			
14		444	.3 5193		5767	11534	
15		510	5 5175		5767	11534	
16		530	5 5 5 7 6 7		5767	11534	
============		====	=======================================	=====	=========	=============	
======================================	===== N°	====	PRES	SIONI	======================================		
		====			=======================================		
1				403			
2				806			
3				639			
4			1	.309			
5			1	.345			
6				675			
7				45			
8				225			
9				403			
10				806			
11				639			
12			1	.309			
13			1	.345			
14				675			
15				45			
1.5				225			

	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
O RECITIVET	Rev.	2	Settembre 2012			Pag. n. 149	

CARATTERISTICHE GEOTECNICHE DEGLI STRATI

STRATO	Eu (kg/cm²)	Ed (kg/cm²)	ν	β
1	400	146.67	.4	.8
2	250000	250000	.25	.2

	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
O ARCHATT	Rev.	2	Settembre 2012			Pag. n. 150	

			==============
PROFONDITA'(cm)	PUNTO Nº 1 X	= cm 0 Y	= cm 5767
Z (cm)	$\sigma x (kg/cm^2)$	σy (kg/cm ²)	$\sigma z (kg/cm^2)$
384.46	.328	.25	.214
768.93	.372	.272	.255
1153.4	.369	.272	.297
1537.86	.345	.26	.332
1922.33	.312	.242	.359
2306.8	.276	.22	.377
2691.26	.242	.198	.388
3075.73	.21	.177	.392
3460.2	.181	.156	.392
3844.66	.156	.137	.387
4229.13	.134	.12	.379
4613.6	.116	.105	.368
4998.06	.099	.092	.356
5382.53	.086	.08	.343
5767	.074	.07	.329
6151.46	.064	.061	.315
6535.93	.055	.054	.301
6920.4	.048	.047	.287
7304.86	.042	.041	.274
7689.33	.036	.036	.261
8073.8	.032	.032	.248
8458.26	.028	.028	.236
8842.73	.024	.025	.225
9227.2	.022	.022	.214
9611.66	.019	.02	.203
9996.13	.017	.017	.194
10380.6	.015	.015	.184
10765.06	.013	.014	.176
11149.53	.012	.012	.167
11534	.011	.011	.16

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ARCHATT	Rev.	2	Settembre 2012			Pag. n. 151

PROFONDITA'(cm)	PUNTO Nº 2 X	======================================	z = cm 5767
Z (cm)	$\sigma x (kg/cm^2)$	σy (kg/cm ²)	σz (kg/cm ²)
384.46	.507	.526	.592
768.93	.461	.47	.571
1153.4	.412	.422	.566
1537.86	.36	.376	.565
1922.33	.309	.333	.562
2306.8	.263	.292	.554
2691.26	.222	.255	.543
3075.73	.187	.221	.527
3460.2	.158	.192	.509
3844.66	.133	.166	.489
4229.13	.112	.143	.468
4613.6	.094	.123	.446
4998.06	.08	.107	.424
5382.53	.068	.092	.402
5767	.058	.08	.381
6151.46	.049	.069	.36
6535.93	.042	.06	.34
6920.4	.036	.052	.322
7304.86	.031	.045	.304
7689.33	.027	.04	.287
8073.8	.023	.035	.272
8458.26	.02	.03	.257
8842.73	.018	.027	.243
9227.2	.016	.024	.23
9611.66	.014	.021	.218
9996.13	.012	.018	.207
10380.6	.011	.016	.196
10765.06	.009	.015	.186
11149.53	.008	.013	.177
11534	.007	.012	.168

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ARCHATT	Rev.	2	Settembre 2012			Pag. n. 152

PROFONDITA'(cm)	PUNTO Nº 3 X	x = cm 1150	Y = cm 5767
Z (cm)	σx (kg/cm ²)	σy (kg/cm ²)	σz (kg/cm ²)
384.46	.683	.694	.755
768.93	.556	.62	.782
1153.4	.45	.541	.775
1537.86	.366	.468	.753
1922.33	.299	.403	.726
2306.8	.245	.347	.696
2691.26	.201	.297	.664
3075.73	.165	.254	.631
3460.2	.136	.218	.598
3844.66	.112	.186	.565
4229.13	.093	.159	.532
4613.6	.077	.136	.501
4998.06	.064	.117	.471
5382.53	.054	.1	.443
5767	.045	.086	.416
6151.46	.038	.074	.391
6535.93	.033	.064	.367
6920.4	.028	.055	.345
7304.86	.024	.048	.324
7689.33	.02	.042	.305
8073.8	.018	.037	.287
8458.26	.015	.032	.27
8842.73	.013	.028	.255
9227.2	.012	.025	.241
9611.66	.01	.022	.227
9996.13	.009	.019	.215
10380.6	.008	.017	.203
10765.06	.007	.015	.193
11149.53	.006	.013	.183
11534	.005	.012	.173

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O ARCHATT	Rev.	2	Settembre 2012			Pag. n. 153

PROFONDITA'(cm)	PUNTO N° 4 Σ	x = cm 1543 Y	z = cm 5767
Z (CM)	σx (kg/cm²)	σy (kg/cm²)	σz (kg/cm ²)
384.46	.788	.858	.981
768.93	.606	.737	.971
1153.4	.469	.628	.937
1537.86	.367	.534	.893
1922.33	.289	.454	.846
2306.8	.229	.386	.798
2691.26	.183	.327	.751
3075.73	.147	.278	.704
3460.2	.119	.235	.66
3844.66	.096	.2	.617
4229.13	.079	.17	.577
4613.6	.065	.145	.539
4998.06	.053	.123	.504
5382.53	.044	.105	.47
5767	.037	.09	.44
6151.46	.031	.077	.411
6535.93	.026	.067	.385
6920.4	.022	.058	.36
7304.86	.019	.05	.337
7689.33	.016	.043	.316
8073.8	.014	.038	.297
8458.26	.012	.033	.279
8842.73	.01	.029	.263
9227.2	.009	.025	.247
9611.66	.008	.022	.233
9996.13	.007	.02	.22
10380.6	.006	.017	.208
10765.06	.005	.015	.197
11149.53	.005	.014	.186
11534	.004	.012	.177

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O RECENTERT	Rev.	2	Settembre 2012			Pag. n. 154

PROFONDITA'(cm)	PUNTO Nº 5 X	= cm 2993 Y	= cm 5767
	==================	=================	=============
Z (Cm)	$\sigma x (kg/cm^2)$	σ_y (kg/cm ²)	σz (kg/cm ²)
	========================		
384.46	.991	1.128	1.321
768.93	.712	.946	1.289
1153.4	.506	.788	1.228
1537.86	.363	.656	1.151
1922.33	.264	.546	1.068
2306.8	.195	.455	.986
2691.26	.146	.38	.908
3075.73	.111	.318	.836
3460.2	.085	.266	.77
3844.66	.066	.223	.709
4229.13	.052	.188	.654
4613.6	.042	.159	.604
4998.06	.034	.134	.558
5382.53	.027	.114	.516
5767	.022	.097	.479
6151.46	.018	.083	.444
6535.93	.015	.071	.413
6920.4	.013	.061	.384
7304.86	.011	.053	.358
7689.33	.009	.046	.335
8073.8	.008	.04	.313
8458.26	.006	.034	.293
8842.73	.005	.03	.275
9227.2	.005	.026	.258
9611.66	.004	.023	.243
9996.13	.003	.02	.229
10380.6	.003	.018	.215
10765.06	.003	.016	.203
11149.53	.002	.014	.192
11534	.002	.013	.182

	Rev. 0 Luglio 2004		EI.	A18-9-gl60			
O ARCHATT	Rev.	2	Settembre 2012			Pag. n. 155	

PROFONDITA'(cm)	PUNTO Nº 6 X	======================================	z = cm 5767
Z (cm)	$\sigma x (kg/cm^2)$	σy (kg/cm²)	σz (kg/cm ²)
384.46	.756	.853	1
768.93	.573	.718	.963
1153.4	.447	.607	.914
1537.86	.355	.515	.863
1922.33	.284	.438	.814
2306.8	.229	.372	.767
2691.26	.185	.316	.722
3075.73	.151	.269	.678
3460.2	.123	.228	.636
3844.66	.101	.194	.597
4229.13	.083	.165	.559
4613.6	.069	.141	.523
4998.06	.057	.12	.49
5382.53	.048	.103	.459
5767	.04	.088	.429
6151.46	.034	.076	.402
6535.93	.029	.065	.377
6920.4	.025	.057	.353
7304.86	.021	.049	.331
7689.33	.018	.043	.311
8073.8	.016	.037	.292
8458.26	.013	.032	.275
8842.73	.012	.028	.259
9227.2	.01	.025	.244
9611.66	.009	.022	.23
9996.13	.008	.019	.218
10380.6	.007	.017	.206
10765.06	.006	.015	.195
11149.53	.005	.014	.185
11534	.005	.012	.175

🖸 सद्यदायस्य र	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
	Rev.	2	Settembre 2012			Pag. n. 156	

PROFONDITA'(cm)	PUNTO Nº 7 X	x = cm 5193	Y = cm 5767
Z (Cm)	$\sigma x (kg/cm^2)$	σy (kg/cm ²)	σz (kg/cm ²)
384.46	.486	.479	.518
768.93	.467	.445	.514
1153.4	.42	.408	.53
1537.86	.365	.368	.542
1922.33	.312	.327	.546
2306.8	.265	.288	.543
2691.26	.223	.251	.533
3075.73	.188	.219	.519
3460.2	.158	.19	.502
3844.66	.133	.164	.483
4229.13	.113	.142	.462
4613.6	.095	.122	.441
4998.06	.081	.106	.419
5382.53	.069	.091	.398
5767	.058	.079	.377
6151.46	.05	.068	.357
6535.93	.043	.059	.338
6920.4	.037	.052	.319
7304.86	.032	.045	.302
7689.33	.028	.039	.285
8073.8	.024	.035	.27
8458.26	.021	.03	.255
8842.73	.018	.027	.242
9227.2	.016	.024	.229
9611.66	.014	.021	.217
9996.13	.012	.018	.206
10380.6	.011	.016	.195
10765.06	.01	.015	.185
11149.53	.009	.013	.176
11534	.008	.012	.167

Q Azeratart	Rev.	0	Luglio 2004	EI.	A18-9-gl60		
	Rev.	2	Settembre 2012			Pag. n. 157	

PROFONDITA'(cm)	PUNTO N° 8 Σ	x = cm 5393	z = cm 5767
Z (CM)	σx (kg/cm ²)	σy (kg/cm²)	σz (kg/cm ²)
384.46	.43	.378	.372
768.93	.438	.375	.401
1153.4	.409	.356	.433
1537.86	.364	.328	.459
1922.33	.317	.297	.475
2306.8	.272	.264	.482
2691.26	.232	.233	.482
3075.73	.197	.205	.475
3460.2	.167	.178	.465
3844.66	.142	.155	.451
4229.13	.12	.135	.434
4613.6	.102	.117	.417
4998.06	.087	.101	.399
5382.53	.074	.088	.38
5767	.064	.076	.362
6151.46	.055	.066	.343
6535.93	.047	.058	.326
6920.4	.041	.05	.309
7304.86	.035	.044	.293
7689.33	.03	.038	.277
8073.8	.027	.034	.263
8458.26	.023	.03	.249
8842.73	.02	.026	.236
9227.2	.018	.023	.224
9611.66	.016	.02	.212
9996.13	.014	.018	.202
10380.6	.012	.016	.192
10765.06	.011	.014	.182
11149.53	.01	.013	.173
11534	.009	.011	.165

	Rev.	ev. 0 Luglio 2004		EI.	A18-9-gl60		
O ARCHAIANT	Rev.	2	Settembre 2012			Pag. n. 158	

PROFONDITA'(cm)	PUNTO Nº 9 X	= cm 5767 Y	= cm 5767
Z (cm)	$\sigma x (kg/cm^2)$	σ_y (kg/cm ²)	σz (kg/cm ²)
	=================		
384.46	.326	.215	.146
768.93	.385	.258	.214
1153.4	.382	.267	.274
1537.86	.355	.259	.32
1922.33	.319	.243	.354
2306.8	.28	.222	.377
2691.26	.244	.2	.39
3075.73	.211	.178	.396
3460.2	.181	.157	.395
3844.66	.156	.139	.39
4229.13	.133	.121	.382
4613.6	.115	.106	.371
4998.06	.098	.093	.359
5382.53	.085	.081	.345
5767	.073	.071	.331
6151.46	.063	.062	.317
6535.93	.055	.054	.303
6920.4	.047	.047	.289
7304.86	.041	.041	.275
7689.33	.036	.036	.262
8073.8	.031	.032	.249
8458.26	.028	.028	.237
8842.73	.024	.025	.225
9227.2	.021	.022	.214
9611.66	.019	.02	.204
9996.13	.017	.017	.194
10380.6	.015	.016	.185
10765.06	.013	.014	.176
11149.53	.012	.012	.168
11534	.01	.011	.16

	Rev.	0	Luglio 2004	EI.	A18-9-gl60	
O azerniari	Rev.	2	Settembre 2012			Pag. n. 159

CEDIMENTI

=========		===========	=================	=======================================	==============
PUNTO	COORE	INATE	CEI	DIMENTI	
N°	X (cm)	Y (cm)	wi(cm)	ws(cm)	wt(cm)
1	0	5767	006	.452	.446
2	650	5767	.185	1.244	1.43
3	1150	5767	.212	1.588	1.801
4	1543	5767	.328	2.062	2.39
5	2993	5767	.476	2.775	3.252
б	4443	5767	.36	2.102	2.463
7	5193	5767	.14	1.09	1.231
8	5393	5767	.059	.784	.843
9	5767	5767	058	.308	.251