02	SET 201	2	Conferiment	o materiali di ris	sulta alla	cava Truncafila	PEZZINI	PEZZINI	VERSACE	
01	MAR 201	11		Adeguamento	Normativo	I	PEZZINI	PEZZINI	VERSACE	
00	LUG 200)4		Emiss	ione		PEZZINI	PEZZINI	VERSACE	
REV. N.	DATA			DESCRI	ZIONE		ELABORATO	VERIFICATO	APPROVATO	
SOSTI	TUISCE L'I	ELAE	BORATO Nº			SOSTITUITO DALL'ELABORATO N°				
	CON	٧S	ORZIC) PER L	E A	UTOSTR	ADE S	ICILIAN	E	
			AUTO	STRADA	SIRA	CUSA -	- GELA	•		
			2°	TRONCO:	ROS	OLINI – F	RAGUSA			
				LOTT	09:	"SCICLI"				
				PROGET	ΓΤΟ Ι	ESECUTI	VO			
VASCHE PER TRATTAMENTO ACQUE PRIMA PIOGGIA E STOCCAGGIO SVERSAMENTI ACCIDENTALI RELAZIONE DI CALCOLO										
ELABOR	ATO N.		A18-	9-is300		OGETTAZIONE				
DA	ТА		LUGLI	2004				RQ.II.J.I.I	<u>(4) (7)</u>	
COD CAD-	DICE -FILE	,	418-9-	is300.doc		LOFUNDABILE :		r. BUSULA		
OPERA PROTETTA AI SENSI DELLA LEGGE 22 APRILE 1941 N. 633 TUTTI I DIRITTI RISERVATI QUALSIASI RIPRODUZIONE ED UTILIZZAZIONE NON AUTORIZZATE SARANNO PERSEGUITE A RIGORE DI LEGGE										

A HE SHITE TRUE TO A HEALT	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	- Pag. n. 1
	Rev.	2	Data Settembre 2012			

AUTOSTRADA SIRACUSA-GELA

2° TRONCO ROSOLINI - RAGUSA

PROGETTO DEFINITIVO

LOTTO 9

VASCHE PER TRATTAMENTO ACQUE DI PRIMA

PIOGGIA E STOCCAGGIO SVERSAMENTI ACCIDENTALI

RELAZIONE DI CALCOLO

A Present and the Present of	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pag. n. 2
	Rev.	2	Data Settembre 2012			

<u>INDICE</u>

1.	GENERALITÀ	3
2.	NORMATIVA DI RIFERIMENTO	5
3.	MATERIALI <u>Calcestruzzo</u> <u>Acciaio d'armatura B450C</u>	6 6 6
4.	IPOTESI DI CALCOLO4.1. Parametri geotecnici dei terreni4.2. Parametri per la definizione dell'azione sismica	7 7 7
5.	MODELLO DI CALCOLO	12
6.	 ANALISI E COMBINAZIONE DEI CARICHI 6.1. Carichi permanenti verticali (g1 + g2) 6.2. Spinta statica del terreno (g3) 6.3. Carichi mobili e sovraccarichi laterali (q1 + qlat) 6.4. Azione sismica (q6) 6.5. Incremento dinamico di spinta delle terre (q6) 	15 15 16 17 21 22
7.	COMBINAZIONI DI CARICO	24
8.	 VERIFICHE 8.1. Verifica SLU di presso-flessione 8.2. Verifica SLU di taglio 8.3. Verifica SLE di apertura delle fessure 	31 31 32 34
9.	 VASCA TIPO A 9.1. Parametri di sollecitazione 9.2. Inviluppo sollecitazioni SLU 9.3. Inviluppo sollecitazioni SLE 9.4. Verifiche a presso-flessione 9.5. Verifiche a taglio 9.6. Verifiche di fessurazione 	37 39 40 43 44 46 48
10.	 VASCA TIPO B 10.1. Parametri di sollecitazione 10.2. Inviluppo sollecitazioni SLU 10.3. Inviluppo sollecitazioni SLE 10.4. Verifiche a presso-flessione 10.5. Verifiche a taglio 10.6. Verifiche di fessurazione 	52 54 55 58 59 61 64

Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Dog p 2
Rev.	2	Data Settembre 2012			r ay. n. 5

1. GENERALITÀ

La presente relazione di calcolo è relativa alle vasche di prima pioggia e stoccaggio sversamenti accidentali previste nel lotto 9 del progetto dell'Autostrada Siracusa-Gela.

In funzione delle diverse altezze interne H, si sono individuate due classi di vasche:

TIPO A : per $H \le 4,20m$ TIPO B : per 4,20 m $< H \le 5,40$ m

Di seguito si riporta uno schema rappresentativo delle dimensioni trasversali delle diverse opere analizzate.

Figura 1 - Schema sezione trasversale

A PERSONAL CONTRACTOR OF LAND	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pag. n. 4
	Rev.	2	Data Settembre 2012			

Vasca N.	Altezza interna [m]	Ric. med. [m]
56	3.20	0.20
59	4.00	0.40
60	4.05	0.50
61	3.75	0.50
64	4.00	0.50
65	3.20	0.40
67	3.20	0.50

VASCHE TIPO A

Le vasche tipo A vengono analizzate con riferimento ad una vasca di altezza interna 4,20m e ricoprimento medio 0,50m

VASCHE TIPO B

Vasca N.	Altezza interna [m]	Ric. med. [m]
57	4.35	0.50
58	4.60	0.50
62	5.30	0.50
63	5.40	0.25

Le vasche tipo B vengono analizzate considerando una vasca di altezza interna 5,40 m e ricoprimento medio 0,50 m.

Per il calcolo delle strutture si è proceduto ad un'analisi agli elementi finiti con l'ausilio del programma SAP 2000 v. 8.3.0 (luglio 2002).

Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pag. n. 5
Rev.	2	Data Settembre 2012			

2. NORMATIVA DI RIFERIMENTO

I calcoli statici sono stati eseguiti nel rispetto delle vigenti normative con particolare riferimento a:

- DM 14/01/2008: "Norme tecniche per le costruzioni", abbreviate nel seguito con l'acronimo *NTC*;
- Circ. 02/02/2009, n. 617 C.S.LL.PP.: "Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni";
- EC7_UNI EN 1997-1:1997: "Progettazione geotecnica Parte 1: regole generali";
- EC8_UNI EN 1998-5:2005: "Progettazione delle strutture per la resistenza sismica
 Parte 5: Fondazioni, strutture di contenimento ed aspetti di geotecnica".

A HORE TRUTTER AND	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	- Pag. n. 6
	Rev.	2	Data Settembre 2012			

3. MATERIALI

Nelle verifiche strutturali si fa riferimento ai seguenti materiali:

<u>Calcestruzzo</u>

_	Classe di resistenza	C28/35
_	Classe di esposizione	XC4
_	Resistenza caratteristica a compressione	$Rck = 35 N/mm^2$
_	Resistenza cilindrica caratteristica a compressione	fck = 28 N/mm^2
_	Resistenza cilindrica di progetto a compressione	fcd =15,9 N/mm ²

Acciaio d'armatura B450C

—	Tensione caratteristica di snervamento	$fyk = 450 \text{ N/mm}^2$
_	Tensione caratteristica di rottura	$ftk = 540 \text{ N/mm}^2$
_	Tensione di progetto	fyd =391 N/mm ²
_	Modulo elastico	$E = 200.000 \text{ N/mm}^2$

In accordo con le NTC, i coefficienti di sicurezza parziali dei materiali sono posti pari a:

- $-\gamma c = 1,50$ per il calcestruzzo
- $-\gamma s = 1,15$ per l'acciaio

A PERSON CHARGE AND A COMPANY	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pog p 7
	Rev.	2	Data Settembre 2012			ray. 11. 7

4. IPOTESI DI CALCOLO

4.1. Parametri geotecnici dei terreni

Per il terreno di ricoprimento e di rinfianco laterale si sono assunti i seguenti parametri geotecnici:

$$\begin{split} \varphi' &= 35^{\circ} \\ c' &= 0 \text{ N/mm}^2 \\ \gamma t &= 19 \text{ kN/m}^3 \end{split}$$

Per il calcolo della spinta si è considerato il coefficiente di spinta a riposo.

4.2. Parametri per la definizione dell'azione sismica

4.2.1. Vita nominale, classi d'uso e periodo di riferimento

Come definito al punto 2.4.3 delle Norme Tecniche, le azioni sismiche sulle costruzioni vengono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_U :

$$\mathbf{V}_{\mathrm{R}} = \mathbf{V}_{\mathrm{N}} \times \mathbf{C}_{\mathrm{U}}$$

La vita nominale è assunta pari a $V_N = 100$ anni, mentre il valore del coefficiente d'uso è definito, al variare della classe d'uso, dalla tabella 2.4.II delle Norme Tecniche:

CLASSE D'USO	I	П	III	IV
COEFFICIENTE CU	0,7	1,0	1,5	2,0

Nel caso in esame, essendo la classe d'uso = IV, tale coefficiente vale $C_U = 2,0$ e quindi:

$$V_R = 200 \text{ anni}$$

A HIGH OF THE STORAGE STORAGE	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Dog n 8
	Rev.	2	Data Settembre 2012			n ag. n. o

Per gli Stati Limite Ultimi ci si riferisce allo Stato Limite di salvaguardia della Vita (SLV); in tale situazione la probabilità di superamento nel periodo di riferimento P_{VR} , necessario ad individuare l'azione sismica agente, è pari al 10%. Il periodo di ritorno dell'azione sismica è dato dall'espressione:

TT / **T**

da cui si ottiene:
$$T_R = -V_R / Ln(1 - P_{VR})$$

 $T_R = 1898 anni$

4.2.2. Parametri di pericolosità sismica

In generale, l'azione sismica è definita sul sito di riferimento rigido orizzontale, in funzione di tre parametri:

- a_g: accelerazione orizzontale massima al sito;
- F₀: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale.
- T_C*: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Per le opere in oggetto occorre definire solo i primi due in quanto il terzo parametro (T^*c) non entra nel calcolo con il metodo pseudo-statico.

Tali valori sono calcolati come media pesata dei valori assunti nei quattro vertici della maglia elementare del reticolo di riferimento che contiene il punto caratterizzante la posizione dell'opera, utilizzando come pesi gli inversi delle distanze tra il punto in questione ed i quattro vertici. Per il calcolo dei parametri sismici è stato utilizzato il foglio di calcolo "Spettri di Risposta" ver. 1.0.3 del Consiglio Superiore dei Lavori Pubblici.

4.2.3. Definizione dell'azione sismica

In accordo con i §§ 7.11.6.1 e 7.11.6.2.1 delle NTC, l'analisi della sicurezza è stata eseguita mediante analisi pseudostatica considerando l'equilibrio limite dell'opera di sostegno e del cuneo di terreno a tergo dell'opera.

Per la valutazione delle sollecitazioni sismiche si considerano:

- Le spinte dei terreni comprensive degli effetti sismici;
- Le forze d'inerzia agenti sulla massa della struttura e del terreno portato.

Inerzia della vasca e del terreno portato

E' rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

T Heretersteres	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pag n 0
	Rev.	2	Data Settembre 2012			n ag. n. 9

Il coefficiente sismico orizzontale, in accordo con il § 7.11.6.2.1 delle NTC, è valutato con la seguente formula:

kh =
$$\beta_m \frac{a_{\text{max}}}{g}$$

dove:

- a_{max} è l'accelerazione orizzontale massima attesa al sito;

- $g = 9,81 \text{ m/s}^2$ è l'accelerazione di gravità;

 $-\beta_m = 1,00$ è un coefficiente moltiplicativo dell'azione sismica che assume i valori riportati nella tabella 7.11.I delle NTC. Nel caso di opere di sostegno che non siano in grado di subire spostamenti relativi rispetto al terreno, il coefficiente assume valore unitario.

L'accelerazione orizzontale massima attesa al sito viene valutata con la relazione:

$$\mathbf{a}_{\max} = \mathbf{S} * \mathbf{a}_{g} = (\mathbf{S}_{S} * \mathbf{S}_{T}) * \mathbf{a}_{g}$$

in cui S è il coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T) , di cui al § 3.2.3.2 delle NTC, e a_g è l'accelerazione orizzontale massima su sito di riferimento rigido.

Il coefficiente di amplificazione stratigrafica S_s ed il coefficiente di amplificazione topografica S_T si ottengono con riferimento alla categoria del sottosuolo e alle condizioni topografiche, secondo le tabelle 3.2.V e 3.2.VI delle Norme Tecniche.

Tabella 3.2.V – Espressioni di $S_S e di C_C$

Categoria sottosuolo	Ss	C _C
А	1,00	1,00
В	$1,00 \le 1,40-0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10 \cdot (T_C^*)^{-0,20}$
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0,90 \le 2,40-1,50 \cdot F_o \cdot \frac{a_g}{g} \le 1,80 \cdot$	$1,25 \cdot (T_C^*)^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1,15 \cdot (T_C^*)^{-0,40}$

Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pag p 10
Rev.	2	Data Settembre 2012			1 ag. 11. 10

Categoria topografica	Ubicazione dell'opera o dell'intervento	ST
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta del rilievo	1,2
T4	In corrispondenza della cresta del rilievo	1,4

Tenuto conto dei siti attraversati dall'infrastruttura è stata individuata, per alcuni punti ubicati lungo tutto il tracciato, l'accelerazione sismica massima su suolo rigido a_g (variabile tra 0,245g e 0,290g):

Progr.	Long (°)	Lat (°)	ag/g	Fo	T*c (s)
Inizio lotto	14,7853	36,7914	0,290	2,464	0,512
km 2.0	14,7650	36,7823	0,276	2,473	0,514
km 4.0	14,7452	36,7728	0,264	2,478	0,517
km 6.0	14,7230	36,7709	0,258	2,477	0,520
km 8.0	14,7017	36,7760	0,257	2,474	0,523
km 10.0	14,6791	36,7760	0,252	2,471	0,528
Fine lotto	14,6699	36,7800	0,253	2,469	0,528
Innesto con	116719	26 7677	0,245	2,473	0,531
SP 39	14,0748	30,7077			

quindi, sulla base della categoria di suolo, attribuita a ciascun sito in funzione della stratigrafia del terreno, è stata valutata l'accelerazione massima $a_{max} = S * a_g$ attesa al sito, in funzione dei relativi coefficienti di amplificazione stratigrafica e topografica.

Considerando le categorie di suolo tipiche della tratta in esame (A, B e C) e la categoria topografica = T1 (Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i $\leq 15^{\circ}$) si è ottenuto un valore di a_{max} variabile tipicamente tra 0,245g e 0,342g (il massimo, in particolare, è stato ottenuto a partire dai parametri sismici rilevati a_g = 0.26g, Fo = 2.47, S=1,31).

Ai fini del dimensionamento delle opere è stata pertanto assunta, come accelerazione orizzontale massima attesa al sito, il valore $a_{max} = 0.35$ g, che si ritiene sufficientemente rappresentativo della casistica presente.

Il coefficiente sismico orizzontale assume di conseguenza i valori:

A HOME TO STORAGE A T	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 11
	Rev.	2	Data Settembre 2012			Fag. II. TT

$$\mathrm{kh} = \beta_m \frac{a_{\mathrm{max}}}{g} = 0.35$$

Le forze d'inerzia orizzontali agenti per effetto del sisma sono quindi valutate come:

$$Fo = kh \times W$$

dove W è il peso della struttura e dei relativi sovraccarichi permanenti. Il punto di applicazione di dette forze d'inerzia è il baricentro delle masse attivate dall'azione sismica.

I valori dei parametri sismici assunti nei calcoli sono riassunti nella tabella seguente:

parametro	formula o riferimento	valore
$\beta_{\rm m}$	rif. Tabella 7.11.I delle NTC	1,00
a _{max}	$S_{S} * S_{T} * a_{g}$	0,35 g
kh	$\beta_{\rm m} imes rac{a_{ m max}}{g}$	0,35

5. MODELLO DI CALCOLO

Ciascuna vasca tipo, è stata schematizzata come sezione scatolare a nodi fissi mediante elementi "frame" di larghezza unitaria.

Per i piedritti e per ciascun campo della soletta superiore si sono utilizzati 3 elementi, mentre la soletta inferiore è stata schematizzata da 14+14 elementi.

La numerazione dei nodi e degli elementi frame è riportata rispettivamente in Figura 2 e Figura 3.

Il terreno di fondazione è stato simulato secondo il modello di Winkler, mediante molle concentrate nei nodi della soletta inferiore, assumendo per la costante di sottofondo il valore:

$Kw = 50000 \text{ kN/m}^3$	per le vasche realizzate su rilevato
$Kw = 200000 \text{ kN/m}^3$	per le vasche realizzate su roccia

o <u>wegereren</u> a	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 12
	Rev.	2	Data Settembre 2012			Fay. 11. 13

Figura 2 - Numerazione completa dei nodi

C HRGHMMAN,	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 14
	Rev.	2	Data Settembre 2012			Fay. 11. 14

Figura 3 - Numerazione completa degli elementi "Frame"

6 HEGHLARA	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pag n 15
	Rev.	2	Data Settembre 2012			Fag. 11. 15

6. ANALISI E COMBINAZIONE DEI CARICHI

6.1. Carichi permanenti verticali (g1 + g2)

Si assume per il calcestruzzo un peso specifico $\gamma c = 25 \text{ kN/m}^3$.

Per la pavimentazione e il terreno di ricoprimento si considera invece un peso specifico pari rispettivamente a $\gamma p = 22 \text{ kN/m}^3 \text{ e } \gamma t = 19 \text{ kN/m}^3$.

6.1.1. Peso proprio della vasca (g1)

Sulle solette e piedritti agisce, per effetto del peso proprio, una forza uniformemente distribuita pari a:

 $g1 = \gamma c x SPi$ [kN/m] per $i = 1 \div 3$

Tale forza viene computata automaticamente dal modello.

6.1.2. Peso proprio del ricoprimento (g2)

Il ricoprimento (R) della vasca comprende lo spessore della pavimentazione stradale (pav) e lo spessore del terreno di rilevato (ter):

$$R = ter + pav$$
 [m]

Il peso proprio del ricoprimento viene applicato come carico uniformemente distribuito sulla soletta superiore:

 $g2 = \gamma p x pav + \gamma t x ter$ [kN/m]

o <u>wegennean</u>	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 16
	Rev.	2	Data Settembre 2012			ray. 11. 10

Figura 4 - Peso proprio del ricoprimento "g2"

6.2. Spinta statica del terreno (g3)

Si considera sui piedritti la spinta a riposo del terreno. Il coefficiente di spinta applicato vale:

$$Ko = 1$$
-sen ϕ'

La pressione del terreno agente alle profondità degli assi baricentrici delle solette vale:

$$g3,a = Ko x [\gamma t x ((R - pav) + SP1 / 2) + \gamma p x pav] [kN/m]$$

$$g3,b = g3,a + Ko x \gamma t x [B + \frac{1}{2} (SP1 + SP2)] [kN/m]$$

O <u>wegererer</u> e	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Dog n 17
	Rev.	2	Data Settembre 2012			Fay. 11. 17

Figura 5 - Spinta laterale del terreno (g3)

6.3. Carichi mobili e sovraccarichi laterali (q1 + qlat)

Lateralmente alla vasca si considera un sovraccarico d'esercizio pari a

 $qlat = 20 \text{ kN/m}^2$

il cui effetto sulla vasca è una pressione uniforme su ciascun piedritto pari a:

Figura 6 – Spinta per sovraccarico laterale (qlat)

In campata, invece, si considerano 1 o 2 colonne dello schema di carico mobile 1 ripartito per diffusione dalla superficie stradale all'asse della soletta superiore.

A PERSON AND A PERSON AND A VIEW	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Dog n 19
	Rev.	2	Data Settembre 2012			Fay. 11. 10

Figura 7 - Carichi mobili da traffico (Schema di carico 1)

Si ipotizza una diffusione di 1:2 all'interno del ricoprimento e di 1:1 nella soletta di calcestruzzo.

Figura 8 - Geometria e diffusione dei carichi mobili

La larghezza dell'impronta di carico nella direzione trasversale della vasca vale (vedi Figura 8):

$$Lx = 1,60 + R + SP1$$
 [m]

O <u>wedstarten</u> t	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 10
	Rev.	2	Data Settembre 2012			Fag. 11. 19

Nell'altra direzione, parallela all'asse della vasca:

Per una colonna di carico (rif. Figura 9):

$$Ly1 = 2,40 + R + SP1$$
 [m]

Figura 9 - Impronta di carico corrispondente ad un carico tandem

Per due colonne di carico (rif. Figura 10)

Ly2a = 5,40 + R + SP1 [m]

O Azerater	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 20
	Rev.	2	Data Settembre 2012			Fag. II. 20

Figura 10 - Impronta di carico corrispondente a due carichi tandem

Nel caso la larghezza di sovrapposizione delle superfici di diffusione sia superiore a 1 m, si considera la somma delle pressioni generate dalle due colonne prese singolarmente.

Il carico ripartito agente sulla soletta sarà il massimo fra i seguenti valori:

$q_{\rm I} = 600 / (\rm Lx \times \rm Ly1)$	considerando 1 corsia di carico
$q_{IIa} = (600+400) / (Lx \times Ly2)$	considerando 2 corsie di carico
$q_{IIb} = (600+400) / (Lx \times Ly1)$	nel caso si consideri la sovrapposizione

 $[\]mathbf{q} = \max\left(\mathbf{q}_{\mathrm{I}}; \mathbf{q}_{\mathrm{IIa}}; \mathbf{q}_{\mathrm{IIb}}\right)$

Oltre al carico tandem ripartito si applica il carico uniformemente ripartito su tutta la soletta e pari a $q_{1k} = 9kN/m^2$. Entrambe le azioni sono comprensive del coefficiente dinamico.

Se il carico ripartito totale, dato dalla somma di $q + q_{1k}$ risulti inferiore al carico convenzionale applicato a lato della vasca (qlat), si applicherà quest'ultimo anche sulla so-

• • • • • • • • • •	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 21
	Rev.	2	Data Settembre 2012			Fay. 11. 21

letta della vasca. Questo caso può verificarsi generalmente per spessori di ricoprimento elevati che garantiscono un'elevata superficie di diffusione del carico tandem.

Il carico da traffico distribuito come descritto precedentemente viene applicato come carico mobile dal programma FEM in modo da massimizzare tutte le sollecitazioni per ogni sezione di verifica.

6.4. Azione sismica (q6)

Si adotta il criterio dell'analisi pseudo-statica con riferimento ai coefficienti definiti al paragrafo 4.2, ipotizzando che le masse interessate dall'azione sismica siano quelle del peso proprio della struttura e dei sovraccarichi permanenti.

6.4.1. Azione sismica orizzontale sulle vasche "PPSISM"

Il peso della soletta superiore totale e uniformemente distribuito vale rispettivamente:

 $Ws = \gamma c x SP2 x (2 x A + 2 x SP3 + SP4)$ ws = Ws / (2 x A + SP3 + SP4)

Le forze sismiche orizzontali uniformemente distribuite sulla soletta valgono: fhs = Kh x ws

Analogamente per i piedritti, essendo: $Wp = \gamma c \times SP3 \times B$ wp = Wp / (B + SP1 / 2 + SP2 / 2)

Le forze sismiche orizzontali uniformemente distribuite sui piedritti valgono: fhp = Kh x wp

6.4.2. Azione sismica sul ricoprimento (RSISM)

L'azione sismica sul ricoprimento verrà calcolata considerando l'intera altezza del ricoprimento $R^*=R$.

C RECENTERY	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 22
	Rev.	2	Data Settembre 2012			1 ay. 11. 22

Il peso, totale e uniformemente distribuito, del ricoprimento R*= R sulla soletta superiore vale rispettivamente:

 $WR^* = g2 x (2 x A + 2 x SP3 + SP4)$ wR* = WR* / (2 x A + SP3 + SP4)

con $g2 = \gamma p x pav + \gamma t x ter$ [kN/m]

La forza sismica orizzontale uniformemente distribuita sulla soletta risulta: fhR* = Kh x wR*

Figura 11 - Azione sismica "PPSISM" + "RSISM"

6.5. Incremento dinamico di spinta delle terre (q6)

L'incremento dinamico di spinta del terreno per strutture rigide con pareti verticali, può essere calcolato con la formula di Wood:

$$\Delta Pd = a_{max} \times \gamma t \times (B + SP2 + SP3)^2$$

Tale azione si considera agente indipendentemente dall'altezza del ricoprimento (R) e risulta distribuita uniformemente sul piedritto, in modo che la risultante sia applicata a metà altezza del piedritto come illustrato nella Figura 12.

I valori di tale pressione al nodo superiore ed inferiore di ciascun piedritto sono:

O Azeitatat	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 22
	Rev.	2	Data Settembre 2012			Fay. 11. 25

```
pts1 = pts2 = \Delta Pd / [B + \frac{1}{2} (SP2 + SP3)]
```


Figura 12 - Incremento di spinta sismica del terreno "TESISM"

7. COMBINAZIONI DI CARICO

Le azioni caratteristiche determinate precedentemente vengono combinate nel modello al fine di ottenere le sollecitazioni di progetto, per effettuare le verifiche di resistenza agli stati limite ultimi (SLU) e di esercizio (SLE).

Per chiarezza si riportano le denominazioni sintetiche utilizzate per le varie azioni caratteristiche e una tabella riassuntiva dei coefficienti di sicurezza utilizzati per i diversi gruppi di combinazioni considerate.

g1	Peso proprio della vasca
g2	Peso proprio del ricoprimento
g3	Spinta statica del terreno
q1m	Carico mobile Qik in mezzeria soletta
q1v	Carico mobile Qik a filo piedritto sinistro
q1k	Carico mobile uniform. distribuito su tutta la soletta
QLAT1	Spinta per sovraccarico laterale su piedritto sinistro
QLAT2	Spinta per sovraccarico laterale su piedritto destro
PPSISM	Azione sismica orizzontale sulla vasca
RSISM	Azione sismica orizzontale sul ricoprimento
TESISM	Incremento dinamico di spinta del terreno

			Spinta		Sovracc.		
Azioni	P.P.	P.Ric.	Terreno	Traffico	laterale	Sisma	Verifiche
Comb.	g1	g2	g3	q1	qlat	q6	
UI-1	1.35	1.35	1.35	0.00	0.00	0.00	
UI-2	1.00	1.00	1.35	0.00	0.00	0.00	
UI-3	1.35	1.35	1.00	0.00	0.00	0.00	
UII-1	1.35	1.35	1.35	1.35	1.35	0.00	SLU
UII-2	1.00	1.00	1.35	0.00	1.35	0.00	
UII-3	1.35	1.35	1.00	1.35	0.00	0.00	
UV	1.00	1.00	1.00	0.00	0.00	1.00	
QP	1.00	1.00	1.00	0.00	0.00	0.00	
FR	1.00	1.00	1.00	0.75	0.75	0.00	JLL

Di seguito si riportano in dettaglio le combinazioni considerate:

Q Azeitari	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pag p 25
	Rev.	2	Data Settembre 2012			Fay. 11. 25

Combinazioni per le verifiche SLU:

Combinazione	Azione	Coefficiente di combinazione
	g1	1.35
UI_1	g2	1.35
	g3	1.35
	g1	1
UI_2	g2	1
	g3	1.35
	g1	1.35
UI_3	g2	1.35
	g3	1
	UI_1	1
UII_1_A	QLAT1	1.35
	UI_1	1
UII 1 B	QLAT1	1.35
	QLAT2	1.35
	UI_1	1
	QLAT1	1.35
UII 1 C	QLAT2	1.35
	q1k	1.35
	q1m	1.35
	UI_1	1
UII 1 D	q1k	1.35
	q1m	1.35
	UI_1	1
	QLAT1	1.35
UII_1_E	q1k	1.35
	q1v	1.35
	UI_1	1
	QLAT2	1.35
UII_1_F	q1k	1.35
	q1v	1.35
	UI_1	1
	QLAT1	1.35
UII 1 G	QLAT2	1.35
••	q1k	1.35
	q1v	1.35
	UI_2	1
UII_2_A	QLAT1	1.35
	UI_2	1
UII 2 B	QLAT1	1.35
•··_ - _ -	QLAT2	1.35
	UI 2	1
UII_2_F	QLAT2	1.35

0 सडवच्यास्त्र र	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pag n 26
	Rev.	2	Data Settembre 2012			1 ay. 11. 20

Combinazione	Azione	Coefficiente di combinazione
	UI_3	1
UII 3 D	q1k	1.35
	q1m	1.35
	UI_3	1
UII_3_H	q1k	1.35
	q1v	1.35
	g1	1
	g2	1
	g3	1
UV_1	PPSISM	1
	RSISM	1
	TESISM	1

Nella tabella di pagina seguente sono illustrate le combinazioni SLU dovute ai carichi da traffico.

O Azannant	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Dog n 07
	Rev.	2	Data Settembre 2012			ray. 11. 27

COMBINAZIONI SLU										
Coefficienti	Gruppo UI_1	Gruppo UI_2	Gruppo UI_3							
Disposizione carichi mobili	1.35 g_{3} $1.35 g_{1.35}$ $g_{1.35}$ $g_{1.35}$ $g_{1.35}$ $g_{1.35}$ g_{3}	1.35 g_{3} \downarrow 1.00 g_{1} \downarrow 1.35 g_{3}	1.00 g_{3}							
1.35 QLAT1										
A	UII_1_A	UII_2_A								
1.35 QLAT1 1.35 QLAT2										
В	UII_1_B	UII_2_B								
1.35 q1m+q1k 1. <u>35 QLAT</u> 1 ↓↓ 1. <u>35 QLAT</u> 2										
C	UII_1_C									
1.35 q1m+q1k ↓↓										
	UII_1_D		UII_3_D							
1. <u>35_QLAT1</u>] 1.35_q1v+q1k										
E	UII_1_E									
1.35 q1v+q1k ↓↓ 1. <u>35 QLAT</u> 2										
F	UII_1_F	UII_2_F								
1.35 q1v+q1k 1.3 <u>5 QLAT1 1.35 QLA</u> T2										
G	UII_1_G									
1.35 q1v+q1k _↓↓										
Η			UII_3_H							

Q ascallar t	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Dog p 29
	Rev.	2	Data Settembre 2012			1 ay. 11. 20

Combinazioni per le verifiche SLE (Fessurazione):

Le combinazioni utilizzate per le verifiche di fessurazione sono la combinazione Quasi Permanente (QP) e Frequente (FR).

Combinazione	Azione	Coefficiente di
	~ 4	compinazione
	g i a c	1
QP	yz a2	1
	<u>y</u> s	1
	g i	1
FR A	g2	1
	g3	
		0.75
	g1 m2	1
	g2	1
FR_B	g3	
	QLATT	0.75
	QLATZ	0.75
	g1	1
	g2	1
	g3	1
FR_C	QLAI1	0.75
	QLAT2	0.75
	q1k	0.75
	q1m	0.75
	g1	1
	g2	1
FR_D	g3	1
	a1k	0.75
	a1m	0.75
	a1	1
	a2	1
	a3	1
FR_E	QLAT1	0.75
	a1k	0.75
	a1v	0.75
		1
	g2	1
	g- g3	1
FR_F	QLAT2	0.75
	a1k	0.75
	q1v	0.75
		1
FR_G	g. g2	1
	a3	1
I	30	•

🔍 सडवच्यास्त्रर	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 20
	Rev.	2	Data Settembre 2012			1 ay. 11. 29

Combinazione	Azione	Coefficiente di combinazione
	QLAT1	0.75
	QLAT2	0.75
	q1k	0.75
	q1v	0.75
	g1	1
	g2	1
FR_H	g3	1
_	q1k	0.75
	q1v	0.75

Nella tabella di pagina seguente sono illustrate le combinazioni considerate per le verifiche SLE.

A MARKET TO STORE A A	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 20
	Rev.	2	Data Settembre 2012			Fay. II. 30

	COMBINAZIONI SLE	-
Coefficienti	Quasi Permanente	Frequente
Disposizione carichi mobili	1.00 g_{3} $1.00 g_{1}$ $1.00 g_{1}$ $1.00 g_{1}$	1.00 $\underline{g3}$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	QP	
1.35 QLAT1		FR_A
1.35 QLAT1 1.35 QLAT2		FR_B
1.35 q1m+q1k 1. <u>35 QLAT1 ↓↓ 1.35 QLAT</u> 2 C		FR_C
1.35 q1m+q1k 		FR_D
1.35 QLATI 1.35 qlv+qlk		FR_E
1.35 q1v+q1k <u>↓↓ 1.35 QLAT</u> 2 F		FR_F
1.35 q1v+q1k 1.35 qLAT1 1 1.35 qLAT2 G		FR_G
H		FR_H

O Azeitati	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Dog n 21
	Rev.	2	Data Settembre 2012			Fay. 11. 51

8. VERIFICHE

Per ogni tipologia di vasca si riporterà il grafico dell'inviluppo dei momenti flettenti, dello sforzo normale e del taglio. Tali sollecitazioni calcolate dal modello ad elementi finiti saranno verificate a presso-flessione nelle sezioni critiche mostrate in Figura 13, per le combinazioni SLU più gravose.

La verifica a taglio sarà eseguita per le sezioni 1, 3, 4, 6, 7, 9, 10 e 11.

Figura 13 - Sezioni di verifica

8.1. Verifica SLU di presso-flessione

Con riferimento alla sezione presso-inflessa, rappresentata in Figura 14 assieme ai diagrammi di deformazione e di sforzo così come dedotti dai modelli σ - ϵ , la verifica di resistenza (SLU) si esegue controllando che:

$$M_{Rd} = M_{Rd} \left(N_{Ed} \right) \ge M_{Ed}$$

dove:

- M_{Rd} è il valore di calcolo del momento resistente corrispondente a N_{Ed};
- N_{Ed} è il valore di calcolo della componente assiale (sforzo normale) dell'azione;

Q Azerater	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Dog n 22
	Rev.	2	Data Settembre 2012			r ay. 11. 32

– M_{Ed} è il valore di calcolo della componente flettente dell'azione.

Figura 14 - Sezione pressoinflessa

Le verifiche sono eseguire facendo riferimento ad una sezione di larghezza unitaria e trascurando il contributo dell'armatura compressa.

8.2. Verifica SLU di taglio

Le verifiche a taglio sono eseguite ad una distanza pari all'altezza utile d dal filo appoggio.

La resistenza V_{Rd} di elementi in c.a. sprovvisti di specifiche armature trasversali resistenti a taglio si pone con:

$$V_{Rd} \ge V_{Ed}$$

Dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente.

Con riferimento all'elemento fessurato da momento flettente, la resistenza al taglio si valuta con:

$$V_{\text{Rd}} = \left\{ 0, 18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{\text{ck}})^{1/3} / \gamma_{\text{c}} + 0, 15 \cdot \sigma_{\text{cp}} \right\} \cdot b_{\text{w}} \cdot d \ge (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{w}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{w}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{w}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{w}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{w}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{w}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{w}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{w}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{w}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{w}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{w}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{w}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{w}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{w}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{w}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{w}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{w}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{cp}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{min}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{min}}) \cdot b_{\text{m}} d = (v_{\text{min}} + 0, 15 \cdot \sigma_{\text{mi}}) \cdot b_{\text{m}} d = (v_{\text{min}} +$$

Q Azeratar	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 22
	Rev.	2	Data Settembre 2012			Fag. 11. 55

 $\begin{array}{ll} \text{Con:} \\ k = 1 + (200/d)^{1/2} \leq 2 \\ v_{min} = 0.035 k^{3/2} f_{ck}^{-1/2} \\ \text{e dove} \\ d \\ \rho_1 = A_{sl} / (b_w \times d) \\ \rho_1 = A_{sl} / (b_w \times d) \\ \phi \text{ il rapporto geometrico di armatura longitudinale (≤ 0.02)} \\ \sigma_{cp} = N_{Ed}/A_c \\ \phi \text{ la tensione media di compressione della sezione (≤ 0.2 f_{cd}$)} \\ b_w \\ \phi \text{ la larghezza minima della sezione (in mm)} \end{array}$

Le armature longitudinali, oltre ad assorbire gli sforzi conseguenti alle sollecitazioni di flessione, devono assorbire quelli provocati dal taglio dovuti all'inclinazione delle fessure rispetto all'asse della trave, inclinazione assunta pari a 45°. In particolare, in corrispondenza degli appoggi, le armature longitudinali devono assorbire uno sforzo pari al taglio sull'appoggio.

C Azeratar	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 34
	Rev.	2	Data Settembre 2012			r ag. n. 34

8.3. Verifica SLE di apertura delle fessure

Con riferimento al D.M.14-01-2008, punto 4.1.2.2.4.6, la verifica allo stato limite di apertura delle fessure consiste nel controllare che il valore di calcolo di apertura delle fessure (wd) non deve superare i valori nominali w1=0,2mm, w2=0,3mm, w3=0,4mm con i criteri stabiliti dalla tabella 4.1.IV delle NTC, qui di seguito riportata.

Tabella 4.1.IV – Criteri di scelta dello stato limite di fessurazione

Cuunni di	Condizioni	Combinations	Armatura						
esigenze	condizioni	di azioni	Sensibile	Poco sensibile					
	amorentan		Stato limite	Wd	Stato limite	Wd			
	Ordinaria	frequente	ap. fessure	$\leq w_2$	ap. fessure	$\leq \mathrm{W}_3$			
a	Ofdillarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$			
h	Accrecitio	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$			
D	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$			
	Malta accreasive	frequente	formazione fessure	-	ap. fessure	$\leq w_1$			
c	mono aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$			

I valori limite di apertura delle fessure dipendono dalle condizioni ambientali in cui si trova l'opera e sono suddivise in ordinarie, aggressive e molto aggressive in relazione a quanto indicato nella tabella 4.1.III delle NTC e con riferimento alle classi di esposizione definite nelle Linee Guida per il calcestruzzo strutturale e-messe dal Servizio Tecnico Centrale del C.S.LL.PP..

Tabella 4.1.III – Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Quindi per lo stato limite di apertura delle fessure si prende in considerazione la combinazione quasi permanente e frequente ed i limiti di apertura delle fessure richiesti per armatura poco sensibile e condizioni ambientali aggressive. Riassumendo la verifica sarà soddisfatta se:

—	$wd \le w1 = 0,2 mm$	in combinazione quasi permanente;
_	$wd \le w2 = 0,3 mm$	in combinazione frequente;

Q Azeitater	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 35
	Rev.	2	Data Settembre 2012			ray. 11. 35

Il valore di calcolo dell'apertura delle fessure, wd, può essere ottenuto con l'espressione:

 $wd = 1.7 x wm = 1.7 \epsilon sm x srm$

dove:

- ɛsm = deformazione unitaria media delle barre d'armatura
- srm = distanza media tra le fessure.

Come specificato dalla Circolare 2-febbraio-2009 n.617 del C.S.LL.PP. la deformazione media delle barre e la distanza media delle fessure possono essere valutate utilizzando la procedura del D.M. 9-1-1996. Utilizzando tale procedura si calcola la distanza media fra le fessure è calcolata con la seguente relazione:

srm =
$$2\left(c + \frac{s}{10}\right) + k_2 k_3 \frac{\phi_s}{\rho_r}$$

dove:

- c = ricoprimento dell'armatura
- s = passo delle barre tese
- k2 = 0.4 per barre ad aderenza migliorata, k2 = 0.8 per barre lisce
- k3 = 0.125 per diagramma triangolare (presso-flessione o flessione)
- k3 = 0.250 per diagramma rettangolare di trazione (trazione pura)
- k3 = 0.25(s1+s2)/2s1 (trazione eccentrica)
- ϕ_s = diametro delle barre tese
- $\rho r = As/Ac,eff$
- Ac,eff = beff x deff

La deformazione unitaria media dell'apertura vale:

$$\varepsilon \mathrm{sm} = \frac{\sigma_s}{E_s} \left[1 - \beta_1 \beta_2 \left(\frac{\sigma_{sr}}{\sigma_s} \right)^2 \right] \quad ; \quad \left(\ge 0, 4 \frac{\sigma_s}{E_s} \right)$$

nella quale:

 $Es = 210\ 000\ N/mm^2$

 β 1=1 per barre ad aderenza migliorata; β 1=0,5 per barre lisce

Q Azeranar	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 36
	Rev.	2	Data Settembre 2012			Fay. 11. 30

 $\beta 2=1$ per azioni di breve durata; $\beta 2=0,5$ per azioni ripetute o di lunga durata

σs è la tensione dell'acciaio in stato fessurato conseguente all'applicazione dei parametri di sollecitazione.

 $\sigma sr\,$ è la tensione dell'acciaio in stato fessurato sotto la sollecitazione M_{fess}

M_{fess} è determinato come:

$$M_{fess} = (f_{ctm} - J_{id}/(bh)) \times J_{id}/y'_{c}$$

 $y'_c = h - S_{id} / A_{id}$

con A_{id} S_{id} , J_{id} ottenuti con coefficiente di omogeneizzazione acciaio calcestruzzo pari a 15.

Il valore medio di apertura delle fessure risulta :

 $wm = srm \ x \ \varepsilon sm$

dal quale si ricava il valore di calcolo:

wd = 1,7 wm

da confrontare con i valori limite definiti in precedenza.

 * # <i>!</i> # (* ##`\[]` ! * # * \]

Pag. n. 37

9. VASCA TIPO A

Geometria della vasca e dei sovraccarichi

A =	2.00 m	Larghezza interna netta della vasca
B =	4.20 m	Altezza interna netta della vasca
SP1 =	0.30 m	Spessore della soletta superiore
SP2 =	0.40 m	Spessore della soletta inferiore
SP3 =	0.30 m	Spessore dei piedritti laterali
SP4 =	0.30 m	Spessore del piedritto centrale
R =	0.50 m	Ricoprimento totale sulla vasca
pav =	0.00 m	Spessore della pavimentazione stradale
ter =	0.50 m	Spessore del terreno di riporto

Analisi dei carichi agenti su una striscia di 1.00m

Carichi permanenti

$\gamma c =$	25	kN/m ³	Peso specifico del calcestruzzo
γp =	22	kN/m ³	Peso specifico medio della pavimentazione

Peso proprio della struttura

Carico computato automaticamente dal modello

pp1 =	36.75 kN/m	sulla soletta superiore
pp2 =	49.00 kN/m	sulla soletta inferiore
pp3 =	31.50 kN/m	sui piedritti laterali
pp4 =	31.50 kN/m	sul piedritto centrale

Peso proprio del ricoprimento

qR = 9.5 kN/m Carico uniformemente distribuito sulla soletta superiore

Spinta statica del terreno

Ko =	0.426	Coefficiente di spinta a riposo
pt1 =	5.26 kN/m	Pressione del terreno agente sul nodo superiore del piedritto
pt2 =	41.71 kN/m	Pressione del terreno agente sul nodo inferiore del piedritto

······································	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Dog n 29
	Rev.	2	Data Settembre 2012			Fay. 11. 30

Carichi mobili e sovraccarichi d'esercizio

qlat =	20.00 kN/m	Sovraccarico accidentale laterale
plat =	8.53 kN/m	Spinta laterale per sovraccarico accidentale
q1a =	600 kN	Carico mobile q1a (3 assi x 200kN)
alfa1 =	30 °	Angolo di diffusione del carico nel ricoprimento
alfa2 =	45 °	Angolo di diffusione del carico nella soletta
Lx =	2.40 m	Larghezza dell'impronta di carico in asse soletta
Ly1 =	3.20 m	Profondità dell'impronta di carico in asse soletta per 1 colonna
Ly2 =	6.20 m	Profondità dell'impronta di carico in asse soletta per 2 colonne
$q_I =$	78.12 kN/m	Carico ripartito (1 colonna)
$q_{IIa} =$	67.20 kN/m	Carico ripartito (2 colonne)
q =	78.12 kN/m	Massimo valore fra q1a e 2q1a
$q_{1f} =$	9.00 kN/m	Carico uniformemente ripartito su tutta la soletta

Azione sismica

Soletta superiore

$W_S =$	36.75 kN	Peso totale soletta superiore
WS =	7.98 kN/m	Peso soletta distribuito sulla larghezza del modello
fhs =	2.79 kN/m	Forza sismica orizzontale uniformemente distribuita

Piedritti

Wp3 =	31.50 kN	Peso totale di un piedritto laterale
wp3 =	6.92 kN/m	Peso totale di un piedritto laterale / altezza modello
fhp3 =	2.42 kN/m	Forza sismica orizzontale uniformemente distribuita
Wp4 =	31.50 kN	Peso totale del piedritto centrale
wp4 =	6.92 kN/m	Peso totale del piedritto centrale / altezza modello
fhn4 =	2.12 kN/m	Forza signica orizzontale uniformemente distribuita

O Azeritari	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 30
	Rev.	2	Data Settembre 2012			Fay. 11. 39

Ricoprimento sulla soletta superiore

wR =	9.50 kN/m	Peso del ricoprimento o porzione di esso da considerare
fhR =	3.32 kN/m	Forza sismica orizzontale uniformemente distribuita

Incremento di spinta sismica del terreno

$\Delta P =$	159.67 kN	Incremento di spinta sismica (AxF' - F)
pts1 =	35.1 kN/m	Pressione al nodo superiore del piedritto per effetto di ΔP
pts2 =	35.1 kN/m	Pressione al nodo inferiore del piedritto per effetto di ΔP

9.1. Parametri di sollecitazione

Comiono	Flomento	Ν	М	V
Sezione	Elemento	[kN]	[kNm]	[kNm]
1	Soletta superiore	-35	-66	118
2	Soletta superiore	-35	42	32
3	Soletta superiore	-35	-48	121
4	Setto centrale	18	-108	46
5	Setto centrale	1.1	-6	53
6	Setto centrale	-14	123	58
7	Soletta inferiore	30	-72	123
8	Soletta inferiore	30	98	128
9	Soletta inferiore	30	176	134
10	Setto laterale	-31	154	110
11	Setto laterale	-10	-77	35
12	Setto laterale	0	66	83

• सहवच्यास्टर	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pag n 40
	Rev.	2	Data Settembre 2012			Fag. 11. 40

9.2. Inviluppo sollecitazioni SLU

DIAGRAMMA DI INVILUPPO DEL MOMENTO FLETTENTE

• सहवच्यापस्य र	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 41
	Rev.	2	Data Settembre 2012			Fay. 11. 41

DIAGRAMMA DI INVILUPPO DELLO SFORZO NORMALE

o <u>Hecharta</u> r	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 42
	Rev.	2	Data Settembre 2012			Fay. 11. 42

DIAGRAMMA DI INVILUPPO DELLO SFORZO DI TAGLIO

O UZCINIU AL	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pag n 42
	Rev.	2	Data Settembre 2012			Fay. 11. 43

9.3. Inviluppo sollecitazioni SLE

DIAGRAMMA DI INVILUPPO DEL MOMENTO FLETTENTE

Q Azeitatar	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 44
	Rev.	2	Data Settembre 2012			Fay. 11. 44

9.4. Verifiche a presso-flessione

Soletta superiore - Sezione 1

Parete centrale - Sezione 6

B = 1000 mm H = 300 mm A's = $6.7 \phi 16 = 1340 \text{ mm}^2$ As = $6.7 \phi 16 = 1340 \text{ mm}^2$

C PERGERSON PELS	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 15
	Rev.	2	Data Settembre 2012			Fay. 11. 45

Soletta inferiore - Sezione 9

B = 1000 mmH = 400 mmA's = $6.7 \phi 16 = 1340 \text{ mm}^2$ As = $6.7 \phi 16 = 1340 \text{ mm}^2$ [**w**Ny] W -2000 -200 N [kN]

Parete laterale - Sezione 10

B = 1000 mmH = 300 mmA's = $6.7 \phi 16 + 6.7 \phi 16 = 2694 \text{ mm}^2$ $As = 6.7 \phi 16 + 6.7 \phi 16 = 2694 \text{ mm}^2$ [wnw] M -3000 N [kN]

ि सद्यदारारस्य र	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 46
	Rev.	2	Data Settembre 2012			Fay. 11. 40

9.5. Verifiche a taglio

Secondo quanto riportato nell'EC2 per elementi prevalentemente soggetti a carichi uniformemente distribuiti lo sforzo di taglio non deve essere verificato ad una distanza minore dell'altezza utile della sezione d misurata dala faccia dell'appoggio. Per le seguenti verifiche si utilizzaranno quindi gli sforzi di taglio a distanza d dall'appoggio.

Soletta superiore - Sezione 1

Note e convenzioni				
N > 0 => trazione				
Dati di input			l	
Rck		35	N/mm^2	
fck		29	N/mm^2	
Valore medio della resistenza a trazione	f _{ctm} =	2,8	N/mm^2	= 0.3 x fck^(2/3)
Coefficiente sicurezza cls	$\gamma_{c} =$	1,5		
Coefficiente carichi lunga durata	$\alpha_{cc} =$	0,85		
fcd=resistenza di calcolo del cls	fcd =	16,46	N/mm^2	= $\alpha cc x fck / \gamma_c$
Resitenza caratteristica di snervamento acciaio	fyk =	450	N/mm^2	
Coefficiente sicurezza acciaio	γ _s =	1,15		
Snervamento di calcolo acciaio	fyd =	391	N/mm^2	= fyd / γ _s
Forza di taglio di calcolo	Vsd =	118	kN	
Forza assiale di calcolo	Nsd =	0	kN	
Larghezza sezione	b _{vv} =	100	cm	
altezza della sezione	H =	30	cm	
Copriferro	c =	3	cm	
Diametro barre superiori	$\phi_2 =$	16	mm	(armatura compressa)
Diametro barre inferiori	$\phi_1 =$	16	mm	(armatura tesa)
Diametro staffe	φst =	0	mm	
Numero di barre superiori	N ₂ =	6,7		
Numero di barre inferiori	N ₁ =	6,7		
altezza utile della sezione	d =	26,2	cm	
Resistenza di calcolo dell'elemento senza armatur	a a taglio: Vro	11	(rif. cap.	4.1.2.1.3.1 del D.M. 2008)
Vrd1= {[0.18 x k x (100 x p1 x fck)^(1/3) / yc] + 0.15 x	σcp} x (bw x d)		
con Vrd1>= Vrd1min = {Vmin + 0.15 x σ cp} x (bw x d)				
K = 1+ (200 / d)^0.5 < 2.00	K =	1,87		
Vmin = 0.035 x K^1.5 x fck^0.5	Vmin =	0,48	N/mm ²	
ρ₁= A₅₁/(b₀d)≤0.02	-			
As1=area delle armature di trazione che si estendon	o As1=	13,47	cm^2 =	1347 mm^2
non meno di d+lbnet oltre la sezione considerata	ρ1=	0,0051		
σ _{cp} = -Nsd/Ac≤0.2fcd	σ _{cp} =	0,00	N/mm^2	
	Vrd1=	145	kN	1
	Vrdmin =	127	kN	
	Vrd1 =	145	kN	OK! - VERIFICA SODDISFATTA

6 HEGHERA L	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pag n 47
	Rev.	2	Data Settembre 2012			ray. 11. 47

Soletta inferiore - Sezione 9

VERIFICA A TAGLIO SECONDO D.M. 2008 ED EUROCODICE 2 (UNI EN 1992 1-1)								
Note e convenzioni			I					
N > 0 => trazione			•					
Dati di input			1					
Rck		35	N/mm ^A 2					
fck		29	N/mm ^A 2					
Valore medio della resistenza a trazione	f _{ctm} =	2,8	N/mm ⁴ 2	= 0.3 x fck ^A (2/3)				
Coefficiente sicurezza cls	γ _c =	1,5						
Coefficiente carichi lunga durata	α_{cc} =	0,85						
fcd=resistenza di calcolo del cls	fcd =	16,46	N/mm ²	= α cc x fck / γ_c				
Resitenza caratteristica di snervamento acciaio	fyk =	450	N/mm ^A 2					
Coefficiente sicurezza acciaio	γ _s =	1,15						
Snervamento di calcolo acciaio	fyd =	391	N/mm ²	= fyd / γ_s				
Forza di taglio di calcolo	Vsd =	134	kN					
Forza assiale di calcolo	Nsd =	0	kN					
Larghezza sezione	b _w =	100	cm					
altezza della sezione	н=	40	cm					
Copriferro	c =	3	cm					
Diametro barre superiori	φ ₂ =	16	mm	(armatura compressa)				
Diametro barre inferiori	φ ₁ =	16	mm	(armatura tesa)				
Diametro staffe	∳st =	0	mm	•				
Numero di barre superiori	N ₂ =	6,7						
Numero di barre inferiori	N1 =	6.7						
altezza utile della sezione	d =	36,2	cm					
			1					
Resistenza di calcolo dell'elemento senza armatura	a taglio: V	rd1	(rif. cap. 4	.1.2.1.3.1 del D.M. 2008)				
$1/m(1 = (10.18 \times k \times (100 \times 1 \times fck))/(1/3) / wc] \pm 0.15 \times 10^{-3}$	chi v (hw v	d)						
$\sin 1 = \{[0, 10 \times 10 \times 10 \times 10^{-1}] : 0.10 \times 0^{-1} $	ch y (nu y	u)						
$K = 1 + (200 / d)^{0.5} \le 2.00$	К=	1.74						
Vmin = 0.035 x K^1.5 x fck^0.5	Vmin =	0,43	N/mm ²					
ρ ₁ = A _{s1} /(b _w d)≤0.02								
As1=area delle armature di trazione che si estendono	As1=	13,47	cm^2 =	1347 mm ²				
non meno di dHbnet oltre la sezione considerata	ρ1=	0,0037						
ര ം⊨ -Nsd/Ac≤0.2fcd	o _{cn} =	0,00	N/mm [^] 2					
(des) (des) =								
	Vrd1=	167	kN					
	Vrdmin =	157	kN					
	Vrd1 =	167	kN	OK! - VERIFICA SODDISFATTA				

Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 48
Rev.	2	Data Settembre 2012			Fay. 11. 40

Parete laterale - Sezione 10

VERIFICA A TAGLIO SECONDO D.M. 2008	BED EUR	OCOD	ICE 2 (U	NI EN 1992 1-1)	
Note e convenzioni					
N > 0 => trazione					
Dati di input					
Bck		35	N/mm ^A 2		
fck		29	N/mm^2		
Valore medio della resistenza a trazione	f _{etm} =	2.8	N/mm^2	$= 0.3 \times fck^{(2/3)}$	
Coefficiente sicurezza cls	v _c =	1.5		X 2	
Coefficiente carichi lunga durata	$\alpha_{cc} =$	0.85			
fcd=resistenza di calcolo del cls	fcd =	16.46	N/mm^2	$= \alpha cc x fck / v_{e}$	
Resitenza caratteristica di snervamento acciaio	fvk =	450	N/mm ^A 2		
Coefficiente sicurezza acciaio		1.15			
Snervamento di calcolo acciaio	fvd =	391	N/mm^2	= fvd / ve	
Forza di taglio di calcolo	Vsd =	110	kN		
Forza assiale di calcolo	Nsd =	0	kN		
Larghezza sezione	b _w =	100	cm		
altezza della sezione	Н =	30	cm		
Copriferro	c =	3	cm		
Diametro barre superiori	φ ₂ =	16	mm	(armatura compressa)	
Diametro barre inferiori	φ ₁ =	16	mm	(armatura tesa)	
Diametro staffe	∳st =	0	mm		
Numero di barre superiori	N ₂ =	6,7			
Numero di barre inferiori	N ₁ =	6,7			
attezza utile della sezione	d =	26,2	cm		
Desistence di sele ste della lemente como emetto	Analias M	-		4.0.4.3.4 del D.M. 2000	
Resistenza di calcolo dell'elemento senza armatura	a a taglio: v	rai	(rif. cap. 4	.1.2.1.3.1 del D.M. 2008)	
Vrd1= {[0,18 x k x (100 x o1 x fck)^(1/3) / vc] + 0.15 x d		d)			
con Vrd1>= Vrd1min = $\sqrt{min + 0.15 \times ccn} \times (bw \times d)$		-,			
K = 1+ (200 / d)^0.5 < 2.00	к=	1,87			
Vmin = 0.035 x K^1.5 x fck^0.5	Vmin =	0,48	N/mm ^A 2		
_{P1} = A _{s1} /(b _w d)≤0.02					
As1=area delle armature di trazione che si estendono	As1=	13,47	cm^2 =	1347 mm^2	
non meno di d+lbnet oltre la sezione considerata	p 1=	0,0051			
	0er - 30				
σ _{cp} = -Nsd/Ac≤0.2tcd	o _{cp} =	0,00	N/mm ²		
	Vrd1=	145	kN		
	Vrdmin =	127	kN		
	Vrd1 =	145	kN	OK! - VERIFICA SODDISFATTA	

9.6. Verifiche di fessurazione

Le verifiche a fessurazione si effetuano solo per le sezioni più significative. A favore di sicurezza si trascurano le armature compresse.

· · · · · · · · · · · · · · · · · · ·	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 40
	Rev.	2	Data Settembre 2012			Fay. 11. 49

Soletta superiore – Sezione 1

	Molto aggressive	XD2, XI
Tabella 4.1.IV – C	iteri di scelta dello stato limite a	h fessurazione

Gruppi di esigenze	Constitution 1	Carthereter	Armatura						
	Condizioni	Combinazione	Sensibile		Poco sensibile				
	amorentan	di aziom	Stato limite	Wd	Stato limite	Wd			
845	0.1	frequente	ap. fessure	$\leq W_2$	ap. fessure	$\leq W_3$			
a Ordin	Ordinarie	quasi permanente	ap, fessure	$\leq w_1$	ap. fessure	$\leq W_2$			
1.00	100000000000000	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$			
D	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq W_1$			
c Molto aggressive	frequente	formazione fessure	-	ap. fessure	$\leq W_1$				
	Molto aggressive	quasi permanente	decompressione		ap, fessure	$\leq W_{F}$			

XD2, XD3, XS2, XS3, XA3, XF4

w1, w2, w3 sono definiti al § 4.1.2.2.4.1, il valore di calcolo wd, è definito al § 4.1.2.2.4.6.

Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pag n 50
Rev.	2	Data Settembre 2012			1 ag. 11. 50

Soletta inferiore - Sezione 9

Tabella 4.1.IV – Criteri di scelta dello stato limite di fessurazione

Course of the	Conditional	Carlington		Armatu	ira		
esigenze ambie	Condizioni	Condizioni Combinazione		Sensibile			
	ambientan	di azioni	Stato limite	Wd	Stato limite	Wd	
a Ordinarie	frequente	ap. fessure	$\leq W_2$	ap. fessure	$\leq W_3$		
	quasi permanente	ap. fessure	$\leq W_1$	ap. fessure	$\leq W_2$		
	A	frequente	ap. fessure	$\leq W_1$	ap. fessure	$\leq W_2$	
b Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq W_1$		
c Mo	Maharan	frequente	formazione fessure	-	ap. fessure	$\leq W_1$	
	Molto aggressive	quasi permanente	decompressione		ap, fessure	< W1	

w1, w2, w3 sono definiti al § 4.1.2.2.4.1, il valore di calcolo wd, è definito al § 4.1.2.2.4.6.

······································	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pag n 51
	Rev.	2	Data Settembre 2012			ray. 11. 51

Parete laterale - Sezione 10

Tabella 4.1.III – Descrizione delle condizioni ambienta

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 4.1.IV - Criteri di scelta dello stato limite di fessurazione

Gruppi di esigenze	2012/01/01/02/02	1000 B 1000 B 1000	Armatura					
	Condizioni	Combinazione	Sensibile	Poco sensibile				
	amoientan	di azioni	Stato limite	Wd	Stato limite	Wd		
	0.1	frequente	ap. fessure	$\leq w_2$	ap. fessure	$\leq W_{i}$		
a Ordinarie	a	quasi permanente	ap. fessure	$\leq W_1$	ap. fessure	$\leq W_2$		
	a secondaria	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq W_2$		
b Aggressive	Aggressive	quasi permanente	decompressione	-	ap, fessure	$\leq W_1$		
c M	Make an other	frequente	formazione fessure	-	ap. fessure	$\leq W_1$		
	Molto aggressive	quasi permanente	decompressione		ap. fessure	$\leq W_1$		

 * # # C2 # # \ F F * # 4 \ F .

Pag. n. 52

10. VASCA TIPO B

Geometria della vasca e dei sovraccarichi

a
adale
ada

Analisi dei carichi agenti su una striscia di 1.00m

Carichi permanenti

$\gamma c =$	25	kN/m ³	Peso specifico del calcestruzzo
$\gamma p =$	22	kN/m ³	Peso specifico medio della pavimentazione

Peso proprio della struttura

Carico computato automaticamente dal modello

pp1 =	36.75	kN/m	sulla soletta superiore
pp2 =	49.00	kN/m	sulla soletta inferiore
pp3 =	40.50	kN/m	sui piedritti laterali
pp4 =	40.50	kN/m	sul piedritto centrale

Peso proprio del ricoprimento

qR = 9.5 kN/m Carico uniformemente distribuito sulla soletta superiore

Spinta statica del terreno

Ko =	0.426	Coefficiente di spinta a riposo
pt1 =	5.27 kN/m	Pressione del terreno agente sul nodo superiore del piedritto
pt2 =	51.85 kN/m	Pressione del terreno agente sul nodo inferiore del piedritto

o ascissar	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	- Pag. n. 53
	Rev.	2	Data Settembre 2012			

Carichi mobili e sovraccarichi d'esercizio

qlat =	20.00	kN/m	Sovraccarico accidentale laterale
plat =	8.53	kN/m	Spinta laterale per sovraccarico accidentale
q1a =	600	kN	Carico mobile q1a (3 assi x 200kN)
alfa1 =	30	0	Angolo di diffusione del carico nel ricoprimento
alfa2 =	45	0	Angolo di diffusione del carico nella soletta
Lx =	2.40	m	Larghezza dell'impronta di carico in asse soletta
Ly1 =	3.20	m	Profondità dell'impronta di carico in asse soletta per 1 colonna
Ly2 =	6.20	m	Profondità dell'impronta di carico in asse soletta per 2 colonne
$q_I =$	78.12	kN/m	Carico ripartito (1 colonna)
$q_{IIa} =$	67.20	kN/m	Carico ripartito (2 colonne)
q =	78.12	kN/m	Massimo valore fra q1a e 2q1a
$q_{1f} =$	9.00	kN/m	Carico uniformemente ripartito su tutta la soletta

Azione sismica

Soletta superiore

Ws = ws = fhs =	36.75 7.99 2.79	kN kN/m kN/m	Peso totale soletta superiore Peso soletta distribuito sulla larghezza del modello Forza sismica orizzontale uniformemente distribuita
Piedritti			
Wp3 =	40.50	kN	Peso totale di un piedritto laterale
wp3 =	7.04	kN/m	Peso totale di un piedritto laterale / altezza modello
fhp3 =	2.46	kN/m	Forza sismica orizzontale uniformemente distribuita
Wp4 =	40.5	kN	Peso totale del piedritto centrale
wp4 =	7.04	kN/m	Peso totale del piedritto centrale / altezza modello
fhp4 =	2.46	kN/m	Forza sismica orizzontale uniformemente distribuita

O Azeraiary	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	- Pag. n. 54
	Rev.	2	Data Settembre 2012			

Ricoprimento sulla soletta superiore

wR =	9.50 kN/m	Peso del ricoprimento o porzione di esso da considerare
fhR =	3.32 kN/m	Forza sismica orizzontale uniformemente distribuita

Incremento di spinta sismica del terreno

$\Delta P =$	247.44 kN	Incremento di spinta sismica (AxF' - F)
pts1 =	43.03 kN/m	Pressione al nodo superiore del piedritto per effetto di ΔP
pts2 =	43.03 kN/m	Pressione al nodo inferiore del piedritto per effetto di ΔP

10.1. Parametri di sollecitazione

Sociero	Flomento	Ν	М	V
Sezione	Elemento	[kN]	[kNm]	[kNm]
1	Soletta superiore	-53	-111	144
2	Soletta superiore	-53	37	65
3	Soletta superiore	-53	-52	106
4	Setto centrale	81	-183	62
5	Setto centrale	59	12	70
6	Setto centrale	38	218	76
7	Soletta inferiore	23	-132	248
8	Soletta inferiore	23	203	236
9	Soletta inferiore	23	339	187
10	Setto laterale	-44	324	253
11	Setto laterale	-24	-116	-58
12	Setto laterale	-1	111	131

O AFGHAIAFT	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pag. n. 55
	Rev.	2	Data Settembre 2012			

10.2. Inviluppo sollecitazioni SLU

DIAGRAMMA DI INVILUPPO DEL MOMENTO FLETTENTE

o aschatatt	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pag. n. 56
	Rev.	2	Data Settembre 2012			

DIAGRAMMA DI INVILUPPO DELLO SFORZO NORMALE

The end the new All	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pag p 57
	Rev.	2	Data Settembre 2012			Fay. II. 57

DIAGRAMMA DI INVILUPPO DELLO SFORZO DI TAGLIO

• Percenter to	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pag n 58
	Rev.	2	Data Settembre 2012			n ag. 11. 50

10.3. Inviluppo sollecitazioni SLE

DIAGRAMMA DI INVILUPPO DEL MOMENTO FLETTENTE

• Personal Provesting	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pag n 50
	Rev.	2	Data Settembre 2012			1 ag. n. 59

10.4. Verifiche a presso-flessione

Soletta superiore - Sezione 1

Parete centrale - Sezione 6

B = 1000 mm H = 300 mm A² = (7 + 1) = 1240 mm² A = (7 + 1) = 100

A's = 6.7 ϕ 16 = 1340 mm² As = 6.7 ϕ 16 = 1340 mm²

• Persent the second second	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 60
	Rev.	2	Data Settembre 2012			Fay. 11. 00

Soletta inferiore - Sezione 9

Parete laterale - Sezione 10

B = 1000 mm H = 300 mm A's = $6.7 \phi 16 + 6,7 \phi 16 + 3,3 \phi 18 = 3534 \text{ mm}^2$ As = $6.7 \phi 16 + 6,7 \phi 16 = 2694 \text{ mm}^2$

The serve and the serve as the	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pag p 61
	Rev.	2	Data Settembre 2012			Fay. 11. 01

10.5. Verifiche a taglio

Secondo quanto riportato nell'EC2 per elementi prevalentemente soggetti a carichi uniformemente distribuiti lo sforzo di taglio non deve essere verificato ad una distanza minore dell'altezza utile della sezione d misurata dala faccia dell'appoggio. Per le seguenti verifiche si utilizzaranno quindi gli sforzi di taglio a distanza d dall'appoggio.

Soletta superiore - Sezione 1

VERIFICA A TAGLIO SECONDO D.M. 2008	ED EURO	CODIC	E 2 (UN	I EN 1992 1-1)
Note e convenzioni				
N > 0 => trazione				
Dati di input			l	
Rck		35	N/mm^2	
fck		29	N/mm ²	
Valore medio della resistenza a trazione	f _{ctm} =	2,8	N/mm ²	= 0.3 x fck^(2/3)
Coefficiente sicurezza cls	γ_c =	1,5		
Coefficiente carichi lunga durata	$\alpha_{cc} =$	0,85		
fcd=resistenza di calcolo del cls	fcd =	16,46	N/mm^2	= $\alpha cc x fck / \gamma_c$
Resitenza caratteristica di snervamento acciaio	fyk =	450	N/mm^2	
Coefficiente sicurezza acciaio	γ _s =	1,15		
Snervamento di calcolo acciaio	fyd =	391	N/mm^2	= fyd / y _s
Forza di taglio di calcolo	Vsd =	144	kN	
Forza assiale di calcolo	Nsd =	0	kN	
Larghezza sezione	b _w =	100	cm	
altezza della sezione	H =	30	cm	
Copriferro	c =	3	cm	
Diametro barre superiori	$\phi_2 =$	16	mm	(armatura compressa)
Diametro barre inferiori	$\phi_1 =$	16	mm	(armatura tesa)
Diametro staffe	φst =	0	mm	
Numero di barre superiori	N ₂ =	6,7		
Numero di barre inferiori	N ₁ =	6,7		
altezza utile della sezione	d =	26,2	cm	
Resistenza di calcolo dell'elemento senza armatura	a taglio: Vr	d1	(rif. cap. 4	1.1.2.1.3.1 del D.M. 2008)
Vrd1= {[0.18 x k x (100 x ρ1 x fck)^(1/3) / γc] + 0.15 x σ	cp} x (bw x d)		
con Vrd1>= Vrd1min = {Vmin + 0.15 x σ cp} x (bw x d)				
K = 1+ (200 / d)^0.5 < 2.00	К=	1.87		
Vmin = 0.035 x K^1.5 x fck^0.5	Vmin =	0,48	N/mm^2	
ρ₁= A _{s1} /(b _w d)≤0.02				
As1=area delle armature di trazione che si estendono non meno di d+lbnet oltre la sezione considerata	As1= 01=	13,47	cm^2 =	1347 mm^2
σ _{cp} = -Nsd/Ac≤0.2fcd	- σ _{cp} =	0,00	N/mm^2	
	Vrd1=	145	kN	1
	Vrdmin =	127	kN	
	Vrd1 =	145	kN	OK! - VERIFICA SODDISFATTA

A HAR CE CONTRACTOR	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 62
	Rev.	2	Data Settembre 2012			Fay. 11. 02

Soletta inferiore - Sezione 7

VERIFICA A TAGL	IO SECO	NDO D.M. 2008	BED EUI	ROCODICE 2 (UNI E	N 1992 1-1)
Note e convenzioni					
N > 0 => trazione		Compilare le celle	in azzurro)	
Dati di input			1		
Rck		35	N/mm^2		
fck		29	N/mm^2		
Valore medio della resistenza a trazione	f _{ctm} =	2,8	N/mm^2	= 0.3 x fck ⁴ (2/3)	
Coefficiente sicurezza cls	γ _c =	1,5			
Coemiciente carichi lunga durata	$\alpha_{cc} =$	0,85	N/mmA2	= arcc x fck / m	
Resitenza caratterística di snervamento acciaio	fvk =	450	N/mm ^A 2		
Coefficiente sicurezza acciaio	γ _s =	1,15			
Snervamento di calcolo acciaio	fyd =	391	N/mm^2	= fyd /γ _s	
Forza di taglio di calcolo	Vsd =	248	kN		
Forza assiale di calcolo	NSa =	100	cm =	1000 mm	
altezza della sezione	H =	40	cm =	400 mm	
Copriferro	c =	3	cm		
Diametro barre superiori	φ ₂ =	16	mm	(armatura compressa)	
Diametro barre inferiori	$\phi_1 =$	20,5	mm	(armatura tesa)	
Numero di barre superiori	φsι = N ₂ =	6.7	1010		
Numero di barre inferiori	N ₁ =	6,7			
altezza utile della sezione	d =	34,175	cm =	341,75 mm	
Resistenza di calcolo dell'elemento senza armatura	a taglio: V	rd1	(rif can 4	1 2 1 3 1 del D M 2008)	
Resistenza di carcoro dell'elemento senza amatanti	u tugio. v		((iii: cup: +		
$ Vrd1 = \{ [0.18 x k x (100 x p1 x fck)^{(1/3)} / \gamma c] + 0.15 x c c c o Vrd1 >= Vrd1min = {Vmin + 0.15 x c c p} x (bw x d) $	cp} x (bw x	d)			
K = 1+ (200 / d)^0.5 < 2.00	к=	1,76			
Vmin = 0.035 x K^1.5 x fck^0.5	Vmin =	0,44	N/mm^2		
o₁= A₁//(b.d)≤0.02					
As1=area delle armature di trazione che si estendono	As1=	22,11	cm^2 =	2211,426 mm^2	
non meno di d+lbnet oltre la sezione considerata	p1=	0,0065			
=-Nsd/Ac≤0.2fcd	G=	0.00	N/mm^2		
	℃cp	0,00	1911111 2		
	Vrd1=	192	КN		
	Vrdmin = Vrd1 =	151	KN	OCCORRE ARMA	RE & TAGLIO
Desistanza di colo la della amente con armatura a	Analia		(4.0.4.3.0.del D.M. 2000)	
Resistenza di calcolo dell'elemento con armatura a	tagilo		(m. сар. 4	. 1.2. 1.3.2 dei D.IVI. 2008)	
Verifica delle bielle compresse: Vrcd					
Vrcd = [0.9 x d x bw x α c x fcd x (cotg α + cotg θ)] / [1 -	⊦ (cotgθ)^2]				
Definizione del coefficiente maggiorativoac		5 4	0.00	=> oc=	1 membrature non compresse
	0.00	=< _{Ocp} <	4,12	=> αC =	1.00
	4,12	=< ₀ <=	8,23	=> ac =	1,25
	8,23	< 0 _{cp} <	16,46	=> ac =	2,50 membrature fortemente compresse
Essendo	⊲ _{cp} =	0,00	N/mm^2	si assume quindi	α c = 1
Resistenza a compressione ridotta	fcd =	8,23	N/mm^2	= 0.5 x fcd	
Angolo di inclinazione dell'armatura a taglio	α =	45	•	(45° per ferri piegati e	90° per staffe)
	α =	0,79	rad		
Angolo di inclinazione dei puntoni compressi	θ =	28	0	(compreso tra 21.8° e	45°)
	Θ =	0,49	rad		
	Vrcd =	1607,37	kN	OK! - VERIFICA S	ODDISFATTA
Verifica dell'armatura a taolio: Vrsd					
Vrsd = 0.9 x d x (Asw / s) x fyd x ($\cot g\alpha + \cot g\Theta$) x $\sin \alpha$					
Passo delle staffe	s =	100	cm	1000 mm	
Diametro staffe	∳st =	18	mm		
Area armatura a taglio	n= Asw=	17.05	cm ^2	1705 mm^2	
Percentuale minima di armatura	p w,min =	0,0010	mm	= 0.08 x (Fck^0.5) / Fyk	1
Area minima di armatura a taglio	Aw,min =	677,54	mm^2	= pw,min x s x Bw x ser	a (EC2-Par.9.2.2)

Vrsd =

417,99 kN OK! - VERIFICA SODDISFATTA

C PERGERSON PEND	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 63
	Rev.	2	Data Settembre 2012			r ag. n. 05

Setto laterale - Sezione 10

VERIFICA A TAGL	IO SECO	NDO D.M. 2008	ED EU	ROCODICE 2 (UNI EN	N 1992 1-1)
Note a convenzioni			í.		
Note e convenzioni			and the second second second		
N > 0 => trazione	3	Compilare le celle	in azzurro		
Dati di input					
Rck		35	N/mm^2		
fck	0	29	N/mm^2	1110 DINEDIN	
Valore medio della resistenza a trazione	f _{ctm} =	2,8	N/mm^2	= 0.3 x fck*(2/3)	
Coefficiente sicurezza cis	Yc =	1,5			
foderesistenza di calcolo del cla	fed =	16.46	N/mm^2	= acc x fck / x	
Resitenza caratteristica di snervamento acciaio	fyk =	450	N/mm^2		
Coefficiente sicurezza acciaio	γ ₆ =	1,15			
Snervamento di calcolo acciaio	fyd =	391	N/mm^2	= fyd / ys	
Forza di taglio di calcolo	Vsd =	253	KN		
Forza assiale di calcolo	Nsd =	100	KN =	1000 mm	
allezza della sezione	ы. Н=	30	cm =	300 mm	
Copriferro	c =	3	cm		
Diametro barre superiori	φ ₂ =	16	mm	(armatura compressa)	
Diametro barre inferiori	φ1 =	20,5	mm	(armatura tesa)	
Diametro staffe	φst =	18	mm		
Numero di barre superiori	N =	0,7			
allezza utile della sezione	d =	24 175	cm =	241 75 mm	
		24,110	em		
Resistenza di calcolo dell'elemento senza armatura	a taglio: \	/rd1	(rif. cap. 4	.1.2.1.3.1 del D.M. 2008)	
Vrd1= ([0,18 x k x (100 x o1 x fck)^(1/3) / vc] + 0.15 x o	cn) x (hw x	(d)			
con Vrd1>= Vrd1min = { $Vmin + 0.15 \times ocp$ } x (bw x d)	ep; n (en n				
$K = 1+ (200 / d)^{0.5} < 2.00$	K =	1,91	h1/m == 4.2		
Vmin = 0.035 x K*1.5 x tck*0.5	vmin -	0,50	Numm-2		
ρ₁= A₅₁/(b _w d)≤0.02					
As1=area delle armature di trazione che si estendono	As1=	22,11	cm^2 =	2211,426 mm^2	
non meno di d-Ibnet oltre la sezione considerata	p1=	0,0091			
G=-Nsd/Ac≤0.2fcd	c.,=	0.00	N/mm^2		
	-(p				
	Vrd1=	165	KN		
	Vrdmin =	120	KN	OCCORDE ADMAR	E A TAGLIO
In the second	viui -	103			
Resistenza di calcolo dell'elemento con armatura a	taglio		(rif. cap. 4	.1.2.1.3.2 del D.M. 2008)	
Verifica delle bielle compresse: Vrcd			ř.		
Vrcd = $[0.9 \times d \times bw \times \alpha c \times fcd \times (cotg\alpha + cotg\Theta)] / [1 + $	· (colg0)^2]				
Definizione del coefficiente maggiorativo ac		Orn <	0.00	=> ac =	1 membrature non compresse
	0.00	=< _{Cen} <	4.12	=> ac=	1.00
	4.12	=< 0 m <=	8.23	=> ac =	1,25
	8,23	< 0,p <	16,46	=> ac =	2,50 membrature fortemente compresse
Essendo	o _{cp} =	0,00	N/mm ²	si assume quindi	α c = 1
Resistenza a compressione ridotta	fcd =	8.23	N/mm^2	= 0.5 x fcd	
Angolo di inclinazione dell'armatura a taglio	α =	45	0	(45° per ferri piegati e 9	0° per staffe)
	α =	0,79	rad		
Angolo di inclinazione dei puntoni compressi	θ=	28	0	(compreso tra 21.8° e 4	15°)
Angele a memazione del panioni compressi	Θ=	0,49	rad	(compress da zite e i	
	Vrcd =	1137,03	KN	OK! - VERIFICA SC	DDDISFATTA
Verifica dell'armatura a taglio: Vrsd			e e		
			52		
$v_{15a} = v_{.9} \times a \times (A_{5W} / s) \times Iya \times (colg \alpha + colg \theta) \times sin \alpha$					
Passo delle staffe	s =	100	cm	1000 mm	
Diametro staffe	∳st =	18	mm		
Braccia resistenti Area armatura a taolio	n= Asw=	6,70	cm ^2	1705 mm^2	
Percentuale minima di armatura	pw,min =	0,0010	mm	= 0.08 x (Fck*0.5) / Fyk	
Area minima di armatura a taglio	Aw,min =	677,54	mm^2	= pw,min x s x Bw x sen	x (EC2-Par.9.2.2)
	Vred =	205.62	kN	OKI . VERIEICA SC	DDISFATTA
	visu =	733,08	N/N	OR VERIFICA SC	JUSI ATTA

A Part and an and a r	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pag n 64
	Rev.	2	Data Settembre 2012			1 ag. n. 04

10.6. Verifiche di fessurazione

Le verifiche a fessurazione si effetuano solo per le sezioni più significative.

Soletta inferiore – Sezione 9

 $\begin{tabular}{|c|c|c|c|c|} \hline $Armatura & Armatura &$ c w1, w2, w3 sono definiti al § 4.1.2.2.4.1, il valore di calcolo wd, è definito al § 4.1.2.2.4.6.

Armatura

Tabella 4.1.IV - Criteri di scelta dello stato limite di fessurazione

Condizioni ambientali

Ordinarie

Aggressive

Molto aggressive

Gruppi di esigenze

a

ь

N Personal A	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pagin 65
	Rev.	2	Data Settembre 2012			Fag. 11. 05

Setto laterale – Sezione 10

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 4.1.IV – Criteri di scelta dello stato limite di fessurazione

Gruppi di esigenze	Condizioni ambientali	Combinazione di azioni	Armatura				
			Sensibile	Poco sensibile			
			Stato limite	Wd	Stato limite	Wd	
а	Ordinarie	frequente	ap. fessure	$\leq W_2$	ap. fessure	$\leq W_3$	
		quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	$\leq W_2$	
b	Aggressive	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$	
		quasi permanente	decompressione	-	ap. fessure	$\leq W_1$	
c	Molto aggressive	frequente	formazione fessure	-	ap. fessure	$\leq W_1$	
		quasi permanente	decompressione		ap. fessure	$\leq W_1$	

w1, w2, w3 sono definiti al § 4.1.2.2.4.1, il valore di calcolo wd, è defin to al § 4.1.2.

• • • • • • • • • • • • • • •	Rev.	1	Data Marzo 2011	EI.	A18-9-is300	Pag n 66
	Rev.	2	Data Settembre 2012			Fag. 11. 00

Setto laterale – Sezione 12

Tabella 4.1.III – Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 4.1.IV – Criteri di scelta dello stato limite di fessurazione

a	Condizioni ambientali	Combinazione di azioni	Armatura				
esigenze			Sensibile	Poco sensibile			
			Stato limite	Wd	Stato limite	Wd	
а	Ordinarie	frequente	ap. fessure	$\leq w_2$	ap. fessure	$\leq W_3$	
		quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	$\leq W_2$	
ь	Aggressive	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq W_2$	
		quasi permanente	decompressione	-	ap. fessure	$\leq W_1$	
c	Molto aggressive	frequente	formazione fessure	-	ap. fessure	$\leq W_1$	
		quasi permanente	decompressione		ap. fessure	$\leq W_1$	

w1, w2, w3 sono definiti al § 4.1.2.2.4.1, il valore di calcolo wd, è definito al § 4.1.2.2.4.6.