

RAGGRUPPAMENTO TEMPORANEO DI PROGETTISTI

PROGETTO ESECUTIVO

IMBOCCO

OPERE PROVVISIONALI

Relazione di calcolo

Fase	Ambito	Opera	Argomento		Progressivo	Tipo elaborato	Revisione
PE	IMB	OPR	GE		001	RC	A
Redatto		Controllato		Approvato		Scala	Data
C. Bartolu	ıcci	M. Ghidoli		P. Galva	nin	_	18/10/22

AIPO
Agenzia Interregionale per il fiume Po

IL RESPONSABILE UNICO DEL PROCEDIMENTO

Ing. M. Vergnani

RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE ALPINA S.p.A. PROGETTAZIONE_STRUTTURALE ALPINA S.p.A.

Ing. Paola Erba

Ing. Paolo Galvanin

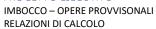
REV.	DATA	OGGETTO REVISIONE	REDATTO	CONTROLLATO	APPROVATO
А	18/10/2022	Prima emissione	CBA	MGI	PGA
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-

REV A

IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

SOMMARIO

1	PRE	MESSA	1
2	DOC	CUMENTI DI RIFERIMENTO	5
	2.1	Riferimenti normativi	5
	2.1.1	Leggi e Decreti	5
	2.1.2	Circolari Nazionali	5
	2.1.3	Regolamenti Regionali	5
	2.1.4	Norme Europee	5
	2.2	Documenti di progetto esecutivo	6
	2.3	Software di calcolo	7
3	REL	AZIONE SUI MATERIALI	8
	3.1	Calcestruzzo per strutture in cemento armato	8
	3.2	Acciaio per armatura lenta	
	3.3	Acciaio per carpenteria metallica	g
	3.4	Acciaio per tiranti	g
4	CAR	ATTERIZZAZIONE GEOTECNICA	
	4.1	Inquadramento generale	
	4.2	Stratigrafia e parametri geotecnici caratteristici	
	4.2.1		
	4.3	Livelli di falda	
5	DEF	INIZIONE DELLE AZIONI DI PROGETTO	
	5.1	Vita Nominale	
6	DES	CRIZIONE DELLE OPERE	
	6.1	Geometria delle opere e schemi di calcolo	
		TERI DI VERIFICA	
	7.1	Criteri di dimensionamento e modellazione delle opere	
	7.1.1		
		1.1.1 Combinazione statica SLU	
	7.	1.1.2 Combinazione statica SLE	23
8	BER	LINESE DI TESTATA Φ 193.7/12.5MM CON TIRANTI (5 TREFOLI)	24
	8.1	Schema di calcolo 'Sez.1-1'	26
	8.1.1	Modellazione geotecnica	26
	8.1.2	Descrizione delle fasi di calcolo	26



PROGETTO ESECUTIVO

REV A

8.1.3	Sintesi risultati allo SLE – Spostamenti	27
8.1.4	Sintesi analisi strutturale	27
8.1.4.1	Verifica strutturale micropalo SLU	28
8.1.4.2	Verifica strutturale trefoli tiranti SLU Comb. A1+M1+R3	28
8.1.4.3	Verifica strutturale trave di ripartizione tiranti	28
8.1.4.4	Verifica strutturale trave di coronamento in c.a	29
8.1.5	Verifica allo SLU di tipo GEO	30
8.1.5.1	Verifica di stabilità globale	30
8.1.5.2	Verifica della spinta a valle della paratia	31
8.1.5.3	Verifica sfilamento tirante	32
8.2 Sche	ema di calcolo 'Sez.2-2'	33
8.2.1	Modellazione geotecnica	33
8.2.2	Descrizione delle fasi di calcolo	33
8.2.3	Sintesi risultati allo SLE – Spostamenti	34
8.2.4	Sintesi analisi strutturale	34
8.2.4.1	Verifica strutturale micropalo SLU	35
8.2.4.2	Verifica strutturale trefoli tiranti SLU Comb. A1+M1+R3	35
8.2.4.3	Verifica strutturale trave di ripartizione tiranti	36
8.2.4.4	Verifica strutturale trave di coronamento in c.a	36
8.2.5	Verifica allo SLU di tipo GEO	36
8.2.5.1	Verifica di stabilità globale	36
8.2.5.2	Verifica della spinta a valle della paratia	36
8.2.5.3	Verifica sfilamento tirante	36
9 MURO PI	REFABBRICATO TIPO 'TENSITER'	38
10 PALITIP	O "A1-A2" Φ900/600 L=17M	39
10.1 Mod	ellazione geotecnica	40
	crizione delle fasi di calcolo	
	esi risultati allo SLE – Spostamenti	
	esi analisi strutturale	
	Verifica strutturale palo	
10.4.1.1		
10.4.1.2		
10.4.2	Verifiche allo SLU di tipo STR – Puntone Ø508/20mm L=12m	46

REV A

10.5	Verifica allo SLU di tipo GEO	47
10.	.5.1 Verifica della spinta a valle della paratia	47
11 PA	LI TIPO "B2" Φ 900/600 L=21.5M – FASE 1 (SCAVO LATO LAGO)	48
11.1	Modellazione geotecnica	49
11.2	Descrizione delle fasi di calcolo	50
11.3	Sintesi risultati allo SLE – Spostamenti	51
11.4	Sintesi analisi strutturale	51
11.	.4.1 Verifica strutturale palo	53
-	11.4.1.1 Gabbia 22⊕30	54
11.	.4.2 Verifiche allo SLU di tipo STR – Puntone Ø508/20mm L=3.7m (inc	linazione
45°	°) 55	
11.5	Verifica allo SLU di tipo GEO	56
11.	.5.1 Verifica della spinta a valle della paratia	56
12 PA	LI TIPO "B2" Φ 900/600 L=21.5M – FASE 2 (SCAVO LATO MONTE)	57
12.1	Modellazione geotecnica	58
12.2	Descrizione delle fasi di calcolo	59
12.3	•	
12.4	Sintesi analisi strutturale	60
12.	.4.1 Verifica strutturale palo	62
-	12.4.1.1 Gabbia 22⊕30	63
12.	.4.2 Verifiche allo SLU di tipo STR – Puntone Ø508/20mm L=5.5m (inc	linazione
45°	°) 64	
12.5	Verifica allo SLU di tipo GEO	
12.	.5.1 Verifica della spinta a valle della paratia	65
13 PA	LI TIPO "C1-C2" Φ900/600 L=21.5M	66
13.1	Modellazione geotecnica	67
13.2		
13.3	Sintesi risultati allo SLE – Spostamenti	69
13.4	Sintesi analisi strutturale	69
13.	.4.1 Verifica strutturale palo	
-	13.4.1.1 Gabbia 22⊕30	71
13.	.4.2 Verifiche allo SLU di tipo STR – Puntone Ø508/20mm L=5.5m (inc	linazione
45°	°) 72	
13.5	Verifica allo SLU di tipo GEO	73

Regione Lombardia

REV A

13.5.1	Verifica della spinta a valle della paratia	73
14 PALIT	TIPO "D1" Φ900/600 L=21.5M	74
14.1 M	odellazione geotecnica	75
14.2 De	escrizione delle fasi di calcolo	76
14.3 Si	ntesi risultati allo SLE – Spostamenti	77
14.4 Si	ntesi analisi strutturale	77
14.4.1	Verifica strutturale palo	78
14.4.2	Verifica strutturale trave di ripartizione SLU Comb. A1+M1-	+R379
14.4.3	Verifiche allo SLU di tipo STR – Puntone Ø508/20mm L=5.9	9m80
14.5 Ve	erifica allo SLU di tipo GEO	81
14.5.1	Verifica di stabilità globale	81
14.5.2	Verifica della spinta a valle della paratia	82
14.5.3	Verifica sfilamento tirante	82
15 TRAVE	DI CORONAMENTO SU PALI SECANTI	84
15.1 Tr	ave di coronamento a q.ta +365.9m	85
15.1.1	Modellazione comportamento nel piano orizzontale	85
15.1	.1.1 Sollecitazioni	88
15.1.	.1.2 Schemi armatura	90
15.1	.1.3 Verifica strutturale trave SLU	90
15.1.	.1.4 Verifica strutturale trave SLU (Mensola tozza)	92
15.2 Tr	ave di coronamento a q.ta +371.9m	96
15.2.1	Modellazione comportamento nel piano orizzontale	
15.2	.1.1 Sollecitazioni	101
15.2	.1.2 Schemi armatura	104
15.2	.1.3 Verifica strutturale trave SLU	105
15.2	.1.4 Verifica strutturale trave SLU (Mensola tozza)	111
15.2.2	Modellazione comportamento nel piano verticale	117
15.2		
15.2	.2.2 Schemi armatura	121
15.2		
	NCOLE METALLICHE PUNTONATE L430	
	chema di calcolo 'Sez.5-1'	
16.1.1	Modellazione geotecnica	
	=	

Regione Lombardia

REV A

16.1.2	Descrizione delle fasi di calcolo	134
16.1.3	Sintesi risultati allo SLE – Spostamenti	135
16.1.4	Sintesi analisi strutturale	136
16.1.4.	1 Verifiche allo SLU di tipo STR	136
16.1.5	Verifica allo SLU di tipo GEO	139
16.1.5.	1 Verifica di stabilità globale	139
16.1.5.	2 Verifica della spinta a valle della paratia	140
17 TAPPO [DI FONDO IN JET GROUTING – VERIFICA AL SOLLEVAMENTO	141
17.1 Pali	Secanti Tipo 'A1-A2'	141
17.2 Pali	Secanti Tipo 'B2' – Fase 1	142
17.3 Pali	Secanti Tipo 'B2' – Fase 2	143
17.4 Pali	Secanti Tipo 'C1-C2'	144
17.5 Pali	Secanti Tipo 'D1'	145
17.6 Pala	ncole Metalliche Puntonate	146
18 MONITO	RAGGIO	148
18.1 Sch	ema di monitoraggio	148
18.1.1	Frequenza delle letture	149
18.1.2	Valori di soglia e gestione dei dati	150
18.2 Cara	atteristiche tecniche strumentazione di monitoraggio	152
18.2.1	Mire ottiche per la misura degli spostamenti	152
18.2.2	Strain gauges	152
18.2.3	Celle di carico per tiranti	152
18.2.4	Tubi inclinometrici fissi	153

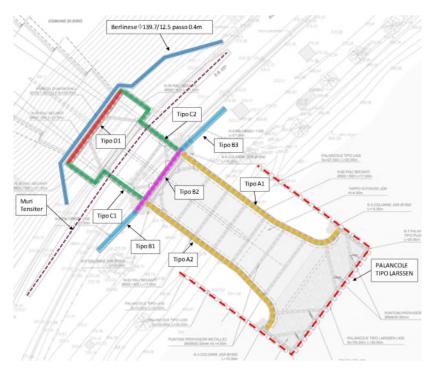
IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

1 PREMESSA

Oggetto della presente relazione è il dimensionamento a livello di progettazione esecutiva delle opere provvisorie previste nell'area di imbocco della galleria naturale lato Idro. Esse ricadono nell'ambito dei lavori delle Nuove opere di regolazione per la messa in sicurezza del lago d'idro.

L'imbocco della galleria idraulica lato Idro prevede la realizzazione di diverse opere strutturali che si estendono dal lago d'Idro fino a monte della Via Nazionale S.S. 237, interferendo con la S.S.237 stessa. Una vista d'insieme dell'intervento è rappresentata in Figura 1-1. Come si evince dalla planimetria, è prevista la realizzazione di opere provvisorie, necessarie al sostegno degli scavi durante le fasi di costruzione del manufatto di imbocco. La presente relazione riporta i criteri di dimensionamento e le verifiche statiche effettuate sulle opere strutturali provvisorie. I criteri di dimensionamento e le verifiche svolte delle opere definitive sono contenute nelle relazioni PE-IMB-OSD-TP-001-RC, PE-IMB-OSD-FP-001-RC e PE-IMB-OSD-FP-002-RC alle quali si rimanda per maggiori informazioni.

Figura 1-1 Opere provvisionali planimetria di progetto



IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

La struttura definitiva dell'imbocco è costituita da un manufatto avente due differenti configurazioni. In corrispondenza della SS 237, il manufatto prevede una sezione scatolare chiusa con setto centrale. A valle della paratia di pali frontale, il manufatto prevede due paratie definitive di pali secanti che si estendono sino all'interno del lago d'Idro e sagomano il canale ad 'U' per facilitare l'ingresso dell'acqua all'interno della galleria.

Le opere provvisionali previste per l'imbocco della galleria sono state raggruppate secondo il keyplan riportato di seguito:

TIPOLOGIA	Diametro/passo	Quota estradosso trave di	H trave di	Quota testa palo	L palo [m]
111 02001/1	[mm]	coronamento	coronamento [m]	[m slm]	L paio [iii]
		[m slm]			
Pali "A1"	900/600	365.9	1	364.9	17
Pali "A2"	900/600	365.9	1	364.9	17
Pali "B1"	900/1100	371.9	1.5	370.4	21.5
Pali "B2"	900/600	371.9	1.5	370.4	21.5
Pali "B3"	900/1100	371.9	1.5	370.4	21.5
Pali "C1"	900/600	371.9	1.5	370.4	21.5
Pali "C2"	900/600	371.9	1.5	370.4	21.5
Pali "D1"	900/600	371.9	1.5	370.4	21.5

TIPOLOGIA	Profilo	Quota testa palancola [m slm]	L palancola [m]	
Palancola	Larssen L430	368.5	20	

TIPOLOGIA	H muro [m]
Muri Tensiter	1.58÷5.50

TIPOLOGIA	Profilo/spessore/ passo [mm]	Quota estradosso trave di coronamento [m slm]	L berlinese [m]
Berlinese	Φ 139.7/sp. 12.5/passo 0.4m	374.40÷383.85	6÷16.5

Figura 1-2 Keyplan - Opere provvisionali

MESSA IN SICUREZZA DEL LAGO D'IDRO

IMBOCCO - OPERE PROVVISONALI

REV A

RELAZIONI DI CALCOLO

Si descrivono brevemente le tipologie individuate:

Berlinese di testata di micropali con tiranti

Per la realizzazione del primo concio della galleria naturale è necessaria la realizzazione di una berlinese di micropali che crei lo spazio necessario alle lavorazioni di cantiere. La paratia è composta da due tratti, uno frontale ed uno laterale. Il tratto frontale è a tergo del vano paratoie e permette di realizzare il pozzo per il fabbricato paratoie e delle annesse strutture di carattere definitivo; il tratto laterale è posto ad entrambi i lati del pozzo, ha andamento obliquo e permette di collegare il fabbricato paratoie con la S.S.237 realizzando la viabilità di accesso ed il muro di sostegno definitivo. Lo sviluppo complessivo dell'opera è pari a 52m circa.

La berlinese è costituita da micropali Ø139.7, di spessore 12.5mm, posti ad interasse 40cm. L'altezza di ritenuta varia da 3.2m ad un massimo di 12.65m. Conseguentemente, lungo lo sviluppo dell'opera sono previsti diversi da uno a cinque ordini di tiranti provvisori. Il collegamento tra tiranti e berlinese è realizzato con una trave di ripartizione costituita da 2 profili HEB200.

Il piano di lavoro per l'esecuzione dell'opera varia lungo lo sviluppo dell'opera stessa ed è posto ad una quota superiore della S.S.237 esistente. Il sostegno di questo materiale riportato dovrà essere garantito da una ulteriore opera provvisionale costituita da un muro prefabbricato tipo "Tensiter".

Muro prefabbricato in conci tipo Tensiter (o equi prestazionale)

Per il muro prefabbricato si prevedono moduli di altezza crescente da un minimo di 1.50m ad un massimo di 5.5m. Una volta solidarizzati i moduli alla platea di fondazione gettata in opera, a tergo del muro verrà realizzato un terrapieno fino alla quota del piano di lavoro 381.30m slm previsto per la berlinese con tiranti (≈9m da piano fondazione muro). Da quota testa muro a quota piano di lavoro berlinese, il terrapieno ha una pendenza di 4H:3V. Per dettagli in merito al dimensionamento di tale opera si rimanda alla relazione PE-IMB-OPR-GE-002-RC.

Pali tipo "D1", "C1", "C2"

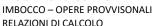
La realizzazione della berlinese con tiranti, a sostegno del terreno esistente, permette di iniziare le lavorazioni di cantiere per la costruzione delle opere di sostegno dell'imbocco della galleria e del pozzo del fabbricato paratoie.

Per l'imbocco della galleria si prevede una paratia di pali secanti di testata nominati come pali tipo 'D1' di diametro \emptyset 900, passo 0.6m e lunghezza 21.5m. Tale paratia è parallela al tratto frontale della berlinese tirantata ed è contrasta in testa da No. 2 puntoni metallici provvisori. I puntoni sono dei tubolari di diametro arnothing508, spessore 20mm e luce 6m. A circa 2m da quota testa palo è previsto un secondo ordine di puntoni metallici aventi le stesse caratteristiche del primo ordine. L'altezza totale di scavo è di circa 14.2m. Contro tale paratia verrà realizzata la dima di attacco della galleria naturale.

A sostegno del pozzo si prevedono due paratie di pali secanti nominati come pali tipo 'C1' e 'C2' di diametro Ø900, passo 0.6m e lunghezza 21.5m. L'altezza totale di scavo è di circa 13.3m. Tali paratie sono in continuità da un lato con la paratia di pali 'D1' e dall'altro con la paratia frontale di pali secanti tipo "B2". L'altezza di scavo è la medesima di quella dei pali tipo 'D1'.

Pali tipo "B1", "B2", "B3"

La paratia di pali secanti tipo "B2" è posizionata trasversalmente rispetto alla direzione di flusso della galleria ed è costituita da pali di diametro Ø900, passo 0.6m e lunghezza 21.5m. Tale paratia è contrastata in testa da puntoni metallici provvisori. I puntoni sono dei tubolari di diametro \emptyset 508, spessore 20mm. L'altezza totale di scavo è di circa 13.3m. Le paratie di pali



PROGETTO ESECUTIVO

tipo "B1" – "B3" forniscono continuità all'allineamento di pali tipo "B2", non svolgendo direttamente una funzione di ritenuta, in quanto non sono previsti scavi rilevanti al piede della stessa.

Le prime fasi esecutive per la realizzazione delle opere di imbocco, riguardano lo scavo della porzione di galleria lato lago, ovvero a valle della S.S. 237.

Si rende quindi necessaria l'esecuzione di una paratia di pali secanti a sostegno della S.S. 237. Tale paratia fungerà da sostegno anche nelle fasi successive (scavo pozzo – lato monte), nelle quali verrà deviata la viabilità a valle (zona in cui la galleria sarà già stata completata e rinterrata).

- Pali tipo "A1", "A2"

Paratia di pali secanti posta ai lati dei muri del manufatto definitivo costituita da pali tipo "A1", "A2" di diametro Ø900, passo 0.6m e lunghezza 17m. Tale paratia è contrastata in testa da puntoni metallici provvisori. I puntoni sono dei tubolari di diametro Ø508, spessore 20mm. L'altezza totale di scavo è di circa 7.3m.

- Palancole metalliche di tipo Larssen puntonate con puntoni metallici

o La paratia di palancole è posta nelle acque del lago e svolge il ruolo di 'cofferdam' a contenimento dell'acqua durante le fasi di costruzione delle strutture definitive. Le palancole sono costituite da profili tipo Larssen L430 (o equi prestazionali) di profondità L=20m, puntonate da profilati metallici circolari Ø508.20 di lunghezza variabile tra 6.15 e 9.0m, posti ad interasse 5.2m. Il collegamento tra puntoni e palancole è affidato ad una trave di ripartizione metallica di sezione composta da due profili HEB400 posta in asse ai puntoni metallici stessi.

Le tipologie di opere a valle della paratia frontale di cui sopra sono caratterizzate da scavi sotto la quota di falda. La falda è alla quota del Lago di Idro ed oscilla tra una quota di minima regolazione (o esercizio) pari a 364.75m ad una di massima regolazione di 368.0m slm. La quota fondo scavo del canale di imbocco è pari a 357.50m e 358.60m slm rispettivamente nella zona delle palancole metalliche parallele alla S.S.237 e nella paratia di pali frontali. Pertanto, il battente idraulico sulla quota di falda di esercizio risulta essere variabile tra 6.2 e 7.2m.

Allo scopo di contrastare la sottospinta idraulica nelle fasi di scavo, è prevista la realizzazione di un consolidamento con colonne in jet grouting tra la paratia di pali frontale e le palancole metalliche. Il trattamento jet si estende nella zona compresa tra la quota di fondo scavo dell'imbocco della galleria ed il piede delle opere provvisionali. Per maggiori dettagli sull'intervento jet si rimanda agli elaborati di 2.2.

IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

DOCUMENTI DI RIFERIMENTO

2.1 Riferimenti normativi

2.1.1 Leggi e Decreti

- Legge n.1086 del 05.11.1971 [1] Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica. G.U. n.321 del 21.12.1971
- [2] Legge n.64 del 02.02.1974 Prowedimenti per le costruzioni con particolari prescrizioni per le zone sismiche. G.U. n.76 del 21.3.1974
- [3] Decreto Ministero delle Infrastrutture del 17.01.2018 Norme tecniche per le costruzioni.
- [4] Decreto Ministero delle Infrastrutture e dei Trasporti del 26.06.2014 Norme tecniche per la progettazione degli sbarramenti di ritenuta (dighe e traverse). G.U. n. 156 del 08.07.2014

2.1.2 Circolari Nazionali

[5] Circolare del 21.01.2019 Consiglio Superiore dei Lavori Pubblici n. 7 Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018.

2.1.3 Regolamenti Regionali

Decreto Giunta Regionale – Regione Lombardia del 11.07.2014 Aggiornamento delle zone sismiche in Regione Lombardia.

2.1.4 Norme Europee

- [7] Eurocodice 1 "Azioni sulle strutture / Parte 1-7: Azioni generali — Azioni eccezionali" UNI EN 1991-1-7 - Settembre 2005
- Eurocodice 2 "Progettazione delle strutture in calcestruzzo / Parte 1-1: Regole generali e regole [8] per gli edifici" UNI EN 1992-1-1 - Novembre 2005
- [9] Eurocodice 7 (1997) – Progettazione geotecnica –Parte I: Regole Generali – UNI EN 1997- 1 Maggio 2009
- [10] Eurocodice 8 "Progettazione delle strutture per la resistenza sismica / Parte 1: Regole generali, azioni sismiche e regole per gli edifici" UNI EN 1998-1 - Marzo 2005
- Eurocodice 8 "Progettazione delle strutture per la resistenza sismica / Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici" UNI EN 1998-5 – Gennaio 2005

A MESSA IN SICUREZZA DEL LAGO D'IDRO

REV A

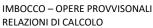
IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

- [12] Norma UNI EN 206-1:2016 "Calcestruzzo / Parte 1 : Specificazione, prestazione, produzione e conformità"
- [13] Norma UNI 11104:2016 "Calcestruzzo Specificazione, prestazione, produzione e conformità - Specificazioni complementari per l'applicazione della EN 206-1"

2.2 Documenti di progetto esecutivo

Di seguito si riportano gli elaborati grafici di riferimento dell'intervento in progetto a cui si rimanda per tutte le indicazioni di dettaglio.

	Imbocco	
	Opere strutturali definitive	
	Generali	
PE-IMB-OSD-GE-001-PL	Planimetria di progetto	1:200
PE-IMB-OSD-GE-002-PZ	Pianta e sezione longitudinale	1:100
PE-IMB-OSD-GE-003-SZ	Sezioni trasversali	1:100
PE-IMB-OSD-GE-004-PL	Planimetria di tracciamento soletta di fondazione	1:100
PE-IMB-OSD-GE-005-FE	Fasi esecutive: planimetria e sezioni - Tav. 1/5	1:200
PE-IMB-OSD-GE-006-FE	Fasi esecutive: planimetria e sezioni - Tav. 2/5	1:200
PE-IMB-OSD-GE-007-FE	Fasi esecutive: planimetria e sezioni - Tav. 3/5	1:200
PE-IMB-OSD-GE-008-FE	Fasi esecutive: planimetria e sezioni - Tav. 4/5	1:200
PE-IMB-OSD-GE-009-FE	Fasi esecutive: planimetria e sezioni - Tav. 5/5	1:200
	Tratto di presa	
PE-IMB-OSD-TP-001-RC-A	Relazione di calcolo	-
PE-IMB-OSD-TP-002-CP-A	Carpenteria e particolari costruttivi - Tav. 1/2	1:100 / 1:20
PE-IMB-OSD-TP-003-CP-A	Carpenteria e particolari costruttivi - Tav. 2/2	1:50
PE-IMB-OSD-TP-004-AR-A	Armatura - Tav. 1/2	1:50
PE-IMB-OSD-TP-005-AR-A	Armatura - Tav. 2/2	1:50
	Fabbricato paratoie	
PE-IMB-OSD-FP-001-RC-A	Camera paratoie - Relazione di calcolo	-
PE-IMB-OSD-FP-002-RC-A	Muri piazzale - Relazione di calcolo	-
PE-IMB-OSD-FP-003-PZ-A	Camera paratoie - Piante e sezioni	1:100
PE-IMB-OSD-FP-004-PL-A	Planimetria di progetto e tracciamento	1:100
PE-IMB-OSD-FP-005-CP-A	Camera paratoie - Carpenteria - Tav. 1/2	1:50
PE-IMB-OSD-FP-006-CP-A	Camera paratoie - Carpenteria - Tav. 2/2	1:50
PE-IMB-OSD-FP-007-AR-A	Camera paratoie - Armatura - Tav. 1/2	1:50
PE-IMB-OSD-FP-008-AR-A	Camera paratoie - Armatura - Tav. 2/2	1:50
PE-IMB-OSD-FP-009-CP-A	Muri piazzale - Carpenteria	1:50
PE-IMB-OSD-FP-010-AR-A	Muri piazzale - Armatura - Tav. 1/2	1:50
PE-IMB-OSD-FP-011-AR-A	Muri piazzale - Armatura - Tav. 2/2	1:50
PE-IMB-OSD-FP-012-FE-A	Fasi esecutive: Camera paratoie	1:100
	Opere provvisionali	
PE-IMB-OPR-GE-001-RC-A	Relazione di calcolo	=
PE-IMB-OPR-GE-002-RC-A	Muri prefabbricati provvisori - Relazione di calcolo	=
PE-IMB-OPR-GE-003-PL-A	Planimetria di progetto	1:200
PE-IMB-OPR-GE-004-PT-A	Planimetria di tracciamento	1:100
PE-IMB-OPR-GE-005-PZ-A	Pianta e sviluppate - Tratto lago	1:100
PE-IMB-OPR-GE-006-PZ-A	Pianta e sviluppate - Tratto monte	1:100



PROGETTO ESECUTIVO

REV A

PE-IMB-OPR-GE-007-SZ-A	Sezioni - Tratto lago	1:100
PE-IMB-OPR-GE-008-SZ-A	Sezioni - Tratto monte	1:100
PE-IMB-OPR-GE-009-CA-A	Pali - Carpenteria e armatura	1:100 / 1:25
PE-IMB-OPR-GE-010-CA-A	Travi di coronamento - Carpenteria e armatura	1:100 / 1:20
PE-IMB-OPR-GE-011-DT-A	Particolari costruttivi	VARIE
PE-IMB-OPR-GE-012-PZ-A	Muri prefabbricati provvisori - Disegni generali e tracciamento	VARIE
PE-IMB-OPR-GE-013-CA-A	Muri prefabbricati provvisori - Carpenteria e armatura	VARIE
PE-IMB-OPR-GE-014-DT-A	Tappo di fondo in Jet-Grouting	VARIE
	Viabilità	
PE-IMB-VIA-GE-001-PZ-A	Deviazione provvisoria - Planimetria, profilo e sezioni tipo	VARIE
PE-IMB-VIA-GE-002-SZ-A	Deviazione provvisoria - Sezioni trasversali	1:200
PE-IMB-VIA-GE-003-PL-A	Sistemazione definitiva - Planimetria	1:250
PE-IMB-VIA-GE-004-PF-A	Sistemazione definitiva - Profilo, sezioni tipo e particolari	VARIE
PE-IMB-VIA-GE-005-SZ-A	Sistemazione definitiva - Sezioni trasversali	1:200

Tabella 1: Elenco elaborati – Imbocco – Generali e Opere provvisionali

2.3 Software di calcolo

Per eseguire le analisi numeriche riportate nella presente relazione sono stati impiegati i seguenti software:

- Software di calcolo agli elementi finiti (FEM) per il calcolo delle paratie e della stabilità globale: PARATIE PLUS 2022 (Versione 22.0.8) della Harpaceas;
- Verifica delle Sezioni in c.a.: RC-Sec della Geostru Software di Reggio Calabria (Versione 2021.11)

PER LA MESSA IN SICUREZZA DEL LAGO D'IDRO

NUOVE OPERE DI REGOLAZIONE

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

RELAZIONE SUI MATERIALI

Si riporta di seguito l'elenco con le caratteristiche principali dei materiali utilizzati per il dimensionamento e le verifiche dei vari elementi costituenti il manufatto. I materiali per le strutture in cemento armato sono differenziati in relazione alle loro funzioni.

3.1 Calcestruzzo per strutture in cemento armato

Pali e travi di ripartizione

Classe di resistenza C25/30 Classe di esposizione XC2 S4/S5 Classe di consistenza 0.60 Massimo rapporto A/C 25 mm. Diametro massimo dell'aggregato Copriferro nominale 40 mm

Miscela cementizia per tiranti/micropali

Classe di resistenza C25/30

 $R_{ck} \ge 30 N/mm^2$ Resistenza caratteristica cubica XC4-XA2 Classe di esposizione 0,50 Massimo rapporto A/C Cemento tipo 42.5R

Soletta di copertura

Classe di resistenza C32/40

R_{ck} ≥40N/mm² Resistenza caratteristica cubica Resistenza caratteristica cilindrica $f_{ck} \ge 33,20 \text{N/mm}^2$

Classe di esposizione XC4-XA2

Classe di consistenza S4 (slump 160 ÷ 210 cm)

Diametro massimo dell'aggregato 20 mm Massimo rapporto A/C 0,50 Contenuto minimo di cemento 340 kg/m³ Copriferro nominale 40 mm

Elevazioni (setti e muri)

Classe di resistenza C32/40

Resistenza caratteristica cubica $R_{ck} \ge 40 N/mm^2$ Resistenza caratteristica cilindrica $f_{ck} \ge 33,20 \text{N/mm}^2$

XC4-XA2 Classe di esposizione

S4 (slump 160 ÷210mm) Classe di consistenza

Diametro massimo dell'aggregato 20 mm Massimo rapporto A/C 0,50 340 kg/m³ Contenuto minimo di cemento Copriferro nominale 40 mm

Platea di fondazione

Classe di resistenza C32/40

 $R_{ck} \ge 40 N/mm^2$ Resistenza caratteristica cubica Resistenza caratteristica cilindrica $f_{ck} \ge 33,20 \text{N/mm}^2$

XC4-XA2 Classe di esposizione

S4 (slump 160 ÷210mm) Classe di consistenza

25 mm Diametro massimo dell'aggregato

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

 $\begin{array}{ll} \text{Massimo rapporto A/C} & 0,50 \\ \text{Contenuto minimo di cemento} & 340 \text{ kg/m}^3 \\ \text{Copriferro nominale} & 40 \text{ mm} \end{array}$

Magrone di pulizia e livellamento

Classe di resistenza C12/15

Resistenza caratteristica cubica R_{ck} ≥15 N/mm² Resistenza caratteristica cilindrica f_{ck} ≥12,45 N/mm²

Contenuto minimo di cemento 150 kg/m³

3.2 Acciaio per armatura lenta

Per le armature metalliche si adottano tondini in acciaio del tipo B450C saldabile, che presentano le seguenti caratteristiche:

Tipo di acciaio B450C

Tensione caratteristica di snervamento $f_{yk} \ge 450 \text{ N/mm}^2$ Tensione caratteristica di rottura $f_{tk} \ge 540 \text{ N/mm}^2$ Rapporto tensioni caratteristiche $f_{tk} \ge 540 \text{ N/mm}^2$ Rapporto tensioni di snervamento $f_{tk} \ge 540 \text{ N/mm}^2$ $f_{tk} \ge 640 \text{ N/mm}^2$ $f_{tk} \ge 640 \text{ N/mm}^2$

3.3 Acciaio per carpenteria metallica

Armature per c.a. B450C
Per carpenteria metallica opere provvisionali S355
Per palancole provvisionali S355GP

3.4 Acciaio per tiranti

Trefoli diametro nominale (pollici) 0.6" (15.24 mm)
Sezione nominale 139 mm²

Acciaio per tiranti in trefoli da 0.6" stabilizzati:

tensione caratteristica a rottura fptk ≥ 1870 MPa

IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

CARATTERIZZAZIONE GEOTECNICA

4.1 Inquadramento generale

Per un quadro completo delle condizioni geotecniche ed idrogeologiche dell'opera si rimanda ai seguenti documenti di progetto esecutivo:

PE-000-GEO-IN-001-RT-A Relazione Tecnica Indagini Geognostiche Progetto Esecutivo PE-000-GEO-II-002-RG-A Relazione Generale indagini integrative PE-000-GEO-GG-001-RH Relazione Geologica ed Idrogeologica PE-000-GEO-GG-002-RB Relazione di Caratterizzazione Geomeccanica PE-000-GEO-GG-003-RB Relazione di Caratterizzazione Geotecnica

PE-000-GEO-SS-001-RH Relazione Sismica

4.2 Stratigrafia e parametri geotecnici caratteristici

L'intervento trattato nella presente relazione si riferisce alle opere provvisionali all'imbocco della galleria di bypass in corrispondenza del fabbricato paratoie, a valle della S.S. 237. Le opere in progetto saranno realizzate nei depositi detritici di versante che sono costituiti da ghiaie grossolane con clasti spigolosi con sfericità bassa, immersi in matrice sabbioso – limosa. Sono presenti frequenti porzioni cementate, ben visibili in affioramento.

Di seguito si riporta invece uno stralcio del profilo geologico del terreno interessato dall'opera ed i relativi parametri geotecnici utilizzati nel dimensionamento delle opere oggetto della presente relazione.

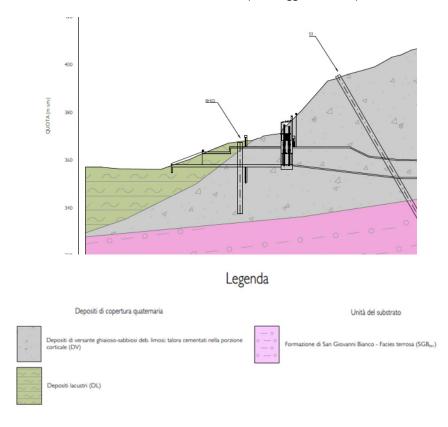


Figura 4-1 Sezione geologica imbocco nord

REV A

IMBOCCO_LATO MONTE S.S. 237_a partire da quota 383.6m slm								
Stratigrafia		Profondità		Proprietà fisiche e meccaniche			aniche	
				γn	φ'	c'	E25 (operativo)	
			da [m]	a [m]	[kN/m ³]	[°]	[kPa]	[MPa]
		Ghaia sabbiosa G,S ,L debolmente limosa	0	5	20	40	0	60
Strato 2	G,S ,L		5	25	20	41	0	90
			25	>	20	40	0	130

Tabella 2 Stratigrafia e parametri geotecnici caratteristici – Lato Monte S.S. 237

		IMBOCCO_LAT	O VALLE S.	artire da quota	372.7m sln	n		
Stratigrafia		Profondità		Prop	orietà fisic	he e mecc	aniche	
	·				γn	φ'	c'	E25 (operativo)
			da [m]	a [m]	[kN/m ³]	[°]	[kPa]	[MPa]
			0	2	20	40	0	20
	G,S ,AL	Ghaia sabbiosa G,S ,AL debolmente Iimosa	2	14	20	41	0	80
Strato 2			14	15.5	20	39	0	15
			15.5	30	20	40	0	130

Tabella 3 Stratigrafia e parametri geotecnici caratteristici – Lato Valle S.S. 237

4.2.1 Parametri geotecnici del terreno trattato

I parametri di riferimento utilizzati negli schemi di calcolo per simulare la presenza del terreno trattato sono indicati di seguito.

Iniezioni consolidamento per avanzamento galleria naturale

Strato: DDv_2 Sabbia/ghiaia

o modulo Ec50 del terreno consolidato

o coesione del terreno consolidato c' ≥ 150 kPa

Consolidamento jet sotto quota fondo scavo pozzo

Strato: DDv_2 Sabbia/ghiaia

o coesione del terreno consolidato

o modulo Ec50 del terreno consolidato

c' ≥ 750 kPa

Evc ≥ 90*16.7 = 1500 MPa

Evc ≥ 90*1.7 = 153 MPa

IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

Regione Lombardia

REV A

4.3 Livelli di falda

Nell'area di imbocco della galleria naturale la quota di falda è fissata dal livello dell'acqua del lago d'Idro che oscilla tra un livello di minima ed uno di massima regolazione rispettivamente pari a 366.08m slm e 368.00m slm.

Per il dimensionamento delle tipologie di strutture oggetto della presente relazione, la posizione della falda è assunta alle quote seguenti:

- Berlinese di pali con tiranti:
 - o Le quote di falda di esercizio e massima regolazione sopra descritte risultano essere inferiori alla quota di fondo scavo prevista per tale opera.
- Muro di sostegno a mensola prefabbricato
 - o la quota di intradosso fondazione muro è al di sopra della quota di massima regolazione del Lago. Per maggiori dettagli si rimanda alla relazione di calcolo PE-IMB-PAR-GE-002-RC.
- Pali secanti "D1" "C1" "C2" "B2"
 - o La quota della falda è stata assunta alla quota di massima regolazione di 368.0m slm
- Pali secanti "A1" "A2"
 - o La quota della falda è stata assunta alla quota di regolazione lago a 365.65m slm
- Palancole metalliche di tipo Larssen puntonate.
 - O Come accennato in §1, la falda è alla quota del Lago di Idro ed oscilla tra una quota di minima regolazione (o esercizio) pari a 364.75m ad una di massima regolazione di 368.0m slm. La quota di esercizio è stata utilizzata per la verifica a sollevamento del tampone di fondo in jet grouting. La quota di massima regolazione è stata invece utilizzata per le verifiche strutturali e geotecniche delle palancole metalliche.

IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

REV A

5 DEFINIZIONE DELLE AZIONI DI PROGETTO

Si riportano di seguito le caratteristiche dell'opera strutturale secondo quanto esposto nelle "Norme tecniche per le costruzioni" – D.M. 17/01/2018 (NTC 2008) [3], e in accordo con lo specifico D.M. 26/06/2014 – "Norme tecniche per la progettazione degli sbarramenti di ritenuta (dighe e traverse)" [4].

5.1 Vita Nominale

La vita nominale di un'opera strutturale V_N è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve poter essere usata per lo scopo al quale è destinata.

TIPI DI COSTRUZIONE	V _N (anni)
1 - Opere provvisorie	≤ 10
2 - Opere ordinarie	≥ 50
3 - Grandi opere	≥ 100

Tabella 4 Tipo e vita nominale V_N dell'opera

Nel caso in esame si è fatto riferimento al tipo 3 – Grandi opere - con vita nominale pari a V_N = 100 anni. Ai sensi del paragrafo 2.4.1 delle NTC2018, la verifica sismica può essere omessa in quanto il tempo di realizzazione previsto per le opere provvisionali in esame è inferiore a 2 anni.

MESSA IN SICUREZZA DEL LAGO D'IDRO

IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

DESCRIZIONE DELLE OPERE

6.1 Geometria delle opere e schemi di calcolo

La costruzione della soglia di imbocco della galleria artificiale e del primo tratto di galleria naturale lato lago richiedono la realizzazione di opere provvisionali per mettere in secca l'area di cantiere e conseguentemente la realizzazione di opere di sostegno definitive. Le opere in esame si estendono dal lago d'Idro fino a monte della Via Nazionale S.S. 237, interferendo con la S.S. 237 stessa.

Le opere provvisionali previste all'imbocco della galleria naturale sono le seguenti:

- Berlinese di testata di micropali con tiranti
 - costruzione del fabbricato paratoie e delle strutture definitive ad esso annesse. Inoltre, modifica l'orografia del terreno esistente in previsione della realizzazione del muro di sostegno definitivo posto lungo la S.S.237 esistente ad entrambi i lati del fabbricato paratoie. La berlinese è costituita da micropali Ø139.7mm, di spessore 12.5mm, posti ad interasse 40cm. L'altezza di ritenuta varia da 3.2m ad un massimo di 12.65m. Conseguentemente, lungo lo sviluppo dell'opera sono previsti diversi da uno a cinque ordini di tiranti provvisori. Il collegamento tra tiranti e berlinese è realizzato con una trave di ripartizione costituita da 2 profili HEB200. La quota del piano di lavoro per l'esecuzione dell'opera varia lungo lo sviluppo dell'opera stessa e raggiunge una quota massima di 8.4 m dal piano stradale. Pertanto, è

Come anticipato nel Par. §1, la berlinese ha funzione di creare l'area di cantiere necessaria alla

Per il dimensionamento dell'opera sono state considerate No.2 sezioni di verifica avente le caratteristiche riassunte nella seguente.

necessario creare una berma di terreno a lato del pendio esistente. Vista la vicinanza della strada S.S. 237 e dell'area di cantiere, il sostegno di tale berma dovrà essere garantito da una ulteriore opera provvisionale costituita da un muro prefabbricato tipo "Tensiter". Nella Figura

Sezione di riferimento	No. Ordini tiranti	Quota piano di lavoro	Quota fondo scavo	Altezza di ritenuta	
Sez. 1-1	4	382.40m slm	371.90m slm	10.5m	
Sez. 2-2	5	383.85m slm	371.90m slm	11.95m	

6-1 seguente è riportata alcuni stralci degli elaborati grafici di progetto.

Tabella 5 Berlinese di testata con tiranti – Caratteristiche principali

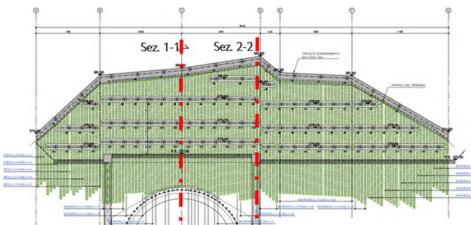
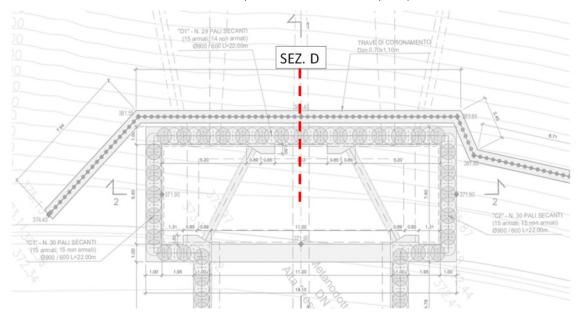


Figura 6-1 Berlinese di micropali con tiranti – Sviluppata

IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

Muro prefabbricato in conci tipo Tensiter (o equi prestazionale)

Per dettagli in merito al dimensionamento di tale opera si rimanda alla relazione PE-IMB-OPR-GE-002-RC.


Pali tipo "D1"

La realizzazione della berlinese con tiranti consente la creazione di un piano di lavoro a quota 371.90m slm. Da tale quota, si procederà alla costruzione del pozzo di pali del fabbricato paratoie che sostiene lo scavo fino al raggiungimento della quota di imposta della dima prevista a 357.72m slm, 14.2m al di sotto del piano di lavoro. Il pozzo è costituito da tre allineamenti di pali secanti di diametro Ø900, passo 0.6m e lunghezza 21.5m. Negli elaborati di progetto di Par. §2.2 tali pali sono nominati come 'Pali tipo D1'.

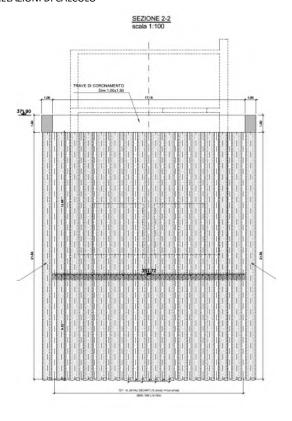
I Pali tipo "D1" sono disposti paralleli al tratto frontale della berlinese tirantata e sono contrastati in testa da No. 2 puntoni metallici provvisori. I puntoni sono dei tubolari di diametro Ø508, spessore 20mm e luce 6m. A collegamento dei puntoni è prevista una trave di ripartizione di sezione 1x1.5m che delimita lo scavo dell'imbocco. I medesimi puntoni metallici provvisori sono previsti anche a circa 2m da quota testa palo.

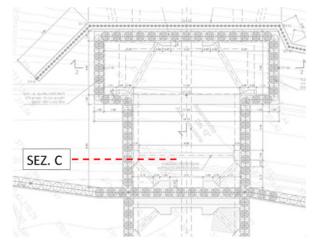
Sezione di riferimento	Battente idraulico (m)	Geometria opera di sostegno	Profondità max. scavo (m)
Sez. D	368.0- 357.72= 10.28m	Pali secanti Ø900/600, L=21.5m No. 2 ordini di puntoni Ø508, sp.20mm L=6m (inclinati a 60°)	371.9-357.72 = 14.2m

Tabella 6 Pali tipo "D1" - Caratteristiche principali

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO




Figura 6-2 Pali tipo "D1" – Pianta e sezione

- Pali tipo "C1-C2"

Ortogonali ai 'Pali tipo D1', sono previsti due allineamenti di pali indicati come 'Pali tipo C1' e 'Pali tipo C2' aventi le medesime dei 'Pali tipo D1' ad esclusione dei puntoni metallici provisori che non sono previsti.

Sezione di	Battente	Geometria opera di sostegno	Profondità max.
riferimento	idraulico (m)		scavo (m)
Sez. C	368.0-358.6= 9.4m	Pali secanti Ø900/600, L=21.5m No. 1 ordine di puntoni Ø508, sp.20 L=5.5m (inclinati a 45°)	371.9-358.6 = 13.3m

Tabella 7 Pali tipo "C1"-"C2" - Caratteristiche principali

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

REV A

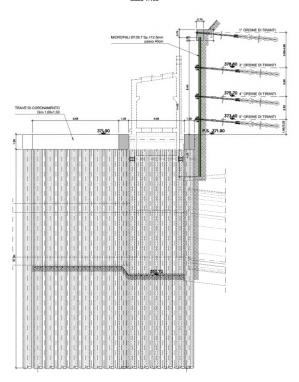
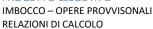


Figura 6-3 Pali tipo "C1"-"C2" – Pianta e sezione

- Pali tipo "B2"

- o Si tratta di una paratia di pali di diametro Ø900, passo 0.6m e lunghezza 21.5m, disposti su una sola fila con due ordini di puntoni metallici, eseguiti in fasi temporali diverse, in accordo alle fasi esecutive delle opere di imbocco:
 - Fase 1: scavo (lato Lago) per la realizzazione del piano di lavoro a quota +365.90m slm. La paratia di pali tipo "B2" sostiene la parete frontale di scavo. Una volta raggiunto il piano di lavoro a +365.90, vengono eseguite le paratie di pali "A1"-"A2" (ortogonali al tratto "B2") con un ordine di puntoni metallici in testa alla trave di coronamento, permettendo quindi il completamento dello scavo, con il raggiungimento della quota di intradosso scatolare +358.60m slm.
 - Fase 2: scavo (lato Monte). La paratia di pali tipo "B2" sostiene il terrapieno di riempimento e il traffico della deviazione stradale. Lo scavo lato monte prevede un ordine di puntoni in testa alla trave di coronamento. Lo scavo prevede il raggiungimento della quota di intradosso scatolare +358.60m slm.



PER LA MESSA IN SICUREZZA DEL LAGO D'IDRO

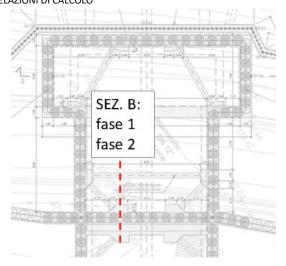


Figura 6-4 Pali tipo "B2" – Pianta - viste e sezioni

Pali tipo "A1-A2"

Le paratie di pali tipo "A1"-"A2" sono collocate ai lati del manufatto di imbocco nella tratta a valle della S.S. 237. Vengono realizzate durante le prime fasi esecutive a partire dal piano di lavoro a quota +365.90m slm. Si prevede un ordine di puntoni metallici in testa alla trave di coronamento, al fine di consentire l'abbassamento del piano di lavoro alla quota 358.60 m.s.l.m.

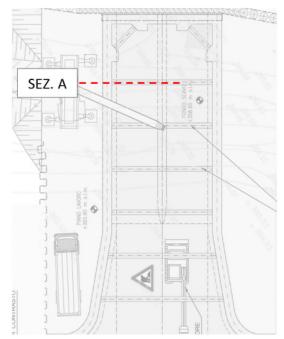


Figura 6-5 Pali tipo "A1"-"A2" – Pianta - viste e sezioni

Palancole metalliche di tipo Larsen puntonate con puntoni metallici

Il palancolato metallico provvisionale è un'opera necessaria a contenere la spinta dell'acqua durante le fasi di scavo dell'imbocco prevista a 357.50 e 358.60m slm. Il palancolato ha una forma ad "U" a delimitare perfettamente l'imbocco lato lago e si sviluppa su un tratto fronte lago lungo 25.5m e due tratti laterali di circa 24.7m ciascuno. Le palancole sono costituite da profili Larssen L430, lunghezza 20.00m e quota testa di 368.50m slm.

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

o Il palancolato è contrastato da puntoni metallici provvisori costituiti da No.4 profili tubolari cavi Ø508 spessore 20mm. I puntoni hanno interasse di circa 5.2m, luce di 6.2m o 9m, quota asse 365.40m, inclinati a 45° e 50° in pianta. Il collegamento tra puntoni metallici e palancole è realizzato con una trave di ripartizione costituita da due profili HEB400 accoppiati con le ali disposte lungo la trave di ripartizione.

Sezione di riferimento	Battente idraulico (m)	Geometria opera di sostegno	Profondità massima scavo (m)
1	365.65-357.5= 8.15m	Palancole Larssen L430 L=20m	365.90-357.5 = 8.4m

Tabella 8 Caratteristiche Palancole metalliche

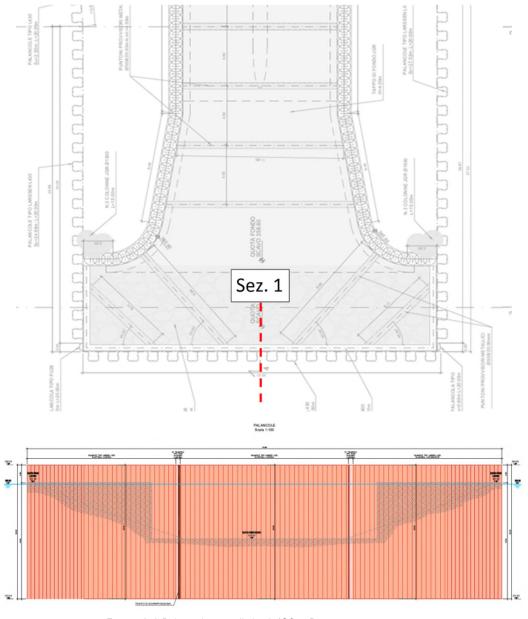


Figura 6-6 Palancole metalliche L430 – Pianta - viste e sezioni

IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

- Tappo di fondo in jet grouting

o Alla fine di contrastare la sottospinta idraulica nelle fasi di scavo, è prevista la realizzazione di un trattamento con colonne in jet grouting a singolo strato. Il diametro delle colonne previsto è pari a 1.50m. Le colonne verranno disposte secondo una maglia triangolare equilatera di lato pari a 1.09m. In ogni caso si prescrive un campo prove preliminare. Per la verifica geotecnica a sollevamento di tale intervento si rimanda al paragrafo §17.

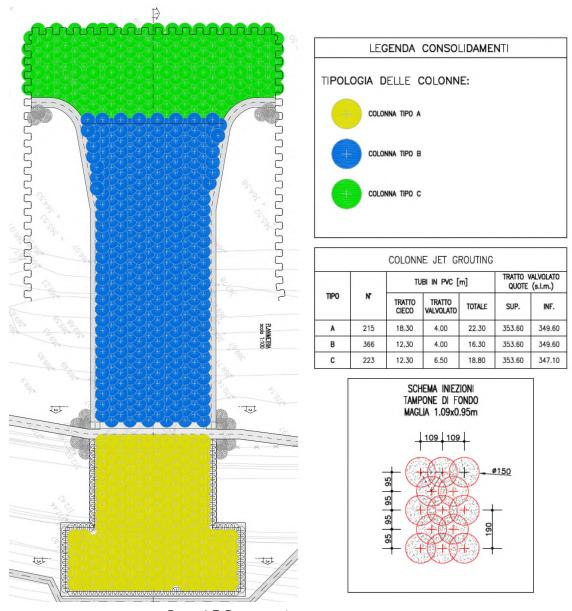


Figura 6-7 Caratteristiche intervento jet grouting

PROGETTO ESECUTIVO

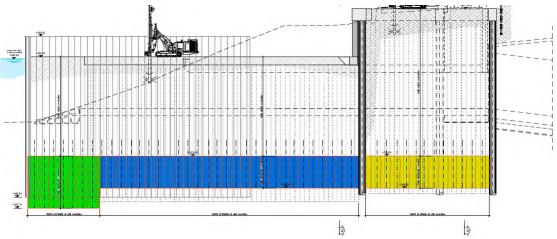


Figura 6-8 Sezione 1-1

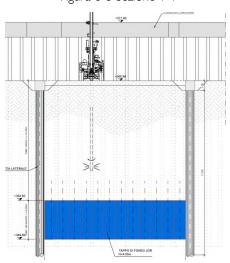


Figura 6-9 Sezione 2-2

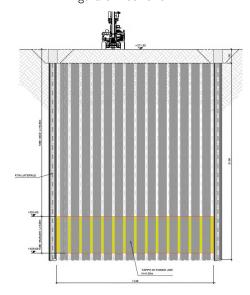


Figura 6-10 Sezione 3-3

IMBOCCO – OPERE PROVVISONAL
RELAZIONI DI CALCOLO

REV A

7 CRITERI DI VERIFICA

Le analisi di calcolo applicate per il dimensionamento degli elementi costituenti il canale di sbocco si basano sui criteri sia di tipo statico che dinamico. Si riporta di seguito le caratteristiche dei metodi adottati per la determinazione delle sollecitazioni e le relative verifiche.

7.1 Criteri di dimensionamento e modellazione delle opere

7.1.1 Analisi Statica

La schematizzazione di calcolo delle strutture progettate, il calcolo dei parametri di sollecitazione e la valutazione delle tensioni e delle deformazioni, allo scopo di ottenere la garanzia di una sicurezza permanente e uniforme dell'opera, sono stati effettuati secondo i metodi della scienza delle costruzioni e della teoria dell'elasticità. Si sono analizzate le combinazioni più sfavorevoli delle condizioni elementari di carico al fine di individuare i valori massimi e minimi delle sollecitazioni cercate.

Il calcolo è stato eseguito in conformità alla vigente normativa tecnica e più precisamente alle già citate "Norme tecniche per le costruzioni" - D.M. 17/01/2018 (G.U. n.29 del 04/02/2008), ricorrendo al metodo degli Stati Limite.

7.1.1.1 Combinazione statica SLU

Le combinazioni adottate per le verifiche statiche allo stato limite ultimo sono:

Combinazione fondamentale

$$F_d = \sum_{i=1}^{ng} \gamma_{gi} \cdot G_{ki} + \gamma_{q1} \cdot Q_{1k} + \sum_{i=2}^{nq} \gamma_{qi} \cdot \psi_{0i} \cdot Q_{ik}$$

Combinazione eccezionale

$$F_d = A_d + \sum_{i=1}^{ng} G_{ki} + \sum_{i=2}^{nq} \psi_{2i} \cdot Q_{ik}$$

dove:

Gki è il valore caratteristico delle azioni permanenti

A_d è il valore caratteristico dell'azione eccezionale

Q_{1k} è il valore caratteristico di una delle azioni variabili

 Q_{ik} è il valore caratteristico delle altre azioni variabili

 γ_g coefficiente parziale per la i-esima azione permanente

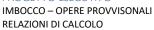
 γ_q coefficiente parziale per la i-esima azione variabile

 ψ_{0i} coefficiente di combinazione

 ψ_{2i} coefficiente di combinazione per azioni eccezionali

Nelle verifiche nei confronti degli stati limite ultimi strutturali (STR) e geotecnici (GEO), si adotta come criterio progettuale l'Approccio 2.

In questo principio si impiega un'unica combinazione dei gruppi di coefficienti parziali, definiti per le Azioni (A), per la resistenza dei materiali (M) e, eventualmente, per la resistenza globale (R). In tale approccio, per le azioni si impiegano i coefficienti γ_F riportati nella colonna A1 di Tabella 9.



PROGETTO ESECUTIVO

REV A

Tab. 2.6.I – Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente Y _F	EQU	A1	A2
Contable and Contable	Favorevoli		0,9	1,0	1,0
Carichi permanenti Gı	Sfavorevoli	YGI	1,1	1,3	1,0
- N. Comercia Strategica	Favorevoli	20	0,8	0,8	0,8
Carichi permanenti non strutturali G ₂ ⁽¹⁾	Sfavorevoli	Y _F	1,5	1,5	1,3
Add a data of the O	Favorevoli		0,0	0,0	0,0
Azioni variabili Q	Sfavorevoli	YQi	1,5	1,5	1,3

⁽⁰⁾ Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

Tabella 9 Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

7.1.1.2 Combinazione statica SLE

Le combinazioni per le verifiche statiche allo stato limite di esercizio sono:

Combinazione rara $F_d = \sum_{i=1}^{ng} G_{ki} + Q_{1k} + \sum_{i=2}^{nq} \psi_{0i} \cdot Q_{ik}$

Combinazione frequente $F_d = \sum_{i=1}^{ng} G_{ki} + \psi_{1i} \cdot Q_{1k} + \sum_{i=2}^{nq} \psi_{2i} \cdot Q_{ik}$

Combinazione quasi permanente $F_d = \sum_{i=1}^{ng} G_{ki} + \sum_{i=2}^{nq} \psi_{2i} \cdot Q_{ik}$

dove:

 $\begin{array}{ll} G_{ki} & \text{ è il valore caratteristico delle azioni permanenti} \\ Q_{1k} & \text{ è il valore caratteristico di una delle azioni variabili} \\ Q_{ik} & \text{ è il valore caratteristico delle altre azioni variabili} \\ \psi_{0i} & \text{ coefficiente di combinazione per azioni rare} \end{array}$

 ψ_{1i} coefficiente di combinazione per azioni frequenti

 ψ_{2i} coefficiente di combinazione per azioni quasi permanenti

IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

8 BERLINESE DI TESTATA Φ 193.7/12.5MM CON TIRANTI (5 TREFOLI)

Le immagini seguenti riportano lo stralcio planimetrico dell'opera con le relative viste e sezioni (Figura 8-1).

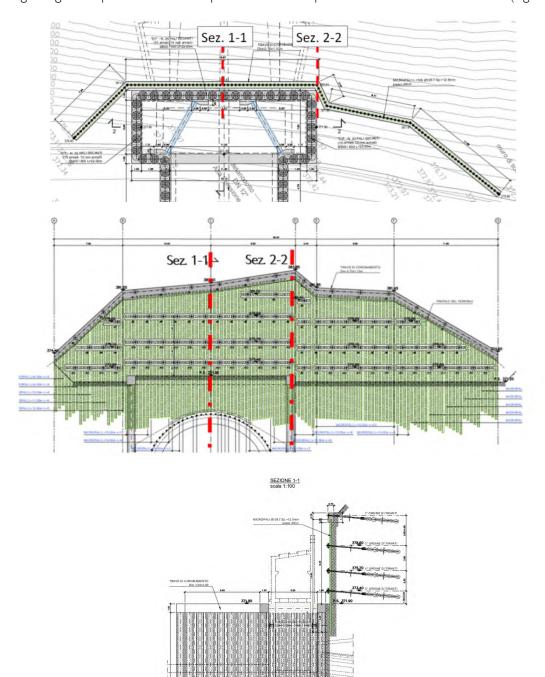


Figura 8-1 Berlinese di micropali con tiranti – Pianta, viste e schemi di calcolo

Il dimensionamento dell'opera è stato condotto analizzando No.2 sezioni rappresentative evidenziate in Figura 8-1. Le principali caratteristiche geometriche e progettuali sono elencate di seguito:

REV A

IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

Sezione 1-1:

Quota piano di lavoro = 382.40m slm = 371.90 m s/mQuota scavo H (altezza di scavo) = 10.50 mL_{micropalo} (profondità micropali) = 13.8 m= 2 HEB 200 Trave di ripartizione Diametro perforazione = Ø180 mm $= \alpha \emptyset = 0.27 \text{m}$ α tensione di aderenza = 1.5 Diametro di calcolo

 Coefficiente parziale per resistenza a sfilamento = 1.1 (tiranti temporanei) - Fattore di correlazione per la resistenza caratteristica = 1.7 (n° 3 verticali di indagini)

Ordine tirante	Inclinazione i	Quota da testa paratia	n° trefoli	L _{libera} progetto	L _{fondazione} progetto	L _{totale}	Interasse tiranti	Precarico	Tbulbo-terreno
[-]	[°]	[m]	[-]	[m]	[m]	[m]	[m]	[kN/tirante]	[kPa]
I	5	0.3	5	9.0	12	21	3.2	575	180
III	5	3.8	7	7.0	16	23	1.6	805	180
IV	5	6.7	7	6.0	16	22	1.6	805	200
V	5	9.0	7	5.0	16	21	1.6	805	200

Tabella 10 Sezione di verifica 1-1: caratteristiche tiranti e bulbi

Sezione 2-2:

= 371.90 m s/mQuota piano di lavoro = 383.85m slm Quota scavo H (altezza di scavo) $= 11.95 \, \mathrm{m}$ $= 17.7 \, \mathrm{m}$ L_{micropalo} (profondità micropali) Trave di ripartizione = 2 HEB 200 Diametro perforazione = Ø180 mm $= \alpha \emptyset = 0.27$ m α tensione di aderenza = 1.5 Diametro di calcolo

Coefficiente parziale per resistenza a sfilamento = 1.1 (tiranti temporanei) Fattore di correlazione per la resistenza caratteristica = 1.7 (n° 3 verticali di indagini)

Ordine tirante	Inclinazione i	Quota da testa paratia	n° trefoli	L _{libera} progetto	L _{fondazione} progetto	L _{totale}	Interasse tiranti	Precarico	Tbulbo-terreno
[-]	[°]	[m]	[-]	[m]	[m]	[m]	[m]	[kN/tirante]	[kPa]
I	5	0.3	5	9.0	12	21	3.2	575	180
II	5	3.8	5	8.0	12	20	3.2	575	180
III	5	5.1	5	7.0	16	23	1.6	805	200
IV	5	8.0	5	6.0	16	23	1.6	805	200
V	5	10.3	5	5.0	16	21	1.6	805	200

Tabella 11 Sezione di verifica 2-2: caratteristiche tiranti e bulbi

Su tutta l'estensione dell'opera, il collegamento tra tiranti e berlinese è realizzato con una trave di ripartizione costituita da 2 profili HEB200 posta in asse ai vari ordini di tiranti. Di conseguenza, la verifica riportata nei paragrafi successivi è rappresentativa delle condizioni più gravose tra tutti gli schemi di calcolo sviluppati.

Le condizioni orografiche caratterizzate dalla forte pendenza del terreno in situ a tergo della berlinese sono state considerate nel dimensionamento adottando gli opportuni valori di pendenza nel calcolo dei coefficienti di spinta delle terre.

La quota della falda di progetto oscilla da quota 365.65m (livello di esercizio dell'acqua del Lago) a quota 368.0m slm (massima regolazione dell'acqua del Lago). Tali livelli sono al di sotto al sotto della quota di scavo della berlinese in esame.

IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

8.1 Schema di calcolo 'Sez.1-1'

8.1.1 Modellazione geotecnica

La figura seguente riporta la stratigrafia e il modello di calcolo sviluppato con ParatiePlus 2022.

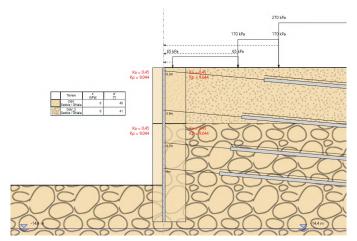


Figura 8-2 Modello di calcolo implementato nel software Paratie Plus 2022

La stratigrafia e i parametri geotecnici adottati nelle elaborazioni sono riportati nella figura seguente. In particolare, si è fatto riferimento alla successione stratigrafica riportata nel profilo geotecnico di cui al §4.

Unità	Descrizione	Z top	Z bottom	γ	c'	φ'	Ka	Кр	Evc	Eur
Onia Descrizione	Descrizione	[m]	[m]	[kN/m³]	[kPa]	[°]	[-]	[-]	[MPa]	[MPa]
2	DdV Sabbia/Ghiaia	382.4	377.4	20	-	40	0.45	9.04	60	1.6*Evc
2	DdV_2 Sabbia/Ghiaia	377.4	-	20	-	41	0.45	9.04	90	1.6*Evc

Tabella 12 Stratigrafia di calcolo adottata nel modello

I coefficienti di spinta corrispondenti allo stato attivo e passivo sono valutati dal programma di calcolo a partire dai parametri geotecnici riportati al §4. In particolare, i coefficienti di spinta attiva e passiva (Ka, Kp) sono calcolati considerando la pendenza del terreno naturale a tergo della paratia.

8.1.2 Descrizione delle fasi di calcolo

Le fasi di calcolo considerate nelle elaborazioni sono le seguenti:

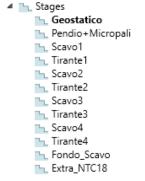
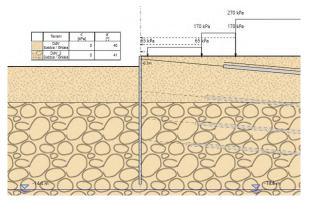


Figura 8-3 Fasi di calcolo considerate



IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

La presenza del terreno esistente a tergo della paratia al di sopra del piano di lavoro è stata inclusa assegnando i valori di sovraccarico permanente corrispondente.

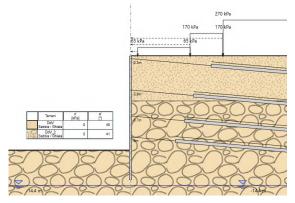


Figura 8-4 Installazione primo ordine tiranti (Stage 4)

Figura 8-5 Raggiungimento fondo scavo (Stage 11)

8.1.3 Sintesi risultati allo SLE – Spostamenti

Nel seguito vengono riportati i risultati delle elaborazioni in termini di deformata della paratia (Combinazione SLE rara), per la fase di calcolo 12 nella quale si raggiunge la quota di fondo scavo con falda a quota di esercizio. Il massimo spostamento è circa a 15mm.

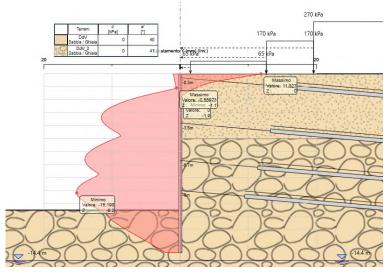


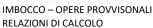
Figura 8-6 Spostamenti della paratia in condizione SLE (Stage 12)

8.1.4 Sintesi analisi strutturale

Nelle tabelle seguenti si riassumono i valori massimi di azione tagliante e flettente sul micropalo e sui tiranti.

Fase	M _{SLU} A1-M1	V _{SLU} A1-M1	M _{SLU} A2-M2	V _{SLU} A2-M2	
Tase	[kNm/m]	[kN/m]	[kNm/m]	[kN/m]	
11	240	439	241	375	

No. Ordine tirante	Tiro tirante	Interasse	Tiro Tirante
	[kN/m]	[m]	[kN/tirante]
I	234	3.2	748



PROGETTO ESECUTIVO

III	803	1.6	1285
IV	817	1.6	1307
V	731	1.6	1170

Tabella 13 Sollecitazioni di verifica

8.1.4.1 Verifica strutturale micropalo SLU

OPERA DI IN	ивос	CO		tensione di snervamento no	ε	0.83
0.2				tensione arone value no	ϵ^2	0.66
MICROPALI DI SOSTE	GNO - ⁽	SEZIONE	1	rapporto diametro/spessore	d/t	15.5
<u></u>	0.10	<u> </u>	<u>=</u>	1 ''	CLASSE	1
<u>Calcolo della resistenza sti</u>	ruttural	e del tubo	olare			
<u> </u>				SOLLECITAZIONI AGENTI:		
				momento flettente di calcolo	M_{Ed}	239.28
DATI GEOMETRICI:				taglio di calcolo	T_{Ed}	438.59
liametro esterno del tubolare	d	193.7	[mm]	sforzo normale di calcolo	N_{Ed}	0.00
pessore del tubolare	t	12.5	[mm]	interasse tubolari	i	0.40
liametro interno del tubolare	\mathbf{d}_{int}	168.7	[mm]	momento flettente agente	M_{Ed}	95.71
area della sezione del tubolare	Α	7115.7	[mm ²]	taglio agente	T_{Ed}	175.44
nomento inerzia tubolare	ı	2934.3	[cm ⁴]	sforzo normale agente	N_{Ed}	0
modulo resistenza plastico	W_{pl}	411.1	[cm ³]			
nomento statico di metà sezione	$S_{A/2}$	205.5	[cm ³]	VERIFICA DELLA SEZIONE IN	CAMPO EL	ASTICO:
				tensione normale	$\sigma_{\text{x,Ed}}$	232.8
ipologia di acciaio	S	355	[MPa]	tensione tangenziale	τ_{Ed}	49.2
oefficiente di sicurezza	γмо	1.05	[-]	sigma ideale	$\sigma_{id} \\$	247.9
ensione di snervamento di progett	f_{vd}	338.1	[MPa]	fattore di sicurezza	FS	1.4

Figura 8-7 Verifica micropalo Sez. 1-1

8.1.4.2 Verifica strutturale trefoli tiranti SLU Comb. A1+M1+R3

Si riporta di seguito la verifica strutturale dei trefoli dei tiranti.

Ordine tirante	Quota da testa paratia	Passo	n° trefoli	i	Area tirante	Pretiro	Pretiro/ml di paratia	Resistenza tirante	T _{max} di calcolo	T _{max}	FS	Verifica
[-]	[m]	[m]	[-]	[°]	[mm²]	[kN]	[kN/ml]	[kN]	[kN/ml]	[kN]	[-]	[-]
I	0.3	3.2	5	5	695	575	179.7	1009	233.61	747.55	1.35	VERIFICATO
Ш	3.8	1.6	7	5	973	805	503.1	1413	802.71	1284.34	1.10	VERIFICATO
IV	6.7	1.6	7	5	973	805	503.1	1413	816.83	1306.93	1.08	VERIFICATO
V	9.0	1.6	7	5	973	805	503.1	1413	730.85	1169.36	1.21	VERIFICATO

Tabella 14 Verifica strutturale tiranti Sez. 1-1

8.1.4.3 Verifica strutturale trave di ripartizione tiranti

La verifica seguente della trave di ripartizione posta in asse ai tiranti è rappresentativa delle condizioni più critiche tra tutti gli ordini di tiranti previsti.

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

REV A

VERIFICA DELLE TRAVI DI RIPARTIZIONE - NTC 2018

Dati del profilato:

Tipo di profilato	HEB	200
Altezza del profilato	h	200 mm
Base del profilato	b	200 mm
Spessore dell'anima	a = t _w	9 mm
Spessore delle ali	e = t _f	15 mm
Raggio di curvatura	r	18 mm
Area della sezione	А	7808 mm ²

Definizione dell'azione di calcolo:

Sforzo massimo agente	N _{Ed}	250 [kN/ml]
Interasse degli elementi di contrasto	i	3.2 [m]
Momento agente sul profilato	M _{Ed}	256.00 [kNm]
Taglio agente sul profilato	V_{Ed}	480.00 [kN]

Calcolo della resistenza di progetto a taglio:

Tipologia di acciaio	S	355 [MPa]
Coefficiente di sicurezza	γмо	1.05 [-]
Piano di carico del profilato	Carico no	el piano dell'anima
n° di profilati considerati	n°	<mark>2</mark> [-]
Area a taglio del singolo profilato	Av	2483 mm ²
Resistenza di progetto a taglio	R _{c,Rd}	969.36 [kN]

Definizione della tipologia di verifica da condurre:

Taglio agente sul profilato	V _{Ed}	480.00 [kN]
Resistenza di progetto a taglio	$V_{c,Rd}$	969.36 [kN]
Rapporto V _{Ed} /V _{c,Rd}	$V_{Ed}/V_{c,Rd}$	0.50 [-]
Tipo di verifica	Fi	esione retta

Verifica strutturale del profilato per flessione retta:

Momento plastico nel piano dell'anima	$W_{pl,y}$	642000	mm ³
Resistenza di progetto	$M_{c,Rd} = M_{pl,Rd}$	434.11	[kNm]
Fattore di sicurezza della sezione	FS	1.70	ОК

Verifica strutturale per profilato soggetto a flessione e taglio:

Momento plastico nel piano dell'anima	$W_{pl,y}$	642000 mm ³		
Coefficiente di riduzione	ρ	0.0001	[-]	
Resistenza di progetto	$M_{y,V,Rd}$	434.11 [kNm]		
Condizione $M_{y,V,Rd} \le M_{y,c,Rd}$		ОК		
Fattore di sucurezza della sezione	FS	1.70	ОК	

Tabella 15 Risultati verifica strutturale trave di ripartizione tiranti

8.1.4.4 Verifica strutturale trave di coronamento in c.a.

Le sollecitazioni agenti sono:

Comb.	Sezione trave di ripartizione [m]	Tiro tirante [kN/m]	Interasse tiranti [m]	M SLE [kNm/m]	M SLE [kNm/m]	V [kN/m]
SLU	70×110	234	3.6	303	303	505

Tabella 16 Sollecitazioni trave di coronamento

Armatura trave di coronamento in c.a.

Armatura verticale: 5+5\varnothing24 Staffe: 3\varnothing12/20cm

PROGETTO ESECUTIVO

		sollecita	zioni e risultati					verifica DM0	
	5LE			SLU				ventica umu	8
Mek	232.89	[kNm]	Med	302,76	[kNm]				
Nek	0.00	[kN]	Ned	0.00	[kN]		tipo di i	rottura	2
tensi	oni e fes	sure	VEd	504.60	[kN]		1 lat	o acciaio	
Mdec	0.0	[kNm]	pres	so-flessio	ne		2 lat	o cls - accialo	snervati
Mcr	220.9	[kNm]	Mad	527.8	[kNm]		3 lat	o cls - acciaio	elastico
			F5	1.74		\rightarrow	4 sea	tot. compre	ssa
yn.	-19,49	[cm]	1	taglio					
Gc_min	-4.0	[MPa]	Vade	260.6	[kN]		contrib	uto Asi	
Os,min	-31.1	[MPa]	predisport	e armatura	a taglio		scelta	si	
Oi, max	180,5	[MPa]					angolo	θ.	
			VRds	802.1	[kN]		scelta	imposto	
k ₂	0.5		VRdmax	1809.5	[kN]	\Leftrightarrow	0 imposto	25	[1]
mo3-me3	0.52	[%]	θ	25.0	[*]		Ocalcolat	0 16.3	[1]
Sr,max	57.1	[cm]	sezione	duttile			θ_{inf}	21.8	[,]
Wk	0.295	[mm]	ai	60.4	[cm]		Өзыр	45	[1]

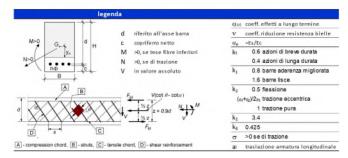


Tabella 17 Verifica strutturale trave di coronamento

8.1.5 Verifica allo SLU di tipo GEO

8.1.5.1 Verifica di stabilità globale

La verifica di stabilità globale dell'opera provvisionale deve essere condotta in accordo all'approccio 1, Combinazione 2 (A2+M2+R3). Nella figura seguente è riportato il risultato delle verifiche in accordo con il metodo di Janbu. L'analisi di stabilità risulta essere soddisfatta con un coefficiente di sicurezza di 1.4.

PROGETTO ESECUTIVO IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

1.412

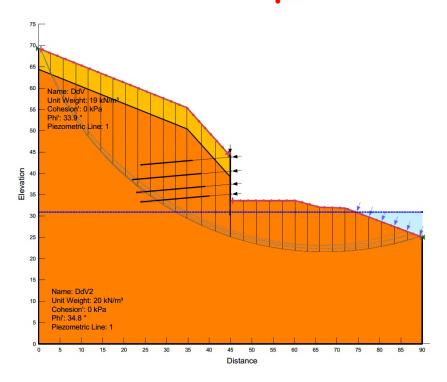


Figura 8-8 Risultati verifica stabilità globale

8.1.5.2 Verifica della spinta a valle della paratia

La verifica delle spinte a valle della paratia è condotta in accordo all'Approccio 1, Combinazione 2 (A2+M2+R1). Nella seguente figura si mostrano la risultante delle spinte agenti sulla paratia relativi all'ultima fase di calcolo (Stage 11), in particolare deve risultare che la spinta mobilitata a valle (Spinta reale efficace), moltiplicata per il coefficiente $\gamma F = 1.0$, sia inferiore alla resistenza del terreno (Massima spinta ammissibile) corrispondente alla spinta passiva divisa per il coefficiente di resistenza $\gamma R = 1.0$).

La verifica risulta soddisfatta:

Rapporto di mobilitazione Comb. SLE: 54% Rapporto di mobilitazione Comb. SLU: 95%

Massimi rapporti di mobilizzazione spinta passiva

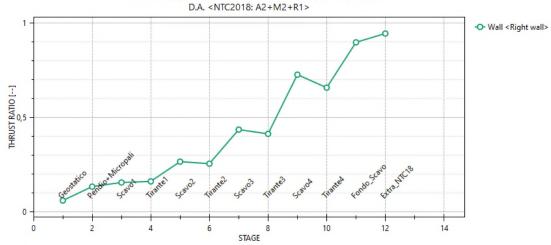


Figura 8-9 Verifica mobilitazione spinta passiva (Comb. A2+M2)

PROGETTO ESECUTIVO IMBOCCO – OPERE PROVVISONALI

REV A

8.1.5.3 Verifica sfilamento tirante

Si riporta di seguito la verifica a sfilamento dei trefoli dei tiranti Comb. A1+M1+R3. Caratteristiche del tirante e del bulbo:

Ordine tirante	i	Quota da testa paratia	L _{libera} min statica	L _{libera} min sismica	n° trefoli	L _{libera} di progetto	L _{fondazione} minima	L _{fondazione} di	L _{totale}	L _{utile}	Area tirante	ф _{perforazion} e	α	φ _{calcolo} =α·φ	τ _{bulbo} - terreno
[-]	[°]	[m]	[m]	[m]	[-]	[m]	[m]	[m]	[m]	[m]	[mm ²]	[mm]	[-]	[m]	[kPa]
1	5	0.3	6.5	8.76	5	9.0	9.2	12	21	15	695	180	1.5	0.27	180
III	5	3.8	4.9	6.58	7	7.0	15.7	16	23	15	973	180	1.5	0.27	180
IV	5	6.7	3.6	4.78	7	6.0	14.4	16	22	14	973	180	1.5	0.27	200
V	5	9.0	2.5	3.36	7	5.0	12.9	16	21	13	973	180	1.5	0.27	200

Verifiche del tirante e dei meccanismi di rottura

Ordine tirante	Azione massima di progetto [kN]	Rd sfilamento bulbo- terreno [kN]	Rd sfilamento trefoli- bulbo [kN]	Verifica del bulbo di fondazione	Forza di rottura dei trefoli [kN]	Modalità di collasso	Rispetto gerarchia resistenze	FS sfilamento - rottura
ı	747.6	979.77	1578.6	VERIFICATO	1160.65	Sfilamento bulbo dal terreno	ОК	1.2
III	1284.3	1306.36	2104.8	VERIFICATO	1624.91	Sfilamento bulbo dal terreno	ОК	1.2
IV	1306.9	1451.52	2104.8	VERIFICATO	1624.91	Sfilamento bulbo dal terreno	OK	1.1
V	1169.4	1451.52	2104.8	VERIFICATO	1624.91	Sfilamento bulbo dal terreno	OK	1.1

Tabella 18 Verifica sfilamento tiranti Sez. 1-1

IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

8.2 Schema di calcolo 'Sez.2-2'

8.2.1 Modellazione geotecnica

La figura seguente riporta la stratigrafia e il modello di calcolo sviluppato con ParatiePlus 2022.

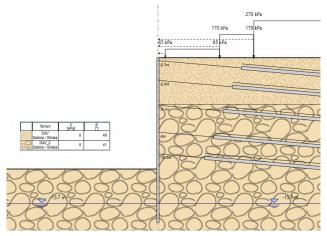


Figura 8-10 Modello di calcolo implementato nel software Paratie Plus 2022

La stratigrafia e i parametri geotecnici adottati nelle elaborazioni sono riportati nella figura seguente. In particolare, si è fatto riferimento alla successione stratigrafica riportata nel profilo geotecnico di cui al §4.

Unità	Descrizione	Z top	Z bottom	γ	c'	φ'	Ka	Кр	Evc	Eur
Orma	Descrizione	[m]	[m]	$[kN/m^3]$	[kPa]	[°]	[-]	[-]	[MPa]	[MPa]
2	DdV Sabbia/Ghiaia	383.85	378.85	20	-	40	0.45	9.04	60	1.6*Evc
2	DdV_2 Sabbia/Ghiaia	378.85	-	20	-	41	0.45	9.04	90	1.6*Evc

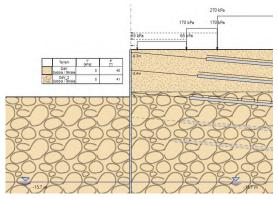
Tabella 19 Stratigrafia di calcolo adottata nel modello

I coefficienti di spinta corrispondenti allo stato attivo e passivo sono valutati dal programma di calcolo a partire dai parametri geotecnici riportati al §4. In particolare, i coefficienti di spinta attiva e passiva (Ka, Kp) sono calcolati considerando la pendenza del terreno naturale a tergo della paratia.

8.2.2 Descrizione delle fasi di calcolo

Le fasi di calcolo considerate nelle elaborazioni sono le seguenti:

Figura 8-11 Fasi di calcolo considerate



A MESSA IN SICUREZZA DEL LAGO D'IDRO

IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

La presenza del terreno esistente a tergo della paratia al di sopra del piano di lavoro è stata inclusa assegnando i valori di sovraccarico permanente corrispondente.

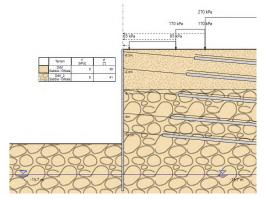


Figura 8-13 Raggiungimento fondo scavo (Stage 14)

8.2.3 Sintesi risultati allo SLE – Spostamenti

Nel seguito vengono riportati i risultati delle elaborazioni in termini di deformata della paratia (Combinazione SLE rara), per la fase di calcolo 14 nella quale si raggiunge la quota di fondo scavo con falda a quota di esercizio. Il massimo spostamento è circa a 17mm.

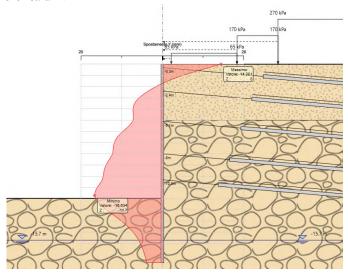


Figura 8-14 Spostamenti della paratia in condizione SLE (Stage 12)

8.2.4 Sintesi analisi strutturale

Nelle tabelle seguenti si riassumono i valori massimi di azione tagliante e flettente sul micropalo e sui tiranti.

Fase	M _{SLU} A1-M1 [kNm/m]	V _{SLU} A1-M1 [kN/m]	M _{SLU} A2-M2 [kNm/m]	V _{SLU} A2-M2 [kN/m]
12	273	426	259	385

PER LA MESSA IN SICUREZZA DEL LAGO D'IDRO

V

Tabella 20 Sollecitazioni di verifica

1.6

1208

755

8.2.4.1 Verifica strutturale micropalo SLU

ODED A DUIA	ADOC	CO				0.04	
OPERA DI IN	IBUC	LU		tensione di snervamento no	ε	0.81	
					ϵ^2	0.66	
MICROPALI DI SOSTE	<u>GNO - S</u>	SEZIONE	2	rapporto diametro/spessore	d/t	15.5	
				classe della sezione C	CLASSE	1	
<u>Calcolo della resistenza str</u>	ruttural	e del tubo	<u>olare</u>	SOLLECITAZIONI AGENTI:			
				momento flettente di calcoli	N.4	272.45	
DATI CECAMETRICI				•	M _{Ed}		
DATI GEOMETRICI:		400.7		taglio di calcolo	T _{Ed}	425.58	
liametro esterno del tubolare	d	193.7	[mm]	sforzo normale di calcolo	N_{Ed}	0.00	
spessore del tubolare	t	12.5	[mm]	interasse tubolari	i	0.40	
liametro interno del tubolare	d_{int}	168.7	[mm]	momento flettente agente	M_{Ed}	108.98	
area della sezione del tubolare	Α	7115.7	[mm ²]	taglio agente	T_{Ed}	170.23	
momento inerzia tubolare	1	2934.3	[cm ⁴]	sforzo normale agente	N_{Ed}	0	
modulo resistenza plastico	W_{pl}	411.1	[cm ³]				
momento statico di metà sezione	$S_{A/2}$	205.5	[cm ³]	VERIFICA DELLA SEZIONE IN C	AMPO EL	ASTICO:	
				tensione normale	$\sigma_{x,\text{Ed}}$	265.1	
tipologia di acciaio	S	355	[MPa]	tensione tangenziale	τ_{Ed}	47.7	
coefficiente di sicurezza	γ_{M0}	1.05	[-]	sigma ideale	$\sigma_{id}^{}$	277.7	
tensione di snervamento di progett	f_{vd}	338.1	[MPa]	fattore di sicurezza	FS	1.2	V

Figura 8-15 Verifica micropalo Sez. 2-2

8.2.4.2 Verifica strutturale trefoli tiranti SLU Comb. A1+M1+R3

Si riporta di seguito la verifica strutturale dei trefoli dei tiranti.

Ordine tirante	Quota da testa paratia	Passo	n° trefoli	i	Area tirante	Pretiro	Pretiro/ml di paratia	Resistenza tirante	T _{max} di calcolo	T _{max}	FS	Verifica
[-]	[m]	[m]	[-]	[°]	[mm²]	[kN]	[kN/ml]	[kN]	[kN/ml]	[kN]	[-]	[-]
I	0.3	3.2	5	5	695	575	179.7	1009	233.61	747.55	1.35	VERIFICATO
П	2.4	3.2	5	5	695	575	179.7	1009	250.00	800.00	1.26	VERIFICATO
Ш	5.1	1.6	7	5	973	805	503.1	1413	840.78	1345.25	1.05	VERIFICATO
IV	8.0	1.6	7	5	973	805	503.1	1413	875.55	1400.88	1.01	VERIFICATO
V	10.3	1.6	7	5	973	805	503.125	1413	754.95	1207.92	1.17	VERIFICATO

Tabella 21 Verifica strutturale tiranti Sez. 2-2

Regione

Lombardia

REV A

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

8.2.4.3 Verifica strutturale trave di ripartizione tiranti

Per la verifica della trave di ripartizione posta in asse ai tiranti si rimanda alla verifica riportata nel paragrafo §8.1.4.3 in quanto rappresentativa delle condizioni più gravose.

8.2.4.4 Verifica strutturale trave di coronamento in c.a.

Per tale verifica si rimanda alla verifica svolta al paragrafo §8.1.4.4 in quanto rappresentativa delle condizioni più gravose.

8.2.5 Verifica allo SLU di tipo GEO

8.2.5.1 Verifica di stabilità globale

Per tale verifica si rimanda alla verifica svolta al paragrafo §8.1.5.1 in quanto rappresentativa delle condizioni più gravose.

8.2.5.2 Verifica della spinta a valle della paratia

La verifica delle spinte a valle della paratia è condotta in accordo all'Approccio 1, Combinazione 2 (A2+M2+R1). Nella seguente figura si mostrano la risultante delle spinte agenti sulla paratia relativi all'ultima fase di calcolo (Stage 11), in particolare deve risultare che la spinta mobilitata a valle (Spinta reale efficace), moltiplicata per il coefficiente $\gamma F = 1.0$, sia inferiore alla resistenza del terreno (Massima spinta ammissibile) corrispondente alla spinta passiva divisa per il coefficiente di resistenza $\gamma R = 1.0$).

La verifica risulta soddisfatta:

- Rapporto di mobilitazione Comb. SLE: 68%

- Rapporto di mobilitazione Comb. SLU: 37%

Massimi rapporti di mobilizzazione spinta passiva

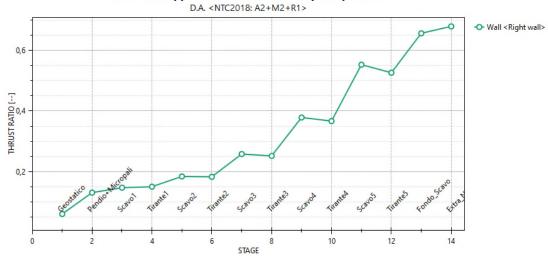


Figura 8-16 Verifica mobilitazione spinta passiva (Comb. A2+M2)

8.2.5.3 Verifica sfilamento tirante

Si riporta di seguito la verifica a sfilamento dei trefoli dei tiranti Comb. A1+M1+R3.

PROGETTO ESECUTIVO

RELAZIONI DI CALCOLO

REV A

Caratteristiche del tirante e del bulbo:

Ordine tirante	i	Quota da testa paratia	L _{libera} min statica	L _{libera} min sismica	n° trefoli	L _{libera} di progetto	L _{fondazione} minima	L _{fondazione} di	L _{totale}	L _{utile}	Area tirante	ф _{perforazion} e	α	φ _{calcolo} =α·φ	τ _{bulbo} . terreno
[-]	[°]	[m]	[m]	[m]	[-]	[m]	[m]	[m]	[m]	[m]	[mm ²]	[mm]	[-]	[m]	[kPa]
I	5	0.3	6.5	8.76	5	9.0	9.2	12	21	15	695	180	1.5	0.27	180
II	5	2.4	5.5	7.45	5	8.0	9.8	12	20	14	695	180	1.5	0.27	180
III	5	5.1	4.3	5.78	7	7.0	14.8	16	23	15	973	180	1.5	0.27	200
IV	5	8.0	3.0	3.98	7	6.0	15.4	16	22	14	973	180	1.5	0.27	200
٧	5	10.3	1.9	2.49	7	5.0	13.3	16	21	13	973	180	1.5	0.27	200

Verifiche del tirante e dei meccanismi di rottura

Ordine tirante	Azione massima di	Rd sfilamento bulbo-	Rd sfilamento trefoli-	Verifica del bulbo di	Forza di rottura dei		Rispetto	FS
Ordine thante	progetto	terreno	bulbo	fondazione	trefoli	Modalità di collasso	gerarchia	sfilamento -
[-]	[kN]	[kN]	[kN]	Toridazione	[kN]		resistenze	rottura
I	747.6	979.77	1578.6	VERIFICATO	1160.65	Sfilamento bulbo dal terreno	OK	1.2
II	800.0	979.77	1578.6	VERIFICATO	1160.65	Sfilamento bulbo dal terreno	ОК	1.2
III	1345.2	1451.52	2104.8	VERIFICATO	1624.91	Sfilamento bulbo dal terreno	OK	1.1
IV	1400.9	1451.52	2104.8	VERIFICATO	1624.91	Sfilamento bulbo dal terreno	OK	1.1
V	1207.9	1451.52	2104.8	VERIFICATO	1624.91	Sfilamento bulbo dal terreno	ОК	1.1

Tabella 22 Verifica sfilamento tiranti Sez. 2-2

IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

REV A

9 MURO PREFABBRICATO TIPO 'TENSITER'

Per dettagli in merito al dimensionamento di tale opera si rimanda alla relazione PE-IMB-OPR-GE-002-RC.

IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

10 PALI TIPO "A1-A2" Ф900/600 L=17m

Il dimensionamento delle paratie di pali tipo "A1", "A2" è stato condotto analizzando una sezione rappresentativa delle condizioni di carico e vincolo. Il dimensionamento e verifica della trave di ripartizione in c.a. a quota testa pali avente sezione rettangolare 1.0x1.0m è riportata nel Par. §15.

Le operazioni di scavo generano un battente idraulico tra la quota di regolazione del lago (in fase di cantiere), 365.65m slm e la quota di fondo scavo, 358.6m. Allo scopo di contrastare tale sottospinta idraulica, è prevista l'esecuzione di un trattamento del terreno di fondazione incluso tra i due allineamenti di paratie, attraverso colonne in jet grouting.

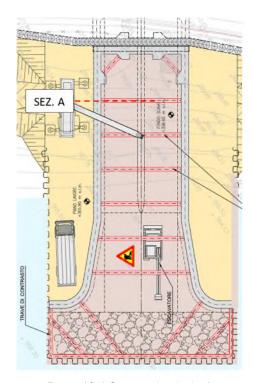


Figura 10-1 Sezione di calcolo A

Sezione A (Pali Tipo A1-A2):

Caratteristiche colonne jet-grouting:

- Quota testa jet = 365.90-12.3 = 353.6m

Quota fondo jet = 349.6m
 Altezza terreno consolidato = 4m

Altezza di scavo	Quota falda	Battente idraulico		Cara	tteristiche puntoni metalli	ici provvisori	
[m]	[m slm]	[m]	No. Ordini	Profilo puntone	Luce/interasse puntone	Asse puntone	Trave di ripartizione
7.3	365.65	7.05	1	Ø 508/20mm	12m/4.5m	365.4m slm	1.0×1.0m

Tabella 23 Schema di calcolo A (Pali Tipo "A1"-"A2")

IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

10.1 Modellazione geotecnica

La figura seguente riporta la stratigrafia e il modello di calcolo sviluppato con ParatiePlus 2022.

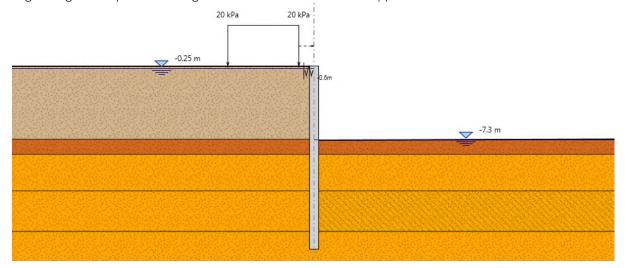


Figura 10-2 Modello di calcolo implementato nel software Paratie Plus 2022

La stratigrafia e i parametri geotecnici adottati nelle elaborazioni sono riportati nella figura seguente. In particolare, si è fatto riferimento alla successione stratigrafica riportata nel profilo geotecnico di cui al §4.

Unità	Descrizione	Z top	Z bottom	γ	c'	φ	Evc	Eur
Oillia	2 654 1216 116	[m]	[m]	[kN/m³]	[kPa]	[°]	[MPa]	[MPa]
		365.9	364.7	20	-	41	80	1.6*Evc
G, S, AL	Ghiaia sabbiosa debolmente limosa	364.7	357.2	20	-	39	15	1.6*Evc
		357.2	>	20	-	40	130	1.6*Evc

Tabella 24 Stratigrafia di calcolo adottata nel modello

I coefficienti di spinta corrispondenti allo stato attivo e passivo sono valutati dal programma di calcolo a partire dai parametri geotecnici riportati al §4.

10.2 Descrizione delle fasi di calcolo

Le fasi di calcolo considerate nelle elaborazioni sono le seguenti:

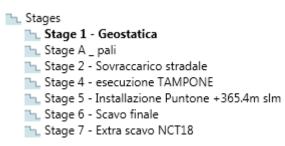


Figura 10-3 Fasi di calcolo considerate

La presenza del traffico di cantiere a tergo della paratia al di sopra del piano di lavoro è stata inclusa assegnando i valori di sovraccarico permanente corrispondente (20kPa).

La rigidezza del puntone metallico (+365.4m slm) è stata calcolata come di seguito:

IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

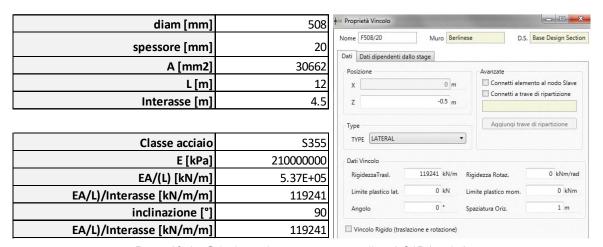


Figura 10-4 - Calcolo rigidezza puntone metallico (+365.4m slm)

10.3 Sintesi risultati allo SLE - Spostamenti

Nel seguito vengono riportati i risultati delle elaborazioni in termini di deformata della paratia (Combinazione SLE rara), per la fase di calcolo 7 nella quale si raggiunge la quota di fondo scavo + Δh (pari a 0.5m, extra scavo NTC18) con quota di falda pari al livello di regolazione del lago in fase di cantiere (+365.65m slm). Il massimo spostamento è circa a 6.3mm.

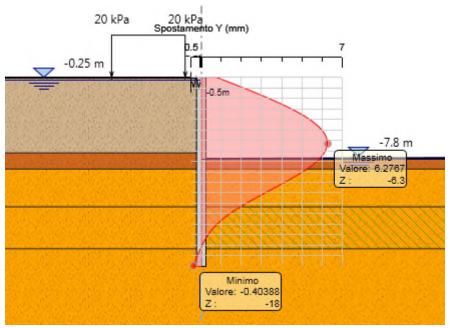


Figura 10-5 Spostamenti della paratia in condizione SLE (Stage 7)

IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

10.4 Sintesi analisi strutturale

Nelle tabelle seguenti si riassumono i valori massimi di azione tagliante [kN/m] e flettente [kNm/m] sul palo e sui puntoni provvisori.

M _{SLE} Palo [kNm/m]	M _{SLU} A1-M1 Palo [kNm/m]	V _{SLU} A1-M1 Palo [kN/m]	N _{SLU} A1-M1 Puntone 1° ordine [kN/m]

Tabella 25 Output sollecitazioni elementi strutturali

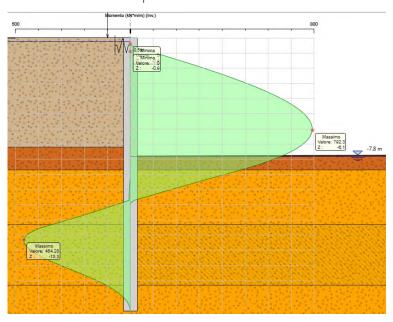


Figura 10-6 - Inviluppo M SLU

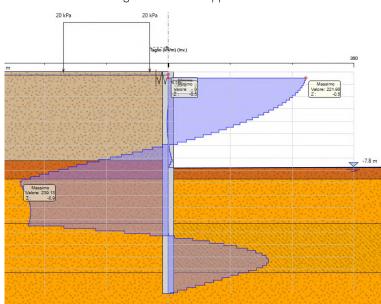


Figura 10-7 - Inviluppo V SLU

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

Per determinare le azioni agenti sui singoli elementi, si considerano i seguenti interassi:

- Pali armati = 1.2m;
- Puntoni metallici = 4.5m

M _{SLE} [kNm]	M _{SLU} A1-M1 [kNm]	V _{SLU} A1-M1 [kN]	N _{SLU} A1-M1 Puntone 1° ordine [kN/puntone]
727	950	287	1004

Tabella 26 Sollecitazioni di verifica pali

10.4.1 Verifica strutturale palo

Profondità [m] (*)	L Gabbia [m]	MRd [kNm]	Tip. Gabbia
0.7	12	1744	22 ⊕ 30
12.7		1744	22⊕30
10.7	6.0	870	22 ⊕ 20
17.6	6.9	870	22⊕20

(*) da	n estradosso	trave di	i coronamento	

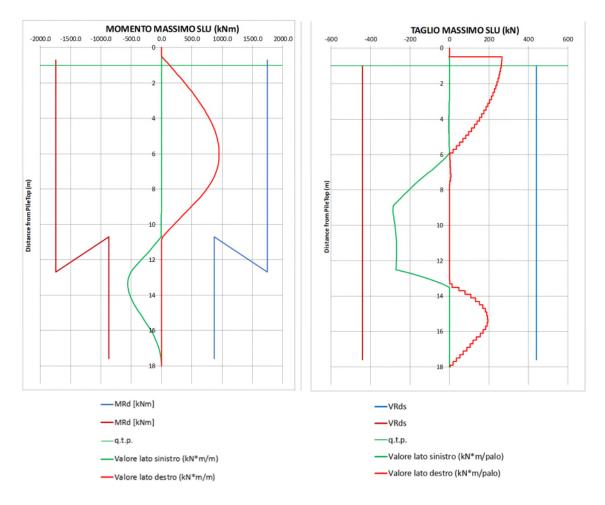
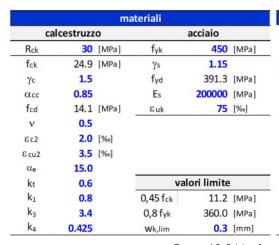


Tabella 27 Schemi gabbie di armatura


PROGETTO ESECUTIVO

10.4.1.1 Gabbia $1 - 22 \oplus 30$

		geomet	ria		sollecitazioni e risultati					
	sezi	one tras	versale		SLE			SLU		
D	С	d	passo	interferro	MEk	727.0 [ki	Nm]	MEd	950.0	[kNm]
[cm]	[cm]	[cm]	[cm]	[cm]	NEk	0.0 [kl	N]	NEd	0.0	[kN]
90	6.0	81.3	10.4	7.4	mome	nto di crack	ing	VEd	287.0	[kN]
	armatura longitudinale				Mcr	225.4 [ki	Nm]	pres	so-flessio	one
Nbarre	ф	ri	Ası	Ci	quota	a asse neuti	ro	MRd	1743.8	[kNm]
	[mm]	[cm]	[cm ²]	[cm]	Уn	32.76 [cr	m]	FS	1.84	
22	30	36.3	155.51	8.70	tensi	oni e fessu	re		taglio	
		33.30			σc,min	0.0 [N	1Pa]	VRdc	307.9	[kN]
					σs,min	0.0 [N	MPa]	non serve	e armatura	a taglio
					σs,max	0.0 [N	MPa]			
	arn	natura a	taglio					VRds	441.4	[kN]
Tipo	ф	р	Asw		k ₂	0.5		VRdmax	1482.9	[kN]
	[mm]	[cm]	[cm ²]		Esm-Ecm	- [%	50]	θ	28.0	[°]
spirale	12	20	2.26		Sr,max	- [cr	m]	sezione	duttile	
					Wk	- [m	ıml	aı	57.5	[cm]

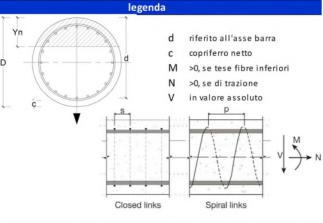


Figura 10-8 Verifica pali Tipo 'A1' – 'A2' – Gabbia 1



IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

10.4.1.2Gabbia $2 - 22 \oplus 20$

		geomet	ria		sollecitazioni e risultati					
	sezi	one tras	versale		SLE			SLU		
D	С	d	passo	interferro	MEk	28.0	[kNm]	MEd	557.0	[kNm]
[cm]	[cm]	[cm]	[cm]	[cm]	NEk	0.0	[kN]	NEd	0.0	[kN]
90	6.0	81.8	10.5	8.5	mome	nto di cra	cking	VEd	34.0	[kN]
	armatura longitudinale				Mcr	185.8	[kNm]	pres	so-flessio	one
Nbarre	ф	ri	AsI	Ci	quota	asse ne	utro	MRd	870.3	[kNm]
	[mm]	[cm]	[cm ²]	[cm]	Уn	27.30	[cm]	FS	1.56	
22	20	36.8	69.12	8.20	tensi	oni e fes	sure		taglio	
		34.80			σc,min	-0.6	[MPa]	VRdc	235.0	[kN]
					σs,min	-6.0	[MPa]	non serve	e armatura	a taglio
					σs,max	17.2	[MPa]			
	arn	natura a	taglio					VRds	444.1	[kN]
Tipo	ф	р	Asw		k ₂	0.5		VRdmax	1492.0	[kN]
	[mm]	[cm]	[cm ²]		Esm-Ecm	-	[‰]	θ	28.0	[°]
spirale	12	20	2.26		Sr,max	-	[cm]	sezione	duttile	
					Wk		[mm]	aı	57.5	[cm]

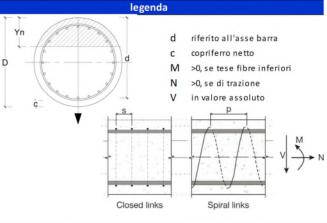


Figura 10-9 Verifica pali Tipo 'A1' – 'A2' – Gabbia 2

A MESSA IN SICUREZZA DEL LAGO D'IDRO

IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

REV A

10.4.2 Verifiche allo SLU di tipo STR – Puntone Ø508/20mm L=12m

Sulla paratia di pali 'A1' 'A2' insistono puntoni metallici costituiti da Ø508/20mm, di luce L=12m posti a quota asse 365.4m slm. Di seguito, si riporta la verifica strutturale del puntone con interasse di progetto di 4.50m.

Alpi	Alpina					Alpina				
Progetto Esecutivo	o - Lago d'Id	ro		Progetto Esecutivo - Lago d'Idro						
OPERE DI IM	BOCCO			OPERE DI IMBOCCO						
OF ERE DI IIV	ВОССО						TENE DI IMBO			
VERIFICA ASTA	VERIFICA ASTA COMPRESSA					VERIF	FICA ASTA COM	<u>IPRESSA</u>		
Caratteristiche dei ma	teriali]	Verifica a compressione						
tipologia acciaio \$355JR			sforzo nor	rmale ma	assimo dal m	nodello	N _{Ed}	223.00	[kN/m]	
sezione formata		a caldo		interasse	puntoni			i	4.50	[m]
tensione di snervamento dell'acciaio	fy	355	[MPa]	sforzo nor	rmale mo	ssimo		N _{Ed}	1004	[kN]
modulo di elasticità dell'acciaio	E	210000	[MPa]	resistenza	a a comp	ressione		N _{c,Rd}	10367	[kN m]
coefficiente parziale sulle resistenze	умо	1.05	[-]	L						
coefficiente parziale sulle resistenze all'instab		1.10	[-]							
Paramo dano rodicione di mistabi	Coemiciente parziare sune resistenze annistatima ymi 1.10		,		,	Verifica OK			$\frac{N_{Ed}}{N_{c,Rd}} \le 1$	1
Geometria del puntone									с,ки	
Lungharra	1 .	42.00	fee 3		V:c	!!!! '	L11142 da1114		1	Ī
lunghezza	L	12.00	[m]	Verifica all'instabilità dell'asta c		ompressa				
diametro esterno	d	508.0	[mm]	curva di instabilità		Г				
spessore	t	20.0	[mm]						a I o o4	
area della sezione	A	306.6	[cm²]			perfezione		α	0.21	[-]
momento d'inerzia	I	91428	[cm⁴]	carico crit	tico di sb	andamento		N _{cr}	13159359	[N]
modulo elastico a flessione	Wel	3600	[cm³]	snellezza	adimens	ionale		λ	0.91	[-]
modulo plastico a flessione	W _{pl}	4766	[cm ³]	coefficien	nte Φ			Φ	0.99	[-]
peso tubo	G	240.7	[Kg/m]	coefficien	,,,			χ	0.73	[-]
			7	resistenza all'instabilità N _{b.Rd} = 7201			7201	[kN]		
Determinazione della classe	della sezione									
coefficients -		0.81				Varifica OV			N _{Ed}	1
coefficiente ε	ε 2		[-]		'	Verifica OK			$\frac{N_{Ed}}{N_{b,Rd}} \le 1$	L
coefficiente ε^2	ε ² d/t	0.66 25.4	[-]							
rapporto larghezza - spessore classe della sezione	u/t	1	[-]							
etasse detta sezione										
		Prog	etto Esec	utivo - La	igo d'Idi	<u>ro</u>				
			OPERE	DI IMBOCO	CO					
		<u>V</u>	ERIFICA AS	STA COMP	RESSA					
		Veri	fica a press	oflessione						
	sforzo normale massimo dal modello			T	N _{Ed}	223.00	[kN/m]			
	interasse puntoni				i	4.50	[m]			
	sforzo normale massimo				N _{Ed}	1004	[kN]			
	resistenza a compressione				N _{pl,Rd}	10367	[kN m]			
	coefficiente riduttivo				1-n	0.90	[-]			
	momento flet		то		M _{Ed}	43.33	[kNm]			
	momento plas				M _{pl,Rd}	1611.21	[kNm]			
						1				

Tabella 28 Verifica puntone metallico STR

Verifica OK

 M_{Ed} $\frac{M_{pl,Rd}(1-n)}{M_{pl,Rd}(1-n)} \le 1$

IMBOCCO - OPERE PROVVISONALI

REV A

RELAZIONI DI CALCOLO

10.5 Verifica allo SLU di tipo GEO

10.5.1 Verifica della spinta a valle della paratia

La verifica delle spinte a valle della paratia è condotta in accordo all'Approccio 1, Combinazione 2 (A2+M2+R1). Nella seguente figura si mostrano la risultante delle spinte agenti sulla paratia, in particolare deve risultare che la spinta mobilitata a valle (Spinta reale efficace), moltiplicata per il coefficiente $\gamma F = 1.0$, sia inferiore alla resistenza del terreno (Massima spinta ammissibile) corrispondente alla spinta passiva divisa per il coefficiente di resistenza $\gamma R = 1.0$).

La verifica risulta soddisfatta:

Rapporto di mobilitazione Comb. SLE: Rapporto di mobilitazione Comb. SLU:

Massimi rapporti di mobilizzazione spinta passiva

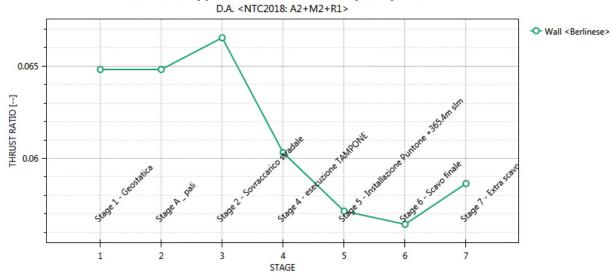


Figura 10-10 Verifica mobilitazione spinta passiva (Comb. A2+M2)

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

11 PALI TIPO "B2" Ф900/600 L=21.5m − FASE 1 (scavo lato Lago)

Il dimensionamento delle paratie di pali tipo "B2" è stato condotto analizzando una sezione rappresentativa delle condizioni di carico e vincolo. Il dimensionamento e verifica della trave di ripartizione in c.a. a quota testa pali avente sezione rettangolare 1.75x1.5m è riportata nel Par. §15.

Le operazioni di scavo generano un battente idraulico tra la quota di regolazione del lago (in fase di cantiere), 365.65m slm e la quota di fondo scavo, 358.6m. Allo scopo di contrastare tale sottospinta idraulica, è prevista l'esecuzione di un trattamento del terreno di fondazione incluso tra i due allineamenti di paratie, attraverso colonne in jet grouting.

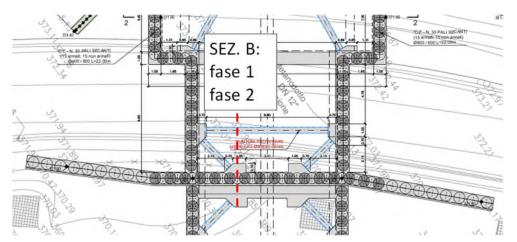


Figura 11-1 Sezione di calcolo B

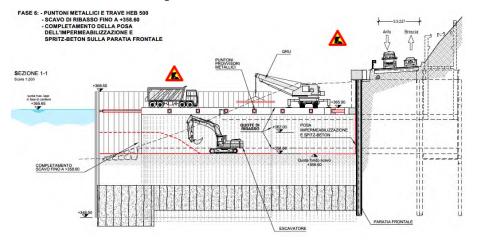


Figura 11-2 Pali tipo "B2" fase scavo lato Lago

Sezione B (Pali Tipo B2) – Fase scavo lato Valle:

Caratteristiche colonne jet-grouting:

- Quota testa jet = 365.90-12.3 = 353.6m

Quota fondo jet = 349.6m
 Altezza terreno consolidato = 4m

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

Altezza di scavo	Quota falda	Battente idraulico		Caratteristiche puntoni metallici provvisori					
[m]	[m slm]	[m]	No. Ordini	Profilo puntone	Luce/interasse puntone	Asse puntone	Trave di ripartizione		
13.3	365.65	7.05	1	Ø 508/20mm	3.7m/5.75m (inclinazione 45°)	365.4m slm	1.0×1.0m		

Tabella 29 Schema di calcolo B (Pali Tipo "B2") – Fase scavo lato Lago

11.1 Modellazione geotecnica

La figura seguente riporta la stratigrafia e il modello di calcolo sviluppato con ParatiePlus 2022.

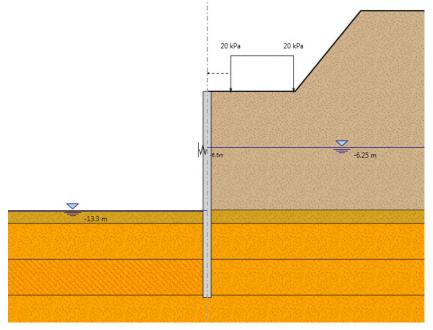


Figura 11-3 Modello di calcolo implementato nel software Paratie Plus 2022

La stratigrafia e i parametri geotecnici adottati nelle elaborazioni sono riportati nella figura seguente. In particolare, si è fatto riferimento alla successione stratigrafica riportata nel profilo geotecnico di cui al §4.

Unità	Descrizione	Z top	Z bottom	γ	c'	φ'	Evc	Eur
	2 334 12/3/13	[m]	[m]	[kN/m³]	[kPa]	[°]	[MPa]	[MPa]
	Ghiaia sabbiosa debolmente limosa	371.9	358.7	20	-	41	80	1.6*Evc
G, S, AL		358.7	357.2	20	-	39	15	1.6*Evc
		357.2	>	20	-	40	130	1.6*Evc

Tabella 30 Stratigrafia di calcolo adottata nel modello

I coefficienti di spinta corrispondenti allo stato attivo e passivo sono valutati dal programma di calcolo a partire dai parametri geotecnici riportati al §4.

PER LA MESSA IN SICUREZZA DEL LAGO D'IDRO

IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

11.2 Descrizione delle fasi di calcolo

Le fasi di calcolo considerate nelle elaborazioni sono le seguenti:

Stages Stage 1 - Geostatica Stage 2 - Sovraccarico stradale Stage 3 - Esecuzione Paratia Stage 4 - esecuzione TAMPONE L Stage 5 - Scavo intermedio +364.9m slm Stage 6 - Installazione Puntone +365.4m slm L Stage 7 - Scavo finale L Stage 8 - Extra scavo NCT18

Figura 11-4 Fasi di calcolo considerate

La presenza del traffico di cantiere a tergo della paratia al di sopra del piano di lavoro è stata inclusa assegnando i valori di sovraccarico permanente corrispondente (20kPa).

La rigidezza del puntone metallico (+365.4m slm) è stata calcolata come di seguito:

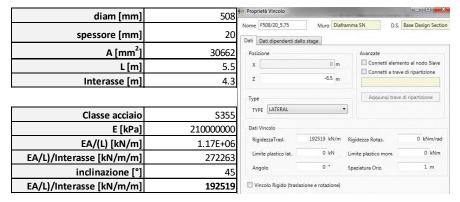


Figura 11-5 - Calcolo rigidezza puntone metallico (+365.4m slm)

IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

11.3 Sintesi risultati allo SLE – Spostamenti

Nel seguito vengono riportati i risultati delle elaborazioni in termini di deformata della paratia (Combinazione SLE rara), per la fase di calcolo 8 nella quale si raggiunge la quota di fondo scavo + Δh (pari a 0.5m, extra scavo NTC18) con quota di falda pari al livello di regolazione del lago in fase di cantiere (+365.65m slm). Il massimo spostamento è circa a 23mm.

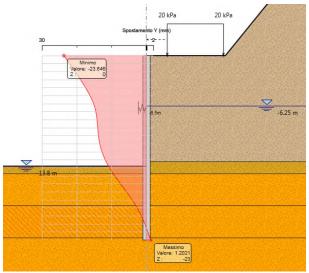


Figura 11-6 Spostamenti della paratia in condizione SLE (Stage 8)

11.4 Sintesi analisi strutturale

Nelle tabelle seguenti si riassumono i valori massimi di azione tagliante [kN/m] e flettente [kNm/m] sul palo e sui puntoni provvisori.

M _{SLE} Palo [kNm/m]	M _{SLU} A1-M1 Palo [kNm/m]	V _{SLU} A1-M1 Palo [kN/m]	N _{SLU} A1-M1 Puntone 1° ordine [kN/m]
672	941	460	726

Tabella 31 Output sollecitazioni elementi strutturali

PROGETTO ESECUTIVO

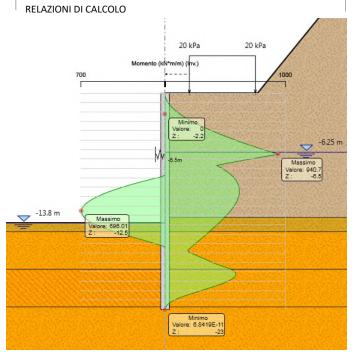


Figura 11-7 - Inviluppo M SLU

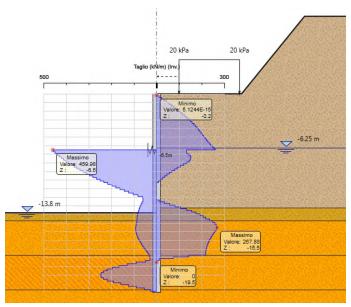


Figura 11-8 - Inviluppo V SLU

Per determinare le azioni agenti sui singoli elementi, si considerano i seguenti interassi:

- Pali armati = 1.2m;
- Puntoni metallici = 5.75m

M _{SLE} [kNm]	M _{SLU} A1-M1 [kNm]	V _{SLU} A1-M1 [kN]	N _{SLU} A1-M1 Puntone 1° ordine [kN/puntone]
806	1129	552	5904

Tabella 32 Sollecitazioni di verifica pali

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

11.4.1 Verifica strutturale palo

Profondità [m] (*)	L Gabbia [m]	MRd [kNm]	Tip. Gabbia
1.2	12	1736	22 ⊕ 30
13.2	12	1736	22⊕30
11.2	11.4	1736	22⊕30
22.6	11.4	1736	22⊕30

(*) da	estradosso	trave di	coronam	ento

Profondità [m] (*)	Estensione spirali [m]	VRd [kN]	Tip. Spirale
1.5	14.5	800	Ф14/15
16	14.5	800	Ф14/15
16	6.6	397	Ф14/30
22.6	0.0	397	Ф14/30

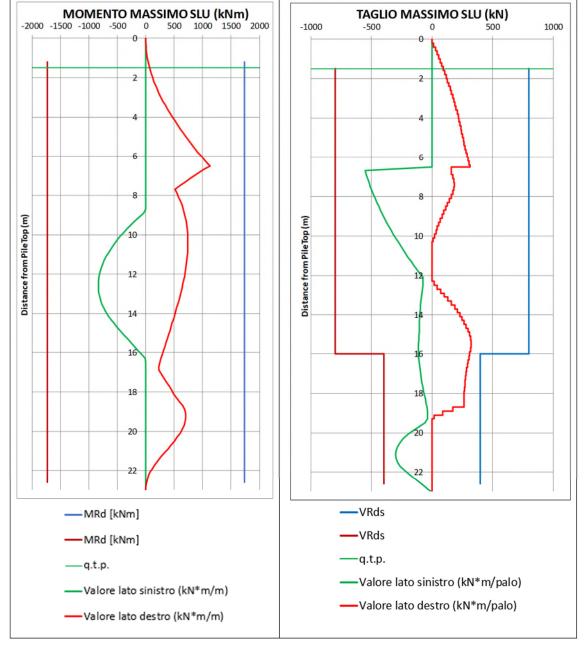


Tabella 33 Schemi gabbie di armatura

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI

RELAZIONI DI CALCOLO

11.4.1.1 Gabbia 22⊕30

		geomet	ria				sollecitazi	oni e risultati			
	sezi	one trass	versale			SLE			SLU		
D	С	d	passo	interferro	MEd	806.0	[kNm]	MEd	1129.0	[kNm]	
[cm]	[cm]	[cm]	[cm]	[cm]	Nek	0.0	[kN]	NEd	0.0	[kN]	
90	6.0	81.1	10.3	7.3	mome	nto di cr	acking	VEd	552.0	[kN]	
	armat	ura longi	tudinale		Mcr	224.6	[kNm]	pres	presso-flessione		
Nbarre	ф	rį	Asl	c _i	quota	asse ne	eutro	MRd	1736.4	[kNm]	
	[mm]	[cm]	[cm ²]	[cm]	Уn	32.77	[cm]	FS	1.54		
22	30	36.1	155.51	8.90	tensi	oni e fes	sure		taglio		
		36.1			σc,min	-10.9	[MPa]	VRdc	307.9	[kN]	
					σs,min	-117.6	[MPa]	predispor	re armatura	a a taglio	
					σs,max	240.1	[MPa]				
	arn	natura a	taglio					VRds	800.2	[kN]	
Tipo	ф	р	Asw		k ₂	0.5		V_{Rdmax}	1479.2	[kN]	
	[mm]	[cm]	[cm ²]		Esm-Ecm	0.81	[‰]	θ	28.0	[°]	
spirale	14	15	3.08	•	Sr,max	37.0	[cm]	sezione	duttile		
					Wk	0.30	[mm]	aı	55.7	[cm]	

	m	ateriali		
Ca	alcestruzzo		acciaio	
Rck	30 [MPa]	fyk	450 [MPa]
k	24.9 [MPa]	γs	1.15	
	1.5	fyd	391.3 [MPa]
Xcc	0.85	Es	200000 [MPa]
f_{cd}	14.1 [MPa]	εuk	75 [‰]
V	0.5			
c2	2.0 [%]			
2	3.5 [%]			
,	15.0			
	0.6	va	lori limite	
1	0.8	0,45 fck	11.2 [MPa]
3	3.4	0,8 fyk	360.0 [MPa]
k_4	0.425	Wk,lim	0.3 [mm]

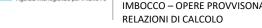
Figura 11-9 Verifica pali Tipo 'B2' – Fase scavo Lato Valle

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

Verifiche allo SLU di tipo STR – Puntone Ø508/20mm L=3.7m 11.4.2 (inclinazione 45°)

Sulla paratia di pali 'B2' insistono puntoni metallici costituiti da Ø508/20mm, di luce L=3.7m (inclinazione 45°) posti a quota asse 365.4m slm. Di seguito, si riporta la verifica strutturale del puntone con interasse di progetto di 5.75m.

Alpin				Al	pin	a				
Progetto Esecutivo - I	ago d'Id	ro			Pr	ogetto Ese	ecutivo - I	ago d'le	dro	
I TOGETTO ESCULIVO	ago a la	10			<u></u>	ogetto List	.cucivo i	ago a n	<u> </u>	
OPERE DI IMBO	CCO			OPERE DI IMBOCCO						
VEDIEICA ASTA COM	DDECCA				VEDICICA ACTA COMPRESSA					
VERIFICA ASTA CON	PKESSA			VERIFICA ASTA COMPRESSA						
Caratteristiche dei materi	ali]		ν	'erifica a col	mpressione			
tipologia acciaio		S355JR		sforzo norma	le massim	o dal modell	'o	N _{Ed}	1027.00	[kN/m]
sezione formata		a caldo		interasse pun	toni			i	5.75	[m]
tensione di snervamento dell'acciaio	fy	355	[MPa]	sforzo norma	le massim	0		N _{Ed}	5905	[kN]
modulo di elasticità dell'acciaio	Е	210000	[MPa]	resistenza a d	compressio	one		$N_{c,Rd}$	10367	[kN m]
coefficiente parziale sulle resistenze	γм0	1.05	[-]							
coefficiente parziale sulle resistenze all'instabilità	үм1	1.10	[-]						N_{Ed}	
			1		Verifi	ca OK			$\frac{N_{Ed}}{N_{c,Rd}} \le 1$	L
Geometria del puntone			j							
lunghezza	[m]	V	'erifica al	l'instabilità	dell'asta c	ompresso	a			
diametro esterno	d	508.0	[mm]					-		
spessore	t	20.0	[mm]	curva di insta	bilità				a	
area della sezione	Α	306.6	[cm ²]	coefficiente d	di imperfez	zione		α	0.21	[-]
momento d'inerzia	ı	91428	[cm ⁴]	carico critico	di sbanda	mento		N _{cr}	138418390	[N]
modulo elastico a flessione	Wel	3600	[cm ³]	snellezza adii				λ	0.28	[-]
modulo plastico a flessione		4766	[cm ³]	coefficiente		_			0.55	[-]
peso tubo	W _{pl} G	240.7						Φ ~	0.98	
peso tubo	G	240.7	[Kg/m]	coefficiente χ resistenza all'instabilità		χ N _{b.Rd} =	9718	[-] [kN]		
Determinazione della classe della	sezione]	resistenza att	mstubitite	4		TAD.RG -	77 10	[KIV]
coefficiente $arepsilon$	ε	0.81	[-]	 Verifica OK						
coefficiente ε^2	ε ε	0.66	[-]		v Cilii	ou on			$\frac{N_{Ed}}{N_{b,Rd}} \le 1$	
rapporto larghezza - spessore	د d/t	25.4	[-]	<u> </u>						
classe della sezione	۵, ۲	1								
etable detta bezione		•	<u> </u>	1 .						
			A	dpin	a					
			Progetto	Esecutivo - L	ago d'Id	ro				
			OP	ERE DI IMBO	CCO					
			VFRIFIG	CA ASTA COM	IPRESSA					
			<u> </u>	CA ASTA CON	II ILLUUM					
			Verifica a	pressoflession	2					
		ormale mass	imo dal mo	dello	N _{Ed}	1027.00	[kN/m]			
		e puntoni			i	5.75	[m]			
	sforzo no	ormale mass	imo		N _{Ed}	5905	[kN]			
		za a compres			N _{pl,Rd}	10367	[kN m]			
	coefficie	nte riduttivo)		1-n	0.43	[-]			
	moment	o flettente n	nassimo		M _{Ed}	4.12	[kNm]			
	moment	o plastico re	sistente		$M_{pl,Rd}$	1611.21	[kNm]			
		Ve	rifica OK			$\frac{M_{Ed}}{I_{pl,Rd}(1-n)}$	<u></u>			



REV A

11.5 Verifica allo SLU di tipo GEO

11.5.1 Verifica della spinta a valle della paratia

La verifica delle spinte a valle della paratia è condotta in accordo all'Approccio 1, Combinazione 2 (A2+M2+R1). Nella seguente figura si mostrano la risultante delle spinte agenti sulla paratia, in particolare deve risultare che la spinta mobilitata a valle (Spinta reale efficace), moltiplicata per il coefficiente $\gamma F = 1.0$, sia inferiore alla resistenza del terreno (Massima spinta ammissibile) corrispondente alla spinta passiva divisa per il coefficiente di resistenza $\gamma R = 1.0$).

La verifica risulta soddisfatta:

Rapporto di mobilitazione Comb. SLE: Rapporto di mobilitazione Comb. SLU:

Massimi rapporti di mobilizzazione spinta passiva

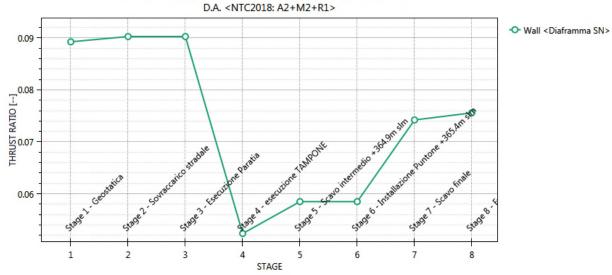
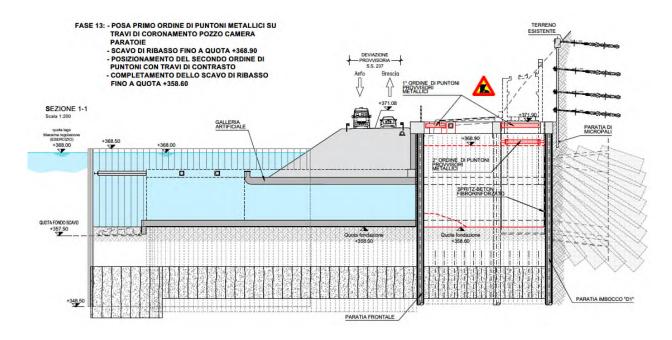


Figura 11-10 Verifica mobilitazione spinta passiva (Comb. A2+M2)



IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

12 PALI TIPO "B2" Φ900/600 L=21.5m – FASE 2 (scavo lato Monte)

In accordo alle fasi esecutive delle opere di imbocco, si riportano le verifiche relative alla configurazione di scavo lato Monte.

Il dimensionamento e verifica della trave di ripartizione in c.a. a quota testa pali avente sezione rettangolare 1.5×1.75 m è riportata nel Par. §15.

Le operazioni di scavo generano un battente idraulico tra la quota di massima piena, 368m slm e la quota di fondo scavo, 358.6m. Allo scopo di contrastare tale sottospinta idraulica, è prevista l'esecuzione di un trattamento del terreno di fondazione incluso tra i due allineamenti di paratie, attraverso colonne in jet grouting.

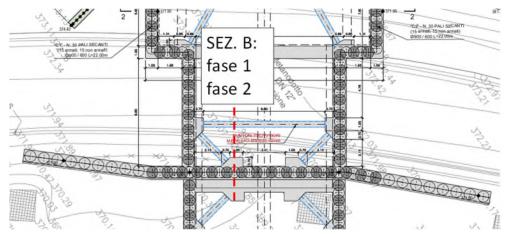


Figura 12-1 Sezione di calcolo B

Sezione B (Pali Tipo B2) – Fase scavo lato Monte:

Quota fondo scavo = 358.60m slm L_{palo} (profondità pali) = 21.5 m Puntone metallico provvisorio = \emptyset 508/20mm

A MESSA IN SICUREZZA DEL LAGO D'IDRO

IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

Caratteristiche colonne jet-grouting:

= 371.90-13.3 = 358.6m Quota testa jet

Quota fondo jet = 349.6mAltezza terreno consolidato =9m

	Altezza di scavo	Quota falda	Battente idraulico	Caratteristiche puntoni metallici provvisori					
	[m]	[m slm]	[m]	No. Ordini	Profilo puntone	Luce/interasse puntone	Asse puntone	Trave di ripartizione	
Ī	13.3	368	9.4	1	Ø 508/20mm	5.5m/4.2m (inclinazione 45°)	371.4m slm	1.75×1.5m	

Tabella 35 Schema di calcolo B (Pali Tipo "B2") – Fase scavo lato Monte

12.1 Modellazione geotecnica

La figura seguente riporta la stratigrafia e il modello di calcolo sviluppato con ParatiePlus 2022.

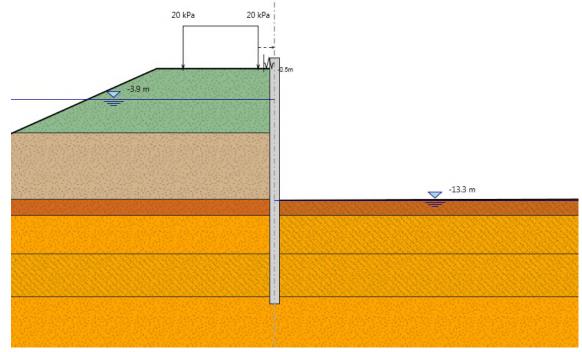


Figura 12-2 Modello di calcolo implementato nel software Paratie Plus 2022

La stratigrafia e i parametri geotecnici adottati nelle elaborazioni sono riportati nella figura seguente. In particolare, si è fatto riferimento alla successione stratigrafica riportata nel profilo geotecnico di cui al §4.

Unità	Descrizione	Z top	Z bottom	γ	c'	φ'	Evc	Eur
Office	Descrizione	[m]	[m]	[kN/m³]	[kPa]	[°]	[MPa]	[MPa]
	Rilevato stradale	370.9	364.9	20	-	25	40	1.6*Evc
	Ghiaia sabbiosa debolmente limosa	364.9	358.7	20	-	41	80	1.6*Evc
G, S, AL		358.7	357.2	20	-	39	15	1.6*Evc
		357.2	^	20	-	40	130	1.6*Evc

Tabella 36 Stratigrafia di calcolo adottata nel modello

PER LA MESSA IN SICUREZZA DEL LAGO D'IDRO

IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

I coefficienti di spinta corrispondenti allo stato attivo e passivo sono valutati dal programma di calcolo a partire dai parametri geotecnici riportati al §4.

12.2 Descrizione delle fasi di calcolo

Le fasi di calcolo considerate nelle elaborazioni sono le seguenti:

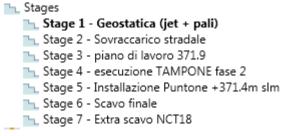


Figura 12-3 Fasi di calcolo considerate

La presenza del traffico di viabilità a tergo della paratia al di sopra del rilevato stradale è stata inclusa assegnando i valori di sovraccarico permanente corrispondente (20kPa).

La rigidezza del puntone metallico (+371.4m slm) è stata calcolata come di seguito:

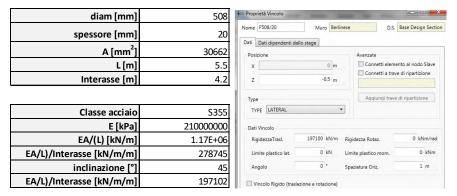


Figura 12-4 - Calcolo rigidezza puntone metallico (+371.4m slm)

A MESSA IN SICUREZZA DEL LAGO D'IDRO

IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

12.3 Sintesi risultati allo SLE – Spostamenti

Nel seguito vengono riportati i risultati delle elaborazioni in termini di deformata della paratia (Combinazione SLE rara), per la fase di calcolo 7 nella quale si raggiunge la quota di fondo scavo + Δ h (pari a 0.5m, extra scavo NTC18) con quota di falda pari al livello di regolazione del lago in fase di cantiere (+368m slm). Il massimo spostamento è circa a 10mm.

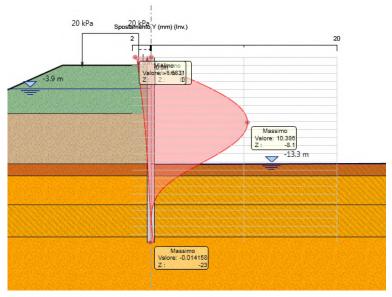


Figura 12-5 Spostamenti della paratia in condizione SLE (Stage 7)

12.4 Sintesi analisi strutturale

Nelle tabelle seguenti si riassumono i valori massimi di azione tagliante [kN/m] e flettente [kNm/m] sul palo e sui puntoni provvisori.

M _{SLE} Palo [kNm/m]	M _{SLU} A1-M1 Palo [kNm/m]	V _{SLU} A1-M1 Palo [kN/m]	N _{SLU} A1-M1 Puntone 1° ordine [kN/m]
	L		,

Tabella 37 Output sollecitazioni elementi strutturali

IMBOCCO – OPERE PROVVISONALI

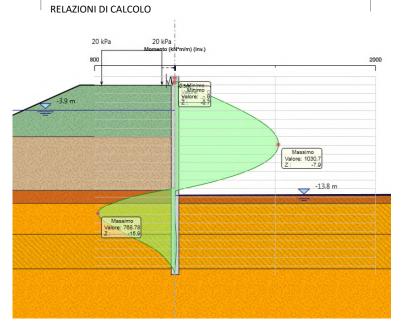


Figura 12-6 - Inviluppo M SLU

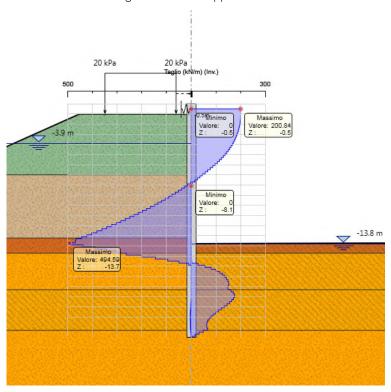


Figura 12-7 - Inviluppo V SLU

Per determinare le azioni agenti sui singoli elementi, si considerano i seguenti interassi:

- Pali armati = 1.2m;
- Puntoni metallici = 4.2m

M _{SLE} [kNm]	M _{SLU} A1-M1 [kNm]	V _{SLU} A1-M1 [kN]	N _{SLU} A1-M1 Puntone 1° ordine [kN/puntone]
902	1237	594	1194

Tabella 38 Sollecitazioni di verifica pali

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

12.4.1 Verifica strutturale palo

Profondità [m] (*)	L Gabbia [m]	MRd [kNm]	Tip. Gabbia
1.2	12	1736	22 ⊕ 30
13.2		1736	22⊕30
11.2	11.4	1736	22⊕30
22.6	11.4	1736	22⊕30

(*) da estradosso	trave (di coronamento)
-------------------	---------	----------------	---

Profondità [m] (*)	Estensione spirali [m]	VRd [kN]	Tip. Spirale
1.5	14.5	800	Ф14/15
16	14.5	800	Ф14/15
16	6.6	397	Ф14/30
22.6	0.0	397	Ф14/30

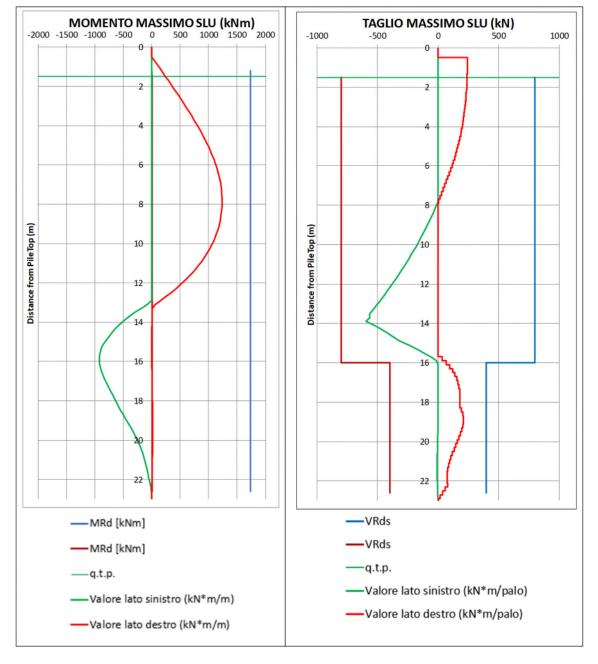


Tabella 39 Schemi gabbie di armatura

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

12.4.1.1 Gabbia 22⊕30

		geomet	ria		sollecitazioni e risultati						
	sezi	one tras	versale			SLE			SLU		
D	С	d	passo	interferro	MEd	902.0	[kNm]	MEd	1237.0	[kNm]	
[cm]	[cm]	[cm]	[cm]	[cm]	Nek	0.0	[kN]	NEd	0.0	[kN]	
90	6.0	81.1	10.3	7.3	momen	nto di cra	acking	VEd	594.0	[kN]	
	armat	ura longi	itudinale		Mcr	224.6	[kNm]	pres	presso-flessione		
Nbarre	ф	ri	Asi	Ci	quota	asse ne	eutro	MRd	1736.4	[kNm]	
	[mm]	[cm]	[cm ²]	[cm]	Уn	32.77	[cm]	FS	1.40		
22	30	36.1	155.51	8.90	tensio	oni e fes	sure		taglio		
		36.1			σc,min	0.0	[MPa]	VRdc	307.9	[kN]	
					$\sigma_{s,min}$	-0.2	[MPa]	predispor	re armatur	a a taglio	
					σs,max	0.4	[MPa]				
	arr	matura a	taglio					VRds	800.2	[kN]	
Tipo	ф	р	Asw		k ₂	0.5		V_{Rdmax}	1479.2	[kN]	
	[mm]	[cm]	[cm ²]		Esm-Ecm	0.00	[‰]	θ	28.0	[°]	
spirale	14	15	3.08		Sr,max	37.0	[cm]	sezione	duttile		
					Wk	0.00	[mm]	aı	55.7	[cm]	

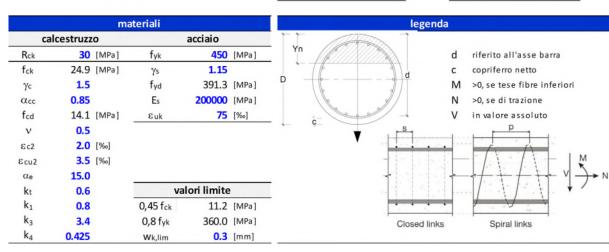


Figura 12-8 Verifica pali Tipo 'B2'- Fase scavo Lato Monte

Verifiche allo SLU di tipo STR – Puntone Ø508/20mm L=5.5m 12.4.2 (inclinazione 45°)

Sulla paratia di pali 'B2' insistono puntoni metallici costituiti da Ø508/20mm, di luce L=5.5m (inclinazione 45°) posti a quota asse 371.4m slm. Di seguito, si riporta la verifica strutturale del puntone con interasse di progetto di 4.2m.

Alpina					Alpina					
Progetto Esecutivo - Lago d'Idro					Progetto Esecutivo - Lago d'Idro					
OPERE DI IMBOCCO					OPERE DI IMBOCCO					
VERIFICA ASTA COMPRESSA					VERIFICA ASTA COMPRESSA					
Caratteristiche dei materiali					Verifica a compressione					
tipologia acciaio \$355JF			55 IR		sforzo normale n	sforzo normale massimo dal modello			284.30	[kN/m]
sezione formata		a caldo			interasse puntoni			N _{Ed}	4.20	[m]
tensione di snervamento dell'acciaio	f.,	f _y 355		[MPa]	sforzo normale massimo			N _{Ed}	1194	[kN]
modulo di elasticità dell'acciaio	E		0000	[MPa]	resistenza a com			N _{c,Rd}	10367	[kN m]
			.05		resistenza a com	ipressione		IN _C ,Rd	10307	[KN III]
coefficiente parziale sulle resistenze	γΜ0			[-]				-		
coefficiente parziale sulle resistenze all'instabilità Geometria del puntone				[-]]	.	Verifica OK			$\frac{N_{Ed}}{N_{c,Rd}} \leq$	1
Geometria dei pa	iitone			l						
lunghezza L 5.50				[m]	Verifica all'instabilità dell'asta compressa					
diametro esterno	d		08.0				abilità dell'asta	compress	<u> </u>	
spessore	t		0.0	[mm]	curva di instabilità			1	a	
area della sezione	A	_	06.6	[cm ²]	coefficiente di imperfezione			-	0.21	[-]
	i	_		[cm ⁴]				α N _{cr}	-	
momento d'inerzia		_	428		-	co critico di sbandamento			62642901	[N]
modulo elastico a flessione	We	_	600	[cm³]	snellezza adimensionale			λ	0.42	[-]
modulo plastico a flessione	W _p		766	[cm³]	coefficiente Φ			Φ	0.61	[-]
peso tubo	G	G 240.7 [Kg/m]		[Kg/m]	coefficiente χ			χ	0.95	[-]
				-	resistenza all'ins	tabilità		N _{b.Rd} =	9384	[kN]
Determinazione della class	e della sezio	ne						_		
					Verifica OK				N_{Ed}	
coefficiente ε	ε 2								$\frac{N_{Ed}}{N_{b,Rd}} \le$	1
coefficiente ε^2	ε 2		.66	[-]				_		
rapporto larghezza - spessore	d/t		5.4	[-]						
classe della sezione			1		1					
	Alpina									
	Aip									
ı										
[Progetto Esecutivo - Lago d'Idro									
Ī				OPERE D	I IMBOCCO					
	VERIFICA ASTA COMPRESSA									
	Verifica a pressoflessione									
	sforzo normale massimo dal modello interasse puntoni				N _{Ed}	284.30 4.20	[kN/m]			
}	sforzo normale massimo				N _{Ed}	1194	[m] [kN]			
1	resistenza a compressione					10367	[kN m]			
\	coefficiente riduttivo				N _{pl,Rd}	0.88				
1	momento flettente massimo						[-]			
momento plastico resistente					M _{Ed}	9.10 1611.21	[kNm]			
l	тотени ри	scico rest	stellt6		/*ipi,kd	1011.21	[kNm]			
	Verifica OK				\overline{M}	M_{Ed} $M_{pl,Rd}(1-n)$	$\bar{j} \leq 1$			

12.5 Verifica allo SLU di tipo GEO

12.5.1 Verifica della spinta a valle della paratia

La verifica delle spinte a valle della paratia è condotta in accordo all'Approccio 1, Combinazione 2 (A2+M2+R1). Nella seguente figura si mostrano la risultante delle spinte agenti sulla paratia, in particolare deve risultare che la spinta mobilitata a valle (Spinta reale efficace), moltiplicata per il coefficiente $\gamma F = 1.0$, sia inferiore alla resistenza del terreno (Massima spinta ammissibile) corrispondente alla spinta passiva divisa per il coefficiente di resistenza $\gamma R = 1.0$).

La verifica risulta soddisfatta:

Rapporto di mobilitazione Comb. SLE: Rapporto di mobilitazione Comb. SLU:

Massimi rapporti di mobilizzazione spinta passiva

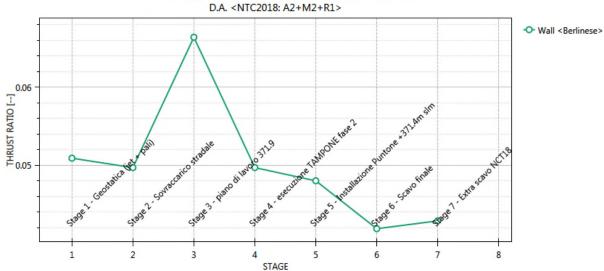


Figura 12-9 Verifica mobilitazione spinta passiva (Comb. A2+M2)

REV A

13 PALI TIPO "C1-C2" Φ900/600 L=21.5m

Il dimensionamento delle paratie di pali tipo "C1"-"C2" è stato condotto analizzando una sezione rappresentativa delle condizioni di carico e vincolo. Il dimensionamento e verifica della trave di ripartizione in c.a. a quota testa pali avente sezione rettangolare 1.0x1.5m è riportata nel Par. §15.

Le operazioni di scavo generano un battente idraulico tra la quota di massima piena, 368m slm e la quota di fondo scavo, 358.6m. Allo scopo di contrastare tale sottospinta idraulica, è prevista l'esecuzione di un trattamento del terreno di fondazione incluso tra i due allineamenti di paratie, attraverso colonne in jet grouting.

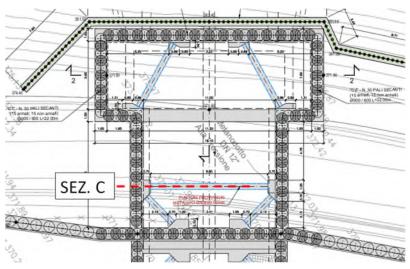


Figura 13-1 Sezione di calcolo B

Sezione C (Pali Tipo C1-C2)

Quota piano di lavoro = 371.90 m s/mQuota fondo scavo = 358.60 m s/mTipologia palo $= \emptyset 900/600 mm$ L_{palo} (profondità pali) = 21.5 mTrave di ripartizione C.A. 1.0x1.5m Puntone metallico provvisorio $= \emptyset 508/20$ mm

Caratteristiche colonne jet-grouting:

Quota testa jet = 371.9-13.3 = 358.6m

= 349.6mQuota fondo jet =9mAltezza terreno consolidato

Altezza di scavo	Quota falda	Battente idraulico	Caratteristiche puntoni metallici provvisori					
[m]	[m slm]	m] [m] No. Ordini		Profilo puntone	Luce/interasse puntone	Asse puntone	Trave di ripartizione	
13.3	368	68 9.4 1		Ø 508/20mm	5.5m/5.75m (inclinazione 45°)	371.4m slm	1.0×1.5m	

Tabella 41 Schema di calcolo B (Pali Tipo "C1"-"C2")

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

13.1 Modellazione geotecnica

La figura seguente riporta la stratigrafia e il modello di calcolo sviluppato con ParatiePlus 2022.

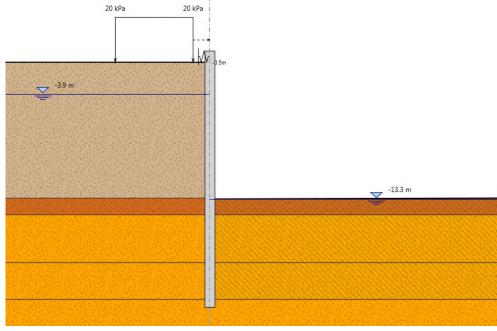


Figura 13-2 Modello di calcolo implementato nel software Paratie Plus 2022

La stratigrafia e i parametri geotecnici adottati nelle elaborazioni sono riportati nella figura seguente. In particolare, si è fatto riferimento alla successione stratigrafica riportata nel profilo geotecnico di cui al §4.

Unità	Descrizione	Z top	Z bottom	γ	c'	9	Evc	Eur
O i ii ii	2 0501 1210110	[m]	[m]	[kN/m³]	[kPa]	[°]	[MPa]	[MPa]
		371.9	358.7	20	-	41	80	1.6*Evc
G, S, AL	Ghiaia sabbiosa debolmente limosa	358.7	357.2	20	-	39	15	1.6*Evc
		357.2	>	20	-	40	130	1.6*Evc

Tabella 42 Stratigrafia di calcolo adottata nel modello

I coefficienti di spinta corrispondenti allo stato attivo e passivo sono valutati dal programma di calcolo a partire dai parametri geotecnici riportati al §4.

IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

13.2 Descrizione delle fasi di calcolo

Le fasi di calcolo considerate nelle elaborazioni sono le seguenti:

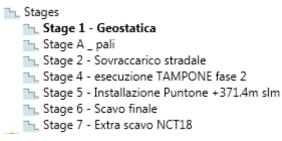


Figura 13-3 Fasi di calcolo considerate

La presenza del traffico di cantiere a tergo della paratia al di sopra del piano di lavoro è stata inclusa assegnando i valori di sovraccarico permanente corrispondente (20kPa).

La rigidezza del puntone metallico (+371.4m slm) è stata calcolata come di seguito:

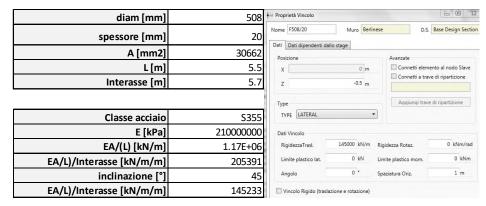


Figura 13-4 - Calcolo rigidezza puntone metallico (+371.4m slm)

IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

13.3 Sintesi risultati allo SLE – Spostamenti

Nel seguito vengono riportati i risultati delle elaborazioni in termini di deformata della paratia (Combinazione SLE rara), per la fase di calcolo 7 nella quale si raggiunge la quota di fondo scavo + Δ h (pari a 0.5m, extra scavo NTC18) con quota di falda pari al livello di regolazione del lago in fase di cantiere (+365.65m slm). Il massimo spostamento è circa a 10.5mm.

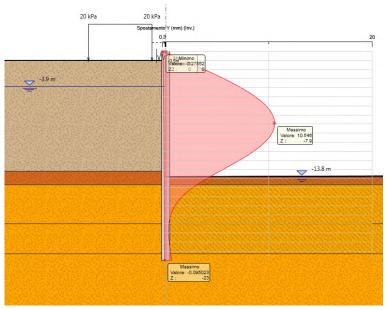


Figura 13-5 Spostamenti della paratia in condizione SLE (Stage 7)

13.4 Sintesi analisi strutturale

Nelle tabelle seguenti si riassumono i valori massimi di azione tagliante [kN/m] e flettente [kNm/m] sul palo e sui puntoni provvisori.

M _{SLE} Palo [kNm/m]	M _{SLU} A1-M1 Palo [kNm/m]	V _{SLU} A1-M1 Palo [kN/m]	N _{SLU} A1-M1 Puntone 1° ordine [kN/m]
770	1007	541	187

Tabella 43 Output sollecitazioni elementi strutturali

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

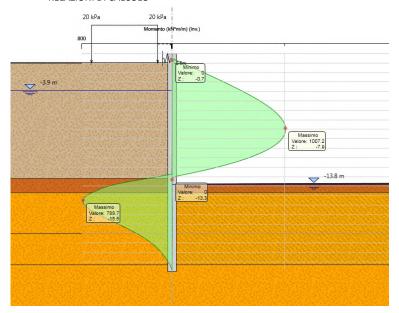


Figura 13-6 - Inviluppo M SLU

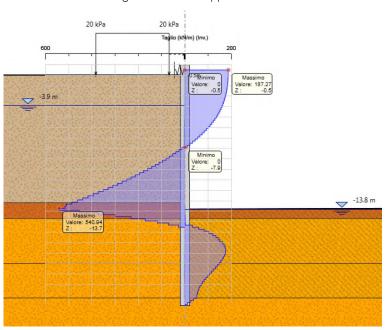


Figura 13-7 - Inviluppo V SLU

Per determinare le azioni agenti sui singoli elementi, si considerano i seguenti interassi:

- Pali armati = 1.2m;
- Puntoni metallici = 5.75m

M _{SLE} [kNm]	M _{SLU} A1-M1 [kNm]	V _{SLU} A1-M1 [kN]	N _{SLU} A1-M1 Puntone 1° ordine [kN/puntone]
924	1208	649	1521

Tabella 44 Sollecitazioni di verifica pali

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

13.4.1 Verifica strutturale palo

Profondità [m] (*)	L Gabbia [m]	MRd [kNm]	Tip. Gabbia
1.2	12	1736	22⊕30
13.2	12	1736	22⊕30
11.2	14.4	1736	22⊕30
22.6	11.4	1736	22⊕30

	Profondità	Estensione spirali	VRd	Tip. Spirale
	[m] (*)	[m]	[kN]	Tip. Spirate
	1.5	14.5	800	Ф14/15
Ī	16	14.5	800	Ф14/15
	16	6.6	397	Ф14/30
	22.6	0.0	397	Ф14/30

Tabella 45 Schemi gabbie di armatura

13.4.1.1 Gabbia $22 \oplus 30$

		geomet	ria				sollecitazi	oni e risultati	
	sezi	one trass	versale			SLE			SLU
D	С	d	passo	interferro	Mek	924.0	[kNm]	MEd	1208.0 [kNm]
[cm]	[cm]	[cm]	[cm]	[cm]	NEk	0.0	[kN]	NEd	0.0 [kN]
90	6.0	81.1	10.3	7.3	momen	nto di cra	acking	VEd	649.0 [kN]
	armat	ura longi	itudinale		Mcr	224.6	[kNm]	pres	so-flessione
Nbarre	ф	ri	Asi	Ci	quota	asse ne	utro	MRd	1736.4 [kNm]
	[mm]	[cm]	[cm ²]	[cm]	Уn	32.76	[cm]	FS	1.44
22	30	36.1	155.51	8.90	tensio	oni e fes	sure		taglio
		34.60			σc,min	0.0	[MPa]	VRdc	307.9 [kN]
					σs,min	0.0	[MPa]	predispor	re armatura a taglic
					σs,max	0.0	[MPa]		
	arn	natura a	taglio					VRds	800.2 [kN]
Tipo	ф	р	Asw		k ₂	0.5		V_{Rdmax}	1479.2 [kN]
	[mm]	[cm]	[cm ²]		Esm-Ecm	-	[‰]	θ	28.0 [°]
spirale	14	15	3.08	·	Sr,max	-	[cm]	sezione	duttile
					Wk	-	[mm]	aı	55.7 [cm]

	ma	ateriali		
ca	lcestruzzo		acciaio	
Rck fck γc αcc	30 [MPa] 24.9 [MPa] 1.5 0.85	fyk γs fyd Es	450 [1.15 391.3 [200000 [[MPa]
	14.1 [MPa]	€uk	75 [[‰]
	2.0 [%] 3.5 [%]			
	15.0 0.6	Va	alori limite	
	0.8 3.4	0,45 fck 0,8 fyk	11.2 [360.0 [
k ₃ k ₄	0.425	Wk,lim	0.3	

Figura 13-8 Verifica pali Tipo 'C1'-'C2' – Fase scavo Lato Valle

^(*) da estradosso trave di coronamento

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

Verifiche allo SLU di tipo STR – Puntone \emptyset 508/20mm L=5.5m 13.4.2 (inclinazione 45°)

Sulla paratia di pali 'C1'-'C2' insistono puntoni metallici costituiti da \emptyset 508/20mm, di luce L=5.5m (inclinazione 45°) posti a quota asse 371.4m slm. Di seguito, si riporta la verifica strutturale del puntone con interasse di progetto di 5.75m.

Alpir	na			Alpina							
Progetto Esecutivo	- Lago d'Id	ro			Progetto E	Esecutivo - L	_ago d'Id	<u>ro</u>			
OPERE DI IMB	оссо				OPE	ere di imbo	CCO				
VERIFICA ASTA CO	OMPRESSA			VERIFICA ASTA COMPRESSA							
Caratteristiche dei mate	riali		1		Verifica a	compressione					
caracteristicae der mate			J		verijica a						
tipologia acciaio		S355JR		sforzo normale mas	lello	N _{Ed}	265.00	[kN/m]			
sezione formata		a caldo		interasse puntoni		i	5.75	[m]			
tensione di snervamento dell'acciaio	fy	355	[MPa]	sforzo normale mas			N _{Ed}	1524	[kN]		
modulo di elasticità dell'acciaio	E	210000	[MPa]	resistenza a compre	essione		$N_{c,Rd}$	10367	[kN m]		
coefficiente parziale sulle resistenze	γм0	1.05	[-]				-				
coefficiente parziale sulle resistenze all'instabilit	À γ _{M1}	1.10	[-]	<u>.</u>				N _{Ed}			
Geometria del puntor	ne		1	V	erifica OK		L	$\frac{N_{Ed}}{N_{c,Rd}} \le 1$			
	L		_								
lunghezza	5.50	[m]	Verific	a all'instabil	ità dell'asta c	ompressa					
diametro esterno	d	508.0	[mm]								
spessore	t	20.0	[mm]	curva di instabilità				a			
area della sezione	Α	306.6	[cm ²]	coefficiente di impe			α	0.21	[-]		
momento d'inerzia	I	91428	[cm ⁴]	carico critico di sba	ındamento		N _{cr}	62642901	[N]		
modulo elastico a flessione	Wel	3600	[cm ³]	snellezza adimensi	onale		λ	0.42	[-]		
modulo plastico a flessione	W_{pl}	4766	[cm ³]	coefficiente Φ	Φ	0.61	[-]				
peso tubo	G	240.7	[Kg/m]	coefficiente χ			χ	0.95	[-]		
			-	resistenza all'instal	bilità		$N_{b.Rd} =$	9384	[kN]		
Determinazione della classe de	ella sezione		j								
coefficiente ε	1 -	0.81	I 1				N _{Ed}				
coefficiente ε coefficiente ε^2	ε 2	-	[-]	V			$\frac{N_{Ed}}{N_{b,Rd}} \le 3$	L			
rapporto larghezza - spessore	ε d/t	0.66 25.4	[-]								
classe della sezione	u/ c	1	[[-]	_							
		A	4lp	ina							
		Progett	o Esecu	tivo - Lago d'Id	ro						
		C	PERE D	I IMBOCCO							
		VERI	FICA AST	TA COMPRESSA							
		Verifica	a presso	flessione]					
sforzo no	ormale mas	simo dal n	nodello	N _{Ed}	265.00	[kN/m]					
interasse				i	5.75	[m]					
	ormale mas	simo		N _{Ed}	1524	[kN]					
resistenz		N _{pl,Rd}	10367	[kN m]							
					0.85						
	nte riduttiv			1-n M _{Ed}	9.10	[-]					
	momento flettente massimo					[kNm]					
momento	plastico r	esistente		M _{pl,Rd}	1611.21	[kNm]					
	V	erifica OK		\overline{M}	$\frac{M_{Ed}}{I_{pl,Rd}(1-n)}$						
	Tabella	a 46 Ve	rifica n	untone meta	llico STR						

PER LA MESSA IN SICUREZZA DEL LAGO D'IDRO PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

13.5.1 Verifica della spinta a valle della paratia

La verifica delle spinte a valle della paratia è condotta in accordo all'Approccio 1, Combinazione 2 (A2+M2+R1). Nella seguente figura si mostrano la risultante delle spinte agenti sulla paratia, in particolare deve risultare che la spinta mobilitata a valle (Spinta reale efficace), moltiplicata per il coefficiente $\gamma F = 1.0$, sia inferiore alla resistenza del terreno (Massima spinta ammissibile) corrispondente alla spinta passiva divisa per il coefficiente di resistenza $\gamma R = 1.0$).

La verifica risulta soddisfatta:

Rapporto di mobilitazione Comb. SLE: 5%Rapporto di mobilitazione Comb. SLU: 7%

Massimi rapporti di mobilizzazione spinta passiva

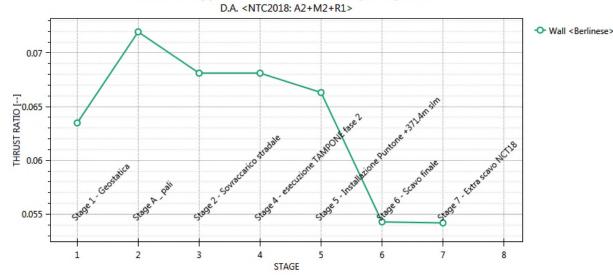


Figura 13-9 Verifica mobilitazione spinta passiva (Comb. A2+M2)

IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

14 PALI TIPO "D1" Φ900/600 L=21.5m

Le immagini seguenti riportano lo stralcio planimetrico dell'opera con le relative viste (Figura 14-1).

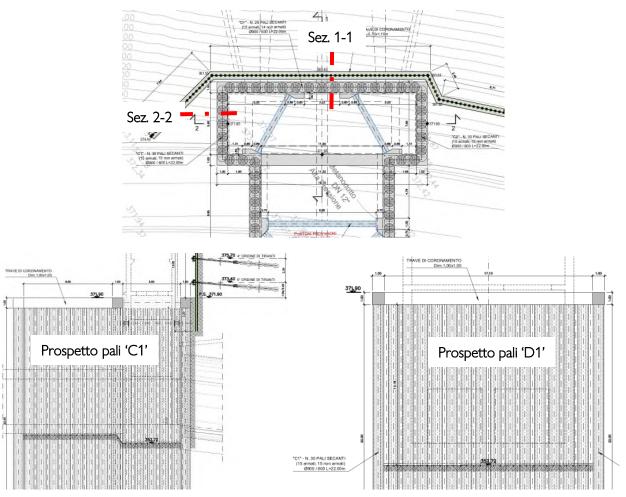


Figura 14-1 Pali secanti pozzo ('Pali tipo D1, C1, C2') – Pianta, viste e schemi di calcolo

Il dimensionamento delle paratie di pali tipo 'D1', 'C1' e 'C2' è stato condotto analizzando No.2 sezioni rappresentative delle condizioni di carico e vincolo evidenziate in Figura 14-1. Le principali caratteristiche geometriche e progettuali sono elencate di seguito. Il dimensionamento e verifica della trave di ripartizione in c.a. a quota testa pali avente sezione rettangolare 1.0x1.5m è riportata nel Par. §15.

Nella fase di cantiere precedente alla realizzazione della paratia di pali tipo 'D1' sono previste delle iniezioni di consolidamento in avanzamento che stabilizzano il terreno a monte dei pali 'D1' che sarà interessato dallo scavo del primo concio di galleria naturale. Tale intervento è stato incluso nella modellazione modificando opportunamente le proprietà caratteristiche del terreno.

Le operazioni di scavo all'interno del pozzo della galleria naturale genera un battente idraulico tra quota di falda del lago a 368.0m slm e la quota di fondo scavo, 357.72m. Allo scopo di contrastare tale sottospinta idraulica, è prevista la realizzazione di un consolidamento con colonne in jet grouting che interessa il terreno di fondazione a valle della paratia di pali 'Tipo D1', 'C1' e 'C2'.

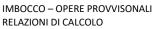
Sezione 1-1 (Pali Tipo D1):

Quota piano di lavoro = 371.90m slm

Tipologia palo = \emptyset 900/600mm

Quota fondo scavo L_{palo} (profondità pali) = 357.72m slm

= 22.0 m



REV A

= 2 HEB 400 Puntone metallico provvisorio $= \emptyset 508/20$ mm Trave di ripartizione

Caratteristiche consolidamenti avanzamento galleria:

= 371.9-4.5= 367.4m Quota testa consolidamenti

Quota fondo consolidamenti = 358.6mAltezza terreno consolidato = 8.8 m

Caratteristiche colonne jet-grouting a quota fondo scavo pozzo:

Quota testa jet = 371.9-13.3 = 358.6 m

= 349.6mQuota fondo jet Altezza terreno consolidato = 9.0 m

Altezza di scavo	Quota falda	Battente idraulico	Caratteristich	Caratteristiche puntoni metallici provvisori								
[m] [m slm] [m]		No. Ordini	Profilo puntone	Luce puntone	Asse puntone	Trave di ripartizione						
14.2	2/00	10.3	1	Ø 508/20mm	5.9m	371.4m slm	1.0×1.0m					
14.2	368.0		2	Ø 508/20mm	5.7m	369.4m slm	2 HEB400					

Tabella 47 Schema di calcolo 'Sez. 1-1 (Pali Tipo D1)

Sezione 2-2 (Pali Tipo C1-C2):

Quota piano di lavoro = 371.90m slm Quota fondo scavo = 357.72m slm = Ø900/600mm = 22.0 m Tipologia palo L_{palo} (profondità pali) Trave di ripartizione = 2 HEB 400 Puntone metallico provvisorio $= \emptyset 508/20$ mm

Altezza di scavo	Quota falda	Battente idraulico	Caratteristich	Caratteristiche puntoni metallici provvisori								
[m]	[m] [m slm] [m]		No. Ordini	Profilo puntone	Luce puntone	Asse puntone	Trave di ripartizione					
14.2	142 2400		1	Ø 508/20mm	5.9m	371.4m slm	1.0×1.0m					
14.2	368.0	10.3	2	Ø 508/20mm	5.9m	369.4m slm	2 HEB400					

Tabella 48 Schema di calcolo 'Sez. 1-1 (Pali Tipo C1/C2)

14.1 Modellazione geotecnica

La figura seguente riporta la stratigrafia e il modello di calcolo sviluppato con ParatiePlus 2022.

PROGETTO ESECUTIVO IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

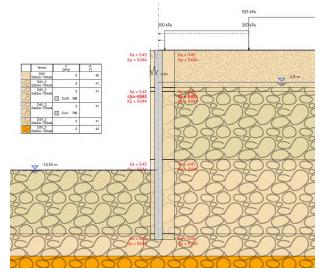


Figura 14-2 Modello di calcolo implementato nel software Paratie Plus 2022

La stratigrafia e i parametri geotecnici adottati nelle elaborazioni sono riportati nella figura seguente. In particolare, si è fatto riferimento alla successione stratigrafica riportata nel profilo geotecnico di cui al §4.

Unità	Descrizione	Z top	Z bottom	γ	c'	φ'	Ka	Кр	Evc	Eur
011102	Describion is	[m]	[m]	$[kN/m^3]$	[kPa]	[°]	[-]	[-]	[MPa]	[MPa]
2	DdV Sabbia/Ghiaia	371.9	367.4	20	-	40	0.45	9.04	60	1.6*Evc
2	DdV_2 Sabbia/Ghiaia	367.4	349.6	20	-	41	0.45	9.04	90	1.6*Evc
3	DdV_3 Sabbia/Ghiaia	349.6	-	20	-	40	0.45	9.04	130	1.6*Evc

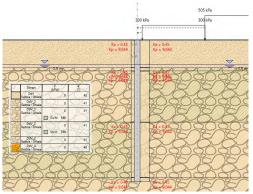
Tabella 49 Stratigrafia di calcolo adottata nel modello

I coefficienti di spinta corrispondenti allo stato attivo e passivo sono valutati dal programma di calcolo a partire dai parametri geotecnici riportati al §4. In particolare, i coefficienti di spinta attiva e passiva (Ka, Kp) sono calcolati considerando la pendenza del terreno naturale a tergo della paratia.

14.2 Descrizione delle fasi di calcolo

Le fasi di calcolo considerate nelle elaborazioni sono le seguenti:

Figura 14-3 Fasi di calcolo considerate



IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

La presenza del terreno esistente a tergo della paratia al di sopra del piano di lavoro è stata inclusa assegnando i valori di sovraccarico permanente corrispondente.

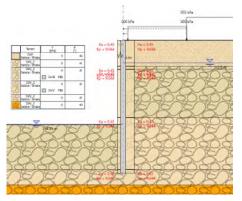


Figura 14-5 Raggiungimento fondo scavo (Stage

14.3 Sintesi risultati allo SLE – Spostamenti

Nel seguito vengono riportati i risultati delle elaborazioni in termini di deformata della paratia (Combinazione SLE rara), per la fase di calcolo 19 nella quale si raggiunge la quota di fondo scavo con falda a quota di esercizio. Il massimo spostamento è circa a 11mm.

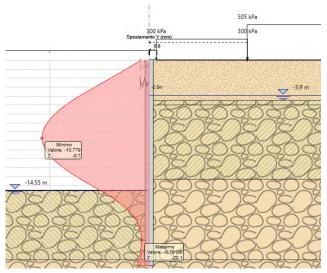


Figura 14-6 Spostamenti della paratia in condizione SLE (Stage 12)

14.4 Sintesi analisi strutturale

Nelle tabelle seguenti si riassumono i valori massimi di azione tagliante e flettente sul palo e sui puntoni provvisori.

Fase	M _{SLE} Palo [kNm/m]	M _{SLU} A1-M1 Palo [kNm/m]	V _{SLU} A1-M1 Palo [kN/m]	N _{SLU} A1-M1 Puntone 1° ordine [kN/puntone]	N _{SLU} A1-M1 Puntone 2° ordine [kN/puntone]

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI

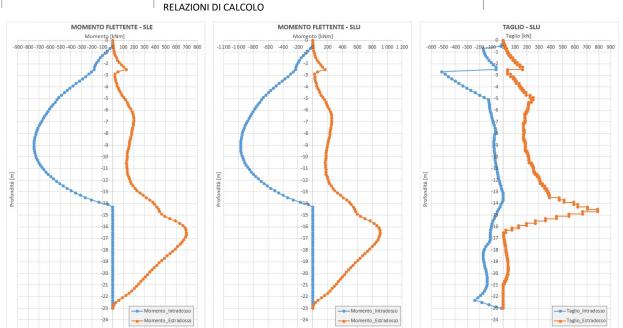
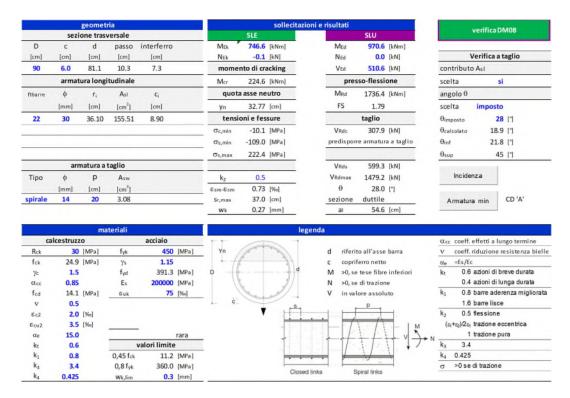
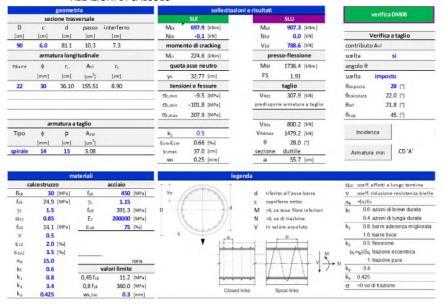



Tabella 50 Sollecitazioni di verifica pali

14.4.1 Verifica strutturale palo

Gabbia 1

Gabbia 2



PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

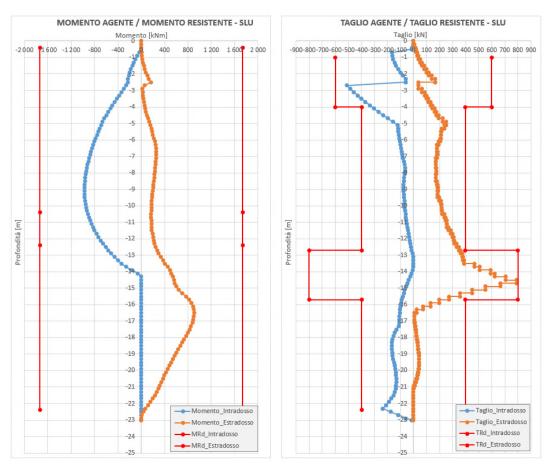
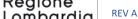
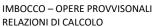


Figura 14-7 Verifica pali Tipo 'D1'

14.4.2 Verifica strutturale trave di ripartizione SLU Comb. A1+M1+R3


Si riporta di seguito la verifica strutturale della trave metallica di ripartizione del secondo ordine di puntonamento metallico.



Dati del profilato:

Tipo di profilato	HEB	400
Altezza del profilato	h	400 mm
Base del profilato	b	300 mm
Spessore dell'anima	a = t _w	13.5 mm
Spessore delle ali	e = t _f	24 mm
Raggio di curvatura	r	27 mm
Area della sezione	А	19777.8 mm ²

Definizione dell'azione di calcolo:

Sforzo massimo agente	N _{Ed}	633.17 [kN/ml]
Interasse degli elementi di contrasto	i	5.7 [m]
Momento agente sul profilato	M_{Ed}	2057.17 [kNm]
Taglio agente sul profilato	V_{Ed}	2165.44 [kN]

Calcolo della resistenza di progetto a tgalio:

Tipologia di acciaio	S	355 [MPa]	
Coefficiente di sicurezza	γмо	1.05 [-]	
Piano di carico del profilato	Carico ne	el piano dell'anima	
n° di profilati considerati	n°	2 [-]	
Area a taglio del singolo profilato	Av	6997.8 mm ²	
Resistenza di progetto a taglio	R _{c,Rd}	2731.93 [kN]	

Definizione della tipologia di verifica da condurre:

Taglio agente sul profilato	V _{Ed}	2165.44 [kN]		
Resistenza di progetto a taglio	$V_{c,Rd}$	2731.93 [kN]		
Rapporto V _{Ed} /V _{c,Rd}	V _{Ed} /V _{c,Rd}	0.79 [-]		
Tipo di verifica	Flessione e taglio			

Verifica strutturale del profilato per flessione retta:

Momento plastico nel piano dell'anima	$W_{pl,y}$	3231739	mm ³
Resistenza di progetto	$M_{c,Rd} = M_{pl,Rd}$	2185.27 [kNm]	
Fattore di sicurezza della sezione	FS	1.06	ОК

Verifica strutturale per profilato soggetto a flessione e taglio:

Momento plastico nel piano dell'anima	$W_{pl,y}$	3231739 mm ³		
Coefficiente di riduzione	ρ	0.3426 [-]		
Resistenza di progetto	M _{y,V,Rd} 2080.24 [kNm]			
Condizione $M_{y,V,Rd} \le M_{y,c,Rd}$	ОК			
Fattore di sucurezza della sezione	FS	1.01	ОК	

Tabella 51 Verifica strutturale trave di ripartizione 2° ordine

14.4.3 Verifiche allo SLU di tipo STR – Puntone Ø508/20mm L=5.9m

Sulla paratia di pali 'D1' insistono No.2 puntoni metallici costituiti da Ø508/20mm, di luce L=5.9m posti a quota asse 369.4m slm. Di seguito, si riporta la verifica strutturale del puntone con interasse di progetto di 5.70m.

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

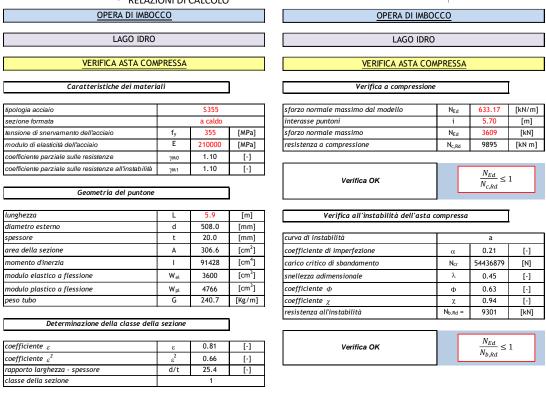


Tabella 52 Verifica puntone metallico STR

14.5 Verifica allo SLU di tipo GEO

14.5.1 Verifica di stabilità globale

La verifica di stabilità globale dell'opera provvisionale deve essere condotta in accordo all'approccio 1, Combinazione 2 (A2+M2+R3). Nella figura seguente è riportato il risultato delle verifiche in accordo con il metodo di Janbu. L'analisi di stabilità risulta essere soddisfatta con un coefficiente di sicurezza di 2.3.

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

REV A

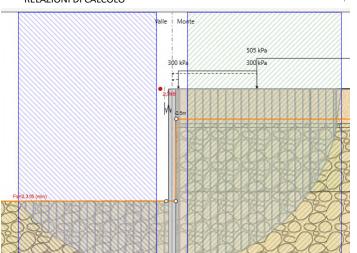


Figura 14-8 Risultati verifica stabilità globale

14.5.2 Verifica della spinta a valle della paratia

La verifica delle spinte a valle della paratia è condotta in accordo all'Approccio 1, Combinazione 2 (A2+M2+R1). Nella seguente figura si mostrano la risultante delle spinte agenti sulla paratia relativi all'ultima fase di calcolo (Stage 11), in particolare deve risultare che la spinta mobilitata a valle (Spinta reale efficace), moltiplicata per il coefficiente $\gamma F = 1.0$, sia inferiore alla resistenza del terreno (Massima spinta ammissibile) corrispondente alla spinta passiva divisa per il coefficiente di resistenza $\gamma R = 1.0$).

La verifica risulta soddisfatta:

Rapporto di mobilitazione Comb. SLE: 10%Rapporto di mobilitazione Comb. SLU: 11%

Massimi rapporti di mobilizzazione spinta passiva

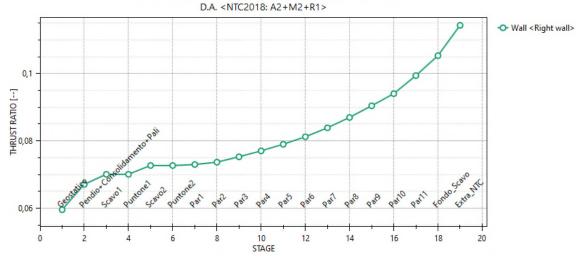


Figura 14-9 Verifica mobilitazione spinta passiva (Comb. A2+M2)

14.5.3 Verifica sfilamento tirante

Si riporta di seguito la verifica a sfilamento dei trefoli dei tiranti Comb. A1+M1+R3.

PROGETTO ESECUTIVO

REV A

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

Caratteristiche del tirante e del bulbo:

Ordine tirante	i	Quota da testa paratia	L _{libera} min statica	L _{libera} min sismica	n° trefoli	L _{libera} di progetto	L _{fondazione} minima	L _{fondazione} di	L _{totale}	L _{utile}	Area tirante	ф _{perforazion} e	α	φ _{calcolo} =α·φ	τ _{bulbo} - terreno
[-]	[°]	[m]	[m]	[m]	[-]	[m]	[m]	[m]	[m]	[m]	[mm ²]	[mm]	[-]	[m]	[kPa]
1	5	0.3	6.5	8.76	5	9.0	9.2	12	21	15	695	180	1.5	0.27	180
III	5	3.8	4.9	6.58	7	7.0	15.7	16	23	15	973	180	1.5	0.27	180
IV	5	6.7	3.6	4.78	7	6.0	14.4	16	22	14	973	180	1.5	0.27	200
V	5	9.0	2.5	3.36	7	5.0	12.9	16	21	13	973	180	1.5	0.27	200

Verifiche del tirante e dei meccanismi di rottura

Ordine tirante	Azione massima di progetto	Rd sfilamento bulbo- terreno	Rd sfilamento trefoli- bulbo	Verifica del bulbo di	Forza di rottura dei trefoli	Modalità di collasso	Rispetto gerarchia	FS sfilamento -
[-]	[kN]	[kN]	[kN]	Tondazione	fondazione [kN]		resistenze	rottura
1	747.6	979.77	1578.6	VERIFICATO	1160.65	Sfilamento bulbo dal terreno	OK	1.2
III	1284.3	1306.36	2104.8	VERIFICATO	1624.91	Sfilamento bulbo dal terreno	OK	1.2
IV	1306.9	1451.52	2104.8	VERIFICATO	1624.91	Sfilamento bulbo dal terreno	OK	1.1
V	1169.4	1451.52	2104.8	VERIFICATO	1624.91	Sfilamento bulbo dal terreno	OK	1.1

Tabella 53 Verifica sfilamento tiranti Sez. 1-1

PROGETTO ESECUTIVO IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

15 TRAVE DI CORONAMENTO SU PALI SECANTI

Nel capitolo seguente, si espongono le verifiche strutturali relative alle sezioni in C.A. delle travi di coronamento.

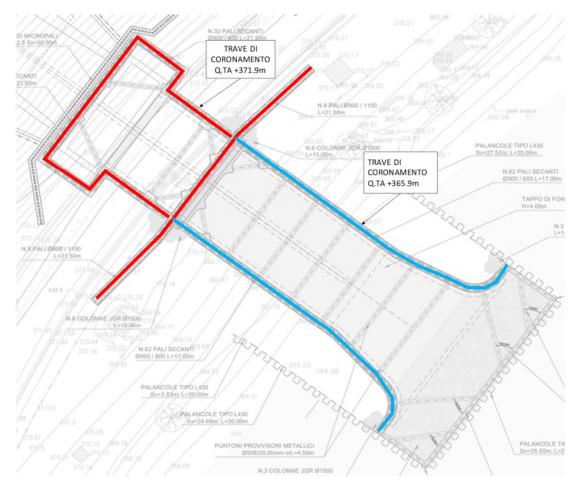


Figura 15-1 - Planimetria di inquadramento Travi di coronamento

IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

15.1 Trave di coronamento a q.ta +365.9m

Si analizza il sistema di travi previsto alla quota +365.90m.

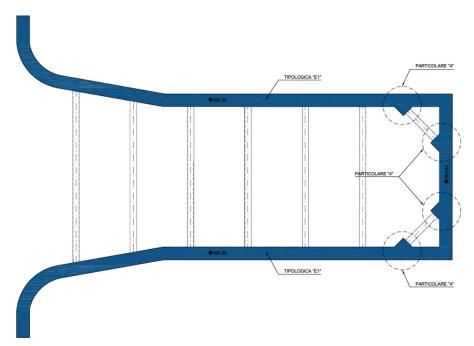
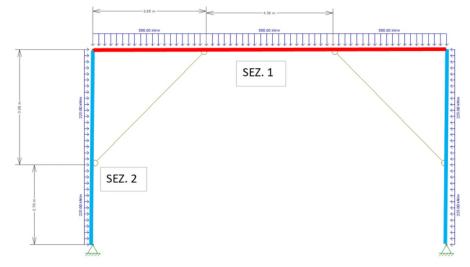



Figura 15-2 - Pianta Trave di coronamento a q.ta +365.90m

15.1.1 Modellazione comportamento nel piano orizzontale

Attraverso una semplice modellazione FEM 2D si determinano le massime sollecitazioni agenti sugli elementi strutturali:

	BxH [cm]	ID Sez.	q_SLU [kN/m]		
	100x100	1	595		
Γ	100x100	2	225		

Figura 15-3 - Schema di calcolo trave q.ta +365.9m

IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

Le azioni agenti sulla struttura derivano dalle sezioni di calcolo, adottate per il dimensionamento delle paratie di Pali (mediante Paratie Plus).

Nello specifico la sezione 1 è caratterizzata da un carico agente pari a 595 kN/m (azione di taglio Paratia tipo "B2" Fase scavo lato Lago), mentre la sezione 2 presenta un carico trasversale pari a 225 kN/m (azione di taglio Paratia tipo "A").

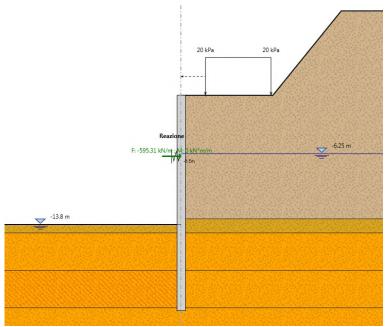


Figura 15-4 - Azione di taglio puntone +365.4m (Paratia Pali tipo "B" – Fase scavo lato Lago)

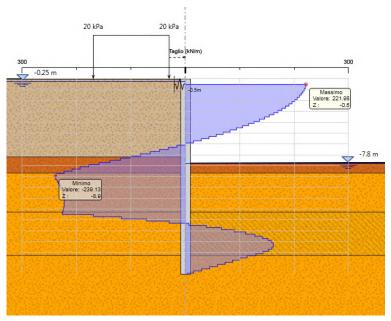


Figura 15-5 - Azione di taglio puntone +365.4m (Paratia Pali tipo "A")

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

REV A

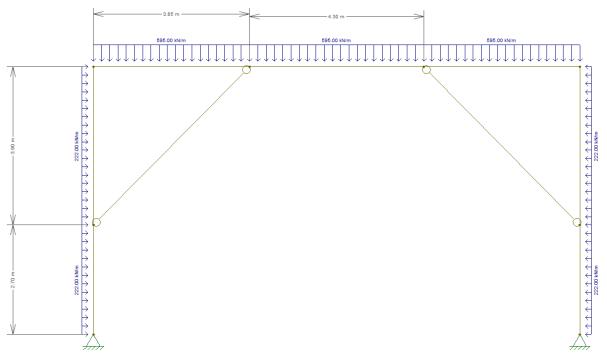


Figura 15-6 - Applicazione spinte travi di coronamento



REV A

A MESSA IN SICUREZZA DEL LAGO D'IDRO

		SLU				
BxH [cm]	ID Sez.	N [kN]	V [kN]	M [kNm]		
100x100	1	0	1573	1896		
100x100	2	-1573	1202	2437		

Tabella 54 - Max sollecitazioni Trave di coronamento +365.9m

In riferimento ai risultati delle sezioni di calcolo "Pali tipo B2 – scavo lato Lago", si riportano le massime sollecitazioni agenti sui puntoni metallici:

quota [m slm]	Tipologia Paratia	Puntoni N MAX_SLU [kN]
365,9	PARATIA FRONTALE (fase scavo lato Lago) - Tipo "B2"	5904

Tabella 55 - Max sollecitazioni Puntoni +365.9m

Si riportano i diagrammi di sollecitazione, dove N>0 rappresenta azioni di trazione.

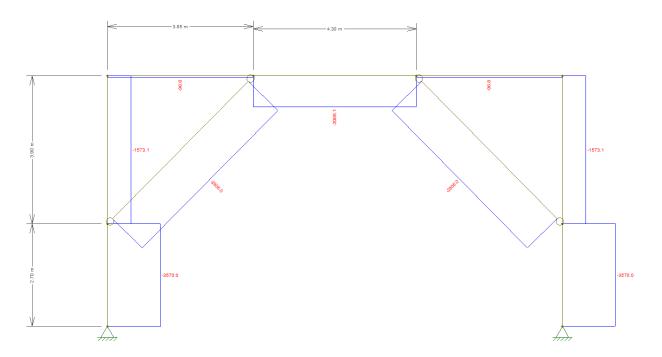


Figura 15-7 - Azione assiale (SLU)

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

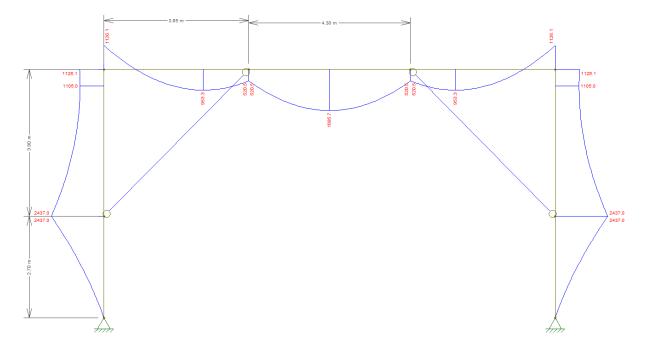


Figura 15-8 – Momento flettente (SLU)

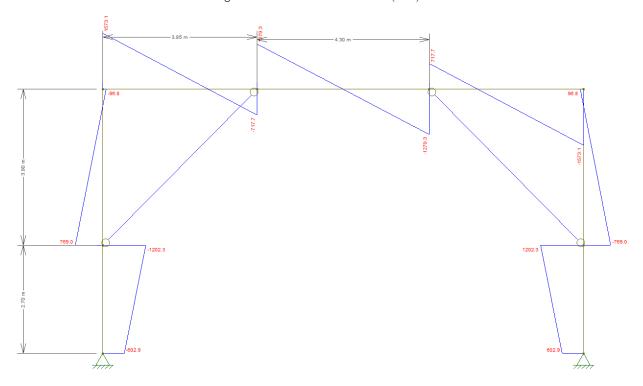
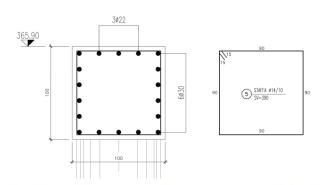


Figura 15-9 – Azione di taglio (SLU)

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO


15.1.1.2Schemi armatura

BxH [cm]	ID Sez.	Arm. Long. PARETE	Arm. Long. BASE	Staffe
100x100	1	6 + 6⊕30	3+3 ∳22	Ф 14/10
100x100	2	6 + 6∳30	3+3 ∳ 22	Ф14/10

15.1.1.3 Verifica strutturale trave SLU

TIPOLOGIA "E1" Scala 1:20

148.2

	1	geometri	a	
	sezio	ne trasve	rsale	
В	Н	С	d	Z
[cm]	[cm]	[cm]	[cm]	[cm]
100	100	-56.6	155.1	139.6
	armatı	ıra longitı	udinale	
Nbarre	ф	d	AsI	
	[mm]	[cm]	[cm ²]	
6	30	6.9	42.41	
6	30	155.1	42.41	
		163.1		

armatura a taglio						
Nbracci	ф	s	α	Asw		
	[mm]	[cm]	[°]	[cm ²]		
2	14	10	90	3.08		

		sollecitaz	ioni e risultati		
	SLE			SLU	
MEk	0.00	[kNm]	MEd	1896	[kNm]
NEk	0	[kN]	NEd	-0.0001	[kN]
tensi	oni e fes	sure	VEd	1573	[kN]
Mdec	0.0	[kNm]	pres	so-flessic	ne
Mcr	-635.0	[kNm]	MRd	2490.6	[kNm]
			FS	1.31	
Уn	37.32	[cm]		taglio	
σc,min	0.0	[MPa]	VRdc	429.2	[kN]
$\sigma_{s,min}$	0.0	[MPa]	predispor	re armatura	a tagli
σs,max	0.0	[MPa]			
			VRds	2912.8	[kN]
k ₂	0.5		VRdmax	4607.5	[kN]
Esm-Ecm	-	[‰]	θ	30.0	[*]
Sr,max	-	[cm]	sezione	duttile	
Wk	-	[mm]	aı	120.9	[cm]

		ma	teriali		
ca	lcestruzz	О	acciaio		
Rck	30	[MPa]	fyk	450	[MPa]
fck	24.9	[MPa]	γs	1.15	
γc	1.5		fyd	391.3	[MPa]
α_{cc}	0.85		Es	200000	[MPa]
fcd	14.1	[MPa]	Euk	75	[‰]
ν	0.540				
€c2	2.0	[%6]			
€ cu2	3.5	[960]			
α_{e}	15.0				
kt	0.4		Vä	alori limit	e
k ₁	0.8		0,45 fck	11.2	[MPa]
k ₃	3.4		0,8 fyk	360.0	[MPa]
k_4	0.425		Wk,lim	0.302	[mm]

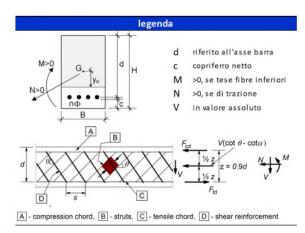


Figura 15-10 - Verifica strutturale SLU - Sezione 1

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

		geometri	a		
	sezio	ne trasve	rsale		
В	Н	С	d	Z	
[cm]	[cm]	[cm]	[cm]	[cm]	
100	100	-56.6	155.1	139.6	
	armatı	ıra longitı	udinale		
Nbarre	ф	d	Asi		
	[mm]	[cm]	[cm ²]		
6	30	6.9	42.41		
6	30	155.1	42.41		148.2
		163.1			
	arm	natura a ta	iglio		
Nbracci	φ	s	α	Asw	
	[mm]	[cm]	[°]	[cm ²]	
2	14	10	90	3.08	

		sollecitaz	ioni e risultati		
	SLE			SLU	
MEk	0.00	[kNm]	MEd	2437	[kNm]
NEk	0	[kN]	NEd	-1573	[kN]
tensi	oni e fes	sure	VEd	1202	[kN]
Mdec	0.0	[kNm]	pres	so-flessio	ne
Mcr	-635.0	[kNm]	MRd	3133.4	[kNm]
			FS	1.29	
Уn	37.32	[cm]		taglio	
σc,min	0.0	[MPa]	VRdc	795.2	[kN]
σs,min	0.0	[MPa]	predispor	e armatura	a taglio
σs,max	0.0	[MPa]			
			VRds	2912.8	[kN]
k ₂	0.5		V _{Rdmax}	4607.5	[kN]
Esm-Ecm	-	[‰]	θ	30.0	[°]
Sr,max	-	[cm]	sezione	duttile	
Wk	-	[mm]	aı	120.9	[cm]

		mat	teriali		
ca	lcestruzz	o	acciaio		
Rck	30	[MPa]	fyk	450	[MPa]
fck	24.9	[MPa]	γs	1.15	1
γc	1.5		fyd	391.3	[MPa]
α_{cc}	0.85		Es	200000	[MPa]
fcd	14.1	[MPa]	Euk	75	[%0]
v	0.540				
Ec2	2.0	[%]			
€cu2	3.5	[%]			
α_{e}	15.0				
kt	0.4		Vä	alori limit	e
k_1	0.8		0,45 fck	11.2	[MPa]
k ₃	3.4		0,8 fyk	360.0	[MPa]
k_4	0.425		Wk,lim	0.302	[mm]

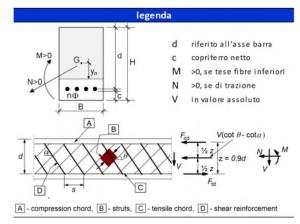


Figura 15-11 - Verifica strutturale SLU - Sezione 2

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

15.1.1.4 Verifica strutturale trave SLU (Mensola tozza)

15.1.1.4.1 Verifica tirante e puntone compresso

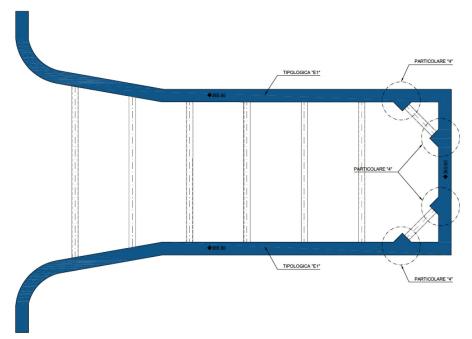


Figura 15-12 - Pianta Trave di coronamento a q.ta +365.90m

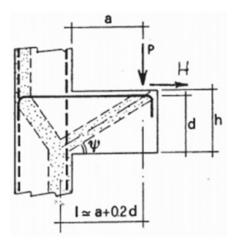


Figura 15-13 Modello a puntoni e tiranti con tirante orizzontale per mensole tozze

PROGETTO ESECUTIVO

REV A

C4.1.2.3.7 Resistenza di elementi tozzi, nelle zone diffusive e nei nodi

С	[-]	1,50 (=1.00 sbalzi senza staffe, 1.5 sbalzi con staffe)
R_{ck}	$[N/mm^2]$	30,0 Resistenza a compressione (cubica)
f_{ck}	[N/mm ²]	24,9 Resistenza a compressione (cilindrica)
f_{cd}	[N/mm ²]	16,6 Resistenza a compressone di progetto
f_y	[N/mm ²]	450,0 Snervamento acciaio
f_{yd}	$[N/mm^2]$	391,3 Resistenza a trazione di progetto
ф1	[mm]	30 Diametro armature - 1
n_1	[-]	6,0 Numero armature -1
ф2.	[mm]	16 Diametro armature - 2
n_2	[-]	21,0 Numero armature -2
A_s	[mm ²]	8463,5 Sezione totale armatura tirante
b	[mm]	1000 Spessore puntone
d	[mm]	1700 Altezza utile
a	[mm]	500 Distanza applicazione del carico verticale
L	[mm]	840 Cautelativamente si considera L pari alla distanza asse fodera-asse trave di coronamento
λ	[-]	$0.55 = \cot g\psi = L / (0.9xd)$
H _{Ed}	[kN]	0,0 Azione orizzontale di progetto
P_{ed}	[kN]	5904,0 Azione verticale di progetto
P _{Rc}	[kN]	13010 Azione resistente di progetto del puntone inclinato
P_Rs	[kN]	6032 Azione resistente di progetto armature
check	[-]	$OK P_{Rc} \ge P_{Rs}$
Fs	[-]	1,02 Coefficiente di sicurezza

Figura 15-14 - Verifica resistenza elementi tozzi — Particolare 4

RELAZIONI DI CALCOLO

15.1.1.4.2 Verifica locale appoggio

In accordo a EC2 Progettazione delle strutture di calcestruzzo, Parte 2: Ponti di calcestruzzo – Progettazione e dettagli costruttivi (§J.104.2), l'armatura di frettaggio necessaria per evitare la rottura del cordolo di appoggio viene calcolata secondo l'espressione seguente:

$$A_{\rm r} \cdot f_{\rm yd} \ge F_{\rm Rdu}/2$$
.

Con:

- Ar, armatura di frettaggio
- fyd, resistenza di snervamento di progetto
- FRdu carico applicato

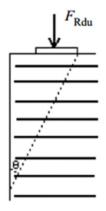


Figura 15-15 - Meccanismo di rottura del cordolo di appoggio

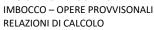
Inoltre, secondo il punto §J.104.2 di EC2-2, per evitare l'esplosione del calcestruzzo della zona di appoggio, si garantisce il rispetto della condizione seguente:

$$\frac{P_{\text{max}}}{c \cdot c'} \le 0.6 \cdot f_{\text{ck}}(t)$$

Con:

- Pmax. massima forza
- c, c' dimensioni rettangolo di appoggio
- fck resistenza a compressione caratteristica del calcestruzzo

Si riportano in tabella le verifiche e le relative armature di frettaggio:



PROGETTO ESECUTIVO

quota [m slm]	PUNTONI	N SLU_F TOOL [kN]	N SLU_PARATIE [kN]	N MAX [kN]
365.9	PARATIA FRONTALE (max fase 1)	2806	5904	5904

	STAFFE	ORTOGONALI ALLA DI	REZIONE DEL PU	NTONE	
Ar[mm²]	n barre	n barre/allineamento	n allineamenti	Φ	n x Φ x staffa "C" [mm²]
7544	42	6	7	16	8445

		STAF	FE PARALLELE ALLA DIE	REZIONE DEL PUN'	TONE		
As [mm²]	n barre	TIPO	n barre/allineamento	n allineamenti	ф	n x ^(j) x staffa "C" [mm²]	F,S,
2716	14	1"C"	2	7	16	2815	0.96

VERIFICA SCHIACCIAMENTO CLS				
A_tasca appoggio [mm²]	Pmax/c*c'	0.6 fck	$\frac{P_{\text{max}}}{c \cdot c'} \le 0.6 \cdot f_{\text{ck}}(t)$	F.S.
1000000	5.904	15		0.39

Figura 15-16 - Riepilogo verifiche locali appoggio

PARTICOLARE "4"

Scala 1:20 100 100 11

Figura 15-17 - Schema armatura nodo Puntone tipo 4

IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

REV A

15.2 Trave di coronamento a q.ta +371.9m

Si analizza il sistema di travi previsto alla quota +371.90m.

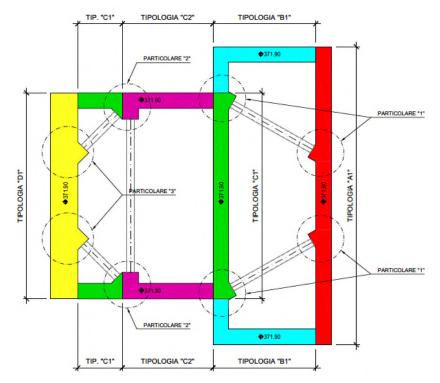
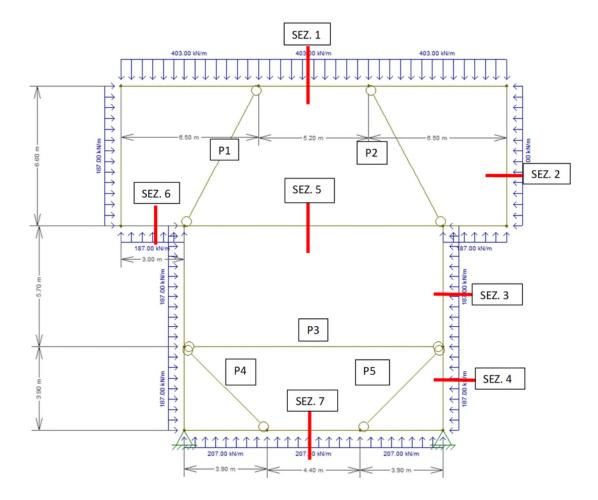


Figura 15-18 - Pianta Trave di coronamento a q.ta +371.9m

INSERIRE ESTENSIONI PARATIA FRONTALE +371.9M



IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

15.2.1 Modellazione comportamento nel piano orizzontale

BxH [cm]	ID Sez.	q_SLU [kN/m]
100x150	1	403
100x150	2	187
100x150	3	187
100x150	4	187
100x150	5	0
100x150	6	187
175x150	7	201

Figura 15-19 - Schema di calcolo trave q.ta +371.9m

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

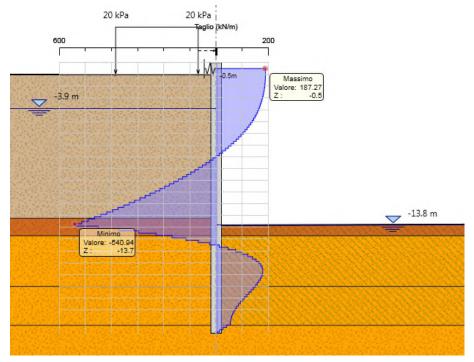


Figura 15-20 - Azione di taglio puntone +371.9m (Paratia Pali tipo "C1"-"C2")

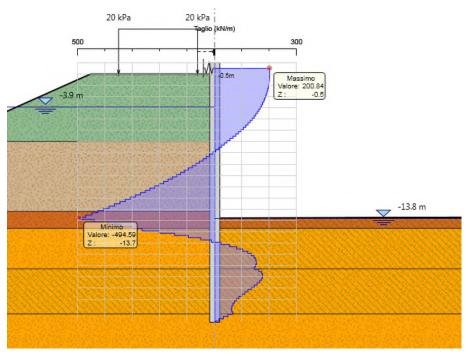


Figura 15-21 - Azione di taglio puntone +371.9m (Paratia Pali tipo "B" – Fase scavo lato Lago)

IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

Per determinare le sollecitazioni agenti sui puntoni nella fase di taglio della paratia di pali (interferenti con la galleria), vengono studiate in dettaglio le condizioni di vincolo e carico riferite alle singole lavorazioni. Tale valore viene applicato come carico distribuito alla trave di coronamento lato monte.

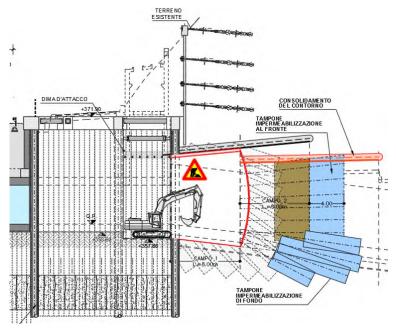
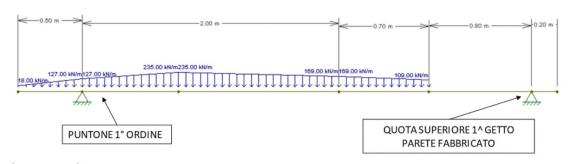



Figura 15-22 – Fase esecutiva Imbocco n°15

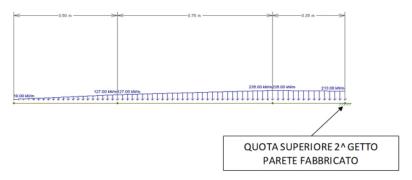
Nello specifico si analizzano le seguenti condizioni:


Schema 1: Palo tagliato, carico agente pari alla spinta passiva della berlinese a tergo, schematizzazione puntoni con vincoli a cerniera.

SCHEMA 1

Schema 2: Palo tagliato, rimozione puntone (2° ordine) e inserimento vincolo a cerniera offerto dal getto della parete del fabbricato (1° getto);

SCHEMA 2


IMBOCCO – OPERE PROVVISONALI

RELAZIONI DI CALCOLO

Schema 3: Palo tagliato, inserimento vincolo di incastro in corrispondenza del getto della parete del fabbricato (2° getto).

SCHEMA 3

A favore di sicurezza si analizza la condizione limite in corrispondenza della sezione di chiave della galleria. La massima azione assiale agente in corrispondenza del primo ordine di puntoni è pari a 403 kN (SLU).

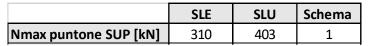


Tabella 56- Nmax puntone 1° ordine

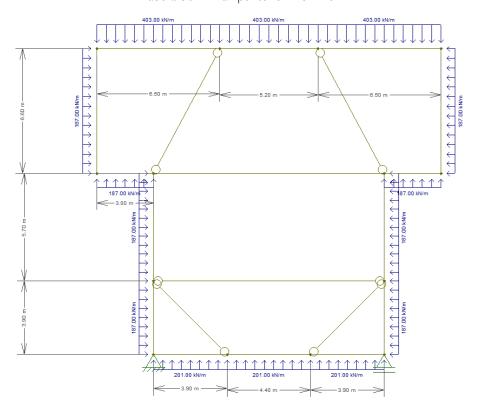


Figura 15-23 - Applicazione spinte travi di coronamento

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

15.2.1.1 Sollecitazioni

N>0 compressione

			SLU	
BxH [cm]	ID Sez.	N [kN]	V [kN]	M [kNm]
100x150	1	485	1383	1282
100x150	2	1237	749	1676
100x150	3	3106	775	1000
100x150	4	2352	407	606
100x150	5	-249	0	418
100x150	6	749	1237	1676
175x150	7	322	471	441

Tabella 57 - Max sollecitazioni Trave di coronamento +371.9m

In riferimento ai risultati delle sezioni di calcolo esposte in precedenza, si riportano le massime sollecitazioni agenti sui puntoni metallici:

quota [m slm]	Tipologia Paratia	Puntoni N MAX_SLU [kN]
371,9	PARATIA FRONTALE (fase scavo lato Monte) - Tipo "B2"	1194
371,9	PARATIA POZZO - Tipo "D1"	2751
371,9	PARATIA COLLEGAMENTO POZZO - Tipo "C1-C2"	1521

Tabella 58 - Max sollecitazioni Puntoni +371.9m

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

Si riportano i diagrammi di sollecitazione, dove N>0 rappresenta azioni di trazione.

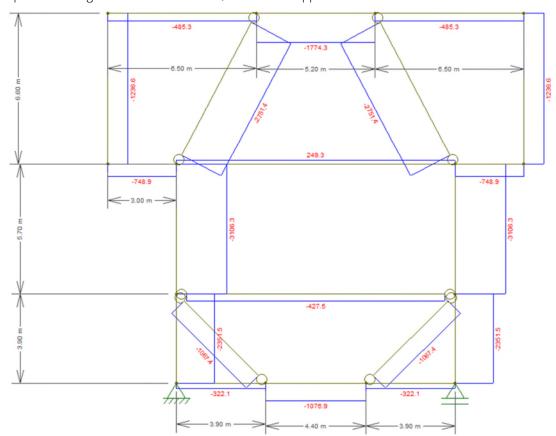


Figura 15-24 - Azione assiale (SLU)

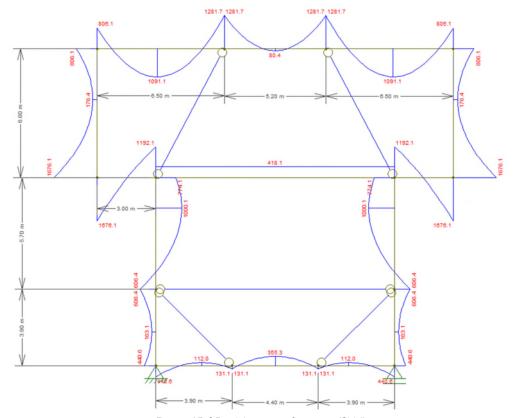


Figura 15-25 – Momento flettente (SLU)

IMBOCCO – OPERE PROVVISONALI

REV A

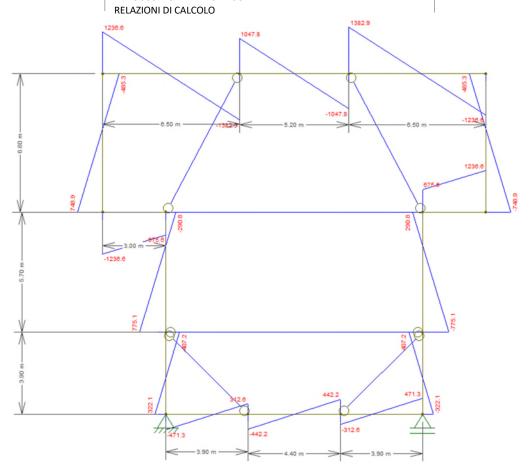


Figura 15-26 – Azione di taglio (SLU)

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI

REV A

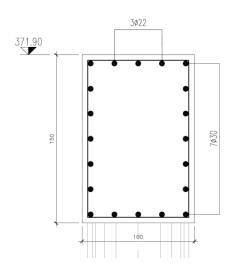
RELAZIONI DI CALCOLO

15.2.1.2Schemi armatura

BxH [cm]	ID Sez.	Arm. Long. PARETE	Arm. Long. BASE (As+As') (*)	Staffe
100x150	1	7+7 ∳ 30	5 + 5∳30	Ф 14/10
100x150	2	7+7 ∮30	3+3∳22	Ф14/10
100x150	3	7+7 [⊕] 22	3+3∳22	Ф12/10
100x150	4	7+7 [⊕] 22	3+3∳22	Ф12/20
100x150	5	7+7 [⊕] 22	3+3∳22	Ф12/20
100x150	6	7+7 ∳30	3+3∳22	Ф14/10
175x150	7	6 + 6 [⊕] 22	12 [⊕] 30+5 [⊕] 22	Ф14/10

^(*) As, armatura tesa; As*, armatura compressa

PROGETTO ESECUTIVO


IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO



15.2.1.3 Verifica strutturale trave SLU

Si rimanda al cap. §15.2.2 per la verifica strutturale della sezione trasversale della trave di coronamento delle paratie tipo "D1" e "B2", per le quali è necessario soddisfare la verifica a flessione deviata, essendo presenti sollecitazioni agenti sia sul piano verticale (carico pali appesi) che orizzontale (taglio agente per spinta terreno fase scavo).

TIPOLOGIA "B1" Scala 1:20

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

		geometri	a	
	sezio	ne trasve	ersale	
В	Н	С	d	Z
[cm]	[cm]	[cm]	[cm]	[cm]
150	100	5.4	93.1	83.8
	armatu	ra longit	udinale	
Nbarre	ф	d	Asi	
	[mm]	[cm]	[cm ²]	
7	30	6.9	49.48	
7	30	93.1	49.48	
	arm	atura a ta	aglio	
Nbracci	ф	s	α	Asw
	[mm]	[cm]	[°]	[cm ²]
2	14	10	90	3.08

		sollecitaz	ioni e risultati		
	SLE			SLU	
Mek	0.00	[kNm]	MEd	1676.00	[kNm]
NEk	0	[kN]	NEd	-1237	[kN]
tensi	oni e fes	sure	VEd	749.00	[kN]
Mdec	0.0	[kNm]	pres	so-flessio	ne
Mcr	-642.7	[kNm]	MRd	2242.7	[kNm]
			FS	1.34	
Уn	26.92	[cm]		taglio	
σc,min	0.0	[MPa]	VRdc	604.6	[kN]
$\sigma_{s,min}$	0.0	[MPa]	predispor	re armatura	a taglio
σs,max	0.0	[MPa]			
			VRds	1748.4	[kN]
k ₂	0.5		V _{Rdmax}	4148.6	[kN]
€sm-€cm	-	[‰]	θ	30.0	[°]
Sr,max	-	[cm]	sezione	duttile	
Wk	-	[mm]	aı	72.6	[cm]

		ma	teriali		
ca	lcestruzz	0		acciaio	
Rck	30	[MPa]	fyk	450	[MPa]
fck	24.9	[MPa]	γs	1.15	
γc	1.5		fyd	391.3	[MPa]
α_{cc}	0.85		Es	200000	[MPa]
fcd	14.1	[MPa]	Euk	75	[%0]
ν	0.540				
€c2	2.0	[%]			
€cu2	3.5	[960]			
α_{e}	15.0				
kt	0.4		Vä	lori limit	e
k_1	0.8		0,45 fck	11.2	[MPa]
k ₃	3.4		0,8 fyk	360.0	[MPa]
k_4	0.425		Wk,lim	0.302	[mm]

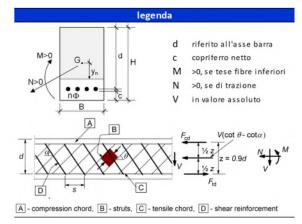
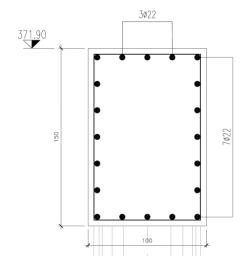



Figura 15-27 - Verifica strutturale SLU - Sezione 2

TIPOLOGIA "C2" Scala 1:20

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

	1	geometri	a	
	sezio	ne trasve	ersale	
В	Н	С	d	Z
[cm]	[cm]	[cm]	[cm]	[cm]
150	100	5.2	93.7	84.3
	armatu	ra longit	udinale	
Nbarre	ф	d	AsI	
	[mm]	[cm]	[cm ²]	
7	22	6.3	26.61	
7	22	93.7	26.61	
	arm	atura a ta	aglio	
Nbracci	ф	s	α	Asw
	[mm]	[cm]	[°]	[cm ²]
2	12	10	90	2.26

		sollecitaz	ioni e risultati		
	SLE			SLU	
Mek	0.00	[kNm]	MEd	1000.00	[kNm]
NEk	0	[kN]	NEd	-3106	[kN]
tensi	oni e fes	sure	VEd	775.00	[kN]
Mdec	0.0	[kNm]	pres	so-flessio	ne
Mcr	-593.6	[kNm]	MRd	2218.3	[kNm]
			FS	2.22	
Уn	31.65	[cm]		taglio	
σc,min	0.0	[MPa]	VRdc	870.5	[kN]
$\sigma_{s,min}$	0.0	[MPa]	non serv	e armatura :	a taglio
σs,max	0.0	[MPa]			
			VRds	1292.8	[kN]
k ₂	0.5		VRdmax	4175.3	[kN]
Esm-Ecm	-	[‰]	θ	30.0	[°]
Sr,max	-	[cm]	sezione	duttile	
Wk	-	[mm]	aı	93.7	[cm]

		mat	teriali		
ca	lcestruzz	О		acciaio	
Rck	30	[MPa]	fyk	450	[MPa]
fck	24.9	[MPa]	γs	1.15	1
γc	1.5		fyd	391.3	[MPa]
α_{cc}	0.85		Es	200000	[MPa]
fcd	14.1	[MPa]	Euk	75	[‰]
ν	0.540				
€c2	2.0	[%]			
€cu2	3.5	[%]			
α_{e}	15.0				
kt	0.4		V	alori limit	e
k_1	0.8		0,45 fck	11.2	[MPa]
k_3	3.4		0,8 fyk	360.0	[MPa]
k ₄	0.425		Wk,lim	0.302	[mm]

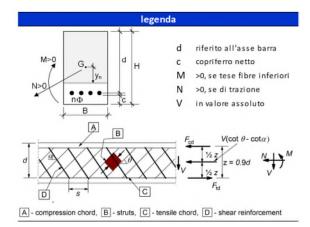
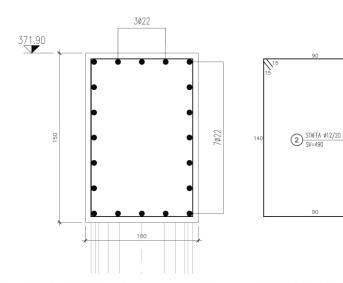


Figura 15-28 - Verifica strutturale SLU - Sezione 3



PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

TIPOLOGIA "C1" Scala 1:20

	sezio	ne trasve	ersale	
В	Н	С	d	Z
[cm]	[cm]	[cm]	[cm]	[cm]
150	100	5.2	93.7	84.3
	armatu	ra longit	udinale	
Nbarre	ф	d	Asi	
	[mm]	[cm]	[cm ²]	
7	22	6.3	26.61	
7	22	93.7	26.61	
	arm	atura a ta	aglio	

armatura a taglio							
Nbracci	ф	s	α	Asw			
	[mm]	[cm]	[°]	[cm ²]			
2	12	20	90	2.26			

materiali							
ca	lcestruzz	o		acciaio			
Rck	30	[MPa]	fyk	450	[MPa]		
fck	24.9	[MPa]	γs	1.15			
γс	1.5		fyd	391.3	[MPa]		
α_{cc}	0.85		Es	200000	[MPa]		
fcd	14.1	[MPa]	Euk	75	[‰]		
ν	0.540						
€c2	2.0	[‰]					
Ecu2	3.5	[‰]					
α_{e}	15.0						
kt	0.4		Vä	alori limit	e		
k_1	0.8		0,45 fck	11.2	[MPa]		
k ₃	3.4		0,8 fyk	360.0	[MPa]		

		sollecitaz	ioni e risultati		
	SLE			SLU	
Mek	0.00	[kNm]	MEd	606.00	[kNm]
NEk	0	[kN]	NEd	-2352	[kN]
tensi	oni e fes	sure	VEd	407.00	[kN]
Mdec	0.0	[kNm]	pres	so-flessio	ne
Mcr	-593.6	[kNm]	MRd	1936.3	[kNm]
			FS	3.20	
Уn	31.65	[cm]		taglio	
σc,min	0.0	[MPa]	VRdc	764.5	[kN]
σs,min	0.0	[MPa]	non serv	e armatura	a taglio
σs,max	0.0	[MPa]			
			VRds	646.4	[kN]
k ₂	0.5		VRdmax	4175.3	[kN]
Esm-Ecm	-	[‰]	θ	30.0	[°]
Sr,max	-	[cm]	sezione	duttile	
Wk	-	[mm]	aı	93.7	[cm]

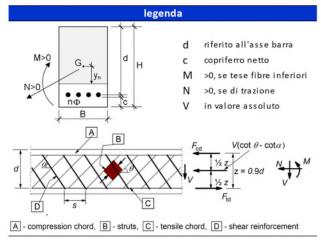


Figura 15-29 - Verifica strutturale SLU - Sezione 4

 k_4

0.425

0.302 [mm]

Wk,lim

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

		geometri	a	
	sezio	ne trasve	ersale	
В	Н	С	d	Z
[cm]	[cm]	[cm]	[cm]	[cm]
150	100	5.2	93.7	84.3
	armatu	ra longit	udinale	
Nbarre	ф	d	Asi	
	[mm]	[cm]	[cm ²]	
7	22	6.3	26.61	
7	22	93.7	26.61	
	arm	atura a ta	aglio	
Nbracci	ф	s	α	Asw
	[mm]	[cm]	[°]	[cm ²]
2	12	20	90	2.26

		sollecita	zioni e risultati		
	SLE			SLU	
MEk	0.00	[kNm]	MEd	418.00	[kNm]
NEk	0	[kN]	NEd	249	[kN]
tensi	oni e fes	sure	VEd	0.00	[kN]
Mdec	0.0	[kNm]	pres	so-flessio	ne
Mcr	-593.6	[kNm]	MRd	839.3	[kNm]
			FS	2.01	
Уn	31.65	[cm]		taglio	
Oc,min	0.0	[MPa]	VRdc	398.9	[kN]
$\sigma_{s,min}$	0.0	[MPa]	non serv	e armatura :	a taglio
σs,max	0.0	[MPa]			
			VRds	646.4	[kN]
k ₂	0.5		VRdmax	4175.3	[kN]
Esm-Ecm	-	[‰]	θ	30.0	[°]
Sr,max	-	[cm]	sezione	duttile	
Wk	-	[mm]	aı	93.7	[cm]

materiali							
ca	lcestruzz	0	acciaio				
Rck	30	[MPa]	fyk	450	[MPa]		
fck	24.9	[MPa]	γs	1.15			
γc	1.5		fyd	391.3	[MPa]		
α_{cc}	0.85		Es	200000	[MPa]		
fcd	14.1	[MPa]	Euk	75	[%0]		
v	0.540						
€c2	2.0	[%]					
€cu2	3.5	[%]					
$\alpha_{\mathbf{e}}$	15.0						
kt 0.4			Vé	valori limite			
k ₁	0.8		0,45 fck	11.2	[MPa]		
k ₃	3.4		0,8 fyk	360.0	[MPa]		
k_4	0.425		Wk,lim	0.302	[mm]		

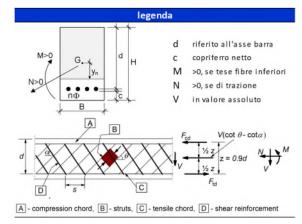


Figura 15-30 - Verifica strutturale SLU - Sezione 5

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

		geometri	a	
	sezio	ne trasve	ersale	
В	Н	С	d	Z
[cm]	[cm]	[cm]	[cm]	[cm]
150	100	5.6	92.9	83.6
	armatu	ıra longit	udinale	
Nbarre	ф	d	Asi	
	[mm]	[cm]	[cm ²]	
7	30	5.5	49.48	
7	30	92.9	49.48	
	arm	atura a ta	aglio	
Nbracci	ф	s	α	Asw
	[mm]	[cm]	[°]	[cm ²]
2	14	10	90	3.08

		sollecitaz	ioni e risultati			
	SLE			SLU		
MEk	0.00	[kNm]	MEd	1676.00	[kNm]	
NEk	0	[kN]	NEd	-749	[kN]	
tensio	oni e fes	sure	VEd	1237.00	[kN]	
Mdec 0.0 [kNm]			pres	so-flessio	ne	
Mcr	-646.7	[kNm]	MRd	2047.8	[kNm]	
			FS	1.22		
Уn	26.68	[cm]		taglio		
σc,min	0.0	[MPa]	VRdc	535.5	[kN]	
σs,min	0.0	[MPa]	predispor	e armatura	a taglio	
σs,max	0.0	[MPa]				
			VRds	1744.7	[kN]	
k ₂	0.5		V _{Rdmax}	4139.7	[kN]	
Esm-Ecm	-	[‰]	θ	30.0	[°]	
Sr,max	-	[cm]	sezione	duttile		
Wk	-	[mm]	aı	72.4	[cm]	

materiali							
ca	lcestruzz	o	acciaio				
Rck	30	[MPa]	fyk	450	[MPa]		
fck	24.9	[MPa]	γs	1.15			
γc	1.5		fyd	391.3	[MPa]		
α_{cc}	0.85		Es	200000	[MPa]		
fcd	14.1	[MPa]	Euk	75	[%0]		
v	0.540						
€c2	2.0	[‰]					
€cu2	3.5	[%]					
α_{e}	15.0						
kt 0.4			Vä	alori limit	e		
k ₁	0.8		0,45 fck	11.2	[MPa]		
k ₃	3.4		0,8 fyk	360.0	[MPa]		
k_4	0.425		Wk,lim	0.30	[mm]		

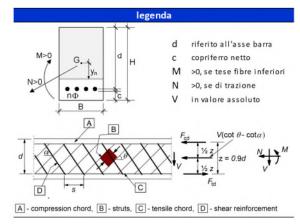


Figura 15-31 - Verifica strutturale SLU - Sezione 6

PER LA MESSA IN SICUREZZA DEL LAGO D'IDRO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

15.2.1.4 Verifica strutturale trave SLU (Mensola tozza)

15.2.1.4.1 Verifica tirante e puntone compresso

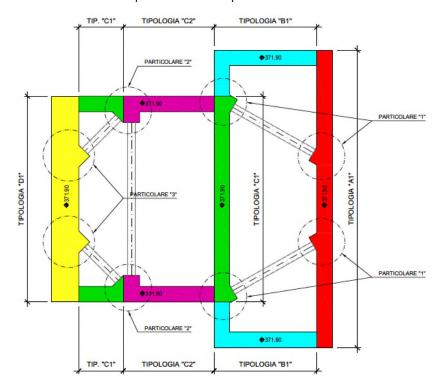


Figura 15-32 - Pianta Trave di coronamento a q.ta +371.9m

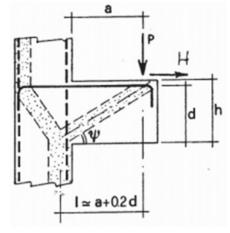


Figura 15-33 Modello a puntoni e tiranti con tirante orizzontale per mensole tozze

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

C4.1.2.1.5 Resistenza di elementi tozzi, nelle zone diffusive e nei nodi

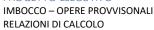
С	[-]	1,00 (=1.00 sbalzi senza staffe, 1.5 sbalzi con staffe)
R_{ck}	$[N/mm^2]$	30,0 Resistenza a compressione (cubica)
f_{ck}	$[N/mm^2]$	24,9 Resistenza a compressione (cilindrica)
f_{cd}	$[N/mm^2]$	16,6 Resistenza a compressone di progetto
f_y	$[N/mm^2]$	450,0 Snervamento acciaio
f_{yd}	$[N/mm^2]$	391,3 Resistenza a trazione di progetto
ф1	[mm]	30 Diametro armature - 1
n_1	[-]	10,0 Numero armature -1
ф2.	[mm]	0 Diametro armature - 2
n_2	[-]	0,0 Numero armature -2
A_s	[mm ²]	7068,6 Sezione totale armatura tirante
b	[mm]	1000 Spessore puntone
d	[mm]	1150 Altezza utile
а	[mm]	440 Distanza applicazione del carico verticale
L	[mm]	670 Cautelativamente si considera L pari alla distanza asse fodera-asse trave di coronamento
λ	[-]	$0.65 = \cot g\psi = L / (0.9xd)$
H _{Ed}	[kN]	0,0 Azione orizzontale di progetto
P_{ed}	[kN]	2751,0 Azione verticale di progetto
P _{Rc}	[kN]	5381 Azione resistente di progetto del puntone inclinato
P_{Rs}	[kN]	4273 Azione resistente di progetto armature
check	[-]	$OK P_{Rc} \ge P_{Rs}$
Fs	[-]	1,55 Coefficiente di sicurezza

Figura 15-34 - Verifica resistenza elementi tozzi (cordolo) — Particolare 1

C4.1.2.1.5 Resistenza di elementi tozzi, nelle zone diffusive e nei nodi

С	[-]	1,00 (=1.00 sbalzi senza staffe, 1.5 sbalzi con staffe)
R_{ck}	[N/mm ²]	30,0 Resistenza a compressione (cubica)
f_{ck}	$[N/mm^2]$	24,9 Resistenza a compressione (cilindrica)
f_{cd}	$[N/mm^2]$	16,6 Resistenza a compressone di progetto
f_y	$[N/mm^2]$	450,0 Snervamento acciaio
f_{yd}	$[N/mm^2]$	391,3 Resistenza a trazione di progetto
Ф1	[mm]	30 Diametro armature - 1
n_1	[-]	10,0 Numero armature -1
ф2.	[mm]	0 Diametro armature - 2
n_2	[-]	0,0 Numero armature -2
A_s	[mm ²]	7068,6 Sezione totale armatura tirante
b	[mm]	1000 Spessore puntone
d	[mm]	1250 Altezza utile
a	[mm]	540 Distanza applicazione del carico verticale
L	[mm]	790 Cautelativamente si considera L pari alla distanza asse fodera-asse trave di coronamento
λ	[-]	$0.70 = \cot g\psi = L / (0.9xd)$
H _{Ed}	[kN]	0,0 Azione orizzontale di progetto
P_{ed}	[kN]	1521,0 Azione verticale di progetto
P _{Rc}	[kN]	5559 Azione resistente di progetto del puntone inclinato
P_Rs	[kN]	3939 Azione resistente di progetto armature
check	[-]	$OK P_{Rc} \ge P_{Rs}$
Fs	[-]	2,59 Coefficiente di sicurezza

Figura 15-35 - Verifica resistenza elementi tozzi (cordolo) — Particolare 2



REV A

C4.1.2.1.5 Resistenza di elementi tozzi, nelle zone diffusive e nei nodi

С	[-]	1,00 (=1.00 sbalzi senza staffe, 1.5 sbalzi con staffe)
R_{ck}	[N/mm ²]	30,0 Resistenza a compressione (cubica)
f_{ck}	[N/mm ²]	24,9 Resistenza a compressione (cilindrica)
f_{cd}	[N/mm ²]	16,6 Resistenza a compressone di progetto
f _y	[N/mm ²]	450,0 Snervamento acciaio
f_{yd}	[N/mm ²]	391,3 Resistenza a trazione di progetto
ф1	[mm]	30 Diametro armature - 1
n_1	[-]	10,0 Numero armature -1
ф2.	[mm]	0 Diametro armature - 2
n_2	[-]	0,0 Numero armature -2
A_s	[mm ²]	7068,6 Sezione totale armatura tirante
b	[mm]	1000 Spessore puntone
d	[mm]	2240 Altezza utile
а	[mm]	440 Distanza applicazione del carico verticale
L	[mm]	888 Cautelativamente si considera L pari alla distanza asse fodera-asse trave di coronamento
λ	[-]	$0,44 = \cot g\psi = L / (0.9xd)$
H _{Ed}	[kN]	0,0 Azione orizzontale di progetto
P_{ed}	[kN]	1194,0 Azione verticale di progetto
P _{Rc}	[kN]	12457 Azione resistente di progetto del puntone inclinato
P_Rs	[kN]	6279 Azione resistente di progetto armature
check	[-]	$OK P_{Rc} \ge P_{Rs}$
Fs	[-]	5,26 Coefficiente di sicurezza

Figura 15-36 - Verifica resistenza elementi tozzi (cordolo) — Particolare 3

.ombardia

REV A

RELAZIONI DI CALCOLO

15.2.1.4.2 Verifica locale appoggio

In accordo a EC2 Progettazione delle strutture di calcestruzzo, Parte 2: Ponti di calcestruzzo – Progettazione e dettagli costruttivi (§J.104.2), l'armatura di frettaggio necessaria per evitare la rottura del cordolo di appoggio viene calcolata secondo l'espressione seguente:

$$A_{\rm r} \cdot f_{\rm vd} \ge F_{\rm Rdu}/2$$
.

Con:

- Ar, armatura di frettaggio
- fyd, resistenza di snervamento di progetto
- FRdu carico applicato

Figura 15-37 - Meccanismo di rottura del cordolo di appoggio

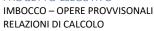
Inoltre, secondo il punto §J.104.2 di EC2-2, per evitare l'esplosione del calcestruzzo della zona di appoggio, si garantisce il rispetto della condizione seguente:

$$\frac{P_{\text{max}}}{c \cdot c'} \le 0.6 \cdot f_{\text{ck}}(t)$$

Con:

- Pmax, massima forza
- c, c' dimensioni rettangolo di appoggio
- fck resistenza a compressione caratteristica del calcestruzzo

Si riportano in tabella le verifiche e le relative armature di frettaggio:



PROGETTO ESECUTIVO

TIPO COLLEGAMENTO	quota [m slm]	Tipologia Paratia	N SLU_F TOOL [kN]	N SLU_PARATIE [kN]	Puntoni N MAX_SLU [kN]
3	371,9	PARATIA FRONTALE (fase scavo lato Monte) - Tipo "B2"	1067	1194	1194
1	371,9	PARATIA POZZO - Tipo "D1"	2751	859	2751
2	371,9	PARATIA COLLEGAMENTO POZZO - Tipo "C1-C2"	1067	1521	1521

	ST	AFFE ORTOGONALI AL	LA DIREZIONE D	EL PUNT	ONE	
Ar [mm²]	n barre	n barre/allineamento	n allineamenti	Φ	n x Φ x staffa "C" [mm²]	F.S.
1526	12	2	6	16	2413	0.63
3515	24	4	6	16	4825	0.73
1944	12	2	6	16	2413	0.81

		STAFFE PARALLELE ALL	LA DIREZIONE DEL	PUNTON	E	
As [mm²]	n barre	n barre/allineamento	n allineamenti	Φ	n x Φ x staffa "C" [mm²]	F.S.
549	4	2	2	16	804	0.68
1265	10	2	5	16	2011	0.63
700	4	2	2	16	804	0.87

V	ERIFICA SCI	HIACCIA	MENTO CLS	
A_tasca appoggio [mm²]	Pmax/c*c'	0.6 fck	$\frac{P_{\text{max}}}{c \cdot c'} \le 0.6 \cdot f_{\text{ck}}(t)$	F.S.
1000000	1.194	15	ok	0.08
1000000	2.751	15	ok	0.18
1000000	1.521	15	ok	0.10

Figura 15-38 - Riepilogo verifiche locali appoggio

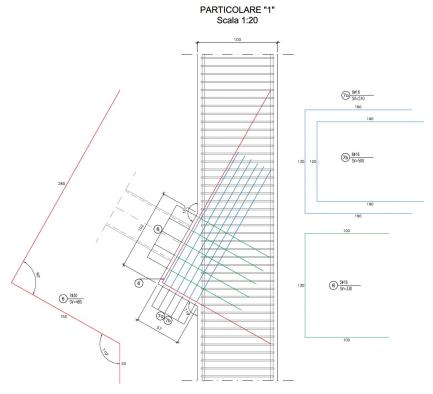


Figura 15-39 - Schema armatura nodo Puntone tipo 1

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

REV A

PARTICOLARE "2" Scala 1:20

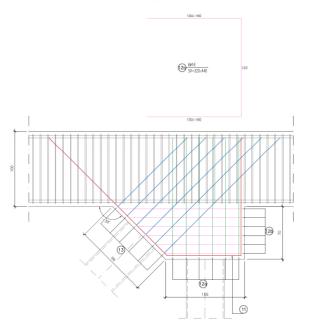


Figura 15-40 - Schema armatura nodo Puntone tipo 2

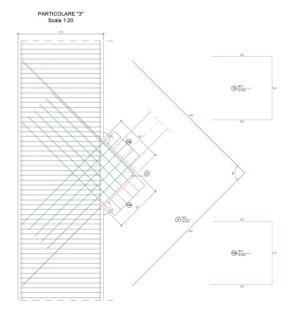


Figura 15-41 - Schema armatura nodo Puntone tipo 3

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

15.2.2 Modellazione comportamento nel piano verticale

Si riportano gli schemi di carico considerati per valutare le sollecitazioni nel piano verticale delle paratie tipo "B2" e tipo "D1".

Come esposto in precedenza, per permettere lo scavo della galleria naturale, è necessaria la demolizione parziale della paratia di pali tipo "D1", per la lunghezza di palo interferente con l'ingombro della galleria (Fase 15).

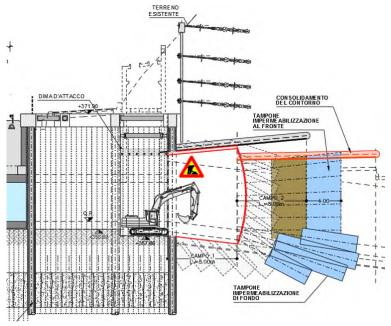


Figura 15-42 – Fase esecutiva Imbocco n°15

Allo stesso modo, la paratia di pali tipo "B2" verrà parzialmente demolita, in corrispondenza della sagoma della struttura scatolare (Fase 19).

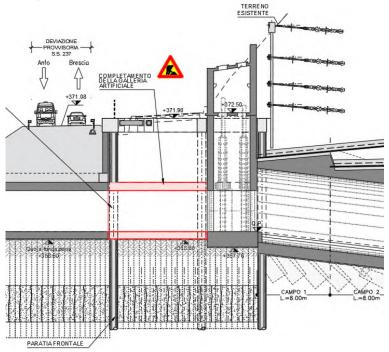
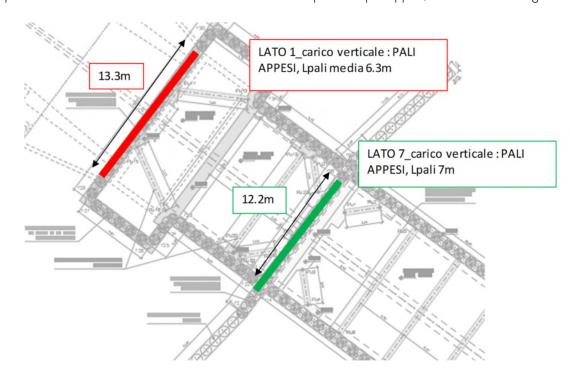


Tabella 59 - Fase esecutiva Imbocco n°19



IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

In questa fase la trave di coronamento dovrà sostenere il peso dei pali appesi, calcolato come segue:

LATO 1					
L palo	6.3				
γ cls	25	kN/m ³			
f palo	0.9	m			
interasse	1	m			
A palo	0.9	m2			
Volume/m	6	m3/m			
P.P./m	142	kN/m			
P.P./m_SLU	184	kN/m			
	LATO 7				
L palo	-	m			
γ cls	25	kN/m ³			
f palo	0.9	m			
interasse	1	m			
A palo	0.9	m2			
Volume/m	6	m3/m			
P.P./m	158	kN/m			
P.P./m_SLU	205	kN/m			
braccio	0.9	m			
Momento/m	184	kNm/m			

Figura 15-43 - Schema carico pali appesi

RELAZIONI DI CALCOLO

IMBOCCO - OPERE PROVVISONALI

Figura 15-44 – Schema di calcolo – Lato 1

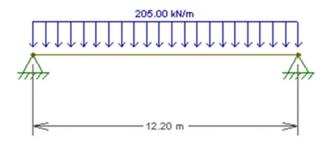


Figura 15-45 – Schema di calcolo – Lato 7

Si definisce il momento torcente agente (considerando un comportamento di trave doppiamente incastrata):

M torcente distribuito = 184 kNm/m

M torcente tot = $184 \text{ kNm/m} \times 12.2 \text{m} / 2 = 1122 \text{ kNm}$

M torcente incastro = $1122 \text{ kNm} / 2 = \underline{561 \text{ kNm}}$

PER LA MESSA IN SICUREZZA DEL LAGO D'IDRO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

15.2.2.1 Sollecitazioni

		SI	.U
BxH [cm]	ID Sez.	V [kN]	M [kNm]
100x150	1	1224	1653
175x150	7	1251	3814

Si riportano i diagrammi di sollecitazione:

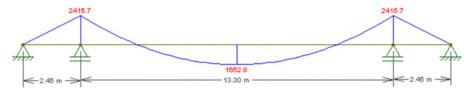


Figura 15-46 - Momento flettente (SLU) - Lato 1

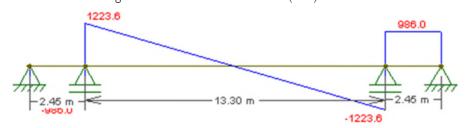


Figura 15-47 – Azione di taglio (SLU) – Lato 1

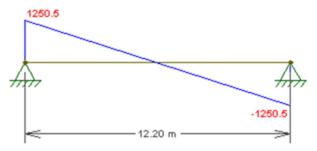


Figura 15-48 – Momento flettente (SLU) – Lato 7

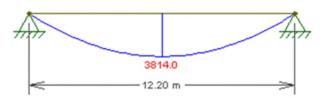


Figura 15-49 — Azione di taglio (SLU) — Lato 7

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

15.2.2.2Schemi armatura

15.2.2.3 Verifica strutturale trave SLU

N>0 compressione

		SLU			
BxH [cm]	ID Sez.	N [kN]	V [kN]	M [kNm]	
100x150	1	485	1383	1282	
175x150	7	322	471	441	

Tabella 60 - Riepilogo sollecitazioni piano orizzontale

		SLU			
BxH [cm]	ID Sez.	V [kN]	M [kNm]	M torcente [kNm]	
100x150	1	1224	1653	ı	
175x150	7	1251	3814	561	

Tabella 61 - Riepilogo sollecitazioni piano verticale

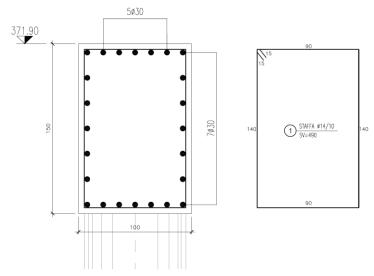


Figura 15-50 - Verifica strutturale SLU - Trave di coronamento paratia tipo "D1"

IMBOCCO – OPERE PROVVISONALI

REV A

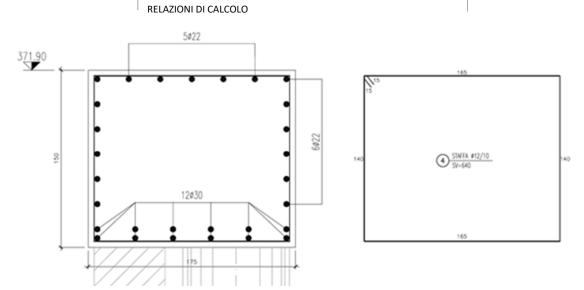
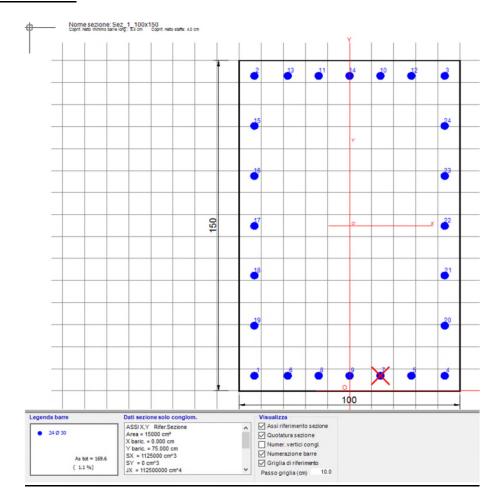


Figura 15-51 - Verifica strutturale SLU - Trave di coronamento paratia tipo "B2"



PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

Sezione 1 - 100x150cm

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: Sez_1_100x150

Descrizione Sezione: Trave di coronamento 100x150 Resistenze agli Stati Limite Ultimi Metodo di calcolo resistenza:

Tipologia sezione: Sezione generica di Trave di fondazione in combinazione sismica

Normativa di riferimento: N.T.C.

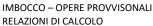
Percorso sollecitazione: A Sforzo Norm. costante

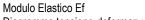
Riferimento Sforzi assegnati: Assi baric. X',Y' // assi coordinate.

Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Resis. compr. ridotta fcd': Def.unit. max resistenza ec2: Def.unit. ultima ecu: Diagramma tensione-deformaz.:	C25/30 14.2 7.1 0.0020 0.0035 Parabola-Rettangolo	MPa MPa
	Modulo Elastico Normale Ec: Resis. media a trazione fctm:	31475.0 2.56	MPa MPa
ACCIAIO -	Tipo: Resist. caratt. snervam. fyk: Resist. caratt. rottura ftk: Resist. snerv. di progetto fyd: Resist. ultima di progetto ftd: Deform. ultima di progetto Epu:	B450C 450.0 450.0 391.3 391.3 0.068	MPa MPa MPa MPa





PER LA MESSA IN SICUREZZA DEL LAGO D'IDRO

PROGETTO ESECUTIVO

Regione REV A Lombardia

Diagramma tensione-deformaz.:

2000000 daN/cm² Bilineare finito

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces		Poligonale C25/30
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	150.0
3	50.0	150.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-43.1	6.9	30
2	-43.1	143.1	30
2 3	43.1	143.1	30
4	43.1	6.9	30
5	28.0	6.9	30
6	-28.0	6.9	30
7	14.0	6.9	30
8	-14.0	6.9	30
9	0.0	6.9	30
10	14.0	143.1	30
11	-14.0	143.1	30
12	28.0	143.1	30
13	-28.0	143.1	30
14	0.0	143.1	30
15	-43.1	120.4	30
16	-43.1	97.7	30
17	-43.1	75.0	30
18	-43.1	52.3	30
19	-43.1	29.6	30
20	43.1	29.6	30
21	43.1	52.3	30
22	43.1	75.0	30
23	43.1	97.7	30
24	43.1	120.4	30

ARMATURE A TAGLIO

Diametro staffe: 14 mm Passo staffe: 10.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Ν Momento flettente [kNm] intorno all'asse X' // asse X coordinate Mxcon verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse Y' // asse Y coord. Му con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [kN] parallela all'asse Y delle coord. Vy ٧x Componente del Taglio [kN] parallela all'asse X delle coord. Ν MX MY VY VX

N°Comb. 485.00 1653.00 1282.00 1224.00 1383.00 1

RISULTATI DEL CALCOLO

IMBOCCO – OPERE PROVVISONALI

REV A

RELAZIONI DI CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.4 cm Interferro netto minimo barre longitudinali: 11.0 cm Copriferro netto minimo staffe: 4.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls. (positivo se di compressione)
MX Componente X del momento assegnato [kNm] rifer. assi X,Y con origine nel baric. B del cls.
MY Componente Y del momento assegnato [kNm] rifer. assi X,Y con origine nel baric. B del cls.
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compressione)
MX Res Momento flettente resistente [kNm] rif. X,Y,B (tra parentesi rif. assi princ. inerzia)
MY Res Momento flettente resistente [kNm] rif. X,Y,B (tra parentesi rif. assi princ. inerzia)
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex § 7.2.6 NTC

N°Comb MX Res Ver Ν MX MY N Res MY Res Mis.Sic. As Tesa S 485.00 1653.00 1282.00 484.73 2937.91(2937.91) 2273.15(2273.15) 1.78

113.1(30.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform. unit. massima del calcestruzzo a compressione Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45 x/d Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Xc max Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Deform. unit. minima nell'acciaio (negativa se di trazione) es min Xs min Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ys min es max Deform. unit. massima nell'acciaio (positiva se di compress.) Xs max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Ys max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb ec max x/d Xc max Yc max es min Xs min Ys min Xs max Ys max es max 0.00350 0.345 50.0 150.0 0.00286 43.1 143.1 -0.00664 -43.1 6.9

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.000060564 0.000031466 -0.004248074 0.345 0.871

VERIFICHE A TAGLIO

Diam. Staffe: 14 mm

Passo staffe: 10.0 cm [Passo massimo di normativa = 33.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

 Ved
 Taglio di progetto [kN] = proiez. di VX e VY sulla normale all'asse neutro

 Vcd
 Taglio compressione resistente [kN] lato calcestruzzo [formula (4.1.28)NTC]

 Vwd
 Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

Dmed Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro.

La resistenza delle travi è calcolata assumendo il valore di 0.9 Dmed come coppia interna.

I pesi della media sono le lunghezze delle strisce.(Sono esluse le strisce totalmente non compresse).

bw Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro

E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

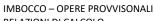
Ctg Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo

Acw Coefficiente maggiorativo della resistenza a taglio per compressione

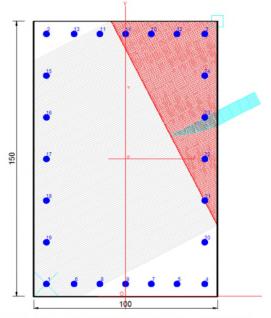
Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]

A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]

Tra parentesi è indicata la quota dell'area relativa alle sole legature.



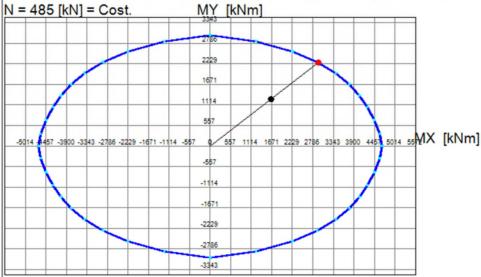
PER LA MESSA IN SICUREZZA DEL LAGO D'IDRO



REV A

RELAZIONI DI CALCOLO

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.


N°Comb	Ver	Ved	Vcd	Vwd	Dmed	bw	Ctg	Acw	Ast	A.Eff
1	S	1791 56	2762 58	2706 67	99.9	123 1	2 500	1 023	20.4	30.8(0.0)

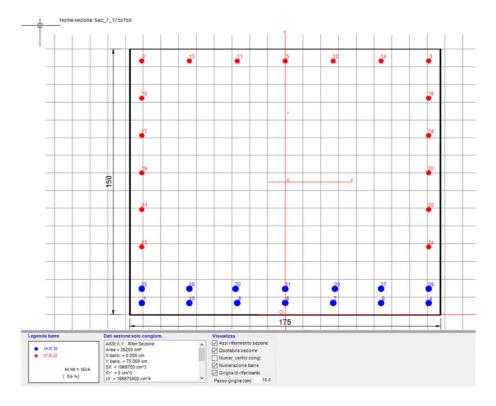
DOMINIO INTERAZIONE MX-MY (STATO LIMITE ULTIMO)

Nome Sezione: Sez_1_100x150

Percorso File: T:\22-11_Lago Idro-Revisione PE\05_WIP\01_STUDI\01_Imbocco\08_Pozzo Paratia PALI secanti\1. Tela

Passo Momenti Mx, My griglia = 557 kNm

Figura 52 - Verifica a Flessione deviata - sez.1


PROGETTO ESECUTIVO
IMBOCCO – OPERE PROVVISONALI

RELAZIONI DI CALCOLO

REV A

Sezione 7 - 175×150cm

DATI GENERALI SEZIONE GENERICA IN C.A.

NOME SEZIONE: Sez_7_175x150

(Percorso File: T:\22-11_Lago Idro-Revisione PE\05_WIP\01_STUDI\01_Imbocco\08_Pozzo Paratia PALI secanti\1. Telaio piano trave di coronamento\1. Verifiche sezioni CA\3. Flessione deviata\Sez_7_175x150.sez)

Descrizione Sezione: Trave di coronamento 175x150

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave di fondazione in combinazione sismica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante

Riferimento Sforzi assegnati: Assi baric. X',Y' // assi coordinate.

Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C25/30

Resis. compr. di progetto fcd:

Resis. compr. ridotta fcd':

Def.unit. max resistenza ec2:

14.2 MPa
7.1 MPa
0.0020

Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: 31475.0 MPa Resis. media a trazione fctm: 2.56 MPa

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

450.0 MPa
Resist. snerv. di progetto fyd:
Resist. ultima di progetto ftd:

391.3 MPa
Resist. ultima di progetto ftd:

391.3 MPa

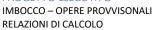
Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Dominio:


Poligonale

PROGETTO ESECUTIVO

REV A

Classe Calcestruzzo: C25/30

N°vertice:	X [cm]	Y [cm]
1 2	-87.5 -87.5	0.0 150.0
3	87.5	150.0
4	87.5	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-80.8	6.7	30
2	-80.8	143.3	22
3	80.8	143.3	22
4	80.8	6.7	30
5 6	0.0	143.3	22
	0.0	6.7	30
7	27.0	6.7	30
8	-27.0	6.7	30
9	54.0	6.7	30
10	-54.0	6.7	30
11	-27.0	143.3	22
12	27.0	143.3	22
13	-54.0	143.3	22
14	54.0	143.3	22
15	-80.8	122.3	22
16	80.8	122.3	22
17	-80.8	101.3	22
18	80.8	101.3	22
19	-80.8	80.3	22
20	80.8	80.3	22
21	-80.8	59.3	22
22	80.8	59.3	22
23	-80.8	38.3	22
24	80.8	38.3	22
25	-80.8	14.7	30
26	80.8	14.7	30
27	54.0	14.7	30
28	-54.0	14.7	30
29	28.0	14.7	30
30	-28.0	14.7	30
31	0.0	14.7	30

ARMATURE A TAGLIO

Diametro staffe: 14 mm Passo staffe: 10.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse X' // asse X coordinate
con verso positivo se tale da comprimere il lembo sup. della sez.
My Momento flettente [kNm] intorno all'asse Y' // asse Y coord.
con verso positivo se tale da comprimere il lembo destro della sez.
Vy Componente del Taglio [kN] parallela all'asse Y delle coord.
Vx Componente del Taglio [kN] parallela all'asse X delle coord.

N°Comb. N MX MY VY VX 1 322.00 3814.00 441.00 1251.00 471.00

RISULTATI DEL CALCOLO

PROGETTO ESECUTIVO
IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

REV A

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 5.0 cm Copriferro netto minimo staffe: 3.8 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls. (positivo se di compressione)
MX Componente X del momento assegnato [kNm] rifer. assi X,Y con origine nel baric. B del cls.
MY Componente Y del momento assegnato [kNm] rifer. assi X,Y con origine nel baric. B del cls.
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compressione)
MX Res Momento flettente resistente [kNm] rif. X,Y,B (tra parentesi rif. assi princ. inerzia)
MY Res Momento flettente resistente [kNm] rif. X,Y,B (tra parentesi rif. assi princ. inerzia)
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex § 7.2.6 NTC

N°Comb Ver Ν MX MY N Res MX Res MY Res Mis.Sic. As Tesa 1 S 322.00 3814.00 441.00 322.12 6085.27(6085.27) 711.26(711.26) 1.59 133.2(52.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform. unit. massima del calcestruzzo a compressione ec max x/d Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45 Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max es min Deform. unit. minima nell'acciaio (negativa se di trazione) Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Xs min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ys min es max Deform. unit. massima nell'acciaio (positiva se di compress.) Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Xs max Ys max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb ec max x/d Xc max Yc max Xs min Ys min Xs max Ys max es min es max 0.00350 0.201 1 87.5 150.0 0.00270 80.8 143.3 -0.01387 -80.8 6.7

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.00009419 0.000110165 -0.013848941 0.201 0.700

VERIFICHE A TAGLIO

Diam. Staffe: 14 mm

Passo staffe: 10.0 cm [Passo massimo di normativa = 33.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Ved Taglio di progetto [kN] = proiez. di VX e VY sulla normale all'asse neutro
Vcd Taglio compressione resistente [kN] lato calcestruzzo [formula (4.1.28)NTC]
Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

Dmed Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro.

La resistenza delle travi è calcolata assumendo il valore di 0.9 Dmed come coppia interna.

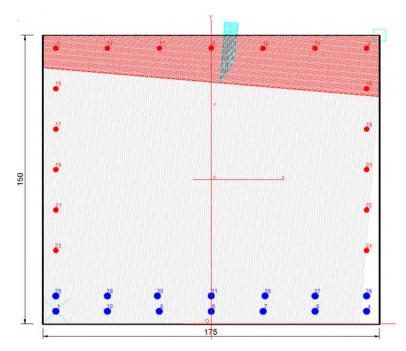
I pesi della media sono le lunghezze delle strisce.(Sono esluse le strisce totalmente non compresse).

bw Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Ctg Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo

Ctg Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo
Acw Coefficiente maggiorativo della resistenza a taglio per compressione
Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]

A.Eff

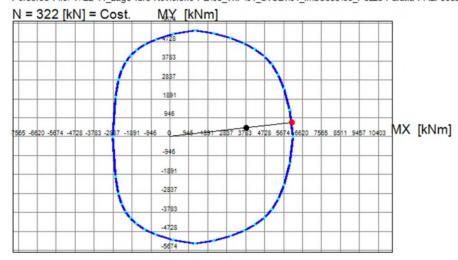

PER LA MESSA IN SICUREZZA DEL LAGO D'IDRO


PROGETTO ESECUTIVO

IMBOCCO - OPERE PROVVISONALI

RELAZIONI DI CALCOLO

Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.



DOMINIO INTERAZIONE MX-MY (STATO LIMITE ULTIMO)

Nome Sezione: Sez_7_175x150

Percorso File: T:\22-11_Lago Idro-Revisione PE\05_WIP\01_STUDI\01_Imbocco\08_Pozzo Paratia PALI secan

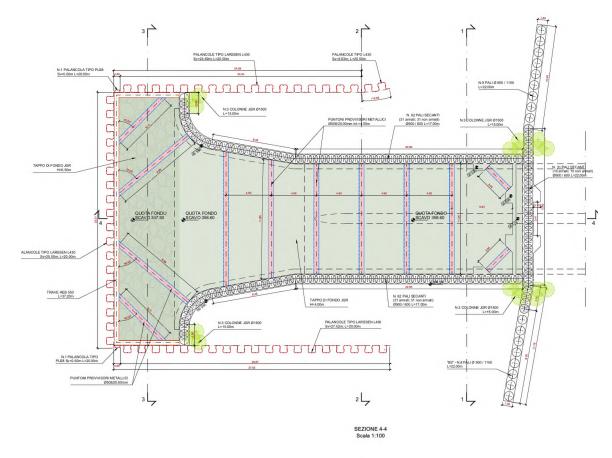
Passo Momenti Mx, My griglia = 946 kNm

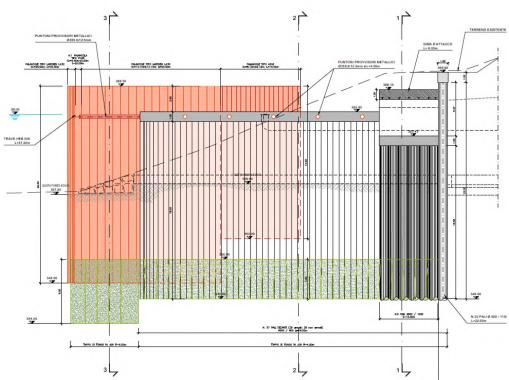
Figura 53 - Verifica a Flessione deviata - sez.7

PROGETTO ESECUTIVO IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

	geome	etria		verifi	che		
h	150,0		cm	θ	33	° 0,58	rad
b	175,0		cm				
С	6,7		cm	puntone co	mpresso		
Z	129,4		cm	V _{Rdmax}	7885,9	kN	6.9 EC2
Α	26250,0		cm ⁻	$T_{Rd,max}$	4149,8	kN	6.30 EC2
u	650,0		cm	$V_{Ed}/V_{Rdmax}+T_{Ed}/T_{Rdmax}$	0,29		6.29 EC2
t	40,4		cm				
Ak	14755,9		cm ²	staffe ir	nterne		
Uk	488,5		cm	Ved*	0,0	kN	
Zi	134,6		cm	Vrds	0,0	kN	6.8 EC2
staffe	interne	esterne					
bracci	0	2		staffe e	sterne		
φw	12	14	mm	Ved*	881,4	kN	6.27 EC2
S	15	10	cm	Vrds	1248,6	kN	6.8 EC2
arn	natura lon	gitudinal	е				
n°	10			armatura lor	ngitudinal		
φι	22		mm	AsI,req	36,5	cm ²	6.28 EC2
				Ası	38,0	cm ²	
	mater	riali					
fck	24,9		MPa				
γс	1,5						
α_{cc}	0,85						
fcd	14,1		MPa				
ν	0,54			EC2 6.10N			
v×fcd	7,6		MPa				
fyk	450		MPa				
γs	1,15						
fyd	391,3		MPa				
	sollecita	azioni					
Ved	1251		kN				
Ted	561		kNm				

Figura 54 - Verifica a Torsione - sez.7




IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

16 PALANCOLE METALLICHE PUNTONATE L430

Le immagini seguenti riportano lo stralcio planimetrico dell'opera e la relativa sezione (Figura 16-1).

REV A

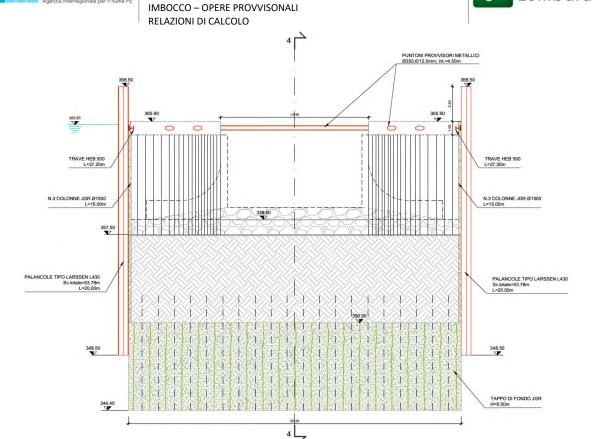


Figura 16-1 Sezioni caratteristiche 'Tipologia 6'

Dimensioni geometriche:

H (altezza di scavo)= 8.40 m

ParatiaPalancole Larssen L430

- L_{pal} (profondità palancola) = 20.0 m

Tubolari puntoni
 Ø508/20mm/5.2m, Lunghezza di progetto 9m

- $\alpha_{\text{orizzontale}}$ (inclinazione micropalo) = 50° sulla verticale

Trave di ripartizione
 = 2 HEB 400 in asse ai puntoni metallici

La quota della falda di progetto è assunta a quota 365.65m (livello di esercizio dell'acqua del Lago) durante le fasi di approfondimento del fondo scavo. Per sole verifiche strutturali geotecniche è stata considerata anche una condizione 'eccezionale' nella quale la falda è a quota di massima regolazione di +368.0mslm.

16.1 Schema di calcolo 'Sez.5-1'

16.1.1 Modellazione geotecnica

La figura seguente riporta la stratigrafia e il modello di calcolo sviluppato con ParatiePlus 2022.

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

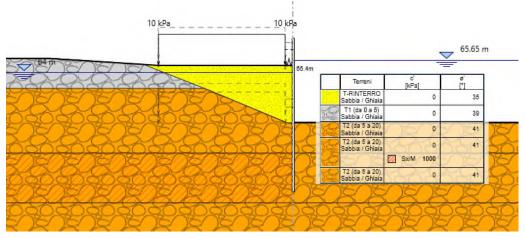


Figura 16-2 Modello di calcolo implementato nel software Paratie Plus 2022

La stratigrafia e i parametri geotecnici adottati nelle elaborazioni sono riportati nella figura seguente. In particolare, si è fatto riferimento alla successione stratigrafica riportata nel profilo geotecnico di cui al §0 .

Unità	Descrizione	Z top	Z bottom	γ	c'	φ'	Evc	Eur
	B 656 1216 116	[m]	[m]	[kN/m³]	[kPa]	[°]	[MPa]	[MPa]
Т	Rinterro	365.0	Var. (357.5)	20	-	35	15	1.6*Evc
2	Ghiaia sabbiosa debolmente limosa	365.0	Var. (365-357.5)	19	-	39	130	1.6*Evc
2	Ghiaia sabbiosa debolmente limosa	5.5	Var. (357.5)	19	-	41	130	1.6*Evc

Tabella 62 Stratigrafia di calcolo adottata nel modello

l coefficienti di spinta corrispondenti allo stato attivo e passivo sono valutati dal programma di calcolo a partire dai parametri geotecnici riportati al $\S 0$. In particolare, i coefficienti di spinta attiva (ka) sono calcolati secondo la formulazione di Coulomb, considerando un angolo di attrito terreno/calcestruzzo (δ) pari a 0.50ϕ '; i coefficienti di spinta passiva (kp) sono calcolati secondo la formulazione di Lancellotta (2007), considerando un angolo di attrito terreno/calcestruzzo (d) pari a 0.5ϕ '

16.1.2 Descrizione delle fasi di calcolo

Le fasi di calcolo considerate nelle elaborazioni sono le seguenti:

✓ Stages
 Stage 1-Geostatica
 Stage 2-Realizzazione palancole
 Stage 3-Riempimento interno palancole
 Stage 4-Q acc cantiere 10kPa
 Stage 5-Scavo 65.9
 Stage 6-Realizzazione tampone
 Stage 7-Scavo installazione puntone
 Stage 7-Installazione puntone
 Stage 8-Scavo 58.6
 Stage 9-Scavo 57.5
 Stage 10-Extra NTC

Stage 11-Risalita acqua @68m
Figura 16-3 Fasi di calcolo considerate

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

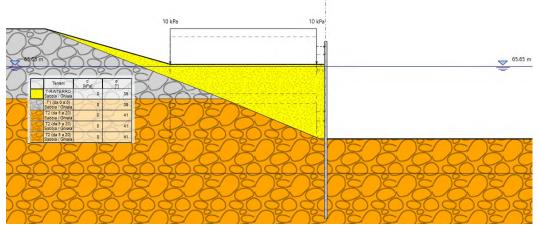


Figura 16-4 Carico accidentale cantiere 10kPa (Stage 4)

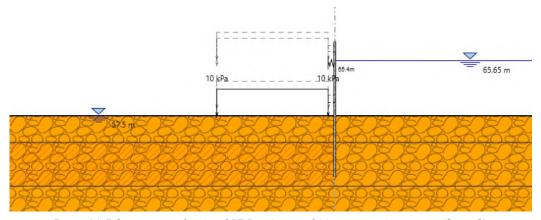


Figura 16-5 Scavo quota fondo +357.5m slm con falda a quota di esercizio (Stage 9)

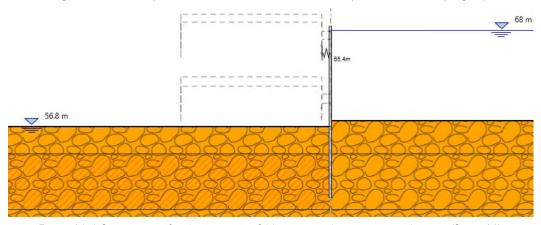


Figura 16-6 Scavo quota fondo scavo con falda a quota di massima regolazione (Stage 11)

16.1.3 Sintesi risultati allo SLE – Spostamenti

Nel seguito vengono riportati i risultati delle elaborazioni in termini di deformata della paratia (Combinazione SLE rara), per la fase di calcolo 10 nella quale si raggiunge la quota di fondo scavo con falda a quota di esercizio. Il massimo spostamento è circa a 20mm.

RELAZIONI DI CALCOLO

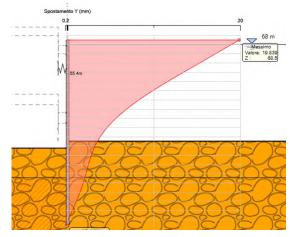


Figura 16-7 Spostamenti della paratia in condizione SLE (Stage 11)

16.1.4 Sintesi analisi strutturale

Nelle tabelle seguenti si riassumono i valori massimi di azione tagliante e flettente allo stato limite ultimo (SLU in approccio 1 – Combinazione 1) e di esercizio.

Fase	M SLE	M SLU	V SLU	Reazione puntoni	Reazione puntoni
	[kNm/m]	[kNm/m]	[kN/m]	SLE [kN/m]	SLU [kN/m]
11	880	1150	390	325/cos(50°)=505kN/m	420/cos(50°) = 653kN/m

Tabella 63 Sollecitazioni agenti

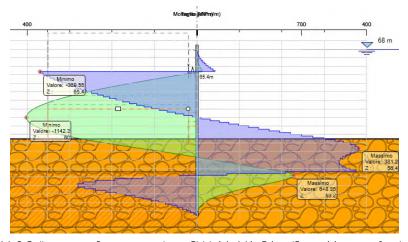
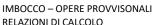
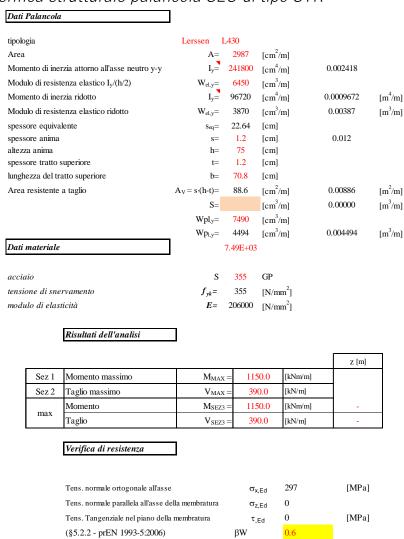
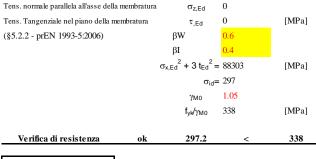


Figura 16-8 Sollecitazioni flettenti e taglianti SLU A1+M1+R1 – (Stage 11, quota fondo scavo)

16.1.4.1 Verifiche allo SLU di tipo STR


Di seguito si riportano le verifiche strutturali.





16.1.4.1.1 Verifica strutturale palancola SLU di tipo STR

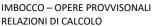
Resistenze di calcolo			
$M_{Ed} \leq M_{pl,Rd}$	$M_{pl,Rd} = 1519.4$	[kNm/m]	ok
$M_{Ed} \leq M_{c,Rd}$	$M_{c,Rd} = 1308.4$	[kNm/m]	ok
$V_{Ed} \leq V_{p,Rd} $	$V_{c,Rd}\!=1729$	[kNm/m]	ok

Figura 16-9 Verifica strutturale palancola

16.1.4.1.2 Verifiche allo SLU di tipo STR – Puntone Ø508/20m L=9m

Sulle palancole metalliche fronte lago insistono No.4 puntoni metallici costituiti da Ø508/20m, di luce L=9m e 6.20m. Di seguito, si riporta la verifica strutturale del puntone avente luce maggiore. L'interasse considerato nella verifica è di 5.25m. La verifica è comprensiva degli effetti indotti dalla variazione termica. Il puntone è soggetto alle seguenti sollecitazioni assiali e flettenti:

N paratie: $410/\cos(50^\circ) = 640$ kN/m (Comb. A1+M1+R1)



PROGETTO ESECUTIVO

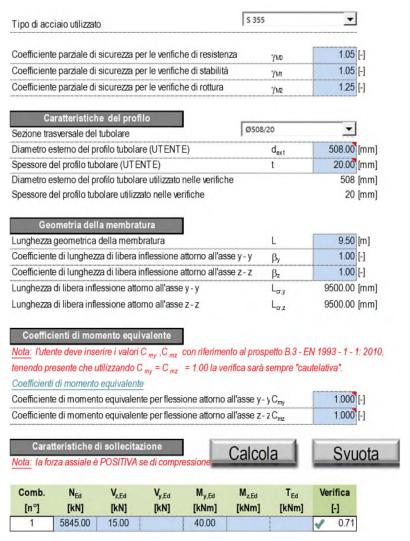

Contributo termico	N (+DT 25°)	γF	1.5	1610*1.5=2415	kN/puntone
Contributo di Paratie	N paratie	γF	1.0	653*5.25*1=3430	kN/puntone

Tabella 64 Contributi assiali agenti sul puntone allo SLU-STR

Р)	V2	V3	Т	M2	M3
k	Ż.	Z	kΝ	kNm	kNm	kNm
5	845	0	15	0	0	35

Tabella 65 Sollecitazioni puntonamento metallico

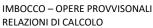
Di seguito le verifiche del puntone nei confronti della resistenza delle membrature e della stabilità. Le verifiche risultano soddisfatte (classe acciaio S355).

16.1.4.1.3 Verifica strutturale della trave di ripartizione metallica di testa

Le sollecitazioni agenti sono:

Comb.	q agente [kN/m]	Luce [m]	M [kNm/m]	V [kN/m]
SLE	325/cos(50°)=505	5.25	1395	1330
SLU	420/cos(50°)=653	5.25	1805	1720

Tabella 66 Sollecitazioni trave di ripartizione



PROGETTO ESECUTIVO

REV A

VERIFICA DELLE TRAVI DI RIPARTIZIONE - NTC 2018

Dati del profilato:

Tipo di profilato	HEB	400
Altezza del profilato	h	400 mm
Base del profilato	b	300 mm
Spessore dell'anima	a = t _w	13.5 mm
Spessore delle ali	e = t _f	24 mm
Raggio di curvatura	r	27 mm
Area della sezione	Α	19778 mm ²

Definizione dell'azione di calcolo:

Sforzo massimo agente	N_{Ed}	548.3 [kN/ml]
Interasse degli elementi di contrasto	i	5.25 [m]
Momento agente sul profilato	M_{Ed}	1805.00 [kNm]
Taglio agente sul profilato	V_{Ed}	1720.00 [kN]

Calcolo della resistenza di progetto a taglio:

carcoro acma resistenza ai progetto a ti	agno.	
Tipologia di acciaio	S	355 [MPa]
Coefficiente di sicurezza	γмо	1.05 [-]
Piano di carico del profilato	Carico ne	el piano dell'anima
n° di profilati considerati	n°	2 [-]
Area a taglio del singolo profilato	Av	6998 mm ²
Resistenza di progetto a taglio	R _{c,Rd}	2732.01 [kN]

Definizione della tipologia di verifica da condurre:

Taglio agente sul profilato	V_{Ed}	1720.00 [kN]
Resistenza di progetto a taglio	$V_{c,Rd}$	2732.01 [kN]
Rapporto V _{Ed} /V _{c,Rd}	V _{Ed} /V _{c,Rd}	0.63 [-]
Tipo di verifica	Fles	sione e taglio

Verifica strutturale del profilato per flessione retta:

Momento plastico nel piano dell'anima	$W_{pl,y}$	3231000	mm ³
Resistenza di progetto	$M_{c,Rd} = M_{pl,Rd}$	2184.77	[kNm]
Fattore di sicurezza della sezione	FS	1.21	ОК

Verifica strutturale per profilato soggetto a flessione e taglio:

Momento plastico nel piano dell'anima	$W_{pl,y}$	3231000	mm ³
Coefficiente di riduzione	ρ	0.0672	[-]
Resistenza di progetto	$M_{y,V,Rd}$	2164.18	[kNm]
Condizione $M_{y,V,Rd} \le M_{y,c,Rd}$		ОК	
Fattore di sucurezza della sezione	FS	1.20	ОК

16.1.5 Verifica allo SLU di tipo GEO

16.1.5.1 Verifica di stabilità globale

La verifica di stabilità globale dell'opera provvisionale deve essere condotta in accordo all'approccio 1, Combinazione 2 (A2+M2+R3). Nella figura seguente è riportato il risultato delle verifiche in accordo con il metodo di Janbu. L'analisi di stabilità risulta essere soddisfatta con un coefficiente di sicurezza di 11.

PROGETTO ESECUTIVO

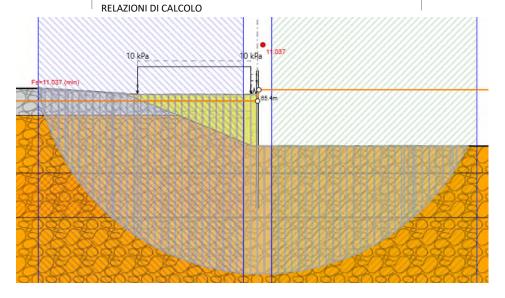
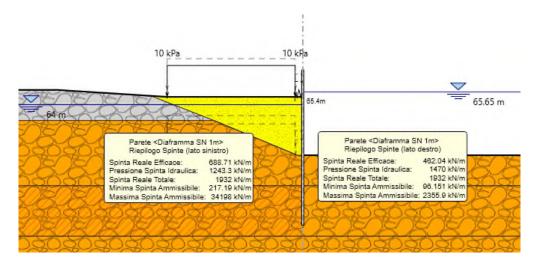



Figura 16-10 Risultati verifica stabilità globale

16.1.5.2 Verifica della spinta a valle della paratia

La verifica delle spinte a valle della paratia è condotta in accordo all'Approccio 1, Combinazione 2 (A2+M2+R1). Nella seguente figura si mostrano la risultante delle spinte agenti sulla paratia relativi all'ultima fase di calcolo (Stage 11), in particolare deve risultare che la spinta mobilitata a valle (Spinta reale efficace), moltiplicata per il coefficiente $\gamma F = 1.0$, sia inferiore alla resistenza del terreno (Massima spinta ammissibile) corrispondente alla spinta passiva divisa per il coefficiente di resistenza $\gamma R = 1.0$). La verifica risulta soddisfatta.

VERIFICA CON ATTRITO CON SCAVO REALE - TAMPONE IMPERMEABILE

REV A

17 TAPPO DI FONDO IN JET GROUTING – VERIFICA AL SOLLEVAMENTO

17.1 Pali Secanti Tipo 'A1-A2'

	/ERIFICA CON ATTRITO CON SCAVO REALE - TAMPONE IMPERMEABILE /ERIFICA TAMPONE DI FONDO				
T Z I III I C I I I I I I I	112 311 31133				
Zfalda	365.65 m s.l.m	Quota falda (FASE CANTIERE LATO LAGO)			
Zfs	358.6 m s.l.m	Quota fondo scavo			
Hw	7.05 m	Altezza falda a piano scavo			
Lmin	12 m	Dimensione minima in pianta del tampone			
Lmax	100 m	Dimensione massima in pianta del tampone			
Htf	0	Altezza terreno trattato sotto il fondo scavo			
Hte	5 m	Altezza intermedia terreno non trattato			
Hta	4 m	Altezza tampone di fondo inferiore			
Hinfissione	9.0 m	Altezza infissione paratia			
γtn	20.0 kN/m3	Peso specifico terreno naturale			
γta	20.0 kN/m3	Peso specifico tampone			
φta	33.9°	Angolo di attrito terreno tampone Comb. A1+M1+R2			
δ ta	0.50 -	Rapporto δ/ϕ tampone			
fa=tan(φta x δt	0.30 (-)	Aderenza massima tampone paratia			
Hw	16.1 m	= Zfalda - Zfs +Hte+Hta altezza battente idraulico			
u_Hw	157.5 kPa	pressione interstiziale in funzione del battente idraulico			
Sw	157.5 kPa	pressione intestiziale agente alla base del tampone			
Np	858.0 kN/m	da calcolo Paratie			
σ p 1	95.33 kN/m2	Np/Hinfissione Valore medio pressione passiva mobilitata su jet			
σ p2	95.33 kN/m2	valore medio sull'altezza del tampone letto in paratie			
σр3	22.50 kN/m2	valore geostatico a fondo scavo alla profondità media del tampone			
σp,calc	95.33 kN/m2	valore adottato nei calcoli			
fa	29.03 kN/m2	$= \sigma p * tan \phi$ Aderenza massima tampone paratia			
Wt	2.7 m3	= Hta^2/6 W resistente flessione tampone per 1 m di larghezza			
α	0.99 (-)	= 1/(1+Lmin/Lmax)^2) coeff riduttivo momento per effetto piastra			
qtf	14.33 kN/m	= $8*\sigma p*Wt/(\alpha \times Lmin^2)$			
qta	43.55 kN/m	=2*fa*Hinf/Lmin			
qt utile	14.33 kN/m				
Pte	1200.0 kN	= γte*(Hte+Htf)*Lmin Peso terreno per 1 metro di sezione			
Pta	960.0 kN	= γta*Hta*Lmin = Peso tampone per 1 m di sezione			
Sta	171.9 kN	= qt utile*Lmin = risultante pressione assorbita dall infissione per 1 m			
Sw	1889.4 kN	= Hw *10 * Lmin = sottospinta falda per 1 metro di sezione			
Ribasso locale in	corrispondenza vasca	a di aggottamento			
Wrib	0 kN				
Verifica secondo					
0.9* St	2098.7 kN				
1.1*SW	2078.3 kN				
	erificato				
St/Sw	1.01				

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

17.2Pali Secanti Tipo 'B2' - Fase 1

VERIFICA CON ATTRITO CON SCAVO REALE - TAMPONE IMPERMEABILE

VERIFICA TAMPO	NE DI FONDO	
7foldo	265 65 m s l m	Out of older (FASE CANTIERE LATO LACO)
Zfalda	365.65 m s.l.m	Quota falda (FASE CANTIERE LATO LAGO)
Zfs	358.6 m s.l.m	Quota fondo scavo
Hw 	7.05 m	Altezza falda a piano scavo
Lmin	12 m	Dimensione minima in pianta del tampone
Lmax	100 m	Dimensione massima in pianta del tampone
Htf	0	Altezza terreno trattato sotto il fondo scavo
Hte	5 m	Altezza intermedia terreno non trattato
Hta	4 m	Altezza tampone di fondo inferiore
Hinfissione	9.0 m	Altezza infissione paratia
γtn	20.0 kN/m3	Peso specifico terreno naturale
γta	20.0 kN/m3	Peso specifico tampone
φta	33.9 °	Angolo di attrito terreno tampone Comb. A2+M2+R2
δ ta	0.50 -	Rapporto δ/ϕ tampone
fa=tan(φta x δt	0.30 (-)	Aderenza massima tampone paratia
Hw	16.1 m	= Zfalda - Zfs +Hte+Hta altezza battente idraulico
u_Hw	157.5 kPa	pressione interstiziale in funzione del battente idraulico
Sw	157.5 kPa	pressione intestiziale agente alla base del tampone
Np	1035.0 kN/m	da calcolo Paratie
σρ1	115.00 kN/m2	Np/Hinfissione Valore medio pressione passiva mobilitata su jet
σρ2	115.00 kN/m2	valore medio sull'altezza del tampone letto in paratie
σр3	22.50 kN/m2	valore geostatico a fondo scavo alla profondità media del tampone
σp,calc	115.00 kN/m2	valore adottato nei calcoli
fa	35.02 kN/m2	= σp * tan φ Aderenza massima tampone paratia
Wt	2.7 m3	= Hta^2/6 W resistente flessione tampone per 1 m di larghezza
α	0.99 (-)	= 1/(1+Lmin/Lmax)^2) coeff riduttivo momento per effetto piastra
qtf	17.28 kN/m	= $8*\sigma p*Wt/(\alpha \times Lmin^2)$
qta	52.53 kN/m	=2*fa*Hinf/Lmin
qt utile	17.28 kN/m	
Pte	1200.0 kN	= γte*(Hte+Htf)*Lmin Peso terreno per 1 metro di sezione
Pta	960.0 kN	= γta*Hta*Lmin = Peso tampone per 1 m di sezione
Sta	207.4 kN	= qt utile*Lmin = risultante pressione assorbita dall infissione per 1 m
Sw	1889.4 kN	= Hw *10 * Lmin = sottospinta falda per 1 metro di sezione
Rihasso locale in	corrispondenza vasca	a di aggottamento
Wrib	0 kN	
Verifica secondo	-	
0.9* St	2130.6 kN	
1.1*SW	2078.3 kN	
	erificato	
St/Sw	1.03	
วเ/วW	1.05	


IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

REV A

17.3Pali Secanti Tipo 'B2' – Fase 2

VERIFICA CON ATTRITO CON SCAVO REALE - TAMPONE IMPERMEABILE VERIFICA TAMPONE DI FONDO						
Zfalda 	368 m s.l.m	Quota falda ESERCIZIO LAGO				
Zfs	358.6 m s.l.m	Quota fondo scavo				
Hw 	9.4 m	Altezza falda a piano scavo				
Lmin	12 m	Dimensione minima in pianta del tampone				
Lmax	100 m	Dimensione massima in pianta del tampone				
Htf	9	Altezza terreno trattato sotto il fondo scavo				
Hte	0 m	Altezza intermedia terreno non trattato				
Hta	0 m	Altezza tampone di fondo inferiore				
Hinfissione	9.0 m	Altezza infissione paratia				
γtn	20.0 kN/m3	Peso specifico terreno naturale				
γta	20.0 kN/m3	Peso specifico tampone				
φta	33.9 °	Angolo di attrito terreno tampone Comb. A2+M2+R2				
δ ta	0.50 -	Rapporto δ/ϕ tampone				
fa=tan(φta x δta)	0.30 (-)	Aderenza massima tampone paratia				
Hw	18.4 m	= Zfalda - Zfs +Hte+Hta altezza battente idraulico				
u_Hw	180.5 kPa	pressione interstiziale in funzione del battente idraulico				
Sw	180.5 kPa	pressione intestiziale agente alla base del tampone				
Np	1187.0 kN/m	da calcolo Paratie				
σρ1	131.89 kN/m2	Np/Hinfissione Valore medio pressione passiva mobilitata su jet				
σр2	131.89 kN/m2	valore medio sull'altezza del tampone letto in paratie				
σр3	22.50 kN/m2	valore geostatico a fondo scavo alla profondità media del tampone				
σp,calc	131.89 kN/m2	valore adottato nei calcoli				
fa	40.16 kN/m2	$= \sigma p * tan \varphi Aderenza massima tampone paratia$				
Wt	13.5 m3	= Hta^2/6 W resistente flessione tampone per 1 m di larghezza				
α	0.99 (-)	= 1/(1+Lmin/Lmax)^2) coeff riduttivo momento per effetto piastra				
qtf	100.34 kN/m	$= 8*\sigma p*Wt/(\alpha \times Lmin^2)$				
qta	60.24 kN/m	=2*fa*Hinf/Lmin				
qt utile	60.24 kN/m					
Pte	0.0 kN	= γte*(Hte+Htf)*Lmin Peso terreno per 1 metro di sezione				
Pta	2160.0 kN	= γta*Hta*Lmin = Peso tampone per 1 m di sezione				
Sta	722.9 kN	= qt utile*Lmin = risultante pressione assorbita dall infissione per 1 m				
Sw	2166.0 kN	= Hw *10 * Lmin = sottospinta falda per 1 metro di sezione				

Wrib 0 kN

Verifica secondo NTC 18

 0.9* St
 2594.6 kN

 1.1*SW
 2382.7 kN

 St>Sw
 Verificato

 St/Sw
 1.09

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI

RELAZIONI DI CALCOLO

REV A

17.4Pali Secanti Tipo 'C1-C2'

VERIFICA CON ATTRITO CON SCAVO REALE - TAMPONE IMPERMEABILE **VERIFICA TAMPONE DI FONDO** Zfalda 368 m s.l.m Quota falda ESERCIZIO LAGO Zfs 358.6 m s.l.m Quota fondo scavo Hw 9.4 m Altezza falda a piano scavo Lmin 12 m Dimensione minima in pianta del tampone 100 m Lmax Dimensione massima in pianta del tampone Htf 9 Altezza terreno trattato sotto il fondo scavo Hte 0 m Altezza intermedia terreno non trattato Hta 0 m Altezza tampone di fondo inferiore Hinfissione 9.0 m Altezza infissione paratia 20.0 kN/m3 γtn Peso specifico terreno naturale νta 20.0 kN/m3 Peso specifico tampone 33.9° φta Angolo di attrito terreno tampone Comb. A1+M1+R2 δta 0.50 -Rapporto δ/φ tampone $fa=tan(\phi ta \times \delta ta)$ 0.30 (-) Aderenza massima tampone paratia Hw 18.4 m = Zfalda - Zfs +Hte+Hta altezza battente idraulico u_Hw 180.5 kPa pressione interstiziale in funzione del battente idraulico Sw 180.5 kPa pressione intestiziale agente alla base del tampone qИ 1411.0 kN/m da calcolo Paratie σp1 156.78 kN/m2 Np/Hinfissione Valore medio pressione passiva mobilitata su jet σp2 156.78 kN/m2 valore medio sull'altezza del tampone letto in paratie σр3 22.50 kN/m2 valore geostatico a fondo scavo alla profondità media del tampone 156.78 kN/m2 σp,calc valore adottato nei calcoli fa 47.74 kN/m2 = σp * tan φ Aderenza massima tampone paratia Wt 13.5 m3 = Hta^2/6 W resistente flessione tampone per 1 m di larghezza α 0.99 (-) = 1/(1+Lmin/Lmax)^2) coeff riduttivo momento per effetto piastra qtf 119.28 kN/m = $8*\sigma p*Wt/(\alpha x Lmin^2)$ 71.61 kN/m =2*fa*Hinf/Lmin ata qt utile 71.61 kN/m Pte 0.0 kN $= \gamma te*(Hte+Htf)*Lmin$ Peso terreno per 1 metro di sezione Pta 2160.0 kN = γ ta*Hta*Lmin = Peso tampone per 1 m di sezione Sta 859.3 kN = qt utile *Lmin = risultante pressione assorbita dall infissione per 1 m Sw 2166.0 kN = Hw *10 * Lmin = sottospinta falda per 1 metro di sezione Ribasso locale in corrispondenza vasca di aggottamento Wrib 0 kNVerifica secondo NTC 18 0.9* St 2717.4 kN

REV A

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

17.5 Pali Secanti Tipo 'D1'

VERIFICA CON ATTRITO CON SCAVO REALE - TAMPONE IMPERMEABILE							
PALI TIPO 'D1' - VERIFICA TAMPONE DI FONDO							
Zfalda	368 m s.l.m	Quota falda ESERCIZIO LAGO					
Zfs	358.6 m s.l.m	Quota fondo scavo					
Hw	9.4 m	Altezza falda a piano scavo					
Lmin	17.2 m	Dimensione minima in pianta del tampone					
Lmax	100 m	Dimensione massima in pianta del tampone					
Htf	9	Altezza terreno trattato sotto il fondo scavo					
Hte	0 m	Altezza intermedia terreno non trattato					
Hta	0 m	Altezza tampone di fondo inferiore					
Hinfissione	9.0 m	Altezza infissione paratia					
γtn	20.0 kN/m3	Peso specifico terreno naturale					
γta	20.0 kN/m3	Peso specifico tampone					
φta	33.9 °	Angolo di attrito terreno tampone Comb. A2+M2					
δta	0.50 -	Rapporto δ/ϕ tampone					
fa=tan(φta x δta)	0.30 (-)	Aderenza massima tampone paratia					
Hw	18.4 m	= Zfalda - Zfs +Hte+Hta altezza battente idraulico					
u_Hw	180.5 kPa	pressione interstiziale in funzione del battente idraulico					
Sw	180.5 kPa	pressione intestiziale agente alla base del tampone					
Np	2500.0 kN/m	da calcolo Paratie					
σ p1	277.78 kN/m2	Np/Hinfissione Valore medio pressione passiva mobilitata su jet					
σρ2	277.78 kN/m2	valore medio sull'altezza del tampone letto in paratie					
σр3	22.50 kN/m2	valore geostatico a fondo scavo alla profondità media del tampone					
σp,calc	277.78 kN/m2	valore adottato nei calcoli					
fa	84.59 kN/m2	$=\sigma$ P * tan ϕ Aderenza massima tampone paratia					
Wt	13.5 m3	= Hta^2/6 W resistente flessione tampone per 1 m di larghezza					
α	0.97 (-)	= 1/(1+Lmin/Lmax)^2) coeff riduttivo momento per effetto piastra					
qtf	104.41 kN/m	= $8*\sigma p*Wt/(\alpha \times Lmin^2)$					
qta	88.52 kN/m	=2*fa*Hinf/Lmin					
qt utile	88.52 kN/m						
Pte	0.0 kN	= γ te*(Hte+Htf)*Lmin Peso terreno per 1 metro di sezione					
Pta	3096.0 kN	= γ ta*Hta*Lmin = Peso tampone per 1 m di sezione					
Sta	1522.6 kN	= qt utile *Lmin = risultante pressione assorbita dall infissione per 1 m					
Sw	3104.7 kN	= Hw *10 * Lmin = sottospinta falda per 1 metro di sezione					
Ribasso locale in corrispondenza vasca di aggottamento							
Wrib 0 kN							
Verifica secondo NT	C 08						
0.9* St	4156.7 kN						
1.1*SW	3415.1 kN						
St>Sw	Verificato						

St/Sw

REV A

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

17.6 Palancole Metalliche Puntonate

VERIFICA CON ATTRITO CON SCAVO REALE - TAMPONE IMPERMEABILE - PALANCOLATO PRIMARIO								
SEZ. 1-1 (PA	SEZ. 1-1 (PALANCOLE Larssen L430 20m)							
Zfalda	65.65 m s.l.m	Quota falda in fase di costruzione						
Zfs	57.5 m s.l.m	Quota fondo scavo						
Hw	8.15 m	Altezza falda a piano scavo						
Lmin	25.5 m	Dimensione minima in pianta del tampone						
Lmax	100 m	Dimensione massima in pianta del tampone						
Zsup-Jet	53.6	Quota testa tampone di fondo						
Htf	₫	Altezza terreno trattato sotto il fondo scavo						
Hte	6.5 m	Altezza intermedia terreno non trattato						
Hta	6.5 m	Altezza tampone di fondo inferiore						
Htot	13.0 m	Distanza fondo scavo - intradosso tampone						
vtn	0.0 kN/m3	Peso specifico terreno naturale con colonne singole						
γtn	20.0 kN/m3	Peso specifico terreno naturale con colonne singole Peso specifico terreno naturale						
γtn	-	·						
γta fa	20.0 kN/m3 0.28 ()	Peso specifico tampone						
kp -paratie	0.28 () (-)	Aderenza massima tampone paratia Coefficiente spinta passiva medio Paratie						
kp -paratic	(-)	coefficiente spinta passiva medio i aratie						
Hw	21.2 m	= Zfalda - Zfs +Hte+Hta altezza battente idraulico						
u_Hw	207.5 kPa	pressione interstiziale in funzione del battente idraulico						
u_par	kPa	pressione interstiziale letta in paratie alla base della paratie						
Sw	207.5 kPa	pressione intestiziale agente alla base del tampone						
Np	0.0 kN/m	da calcolo Paratie						
σ p1	0.00 kN/m2	Np/Hinfissione Valore medio pressione passiva mobilitata su jet						
σp2	0.00 kN/m2	valore medio sull'altezza del tampone letto in paratie						
σр3	32.50 kN/m2	valore geostatico a fondo scavo alla profondità media del tampone						
σp,calc	0.00 kN/m2	valore adottato nei calcoli						
fa	0.00 kN/m2	= σp * tan φ Aderenza massima tampone paratia						
Wt	28.2 m3	= Hta^2/6 W resistente flessione tampone per 1 m di larghezza						
α	0.94 (-)	= 1/(1+Lmin/Lmax)^2) coeff riduttivo momento per effetto piastra						
qtf	0.00 kN/m	= $8*\sigma p*Wt/(\alpha \times Lmin^2)$						
qta	0.00 kN/m	=2*fa*Hinf/Lmin						
qt utile	0.00 kN/m							
Pte	3315.0 kN	= γte*(Hte+Htf)*Lmin Peso terreno per 1 metro di sezione						
Pta	3315.0 kN	= γta*Hta*Lmin = Peso tampone per 1 m di sezione						
Sta	0.0 kN	= qt utile*Lmin = risultante pressione assorbita dall infissione per 1 m						
Sw	5290.8 kN	= Hw *10 * Lmin = sottospinta falda per 1 metro di sezione						
Ribasso loc	•	nza vasca di aggottamento						
Wrib	0 kN							
Verifica sec	condo NTC 08							
0.9* St	5967.0 kN							
1.1*SW	5819.9 kN							
St>Sw \	/erificato							
St/Sw	1.03							

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

REV A

VERIFICA SOLLEVAMENTO E SIFONAMENTO PALANCOLATO SECONDARIO

SEZ. 2-2 (PALANCOLE Larssen L430 20m)

Zw_costr65.65 m s.l.mQuota falda in fase di costruzioneZw_piena68 m.s.l.Quota falda in codizioni di piena

Zfs 65.9 m s.l.m Quota fondo scavo

Hw -0.25 m Altezza falda a piano scavo Zpiede_wa 48.5 m Quota piede palancola Hnfiss 17.4 m Lunghezza infissione paratia Distanza palancola-pali 6.5 m 19.0 kN/m3 Peso specifico terreno naturale γtn **37** deg Angolo attrito terreno in situ

Battente idraulico

Hw_COSTR 17.15 m = Zw_costr+Hinfiss altezza battente idraulico

sw 168.2415 kPa pressione interstiziale in funzione del battente idraulico
Sw 1093.6 kN/m Risultante pressione intestiziale agente al piede paratia

Coefficienti parziali

 $\begin{array}{lll} \gamma G \mathbf{1}_{\mathsf{fav}} & & 0.9 \text{ (-)} \\ \gamma G \mathbf{1}_{\mathsf{sfav}} & & 1.1 \text{ (-)} \end{array}$

Minimo Peso stabilizzante terreno

10.8 Lunghezza inffisione minima per soddisfare verifica a sollevamento

Ok Sollevamento verificato SU FALDA COSTRUZIONE

Gradiente critico

γ'/γ_w 0.94 Zw_piena 68.00 m Zfondo_lag 58.3 m

Coeff. Globali da NTC

 γ_{R_medio} 3.00 (-) =coeff. Sicurezza globale su gradiente idraulico medio $\gamma_{R_efflusso}$ 2.00 (-) =coeff. Sicurezza globale su gradiente idraulico di efflusso

Valori permeabilità terreni in situ

K_T1 2.00E-03 m/s = Coefficiente permeabilità Terreno 1 K_T2 2.00E-04 m/s = Coefficiente permeabilità Terreno 2

Gradiente di efflusso

ΔHw 2.35 m = Battente idrico tra falda in condizione di piena e falda di costruzione

L 27.0 m = Lunghezza percorso di filtrazione lungo la palancola $i_E = \Delta Hw/L$ 0.087199 - = Gradiente di efflusso (ipotesi di perdita di carico lineare)

Verifiche NTC 2018

0.468 > 0.087199 = verifica sifonamento su gradiente idraulico efflusso (γ_R =2) 0.312 > 0.063591 = verifica sifonamento su gradiente idraulico medio (γ_R =3)

IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

REV A

18 MONITORAGGIO

Nel seguente capitolo verrà trattata la parte inerente al monitoraggio delle seguenti opere:

- <u>berlinese di testata di micropali con tiranti</u>
- pali tipo "D1"

Il piano di monitoraggio è stato realizzato in modo da poter verificare sistematicamente – in corso d'opera – le previsioni di progetto e modificare, qualora necessario, le modalità di scavo/sostegni da porre in opera, per rispettare i limiti individuati in fase di progettazione, relativamente a:

- spostamenti delle opere di sostegno provvisionali;
- controllo dello stato di sforzo agente nei tiranti di ancoraggio;
- controllo del livello di falda durante l'esecuzione delle opere.

Nel seguito saranno descritti i sistemi di monitoraggio che dovranno essere predisposti per seguire l'evoluzione del quadro tensio-deformativo nelle opere di sostegno provvisionali durante l'avanzamento delle attività di costruzione delle opere in oggetto; in particolare le operazioni di controllo saranno attive fino alla conclusione dei lavori e/o all'osservata stabilizzazione delle grandezze monitorate. per il controllo della strumentazione ed il rilievo dei dati, saranno fornite le indicazioni in merito alla frequenza di lettura; tutte le informazioni raccolte verranno elaborate e confrontate con le soglie di allarme ed attenzione indicate per intervenire, in caso di superamento delle stesse, con azioni correttive.

18.1Schema di monitoraggio

In sintesi, il sistema di monitoraggio delle opere di sostegno prevede l'utilizzo della seguente strumentazione la cui posizione e quantità è visualizzata nell'elaborato "PE-IMB-OSD-GE-010-MO":

- Mire ottiche: sulla berlinese di micropali tirantata e sulla paratia di pali "D1" saranno posizionate le mire ottiche di precisione per la misura degli spostamenti orizzontali, poste a differenti altezze dalla sommità delle opere, come illustrato nelle sezioni tipo di monitoraggio. Le letture degli spostamenti saranno eseguite periodicamente con le frequenze specificate nel seguito, con apposita stazione totale;
- Strain gauges e celle di carico toroidali: i puntoni di contrasto della paratia di pali "D1" saranno dotati di un sistema di controllo delle deformazioni mediante "strain gauges", mentre i tiranti attivi di ancoraggio della berlinese di sostegno provvisionale saranno dotati di celle di carico toroidali per il controllo tensionale e deformativo degli stessi. Tutta la strumentazione sarà leggibile periodicamente attraverso data logger portatile; in alternativa potrà esse prevista la connessione ad apposita centralina di acquisizione dei dati dotata di una connessione wireless 4G così da poter trasmettere i dati acquisiti in remoto su apposita piattaforma Web;
- Tubi inclinometrici fissi: a tergo della berlinese di sostegno tirantata si prevede l'installazone di n°2 tubi inclinometrici fissi per la misura degli spostamenti dell'opera di sostegno e del versante a profondità elevate;
- Piezometro a tubo aperto: per la misura del livello della falda in fase di realizzazione delle opere, attrezzato con trasduttore di pressione piezo-resistivo per la misura in continuo dei livelli di falda. Pertanto, sarà dotato di una centralina di acquisizione dei dati campionati con frequenza minima di 1 gg e dotato di una connessione wireless 4G così da poter trasmettere i dati acquisiti in remoto su apposita piattaforma Web.

I dettagli relativi alle caratteristiche tecniche della strumentazione da installare sono definiti nel successivo §18.2.

IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

REV A

18.1.1 Frequenza delle letture

Installazione:

- o le mire ottiche sulle opere di sostegno dovranno essere posizionate dopo la relativa realizzazione o infissione sulla sommità del cordolo di testa dove possibile.
- o le celle di carico verranno installate al momento del posizionamento dei tiranti attivi di
- o i tubi inclinometrici dovranno essere realizzati dopo l'infissione dei micropali e sul versante prima dell'inizio delle attività di scavo;
- o Il piezometro a tubo aperto dovrà essere realizzato dopo l'infissione dei micropali prima dell'inizio delle attività di scavo.

Per quanto riguarda le tempistiche e le fasi di installazione della strumentazione sulle strutture/infrastrutture sensibili al procedere dei lavori in funzione delle differenti fasi di cantierizzazione, per scavi di profondità inferiore a 2 m non è prevista l'attivazione della strumentazione di monitoraggio, laddove indicata negli elaborati di progetto.

Lettura di 0: immediata.

- Frequenza di lettura delle mire ottiche, degli inclinometri e delle celle di carico durante lo scavo:
 - 1 lettura ogni due metri di abbassamento del piano di lavoro.

Dopo il completamento dello scavo

1 lettura mensile (da diradare nel caso in cui non si notino ulteriori evoluzioni del quadro deformativo delle strutture in interferenza) fino a quando la strumentazione risulterà accessibile/visibile.

Il programma sopra indicato potrà naturalmente essere rimodulato/intensificato in funzione delle letture effettivamente registrate in sito e dalla sequenza delle fasi operative realizzata in cantiere, in accordo con il progettista delle opere strutturali.

IMBOCCO - OPERE PROVVISONALI RELAZIONI DI CALCOLO

REV A

18.1.2 Valori di soglia e gestione dei dati

Si riportano nella seguente tabella le soglie di attenzione e allarme di riferimento per il monitoraggio delle opere di sostegno e degli scavi da realizzarsi in corrispondenza dell'imbocco lato Idro della galleria di derivazione.

VALORI SOGLIA MONITORAGGIO OPERE DI SOSTEGNO								
STRUMENTO	PARAMETRO	PRECISIONE e VALORI DI SOGLIA						
	1740412110	U.M.	ATTENZIONE	ALLARME				
Mire ottiche	Spostamenti orizzontali paratie	0.5 mm	15 mm	25 mm				
Inclinometri	Spostamento orizzontale	±0.050 mm × 500 mm	25 mm*	50 mm*				
Celle di carico su tiranti attivi	Carico assiale	1% fondo sala	N _{max} Esercizio	1.2 × N _{max} Esercizio				

^{*}Nota 1: al raggiungimento delle soglie di allarme inclinometriche, in caso si abbia evidenza di instabilità nel resto della strumentazione installata sulle opere di sostegno, le attività in corso saranno sospese, qualora necessario, per dare la possibilità di predisporre le contromisure necessarie ad arrestare/mitigare i fenomeni deformativi in atto.

Valori attesi

Se i valori misurati sono inferiori alle soglie di attenzione, le operazioni di scavo procedono normalmente e la frequenza dei rilievi non viene variata.

Valori di attenzione:

Qualora sia evidente un incremento sistematico degli spostamenti al procedere dello scavo, la frequenza delle misure dovrà essere aumentata e dovranno essere indicati eventuali accorgimenti tecnici per arrestare tale tendenza in funzione dei fenomeni in atto; la direzione lavori sarà informata del superamento delle soglie e delle eventuali azioni correttive studiate.

Le soglie di attenzione sono state fissate al raggiungimento di un valore prossimo al 70% dei valori massimi attesi determinati a partire dalla analisi numeriche effettuate sulle sezioni tipo di scavo per le condizioni più critiche, ciò al fine di attivare le necessarie misure di rafforzamento dei controlli e studio delle cause del problema osservato, nonché delle possibili contromisure da introdurre per arrestare l'evoluzione dei fenomeni osservati.

Valori di allarme:

La direzione lavori dovrà essere tempestivamente informata del superamento della soglia di allarme. Le operazioni di cantiere potranno essere interrotte in funzione delle indicazioni dei rilievi strumentali effettuati nella fase di raggiungimento delle condizioni di allarme (trend in crescita evidente, segnali di incipienti danni quali fessure/forti vibrazioni avvertite/movimenti registrati da altra strumentazione installata). Se il quadro tensionale/deformativo dovesse richiederlo, saranno posti in atto i provvedimenti e le contromisure studiate per arrestare l'evoluzione dei fenomeni in atto e i periodi di misurazione dovranno essere prolungati secondo le esigenze.

Le soglie di allarme sono state fissate al raggiungimento di un valore prossimo al 120% dei valori massimi attesi per le condizioni di esercizio analizzate; durante la fase di monitoraggio tra la soglia di attenzione e la soglia di allarme dovrà essere attivata la fase di "azione" volta ad una stabilizzazione del trend o al rientro nella norma. Se necessario durante la fase di "azione" prima del raggiungimento della soglia di allarme i lavori potranno essere

PROGETTO ESECUTIVO

IMBOCCO – OPERE PROVVISONALI RELAZIONI DI CALCOLO

interrotti in funzione dei dati e delle evidenze acquisite per il tempo sufficiente a studiare il quadro deformativo/tensionale evidenziato dall'intera strumentazione installata, studiare e mettere in opera le necessarie contromisure.

IMBOCCO – OPERE PROVVISONALI
RELAZIONI DI CALCOLO

REV A

18.2 Caratteristiche tecniche strumentazione di monitoraggio

18.2.1 Mire ottiche per la misura degli spostamenti

Il riscontro topografico da utilizzare per il controllo degli spostamenti è costituito da una barra metallica ad aderenza migliorata di diametro minimo e lunghezza idonee (al sito di indagine) per ancorarsi in perforazioni mediante resine bicomponenti oppure da saldare direttamente alle travi di ripartizione metallica (ove previste). La barra di ancoraggio sarà dotata di piastrina metallica che alloggerà il target di misura ad alta rifrangenza.

Le misure si effettueranno manualmente da una unità topografica tramite stazione totale di precisione, con grado di accuratezza pari a \pm 0.5mm.

18.2.2 Strain gauges

Le barrette estensimetriche con sensore a corda vibrante ed uscita in frequenza (Hz) dotate di termistore per il rilievo della temperatura, sono costituite da un corpo tubolare in acciaio inox della lunghezza di 150 mm, provviste di blocchetti a saldare per garantire il migliore ancoraggio all'elemento strutturale di controllo. Con la posa in opera delle barrette estensimetriche sarà possibile controllare in fase di esercizio la risposta deformativa lungo la direzione di allungamento dello strumento di misura.

Il range di lavoro delle barrette estensimetriche è pari a 3000 $\mu\epsilon$, (\pm 1500 $\mu\epsilon$). La precisione di misura è minore del 2.0% del fondo scala. Le misure saranno eseguite da tecnico specializzato con idonea centralina di misura portatile.

Caratteristiche dei sensori:

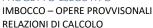
- Tipo di sensore strain gauge a corda vibrante dotato di termistore
- Range ± 1500 με
- Tipo di segnale frequenza Hz
- Risoluzione 1 με
- Precisione totale < 2.0% del fondo scala
- Campo di temperatura -20 / +80 °C

18.2.3 Celle di carico per tiranti

Le celle di carico toroidali di tipo elettrico vengono utilizzate per determinare le forze applicate dai tiranti. Le celle di carico elettriche sono costituite da un corpo in acciaio di forma toroidale sensibilizzato con straingauges di tipo resistivo che garantiscono una bassa sensibilità ai carichi eccentrici. La cella viene installata tra una piastra di distribuzione del carico ed una piastra supplementare in acciaio (se non è possibile predisporre una superficie piana).

Caratteristiche delle celle di carico per tiranti:

- Tipo di sensore: elettrico
- Range 300-2500 kN
- Tipo di segnale mA (4-20)



- Precisione totale < 0.5% del fondo scala
- Campo di temperatura -20 / +70 °C

18.2.4 Tubi inclinometrici fissi

In corrispondenza dei punti indicati in progetto saranno installati tubi inclinometrici fissi per la profilazione del foro per la sua lunghezza. La lunghezza del tubo sarà conforme a quando indicato nelle sezioni di monitoraggio di progetto.

Essi sono costituiti da un corpo tubolare in acciaio che alloggia il sensore inclinometrico MEMS (Micro Electro Mechanical Systems), il carrello a bilanciere, ed un'asta di prolunga in fibra di carbonio. Per la profilazione, il tubo inclinometrico è attrezzato con una catena continua di inclinometri fissi che viene chiusa in superficie con un carrello terminale. Essi saranno associati ad un datalogger, con impostate soglie di attenzione e allarme, in grado di trasmettere i dati rilevati su FTP o altro database.

Caratteristiche:

- Tipo tubo: ABS
- Diametro minimo interno tubo inclinometrico: 60 mm
- Diametro esterno: 71 mm
- Risoluzione: 0.00056°
- Accuratezza: +/- 0,025% fondo scala
- Precisione di una catena di inclinometri fissi tipo BH < ± 2 mm/30 m
- Temperatura di esercizio: -30+70°C

