

Campo di Regina

Modello Geomeccanico di Subsidenza

Management Summary

Executive Summary

Il presente rapporto illustra i risultati dello studio geomeccanico relativo al campo a gas di Regina, effettuato con lo scopo di valutare quantitativamente la subsidenza indotta dall'attività estrattiva.

Il modello geomeccanico utilizzato è 3D agli elementi finiti e, per descrivere il comportamento del materiale, si è adottata una legge costitutiva elasto-viscoplastica.

Alla fine della produzione, nel 2023, la massima subsidenza attesa è pari a 114 cm, mentre a fine simulazione, nel 2053 (30 anni dopo la fine della produzione), è pari a 131 cm.

La distanza minima del fenomeno dalla linea di costa al termine della produzione risulta di circa 11 km e si mantiene pressoché inalterata fino al termine della simulazione.

Data 28/10/2021

Indice

1 Introduzione	
2 Dati di subsidenza misurati dalla stazione CGPS	5
3 Modello Geomeccanico agli Elementi Finiti	6
3.1 Approccio metodologico	6
3.2 Geometria del modello	6
3.3 Proprietà dei materiali	7
3.3.1 Densità della roccia	7
3.3.2 Peso specifico dei fluidi saturanti	8
3.3.3 Proprietà meccaniche	8
3.4 Inizializzazione e storia di pressione	
3.4.1 Stato tensionale iniziale	
3.4.2 Storia di pressione	
4 Risultati delle simulazioni FEM	
5 Confronto con i dati di subsidenza misurati dalla stazione CGPS	
6 Confronto con i dati da marker radioattivi	
6.1 Pozzo Regina 3 dir	
6.2 Pozzo Regina 6 dir B Foro 2	
7 Confronto con i dati batimetrici	
Bibliografia	

1 Introduzione

Il presente sommario illustra in modo sintetico i principali risultati dello studio geomeccanico relativo al giacimento di Regina, effettuato con lo scopo di valutare quantitativamente la subsidenza indotta dalla coltivazione del campo e di prevederne l'evoluzione futura fino a 30 anni oltre la chiusura.

Il campo di Regina (Eni 75% Operatore, Energean 25%) è situato nel mare Adriatico, nella concessione mineraria A.C17.AG, circa 21 km a E-NE di Rimini (distanza dalla costa circa 15 km), in fondali con profondità media di circa 20 m (Figura 1).

Figura 1 – Posizione del campo di Regina.

Il giacimento è compreso nella serie del Pliocene Inferiore (PL) e del Pliocene Medio-Inferiore (PL1, Formazione Porto Corsini) ed è caratterizzato da un'alternanza di strati sabbiosi, argillosi e siltosi, con proporzioni e spessori variabili e con distribuzione laterale limitata. È classificabile come deposito torbiditico prossimale in facies di conoide sottomarina. I due principali livelli del campo di Regina, PL1-KLX e PL1-PX, sono costituiti dalle sabbie grossolane risedimentate dell'alto di Canopo che sono intercalate nei sedimenti più fini delle torbiditi distali della Formazione di Porto Corsini.

Il pozzo esplorativo di scoperta Regina 1 dir, perforato nel 1995, è risultato mineralizzato a gas metano. Nel 1996 è stato perforato il secondo pozzo Regina 2 dir, con l'obiettivo di verificare l'estensione areale della mineralizzazione ed indagare eventuali variazioni laterali di facies. Il pozzo è risultato mineralizzato nella sequenza PL1, con il livello PL1-PX attraversato da una faglia. Da maggio ad agosto 1997 sono stati perforati i 3 pozzi di sviluppo (Regina 3 dir, 4 dir e 5 dir), per la produzione dai livelli principali PL1-KLX e PX.

Il giacimento è entrato in produzione nel luglio 1997 con i 4 pozzi produttori Regina 1 dir, 3 dir, 4 dir e 5 dir. Nel 2003/2004 è stata eseguita una campagna di infilling con la perforazione dei pozzi Regina 6 dir, 7 dir e 8 dir. Da novembre 2006 a luglio 2008 la produzione del giacimento è stata

interrotta; nel mese di ottobre 2012, inoltre, si è verificato un innalzamento della pressione al collettore di circa 10 bar (passando da circa 10 a 20-25 bar) che ha comportato una notevole riduzione di portata. Nel 2014 sono stati perforati due pozzi di sidetrack, Regina 4 dir B e 6 dir B. I completamenti di questi ultimi due pozzi hanno interessato interamente i livelli profondi così da drenare i volumi di gas presenti nei blocchi centrali del campo.

A giugno 2021 il campo di Regina ha prodotto complessivamente 3884 MSm³ di gas, di cui circa il 95% dai livelli superficiali PL1-KLX e PL1-PX (3685 MSm³) e il restante 5% dai livelli profondi, dal PL1-Q al PL-U2 (199 MSm³) [1].

Il caso di forecast del campo prevede la fine della produzione a dicembre 2022, con una produzione totale di 3889 MSm³: 3687 MSm³ dai livelli superficiali (PL1-KLX e PL1-PX) e 202 MSm³ dai livelli profondi (dal PL1-Q al PL-U2), corrispondente ad un recovery factor del 55.5%.

La previsione di subsidenza è stata ottenuta per mezzo di simulazioni ad Elementi Finiti (FE) eseguite con il codice di calcolo Abaqus [2]. Le informazioni relative alla geometria del giacimento, le proprietà petrofisiche e l'evoluzione delle pressioni sono state ricavate dal modello fluido-dinamico di giacimento [1] realizzato con il codice di calcolo Eclipse [3].

Alcuni parametri caratteristici delle leggi costitutive utilizzate nel modello geomeccanico sono stati calibrati in modo da riprodurre le variazioni altimetriche misurate, a partire dal 2007, dalla stazione CGPS installata sulla piattaforma di Regina (paragrafo 2).

L'affidabilità del modello è stata in seguito verificata confrontandone i risultati con le misure a disposizione (paragrafo 5 e paragrafo 6):

- compattazione in situ rilevata tramite marker radioattivi installati nei pozzi Regina 3 dir (dal 1997 al 2007) e Regina 6 dir B Foro 2 (dal 2014 al 2019);
- dati batimetrici rilevati nell'area nel 2007 e nel 2014.

2 Dati di subsidenza misurati dalla stazione CGPS

Sulla piattaforma di produzione di Regina è installata una stazione CGPS in corrispondenza delle coordinate 2347150 m E 4885798 m N. I valori di variazione altimetrica misurati dalla stazione sono stati utilizzati per calibrare i parametri del modello geomeccanico. Il periodo di osservazione va da giugno 2007 a settembre 2021 (Figura 2).

Figura 2 - Misurazioni effettuate dalla stazione CGPS di Regina, aggiornate al 4 settembre 2021.

3 Modello Geomeccanico agli Elementi Finiti

3.1 Approccio metodologico

Lo studio geomeccanico di subsidenza è stato condotto utilizzando il codice FE Abaqus [2]. La costruzione del modello è stata basata sulle seguenti informazioni:

- mappe geologiche dei livelli interessati dal campo, estese in misura tale da descrivere interamente non solo la zona mineralizzata ma anche gli acquiferi laterali idraulicamente connessi agli strati produttivi;
- dettagliata descrizione della geometria e geologia dei livelli mineralizzati e degli acquiferi ad essi connessi idraulicamente, riprodotte con accuratezza dalla maglia di calcolo numerica;
- distribuzione di pressione nei livelli mineralizzati e negli acquiferi connessi, calcolata con un modello di flusso 3D Eclipse. Lo studio fluido-dinamico di giacimento è stato protratto per 30 anni, a pozzi chiusi dalla data di fine produzione, in modo da considerare l'effetto dell'evoluzione della pressione nelle regioni mineralizzate e in acquifero dopo la fine della produzione;
- il comportamento meccanico del materiale costituente le formazioni geologiche è stato descritto secondo il modello costitutivo elasto-viscoplastico 'Soft-Soil-Creep' di Vermeer e Neher [4]), che è stato formulato arricchendo il classico modello elasto-plastico 'Modified Cam-Clay Model' con la componente viscosa della deformazione;
- variazioni altimetriche registrate dalla stazione CGPS installata sulla piattaforma di Regina, utilizzate per calibrare alcuni parametri caratteristici delle leggi costitutive.

3.2 Geometria del modello

Il modello Eclipse è composto da 99x60 celle nelle direzioni I e J rispettivamente, per 192 livelli. Esso interessa un'area di circa 10x6 km² ed è costituito da circa 135000 celle attive. Per non risentire dell'influenza delle condizioni al contorno imposte ai bordi, il modello geomeccanico è stato esteso lateralmente (*sideburden*) fino a ricoprire un'area di circa 40x36 km². Data l'estensione risultante, è stato necessario effettuare un processo di upscaling per limitare il numero dei gradi di libertà. Nella direzione verticale, il modello Abaqus per la zona del giacimento è stato attuato anche in direzione orizzontale, unendo tra loro un differente numero di celle a seconda della distanza dal centro del giacimento.

La griglia originale, inoltre, è stata estesa verticalmente in modo da comprendere la regione che va dal fondo del mare fino ad una profondità di 5000 m. Il modello è stato diviso in 5 livelli dal top del giacimento fino al fondo del mare (*overburden*) e in 5 livelli dal bottom del giacimento fino alla base (*underburden*), come mostrato in Figura 3.

Figura 3 - Confronto tra l'estensione del modello geomeccanico e del modello fluido-dinamico (riquadri rossi).

La griglia FE risulta così costituita da 49x36x176 (310464) elementi e 327450 nodi per un totale di 1044726 gradi di libertà.

Le condizioni al contorno assegnate al modello sono di spostamento nullo alla base della griglia e spostamento orizzontale impedito lateralmente.

3.3 Proprietà dei materiali

3.3.1 Densità della roccia

Partendo dal log sonico registrato nel pozzo Regina 3 dir è stato calcolato [5] un profilo continuo di densità (Figura 4) che è stato interpolato attraverso le seguenti relazioni:

$\rho(kg/m^3) = 1237.717 + 163.099 \ln(z)$	z < 200 m	[Eq. 3.1]

$p(kg/m) = 2000 + 0.0077 + \xi$ $E > 200 m$ [Eq. 3.2]	$\rho(kg/m^3) = 2098 + 0.0977 \cdot z$	z > 200 m	[Eq. 3.2]
---	--	-----------	-----------

La curva analitica così ottenuta fornisce un'ottima approssimazione della densità misurata ed è stata perciò utilizzata nel modello FE per ricostruire la densità dei sedimenti e l'andamento dello stato di stress totale con la profondità.

La densità della roccia è stata fornita al modello FE in forma tabulare come funzione della profondità in accordo con le relazioni sopra riportate.

Figura 4 – Profilo del log sonico (curva blu), di densità misurata (marrone), interpolata mediante formula di Gardner (verde) ed estrapolata fino alla superficie (curva rossa).

3.3.2 Peso specifico dei fluidi saturanti

Viene fornito al modello FE il valore del peso specifico dei fluidi saturanti. Per ogni regione idromeccanica il valore di γ_f (relativo al gas o all'acqua) è stato considerato costante. Esso è stato determinato partendo dalla profondità del contatto gas-acqua e dalla distribuzione iniziale delle pressioni calcolata dal modello Eclipse.

3.3.3 Proprietà meccaniche

Il comportamento meccanico del materiale costituente le formazioni geologiche è descritto da un modello costitutivo elasto-viscoplastico (modello 'Soft-Soil-Creep' di Vermeer e Neher [4]). Tale modello è una naturale estensione del modello Cam Clay Modificato, in cui viene introdotta una componente viscosa. Evidenze sperimentali mostrano che materiali come quelli dei giacimenti dell'area adriatica possono presentare una risposta di tipo elasto-viscoplastico alle variazioni di sforzo efficace [6].

I parametri del modello di Vermeer e Neher, avendo un chiaro significato fisico, possono essere ricavati da prove sperimentali. I parametri da assegnare sono i seguenti:

- λ^* indice di compressione modificato;
- κ^* indice di ricompressione modificato;
- μ^* indice di creep modificato;
- v rapporto di Poisson;
- *M* pendenza della retta di stato critico;
- *pseudo-OCR*_{ini-rif} grado di sovraconsolidazione iniziale.

I valori dei parametri λ^* , $\kappa^* e \mu^*$ sono stati ottenuti sulla base dell'interpretazione dei risultati di prove di laboratorio effettuate su campioni prelevati in situ nel pozzo Regina 3 dir. Tali parametri sono stati

posti rispettivamente pari a 6.13e-2, 6.63e-3 e 1.3e-3. Il rapporto di Poisson è stato assunto pari a 0.3, mentre la pendenza *M* della linea di stato critico è stata posta pari a 1.33.

Non essendo possibile ricavare il valore del grado di sovraconsolidazione iniziale da prove di laboratorio, in prima approssimazione è stata ottenuta una stima analitica di questo parametro ipotizzando un *rate* di deformazione costante durante tutto il periodo di sedimentazione. Successivamente questo valore è stato calibrato in modo da riprodurre gli spostamenti osservati in corrispondenza della stazione CGPS (paragrafo 2). Il valore finale utilizzato per *pseudo-OCR*_{ini-rif} è pari a 1.53.

Si precisa che gli interlayer inattivi nel modello fluido-dinamico e le regioni di over-, under-, sideburden sono descritti come mezzi elastici lineari, approssimazione più che sufficiente dal momento che in tali intervalli non sono presenti variazioni di pressione dovute alla produzione. Questi vengono caratterizzati attraverso la comprimibilità edometrica c_m del materiale, calcolata come segue:

$$c_m = k^* / \sigma'_{\rm v} \qquad [{\rm Eq.} \ 3.3]$$

dove σ'_{ν} è la tensione efficace verticale, definita come la differenza tra la tensione totale verticale e la pressione dei pori *p*:

$$\sigma_{\nu}' = \sigma_{\nu} - p \qquad [Eq. 3.4]$$

Quest'ultima è stata estratta dallo studio fluido-dinamico alla profondità di riferimento, mentre la tensione verticale totale σ_v è stata calcolata a partire dalla densità del materiale espressa attraverso le relazioni mostrate nel paragrafo 3.3.1.

In Tabella 1 sono riportati i valori dei parametri meccanici utilizzati nel modello per i singoli livelli in cui è discretizzato il giacimento. Per le regioni di over-, under-, side-burden e per gli interlayer di reservoir inattivi nel modello fluido-dinamico è stata assunta una legge costitutiva di tipo elastico-lineare.

Si sottolinea che il campo di pressione del modello Eclipse è stato stimato utilizzando comprimibilità dei pori coerenti con il modello geomeccanico.

LIVELLO	LIVELLO Eclipse Layer		Abagus	z media	р	σv	σ'v	Cm	ν	Е
GEOLOGIC O iniz. fin.			Layer	[m]	[bar]	[bar]	[bar]	[bar ⁻¹]	-	[bar]
			OVB1	207.5	21.0	38.5	17.5	3.78E-04	0.3	1.96E+03
			OVB2	394.0	39.8	77.4	37.6	1.76E-04	0.3	4.22E+03
Ove	r-burden		OVB3	580.5	58.6	116.7	58.0	1.14E-04	0.3	6.51E+03
			OVB4	767.0	77.5	156.2	78.8	8.41E-05	0.3	8.83E+03
			OVB5	953.5	96.3	196.2	99.9	6.63E-05	0.3	1.12E+04
PL1-KLX_top	1	1	1	1138.1	115.1	236.0	120.9	5.48E-05	0.3	1.35E+04
	2	2	2	-	-	-	117.9	5.63E-05	0.3	1.32E+04
PL1-L_top	3	3	3	1147.4	123.2	238.0	114.8	5.77E-05	0.3	1.29E+04
	4 10		4	-	-	-	116.1	5.71E-05	0.3	1.30E+04
PL1-P_top	11	11	5	1184.7	128.8	246.1	117.4	5.65E-05	0.3	1.31E+04
	12	12	6	-	-	-	122.5	5.41E-05	0.3	1.37E+04

Tabella 1 – Proprietà dei materiali assegnate ad ogni layer.

Campo di Regina – Modello Geomeccanico di Subsidenza Management Summary

Pagina 10 di 25

PL1-	12	12	7	1042.0	101.1	259.9	107.7	5 105 05	0.2	1.420.04
PX_1_top	13	13	/	1243.0	131.1	258.8	127.7	5.19E-05	0.3	1.43E+04
interlyr.	14	14	8	1251.4	131.8	260.6	128.8	5.15E-05	0.3	1.44E+04
PL1- PX_2_top	15	15	9	1259.8	132.6	262.5	129.9	5.11E-05	0.3	1.45E+04
interlyr.	16	16	10	1250.1	131.6	260.3	128.7	5.15E-05	0.3	1.44E+04
PL1-PX_3_1	17	17	11	1250.7	131.4	260.5	129.1	5.14E-05	0.3	1.45E+04
PL1-PX_3_2	18	18	12	1260.0	132.2	262.5	130.3	5.09E-05	0.3	1.46E+04
PL1-PX_3_3	19	19	13	1270.7	133.2	264.8	131.7	5.04E-05	0.3	1.47E+04
	20	20	14	-	-	-	132.1	5.02E-05	0.3	1.48E+04
PL1-Q_top	21	21	15	1305.2	139.8	272.4	132.6	5.00E-05	0.3	1.49E+04
	22	22	16	-	-	-	136.0	4.87E-05	0.3	1.52E+04
PL1-R_top	23	23	17	1349.9	142.7	282.1	139.5	4.75E-05	0.3	1.56E+04
	24	24	18	-	-	-	140.6	4.72E-05	0.3	1.57E+04
PL1-R1_top	25	25	19	1362.8	143.3	285.0	141.6	4.68E-05	0.3	1.59E+04
	26	28	20	-	-	-	143.4	4.62E-05	0.3	1.61E+04
PL1-S1_top	29	29	21	1381.7	143.9	289.1	145.2	4.57E-05	0.3	1.63E+04
	30	30	22	-	-	-	146.7	4.52E-05	0.3	1.64E+04
PL1-S2_top	31	31	23	1400.6	145.0	293.2	148.2	4.47E-05	0.3	1.66E+04
	32	34	24	-	-	-	149.1	4.45E-05	0.3	1.67E+04
PL1-T1_top	35	35	25	1424.8	148.5	298.5	150.1	4.42E-05	0.3	1.68E+04
	36	36	26	-	-	-	150.5	4.41E-05	0.3	1.69E+04
PL1-T2_top	37	37	27	1428.7	148.5	299.4	150.9	4.40E-05	0.3	1.69E+04
	38	40	28	-	-	-	151.7	4.37E-05	0.3	1.70E+04
PL1-U_top	41	41	29	1449.4	151.4	303.9	152.5	4.35E-05	0.3	1.71E+04
	42	44	30	-	-	-	154.1	4.30E-05	0.3	1.73E+04
PL1-UVX_1	45	45	31	1478.9	154.8	310.4	155.6	4.26E-05	0.3	1.74E+04
PL1-UVX_2	46	46	32	1499.4	156.8	314.9	158.1	4.19E-05	0.3	1.77E+04
	47	47	33	-	-	-	160.3	4.14E-05	0.3	1.80E+04
PL1-UVX1_1	48	48	34	1518.2	156.6	319.1	162.5	4.08E-05	0.3	1.82E+04
PL1-UVX1_2	49	49	35	1530.5	157.8	321.8	164.0	4.04E-05	0.3	1.84E+04
	50	52	36	-	-	-	164.8	4.02E-05	0.3	1.85E+04
PL-A_top	53	53	37	1560.2	162.8	328.3	165.6	4.00E-05	0.3	1.85E+04
	54	54	38	-	-	-	165.8	4.00E-05	0.3	1.86E+04
PL-A1_top	55	55	39	1563.7	163.1	329.1	166.0	3.99E-05	0.3	1.86E+04
	56	56	40	-	-	-	167.1	3.97E-05	0.3	1.87E+04
PL-BX_top	57	57	41	1581.4	164.8	333.0	168.2	3.94E-05	0.3	1.88E+04
	58	58	42	-	-	-	169.4	3.91E-05	0.3	1.90E+04
PL-BX1_top	59	59	43	1596.9	165.9	336.5	170.6	3.89E-05	0.3	1.91E+04
	60	62	44	-	-	-	171.6	3.87E-05	0.3	1.92E+04
PL-B1_top	63	63	45	1620.8	169.2	341.7	172.6	3.84E-05	0.3	1.93E+04
	64	64	46	_	_	_	173.2	3.83E-05	0.3	1.94E+04
PL-B2_top	65	65	47	1640.8	172.3	346.2	173.9	3.81E-05	0.3	1.95E+04
	66	68	48	-	-	-	177.5	3.74E-05	0.3	1.99E+04
PL-BCX_1	69	69	49	1685.7	175.1	356.1	181.1	3.66E-05	0.3	2.03E+04
PL-BCX_2	70	70	50	1708.0	177.2	361.1	183.8	3.61E-05	0.3	2.06E+04
PL-BCX_3	71	71	51	1731.1	179.5	366.2	186.7	3.55E-05	0.3	2.09E+04
	72	72	52	-	-	-	188.9	3.51E-05	0.3	2.12E+04

DL C ton	72	72	52	17547	190.4	271.5	101.0	2 47E 05	0.2	2.14E+04
FL-C_top	73	73	54	1/34./	160.4	571.5	191.0	3.47E-05	0.3	2.14E+04 2 14E+04
PL D top	74	74	55	- 1768.6	- 183.2	374.6	191.2	3.47E-05	0.3	2.14E+04
TL-D_top	76	76	56	1700.0	105.2	574.0	191.4	3.47E-05	0.3	2.14E+04 2 14E+04
PL-D1 top	70	70	57	1778 1	185.6	376.7	191.2	3.47E-05	0.3	2.14E+04
	78	78	58	-	-	-	192.5	3.45E-05	0.3	2.11E+04
PL-E top	79	70	59	1790.8	185.7	379.5	193.8	3.42E-05	0.3	2.17E+04
12 2_00p	80	80	60	-	-	-	194.2	3.41E-05	0.3	2.18E+04
PL-E1 top	81	81	61	1801.6	187.3	381.9	194.6	3.41E-05	0.3	2.18E+04
	82	82	62	_	-	_	196.0	3.38E-05	0.3	2.20E+04
PL-F_top	83	83	63	1813.6	187.2	384.6	197.4	3.36E-05	0.3	2.21E+04
	84	84	64	-	-	-	198.6	3.34E-05	0.3	2.22E+04
PL-F1_top	85	85	65	1828.2	188.1	387.9	199.8	3.32E-05	0.3	2.24E+04
	86	86	66	-	-	-	200.4	3.31E-05	0.3	2.24E+04
PL-FGX_1	87	87	67	1846.8	191.0	392.0	201.0	3.30E-05	0.3	2.25E+04
PL-FGX_2	88	88	68	1866.9	193.0	396.5	203.5	3.26E-05	0.3	2.28E+04
PL-FGX_3	89	89	69	1886.8	195.0	401.0	205.9	3.22E-05	0.3	2.31E+04
	90	92	70	-	-	-	208.9	3.17E-05	0.3	2.34E+04
PL-H_top	93	93	71	1916.0	195.6	407.5	211.9	3.13E-05	0.3	2.37E+04
	94	94	72	-	-	-	212.5	3.12E-05	0.3	2.38E+04
PL-I_top	95	95	73	1924.6	196.4	409.4	213.0	3.11E-05	0.3	2.39E+04
	96	96	74	-	-	-	213.3	3.11E-05	0.3	2.39E+04
PL-I1_top	97	97	75	1928.0	196.5	410.2	213.7	3.10E-05	0.3	2.39E+04
	98	98	76	-	-	-	214.2	3.10E-05	0.3	2.40E+04
PL-I2_top	99	99	77	1943.6	199.0	413.7	214.7	3.09E-05	0.3	2.41E+04
	100	100	78	-	-	-	215.7	3.07E-05	0.3	2.42E+04
PL-I3_top	101	101	79	1960.7	200.8	417.5	216.7	3.06E-05	0.3	2.43E+04
	102	102	80	-	-	-	217.1	3.05E-05	0.3	2.43E+04
PL-J_top	103	103	81	1971.9	202.6	420.0	217.5	3.05E-05	0.3	2.44E+04
	104	104	82	-	-	-	216.6	3.06E-05	0.3	2.43E+04
PL-J1_top	105	105	83	1985.1	207.4	423.0	215.7	3.07E-05	0.3	2.42E+04
	106	108	84	-	-	-	217.2	3.05E-05	0.3	2.43E+04
PL-J1b_top	109	109	85	2014.6	211.0	429.7	218.7	3.03E-05	0.3	2.45E+04
	110	110	86	-	-	-	218.7	3.03E-05	0.3	2.45E+04
PL-J2_top	111	111	8/	2032.7	214.9	433.7	218.8	3.03E-05	0.3	2.45E+04
DI 10a tar	112	112	88	-	-	-	219.1	3.03E-05	0.3	2.45E+04
PL-J2a_top	113	113	89	2052.2	218.7	438.1	219.4	3.02E-05	0.3	2.46E+04
DI 12h top	114	114	90	-	-	-	220.2	3.01E-03	0.5	2.4/E+04
FL-J20_top	115	115	91	2000.0	219.0	440.0	221.1	2.00E-05	0.3	2.40E+04
DI 12c top	110	110	92	-	-	-	223.0	2.97E-05	0.3	2.30E+04
FL-J2C_top	117	117	93	2001.0	210.4	444.0	220.2	2.93E-05	0.3	2.53E+04 2.54E+04
PL 13 top	110	110	05	2103.0	- 222 7	- 149.6	220.0	2.95E-05	0.3	2.54E+04
1 D-92_10h	119	120	95			-+	220.9	2.72E-03	0.3	2.341+04 2 57F±04
PL-K ton	120	120	97	2127.6	224.0	455.2	229.1	2.70E-05	0.3	2.5712 ± 04 2 59F±04
12 K_top	121	122	98	-	-	-	231.2	2.87E-05	0.3	2.59E+04
PL-K1 top	122	123	99	2141.1	226.6	458.2	231.6	2.86E-05	0.3	2.59E+04
vp	124	124	100	-	-	-	232.7	2.85E-05	0.3	2.61E+04

Pagina 12 di 25

PL-K2 top	125	125	101	2158.0	228.2	462.0	233.9	2.84E-05	03	2.62E+04
112 H2_top	125	125	101	-	-	-	233.9	2.83E-05	0.3	2.62E+04
PL-L top	127	127	103	2177.3	232.4	466.4	234.0	2.83E-05	0.3	2.62E+04
r	128	128	104	-	-	-	233.7	2.84E-05	0.3	2.62E+04
PL-M top	129	129	105	2191.6	236.2	469.6	233.4	2.84E-05	0.3	2.61E+04
1	130	130	106	_	-	_	234.6	2.83E-05	0.3	2.63E+04
PL-M1 top	131	131	107	2205.0	236.9	472.7	235.8	2.81E-05	0.3	2.64E+04
	132	132	108	_	-	-	236.7	2.80E-05	0.3	2.65E+04
PL-M2_top	133	133	109	2211.6	236.6	474.2	237.5	2.79E-05	0.3	2.66E+04
	134	134	110	-	-	-	237.7	2.79E-05	0.3	2.66E+04
PL-N_top	135	135	111	2220.0	238.2	476.1	237.9	2.79E-05	0.3	2.66E+04
	136	136	112	-	-	-	237.9	2.79E-05	0.3	2.67E+04
PL-N1_top	137	137	113	2227.4	239.8	477.8	238.0	2.79E-05	0.3	2.67E+04
	138	138	114	-	-	-	238.9	2.78E-05	0.3	2.68E+04
PL-N2_top	139	139	115	2238.3	240.5	480.3	239.7	2.77E-05	0.3	2.69E+04
	140	140	116	-	-	-	240.3	2.76E-05	0.3	2.69E+04
PL-N3_top	141	141	117	2247.6	241.5	482.4	240.9	2.75E-05	0.3	2.70E+04
	142	142	118	-	-	-	241.2	2.75E-05	0.3	2.70E+04
PL-N4_top	143	143	119	2256.2	242.9	484.3	241.4	2.75E-05	0.3	2.70E+04
	144	144	120	-	-	-	241.6	2.75E-05	0.3	2.71E+04
PL-O_top	145	145	121	2264.2	244.4	486.1	241.7	2.74E-05	0.3	2.71E+04
	146	146	122	-	-	-	242.3	2.74E-05	0.3	2.71E+04
PL-O1_top	147	147	123	2263.4	243.1	486.0	242.8	2.73E-05	0.3	2.72E+04
	148	148	124	-	-	-	243.0	2.73E-05	0.3	2.72E+04
PL-P_top	149	149	125	2279.5	246.5	489.6	243.2	2.73E-05	0.3	2.72E+04
	150	150	126	-	-	-	244.1	2.72E-05	0.3	2.73E+04
PL-P1_top	151	151	127	2290.8	247.2	492.2	245.0	2.71E-05	0.3	2.74E+04
	152	152	128	-	-	-	246.1	2.69E-05	0.3	2.76E+04
PL-P2_top	153	153	129	2299.3	247.0	494.1	247.1	2.68E-05	0.3	2.77E+04
DI O	154	154	130	-	-	-	248.8	2.67E-05	0.3	2.79E+04
PL-Q_top	155	155	131	2314.8	247.2	497.7	250.5	2.65E-05	0.3	2.81E+04
DL O1 tor	156	156	132	-	-	-	249.6	2.66E-05	0.3	2.80E+04
PL-Q1_top	157	157	133	2323.3	230.8	499.0	248.8	2.0/E-03	0.5	2.79E+04
PL O2 top	150	150	134	-	-	- 501.2	249.0	2.00E-03	0.3	2.79E+04
1L-Q2_top	159	159	135	2330.4	232.0	501.2	249.2	2.00E-05	0.3	2.79E+04
PL-03 top	161	161	130	2340.0	252.1	503.4	250.5	2.64E-05	0.3	2.00E+04 2.82E+04
112 Q3_top	162	162	137	-	-	-	251.5	2.04E 05	0.3	2.82E+04
PL-R top	163	162	130	2350.5	252.8	505.8	252.2	2.62E-05	0.3	2.83E+04
12 H_top	164	164	140	-	-	-	253.4	2.62E-05	0.3	2.84E+04
PL-R1 top	165	165	141	2360.8	254.4	508.2	253.7	2.61E-05	0.3	2.84E+04
r	166	166	142	-	-	-	254.1	2.61E-05	0.3	2.85E+04
PL-R2 top	167	167	143	2368.4	255.4	509.9	254.5	2.61E-05	0.3	2.85E+04
	168	168	144	-	-	-	256.5	2.59E-05	0.3	2.87E+04
PL-R3_top	169	169	145	2386.6	255.7	514.1	258.4	2.57E-05	0.3	2.89E+04
	170	172	146	-	-	-	261.2	2.54E-05	0.3	2.93E+04
PL-S1_top	173	173	147	2426.9	259.3	523.3	263.9	2.51E-05	0.3	2.96E+04
-	174	174	148	-	-	-	263.8	2.51E-05	0.3	2.96E+04

eni	EIII 5.]	J.A.	Manageme	ent Summa	ary					Газ	gilla 15 ul 25
		_									
PI	L-S2_top	175	175	149	2436.9	261.9	525.6	263.7	2.52E-05	0.3	2.95E+04
		176	176	150	-	-	-	264.1	2.51E-05	0.3	2.96E+04
PI	L-S3_top	177	177	151	2447.8	263.5	528.1	264.6	2.51E-05	0.3	2.96E+04
		178	178	152	-	-	-	266.4	2.49E-05	0.3	2.98E+04
P	L-T_top	179	179	153	2464.3	263.7	531.9	268.2	2.47E-05	0.3	3.00E+04
		180	180	154	-	-	-	267.8	2.48E-05	0.3	3.00E+04
PI	L-T1_top	181	181	155	2475.5	267.0	534.4	267.5	2.48E-05	0.3	3.00E+04
		182	182	156	-	-	-	268.3	2.47E-05	0.3	3.01E+04
PI	L-T2_top	183	183	157	2487.4	268.1	537.2	269.1	2.46E-05	0.3	3.01E+04
		184	184	158	-	-	-	269.6	2.46E-05	0.3	3.02E+04
PI	L-T3_top	185	185	159	2493.6	268.5	538.6	270.1	2.46E-05	0.3	3.03E+04
		186	186	160	-	-	-	271.7	2.44E-05	0.3	3.04E+04
P	L-U_top	187	187	161	2504.6	267.8	541.1	273.3	2.43E-05	0.3	3.06E+04
		188	188	162	-	-	-	273.7	2.42E-05	0.3	3.07E+04
PL	L-U1_top	189	189	163	2513.8	269.2	543.2	274.0	2.42E-05	0.3	3.07E+04
		190	190	164	-	-	-	277.3	2.39E-05	0.3	3.11E+04
Р	L-U2_1	191	191	165	2530.2	266.4	547.0	280.6	2.36E-05	0.3	3.14E+04
Р	L-U2_2	192	192	166	2550.0	268.4	551.6	283.2	2.34E-05	0.3	3.17E+04
				UDB1	2716.8	274.4	590.1	315.7	2.10E-05	0.3	3.54E+04
				UDB2	3173.5	320.6	697.0	376.4	1.76E-05	0.3	4.22E+04
	Unde	er-burder	l	UDB3	3630.1	366.7	805.8	439.2	1.51E-05	0.3	4.92E+04
				UDB4	4086.7	412.8	916.7	503.9	1.31E-05	0.3	5.65E+04
				UDB5	4543.4	458.9	1029.6	570.6	1.16E-05	0.3	6.40E+04

Campo di Regina - Modello Geomeccanico di Subsidenza

Pagina 13 di 25

3.4 Inizializzazione e storia di pressione

3.4.1 Stato tensionale iniziale

Eni S.p.A.

Per il campo di Regina, lo sforzo totale verticale è stato calcolato dal gradiente di overburden definito a partire dai density e sonic log, come descritto in paragrafo 3.3.1.

Lo sforzo orizzontale σ'_h è stato inizializzato partendo da condizioni di tipo edometrico definite come: $\sigma'_h = K_0 \cdot \sigma'_v$

dove K_0 rappresenta il coefficiente di spinta a riposo che è stato posto pari a 0.54 [7], e considerando uno stato tensionale isotropo nel piano orizzontale.

3.4.2 Storia di pressione

La distribuzione tridimensionale di pressione e la sua evoluzione temporale, così come calcolata dal modello di flusso Eclipse, è stata importata nel modello ad elementi finiti. Oltre alle date corrispondenti a misure di compattazione e/o subsidenza, le pressioni sono state importate con passo temporale annuale fino alla chiusura dei pozzi e con passo temporale crescente successivamente, per un totale di 56 step temporali.

4 Risultati delle simulazioni FEM

In questo paragrafo vengono riportati i risultati forniti dalle simulazioni geomeccaniche agli elementi finiti. Il fenomeno di subsidenza viene descritto sinteticamente attraverso tre indici:

- 1. la subsidenza massima;
- 2. l'estensione massima, definita come la massima distanza del punto di massimo dalla linea di iso-subsidenza dei 2 cm considerata come limite areale del fenomeno;
- 3. l'estensione massima della linea di iso-subsidenza dei 2 cm verso la costa.

Le previsioni di subsidenza fornite dal modello elasto-viscoplastico agli elementi finiti sono riportate in Tabella 2 per alcuni step temporali durante e dopo la vita produttiva del campo: a giugno 2021 (fine della fase di history matching), al termine della produzione (gennaio 2023) e alla fine della simulazione (gennaio 2053). Lo studio, infatti, è stato protratto fino alla data 1-gen-2053 (a pozzi chiusi) in modo da considerare l'effetto dell'evoluzione della pressione nelle regioni mineralizzate e in acquifero dopo la fine della produzione.

	Max subsidenza (cm)	Max estensione verso la costa (km)	Max estensione (km)
giugno 2021	112	4	6
gennaio 2023	114	4	6
gennaio 2053	131	4	6

Tabella	2 –	Sintesi	dei	risultati	finali.
Labena	-	onicon	uu	1 ISultati	man.

L'analisi dei risultati consente di osservare che:

- il valore di massima subsidenza si registra alla fine della simulazione e risulta localizzato nel punto di coordinate 2346371 m E, 4885759 m N: in Figura 5 è riportata l'evoluzione nel tempo della subsidenza relativa a tale punto;
- al termine della produzione, cioè al 1-gen-2023, si prevede un valore di massima subsidenza pari a 114 cm. A tale data, la massima estensione della linea di iso-subsidenza dei 2 cm, definita come la massima distanza del punto di massima subsidenza dalla iso-linea dei 2 cm, è di 6 km; mentre la massima estensione nella direzione verso la costa è di 4 km (Figura 6);
- alla fine della simulazione (Figura 7), il valore di massima subsidenza raggiunge i 131 cm. Il valore relativo alla massima estensione della linea di iso-subsidenza dei 2 cm si mantiene costante e pari a circa 6 km; in Figura 8 è riportata l'evoluzione nel tempo della linea dei 2 cm;
- è importante sottolineare come il fenomeno di subsidenza si esaurisca a circa 11 km di distanza dalla linea di costa e come la distanza dalla costa rimanga pressoché inalterata tra il 2021 e il 2053.

Figura 5 – Evoluzione temporale della subsidenza nel punto di massimo. Le linee tratteggiate indicano le date di chiusura e riapertura del campo.

Figura 6 – Curve di iso-subsidenza al termine della produzione (1-gen-2023). I valori di subsidenza sono in cm.

Figura 7 – Curve di iso-subsidenza a fine simulazione (1-gen-2053). I valori di subsidenza sono in cm. Il simbolo rosso indica la posizione della stazione CGPS.

Figura 8 – Evoluzione temporale della linea di iso-subsidenza dei 2 cm. In evidenza la posizione del punto di massima subsidenza.

5 Confronto con i dati di subsidenza misurati dalla stazione CGPS

In Figura 9 è riportato il confronto tra i risultati ottenuti con il modello geomeccanico e la serie storica misurata con il CGPS. Si può osservare come il modello numerico riproduca con accuratezza gli spostamenti registrati dalla stazione CGPS.

E' possibile constatare come la subsidenza durante l'interruzione di produzione del campo (novembre 2006 – luglio 2008) sia riprodotta con particolare precisione, in quanto un modello costitutivo elasto-viscoplastico permette di modellizzare comportamenti di creep dei materiali.

Figura 9 – Confronto tra spostamento verticale misurato e spostamento simulato, in corrispondenza della stazione CGPS sulla piattaforma di Regina. Le linee tratteggiate indicano le date di chiusura e riapertura del campo.

6 Confronto con i dati da marker radioattivi

Nella regione del giacimento è disponibile una serie di rilevazioni *in situ* della compattazione tramite marker radioattivi installati nei pozzi Regina 3 dir e Regina 6 dir B Foro 2.

Dai risultati della simulazione FEM sono stati estratti gli spostamenti in corrispondenza dei marker e, quindi, calcolate le compattazioni/espansioni dei marker spacing negli intervalli temporali considerati. Queste ultime sono state confrontate con le misurazioni in situ. Si può notare come per entrambi i pozzi l'ordine di grandezza delle compattazioni misurate sia in buon accordo con quanto previsto dal modello.

6.1 Pozzo Regina 3 dir

Il pozzo Regina 3 dir (Lat. 44° 06' 15.341 N, Long. 12° 50' 25.883 E), inizialmente progettato come deviato, è stato modificato per essere equipaggiato nella parte più profonda (tra 998 m e 1218 m di profondità misurata) con marker per il monitoraggio della compattazione. I marker radioattivi inizialmente installati sono stati 22, di cui però solo 5 hanno interessato il livello principale PX, fortemente ridotto in questo pozzo. Le operazioni di tubaggio del pozzo hanno, purtroppo, portato alla perdita di uno di questi 5 marker, posizionato al centro del principale livello produttivo del campo. Nel pozzo Regina 3 dir sono stati effettuati numerosi survey di misura, oltre a quello iniziale del luglio 1997: ottobre 1997, settembre 2002, ottobre 2003, luglio 2005, settembre 2006, dicembre 2007, agosto 2008, ottobre 2009, dicembre 2010 e dicembre 2011. Tuttavia, i risultati del survey del 2006 e di tutti i survey effettuati a partire dal 2008 non sono utilizzabili in quanto lo strumento di misura non è riuscito ad accedere completamente al pozzo e quindi non ha fornito misure per tutti i marker spacing, in particolare non ha raggiunto i livelli produttivi. Date le anomalie riscontrate nelle compattazioni ed espansioni tra i primi due survey e l'esigua distanza temporale tra essi, si è deciso di adottare il survey dell'ottobre 1997 come survey base per tutte le considerazioni successive. Questa scelta risulta confortata dal fatto che durante questo breve periodo, a causa della scarsa produzione, la depressurizzazione può essere considerata trascurabile. I risultati dei survey utilizzati sono sintetizzati nella Tabella 3.

Profondità nom		nominale			Spacing (m)		
Intervallo	MD dei n	MD dei marker (m)		settembre 2002	ottobre 2003	luglio 2005	dicembre 2007
19	1008.5	998.0	10.52931	10.5299	10.5346	10.5341	10.5346
18	1017.5	1008.5	10.50255	10.5011	10.498	10.4966	10.4992
17	1030.0	1017.5	10.53139	10.5334	10.5317	10.5341	10.5341
16	1040.0	1030.0	10.56639	10.5671	10.5666	10.5759	10.5783
15	1050.5	1040.0	10.52197	10.5182	10.5214	10.5099	10.5121
14	1060.5	1050.5	10.46824	10.4664	10.4669	10.4707	10.467
13	1071.0	1060.5	10.4065	10.3981	10.3991	10.3957	10.3888
12	1083.5	1071.0	10.7112	10.7088	10.7159	10.7218	10.7254
11	1092.5	1083.5	10.35664	10.3737	10.3615	10.3622	10.3623
10	1102.0	1092.5	10.42888	10.4265	10.431	10.4299	10.4481
9	1113.5	1102.0	10.65829	10.669	10.6641	10.6695	10.6919
8	1124.0	1113.5	10.63022	10.633	10.6397	10.638	10.639
7	1134.5	1124.0	10.49323	10.4955	10.4962	10.4968	10.4972
6	1145.0	1134.5	10.4292	10.4208	10.4202	10.407	10.3865
5	1155.5	1145.0	10.52666	10.4524	10.4259	10.4014	10.3774
4	1187.0	1176.5	10.55659	10.5148	10.495	10.4417	10.4007

Tabella 3 - Compattazione misurata mediante marker radioattivi nel pozzo Regina 3 dir.

Eni S.p.A. Cam

Campo di Regina – Modello Geomeccanico di Subsidenza Management Summary

3	1197.5	1187.0	10.57089	10.5463	10.5459	10.542	10.5342
2	1208.0	1197.5	10.52859	10.5276	10.5251	10.5224	10.5252
1	1218.5	1208.0	10.54503	10.5469	10.5423	10.5424	10.5406

In Figura 10 è riportato il confronto tra le misurazioni in situ e il risultato della simulazione. Sono altresì indicate le barre di confidenza della misura di compattazione di ogni marker spacing tra due date. Si osservi come solo alcuni marker spacing manifestino variazioni di lunghezza significativamente superiori all'errore di misura.

Figura 10 – Confronto tra la variazione di lunghezza dei marker spacing di Regina 3 dir (rispetto alla misura di ottobre 1997) misurata in situ (linea continua) e simulata (linea tratteggiata).

6.2 Pozzo Regina 6 dir B Foro 2

Nel corso del 2014, durante una campagna di work over nel campo di Regina, sono stati installati nuovi marker nel pozzo Regina 6 dir B Foro 2 (Lat. 44° 06' 15.434 N, Long. 12° 50' 25.960 E), al fine di ripristinare il monitoraggio in situ della compattazione in giacimento, non più possibile sul pozzo Regina 3 dir per problemi meccanici. Dopo l'installazione in formazione dei 22 marker, nel tratto di foro compreso tra 1015 m e 1225 m di profondità misurata, si è eseguito nel settembre 2014 il rilievo base. Nell'ottobre 2015, dicembre 2016, dicembre 2017, dicembre 2018 e dicembre 2019 sono stati acquisiti survey di controllo. I risultati dei survey sono sintetizzati nella Tabella 4.

Eni S.p.A.

Intervallo	Profondità nominale MD dei marker (m)		Spacing (m)					
			settembre 2014	ottobre 2015	dicembre 2016	dicembre 2017	dicembre 2018	dicembre 2019
21	1025.27	1015.19	10.08772	10.07983	10.09066	10.08431	10.09218	10.08968
20	1035.22	1025.27	9.96612	9.95139	9.96046	9.95837	9.95815	9.95641
19	1045.23	1035.22	10.02059	10.02335	10.02384	10.02741	10.02979	10.02574
18	1055.21	1045.23	9.99438	9.98824	9.9927	9.99104	9.99807	9.99503
17	1065.3	1055.21	10.10292	10.10509	10.10906	10.10689	10.11193	10.10846
16	1075.22	1065.3	9.92098	9.91222	9.91259	9.91414	9.91478	9.91987
15	1085.16	1075.22	9.95197	9.93853	9.94059	9.94177	9.94877	9.94616
14	1095.25	1085.16	10.09035	10.0949	10.10059	10.10072	10.1037	10.10127
13	1105.14	1095.25	9.9005	9.89468	9.89621	9.89424	9.89455	9.89472
12	1115.14	1105.14	9.99457	9.99079	10.00005	9.99816	9.99486	9.99739
11	1125.17	1115.14	10.04074	10.03645	10.03606	10.03926	10.03732	10.04038
10	1135.12	1125.17	9.94846	9.94456	9.95035	9.94836	9.94697	9.95061
9	1145.13	1135.12	10.02554	10.02239	10.02538	10.02351	10.02596	10.02475
8	1155.18	1145.13	10.04087	10.03664	10.03758	10.03633	10.03861	10.03735
7	1165.12	1155.18	9.95233	9.94702	9.94836	9.9456	9.94831	9.94782
6	1175.15	1165.12	10.04162	10.03637	10.03713	10.03406	10.03514	10.03446
5	1185.14	1175.15	9.98749	9.98098	9.98244	9.97911	9.97892	9.98037
4	1195.11	1185.14	9.9775	9.97313	9.97402	9.97207	9.97097	9.96852
3	1205.09	1195.11	9.97704	9.97391	9.97406	9.97044	9.97202	9.9698
2	1215.08	1205.09	10.00555	10.00194	10.00322	9.99913	10.00076	9.99954
1	1225.04	1215.08	9.96401	9.96104	9.96279	9.96053	9.96349	9.96377

Tabella 4 - Compattazione misurata mediante marker radioattivi nel pozzo Regina 6 dir B Foro 2.

In Figura 11 è riportato il confronto tra le misurazioni in situ e il risultato della simulazione. Sono altresì indicate le barre di confidenza della misura di compattazione di ogni marker spacing tra due date. Si osservi che la maggior parte dei marker spacing manifesta compattazioni/espansioni di entità confrontabile con l'errore di misura. Si può anche osservare come ci siano comportamenti anomali per gli spacing meno profondi, che si trovano al di sopra dei livelli produttivi del giacimento.

Figura 11 - Confronto tra la variazione di lunghezza dei marker spacing di Regina 6 dir B Foro 2 (rispetto alla misura di settembre 2014) misurata in situ (linea continua) e simulata (linea tratteggiata).

7 Confronto con i dati batimetrici

Nel 2007 (maggio-agosto) è stata effettuata per conto della Divisione Eni E&P un'indagine batimetrica di precisione in un'area dell'offshore adriatico al largo della costa riminese, comprendente al suo interno il campo di Regina [8]. Il rilievo si estende su una superficie di circa 400 km², a partire dall'isobata di –5 m fino a circa 24 km di distanza dalla costa, ed è stato effettuato utilizzando un sistema '*Multibeam Echosounder – Reson Seabat 8101*' a totale copertura batimetrica dei fondali. Tale sistema garantisce un'accuratezza della misurazione pari a circa ±5 cm. In Figura 12 è indicata l'estensione del rilievo.

Figura 12 – Estensione del rilievo batimetrico effettuato nell'area di Regina nel 2007.

E' stato quindi possibile ottenere una mappa del cono subsidenziale per l'area nell'intervallo temporale 1997-2007 come differenza tra il trend regionale prevedibile e la batimetria misurata nel rilievo del 2007. Tale mappa ha permesso un confronto con i risultati dello studio geomeccanico, come mostrato in Figura 13.

Figura 13 – Confronto tra i risultati del modello Abaqus (curva nera) e il rilievo batimetrico del 2007 (curva blu), e posizione delle sezioni AB e CD.

In Figura 14 è mostrato il confronto tra l'andamento della subsidenza misurata dal rilievo batimetrico e quella simulata lungo i due profili evidenziati in Figura 13.

Figura 14 - Subsidenza misurata dal rilievo batimetrico del 2007 e calcolata con il modello geomeccanico lungo le sezioni AB e CD.

Si può notare come i risultati del modello geomeccanico riproducano con ottima approssimazione sia l'estensione sia il valore massimo di subsidenza, stimato dal modello in 74 cm al 2007.

Successivamente, nel luglio 2014, è stata effettuata un'ulteriore indagine batimetrica mediante un ecoscandaglio multibeam '*MBES R2Sonic 2024*', anch'esso con risoluzione strumentale teorica di livello centimetrico [9]. Come descritto in dettaglio in [10], le elaborazioni numeriche derivabili da tali dati batimetrici hanno fornito un'indicazione sufficientemente realistica del differenziale batimetrico registrabile tra il 2007 e il 2014. Tale differenziale si attesta intorno a valori medi dell'ordine dei -20 cm circa nelle zone caratterizzate da abbassamenti di quota. Viceversa, sono presenti anche zone di innalzamento del fondale nelle quali si rilevano innalzamenti deposizionali di entità variabile tra una media di +20 cm e un massimo di circa +50 cm. Tali valori sono potenzialmente associabili ad attività antropiche (pesca, sversamento di materiale) e/o dinamiche fisico-naturali (correnti di fondo, movimenti gravitativi). Considerati i valori numerici in gioco e la loro disomogenea distribuzione non è risultato possibile, quindi, ricostruire distribuzioni subsidenziali per l'intervallo temporale 2007-2014.

Il tasso subsidenziale mediamente registrato, dell'ordine di grandezza dei -20 cm, è congruente con i circa -21 cm cumulativi indicati dalle misure CGPS disponibili per lo stesso intervallo temporale. I risultati forniti dal modello geomeccanico per l'intervallo 2007-2014, riportati in Tabella 5, sono in ottimo accordo con tali valori batimetrici.

periodo	punto Max sub (cm)	punto GPS (cm)		
2007-2014	22	21		

Tabella 5 - Subsidenza prevista dal modello nell'intervallo temporale 2007-2014.

Bibliografia

- 1. Campo di Regina - Aggiornamento dello studio di giacimento Scheda riassuntiva. Relazione Eni IPET-B5045B7F-0. Ottobre 2021.
- 2. AbaqusTM, Simulia, versione 3DEXPERIENCE R2019x HotFix 1.
- 3. EclipseTM, Schlumberger, versione 2019.4.
- 4. P.A. Vermeer and H.P. Neher: A soft soil model that accounts for creep. Beyond 2000 in Computational Geotechnics, Balkema, Rotterdam, 1999.
- 5. G.H.F. Gardner, L.W. Gardner, A.R. Gregory. Formation velocity and density The diagnostic basics for stratigraphic traps, Geophysics, 39, 770-780, 1974.
- G. Volonté, F. Gemelli, S.K. Nguyen, G. Musso, R. Lancellotta, M. Brignoli and S. Mantica: *Advances in geomechanical subsidence modeling: effects of elasto-visco-plastic constitutive behavior*. ARMA 17-1043. 51st US Rock Mechanics/Geomechanics Symposium, San Francisco, June 2017.
- 7. F.J. Santarelli, M. Brignoli, A. Pellegrino. *La scelta del coefficiente di Poisson per formazioni a grande scala* Relazione Agip S.p.A, LAPO-12/96, aprile 1996.
- 8. *Rilievo batimetrico Campo di Regina –* Relazione Eni S.p.A., Divisione E&P, GEOD, ottobre 2007.
- 9. Batimetria di precisione Regina Rapporto finale. G.A.S. Bologna, agosto 2014.
- 10. Stima dell'impatto subsidenziale indotto nel fondale marino dalla coltivazione del giacimento di gas metano REGINA, così come ricostruibile in base ai rilievi batimetrici condotti nell'area da ENI nel 2007 e nel 2014. Università di Bologna, marzo 2016.