

ELETTRODOTTO IN CAVO INTERRATO – INTERVENTO B1

Codifica **RVDR10005C2129556**

Rev. 01 Del 08/11/2022

Pag. **1** /31

Elettrodotto 132 kV "Colunga - Calenzano" INTERVENTO B1

PROGETTO DI UTILIZZO IN SITO DELLE TERRE E ROCCE DA SCAVO ESCLUSE DALLA DISCIPLINA DEI RIFIUTI ELETTRODOTTO IN CAVO INTERRATO – INTERVENTO B1

Ottemperanza prescrizione A9.b DM 275 del 14/11/2014

RODA		COMMITTENTE: TERNA RETE ITALIA S.p.A. TITOLO ELABORATO: Relazione tecnica descrittiva	CODICE ELABORATO: C01494R011		
₩ N	CE	Descrizione GUERIMI ANDREA 793			
Storia de	elle revisioni	793			
Rev.	Data	Descrizione	Elaborato	Verificato	Approvato
		• •			
01	11/11/2022	Rev. a seguito mail del 08/11/2022	NCE srl	MZ	MR
00	02/11/2022	Prima emissione	NCE srl	MZ	MR

 		PER ACCETTAZIONE CODIFICA ELABORATO		erna lete Italia
	DELL'INVIO:	☐ PER INFORM	MAZIONE	
N.	DATA	DESCRIZIONE	ESAMINATO	ACCETTATO
00	02/11/2022	Prima emissione	RIT REI ARIPD.	S. Scarietto RIT REI ARIPD

Codifica RVDR10005C2129556

Rev. 01 del 08/11/2022

Pag. **2** /31

Sommario

1. INTRO	DDUZIONE 3
1.1.	Obiettivi e finalità del documento
1.2.	Quadro normativo di riferimento 4
2. DESCI	RIZIONE SINTETICA DELLE OPERE
2.1.	Inquadramento geografico 5
2.2.	Caratteristiche costruttive dell'elettrodotto 5
2.3.	Definizione delle CSC cogenti per il tracciato 9
3. CAMP	IONAMENTO DEI PUNTI DI INDAGINE
3.1.	Indagini eseguite sulla matrice suolo, sottosuolo11
3.2.	Modalità di campionamento terreni
3.3.	Riconoscimento dei campioni
3.4.	Analisi chimiche14
3.4.1.	Terreni
4. RISU	LTATI DELLE ATTIVITA' D'INDAGINE
4.1.	Risultati analitici sui campioni di suolo16
	D DI GESTIONE DELLE TERRE E ROCCE DA SCAVO
5.1.	Tipologie di materiale19
5.1.1.	Caratterizzazione dei terreni da scavo ai fini del
	Lizzo e/o smaltimento19
5.1.2.	Individuazione delle tipologie di materiale da scavare19
5.1.3.	Stima quantitativi
5.2.	Utilizzo delle terre e rocce da scavo
5.2.1.	Riutilizzo all'interno del cantiere
5.2.2.	Riutilizzo all'esterno del cantiere
5.3.	Modalità di scavo
5.4.	Caratterizzazione dei terreni da gestire come rifiuto 22
	IDERAZIONI CONCLUSIVE
_	.:
	Corografia generale e ubicazione dei punti di
_	a
	? - Corografia generale e sintesi risultati analitici 29
_	o 1 - Rapporti di prova caratterizzazione terreni 30
Allegato	o 2 - Rapporti di prova caratterizzazione rifiuti 31

PROGETTO DI UTILIZZO IN SITO DELLE TERRE E ROCCE

DA SCAVO ESCLUSE DALLA DISCIPLINA DEI RIFIUTI

Codifica RVDR10005C2129556

Rev. 01 del 08/11/2022

Pag. 3/31

1. INTRODUZIONE

La presente relazione descrive i risultati delle indagini ambientali esequite nell'ambito della redazione del Piano di Gestione delle Terre e Rocce da Scavo relativo all'ambito del progetto per la realizzazione degli elettrodotti in cavo interrato facenti parte dell'opera denominata "Elettrodotto 380 kV S.E. Colunga - S.E Calenzano e opere connesse".

Nel presente documento viene preso in considerazione l'intervento denominato "Intervento B1: Attestamento in cavo alla S.R. Colunga dell'elettrodotto 132 kV semplice terna "Colunga - Ravenna Canala" (T.844)".

La presente relazione è strutturata nei seguenti Capitoli:

- Capitolo 2: descrizione sintetica dell'opera;
- Capitolo 3: campionamento dei punti di indagine;
- Capitolo 4: risultati delle attività di indagine;
- Capitolo 5: piano di gestione delle terre e rocce da scavo;
- Capitolo 6: considerazioni conclusive.

1.1. Obiettivi e finalità del documento

Come previsto dal DPR 120/2017, la finalità del presente documento è quella di indicare le modalità di gestione delle terre e rocce da scavo derivanti dalla realizzazione degli interventi edilizi previsti sulle aree oggetto del presente documento, fornendo nello specifico le indicazioni relative a:

- ubicazione dei siti di produzione delle terre e rocce da scavo con l'indicazione dei relativi volumi in banco;
- ubicazione dei siti di destinazione e l'individuazione dei cicli di produttivi di destinazione delle terre e rocce da scavo, con l'indicazione deli relativi volumi di utilizzo suddivisi nelle diverse tipologie e sulla base della provenienza dei vari siti di produzione;
- le operazioni effettuate sulle terre e rocce da scavo finalizzate al loro riutilizzo;

PROGETTO DI UTILIZZO IN SITO DELLE TERRE E ROCCE

DA SCAVO ESCLUSE DALLA DISCIPLINA DEI RIFIUTI

Codifica RVDR10005C2129556

Rev. 01 del 08/11/2022

Pag. 4/31

- le modalità di esecuzione e i risultati della caratterizzazione ambientale delle terre e rocce da scavo esequita in fase progettuale;
- l'ubicazione dei siti di deposito temporaneo in attesa di utilizzo;
- i percorsi e le modalità previste per il trasporto delle terre e rocce da scavo tra le diverse aree impiegate nel processo di gestione (siti di produzione, siti di deposito temporaneo, siti di destino).

1.2. Quadro normativo di riferimento

Il presente documento è stato redatto sulla base delle informazioni contenute nella sequente principale documentazione di riferimento:

- Ministero delle Sviluppo Economico • Decreto del 173/324/2020 del 24/11/2020 al quale è allegato il giudizio di compatibilità ambientale positivo, con prescrizioni, espresso dal Ministero dell'Ambiente e della Tutela del Territorio e del Mare, di concerto con il Ministero per i Beni e le Attività Culturali, (Decreto di Compatibilità Ambientale D.M. n. 0000275 17/11/2014);
- DPR n. 120 del 13 giugno 2017;
- Linee Guida SNPA n. 22/2019 sull'applicazione della disciplina delle terre e rocce da scavo.

Codifica RVDR10005C2129556

Rev. 01 del 08/11/2022

Pag. 5/31

2. DESCRIZIONE SINTETICA DELLE OPERE

La descrizione dell'intervento oggetto del presente Progetto Utilizzo, l'inquadramento geografico, geologico ed idrogeologico dello stesso così come il piano di campionamento delle terre e rocce da scavo è riportata nel documento RVDR040022132960 e condiviso con nota P20210035968 in data 04/05/2021 nell'ambito della ottemperanza alla prescrizione A9.a del Decreto di Compatibilità Ambientale (D.M. n. 275 del 17/11/2014).

Nel presente capitolo si riporta quindi una sintesi delle caratteristiche dell'opera il cui tracciato è stato oggetto di campionamento.

2.1. Inquadramento geografico

Il tracciato di elettrodotto per il quale è redatto il presente documento è quello denominato "Intervento B1: Attestamento in cavo alla S.R. Colunga dell'elettrodotto 132 kV semplice terna "Colunga - Ravenna Canala" (T.844)".

Il collegamento avrà lunghezza complessiva di circa 0,3 km ed interesserà unicamente il Comune di Castenaso, in Provincia di Bologna.

2.2. Caratteristiche costruttive dell'elettrodotto

La realizzazione di un elettrodotto in cavo interrato essenzialmente l'esecuzione di uno scavo in trincea (salvo tratti per i quali è prevista una perforazione teleguidata). Lungo lo sviluppo del tracciato si possono avere elementi singolari quali buche giunti e terminali cavo che possono comunque essere assimilati a scavi in trincea di dimensioni differenti rispetto a quelli eseguiti per la posa dei cavi.

Lo scavo della trincea consiste nell'asportare il materiale presente dal piano campagna e fino alla quota di progetto utilizzando un escavatore con benna, o fresa meccanica di dimensioni adeguate alla larghezza della trincea.

Una volta scavato il terreno movimentato, se idoneo dal punto di vista chimico/granulometrico, viene riutilizzato parzialmente, in funzione della tipologia di sezione di posa, per il rinterro della trincea scavata per la posa dei cavi.

di $1,6 \div 1,7$ m circa.

PROGETTO DI UTILIZZO IN SITO DELLE TERRE E ROCCE DA SCAVO ESCLUSE DALLA DISCIPLINA DEI RIFIUTI

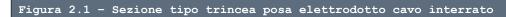
RVDR10005C2129556

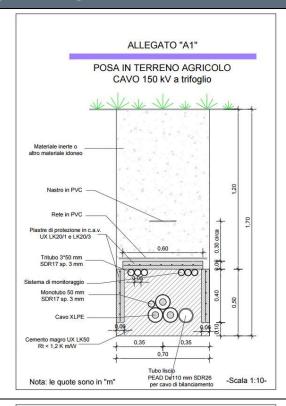
Rev. 01 del 08/11/2022

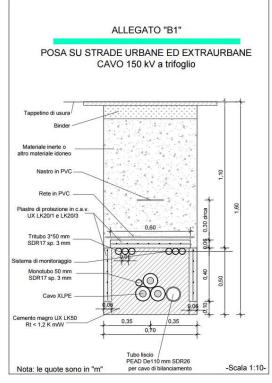
Codifica

Pag. 6/31

Di norma per una terna di cavi con livello di tensione 150 o 220 kV la trincea di posa è larga circa 0,7 m e raggiunge una profondità tipica

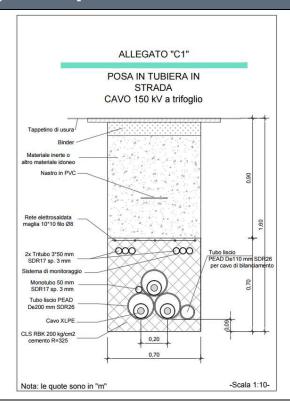

In Figura 2.1 si riporta la sezione tipo che verrà realizzata per la posa dei cavi di elettrodotto lungo tutto il tracciato dell'opera.

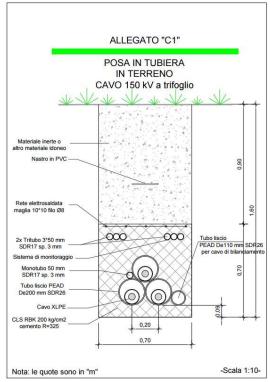

Codifica


RVDR10005C2129556

Rev. 01 del 08/11/2022

Pag. 7/31

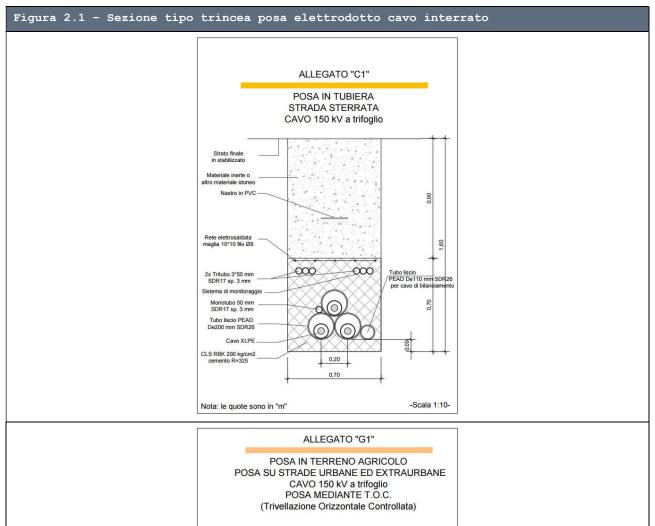

Codifica

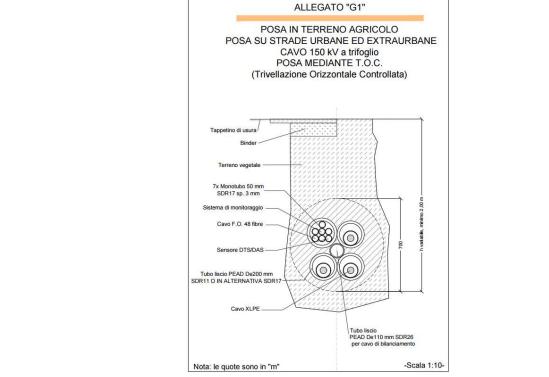

RVDR10005C2129556

Rev. 01 del 08/11/2022

Pag. 8 /31

Figura 2.1 - Sezione tipo trincea posa elettrodotto cavo interrato





Codifica RVDR10005C2129556

Rev. 01 del 08/11/2022

Pag. 9/31

2.3. Definizione delle CSC cogenti per il tracciato

La definizione della destinazione d'uso attuale del suolo è stata effettuata mediante la consultazione tavole dei PRG/PGT del Comune di

Codifica **RVDR10005C2129556**

Rev. 01 del 08/11/2022

Pag. 10 /31

G R O U P ELETTRODOTTO IN CAVO INTERRATO – INTERVENTO B1

Castenaso (BO) e consultando le fotografie aeree disponibili per l'area di intervento con le seguenti finalità:

- definire le CSC di riferimento (colonne A e B della Tabella 1 dell'allegato 5 alla parte quarta del decreto legislativo n. 152 del 2006)
- individuazione delle principali destinazioni d'uso delle aree interessate dalla costruzione dell'opera in progetto e conseguente individuazione delle verifiche analitiche da effettuare sui campioni prelevati;
- individuazione dei siti a rischio potenziale di inquinamento con riferimento alla potenziale contaminazione del suolo interessato dalle operazioni di scavo per la costruzione delle nuove linee di elettrodotto.

Sulla base delle informazioni acquisite e riportate nel documento "Piano di campionamento delle terre e rocce da scavo degli elettrodotti in cavo interrato - Interventi B1, C1, D1, E1, F, G", codice elaborato Terna RVDR040022132960 e dell'effettivo tracciato dell'opera è stato possibile definire le CSC cogenti per la tratta di elettrodotto di futura realizzazione.

La sintesi delle CSC di riferimento per la tratta è riportata nella sequente Tabella 2.1.

Tabella 2.1 - Definizione delle CSC applicabili lungo il tracciato dell'elettrodotto								
Progressiva inizio [m]	Progressiva fine [m]	Destinazione d'uso	Colonna di riferimento Tabella 1 - Allegato 5 alla parte IV Dlgs. 152/2006					
0	138,37	Area verde/agricola	A					
138,37	308 (SE Colunga)	Commerciale/industriale (SE Colunga)	В					
Legenda:								
A	CSC di riferimento Colonna A, Tabella 1, Allegato 5, Titolo V, Parte IV D.Lgs. 152/06 (siti a destinazione d'uso verde pubblico/residenziale)							
В	CSC di riferimento Colonna B, Tabella 1, Allegato 5, Titolo V, Parte D.Lgs. 152/06 (siti a destinazione d'uso commerciale/industriale)							

G R O U P ELETTRODOTTO IN CAVO INTERRATO – INTERVENTO B1

Codifica **RVDR10005C2129556**

Rev. 01 del 08/11/2022

Pag. **11** /31

3. CAMPIONAMENTO DEI PUNTI DI INDAGINE

Il presente capitolo descrive le modalità esecutive delle indagini effettuate sulla matrice ambientale suolo e sottosuolo.

In particolare, si riporta una descrizione dettagliata delle indagini eseguite sulla matrice suolo e sottosuolo, con indicazione delle modalità di campionamento, delle analisi chimiche effettuate, le modalità di rilievo dei punti di indagine e le procedure di riconoscimento dei campioni.

3.1. Indagini eseguite sulla matrice suolo, sottosuolo

I punti di indagine sono stati definiti sulla base delle caratteristiche costruttive (sviluppo lineare e profondità) dell'opera di futura realizzazione.

I campionamenti sono avvenuti precedentemente all'inizio dei lavori, in corrispondenza dell'area di scavo.

Il campionamento è avvenuto sul suolo in posto preventivamente all'inizio degli scavi per tutti i punti di campionamento, secondo le modalità descritte nei seguenti Paragrafi 3.2 e 3.3.

L'ubicazione dei campioni è indicata in Tavola 1.

3.2. Modalità di campionamento terreni

L'indagine diretta dei terreni per finalizzata al prelievo di campioni da sottoporre ad analisi di laboratorio è avvenuta mediante l'esecuzione di trincee esplorative ubicate lungo la direttrice di sviluppo della futura linea di elettrodotto.

Per ogni punto di indagine sono stati prelevati due campioni rappresentativi rispettivamente dello strato tra 0 e 1 m da p.c. (identificato dal suffisso "S") e da 1 a $1,6\div1,7$ m da p.c. (profondità massima di posa della linea) (identificato dal suffisso "P").

La formazione del campione è avvenuta partendo dal materiale scavato ed abbancato a lato dello scavo. Durante l'esecuzione della trincea si è avuto cura di mantenere separato il terreno costituente il primo metro di scavo a partire dal piano campagna dal terreno derivante da profondità maggiori di scavo.

Codifica

RVDR10005C2129556

Rev. 01 del 08/11/2022

Pag. 12/31

Il campionamento è avvenuto prelevando un'aliquota di terreno da più punti del cumulo abbancato a lato scavo. Le aliquote prelevate sono state miscelate e sottoposte a quartatura fino all'ottenimento del campione da inviare in laboratorio.

Il materiale è stato confezionato in contenitori appropriati. l'etichettatura, la nomenclatura, il confezionamento e il trasporto dei campioni si faccia riferimento a quanto indicato al seguente Paragrafo 3.3.

3.3. Riconoscimento dei campioni

Tutti i campioni prelevati in fase di indagine sono stati prelevati in triplice aliquota che sono state così suddivise:

Una aliquota è stata spedita al laboratorio prescelto per l'esecuzione delle analisi chimiche indicate in precedenza;

Le due aliquote rimanenti sono attualmente conservate presso le sedi rispettive società e sono a disposizione per approfondimenti analitici o per la verifica dei risultati ottenuti da parte delle autorità competenti.

seguito sono descritte le modalità di identificazione, confezionamento e conservazione dei campioni prelevati in fase di indagine.

Etichette

Tutti i campioni sono stati etichettati prima di essere riposti nei contenitori termici per il trasporto al laboratorio.

Su ogni etichetta sono state riportate le seguenti informazioni:

- Numero e nome del progetto;
- Codice identificativo del punto di indagine o campionamento;
- Data e ora del campionamento;
- Nome di chi ha prelevato il campione;
- Eventuali annotazioni.

Codifica RVDR10005C2129556

Rev. 01 del 08/11/2022

Pag. 13/31

Nomenclatura dei campioni

I campioni prelevati sono stati denominati con una nomenclatura che possa consentire l'univoca identificazione deali stessi. identificativo di ogni campione è stato apposto sulle etichette, sulle COC e su tutti gli altri documenti dedicati. Ad ogni campione di terreno è stato associato il codice del punto d'indagine.

Catena di custodia

La catena di custodia è stata compilata come di seguito indicato relativamente alla parte generale:

- Codice Progetto e Responsabile del Progetto;
- Laboratorio che eseguirà le analisi;
- Sede Ditta di invio;
- Responsabili prelievo, spedizione e ricevimento;
- Corriere utilizzato.

Nella parte specifica della Catena di custodia sono stati invece indicati:

- Codice campione;
- Data e ora di campionamento;
- Matrice del campione;
- Tipologia/pacchetto di analisi;
- Note varie (ad es. conservanti, tipo e numero di recipienti, segnalazione della priorità di analisi, ecc).

Prima di consegnare i campioni all'incaricato del laboratorio, è stata verificata l'integrità dei contenitori controllando la veridicità dei dati riportati sulla Catena di Custodia; è stata inoltre assicurata l'esatta corrispondenza tra tipo di analisi da effettuare per ogni punto di prelievo e numero e tipologia dei contenitori ad esso riferiti.

I campioni, infine, sono stati stoccati in ambienti refrigerati fino alla preparazione per le analisi.

Conservazione, stoccaggio e trasporto dei campioni

G R O U P ELETTRODOTTO IN CAVO INTERRATO – INTERVENTO B1

Codifica RVDR10005C2129556

Rev. 01 del 08/11/2022

Pag. 14/31

Tutti i campioni, a seguito del prelievo, durante il trasporto e una volta giunti in laboratorio, congiuntamente alla relativa documentazione di accompagnamento, sono stati conservati al buio e alla temperatura di $4 \pm 2^{\circ}$ C. Il trasporto dei contenitori è avvenuto mediante l'impiego di idonei imballaggi refrigerati (frigo box rigidi), resistenti e protetti dagli urti, al fine di evitare la rottura dei contenitori di vetro ed il loro surriscaldamento.

Le aliquote non spedite al laboratorio sono state riposte e sono attualmente stoccate in refrigeratore ad una temperatura di 4 \pm 2 $^{\circ}$ C.

3.4. Analisi chimiche

Le analisi chimiche sui campioni prelevati sono state svolte presso il laboratorio L.A.V., accreditato ACCREDIA (Ente Italiano di Accreditamento) n. 0447.

3.4.1.Terreni

In accordo con quanto previsto dal DPR 120/2017 e con quanto previsto nel documento "Piano di campionamento delle terre e rocce da scavo degli elettrodotti in cavo interrato - Interventi B1, C1, D1, E1, F, G", codice elaborato Terna RVDR040022132960 sui campioni prelevati è stato eseguito il seguente programma analitico:

- Metalli su tutti i campioni prelevati
 - o Arsenico (As), parametro 2 della tab. 1 Allegato 5 al Titolo V Parte IV D. Lgs 152/2006;
 - o Cadmio (Cd), parametro 4 della tab. 1 Allegato 5 al Titolo V Parte IV D. Lgs 152/2006;
 - o Cobalto, (Co), parametro 5 della tab. 1 Allegato 5 al Titolo V Parte IV D. Lgs 152/2006;
 - o Nichel, (Ni), parametro 9 della tab. 1 Allegato 5 al Titolo V Parte IV D. Lgs 152/2006;
 - o Piombo, (Pb), parametro 10 della tab. 1 Allegato 5 al Titolo V Parte IV D. Lgs 152/2006;
 - o Rame, (Cu), parametro 11 della tab. 1 Allegato 5 al Titolo V Parte IV D. Lgs 152/2006;

Codifica **RVDR10005C2129556**

Rev. 01 del 08/11/2022

Pag. **15** /31

G R O U P ELETTRODOTTO IN CAVO INTERRATO – INTERVENTO B1

- o Zinco, (Zn), parametro 16 della tab. 1 Allegato 5 al Titolo V Parte IV D. Lgs 152/2006;
- o Mercurio, (Hg), parametro 8 della tab. 1 Allegato 5 al Titolo V Parte IV D. Lgs 152/2006;
- o Cromo totale, Cromo esavalente, (Cr tot-parametro 6/Cr VI-parametro 7) della tab. 1 Allegato 5 al Titolo V Parte IV D. Lgs 152/2006
- Idrocarburi C>12, parametro 95 della tab. 1 Allegato 5 al Titolo V Parte IV D. Lgs 152/2006, su tutti i campioni prelevati;
- Amianto parametro 96, della tab. 1 Allegato 5 al Titolo V Parte IV D. Lgs 152/2006, su tutti i campioni superficiali;
- Contenuto d'acqua
- Scheletro (frazione > 2 mm)
- Idrocarburi Policiclici Aromatici (IPA), parametri da 25 a 38 della Tab. 1, Allegato 5 a Titolo V della Parte IV, D. Lgs. 152/2006, su tutti i campioni superficiali;
- Composti Organici Aromatici (BTEXS), parametri da 19 a 24 della Tab. 1, Allegato 5 a Titolo V della Parte IV, D. Lgs. 152/2006, su tutti i campioni superficiali.

Codifica RVDR10005C2129556

Rev. 01 del 08/11/2022

Pag. 16/31

4. RISULTATI DELLE ATTIVITA' D'INDAGINE

In nessuno dei campioni prelevati è stata riscontrata la presenza di rifiuti o di materiali non naturali interrati.

Le indagini eseguite lungo la linea hanno permesso di identificare una stratigrafia sostanzialmente comune a tutti i punti di indagine eseguiti e costituita da terreno naturale costituito limi e sabbie.

Nei punti di indagine eseguiti non è stata riscontrata la presenza di terreni di riporto.

Durante l'esecuzione delle attività di indagine non è stata riscontrata la presenza di acque sotterranee.

4.1. Risultati analitici sui campioni di suolo

In considerazione dello sviluppo complessivo della linea (pari a circa 280 m) l'indagine è stata eseguita in corrispondenza di n. 3 postazioni la cui ubicazione è riportata in Tavola 1.

Tabella 4.1 - Intervento B1, ubicazione punti di campionamento							
Campione	Progressiva	CSC applicabile					
B PP1 S	0,00	Colonna A					
B PP1 P	0,00						
B PP2 S	123	Colonna A					
B PP2 P	123	COTOINIA A					
B PP3 S	303	Colonna B					
B PP3 P	303	Colonna B					

Nella seguente Tabella 4.2 si riporta una sintesi dei risultati ottenuti dalle analisi eseguite sui campioni prelevati. In Allegato 2 sono invece riportati i relativi certificati analitici.

Tabella 4.2 - Sintesi risultati analisi terreno [mg/kg s.s.]									
	Progressiva		0,00		123		303		
Parametro analitico	CSC Colonna A D. Lgs. 152/06	CSC Colonna B D. Lgs. 152/06	BPP1 S	BPP1 P	BPP2 S	BPP2 P	BPP3 S	BPP3 P	
Idrocarburi C>12	50	750	< 5	< 5	29,2	< 5	36,1	< 5	
Arsenico	20	50	4,94	3 , 76	4,12	3,48	0,748	4,75	
Cadmio	2	15	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
Cobalto	20	250	11,6	8,72	9,19	11,6	2,41	11,1	
Cromo totale	150	800	65,9	53,8	52,2	65 , 7	22,6	60,7	

Codifica RVDR10005C2129556

Rev. 01 del 08/11/2022

Pag. 17 /31

	Progressiva		0,00		123		303	
Parametro analitico	CSC Colonna A D. Lgs. 152/06	CSC Colonna B D. Lgs. 152/06	BPP1 S	BPP1 P	BPP2 S	BPP2 P	BPP3 S	BPP3 P
Cromo VI	2	15	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nichel	120	500	45	39,6	37,3	47	20,8	46,2
Piombo	100	1000	30,4	13,6	25 , 7	18,7	3,54	20,2
Rame	120	600	77	19,7	34,8	25,9	4,48	27,2
Zinco	150	1500	115	74,6	92,1	85 , 5	17,3	77,5
Mercurio	1	5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzene	0,1	2	< 0.01	n.a.	< 0.01	n.a.	< 0.01	n.a.
Toluene	0,5	50	< 0.01	n.a.	< 0.01	n.a.	< 0.01	n.a.
Etilbenzene	0,5	50	< 0.01	n.a.	< 0.01	n.a.	< 0.01	n.a.
Xilene	0,5	50	< 0.05	n.a.	< 0.05	n.a.	< 0.05	n.a.
Benzo(a)antracene	0,5	10	< 0.01	n.a.	< 0.01	n.a.	< 0.01	n.a.
Benzo(a)pirene	0,1	10	< 0.01	n.a.	< 0.01	n.a.	< 0.01	n.a.
Benzo(b)fluorantene	0,5	10	0,015	n.a.	0,014	n.a.	< 0.01	n.a.
Benzo(k)fluorantene	0,5	10	< 0.01	n.a.	< 0.01	n.a.	< 0.01	n.a.
Benzo(g,h,i)perilene	0,1	10	< 0.01	n.a.	< 0.01	n.a.	< 0.01	n.a.
Crisene	5	50	< 0.01	n.a.	0,011	n.a.	< 0.01	n.a.
Dibenzo(a,l)pirene	0,1	10	< 0.01	n.a.	< 0.01	n.a.	< 0.01	n.a.
Dibenzo(a,i)pirene	0,1	10	< 0.01	n.a.	< 0.01	n.a.	< 0.01	n.a.
Dibenzo(a,h)pirene	0,1	10	< 0.01	n.a.	< 0.01	n.a.	< 0.01	n.a.
Dibenzo(a,h)antracene	0,1	10	< 0.01	n.a.	< 0.01	n.a.	< 0.01	n.a.
Indeno(1,2,3-c,d)pirene	0,1	5	< 0.01	n.a.	< 0.01	n.a.	< 0.01	n.a.
Pirene	5	50	< 0.01	n.a.	< 0.01	n.a.	< 0.01	n.a.
Dibenzo(a,e)pirene	0,1	10	< 0.01	n.a.	< 0.01	n.a.	< 0.01	n.a.
Idrocarburi policiclici aromatici (da 25 a 34)	10	100	< 0.1	n.a.	< 0.1	n.a.	< 0.1	n.a.
Amianto (prova subappaltata)	1000	1000	< 100	n.a.	< 100	n.a.	< 100	n.a.
Legenda:							1	1
n.a.	Paramet:	co non an	alizzato					
<x< td=""><td>Concenti</td><td>cazione i</td><td>nferiore a</td><td>ai limiti</td><td>di rileva</td><td>bilità st</td><td>rumentale</td><td>!</td></x<>	Concenti	cazione i	nferiore a	ai limiti	di rileva	bilità st	rumentale	!
X	Concentrazione superiore alla CSC prevista dal D. Lgs. 152/06 per							
		siti a destinazione d'uso residenziale/verde Concentrazione superiore alla CSC prevista dal D. Lgs. 152/06 per siti a destinazione d'uso commerciale/industriale						

Alla luce dell'acquisizione dei risultati delle analisi eseguite sui campioni di terreno si possono proporre le seguenti considerazioni:

- con riferimento alle CSC di Colonna B della Tabella 1 del D. Lgs. supero 152/06, siti destinazione d'uso nessun per а

Codifica RVDR10005C2129556

Rev. 01 del 08/11/2022 Pag. **18** /31

G R O U P ELETTRODOTTO IN CAVO INTERRATO – INTERVENTO B1

commerciale/industriale per tutti i parametri analizzati in corrispondenza di ogni campione prelevato dai 3 punti di campionamento;

- con riferimento alle CSC di Colonna A della Tabella 1 del D. Lgs. 152/06, nessun supero per siti a destinazione d'uso commerciale/industriale per tutti i parametri analizzati in corrispondenza di ogni campione prelevato dai 3 punti di campionamento.

Codifica RVDR10005C2129556

Rev. 01 del 08/11/2022

Pag. 19/31

5. PIANO DI GESTIONE DELLE TERRE E ROCCE DA SCAVO

Il presente Capitolo descrive le modalità di gestione delle terre e rocce da scavo prodotte nell'ambito delle attività di scavo per la realizzazione della nuova linea di elettrodotto.

In particolare:

- Caratterizzazione delle terre e rocce da scavo, stima delle volumetrie definitive e quantità destinate al riutilizzo;
- Linee quida generali riportanti le modalità di gestione dei materiali prodotti.

5.1. Tipologie di materiale

5.1.1.Caratterizzazione dei terreni da scavo ai fini del riutilizzo e/o smaltimento

Al fine di verificare la possibilità di riutilizzo delle terre e rocce da scavo sono stati eseguiti una serie di campionamenti per la matrice suolo descritti nei capitoli precedenti.

Sono inoltre state effettuate verifiche delle caratteristiche chimicofisiche dei rifiuti. I risultati di queste ulteriori verifiche sono riportati nei paragrafi che seguono.

5.1.2.Individuazione delle tipologie di materiale da scavare

I materiali prodotti nell'ambito del progetto sono nelle seguenti tipologie:

- Terreno naturale: terre e rocce da scavo o eventualmente da conferire presso impianti autorizzati per l'avvio a operazioni di recupero o lo smaltimento secondo le norme vigenti, costituite principalmente da alternanze di limi sabbiosi e sabbie limose;
- Rifiuto costituito da terreno naturale per il quale le indagini ambientali condotte abbiano mostrato superi delle CSC previste dal D. Lgs. 152/06 per le destinazioni d'uso specifiche;
- Rifiuto costituito da terreno naturale eccedente le volumetrie necessarie per il rinterro degli scavi.

G R O U P ELETTRODOTTO IN CAVO INTERRATO – INTERVENTO B1

Codifica **RVDR10005C2129556**

Rev. 01 del 08/11/2022

Pag. 20 /31

5.1.3.Stima quantitativi

Nella tabella che segue si riporta un riepilogo dei quantitativi di terre e rocce che saranno prodotte ed i conseguenti volumi che saranno da rinterrare, da allontanare o da gestire come rifiuto.

Tabella	Tabella 5.1 - Stima quantitativi terre e rocce										
Prog. da:	Prog. a:	Tipo. di posa	Uso del suolo	CSC applicabile	Lung. [m]	Volume Scavo [m3]	Volume Scavo Rigonfiato [m3]	Volume riutilizzo in sito [m3]	Volume Risulta [m3]		
0	27,85	Sezione A1	Non pavimentato	Res./Verde A	27,85	33,14	39,77	25,73	14,04		
27,85	106,74	Sezione C1	Non pavimentato	Res./Verde A	78,89	88,36	106,03	59,64	46,39		
106,74	138,37	Sezione G1	Non pavimentato	Res./Verde A	31,63	31,00	37,20	7,44	29,76		
138,37	152,33	Sezione G1	Non pavimentato	Com./Ind. B	13,96	14,00	16,80	3,36	13,44		
152,33	159,68	Sezione A1	Non pavimentato	Com./Ind. B	7,35	8,75	10,50	6,79	3,70		
159,68	174,4	Sezione C1	Non pavimentato	Com./Ind. B	14,72	16,49	19,78	11,13	8,66		
174,4	298,06	Sezione C1	Strada sterrata	Com./Ind. B	123,66	138,50	166,20	93,49	72,71		
298,06	308,06	BG	Strada sterrata	Com./Ind. B	10,00	55,00	66,00	27,00	39,00		
	TOTALE						462,28	234,58	227,70		

Ai volumi di risulta indicati nella tabella sopra riportata, devono essere aggiunti i volumi di derivanti da:

- volume occupato dal basamento per la risalita cavi al sostengo di transizione: 1,25 mc
- volume occupato dai pozzetti installati in corrispondenza della buca giunti: 18,65 mc
- stima volume derivante da maggiori volumi di scavo: 60 mc

Il totale complessivo delle terre e rocce che saranno conferite in discarica risulta pari a 307,6 mc, considerando un peso specifico del terreno pari a 1,8 t/mc, si ottiene un complessivo di 553,68 ton.

Al quantitativo di terreno da smaltire si aggiungerà il quantitativo di asfalto derivante dalla scarifica delle pavimentazioni stradali quantificabile in 116 m3 pari a circa 197 t.

G R O U P ELETTRODOTTO IN CAVO INTERRATO – INTERVENTO B1

Codifica RVDR10005C2129556

Rev. 01 del 08/11/2022

Pag. **21** /31

5.2. Utilizzo delle terre e rocce da scavo

Come già anticipato nei paragrafi precedenti, solo una quota parte (234,58 m³) delle terre scavate per la realizzazione degli interventi edilizi sarà riutilizzata all'interno degli stessi di produzione. Pertanto, i quantitativi eccedenti quelli necessari per il rinterro degli scavi negli ambiti di intervento verranno gestiti come terre e rocce da scavo o, in alternativa, come rifiuto qualora non fossero disponibili destini idonei.

5.2.1.Riutilizzo all'interno del cantiere

Il riutilizzo all'interno dei siti di produzione avverrà al termine della posa dei cavi interrati e di tutti gli elementi accessori sulla base delle esigenze di rinfranco degli scavi.

Per quanto riguarda le stime dei quantitativi di terre che verranno riutilizzate nell'ambito del cantiere di produzione si rimanda a quanto riportato nella Tabella 5.1 alla colonna "Volume riutilizzo in sito".

5.2.2.Riutilizzo all'esterno del cantiere

Qualora, nell'ambito della durata del presente Progetto di Utilizzo, dovesse sorgere la possibilità di utilizzare uno o più siti di destino delle terre e rocce da scavo esterni al sito di produzione, come previsto dall'art. 15 del DPR 120/17 si provvederà con l'aggiornamento del Progetto di Utilizzo.

5.3. Modalità di scavo

In considerazione della tipologia di opera da realizzare l'attività di scavo si svolgerà principalmente in maniera tradizionale per sbancamento con l'ausilio di mezzi meccanici quali scavatori e pale.

Come previsto dal DPR 120/2017, ogni qual volta si verifichino variazioni del processo di produzione o della litologia delle terre e rocce da scavo e comunque nei casi in cui si riscontrino evidenze di potenziale contaminazione, si procederà con una caratterizzazione in corso d'opera ai sensi dell'Allegato 9 - Parte A, DPR 120/2017.

Non è prevista la realizzazione di siti di deposito temporaneo al di fuori dell'area di cantiere, il materiale di risulta dagli scavi, che

G R O U P ELETTRODOTTO IN CAVO INTERRATO – INTERVENTO B1

Codifica RVDR10005C2129556

Rev. 01 del 08/11/2022

Pag. 22 /31

non sarà utilizzato per il rinterro delle trincee, verrà trasportato ad idoneo impianto di conferimento. Dove possibile riutilizzare il materiale scavato per il rinterro delle trincee, questo sarà stoccato temporaneamente a lato dello scavo, idoneamente puntellato, ad una distanza non inferiore ad un metro dal ciglio dello scavo.

Per il dettaglio dei percorsi individuati e dei mezzi utilizzati si rimanda al piano di cantierizzazione

RVDR10005C2582227 00 00 e relativi allegati.

5.4. Caratterizzazione dei terreni da gestire come rifiuto

Al fine di ottimizzare le procedure di gestione dei materiali nell'ambito del cantiere si è proceduto con l'esecuzione di una caratterizzazione preliminare dei rifiuti che potranno essere prodotti nell'ambito dell'esecuzione dell'opere.

Le modalità di attribuzione del Codice CER sono definite dal D. Lgs. 152/2006 e s.m.i., Parte Quarta, Allegato D; la definizione delle caratteristiche dei rifiuti ai fini dell'ammissibilità in discarica sono invece definite nel D. Lgs 121/2020.

In questa fase sono stati prelevati campioni di terre e rocce da sottoporre ad analisi di caratterizzazione del rifiuto al fine di ottenere una prima valutazione dei possibili percorsi di recupero/smaltimento.

Per il dettaglio dei percorsi individuati e dei mezzi utilizzati si rimanda al piano di cantierizzazione RVDR10005C2582227_00_00 e relativi allegati.

Sulla base dei risultati ottenuti è possibile ipotizzare i destini sintetizzati in Tabella 5.2. I rapporti di prova delle analisi di caratterizzazione del rifiuto sono riportati in Allegato 2.

Codifica RVDR10005C2129556

Rev. 01 del 08/11/2022

Pag. **23** /31

Tabella 5.2 - Sintesi risultati analisi di laboratorio rifiuti							
	Rifiuto terra S (R B S)	Rifiuto terra P (R B P)					
Terreni rappresentati	Strato superficiale 0÷1 m	Strato profondo 1÷1,7 m					
Caratterizzazione di pericolosità del rifiuto	Non pericoloso	Non pericoloso					
Ammissibilità alle operazioni di recupero (D.M. 186/06)	Recuperabile	Recuperabile					
Ammissibilità in discarica <u>per</u> <u>rifiuti inerti</u> (Tabella 2 e 4, Paragrafo 1, Allegato 4, D. Lgs. 121/2020)	NON Ammissibile	NON Ammissibile					
Ammissibilità in discarica per rifiuti non pericolosi (Tabella 5 e 5-bis, Paragrafo 2, Allegato 4, D. Lgs. 121/2020)	Ammissibile	Ammissibile					
Codice CER	170504 terra e rocce, diverse da quelle di cui alla voce 17 05 03	170504 terra e rocce, diverse da quelle di cui alla voce 17 05 03					

Per quanto riguarda la tracciabilità dei rifiuti prodotti nel cantiere, ogni automezzo che uscirà da un sito di produzione carico di materiali identificati come rifiuti, dovrà essere accompagnato con Formulario Identificazione Rifiuto (FIR), come definito dalla normativa vigente, sul quale saranno riportate almeno le seguenti informazioni:

- numero del formulario;
- dati del produttore;
- dati dell'impianto di destino;
- dati del trasportatore;
- codice CER del rifiuto e sua definizione;
- analisi di caratterizzazione e numero di omologa rilasciato dall'impianto di destino;
- peso (presunto, effettivo).

Il FIR sarà compilato dal produttore del rifiuto in quadruplice copia, così come definito dalla normativa vigente. Le copie saranno così distribuite:

- due per il produttore (prima e quarta copia);
- una per l'impianto di destino (seconda copia);
- una per il trasportatore (terza copia).

ELETTRODOTTO IN CAVO INTERRATO – INTERVENTO B1

Codifica RVDR10005C2129556

Rev. 01 del 08/11/2022

Pag. 24 /31

La prima copia, quella per il produttore, rimarrà in cantiere, mentre le altre tre copie accompagneranno il carico fino al destino finale, dove saranno controfirmate, datate e acquisite una dal destinatario e le altre due dal trasportatore, che ne restituirà una al produttore del rifiuto nei tempi previsti dalla normativa vigente.

Per i conferimenti eseguiti presso eventuali impianti di smaltimento, sarà richiesto il Certificato di Avvenuto Smaltimento fornito dall'impianto finale e la tracciabilità della filiera di smaltimento/recupero, così come definito dall'art. 188 del D. Lgs 152/06.

Presso il cantiere saranno conservati i seguenti documenti:

- copia dell'autorizzazione del trasportatore dei rifiuti e degli impianti di recupero/smaltimento;
- la prima copia dei formulari di identificazione rifiuti e la quarta copia con firma per accettazione del materiale da parte del destinatario del rifiuto;
- il Registro di Carico e Scarico dei rifiuti, su cui annotare le informazioni qualitative e quantitative relative alla produzione di rifiuti ai sensi della normativa vigente.

Tutte le imprese coinvolte nelle operazioni di trasporto e smaltimento dei rifiuti prodotti dall'attività saranno regolarmente iscritte all'Albo Nazionale delle Imprese che effettuano la gestione dei rifiuti, ai sensi del D.Lgs. 152/06 e s.m.i..

L'impianto a cui verranno conferiti i rifiuti prodotti sarà regolarmente autorizzato, ai sensi del D.Lgs. 152/06 e s.m.i..

Saranno definiti prima dell'inizio delle attività di cantiere gli impianti destinatari dei rifiuti. Al momento possono essere segnalati:

- Eco.Ser S.r.l., via Pederzana 8, 40055, Castenaso (BO);
- Recter S.r.l., via Via Laguna 27/a, 40026, Imola (BO);
- Recter S.r.l., via degli Artigiani, 40024, Castel San Pietro Terme (BO);
- Ecofelsinea S.r.l., via Cristoforo Colombo 38, 40131, Bologna (BO);

Codifica RVDR10005C2129556

Rev. 01 del 08/11/2022

Pag. 25/31

• Consorzio Astra Ecoligia S.r.l., via Vittime Civili di Guerra 5, 48018, Faenza (RA);

- Bologna Ecologia S.r.l., via Stalingrado, 5, 40016, San Giorgio di Piano (BO);
- Callegari Ecology Service S.r.l., via Molise, 15, 40060, Osteria Grande (BO);
- Appennino Ambiente S.R.L. Gruppo Sazzini S.r.l., via Trastullo, 1, 40048, San Benedetto Val di Sambro (BO);
- Cave Nord S.r.l., Via Del Cerchio 60, 40012 Calderara di Reno (BO).
- Intereco S.r.l., via Via Viazza I° Tronco 17/19, 41042 Fiorano Modenese (MO);

Le aziende che effettueranno il trasporto e quelle che effettueranno il movimento terra dovranno essere iscritte, rispettivamente, all'Albo dei Trasportatori e all'Albo Gestori Ambientali.

Codifica RVDR10005C2129556

Rev. 01 Pag. 26 /31 del 08/11/2022

6. CONSIDERAZIONI CONCLUSIVE

Sulla base dei risultati delle analisi chimiche eseguite sui campioni di terreno si evidenzia quanto riportato nella seguente tabella.

Tabella 6.1 – Intervento D1, sintesi superi CSC								
Campione	Progressiva	CSC applicabile	Superi CSC					
B PP1 S	0,00	Colonna A	-					
B PP1 P		COIOIIIIA A	-					
B PP2 S	123,00	Colonna A	-					
B PP2 P	123,00	COTOIIIIA A	-					
B PP3 S	303,00	Colonna B	-					
B PP3 P	303,00	COTOUNA B	-					

Si fa presente che le stime riguardanti i quantitativi effettuate nel presente documento non considerano i maggiori volumi di scavo imputabili ad approfondimento dei tipologici di posa e la realizzazione di altre opere civili complementari.

PROGETTO DI UTILIZZO IN SITO DELLE TERRE E ROCCE

DA SCAVO ESCLUSE DALLA DISCIPLINA DEI RIFIUTI

Codifica RVDR10005C2129556

Rev. 01 Pag. 27 /31 del 08/11/2022

Tavole:

Tavola 1 - Corografia generale e ubicazione dei punti di indagine

Tavola 2 - Corografia generale e sintesi risultati analitici

Allegati:

Allegato 1 - Rapporti di prova caratterizzazione terreni

Allegato 2 - Rapporti di prova caratterizzazione rifiuti

Codifica RVDR10005C2129556

Rev. 01 Pag. 28 /31 del 08/11/2022

Tavola 1 - Corografia generale e ubicazione dei punti di indagine

Codifica RVDR10005C2129556

Rev. 01 Pag. **29** /31 del 08/11/2022

Tavola 2 - Corografia generale e sintesi risultati analitici

INC							
REVISION	01	11/11/2022	Rev. a seguito mail del 08/11/20	lev. a seguito mail del 08/11/2022			MR
RE	00	02/11/2022	Prima Emissione	Prima Emissione			MR
	N.	DATA	DE	DESCRIZIONE			APPROVATO
	SISTEMA		SCOPO DI EMISSIONE	CODIFICA DELL'ELABORATO			_
С		С	ES		R()I)A		Λ
DISCIPLINA/TIPOLOGIA		NA/TIPOLOGIA	CLASSIFICAZIONE DI SICUREZZA	C01494R015			S.p.A.
O / DM		/ DM	DICEDVATO				

RISERVATO

N					
REVISION					
2					
	00	02/11/2022	Pirma emissione	RIT REI ARIPD	S. Scarietto RIT REI ARIPD
	N.	DATA	DESCRIZIONE	ESAMINATO	ACCETTATO

NUMERO E DATA ORDINE:

☐ PER ACCETTAZIONE MOTIVO DELL'INVIO:

☐ PER INFORMAZIONE

CODIFICA ELABORATO

DVDR10005C2129448

TITOLO ELABORATO

PIANO DI GESTIONE DELLE TERRE E ROCCE DA SCAVO **ELETTRODOTTO IN CAVO INTERRATO - INTERVENTO B1**

Ottemperanza prescrizione A9.b DM 275 del 14/11/2014

Elettrodotto 132 kV "Colunga - Calenzano"

Corografia generale e ubicazione dei punti di indagine

Terna Rete Italia
TERNA GROUP
TIPOLOGIA ELABORATO
Progetto Esecutivo

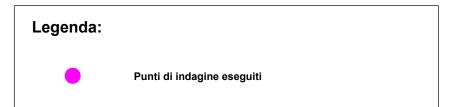
PROGETTO

TE-DR-10-005

NOME DEL FILE	SCALA CAD	FORMATO	SCALA	FOGLIO
DVDR10005C2129448_00_00	1 unità = 2 m	550 x 297	1:2000	1 / 2

Questo documento contiene informazioni di proprietà Terna Rete Italia S.p.A. e deve essere utilizzato esclusivamente dal destinatario in relazione alle finalità per le quali è stato ricevuto. E' vietata qualsiasi forma di riproduzione o di divulgazione senza l'esplicito consenso di Terna Rete Italia S.p.A.

This document contains information proprietary to Terna Rete Italia S.p.A. and it will have to be used exclusively for the purposes for which it has been furnished. Whichever shape of spreading or reproduction without the written permission of Terna Rete Italia S.p.A. is prohibit.


SISTEMA		STEMA	SCOPO DI EMISSIONE	CODIFICA DELL'ELABORATO			٨
	N.	DATA	DE	ESCRIZIONE	ELABORATO	VERIFICATO	APPROVATO
Ŗ	00	02/11/2022	Prima Emissione		NCE	MZ	MR
INOISIN	01	11/11/2022	Rev. a seguito mail del 08/11/20	022	NCE	MZ	MR
N							

C01494R015

RISERVATO

Z					
NOISIA					
Ä					
	00	02/11/2022	Pirma emissione	RIT REI ARIPD	S. Scarietto RIT REI ARIPD
	N.	DATA	DESCRIZIONE	ESAMINATO	ACCETTATO

NUMERO E DATA ORDINE:

MOTIVO DELL'INVIO: PER ACCETTAZIONE

☐ PER INFORMAZIONE

DVDR10005C2129448

Terna
Rete Italia
TERNA GROUP
TIPOLOGIA ELABORATO

TITOLO ELABORATO

CODIFICA ELABORATO

PIANO DI GESTIONE DELLE TERRE E ROCCE DA SCAVO ELETTRODOTTO IN CAVO INTERRATO - INTERVENTO B1

Ottemperanza prescrizione A9.b DM 275 del 14/11/2014

Elettrodotto 132 kV "Colunga - Calenzano"

Corografia generale e ubicazione dei punti di indagine

Progetto Esecutivo

TE-DR-10-005

PROGETTO

NOME DEL FILE	SCALA CAD	FORMATO	SCALA	FOGLIO
DVDR10005C2129448_00_00	1 unità = 2 m	550 x 297	1:2000	1 / 2

Questo documento contiene informazioni di proprietà Terna Rete Italia S.p.A. e deve essere utilizzato esclusivamente dal destinatario in relazione alle finalità per le quali è stato ricevuto. E' vietata qualsiasi forma di riproduzione o di divulgazione senza l'esplicito consenso di Terna Rete Italia S.p.A.

This document contains information proprietary to Terna Rete Italia S.p.A. and it will have to be used exclusively for the purposes for which it has been furnished. Whichever shape of spreading or reproduction without the written permission of Terna Rete Italia S.p.A. is prohibit.

GROUP ELETTRODOTTO IN CAVO INTERRATO – INTERVENTO B1

Codifica RVDR10005C2129556

Rev. 01 Pag. **30** /31

Allegato 1 - Rapporti di prova caratterizzazione terreni

LAB N°0447L

Rapporto di prova n°: 22LA17985 del 30/05/2022

Spett.
NCE S.R.L.
VIA PRIVATA DE VITALIS 2
25124 BRESCIA (BS)

Ordine/job n° 02-21-029

Dati di accettazione

Matrice: Terreni

Contenitore: Sacchetto di plastica

Quantità: 1 kg Trasporto: cliente

Data accettazione: 10/05/2022

Data inizio analisi: 10/05/2022 Data fine analisi: 30/05/2022

Dati di campionamento (forniti dal cliente)

Campionamento a cura di: cliente

Denominazione: B PP1 S

Luogo: Roda S.p.A. Colunga (BO) Calenzano (FI)

Data e ora prelievo: 03/05/2022

Risultati analitici									
Data Inizio Data Fine	Parametro Metodo	U.M.	Risultato	Incertezza	LoQ	R % Limiti 1	Limiti 2		
(C) 10/05/22 12/05/22	Frazione < 2 mm DM 13/09/1999 SO 185 GU 248 21/10/1999 II/1	%	100		0.1				
(C) 10/05/22 12/05/22	Residuo 105°C UNI EN 14346-1 2007 met A	%	81,1	±3,6	1				
(C) 10/05/22 18/05/22	Idrocarburi C>12 EPA 3550 C 2007 + EPA 8015 C 2007	mg/Kg s.s.	< 5		5	^{116 - S} 50	750		
(C) 10/05/22 17/05/22	Arsenico EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	4,94	±1,38	0.5	20	50		
(C) 10/05/22 17/05/22	Cadmio EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	< 0,5		0.5	2	15		
(C) 10/05/22 17/05/22	Cobalto EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	11,6	±2,8	0.5	20	250		
(C) 10/05/22 17/05/22	Cromo totale EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	65,9	±20,4	1	150	800		
(C) 10/05/22 26/05/22	Cromo VI CNR IRSA 16 Q 64 Vol 3 1986	mg/Kg s.s.	< 0,1		0.1	2	15		
(C) 10/05/22 17/05/22	Nichel EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	45,0	±10,3	1	120	500		
(C) 10/05/22 17/05/22	Piombo EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	30,4	±8,5	1	100	1000		
(C) 10/05/22 17/05/22	Rame EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	77,0	±13,5	1	120	600		
(C) 10/05/22 17/05/22	Zinco EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	115	±20	3	150	1500		

LAB N°0447L

Data Inizio	Parametro	11.84	Dioultat-	Incorto	1.00	D 0/ 1	imiti 1	Limaiti (
Data Fine	Metodo	U.M.	Risultato	Incertezza	LoQ	R % L	ımıtı 1 -	Limiti 2
10/05/22 17/05/22	Mercurio EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	< 0,5		0.5	,	1	5
10/05/22 19/05/22	Benzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg s.s.	< 0,01		0.01	96 - N	0.1	2
10/05/22 19/05/22	Toluene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg s.s.	< 0,01		0.01	101 - N (0,5	50
10/05/22 19/05/22	Etilbenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg s.s.	< 0,01		0.01	90 - N (0,5	50
10/05/22 19/05/22	Xilene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg s.s.	< 0,05		0.05	(0,5	50
30/05/22 30/05/22	Stirene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg s.s.	< 0,01		0.01	89 - N (0,5	50
10/05/22 16/05/22	Benzo(a)antracene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	91 - N (0,5	10
10/05/22 16/05/22	Benzo(a)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	90 - S (0,1	10
10/05/22 16/05/22	Benzo(b)fluorantene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	0,015	±0,004	0.01	99 - N (0,5	10
10/05/22 16/05/22	Benzo(k)fluorantene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	101 - N	0.5	10
10/05/22 16/05/22	Benzo(g,h,i)perilene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	99 - N	0.1	10
10/05/22 16/05/22	Crisene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	110 - N	5	50
10/05/22 16/05/22	Dibenzo(a,l)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	96 - N	0.1	10
10/05/22 16/05/22	Dibenzo(a,i)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	80 - S (0,1	10
10/05/22 16/05/22	Dibenzo(a,h)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	66 - S (0,1	10
10/05/22 16/05/22	Dibenzo(a,h)antracene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	84 - N (0,1	10
10/05/22 16/05/22	Indeno(1,2,3-c,d)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	106 - N (0,1	5
10/05/22 16/05/22	Pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	98 - N	5	50
10/05/22 16/05/22	Dibenzo(a,e)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	91 - N	0,1	10
10/05/22 16/05/22	Idrocarburi policiclici aromatici (da 25 a 34) EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,1		0.1		10	100
10/05/22	* Amianto (prova subappaltata)	mg/Kg s.s.	< 100		100		1000	1000

 $(\hbox{\ensuremath{}^*}): i\ parametri\ contrassegnati\ con\ l'asterisco\ non\ rientrano\ tra\ quelli\ accreditati\ dal laboratorio$

Limiti: D.Lgs.152/06 Parte IV Titolo V All.5 Tab.1 Limite1:Colonna A, Limite2: Colonna B

Fine del rapporto di prova n° 22LA17985

LAB N°0447L

segue Rapporto di prova nº: 22LA17985 del 30/05/2022

Il Responsabile Tecnico o suo sostituto

Dott. Nicola Rossi Chimico - Ordine Interprovinciale dei Chimici dell'Emilia-Romagna n. A1677

Il Responsabile di Laboratorio o suo sostituto

Per.Ind. Marco Tontini Ordine dei Periti Industriali della Provincia di Rimini n° 1433

Documento firmato digitalmente ai sensi della normativa vigente dal Responsabile di Laboratorio Per.Ind. Marco Tontini o suo delegato. Approvato dal Responsabile tecnico per il settore di pertinenza.

Il presente rapporto riguarda esclusivamente il campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo laboratorio.

(C) Prove eseguite presso la sede operativa di Via Nuova Circonvallazione 57/D, Rimini.

Nella colonna R è riportato il fattore di recupero. La lettera riportata accanto indica se il fattore di recupero è utilizzato (S) o non utilizzato (N) ai fini del calcolo. Nella colonna LoQ è riportato il limite di quantificazione.

Il valore dell'incertezza associato al risultato è di tipo esteso; fattore di copertura k= 2 p= 95 % gradi di libertà = 10.

Il valore dell'incertezza non comprende il campionamento.

Nel caso il campionamento non sia effettuato dal personale del laboratorio i risultati ottenuti sono da riferirsi esclusivamente al campione così come ricevuto. Il Laboratorio non si assume la responsabilità per i dati relativi al campionamento dichiarati dal cliente.

In caso di alterazione del campione il Laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi.

Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i parametri identificati con il simbolo
indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'incertezza di misura.

LAB N°0447L

Rapporto di prova n°: 22LA17986 del 30/05/2022

Spett.
NCE S.R.L.
VIA PRIVATA DE VITALIS 2
25124 BRESCIA (BS)

Ordine/job n° 02-21-029

Dati di accettazione

Matrice: Terreni

Contenitore: Sacchetto di plastica

Quantità: 1 kg Trasporto: cliente

Data accettazione: 10/05/2022

Data inizio analisi: 10/05/2022 Data fine analisi: 26/05/2022

Dati di campionamento (forniti dal cliente)

Campionamento a cura di: cliente

Denominazione: B PP1 P

Luogo: Roda S.p.A. Colunga (BO) Calenzano (FI)

Data e ora prelievo: 03/05/2022

— :		
Risultati	analitici	
rasultati	anantio	

Data Inizio Data Fine	Parametro Metodo	U.M.	Risultato	Incertezza	LoQ	R % Limiti 1 -	Limiti 2
(C) 10/05/22 13/05/22	Frazione < 2 mm DM 13/09/1999 SO 185 GU 248 21/10/1999 II/1	%	100		0.1		
(C) 10/05/22 12/05/22	Residuo 105°C UNI EN 14346-1 2007 met A	%	91,8	±4,0	1		
(C) 10/05/22 18/05/22	Idrocarburi C>12 EPA 3550 C 2007 + EPA 8015 C 2007	mg/Kg s.s.	< 5		5	116 - S 50	750
(C) 10/05/22 17/05/22	Arsenico EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	3,76	±1,05	0.5	20	50
(C) 10/05/22 17/05/22	Cadmio EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	< 0,5		0.5	2	15
(C) 10/05/22 17/05/22	Cobalto EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	8,72	±2,09	0.5	20	250
(C) 10/05/22 17/05/22	Cromo totale EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	53,8	±16,7	1	150	800
(C) 10/05/22 26/05/22	Cromo VI CNR IRSA 16 Q 64 Vol 3 1986	mg/Kg s.s.	< 0,1		0.1	2	15
(C) 10/05/22 17/05/22	Nichel EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	39,6	±9,1	1	120	500
(C) 10/05/22 17/05/22	Piombo EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	13,6	±3,8	1	100	1000
(C) 10/05/22 17/05/22	Rame EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	19,7	±3,5	1	120	600
(C) 10/05/22 17/05/22	Zinco EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	74,6	±13,1	3	150	1500

LAB N°0447L

segue Rapporto di prova n°: 22L	A17986	del 30/05/2022
---------------------------------	--------	-----------------------

Data Inizio Parametro Data Fine Metodo (C) 10/05/22 Mercurio 17/05/22 EPA 3051 A 2007 + EPA 6010 D 2018	U.M.	Risultato	Incertezza	LoQ R % Limiti 1 - Limiti 2				
(C) 10/05/22 17/05/22	Mercurio EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	< 0,5		0.5	1	5	

Limiti: D.Lgs.152/06 Parte IV Titolo V All.5 Tab.1 Limite1:Colonna A, Limite2: Colonna B

Fine del rapporto di prova n° 22LA17986

Il Responsabile Tecnico o suo sostituto

Dott. Nicola Rossi Chimico - Ordine Interprovinciale dei Chimici dell'Emilia-Romagna n. A1677

Il Responsabile di Laboratorio o suo sostituto

Per.Ind. Marco Tontini Ordine dei Periti Industriali della Provincia di Rimini n° 1433

Documento firmato digitalmente ai sensi della normativa vigente dal Responsabile di Laboratorio Per.Ind. Marco Tontini o suo delegato. Approvato dal Responsabile tecnico per il settore di pertinenza.

Il presente rapporto riguarda esclusivamente il campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo laboratorio.

(C) Prove eseguite presso la sede operativa di Via Nuova Circonvallazione 57/D, Rimini.

Nella colonna R è riportato il fattore di recupero. La lettera riportata accanto indica se il fattore di recupero è utilizzato (S) o non utilizzato (N) ai fini del calcolo. Nella colonna LoQ è riportato il limite di quantificazione.

Il valore dell'incertezza associato al risultato è di tipo esteso; fattore di copertura k= 2 p= 95 % gradi di libertà = 10.

Il valore dell'incertezza non comprende il campionamento.

Nel caso il campionamento non sia effettuato dal personale del laboratorio i risultati ottenuti sono da riferirsi esclusivamente al campione così come ricevuto. Il Laboratorio non si assume la responsabilità per i dati relativi al campionamento dichiarati dal cliente.

In caso di alterazione del campione il Laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi.

Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i parametri identificati con il simbolo indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'incertezza di misura.

LAB N°0447L

Rapporto di prova n°: 22LA17987 del 30/05/2022

Spett. NCE S.R.L. VIA PRIVATA DE VITALIS 2 25124 BRESCIA (BS)

Ordine/job n° 02-21-029

Dati di accettazione

Matrice: Terreni

Contenitore: Sacchetto di plastica

Quantità: 1 kg Trasporto: cliente

Data accettazione: 10/05/2022

Data inizio analisi: 10/05/2022 Data fine analisi: 30/05/2022

Dati di campionamento (forniti dal cliente)

Campionamento a cura di: cliente

Denominazione: B PP2 S

Luogo: Roda S.p.A. Colunga (BO) Calenzano (FI)

Data e ora prelievo: 03/05/2022

Ris	sultati analitici				
Data Inizio Parametro Data Fine <i>Metodo</i>	U.M.	Risultato	Incertezza	LoQ	R % Limiti 1 - Limiti 2
(C) 10/05/22 Frazione < 2 mm 13/05/22 DM 13/09/1999 SQ 185 GU 248 21/10/1999 II/1	%	88,9	±7,6	0.1	

(C) 10/05/22 13/05/22	Frazione < 2 mm DM 13/09/1999 SO 185 GU 248 21/10/1999 II/1	%	88,9	±7,6	0.1		
(C) 10/05/22 12/05/22	Residuo 105°C UNI EN 14346-1 2007 met A	%	84,6	±3,7	1		
(C) 10/05/22 18/05/22	Idrocarburi C>12 EPA 3550 C 2007 + EPA 8015 C 2007	mg/Kg s.s.	29,2	±9,6	5 116	-S ₅₀	750
(C) 10/05/22 17/05/22	Arsenico EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	4,12	±1,15	0.5	20	50
(C) 10/05/22 17/05/22	Cadmio EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	< 0,5		0.5	2	15
(C) 10/05/22 17/05/22	Cobalto EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	9,19	±2,21	0.5	20	250
(C) 10/05/22 17/05/22	Cromo totale EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	52,2	±16,2	1	150	800
(C) 10/05/22 26/05/22	Cromo VI CNR IRSA 16 Q 64 Vol 3 1986	mg/Kg s.s.	< 0,1		0.1	2	15
(C) 10/05/22 17/05/22	Nichel EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	37,3	±8,6	1	120	500
(C) 10/05/22 17/05/22	Piombo EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	25,7	±7,2	1	100	1000
(C) 10/05/22 17/05/22	Rame EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	34,8	±6,1	1	120	600
(C) 10/05/22 17/05/22	Zinco <i>EPA 3051 A 2007 + EPA 6010 D 2018</i>	mg/Kg s.s.	92,1	±16,2	3	150	1500

LAB N°0447L

Data Inizionale Data Fine	Description Metodo	U.M.	Risultato	Incertezza	LoQ	R % I	Limiti 1	- Limiti 2
10/05/22	Mercurio <i>EPA 3051 A 2007 + EPA 6010 D 2018</i>	mg/Kg s.s.	< 0,5		0.5		1	5
10/05/22	Benzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg s.s.	< 0,01		0.01	96 - N	0,1	2
10/05/22 19/05/22	Toluene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg s.s.	< 0,01		0.01	101 - N	0,5	50
10/05/22 19/05/22	Etilbenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg s.s.	< 0,01		0.01	90 - N	0,5	50
10/05/22	Xilene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg s.s.	< 0,05		0.05		0,5	50
30/05/22 30/05/22	Stirene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg s.s.	< 0,01		0.01	89 - N	0,5	50
10/05/22	Benzo(a)antracene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	91 - N	0,5	10
10/05/22	Benzo(a)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	90 - S	0,1	10
10/05/22	Benzo(b)fluorantene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	0,014	±0,004	0.01	99 - N	0,5	10
10/05/22	Benzo(k)fluorantene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	101 - N	0.5	10
) 10/05/22 16/05/22	Benzo(g,h,i)perilene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	99 - N	0,1	10
10/05/22 16/05/22	Crisene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	0,011	±0,002	0.01	110 - N	5	50
10/05/22 16/05/22	Dibenzo(a,I)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	96 - N	0,1	10
10/05/22	Dibenzo(a,i)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	80 - S	0,1	10
) 10/05/22 16/05/22	Dibenzo(a,h)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	66 - S	0,1	10
10/05/22 16/05/22	Dibenzo(a,h)antracene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	84 - N	0,1	10
10/05/22 16/05/22	Indeno(1,2,3-c,d)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	106 - N	0,1	5
10/05/22 16/05/22	Pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	98 - N	5	50
) 10/05/22 16/05/22	Dibenzo(a,e)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	91 - N	0,1	10
10/05/22 16/05/22	Idrocarburi policiclici aromatici (da 25 a 34) EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,1		0.1		10	100
10/05/22	* Amianto (prova subappaltata)	mg/Kg s.s.	< 100		100		1000	1000

 $(^{\star})$: i parametri contrassegnati con l'asterisco non rientrano tra quelli accreditati dal laboratorio

Limiti: D.Lgs.152/06 Parte IV Titolo V All.5 Tab.1 Limite1:Colonna A, Limite2: Colonna B

Fine del rapporto di prova n° 22LA17987

LAB N°0447L

segue Rapporto di prova nº: 22LA17987 del 30/05/2022

Il Responsabile Tecnico o suo sostituto

Dott. Nicola Rossi Chimico - Ordine Interprovinciale dei Chimici dell'Emilia-Romagna n. A1677

Il Responsabile di Laboratorio o suo sostituto

Per.Ind. Marco Tontini Ordine dei Periti Industriali della Provincia di Rimini n° 1433

Documento firmato digitalmente ai sensi della normativa vigente dal Responsabile di Laboratorio Per.Ind. Marco Tontini o suo delegato. Approvato dal Responsabile tecnico per il settore di pertinenza.

Il presente rapporto riguarda esclusivamente il campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo laboratorio

(C) Prove eseguite presso la sede operativa di Via Nuova Circonvallazione 57/D, Rimini.

Nella colonna R è riportato il fattore di recupero. La lettera riportata accanto indica se il fattore di recupero è utilizzato (S) o non utilizzato (N) ai fini del calcolo. Nella colonna LoQ è riportato il limite di quantificazione.

Il valore dell'incertezza associato al risultato è di tipo esteso; fattore di copertura k= 2 p= 95 % gradi di libertà = 10.

Il valore dell'incertezza non comprende il campionamento.

Nel caso il campionamento non sia effettuato dal personale del laboratorio i risultati ottenuti sono da riferirsi esclusivamente al campione così come ricevuto. Il Laboratorio non si assume la responsabilità per i dati relativi al campionamento dichiarati dal cliente.

In caso di alterazione del campione il Laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi.

Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i parametri identificati con il simbolo
indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'incertezza di misura.

Spett.

LAB N°0447L

Rapporto di prova n°: 22LA17988 del 30/05/2022

NCE S.R.L. VIA PRIVATA DE VITALIS 2 25124 BRESCIA (BS)

Ordine/job n° 02-21-029

Dati di accettazione

Matrice: Terreni

Contenitore: Sacchetto di plastica

Quantità: 1 kg Trasporto: cliente

Data accettazione: 10/05/2022

Data inizio analisi: 10/05/2022 Data fine analisi: 26/05/2022

Dati di campionamento (forniti dal cliente)

Campionamento a cura di: cliente

Denominazione: B PP2 P

Luogo: Roda S.p.A. Colunga (BO) Calenzano (FI)

Data e ora prelievo: 03/05/2022

Risultati	analitici	

Data Inizio Data Fine	Parametro Metodo	U.M.	Risultato	Incertezza	LoQ	R % Limiti 1 -	Limiti 2
(C) 10/05/22 13/05/22	Frazione < 2 mm DM 13/09/1999 SO 185 GU 248 21/10/1999 II/1	%	100		0.1		
(C) 10/05/22 12/05/22	Residuo 105°C UNI EN 14346-1 2007 met A	%	81,4	±3,6	1		
(C) 10/05/22 18/05/22	Idrocarburi C>12 EPA 3550 C 2007 + EPA 8015 C 2007	mg/Kg s.s.	< 5		5	^{116 - S} ₅₀	750
(C) 10/05/22 17/05/22	Arsenico EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	3,48	±0,98	0.5	20	50
(C) 10/05/22 17/05/22	Cadmio EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	< 0,5		0.5	2	15
(C) 10/05/22 17/05/22	Cobalto EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	11,6	±2,8	0.5	20	250
(C) 10/05/22 17/05/22	Cromo totale EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	65,7	±20,4	1	150	800
(C) 10/05/22 26/05/22	Cromo VI CNR IRSA 16 Q 64 Vol 3 1986	mg/Kg s.s.	< 0,1		0.1	2	15
(C) 10/05/22 17/05/22	Nichel EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	47,0	±10,8	1	120	500
(C) 10/05/22 17/05/22	Piombo EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	18,7	±5,2	1	100	1000
(C) 10/05/22 17/05/22	Rame EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	25,9	±4,5	1	120	600
(C) 10/05/22 17/05/22	Zinco EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	85,5	±15,1	3	150	1500

LAB N°0447L

segue Rapporto di prova n°: 22L	A17988	del 30/05/2022
---------------------------------	--------	-----------------------

	Data Inizio Data Fine	Parametro Metodo	U.M.	Risultato	Incertezza	LoQ	R % Limiti	1 - Limiti 2	
((10/05/22 17/05/22	Mercurio EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	< 0,5		0.5	1	5	

Limiti: D.Lgs.152/06 Parte IV Titolo V All.5 Tab.1 Limite1:Colonna A, Limite2: Colonna B

Fine del rapporto di prova n° 22LA17988

Il Responsabile Tecnico o suo sostituto

Dott. Nicola Rossi Chimico - Ordine Interprovinciale dei Chimici dell'Emilia-Romagna n. A1677

Il Responsabile di Laboratorio o suo sostituto

Per.Ind. Marco Tontini Ordine dei Periti Industriali della Provincia di Rimini n° 1433

Documento firmato digitalmente ai sensi della normativa vigente dal Responsabile di Laboratorio Per.Ind. Marco Tontini o suo delegato. Approvato dal Responsabile tecnico per il settore di pertinenza.

Il presente rapporto riguarda esclusivamente il campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo laboratorio.

(C) Prove eseguite presso la sede operativa di Via Nuova Circonvallazione 57/D, Rimini.

Nella colonna R è riportato il fattore di recupero. La lettera riportata accanto indica se il fattore di recupero è utilizzato (S) o non utilizzato (N) ai fini del calcolo. Nella colonna LoQ è riportato il limite di quantificazione.

Il valore dell'incertezza associato al risultato è di tipo esteso; fattore di copertura k= 2 p= 95 % gradi di libertà = 10.

Il valore dell'incertezza non comprende il campionamento.

Nel caso il campionamento non sia effettuato dal personale del laboratorio i risultati ottenuti sono da riferirsi esclusivamente al campione così come ricevuto. Il Laboratorio non si assume la responsabilità per i dati relativi al campionamento dichiarati dal cliente.

In caso di alterazione del campione il Laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi.

Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i parametri identificati con il simbolo indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'incertezza di misura.

LAB N°0447L

Rapporto di prova n°: 22LA17989 del 30/05/2022

Spett. NCE S.R.L. VIA PRIVATA DE VITALIS 2 25124 BRESCIA (BS)

Ordine/job n° 02-21-029

Dati di accettazione

Matrice: Terreni

Contenitore: Sacchetto di plastica

Quantità: 1 kg Trasporto: cliente

Data accettazione: 10/05/2022

Data inizio analisi: 10/05/2022 Data fine analisi: 30/05/2022

Dati di campionamento (forniti dal cliente)

Campionamento a cura di: cliente

Denominazione: B PP3 S

Luogo: Roda S.p.A. Colunga (BO) Calenzano (FI)

Data e ora prelievo: 03/05/2022

	Risultati analitici
Data Inizio Parametro	U.M.

Data Fine	Metodo	U.M.	Risultato	Incertezza	LoQ	R % Limiti 1	- Limiti 2
(C) 10/05/22 13/05/22	Frazione < 2 mm DM 13/09/1999 SO 185 GU 248 21/10/1999 II/1	%	33,6	±2,9	0.1		
(C) 10/05/22 12/05/22	Residuo 105°C UNI EN 14346-1 2007 met A	%	94,8	±4,2	1		
(C) 10/05/22 18/05/22	Idrocarburi C>12 EPA 3550 C 2007 + EPA 8015 C 2007	mg/Kg s.s.	36,1	±11,9	5	^{116 - S} 50	750
(C) 10/05/22 17/05/22	Arsenico EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	0,748	±0,210	0.5	20	50
(C) 10/05/22 17/05/22	Cadmio EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	< 0,5		0.5	2	15
(C) 10/05/22 17/05/22	Cobalto EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	2,41	±0,58	0.5	20	250
(C) 10/05/22 17/05/22	Cromo totale EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	22,6	±7,0	1	150	800
(C) 10/05/22 26/05/22	Cromo VI CNR IRSA 16 Q 64 Vol 3 1986	mg/Kg s.s.	< 0,1		0.1	2	15
(C) 10/05/22 17/05/22	Nichel EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	20,8	±4,8	1	120	500
(C) 10/05/22 17/05/22	Piombo EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	3,54	±0,99	1	100	1000
(C) 10/05/22 17/05/22	Rame EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	4,48	±0,78	1	120	600
(C) 10/05/22 17/05/22	Zinco <i>EPA</i> 3051 <i>A</i> 2007 + <i>EPA</i> 6010 <i>D</i> 2018	mg/Kg s.s.	17,3	±3,0	3	150	1500

LAB N°0447L

	o Parametro Metodo	U.M.	Risultato	Incertezza	LoQ	R % L	imiti 1	- Limiti 2
10/05/22	Mercurio <i>EPA 3051 A 2007 + EPA 6010 D 2018</i>	mg/Kg s.s.	< 0,5		0.5		1	5
10/05/22	Benzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg s.s.	< 0,01		0.01	96 - N	0.1	2
10/05/22	Toluene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg s.s.	< 0,01		0.01	101 - N	0,5	50
10/05/22	Etilbenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg s.s.	< 0,01		0.01	90 - N	0,5	50
10/05/22	Xilene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg s.s.	< 0,05		0.05		0,5	50
30/05/22 30/05/22	Stirene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg s.s.	< 0,01		0.01	89 - N	0,5	50
10/05/22	Benzo(a)antracene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	91 - N	0,5	10
10/05/22	Benzo(a)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	90 - S	0,1	10
10/05/22 16/05/22	Benzo(b)fluorantene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	99 - N	0,5	10
10/05/22	Benzo(k)fluorantene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	101 - N	0.5	10
10/05/22	Benzo(g,h,i)perilene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	99 - N	0.1	10
10/05/22 16/05/22	Crisene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	110 - N	5	50
10/05/22	Dibenzo(a,I)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	96 - N	0.1	10
10/05/22	Dibenzo(a,i)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	80 - S	0,1	10
10/05/22	Dibenzo(a,h)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	66 - S	0,1	10
10/05/22 16/05/22	Dibenzo(a,h)antracene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	84 - N	0,1	10
10/05/22 16/05/22	Indeno(1,2,3-c,d)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	106 - N	0,1	5
10/05/22 16/05/22	Pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	98 - N	5	50
10/05/22 16/05/22	Dibenzo(a,e)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,01		0.01	91 - N	0,1	10
10/05/22 16/05/22	Idrocarburi policiclici aromatici (da 25 a 34) EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg s.s.	< 0,1		0.1		10	100
10/05/22	* Amianto (prova subappaltata)	mg/Kg s.s.	< 100		100		1000	1000

 $(\hbox{\ensuremath{}^*}): i\ parametri\ contrassegnati\ con\ l'asterisco\ non\ rientrano\ tra\ quelli\ accreditati\ dal\ laboratorio$

Limiti: D.Lgs.152/06 Parte IV Titolo V All.5 Tab.1 Limite1:Colonna A, Limite2: Colonna B

Fine del rapporto di prova n° 22LA17989

LAB N°0447L

segue Rapporto di prova nº: 22LA17989 del 30/05/2022

Il Responsabile Tecnico o suo sostituto

Dott. Nicola Rossi Chimico - Ordine Interprovinciale dei Chimici dell'Emilia-Romagna n. A1677

Il Responsabile di Laboratorio o suo sostituto

Per.Ind. Marco Tontini Ordine dei Periti Industriali della Provincia di Rimini n° 1433

Documento firmato digitalmente ai sensi della normativa vigente dal Responsabile di Laboratorio Per.Ind. Marco Tontini o suo delegato. Approvato dal Responsabile tecnico per il settore di pertinenza.

Il presente rapporto riguarda esclusivamente il campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo laboratorio.

(C) Prove eseguite presso la sede operativa di Via Nuova Circonvallazione 57/D, Rimini.

Nella colonna R è riportato il fattore di recupero. La lettera riportata accanto indica se il fattore di recupero è utilizzato (S) o non utilizzato (N) ai fini del calcolo. Nella colonna LoQ è riportato il limite di quantificazione.

Il valore dell'incertezza associato al risultato è di tipo esteso; fattore di copertura k= 2 p= 95 % gradi di libertà = 10.

Il valore dell'incertezza non comprende il campionamento.

Nel caso il campionamento non sia effettuato dal personale del laboratorio i risultati ottenuti sono da riferirsi esclusivamente al campione così come ricevuto. Il Laboratorio non si assume la responsabilità per i dati relativi al campionamento dichiarati dal cliente.

In caso di alterazione del campione il Laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi.

Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i parametri identificati con il simbolo
indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'incertezza di misura.

LAB N°0447L

Rapporto di prova n°: 22LA17990 del 30/05/2022

Ordine/job n° 02-21-029

Dati di accettazione

Matrice: Terreni

Contenitore: Sacchetto di plastica

Quantità: 1 kg Trasporto: cliente

Data accettazione: 10/05/2022

Data inizio analisi: 10/05/2022 Data fine analisi: 26/05/2022

Dati di campionamento (forniti dal cliente)

Campionamento a cura di: cliente

Denominazione: B PP3 P

Luogo: Roda S.p.A. Colunga (BO) Calenzano (FI)

Data e ora prelievo: 03/05/2022

Spett.
NCE S.R.L.
VIA PRIVATA DE VITALIS 2
25124 BRESCIA (BS)

	Risultati analitici									
Data Inizio Data Fine	Parametro Metodo	U.M.	Risultato	Incertezza	LoQ	R % Limiti 1	- Limiti 2			
(C) 10/05/22 13/05/22	Frazione < 2 mm DM 13/09/1999 SO 185 GU 248 21/10/1999 II/1	%	95,5	±8,1	0.1					
(C) 10/05/22 12/05/22	Residuo 105°C UNI EN 14346-1 2007 met A	%	85,0	±3,7	1					
(C) 10/05/22 18/05/22	Idrocarburi C>12 EPA 3550 C 2007 + EPA 8015 C 2007	mg/Kg s.s.	< 5		5	^{116 - S} 50	750			
(C) 10/05/22 17/05/22	Arsenico EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	4,75	±1,33	0.5	20	50			
(C) 10/05/22 17/05/22	Cadmio EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	< 0,5		0.5	2	15			
(C) 10/05/22 17/05/22	Cobalto EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	11,1	±2,7	0.5	20	250			
(C) 10/05/22 17/05/22	Cromo totale EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	60,7	±18,8	1	150	800			
(C) 10/05/22 26/05/22	Cromo VI CNR IRSA 16 Q 64 Vol 3 1986	mg/Kg s.s.	< 0,1		0.1	2	15			
(C) 10/05/22 17/05/22	Nichel EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	46,2	±10,6	1	120	500			
(C) 10/05/22 17/05/22	Piombo EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	20,2	±5,7	1	100	1000			
(C) 10/05/22 17/05/22	Rame EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	27,2	±4,8	1	120	600			
(C) 10/05/22 17/05/22	Zinco EPA 3051 A 2007 + EPA 6010 D 2018	mg/Kg s.s.	77,5	±13,6	3	150	1500			

LAB N°0447L

seque Rapporto di	nrova nº. 221	17000 do	30/05/2022

	Data Inizio Parametro Data Fine Metodo 10/05/22 Mercurio 17/05/22 EPA 3051 A 2007 + EPA 6010 D 2018		Risultato	Incertezza	LoQ	R % Limiti 1	- Limiti 2	
(() 10/03/22		mg/Kg s.s.	< 0,5		0.5	1	5	

Limiti: D.Lgs.152/06 Parte IV Titolo V All.5 Tab.1 Limite1:Colonna A, Limite2: Colonna B

Fine del rapporto di prova n° 22LA17990

Il Responsabile Tecnico o suo sostituto

Dott. Nicola Rossi Chimico - Ordine Interprovinciale dei Chimici dell'Emilia-Romagna n. A1677

Il Responsabile di Laboratorio o suo sostituto

Per.Ind. Marco Tontini Ordine dei Periti Industriali della Provincia di Rimini n° 1433

Documento firmato digitalmente ai sensi della normativa vigente dal Responsabile di Laboratorio Per.Ind. Marco Tontini o suo delegato. Approvato dal Responsabile tecnico per il settore di pertinenza.

Il presente rapporto riguarda esclusivamente il campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo laboratorio.

(C) Prove eseguite presso la sede operativa di Via Nuova Circonvallazione 57/D, Rimini.

Nella colonna R è riportato il fattore di recupero. La lettera riportata accanto indica se il fattore di recupero è utilizzato (S) o non utilizzato (N) ai fini del calcolo. Nella colonna LoQ è riportato il limite di quantificazione.

Il valore dell'incertezza associato al risultato è di tipo esteso; fattore di copertura k= 2 p= 95 % gradi di libertà = 10.

Il valore dell'incertezza non comprende il campionamento.

Nel caso il campionamento non sia effettuato dal personale del laboratorio i risultati ottenuti sono da riferirsi esclusivamente al campione così come ricevuto. Il Laboratorio non si assume la responsabilità per i dati relativi al campionamento dichiarati dal cliente.

In caso di alterazione del campione il Laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda comunque l'esecuzione dell'analisi.

Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i parametri identificati con il simbolo
indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'incertezza di misura.

PROGETTO DI UTILIZZO IN SITO DELLE TERRE E ROCCE DA SCAVO ESCLUSE DALLA DISCIPLINA DEI RIFIUTI

Codifica RVDR10005C2129556

Rev. 01 Pag. **31** /31 del 08/11/2022

Allegato 2 - Rapporti di prova caratterizzazione rifiuti

LAB N°0447L

Rapporto di prova n°: 22LA17991 del 30/05/2022

Ordine/job n° 02-21-029

Dati di accettazione

Contenitore: Sacchetto di plastica

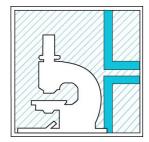
Quantità: 1 kg Trasporto: cliente

Data accettazione: 10/05/2022

Data inizio analisi: 10/05/2022 Data fine analisi: 30/05/2022

Spett.
NCE S.R.L.
VIA PRIVATA DE VITALIS 2
25124 BRESCIA (BS)

Dati di campionamento (forniti dal cliente)


Campionamento a cura di: cliente

Denominazione: R B S

Luogo: Roda S.p.A. Colunga (BO) Calenzano (FI)

Data e ora prelievo: 03/05/2022

Risultati and	alitici				
	U.M.	Risultato	Incertezza	LoQ	R %
Preparativa delle porzioni di prova dal campione di laboratorio <i>UNI EN 15002:2015</i>		-			
Colore Visivo		marrone			
Odore Olfattometrico		inodore			
		solido			
pH IRSA-CNR Quad. 64, Vol.3 met.1	U.ph	8,38	±0,20	0.01	
Residuo 105°C <i>UNI EN 14346-1 2007 met A</i>	%	84,5	±3,7	1	
Residuo Secco a 600°C CNR IRSA 2 Q 64 Vol 2 1984/Notiziario IRSA 2 2008	%	79,3	±5,3	1	
Peso specifico ASTM D5057-17	Kg/dm^3	2,0	±0,2	0.1	
Punto di infiammabilità ASTM D 56-16	°C	> 90		20	
Idrocarburi alifatici C5 - C8 EPA 5021 A 2014 + EPA 8015 C 2007	mg/Kg	<1		1	
Idrocarburi C10-C40 UNI EN 14039:2005	mg/Kg	< 50		50	116
1,3-Butadiene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
	Parametro Metodo Preparativa delle porzioni di prova dal campione di laboratorio UNI EN 15002:2015 Colore Visivo Odore Olfattometrico Stato fisico UNI 10802:2013 pH IRSA-CNR Quad. 64, Vol.3 met.1 Residuo 105°C UNI EN 14346-1 2007 met A Residuo Secco a 600°C CNR IRSA 2 Q 64 Vol 2 1984/Notiziario IRSA 2 2008 Peso specifico ASTM D5057-17 Punto di infiammabilità ASTM D 56-16 Idrocarburi alifatici C5 - C8 EPA 5021 A 2014 + EPA 8015 C 2007 Idrocarburi C10-C40 UNI EN 14039:2005 1,3-Butadiene	### Description of the content of th	Parametro Metodo U.M. Risultato Preparativa delle porzioni di prova dal campione di laboratorio UNI EN 15002:2015 - Colore Visivo marrone Odore Olfattometrico inodore Stato fisico UNI 10802:2013 solido PH RSA-CNR Quad. 64, Vol.3 met.1 U.ph 8,38 Residuo 105°C UNI EN 14346-1 2007 met A % 84,5 Residuo Secco a 600°C CONR IRSA 2 2008 % 79,3 CNR IRSA 2 Q 64 Vol 2 1984/Notiziario IRSA 2 2008 Kg/dm^3 2,0 Peso specifico ASTM D5057-17 Kg/dm^3 2,0 Punto di infiammabilità CS - C8 EPA 5021 A 2014 + EPA 8015 C 2007 mg/Kg < 1	Parametro Metodo U.M. Risultato Incertezza Preparativa delle porzioni di prova dal campione di laboratorio UNI EN 15002:2015 - - Colore Visirvo marrone - Visirvo inodore - Odore Olfattometrico solido - Stato fisico UNII 10802:2013 solido - PH U.ph 8,38 ±0,20 ±3,7 IRSA-CNR Quad. 64, Vol.3 met. 1 84,5 ±3,7 Residuo 105°C UNII EN 14346-1 2007 met A % 84,5 ±3,7 Residuo Secco a 600°C % 79,3 ±5,3 2,0 ±0,2 CNR IRSA 2 Q 64 Vol 2 1984/Notiziario IRSA 2 2008 Eg/dm²3 2,0 ±0,2 Peso specífico ASTM D5057-17 Kg/dm²3 2,0 ±0,2 Punto di infiammabilità 6 °C > 90 ASTM D 56-16 Idrocarburi alifatici C5 - C8 mg/Kg mg/Kg EPA 5021 A 2014 + EPA 8015 C 2007 mg/Kg Idrocarburi C10-C40 UNI EN 14039:2005 mg/Kg 1,3-Butadiene mg/Kg 50	Parametro Metodo U.M. Risultato Incertezza LoQ Preparativa delle porzioni di prova dal campione di laboratorio UNI EN 15002:2015 -

Data Fine	Parametro Metodo	U.M.	Risultato	Incertezza	LoQ	R %
C) 10/05/22 *	Limonene (dipentene) EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1		1	
C) 10/05/22 19/05/22	Isopropilbenzene (cumene) EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
C) 10/05/22 *	Cicloesano EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
C) 10/05/22 19/05/22	Benzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
C) 10/05/22 19/05/22	Toluene <i>EPA 5021 A 2014 + EPA 8260 D 2018</i>	mg/Kg	<1		1	
C) 10/05/22 19/05/22	Etilbenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1		1	
C) 10/05/22 19/05/22	Xilene (come somma di orto, meta e para-xilene) EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1		1	
C) 10/05/22 19/05/22	Stirene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1		1	
19/05/22	ter-Butilbenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1		1	
19/05/22	sec-Butilbenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
C) 10/05/22 19/05/22	Clorometano EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
C) 10/05/22 19/05/22	Triclorometano EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
C) 10/05/22 19/05/22	1,2-Dicloroetano EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
C) 10/05/22 19/05/22	1,2-Dicloropropano EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
C) 10/05/22 19/05/22	1,2-Diclorobenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
C) 10/05/22 19/05/22	1,1-Dicloroetilene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
C) 10/05/22 19/05/22	Diclorometano EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
C) 10/05/22 19/05/22	Dibromoclorometano EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
C) 10/05/22 19/05/22	Bromodiclorometano EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1 1	
C) 10/05/22 19/05/22	Clorobenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1			
19/05/22	2-Clorotoluene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
C) 10/05/22 * 19/05/22	1,3-Diclorobenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1 1	
C) 10/05/22 19/05/22	1,4-Diclorobenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1			
C) 10/05/22 *	1,3,5-Triclorobenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	

Data Inizio Data Fine	Parametro	U.M.	Risultato	Incertezza	LoQ	R %
		mg/Kg	<1		1	
(C) 10/05/22 19/05/22	r 1,2,4-Triclorobenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/kg	\ 1		'	
(C) 10/05/22 19/05/22	1,2-Dicloroetilene (cis) EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
(C) 10/05/22 19/05/22	1,2-Dicloroetilene (trans) EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
(C) 10/05/22 19/05/22	^r Esaclorobutadiene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
(C) 10/05/22 19/05/22	r n-Propilbenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
(C) 10/05/22 16/05/22	Naftalene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
(C) 10/05/22 16/05/22	Acenaftilene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
(C) 10/05/22 16/05/22	Acenaftene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
(C) 10/05/22 16/05/22	Fluorene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
(C) 10/05/22 16/05/22	Fenantrene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
(C) 10/05/22 16/05/22	Antracene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
(C) 10/05/22 16/05/22	Fluorantene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
(C) 10/05/22 16/05/22	Pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
(C) 10/05/22 16/05/22	Benzo(a)antracene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
(C) 10/05/22 16/05/22	Crisene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
(C) 10/05/22 16/05/22	Benzo(b)fluorantene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
(C) 10/05/22 16/05/22	Benzo(k)fluorantene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
(C) 10/05/22 16/05/22	Benzo(e)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
(C) 10/05/22 16/05/22	Benzo(a)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	90
(C) 10/05/22 16/05/22	Indeno(1,2,3-c,d)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
(C) 10/05/22 16/05/22	Dibenzo(a,h)antracene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
(C) 10/05/22 16/05/22	Benzo(g,h,i)perilene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
(C) 10/05/22 16/05/22	Dibenzo(a,l)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
(C) 10/05/22	Dibenzo(a,e)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	

Data Inizid	Parametro Metodo	U.M.	Risultato	Incertezza	LoQ	R %
C) 10/05/22 16/05/22	Dibenzo(a,i)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	78
10/05/22	Dibenzo(a,h)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	66
10/05/22 16/05/22	Idrocarburi policiclici aromatici (totali) EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
10/05/22 18/05/22	Arsenico UNI EN 13657 2004 + UNI EN 16170:2016	mg/Kg	5,4	±1,5	0.5	
10/05/22 18/05/22	Cadmio UNI EN 13657 2004 + UNI EN 16170:2016	mg/Kg	< 0,5		0.5	
10/05/22 18/05/22	Cromo totale UNI EN 13657 2004 + UNI EN 16170:2016	mg/Kg	58,7	±12,9	3	
10/05/22 18/05/22	Mercurio UNI EN 13657 2004 + UNI EN 16170:2016	mg/Kg	< 0,5		0.5	
10/05/22 18/05/22	Nichel UNI EN 13657 2004 + UNI EN 16170:2016	mg/Kg	60,4	±14,2	2	
10/05/22	Piombo UNI EN 13657 2004 + UNI EN 16170:2016	mg/Kg	18	±5	2	
10/05/22 18/05/22	Rame UNI EN 13657 2004 + UNI EN 16170:2016	mg/Kg	36	±6	0.5	
10/05/22	Selenio UNI EN 13657 2004 + UNI EN 16170:2016	mg/Kg	< 1		1	
10/05/22	Zinco UNI EN 13657 2004 + UNI EN 16170:2016	mg/Kg	73,6	±13,0	5	
) 10/05/22 26/05/22	Cromo VI CNR IRSA 16 Q 64 Vol 3 1986	mg/Kg	<1		1	

LAB N°0447L

segue Rapporto di prova nº: 22LA17991 del 30/05/2022

22LA1	7991/01						
	zio Parametro ne <i>Metodo</i>	U.M.	Risultato	Incertezza	LoQ	R % Limiti 1	- Limiti 2
(C) 10/05/22 16/05/22		%	84,5	±3,7	1		
(C) 10/05/22 30/05/22		%	2,8	±0,3	0.3	3	
(C) 10/05/22 30/05/22		mg/Kg	< 0,1		0.1	6	
(C) 10/05/22 30/05/22		mg/Kg	< 50		50	500	
(C) 10/05/22 12/05/22	TEST DI CESSIONE UNI EN 12457-2:2004 (Preparativa)		-				
(C) 10/05/22 12/05/22	Frazione non macinabile	%	0				
(C) 10/05/22 12/05/22		g	106				
(C) 10/05/22 12/05/22		%	15,5	±0,7	0.1		
(C) 10/05/22 12/05/22		L	0,884				
(C) 10/05/22 13/05/22	pH (fine eluizione) UNI EN 12457-2: 2004+ APAT IRSA CNR 2060 Man 29 2003	U.ph	8,06	±0,20			
(C) 10/05/22 13/05/22		microS/cm	120	±20	1		
(C) 10/05/22 12/05/22	* Temperatura APAT CNR IRSA 2100 Man 29 2003	°C	20				
(C) 10/05/22 16/05/22		mg/L	0,0017	±0,0010	0.001	0,05	0.2
(C) 10/05/22 16/05/22	Bario (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	0,019	±0,005	0.01	2	10
(C) 10/05/22 16/05/22	Cadmio (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,0005		0.0005	0,004	0,1
(C) 10/05/22 16/05/22		mg/L	0,0021	±0,0009	0.002	0,05	1
(C) 10/05/22 16/05/22	Rame (eluato) 2 UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,01		0.01	0.2	5
(C) 10/05/22 16/05/22	2 * Mercurio (eluato) 2 UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,0005		0.0005	0.001	0,02
(C) 10/05/22 16/05/22		mg/L	0,0013	±0,0004	0.001	0.05	1
(C) 10/05/22 16/05/22		mg/L	0,0024	±0,0007	0.002	0.04	1
(C) 10/05/22 16/05/22		mg/L	< 0,002		0.002	0.05	1
(C) 10/05/22 16/05/22	Antimonio (eluato) 2 UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,001		0.001	0,006	0,07

LAB N°0447L

segue Rapporto di prova nº: 22LA17991 del 30/05/2022

22LA179	991/01						
Data Inizio Data Fine	Parametro Metodo	U.M.	Risultato	Incertezza	LoQ	R % Limiti 1	- Limiti 2
(C) 10/05/22 16/05/22	Selenio (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,001		0.001	0,01	0.05
(C) 10/05/22 16/05/22	Zinco (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,01		0.01	0,4	5
(C) 10/05/22 16/05/22	Cloruri (eluato) UNI EN 12457-2:2004 + APAT CNR IRSA 4020 Man 29 2003	mg/L	1,9	±0,4	0.1	80	2500
(C) 10/05/22 16/05/22	Fluoruri (eluato) UNI EN 12457-2:2004 + APAT CNR IRSA 4020 Man 29 2003	mg/L	0,40	±0,13	0.2	1	15
(C) 10/05/22 16/05/22	Solfati (eluato) UNI EN 12457-2:2004 + APAT CNR IRSA 4020 Man 29 2003	mg/L	2,0	±0,6	0.1	100	5000
(C) 10/05/22 13/05/22	* Indice fenolo (eluato) UNI EN 12457-2:2004 + EPA 420.1	mg/L	0,13	±0,03	0.025	0,1	
(C) 10/05/22 14/05/22	Carbonio organico disciolto (DOC) (eluato) UNI EN 12457-2:2004 + UNI EN 1484:1999	mg/L	12	±7	5	50	100
(C) 10/05/22 14/05/22	* TDS (eluato) UNI EN 12457-2:2004 + APAT CNR IRSA 2090 A Man 29 2003	mg/L	97	±38	10	400	10000

Limiti: DLgs 36/2003 smi. Limite1:discarica per rifiuti inerti; Limite2:discarica per rifiuti non pericolosi

LAB N°0447L

segue Rapporto di prova nº: 22LA17991 del 30/05/2022

2LA179	91/02						
Data Inizio Data Fine	Parametro Metodo	U.M.	Risultato	Incertezza	LoQ	R %	Limiti
) . 0, 00, 22	TEST DI CESSIONE UNI EN 12457-2:2004 (Preparativa)		-				
10/05/22 12/05/22	Frazione non macinabile	%	0				
) 10/00/22	Massa grezza pesata UNI EN 12457-2:2004	g	106				
) . 0, 00, 22	Umidità (da calcolo) UNI EN 14346 A 2007	%	15,5	±0,7	0.1		
) 10/00/22	Volume liscivante UNI EN 12457-2:2004	L	0,884				
) .0,00,22	pH (fine eluizione) UNI EN 12457-2: 2004+ APAT IRSA CNR 2060 Man 29 2003	U.ph	8,06	±0,20			
) .0,00,22	Conducibilità UNI EN 12457-2:2004 + APAT CNR IRSA 2030 Man 29 2003	microS/cm	120	±20	1		
) .0,00,22	Temperatura APAT CNR IRSA 2100 Man 29 2003	°C	20				
) .0,00,22	Nitrati (eluato) UNI EN 12457-2:2004 + APAT CNR IRSA 4020 Man 29 2003	mg/L	9,3	±4,8	0.1		50
) 10/00/22	Fluoruri (eluato) UNI EN 12457-2:2004 + APAT CNR IRSA 4020 Man 29 2003	mg/L	0,40	±0,13	0.2		1,5
) .0,00,22	Solfati (eluato) UNI EN 12457-2:2004 + APAT CNR IRSA 4020 Man 29 2003	mg/L	2,0	±0,6	0.1		250
) . 0, 00, 22	Cloruri (eluato) UNI EN 12457-2:2004 + APAT CNR IRSA 4020 Man 29 2003	mg/L	1,9	±0,4	0.1		100
) .0,00,22	Cianuri (eluato) UNI EN 12457-2:2004 + M.U. 2251:08	μg/L CN	< 10		10		50
) .0,00,22	Bario (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	0,019	±0,005	0.01		1
10/00/22	Rame (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,01		0.01		0,05
) . 0, 00, 22	Zinco (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,01		0.01		3
) 10/00/22	Berillio (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	μg/L	<1		1		10
)	Cobalto (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	μg/L	<1		1		250
	Nichel (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	μg/L	2,4	±0,7	2		10
10/00/22	Vanadio (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	μg/L	3,3	±0,4	2		250
10/00/22	Arsenico (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	μg/L	1,70	±1,00	1		50
10/05/22	Cadmio (eluato)	μg/L	< 0,5		0.5		5

LAB N°0447L

segue Rapporto di prova nº: 22LA17991 del 30/05/2022

22LA179	91/02					
Data Inizio Data Fine	Parametro Metodo	U.M.	Risultato	Incertezza	LoQ	R % Limiti
(C) 10/05/22 16/05/22	Cromo totale (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	μg/L	2,1	±0,9	2	50
(C) 10/05/22 16/05/22	Piombo (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	μg/L	< 2		2	50
(C) 10/05/22 16/05/22	Selenio (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	μg/L	< 1		1	10
	Mercurio (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	μg/L	< 0,5		0.5	1
	Amianto (eluato) DM 06/09/94 All. 1 Met. B.	mg/L	< 1		1	30
(C) 10/05/22 17/05/22	Domanda chimica di ossigeno (COD) (eluato) UNI EN 12457-2:2004 + APAT CNR IRSA 5130 Man 29 2003	mg O2/I	20,0	±8,6	4	30
(C) 10/05/22 13/05/22	pH (eluato) UNI EN 12457-2: 2004+ APAT IRSA CNR 2060 Man 29 2003	U.ph	8,05	±0,20		5,5÷12

Limiti: Allegato 3 - DM 5/2/1998 e s. m.i.

Il presente Rapporto di prova contiene un Allegato

Fine del rapporto di prova n° 22LA17991

Il Responsabile Tecnico o suo sostituto

Dott. Nicola Rossi Chimico - Ordine Interprovinciale dei Chimici dell'Emilia-Romagna n. A1677

Il Responsabile di Laboratorio o suo sostituto

Per.Ind. Marco Tontini Ordine dei Periti Industriali della Provincia di Rimini nº 1433

Documento firmato digitalmente ai sensi della normativa vigente dal Responsabile di Laboratorio Per.Ind. Marco Tontini o suo delegato. Approvato dal Responsabile tecnico per il settore di pertinenza.

Il presente rapporto riguarda esclusivamente il campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo

(C) Prove eseguite presso la sede operativa di Via Nuova Circonvallazione 57/D, Rimini.

Nella colonna R% è riportato il fattore di recupero, se diverso dal 100% e utilizzato per la correzione del risultato.

Nella colonna LoQ è riportato il limite di quantificazione.

Il valore dell'incertezza associato al risultato è di tipo esteso; fattore di copertura k= 2 p= 95 % gradi di libertà = 10.

Il valore dell'incertezza non comprende il campionamento.

Nel caso il campionamento non sia effettuato dal personale del laboratorio i risultati ottenuti sono da riferirsi esclusivamente al campione così come ricevuto. Il Laboratorio non si assume la responsabilità per i dati relativi al campionamento dichiarati dal cliente. In caso di alterazione del campione il Laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda

comunque l'esecuzione dell'analisi.

Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i parametri identificati con il simbolo > indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'incertezza di misura.

i parametri contraddistinti dal simbolo a lato sono fuori limite.

^{(*):} i parametri contrassegnati con l'asterisco non rientrano tra quelli accreditati dal laboratorio

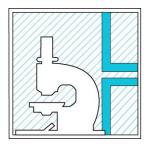
LAV. s.r.l.

Laboratorio Analisi e Consulenza Igiene degli Alimenti Microbiologia Igiene e sicurezza nei luoghi di lavoro Indagini ambientali AZIENDA CON SISTEMA DI GESTIONE QUALITÀ UNI EN ISO 9001:2015 CERTIFICATO DA CERTIQUALITY

Giudizio di classificazione in base al Rapporto di Prova n° 22LA17991 PARERE TECNICO

La classificazione è stata effettuata in base al Reg. UE 1357/2014, alla Decisione 2014/955/UE, al Reg. (UE) 2016/1179, al Reg. (UE) 2017/776 e al Reg. (UE) 2018/1480 recanti modifiche al Reg. 1272/2008, alle linee guida SNPA approvate con delibera 105 del 18 maggio 2021 e considerando i parametri richiesti dal committente o prescelti in base alle informazioni fornite dal Produttore. La valutazione della pericolosità degli idrocarburi è stata effettuata in base al parere dell'Istituto Superiore di Sanità del 05/07/2006 prot. 0036565 e s.m.i. e la nota M del Reg. UE 1272/2008 e s.m.i.

I metalli sono determinati in modo aspecifico; la valutazione della pericolosità dei metalli e dei loro composti è stata effettuata considerando i composti pertinenti potenzialmente presenti in base al ciclo produttivo coinvolto e le informazioni del Produttore. Se non sono noti i composti presenti nel rifiuto è stata presa in considerazione la classificazione del composto peggiore tra quelli pertinenti, in applicazione del principio di precauzione. Le concentrazioni sono confrontate con i limiti di legge dopo conversione stechiometrica rispetto al composto pertinente identificato. Qualora il campione analizzato non contenesse metalli in concentrazione superiore al limite di quantificazione non si procederà a nessuna conversione stechiometrica. La caratteristica di pericolo HP14 viene valutata secondo quanto previsto dal Reg. (UE) 2017/997. Il rifiuto relativo al campione in esame, sulla base delle valutazioni sopra riportate, è classificato:


SPECIALE NON PERICOLOSO

Riepilogo dei risultati delle prove eseguite per la valutazione delle caratteristiche di pericolo sulla base dei parametri analizzati.

Codice E.E.R. attribuito dal produttore/detentore (ai sensi della Decisione 2014/955/CE): 17 05 04

Descrizione: Terra e rocce, diverse da quelle di cui alla voce 17 05 03

Caratteristica di pericolo	Indicazion di peric	one Descrizione olo	Elenco sostanze	Soglia	UM	Limite inferiore/superiore	Tipo
HP3	H220	Flam. Gas 1	1,3-Butadiene, Clorometano		mg/Kg		
HP3	H224	Llquido e vapori altamente infiammabili	1,1-Dicloroetilene		mg/Kg		
HP3	H225	Flam. Liq. 2	1,2-Dicloroetano, 1,2-Dicloroetilene (cis), 1,2-Dicloroetilene (trans), 1,2-Dicloropropano, Benzene, Cicloesano, Etilbenzene, Toluene		mg/Kg		
HP3	H226	Flam. Liq. 3	Clorobenzene, Isopropilbenzene (cumene), Limonene (dipentene), n-Propilbenzene, Stirene, Xilene (come somma di orto, meta e para-xilene)		mg/Kg		
HP3	PI	Infiammabile	Punto di infiammabilità		°C	inf 60	
HP4	H315	Skin irrit. 2	1,2,4-Triclorobenzene, 1,2-Diclorobenzene, 1,2-Dicloroetano, 1,3,5-Triclorobenzene, Benzene, Cicloesano, Clorobenzene, Limonene (dipentene), Stirene, Toluene, Triclorometano, Xilene (come somma di orto, meta e para-xilene)	10000	mg/Kg	sup 200000	SOMMA
HP4	H319	Eye irrit. 2	1,2-Diclorobenzene, 1,2-Dicloroetano, 1,4-Diclorobenzene, Benzene, Stirene, Triclorometano	10000	mg/Kg	sup 200000	SOMMA
HP5	H304	Asp. Tox. 1	Benzene, Cicloesano, Etilbenzene, Isopropilbenzene (cumene), n-Propilbenzene, Toluene		mg/Kg	sup 100000	SOMMA
HP5	H335	STOT SE 3	1,2-Diclorobenzene, 1,2-Dicloroetano, Isopropilbenzene (cumene), n-Propilbenzene		mg/Kg	sup 200000	
HP5	H372	STOT RE 1	Benzene, Stirene, Triclorometano		mg/Kg	sup 10000	
HP5	H373	STOT RE 2	Clorometano, Etilbenzene, Toluene		mg/Kg	sup 100000	
HP6	H302	Acute Tox. 4 (Oral)	Naftalene, Triclorometano, 1,2,4-Triclorobenzene, 1,2-Diclorobenzene, 1,2-Dicloroetano, 1,2-Dicloropropano, 1,3,5-Triclorobenzene, 1,3-Diclorobenzene	10000	mg/Kg	sup 250000	SOMMA
HP6	H312	Acute Tox. 4 (Dermal)	Xilene (come somma di orto, meta e para-xilene)	10000	mg/Kg	sup 550000	SOMMA


AZIENDA CON SISTEMA DI GESTIONE QUALITÀ UNI EN ISO 9001:2015 CERTIFICATO DA CERTIQUALITY

Caratteristica di pericolo		one Descrizione olo	Elenco sostanze	Soglia	UM	Limite inferiore/superiore	Tipo
HP6	H331	Acute Tox. 3 (Inhal.)	Triclorometano	1000	mg/Kg	sup 35000	SOMMA
HP6	H332	Acute Tox. 4 (Inhal.)	1,1-Dicloroetilene, 1,2-Dicloroetilene (cis), 1,2-Dicloroetilene (trans), 1,2-Dicloropropano, 2-Clorotoluene, Clorobenzene, Etilbenzene, Stirene, Xilene (come somma di orto, meta e para-xilene)	10000	mg/Kg	sup 225000	SOMMA
HP7	H350 1A	Carc. 1A	1,3-Butadiene, Benzene		mg/Kg	sup 1000	
HP7	H350 1B	Carc. 1B	Benzo(a)pirene, Benzo(b)fluorantene, Benzo(k)fluorantene, Benzo(a)antracene, 1,2-Dicloroetano, 1,2-Dicloropropano, Crisene, Dibenzo(a,h)antracene		mg/Kg	sup 1000	
HP7	H351	Carc. 2	Naftalene, Triclorometano, 1,1-Dicloroetilene, 1,4-Diclorobenzene, Clorometano, Diclorometano		mg/Kg	sup 10000	
HP10	H360 1B	Può nuocere alla fertilità o al feto.	Benzo(a)pirene		mg/Kg	sup 3000	
HP10	H361	Sospettato di nuocere alla fertilità o al feto.	Stirene, Toluene, Triclorometano		mg/Kg	sup 30000	
HP11	H340 1B	Muta. 1B	Benzo(a)pirene, 1,3-Butadiene, Benzene		mg/Kg	sup 1000	
HP11	H341	Muta. 2	Crisene		mg/Kg	sup 10000	
HP13	H317	Può provocare una reazione allergica cutanea.	Benzo(a)pirene, Limonene (dipentene)		mg/Kg	sup 100000	
HP14	H400	Molto tossico per gli organismi acquatici.	Naftalene, Benzo(a)pirene, Benzo(b)fluorantene, Benzo(k)fluorantene, Benzo(a)antracene, 1,2,4-Triclorobenzene, 1,2-Diclorobenzene, 1,3,5-Triclorobenzene, 1,4-Diclorobenzene, Cicloesano, Crisene, Dibenzo(a,h)antracene, Idrocarburi alifatici C5 - C8, Limonene (dipentene)	1000	mg/Kg	sup 250000	SOMMA
HP14		Molto tossico per gli organismi acquatici con effetti di lunga durata.	Naftalene, Benzo(a)pirene, Benzo(b)fluorantene, Benzo(k)fluorantene, Benzo(a)antracene, 1,2,4-Triclorobenzene, 1,2-Diclorobenzene, 1,3,5-Triclorobenzene, 1,4-Diclorobenzene, Cicloesano, Crisene, Dibenzo(a,h)antracene, Idrocarburi alifatici C5 - C8, Limonene (dipentene)	1000	mg/Kg		SOMMA
HP14	H411	Tossico per gli organismi acquatici con effetti di lunga durata	Idrocarburi C10-C40, Isopropilbenzene (cumene), n-Propilbenzene, 1,3-Diclorobenzene, 2-Clorotoluene, Clorobenzene	10000	mg/Kg		SOMMA
HP14	H412	Nocivo per gli organismi acquatici con effetti di lunga durata	1,2-Dicloroetilene (cis), 1,2-Dicloroetilene (trans)	10000	mg/Kg		SOMMA
HP14	EQ1	100 * SOMMA c (H410) + 10 * SOMMA c (H411) + SOMMA c (H412)	C		mg/Kg	sup 250000	SOMMA
HP14	EQ2	SOMMA c (H410) + SOMMA c (H411) + SOMMA c (H412) + SOMMA c (H413)	c		mg/Kg	sup 250000	SOMMA

Le indicazioni di pericolo non riportate nella tabella non sono valutabili sulla base dei parametri analizzati.

La valutazione delle sostanze analizzate è stata effettuata utilizzando le informazioni riportate nella banca ECHA (http://www.echa.europa.eu/information-on-chemicals7cl-inventory-database) e, nel caso in cui la sostanza non risulta armonizzata , è stata presa in considerazione la classificazione recante il numero maggiore di notifiche.

Caratteristiche di pericolo rilevate: Nessuna

LAV. s.r.l.

Laboratorio Analisi e Consulenza Igiene degli Alimenti Microbiologia Igiene e sicurezza nei luoghi di lavoro Indagini ambientali AZIENDA CON SISTEMA DI GESTIONE QUALITÀ UNI EN ISO 9001:2015 CERTIFICATO DA CERTIQUALITY

Giudizio di conformità:

Il campione analizzato è conforme ai limiti previsti dal D.M. 5/2/98 Allegato 3 e successive modifiche D.M. 05/04/2006 nº 186.

Visto l'esame ispettivo ed i risultati analitici conseguiti sui parametri prescelti in base alle informazioni ricevute circa la provenienza del campione esaminato, si puo' affermare che il rifiuto corrispondente NON è conforme ai limiti della Tabella 2 e 4 dell'Allegato 4 Paragrafo 1 (Discariche per rifiuti inerti) del D.Lgs 121/2020 e al D.Lgs 36/2003.

Visto l'esame ispettivo ed i risultati analitici conseguiti sui parametri prescelti in base alle informazioni ricevute circa la provenienza del campione esaminato, si puo' affermare che il rifiuto corrispondente è conforme ai limiti della Tabella 5 e 5-bis dell'Allegato 4 Paragrafo 2 (Discariche per rifiuti non pericolosi) del D.Lgs 121/2020 e al D.Lgs 36/2003.

Il Responsabile Tecnico o suo sostituto

Dott. Nicola Rossi Chimico - Ordine Interprovinciale dei Chimici dell'Emilia-Romagna n. A1677

Il Responsabile di Laboratorio o suo sostituto

Per.Ind. Marco Tontini Ordine dei Periti Industriali della Provincia di Rimini n° 1433

Documento firmato digitalmente ai sensi della normativa vigente dal Responsabile di Laboratorio Per.Ind. Marco Tontini o suo delegato.

LAB N°0447L

Rapporto di prova nº: 22LA17992 del 30/05/2022

Ordine/job n° 02-21-029

Dati di accettazione

Contenitore: Sacchetto di plastica

Quantità: 1 kg Trasporto: cliente

Data accettazione: 10/05/2022

Data inizio analisi: 10/05/2022 Data fine analisi: 30/05/2022

Spett. NCE S.R.L. VIA PRIVATA DE VITALIS 2 25124 BRESCIA (BS)

Dati di campionamento (forniti dal cliente)

Campionamento a cura di: cliente

Denominazione: R B P

Luogo: Roda S.p.A. Colunga (BO) Calenzano (FI)

Data e ora prelievo: 03/05/2022

	Risultati and	alitici				
Data Inizio Data Fine	Parametro Metodo	U.M.	Risultato	Incertezza	LoQ	R %
(C) 10/05/22 ** 12/05/22	Preparativa delle porzioni di prova dal campione di laboratorio UNI EN 15002:2015		-			
(C) 10/05/22 * 12/05/22	Colore Visivo		marrone			
(C) 10/05/22 * 12/05/22	Odore Olfattometrico		inodore			
(C) 10/05/22 * 12/05/22	Stato fisico UNI 10802:2013		solido			
(C) 10/05/22 * 16/05/22	pH IRSA-CNR Quad. 64, Vol.3 met.1	U.ph	8,27	±0,20	0.01	
(C) 10/05/22 16/05/22	Residuo 105°C UNI EN 14346-1 2007 met A	%	84,9	±3,7	1	
(C) 10/05/22 16/05/22	Residuo Secco a 600°C CNR IRSA 2 Q 64 Vol 2 1984/Notiziario IRSA 2 2008	%	82,2	±5,5	1	
(C) 10/05/22 ** 12/05/22	Peso specifico ASTM D5057-17	Kg/dm^3	2,0	±0,2	0.1	
(C) 10/05/22 **	Punto di infiammabilità ASTM D 56-16	°C	> 90		20	
(C) 10/05/22 * 19/05/22	Idrocarburi alifatici C5 - C8 EPA 5021 A 2014 + EPA 8015 C 2007	mg/Kg	< 1		1	
(C) 10/05/22 30/05/22	Idrocarburi C10-C40 <i>UNI EN 14039:2005</i>	mg/Kg	< 50		50	116
(C) 10/05/22 ** 19/05/22	1,3-Butadiene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1		1	

Data Inizio Data Fine	Parametro Metodo	U.M.	Risultato	Incertezza	LoQ	R %
	Limonene (dipentene) EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1		1	
C) 10/05/22 19/05/22	Isopropilbenzene (cumene) EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1		1	
C) 10/05/22 *	Cicloesano EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
C) 10/05/22 19/05/22	Benzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1		1	
C) 10/05/22 19/05/22	Toluene <i>EPA 5021 A 2014 + EPA 8260 D 2018</i>	mg/Kg	<1		1	
C) 10/05/22 19/05/22	Etilbenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1		1	
C) 10/05/22 19/05/22	Xilene (come somma di orto, meta e para-xilene) EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1		1	
C) 10/05/22 19/05/22	Stirene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1		1	
C) 10/05/22 *	ter-Butilbenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1		1	
10/05/22 * 19/05/22	sec-Butilbenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
10/05/22 19/05/22	Clorometano EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
10/05/22 19/05/22	Triclorometano EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1		1	
10/05/22 19/05/22	1,2-Dicloroetano EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
10/05/22 19/05/22	1,2-Dicloropropano EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
10/05/22 19/05/22	1,2-Diclorobenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
C) 10/05/22 19/05/22	1,1-Dicloroetilene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
C) 10/05/22 19/05/22	Diclorometano EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1		1	
C) 10/05/22 19/05/22	Dibromoclorometano EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1		1	
10/05/22 19/05/22	Bromodiclorometano EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
C) 10/05/22 19/05/22	Clorobenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1		1	
C) 10/05/22 *	2-Clorotoluene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
C) 10/05/22 * 19/05/22	1,3-Diclorobenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
C) 10/05/22 19/05/22	1,4-Diclorobenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1		1	
(C) 10/05/22 * 30/05/22	1,3,5-Triclorobenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	

Data Fine	Parametro Metodo	U.M.	Risultato	Incertezza	LoQ	R %
10/05/22 * 19/05/22	f 1,2,4-Triclorobenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1		1	
10/05/22 19/05/22	1,2-Dicloroetilene (cis) EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1		1	
10/05/22 19/05/22	1,2-Dicloroetilene (trans) EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 1		1	
10/05/22 1	Esaclorobutadiene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
10/05/22 1	n-Propilbenzene EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	<1		1	
10/05/22 16/05/22	Naftalene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
10/05/22 16/05/22	Acenaftilene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
10/05/22	Acenaftene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
10/05/22	Fluorene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
10/05/22 16/05/22	Fenantrene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
10/05/22 16/05/22	Antracene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
10/05/22 16/05/22	Fluorantene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
10/05/22 16/05/22	Pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
10/05/22 16/05/22	Benzo(a)antracene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
10/05/22 16/05/22	Crisene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
10/05/22 16/05/22	Benzo(b)fluorantene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
10/05/22	Benzo(k)fluorantene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
10/05/22	Benzo(e)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
10/05/22	Benzo(a)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	90
10/05/22	Indeno(1,2,3-c,d)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
10/05/22	Dibenzo(a,h)antracene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
10/05/22 16/05/22	Benzo(g,h,i)perilene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
10/05/22 16/05/22	Dibenzo(a,l)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
10/05/22 16/05/22	Dibenzo(a,e)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	

Data Inizio Data Fine	Parametro Metodo	U.M.	Risultato	Incertezza	LoQ	R %
(C) 10/05/22 16/05/22	Dibenzo(a,i)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	78
C) 10/05/22 16/05/22	Dibenzo(a,h)pirene EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	66
(C) 10/05/22 16/05/22	Idrocarburi policiclici aromatici (totali) EPA 3545 A 2007 + EPA 8270 E 2018	mg/Kg	< 0,1		0.1	
(C) 10/05/22 18/05/22	Arsenico UNI EN 13657 2004 + UNI EN 16170:2016	mg/Kg	4,2	±1,2	0.5	
C) 10/05/22 18/05/22	Cadmio UNI EN 13657 2004 + UNI EN 16170:2016	mg/Kg	< 0,5		0.5	
C) 10/05/22 18/05/22	Cromo totale UNI EN 13657 2004 + UNI EN 16170:2016	mg/Kg	39,4	±8,7	3	
(C) 10/05/22 18/05/22	Mercurio UNI EN 13657 2004 + UNI EN 16170:2016	mg/Kg	< 0,5		0.5	
C) 10/05/22 18/05/22	Nichel UNI EN 13657 2004 + UNI EN 16170:2016	mg/Kg	32,5	±7,6	2	
C) 10/05/22 18/05/22	Piombo UNI EN 13657 2004 + UNI EN 16170:2016	mg/Kg	12	±3	2	
C) 10/05/22 18/05/22	Rame UNI EN 13657 2004 + UNI EN 16170:2016	mg/Kg	17	±3	0.5	
(C) 10/05/22 18/05/22	Selenio UNI EN 13657 2004 + UNI EN 16170:2016	mg/Kg	< 1		1	
(C) 10/05/22 18/05/22	Zinco UNI EN 13657 2004 + UNI EN 16170:2016	mg/Kg	53,9	±9,5	5	
C) 10/05/22 26/05/22	Cromo VI CNR IRSA 16 Q 64 Vol 3 1986	mg/Kg	< 1		1	

LAB N°0447L

segue Rapporto di prova nº: 22LA17992 del 30/05/2022

Data Inizio Data Fine	Parametro Metodo	U.M.	Risultato	Incertezza	LoQ	R % Limiti 1 -	Limiti 2
) .0,00,22	Residuo 105°C UNI EN 14346-1 2007 met A	%	84,9	±3,7	1		
)	Carbonio organico totale (TOC) UNI EN 13137:2002	%	1,5	±0,2	0.3	3	
) 10/05/22 30/05/22	BTEX EPA 5021 A 2014 + EPA 8260 D 2018	mg/Kg	< 0,1		0.1	6	
) . 0, 00, 22	Oli minerali C10-C40 UNI EN 14039:2005	mg/Kg	< 50		50	500	
) .0,00,22	TEST DI CESSIONE UNI EN 12457-2:2004 (Preparativa)		-				
) 10/05/22 12/05/22	Frazione non macinabile	%	0				
) 10/05/22 12/05/22	Massa grezza pesata UNI EN 12457-2:2004	g	106				
) 10/05/22 12/05/22	Umidità (da calcolo) UNI EN 14346 A 2007	%	15,1	±0,7	0.1		
10/05/22 12/05/22	Volume liscivante UNI EN 12457-2:2004	L	0,884				
10/05/22 13/05/22	pH (fine eluizione) UNI EN 12457-2: 2004+ APAT IRSA CNR 2060 Man 29 2003	U.ph	7,73	±0,20			
) 10/00/22	Conducibilità UNI EN 12457-2:2004 + APAT CNR IRSA 2030 Man 29 2003	microS/cm	370	±62	1		
) .0/00/22	Temperatura APAT CNR IRSA 2100 Man 29 2003	°C	20				
10/05/22 16/05/22	Arsenico (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,001		0.001	0,05	0.2
10/05/22 16/05/22	Bario (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,01		0.01	2	10
10/05/22 16/05/22	Cadmio (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,0005		0.0005	0,004	0,1
10/05/22 16/05/22	Cromo totale (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,002		0.002	0,05	1
10/05/22 16/05/22	Rame (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,01		0.01	0.2	5
10/05/22 * 16/05/22	Mercurio (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,0005		0.0005	0.001	0,02
10/05/22 16/05/22	Molibdeno (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,001		0.001	0.05	1
) 10/05/22 16/05/22	Nichel (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,002		0.002	0.04	1
10/05/22 16/05/22	Piombo (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,002		0.002	0.05	1
10/05/22 16/05/22	Antimonio (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,001		0.001	0,006	0,07

LAB N°0447L

segue Rapporto di prova nº: 22LA17992 del 30/05/2022

Data Inizio Pa Data Fine M							
	Netodo	U.M.	Risultato	Incertezza	LoQ	R % Limiti 1 -	Limiti 2
(C) · · · · · ·	Selenio (eluato) INI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,001		0.001	0,01	0.05
(C) 10/03/22	inco (eluato) INI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,01		0.01	0,4	5
(() 10/00/22	Cloruri (eluato) INI EN 12457-2:2004 + APAT CNR IRSA 4020 Man 29 2003	mg/L	2,0	±0,5	0.1	80	2500
(() 10/00/22	Fluoruri (eluato) INI EN 12457-2:2004 + APAT CNR IRSA 4020 Man 29 2003	mg/L	0,77	±0,25	0.2	1	15
(C) 10/03/22	Solfati (eluato) INI EN 12457-2:2004 + APAT CNR IRSA 4020 Man 29 2003	mg/L	190	±60	0.1	100	5000
(C) · · · · · · · · · ·	ndice fenolo (eluato) INI EN 12457-2:2004 + EPA 420.1	mg/L	< 0,025		0.025	0,1	
(C) 10/03/22	Carbonio organico disciolto (DOC) (eluato) INI EN 12457-2:2004 + UNI EN 1484:1999	mg/L	6,1	±3,3	5	50	100
(C) 10/05/22 * TI	TDS (eluato) INI EN 12457-2:2004 + APAT CNR IRSA 2090 A Man 29 2003	mg/L	300	±120	10	400	10000

Limiti: DLgs 36/2003 smi. Limite1:discarica per rifiuti inerti; Limite2:discarica per rifiuti non pericolosi

LAB N°0447L

segue Rapporto di prova nº: 22LA17992 del 30/05/2022

22LA179	92/02						
Data Inizio Data Fine	Parametro Metodo	U.M.	Risultato	Incertezza	LoQ	R %	Limiti
,) .0,00,22	TEST DI CESSIONE UNI EN 12457-2:2004 (Preparativa)		-				
10/05/22 12/05/22	Frazione non macinabile	%	0				
,) 10/00/22	Massa grezza pesata UNI EN 12457-2:2004	g	106				
,) .0,00,22	Umidità (da calcolo) UNI EN 14346 A 2007	%	15,1	±0,7	0.1		
,) 10/00/22	Volume liscivante UNI EN 12457-2:2004	L	0,884				
.)	pH (fine eluizione) UNI EN 12457-2: 2004+ APAT IRSA CNR 2060 Man 29 2003	U.ph	7,73	±0,20			
.) .0/00/22	Conducibilità UNI EN 12457-2:2004 + APAT CNR IRSA 2030 Man 29 2003	microS/cm	370	±62	1		
.)	Temperatura APAT CNR IRSA 2100 Man 29 2003	°C	20				
.) .0,00,22	Nitrati (eluato) UNI EN 12457-2:2004 + APAT CNR IRSA 4020 Man 29 2003	mg/L	0,63	±0,32	0.1		50
,) 10/00/22	Fluoruri (eluato) UNI EN 12457-2:2004 + APAT CNR IRSA 4020 Man 29 2003	mg/L	0,77	±0,25	0.2		1,5
.) .0,00,22	Solfati (eluato) UNI EN 12457-2:2004 + APAT CNR IRSA 4020 Man 29 2003	mg/L	190	±60	0.1		250
,) .0,00,22	Cloruri (eluato) UNI EN 12457-2:2004 + APAT CNR IRSA 4020 Man 29 2003	mg/L	2,0	±0,5	0.1		100
.)	Cianuri (eluato) UNI EN 12457-2:2004 + M.U. 2251:08	μg/L CN	< 10		10		50
,) .0,00,22	Bario (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,01		0.01		1
,) 10/00/22	Rame (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,01		0.01		0,05
,) .0,00,22	Zinco (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	mg/L	< 0,01		0.01		3
,) .0,00,22	Berillio (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	μg/L	<1		1		10
.)	Cobalto (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	μg/L	<1		1		250
	Nichel (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	μg/L	< 2		2		10
.) .0,00,22	Vanadio (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	μg/L	< 2		2		250
. 1 07 007 22	Arsenico (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	μg/L	<1		1		50
10/05/22	Cadmio (eluato)	μg/L	< 0,5		0.5		5

LAB N°0447L

segue Rapporto di prova nº: 22LA17992 del 30/05/2022

22LA179	992/02					
Data Inizio Data Fine	Parametro Metodo	U.M.	Risultato	Incertezza	LoQ R%	Limiti
(C) 10/05/22 16/05/22	Cromo totale (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	μg/L	< 2		2	50
(C) 10/05/22 16/05/22	Piombo (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	μg/L	< 2		2	50
(C) 10/05/22 16/05/22	Selenio (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	μg/L	< 1		1	10
	Mercurio (eluato) UNI EN 12457-2:2004 + ISO 17294-2:2016	μg/L	< 0,5		0.5	1
(C) 10/05/22 30/05/22	f Amianto (eluato) DM 06/09/94 All. 1 Met. B.	mg/L	< 1		1	30
(C) 10/05/22 17/05/22	Domanda chimica di ossigeno (COD) (eluato) UNI EN 12457-2:2004 + APAT CNR IRSA 5130 Man 29 2003	mg O2/I	12,0	±5,2	4	30
(C) 10/05/22 13/05/22	pH (eluato) UNI EN 12457-2: 2004+ APAT IRSA CNR 2060 Man 29 2003	U.ph	7,70	±0,20		5.5÷12

Limiti: Allegato 3 - DM 5/2/1998 e s. m.i.

Il presente Rapporto di prova contiene un Allegato

Fine del rapporto di prova n° 22LA17992

Il Responsabile Tecnico o suo sostituto

Dott. Nicola Rossi Chimico - Ordine Interprovinciale dei Chimici dell'Emilia-Romagna n. A1677

Il Responsabile di Laboratorio o suo sostituto

Per.Ind. Marco Tontini Ordine dei Periti Industriali della Provincia di Rimini nº 1433

Documento firmato digitalmente ai sensi della normativa vigente dal Responsabile di Laboratorio Per.Ind. Marco Tontini o suo delegato. Approvato dal Responsabile tecnico per il settore di pertinenza.

Il presente rapporto riguarda esclusivamente il campione sottoposto a prova e non può essere riprodotto parzialmente, se non previa approvazione scritta da parte di questo

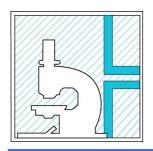
(C) Prove eseguite presso la sede operativa di Via Nuova Circonvallazione 57/D, Rimini.

Nella colonna R% è riportato il fattore di recupero, se diverso dal 100% e utilizzato per la correzione del risultato.

Nella colonna LoQ è riportato il limite di quantificazione.

Il valore dell'incertezza associato al risultato è di tipo esteso; fattore di copertura k= 2 p= 95 % gradi di libertà = 10.

Il valore dell'incertezza non comprende il campionamento.


Nel caso il campionamento non sia effettuato dal personale del laboratorio i risultati ottenuti sono da riferirsi esclusivamente al campione così come ricevuto. Il Laboratorio non si assume la responsabilità per i dati relativi al campionamento dichiarati dal cliente. In caso di alterazione del campione il Laboratorio declina ogni responsabilità sui risultati che possono essere influenzati dallo scostamento nel caso il cliente chieda

comunque l'esecuzione dell'analisi.

Qualora sia presente una specifica (limiti di legge o specifiche cliente) con cui sono stati confrontati i risultati analitici, i parametri identificati con il simbolo > indicano un risultato fuori da tale specifica. Se non diversamente specificato i giudizi di conformità/non conformità eventualmente riportati si riferiscono ai parametri analizzati e si basano sul confronto del valore con i valori di riferimento senza considerare l'incertezza di misura.

i parametri contraddistinti dal simbolo a lato sono fuori limite.

^{(*):} i parametri contrassegnati con l'asterisco non rientrano tra quelli accreditati dal laboratorio

LAV. s.r.l.

Laboratorio Analisi e Consulenza Igiene degli Alimenti Microbiologia Igiene e sicurezza nei luoghi di lavoro Indagini ambientali AZIENDA CON SISTEMA DI GESTIONE QUALITÀ UNI EN ISO 9001:2015 CERTIFICATO DA CERTIQUALITY

Giudizio di classificazione in base al Rapporto di Prova n° 22LA17992 PARERE TECNICO

La classificazione è stata effettuata in base al Reg. UE 1357/2014, alla Decisione 2014/955/UE, al Reg. (UE) 2016/1179, al Reg. (UE) 2017/776 e al Reg. (UE) 2018/1480 recanti modifiche al Reg. 1272/2008, alle linee guida SNPA approvate con delibera 105 del 18 maggio 2021 e considerando i parametri richiesti dal committente o prescelti in base alle informazioni fornite dal Produttore. La valutazione della pericolosità degli idrocarburi è stata effettuata in base al parere dell'Istituto Superiore di Sanità del 05/07/2006 prot. 0036565 e s.m.i. e la nota M del Reg. UE 1272/2008 e s.m.i.

I metalli sono determinati in modo aspecifico; la valutazione della pericolosità dei metalli e dei loro composti è stata effettuata considerando i composti pertinenti potenzialmente presenti in base al ciclo produttivo coinvolto e le informazioni del Produttore. Se non sono noti i composti presenti nel rifiuto è stata presa in considerazione la classificazione del composto peggiore tra quelli pertinenti, in applicazione del principio di precauzione. Le concentrazioni sono confrontate con i limiti di legge dopo conversione stechiometrica rispetto al composto pertinente identificato. Qualora il campione analizzato non contenesse metalli in concentrazione superiore al limite di quantificazione non si procederà a nessuna conversione stechiometrica. La caratteristica di pericolo HP14 viene valutata secondo quanto previsto dal Reg. (UE) 2017/997. Il rifiuto relativo al campione in esame, sulla base delle valutazioni sopra riportate, è classificato:

SPECIALE NON PERICOLOSO

Codice E.E.R. attribuito dal produttore/detentore (ai sensi della Decisione 2014/955/CE):

Descrizione: Terra e rocce, diverse da quelle di cui alla voce 17 05 03

17 05 04

Riepilogo dei risultati delle prove eseguite per la valutazione delle caratteristiche di pericolo sulla base dei parametri analizzati.

Caratteristica di pericolo	a Indicazi di peric	one Descrizione olo	Elenco sostanze	Soglia	UM	Limite inferiore/superiore	Tipo
НР3	H220	Flam. Gas 1	1,3-Butadiene, Clorometano		mg/Kg		
НР3	H224	Llquido e vapori altamente infiammabili	1,1-Dicloroetilene		mg/Kg		
HP3	H225	Flam. Liq. 2	1,2-Dicloroetano, 1,2-Dicloroetilene (cis), 1,2-Dicloroetilene (trans), 1,2-Dicloropropano, Benzene, Cicloesano, Etilbenzene, Toluene		mg/Kg		
НР3	H226	Flam. Liq. 3	Clorobenzene, Isopropilbenzene (cumene), Limonene (dipentene), n-Propilbenzene, Stirene, Xilene (come somma di orto, meta e para-xilene)		mg/Kg		
HP3	PI	Infiammabile	Punto di infiammabilità		°C	inf 60	
HP4	H315	Skin irrit. 2	1,2,4-Triclorobenzene, 1,2-Diclorobenzene, 1,2-Dicloroetano, 1,3,5-Triclorobenzene, Benzene, Cicloesano, Clorobenzene, Limonene (dipentene), Stirene, Toluene, Triclorometano, Xilene (come somma di orto, meta e para-xilene)	10000	mg/Kg	sup 200000	SOMMA
HP4	H319	Eye irrit. 2	1,2-Diclorobenzene, 1,2-Dicloroetano, 1,4-Diclorobenzene, Benzene, Stirene, Triclorometano	10000	mg/Kg	sup 200000	SOMMA
HP5	H304	Asp. Tox. 1	Benzene, Cicloesano, Etilbenzene, Isopropilbenzene (cumene), n-Propilbenzene, Toluene		mg/Kg	sup 100000	SOMMA
HP5	H335	STOT SE 3	1,2-Diclorobenzene, 1,2-Dicloroetano, Isopropilbenzene (cumene), n-Propilbenzene		mg/Kg	sup 200000	
HP5	H372	STOT RE 1	Benzene, Stirene, Triclorometano		mg/Kg	sup 10000	. = = = = = = .
HP5	H373	STOT RE 2	Piombo, Toluene, Clorometano, Etilbenzene		mg/Kg	sup 100000	
HP6	H302	Acute Tox. 4 (Oral)	Piombo, Triclorometano, 1,2,4-Triclorobenzene, 1,2-Diclorobenzene, 1,2-Dicloroetano, 1,2-Dicloropropano, 1,3,5-Triclorobenzene, 1,3-Diclorobenzene, Naftalene	10000	mg/Kg	sup 250000	SOMMA
HP6	H312	Acute Tox. 4 (Dermal)	Xilene (come somma di orto, meta e para-xilene)	10000	mg/Kg	sup 550000	SOMMA


AZIENDA CON SISTEMA DI GESTIONE QUALITÀ UNI EN ISO 9001:2015 CERTIFICATO DA CERTIQUALITY

Caratteristica di pericolo	a Indicazio di perico	ne Descrizione lo	Elenco sostanze	Soglia	UM	Limite inferiore/superiore	Tipo
HP6	H331	Acute Tox. 3 (Inhal.)	Triclorometano	1000	mg/Kg	sup 35000	SOMMA
HP6	H332	Acute Tox. 4 (Inhal.)	Piombo, Stirene, Xilene (come somma di orto, meta e para-xilene), 1,1-Dicloroetilene, 1,2-Dicloroetilene (cis), 1,2-Dicloroetilene (trans), 1,2-Dicloropropano, 2-Clorotoluene, Clorobenzene, Etilbenzene	10000	mg/Kg	sup 225000	SOMMA
HP7	H350 1A	Carc. 1A	1,3-Butadiene, Benzene		mg/Kg	sup 1000	
HP7	H350 1B	Carc. 1B	1,2-Dicloroetano, 1,2-Dicloropropano, Benzo(a)antracene, Benzo(a)pirene, Benzo(b)fluorantene, Benzo(k)fluorantene, Crisene, Dibenzo(a,h)antracene		mg/Kg	sup 1000	
HP7	H351	Carc. 2	Piombo, Triclorometano, 1,1-Dicloroetilene, 1,4-Diclorobenzene, Clorometano, Diclorometano, Naftalene		mg/Kg	sup 10000	
HP10	H360 1A	Può nuocere alla fertilità o al feto.			mg/Kg	sup 3000	
HP10	H360 1B	Può nuocere alla fertilità o al feto.	Benzo(a)pirene		mg/Kg	sup 3000	
HP10	H361	Sospettato di nuocere alla fertilità o al feto.	Stirene, Toluene, Triclorometano		mg/Kg	sup 30000	
HP11	H340 1B	Muta. 1B	1,3-Butadiene, Benzene, Benzo(a)pirene		mg/Kg	sup 1000	
HP11	H341	Muta. 2	Crisene		mg/Kg	sup 10000	
HP13	H317	Può provocare una reazione allergica cutanea.	Benzo(a)pirene, Limonene (dipentene)		mg/Kg	sup 100000	
HP14	H400	Molto tossico per gli organismi acquatici.	Piombo, 1,2,4-Triclorobenzene, 1,2-Diclorobenzene, 1,3,5-Triclorobenzene, 1,4-Diclorobenzene, Benzo(a)antracene, Benzo(a)pirene, Benzo(b)fluorantene, Cicloesano, Crisene, Dibenzo(a,h)antracene, Idrocarburi alifatici C5 - C8, Limonene (dipentene), Naftalene	1000	mg/Kg	sup 250000	SOMMA
HP14	H410		Piombo, 1,2,4-Triclorobenzene, 1,2-Diclorobenzene, 1,3,5-Triclorobenzene, 1,4-Diclorobenzene, Benzo(a)antracene, Benzo(a)pirene, Benzo(b)fluorantene, Cicloesano, Crisene, Dibenzo(a,h)antracene, Idrocarburi alifatici C5 - C8, Limonene (dipentene), Naftalene	1000	mg/Kg		SOMMA
HP14	H411	Tossico per gli organismi acquatici con effetti di lunga durata	1,3-Diclorobenzene, 2-Clorotoluene, Clorobenzene, Idrocarburi C10-C40, Isopropilbenzene (cumene), n-Propilbenzene	10000	mg/Kg		SOMMA
HP14	H412	Nocivo per gli organismi acquatici con effetti di lunga durata	1,2-Dicloroetilene (cis), 1,2-Dicloroetilene (trans)	10000	mg/Kg		SOMMA
HP14	EQ1	100 * SOMMA c (H410) + 10 * SOMMA c (H411) + SOMMA c (H412)			mg/Kg	sup 250000	SOMMA
HP14	EQ2	SOMMA c (H410) + SOMMA c (H411) + SOMMA c (H412) + SOMMA c (H413)	;		mg/Kg	sup 250000	SOMMA

Le indicazioni di pericolo non riportate nella tabella non sono valutabili sulla base dei parametri analizzati.

La valutazione delle sostanze analizzate è stata effettuata utilizzando le informazioni riportate nella banca ECHA (http://www.echa.europa.eu/information-on-chemicals7cl-inventory-database) e, nel caso in cui la sostanza non risulta armonizzata , è stata presa in considerazione la classificazione recante il numero maggiore di notifiche.

Caratteristiche di pericolo rilevate: Nessuna

LAV. s.r.l.

Laboratorio Analisi e Consulenza Igiene degli Alimenti Microbiologia Igiene e sicurezza nei luoghi di lavoro Indagini ambientali AZIENDA CON SISTEMA DI GESTIONE QUALITÀ UNI EN ISO 9001:2015 CERTIFICATO DA CERTIQUALITY

Giudizio di conformità:

Il campione analizzato è conforme ai limiti previsti dal D.M. 5/2/98 Allegato 3 e successive modifiche D.M. 05/04/2006 nº 186.

Visto l'esame ispettivo ed i risultati analitici conseguiti sui parametri prescelti in base alle informazioni ricevute circa la provenienza del campione esaminato, si puo' affermare che il rifiuto corrispondente NON è conforme ai limiti della Tabella 2 e 4 dell'Allegato 4 Paragrafo 1 (Discariche per rifiuti inerti) del D.Lgs 121/2020 e al D.Lgs 36/2003.

Visto l'esame ispettivo ed i risultati analitici conseguiti sui parametri prescelti in base alle informazioni ricevute circa la provenienza del campione esaminato, si puo' affermare che il rifiuto corrispondente è conforme ai limiti della Tabella 5 e 5-bis dell'Allegato 4 Paragrafo 2 (Discariche per rifiuti non pericolosi) del D.Lgs 121/2020 e al D.Lgs 36/2003.

Il Responsabile Tecnico o suo sostituto

Dott. Nicola Rossi Chimico - Ordine Interprovinciale dei Chimici dell'Emilia-Romagna n. A1677

Il Responsabile di Laboratorio o suo sostituto

Per.Ind. Marco Tontini Ordine dei Periti Industriali della Provincia di Rimini n° 1433

Documento firmato digitalmente ai sensi della normativa vigente dal Responsabile di Laboratorio Per.Ind. Marco Tontini o suo delegato.