

REGIONE PUGLIA

PROVINCIA DI FOGGIA

COMUNE DI CASTELLUCCIO DEI SAURI (FG)

COMUNE DI DELICETO (FG)

OGGETTO:

PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN IMPIANTO AGRO-FOTOVOLTAICO NELLA LOCALITA' "CATENACCIO" DEL COMUNE DI CASTELLUCCIO DEI SAURI (FG) DELLA POTENZA DI PICCO IN DC PARI A 75.053,04 KWp e MASSIMA IN IMMISIONE IN AC PARI A 55.000 KW E RELATIVE OPERE DI CONNESSIONE UBICATE NEL COMUNE DI DELICETO (FG)

ELABORATO N. B10

DISCIPLINARE DESCRITTIVO E PRESTAZIONALE

SCALA

COMMITTENTE

CATENACCIO SOLAR PARK S.R.L.

VIA ATHENA, N 29 84047 - CAPACCIO PAESTUM (SA) P.IVA 06055400656 FIRMA E TIMBRO IL TECNICO PROGETTAZIONE E COORDINAMENTO

Via Athena,29 Cap 84047 Capaccio Paestum P.Iva 04596750655 Ing. Giovanni Marsicano

SPAZIO RISERVATO AGLI ENTI

<u>+</u>	Data	Cod. Stmg	Nome File	Eseguito da	Approvato da
1	 GIUGNO 2022	202100644	MMIT_CSD_B_10	Ing.Michelangelo Marsicano	Ing.Giovanni Marsicano
5					
۸					

COMUNE DI: CASTELLUCCIO DEI SAURI - DELICETO Località "CATENACCIO"

PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN IMPIANTO AGRO VOLTAICO DELLA POTENZA DI PICCO IN DC PARI A 75.053,04 KWp e MASSIMA IN IMMISIONE IN AC PARI A 55.000 KW NEI COMUNI DI CASTELLUCCIO DEI SAURI (FG) E DELICETO (FG) IN LOCALITA' CATENACCIO E RELATIVE OPERE DI CONNESSIONE NEL COMUNE DI ASCOLI SATRIANO (FG)

ELABORATO:

Disciplinare descrittivo e prestazionale degli elementi tecnici

Elaborato nr. MMIT_CSD_B_10

Committente:

CATENACCIO SOLAR PARK SRL

Via Athena nr. 29 84047 Capaccio Paestum (Sa) P.IVA 06055400656 **Progettazione:**

Sede Legale e operativa:

Via Athena nr .29 84047 Capaccio Paestum (Sa) P.IVA 04596750655

Sommario

1.	PREMESSA	4
2.	IMPIANTO FOTOVOLTAICO	5
2	2.1 II layout dell'impianto	5
2	2.2 Agrofotovoltaico	7
3.	DESCRIZIONE GENERALE DELL'IMPIANTO FOTOVOLTAICO	11
3	3.1 DESCRIZIONE TECNICA DELL'IMPIANTO FOTOVOLTAICO	15
3	3.2 CARRATERISTICHE DEL GENERATORE FOTOVOLAICO	16
3	3.3 CARATTERISTICHE DEL GRUPPO DI CONVERSIONE E TRASFORMAZIONE .	18
	Il gruppo di conversione e trasformazione	18
	Inverter (Convertitori CC/CA)	21
	Trasformatori BT/MT	22
	Quadri corrente alternata (QCA)	22
3	3.4 CARATTERISTICHE DELLE CABINE DI RACCOLTA IN MT	22
	Sistema di dissipazione del calore e controllo temperatura ambiente di cabina	23
	Misure di potenza, energia, parametri metereologici e Performance dell'impianto	23
	Apparecchiature di misura	24
4.	SISTEMA SCADA ED RTU E TELECONTROLLO.	24
5.	CAVI DI CONTROLLO E TLC	25
6.	CAVI ELETTRICI	26
6	5.1 Criteri di progettazione e soluzioni di calcolo	26
	Caratteristiche generali cavo interrato in MT	26
	Temperatura di posa	27
	Segnalazione della presenza dei cavi	27
	Prova di isolamento	27
	Giunzioni e terminazioni MT	28
	Tubazioni	28
7.	CAVIDOTTO INTERRATO IN AT 150 KV	28
	Caratteristiche tecniche del cavo in AT	28
	Tensione di isolamento del cavo	29
8.	SOTTOSTAZIONE MT/AT DI UTENZA	30
	Caratteristiche tecniche generali	30
	Trasformatore di potenza 25 MVA	30
9.	LINEA AT IN CORRENTE ALTERNATA	34
10.		35
	M.E. Free Srl - Sede: Via Athena nr. 29, 84047 Capaccio Paestum (Sa) - Tel. 0828-1999995 -	


10.1 Opere civili per la realizzazione	della sottostazione di trasfo	rmazione SE di Utenza 30/150 kV
37		

11.	OPERE EDILI	41
1	1.1 Recinzione dei Campi e Cancellate	41
1	1.2 Connessione alla rete TERNA	43
1	1.3 Descrizione delle Opere RTN	44
1	1.4 Opere civili 45	
1	1.5 Cavidotto AT 150 kV	45
	Descrizione dell'opera.	45
1	1.6 Caratteristiche tecniche del cavo in AT	46
1	1.7 Tensione di isolamento del cavo	46
12.	FASE DI CANTIERE	48
13.	SICUREZZA DELL'IMPIANTO	49
	Protezione da corto circuiti sul lato c.c. dell'impianto	49
	Protezione da contatti accidentali lato c.c	50
	Protezione dalle fulminazioni	50
	Sicurezze sul lato c.a. dell'impianto	50
	Impianto di messa a terra	51
14.	NORME E DOCUMENTAZIONE DI RIFERIMENTO	51
	Eurocodici	51
	Energia solare	52
	Legislazione e normativa nazionale in ambito Elettrico	53
	Sicurezza elettrica	53
	Scariche atmosferiche e sovratensioni	55
	Quadri elettrici	56
	Rete elettrica del distributore e allacciamento degli impianti	56
	Cavi, cavidotti e accessori	56
	Conversione della Potenza	57
	Dispositivi di Potenza	57
	Compatibilità elettromagnetica	58
15	ANALISI PRODUCIRILITA' IMPIANTO	50

1. PREMESSA

Il presente documento è sviluppato sul progetto di un impianto agro-fotovoltaico che sorgerà" nel Comune di Castelluccio dei Sauri (FG) e Deliceto in località "Catenaccio" situato a 1 km a sud del centro abitato di Castelluccio dei Sauri e a 7,3 km a Est dal centro abitato di Deliceto, presso il futuro ampliamento della stazione elettrica 380/150 kV della RTN di Deliceto nel Comune di Ascoli Satriano F 57 P 86. Proponente dell'iniziativa è la società **CATENACCIO SOLAR PARK SRL**. L'impianto fotovoltaico di progetto avrà una potenza nominale di picco kW in DC pari a **75.053,04** kWp a cui corrisponde una potenza di connessione in AC di **55.000** kW. Il progetto prevede lavori di costruzione ed esercizio di un impianto integrato agro-voltaico finalizzato sia alla produzione di energia elettrica tramite la tecnologia solare fotovoltaica avente potenza di picco pari a 75.053,04 kWp che alla produzione agricola infatti: nell'interfila dei moduli fotovoltaici, così come nell'area di proiezione degli stessi su terreno, si è scelto di effettuare una rotazione colturale grano-leguminose da granella, interessando quasi completamente la superfcie agricola utile.La rotazione grano-leguminose da granella è ipotizzata con soluzioni differenti all'interno di ciascuna campo, come descritto nel paragrafo precedente e prevede una divisione al 50% del campo 1 e 2, mentre per il campo 3 la rotazione si attua sull'intera superficie (100%).

CAMPO 1

Superficie totale: 68,61 ha

Superficie agricola: 54,49 ha

Rotazione colturale (in asciutta): grano duro (50% sup.) - favino (50% sup.):

- grano 50%;

- favino 50%;

Siepi di mitigazione: 2,049 ha

Oliveto intensivo: 8,59 ha

CAMPO 2

Superficie totale: 52,72 ha

Superficie agricola: 45,14 ha

Rotazione colturale (in asciutta): grano duro (50% sup.) - leguminose da granella (50% sup.):

- grano 50%;

- leguminose da granella, di cui:

- lenticchie 15%;

- ceci 15%;

- favino 20%;

Siepi di mitigazione: 1,0264 ha

Oliveto intensivo: 4,10 ha

CAMPO 3

Superficie totale: 17,12 ha

Superficie agricola: 15,02 ha

Rotazione colturale (in asciutta): grano duro - favino (100% sup.):

grano 100% o favino (100%);

Siepi di mitigazione: 0,3118 ha

Oliveto intensivo: 1,24 ha

Si prevede la realizzazione di un oliveto super-intensivo nella fascia perimetrale ai futuri campi fotovoltaici, per circa 8,5 m di larghezza, in cui sono previsti n. 2 filari, con sesto di impianto di 4,0x1,5 m; e la realizzazione di una siepe di mitigazione visiva posta lungo il perimetro dei campi fotovoltaici, in adiacenza alla viabilità interna. Le siepi saranno impiantate in una fascia di circa 2,0 m di larghezza, posta in adiacenza ai campi e presenteranno composizione variabile in funzione dell'esposizione. In particolare, la siepe posta a nord dei campi fotovoltaici avrà una componente arborea significativa in modo da ottenere la mitigazione voluta anche dalla viabilità a nord prossima all'area di impianto. Tutte le altre superfici poste tra i moduli fotovoltaici, saranno interessate da un inerbimento tecnico, condotto con sfalci frequenti.

1. IMPIANTO FOTOVOLTAICO

2.1 Il layout dell'impianto

L'impianto Fotovoltaico sarà composto complessivamente da n. 137.712 moduli aventi potenza di picco 545 Wp, e dimensione di ingombro 2256 x 1133 mm, e quindi un'area di 2,556 mq che moltiplicata per il numero di moduli totali pari a 133.712 da una superfice captante totale di 341767,872 mq. e sarà strutturato con i primi 2 campi agri voltaici a 1,2 km in direzione Nord-Nord-Est dal centro abitato di Castelluccio dei Sauri nella località "Catenaccio" e il terzo campo agri voltaico ubicato in località Pozzo Pascuccio nel Comune di Deliceto a 7,2 km in direzione ovest dal centro abitato di Deliceto:

- ➤ Il sotto-impianto Campo 1, della potenza di circa 32,38 MWp in DC;
- ➤ Il sotto-impianto Campo 2, della potenza di circa 34,53 MWp in DC;
- ➤ Il sotto-impianto Campo 3, della potenza di circa 8,14 MWp in DC;

In definitiva l'impianto fotovoltaico, costituito dall'assieme dei tre Campi, sarà caratterizzato da:

- 1) 137.712 moduli fotovoltaici della potenza di 545 Wp cadauno;
- 2) 10 inverter DC/AC da 3125 kVA;
- 3) 7 inverter DC/AC da 3437 kVA;
- 4) 358 stringhe per un totale di N° 5728-6306 moduli saranno collegate in parallelo tra di loro attraverso N° 29/31 quadri di parallelo stringhe;
- 5) 7 Cabine di Raccolta ed 1 Cabina Locali tecnici bT;
- 6) Il collegamento delle cabine di trasformazione con le relative cabine di Parallelo posizionate all'interno di ciascun campo e da queste fino alla sottostazione elettrica di trasformazione di Utenza 30/150 kV avviene mediante N 5 cavidotti interrati a 30 KV in alluminio.
- 7) La sottostazione MT/AT di Utenza sarà del tipo all'aperto. La sottostazione elettrica di trasformazione lato Utente 30/150 kV sarà essenzialmente composta da 1 trasformatori di potenza 55/60 MVA costruttore ABB
- 8) Un cavidotto interrato in AT a 150 kV di collegamento tra la sottostazione SE di Utenza e la sottostazione terna 380/150 kV di Deliceto (lunghezza complessiva 169 m)

Il layout delle installazioni degli impianti è riportato sugli elaborati grafici dai quali si possono ricevere informazioni maggiormente approfondite relative all'impianto, di seguito le superfici e le relative tipologie di occupazioni del suolo:

		1	Abaco d	elle opere			T	
	Opera	Dimensioni/mt		Sup. unità	Q.tà	Sup. tot	Altezza	Volume
	Орега	Larg.	Lungh.	mq	n	mq	ml	mc
	Pannelli fotovoltaici				138.512			
	Cabine di trasformazione	6.057	2.438	14.76	17	251,04	3.35	840.99
	Cabina di raccolta e locali tecnici	13.2	8.2	108.24	7	757,68	3.35	2538,23
	Cabina di Consegna SSE	8.0	3.0	24	7	168	2.4	403,2
0	Stallo di utenza SSE	25	34	850	1	850		
Impianto fotovoltaico	Ampliamento SSE TERNA					18200		
otov	Cavi BT Interno (Trincea)		47.500					
nto f	Cavi Mt esterno (trincea)	0,85	3.137					
mpia	Cavi MT esterno (T.O.C.)		644					
_	Cavi AT (connessione)		169					
	Viabilità servizio interna FTV	3,5	2964,29	10.375		10.375		
	Recinzione			16936				
	Barriera mitigativa alberatura	1,5	3988	5982		5982		
	Oliveto intensivo	8,5	3988	33900		33900		

Considerando la potenza di connessione in AC pari a 55 Mw e la superficie radiante proposta di 20 ha sia avrà un indice di occupazione di suolo pari a 431.338,71 m2/1.392.400 m2 = 0,3098 in linea con quanto ricavato per analogia rispetto ad altri campi fotovoltaici con la stessa tecnologia.

2.2 Agrofotovoltaico

L'impianto riguarderà una superficie complessiva di 138,45 ha di cui circa 114 ha disponibili alla coltivazione agricola. La scelta delle rotazioni colturali segue l'ordinarietà dei luoghi in continuità con l'esistente, integrando le leguminose da granella come coltivazione di interessanti prospettive, già praticata da alcuni soggetti coinvolti nella gestione. Con l'intento di ridurre le superfici sottratte all'attività agricola e sviluppare un piano colturale coerente con gli ingombri derivanti dall'impianto fotovoltaico e con il mercato locale, in modo da essere condotto in maniera sostenibile, si destinerà parte di detta superficie alla coltivazione. La valutazione condotta sullo sviluppo di coltivazioni in stretta relazione con l'impianto fotovoltaico, da vita ad un piano colturale "Agro-fotovoltaico", rispetto al quale sono state individuate le seguenti aree:

- Interfile dei moduli fotovoltaici;
- Fascia perimetrale dei campi fotovoltaici;
- Aree libere all'interno dell'impianto;

<u>Coltivazione interfila e aree sotto i moduli fotovoltaici</u>: Nell'interfila dei moduli fotovoltaici, così come nell'area di proiezione degli stessi su terreno, si è scelto di effettuare una rotazione colturale granoleguminose da granella, interessando quasi completamente la superfcie agricola utile.

La rotazione grano-leguminose da granella è ipotizzata con soluzioni differenti all'interno di ciascuna campo, come descritto nel paragrafo precedente e prevede una divisione al 50% del campo 1 e 2, mentre per il campo 3 la rotazione si attua sull'intera superficie (100%).

CAMPO 1 - Superficie agricola: 54,49 ha

Rotazione colturale (in asciutta): grano duro (50% sup.) - favino (50% sup.):

- grano 50%;
- favino 50%;

CAMPO 2 - Superficie agricola: 45,14 ha

Rotazione colturale (in asciutta): grano duro (50% sup.) - leguminose da granella (50% sup.):

- grano 50%;
- leguminose da granella, di cui:
- lenticchie 15%;
- ceci 15%;
- favino 20%;

CAMPO 3 - Superficie agricola: 15,02 ha

Rotazione colturale (in asciutta): grano duro - favino (100% sup.):

grano 100 o favino 100%;

Il grano come noto costituisce l'ordinarietà della zona e rappresenta, anche in virtù della domanda interna e degli equilibri internazionali modificati, una coltura indispensabile. Le leguminose da granella, costituiscono un riscontro credibile alle richieste dei mercati e al consumo locale, soprattutto per il favino, già presente nelle aree in questione.

Le lavorazioni preliminari per il grano e le leguminose sono molto simili e prevedono una aratura profonda o in alternativa un passaggio con ripuntatore e un doppio passaggio con frangizolle di cui il secondo in occasione della semina, effettuata con seminatrice di precisione.

Nel corso del ciclo vegetativo sono previsti: una fertilizzazione e diserbo o controllo fitosanitario prima della mietitura. La raccolta avviene per mietititura anche per le leguminose da granella.

<u>Fascia perimetrale ai campi agrivoltaici</u>: Si prevede la realizzazione di un oliveto super-intensivo nella fascia perimetrale ai futuri campi fotovoltaici, per circa 8,5 m di larghezza, in cui sono previsti n. 2 filari, con sesto di impianto di 4,0x1,5 m. La messa a dimora sarà preceduta da un passaggio con ripper, dalla concimazione di fondo e dalla realizzazione dei sostegni (tutori). L'installazione di un sistema di irrigazione a goccia completerà la sistemazione dell'area. Complessivamente saranno espiantati e ricollocati circa 5.736 olivi.

Il principale vantaggio dell'impianto dell'oliveto-superintensivo risiede nella possibilità di meccanizzare tutte le fasi della coltivazione, ad esclusione dell'impianto che sarà effettuato manualmente e a parità di altre condizioni, una durata economica più ridotta e quindi, una maggiore flessibilità temporale delle scelte aziendali (circa 16 anni di ciclo produttivo). Inoltre si fonda sull'applicazione di un pacchetto tecnologico che prevede necessariamente l'impiego di poche cultivar caratterizzate da bassa vigoria e da uno sviluppo vegetativo compatibile con la raccolta meccanizzata tramite macchine scavallatrici (Arbequina, Arbosana, Koroneiki). Per tutte le lavorazioni ordinarie si potrà utilizzare il trattore convenzionale, quali la potatura, le concimazioni, ecc., che la società acquisirà per lo svolgimento delle attività agricole, mentre per attività quali la raccolta occorrerà considerare l'acquisto o il nolo di una macchina scavallatrice con kit di raccolta per olivo che comprendono essenzialmente due integrazioni: a) si aggiungono i battitori per tutta l'altezza del tunnel di raccolta, perché nella vite, a differenza dell'olivo, la fascia produttiva interessa solo la parte bassa; e b) per accogliere la vegetazione all'interno del tunnel, viene apposto anteriormente un convogliatore. In questo convenzionale ed i danni osservabili dal passaggio della macchina sulle piante, espressi in percentuale di assi vegetativi rotti, sono pari all'1-2%, valori del tutto simili a quelli rilevati nella raccolta con scuotitore.

I trattamenti fitosanitari saranno effettuati con turbo atomizzatore dotato di getti orientabili che convogliano il flusso solo su un lato, associato al trattore e nel caso di irrigazione di soccorso si utilizzerà un carro botte.

Aree non coltivabili: L'inerbimento delle aree residue non coltivabili sarà ottenuto con semina di miscugli di 2-3 specie ben selezionate, che richiedono pochi interventi per la gestione. In particolare si opterà per le seguenti specie: - Trifolium subterraneum (comunemente detto trifoglio) o Vicia sativa (veccia) per quanto riguarda le leguminose; - Hordeum vulgare L. (orzo) e Avena sativa L. per quanto riguarda le graminacee. Il ciclo di lavorazione del manto erboso tra le interfile prevederà pertanto le seguenti fasi: 1) In tarda primavera/inizio estate si praticheranno una o due lavorazioni a profondità ordinaria del suolo. Questa operazione, compiuta con piante ancora allo stato fresco, viene detta "sovescio" ed è di fondamentale importanza per l'apporto di sostanza organica al suolo. 2) Semina, eseguita con macchine agricole convenzionali, nel periodo invernale. Per la semina si utilizzerà una seminatrice di precisione avente una larghezza di massimo 4,0 m, dotata di un serbatoio per il concime che viene distribuito in fase di semina. 3) Fase di sviluppo del cotico erboso nel periodo autunnale/invernale. La crescita del manto erboso permette di beneficiare del suo effetto protettivo nei confronti dell'azione battente della pioggia e dei processi erosivi e nel contempo consente la transitabilità nell'impianto anche in caso di pioggia (nel caso vi fosse necessità del passaggio di mezzi per lo svolgimento delle attività di manutenzione dell'impianto fotovoltaico e di pulitura dei moduli); 4) Ad inizio primavera si procederà con la trinciatura del cotico erboso. La copertura con manto erboso nell'interfila non produrrà reddito significativo ma è da considerare è sicuramente da vedersi come una coltura "da reddito", ma è una pratica che permetterà di mantenere la fertilità del suolo dove verrà installato l'impianto fotovoltaico.

Figura 1-1 Esempio siepe naturaliforme.

Dati di Progetto

PERSONA FISICA/GIURIDICA	
Richiedente	CATENACCIO SOLAR PARK SRL
SITO	
Ubicazione	Castelluccio dei Sauri (FG) Comune di Deliceto (FG) Località "Catenaccio",
Uso Terreno agricolo – Seminativo	Seminativo-uliveto
Dati catastali	Comune di Castelluccio dei Sauri: Foglio 18 Particella 307-158-73-155-43-40-306-463-249-108272-16-69-470-37-93-92-10-299-108; Foglio 15 Particella 214-215-47-49-219-34-51-53-104-174-46-33-63-64-110-126-156-157-158-205-231-127-111-285-176-206
	Comune di Deliceto (FG) : Foglio 28 Particella 575-166-211-577-576
	Comune di Ascoli Satriano: Foglio 57 Particella 86
Disponibilità di superficie per moduli	Terreno seminativo pianeggiante, di area pari a circa 139,24 ettari
Inclinazione superficie	Orizzontale
Fenomeni di ombreggiamento	Assenza di ombreggiamenti rilevanti
Altitudine	170 m slm
Latitudine - Longitudine	Latitudine - Longitudine 41°16'11.19" N - 15°27'38,21" E (area baricentrica Castelluccio dei Sauri)
	Latitudine - Longitudine 41°14'6.74" N - 15°28'29,26" E (area baricentrica Deliceto)
Temperatura:	variazioni tra la minima e la massima di + 5 °C e + 45 °C;
Vento:	la condizione estrema del vento (3 secondi, periodicità 50 anni) alla massima altezza di installazione dei moduli è stimata in 35 m/s;
Frequenza di fulminazione:	il sito è caratterizzato da 0.5 impatti/ km all'anno;
Grandine:	evento straordinario;
Neve:	evento straordinario.
Sismicità:	zona 2
DATI TECNICI	·

Potenza nominale dell'impianto	75,053 MWp
Range trasformatore tensione nominale a vuoto AT	150 kV
Range trasformatore tensione nominale a vuoto MT	30 kV
Tensione massima SE di utenza	170 kV
Tipo di intervento richiesto:	
Nuovo impianto	SI
Trasformazione	NO
Ampliamento	NO
Dati del collegamento elettrico	
Descrizione della rete di collegamento	AT 3 fasi
Tensione nominale (Un)	150 kV
Categoria sistema	A
Vincoli della Società Distributrice da rispettare	Normativa ENEL
Misura dell'energia	Contatore in AT nel punto di consegna per misure UTF e Terna Contatore proprio e UTF sulla MT per la misura della produzione (eventualmente anche sulla BT)
Punto di Consegna	Futuro ampliamento della Stazione Elettrica RTN 380/150 kV denominata "Deliceto" ubicata nel Comune di Ascoli Satriano F 57 P 86

2. DESCRIZIONE GENERALE DELL'IMPIANTO FOTOVOLTAICO

Il progetto prevede l'installazione di un impianto fotovoltaico della potenza complessiva in DC di **75.053,04** kWp, a cui corrisponde una potenza di connessione in AC di **55.000 kW**. L'impianto fotovoltaico è stato configurato con un sistema ad inseguitore solare mono-assiale. L'inseguitore mono-assiale utilizza una tecnologia elettromeccanica per seguire ogni giorno l'esposizione solare Est-Ovest su un asse di rotazione orizzontale Nord-Sud, posizionando così i pannelli sempre con la perfetta angolazione. L'inseguitore solare orienta i pannelli fotovoltaici posizionandoli sempre nella direzione migliore per assorbire più radiazione luminosa possibile. L'impianto nel suo complesso prevede l'installazione di 137.712 pannelli fotovoltaici monocristallino, per una potenza di picco complessiva di **75.053,04 kWp**, raggruppati in stringhe del singolo inseguitore e collegate

direttamente sull'ingresso dedicato dell'inverter. Le strutture di supporto dei moduli fotovoltaici (inseguitore) saranno fissate al terreno attraverso dei pali prefabbricati in acciaio dotati di una o più eliche, disponibili in varie geometrie e configurazioni che verranno avvitati nel terreno. Complessivamente saranno installati nr. 1904 inseguitori da 64 moduli in configurazione verticale, nr. 113 inseguitori da 48 moduli in configurazione verticale , nr. 229 inseguitori da 32 moduli in configurazione verticale e nr. 194 inseguitori da 16 moduli in configurazione verticale che saranno installati a una distanza di pitch uno dall'altro in direzione est-ovest di 10,596 metri Il modello di modulo fotovoltaico previsto è "LR5-72 HBD 545 M bifaciale" della LONGI SOLAR da 545 Wp bifacciale in silicio monocristallino. L'impianto fotovoltaico interesserà complessivamente una superficie contrattualizzata di 139 Ha di cui soltanto 43,13 Ha saranno occupati dagli inseguitori, dalle cabine di trasformazione e consegna, dalle strade interne mettendo così a disposizione ampi spazi per le compensazioni ambientali e di mitigazione degli impatti visivi dell'impianto fotovoltaico. L'impianto fotovoltaico sarà realizzato in agro del Comune di CASTELLUCCIO DEI SAURI (FG) e DELICETO (FG) in località "CATENACCIO" ai seguenti Fogli e particelle:

Comune di Castelluccio dei Sauri al:

Foglio 18 p. 307,158,73, 155,43, 155,40,306,463,249 ,272,16,69,470,37,93,92,10,299,108
Foglio 15 p.214,215,47,49,219,34,51,53,108,104,174,46,33,63,64,110,126,156,157,158,205,
231,127,111,285,176,206
e al NCT del Comune di Deliceto al F.28 P. 166,211,575,577

Le opere di connessione e la SE di Utenza cadranno nel Comune di Ascoli Satriano (Fg) al

Foglio 57 p. 86 del Comune di Ascoli Satriano (Fg)

L'impianto fotovoltaico è essenzialmente suddiviso in 3 CAMPI aventi le seguenti estensioni, ubicazioni catastali e coordinate geografiche di riferimento:

<u>Comune</u>	<u>Campo</u>	<u>Foglio</u>	<u>Particelle</u>	Ha Tot. Particelle	Ha interessati dal progetto fotovoltaico	Ha occupati dalle strutture	Coordinata E (UTM WGS84)	Coordinata N (UTM WGS84)
Castelluccio dei Sauri (Fg)	<u>1</u>	<u>16</u>	Part. 10,104,27,39,10 9,33,37,38,107, 35,108,227,16,2 75,31,32,25,26, 9,F17 p. 227,16	<u>58,04</u>	50,89	18,65	541176 m	4571241 m
Castelluccio dei Sauri (Fg)	<u>2</u>	15-18	P.15 P. 214- 215-47-49-219- 34-51-53-104- 174-46-33-63- 64-110-126- 156-157-158- 205-231-127- 111-285-176- 206- F.18 P.108	<u>51,88</u>	52,72	17,06	539675 m	4570915 m
Deliceto (FG)	3	28	F.28 p. 575-166- 211-577-576	<u>24,65</u>	17,12	3,91	539847 m	4564874 m
Ascoli Satriano (FG)	Substation	57	86	<u>30</u>	0,79		541157 m	4562734 m
				Tot. Ha 179,12	Tot. Ha 139,24	<u>Tot.</u> <u>Ha 36,46</u>		

Le aree impegnate dalle opere sono costituite da terreni in parte pianeggianti e in parte collinari con pendenze molte basse rivolti verso sud -sud ovest con elevazione s.l.m. variabili da 225 m. ai 298 m. per ciascun campo fotovoltaico tali da avere un'esposizione ottimale e una conformazione morfologica ideale per il posizionamento delle strutture di tracker ad inseguimento est-ovest. Le aree di impianto fotovoltaico sono servite da una buona rete di viabilità esistente costituita da strade comunali e interpoderali sterrate che dai campi fotovoltaici portano sino sulla SP 104 e SP 106. La connessione dell'impianto alla RTN è prevista in antenna a 150 kV sulla sezione a 150 kV del futuro ampliamento della SE 380/150 kV di terna della RTN di Deliceto (anche detta SE 380/150 kV di Deliceto nel prosieguo) come previsto nel preventivo di connessione rilasciato da Terna Spa e regolarmente accettato – STMG cod. id. 202100644. L'impianto fotovoltaico sarà collegato tramite un cavidotto interrato di circa 8,5 km totali in media tensione che a partire dal campo 2 più lontano al punto di connessione connetterà tutti i campi fotovoltaici fino alla SE 30/150 kV ubicata al F. 57 p. 86 del Comune di Ascoli Satriano in adiacenza al futuro ampliamento della SE RTN 380/150 KV di Deliceto ubicata nella medesima particella catastale. L'accesso alla nuova stazione satellite a 150 kV di Terna quale ampliamento della esistente SE RTN 380/150 kV di Deliceto avverrà dalla SP 104 in località "La Mezzana". L'intero impianto agro voltaico occupa un'area contenuta e ricadente per

quanto rigurda i campi fotovoltaici nel Comune di Castelluccio dei Sauri e Deliceto , mentre per le opere di rete queste saranno realizzate nel Comune di Ascoli Satriano e Deliceto (FG) . Il cavidotto interrato di collegamento dell'impianto alla SE di Utenza è costituito da 5 terne di cavi da 630 mmq in un unico scavo che percorrono a partire dai CAMPI 1 e 2 e 3 i seguenti tratti stradali: SP 104,SP 106 – strada interpoderale in località "Saudone" . Inoltre il cavidotto MT di collegamento tra i campi fotovoltaici e la SE di Utenza 30/150 kV attraverserà le seguenti particelle catastali :

Comune di Castelluccio dei Sauri:

F. 15 p. 129-168-112 (strada Interpoderale in località Saudone) F.18 p. 102-94-110-45-129-135-131-106 (strada Interpoderale in località Saudone)

Comune di **Deliceto:**

F. 4 p. 214-213-57-58B F.28 p. 575-166-576-578-14-635 F.42 p. 167

Comune di Ascoli Satriano:

F. 57 p. 32-22-23-26-29-27-30-31 (Strada Comunale Ascoli Satriano-Deliceto) F. 57 p. 17-86

3.1 DESCRIZIONE TECNICA DELL'IMPIANTO FOTOVOLTAICO

Il generatore fotovoltaico sarà costituito da N° 137.712 moduli da 545 Wp cad. ed avrà una potenza complessiva in DC di 73.053,04 kWp mentre in AC di 55.000 kW.

Il generatore fotovoltaico sarà suddiviso in n° 3 campi che presentano le seguenti caratteristiche tecniche:

Campo	Potenza DNC LIMIT- kW	Potenza DC kW	Potenza AC Limit-KVA	DC/AC	Nr. Stringhe	Nr. inverter	Potenza in kVA singolo inverter
1	32.377,36	32.377,36	23.747	1.36	3713	7	Nr. 6 da 3.437+ Nr. 1 da 3.125 kVA
2	34.534,20	34.531,20	24.976,60	1.40	4010	8	Nr.8 da 3.125 kVa
3	8.144,48	8.144,48	6.276,4	1,30	934	2	Nr.1 da 3.125 + Nr. 1 da 3437 kVa
TOTALE	75.053,04	75.053,04	55.000		8657	17	

L'impianto fotovoltaico sarà dotato di un sistema denominato <u>INAccess Power Plant Controller</u> che è un sistema intelligente indipendente dal fornitore per il controllo dinamico e accurato dell'impianto fotovoltaico e la conformità del codice di rete, personalizzabile per soddisfare qualsiasi esigenza di rete garantendo l'interoperabilità con i sistemi SCADA dell'impianto. Inaccess PPC controlla l'uscita dell'impianto fotovoltaico nel punto di accoppiamento comune, utilizzando gli inverter, i misuratori, i statcom, i condensatori e i controller periferici dell'impianto, fornendo funzionalità quasi in tempo reale per la disconnessione dell'impianto o l'arresto della generazione, il controllo della potenza attiva e reattiva, nonché il controllo della velocità della rampa di potenza. Inaccess PPC offre funzionalità di controllo e monitoraggio alla rete e all'operatore dell'impianto, controllo intelligente ad anello chiuso della potenza attiva e reattiva, controllo degli interruttori di circuito, nonché monitoraggio di quantità elettriche, meteorologiche, interruttori e modalità e stati di controllo dell'alimentazione. L'interoperabilità è garantita per un'ampia gamma di inverter e misuratori. In tal modo sarà garantito che la potenza nominale AC in immissione alla rete sia pari 55.000 kW così come previsto nella STMG rilasciata al Committente.

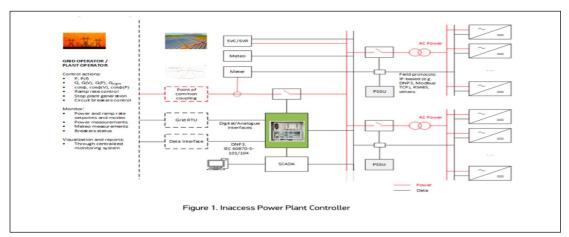
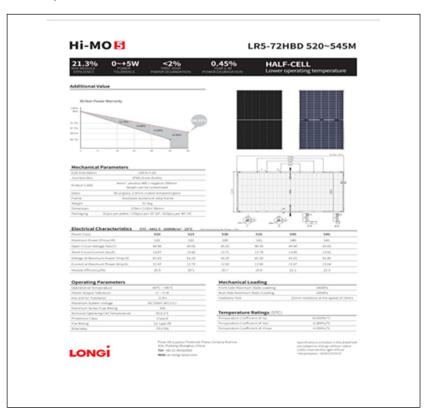


Figura 2-1 schema funzionamento impianto fotovoltaico

I moduli, riuniti a gruppi di 16, saranno collegati elettricamente in serie tra di loro e costituiranno una stringa della potenza unitaria di 8.72 Wp. Ai capi della stringa sarà presente una tensione a circuito aperto di circa 779,8 Vcc . L'insieme di N° 358 stringhe per un totale di N° 5728-6306 moduli saranno collegate in parallelo tra di loro attraverso N° 29/31 quadri di parallelo stringhe che convoglieranno l'energia verso ciascuno inverter, situato nella cabina di conversione. Ogni stringa sarà provvista di fusibile e diodo di blocco e sarà protetta (in parallelo con le altre) contro le sovratensioni, per mezzo di scaricatori (uno per ogni polo) collegati a terra. Fusibili, diodi di blocco e scaricatori sono dimensionati per le relative correnti e tensioni. Il generatore FV (lato CC) è gestito come sistema IT, ovvero nessun polo è connesso a terra. Per razionalizzare il montaggio e per minimizzare il percorso dei cavi elettrici di collegamento, i moduli saranno montati, con l'asse disposto in orizzontale, su telai metallici (pannelli) che potranno contenere 3 - 4 stringhe. (I pannelli saranno posizionati sul terreno con un angolo di Azimut di 0° SUD e con un'inclinazione max di +-55° sul piano orizzontale sia verso est che ovest essendo ad inseguimento; essi saranno disposti su file parallele, in base agli spazi disponibili. Per evitare l'ombreggiamento dei moduli nei periodi dell'anno in cui il sole è basso l'interasse dei moduli sarà di circa 10.6 m e la distanza tra le file dei moduli misurata tra le verticali della fine della prima fila e l'inizio della successiva sarà di 6.0 m. Con tale distanza anche il 21 dicembre (solstizio d'inverno) non vi sarà ombra nelle ore centrali del giorno (dalle 10.30 alle 13,30) mentre nel periodo degli equinozi (21 marzo -22 settembre) l'ombra sarà assente dalle ore 7,50 fino alle 17,40. La superficie netta del totale dei moduli è di ca 36,46 Ha ed essa è l'occupazione al suolo maggiore quando i moduli sono disposti orizzontalmente al suolo.

3.2 CARRATERISTICHE DEL GENERATORE FOTOVOLAICO


Il **generatore fotovoltaico** sarà realizzato con moduli provvisti di diodi di by-pass e ciascuna stringa di moduli sarà selezionabile e dotata di diodo di blocco. Esso sarà gestito come sistema IT, ovvero con nessun polo connesso a terra. I moduli saranno da 545 Wp in silicio monocristallino bifacciali modello "**LR5-72HBD545 M**" della casa produttrice **LONGI SOLAR**.. Qualora dovesse essere scelta una delle tecnologie diversa da quella prevista in questa fase progettuale, il layout generale dell'impianto, le strutture di sostegno dei moduli fotovoltaici ed i fabbricati delle cabine elettriche manterranno la stessa configurazione.

Il decadimento delle prestazioni è non superiore al 10% nell'arco di 12 anni e non superiore al 15% in 30 anni.

I Dati tecnici caratteristici dei moduli fotovoltaici sono i seguenti:

- -144 celle in silicio monocristallino collegate in serie;
- -Tensione alla massima potenza, Vm= 53.4
- -Tensione massima di circuito aperto, Voc = 49.65 V
- -Corrente alla massima potenza, Im = 13.04 A
- -Corrente massima di Corto circuito, Isc = 13.92 A
- Superficie anteriore: vetro temperato in grado di resistere alla grandine (Norma CEI/EN 161215);
- Incapsulamento delle celle: EVA
- Cornice di alluminio annodizzato
- -Terminali di uscita: cavi pre-cablati a connessione rapida impermeabile resistenti ai raggi
 UV da 4 mmq, 1200 mm
- -Presenza di diodi di bypass per minimizzare la perdita di potenza dovuta ad eventuali danneggiamenti di qualche modulo fotovoltaico.

2-2 Dati Tecnici del Modulo fotovoltaico

3.3 CARATTERISTICHE DEL GRUPPO DI CONVERSIONE E TRASFORMAZIONE

Il gruppo di conversione e trasformazione

è formato da cabine di tipo prefabbricato che ospitano l'inverter, il trasformatore BT/MT e il trasformatore per l'alimentazione dei servizi ausiliari. L'inverter effettua la trasformazione dell'energia proveniente dal generatore fotovoltaico da corrente continua a corrente alternata; il gruppo di trasformazione è costituito da un quadro generale BT che alimenta il secondario del trasformatore MT/BT e il trasformatore dei servizi ausiliari BT/BT; le celle MT si collegano al primario del trasformatore di potenza e sono composte da sezionatori, relè di protezione e gruppi di misura; infine il quadro BT a valle del relativo trasformatore alimenta i servizi ausiliari di cabina. All'interno della cabina verrà inoltre installato l'interruttore generale dell'impianto con le relative protezioni di interfaccia come da norme CEI 0-16, CEI 11-20, dette protezioni saranno corredate di una certificazione di conformità emessa da un organismo accreditato. I valori della tensione e della corrente di ingresso agli inverter sono compatibili con quelli del generatore fotovoltaico, mentre i valori della tensione e della frequenza in uscita sono compatibili con quelli dei gruppi di trasformazione ai quali viene connesso l'impianto. Tale tipologia di impianto è basata sul concetto della modularizzazione, o di architettura distribuita: collegando un insieme di stringhe al corrispondente inverter si ottiene un impianto fotovoltaico indipendente, impedendo che eventuali interazioni o sbilanciamenti fra le stringhe stesse diminuiscano l'efficienza complessiva dell'impianto. Dal lato del generatore CC le stringhe sono collegate ad ingressi dedicati gestiti da MPPT indipendenti dal lato dell'immissione in rete sono presenti i relè di protezione e il filtro per le interferenze elettromagnetiche.

L'impianto fotovoltaico sarà essenzialmente costituito da:

N° 3 Campi di generazione fotovoltaica a loro volta suddivisi in un totale di 18 sottocampi

N° 17 cabine inverter e trasformazione o di sottocampo

Ogni cabina conterrà:

Un Inverter + Trasformatore modello **SG3125HV-MV-20 e SG3400HV-MV-20 della** casa costruttrice **SUNGROW** avente le seguenti caratteristiche tecniche:

Ingresso inverter cabine SG3125HV-MV-20 e SG3400HV-MV-20

o – Intervallo di tensione MPPT:875-1500 V

o – Numeri di ingressi DC: 18

o - Corrente massima DC per MPPT: 4178 A

Dati in uscita trasformatore cabina SG3125HV-MV-20

o – Potenza AC nominale: 3125 kV A

o – Potenza AC massima: 3593 kV A

Tensione AC a valle dell'inverter: 600 V

o – Corrente massima AC: 3458 A

Intervallo di funzionamento frequenza di rete (fAC) : 50 Hz / 60 Hz

- Distorsione della corrente di rete: < 3 % con potenza nominale
- − Fattore di potenza (cosφ): ≅1

Dati in uscita trasformatore cabina SG3400HV-MV-20

- Potenza AC nominale: 3437 kV A
- Potenza AC massima: 3593 kV A
- Tensione AC a valle dell'inverter: 600 V
- Corrente massima AC: 3458 A
- Intervallo di funzionamento freguenza di rete (fAC) : 50 Hz / 60 Hz
- Distorsione della corrente di rete : < 3 % con potenza nominale
- Fattore di potenza (cosφ) :≅1

Grado di rendimento cabine SG3125HV-MV-20 e SG3400HV-MV-20

- Grado di rendimento massimo PCA, max (η):99.00 %
- – Euro (η): 98,70 %

Dati generali cabine SG3125HV-MV-20 e SG3400HV-MV-20

- Larghezza/altezza/profondità in mm (L / A / P) :6058 / 2896 / 2438
- Peso approssimativo (T):17
- Comunicazione:RS485, Ethernet

Conformità agli standard cabine SG3125HV-MV-20 e SG3400HV-MV-20

- 1. IEC 61727 : Photovoltaic (PV) systems Characteristics of utility interface
 - IEC 62116: Utility-interconnected photovoltaic inverters Test procedure of islanding prevention measures
 - — CE IEC 62109: Safety of power converters for use in photovoltaic power systems

In totale saranno utilizzate nr. 7 cabine SG3400HV-MV-20 e nr. 10 cabine SG3125HV-MV-20

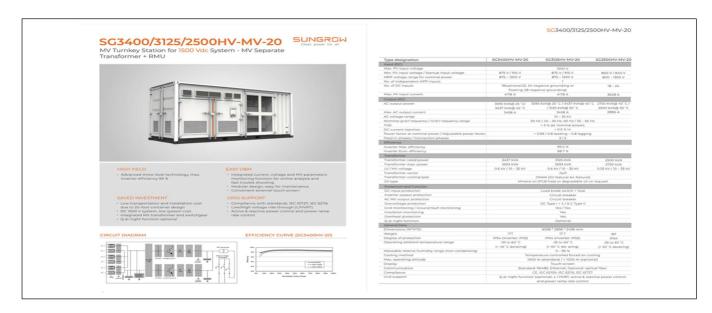


Figura 2-3 Locale ubicazione cabine inverter e di trasformazione

Gli inverters saranno ubicati in cabinati prefabbricati dalle dimensioni in pianta di 6057x 2438 mm, pari a 14,76 mg in grado di garantire condizioni ambientali ottimali ed adeguato potere di scambio termico grazie all'impiego di condizionatori ad avviamento automatico nei periodi estivi. Le cabine di conversione saranno installate nei pressi dei moduli per ridurre le perdite di potenza dovute al trasporto dell'energia. Le fondazioni su cui vengono sistemate le cabine sono del tipo a vasca in modo da consentire il passaggio dei cavi elettrici sotto il pavimento Le cabine così composte poggiano su una platea di calcestruzzo dello spessore di 10-15 cm, gettata a circa 60 cm di profondità, previo scavo. In ogni cabina di conversione saranno sistemati N° 1 inverter trifase composto da 1 trasformatore da 3125 / 3437 kVA 875/915 V cadauno, i quali vengono poi collegati in parallelo su di un unico condotto sbarre trifase. Dal condotto sbarre verrà alimentato il trasformatore BT/MT. E' stato scelta la taglia dell'inverter di 3125/3437 kVA modulare in quanto si tratta di standard, disponibile sul mercato e con buone prestazioni. Ogni "inverter" sarà costituito da un insieme di componenti, quali filtri e dispositivi di sezionamento, protezione e controllo che rendono il sistema idoneo al trasferimento della potenza dal generatore alla rete, in conformità ai requisiti normativi, tecnici e di sicurezza applicabili. La potenza max in uscita di ogni inverter AC sarà di 3.593 kVA . Gli inverters sono progettati per inseguire il punto di massima potenza del proprio campo fotovoltaico, sulla curva I-V caratteristica (funzione MPPT), costruendo l'onda sinusoidale in uscita con la tecnica PWM, che permette di contenere l'ampiezza delle armoniche entro valori accettabili. Nella cabina di conversione sono contenuti gli interruttori di manovra e le apparecchiature di protezione. Dalle cabine di conversione, che in totale saranno N° 17, l'energia verrà trasportata, attraverso n°7 cabine di parallelo MT, con cavi interrati a 30 kV, verso la stazione elettrica dell'utente.

Inverter (Convertitori CC/CA)

Le caratteristiche generali degli inverter sono riassunte di seguito: - Inverter a commutazione forzata dalla rete con tecnica PWM (pulse-width modulation), senza clock e/o riferimenti interni di tensione o di corrente, assimilabile a "sistema non idoneo a sostenere la tensione e frequenza nel campo nominale", in conformità a quanto prescritto per i sistemi di produzione dalla norma CEI 11-20 e dotato di funzione MPPT (inseguimento della massima potenza)

- Sezione di arrivo dal campo fotovoltaico con organo di sezionamento e misura;
- Ingresso cc da generatore fotovoltaico con poli non connessi a terra, ovvero sistema IT
- Inverter dotato di ponte a IGBT a commutazione forzata
- Protezioni per la sconnessione dalla rete per valori fuori soglia di tensione e frequenza della rete e per sovracorrente di guasto, in conformità alle prescrizioni delle norme CEI 11-20 ed a quelle specificate dal distributore elettrico locale. Reset automatico delle protezioni per predisposizione ad avviamento automatico.
- Ogni inverter è dotato di un proprio dispositivo di interfaccia.
- Progetto e costruzione conformi ai requisiti della «Direttiva Bassa Tensione» e della «Direttiva EMC».
- Conversione cc/ac realizzata con tecnica PWM e ponte a IGBT ad elevata efficienza (rendimento >96÷97%).
- Filtri per la soppressione dei disturbi indotti e/o emessi
- Controllo della corrente fornita in uscita (grid connected) tramite microprocessore a 16 bit che ne garantisce la forma sinusoidale con distorsione estremamente bassa.
- Funzionamento in parallelo alla rete a cosφ=1 (regolabile nel campo 0.9 induttivo ÷ 0.9 capacitivo)
- Programmazione e monitoraggio tramite tastiera alfanumerica.
- Monitoraggio a distanza.
- Dispositivo per la verifica della resistenza di isolamento tra l'ingresso e la terra.
- Datalogger per l'acquisizione delle principali grandezze e stati di funzionamento dell'impianto.
- Interruttore automatico magnetotermico in uscita
- Protezione IP24
- Conformità marchio CE.
- Dichiarazione di conformità del prodotto alle normative tecniche applicabili, rilasciato dal costruttore, con riferimento a prove di tipo effettuate sul componente presso un organismo di certificazione abilitato e riconosciuto.
- Le caratteristiche specifiche degli inverter sono riportate nel documento IT_CST_E_13

Trasformatori BT/MT

Il trasformatore BT/MT sarà unico per ogni cabina ed avrà la potenza di 3125/3437 kVA con rapporto di trasformazione di 600/30.000V. Il trasformatore di uscita sarà ad elevato rendimento, capace di garantire un totale isolamento tra la rete e la centrale fotovoltaica, lato cc dell'inverter. Il trasformatore sarà del tipo a secco con isolamento in resina 35 KV.

Quadri corrente alternata (QCA)

I quadri elettrici QCA provvedono al parallelo degli inverter lato AC ed alla connessione con i trasformatori BT/MT Il quadro costituito da un armadio metallico di dimensioni circa 600 x 2270 x 600 mm, dotato di pannelli posteriore e laterali, vani porta interruttori, vani porta sbarre, morsettiere.

Il quadro sarà equipaggiato con i seguenti dispositivi:

- n° 1 interruttore magnetotermico per l'inverter CCA1
- n° 1 interruttore magnetotermico per l'inverter CCA2
- n° 1 interfaccia di rete tipo Thytronics o similare (certificato DK5940)
- n° 1 dispositivo di interfaccia di rete, contattore tetrapolare da 3125 kW, riduttori di tensione e corrente bobina di sgancio tipo ABB o similare.
- n° 1 interruttore magnetotermico per il sezionamento del parallelo
- n° 1 interruttore magnetotermico per il sezionamento del trasformatore BT/MT
- n° 1 interruttore magnetotermico/differenziale per il sezionamento del lato utenze BT Il quadro è completo di accessori quali: morsetti passanti, guide DIN, cavi di collegamento, capicorda, numeri segna-cavo, cartelli monitori. .
- I Quadri QCA saranno ubicati nella cabina di conversione.

3.4 CARATTERISTICHE DELLE CABINE DI RACCOLTA IN MT

Le cabine di parallelo avranno la funzione di ricevere attraverso un quadro sbarre l'energia elettrica MT (30 kV) proveniente da un gruppo di N°2,3 fino a 6 cabine di conversione di ciascun campo e di smistarla con unico cavo verso la Stazione Utente. Le cabine di parallelo, in cabinati prefabbricati dalle dimensioni 8000x3000x2400 mm, saranno ubicate nei pressi dei cavidotti MT; la loro funzione è di ridurre la lunghezza complessiva dei cavi ed il numero degli stessi in entrata alla Stazione Utente (totale linee entranti N° 7), con conseguente riduzione della superficie d'ingombro della Stazione utente. In totale sono previste 7 cabine di parallelo MT.

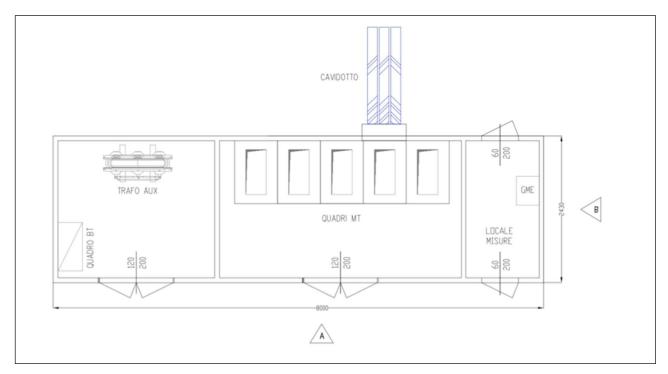


Figura 2-4 Locale cabina di Parallelo MT- Prospetto

Sistema di dissipazione del calore e controllo temperatura ambiente di cabina.

In ogni cabina sarà previsto il controllo della temperatura interna dei locali in cui saranno ubicati tutte le apparecchiature, e quindi dei trasformatori, attraverso un sistema di ventole centrifughe e/o torrino di estrazione comandate da una serie di sonde interne ed esterne che rilevano la temperatura ambiente. L'aria in entrata viene filtrata attraverso speciali griglie montate nella parte inferiore delle pareti delle Cabine. La Portata d'aria minima sarà minimo da 6000 m3/h e comunque calcolata in funzione della potenza del trasformatore.

Misure di potenza, energia, parametri metereologici e Performance dell'impianto.

Ogni cabina di trasformazione sarà dotata di sistemi di misura al fine di rilevare l'energia elettrica prodotta dal singolo sotto campo fotovoltaico, confrontarlo con l'energia attesa e quindi calcolare la PR dell'impianto medesimo. A tale scopo saranno installate apparecchiature di misura e registrazione in continuo dell'energia elettrica e della potenza prodotta dall'impianto e assorbita dai servi ausiliari Apparecchiature di Misura – AdM), nonché per la misura dell'irraggiamento, della temperatura, umidità, velocità del vento e simili (stazioni metereologiche).

Apparecchiature di misura.

In ogni cabina saranno installate apparecchiature per la di misura della potenza e dell'energia elettrica:

- prodotta dal sotto campo fotovoltaico
- assorbita dai servizi ausiliari;
- immessa in rete.

La misura dell'energia prodotta viene effettuata da un contatore M1 che deve essere in grado di rilevare l'energia prodotta su base oraria ed essere dotato di un dispositivo per l'interrogazione ed acquisizione per via telematica delle misure da parte del gestore di rete. La misura dell'energia scambiata con la rete e di quella assorbita dai servizi ausiliari di cabina e in genere effettuata da un unico contatore elettronico bidirezionale ed il sistema di misura deve essere di tipo orario e di tipo MID. La valutazione delle prestazioni degli impianti fotovoltaici in fase di normale esercizio viene effettuata con le modalità indicate nella Norma CEI EN 61724, cioè determinando il fattore di prestazione PR (in un dato periodo giornaliero, mensile o annuale). In particolare si riportano di seguito le modalità di valutazione delle prestazioni che verranno attuate nelle fasi di avvio ed esercizio dell'impianto.

3. SISTEMA SCADA ED RTU E TELECONTROLLO.

Al fine di garantire una resa ottimale dell'impianto fotovoltaico in tutte le situazioni, verrà installato un sistema di monitoraggio e controllo basato su architettura SCADA-RTU in conformità alle specifiche della piramide CIM. A tale scopo ogni cabina di trasformazione saranno installate apparecchiature elettroniche, di acquisizione e raccolta dati, e di telecomunicazioni facenti parte dell'architettura generale di detto sistema di supervisione. Ovviamente l'architettura di questo sistema comprenderà anche la cabina di raccolta, la sottostazione e i singoli inverter di stringa presenti nell'impianto. Il tutto in modo da avere una piattaforma unica, centralizzata e remotabile di acquisizione, raccolta, memorizzazione ed elaborazione dati. Mediante questa piattaforma ci sarà anche interoperatività da remoto con l'impianto fotovoltaico. Pertanto il sistema potrà non solo acquisire i dati ma anche ricevere informazioni e comandi da trasferirsi in termini di operatività sull'impianto: apertura interruttori, impostazione parametri di controllo, etc. etc.

Il sistema sarà connesso a diversi sistemi e riceverà informazioni:

- di produzione dal campo solare;
- di produzione dagli apparati di conversione;
- di produzione e scambio dai sistemi di misura

- di tipo climatico ambientale dalle stazioni di rilevamento dati meteo;
- di allarme da tutti gli interruttori e sistemi di protezione.

Nello specifico partendo dal livello hardware, saranno previste schede elettroniche di acquisizione (ingressi) installate negli string-box, negli inverter, nei quadri di comando e nelle centraline di rilevamento dati ambientali. I dati rilevati saranno inviati ai singoli RTU e quindi convogliati allo SCADA. A questo livello le interfacce di comunicazione pe i "bus di campo", saranno seriali. In ogni singola unità RTU sarà implementata la supervisione istantanea dei parametri elettrici elementari, corrente e tensione e degli allarmi generati dalla rilevazione degli stati degli interruttori, mentre nello SCADA sarà possibile vedere i valori primitivi rilevati e visualizzabili dai singoli RTU, oltre ai dati aggregati frutto di elaborazione dei dati primitivi, come ad esempio valutazione delle performance, produzioni in diversi intervalli temporali, etc. Per raggiungere questo obiettivo le interfacce dello SCADA saranno di tipo sinottico a multilivello. Oltre a queste funzioni base lo SCADA si occuperà della gestione degli allarmi e valutazione della non perfetta funzionalità dell'impianto in base agli scostamenti rilevati tra producibilità teorica e producibilità effettiva. I dati rilevati verranno salvati in appositi data base, e sarà possibile la visualizzazione da remoto mediante interfaccia web.

Il sistema sarà dotato degli apparati periferici di monitoraggio che consentiranno al gestore della rete il controllo in condizione di emergenza e tale sistema dovrà predisporre link di connessione primari e secondari. Inoltre dovrà essere predisposto un apparato di telecontrollo specifico per il controllo al sistema SIAL di TERNA al fine della regolazione di esercizio anche questo dovrà essere dotato di link di connessione primaria e secondaria. Dovrà essere assicurata la fornitura dei segnali necessari alla regolazione automatica della tensione nelle reti MT mediante il variatore sottocarico (VSC) posto sul primario dei trasformatori AT/MT delle cabine primarie di distribuzione. Il controllo della tensione sarà tipicamente realizzato attraverso almeno due modalità operative: variare sottocarico il rapporto di trasformazione del trasformatore AT/MT mediante un regolatore automatico che impone alla sbarra MT un valore di tensione calcolato secondo una legge prefissata; scegliere a vuoto il rapporto di trasformazione dei trasformatori MT/BT poiché non dotati di variatore sottocarico. Sarà inoltre presente un sistema completo per il controllo e regolazione "plant controller che comunicherà con gli apparati RTU ed UPDM dello stesso impianto.

4. CAVI DI CONTROLLO E TLC

Per le connessioni dei dispositivi di monitoraggio che di security saranno utilizzati prevalentemente due tipologie di cavo:

- Cavi in rame multipolari twistati e non;
- Cavi in fibra ottica.

I primi verranno utilizzati per consentire la comunicazione su brevi distanze data la loro versatilità, mentre la fibra verrà utilizzata per superare il limite fisico della distanza di trasmissione dei cavi in rame, quindi comunicazione su grandi distanze, e nel caso in cui sia necessaria una elevata banda passante come nel caso dell'invio di dati. L'interconnessione in fibra ottica interesserà:

- 1. Ciascun inverter di stringa;
- 2. Cabine di trasformazione;
- 3. Cabina di Raccolta;
- 4. Sottostazione produttore.

Qui di seguito sono riportate le caratteristiche della Fibra Ottica prevista a progetto.

- Numero delle fibre 12
- Tipo di fibra multimodale 62.5/125 μm
- Diametro cavo 11,7 mm
- Lunghezza d'onda 1300 nm
- Banda 500 MHz/Km
- Peso del cavo 130 kg/km circa
- Massima trazione a lungo termine 3000 N
- Massima trazione a breve termine 4000 N
- Minimo raggio di curvatura in installazione 20 cm
- Minimo raggio di curvatura in servizio 10 cm

5. CAVI ELETTRICI

6.1 Criteri di progettazione e soluzioni di calcolo

La struttura generale dell'impianto elettrico è sistemicamente definita dalla sottostazione MT/AT da cui partono 2 linee di cavo MT **L1 e L2** che arrivano rispettivamente alle cabine di parallelo **CB//1,CB//2,**. All'interno di ciascun dei CAMPI fotovoltaici le cabine inverter e di trasformazione sono collegate mediante cavidotti in MT alle rispettive cabine di parallelo.

Caratteristiche generali cavo interrato in MT

I cavi di energia in corrente alternata MT (30 kV) saranno trifasi del tipo unipolare con conduttore a corda rotonda compatta in alluminio da 18/30 kV del tipo ARE4H5EX idonei per tale tipo di applicazione. I cavi di energia saranno posati nel terreno protetti da appositi copri cavi con pozzetti di ispezione intervallati ogni 40-50 m. ed in corrispondenza di ogni cambio di direzione. All'interno delle cabine i cavi saranno posati in cunicoli e/o su canaline. I cavi in MT all'interno di ciascun campo che escono dalle cabine inverter/trasformazione e giungono alle cabine di parallelo saranno in alluminio del tipo ARE4H5EX 18/30 kV e avranno sezioni 1x(3x1)x240 mmq. I cavi che dalle 2 cabine

di parallelo MT andranno verso la SE di Utenza saranno del tipo ARE4H5EX 18/30 kV e avranno sezioni 1x(3x1)x400 mmq.I cavi MT avranno le seguenti caratteristiche :

Tipo di Cavo	ARE4H5EX 18/30 kV EPR
Conduttore	Alluminio
Isolante	Mescola di Polietilene (qualità DIX 8)
Tensione Nominale	18/30 kV
Tensione Isolamento	36 kV
Circuito	RST
Cos ф	0.9
Temperatura Funzionamento	90 °C
Temperatura Corto Circuito	250 °C
Categoria	Α
Profondità di Posa	1.2 m
Distanza Circuiti Adiacenti	15 cm
Tipo di Posa	Direttamente interrato in terra umida
Protezione Meccanica	Elementi rettangolari in materiale
Protezione Meccanica	composito a matrice di resina
Codice Posa	63
Temperatura Ambiente	20 °C

Temperatura di posa

Durante le operazioni di installazione la temperatura dei cavi per tutta la loro lunghezza e per tutto il tempo in cui essi possono venir piegati o raddrizzati non deve essere inferiore a quanto specificato dal produttore del cavo.

Segnalazione della presenza dei cavi

Al fine di evitare danneggiamenti nel caso di scavo da parte di terzi, lungo il percorso dei cavi dovrà essere posato sotto la pavimentazione un nastro di segnalazione in polietilene. Nell'attraversamento di aree private fino all'imbocco delle strade pubbliche dovrà essere segnalata la presenza dell'elettrodotto interrato posizionando l'opportuna segnaletica.

Prova di isolamento

Successivamente alle operazioni di posa e comunque prima della messa in servizio, l'isolamento dei cavi a MT, dei giunti e dei terminali, sarà verificato attraverso opportune misurazioni secondo le CEI 11-17. La tensione di prova dell'isolamento in corrente continua dovrà essere pari a quattro volte la tensione nominale stellata.

Giunzioni e terminazioni MT

Per le giunzioni elettriche si devono utilizzare connettori di tipo a compressione diritti in alluminio adatti alla giunzione di cavi in alluminio ad isolamento estruso con ripristino dell'isolamento con giunti diritti adatti al tipo di cavo in materiale retraibile. Per la terminazione dei cavi scelti e per l'attestazione sui quadri in cabina si devono applicare terminali unipolari per interno con isolatore in materiale retraibile e capicorda di sezione idonea.

Tubazioni

In casi particolari e secondo la necessità la protezione meccanica potrà essere realizzata mediante tubazioni di materiale plastico (PVC), flessibili, di colore rosso, a doppia parete con parete interna liscia, rispondenti alle norme CEI EN 50086-1 e CEI EN 50086-2-4 e classificati come normali nei confronti della resistenza all'urto.

6. CAVIDOTTO INTERRATO IN AT 150 KV

Al fine di connettere l'impianto fotovoltaico di progetto alla Rete Elettrica Nazionale RTN come da preventivo di connessione rilasciato da Terna SPA – STMG cod. id. 202100644 – regolarmente accettata dal proponente dell'iniziativa, sarà necessario realizzare un cavidotto in AT a 150 kV , singola terna che colleghi in antenna la SE di utenza 30/150 kV al futuro ampliamento della Stazione Elettrica di trasformazione (SE) della RTN 380/150 kV di Deliceto . Il cavidotto in AT a 150 kV in singola terna sarà ubicato nel Comune di Ascoli Satriano (Fg). Esso si dipartirà dal palo gatto della SE di Utenza 30/150 kV che verrà ubicata in località La Mezzana del comune di Ascoli Satriano al F. 57 p. 86 e raggiungerà lo stallo di connessione assegnato da Terna. Esso avrà una lunghezza media di circa 169 metri e sarà posato interamente nella particella 86 del Foglio 57 Di Ascoli Satriano in cui verrà realizzata anche il futuro ampliamento della SE RTN 380/150 kV di Deliceto . Tra le possibili soluzioni è stato individuato il tracciato più funzionale, che tenga conto di tutte le esigenze e delle possibili ripercussioni sull'ambiente locale, con riferimento alla legislazione nazionale e regionale vigente in materia. Non vengono attraversati canali e corsi d'acqua.

Caratteristiche tecniche del cavo in AT

Scopo del presente paragrafo è quello di fornire le caratteristiche tecniche ed elettriche dei cavi che verranno utilizzati per il collegamento in alta tensione.

Caratteristiche elettriche

Le caratteristiche elettriche principali del sistema elettrico in alta tensione sono:

• sistema elettrico 3 fasi

• frequenza c.a. 50 Hz

M.E. Free Srl — Sede: Via Athena nr. 29, 84047 Capaccio Paestum (Sa) — Tel. 0828-1999995 — e-mail: mefreeinfo@gmail.com

• tensione nominale 150 kV

• tensione massima 170 kV

categoria sistema

A

Tensione di isolamento del cavo

Dalla tab.2.1.06 della norma CEI 11-17 in base a tensione nominale e massima del sistema la tensione di isolamento U0 corrispondente è 87 kV. Temperature massime di esercizio e di cortocircuito massima temperatura di esercizio è di 90°C mentre quella di cortocircuito è di 250°C.

Caratteristiche funzionali e costruttive

- Conduttore a corda rigida rotonda, compatta e tamponata di alluminio;
- Schermo semiconduttore;
- Isolante costituito da uno strato di polietilene reticolato estruso insieme ai due strati semiconduttivi;
- Schermo semiconduttore;
- Dispositivo di tamponamento longitudinale dell'acqua;
- Schermo metallico, in piombo o alluminio, o a fili di rame ricotto o a fili di alluminio non stagnati opportunamente tamponati, o in una loro combinazione e deve contribuire ad assicurare la protezione meccanica del cavo, assicurare la tenuta ermetica radiale, consentire il passaggio delle correnti corto circuito;
- Rivestimento protettivo esterno costituito da una guaina di PE nera e grafitata.

Figura 6-1 Caratteristiche tecniche Cavo AT per trasporto energia

7. SOTTOSTAZIONE MT/AT DI UTENZA

La stazione sarà del tipo all'aperto. La stazione elettrica (SE) di utenza 30/150 kV sarà ubicata nel Comune di Ascoli satriano (Fg) al Foglio 56 p. 86. La stazione elettrica avrà le seguenti caratteristiche tecniche principali:

Caratteristiche tecniche generali

Tensione di esercizio: 150 kV
Tensione massima: 170 kV
Frequenza: 50 Hz

La sottostazione elettrica di trasformazione lato Utente 30/150 kV sarà essenzialmente composta da 2 trasformatori aventi le seguenti caratteristiche tecniche:

Trasformatore di potenza 25 MVA

Caratteristiche tecniche

Costruttore:

Tipo di servizio:

Temperatura ambiente:

Classe di isolamento:

ABB

continuo

40 °C

A

Metodo di raffreddamento: ONAN/ONAF Tipo d'olio: minerale Nynas

Altezza d'installazione: ≤ 1000 m Frequenza nominale: 50 Hz

Potenza nominale: ONAN/ONAF 65 MVA + 25 MVA

Tensioni nominali (a vuoto)

- AT: 150 kV - MT: 30 kV

Regolazione sotto carico su AT: +/-10 x 1.25 %

Tipo di commutatore sotto carico: ABB

1) Collegamento fasi

- avvolgimento AT:	stella
- avvolgimento MT:	triangolo
Gruppo di collegamento:	YNd11

2) Classe d'isolamento

- lato AT:	170 kV
- lato MT:	36 kV

3) Tensione di tenuta a frequenza industriale

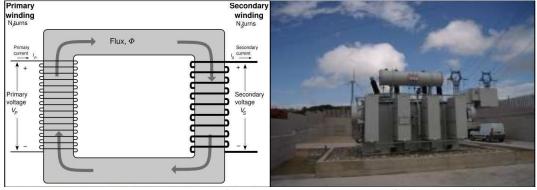
- lato AT:	275 kV
- lato MT:	70 kV

4) Tensione di tenuta ad impulso atmosferico

- lato AT:	650 kV
- lato MT:	170 kV

5) Sovratemperature ammesse

- Olio:	60 °C
- media avvolgimenti:	65 °C
- nucleo magnetico:	75 °C



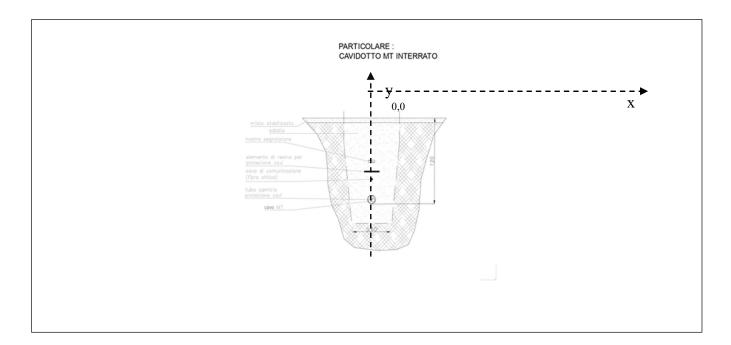
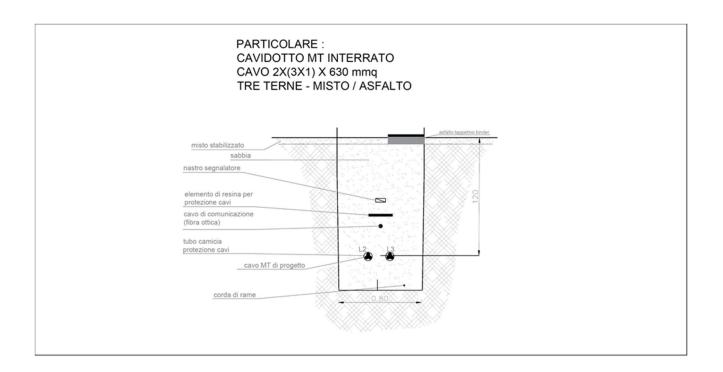

Figura 7-1 Schema trasformatore MT/AT

Figura 7-2 Trasformatore MT/AT

Dai risultati ottenuti dalla simulazione con il software NIR si osserva che tutte le linee MT di collegamento tra le cabine di trasformazione all'interno dei campi fino alle cabine di parallelo rispettano l'obiettivo di qualità di 3 μ T in corrispondenza del piano di campagna. Le fasce di rispetto sono da definirsi in conformità alla metodologia di calcolo emanata dal decreto del Ministero


dell'Ambiente e della Tutela del Territorio e del Mare del 29 maggio 2008 e pubblicato sulla G.U. n, 156 del 05.07.08 nel supplemento ordinario della G.U. n° 160. Il decreto suddetto definisce "fascia di rispetto" lo spazio circostante un elettrodotto, che comprende tutti i punti al di sopra e al di sotto del livello del suolo, caratterizzati da una induzione magnetica di intensità maggiore o uguale all'obiettivo di qualità come prescritto dall'art. 4, comma 1 lettera h della Legge Quadro n. 36 del 22 febbraio 2001, all'interno delle fasce di rispetto non è consentita alcuna destinazione di edifici ad uso residenziale, scolastico, sanitario, ovvero un uso che comporti una permanenza superiore a 4 ore. L'art. 4 comma 2 del D.P.C.M. 8 luglio 2003 fissa "l'obiettivo di qualità" in 3 μ T per il valore dell'induzione magnetica, da intendersi come mediana dei valori nell'arco delle 24 ore nelle normali condizioni di esercizio. Per la determinazione della fascia di rispetto relativa al cavidotto MT interrato si individua la distanza dall'asse del cavo in corrispondenza della quale si raggiunge il valore 3 μ T. Il calcolo dei valori di induzione magnetica dei cavidotti che partono dalle cabine di paralle CB// 1, CB//2 e vanno verso la sottostazione elettrica di utenza è riportato di seguito. Si è considerata la configurazione di posa a trifoglio del cavidotto posato a 1,2 metri di profondità.

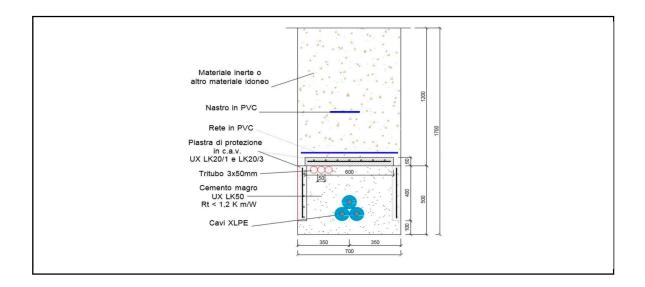
Linea L 1 = cavo unipolare in configurazione a trifoglio 3x1x400 mm2 Corrente massima = 399,81 A.

Linea L 2 = cavo unipolare in configurazione a trifoglio 3x1x400 mm2 Corrente massima =676 A

Linea L 3 e L4 = cavo unipolare in configurazione a trifoglio 2x3x1x630 mm2 Corrente massima = 812,4 A

Linee L 5,L6,L7 = cavo unipolare in configurazione a trifoglio 3x1x630 mm2 Corrente massima = 560,52 A

Il campo di induzione magnetica sul piano di campagna dato dalle terne di cavo delle linee L1 -L2 – L3-L4-L5-L6-L7 che arrivano alla sottostazione elettrica SE di Utenza scende sotto il valore dei $3\mu T$ per cui non è necessario definire delle **DPA.** I tracciati di posa dei cavi sono stato studiati in modo che il valore di induzione magnetica sia sempre inferiore a $3\mu T$ in corrispondenza dei ricettori sensibili (abitazioni e aree in cui si prevede una permanenza di persone per più di 4 ore nella giornata), pertanto è esclusa la presenza di tali recettori all'interno della fascia calcolata. Anche per i cavidotti in MT interni ai campi fotovoltaici dove in ogni caso i valori dei campi di induzione magnetica sono inferiori a $3\mu T$ si troveranno collocati in zone dove la presenza umana sarà molto scarsa, solo periodicamente durante le ispezioni di manutenzione. In fine poiché i cavi MT utilizzati sono schermati il **campo elettrico** esterno allo schermo è nullo, non è rappresentato il calcolo del campo elettrico prodotto dalla linea in oggetto.



8. LINFA AT IN CORRENTE ALTERNATA

Per la realizzazione del cavidotto di collegamento in AT tra la stazione elettrica di utenza e la stazione satellite di Terna a 150 kV , sono stati considerati tutti gli accorgimenti che consentono la minimizzazione degli effetti elettrici e magnetici sull'ambiente e sulle persone. In particolare, la scelta di operare con linee in AT interrate permette di eliminare la componente elettrica del campo, grazie all'effetto schermante del terreno. Nel caso in questione, lo studio del campo magnetico è stato effettuato, alla tensione nominale di 150 kV, sul seguente tratto di cavidotto così costituito:

LINEA AT - una terna di conduttori di sezione 1600 mm2 percorsa da corrente massima pari a 1333A considerando che tale linea AT dovrà trasportare anche l'energia prodotta da tutti gli altri impianti che sottoscriveranno l'accordo di condivisione dello stallo per una potenza complessiva di circa 200 MW . Pertanto nella valutazione del campo elettromagnetico si è considerato il caso di massima immissione di potenza in rete generata da tutti gli impianti di produzione che utilizzano tale cavidotto in AT .

I valori del campo magnetico sono stati misurati a livello del piano di campagna. Più precisamente, i risultati di seguito riportati illustrano, per ognuna delle situazioni richiamate, l'andamento del campo magnetico in funzione della distanza dall'asse dei conduttori e l'andamento del campo magnetico su di un asse ortogonale all'asse dei conduttori.

LINEA AT - Cavidotto AT ad una terna di sezione 1600 mm2 interrata a 1.7 m dal piano di campagna

9. STAZIONE ELETTRICA DI UTENZA

Le apparecchiature previste e le geometrie dell'impianto di AT sono analoghe a quelle di altri impianti già in esercizio, dove sono state effettuate verifiche sperimentali dei campi elettromagnetici al suolo nelle diverse condizioni di esercizio, con particolare attenzione alle zone di transito del personale (strade interne e fabbricati). I valori di campo elettrico al suolo risultano massimi in corrispondenza delle apparecchiature AT a 150 kV con valori attorno a qualche kV/m, ma si riducono a meno di 1 kV/m a ca. 10 m di distanza da queste ultime. I valori di campo magnetico al suolo sono massimi nelle stesse zone di cui sopra ed in corrispondenza delle via cavi, ma variano in funzione delle correnti in gioco: con correnti sulle linee pari al valore di portata massima in esercizio normale delle linee si hanno valori pari a qualche decina di microtesla, che si riducono a meno di 3 μ T a 4 m di distanza dalla proiezione dell'asse della linea. I valori in corrispondenza della recinzione della stazione sono notevolmente ridotti ed ampiamente sotto i limiti di legge.

La stazione sarà del tipo all'aperto. La stazione elettrica (SE) di utenza 30/150 kV sarà ubicata nel Comune di Ascoli Satriano (Fg) al Foglio 57 p. 86. La configurazione della singola stazione di trasformazione prevede un montante trasformatore di potenza 30/150 kV con n.1 trasformatore da 55/60 MVA. All'interno della stazione è previsto un edificio, suddiviso in vari locali: controllo e protezioni, quadri MT, misure (con accesso anche dall'esterno), servizi igienici, servizi ausiliari e gruppo elettrogeno.

Trasformatore trifase di potenza 30/150 kV, 55/60 MVA, ONAN/ONAF, gruppo vettoriale YNd11, provvisto di commutatore sotto carico lato AT ($150 \pm 10x1,25\%/30$ kV) e cassonetto di contenimento cavi MT. Con scaricatori incorporati dimensionato per allogare n.3 terne di cavi MT da 400mm2 Cu.

• Tipo	immerso in olio
Tipo di servizio	continuo
Temperatura ambiente	40ºC
Classe di isolamento	A
Metodo di raffreddamento	ONAN/ONOF
Tipo d'olio:	minerale conforme CEI-EN 60296
Altezza d'installazione	<=100 m
Frequenza nominale	50 Hz
Potenza nominale: ONAN/ONAF	55/60 MVA
Tensioni nominali (a vuoto):	
- AT	150 kV
- MT	30 kV
Regolazione tensione AT:	± 10x1,25 %

Tipo di commutatore (CSC):	sotto carico (CEI EN 60214- 1)	
Collegamento fasi:		
- avvolgimento AT	Y stella (con neutro accessibile)	
- avvolgimento MT	Δ triangolo	
Gruppo di collegamento	YNd11	
Classe d'isolamento:		
-Lato AT		
-Lato MT		
Tensione di Tenuta a Frequenza		
Industriale		
-Lato AT		
-Lato MT		
Tensione di tenuta ad impulso		
atmosferico:		
-Lato AT		
-Lato MT		
Sovratemperature ammesse:		
- massima temperatura ambiente	40ºC	
- media avvolgimenti	65ºC	
- nucleo magnetico	75ºC	
PERDITE DI GARANZIE IEC		
PERDITE A VUOTO A Un	<= 30 kV	
CORRENTE A VUOTO A Un	0,2%	
Perdite Cu a 75ºC	<= 165 kV	
Tensione di corto circuito Vcc:	13%	
Massimo livello presisone sonora:	70 dB a 0,3 m	

Sezionatore di linea, per la derivazione dalle sbarre condivise 150 kV, tripolare rotativo orizzontale a tre colonne/fase, con terna di lame di messa a terra, completo di comando motorizzato per le lame principali e manuale per le lame di terra:

Norme di riferimento:	CEI EN 62271
Tensione nominale:	170 kV
Corrente nominale:	1250 A
Corrente nominale di breve durata:	

valore efficacevalore di cresta	31,5 kVA
	80,0 kA
Durata ammissibile della corrente di breve durata	1s
Tensione di prova ad impulso atmosferico:	
Verso massa	750 kV
Sulla distanza disezionamento	860 kV
Tensione di tenuta a frequenza di esercizio	
(1m)	
Contatti ausiliari disponibili	
- verso terra	325 kV
- sulla distanza di sezionamento	375 kV 4NA+4NC
Alimentazione circuiti ausiliari:	325 kV
- motore:	110 Vcc +10% -15%
- circuiti di comando:	110 Vcc +10% -15%
- resistenza di riscaldamento:	230 Vca
Isolatori tipo:	C6-750
linea di fuga:	25 mm/KV

10.1 Opere civili per la realizzazione della sottostazione di trasformazione SE di Utenza 30/150 kV

La posizione della sottostazione è stata scelta in considerazione del preventivo di connessione che prevede il collegamento dell'impianto in antenna a 150 kV con il futuro ampliamento della Stazione Elettrica della RTN a 380/150 kV di Deliceto. Il sito della sottostazione è stato scelto in modo da limitare la lunghezza del collegamento AT ed è ubicato al F. 57 p. 86 del Comune di Ascoli Satriano. La sottostazione occuperà una superficie di circa 25x34 m e sarà inglobata all'interno di un'unica area di condivisione con altri produttori che avrà un'estensione media di circa 100x100 m. e realizzata in opera con i basamenti per le attrezzature rialzati di circa 2.0 m rispetto al piano di campagna.

Figura 9-1 Sottostazione tipo con apparecchiatura ad alta tensione, trasformatore,

All'interno della sottostazione dovranno essere realizzate le seguenti opere civili:

- > Recinzione esterna ed interna;
- > Strade di circolazione, accesso e piazzali carrabili;
- Costruzione edifici;
- Formazioni dei basamenti delle apparecchiature elettriche;
- Formazione delle vasche di fondazione per eventuali reattori;
- Formazione del basamento in c.a. e posa di un eventuale shelter.
- Realizzazione di fondazione per eventuale palo antenna.

Per la realizzazione della recinzione sarà necessario eseguire scavi in sezione ristretta con mezzo meccanico ed il materiale di risulta, qualora non utilizzato in loco verrà portato alla pubblica discarica. I getti di calcestruzzo verranno eseguiti con cemento a presa lenta (R.325), ed il dosaggio previsto sarà di q.li 2,5 per le fondazioni, e q.li 3,00 per i plinti ed i pilastri di sostegno dei cancelli d'ingresso. Il getto dei calcestruzzi a vista viene armato con casseri piallati, mentre nel getto dei plinti e dei pilastri d'ingresso sarà posto in opera l'armatura in barre di ferro tondo. La recinzione sarà costituita ove necessario, da una parte della sua altezza, gettata in opera, e da una parte in lastre di cemento prefabbricato intercalate ogni ml. 2,00-2,50 dai pilastrini pure in getto prefabbricato. L'altezza fuori terra della recinzione, rispetto alla parte accessibile dall'esterno, deve essere almeno di metri 2. L'opera sarà completata inserendo n°1 cancello carrabile di tipo scorrevole con luce netta di 10.00 m.

L'edificio per contenere tutte le apparecchiature sarà di dimensioni 23.0x5 metri, ed è suddiviso in:

- -Locale generale
- -Locale BT
- -Locale MT-TSA
- -Locale contatori di Misura

Le fondazioni dell'edificio saranno in c.a., le pareti esterne saranno in poroton o in c.a., mentre le pareti interne saranno realizzate in blocchi di forati; saranno previsti, tra i vari locali, dei cunicoli utilizzati per il percorso cavi tra le varie apparecchiature poste all'interno dell'edificio. Per tutti i locali è prevista un altezza fuori terra 3.00 m come quota finito. Per la realizzazione degli edifici si eseguiranno degli scavi con mezzo meccanico, sia in sezione ristretta per le opere interrate, sia in sezione aperta per lo sbancamento di terreno coltivo per la formazione di massicciata. I getti di calcestruzzo verranno eseguiti con cemento a lenta presa (R.325), ed il dosaggio previsto sarà di q.li 2,5 per la formazione delle fondazioni e dei muri perimetrali in elevazione, fino a quota d'imposta della prima soletta e a q.li 3,00 per i plinti e le opere in cemento armato quali pilastri, travi, gronda e gradini. Le opere di getto in calcestruzzo vengono armate con barre di ferro tonde omogeneo di adeguato diametro risultante dai calcoli dell'ingegnere incaricato. Le murature esterne sono in foratoni semiportanti dello spessore di cm 25 e vengono poste in opera con malta cementizia dosata a q. li 2. Il solaio superiore è piano con pendenze minime per lo smaltimento delle acque meteoriche, mentre il solaio del piano rialzato ha i conici di altezza di cm.18 in quanto deve sopportare pesi maggiori per le apparecchiature elettriche che verranno posate. Gli intonaci, sia esterni che interni, vengono eseguiti con il rustico in malta di cemento e soprastante stabilitura di cemento. La pavimentazione dell'intercapedine viene realizzata con sottofondo in ghiaia grossa e getto di calcestruzzo per formazione della caldana. La soletta di copertura dell'edificio viene isolata dalle intemperie con la posa di un massetto in calcestruzzo impastato con granulato di argilla espansa, di una membrana impermeabile armata in lamina di alluminio stesa a caldo, dello spessore di mm 3, di pannelli in poliuretano espanso rivestito con cartonfeltro bitumato dello spessore di cm 4 e soprastante membrana sintetica elastomerica applicata su vernice primer bituminosa. Tutti i serramenti esterni ed interni sono in alluminio con taglio termico completi di ogni accessorio (ferramenta di chiusura e manovra, maniglie, cerniere ecc); le aperture esterne sono munite di rete di protezione dalle maglie di 2x2 cm per evitare l'entrata di corpi estranei dall'esterno e verniciate ad una mano di minio antiruggine e due di vernice a smalto sintetico. Per la realizzazione dei basamenti e fondazioni locali si eseguiranno scavi in sezione ristretta con mezzo meccanico per la formazione delle fondazioni, dei pozzetti e dei condotti, e qualora il materiale risultante non fosse riutilizzato verrà trasportato alla pubblica discarica.

I getti di calcestruzzo sono confezionati con cemento a lenta presa (R.325) e sono così distinti:

- Dosati a ql.1,5 per magrone di sottofondo ai basamenti;
- Dosati a ql.2,5 per murature di sostegno apparecchiature e per formazione dei vari pozzetti;
- Dosati a ql.3 per basamenti di sostegno per le apparecchiature e le opere di c.a., per la formazione della soletta di copertura del serbatoio di raccolta olio dei trasformatori. Per l'esecuzione dei getti vengono usati casseri in tavole di legno.

Le vasche di raccolta olio dei trasformatori è intonacata ad intonaco rustico con soprastante lisciatura a polvere di cemento per rendere le pareti impermeabili ed evitare la perdita di olio. Nei condotti vengono posati dei tubi in pvc in numero adeguato secondo le loro funzionalità e vengono ricoperti con getto di calcestruzzo magro, dosato a ql. 1,5. Tutti i pozzetti sono completi di chiusini in cemento per ispezione. Vengono posati tubi in pvc del diametro opportuno per raccolta e scarico delle acque piovane del piazzale, e saranno ricoperti di calcestruzzo dosato a ql.1,5 di

cemento. Si prevede di completare l'opera dei drenaggi con la posa di pozzetti stradali a caditoia, completi di sifone incorporato e di griglia in ghisa del tipo pesante carrabile. Il piazzale viene realizzato con massicciata in misto di cava o di fiume priva di sostanze organiche, di pezzatura varia e continua con elementi fino ad un diametro massimo di 12 cm. Viene posata a strati non superiori a 30 cm, costipata meccanicamente con rullo vibratore adatto e viene sagomata secondo le pendenze di progetto per un miglior scarico delle acque nei pozzetti a griglia. Sovrastante alla massicciata viene posata la pavimentazione bituminosa in bitumato a caldo per uno spessore compreso di cm. 10 e rullato con rullo vibratore. Superiormente viene steso il tappeto d'usura in conglomerato bituminoso, tipo bitulite, confezionato a caldo, steso per uno spessore con nesso di cm. 2,5 con rullo vibrante. L'area non costruita della sottostazione potrà essere destinata ad un eventuale futuro accumulo.

10. OPERE EDILI

11.1 Recinzione dei Campi e Cancellate

La posizione della sottostazione è stata scelta in considerazione del preventivo di connessione che prevede il collegamento dell'impianto in antenna a 150 kV con il futuro ampliamento della Stazione Elettrica della RTN a 380/150 kV di Deliceto. Il sito della sottostazione è stato scelto in modo da limitare la lunghezza del collegamento AT ed è ubicato al F. 57 p. 86 del Comune di Ascoli Satriano. La sottostazione occuperà una superficie di circa 25x34 m e sarà inglobata all'interno di un'unica area di condivisione con altri produttori che avrà un'estensione media di circa 100x100 m. e realizzata in opera con i basamenti per le attrezzature rialzati di circa 2.0 m rispetto al piano di campagna.

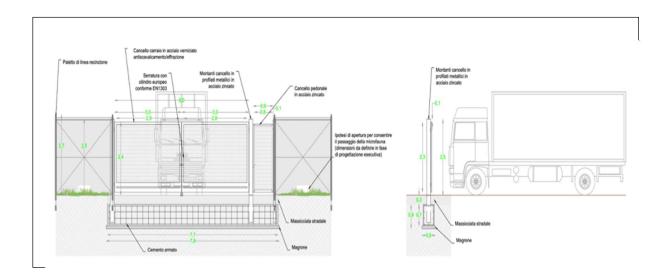


Figura 10-1 Particolare costruttivo cancello di recinzione all'entrata di ogni campo fotovoltaico

All'interno della sottostazione dovranno essere realizzate le seguenti opere civili:

- Recinzione esterna ed interna;
- Strade di circolazione, accesso e piazzali carrabili;
- Costruzione edifici;
- Formazioni dei basamenti delle apparecchiature elettriche;
- Formazione delle vasche di fondazione per eventuali reattori;
- Formazione del basamento in c.a. e posa di un eventuale shelter.
- Realizzazione di fondazione per eventuale palo antenna.

Per la realizzazione della recinzione sarà necessario eseguire scavi in sezione ristretta con mezzo meccanico ed il materiale di risulta, qualora non utilizzato in loco verrà portato alla pubblica

discarica. I getti di calcestruzzo verranno eseguiti con cemento a presa lenta (R.325), ed il dosaggio previsto sarà di q.li 2,5 per le fondazioni, e q.li 3,00 per i plinti ed i pilastri di sostegno dei cancelli d'ingresso. Il getto dei calcestruzzi a vista viene armato con casseri piallati, mentre nel getto dei plinti e dei pilastri d'ingresso sarà posto in opera l'armatura in barre di ferro tondo. La recinzione sarà costituita ove necessario, da una parte della sua altezza, gettata in opera, e da una parte in lastre di cemento prefabbricato intercalate ogni ml. 2,00-2,50 dai pilastrini pure in getto prefabbricato. L'altezza fuori terra della recinzione, rispetto alla parte accessibile dall'esterno, deve essere almeno di metri 2. L'opera sarà completata inserendo n°1 cancello carrabile di tipo scorrevole con luce netta di 10.00 m.

L'edificio per contenere tutte le apparecchiature sarà di dimensioni 23.0x5 metri, ed è suddiviso in:

- -Locale generale
- -Locale BT
- -Locale MT-TSA
- -Locale contatori di Misura

Le fondazioni dell'edificio saranno in c.a., le pareti esterne saranno in poroton o in c.a., mentre le pareti interne saranno realizzate in blocchi di forati; saranno previsti, tra i vari locali, dei cunicoli utilizzati per il percorso cavi tra le varie apparecchiature poste all'interno dell'edificio. Per tutti i locali è prevista un altezza fuori terra 3.00 m come quota finito. Per la realizzazione degli edifici si eseguiranno degli scavi con mezzo meccanico, sia in sezione ristretta per le opere interrate, sia in sezione aperta per lo sbancamento di terreno coltivo per la formazione di massicciata. I getti di calcestruzzo verranno eseguiti con cemento a lenta presa (R.325), ed il dosaggio previsto sarà di q.li 2,5 per la formazione delle fondazioni e dei muri perimetrali in elevazione, fino a quota d'imposta della prima soletta e a q.li 3,00 per i plinti e le opere in cemento armato quali pilastri, travi, gronda e gradini. Le opere di getto in calcestruzzo vengono armate con barre di ferro tonde omogeneo di adeguato diametro risultante dai calcoli dell'ingegnere incaricato. Le murature esterne sono in foratoni semiportanti dello spessore di cm 25 e vengono poste in opera con malta cementizia dosata a g.li 2. Il solaio superiore è piano con pendenze minime per lo smaltimento delle acque meteoriche, mentre il solaio del piano rialzato ha i conici di altezza di cm.18 in quanto deve sopportare pesi maggiori per le apparecchiature elettriche che verranno posate. Gli intonaci, sia esterni che interni, vengono eseguiti con il rustico in malta di cemento e soprastante stabilitura di cemento. La pavimentazione dell'intercapedine viene realizzata con sottofondo in ghiaia grossa e getto di calcestruzzo per formazione della caldana. La soletta di copertura dell'edificio viene isolata dalle intemperie con la posa di un massetto in calcestruzzo impastato con granulato di argilla espansa, di una membrana impermeabile armata in lamina di alluminio stesa a caldo, dello spessore di mm 3, di pannelli in poliuretano espanso rivestito con cartonfeltro bitumato dello spessore di cm 4 e soprastante membrana sintetica elastomerica applicata su vernice primer bituminosa. Tutti i serramenti esterni ed interni sono in alluminio con taglio termico completi di ogni accessorio (ferramenta di chiusura e manovra, maniglie, cerniere ecc); le aperture esterne sono munite di rete di protezione dalle maglie di 2x2 cm per evitare l'entrata di corpi estranei dall'esterno e verniciate ad una mano di minio antiruggine e due di vernice a smalto sintetico. Per la realizzazione dei basamenti e fondazioni locali si eseguiranno scavi in sezione ristretta con mezzo meccanico per la

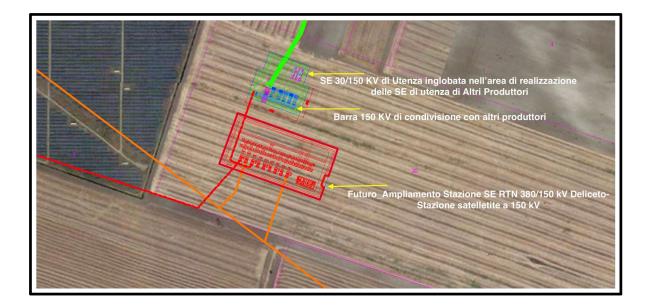
formazione delle fondazioni, dei pozzetti e dei condotti, e qualora il materiale risultante non fosse riutilizzato verrà trasportato alla pubblica discarica.

I getti di calcestruzzo sono confezionati con cemento a lenta presa (R.325) e sono così distinti:

- Dosati a ql.1,5 per magrone di sottofondo ai basamenti;
- Dosati a ql.2,5 per murature di sostegno apparecchiature e per formazione dei vari pozzetti;
- Dosati a ql.3 per basamenti di sostegno per le apparecchiature e le opere di c.a., per la formazione della soletta di copertura del serbatoio di raccolta olio dei trasformatori. Per l'esecuzione dei getti vengono usati casseri in tavole di legno.

Le vasche di raccolta olio dei trasformatori è intonacata ad intonaco rustico con soprastante lisciatura a polvere di cemento per rendere le pareti impermeabili ed evitare la perdita di olio. Nei condotti vengono posati dei tubi in pvc in numero adeguato secondo le loro funzionalità e vengono ricoperti con getto di calcestruzzo magro, dosato a ql. 1,5. Tutti i pozzetti sono completi di chiusini in cemento per ispezione. Vengono posati tubi in pvc del diametro opportuno per raccolta e scarico delle acque piovane del piazzale, e saranno ricoperti di calcestruzzo dosato a ql.1,5 di cemento. Si prevede di completare l'opera dei drenaggi con la posa di pozzetti stradali a caditoia, completi di sifone incorporato e di griglia in ghisa del tipo pesante carrabile. Il piazzale viene realizzato con massicciata in misto di cava o di fiume priva di sostanze organiche, di pezzatura varia e continua con elementi fino ad un diametro massimo di 12 cm. Viene posata a strati non superiori a 30 cm, costipata meccanicamente con rullo vibratore adatto e viene sagomata secondo le pendenze di progetto per un miglior scarico delle acque nei pozzetti a griglia. Sovrastante alla massicciata viene posata la pavimentazione bituminosa in bitumato a caldo per uno spessore compreso di cm. 10 e rullato con rullo vibratore. Superiormente viene steso il tappeto d'usura in conglomerato bituminoso, tipo bitulite, confezionato a caldo, steso per uno spessore con nesso di cm. 2,5 con rullo vibrante. L'area non costruita della sottostazione potrà essere destinata ad un eventuale futuro accumulo.

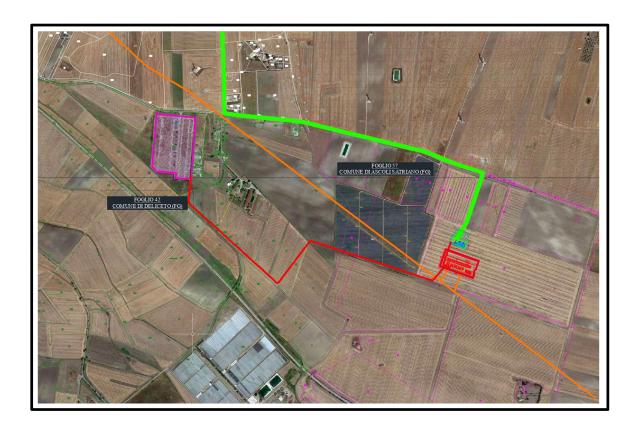
11.2 Connessione alla rete TERNA


L'Autorità per l'energia elettrica, il gas e rete idrica con la delibera ARG/elt99/08 (TICA)e s.m.i. stabilisce le condizioni per l'erogazione del servizio di connessione alle reti elettriche con obbligo di connessione di terzi per gli impianti di produzione di energia elettrica.

Il campo di applicazione è relativo anche ad impianti di produzione e si prefigge di individuare il punto di inserimento e la relativa connessione, dove per inserimento s'intende l'attività d'individuazione del punto nel quale l'impianto può essere collegato, e per connessione s'intende l'attività di determinazione dei circuiti e dell'impiantistica necessaria al collegamento.

L'impianto fotovoltaico della società **Catenaccio Solar Park srl** avrà una potenza installata in AC di 55 MW, ed il proponente ha ricevuto nella comunicazione Terna **TERNA/54801 del 07/07/2021** un preventivo di connessione (Codice Pratica **202100644**) per una potenza complessiva di 55 MW, da Terna S.p.A, che stabilisce come soluzione di connessione il collegamento in antenna a 150 kV con la sezione a 150 kV del futuro ampliamento della SE 380/150 KV della RTN di DELICETO. Si precisa che, la comunicazione citata è in capo alla società M.E. FREE srl e che è stata eseguita una voltura

della pratica della connessione, in base alla quale la società **Catenaccio Solar Park srl** ha ricevuto la titolarità della pratica. Al fine di razionalizzare l'utilizzo delle infrastrutture di rete, **Catenaccio Solar Park srl** dovrà condividere lo stallo di consegna RTN con gli impianti di altre società. Al fine di razionalizzare l'utilizzo delle infrastrutture di rete, sarà necessario condividere lo stallo in stazione con le iniziative di altri produttori pertanto in partenza , nell'area di realizzazione della stazione utente sarà necessario realizzare un'area per la condivisione tra i produttori della barra a 150 kV di partenza verso lo stallo che sarà assegnato da Terna .



11.3 Descrizione delle Opere RTN

Al fine di poter connettere alla RTN le iniziative di più produttori Terna ha optato per la realizzazione di una nuova Stazion e satellite a 150 kV da realizzarsi nelle vicinanze della SE RTN di Deliceto. 'ubicazione del satellite è prevista in un'area catastalmente identificata al fg.57 p.lla 86 del Comune di Ascoli Satriano. L'area necessaria per la sua realizzazione è pari a circa 18.200 mq. La stazione Satellite avrà le dimensioni di circa 191x96 metri e dovrà raccordarsi con dei raccordi a 150 kV alla esistente Stazione 380/150 kV di Deliceto ubicata a Nord Ovest a circa 1400 metri di distanza in linea d'aria. La lunghezza del raccordo interrato sarà pari a 1.873 m mentre, per quanto concerne i raccordi aerei alla linea AT Deliceto – Ascoli, la lunghezza complessiva sarà pari a 217 m (122 m + 95 m) e comporteranno la realizzazione di massimo n. 3 nuovi sostegni. Pertanto anche in questo caso saranno pienamente rispettate le attuali normative in materia di esposizione ai campi elettrico e magnetico.

Le interferenze previste per il raccordo interrato riguardano gli incroci con le linee AT di alcuni produttori già connessi, ossia Delsis/Luck Wind e Vibinum, oltre quelle con i produttori da connettere. Per i raccordi aerei non sono riscontrabili interferenze.

11.4 Opere civili

Per accedere al sito, per le operazioni di cantiere e per il funzionamento dell'impianto non sono necessarie opere sul sistema viario pubblico esistente, che è già ampiamente adeguato. Le principali opere civili consisteranno pertanto in:

- montaggio Strutture di Sostegno e fondazioni
- realizzazione della viabilità interna con strade sterrate
- realizzazione trincee per i cavi 30kV
- trincee per la raccolta acque piovane vasca raccolta acque piovane
- realizzazione della recinzione
- movimentazione terra per piccoli scavi vari e per appianamenti
- opere civili sottostazione SE di Utenza

11.5 Cavidotto AT 150 kV

Descrizione dell'opera.

Al fine di connettere l'impianto fotovoltaico di progetto alla Rete Elettrica Nazionale RTN come da preventivo di connessione rilasciato da Terna SPA – STMG cod. id. 202100644 – regolarmente accettata dal proponente dell'iniziativa, sarà necessario realizzare un cavidotto in AT a 150 kV, singola

terna che colleghi in antenna la SE di utenza 30/150 kV al futuro ampliamento della Stazione Elettrica di trasformazione (SE) della RTN 380/150 kV di Deliceto . Il cavidotto in AT a 150 kV in singola terna sarà ubicato nel Comune di Ascoli Satriano (Fg). Esso si dipartirà dal palo gatto della SE di Utenza 30/150 kV che verrà ubicata in località La Mezzana del comune di Ascoli Satriano al F. 57 p. 86 e raggiungerà lo stallo di connessione assegnato da Terna. Esso avrà una lunghezza media di circa 169 metri e sarà posato interamente nella particella 86 del Foglio 57 Di Ascoli Satriano in cui verrà realizzata anche il futuro ampliamento della SE RTN 380/150 kV di Deliceto . Tra le possibili soluzioni è stato individuato il tracciato più funzionale, che tenga conto di tutte le esigenze e delle possibili ripercussioni sull'ambiente locale, con riferimento alla legislazione nazionale e regionale vigente in materia. Non vengono attraversati canali e corsi d'acqua.

11.6 Caratteristiche tecniche del cavo in AT

Scopo del presente paragrafo è quello di fornire le caratteristiche tecniche ed elettriche dei cavi che verranno utilizzati per il collegamento in alta tensione.

Caratteristiche elettriche

Le caratteristiche elettriche principali del sistema elettrico in alta tensione sono:

• sistema elettrico 3 fasi

• frequenza c.a. 50 Hz

• tensione nominale 150 kV

• tensione massima 170 kV

• categoria sistema A

11.7 Tensione di isolamento del cavo

Dalla tab.2.1.06 della norma CEI 11-17 in base a tensione nominale e massima del sistema la tensione di isolamento U0 corrispondente è 87 kV. Temperature massime di esercizio e di cortocircuito massima temperatura di esercizio è di 90°C mentre quella di cortocircuito è di 250°C.

Caratteristiche funzionali e costruttive

I cavi in progetto, con isolamento in XLPE e conduttore in alluminio di sezione pari a 1600 mm, sono formati secondo il seguente schema costruttivo (tabella tecnica TERNA UX LK101):

- Conduttore a corda rigida rotonda, compatta e tamponata di alluminio;
- Schermo semiconduttore;
- Isolante costituito da uno strato di polietilene reticolato estruso insieme ai due strati semiconduttivi;
- Schermo semiconduttore;

- Dispositivo di tamponamento longitudinale dell'acqua;
- Schermo metallico, in piombo o alluminio, o a fili di rame ricotto o a fili di alluminio non stagnati opportunamente tamponati, o in una loro combinazione e deve contribuire ad assicurare la protezione meccanica del cavo, assicurare la tenuta ermetica radiale, consentire il passaggio delle correnti corto circuito;
- Rivestimento protettivo esterno costituito da una guaina di PE nera e grafitata.

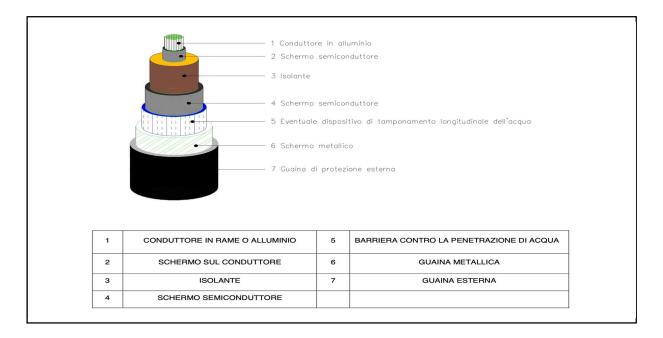


Figura 11-2 caratteristiche tecniche Cavo AT per trasporto energia

La tipologia di posa standard prevede la posa in trincea, con disposizione dei cavi a "Trifoglio" o in "Piano" (per l'elettrodotto in cavo interrato in esame è prevista la posa a "trifoglio"),

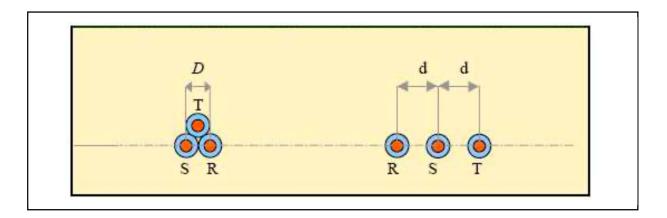


Figura 11-3 Modalità di posa cavo AT

secondo le modalità riportate nel tipico di posa contenuto nell'elaborato Particolari costruttivi di cui sintetizziamo gli aspetti caratteristici. I cavi saranno posati mediante uno scavo in trincea della larghezza di 0,7 m ad una profondità standard di -1,7 m (quota piano di posa), su di un letto di sabbia o di cemento magro dallo spessore di cm. 10 ca. cavi saranno ricoperti sempre con il medesimo tipo di sabbia o cemento, per uno strato di cm.40, sopra il quale la quale sarà posata una lastra di protezione in C.A. Ulteriori lastre saranno collocate sui lati dello scavo, allo scopo di creare una protezione meccanica supplementare. La restante parte della trincea sarà riempita con materiale di risulta e/o di riporto, di idonee caratteristiche.

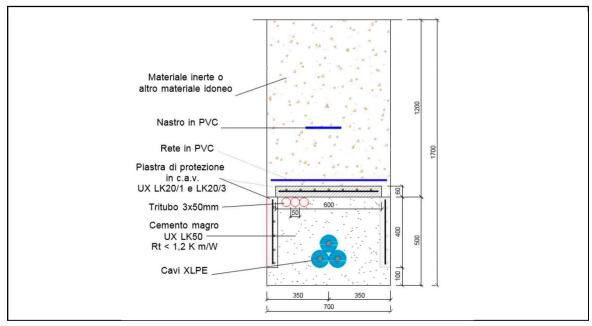


Figura 11-4 Particolare di Posa Cavidotto AT

11. FASE DI CANTIERE

Il progetto in esame di un parco fotovoltaico per la produzione di energia elettrica di potenza complessiva in DC pari a 75.489,04 kWp e quindi con una potenza di immissione in rete in corrente alternata massima di 55.000 kW è del tipo Grid -Connected, ossia l'energia verrà immessa nella rete di distribuzione e venduta senza ricorso ad incentivi. Al fine di abbreviare i tempi di realizzazione dell'opera e di messa in esercizio dell'impianto fotovoltaico il cantiere sarà suddiviso in tre macro aree che potranno operare in maniera indipendente uno dall'altro e senza interferire fino a portare a compimento le opere assegnate. I tre sotto cantieri saranno i seguenti:

- Cantiere per realizzazione campi fotovoltaici
- Cantiere per realizzazione cavidotti in MT esterni ai campi fotovoltaici fino alla SE di utenza
- Cantiere per realizzazione sottostazione elettrica di utenza ed opere di connessione alla RTN

Nella realizzazione dei 3 campi fotovoltaici costituenti il generatore fotovoltaico, dopo l'allestimento dei baraccamenti per il personale lavorativo e gli uffici della direzione lavori e sicurezza (O&M building) si procederà ad effettuare le seguenti operazioni e lavorazioni:

- 1) Approvvigionamenti di tutti i materiali necessari in cantiere
- 2) Rilievi e perimetrazioni di ciascun campo fotovoltaico
- 3) Preparazione terreno per il montaggio delle strutture portanti i moduli fotovoltaici.

Le aree ritenute idonee al posizionamento dei moduli fotovoltaici verranno ove necessario, visto che i terreni sono per la maggior parte pianeggianti, livellate con mezzi meccanici in base all'andamento del terreno. Questo intervento non comporterà nessun esubero di terreno il quale verrà cosparso nelle aree del sito che presentano cavità da colmare.

4) <u>Posa strutture portanti i moduli fotovoltaici</u>

Le strutture portanti come descritto precedentemente sono costituite da telai in acciaio inossidabile ancorate alle loro estremità a dei pali che saranno infissi nel terreno fino alla profondità di 1,5 m. Tali pali avranno la parte terminale a forma conica e saranno provviste di pale elicoidali per favorirne l'infissione nel terreno e aumentarne la resistenza laterale anche in caso di maggiori sollecitazioni alla struttura dalla forza del vento.

- 5) Realizzazione strade interne ai Campi fotovoltaici
- 6) Realizzazione platee di appoggio per cabine di trasformazione ed inverter, parallelo e box di campo
- 7) <u>Scavo, posa e rinterro cavidotti MT interno ai Campi</u>
- 8) Realizzazione delle recinzioni e dei cancelli di accesso
- 9) Montaggio dei moduli fotovoltaici sulle strutture
- 10) Posa Cabine prefabbricate per inverter-trasformatori, cabine di parallelo
- 11) <u>Cablaggi dei cavi solari, BT, MT e assemblamento cabine inverter e trasformazione e di parallelo</u>
- 12) Montaggio sistemi di videosorveglianza e controllo
- 13) Realizzazione opere di mitigazione ambientali

La seconda area di cantiere si occuperà della realizzazione dei cavidotti in MT di collegamento tra le cabine di parallelo dei Campi fotovoltaici e tra queste sino alla sottostazione elettrica di trasformazione di Utenza. La posa dei cavi elettrici viene realizzati utilizzando un macchinario Trencher, mediante il quale si realizza un'asola nel terreno di 80-90 cm e larga 20-30 cm in modo da movimentare il quantitativo indispensabile di terreno; il materiale di risulta viene utilizzato per ricoprire lo scavo immediatamente dopo la posa delle tubazioni.

La terza area di cantiere si occuperà della realizzazione della sottostazione elettrica di utenza e delle opere di connessione alla rete elettrica nazionale secondo quanto descritto nei paragrafi precedenti.

12. SICUREZZA DELL'IMPIANTO

Protezione da corto circuiti sul lato c.c. dell'impianto

Gli impianti FV sono realizzati attraverso il collegamento in serie/parallelo di un determinato numero moduli FV, a loro volta realizzati attraverso il collegamento in serie/parallelo di celle FV

inglobate e sigillate in un unico pannello d'insieme. Pertanto gli impianti FV di qualsiasi dimensione conservano le caratteristiche elettriche della singola cella, semplicemente a livelli di tensione e correnti superiore, a seconda del numero di celle connesse in serie (per ottenere tensioni maggiori) oppure in parallelo (per ottenere correnti maggiori). Negli impianti fotovoltaici la corrente di corto circuito dell'impianto non può superare la somma delle correnti di corto circuito delle singole stringhe. Essendo le stringhe composte da una serie di generatori di corrente (i moduli fotovoltaici) la loro corrente di corto circuito è di poco superiore alla corrente nel punto di massima potenza.

Protezione da contatti accidentali lato c.c.

Le tensioni continue sono particolarmente pericolose per la vita. Il contatto accidentale con una tensione di oltre 500 V. c.c., che si riscontra facilmente sulle stringhe, può avere conseguenze letali. Per ridurre il rischio di contatti pericolosi il campo fotovoltaico, lato corrente continua, è assimilabile ad un sistema IT cioè flottante da terra. La separazione galvanica tra il lato corrente continua e il lato corrente alternata è garantita dalla presenza del trasformatore MT/BT. In tal modo perché un contatto accidentale sia realmente pericoloso occorre che si entri in contatto contemporaneamente con entrambe le polarità del campo. Il contatto accidentale con una sola delle polarità non ha praticamente conseguenze, a meno che una delle polarità del campo non sia casualmente a contatto con la massa. Per prevenire tale eventualità gli inverter sono muniti di un opportuno dispositivo di rivelazione degli squilibri verso massa, che ne provoca l'immediato spegnimento e l'emissione di una segnalazione di allarme.

Protezione dalle fulminazioni

Un campo fotovoltaico correttamente collegato a massa, non altera in alcun modo l'indice ceraunico della località di montaggio, e quindi la probabilità di essere colpito da un fulmine. I moduli fotovoltaici sono insensibili alle sovratensioni atmosferiche, che invece possono risultare pericolose per le apparecchiature elettroniche di condizionamento della potenza. Per ridurre i danni dovuti ad eventuali sovratensioni i quadri di parallelo sottocampi sono muniti di varistori su entrambe le polarità dei cavi d'uscita. I varistori, per prevenire eventuali incendi, saranno segregati in appositi scomparti antideflagranti. In caso di sovratensioni i varistori collegano una od entrambe le polarità dei cavi a massa e provocano l'immediato spegnimento degli inverter e l'emissione di un segnale d'allarme.

Sicurezze sul lato c.a. dell'impianto

La limitazione delle correnti del campo fotovoltaico comporta analoga limitazione anche nelle correnti in uscita dagli inverter. Cortocircuiti sul lato alternata dell'impianto sono tuttavia pericolosi perché possono provocare ritorni da rete di intensità non limitata. Gli interruttori MT in SF6 utilizzati sono equipaggiati con una protezione generale di massima corrente e una protezione contro i guasti a terra.

Impianto di messa a terra

All'interno del campo fotovoltaico sarà realizzata una rete di terra costituita da dispersori in corda di rame nudo della sezione minima di 35 mm2, interrati ad una profondità di almeno 0,5 m. A tale rete saranno collegate tutte le strutture metalliche di supporto dei moduli e la recinzione. Intorno alle cabine di conversione e trasformazione e le cabine di raccolta e smistamento si prevede l'installazione di un dispersore ad anello in corda di rame nudo della sezione di 50 mm2 e dispersori a picchetto ai vertici della lunghezza di 1,5 m. L'impianto di terra dovrà essere conforme alle prescrizioni della norma CEI 99-3 e dimensionato sulla base della corrente di guasto a terra sulla rete MT di alimentazione e del tempo di eliminazione del guasto a terra da parte delle protezioni ENEL. Prima della messa in servizio dell'impianto, saranno effettuate le verifiche dell'impianto di terra previste dal DPR 22 ottobre 2001 n. 462.

13. NORME E DOCUMENTAZIONE DI RIFERIMENTO

La legislazione e normativa nazionale cui si fa riferimento nel progetto è rappresentata da: Leggi e decreti: Direttiva Macchine 2006/42/CE - "Nuove Norme Tecniche per le Costruzioni" indicate dal DM del 14 Gennaio 2018, pubblicate sulla Gazzetta ufficiale n° 29 del 4/2/2008 - Suppl. Ordinario n. 30, integrate dalle "Istruzioni per l'applicazione delle Norme NTC" di cui al DM 14/01/2018, Circolare del 02/02/2009 n.617, Pubblicate nella Gazzetta Ufficiale n. 47 del 26 febbraio 2009 – Suppl. Ordinario n. 27

Eurocodici

- UNI EN 1991 (serie) Eurocodice 1 Azioni sulle strutture.
- UNI EN 1993 (serie) Eurocodice 3 Progettazione delle strutture di acciaio.
- UNI EN 1994 (serie) Eurocodice 4 Progettazione delle strutture composte acciaiocalcestruzzo.
- UNI EN 1997 (serie) Eurocodice 7 Progettazione geotecnica.
- UNI EN 1998 (serie) Eurocodice 8 Progettazione delle strutture per la resistenza sismica.
- UNI EN 1999 (serie) Eurocodice 9 Progettazione delle strutture di alluminio.

Altri documenti

Esistono inoltre documenti (Istruzioni CNR) che non hanno valore di normativa, anche se in qualche caso i decreti ministeriali fanno espressamente riferimento ad essi:

- CNR 10022/84 Costruzioni di profilati di acciaio formati a freddo;
- CNR 10011/97 Costruzioni in acciaio. Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione;

- CNR 10024/86 Analisi mediante elaboratore: impostazione e redazione delle relazioni di calcolo.
- CNR-DT 207/2008, "Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni".

Eventuali normative non elencate, se mandatorie per la progettazione del sistema possono essere referenziate. In caso di conflitto tra normative e leggi applicabili, il seguente ordine di priorità dovrà essere rispettato:

- · Leggi e regolamenti Italiani;
- Leggi e regolamenti comunitari (EU);
- Documento in oggetto;
- Specifiche di società (ove applicabili);

Normative internazionali. Legislazione e normativa nazionale in ambito Civile e Strutturale

- Decreto Ministeriale Infrastrutture 14 gennaio 2018 "Nuove Norme tecniche per le costruzioni";
- Circ. Min. Infrastrutture e Trasporti 2 febbraio 2009, n. 617 "Istruzioni per l'applicazione norme tecniche per le costruzioni"
- Legge 5.11.1971 N° 1086 (norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica);
- CNR-UNI 10021- 85 (Strutture di acciaio per apparecchi di sollevamento. Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione).

Energia solare

- UNI 8477-1 Energia solare Calcolo degli apporti per applicazioni in edilizia Valutazione dell'energia raggiante ricevuta
- UNI EN ISO 9488 Energia solare Vocabolario
- UNI 10349 Riscaldamento e raffrescamento degli edifici Dati climatici Sistemi di misura dell'energia elettrica •
- CEI 13-4 Sistemi di misura dell'energia elettrica Composizione, precisione e verifica
- * CEI EN 62052-11 (CEI 13-42) Apparati per la misura dell'energia elettrica (c.a.) Prescrizioni generali, prove e condizioni di prova Parte 11: Apparato di misura
- * CEI EN 62053-11 (CEI 13-41) Apparati per la misura dell'energia elettrica (c.a.) Prescrizioni particolari Parte 11: Contatori elettromeccanici per energia attiva (classe 0,5, 1 e 2)
- * CEI EN 62053-21 (CEI 13-43) Apparati per la misura dell'energia elettrica (c.a.) Prescrizioni particolari Parte 21: Contatori statici di energia attiva (classe 1 e 2)
- * CEI EN 62053-22 (CEI 13-44) Apparati per la misura dell'energia elettrica (c.a.) Prescrizioni particolari Parte 22: Contatori statici per energia attiva (classe 0,2 S e 0,5 S)

- CEI EN 50470-1 (CEI 13-52) Apparati per la misura dell'energia elettrica (c.a.) Parte 1: Prescrizioni generali, prove e condizioni di prova - Apparato di misura (indici di classe A, B e C)
- CEI EN 50470-2 (CEI 13-53) Apparati per la misura dell'energia elettrica (c.a.) Parte 2:
 Prescrizioni particolari Contatori elettromeccanici per energia attiva (indici di classe A e B)
- CEI EN 50470-3 (CEI 13-54) Apparati per la misura dell'energia elettrica (c.a.) Parte 3: Prescrizioni particolari Contatori statici per energia attiva (indici di classe A, B e C)
- CEI EN 62059-31-1 (13-56) Apparati per la misura dell'energia elettrica Fidatezza Parte 31 1: Prove accelerate di affidabilità -Temperatura ed umidità elevate

Legislazione e normativa nazionale in ambito Elettrico

- D. Lgs 9 Aprile2008 n. 81 e s.m.i..
- Attuazione dell'articolo 1 della Legge 3 Agosto 2007, n. 123, in materia di tutela della saluta e della sicurezza nei luoghi di lavoro).
- CEI EN 50110-1 (Esercizio degli impianti elettrici)
- CEI 11-27 (Lavori su impianti elettrici)
- CEI 0-10 (Guida alla manutenzione degli impianti elettrici)
- CEI 82-25
- CEI 0-16
- CEI UNI EN ISO/IEC 17025:2008 Requisiti generali per la competenza dei laboratori di prova e di taratura
- CEI 0-2 Guida per la definizione della documentazione di progetto degli impianti elettrici
- CEI EN 60445 (CEI 16-2) Principi base e di sicurezza per l'interfaccia uomo-macchina, marcatura e identificazione – Identificazione dei morsetti degli apparecchi e delle estremità dei conduttori

Sicurezza elettrica

- CEI 0-16 Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti AT ed M delle imprese distributrici di energia elettrica
- CEI 11-27 Lavori su impianti elettrica
- CEI 64-8 Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e a 1500 V in corrente continua
- CEI 64-8/7 (Sez.712) Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e a 1500 V in corrente continua Parte 7: Ambienti ed applicazioni particolari
- CEI 64-12 Guida per l'esecuzione dell'impianto di terra negli edifici per uso residenziale e terziario
- CEI 64-14 Guida alla verifica degli impianti elettrici utilizzatori
- IEC/TS 60479-1 Effects of current on human beings and livestock Part 1: General aspects

- IEC 60364-7-712 Electrical installations of buildings Part 7-712: Requirements for special installations or locations Solar photovoltaic (PV) power supply systems
- CEI EN 60529 (CEI 70-1) Gradi di protezione degli involucri (codice IP)
- CEI 64-57 Edilizia ad uso residenziale e terziario Guida per l'integrazione degli impianti elettrici utilizzatori e per la predisposizione di impianti ausiliari, telefonici e di trasmissione dati negli edifici Impianti di piccola produzione distribuita.
- CEI EN 61140 (CEI 0-13) Protezione contro i contatti elettrici Aspetti comuni per gli impianti e le apparecchiature Parte fotovoltaica
- ANSI/UL 1703:2002 Flat-Plate Photovoltaic Modules and Panels
- IEC/TS 61836 Solar photovoltaic energy systems Terms, definitions and symbols
- CEI EN 50380 (CEI 82-22) Fogli informativi e dati di targa per moduli fotovoltaici
- CEI EN 50438 (CEI 311-1) Prescrizioni per la connessione di micro-generatori in parallelo alle reti di distribuzione pubblica in bassa tensione
- CEI EN 50461 (CEI 82-26) Celle solari Fogli informativi e dati di prodotto per celle solari al silicio cristallino
- CEI EN 50521(82-31) Connettori per sistemi fotovoltaici Prescrizioni di sicurezza e prove
- CEI EN 60891 (CEI 82-5) Caratteristiche I-V di dispositivi fotovoltaici in Silicio cristallino – Procedure di riporto dei valori misurati in funzione di temperatura e irraggiamento
- CEI EN 60904-1 (CEI 82-1) Dispositivi fotovoltaici Parte 1: Misura delle caratteristiche fotovoltaiche corrente-tensione
- CEI EN 60904-2 (CEI 82-2) Dispositivi fotovoltaici Parte 2: Prescrizione per i dispositivi solari di riferimento
- CEI EN 60904-3 (CEI 82-3) Dispositivi fotovoltaici Parte 3: Principi di misura dei sistemi solari fotovoltaici (PV) per uso terrestre e irraggiamento spettrale di riferimento
- CEI EN 60904-4 (82-32) Dispositivi fotovoltaici Parte 4: Dispositivi solari di riferimento Procedura per stabilire la tracciabilità della taratura
- CEI EN 60904-5 (82-10) Dispositivi fotovoltaici Parte 5: Determinazione della temperatura equivalente di cella (ETC) dei dispositivi solari fotovoltaici (PV) attraverso il metodo della tensione a circuito aperto
- CEI EN 60904-7 (82-13) Dispositivi fotovoltaici Parte 7: Calcolo della correzione dell'errore di disadattamento fra le risposte spettrali nelle misure di dispositivi fotovoltaici
- CEI EN 60904-8 (82-19) Dispositivi fotovoltaici Parte 8: Misura della risposta spettrale di un dispositivo fotovoltaico
- CEI EN 60904-9 (82-29) Dispositivi fotovoltaici Parte 9: Requisiti prestazionali dei simulatori solari
- CEI EN 60068-2-21 (91-40) 2006 Prove ambientali Parte 2-21: Prove Prova U: Robustezza dei terminali e dell'interconnessione dei componenti sulla scheda
- CEI EN 61173 (CEI 82-4) Protezione contro le sovratensioni dei sistemi fotovoltaici (FV) per la produzione di energia – Guida

- CEI EN 61215 (CEI 82-8) Moduli fotovoltaici (FV) in Silicio cristallino per applicazioni terrestri – Qualifica del progetto e omologazione del tipo
- CEI EN 61646 (CEI 82-12) Moduli fotovoltaici (FV) a film sottile per usi terrestri –
 Qualifica del progetto e approvazione di tipo
- CEI EN 61277 (CEI 82-17) Sistemi fotovoltaici (FV) di uso terrestre per la generazione di energia elettrica Generalità e guida
- CEI EN 61345 (CEI 82-14) Prova all'UV dei moduli fotovoltaici (FV)
- CEI EN 61683 (CEI 82-20) Sistemi fotovoltaici Condizionatori di potenza Procedura per misurare l'efficienza
- CEI EN 61701 (CEI 82-18) Prova di corrosione da nebbia salina dei moduli fotovoltaici (FV)
- CEI EN 61724 (CEI 82-15) Rilievo delle prestazioni dei sistemi fotovoltaici Linee guida per la misura, lo scambio e l'analisi dei dati
- CEI EN 61727 (CEI 82-9) Sistemi fotovoltaici (FV) Caratteristiche dell'interfaccia di raccordo alla rete
- CEI EN 61730-1 (CEI 82-27) Qualificazione per la sicurezza dei moduli fotovoltaici (FV) Parte 1: Prescrizioni per la costruzione
- CEI EN 61730-2 (CEI 82-28) Qualificazione per la sicurezza dei moduli fotovoltaici (FV) Parte 2: Prescrizioni per le prove
- CEI EN 61829 (CEI 82-16) Schiere di moduli fotovoltaici (FV) in Silicio cristallino Misura sul campo delle caratteristiche I-V
- CEI EN 62093 (CEI 82-24) Componenti di sistemi fotovoltaici moduli esclusi (BOS) -Qualifica di progetto in condizioni ambientali naturali
- CEI EN 62108 (82-30) Moduli e sistemi fotovoltaici a concentrazione (CPV) Qualifica del progetto e approvazione di tipo

Scariche atmosferiche e sovratensioni

- CEI EN 50164-1 (CEI 81-5) Componenti per la protezione contro i fulmini (LPC) Parte
 1: Prescrizioni per i componenti di connessione
- CEI EN 61643-11 (CEI 37-8) Limitatori di sovratensioni di bassa tensione Parte 11:
 Limitatori di sovratensioni connessi a sistemi di bassa tensione Prescrizioni e prove
- CEI EN 62305-1 (CEI 81-10/1) Protezione contro i fulmini Parte 1: Principi generali
- CEI EN 62305-2 (CEI 81-10/2) Protezione contro i fulmini Parte 2: Valutazione del rischio
- * CEI EN 62305-3 (CEI 81-10/3) Protezione contro i fulmini Parte 3: Danno materiale alle strutture e pericolo per le persone
- CEI EN 62305-4 (CEI 81-10/4) Protezione contro i fulmini Parte 4: Impianti elettrici ed elettronici nelle strutture

Quadri elettrici

- CEI EN 60439-1 (CEI 17-13/1) Apparecchiature assiemate di protezione e di manovra per bassa tensione (quadri BT) – Parte 1: Apparecchiature soggette a prove di tipo (AS) e apparecchiature parzialmente soggette a prove di tipo (ANS);
- CEI EN 60439-3 (CEI 17-13/3) Apparecchiature assiemate di protezione e di manovra per bassa tensione (quadri BT) – Parte 3: Prescrizioni particolari per apparecchiature assiemate di protezione e di manovra destinate ad essere installate in luoghi dove personale non addestrato ha accesso al loro uso – Quadri di distribuzione ASD;
- CEI 23-51 Prescrizioni per la realizzazione, le verifiche e le prove dei quadri di distribuzione per installazioni fisse per uso domestico e similare.

Rete elettrica del distributore e allacciamento degli impianti

- CEI 99-2 (EN 61936-1): "Impianti elettrici con tensione superiore a 1 kV in corrente alternata: Parte 1. Prescrizioni comuni";
- CEI 99-3 (EN 50522): "Messa a terra degli impianti elettrici a tensione > 1 kV c.a.";
- CEI 99-4: "Guida per l'esecuzione di cabine elettriche MT/BT del cliente/utente finale";
- CEI 99-5: "Guida per l'esecuzione degli impianti di terra delle utenze attive e passive connesse ai sistemi di distribuzione con tensione superiore a 1 kV in c.a.";
- CEI 11-17: (2006-07, 3[^] ed.) Impianti di produzione, trasmissione e distribuzione pubblica di energia elettrica Linee in cavo.
- CEI 11-20 Impianti di produzione di energia elettrica e gruppi di continuità collegati a reti di I e II categoria
- CEI 11-20, V1 Impianti di produzione di energia elettrica e gruppi di continuità collegati a reti di I e II categoria Variante
- CEI 11-20, V2 Impianti di produzione di energia elettrica e gruppi di continuità collegati alle reti di I e II categoria – Allegato C - Prove per la verifica delle funzioni di interfaccia con la rete elettrica per i micro generatori
- CEI EN 50110-1 (CEI 11-48) Esercizio degli impianti elettrici
- CEI EN 50160 (CEI 8-9) Caratteristiche della tensione fornita dalle reti pubbliche di distribuzione dell'energia elettrica

Cavi, cavidotti e accessori

- CEI 20-13 Cavi con isolamento estruso in gomma per tensioni nominali da 1 a 30 kV
- CEI 20-14 Cavi isolati con polivinilcloruro per tensioni nominali da 1 kV a 3 kV
- CEI-UNEL 35024-1 Cavi elettrici isolati con materiale elastomerico o termoplastico per tensioni nominali non superiori a 1000 V in corrente alternata e a 1500 V in corrente continua – Portate di corrente in regime permanente per posa in aria
- CEI-UNEL 35026 Cavi elettrici isolati con materiale elastomerico o termoplastico per tensioni nominali di 1000 V in corrente alternata e 1500 V in corrente continua.
 Portate di corrente in regime permanente per posa interrata

- CEI 20-40 Guida per l'uso di cavi a bassa tensione
- CEI 20-65 Cavi elettrici isolati con materiale elastomerico, termoplastico e isolante minerale per tensioni nominali non superiori a 1000 V in corrente alternata e 1500 V in corrente continua Metodi di verifica termica (portata) per cavi raggruppati in fascio contenente conduttori di sezione differente
- CEI 20-67 Guida per l'uso dei cavi 0,6/1 kV
- CEI 20-91 Cavi elettrici con isolamento e guaina elastomerici senza alogenata non propaganti la fiamma con tensione nominale non superiore a 1 000 V in corrente alternata e 1 500 V in corrente continua per applicazioni in impianti fotovoltaici
- CEI EN 50086-1 (CEI 23-39) Sistemi di tubi ed accessori per installazioni elettriche –
 Parte 1: Prescrizioni generali
- CEI EN 50086-2-4 (CEI 23-46) Sistemi di canalizzazione per cavi Sistemi di tubi
- Parte 2-4: Prescrizioni particolari per sistemi di tubi interrati
- CEI EN 50262 (CEI 20-57) Pressacavo metrici per installazioni elettriche
- CEI EN 60423 (CEI 23-26) Tubi per installazioni elettriche Diametri esterni dei tubi per installazioni elettriche e filettature per tubi e accessori
- CEI EN 61386-1 (CEI 23-80) Sistemi di tubi e accessori per installazioni elettriche Parte 1: Prescrizioni generali
- CEI EN 61386-21 (CEI 23-81) Sistemi di tubi e accessori per installazioni elettriche Parte 21: Prescrizioni particolari per sistemi di tubi rigidi e accessori
- CEI EN 61386-22 (CEI 23-82) Sistemi di tubi e accessori per installazioni elettriche
- Parte 22: Prescrizioni particolari per sistemi di tubi pieghevoli e accessori
- CEI EN 61386-23 (CEI 23-83) Sistemi di tubi e accessori per installazioni elettriche
- Parte 23: Prescrizioni particolari per sistemi di tubi flessibili e accessori

Conversione della Potenza

- CEI 22-2 Convertitori elettronici di potenza per applicazioni industriali e di trazione
- CEI EN 60146-1-1 (CEI 22-7) Convertitori a semiconduttori Prescrizioni generali e convertitori commutati dalla linea – Parte 1-1: Specifiche per le prescrizioni fondamentali
- CEI EN 60146-1-3 (CEI 22-8) Convertitori a semiconduttori Prescrizioni generali e convertitori commutati dalla linea – Parte 1-3: Trasformatori e reattori
- CEI UNI EN 45510-2-4 (CEI 22-20) Guida per l'approvvigionamento di apparecchiature destinate a centrali per la produzione di energia elettrica Parte 2-4:
- Apparecchiature elettriche Convertitori statici di potenza

Dispositivi di Potenza

 CEI EN 50123 (serie) (CEI 9-26 serie) Applicazioni ferroviarie, tranviarie, filoviarie e metropolitane - Impianti fissi - Apparecchiatura a corrente continua

- CEI EN 50178 (CEI 22-15) Apparecchiature elettroniche da utilizzare negli impianti di potenza
- CEI EN 60898-1 (CEI 23-3/1) Interruttori automatici per la protezione dalle sovracorrenti per impianti domestici e similari – Parte 1: Interruttori automatici per funzionamento in corrente alternata
- CEI EN 60898-2 (CEI 23-3/2) Interruttori automatici per la protezione dalle sovracorrenti per impianti domestici e similari - Parte 2: Interruttori per funzionamento in corrente alternata e in corrente continua
- CEI EN 60947-1 (CEI 17-44) Apparecchiature a bassa tensione Parte 1: Regole generali
- CEI EN 60947-2 (CEI 17-5) Apparecchiature a bassa tensione Parte 2: Interruttori automatici
- CEI EN 60947-4-1 (CEI 17-50) Apparecchiature a bassa tensione Parte 4-1: Contattori ed avviatori – Contattori e avviatori elettromeccanici

Compatibilità elettromagnetica

- CEI 110-26 Guida alle norme generiche EMC
- CEI EN 50263 (CEI 95-9) Compatibilità elettromagnetica (EMC) Norma di prodotto per i rele di misura e i dispositivi di protezione
- CEI EN 60555-1 (CEI 77-2) Disturbi nelle reti di alimentazione prodotti da apparecchi elettrodomestici e da equipaggiamenti elettrici simili Parte 1: Definizioni
- CEI EN 61000-2-2 (CEI 110-10) Compatibilità elettromagnetica (EMC) Parte 2-2: Ambiente Livelli di compatibilità per i disturbi condotti in bassa frequenza e la trasmissione dei segnali sulle reti pubbliche di alimentazione a bassa tensione
- CEI EN 61000-2-4 (CEI 110-27) Compatibilità elettromagnetica (EMC) Parte 2-4: Ambiente – Livelli di compatibilità per disturbi condotti in bassa frequenza negli impianti industriali
- CEI EN 61000-3-2 (CEI 110-31) Compatibilità elettromagnetica (EMC) Parte 3-2: Limiti – Limiti perle emissioni di corrente armonica (apparecchiature con corrente di ingresso 16 A per fase)
- CEI EN 61000-3-3 (CEI 110-28) Compatibilità elettromagnetica (EMC) Parte 3-3:
 Limiti Limitazione delle fluttuazioni di tensione e del flicker in sistemi di alimentazione in bassa tensione per apparecchiature concorrente nominale 16 A e non soggette ad allacciamento su condizione
- CEI EN 61000-3-12 (CEI 210-81) Compatibilità elettromagnetica (EMC) Parte 3-12: Limiti Limiti per le correnti armoniche prodotte da apparecchiature collegate alla rete pubblica a bassa tensione aventi correnti di ingresso > 16 A e <= 75 A per fase.

- CEI EN 61000-6-1 (CEI 210-64) Compatibilità elettromagnetica (EMC) Parte 6-1: Norme generiche Immunità per gli ambienti residenziali, commerciali e dell'industria leggera
- CEI EN 61000-6-2 (CEI 210-54) Compatibilità elettromagnetica (EMC) Parte 6-2: Norme generiche Immunità per gli ambienti industriali
- CEI EN 61000-6-3 (CEI 210-65) Compatibilità elettromagnetica (EMC) Parte 6-3: Norme generiche - Emissione per gli ambienti residenziali, commerciali e dell'industria leggera
- CEI EN 61000-6-4 (CEI 210-66) Compatibilità elettromagnetica (EMC) Parte 6-4: Norme generiche Emissione per gli ambienti industriali

14. ANALISI PRODUCIBILITA' IMPIANTO

Al fine di stimare la producibilità dell'impianto fotovoltaico di progetto sono stati utilizzati i dati meteorologici del sito di progetti ricavati dalla correlazione dei dati di misura delle stazioni Meteonorm nelle vicinanze a partire dall'anno 1991 fino al 2010. In tal modo sono stati ricavati i dati medi mensili e annuali dell'irradiazione globale, diffusa, delle temperature e velocità del vento in sito su piano inclinato a 0° esposto a 0° di azimut (sud) riportati nella tabella sottostante che hanno permesso di stimare la produzione annua di energia del generatore fotovoltaico.

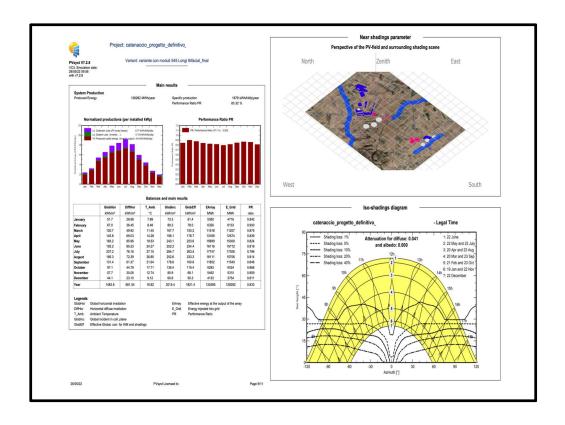


Figura 15-1 Calcolo dell'irraggiamento solare PVSyst-dati METEONORM 7.1

I valori dell' "Hor. glob" e "Hor. diff" in tale tabella assumono i seguenti significati:

Hor. glob = indica la Media della somma mensile dell'irraggiamento globale per m2 ricevuta dai moduli

Hor. diff = indica la Media della somma mensile dell'irraggiamento diffuso per m2 dai moduli

Il generatore fotovoltaico sarà realizzato con moduli di potenza nominale pari a 545 Watt, per un totale di **75.053,04 kWp**.

La potenza di picco (Ptot) dell'impianto fotovoltaico in corrente continua definita come la somma delle potenze dei singoli moduli che li compongono misurate in condizioni standard. (radiazione 1 Kw/m 2, 25°C) risulta pari a:

Ptot=Pmod*Nmod= 0,545 x 137.712 = 75.053,04 KWp

La Potenza fornita in rete elettrica (Pca) tiene conto delle perdite del sistema dovute al discostarsi dalle condizioni standard ed alle perdite per la trasformazione della corrente continua in corrente alternata; si riportano di seguito le perdite ipotizzate:

- Perdite per scostamento dalle condizioni di targa(temperatura)
- Perdite per riflessione
- Perdite per mismatching tra stringhe (moduli)
- Perdite in corrente continua
- Perdite sul sistema di conversione cc/ca
- Perdite nel trasformatore
- Perdite per polluzione sui moduli
- Perdite nei cavi,quadri,ecc.
- Per una stima di massima del rendimento medio globale del sistema, considerando anche la riduzione delle prestazioni dei moduli nel tempo, si può considerare un valore pari a ηtot= 73,281% Quindi la potenza immessa in rete sarà pari a:

PCA =PTOT xn tot = 75.053,04 x 0,72818 = 55.000 KW

Per quanto riguarda la quantità di energia elettrica producibile viene calcolata, comunque, sulla base dei dati radiometrici rilevati dalle stazioni di misura Meteonorm 7.1. opportunamente correlate rispetto al sito di installazione. L'efficienza nominale del generatore fotovoltaico è numericamente data, in pratica, dal rapporto tra la potenza nominale del generatore stesso (espressa in kW) e la relativa superficie (espressa in m² e intesa come somma della superficie dei moduli). Per cui risulta essere pari a:

ηρν= Ptot / Spv

dove **Spv** è la superficie totale del generatore fotovoltaico.

Si definisce superficie totale del generatore fotovoltaico la somma delle superfici dei singoli moduli. Ogni modulo occupa una superficie pari a $Sm = 2256 \text{ mm} \times 1133 \text{ mm} = 2,556 \text{ m}^2$. La superficie totale sarà, quindi pari, a:

$Spv = Sm \times 137.712 = 351.991,672 mq (superficie captante)$

Per cui l'efficienza nominale del generatore fotovoltaico rispetto alle condizioni standard di funzionamento in kW/m2 risulta essere pari a circa:

ηpv= Ptot/SpV = 21,32 %

L'energia producibile, in corrente continua, dal generatore fotovoltaico sarà pari al prodotto tra l'energia solare media annuale che arriva alla superficie dei moduli per l'efficienza nominale del generatore fotovoltaico per la superficie del generatore ovvero:

Ecc = $Gm \times \eta pv \times Spv = 2.212 \text{ kW/m2} \times 21,32\% \times 351.991,672 = 165998,71KWh$

Se ora si assume come efficienza operativa media annuale dell'impianto ntot = 73,281% si ottiene una produzione media annua di energia in corrente alternata pari a:

Eac = Ecc \times η tot = 165.998,71 MWh \times 73,281% = 121.645 MWh

L'intero impianto godrà di una garanzia non inferiore a due anni a far data dal collaudo dell'impianto stesso, mentre i moduli fotovoltaici godranno di una garanzia pari a 25 anni. Inoltre, l'impianto fotovoltaico consente la riduzione di emissioni in atmosfera delle sostanze che hanno effetto inquinante e di quelle che contribuiscono all'effetto serra. Infatti in base alla produzione stimata ogni anno si avrà:

MWh/anno di energia prodotta dalla centrale fotovoltaica	TEP (Tonnellate Equivalenti di petrolio)/anno non consumati per produrre tale energia elettrica	Ton CO2/Anno non emesse in atmosfera
121.645 MWh/Anno	22.747 TEP	82.509 tonn CO2/Anno

Come si vede dalla tabella ogni anno la produzione di energia elettrica dell'impianto fotovoltaico permetterà di evitare di emettere in atmosfera ben 82.509 Tonnellate di CO2, quindi in tutto il ciclo di vita dell'impianto fotovoltaico che mediamente è pari a 30 anni saranno evitate emissioni di CO2 in atmosfera per un totale di **2.475.270 Tonnellate**.

Capaccio Paestum, 21 giugno 2022

IL TECNICO

Ing. Marsicano Giovanni