Parco Eolico Marino

Gargano Sud

Studio della producibilità energetica

1	EMISSIONE	13/02/2023
REV	DESCRIZIONE	DATA

CARATTERISTICHE GENERALI D'IMPIANTO

GENERATORE - Altezza mozzo: 160 m Diametro rotore: 236 m Potenza unitaria: 15 MW

IMPIANTO - Numero generatori: 68
Potenza complessiva: fino a 1088 MW.

Il proponente:

Seanergy s.r.l.
P.zza Giovanni Paolo II, 8
71017 Torremaggiore (FG)
0882/393197
seanergy@pec.it

Il progettista:

ATS Engineering srl P.zza Giovanni Paolo II, 8 71017 Torremaggiore (FG) 0882/393197 atseng@pec.it

Il tecnico:

Ing. Eugenio Di Gianvito

Sommario

Introduzione	2
1 L'area di Progetto	
1.1 Localizzazione dell'area di progetto	
2 Caratteristiche delle risorse eoliche	
2.1 I dati di vento	5
2.2 I risultati sulla velocità del vento sul sito	12
3 Calcolo producibilità	
4 Conclusioni	

Introduzione

La presente "Relazione Tecnica di Progetto" raccoglie le soluzioni tecniche e aggiornamenti progettuali che qualificano il progetto del parco eolico marino (offshore) denominato *Gargano Sud*. Tale opera si localizzerà in Puglia e precisamente nelle acque del Golfo di Manfredonia (FG), site a sud del promontorio del Gargano; rimanendo a una distanza media dalla costa ricompresa tra 15 km e non meno di 10,5 km.

Detto progetto, nella configurazione attuale derivante dalla ottimizzazione tecnologica di produzione è della ottimizzazione della connessione alla RTN, prevede la installazione di aerogeneratori di nuova generazione, con tipologia di classe V236 (15 Mw cadauno, con rotore di diametro pari a 236 metri) piuttosto che di classe MY260 (16 MW cadauno, con rotore di diametro pari 260 metri). Entrambe già disponibili in forma commerciale. In particolare, si è scelto di installare pali infissi direttamente sul fondale con tecnica di fondazione diretta e sottostazione utenza di collegamento anch'essa installata su fondazione fissa. Inoltre, il punto odi connessione sulla RTN è previsto alla stazione Terna denominata Cerignola sita nel Comune di Cerignola (FG), stazione attualmente in costruzione e dotata di tutte le infrastrutture possibili al dispacciamento della notevole energia prodotta dall'impianto. Considerando pertanto che tutta l'impiantistica elettrica da utilizzarsi prevede tecnologia consolidata e già disponibile sul mercato, si può concludere che il progetto Gargano Sud, proposto Seanergy Srl, è immediatamente cantierabile sotto tutti i profili. Tuti gli elaborati di progetto sono stati considerati sulla base aerogeneratore Vestas V236-15MW altezza al mozzo 160m rotore 236 m.

La proponente e responsabile del presente progetto è *Seanergy S.r.l.*, con sede legale in Piazza Giovanni Paolo II n° 8 - 71017 Torremaggiore (FG).

Il layout di progetto conta complessivamente n. 68 aerogeneratori, con Potenza fino a 16 MW cadauno, per una potenza totale fino a 1088 MW.

1 L'area di Progetto

1.1 Localizzazione dell'area di progetto

Il progetto eolico offshore denominato **Gargano Sud** si localizza a sud del promontorio del Gargano, nelle acque antistanti i Comuni di Mattinata (FG), Monte Sant'Angelo (FG), Manfredonia (FG), Zapponeta (FG) e Margherita di Savoia (BT).

Localizzazione del Progetto sulla costa pugliese

Le coordinate geografiche esatte dell'area per la quale si è richiesta la concessione demaniale sono indicate nella seguente tabella, sia in formato WGS 84 che in formato Gauss Boaga 2, Roma 1940.

Estremo area di	Coordinate geog	rafiche, WGS 84	Gauss Boaga 2, Roma 1940		
concessione	Est	Nord	X	Υ	
1	1 1691'03.40" 4139'38.04"		2618609	4612777	
2	16ግ5'28.91"	1695'28.91" 4139'06.02"		4611876	
3	1613'36.82"	4131'13.90"	2622378	4597278	
4	16'09'25.64" 41'32'41.07"		2616520	4599886	

Tabella Coordinate dei vertici dell'area del parco

L'area per la quale è stata chiesta la concessione demaniale preliminare:

- Si trova a circa 10,5 km dalla costa;
- Si estende per una fascia di lunghezza variabile compresa tra 13 e 14,7 km;
- Si sviluppa al largo per 6 km;
- Copre un'area di 77,15 km2 su un perimetro di 40,23 km.

Dimensioni e distanze principali

2 Caratteristiche delle risorse eoliche

2.1 I dati di vento

La Puglia ha un notevole potenziale eolico, infatti, secondo quanto riportato dall'Atlante Eolico Italiano (3), sviluppato dall'Università di Genova, le velocità del vento in aree costiere della Puglia hanno un valore medio che si aggira fra i 6 ed i 7 m/s a 100 m di altezza s.l.m. Ulteriore conferma della bontà della regione sta nel fatto che nella sola Puglia risiede il 25% dell'installato eolico italiano.

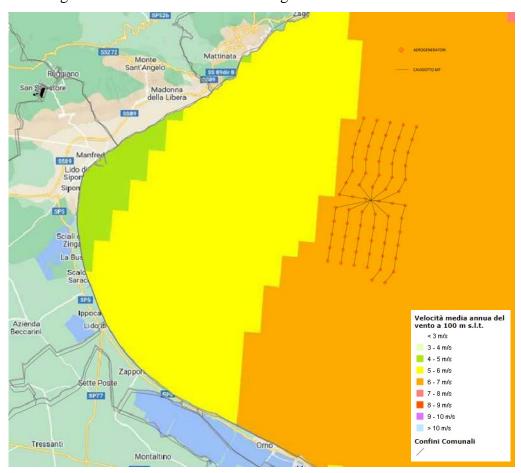
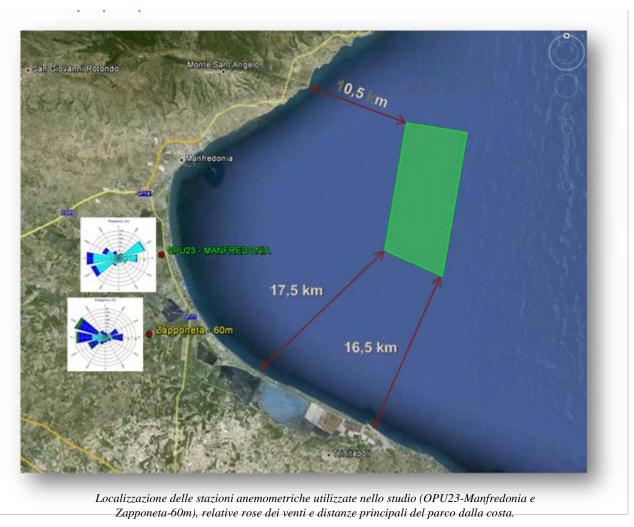


Figura 1Impianto su Atlante eolico interattivo con velocità media annua a 100 m.s.l.m.

La producibilità, risultante dall'inquadramento sull'atlante eolico italiano, risulta all'interno delle aree di buona producibilità.

TABELLA DELLE COORDINATE DEGLI AEROGENERATORI							
Turbina	UTM WGS	84 ZONA: 33	Geografic	he WGS84			
numero	EST	NORD	Latitudine	Longitudine			
1	599891.0000	4612430.0000	41°39'26.51"N	16°11'59.03"E			
2	601057.6537	4612240.1495	41°39'19.82"N	16°12'49.35"E			
3	602224.3074	4612050.2990	41°39'13.13"N	16°13'39.66"E			
4	603390.9610	4611860.4486	41°39'6.44"N	16°14'29.97"E			


5	604557.6147	4611670.5981	41°38'59.73"N	16°15'20.28"E
6	599499.5565	4611294.9096	41°38'49.89"N	16°11'41.43"E
7	600666.2563	4611105.3428	41°38'43.21"N	16°12'31.74"E
8	601832.9561	4610915.7760	41°38'36.53"N	16°13'22.05"E
9	602999.6559	4610726.2091	41°38'29.85"N	16°14'12.36"E
10	604166.3557	4610536.6423	41°38'23.16"N	16°15'2.66"E
11	599133.9545	4610152.0074	41°38'13.00"N	16°11'24.95"E
12	600300.6479	4609962.4009	41°38'6.33"N	16°12'15.25"E
13	601467.3413	4609772.7945	41°37'59.65"N	16°13'5.55"E
14	602634.0346	4609583.1880	41°37'52.96"N	16°13'55.85"E
15	603800.7280	4609393.5815	41°37'46.27"N	16°14'46.14"E
16	598898.5236	4608974.7616	41°37'34.94"N	16°11'14.07"E
17	600065.2234	4608785.1948	41°37'28.27"N	16°12'4.37"E
18	601231.9232	4608595.6280	41°37'21.59"N	16°12'54.66"E
19	602398.6231	4608406.0612	41°37'14.91"N	16°13'44.95"E
20	603565.3229	4608216.4944	41°37'8.22"N	16°14'35.24"E
21	598897.4080	4607774.9337	41°36'56.04"N	16°11'13.31"E
22	600064.1078	4607585.3669	41°36'49.37"N	16°12'3.60"E
23	601230.8076	4607395.8001	41°36'42.70"N	16°12'53.88"E
24	602397.5074	4607206.2333	41°36'36.02"N	16°13'44.17"E
25	603564.2072	4607016.6665	41°36'29.33"N	16°14'34.45"E
26	598323.6392	4606721.0586	41°36'22.13"N	16°10'47.90"E
27	599490.3390	4606531.4918	41°36'15.46"N	16°11'38.18"E
28	600657.0388	4606341.9250	41°36'8.79"N	16°12'28.46"E
29	601823.7386	4606152.3582	41°36'2.11"N	16°13'18.74"E
30	602990.4384	4605962.7914	41°35'55.43"N	16°14'9.01"E
31	597726.9362	4605680.0104	41°35'48.64"N	16°10'21.52"E
32	598893.5130	4605489.6879	41°35'41.96"N	16°11'11.79"E
33	600060.0897	4605299.3654	41°35'35.26"N	16°12'2.05"E
34	601226.6665	4605109.0429	41°35'28.56"N	16°12'52.32"E
35	602393.2433	4604918.7204	41°35'21.86"N	16°13'42.58"E
36	603559.8200	4604728.3979	41°35'15.15"N	16°14'32.83"E
37	597403.0000	4604525.0000	41°35'11.34"N	16°10'6.85"E
38	598569.6189	4604334.9362	41°35'4.66"N	16°10'57.11"E
39	599736.2379	4604144.8725	41°34'57.98"N	16°11'47.37"E
40	600902.8568	4603954.8087	41°34'51.29"N	16°12'37.63"E
41	602069.4758	4603764.7450	41°34'44.60"N	16°13'27.89"E
42	603236.0947	4603574.6812	41°34'37.90"N	16°14'18.14"E
43	597259.0000	4603333.0000	41°34'32.76"N	16° 9'59.94"E
44	598425.6404	4603143.0678	41°34'26.09"N	16°10'50.19"E
45	599592.2808	4602953.1356	41°34'19.41"N	16°11'40.45"E
46	600758.9211	4602763.2035	41°34'12.73"N	16°12'30.70"E
47	601925.5615	4602573.2713	41°34'6.04"N	16°13'20.95"E
48	603092.2019	4602383.3391	41°33'59.34"N	16°14'11.19"E
49	597070.4280	4602165.1892	41°33'54.98"N	16° 9'51.12"E
50	598237.0653	4601975.2383	41°33'48.31"N	16°10'41.36"E
51	599403.7026	4601785.2874	41°33'41.63"N	16°11'31.61"E
52	600570.3399	4601595.3364	41°33'34.95"N	16°12'21.85"E
53	601736.9772	4601405.3855	41°33'28.26"N	16°13'12.09"E
54	602903.6146	4601215.4346	41°33'21.57"N	16°14'2.33"E

55	596882.9334	4600991.1361	41°33'17.00"N	16° 9'42.34"E
56	598049.7018	4600801.9919	41°33'10.36"N	16°10'32.59"E
57	599216.4702	4600612.8478	41°33'3.71"N	16°11'22.83"E
58	600383.2386	4600423.7036	41°32'57.05"N	16°12'13.07"E
59	601550.0070	4600234.5595	41°32'50.39"N	16°13'3.31"E
60	602716.7754	4600045.4153	41°32'43.72"N	16°13'53.54"E
61	596694.0000	4599810.0000	41°32'38.79"N	16° 9'33.50"E
62	597860.8179	4599620.0385	41°32'32.12"N	16°10'23.74"E
63	599027.4583	4599430.1064	41°32'25.45"N	16°11'13.97"E
64	600194.0987	4599240.1743	41°32'18.77"N	16°12'4.20"E
65	601360.7391	4599050.2423	41°32'12.08"N	16°12'54.42"E
66	602527.3795	4598860.3102	41°32'5.39"N	16°13'44.64"E
67	600599.0000	4598119.0000	41°31'42.24"N	16°12'20.99"E
68	601758.0000	4597896.0000	41°31'34.48"N	16°13'10.86"E

Lo studio anemologico della zona di progetto è stato condotto usando sia i dati prodotti da una torre anemometrica di 60 m, installata nel comune di Zapponeta (FG) a circa 5 km dalla costa, sia i dati dalla stazione agrometeo OPU23 di ASSOCODIPUGLIA (Associazione Regionale dei Consorzi di Difesa della Puglia), distante dalla costa poco più di 1 km.

E' importante mettere in evidenza il generale limite delle misurazioni a terra per la stima del vento offshore nel Golfo di Manfredonia. Infatti in questa zona il vento proveniente dal nord dell'Adriatico aggira il promontorio del Gargano e si combina in mare con i venti che provengono dalla zona del foggiano, dando plausibilmente vita anche a fenomeni di ricircolo della vena fluida. Per questo motivo ci si aspetta che in particolar modo le direzioni registrate da una torre anemometrica a terra, seppur installata vicino alla costa, non siano del tutto rappresentative della direzione del vento offshore nel golfo.

Per quanto illustrato poc'anzi, la PEMGS è ben consapevole che la precisione del risultato finale potrà essere migliorata quando si disporrà di misure del vento a mare. A tal scopo, la PEMGS ha in programma sia di integrare la campagna anemometrica con misurazioni dirette sul sito offshore, sia di stimare le caratteristiche anemologiche nell'area di progetto, attraverso l'uso di modelli fisicomatematici a mesoscala.

Di seguito le principali caratteristiche delle stazioni anemometriche usate:

Stazione anemometrica	Coordinate UTM WGS 84 Zone: 33		Altitudine	Altezza sensori [m s.l.t.]		Periodo di misura	
	X		[m s.l.m.]	Velocità Direzione		Inizio	Fine
Zapponeta	572751	4591202	2	20 - 40 - 60	60 - 40	04/01/2007	06/01/2009
OPU23 (stazione storica)	573911	4599238	0	2 - 10	10	18/09/2001	21/12/2011

La stazione di **Zapponeta**, installata il 04/01/2007 e ad oggi ancora attiva, ha misurato con continuità dal 04/01/2007 al 06/01/2009. La torre anemometrica ha struttura tubolare ed è equipaggiata con tre anemometri a 60 m, 40 m e 20 m e due banderuole a 60 m e 40 m.

Figura 2 Stazione di Zapponeta

La stazione **OPU23** fa parte della rete agrometo dell'**Associazione Regionale dei Consorzi di Difesa della Puglia** denominata **ASSOCODIPUGLIA** e i dati misurati sono disponibili pubblicamente. La torre anemometrica, distante circa 8 km dalla stazione di Zapponeta, è situata in località **Manfredonia – Vigna Balsamo** (**FG**) ed equipaggiata con due anemometri, rispettivamente a 10 m e a 2 m s.l.s., ed una banderuola a 10 m s.l.s. Le misurazioni sono disponibili dal 18/09/2001 al 21/12/2011, per un totale di più di 10 anni.

Figura 3 Stazione OPU23

Sono stati acquistati e analizzati anche i dati di altre tre stazioni mostrate in Figura 3-5, che però si è deciso di non utilizzare nello studio:

Bari Palese (**Aeronautica Militare**), non utilizzata perché la correlazione con le stazioni OPU23 e Zapponeta non è sufficiente per l'utilizzo dei dati.

Foggia Amendola (Aeronautica Militare), non utilizzata perché la correlazione con le stazioni OPU23 e Zapponeta è incredibilmente scarsa. La pessima correlazione, nonostante la vicinanza della stazione alle altre due usate nello studio, è spiegata dal fatto che le misure anemometriche sono relative solamente alle ore diurne (dalle 5:00 alle 18:00) e quindi la completa assenza d'informazioni sul regime eolico notturno, sia in termini d'intensità che di direzione del vento, rende i dati della stazione incompleti per uno studio anemologico.

Pitagem (CNR ISMAR), unica stazione a mare disponibile, non è stata utilizzata direttamente per la creazione della statistica del vento, ma come verifica dell'intensità del vento offshore. Infatti l'unico anemometro presente (posto a poco più di 2 m s.l.m.) ha misurato con continuità per soli 4,9 mesi (dal 16/12/2004 al 20/04/2005), periodo insufficiente per poter includere i dati nel calcolo della statistica anemologica.

Tuttavia è stata verificata la correlazione su base giornaliera tra i dati Pitagem e quelli di OPU23

(unica stazione delle due usate con dati contemporanei) e il risultato è sufficiente a dare una certa confidenza sulla corrispondenza dell'intensità del vento a terra e a mare. L'incertezza notevole sulle direzioni rimane e va approfondita, come già spiegato in precedenza.

Figura 4 Stazioni anemologiche

Stazione	Periodo	Altezza misura	Velocità misurata	Parametri di Weibull			Wind shear
anemometrica	[anni]	[m]	[m/s]	Vc [m/s]	k	A [m/s]	(<)
		60	5,44	5,53	2,103	6,24	
Zapponeta	2	40	4,96	5,01	2,071	5,65	o , 186
		20	4,42	4,45	1,916	5,01	
OPU23 (stazione storica)	10	10	3,35	3,32	2,504	3,74	-

Figura 5 Statistiche dei dati anemometrici delle stazioni di Zapponeta e OPU23

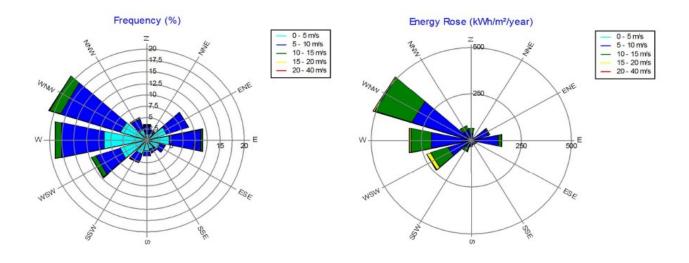


Figura 6 Distribuzione per settori angolari della frequenza del vento e dell'energia per la stazione di Zapponeta

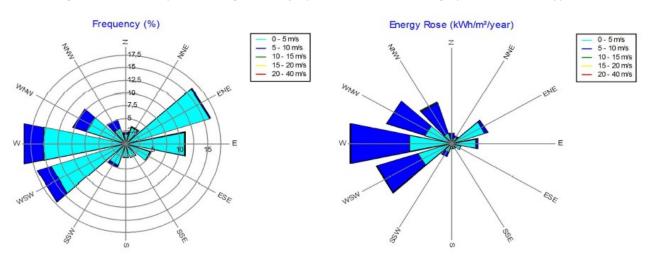
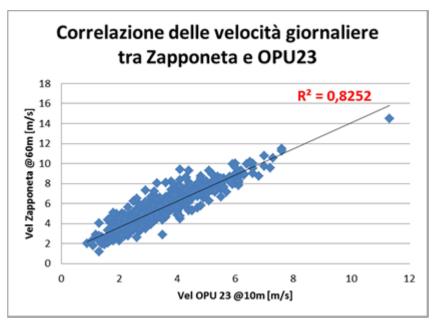
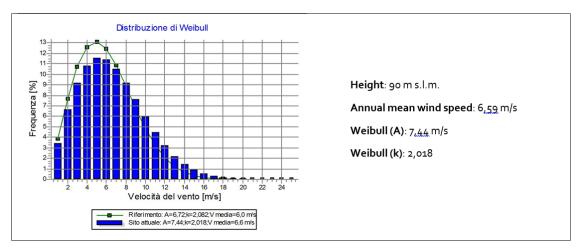
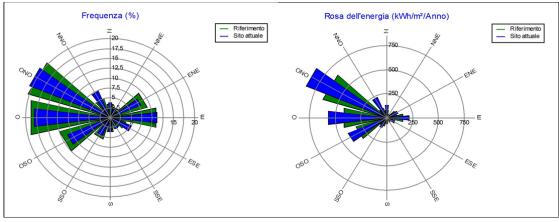
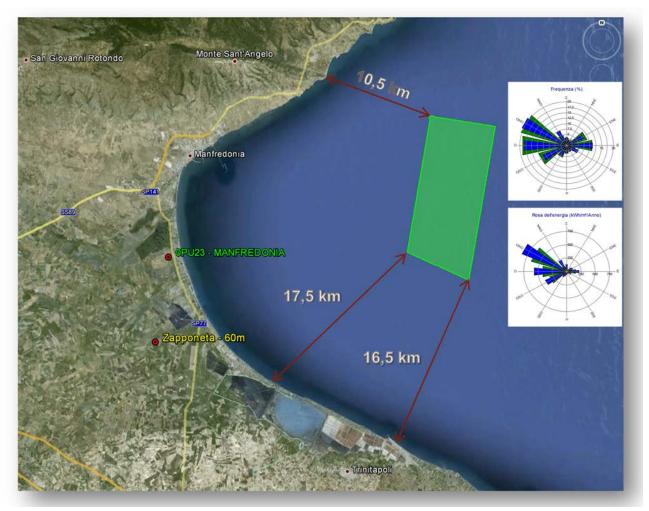



Figura 7 Distribuzione per settori angolari della frequenza del vento e dell'energia per la stazione OPU23


2.2 I risultati sulla velocità del vento sul sito


Volendo utilizzare due distinte serie di dati per caratterizzare il regime ventoso, è necessario armonizzarle temporalmente. A tal scopo i dati anemometrici di Zapponeta sono stati correlati con quelli di OPU23 che, avendo una durata di 10 anni, possono essere considerati la serie di riferimento. La correlazione lineare è stata calcolata sulle medie giornaliere dei dati e i valori risultanti di slope ed offset sono stati utilizzati per ricavare la velocità a lungo termine nella posizione della torre anemometrica di Zapponeta a 60 m s.l.t.


Correlazione dati giornalieri OPU23 e Zapponeta.

In seguito è stato utilizzato il software WindPRO (della EMD) per creare una statistica del vento a lungo termine (10 anni) nella posizione della torre anemometrica di Zapponeta all'altezza di 90 m s.l.t. che è stata poi usata per il calcolo della producibilità del parco eolico "Gargano Sud". Le caratteristiche anemologiche risultanti al centro del parco sono riportate nelle figure seguenti.

E' importante far notare come, in fase di progettazione, si sia scelto di orientare il layout in modo da offrire il fronte più ampio alla direzione principale del vento. In tale modo, essendoci un numero contenuto di file ortogonali al vento prevalente (precisamente sono sei), sarà contenuto anche l'ammontare dell'energia persa per l'effetto scia tra le turbine.

Localizzazione delle stazioni anemometriche utilizzate nello studio (OPU23-Manfredonia e Zapponeta-60m), rose dei venti risultanti al centro dell'area di progetto e distanze principali del parco dalla costa.

3 Calcolo producibilità

Per la determinazione della producibilità dell'impianto è necessario disporre del diagramma di potenza (Curva di potenza) caratterizzante gli aerogeneratori considerati, le cui caratteristiche sono definite nell'allegato *Caratteristiche macchina tipo*, che fornisce il valore di potenza estraibile in relazione ai differenti valori assunti dalla velocità del vento e la distribuzione della probabilità di velocità (densità di probabilità di Weibull).

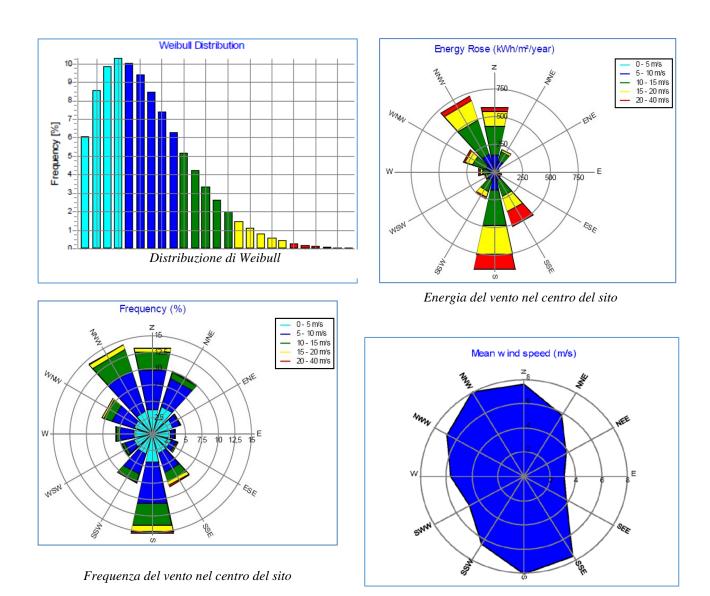
La valutazione della produzione annua di energia mediante un aerogeneratore può essere effettuata molto semplicemente conoscendo la distribuzione di frequenza della velocità del vento, valutata all'altezza media del rotore, e la curva di potenza della macchina. Infatti, per ciascuna classe di velocità, il prodotto della potenza prodotta dalla turbina eolica per il corrispondente numero di ore/annue di persistenza di tale velocità del vento fornisce direttamente la produzione netta di energia. La somma delle produzioni energetiche relative a tutte le classi di velocità del vento è pari alla produzione energetica annua totale:

$$E_{E,N} = \sum_{i=1}^{N} n_i \cdot P_i$$

Un fattore molto rilevante per la valutazione della produzione di energia e della redditività dell'iniziativa è il cosiddetto "rendimento di schiera" del parco eolico. Infatti, per effetto del disturbo aerodinamico creato da ciascuna macchina sulle altre, la produzione di energia di una turbina inserita in un gruppo di macchine è minore della produzione energetica della stessa macchina installata in posizione isolata.

L'andamento della distribuzione di Weibull rappresenta in ordinate la probabilità in termini percentuali che il vento durante l'anno abbia una certa velocità; infatti l'area sottesa dalla curva è sempre uguale a uno.

La sua forma varia da luogo a luogo, dipendendo soprattutto dalle condizioni climatiche, dall'orografia e dal tipo di superficie ed è data dalla seguente formula:


$$F(v) = exp[-(v/A)^K]$$

Dove:

- F(v) è l'intervallo di tempo per il quale la velocità media supera il valore v;
- K il parametro di forma, adimensionale, legato all'orografia del sito ed alle caratteristiche di ventosità proprie dell'area;
- A, parametro di scala (m/s), strettamente legato alla velocità media del vento.

Nota la distribuzione di Weibull del sito, l'andamento del fattore di potenza e la curva di potenza dell'aerogeneratore che si vuole installare, è possibile determinare il numero di ore/anno in cui la macchina è

in grado di funzionare e la quantità di energia elettrica prodotta.

Direzione dei venti

La stima della producibilità dell'intero impianto è pari a 2.859,26 GWh/anno.

Per il calcolo della producibilità del singolo aerogeneratore V236-15MW si è partiti dalla curva caratteristica della macchina che mette in relazione la potenza sviluppata e la velocità.

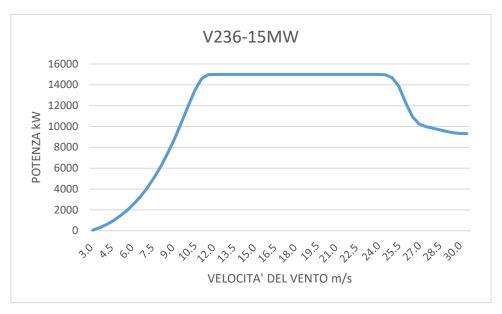


Figura 8 Curva caratteristica

VELOCITA' DEL VENTO (m/s)	POTENZA (KW)				
3.0	57				
3.5	292				
4.0	591				
4.5	963				
5.0	1412				
5.5	1942				
6.0	2555				
6.5	3273				
7.0	4111				
7.5	5072				
8.0	6170				
8.5	7410				
9.0	8792				
9.5	10315				
10.0	11927				
10.5	13445				
11.0	14587 14972				
11.5					
12.0	14998				
12.5	15000				
13.0	15000				
13.5	15000				
14.0	15000				
14.5	15000				
15.0	15000				
15.5	15000				
16.0	15000				
16.5	15000				

Гт	
17.0	15000
17.5	15000
18.0	15000
18.5	15000
19.0	15000
19.5	15000
20.0	15000
20.5	15000
21.0	15000
21.5	15000
22.0	15000
22.5	15000
23.0	15000
23.5	15000
24.0	15000
24.5	14965
25.0	14695
25.5	13850
26.0	12325
26.5	10962
27.0	10238
27.5	9985
28.0	9833
28.5	9680
29.0	9522
29.5	9400
30.0	9330
30.5	9304
31.0	9300

Alla velocità del vento di 7.2 m/s corrisponde una Potenza pari a 4,8 MW.

Conoscendo il valore di potenza alla velocità data andiamo a calcolare le ore effettive corrispondenti al prodotto tra le ore totali annue (8.760 Ore), la potenza sopra indicata(4,8MW) il tutto diviso la potenza nominale(15MW) per un valore pari a 2803,20 ore. Il fattore di capacità è pari a 2803,20/8760=0,32.

La producibilità per ogni singolo aerogeneratore è pari a 2803,20 Ore*15MW=42.048,00 MW/anno.

VELOCITA' VENTO m/s	7,20							
Potenza nominale MW	15							
KW 4800 pari a MW 4,8	4,8							
ORE (365*24)	8.760							
MW	PER	GG	PER	ore/gg	FRATTO	MW	ORE EFFETTIVE -	
10100	FLN	00	FLN	ore/gg	FIATIO	10100	PEH	
4,80		365		24		15	2.803,20	
							PRODUCIBILITA'	PRODUCIBILITA'
	1000000						AEROGENERATORE	AEROGENERATORE
ORE EFFETTIVE - FLH	PER	MW					MW/ANNO	kW/ANNO
2.803,20		15,00					42.048,00	42.048.000,00
ORE EFFETTIVE - FLH	FRATTO	ORE					Capacity factor	
2.803,20		8.760,00					0,32	

Figura 9 Calcolo producibilità

4 Conclusioni

Le turbine prese in considerazione sono in grado di garantire una producibilità energetica prossima a **42.048 MWh** di energia all'anno per aerogeneratore di progetto, rendendo valida la realizzazione del parco eolico da un punto di vista tecnico-economico.