Regione Autonoma Friuli Venezia Giulia

(Int. 1) LAVORI DI COMPLETAMENTO DEL CENTRO INTERMODALE DI PORDENONE: ALLUNGAMENTO DELL'ASTA DI MANOVRA A M. 750

(Finanziamento: L.R. 28 dicembre 2017, n. 45, art. 6, commi 11 12, 13, 14, 15)

(Int. 2) LAVORI DI POTENZIAMENTO E MIGLIORAMENTO DELLA DOTAZIONE INFRASTRUTTURALE DEL TERMINAL INTERMODALE: REALIZZAZIONE DI UN FASCIO DI BINARI PER LA SOSTA DEI CARRI FERROVIARI

(Finanziamento: L.R. 6 agosto 2019, n. 13, art. 6, commi dal 13 al 17)

Progetto Definitivo

STUDIO PRELIMINARE AMBIENTALE

Verifica di assoggettabilità alla VIA (art. 6, comma 6, D.Lgs. 152/2006)

INTEGRAZIONI

Valutazione previsionale degli inquinanti in atmosfera

Committente:

INTERPORTO - CENTRO INGROSSO DI PORDENONE SPA Sede in Interporto - Centro Ingrosso Settore F n.1 33170 Pordenone

Professionista:

Dott. Ing. Germana Bodi

INDICE

1 PRE	MESSA	3
2 QUA	ADRO DI RIFERIMENTO NORMATIVO E LIMITI DI LEGGE	3
3 INQ	UADRAMENTO TERRITORIALE	4
4 STA	TO DELLA QUALITÀ DELL'ARIA	4
4.1 Q	ualità dell'ariau	4
4.2 In	fluenza dei parametri meteo climatici sull'inquinamento atmosferico	6
	nacina dei parametri meteo emilano san inquinamento dimosito cominimi	
5 ANA	ALISI MODELLISTICA DI RICADUTA AL SUOLO DEGLI INQUINANTI	7
5.1 Pi	remessa	-
		•
5.2 A	spetti metodologici della modellistica utilizzata	7
5.3 Ir	nodelli di calcolo	8
5.3.1	Caline 4	
5.3.2	Runanalyzer	9
5.3.3	Metodologia di calcolo di NO2	9
5.4 D	ati meteo utilizzati	10
5.4.1	Valori di fondo e inquinanti analizzati	
	cenario emissivo attività di Interporto (esistente e progetto)	
5.5.1	Indicatori di attività analizzati	
5.5.2	Sorgenti emissive lineari e fattori di emissione	
5.5.3	Dominio di calcolo	
5.5.4	Esportazione dei Risultati in software GIS	•
5.5.5	Individuazione recettori sensibili	•
5.5.6	Risultati simulazione	
5.5.6	5.1 Mappature di ricaduta al suolo degli inquinanti	20
5.5.6	Dati tabellari	20
5.6 Co	onclusioni	21
-		
6 TRA	FFICO INDOTTO FASE DI CANTIERE	37
6.1 A	ttività di cantiere analizzate	37
	alutazioni con analisi modellistica previsionale	
6.2.1	Modello di calcolo	
6.2.2	Dominio di calcolo	
6.2.3	Traffico cantiere	_
6.2.4	Risultati delle simulazioni del traffico indotto da cantiere	38
6.3 Fo	onti	43
., .,		

1 PREMESSA

Il presente documento è stato elaborato allo scopo di valutare il potenziale inquinamento dell'aria determinato dalle attività dell'Interporto Centro Ingrosso di Pordenone.

In particolare sono state valutate le emissioni di polveri sottili (PM10) e degli ossidi di azoto (NOx e NO2) determinate dalle attività dei mezzi d'opera non stradali, dai locomotori di manovra dei convogli e dal transito dei camion stradali nel Centro Interporto.

Inoltre si è aggiunta la valutazione dell'inquinamento dell'aria dovuto al traffico indotto dai camion stradali di cantiere con riferimento all'allungamento dell'asta di manovra e alla realizzazione del fascio di binari, lungo la viabilità ordinaria.

Vengono considerati per le simulazioni gli inquinanti più critici rispetto alla salute umana e particolarmente connessi alla tipologia di attività analizzata, anche con riferimento alle criticità di inquinamento regionali.

2 QUADRO DI RIFERIMENTO NORMATIVO E LIMITI DI LEGGE

Il D.Lgs. n 152/2006 definisce l'inquinamento atmosferico come "ogni modificazione dell'aria atmosferica dovuta all'introduzione nella stessa di uno o più sostanze in quantità e con caratteristiche tali da ledere o da costituire un pericolo per la salute umana o per la qualità dell'ambiente, oppure tali da ledere i beni materiali o gli usi legittimi dell'ambiente".

Nel determinare l'effettiva consistenza di ogni inquinante nell'aria sono basilari due fattori. In primo luogo un ruolo fondamentale è giocato dalla quantità di inquinante effettivamente immessa nell'atmosfera; è su questo elemento, entro i limiti delle tecnologie disponibili, che è possibile agire al fine di ridurre l'inquinamento atmosferico. Ulteriore fattore da non sottovalutare sono i fenomeni di dispersione e di concentrazione operati, per lo più, dalle condizioni meteoclimatiche e dalla conformazione del territorio che possono favorire l'uno o l'altro fenomeno.

La normativa di riferimento in materia di qualità dell'aria è costituita dal D.Lgs. n. 155/2010. Nella tabella seguente sono riportati i valori limite secondo la normativa vigente.

INQUINANTE	NOME LIMITE	INDICATORE STATISTICO	VALORE
	Soglia di allarme	Superamento per 3 h consecutive del valore soglia	400 µg/m³
NO ₂	Limite orario per la protezione della salute umana da non superare più di 18 volte per anno civile	Media massima oraria	200 µg/m³
	Limite annuale per la protezione della salute umana	Media annuale	40 µg/m³
NO _x	Limite annuale per la protezione della vegetazione	Media annuale	30 µg/m³
PM ₁₀	Limite di 24 h per la protezione della salute umana da non superare più di 35 volte per anno civile	Media giornaliera	50 μg/m³
	Limite annuale per la protezione della salute umana	Media annuale	40 µg/m³
PM _{2.5}	Limite annuale per la protezione della salute umana	Media annuale	25 µg/m³
СО	Limite media giornaliera calcolata su 8 ore	Media massima giornaliera calcolata su 8 ore	10 mg/m ³
C ₆ H ₆	Limite annuale per la protezione della salute umana	Media annuale	5 μg/m³

Tabella 1 – Valori limite per la protezione della salute umana, degli ecosistemi, della vegetazione e valori obiettivo secondo la normativa vigente – Allegato XI, D.Lgs. 155/2010 s.m.i.

3 INQUADRAMENTO TERRITORIALE

L'area di studio comprende l'intero Interporto di Pordenone con le sorgenti emissive analizzate che sono: mezzi d'opera e locomotori di manovra che operano rispettivamente nell'area lungo il lato nord di Interporto e lungo il binario di manovra sempre a nord; inoltre c'è il traffico interno dei camion stradali che transitano lungo il confine nord e ovest dell'area di Interporto.

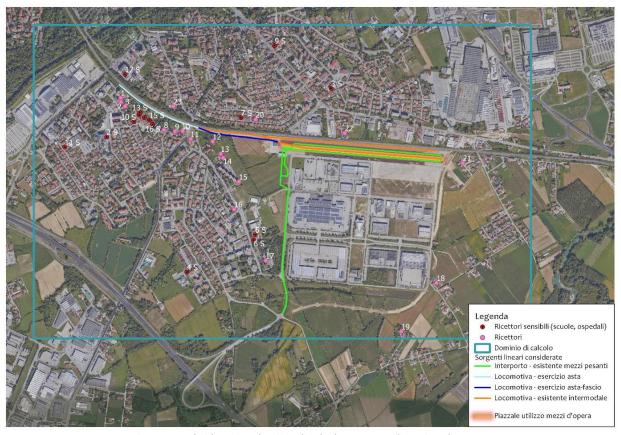


Figura 1 – Individuazione dominio di calcolo e sorgenti lineari analizzate

4 STATO DELLA QUALITÀ DELL'ARIA

4.1 Qualità dell'aria

L'inquinamento atmosferico rappresenta uno dei principali fattori di criticità ambientale, in particolar modo nelle aree urbane. La normativa italiana impone il monitoraggio di un certo numero di inquinanti "ubiquitari" quali il biossido di zolfo (SO_2), il biossido di azoto (NO_2), l'ozono (O_3), il Monossido di Carbonio (O_3), il piombo (O_3), il fluoro (O_3), il fluoro (O_3), il piombo (O_3), il fluoro (O_3), il fluoro (O_3), il piombo (O_3), il fluoro (O_3

Tutti i composti considerati esercitano seri danni alla salute dell'uomo, ma anche del patrimonio storico/artistico (alterazione chimica più o meno profonda dei materiali), ed agli ecosistemi ed alla vegetazione (ad esempio attraverso il fenomeno delle piogge acide, causate dalla reazione degli ossidi di azoto e di zolfo con l'umidità atmosferica, per cui le precipitazioni assumono un pH acido). Tali danni derivano, in genere, dalla continua esposizione a livelli di inquinamento superiori agli obiettivi di qualità. L'inquinamento atmosferico è definito dalla normativa italiana D.L. 3 aprile 2006 n. 152 come "ogni modificazione dell'aria atmosferica, dovuta all'introduzione nella stessa di una o di più sostanze in quantità e con caratteristiche tali da ledere o da costituire un pericolo per la salute umana o per la qualità dell'ambiente oppure tali da ledere i beni materiali o compromettere gli usi legittimi dell'ambiente". In generale, i fenomeni di inquinamento sono il risultato di una complessa interazione tra vari fattori, alcuni dei quali portano ad un accumulo degli inquinanti, altri determinano la loro rimozione e la loro diluizione in atmosfera. L'entità e le modalità di emissione (sorgenti puntiformi, diffuse, altezza di emissione, temperatura di emissione, ecc.), i tempi di persistenza degli inquinanti e il grado di rimescolamento dell'aria sono alcuni dei principali fattori

che producono variazioni nella composizione e qualità dell'aria. I principali inquinanti originati da diverse sorgenti emissive sono gli ossidi di azoto, gli ossidi di zolfo, le polveri, l'ossido di carbonio, i composti organici volatili e i metalli pesanti.

Le fonti responsabili della produzione di sostanze inquinanti sono numerose e di varia natura: alcune fonti emissive sono di origine naturale, altre invece sono strettamente legate alle attività umane. Le cause principali dell'inquinamento dell'aria sono riconducibili alle emissioni in atmosfera di sostanze, derivanti da diverse fonti di origine antropica (trasporto su gomma, processi industriali e per la produzione energetica, impianti per il riscaldamento, uso di solventi, smaltimento e trattamento dei rifiuti); è possibile rilevare che in ambiente urbano il traffico è responsabile, mediamente in un anno di una quota elevata di ossidi di azoto, idrocarburi aromatici e spesso, della frazione inalabile e respirabile delle particelle sospese (particolato). La normativa di riferimento in materia di qualità dell'aria è costituita dal D.Lgs. 155/2010 e s.m.i. Tale decreto, che ha abrogato le norme precedentemente in vigore, regolamenta i livelli in aria di biossido di zolfo (SO₂), biossido di azoto (NO₂), ossidi di azoto (NO_x), monossido di carbonio (CO), particolato (PM₁₀ e PM_{2.5}), piombo (Pb) benzene (C_6H_6), oltre alle concentrazioni di ozono (O₃) e ai livelli nel particolato PM₁₀ di cadmio (Cd), nichel (Ni), arsenico (As) e benzo(a)pirene (BaP).

Effetti sulla salute

I principali inquinanti in atmosfera legati alle attività analizzate, in relazione alle criticità della qualità dell'aria locali, e che hanno importanti ricadute sulla salute umana sono le polveri sottili e gli ossidi di azoto. Il biossido di azoto (NO₂) viene generato in tutti i processi di combustione. È un gas tossico irritante per le mucose ed è responsabile di specifiche patologie a carico dell'apparato respiratorio con diminuzioni delle difese polmonari (bronchiti, allergie, irritazioni). Gli ossidi di azoto contribuiscono alla formazione delle piogge acide e favoriscono l'accumulo di nitrati al suolo che possono provocare alterazione di equilibri ecologici ambientali. Il monossido di azoto (o monossido nitrico), con formula NO, ed il biossido di azoto, NO2, vengono normalmente raggruppati, assieme al meno frequente N2O, con la sigla NOx. Sono tutti gas tossici ed irritanti per gli esseri umani, e derivano da qualsiasi processo di combustione che utilizzi l'aria come comburente (quest'ultima è infatti composta al 78 % da N2 ed al 21 % da O2). Tra le cause della presenza di questo inquinante in atmosfera, vi è il traffico veicolare in quanto, a causa dell'elevata temperatura nella camera di combustione, si ha reazione fra ossigeno ed azoto con formazione di ossidi di azoto. Questi composti tossici, oltre alla formazione di nitrosammine cancerogene, determinano un incremento di nitrati nel suolo e nelle acque.

Il particolato PM_{10} è costituito da quella frazione di particolato atmosferico con diametro aerodinamico inferiore a 10 μ m ed è composto dall'insieme di tutto il materiale non gassoso, generalmente solido, in sospensione nell'aria. La natura delle particelle aerodisperse è molto varia, ne fanno parte le polveri sospese, il materiale organico disperso dai vegetali (pollini e frammenti di piante), il materiale inorganico prodotto da agenti naturali (vento e pioggia) e dai processi di combustione.

Nell'ultimo decennio numerosi studi epidemiologici hanno evidenziato che il particolato atmosferico (e soprattutto le frazioni di più piccole dimensioni quali PM10 e PM2,5) risulta l'indicatore di qualità dell'aria più consistentemente associato con una serie di effetti avversi sulla salute. Tali effetti possono essere sia di tipo acuto che cronico.

Gli effetti di tipo acuto, che si manifestano nella popolazione nei giorni in cui la concentrazione degli inquinanti è più elevata, sono:

- aggravamento di sintomi respiratori e cardiaci in soggetti predisposti;
- infezioni respiratorie acute;
- crisi di asma bronchiale
- disturbi circolatori e ischemici.

Tra gli effetti di tipo cronico, che si presentano in seguito a una esposizione di lungo periodo, si possono annoverare:

- sintomi respiratori cronici quali tosse e catarro;
- diminuzione della capacità polmonare;
- bronchite cronica.

Linee guida OMS 2021

Si riportano anche le linee guida aggiornate dell'OMS (Organizzazione Mondiale della Sanità) rispetto ai limiti di esposizione di inquinanti in relazione alle raccomandazioni sulla salute umana.

Come si vede per gli inquinanti analizzati (NO2 e PM10) i limiti raccomandati dall'OMS sono significativamente più bassi rispetto alla normativa nazionale (D.lgs. 155/2010), tanto da essere superati già dai valori medi annui del fondo urbano del Comune di Pordenone.

Inquinante	Riferimento temporale	Valor	i Interir	n µg/m³	ı	Linee Guida OMS 2021	Linee Guida OMS 2005	Italia DLgs 155/2010
	temporale	1	2	3	4	OWIS 202 I	OM3 2003	155/2010
PM _{2,5}	Annuale	35	25	15	10	5	10	25
	24 ore	75	50	37,5	25	15	25	
PM ₁₀	Annuale	70	50	30	20	15	20	40
	24 ore	150	100	75	50	45	50	50
O ₃	Valore di picco stagionale	100	70			60		
	8 ore	160	120			100	100	
NO_2	Annuale	40	30	20		10	40	40
	24 ore	120	50			25		
SO ₂	24 ore	125	50			40	20	125
СО	24 ore	7 mg/m³				4 mg/m³		

4.2 Influenza dei parametri meteo climatici sull'inquinamento atmosferico

L'inquinamento di una certa località dipende molto dalle condizioni meteorologiche, che possono determinare una differente dispersione e quindi una diversa concentrazione al suolo dei contaminanti. Generalmente le concentrazioni di inquinanti che si presentano in un dato luogo sono il risultato di differenti fenomeni che possono accumulare, disperdere o diluire gli inquinanti stessi; infatti, non è solo la localizzazione e la quantità delle fonti emissive a determinare la qualità dell'aria.

Il grado di stabilità dell'atmosfera influisce sulla velocità con cui gli inquinanti diffondono nell'aria, mentre la diffusione verticale può essere influenzata dai moti convettivi riguardanti lo strato dell'aria a contatto col suolo. In corrispondenza di basse altezze dello strato di rimescolamento gli inquinanti hanno un volume minore a disposizione per la dispersione, favorendo così un aumento della loro concentrazione al suolo. Altro fattore da considerare è la variazione dell'altezza di rimescolamento, sia nel corso del giorno sia nel corso delle stagioni; infatti, a parità di quantità di inquinante emessa, il perdurare di condizioni di forte inversione termica, a cui corrisponde una bassa quota dello strato di rimescolamento, fa sì che le sostanze inquinanti non riescano ad allontanarsi e disperdersi verso l'alto causando un aumento di concentrazione al suolo. L'altezza dello strato di rimescolamento permette di quantificare le dimensioni della porzione di atmosfera influenzata dalla presenza di inquinanti. È una grandezza che varia nell'arco della giornata: di giorno cresce per effetto della turbolenza convettiva che si sviluppa in presenza della radiazione solare, di notte diminuisce in seguito allo sviluppo di condizioni stabili.

Vi sono inoltre altri fattori meteo climatici che influenzano la dispersione degli inquinanti in atmosfera quali la piovosità e la velocità del vento. Pioggia e neve abbattono le particelle, il vento le sposta anche sollevandole, mentre le dinamiche verticali connesse ai profili termici e/o eolici le allontanano. Una volta emesse le polveri possono rimanere in sospensione nell'aria per circa dodici ore, mentre le particelle a diametro sottile, ad esempio 1 μ m, possono rimanere in circolazione per circa un mese. La frazione fine delle polveri nei centri urbani è prodotta principalmente da fenomeni di combustione derivanti dal traffico veicolare e dagli impianti di riscaldamento.

5 ANALISI MODELLISTICA DI RICADUTA AL SUOLO DEGLI INQUINANTI

5.1 Premessa

L'analisi atmosferica è partita da dati forniti da Interporto sulla localizzazione delle fonti di emissione, dai fattori di emissione per ciascuna sorgente e relativa quantità d'inquinante emesso, ricavati sulla base dei consumi reali di combustibile con riferimento a documenti ufficiali EMEP/EEA e dalle caratteristiche stesse di ogni sorgente emissiva. Ognuno di questi fattori è stato considerato solamente dopo aver determinato il dominio di calcolo del modello ovvero l'area all'interno della quale si sono ricavati i dati di output e quindi anche le considerazioni relative.

La dispersione e la ricaduta degli inquinanti emessi sono stati stimati mediante modellazione matematica. L'obiettivo finale dello studio è di ottenere informazioni circa la distribuzione spaziale dell'inquinamento atmosferico generato dagli interventi definiti dalla situazione esistente e dal progetto, così da conoscere gli effetti in termini di miglioramento o peggioramento della salubrità dell'aria. Il modello è stato applicato, ora per ora, ad un intero anno solare al fine di valutare le concentrazioni nelle diverse condizioni meteorologiche che si presentano al variare delle stagioni e poter confrontare i risultati ottenuti con i limiti definiti dalla normativa su un intero anno.

Da ultimo, attraverso elaborazioni in ambiente GIS dei dati di output del modello, utilizzando come base cartografica la Carta Tecnica Regionale, si è pervenuti alla stesura delle mappe di distribuzione delle concentrazioni degli inquinanti considerati nel dominio di calcolo.

5.2 Aspetti metodologici della modellistica utilizzata

La valutazione della dispersione di sostanze inquinanti in atmosfera viene effettuata tramite l'implementazione di un modello di qualità dell'aria, o "modello di dispersione in atmosfera", ossia di un algoritmo matematico che ha come obiettivo il calcolo delle concentrazioni in atmosfera di uno o più inquinanti emessi da un insieme di sorgenti definito. Le due principali categorie di modelli sono:

- Modelli stocastici che non fanno riferimento a relazioni fisiche di causa-effetto ma unicamente a
 correlazioni statistiche, per cui sono caratterizzati da una serie di limiti intrinseci e vengono
 utilizzati prevalentemente per formulare previsioni semi-quantitative sull'inquinamento
 atmosferico;
- Modelli deterministici che sono costituiti da algoritmi matematici che riproducono (in misura più o
 meno approfondita a seconda della tipologia del modello stesso) i processi di diffusione, trasporto
 e trasformazione chimica a cui gli inquinanti sono sottoposti una volta emessi nell'atmosfera
 (Caline, WinDimula, ecc.).

I modelli deterministici forniscono in uscita la distribuzione spaziale di uno o più inquinanti in una determinata area e hanno la necessità di essere alimentati con una serie di dati di ingresso, suddivisibili in tre tipologie generali:

- Dati geografici, che descrivono le caratteristiche del territorio in cui avviene l'emissione, in particolare l'orografia. L'ambito territoriale in cui avviene l'applicazione del modello viene chiamato dominio di calcolo;
- Dati emissivi, che descrivono le caratteristiche delle fonti di inquinamento atmosferico che vengono prese in considerazione, in particolare la quantità e la tipologia degli inquinanti emessi;
- Dati meteorologici, che descrivono le modalità con cui gli inquinanti vengono dispersi nell'atmosfera, in particolare l'anemologia e i fenomeni legati alla turbolenza e alla stabilità atmosferica.

L'utilizzo di modelli diviene quindi una risorsa fondamentale per poter ricostruire, nel modo più aderente alla realtà, lo stato della concentrazione dei diversi inquinanti all'interno di un determinato dominio di calcolo. Ciò tenendo sempre in considerazione che, quale prodotto di simulazione, rappresenta un processo che introduce inevitabilmente un determinato grado di approssimazione rispetto alla realtà. Attualmente esistono diversi software/modelli per lo studio di tale fenomeno che si differenziano principalmente per la loro complessità, per gli ambiti di applicazione e/o per la base teorico-concettuale su cui poggiano: non esiste un unico modello in grado di adattarsi alle varie condizioni ed in grado di simulare tutte le situazioni. Ciò a causa della complessità dell'argomento, delle innumerevoli variabili presenti quali le fonti emissive, il tipo di simulazione che si deve effettuare (nel lungo o breve periodo), per le

caratteristiche morfologiche del luogo etc. Un passo fondamentale diventa quindi quello della scelta del modello che si deve basare su fattori quali:

- il grado di approfondimento e la tipologia di analisi richiesti;
- la tipologia di sorgente emissiva che si vuole simulare;
- la morfologia dell'area di studio (area urbana, rurale etc...);
- le informazioni/dati reperibili/disponibili;
- la scala di dettaglio della modellizzazione;
- il livello di accuratezza dei risultati simulati.

Sulla base di quanto indicato l'analisi modellistica è stata effettuata mediante il Maind Model Suite Caline 4, modello gaussiano per il calcolo delle concentrazioni di inquinanti emessi da sorgenti lineari consigliato da ISPRA. Inoltre è stato utilizzato Surfer 15 che è un software in ambiente GIS per la visualizzazione grafica dei dati.

5.3 I modelli di calcolo

5.3.1 Caline 4

Per le simulazioni modellistiche delle emissioni è stato utilizzato il modello statunitense CALINE4. Si tratta di un modello gaussiano stazionario distribuito dal CALTRANS (California Department of Transportation) per la valutazione della diffusione delle specie chimiche emesse da sorgenti lineari quali: NO₂, particolato, e gas inerte.

È l'ultima versione dei modelli sviluppati dall'Istituto californiano e rispetto alla terza versione, che rappresenta il modello raccomandato dall'EPA per la stima delle ricadute di inquinanti inerti emessi da sorgenti lineari, CALINE4 presenta alcune opzioni più avanzate come:

- ✓ una nuova parametrizzazione del coefficiente di dispersione verticale, basata sul tempo di residenza dell'inquinante sulla carreggiata (mentre il coefficiente di dispersione orizzontale si basa sulle classi di Pasquill);
- ✓ un approccio semplificato per tener conto delle intersezioni fra strade e delle strade a canyon o a bluff.

Il modello suddivide gli archi della sorgente considerata in una serie finita di elementi emissivi perpendicolari alla direzione del vento che sono trattati con il metodo FLS (Finite Line Source). La concentrazione stimata dal modello in un punto (definito recettore) è data dalla somma dei contributi delle gaussiane generate da ciascuno degli archi del grafo considerato.

Per ogni percorso stradale si è fornito, per quanto riguarda i dati geometrici: il nome dell'arco, le coordinate del nodo iniziale e del nodo finale, la quota dell'arco rispetto al piano di campagna e la larghezza; mentre per quanto riguarda i dati emissivi si è indicato il fattore di emissione per unità di lunghezza e il flusso orario di veicoli.

Il modello adottato prevede esplicitamente le sorgenti lineari individuate come tipologia di sorgente. Si precisa che il modello permette solo di rilevare la componente primaria delle polveri sottili (esclude inquinanti secondari).

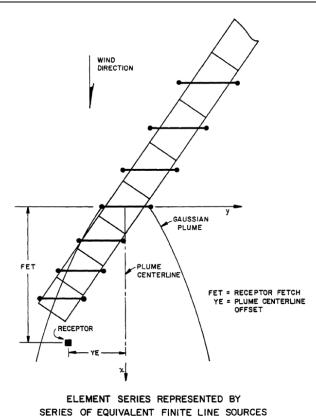


Figura 2 - Trattamento della sorgente lineare nel modello CALINE4 con il metodo della suddivisione in numero finito di elementi emissivi perpendicolari alla direzione del vento (Fonte: CALTRANS)

5.3.2 Runanalyzer

Il programma MMS RunAnalyzer è il programma MAIND S.r.l per il postprocessamento dei risultati calcolati dai principali modelli di calcolo di diffusione di inquinanti in atmosfera.

5.3.3 Metodologia di calcolo di NO2

Le sorgenti che emettono gas derivanti da combustione emettono Ossidi di Azoto (NOx) principalmente sotto forma di monossido di Azoto (NO) parte del quale, reagendo per permanenza in atmosfera con Ozono e altri agenti ossidanti, si trasforma in biossido di Azoto (NO2).

Le normative sulla qualità dell'aria sia nazionali (DL 155 del 13/08/2010) che internazionali definiscono limiti di concentrazione su NO2 quindi, per una corretta stima degli standard di qualità dell'aria, risulta necessario riuscire a stimare il rapporto NO2/NOx nella valutazione degli indicatori di qualità dell'aria calcolati attraverso simulazioni modellistiche. Poiché il processo di trasformazione NO - NO2 per permanenza di NOx in atmosfera è piuttosto complesso e soprattutto fortemente legato alle condizioni ambientali sitospecifiche, nello svolgimento degli studi di emissione si adottano delle ipotesi semplificative per la definizione del rapporto NO2/NOx.

Il tipico approccio di primo livello in uno studio di diffusione modellistico è quello cautelativo cioè assumere che l'NOx emesso sia da considerarsi totalmente come NO2 (cioè NO2/NOx = 1); sempre in questo contesto si può inquadrare anche la procedura EPA ARM (Ambient Ratio Method) secondo la quale il rapporto NO2/NOx è un valore costante pari a 0.8 per la valutazione dei valori orari e 0.75 per la valutazione dei valori annuali. Queste metodologie in genere sovrastimano il valore orario di NO2 però l'ipotesi cautelativa che ne è alla base, in assenza di superamenti degli indicatori di qualità dell'aria, garantisce la robustezza dell'analisi regolatoria.

Il metodo è stato utilizzando costruendo il file di fondo orario dell'inquinante NO2 e applicando la procedura ARM2 nel modello RunAnalyzer che ne permette il post processamento. Il postprocessore MMS RunAnalyzer supporta la procedura ARM2 elaborata dall'EPA per il calcolo di NO2 a partire dalle concentrazioni di NOX. Per il Calcolo di NO2 si sono utilizzati i dati di fondo orari di NO2 della stazione di Pordenone centro disponibili dal sito di ARPAFVG e sono stati importati nel software Runanalyzer per determinare le concentrazioni ai ricettori.

5.4 Dati meteo utilizzati

I fattori meteorologici ricoprono un ruolo di primaria importanza nei confronti della componente atmosfera in quanto dettano variabili quali la velocità con cui gli inquinanti vengono trasportati sia in atmosfera che al suolo, influiscono sull'altezza di rimescolamento e determinano la formazione di inquinanti secondari. La meteorologia riveste quindi un ruolo fondamentale per la rappresentazione dei fenomeni di trasporto e dispersione degli inquinanti in atmosfera.

I dati per l'elaborazione dell'input meteoclimatico sono stati richiesti ad ARPAFVG che ha fornito quelli relativi al 2018 rispetto all'area della stazione dei treni di Pordenone.

Il modello utilizza dati meteorologici valutati su base oraria.

Le stime sono estratte dai prodotti dalla catena modellistica implementata presso il Centro Regionale di Modellistica Ambientale dell'ARPA FVG, basata sull'esecuzione del modello non idrostatico di area locale WRF (www.wrf-model.org) e del processore meteorologico diagnostico SurfPro (www.aria-net.it). Le condizioni iniziali ed al contorno per l'esecuzione del modello WRF sono costituite dalle previsioni meteorologiche prodotte dal Global Forecasting System (www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs).

I dati sono organizzati in variabili intrinsecamente bidimensionali (altezza di rimescolamento, classe di stabilità, ecc.) e dati estratti, all'altezza di 10m dal suolo, da campi tridimensionali (vento e temperatura). Le ore totali sono 8736 di cui 848 esclusi dal calcolo (calma o vento <0,5 m/s) il 9,7%, dunque inferiore al 10% su base annua.

Di seguito si riporta la rosa dei venti e il grafico delle temperature elaborata dal modello Caline per il progetto elaborato.

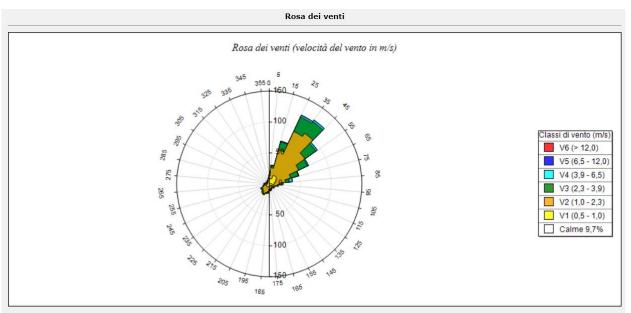


Figura 3 – Elaborazione rosa dei venti da elaborazione di Caline 4

5.4.1 Valori di fondo e inquinanti analizzati

Al fine di valutare gli scenari esistente (sdf) e di progetto (pro) e di caratterizzarne gli aspetti nel modo corretto è necessario fare riferimento alla situazione attuale relativa alla qualità dell'aria, in particolare allo stato degli inquinanti presi in considerazione, ovvero PM_{10} , NO_x e NO_2 (ossidi di azoto).

A tal fine si è presa come riferimento la stazione di viale Marconi di Pordenone (stazione di traffico), appartenente alla rete regionale di rilevamento della qualità dell'aria. L'anno di riferimento è il 2018. Il riferimento al 2018, è stato suggerito da ARPA FVG.

Il 2018 risulta preferibile al 2019 in quanto:

- i dati meteo per il 2018 vengono da una corsa annuale del modello meteorologico regionale (WRF), che ha potuto beneficiare di condizioni al contorno estratte da run di "rianalisi" del modello globale,

caratterizzate da una maggiore accuratezza rispetto ai run di "previsione"; per gli anni successivi al 2018 abbiamo invece a disposizione, attualmente, solo i dati meteo prodotti da corse di "previsione" dei modelli.

- ulteriore elemento di accuratezza, relativo ai dati meteo: la corsa annuale 2018 beneficia di un miglioramento nell'algoritmo di estrapolazione della velocità del vento a 10m (che corregge la tendenza alla sovrastima che hanno i modelli meteorologici, in particolare in zone poco ventose come la Pianura Padano-Veneta). Tale algoritmo è stato applicato alle corse di previsione solo nel corso del 2020 (non era ancora applicato nel 2019).

Per poter utilizzare la procedura ARM per il NO2 si sono presi i valori orari dell'inquinante di Pordenone centro dal sito di ARPAFVG. Per quanto indicato si utilizzano i dati relativi all'anno 2018.

Per i dati del fondo relativamente alle PM10 si sono presi i valori degli ultimi 5 anni di cui si è fatta una media. Tali valori (medie annue in $\mu g/mc$) sono tratti dalla Relazione della qualità dell'aria della Regione FVG elaborati da ARPAFVG. Il valore di fondo considerato è l'unico disponibile per Pordenone relativo cautelativamente a una stazione di traffico e non di fondo urbano.

2017	2018	2019	2020	2021	FONDO stazione Pordenone centro media 5 anni
26,4	22,9	24,5	25,6	21,9	24,26

5.5 Scenario emissivo attività di Interporto (esistente e progetto)

5.5.1 Indicatori di attività analizzati

Per il tramite dell'Ente Interporto, il gestore dello scalo (HUPAC) ha fornito i dati relativi ai propri mezzi impiegati attualmente nello scalo.

Per determinare gli input emissivi (consumi combustibile) relativi allo stato attuale si è fatto riferimento ai dati HUPAC relativi al periodo di rilevamento trimestre marzo - maggio 2022.

GENERE	N°	DESCRIZIO NE VEICOLO	MODELLO	TELAIO	Classe inquinante -stage	MASS A [kg]	POTEN ZA in kw	TIPOLOGIA DI COMBUSTIBILE
GRU GOMMATA	G 05	Semovente CVS F378.5 PB		ZA9F378H 501A26018	stage 3	75000	243	gasolio per autotrazione
GRU GOMMATA	G 06	Semovente UP Lifting	RSUP-45- 6IH5	201703090	stage 4	79400	265	gasolio per autotrazione
GRU GOMMATA	G 07	Semovente UP Lifting	RSUP-45- 6IH5	201805111	stage 4	79400	265	gasolio per autotrazione
GRU GOMMATA	G 08	Semovente Kone Cranes	SMV 4527 CC5	M13301	stage 5	76200	265	gasolio per autotrazione
TRATTORE	T 07	Terberg YT		XLWYT222 5513752215	stage 3	7940	164	gasolio per autotrazione
TRATTORE	T 10	MAFI tipo T230		3260105	stage 4	7600	164	gasolio per autotrazione
CARRELLO ELEVATORE	V 04	Muletto Toyota		SFD35- 14429	stage o			gasolio per autotrazione
LOCOMOTIVA	L 11	Locomotiv a IPE	51Y00868	V 212 57593	stage 3a	72000	1000	gasolio per autotrazione
LOCOMOTIVA	L 98	Locomotiv a DEUTZ		IT RFI 270008-2	stage 3a	78000	808	gasolio per autotrazione

GENERE	N° interno	MEDIA ORE: MINUTI FUNZIONAMENTO/ GIORNO	FASCE ORARIE PUTILIZZO LUN - VEN	FASCE ORARIE UTILIZZO SAB	LITRI RIFORNITI DAL 01/03/2022 AL 31/05/2022
GRU GOMMATA	G 05	02:25	07:00 - 21:30	06:30 - 17:30	3890
GRU GOMMATA	G 06	01:30	07:00 - 21:30	06:30 - 17:30	1992
GRU GOMMATA	G 07	07:45	07:00 - 21:30	06:30 - 17:30	12605
GRU GOMMATA	G 08	08:40	07:00 - 21:30	06:30 - 17:30	11376
TRATTORE	T 07	00:35	07:00 - 21:30	06:30 - 17:30	248
TRATTORE	T 10	03:15	07:00 - 21:30	06:30 - 17:30	1625
LOCOMOTIVA	L 11	01:15	06:30 - 21:30	05:30 - 18:00	2334
LOCOMOTIVA	L 98	01:45	06:30 - 21:30	05:30 - 18:00	2680
CARRELLO ELEVATORE	V 04	00:15	07:00 - 19:00	06:30 - 17:30	118

Tabella 2: Dati HUPAC relativi al trimestre marzo - maggio 2022 con riferimento ai mezzi d'opera utilizzati per definire lo stato attuale; combustibile: gasolio per autotrazione. HH:MM: utilizzo giornaliero medio, all'interno delle fasce orarie indicate (lunven: sab)

Oltre ai dati di Tab. 2, vengono considerati nello studio emissivo 7821 accessi di mezzi esterni (trattori stradali) nello stesso periodo (marzo - maggio 2022), corrispondenti mediamente a 98 accessi/giorno, negli 80 gg di operatività dello scalo (da lunedì-sabato). Considerando le 11 ore di attività dei camion stradali, si stima un traffico orario pari a 9 veicoli/ora in ingresso.

5.5.2 Sorgenti emissive lineari e fattori di emissione

Ai fini della simulazione, le sorgenti emissive sono state rappresentate come sorgenti lineari (Fig. 1) poste in corrispondenza, rispettivamente, del binario di manovra (lunghezza: 1320 m) e del piazzale dei mezzi d'opera (lunghezza: 900 m).

Le emissioni dei due locomotori sono associate al binario, quelle dei restanti mezzi al piazzale. Si è considerato una altezza di calcolo sul livello di suolo di 2 m.

Si precisa che per il piccolo tratto sosta dei camion nell'area a parcheggio lungo il confine a nord ovest di interporto, si è considerato su Caline la specifica tipologia di tratta "tipo a parcheggio" per meglio simulare le emissioni della sorgente, precisando tuttavia come comunicato da Interporto che in tale tratta i camion non rimangono con motore acceso.

Sulla base dei dati estratti dal EMEP/EEA air pollutant emission inventory guidebook 2019, guidebook europeo per la redazione degli inventari delle emissioni in atmosfera (ultimo aggiorn. 2019) relativamente ai mezzi d'opera e ai locomotori diesel di manovra con riferimento a Tier 2 (più cautelativo in quanto non presente stage 3a), si riportano i fattori di emissione considerati nello studio per NOx e PM10 (Kg/tonne). Il riferimento del documento sono i fattori di emissione per i mezzi diesel non stradali impiegati nell'industria, costruzioni e commercio (NFR Sector: 1.A.4.a.ii e 1.A.2.g.vii)).

Table 3-2 Tier 2 emission factors for off-road machinery

				Tie	er 2 emission	factors						
				Technolog	у							
uel	NFR Sector	Pollutant	Units	< 1981 19	81-1990 19	91-Stage I S	tage S	tage II S	tage IIIA St	tage IIIB St	age IV St	age V
iesel	1.A.4.c.ii:	BC	g/tonnes fuel	3221	2221	1074	727	483	416	74	73	9
	Agriculture	CH4	g/tonnes fuel	191	158	110	38	29	29	13	13	13
		со	g/tonnes fuel	19804	17566	14147	6463	6104	6035	6087	6024	6077
		CO2	kg/tonnes fuel	3160	3160	3160	3160	3160	3160	3160	3160	3160
		N20	g/tonnes fuel	122	129	137	138	138	139	139	139	139
		NH3	g/tonnes fuel	7	7	8	8	8	8	8	8	8
		NMVOC	g/tonnes fuel	7760	6439	4493	1544	1181	1173	544	530	526
		NOx	g/tonnes fuel	29901	37383	49002	30799	20612	12921	9318	1587	1861
		PM10	g/tonnes fuel	5861	4047	1974	947	624	550	99	99	59
		PM2.5	g/tonnes fuel	5861	4047	1974	947	624	550	99	99	59
		TSP	g/tonnes fuel	5861	4047	1974	947	624	550	99	99	59
	1.A.4.c.ii: Forestry	ВС	g/tonnes fuel	3021	2052	1172	607	456	437	74	74	9
		CH4	g/tonnes fuel	183	143	121	35	29	29	13	13	13
		со	g/tonnes fuel	19014	16045	14239	5919	5940	5947	5940	5947	6008
		CO2	kg/tonnes fuel	3160	3160	3160	3160	3160	3160	3160	3160	3160
		N2O	g/tonnes fuel	123	131	137	138	139	139	139	139	139
		NH3	g/tonnes fuel	7.	7	8	8	8	8	8	8	8
		NMVOC	g/tonnes fuel	7423	5827	4907	1420	1160	1161	514	515	542
		NOx	g/tonnes fuel	33028	44030	49963	31344	20593	12845	9454	1586	1915
		PM10	g/tonnes fuel	5493	3731	2130	789	595	573	99	99	59
		PM2.5	g/tonnes fuel	5493	3731	2130	789	595	573	99	99	59
		TSP	g/tonnes fuel	5493	3731	2130	789	595	573	99	99	59
	1.A.2.g.vii and	ВС	g/tonnes fuel	3414	2369	2001	800	825	758	78	78	56
	1.A.4.a.ii	CH4	g/tonnes fuel	199	171	144	42	39	36	15	13	23
		со	g/tonnes fuel	20690	18890	16258	6639	7135	6826	6445	6019	7352
		CO2	kg/tonnes fuel	3160	3160	3160	3160	3160	3160	3160	3160	3160
		N2O	g/tonnes fuel	121	128	135	137	136	136	137	137	136
		NH3	g/tonnes fuel	7	7	8	8	8	8	8	8	8
		NMVOC	g/tonnes fuel	8077	6962	5851	1725	1587	1470	625	536	930
		NOx	g/tonnes fuel	26552	33942	43552	31077	22101	15653	11933	1570	7663
		PM10	g/tonnes fuel	6207	4308	3642	1005	1034	950	98	98	116
		PM2.5	g/tonnes fuel	6207	4308	3642	1005	1034	950	98	98	116
		TSP	g/tonnes fuel	6207	4308	3642	1005	1034	950	98	98	116
acoline	1.A.2.g.vii, 1.A.4.a.li,	ВС	g/tonnes fuel	352	239	193	184	215				214

Tabella 2: tabella elaborata con riferimento ai dati estratti dal Guidebook europeo per la redazione degli inventari delle emissioni in atmosfera fattori di emissione Stage IV per NOX e PM10 per i mezzi diesel non stradali

La gru gommata Ferrari CVS F378.5 PB è omologata Stage III. Si considera quindi cautelativamente lo Stage III-A, con riferimento ai valori della tavella 2, 15.653 g/tonnes fuel di NOx e 950 g/tonnes fuel di PM10. I trattori Telberg YT222 e MAFI T230 fanno riferimento a stage III, dunque cautelativamente stage IIIa e allo stage IV.

Relativamente al carrello elevatore Vo4 con riferimento allo stage o, si è preso cautelativamente la classe emissiva peggiore disponibile relativa all'anno di costruzione 1981-1990.

Per quanto riguarda i due locomotori diesel di manovra, i si riportano i fattori di emissione individuati sul Guidebook sector railways e tecnology shunting locomotives.

		Tier 1 e	mission fact	or			
	Code	Name					
NFR Source Category	1.A.3.c	1.A.3.c Railways					
Fuel	Gas Oil/I	Diesel					
Snap (if applicable)	080201 9	hunting Loc	omotives				
Techonolgies	Shunting	locomotives					
Region o regional conditions	NA						
Abatement technologies	NA						
Not applicable	HCH, PC	B, HCB					
Not estimated	SOx, Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, PCDD/F, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Indeno(1,2,3-cd)pyrene						
Pollutant	Value	Unit	95% confid	dence interval	Reference		
			Lower	Upper			
NOx	54.4	kg/tonne	27	85	Halder et al. (2005)		
СО	10.8	kg/tonne	2	18	See Note 1		
NMVOC	4.6	kg/tonne	1	8	See Note 1		
NH ₃	10	g/tonne	0	0	See Note 3		
TSP	3.1	kg/tonne	0.75	5	See Note 2		
PM ₁₀	2.1	kg/tonne	0.53	4	Halder et al. (2005)		
PM _{2.5}	2	kg/tonne	0.5	4	See Note 2		
N ₂ O	24	g/tonne	0	0	See Note 3		
CH₄	176	g/tonne	41	297	See Note 1		
CO ₂	3190	kg/tonne	726	5340	Derived from carbon balance		

Tabella 3: Fattori di emissione per i locomotori diesel di manovra. Dati estratti dal Guidebook europeo per la redazione degli inventari delle emissioni in atmosfera (tratta dalla Tab. 3.3 Tier 2 emission factors for shunting locomotives)

Si riporta dunque una sintesi del calcolo dei dati emissivi effettuato sulla base dei dati indicati nei paragrafi precedenti, in funzione dei consumi di combustibile relativi allo stato di fatto con riferimento a NOx e PM10, che hanno costituito l'input del modello di calcolo utilizzato per le due sorgenti lineari costituite dal piazzale e dai binari di manovra.

				STATO DI I	FATTO				
GENERE	N° interno	Stage	Consumo gasolio (Kg/anno)	FE NOx (g/Kg fuel)	FE PM10 (g/Kg fuel)	Emissione NOx (Kg/anno)	Emissione PM10 (Kg/anno)	FE NOx (g/h*k m)	FE PM10 (g/h*k m)
GRU GOMMATA	G 05	stage 3	13118.64	15,653	0,95	205,35	12,46		
GRU GOMMATA	G 06	stage 4	6717.82	1,57	0,098	10,55	0,66		
GRU GOMMATA	G 07	stage 4	42509	1,57	0,098	66,74	4,166		
GRU GOMMATA	G 08	stage 5	38364	7,66	0,116	293,99	4,45		
TRATTORE	T 07	stage 3	836,35	15,653	0,95	13,09	0,79		1
TRATTORE	T 10	stage 4	5480	1,57	0,098	8,604	0,537		
LOCOMOTIVA	L 11	stage 3a	7871	54,4	2,1	428,192	16.529		
LOCOMOTIVA	L 98	stage 3a	9038	54,4	2,1	491,669	18,979		

CARRELLO LEVATORE	V 04	stage o	397,94	33,942	4,31	13,50	1,71		
TOTA	LE di cui:		124.333,64			1531,68	60,29		
Piazzale			107,424,43			611,82	24,78	284,53	11,52
Binari			16.909,21			919,861	35,509	769,17	29,69

Nota Tabelle: si considerano 302 giorni lavorativi anno e mediamente 8 ore di funzionamento al giorno per i mezzi d'opera e 3 ore di funzionamento al giorno per le locomotive, lunghezza piazzale 900 m e lunghezza asta esistente 1320 m e lunghezza asta di progetto 1834 m.

Tabella 4 Sintesi dati emissivi di input del modello per lo stato di fatto

Di seguito si riporta la valutazione dei fattori di emissione nello scenario di progetto che differisce solo per il tempo di utilizzo dei locomotori (inferiore) e per la localizzazione della sorgente lineare costituita dall'asta di manovra che viene allungata verso ovest.

Lo scenario di progetto con l'allungamento dell'asta e la realizzazione del fascio di binari permetterà di ridurre i tempi di manovra dei locomotori per la suddivisione delle varie parti del convoglio che vengono mano mano scaricati. Questo determina una diminuzione delle emissioni complessive come pure una diversa localizzazione delle sorgenti emissive che si prolungano verso ovest.

Nello specifico per il calcolo del carburante consumato dei locomotori nello stato di progetto si riportano i dati ricevuti dal Centro Interporto.

TEMPO DI ESECUZIONE MANOVRA SECONDARIA

	Layout del tei	attuale rminal	Layout con asta 750m		
Descrizione	Tempo min.	Tempo max	Tempo min.	Tempo max	
Manovra secondaria	1111111	IIIdA	1111116	IIIdA	
Frazionamento convoglio per inoltro (asta 350 m)	5'	10'	-	-	
Inoltro del treno dalla P/C ai binari operativi (asta 350 m)	10'	15'	-	-	
Inoltro del treno dalla P/C ai binari operativi (asta 350 m)	10'	15'	-	-	
Inoltro del treno dalla P/C ai binari operativi (asta 750 m)	-	-	15'	20'	
Sommano manovra secondaria	25'	40'	15'	20'	
Tempo medio	3	3'	18	3'	

DATI TRASMESSI DAL GESTORE DEL TERMINAL (periodo di rif. 01/03/22 - 31/05/22)

Locomotiva L11 – utilizzo medio giornaliero 1:15 ore – consumo gasolio totale 2.334 Lit. Locomotiva L98 – utilizzo medio giornaliero 1:45 ore – consumo gasolio totale 2.680 Lit.

Complessivamente:

Utilizzo medio al giorno 3:00 ore

Consumo gasolio totale 5.014 Lit. (considerando 80 giorni lavorativi)

CALCOLO CONSUMO CARBURANTE POST-OPERAM

Consumo con intervento n. 1 - "Lavori di completamento del Centro intermodale di Pordenone Allungamento dell'asta di manovra a m. 750"

I treni movimentati sono gli stessi del valore ante-operam

5.014: 33' = x : 18' = **2.735** Litri (asta di manovra)

Consumo con intervento n. 2 - "Lavori di potenziamento e miglioramento della dotazione infrastrutturale del Terminal intermodale Realizzazione di un fascio di binari per la sosta dei carri ferroviari"

Si stima un utilizzo con il locomotore del fascio di binari di sosta carri per circa 30' al giorno Calcolo consumo locomotore per 30' di utilizzo:

5.014 Lit. / 80 giorni / 3 ore / 2 = 10,44 Lit

Calcolo del consumo di carburante nel periodo di riferimento:

10,44 Lit/giorno * 80 giorni = 835 Lit. (fascio binari)

Totale consumo progetto 3.570 Lit. (2.735 + 835)

Tale consumo ripartito in modo pesato tra le due locomotive, determina i seguenti valori:

		litri	Consumo gasolio (Kg/anno)
L11	locomotiva	1661,78	5604,19
L98	locomotiva	1908,13	6434,97
	totale	3569,91	12039,16

Dunque sulla base dei consumi stimati in fase di progetto si determinano i fattori di emissione delle sorgenti lineari analizzate per NOx e PM10.

	PROGETTO													
GENERE	N° interno	Stage	Consumo gasolio (Kg/anno)	FE NOx (g/Kg fuel)	FE PM10 (g/Kg fuel)	Emissione NOx (Kg/anno)	Emissione PM10 (Kg/anno)	FE NOx (g/h*k m)	FE PM10 (g/h*k m)					
GRU GOMMATA	G 05	stage 3	13118.64	15,653	0,95	205,35	12,46							
GRU GOMMATA	G 06	stage 4	6717.82	1,57	0,098	10,55	0,66							
GRU GOMMATA	G 07	stage 4	42509	1,57	0,098	66,74	4,166							
GRU GOMMATA	G 08	stage 5	38364	7,66	0,116	293,99	4,45							
TRATTORE	T 07	stage 3	836,35	15,653	0,95	13,09	0,79							
TRATTORE	T 10	stage 4	5480	1,57	0,098	8,604	0,537							
LOCOMOTIVA	L 11	stage 3a	5604,93	54,4	2,1	304,91	11,77							
LOCOMOTIVA	L 98	stage 3a	6434.55	54,4	2,1	350,04	13,51							
CARRELLO ELEVATORE	V 04	stage o	397,94	33,942	4,31	13,50	1,71							
TOTA	LE di cui:		124.333,64			1266,77	50,06							
Pi	azzale		107,424,43			611,82	24,78	284,53	11,52					
Nota Tabella, si con	inari		16.909,21		1. 6	654,94	25,28	394,16	15,22					

Nota Tabelle: si considerano 302 giorni lavorativi anno e mediamente 8 ore di funzionamento al giorno per i mezzi d'opera e 3 ore di funzionamento al giorno per le locomotive, lunghezza piazzale 900 m e lunghezza asta esistente 1320 m e lunghezza asta di progetto 1834 m.

Tabella 5 Sintesi dati emissivi di input del modello per lo stato di progetto

Ai fini della simulazione, le emissioni annuali di ciascuna sorgente sono state ripartite in modo casuale all'interno delle giornate e fasce orarie indicate in Tab. 1, in modo da rispettare gli orari medi di utilizzo, indicati anch'essi in Tab. 2.

Tali calcoli portano ai seguenti valori di emissione medi anno per kilometro lineare (rif. lunghezza asta di manovra esistente 1,32 Km e di progetto 1,83 Km):

	NOx Kg/anno*Km	PM10 Kg/anno*Km
Attività interporto Esistente	1385	55
Attività interporto Progetto	1045	42

Calcolo dei fattori medi di emissione traffico camion stradali ingresso/uscita interporto

Per la determinazione delle emissioni si sono utilizzati i fattori di emissione (g/km*veh) definiti da ISPRA sul portale della rete Sinanet - FETransp (Rete del Sistema Informativo Nazionale Ambientale) con riferimento alle tipologie di mezzi pesanti diesel.

I fattori di emissione più aggiornati allo stato della elaborazione della presente relazione sono relativi all'anno 2020.

Il fattore di emissione è determinato in base alla tipologia della tratta considerata U (urbano) più elevato e dunque cautelativo.

Sector	FE	FE
	PM10 2020 g/km U	NOx 2020 g/km U
Heavy Duty Trucks (diesel)	0,2281	5,65589

5.5.3 Dominio di calcolo

Per la realizzazione della simulazione modellistica finalizzata all'analisi della distribuzione degli inquinanti PM_{10} , NO_2 è stato considerato un unico dominio con estensione pari a 2784 m (asse x) e 1753 m (asse y).

Il calcolo delle concentrazioni per gli inquinanti è avvenuto su recettori stradali posti lungo quattro linee posizionate parallelamente alla strada distanti tra di loro 25 metri, con un fattore moltiplicativo pari a 1,5. Inoltre si sono aggiunti ricettori discreti residenziali più esposti e sensibili.

Complessivamente sono stati considerati 675 recettori totali, al dominio è stata attribuita una rugosità superficiale pari a 1 m (zone urbanizzate). Le coordinate del punto a sud ovest del dominio di calcolo sono 318233 (x),5089670 (y).

5.5.4 Esportazione dei Risultati in software GIS

I risultati ottenuti mediante il software di simulazione Caline 4 sono stati successivamente esportati ed elaborati tramite il software in ambiente GIS denominato Surfer 15.

5.5.5 Individuazione recettori sensibili

L'estensione del dominio è stata scelta in relazione alla presenza di ricettori più vicini e ricomprendendo quelli sensibili più esposti.

Ricettore n.	tipo	х	у
1	Residenza	318735	5091024
2	Residenza	318736	5091001
3	Residenza	318760	5090977
8	Residenza	318977	5090845
9	Residenza	319039	5090837
10	Residenza	319082	5090838
11	Residenza	319126	5090794
12	Residenza	319250	5090780
12	Residenza	319295	5090711
14	Residenza	319309	5090688
15	Residenza	319397	5090555
16	Residenza	319370	5090402
17	Residenza	319547	5090115
18	Residenza	320503	5089990

19	Residenza	320307	5089718
20	Residenza	319490	5090903
21	Residenza	320651	5090660
22	Residenza	319990	5090827
23	Residenza	319030	5090977

Ricettore sensibile	Descrizione	x	у
1 S	Scuola elementare Gaspare Gozzi (chiusa temporaneamente)	318839	5090928
2 S	Casa di cura Policlinico San Giorgio	318656	5090806
3 S	Scuola dell'infanzia Santa Maria Goretti	319914	5091078
4 S	Scuola dell'infanzia Ada Negri	319106	5090050
5 S	Istituto comprensivo Pordenone sud	319488	5090260
6 S	Scuole primarie Rosmini	319479	5090230
7 S	Scuola media (chiusa temporaneamente)	319408	5090914
8 S	Scuola elementare Padre Marco di aviano	318190	5091542
9 S	Scuola primaria Edmondo De Amicis	319597	5091317
10 S	Scuola secondaria Terzo Drusin	318809	5090891
11 S	Melarancia	318423	5090749
12 S	Liceo artistico Galvani	318759	5091156
13 S	Scuola secondaria Terzo Drusin	318841	5090943
14 S	Scuola secondaria Terzo Drusin	318867	5090914
15 S	Scuola secondaria Terzo Drusin	318895	5090900
16 S	Scuola secondaria Terzo Drusin	318914	5090876

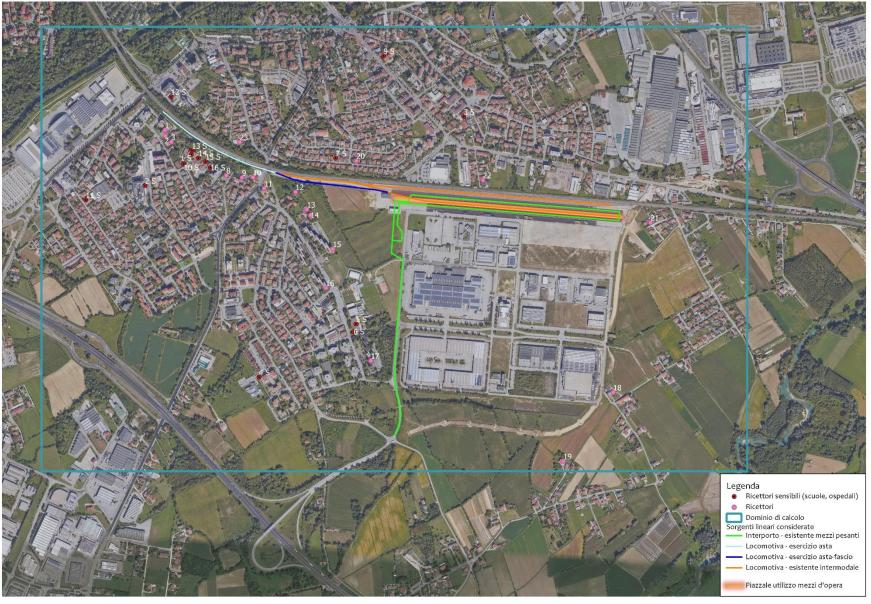


Figura 4 – Inquadramento dominio di calcolo, sorgenti lineari e ricettori analizzati

5.5.6 Risultati simulazione

I risultati delle simulazioni vengono riportati sia sotto forma di mappature di impatto (concentrazioni), sia tabellare in corrispondenza dei ricettori ritenuti più esposti alle emissioni.

5.5.6.1 Mappature di ricaduta al suolo degli inquinanti

Le mappe di impatto si riferiscono alla concentrazione media annuale per il PM10, NOx, NO2 riportati in Allegato 2.

5.5.6.2 Dati tabellari

Per le stime puntuali sono stati presi i ricettori maggiormente esposti in corrispondenza dei punti bersaglio definiti nello studio con le loro coordinate geografiche.

Nell'Allegato 1 sono riportati i risultati delle simulazioni con i valori di concentrazione degli inquinanti PM_{10} , NO_2 in corrispondenza dei ricettori analizzati.

Sono stati valutati sia gli incrementi di concentrazione ai ricettori che i valori di concentrazione considerando la concentrazione del fondo.

Per l'inquinante PM10 sono riportati i seguenti valori di concentrazione:

- Media annuale, da confrontarsi con il limite di 40 μg/m3 previsto dal D.Lgs. 155/2010
- Percentile 36°m24h (corrispondente al 90,41° percentile delle concentrazioni giornaliere su base annuale)
- Superamenti della soglia giornaliera di 50 μg/m3
- % Dati validati

Per l'inquinante NOx sono riportati i seguenti valori di concentrazione:

- Media annuale
- % Dati validati

Per l'inquinante NO2 sono riportati i seguenti valori di concentrazione:

- Media annuale, da confrontarsi con il limite di 40 μg/m3 previsto dal D.Lgs 155/2010
- Percentile 19°m1h (corrispondente al 99,79° percentile delle concentrazioni orarie su base annuale).
- Superamenti soglia oraria di 200µg/m3 numero massimo di 18 superamenti/anno consentiti)
- % Dati validati.

5.6 Conclusioni

Dai valori riportati nell'allegato 1 "Valori di concentrazione degli inquinanti nei ricettori" si conclude che:

- in corrispondenza di <u>tutti i ricettori analizzati</u> viene <u>rispettato il limite di normativa (D.Lgs 155/2010)</u> sia per le polveri sottili che per gli ossidi di azoto.
 - I valori di concentrazione riportati (allegato 1) evidenziano che sia nello stato di fatto che nello stato di progetto non ci sono dei superamenti della media annuale e delle soglie orarie e giornaliere.
- L'attività di Interporto esistente e il confronto tra situazione esistente e lo stato di progetto non evidenzia incrementi significativi ai ricettori né per le polveri sottili (PM_{10}) né per NO_2 e NO_x .
- Gli <u>incrementi significativi</u> delle concentrazioni di NOx e NO2 (superiori a 2 μg/m3), come visibile dalle mappe di impatto degli inquinanti (allegato 2), <u>rimangono confinati all'interno dell'area di attività di Interporto, senza interessare i ricettori</u> residenziali e sensibili.
- Il progetto determina anche dei miglioramenti rispetto alla situazione attuale con delle riduzioni di concentrazioni in corrispondenza dei ricettori più esposti (R20, R22, R12).

Misure di mitigazione

Per quanto i risultati dello studio previsionale confermino valori di concentrazione degli inquinanti entro i limiti di legge in corrispondenza di tutti i ricettori analizzati, vista la relazione con la salute umana derivante dall'esposizione agli inquinanti in atmosfera analizzati, con particolare riferimento alla popolazione sensibile (anziani, bambini..), l'Interporto Centro Ingrosso di Pordenone ha deciso di mettere in campo le seguenti misure di mitigazione:

 Monitoraggio per due settimane di PM10 e NOx e NO2 con situazione di esercizio a pieno regime (allungamento asta di manovra completata in attività), in corrispondenza della scuola più esposta (scuola elementare Gaspare Gozzi oppure scuola secondaria Terzo Drusin), per verificare il rispetto dei limiti secondo quanto previsto dal D.Lgs. 155/2010.

ALLEGATO 1 – VALORI AI RICETTORI

Si riportano di seguito i valori di concentrazioni ai ricettori.

sdf NOx	Ricett. N.	X (m)	Y (m)	Valori medi	Percentuale dati validi	sdf NO2	Ricett . N	Valori medi	Percentu ale dati validi	sdf NO2	Ricett . N	Valori medi	99.79 Percentile	Superame nti della soglia	Percentuale dati validi
	1	318735	5091024	0.099	100.00%		1	0.0895	100.00%	con fondo	1	27.12357	108.15	0	94.80%
	2	318736	5091001	0.099	100.00%		2	0.0888	100.00%	(ARM2)	2	27.12282	108.15	0	94.80%
	3	318760	5090977	0.102	100.00%		3	0.092139	100.00%		3	27.12651	108.15	0	94.80%
	8	318977	5090845	0.216	100.00%		8	0.194135	100.00%		8	27.2365	109.14	0	94.80%
	9	319039	5090837	0.291	100.00%		9	0.26166	100.00%		9	27.3064	109.14	0	94.80%
	10	319082	5090838	0.383	100.00%		10	0.34497	100.00%		10	27.3926	109.14	0	94.80%
ali	11	319126	5090794	0.645	100.00%	ali	11	0.580227	100.00%		11	27.63651	109.14	0	94.80%
inzi	12	319250	5090780	1.175	100.00%	inzi	12	1.057204	100.00%		12	28.11939	111.926	0	94.80%
side	13	319295	5090711	0.810	100.00%	side	13	0.729196	100.00%		13	27.783	109.12	0	94.80%
ire	14	319309	5090688	0.768	100.00%	i re	14	0.691223	100.00%		14	27.7443	109.1244	0	94.80%
tto	15	319397	5090555	0.738	100.00%	ttor	15	0.65706	100.00%		15	27.7109	109.12	0	94.80%
Ricettori residenziali	16	319370	5090402	0.579	100.00%	Ricettori residenziali	16	0.521594	100.00%		16	27.57171	109.12	0	94.80%
-	17	319547	5090115	0.762	100.00%	_	17	0.68602	100.00%		17	27.7437	109.332	0	94.80%
	18	320503	5089990	0.107	100.00%		18	0.09598	100.00%		18	27.1333	108.15	0	94.80%
	19	320307	5089718	0.109	100.00%		19	0.0982	100.00%		19	27.1338	108.1502	0	94.80%
	20	319491	5090872	1.133	100.00%		20	1.019437	100.00%		20	28.085	110.9256	0	94.80%
	21	320651	5090660	0.253	100.00%		21	0.227636	100.00%		21	27.2719	113	0	94.80%
	22	319990	5090827	1.858	100.00%		22	1.671994	100.00%		22	28.769	118.1163	0	94.80%
	23	319030	5090977	0.193	100.00%		23	0.17392	100.00%		23	27.21036	108.15	0	94.80%
	1 S	318839	5090928	0.120	100.00%		1 S	0.10860	100.00%		1 S	27.14497	108.15	0	94.80%
bili	2 S	318656	5090806	0.111	100.00%	bili	2 S	0.100032	100.00%		2 S	27.13914	108.64	0	94.80%
ensi	3 S	319914	5091078	0.413	100.00%	ensi	3 S	0.371856	100.00%		3 S	27.42325	108.15	0	94.80%
ori s	4 S	319106	5090050	0.289	100.00%	ori s	4 S	0.26081	100.00%		4 S	27.3053	108.15	0	94.80%
Ricettori sensibili	5 S	319488	5090260	0.681	100.00%	Ricettori sensibili	5 S	0.61316	100.00%		5 S	27.6674	109.12	0	94.80%
Ric	6 S	319479	5090230	0.647	100.00%	Ric	6 S	0.58245	100.00%		6 S	27.63572	109.12	0	94.80%
	7 S	319408	5090914	0.7316	100.00%		7 S	0.65847	100.00%		7 S	27.71326	108.64	0	94.80%

Valutazione previsionale degli inquinanti in atmosfera

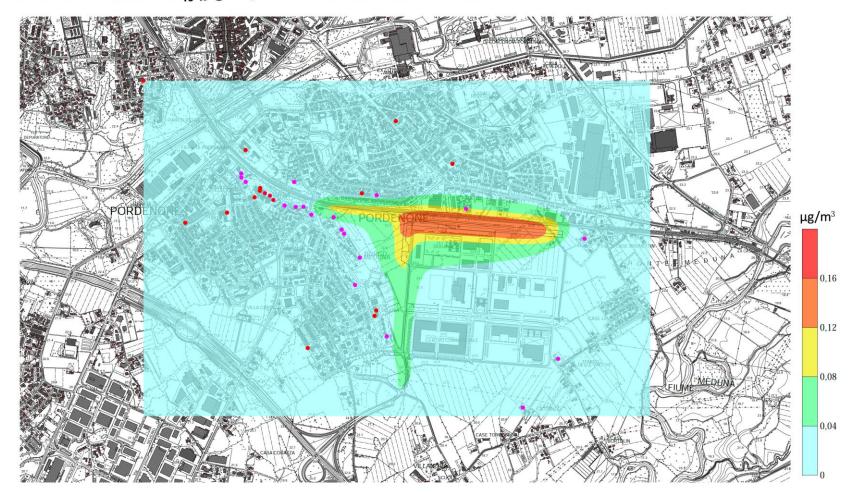
8 S	318190	5091542	0.0419	100.00%	8 S	0.037752	100.00%	8 S	27.0744	108.15	0	94.80%
9 S	319597	5091317	0.1651	100.00%	9 S	0.148612	100.00%	9 S	27.19052	108.15	0	94.80%
10 S	318809	5090891	0.1242	100.00%	10 S	0.111789	100.00%	10 S	27.15079	108.15	0	94.80%
11 S	318423	5090749	0.086	100.00%	11 S	0.07709	100.00%	11 S	27.1154	108.15	0	94.80%
12 S	318759	5091156	0.093	100.00%	12 S	0.08409	100.00%	12 S	27.12078	108.15	0	94.80%
13 S	318895	5090900	0.1426	100.00%	13 S	0.128313	100.00%	13 S	27.16657	108.15	0	94.80%
14 S	318914	5090876	0.1615	100.00%	14 S	0.145376	100.00%	14 S	27.1855	108.64	0	94.80%
15 S	318841	5090943	0.1204	100.00%	15 S	0.108373	100.00%	15 S	27.14349	108.15	0	94.80%
16 S	318867	5090914	0.1302	100.00%	16 S	0.1172	100.00%	16 S	27.15445	108.15	0	94.80%

prog NOx	Ricett. N.	X (m)	Y (m)	Valori medi	Percentu ale dati validi	prog NO2	Ricett. N.	Valori medi	Percentu ale dati validi	prog NO2	Rice tt. N.	Valori medi	99.79 Percenti le	Super ament i della soglia	Percen tuale dati validi	Differenza NO2 pro-sdf
	1	318735	5091024	0.644	100.00%		1	0.5795	100.00%	con fondo	1	27.624	109.12	0	94.80%	0.50
	2	318736	5091001	0.5293	100.00%		2	0.476	100.00%		2	27.5179	108.15	0	94.80%	0.40
	3	318760	5090977	0.5283	100.00%		3	0.4755	100.00%		3	27.5158	108.15	0	94.80%	0.39
	8	318977	5090845	0.569	100.00%		8	0.5125	100.00%		8	27.561	109.12	0	94.80%	0.32
	9	319039	5090837	0.6755	100.00%		9	0.608	100.00%		9	27.659	109.12	0	94.80%	0.35
	10	319082	5090838	0.8169	100.00%		10	0.7353	100.00%		10	27.790	109.14	0	94.80%	0.40
≡	11	319126	5090794	0.6188	100.00%	ali	11	0.557	100.00%		11	27.607	109.12	0	94.80%	-0.03
izus	12	319250	5090780	0.847	100.00%	nzi	12	0.7623	100.00%	iali	12	27.8187	109.12	0	94.80%	-0.30
side	13	319295	5090711	0.5745	100.00%	side	13	0.5171	100.00%	enz	13	27.5671	109.12	0	94.80%	-0.22
ire	14	319309	5090688	0.5523	100.00%	i re	14	0.497	100.00%	esid	14	27.547	109.12	0	94.80%	-0.20
ţţ	15	319397	5090555	0.576	100.00%	ttoı	15	0.5187	100.00%	ri re	15	27.570	109.12	0	94.80%	-0.14
Ricettori residenziali	16	319370	5090402	0.479	100.00%	Ricettori residenziali	16	0.4319	100.00%	Ricettori residenziali	16	27.481	109.12	0	94.80%	-0.09
	17	319547	5090115	0.700	100.00%		17	0.630	100.00%	Rice	17	27.688	109.328	0	94.80%	-0.06
	18	320503	5089990	0.089	100.00%		18	0.081	100.00%		18	27.1181	108.15	0	94.80%	-0.02
	19	320307	5089718	0.090	100.00%		19	0.0812	100.00%		19	27.1173	108.1502	0	94.80%	-0.02
	20	319491	5090872	0.603	100.00%		20	0.5424	100.00%		20	27.593	108.64	0	94.80%	-0.49
	21	320651	5090660	0.2196	100.00%		21	0.1976	100.00%		21	27.241	110.0703	0	94.80%	-0.03
	22	319990	5090827	1.3736	100.00%		22	1.2362	100.00%		22	28.319	113	0	94.80%	-0.45
	23	319030	5090977	0.4553	100.00%		23	0.409	100.00%		23	27.457	108.64	0	94.80%	0.25
	1 S	318839	5090928	0.5825	100.00%		1 S	0.5243	100.00%		1 S	27.569	109.12	0	94.80%	0.42
:=	2 S	318656	5090806	0.2100	100.00%	:=	2 S	0.1890	100.00%	:=	2 S	27.231	108.15	0	94.80%	0.09
Ricettori sensibili	3 S	319914	5091078	0.326	100.00%	sensibili	3 S	0.2934	100.00%	Ricettori sensibili	3 S	27.3416	108.15	0	94.80%	-0.08
sen	4 S	319106	5090050	0.2470	100.00%		4 S	0.2223	100.00%	sen	4 S	27.265	108.15	0	94.80%	-0.04
tori	5 S	319488	5090260	0.599	100.00%	tori	5 S	0.539	100.00%	tori	5 S	27.593	109.12	0	94.80%	-0.07
icet	6 S	319479	5090230	0.571	100.00%	Ricettori	6 S	0.5138	100.00%	icet	6 S	27.567	109.12		94.80%	-0.07
<u>~</u>	7 S	319408	5090914	0.433	100.00%	2	7 S	0.390	100.00%	<u> </u>	7 S	27.436	108.64	0	94.80%	-0.28
	8 S	318190	5091542	0.039	100.00%		8 S	0.0357	100.00%		8 S	27.072	108.15		94.80%	0.00

Valutazione previsionale degli inquinanti in atmosfera

9 S	319597	5091317	0.1372	100.00%	9 S	0.1235	100.00%	9 S	27.1641	108.15	0	94.80%	-0.03
10 S	318809	5090891	0.407	100.00%	10 S	0.366	100.00%	10 S	27.409	109.12	0	94.80%	0.26
11 S	318423	5090749	0.1133	100.00%	11 S	0.1019	100.00%	11 S	27.1411	108.15	0	94.80%	0.03
12 S	318759	5091156	0.229622	100.00%	12 S	0.20666	100.00%	12 S	27.249	108.15	0	94.80%	0.13
13 S	318895	5090900	0.625851	100.00%	13 S	0.563266	100.00%	13 S	27.611	109.12	0	94.80%	0.44
14 S	318914	5090876	0.561646	100,00%	14 S	0.505481	100.00%	14 S	27.553	109.12	0	94.80%	0.37
15 S	318841	5090943	0.681504	100,00%	15 S	0.613354	100.00%	15 S	27.659	109.12	0	94.80%	0.52
16 S	318867	5090914	0.606243	100,00%	16 S	0.54562	100.00%	16 S	27.592	109.12	0	94.80%	0.44

sdf PM10	Ricett. N.	X (m)	Y (m)	Valori medi	Percentuale dati validi	sdf PM10	Ricett. N.	Valore	90,41 Percentile	Superamenti della soglia	Percentuale dati validi
	1	318735	5091024	0.003764	100.00%	con fondo	1	24.26375	24.26969	0	100.00%
	2		5091001	0.003795	100.00%	24,26	2	24.26377	24.26977	0	100.00%
	3	318760	5090977	0.004013	100.00%		3	24.26399	24.27017	0	100.00%
	8	318977	5090845	0.00883	100.00%		8	24.26881	24.28293	0	100.00%
	9		5090837	0.012087	100.00%		9	24.27207	24.29158	0	100.00%
	10	319082	5090838	0.015978	100.00%		10	24.27596	24.30171	0	100.00%
<u>:=</u>	11	319126	5090794	0.025492	100.00%		11	24.28547	24.31476	0	100.00%
ızia	12	319250	5090780	0.046778	100.00%	=	12	24.30678	24.3512	0	100.00%
der	13	319295	5090711	0.032471	100.00%	ızia	13	24.29247	24.3213	0	100.00%
resi	14	319309	5090688	0.030814	100.00%	ideı	14	24.29082	24.31769	0	100.00%
ori	15	319397	5090555	0.028793	100.00%	res	15	24.28879	24.31798	0	100.00%
Ricettori residenziali	16	319370	5090402	0.022513	100.00%	tori	16	24.2825	24.30797	0	100.00%
ž	17	319547	5090115	0.029608	100.00%	Ricettori residenziali	17	24.2896	24.32031	0	100.00%
	18	320503	5089990	0.004182	100.00%	Ric	18	24.26417	24.27097	0	100.00%
	19	320307	5089718	0.004125	100.00%		19	24.26411	24.27097	О	100.00%
	20	319491	5090872	0.046055	100.00%		20	24.30604	24.36342	О	100.00%
	21	320651	5090660	0.009976	100.00%		21	24.26993	24.28576	0	100.00%
	22	319990	5090827	0.076218	100.00%		22	24.33619	24.42744	О	100.00%
	23	319030	5090977	0.007688	100.00%		23	24.26766	24.27942	0	100.00%
	1 S	318839	5090928	0.004921	100.00%		1 S	24.26489	24.27243	0	100.00%
	2 S	318656	5090806	0.004434	100.00%		2 S	24.26442	24.27163	0	100.00%
	3 S	319914	5091078	0.016442	100.00%		3 S	24.27641	24.30254	0	100.00%
bili	4 S	319106	5090050	0.010711	100.00%	billi	4 S	24.27071	24.28616	0	100.00%
Ricettori sensibili	5 S	319488	5090260	0.026175	100.00%	Ricettori sensibili	5 S	24.28617	24.31473	0	100.00%
ī. S	6 S	319479	5090230	0.024857	100.00%	ت. ۶	6 S	24.28486	24.31259	0	100.00%
etto	7 S	319408	5090914	0.029368	100.00%	etto	7 S	24.28936	24.32916	0	100.00%
Rice	8 S	318190	5091542	0.001491	100.00%	Rice	8 S	24.26145	24.26309	0	100.00%
	9 S	319597	5091317	0.00652	100.00%		9 S	24.26648	24.27653	0	100.00%
	10 S	318809	5090891	0.004945	100.00%		10 S	24.26493	24.27236	0	100.00%
	11 S	318423	5090749	0.003382	100.00%		11 S	24.26336	24.26902	0	100.00%

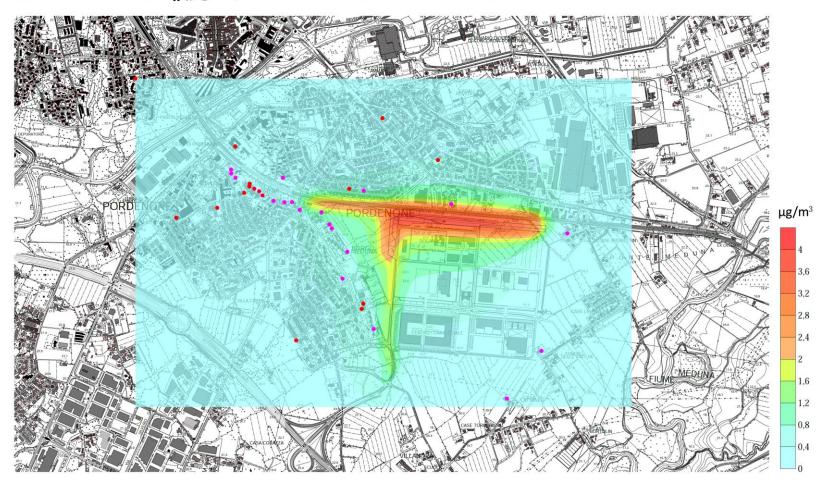

12 S	318759	5091156	0.003527	100.00%	12 S	24.26351	24.26838	0	100.00%
13 S	318895	5090900	0.005874	100.00%	13 S	24.26585	24.27469	0	100.00%
14 S	318914	5090876	0.006541	100.00%	14 S	24.26652	24.27609	0	100.00%
15 S	318841	5090943	0.004854	100.00%	15 S	24.26483	24.27254	0	100.00%
16 S	318867	5090914	0.00535	100.00%	16 S	24.26532	24.27335	0	100.00%

prog PM10	Ricett. N.	Valori medi	Percentuale dati validi	prog PM10	Ricett. N.	Valore	90,41 Percentile	Superamenti della soglia	Percentuale dati validi	Differenza prog-sdf con fondo
	1	0.02554	100.00%	con fondo	1	24.28554	24.30826	0	100.00%	0.02
	2	0.021082	100.00%		2	24.28108	24.30129	0	100.00%	0.02
	3	0.021154	100.00%		3	24.28114	24.30042	0	100.00%	0.02
	8	0.022858	100.00%		8	24.28287	24.30566	0	100.00%	0.01
	9	0.027093	100.00%		9	24.28709	24.31404	0	100.00%	0.02
	10	0.032826	100.00%		10	24.29282	24.32532	0	100.00%	0.02
	11	0.024952	100.00%		11	24.28495	24.30915	0	100.00%	0.00
zial	12	0.033926	100.00%	ali:	12	24.29393	24.32514	0	100.00%	-0.01
den	13	0.023319	100.00%	enzi	13	24.28332	24.30469	0	100.00%	-0.01
resi	14	0.022451	100.00%	side	14	24.28245	24.30292	О	100.00%	-0.01
ori	15	0.022926	100.00%	i e	15	24.28293	24.30715	0	100.00%	-0.01
Ricettori residenziali	16	0.01874	100.00%	Ricettori residenziali	16	24.27874	24.29852	0	100.00%	0.00
Ä	17	0.02726	100.00%	?ice	17	24.28725	24.31503	0	100.00%	0.00
	18	0.003522	100.00%	_	18	24.2635	24.27055	0	100.00%	0.00
	19	0.003401	100.00%		19	24.26338	24.2695	0	100.00%	0.00
	20	0.024728	100.00%		20	24.28471	24.31555	0	100.00%	-0.02
	21	0.008748	100.00%		21	24.2687	24.28362	0	100.00%	0.00
	22	0.056653	100.00%		22	24.31664	24.39124	0	100.00%	-0.02
	23	0.018309	100.00%		23		24.30283	0	100.00%	0.01
	1 S	0.023485	100.00%		1 S	24.28349		0	100.00%	0.02
Ricettori sensibili	2 S	0.008186	100.00%	Ricettori sensibili	2 S	24.26817	24.27661	О	100.00%	0.00
icet ensi	3 S	0.013073	100.00%	icet	3 S	24.27304		0	100.00%	0.00
or v	4 S	0.009125	100.00%	or ∞	4 S	24.26911	24.28087	0	100.00%	0.00

5 S	0.023103	100.00%	5 S	24.28311	24.30736	0	100.00%	0.00
6 S	0.021988	100.00%	6 S	24.28199	24.30535	0	100.00%	0.00
7 S	0.017675	100.00%	7 S	24.27766	24.30003	0	100.00%	-0.01
8 S	0.001451	100.00%	8 S	24.26142	24.26286	0	100.00%	0.00
9 S	0.005327	100.00%	9 S	24.2653	24.27292	0	100.00%	0.00
10 S	0.016274	100.00%	10 S	24.27628	24.29411	0	100.00%	0.01
11 S	0.004402	100.00%	11 S	24.26439	24.26944	0	100.00%	0.00
12 S	0.009149	100.00%	12 S	24.26913	24.28512	0	100.00%	0.01
13 S	0.02528	100.00%	13 S	24.28528	24.3119	0	100.00%	0.02
14 S	0.022604	100.00%	14 S	24.28259	24.30612	0	100.00%	0.02
15 S	0.027417	100.00%	15 S	24.2874	24.31389	0	100.00%	0.02
16 S	0.024442	100.00%	16 S	24.28444	24.30933	0	100.00%	0.02

ALLEGATO 2 – MAPPE DELLE CONCENTRAZIONI

Concentrazione PM₁₀ (µg/m³) - Valori medi annui - Esistente

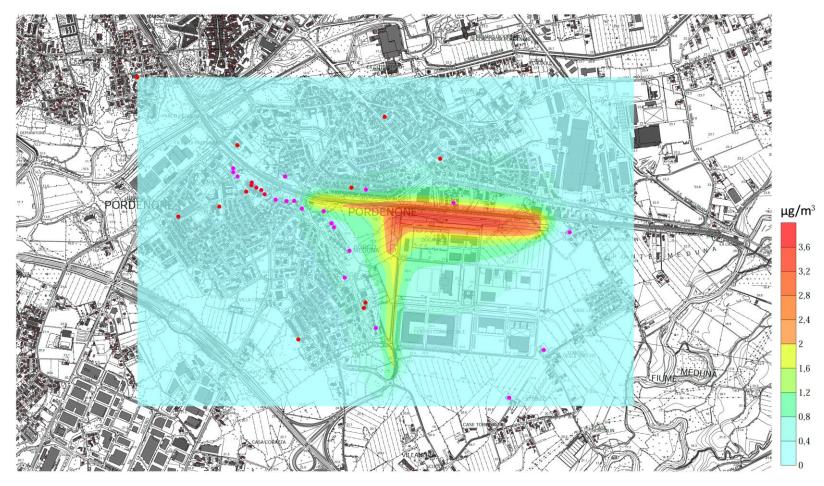


Valore limite normativa: 40 $\mu g/m^3$ (D.Lgs.155/10 e s.m.i.) Valore max 0,16 $\mu g/m^3$

Incrementi stato attuale da attività interporto (mezzi d'opera piazzale, locomori di manovra, traffico camion)

- Ricettori sensibili (scuole, ospedali)
- · Ricettori residenziali più esposti

Concentrazione $NO_{\chi}(\mu g/m^3)$ - Valori medi annui - Esistente

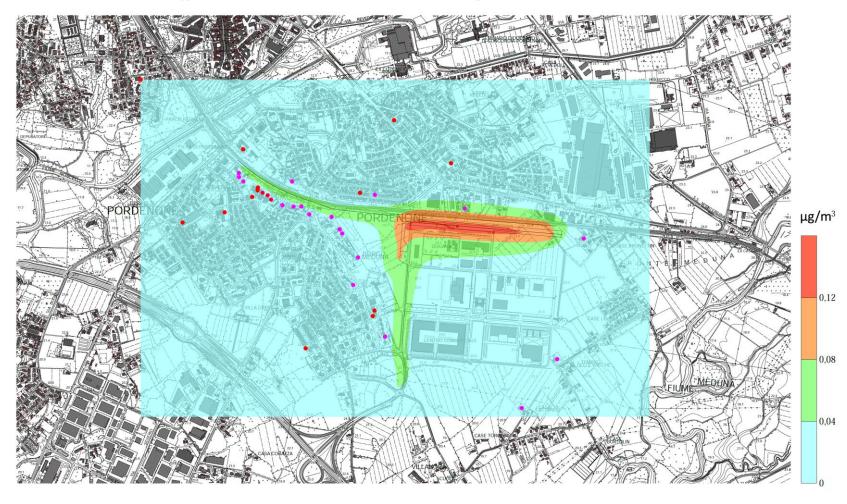


Valore limite normativa NO2: 40 μ g/m³ (D.Lgs.155/10 e s.m.i.) Valore max 4 μ g/m³

Incrementi stato attuale da attività interporto (mezzi d'opera piazzale, locomori di manovra, traffico camion)

- Ricettori sensibili (scuole, ospedali)
- · Ricettori residenziali più esposti

Concentrazione NO_2 (µg/m³) - Valori medi annui - Esistente

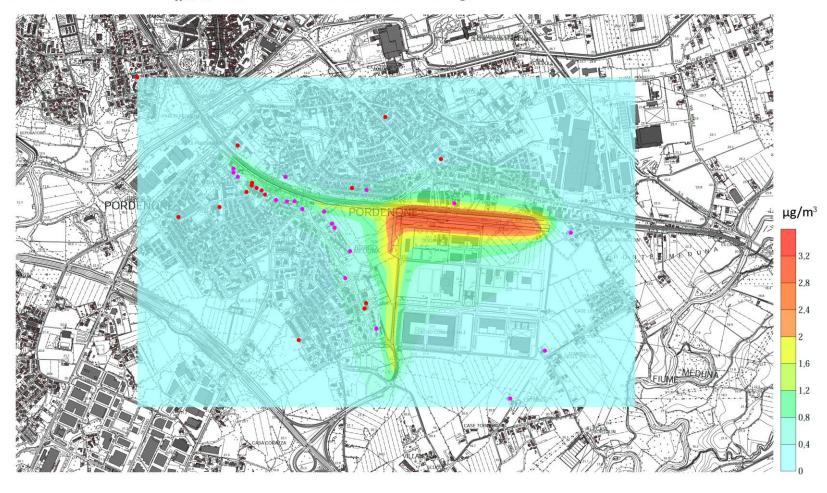


Valore limite normativa NO2: 40 $\mu g/m^3$ (D.Lgs.155/10 e s.m.i.) Valore max 3,6 $\mu g/m^3$

Incrementi stato attuale da attività interporto (mezzi d'opera piazzale, locomori di manovra, traffico camion)

- Ricettori sensibili (scuole, ospedali)
- Ricettori residenziali più esposti

Concentrazione PM₁₀ (µg/m³) - Valori medi annui - Progetto



Valore limite normativa: 40 $\mu g/m^3$ (D.Lgs.155/10 e s.m.i.) Valore max 0,135 $\mu g/m^3$

Incrementi stato di progetto da attività interporto

- Ricettori sensibili (scuole, ospedali)
- Ricettori residenziali più esposti

Concentrazione $NO_{\chi}(\mu g/m^3)$ - Valori medi annui - Progetto

Valore limite normativa NO2: 40 $\mu g/m^3$ (D.Lgs.155/10 e s.m.i.) Valore max 3,4 $\mu g/m^3$

Incrementi stato di progetto da attività interporto

- Ricettori sensibili (scuole, ospedali)
- Ricettori residenziali più esposti

Concentrazione NO₂ (µg/m³) - Valori medi annui - Progetto

Valore limite normativa NO2: 40 $\mu g/m^3$ (D.Lgs.155/10 e s.m.i.) Valore max 3 $\mu g/m^3$

Incrementi stato di progetto da attività interporto

- Ricettori sensibili (scuole, ospedali)
- Ricettori residenziali più esposti

6 TRAFFICO INDOTTO FASE DI CANTIERE

6.1 Attività di cantiere analizzate

Le opere di cantiere previste per la realizzazione del progetto proposto sono state suddivise in due fasi: Intervento 1 - Realizzazione dell'allungamento dell'asta di manovra

Intervento 2 – Realizzazione del fascio di binari per la sosta dei carri.

La durata delle lavorazioni considerata per i due interventi è di 360 giorni per l'allungamento dell'asta di manovra e 270 giorni per la realizzazione del fascio di binari.

Il presente studio è elaborato in via cautelativa, considerando le emissioni del traffico dei mezzi di cantiere in una giornata di massima attività. Il modello poi restituirà i valori di concentrazione ai ricettori sensibili.

6.2 Valutazioni con analisi modellistica previsionale

6.2.1 Modello di calcolo

Per le simulazioni si è utilizzato il software Caline 4 descritto nel par. 1.6.3.

6.2.2 Dominio di calcolo

Nello studio è stato individuato un dominio di calcolo nel quale effettuare la simulazione modellistica al fine di rappresentare le concentrazioni degli inquinanti con riferimento alle tratte viarie utilizzate, in particolare Viale Treviso e Via Nuova di Corva. È stato considerato un dominio di estensione 1595x 1637 metri. Per la realizzazione della simulazione modellistica è stato utilizzato sempre Caline 4.

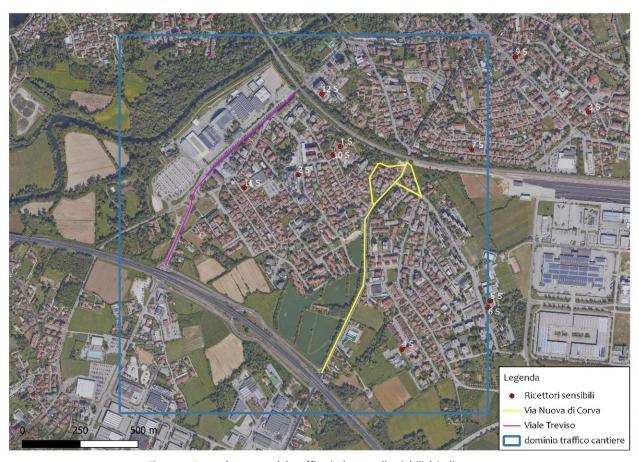


Figura 5 - Inquadramento del traffico indotto nelle viabilità indicate

Coordinate punto sud ovest del dominio

X	Υ
317887	5089789

Si riportano i valori ai ricettori sensibili e residenziali più esposti.

Ricettore sensibile	descrizione	x	у
1 S	Scuola elementare Gaspare Gozzi (chiusa temporaneamente)	318839	5090928
2 S	Casa di cura Policlinico San Giorgio	318656	5090806
3 S	Scuola dell'infanzia Santa Maria Goretti	319914	5091078
4 S	Scuola dell'infanzia Ada Negri	319106	5090050
5 S	Istituto comprensivo Pordenone sud	319488	5090260
6 S	Scuole primarie Rosmini	319479	5090230
7 S	Scuola media (chiusa temporaneamente)	319408	5090914
8 S	Scuola elementare Padre Marco di aviano	318190	5091542
9 S	Scuola primaria Edmondo De Amicis	319597	5091317
10 S	Scuola secondaria Terzo Drusin	318809	5090891
11 S	Melarancia	318423	5090749
12 S	Liceo artistico Galvani	318759	5091156
9	abitazione	319039	5090837
10	abitazione	319082	5090838
11	abitazione	319126	5090794

6.2.3 Traffico cantiere

Si sono riportate le sorgenti lineari rappresentate dal tragitto effettuato dal traffico indotto dal cantiere in Via Nuova di Corva e viale Treviso.

Si prevede con i dati a disposizione un traffico massimo orario indotto dal cantiere (complessivo cantiere asta e fascio) pari a 3 mezzi complessivi/ora in via Nuova di Corva e 2 mezzi complessivi/ora in Viale Treviso. Tale traffico riprende quello indicato nello Studio Preliminare Ambientale (par. 3.3 Cantierizzazione) ed è riferito a un traffico massimo dovuto alla fornitura di materiale e al volume destinato a discarica pari a 26 viaggi giorno complessivi di andata e ritorno per il cantiere di allungamento dell'asta di manovra e di 8 viaggi complessivi giorno per il cantiere relativo al fascio di binari.

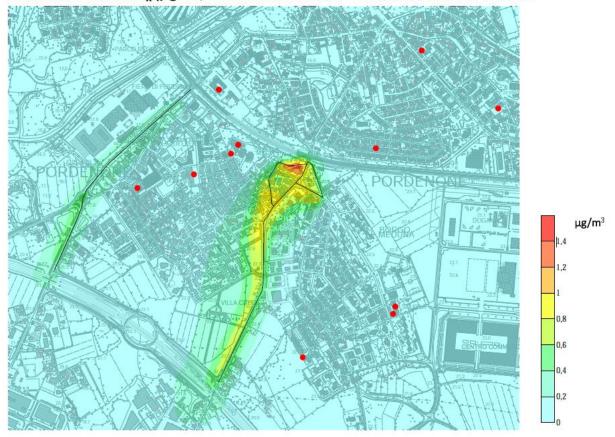
Si è considerato inoltre che metà del traffico relativo al cantiere dell'asta interesserà Viale Treviso e metà interesserà Via Nuova di Corva, mentre il traffico indotto dal cantiere del fascio di binari interesserà esclusivamente Via Nuova di Corva.

6.2.4 Risultati delle simulazioni del traffico indotto da cantiere

Si riportano i risultati sia come mappe delle concentrazioni che come valori ai ricettori, calcolati con il postprocessore Runanalyzer che permette di confrontare i risultati con i limiti di legge.

Gli incrementi di concentrazioni dovuti al traffico indotto dalle attività di cantiere sono contenuti e non significativi (inferiori a 2 µg/m3, superamento del 5% del valore limite annuale e dei percentili per determinare la significatività dell'impatto).

Per le polveri sottili PM10 l'incremento è trascurabile, per gli ossidi di azoto gli incrementi sono non significativi e perlpiù inferiori a 1 μ g/m3.

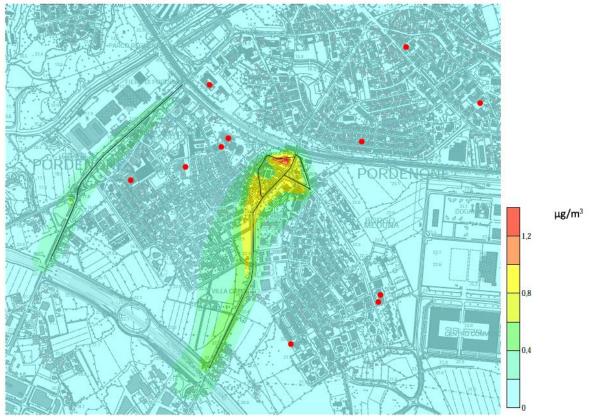

Dalle mappe si può evidenziare come la parte di concentrazioni più alta sia in corrispondenza del tratto di via Nuova di Corva e in particolare della viabilità secondaria (via Vecchia di Corva), ma che comunque in tale tratta in corrispondenza del ricettore n.9 si ha un incremento di NO $_{\rm X}$ pari a 1,5 μ g/m3 e in corrispondenza del ricettore n.10 pari a 1,6 μ g/m3, per cui non significativi (rif. ricettore n. 9 e n. 10 Fig. 4).

Lo scenario ha previsto la contemporaneità dei cantieri per determinare lo stato emissivo peggiorativo.

Dunque in uno scenario cautelativo <u>i valori di incremento delle concentrazioni di PM10, NOx e NO2</u> dovuti al traffico indotto dal cantiere <u>risultano particolarmente contenuti e non significativi.</u>

	Incremento	o di NOx da tr	affico indotto		Incremento	o di NO2 da traf	fico indotto	Incremento di PM10 da traffico indotto		
Descrizione	X (m)	Y (m)	Valori medi	Percentuale dati validi	Descrizione	Valori medi	Percentuale dati validi	Descrizione	Valori medi	Percentuale dati validi
1 S	318839	5090928	0.048642	100.00%	1 S	0.043778	100.00%	1 S	0.001951	100.00%
2 S	318656	5090806	0.05534	100.00%	2 S	0.049806	100.00%	2 S	0.002214	100.00%
3 S	319914	5091078	0.013115	100.00%	3 S	0.011804	100.00%	3 S	0.000521	100.00%
4 S	319106	5090050	0.044901	100.00%	4 S	0.040411	100.00%	4 S	0.001786	100.00%
5 S	319488	5090260	0.021123	100.00%	5 S	0.019011	100.00%	5 S	0.000838	100.00%
6 S	319479	5090230	0.021032	100.00%	6 S	0.018929	100.00%	6 S	0.000834	100.00%
7 S	319408	5090914	0.044474	100.00%	7 S	0.040027	100.00%	7 S	0.001781	100.00%
8 S	318190	5091542	0.007256	100.00%	8 S	0.00653	100.00%	8 S	0.000289	100.00%
9 S	319597	5091317	0.016703	100.00%	9 S	0.015033	100.00%	9 S	0.000666	100.00%
10 S	318809	5090891	0.052841	100.00%	10 S	0.047557	100.00%	10 S	0.002119	100.00%
11 S	318423	5090749	0.095972	100.00%	11 S	0.086375	100.00%	11 S	0.00384	100.00%
12 S	318759	5091156	0.035261	100.00%	12 S	0.031735	100.00%	12 S	0.001413	100.00%
8	318977	5090845	0.418734	100.00%	8	0.37686	100.00%	8	0.016844	100.00%
9	319039	5090837	1.516755	100.00%	9	1.36508	100.00%	9	0.061055	100.00%
10	319082	5090838	1.601675	100.00%	10	1.441509	100.00%	10	0.064471	100.00%
11	319126	5090794	0.714291	100.00%	11	0.64286	100.00%	11	0.028731	100.00%

Concentrazione NO_x (µg/m³) - Valori medi annui - Cantiere traffico indotto



Valore limite normativa NO $_2$: 40 $\mu g/m^3$ (D.Lgs.155/10 e s.m.i.) Impatto significativo 2 $\mu g/m^3$ Valore max NO $_x$ 1,6 $\mu g/m^3$

Ricettore

· Ricettori sensibili (scuole, ospedali)

Concentrazione NO2 (µg/m³) - Valori medi annui - Cantiere traffico indotto

Valore limite normativa NO $_2$: 40 $\mu g/m^3$ (D.Lgs.155/10 e s.m.i.) Impatto significativo 2 $\mu g/m^3$ Valore max NO $_2$ 1,4 $\mu g/m^3$

Ricettore

· Ricettori sensibili (scuole, ospedali)

Concentrazione PM₁₀ (µg/m³) - Valori medi annui - Cantiere traffico indotto

Valore limite normativa: 40 $\mu g/m^3$ (D.Lgs.155/10 e s.m.i.) Impatto significativo 2 $\mu g/m^3$

Valore max PM₁₀0,06 µg/m³

Ricettore

Ricettori sensibili (scuole, ospedali)

6.3 Fonti

- 1. SINANET ISPRA http://www.sinanet.isprambiente.it/it/sia-ispra/fetransp/index html
- 2. ISPRA La redazione di linee guida per la modellistica: le attività del CTN-ACE
- 3. ARPAFVG Relazioni annuali
- 4. Arpa Lombardia, 2018: Indicazioni relative all'utilizzo di tecniche modellistiche per la simulazione della dispersione di inquinanti negli studi di impatto sulla componente atmosfera.
- 5. Linea guida US-EPA: Applicability of Appendix W Modeling Guidance for the 1-hour NO2 National
- 6. Ambient Air Quality Standard.
- 7. WHO. Air Quality Guidelines for Europe-Second Edition. WHO Regional Publications, European Series,
- 8. No. 91. World Health Organization, 2000.
- 9. Linee guida VIA Parte Generale, ANPA Ministero dell'Ambiente e della tutela del territorio, 18 giugno 2001
- 10. ARPAFVG Relazione Regionale Qualità dell'aria Anno 2020
- 11. CORINAIR (1988). "European Inventory of Emissions of Pollutants into the Atmosphere", Commission of the European Communities Corinair project, DG XI, 30/3/1988.
- 12. Ratio Method Version 2 (ARM2) for use with AERMOD for 1-hr NO2 Modeling
- 13. Regione Veneto (2004). Piano di Tutela e Risanamento dell'Atmosfera della Regione del Veneto approvato con Deliberazione C. R. del 11 novembre 2004 n° 57, http://www.regione.veneto.it;
- 14. D.G.R.V. 3195 del 17.10.2006 "Piano Regionale di Tutela e Risanamento dell'Atmosfera Nuova Zonizzazione del Territorio Regionale".
- 15. Modelli di diffusione degli inquinanti in atmosfera DIIAR Sez. Ambiente Politecnico Milano
- 16. ARPA Veneto "Indicazioni per l'utilizzo di tecniche modellistiche per la simulazione della dispersione di inquinanti in atmosfera"
- 17. Caline, Runanalyzer, Maind model suite manuali
- 18. EMEP/CORINAIR (1999). Atmospheric emission inventory guidebook Technical Report European Environment Agency. Copenhagen
- 19. European Environment Agency. EMEP/EEA air pollutant emission inventory guidebook, 2019 edition.
- 20. Emissions standards. e.u. nonroad engines. https://dieselnet.com/standards/us/nonroad.php.Accessed: 2022-07-01.