

AUTOSTRADA (A1): MILANO-NAPOLI

AMPLIAMENTO ALLA TERZA CORSIA NEL TRATTO INCISA - VALDARNO LOTTO1

PROGETTO ESECUTIVO

DOCUMENTAZIONE GENERALE

GEOLOGIA PROVE DI LABORATORIO

PROVE DI LABORATORIO - PROGETTO ESECUTIVO (GALLERIA BRUSCHETO ESISTENTE)

IL GEOLOGO

Dott. Vittorio Boerio Ord. Geol. Lombardia N. 794

Responsabile Geologia

IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Paola Castiglioni Ord. Ingg. Varese N. 2725 IL DIRETTORE TECNICO

Ing. Orlando Mazza Ord. Ingg. Pavia N. 1496

Progettazione Nuove Opere Autostradali

CODICE IDENTIFICATIVO						ORDINATORE					
RIFERIMENTO) PROGETTO			RIFERIMENTO DIRETTORIO RIFERIMENTO ELABORATO							
Codice Commessa	Lotto, Sub-Prog, Cod. Appalto	Fase	Capitolo	Paragrafo	WBS	Parte d'opera	Tip.	Disciplina	Progressivo	Rev.	XXX
119941	LL01	PE	DG	GEO	LA000	00000	R	GEO	1066	-0	SCALA -

	PROJECT MANAGER:		SUPPORTO SPECIALISTICO:			REVISIONE
l enea	SDEA Ing. Paola Castiglioni				n.	data
opea		Ing. Paola Castiglioni			0	OTTOBRE 2019
FNICHNIEFDINIC		Ord. Ingg. Varese N. 2725				
ENGINEERING						
A 41 - 11 - 15	REDATTO:		VERIFICATO:			
Atlantia Atlantia	KEDATTO.		VERTION TO.			

VISTO DEL COMMITTENTE

IL RESPONSABILE UNICO DEL PROCEDIMENTO Ing. Furio Cruciani

VISTO DEL CONCEDENTE

Ministero delle Infrastrutture e dei Trasporti
dipartimento per le infrastrutture, gli affari generali edil personale
struttura di vigilanza sulle concessionarie autostradali

Via Pastrengo, 9 - 24068 Seriate (Bg) - tel. 035 303120 - fax 035 290388 -Email: ismgeo@ismgeo.it

PROVA DI COMPRESSIONE TRIASSIALE IN CONTROLLO DI DEFORMAZIONE

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

Normativa di riferimento: ASTM D2464/95

Sperimentatore: Direttore: Data emissione:

Committente: SPEA ENGINEERING

Cantiere: GALLERIA BRUSCHETO NORD

Sondaggio: G3 Provino: CR1

 Profondità (m):
 8.26 - 8.42

 Sigla prova:
 TXDC2

 Data prova:
 14/09/2018

Altezza ini (mm): 159.88 Diametro ini (mm): 78.24

Peso di volume iniziale (KN/m³) 24.74

Umidità iniziale (%)

Pressione in cella (MPa): 0.75

			Tressione in cena (init a).				
Sollecitazione assiale [MPa]	E assiale (%)	E radiale (%)	tempo (min)	E tangente (Mpa)	Poisson tangente (-)		
0.000	0.000	0.000	0.000				
1.830	0.009	0.011	0.500				
4.081	0.018	0.024	1.000				
6.297	0.026	0.027	1.499				
8.954	0.035	0.032	1.999	29,892			
11.757	0.044	0.039	2 499	31,785			
13.602	0.053	0.040	2.999	20,973			
15.416	0.062	0.037	3.499	20,359	0.15		
17.160	0.070	0.033	3.999	19,934	0.40		
18.794	0.079	0.030	4 499	18,370	0.35		
21.884	0.088	0.027	4 998	34,947	0.33		
23,330	0.097	0.023	5.498	16,497	0.45		
23.606	0.106	0.016	5.998				
23.595	0.115	0.011	6 498				
22.555	0.123	0.007	6.998				
22.724	0.132	0.003	7.497				
22.963	0.141	0.000	7.997				
23.095	0.150	-0.005	8.497				
23.287	0.159	-0.010	8.997				
23.545	0.168	-0.015	9.497				
23.848	0.176	-0.020	9.997				
24.421	0.198	-0.029	10.496				
25.001	0.221	-0.036	10.996				
25.247	0.243	-0.046	11.496				
25 269	0.265	-0.058	11.996				
25 243	0.287	-0.070	12.496				
24.912	0.309	-0.082	12.996				
24.317	0.331	-0.093	13.495				
21.654	0.353	-0.130	13.995				
19.461	0.375	-0.160	14.495				
17.503	0.397	-0.220	14.995				
17.206	0.419	-0.235	15.495				
16.573	0.441	-0.259	15.994				
16 605	0.464	-0.274	16 494				
16.683	0.508	-0.304	16.993				
16.017	0.553	-0.348	17.493				
15.756	0.597	-0.391	17.993				
15.756	0.642	-0.430	18.493				
15.066	0.686	-0.474	18.993				
14.596	0.730	-0.508	19.493				
		-0.512	19.562				
11.961 8.226	0.729 0.708	-0.512	19.800				
2.557	0.664	-0.493	20.300				

Ricerca sperimentale, modellazione fisica, prove di laboratorio ed in sito

Concessione Ministeriale Decreto Nr. 55126 del 12/07/06 Settori A, B e C

Rev	data emiss	eseguito da	elaborato da
0	05/10/2018	Locate	Locatelli

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD
Sondaggio: G3
Campione: CR2
Profondità prelievo [m]: 11.50 – 12.00
Data prova:

DESCRIZIONE MACROSCOPICA:

Roccia sedimentaria a tessitura mista clastico-particellare con composizione mista terrigeno-carbonatica: calcare debolmente marnoso, di colore oliva pallido 5Y 6/4. Il campione non mostra strutture interne visibili ma sono presenti delle fratture chiuse, talvolta aperte, con dendriti di manganese. Reazione HCl: buona

MODALITA' DI ROTTURA:

Formazione di fratture sub verticali in posizione radiale.

Pagina

1 1

Via Pastrengo, 9 - 24068 Seriate (Bg) Tel. 035 303120 - Fax 035 290388 Email: ismsgeo@ismgeo.it

DETERMINAZIONE DEL PESO DI VOLUME SU PROVINI DI FORMA CILINDRICA

Concessione Ministeriale Decreto n°55126 del 12 luglio 2006 - Settori A, B e C

Saccenti 11/06/2019	Committente: Cantiere: Sondaggio:	SPEA ENGINEERING GALLERIA BRUSCHETO NORD		
11/06/2019	6			
ata emissione: 11/06/2019		G		
	Campione:	CR2		
	Profondità [m]:	11.60 - 11.77		
	Prova:	γ1		
9: 026/18/9/12/0	Data:	08/10/2018		
zione: 026/2018				
za provino (mm)	155.60			
provino (mm)	78.47			
rovino (g)	1900.80			
vino (cm²)	48.36			
provino (cm³)	752.50			
volume provino (Mg/m³)	2.53			
	a: Olb 18 4 1210 a: Olb 18 4 1210 azione: 026/2018 aza provino (mm) a provino (mm) a provino (g) avino (cm²) azione: 026/2018	Prova: Data: Prova: Data: Data: Prova: Data: Data: D		

Via Pastrengo, 9 - 24068 Seriate (Bg) tel. 035 303120 - fax 035 290388 Email: ismgeo@ismgeo.it

MISURA VELOCITA' ONDE **ELASTICHE**

Concessione Ministeriale Decreto n° 55126 del 12 luglio 2006 - Settori A, B e C

Sperimentatore: Direttore: Saccenti 10/10/2018 Data emissione: Rev.

Normativa di riferimento: ASTM D2845/95

N° certificato di prova:

026/2018 N° verbale di accettazione:

Committente: SPEA ENGINEERING Cantiere: **GALLERIA BRUSCHETO NORD** Sondaggio: Campione: CR₂ Profondità prova [m]: 11.60 - 11.77 Prova: Data prova: 08/10/2018

Numero prova	1	
Profondità da (m):	11.6	
Profondità a (m):	11.77	
Diametro provino (cm):	7.847	
Altezza provino (cm):	15.56	
Massa provino (g):	1900.8	
Peso di volume (KN/m³):	24.78	
Contenuto d'acqua (%):	-	
Tensione assiale (MPa):	-	
Tensione radiale (MPa):	-	
Tempo di propagazioneo onde P (μs)	38.0	
Tempo di propagazione onde S (μs)	62.1	
Velocità onde compressione p (m/s):	4095	
Velocità onde di taglio s (m/s):	2506	
G (MPa)	15859	•
E (MPa)	38083	
ν (-)	0.20	
K (MPa)	21208	

Note:		
	Serraggio con piastre a molla con accoppiamento di 20 kPa	
		_

Via Pastrengo, 9 - 24068 Seriate (Bg) tel. 035 303120 - fax 035 290388 -Email: ismgeo@ismgeo.it

PROVA DI COMPRESSIONE MONOASSIALE IN CONTROLLO DI DEFORMAZIONE

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

data emiss direttore Saggenti 0 15/10/2018

Normativa di riferimento: ASTM D7012/10 026/18/3/12/2

N° certificato di prova:

026/2018 N° verbale di accettazione:

Committente: SPEA ENGINEERING Cantiere: GALLERIA BRUSCHETO NORD Sondaggio: G3 Provino: CR2

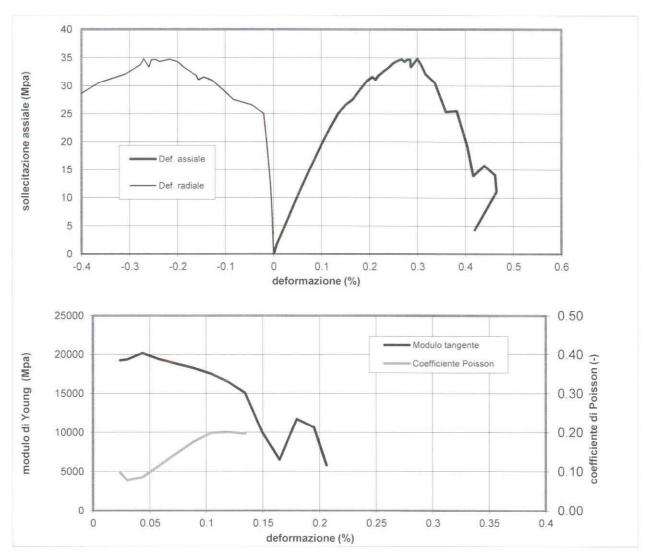
Profondità prelievo [m]: 11.60 - 11.77 Prova: UXDC1

Data prova: 08/10/2018

Dati provino

Diametro (cm):

Altezza (cm):


15.56

Sollecitazione di contenimento (MPa):

0.00

7.85 Peso di volume (KN/m3): 24.78

Contenuto d'acqua (%):

Resistenza di picco σ_p [MPa]:	Resistenza di picco σ_p [MPa]:	34.8
pro	Resistenza residua σ, [MPa]:	
ati	Modulo tangente al 50% di σ_p [MPa]:	18300
Risultati	Modulo secante al 50% di σ_p [MPa]:	19785
弦	Coefficiente di Poisson tangente al 50% di σ_p [-]:	0.18
Note	Velocità di deformazione =0.2 mm/min	

Via Pastrengo, 9 - 24068 Seriate (Bg) tel. 035 303120 - fax 035 290388 -Email: ismgeo@ismgeo.it

PROVA DI COMPRESSIONE MONOASSIALE IN CONTROLLO DI DEFORMAZIONE

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

rev. data emiss. sperimentatore direttore
0 15/10/2018 Salvi Saccenti

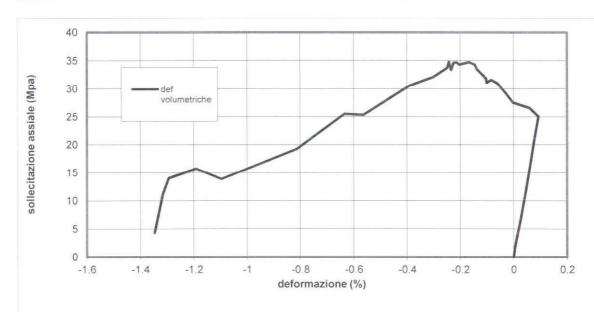
Normativa di riferimento: ASTM D7012/10

N° certificato di prova:

N° verbale di accettazione: 026/2018

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD
Sondaggio: G3
Provino: CR2
Profondità prelievo [m]: 11.60 - 11.77
Prova: UXDC1
Data prova: 08/10/2018

Dati provino


Altezza (cm): 15.56 Diametro (cm): 7.85 Sollecitazione di contenimento (MPa):

0.00

Peso di volume (KN/m³):

24.78

Contenuto d'acqua (%):

/a	Resistenza di picco σ_p [MPa]:	34.8
prov	Resistenza residua σ_r [MPa]:	
	Modulo tangente al 50% di σ_p [MPa]:	18300
Risultati	Modulo secante al 50% di σ_p [MPa]:	19785
2	Coefficiente di Poisson tangente al 50% di σ_p [-]:	0.18
Note	Velocità di deformazione =0.2 mm/min	

Via Pastrengo, 9 - 24068 Seriate (Bg) - tel. 035 303120 - fax 035 290388 -Email: ismgeo@ismgeo.it

PROVA DI COMPRESSIONE MONOASSIALE IN CONTROLLO DI DEFORMAZIONE

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

Normativa di riferimento: ASTM D2464/95

Sperimentatore:

Direttore:

Data emissione:

Committente:

SPEA ENGINEERING

GALLERIA BRUSCHETO NORD

Cantiere: Sondaggio:

Provino:

CR2

Profondità (m):

11.60 - 11.77

Sigla prova:

UXDC1

Data prova:

08/10/2018

Altezza ini (mm):

155.6

Diametro ini (mm):

78.47

Peso di volume iniziale (KN/m³)

24.78

Umidità iniziale (%)

Pressione in cella (MPa):

Sollecitazione assiale [MPa]	E assiale (%)	E radiale (%)	tempo (min)	E tangente (Mpa)	Poisson tangente (-
0.000	0.000	0.000	0.000		
1.643	0.006	-0.001	0.333		
2.811	0.012	-0.001	0.666		
3.952	0.018	-0.002	1.000	40.000	0.40
5.125	0.024	-0.002	1.333	19,236	0.10
6.278	0.030	-0.003	1.666	19,336	0.08
9.040	0.043	-0.004	1.999	20,164	0.09
11.972	0.059	-0.006	2.333	19,367	0.12
14.821	0.074	-0.009	2.666	18,805	0.15
17.597	0.089	-0.011	2.999	18,257	0.18
20.260	0.104	-0.015	3.332	17,541	0.20
22.754	0.119	-0.018	3.665	16,517	0.20
25.038	0.134	-0.021	3.999	15,066	0.20
26.549	0.150	-0.045	4.332	9,974	
27.533	0.165	-0.083	4.665	6,508	
29.322	0.180	-0.105	4.998	11,739	
30.940	0.195	-0.127	5.332	10,680	
31.582	0.206	-0.145	5.665	5,805	
31.098	0.212	-0.156	5.998		
31.848	0.218	-0.161	6.331		
32.230	0.224	-0.168	6.664		
32.668	0.230	-0.175	6.998		
33.069	0.236	-0.183	7.331		
33.481	0.242	-0.190	7.664		
33.968	0.249	-0.195	7.997		
34.326	0.255	-0.200	8.330		
34.539	0.261	-0.209	8.664		
34.748	0.267	-0.217	8.997		
34.322	0.273	-0.238	9.330		
34.676	0.279	-0.246	9.663		
34.653	0.285	-0.255	9.997		
33.386	0.286	-0.260	10.064		
34.819	0.299	-0.271	10.808		
33.742	0.308	-0.271			
			11.264		
32.100	0.317	-0.309	11.764		
30.506	0.336	-0.365	12.264		
25.345	0.359	-0.462	12.764		
25.511	0.382	-0.508	13.264		
19.261	0.404	-0.609	13.747		
13.871	0.416	-0.756	14.025		
15.725	0.439	-0.815	14.525		
14.024	0.462	-0.878	15.025		
11.114	0.465	-0.891	15.168		
4.333	0.419	-0.883	15.668		

RIPRESA FOTOGRAFICA

Ricerca sperimentale, modellazione fisica, prove di laboratorio ed in sito

Concessione Ministeriale Decreto Nr. 55126 del 12/07/06 Settori A, B e C

Rev	data emiss.	eseguito da	elaborato da
0	05/10/2018	Locate	Locatelli

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD
Sondaggio: G3
Campione: CR3
Profondità prelievo [m]: 12.55 – 12.85
Data prova:

DESCRIZIONE MACROSCOPICA:

Roccia sedimentaria a tessitura mista clastico-particellare con composizione mista terrigeno-carbonatica: calcare debolmente marnoso di colore oliva pallido 5Y 6/4. Presenza di una stratificazione piano parallela con inclinazione di 30° circa, visibile solo negli ultimi centimetri del campione. Reazione HCI: buona

MODALITA' DI ROTTURA:

TX3: Formazione di fratture da sub verticali a verticali.

Pagina

di

Via Pastrengo, 9 - 24068 Seriate (Bg) Tel. 035 303120 - Fax 035 290388 Email: ismsgeo@ismgeo.it

DETERMINAZIONE DEL PESO DI VOLUME SU PROVINI DI FORMA CILINDRICA

Concessione Ministeriale Decreto n°55126 del 12 luglio 2006 - Settori A, B e C

Sperime	ntatore:	Ranzikii	Committente:	SPEA ENGINEERING
Direttore		Saccènti	Cantiere:	GALLERIA BRUSCHETO NORD
Data em		11/06/2019	Sondaggio:	G3
Rev.		and a second sec	Campione:	CR3
			Profondità [m]:	12.60 - 12.77
Normati	va di riferir	mento: ISRM 1977	Prova:	γ1
	icato di pro	1 1	Data:	09/10/2018
	ale di acce			
	Lunghe	ezza provino (mm)	159.56	
	Diamet	ro provino (mm)	77.76	
	Massa	provino (g)	1892.15	
	Area p	rovino (cm²)	47.49	
	Volume	e provino (cm³)	757.75	
	Peso (di volume provino (Mg/r	m ³) 2.50	
Note:				

Via Pastrengo, 9 - 24068 Seriate (Bg) tel. 035 303120 - fax 035 290388 Email: ismgeo@ismgeo.it

MISURA VELOCITA' ONDE **ELASTICHE**

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

Salvi Sperimentatore: Direttore: Sacdenti 12/10/2018 Data emissione: Rev.

Normativa di riferimento: ASTM D2845/95

026/18/19/12/14 N° certificato di prova: N° verbale di accettazione: 026/2018

Committente: SPEA ENGINEERING Cantiere: GALLERIA BRUSCHETO NORD Sondaggio: Campione: CR3 Profondità prova [m]: 12.60 - 12.77 Prova: 09/10/2018 Data prova:

Numero prova	1	
Profondità da (m):	12.6	
Profondità a (m):	12.77	
Diametro provino (cm):	7.776	
Altezza provino (cm):	15.96	
Massa provino (g):	1892.15	
Peso di volume (KN/m³):	24.50	
Contenuto d'acqua (%):	-	
Tensione assiale (MPa):	-	
Tensione radiale (MPa):	(=	
Tempo di propagazioneo onde P (μs)	51.0	
Tempo di propagazione onde S (μs)	80.0	
Velocità onde compressione p (m/s):	3129	
Velocità onde di taglio s (m/s):	1995	
G (MPa)	9933	
E (MPa)	22999	
ν (-)	0.16	
K (MPa)	11197	

erraggio con piastre a molla con accoppiamento di 20 kPa	
	rraggio con piastre a molla con accoppiamento di 20 kPa

Via Pastrengo, 9 - 24068 Seriate (Bg) tel. 035 303120 - fax 035 290388 -Email: ismgeo@ismgeo.it

PROVA DI COMPRESSIONE TRIASSIALE IN CONTROLLO DI DEFORMAZIONE

Concessione Ministeriale Decreto n° 55126 del 12 luglio 2006 - Settori A, B e C

sperimentatore direttore data emiss. Salvi Saccenti 15/10/2018

Normativa di riferimento: ASTM D7012/10

N° certificato di prova.

N° verbale di accettazione:

06611813

026/2018

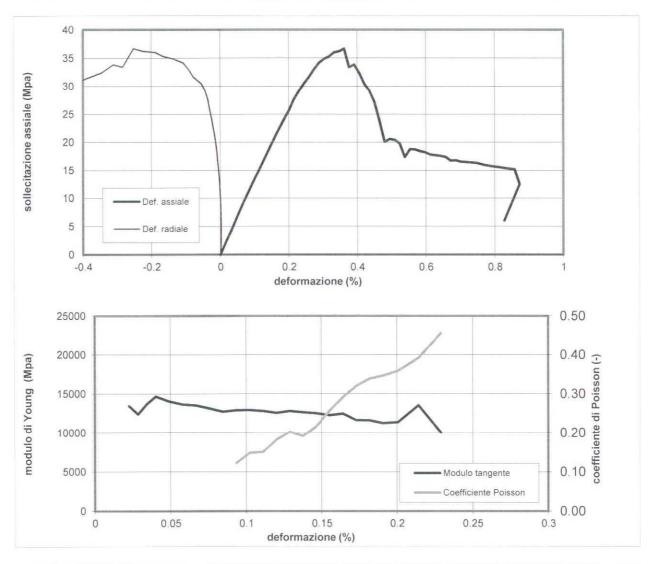
Committente: SPEA ENGINEERING Cantiere: **GALLERIA BRUSCHETO NORD** Sondaggio: Provino: CR3 Profondità prelievo [m]: 12.60 - 12.77

Prova: TXDC3

Data prova:

09/10/2018

Dati provino


15.96 Altezza (cm): Diametro (cm): 7.78 Sollecitazione di contenimento (MPa):

0.50

Peso di volume (KN/m3):

24.50

Contenuto d'acqua (%):

a	Resistenza di picco σ_p [MPa]:	36.7
pro	Resistenza residua σ_r [MPa]:	-
	Modulo tangente al 50% di σ_p [MPa]:	12650
Risultati	Modulo secante al 50% di σ_p [MPa]:	13232
8	Coefficiente di Poisson tangente al 50% di σ_p [-]:	0.22
Note	Velocità di deformazione=0.2 mm/min	

Via Pastrengo, 9 - 24068 Seriate (Bg) tel. 035 303120 - fax 035 290388 -Email: ismgeo@ismgeo.it

PROVA DI COMPRESSIONE TRIASSIALE IN CONTROLLO DI DEFORMAZIONE

Concessione Ministeriale Decreto n° 55126 del 12 luglio 2006 - Settori A, B e C

sperimentatore direttore rev. data emiss. Salvi Saccenti 15/10/2018

Normativa di riferimento: ASTM D7012/10

N° certificato di prova:

N° verbale di accettazione: 026/2018 Committente: SPEA ENGINEERING Cantiere: **GALLERIA BRUSCHETO NORD**

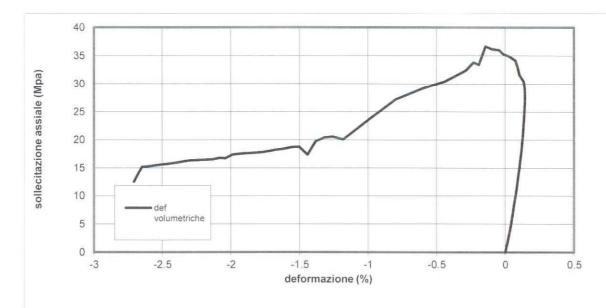
Sondaggio: G3 Provino: CR3

Profondità prelievo [m]: 12.60 - 12.77

Prova: TXDC3

Data prova: 09/10/2018

Dati provino


Altezza (cm): 15.96 Diametro (cm): 7.78 Sollecitazione di contenimento (MPa):

0.50

Peso di volume (KN/m3):

24.50

Contenuto d'acqua (%):

esistenza di picco σ_p [MPa]:	36.7
esistenza residua σ_r [MPa]:	-
odulo tangente al 50% di σ_p [MPa]:	12650
odulo secante al 50% di σ_p [MPa]:	13232
oefficiente di Poisson tangente al 50% di σ_p [-]:	0.22
elocità di deformazione=0.2 mm/min	
(esistenza residua σ , [MPa]: odulo tangente al 50% di σ_p [MPa]: odulo secante al 50% di σ_p [MPa]: oefficiente di Poisson tangente al 50% di σ_p [-]:

Via Pastrengo, 9 - 24068 Seriate (Bg) - tel. 035 303120 - fax 035 290388 -Email: ismgeo@ismgeo.it

PROVA DI COMPRESSIONE TRIASSIALE IN CONTROLLO DI DEFORMAZIONE

Concessione Ministeriale Decreto n° 55126 del 12 luglio 2006 - Settori A, B e C

Normativa di riferimento: ASTM D2464/95

Sperimentatore:

Direttore: Data emissione: Salvi Saccenti 5/10/2018 Committente:

SPEA ENGINEERING

Cantiere: GALLERIA BRUSCHETO NORD

Sondaggio: G3

Provino: CR3
Profondità (m): 12.60 - 12.77

Sigla prova: TXDC3

Data prova: 09/10/2018

Altezza ini (mm): 159.56 Diametro ini (mm): 77.76

Peso di volume iniziale (KN/m³) 24.50

Umidità iniziale (%)

Pressione in cella (MPa): 0.5

Pressione in cella (MPa):			0.8		
Sollecitazione assiale [MPa]	E assiale (%)	€ radiale (%)	tempo (min)	E tangente (Mpa)	Poisson tangente (-)
0.000	0.000	0.000	0.000		
0.787	0.005	0.000			
			0.333		
1.564	0.011	0.001	0.666		
2.369	0.017	0.002	0.999	122.020	
3.159	0.023	0.002	1.333	13,451	
3.891	0.029	0.002	1.666	12,404	
4.693	0.034	0.002	1.999	13,718	
5.544	0.040	0.002	2.334	14,659	
6.802	0.049	0.002	2.834	14,026	
8.012	0.058	0.001	3.334	13,655	
9.209	0.067	0.001	3.834	13,537	
10.367	0.076	0.000	4.334	13,148	
11.490	0.085	-0.001	4.833	12,738	
12.632	0.093	-0.002	5.333	12,907	0.12
13.783	0.102	-0.003	5.833	12,938	0.15
14.907	0.111	-0.005	6.333	12,802	0.15
16.028	0.120	-0.007	6.833	12,567	0.18
17,160	0.129	-0.008	7.333	12,805	0.20
18.276	0.138	-0.010	7.832	12,653	0.19
19 385	0.146	-0.012	8.332	12,517	
					0.22
20.474	0.155	-0.015	8.832	12,277	0.26
21.570	0.164	-0.017	9 332	12,483	0.29
22.601	0.173	-0.020	9.832	11,637	0.32
23.620	0.182	-0.023	10.331	11,619	0.34
24.623	0.191	-0.026	10.831	11,244	0.35
25.744	0.201	-0.030	11.388	11,369	0.36
27.608	0.214	-0.036	11.721	13,547	0.39
29.097	0.229	-0.043	12.054	10,040	0.46
30.451	0.244	-0.054	12.388	100000	00
31.600	0.259	-0.078	12.721		
32 988	0.273	-0.092	13.054		
34.137	0.288	-0 107	13.387		
34.838	0.303	-0.135	13.720		
35.272	0.318	-0.165	14.054		
36.002	0.333	-0.188	14.387		
36.187	0.347	-0.223	14.720		
36.671	0.362	-0.252	15.053		
33.410	0.377	-0.284	15.386		
33.831	0.391	-0.311	15.720		
32.374	0.406	-0.347	16.053		
30.423	0.421	-0.432	16.386		
29.235	0.436	-0.516	16.718		
27.171	0.450	-0.625	17.052		
23.831	0.465	-0.724	17,385		
20.066	0.480	-0.831	17.718		
20.568	0.495	-0.878	18.052		
20.383	0.510	-0,916	18.385		
19.738	0.524	-0.954	18.718		
17.380	0.539	-0.991	19.052		
18.761	0.554	-1.028	19.385		
18.718	0.569	-1.062	19.718		
18.403	0.583	-1.101	20.052		
18.205	0.598	-1.140	20.385		
17.813	0.613	-1.192	20.718		
17.694	0.628				
		-1.231	21.052		
17.578	0.642	-1 280	21,383		
17.385	0.657	-1.323	21.717		
16.717	0.672	-1.357	22.050		
16.784	0.687	-1.386	22.383		
16.528	0.702	-1.419	22.717		
16.474	0.716	-1.454	23.050		
16.314	0.747	-1.527	23.740		
15.960	0.769	-1 582	24.240		
15.720	0.791	-1.627	24.740		
15.570	0.813	-1.668	25.238		
	0.835	-1.711	25.738		
15.316					
15.316 15.194	0.858	-1.753	26.238		
15.316			26.238 26.688 27.188		

SPEA ENGINEERING

A1 INCISA VAL D'ARNO

Indagine GALLERIA BRUSCHETO NORD CD1: carotatrice sez.1 dx

RIPRESA FOTOGRAFICA

Ricerca sperimentale, modellazione fisica, prove di laboratorio ed in sito

Concessione Ministeriale Decreto Nr. 55126 del 12/07/06 Settori A, B e C


Rev	data emiss.	eseguito da	elaborato da
0	09/07/2019	Siftolic	Sitteli

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD
Sondaggio: -

Campione: CD1: carotatrice sez.1 dx

Profondità prelievo [m]:

Data prova: 29/08/2018

Descrizione macroscopica del campione:

Calcestruzzo con aspetto conglomeratico costituito da inerti poligenici, prevalentemente carbonatici, di forma da subangolosa ad arrotondata con sfericità medio bassa, moderatamente classati ($L_{max} = 50 \text{ mm}$). Distribuzione omogenea con addensamento medio.

Porosità bassa data da bolle millimetriche e rari vuoti ($L_{max} = 15 \text{ mm}$) localizzati tra gli inerti di maggiori dimensioni. Matrice omogenea di aspetto arenaceo, colore nocciola chiaro con buona adesione agli inerti.

Descrizione post-rottura:

Formazione di fratture sub verticali e verticali, irregolari, che seguono il contorno degli inerti. Distacco di qualche inerte.

Pagina 1

1

Via Pastrengo, 9 - 24068 Seriate (Bg) Tel. 035 303120 - Fax 035 290388 Email: ismsgeo@ismgeo.it

DETERMINAZIONE DEL PESO DI VOLUME SU PROVINI DI FORMA CILINDRICA

Concessione Ministeriale Decreto n°55126 del 12 luglio 2006 - Settori A, B e C

Sperimer	ntatore:	Ranzini	Committente:	SPEA ENGINEERING
Direttore		Saccenti	Cantiere:	GALLERIA BRUSCHETO NORD
Data emi		11/06/2019	Sondaggio:	-
Rev.		3000 Section # 1000	Campione:	CD1: carotatrice sez.1 dx
			Profondità [m]:	-
Normativ	a di riferir	mento: ISRM 1977	Prova:	γ 1
N° certific	cato di pro	ova: 026/18/9/1234	Data:	30/08/2018
N° verba	le di acce	ttazione: 026/2018		
	Lunghe	ezza provino (mm)	199.89	
1	Diamet	ro provino (mm)	97.51	
ı	Massa	provino (g)	3545.00	
1	Area pı	rovino (cm²)	74.68	
,	Volume	e provino (cm³)	1492.72	
	Peso (di volume provino (Mg/m³)	2.37	
Note:				

Via Pastrengo, 9 - 24068 Seriate (Bg) tel. 035 303120 - fax 035 290388 Email: ismgeo@ismgeo.it

MISURA VELOCITA' ONDE ELASTICHE

Concessione Ministeriale Decreto n° 55126 del 12 luglio 2006 - Settori A, B e C

	10
Sperimentatore:	Saccenti
Direttore:	Saccenti
Data emissione:	11/06/2019

Rev.

Normativa di riferimento: ASTM D2845/95

N° certificato di prova:

N° verbale di accettazione:

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD

Sondaggio:

Campione: CD1: carotatrice sez.1 dx

Profondità prova [m]:

Prova: V_p

Data prova: 29/08/2018

Numero prova	1	
Profondità da (m):	-	
Profondità a (m):	-	
Diametro provino (cm):	9.751	
Altezza provino (cm):	19.99	
Massa provino (g):	3545	
Peso di volume (KN/m³):	23.30	
Contenuto d'acqua (%):	-	
Tensione assiale (MPa):	-	
Tensione radiale (MPa):	-	
Tempo di propagazioneo onde P (μs)	42.4	
Tempo di propagazione onde S (μs)	65.0	
Velocità onde compressione p (m/s):	4714	
Velocità onde di taglio s (m/s):	3075	
G (MPa)	22459	<u>, </u>
E (MPa)	50743	
v (-)	0.13	
K (MPa)	22837	

ote:		
	Corregaio con nigotro a malla con accomiamente di 20 LDa	
	Serraggio con piastre a molla con accoppiamento di 20 kPa	

PROVA DI COMPRESSIONE MONOASSIALE IN CONTROLLO DI DEFORMAZIONE

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

sperimentatore responsabile data emiss. Angelon 30/08/2018

Normativa di riferimento: ASTM D7012/10

N° certificato di prova:

N° verbale di accettazione:

Committente: SPEA ENGINEERING Cantiere: **GALLERIA BRUSCHETO NORD** Sondaggio:

Provino: CD1: carotatrice sez.1 dx

Profondità prelievo [m]:

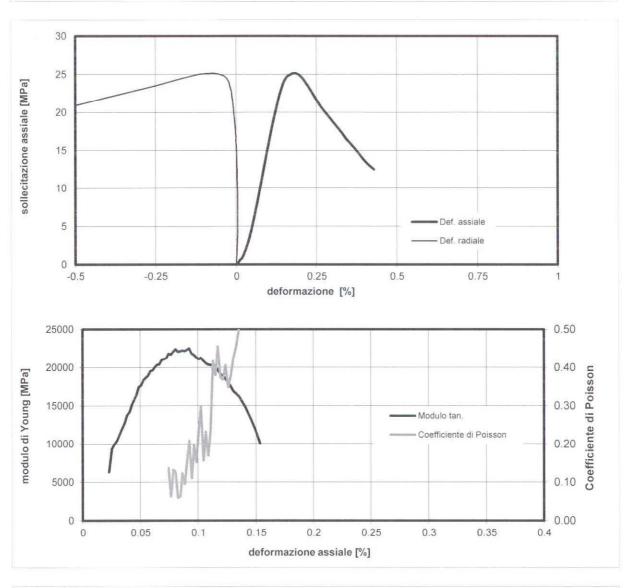
UXDC1 Prova: 30/08/2018 Data prova:

Dati provino

Altezza (cm):

19.99

26/2018


Peso di volume (KN/m3):

23.30

Diametro (cm):

9.75

Contenuto d'acqua (%)

_	Resistenza di picco σ_p [MPa]:	25.1
Itat	Modulo di Young secante al 50% di σ_{P} [MPa]:	14939.8
Risultati prova	Modulo di Young tangente al 50% di σ_p [MPa]:	22160
II.	Coefficiente di Poisson tangente al 50% di σ_p :	0.12
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

PROVA DI COMPRESSIONE MONOASSIALE IN CONTROLLO DI DEFORMAZIONE

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

responsabile data emiss sperimentatore Angelonil Saccenti 30/08/2018

Normativa di riferimento: ASTM D7012/10

N° certificato di prova:

N° verbale di accettazione:

26/2018

Committente: SPEA ENGINEERING Cantiere: **GALLERIA BRUSCHETO NORD**

Sondaggio:

Provino: CD1: carotatrice sez.1 dx

Profondità prelievo [m]:

Prova: UXDC1

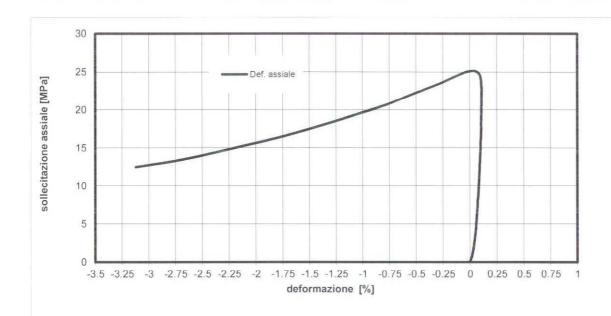
Data prova:

30/08/2018

Dati provino

Altezza (cm):

19.99


Peso di volume (KN/m3):

23.30

Diametro (cm):

9.75

Contenuto d'acqua (%)

Risultati	Resistenza di picco σ_p [MPa]:	25.1
	Modulo di Young secante al 50% di σ_p [MPa]:	14939.8
	Modulo di Young tangente al 50% di σ_p [MPa]:	22160
	Coefficiente di Poisson tangente al 50% di σ_p :	0.12
Note:	Calcestruzzo	

COMPRESSIONE MONOASSIALE IN CONTROLLO DI DEFORMAZIONE

Normativa di riferimento: ASTM D7012/10

SPEA ENGINEERING GALLERIA BRUSCHETO NORD

CD1: carotatrice sez.1 dx

Area: Sperimentatore: Direttore: Data emissione:

Angeloni Saccenti 30/08/2018

Committente:
Cantiere:
Sondaggio:
Provino:
Profondità (m):
Sigla prova:
Data prova:
Altezza ini (mm):
Dia ini (mm):
Peso di volume (KN/m³)
Umidita' iniziale (%)

UXDC1 43342 199.89 97.51 23.30 #VALORE!

Julia Cilliasione.	50/50/45 10		#VALORE		
Sollecitazione assiale [MPa]	E assiale (%)	E radiale (%)	tempo [min]	E tangente [MPa]	Poisson tangente
0.00	0.000	0.000	0.0		
0.16	0.003	-0.001	0.2		
0.29	0.006	0.000	0.3		
0.44	0.008	0.000	0.3		
0.59	0.011	0.000	0.4		
0.75	0.016 0.018	0.001	0.5		
1.13	0.020	0.000	0.5		
1.35	0.023	0.001	0.7	6298	
1.60	0.025	0.002	0.7	9343	
1.85	0.027	0.002	0.8	9913	
2.13	0.030	0.002	0.9	10496	
2.40	0.032	0.002	0.9	11293	
2.68	0.034	0.003	1.0	12023	
2.97	0.036	0.003	1.1	12740	
3.29	0.038	0.003	1.1	13751	
3.62 3.94	0.041	0.004	1.2	14183 15099	
4.28	0.045	0.004	1.3	15748	
4.63	0.047	0.004	1.4	16373	
5.01	0.049	0.004	1.5	17440	
5.38	0.051	0.004	1.5	17660	
5.76	0.053	0.004	1.6	18309	
6.14	0.055	0.004	1.7	18639	
6.53	0.057	0.004	1.7	18896	
6.94	0.059	0.004	1.8	19497	
7.35	0.061	0.004	1.9	19647	
7.74	0.063	0.004	1.9	20048	
8.11	0.064	0.003	2.0	20335	
8.53	0.067	0.004	2.1	20392	
8.96 9.39	0.000	0.004	2.1	20966 21086	
9.84	0.073	0.004	2.3	21239	
10.27	0.074	0.003	2.3	21800	0 136
10.71	0.077	0.003	2.4	21689	0.063
11.15	0.078	0.003	2.5	22041	0.132
11.60	0.080	0.003	2.5	22388	0.126
12.05	0.083	0.003	2.6	22079	0.059
12.48	0.085	0.003	2.7	22133	0.064
12.90	0.086	0.002	2.7	22225	0.123
13.34	0.088	0.002	2.8	22151	0.096
13.79	0.090	0.001	2.9	22308	0.154
14.23 14.66	0.092	0.001	3.0	22522 21825	0.208
15.09	0.096	0.000	3.1	21625	0.197
15.52	0.098	0.000	3.1	21311	0.152
15.95	0.100	-0.001	3.2	21097	0.240
16.37	0.102	-0.001	3.3	21246	0.299
16.81	0.105	-0.001	3.3	20859	0.157
17.20	0.107	-0.002	3.4	20595	0.232
17.62	0.109	-0.002	3.5	20366	0.169
18.05	0.111	-0.003	3.5	20306	0.238
18.46	0.113	-0.004	3.6	20336	0 417
18.88 19.28	0.115 0.117	-0.005 -0.006	3.7	20112 19680	0.380
19.69	0.119	-0.006	3.8	19048	0.455 0.374
20.09	0.121	-0.007	3.9	18945	0.368
20.49	0.124	-0.008	3.9	18488	0.406
20.89	0.126	-0.009	4.0	18003	0.348
21.26	0.128	-0.010	4.1	17547	0.380
21.63	0.130	-0.011	4.1	16915	0.424
22.02	0.133	-0.013	4.2	16573	0.456
22.42	0.135	-0.014	4.3	16180	0.507
22.79	0.138	-0.015	4.3	15488	
23.15	0.141	-0.017	4.4	14827	
23.50	0.144	-0.019	4.5	13932	
23.84	0.146 0.150	-0.021 -0.025	4.5	12909 11723	
24.44	0.153	-0.028	4.7	10086	
24.66	0.157	-0.034	4.7	10000	
24.83	0.162	-0.039	4.8		
24.94	0.168	-0.048	4.9		
25.06	0.173	-0.057	4.9		
25.14	0.179	-0.069	5.0		
25.12	0.186	-0.091	5.1		
24.98	0.195	-0.118	5.1		
24.48	0.207	-0.168	5.2		
23.51	0.224	-0.250	5.3		
22.03	0.245	-0.394	5.3		
20.79	0.263	-0.513 -0.596	5.4 5.5		
19.39	0.289	-0.676	5.5		
10.00	0.303	-0.762	5.6		
		-0.853	5.7		
18.66	0.317		5.7		
	0.317	-0.946			
18.66 17.93	0.330		5.8		
18.66 17.93 17.22		-0.946 -1.043 -1.130			
18.66 17.93 17.22 16.52	0.330	-1.043	5.8		
18.66 17.93 17.22 16.52 15.95 15.34 14.60	0.330 0.342 0.355 0.367 0.381	-1.043 -1.130 -1.230 -1.350	5.8 5.9 5.9 6.0		
18.66 17.93 17.22 16.52 15.95 15.34 14.60 13.83	0.330 0.342 0.355 0.367 0.381 0.396	-1.043 -1.130 -1.230 -1.350 -1.477	5.8 5.9 5.9 6.0 6.1		
18.66 17.93 17.22 16.52 15.95 15.34 14.60 13.83 13.27	0.330 0.342 0.355 0.367 0.381 0.396 0.408	-1.043 -1.130 -1.230 -1.350 -1.477 -1.585	5.8 5.9 5.9 6.0 6.1 6.1		
18.66 17.93 17.22 16.52 15.95 15.34 14.60 13.83	0.330 0.342 0.355 0.367 0.381 0.396	-1.043 -1.130 -1.230 -1.350 -1.477	5.8 5.9 5.9 6.0 6.1		

SPEA ENGINEERING

A1 INCISA VAL D'ARNO

Indagine GALLERIA BRUSCHETO NORD CD2: carotatrice sez.2 dx

RIPRESA FOTOGRAFICA

Ricerca sperimentale, modellazione fisica, prove di laboratorio ed in sito

Concessione Ministeriale Decreto Nr. 55126 del 12/07/06 Settori A, B e C

Rev	data emiss.	eseguito da	elaborato da
0	09/07/2019	Sirioli	Sintoli

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD
Sondaggio: -

Campione: CD2: carotatrice sez.2 dx

Profondità prelievo [m]:

Data prova: 29/08/2018

Descrizione macroscopica del campione:

Calcestruzzo con aspetto conglomeratico costituito da inerti poligenici, prevalentemente carbonatici, di forma da subangolosa ad arrotondata con sfericità medio bassa, moderatamente classati ($L_{max} = 50$ mm). Distribuzione omogenea con addensamento medio alto.

Porosità bassa data da bolle millimetriche.

Matrice omogenea di aspetto arenaceo, colore nocciola chiaro con buona adesione agli inerti.

Descrizione post-rottura:

Formazione di fratture sub verticali e verticali, irregolari, che seguono il contorno degli inerti. Distacco di qualche inerte e piccole porzioni corticali.

Pagina 1

1

Via Pastrengo, 9 - 24068 Seriate (Bg) Tel. 035 303120 - Fax 035 290388 Email: ismsgeo@ismgeo.it

DETERMINAZIONE DEL PESO DI VOLUME SU PROVINI DI FORMA CILINDRICA

Concessione Ministeriale Decreto n°55126 del 12 luglio 2006 - Settori A, B e C

Sperimentatore:	Ranzini	Committente:	SPEA ENGINEERING		
Direttore:	Saccenti	Cantiere:	GALLERIA BRUSCHETO NORD		
Data emissione:	11/06/2019	Sondaggio:	CALLETTIA BAGGGALTO NOT		
Rev.	177002010	Campione: Profondità [m]:	CD2: carotatrice sez.2 dx		
Normativa di rifori	mento: ISRM 1977	Prova:	v 1		
N° certificato di pr	1 -1 1	Data:	30/08/2018		
N° verbale di acce	ottazione: 026/2018				
Lungh	ezza provino (mm)	199.93			
Lungn	ozza provino (min)				
Diame	tro provino (mm)	97.58			
Massa	provino (g)	3569.40			
Area p	rovino (cm²)	74.78			
Volum	e provino (cm³)	1495.17			
Peso	di volume provino (Mg/m³)	2.39			
Note:					

Via Pastrengo, 9 - 24068 Seriate (Bg) tel. 035 303120 - fax 035 290388 Email: ismgeo@ismgeo.it

MISURA VELOCITA' ONDE ELASTICHE

Concessione Ministeriale Decreto n° 55126 del 12 luglio 2006 - Settori A, B e C

	4 11
Sperimentatore:	Saccenti
Direttore:	Saccenti
Data emissione:	11/06/2019
_	

Rev. 0

Normativa di riferimento: ASTM D2845/95

N° certificato di prova:

N° verbale di accettazione:

026/2018

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD

Sondaggio:

Campione: CD2: carotatrice sez.2 dx

Profondità prova [m]:

Prova: V_p Data prova: 29/08/2018

Numero prova	1	
Profondità da (m):	-	
Profondità a (m):	-	
Diametro provino (cm):	9.758	
Altezza provino (cm):	19.99	
Massa provino (g):	3569.4	
Peso di volume (KN/m³):	23.42	
Contenuto d'acqua (%):	-	
Tensione assiale (MPa):	-	
Tensione radiale (MPa):	-1	
Tempo di propagazioneo onde P (μs)	40.8	
Tempo di propagazione onde S (μs)	65.1	
Velocità onde compressione p (m/s):	4900	
Velocità onde di taglio s (m/s):	3071	
G (MPa)	22516	•
E (MPa)	52984	
ν (-)	0.18	
K (MPa)	27303	

Note:		
	Serraggio con piastre a molla con accoppiamento di 20 kPa	

PROVA DI COMPRESSIONE MONOASSIALE IN CONTROLLO DI DEFORMAZIONE

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

sperimentatore responsabile data emiss. Angeloni 30/08/2018

Normativa di riferimento: ASTM D7012/1,0

N° certificato di prova:

N° verbale di accettazione:

Committente: SPEA ENGINEERING Cantiere: GALLERIA BRUSCHETO NORD

Sondaggio:

Provino: CD2: carotatrice sez.2 dx

Profondità prelievo [m]:

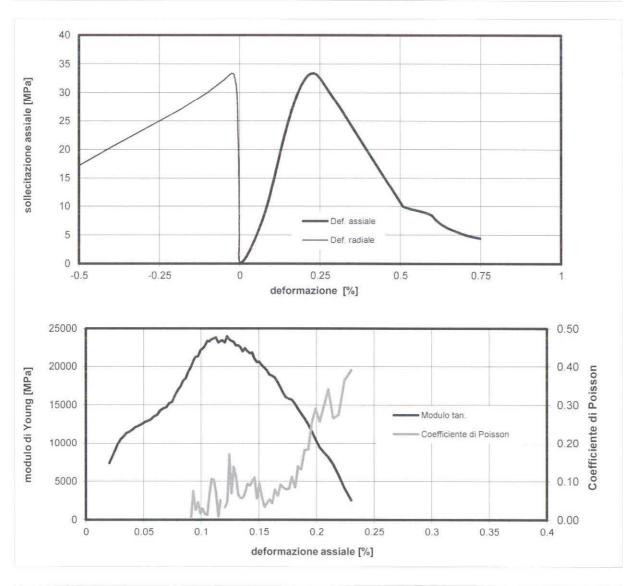
Prova:

UXDC1

Data prova:

30/08/2018

Dati provino


Altezza (cm): Diametro (cm): 19.99

Peso di volume (KN/m3):

23.42

9.76

Contenuto d'acqua (%)

	Resistenza di picco σ_p [MPa]:	33.4
Risultati prova	Modulo di Young secante al 50% di σ_p [MPa]:	14650
Risu	Modulo di Young tangente al 50% di σ_p [MPa]:	23410
LE.	Coefficiente di Poisson tangente al 50% di σ_p :	-
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

PROVA DI COMPRESSIONE MONOASSIALE IN CONTROLLO DI DEFORMAZIONE

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

rev. data emiss.	sperimentatore	responsabile
0 30/08/2018	Angeloni	Saccerti

Normativa di riferimento: ASTM D7012/10

N° certificato di prova:

N° verbale di accettazione:

26/2018

Committente:

SPEA ENGINEERING

GALLERIA BRUSCHETO NORD

Sondaggio:

Provino:

Cantiere:

CD2: carotatrice sez.2 dx

Profondità prelievo [m]:

Prova:

UXDC1

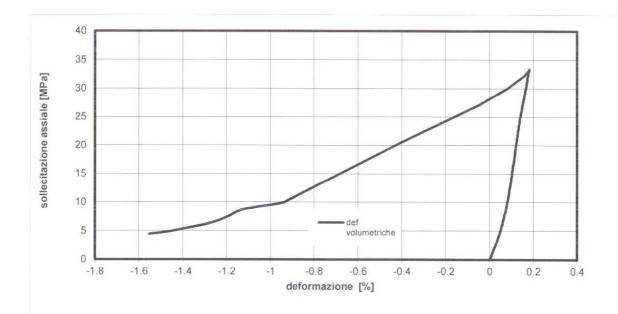
Data prova:

30/08/2018

Dati provino

Altezza (cm):

19.99


Peso di volume (KN/m3):

23.42

Diametro (cm): 9.76

Contenuto d'acqua (%)

0.72

100	Resistenza di picco σ_p [MPa]:	33.4
Risultati prova	Modulo di Young secante al 50% di σ_p [MPa]:	14650
Risu	Modulo di Young tangente al 50% di σ_p [MPa]:	23410
II.	Coefficiente di Poisson tangente al 50% di σ_p :	-
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

Foglio

COMPRESSIONE MONOASSIALE IN CONTROLLO DI DEFORMAZIONE

Normativa di riferimento: ASTM 07012/10

Area: Sperimentatore: Direttore: Data emissione:

SPEA ENGINEERING GALLERIA BRUSCHETO NORD

CD2; carotatrice sez.2 dx

Committente:
Cantiere:
Sondagdio:
Provino:
Profondita (m):
Sigla prova:
Data prova:
Altezza ini (mm):
Dia ini (mm):
Uni ini (mm):
Unidita' iniziale (%) UXDC1 43342 199.93 97.58 23.42

	Julia (ITTIZATOTIC)	8		Umidita' iniziale	(%)	23.
0.06		E assiale (%)	€ radiale (%)	tempo [min]		Poisson tangente
0.19				0.0		
0.41		0.005	-0.001	0.2		
0 61			-0.001			
0.96	0.61	0.013	-0.003	0.4		
1.19						
1.70	1.19	0.020	-0.003	0.6	7369	
1944 0.027 0.004 0.6 9975 2.27 0.005 0.9 106464 2.27 0.005 0.003 0.9 106464 2.27 0.005 0.003 0.9 106464 2.27 0.005 0		0.023				
2.47 0.052 0.003 0.9 10948 10948 10948 310 0.005 0.003 0.0 10 11331 310 0.008 0.002 1.1 11521 3341 0.0402 0.002 1.2 112075 3444 4742 0.044 0.002 1.2 1.2 12075 3444 4742 0.044 0.002 1.3 12747 4.474 4.472 0.044 0.002 1.4 12747 4.474 4.472 0.044 0.002 1.5 13113 1.5	1.94	0.027	-0.004	0.6	9875	
2.78 0.055 0.003 1.0 11331 3.44 0.040 0.002 1.1 11760 3.44 0.040 0.002 1.1 11760 3.44 0.040 0.002 1.2 12775 4.05 0.041 0.002 1.3 12244 4.47 4.78 0.045 0.004 0.002 1.3 12244 4.47 4.78 0.061 0.002 1.5 13113 12244 4.78 0.061 0.002 1.5 13113 1.274 4.78 0.061 0.002 1.5 13113 1.274 4.78 0.061 0.002 1.5 13113 1.274 4.78 0.061 0.002 1.5 13113 0.061 0.002 1.5 13113 0.061 0.002 1.5 13113 0.061 0.002 1.5 13113 0.061 0.002 1.5 0.001 1.7 13700 0.062 0.002 1.6 0.002 1.7 14282 0.001 0.002 0.002 1.7 14282 0.001 0.002 0		0.030		0.9		
3.41	2.78	0.035	-0.003	1.0	11331	
3.71		0.038		1.1		
4.42	3.71	0.042	-0.002	1.2	12075	
5.17		0.045	-0.002 -0.002	1.3		
5.87	4.79	0.051	0.002	1.4	12742	
6.36				1.5		
6 67	5.87	0.059	-0.002	1.6	13480	
7.47 0.070	6.67		-0.002	1.7		
7.84	7.07	0.067	-0.002	1.8	14530	
9.97		0.070	-0 002	1.9		
9.17	8.27	0.075	-0.001	2.0	15382	
9.50	9.17	0.077	-0.002 -0.002	21		
11.39	9.60	0.082	-0.002	22	17413	
11.39	10.44	0.087	-0.002	23	18417	
11 83	10.92	0.089	-0.002	2.4	19301	0.000
12.72	11.83	0.093	-0.002	2.5	20686	0.075
14 13	12.26	0.095	-0.002	2.6	21267	0.026
14 13	13.19	0.099	-0.002	27	22147	0.017
14 56 0 0105 -0.002 2.9 23861 0.01 15 45 0 109 -0.003 3.1 23880 0.06 15 45 0 109 -0.003 3.1 23880 0.06 16 39 0 113 -0.003 3.1 23880 0.07 16 39 0 113 -0.003 3.2 23880 0.07 17 25 0 117 -0.003 3.3 2386 0.07 17 25 0 117 -0.003 3.3 2386 0.05 17 7 25 0 117 -0.003 3.3 2386 0.05 18 17 0 120 -0.003 3.4 23880 0.05 18 17 0 120 -0.003 3.5 23181 0.00 18 17 0 120 -0.003 3.5 23181 0.00 18 17 0 120 -0.003 3.5 23181 0.00 19 90 0 124 -0.004 3.5 23975 0.04 19 90 0 124 -0.004 3.6 23577 0.77 19 93 0 128 -0.004 3.7 23384 0.08 19 93 0 128 -0.004 3.7 23384 0.08 20 85 0 132 -0.004 3.7 23384 0.08 21 88 0 136 -0.004 3.9 22792 0.11 19 89 0 130 -0.003 3.1 2299 0.10 20 85 0 132 -0.004 3.9 22792 0.11 22 23 24 0.004 3.9 22793 0.06 21 88 0 136 -0.004 4.0 22039 0.05 21 88 0 136 -0.004 4.0 22039 0.05 22 12 20 0.134 -0.005 4.1 22427 0.08 22 12 20 0.134 -0.005 4.1 22427 0.08 23 47 0.144 -0.005 4.2 21789 0.08 24 29 0.148 -0.006 4.3 21880 0.05 25 18 0.153 -0.006 4.3 21880 0.10 24 29 0.148 -0.006 4.3 21880 0.10 24 29 0.148 -0.006 4.3 21880 0.10 25 18 0.153 -0.006 4.5 2006 25 18 0.153 -0.006 4.5 2006 25 18 0.153 -0.006 4.5 2006 25 18 0.153 -0.006 4.5 2006 25 18 0.153 -0.006 4.5 2006 25 18 0.153 -0.006 4.5 2006 25 18 0.153 -0.006 4.5 2006 25 18 0.153 -0.006 4.5 2006 25 18 0.153 -0.006 4.5 2006 25 18 0.153 -0.006 4.5 2006 25 18 0.153 -0.006 4.5 2006 25 18 0.153 -0.006 4.5 2006 25 18 0.153 -0.006 4.5 2006 25 18 0.153 -0.006 4.5 2006 25 18 0.153 -0.006 4.5 2006 25 18 0.153 -0.006 4.5 2006 25 18 0.153 -0.006 4.5 2006 25 20 0.006 0.153 -0.006 4.5 2006 25 20 0.006 0.153 -0.006 4.5 2006 25 20 0.006 0.153 -0.006 4.5 2006 25 20 0.006 0.153 -0.006 4.5 2006 25 20 0.006 0.153 -0.006 4.5 2006 25 20 0.006 0.153 -0.006 4.5 2006 25 20 0.006 0.153 -0.006 4.5 2006 25 20 0.006 0.153 -0.006 4.5 2006 25 20 0.006 0.153 -0.006 4.5 2006 25 20 0.006 0.153 -0.006 4.5 2006 25 20 0.006 0.153 -0.006 4.5 2006 25 20 0.006 0.153 -0.006 4.5 2006 25 20 0.006 0.153 -0.006 6.5 3006 25 20 0.006 0.153 -0.006 6.5 3006 25 20 0.006 0.006 0.006 0.006 0.006 25 20 0.006 0.006 0.006 0.006 0.006 2		0.101	-0.002	2.8	22386	0.029
15.00 0,107 4,003 3,0 23334 0,06 15.94 0,111 0,003 3,1 23728 0,102 15.94 0,111 0,003 3,1 23728 0,102 16.82 0,115 0,003 3,2 23980 0,07 17.70 0,118 0,003 3,4 23459 0,07 17.70 0,118 0,003 3,4 23459 0,05 18.65 0,122 0,004 3,5 23975 0,044 19.96 0,124 0,003 3,5 23975 0,044 19.97 0,126 0,003 3,5 23975 0,044 19.99 0,126 0,003 3,5 23975 0,044 19.99 0,126 0,003 3,7 23384 0,065 19.99 0,120 0,003 3,7 23384 0,065 19.99 0,120 0,003 3,7 23384 0,065 19.99 0,120 0,003 3,7 23384 0,065 19.99 0,126 0,004 3,7 23384 0,066 19.99 0,126 0,004 3,7 23284 0,066 19.99 0,130 0,004 3,8 22792 0,111 20.95 0,132 0,004 3,9 22813 0,066 21.28 0,134 0,005 3,9 22813 0,066 22.12 0,138 0,005 4,1 22427 0,066 22.12 0,138 0,005 4,1 22427 0,066 22.12 0,138 0,005 4,1 22427 0,066 23.04 0,142 0,005 4,2 21769 0,068 23.88 0,146 0,006 4,3 21033 0,116 23.88 0,146 0,006 4,3 21033 0,116 23.88 0,146 0,006 4,3 21033 0,116 24.72 0,150 0,006 4,5 20602 0,055 25.60 0,155 0,006 4,5 20602 0,056 25.50 0,155 0,006 4,5 20602 0,056 25.50 0,155 0,006 4,5 20602 0,056 25.50 0,155 0,006 4,7 19445 0,056 25.50 0,155 0,006 4,7 19445 0,056 27.23 0,164 0,007 4,9 18570 0,072 27.23 0,164 0,007 4,9 18570 0,072 27.23 0,164 0,007 4,9 18570 0,072 27.23 0,164 0,007 4,9 18570 0,072 27.23 0,164 0,007 4,9 18570 0,072 27.23 0,164 0,007 4,9 18570 0,072 27.23 0,164 0,007 4,9 18570 0,072 27.23 0,164 0,007 4,9 18570 0,072 27.23 0,164 0,007 4,9 18570 0,072 27.23 0,164 0,007 4,9 18570 0,072 27.23 0,164 0,007 4,9 18570 0,072 28.90 0,157 0,006 4,5 20602 0,056 28.90 0,157 0,006 4,5 20602 0,056 28.90 0,157 0,006 4,5 20602 0,056 28.90 0,157 0,006 4,5 20602 0,056 28.91 0,159 0,006 4,7 19445 0,006 28.90 0,159 0,006 4,7 19445 0,006 28.90 0,159 0,006 4,7 19445 0,006 28.90 0,159 0,006 4,7 19445 0,006 28.90 0,159 0,006 4,7 19445 0,006 28.90 0,159 0,006 4,7 19445 0,006 28.90 0,159 0,006 4,7 19445 0,006 28.90 0,159 0,006 4,7 19445 0,006 28.90 0,159 0,006 4,7 19445 0,006 28.90 0,159 0,006 4,7 19445 0,006 28.90 0,159 0,006 4,7 19445 0,006 28.90 0,159 0,006 4,7 19445 0,006 28.90 0,159 0,006 4,7 19445 0,006 28.90 0,15	14 56	0.105	-0.002	2.9	23361	0.012
15 94 0 1111 0 003 3 1 23728 0 105 16 82 0 115 0 003 3 1 23728 0 105 16 82 0 115 0 003 3 3 23191 0 005 17 70 0 118 0 003 3 4 23459 18 65 0 122 0 004 3 5 23975 0 044 18 66 0 122 0 004 3 5 23975 0 044 19 68 0 122 0 004 3 5 23975 0 044 19 69 0 124 0 004 3 6 23577 0 177 19 69 0 124 0 004 3 6 23577 0 177 19 69 0 126 0 004 3 7 23384 0 096 19 89 0 126 0 004 3 7 23384 0 096 19 89 0 126 0 004 3 7 23384 0 096 19 80 0 128 0 004 3 7 23284 0 096 12 12 2 0 0 0 3 3 8 22792 0 111 20 39 0 130 0 0 0 4 3 8 22792 0 111 20 39 0 130 0 0 0 4 3 8 22792 0 111 21 28 0 134 0 0 0 3 9 22553 0 056 22 12 0 138 0 0 0 5 4 1 22427 0 0 6 22 12 0 138 0 0 0 6 4 1 22427 0 0 6 23 0 4 0 142 0 0 0 4 4 0 22039 0 0 5 23 0 1 0 140 0 0 6 4 1 22073 0 0 5 23 0 1 1 2 2 2 2 7 0 140 0 0 6 4 2 2 1789 0 0 8 23 88 0 146 0 0 0 4 4 2 2 1789 0 0 8 24 72 0 150 0 0 0 4 3 2 2 138 0 10 25 16 0 153 0 0 0 6 4 2 2 1789 0 0 8 24 72 0 150 0 0 0 4 5 2 0 0 0 2 25 10 0 150 0 0 0 6 4 5 2 0 0 0 2 26 29 0 148 0 0 0 6 4 5 2 0 0 0 2 26 29 0 150 0 0 0 6 4 5 2 0 0 0 2 27 23 0 150 0 0 0 6 4 5 2 0 0 0 2 27 23 0 150 0 0 0 6 4 5 2 0 0 0 2 28 10 150 0 0 0 6 4 5 2 0 0 0 2 28 10 0 155 0 0 0 6 4 5 2 0 0 0 2 28 10 0 156 0 0 0 6 4 5 2 0 0 0 2 28 10 0 157 0 0 0 0 6 4 5 2 0 0 0 2 28 10 0 159 0 0 0 6 4 5 2 0 0 0 2 28 10 0 159 0 0 0 6 4 5 2 0 0 1 0 5 25 90 0 157 0 0 0 0 4 7 18923 0 0 5 25 90 0 157 0 0 0 0 5 5 1 15971 0 0 6 28 0 0 159 0 0 0 6 5 1 15971 0 0 6 28 0 0 159 0 0 0 6 5 1 15971 0 0 6 28 0 0 173 0 0 0 5 5 1 15971 0 0 6 29 90 0 179 0 0 0 5 5 1 15971 0 0 6 29 90 0 179 0 0 0 5 5 1 15971 0 0 6 28 0 0 0 173 0 0 0 0 5 5 1 15971 0 0 6 29 90 0 0 179 0 0 0 6 5 3 15675 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15.00	0.107	-0.003	3.0	23334	0.064
17.75	15.94	0.111	-0.003	3.1	23728	0.103
17.75		0.113	-0.003	3.2		0.072
18.65 0.122 -0.004 3.5 23975 0.044 19.06 0.124 -0.004 3.6 23577 0.171 19.49 0.126 -0.004 3.7 23384 0.068 19.93 0.128 -0.004 3.7 23384 0.068 19.93 0.128 -0.004 3.7 23384 0.068 19.93 0.128 0.028 -0.004 3.8 22792 0.111 20.93 0.130 0.004 3.8 22792 0.111 20.065 0.132 0.004 3.8 22792 0.111 20.005 3.9 22813 0.068 21.28 0.134 -0.005 3.9 22813 0.068 21.28 0.134 -0.005 3.9 22813 0.068 22.12 0.138 0.006 4.1 22427 0.068 22.12 0.138 0.006 4.1 22427 0.068 22.12 0.138 0.006 4.1 22427 0.068 23.004 0.142 0.005 4.1 22427 0.068 23.004 0.142 0.005 4.2 21769 0.088 23.88 0.146 0.006 4.3 21033 0.111 22372 0.068 23.47 0.144 0.006 4.3 21033 0.111 22472 0.068 24.29 0.188 0.046 0.006 4.3 21033 0.111 22472 0.150 0.006 4.5 20000 0.055 25.00 0.155 0.006 4.5 20000 0.055 25.00 0.155 0.006 4.5 20000 0.055 25.00 0.155 0.006 4.5 20000 0.055 25.00 0.155 0.006 4.5 19.832 0.055 25.99 0.1567 0.006 4.7 19.435 0.055 25.99 0.1567 0.006 4.7 19.435 0.055 25.99 0.1567 0.006 4.7 19.435 0.055 25.99 0.157 0.006 4.7 19.435 0.055 25.99 0.006 25.99 0.006 25.99 0.006 25.99 0.006 25.99 0.006 25.99 0.006 25.99 0.006 25.99 0.006 25.99 0.006 25.99 0.006 25.99 0.006 25.99 0.	17.25	0.117	-0.003	3.3	23356	0.051
19.65 0.122 -0.004 3.5 23975 0.044 19.66 0.124 -0.004 3.6 23577 0.171 19.49 0.126 -0.004 3.7 23384 0.066 19.93 0.128 -0.004 3.7 23384 0.066 19.93 0.128 0.028 -0.004 3.8 22792 0.111 20.39 0.130 0.004 3.8 22792 0.111 20.39 0.130 0.004 3.8 22792 0.111 20.39 0.130 0.005 3.9 22853 0.065 21.28 0.134 0.005 3.9 22853 0.065 22.128 0.134 0.005 3.9 22853 0.065 22.12 0.138 0.006 4.1 22427 0.066 22.12 0.138 0.005 4.1 22427 0.066 22.12 0.138 0.005 4.1 22427 0.066 22.12 0.138 0.005 4.1 22427 0.066 22.12 0.138 0.006 4.1 22427 0.066 23.47 0.144 0.006 4.3 2.1033 0.152 23.88 0.146 0.006 4.3 2.1033 0.152 23.88 0.146 0.006 4.3 2.1033 0.111 22472 0.066 24.2 21769 0.068 24.2 21769 0.068 24.2 21769 0.068 24.2 21769 0.066 4.5 20000 0.055 25.00 0.157 0.006 4.5 20000 0.055 25.00 0.155 0.006 4.5 20000 0.055 25.00 0.155 0.006 4.5 20000 0.055 25.00 0.155 0.006 4.5 20000 0.055 25.00 0.157 0.006 4.7 19.8823 0.055 25.99 0.157 0.006 4.7 19.8823 0.055 26.29 0.157 0.006 4.7 19.8823 0.055 26.29 0.157 0.006 4.7 19.8823 0.055 26.29 0.157 0.006 4.7 19.8823 0.055 26.29 0.157 0.006 4.7 19.8823 0.055 26.29 0.159 0.006 4.7 19.8823 0.055 26.29 0.157 0.006 4.7 19.8823 0.055 26.29 0.157 0.006 4.7 19.8923 0.055 26.29 0.157 0.006 4.7 19.8570 0.072 27.23 0.164 0.007 4.9 18.570 0.072 27.23 0.164 0.007 4.9 18.570 0.072 27.24 0.166 0.007 4.9 18.570 0.072 27.25 0.166 0.007 4.9 18.570 0.072 27.25 0.166 0.007 4.9 18.570 0.072 27.25 0.166 0.007 4.9 18.570 0.072 27.25 0.166 0.007 4.9 18.570 0.072 27.25 0.166 0.007 4.9 18.570 0.072 27.25 0.166 0.007 4.9 18.570 0.072 27.25 0.166 0.007 4.9 18.570 0.072 27.25 0.166 0.007 4.9 18.570 0.072 27.25 0.166 0.007 4.9 18.570 0.072 27.25 0.166 0.007 4.9 18.570 0.072 27.25 0.007 27.27 0.008 5.1 15971 0.008 5.1 15971 0.008 5.1 15971 0.008 5.1 15971 0.008 5.1 15971 0.008 5.1 15971 0.008 5.1 15971 0.008 5.1 15971 0.008 5.1 15971 0.008 5.1 15971 0.008 5.1 15971 0.008 5.2 15791 0.008 5.1 15971 0.008 5.2 15791 0.008 5.2 15791 0.008 5.2 15791 0.008 5.2 15791 0.008 5.2 15791 0.008 5.2 15791 0.008 5.2 15791 0.008 5.2 15791 0.008 5.2 15791 0.	17.70	0.118	-0.003 -0.003	3.4		0.032
19.49 0.126 -0.004 3.7 23384 0.98 19.93 0.128 -0.004 3.7 23284 0.13 20.39 0.130 0.004 3.8 22792 0.111 20.39 0.132 0.004 3.8 22792 0.111 20.39 0.132 0.004 3.9 22813 0.08 21.28 0.134 0.005 3.9 22813 0.08 21.28 0.134 0.005 3.9 22813 0.08 22.12 0.138 0.005 4.1 22427 0.08 22.12 0.138 0.005 4.1 22427 0.08 22.12 0.138 0.005 4.1 22427 0.08 23.04 0.142 0.005 4.2 21789 0.08 23.04 0.142 0.006 4.3 21033 0.111 23.88 0.146 0.006 4.3 21033 0.111 23.88 0.146 0.006 4.3 21033 0.111 23.88 0.146 0.006 4.3 21033 0.111 24.72 0.150 0.008 4.5 20602 0.08 24.72 0.150 0.008 4.5 20602 0.08 25.50 0.155 0.006 4.6 19832 0.03 25.50 0.155 0.006 4.7 19845 0.05 26.39 0.157 0.006 4.7 19845 0.06 26.39 0.159 0.008 4.7 18923 0.05 26.79 0.161 0.007 4.9 18570 0.05 27.23 0.164 0.007 4.9 18570 0.07 27.25 0.166 0.007 4.9 18570 0.07 27.26 0.166 0.007 5.0 17299 0.06 28.04 0.169 0.007 5.0 17299 0.06 28.04 0.169 0.008 5.1 15971 0.04 28.04 0.169 0.008 5.1 15971 0.07 29.00 0.173 0.008 5.1 15971 0.07 29.00 0.173 0.008 5.1 15971 0.07 29.00 0.179 0.008 5.1 15971 0.07 29.00 0.179 0.008 5.1 15971 0.07 29.00 0.179 0.008 5.1 15971 0.07 29.90 0.079 5.0 17299 0.06 29.97 0.181 0.008 5.2 15791 0.08 30.31 0.184 0.009 5.4 14506 0.13 30.32 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.	18.65	0.122	-0.004	3.5	23975	0.046
20.39		0 124	-0.004 -0.004	3.6	23577	0.170
20.85 0.132 0.004 2.9 22813 0.056 21.88 0.136 0.034 4.0 023039 0.057 21.88 0.136 0.004 4.0 22039 0.057 22.57 0.140 0.005 4.1 22072 0.085 22.57 0.140 0.005 4.1 22072 0.085 23.47 0.144 0.005 4.2 21789 0.083 23.47 0.144 0.006 4.3 21880 0.107 23.89 0.146 0.006 4.3 21880 0.107 24.29 0.148 0.006 4.4 20669 0.056 24.29 0.148 0.006 4.4 20669 0.056 25.18 0.153 0.006 4.5 20106 0.055 25.18 0.153 0.006 4.5 20106 0.055 25.59 0.157 0.008 4.7 18445 0.055 25.99 0.157 0.008 4.7 18445 0.056 25.59 0.159 0.008 4.7 18445 0.044 26.39 0.169 0.006 4.8 18779 0.056 27.755 0.066 0.007 4.9 18570 0.07 27.755 0.166 0.007 4.9 18579 0.07 27.755 0.166 0.007 4.9 17948 0.056 28.41 0.171 0.007 5.1 16884 0.056 28.41 0.171 0.008 5.1 16884 0.056 28.41 0.171 0.008 5.1 16884 0.056 28.41 0.171 0.008 5.1 16884 0.056 29.97 0.181 0.008 5.1 16894 0.056 29.97 0.181 0.008 5.1 16894 0.056 29.97 0.181 0.008 5.2 15791 0.076 29.21 0.176 0.008 5.2 15791 0.076 29.21 0.176 0.008 5.3 15131 0.085 29.97 0.181 0.008 5.3 15979 0.085 29.98 0.009 0.009 5.4 14508 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009	19 93	0.128	-0:004	3.7	23264	0.138
21 28				3.9		0.111
22.12 0.158	21 28	0.134	-0.005	3.9	22553	0.056
23.04			-0.005	4.1	22427	0.069
23 47	22.57	0.140	-0.005	4.1	22072	0.093
24.29	23.47	0.144	-0.006	4.3	21860	0.101
24.72			-0.006	4.3		0.110
25 60 0 .155	24.72	0.150	-0.006	4.5	20602	0.095
25.99 0.157 0.006 4.7 19445 0.04 26.79 0.169 0.006 4.7 18923 0.055 26.79 0.161 0.007 4.8 18779 0.04 27.79 0.161 0.007 4.9 18779 0.04 27.79 0.166 0.007 4.9 17948 0.05 27.79 0.166 0.007 4.9 17948 0.05 28.41 0.171 0.007 5.1 16584 0.05 28.41 0.171 0.007 5.1 16584 0.08 28.41 0.171 0.008 5.2 15791 0.07 29.21 0.176 0.008 5.2 15791 0.07 29.21 0.176 0.008 5.2 15791 0.07 29.21 0.176 0.008 5.3 15675 0.11 29.21 0.176 0.008 5.3 15675 0.11 29.21 0.176 0.008 5.3 15675 0.11 29.31 0.179 0.008 5.3 15675 0.11 29.31 0.184 0.009 5.3 15675 0.11 29.31 1.00 0.184 0.009 5.3 155075 0.11 29.31 1.00 0.189 0.010 5.5 13907 0.13 21.04 0.189 0.010 5.5 13907 0.13 21.31 0.008 0.189 0.010 5.5 13204 0.18 22.22 0.008 0.008 0.008 0.008 0.008 22.22 0.008 0.008 0.008 0.008 0.008 22.22 0.008 0.008 0.008 0.008 0.008 22.22 0.008 0.008 0.008 0.008 0.008 22.23 0.008 0.008 0.008 0.008 0.008 22.24 0.008 0.008 0.008 0.008 22.25 0.008 0.008 0.008 0.008 22.26 0.008 0.008 0.008 0.008 22.27 0.008 0.008 0.008 0.008 22.28 0.008 0.008 0.008 0.008 0.008 22.28 0.008				4.5	20116	
26.79	25.99	0.157	-0.006	4.7	19445	0.044
27 28						
28 04 0.169 -0.007 5.0 17299 0.05; 28 40 0.173 -0.008 5.1 16581 0.08 28 40 0.173 -0.008 5.1 165871 0.07 29 20 0.176 -0.008 5.1 165871 0.07 29 20 0.176 -0.008 5.2 15791 0.08 29 97 0.181 -0.008 5.3 15675 0.112 29 90 0.179 -0.008 5.3 15675 0.113 30 31 0.184 -0.009 5.4 14508 0.138 30 31 0.184 -0.009 5.4 14508 0.138 31 31 0.184 -0.009 5.5 13224 0.138 31 10 184 -0.009 5.5 13224 0.138 31 10 184 -0.010 5.5 13224 0.181 31 19 0.189 -0.010 5.5 13224 0.181 31 19 0.193 -0.011 5.5 13224 0.181 31 17 0.196 -0.012 5.7 11536 0.258 31 199 0.193 5.7 10530 0.288 31 199 0.013 5.7 10530 0.288 32 28 0.203 -0.014 5.8 9390 0.258 32 28 0.203 -0.014 5.8 9390 0.258 32 28 0.203 -0.014 5.8 9390 0.258 32 28 0.203 0.0014 5.8 9390 0.258 32 28 0.203 0.0014 5.8 9390 0.258 32 28 0.203 0.0014 5.8 9390 0.258 32 28 0.203 0.0014 5.8 9390 0.258 32 28 0.203 0.0014 5.8 9390 0.258 32 38 0.230 0.024 5.2 938 33 35 0.230 0.244 0.019 6.1 5339 0.274 33 32 0.224 0.219 0.019 6.1 5339 0.274 33 33 0.224 0.219 0.019 6.1 5339 0.274 33 32 0.224 0.224 6.2 2535 0.358 33 35 0.230 0.024 6.2 2535 0.358 33 35 0.231 0.024 6.2 2535 0.358 32 28 0.254 0.026 6.6 9.272 0.284 29 94 0.281 0.102 6.4 2.28535 0.358 20 22 8 0.388 0.396 6.6 9.96 9.974 0.518 0.740 8.7 9.999 9.96 0.508 0.729 6.6 9.974 0.518 0.740 8.7 9.999 9.99 0.577 0.756 6.8 9.974 0.518 0.740 8.7 9.999 9.99 0.577 0.756 6.8 9.974 0.518 0.740 8.7 9.999 9.999 0.577 0.756 6.8 9.974 0.558 0.559 0.0869 7.2 8.999 0.0869 7.2 8.999 0.086 0.559 0.0869 7.2 8.999	27 23	0.164	-0.007	4.9	18570	0.078
28 44 0 177	27.65 28.04	0.166	-0.007 -0.007	4.9 5.0	17948 17299	0.063
29 21	28.41	0.171	-0.007	5.1	16584	0.084
29 90 0 0 179			-0.008 -0.008	5.1		0.079
30 31 0 184 40 009 5,4 14508 0 138 30 67 0 187 40 009 5,5 13294 0 133 31 04 0 189 40 010 5,5 13294 0 183 31 71 0 196 40 012 5,7 11536 0 258 31 71 0 196 40 012 5,7 11536 0 258 32 28 0 203 40 014 5,8 9390 0 258 32 28 0 203 40 014 5,8 9390 0 258 32 28 0 206 40 017 5,9 8152 0 34 33 28 0 210 40 017 5,9 8152 0 34 33 29 0 214 40 017 60 7207 0 284 33 30 0 214 40 017 60 7207 0 284 33 32 0 224 61 5389 0 274 33 35 0 230 40 24 62 2535 33 15 0 244 40 48	29.60			5.3	15675	0.112
30 67	30.31	0.184	-0.009	5.4	14508	0 139
31 39			-0.009		13907	0.131
91 99	31.39	0.193	-0.011	5.6	12530	0.183
52 28 0 203 -0.014 5.8 9350 0.256 52 28 0.205 -0.014 5.8 9350 0.257 52 28 0.206 -0.015 5.9 8500 0.257 52 28 0.210 -0.017 5.9 8152 0.347 53 24 0.219 -0.019 6.1 5339 0.277 53 32 4 0.219 -0.019 6.1 5339 0.277 53 32 5 0.220 -0.024 6.2 2535 0.397 53 35 0.230 -0.024 6.2 2535 0.397 53 35 0.230 -0.024 6.2 2535 0.397 53 35 0.230 -0.024 6.2 2535 0.397 53 35 0.230 -0.024 6.2 2535 0.397 53 28 0.254 0.030 6.3 32 28 0.254 0.025 6.2 0.397 52 20 20 388 0.254 0.040 6.4 0.025 6.4 0.025 6.5 0.257 52 0.52 0.388 0.396 6.6 9.9 9.96 0.315 0.508 0.729 6.6 9.74 0.518 0.740 8.7 9.97 0.518 0.740 8.7 9.97 0.518 0.740 8.7 9.97 0.518 0.769 6.8 9.97 0.527 0.555 0.550 0.527 0.555 0.550 0.527 0.555 0.550 0.527 0.555 0.5769 0.8 9.97 0.555 0.5769 0.8 9.97 0.555 0.5769 0.8 9.97 0.555 0.5769 0.577 0.555 0.5769 0.8 9.97 0.555 0.570 0.582 0.798 7.0 0.914 0.561 0.819 7.0 9.94 7.0 9.94 7.0 9.94 7.0 9.94 7.0 9.94 7.0 9.94 7.0 9.95 7.0 9.94 7.2 9.94 7.0 9.94 7.2 9.94 7.0 9.94 7.2 9.94 7.0 9.94 7.2 9.94 7.0 9.94 7.2 9.94 7.0 9.94 7.2 9.94 7.2 9.94 7.0 9.94 7.2 9.94		0.199		5.7 5.7		0.256
32.86 0.210 4.0117 5.9 8152 0.34 33.09 0.214 4.017 6.0 7207 0.26 33.24 0.219 4.019 6.1 5039 0.27 33.32 0.220 4.021 6.1 4151 0.36 33.35 0.230 4.024 6.2 2535 0.390 33.15 0.240 4.030 6.3 32.28 0.254 4.048 6.4 4.29.94 0.281 4.048 6.4 4.29.94 0.281 4.0102 6.4 5.20.52 0.388 -0.396 6.6 6.6 9.96 9.96 0.508 -0.729 6.6 9.74 0.518 4.740 8.7 9.97 9.97 9.97 9.97 9.98 9.97 9.97 9.98 9.97 9.98 9.98 9.98 9.98 9.98 9.98 9.98 9.98 9.98 9.98 9.98 9.98 9.99 9.99 9.99 9.99 9.99 9.99	32.29	0.203	-0.014	5.8	9390	0.256
33 09 0 214 0017 8 0 7207 0 265 33 24 0 219 0 019 6 1 5639 0 27 33 32 0 224 0 021 6 1 4151 0 363 33 36 0 230 - 0 026 6 2 2535 33 35 0 231 0 026 6 2 2535 33 35 0 231 0 026 6 2 2535 33 35 0 0240 0 036 6 2 2535 32 28 0 254 0 0 08 6 4 2 2535 32 28 0 054 0 0 08 6 4 2 2535 32 28 0 056 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.210	-0.015 -0.017	59 59		0.295
33.35 0.231 0.025 6.2 33.35 0.240 0.030 6.3 32.28 0.254 0.048 6.4 29.94 0.281 0.102 6.4 27.08 0.315 0.182 6.5 20.52 0.388 0.396 6.6 9.96 0.508 0.723 6.6 9.974 0.518 0.740 8.7 9.59 0.527 0.755 8.8 9.37 0.535 0.769 8.8 9.37 0.543 0.782 6.9 9.26 0.555 0.769 7.0 9.98 0.570 0.843 0.782 6.9 9.26 0.555 0.769 7.0	33.09	0.214	-0.017	6.0	7207	0.265
33 35 0 221	33.32	0.219	-0.019	6.1	4151	0.363
20 52	33.36	0.230	-0.024	6.2		0.390
20 52	33.15	0.240	-0.025 -0.030	63		
20 52	32.28	0.254	-0.048	6.4		
20 52	27.08	0.281	-0.162 -0.182	6.5		
8 66 0 589 -0 859 7.2 8 37 0 599 -0 876 7.3	20.52	0.388	-0.396	66		
8 66 0 589 -0 859 7.2 8 37 0 599 -0 876 7.3	9.74	0.518	-0.740	87		
8 66 0.589 -0.859 7.2 8 37 0.599 -0.876 7.3		0.527	-0.755	6.8		
8 66 0 589 -0 859 7.2 8 37 0 599 -0 876 7.3	9.37	0.543	-0.782	6.9		
8 66 0 589 -0 859 7.2 8 37 0 599 -0 876 7.3		0.552	-0.798	7.0		
8 66 0 589 -0 859 7.2 8 37 0 599 -0 876 7.3	8 98	0.570	-0 828	7.1		
8.37 0.599 -0.876 7.3		0.579	-0.844 -0.850	7.2		
7.54 0.611 0.901 7.4 6.67 0.626 0.929 7.4 6.47 0.638 0.951 7.5 6.20 0.647 0.989 7.6 5.58 0.986 7.6 5.58 0.985 0.986 7.6 5.79 0.665 1.000 7.7 7.5 6.0 0.673 1.000 7.8 5.42 0.682 1.000 7.8 5.42 0.000 7.8 5.42 0.000 7	8.37	0.599	-0.876	7.3		
8 47 0 638 0 985 7 5 6 20 0 647 0 986 7 6 6 5 7 6 7 6 7 6 7 6 7 7 7 7 7 7 7	7.54 6.87	0.611		7.4		
6.20 0.847 0.9899 7.6 5.98 0.856 -0.986 7.6 5.79 0.865 -1.003 7.7 5.60 0.673 -1.020 7.8 5.42 0.882 -1.036 7.8 5.22 0.880 -1.052 7.9 5.06 0.800 -1.052 7.9	6.47	0.638	-0.951	7.5		
5.79 0.665 -1.003 7.7 5.60 0.673 -1.000 7.8 5.42 0.662 -1.036 7.8 5.22 0.660 -1.052 7.9		0.656	-0.969 -0.988			
5 5 42 0 682 - 1 036 7 8 5 22 0 690 1 052 7 9	5.79	0.665	-1.003	7.7		
5.22 0.690 -1.052 7.9		0.673 0.682	-1.020 -1.036	7.8 7.8		
A TAC D COD (1700) 9.0	5.22	0.690	-1.052	7.9		
4.90 0.708 -1.083 8.0	5.05	0.699	-1 068 -1 083	8.0		
478 0.716 -1.098 8.1	4.78	0.716	-1.098	8.1		
4 58 0 732 -1 125 8 2		D 732	-1.111	8.2		
4 50 0.740 -1.138 8.3 4 42 0.748 -1.150 8.4	4.50	0.740	-1.138	8.3		

SPEA ENGINEERING

A1 INCISA VAL D'ARNO

Indagine GALLERIA BRUSCHETO NORD CD3: carotatrice sez.3 dx

RIPRESA FOTOGRAFICA

Ricerca sperimentale, modellazione fisica, prove di laboratorio ed in sito

Concessione Ministeriale Decreto Nr. 55126 del 12/07/06 Settori A, B e C

Rev	data emiss.	esegu ll o da	elaborato da
0	09/07/2019	Sirtbli	Sirtoli

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD

Sondaggio:

Campione: CD3: carotatrice sez.3 dx

Profondità prelievo [m]:

Data prova: 29/08/2018

Descrizione macroscopica del campione:

Calcestruzzo con aspetto conglomeratico costituito da inerti poligenici, prevalentemente carbonatici, di forma da subangolosa ad arrotondata con sfericità medio bassa, moderatamente classati ($L_{max} = 65$ mm). Distribuzione omogenea con addensamento medio.

Porosità bassa data da bolle millimetriche.

Matrice omogenea di aspetto arenaceo, colore nocciola chiaro con buona adesione agli inerti.

Descrizione post-rottura:

Formazione di fratture sub verticali e verticali, irregolari, che seguono il contorno degli inerti. Distacco di qualche inerte.

Pagina

1 1

di

Via Pastrengo, 9 - 24068 Seriate (Bg) Tel. 035 303120 - Fax 035 290388 Email: ismsgeo@ismgeo.it

DETERMINAZIONE DEL PESO DI VOLUME SU PROVINI DI FORMA CILINDRICA

Concessione Ministeriale Decreto n°55126 del 12 luglio 2006 - Settori A, B e C

Sperimentato	ore: Ranzini		Committente:	SPEA ENGINEERING	
Direttore:	The state of the s		Cantiere:	GALLERIA BRUSCHETO NOR	
Data emissio	NA.		Sondaggio:		
Rev.			Campione:	CD3: carotatrice sez.3 dx	
			Profondità [m]:	-	
Normativa di	riferimento: ISRM 1977	1.1	Prova:	γ1	
N° certificato	di prova: 0/6/18	Plalizus	Data:	30/08/2018	
N° verbale d	i accettazione: 026/20				
Lui	nghezza provino (m	m)	198.36		
Diametro provino (mm)			97.52		
Massa provino (g)			3443.60		
Are	ea provino (cm²)		74.69		
Vo	lume provino (cm³)		1481.60		
Pe	so di volume pro	vino (Mg/m³)	2.32		
Note:					

Via Pastrengo, 9 - 24068 Seriate (Bg) tel. 035 303120 - fax 035 290388 Email: ismgeo@ismgeo.it

026/2018

MISURA VELOCITA' ONDE **ELASTICHE**

Concessione Ministeriale Decreto n° 55126 del 12 luglio 2006 - Settori A, B e C

	F		
Sperimentatore:	Saccenti		
Direttore:	Saccenti		
Data emissione:	11/06/2019		
Rev.	0		

Normativa di riferimento: ASTM D2845/95

N° certificato di prova:

N° verbale di accettazione:

Prova:

Committente: SPEA ENGINEERING Cantiere: GALLERIA BRUSCHETO NORD Sondaggio:

Campione: CD3: carotatrice sez.3 dx

Profondità prova [m]:

Data prova: 29/08/2018

Numero prova	1	
Profondità da (m):	-	
Profondità a (m):	-	
Diametro provino (cm):	9.752	
Altezza provino (cm):	19.84	
Massa provino (g):	3443.6	
Peso di volume (KN/m³):	22.80	
Contenuto d'acqua (%):	-	
Tensione assiale (MPa):	-	
Tensione radiale (MPa):	-	
Tempo di propagazioneo onde P (μs)	43.2	
Tempo di propagazione onde S (μs)	71.2	
Velocità onde compressione p (m/s):	4592	
Velocità onde di taglio s (m/s):	2786	
G (MPa)	18040	
E (MPa)	43609	
v (-)	0.21	
K (MPa)	24950	

Vote:		
y. -	Serraggio con piastre a molla con accoppiamento di 20 kPa	
	derraggio con plastre a mona con accoppiamente di 20 Kr a	_

PROVA DI COMPRESSIONE MONOASSIALE IN CONTROLLO DI DEFORMAZIONE

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

data emiss. sperimentatore responsabile Angeloni Saccenti 30/08/2018

Normativa di riferimento: ASTM D7012/10

N° certificato di prova:

N° verbale di accettazione:

26/2018

Committente: SPEA ENGINEERING Cantiere: GALLERIA BRUSCHETO NORD

Sondaggio:

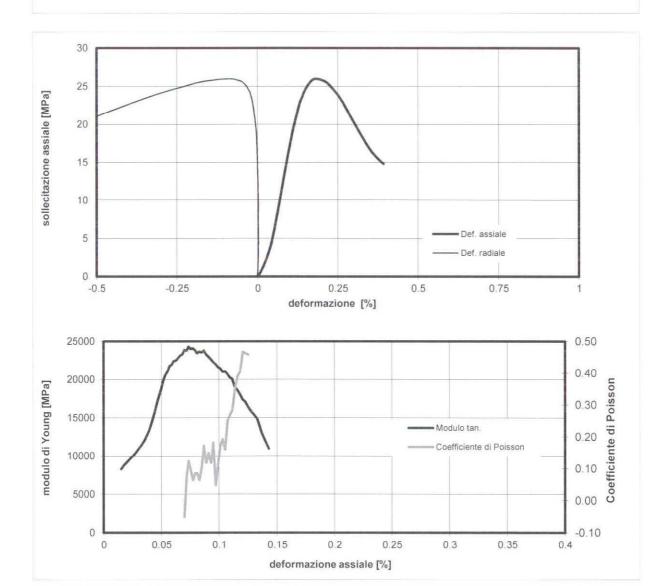
Provino: CD3: carotatrice sez.3 dx

Profondità prelievo [m]:

Prova: UXDC1

Data prova: 30/08/2018

Dati provino


Altezza (cm):

19.84

Peso di volume (KN/m3):

22.80

Diametro (cm): 9.75 Contenuto d'acqua (%)

	Resistenza di picco σ_p [MPa]:	26.0
Risultati prova	Modulo di Young secante al 50% di σ_P [MPa]:	15953
Risu pro	Modulo di Young tangente al 50% di σ_p [MPa]:	23660
IE.	Coefficiente di Poisson tangente al 50% di σ_p :	0.12
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

1

PROVA DI COMPRESSIONE MONOASSIALE IN CONTROLLO DI DEFORMAZIONE

Concessione Ministeriale Decreto n° 55126 del 12 luglio 2006 - Settori A, B e C

rev.	data emiss.	sperimentatore	responsabile
0	30/08/2018	Angelon	Saccenti

Normativa di riferimento: ASTM D7012/10

N° certificato di prova:

N° verbale di accettazione:

26/2018

Committente: SPEA ENGINEERING Cantiere: **GALLERIA BRUSCHETO NORD**

Sondaggio:

Provino: CD3: carotatrice sez.3 dx

Profondità prelievo [m]:

Prova: Data prova:

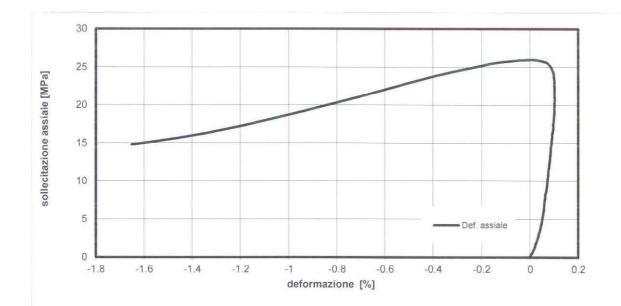
30/08/2018

UXDC1

Dati provino

Altezza (cm):

19.84


Peso di volume (KN/m3):

22.80

Diametro (cm):

9.75

Contenuto d'acqua (%)

	Resistenza di picco σ_p [MPa]:	26.0
Risultati prova	Modulo di Young secante al 50% di σ_p [MPa]:	15953
	Modulo di Young tangente al 50% di σ_p [MPa]:	23660
	Coefficiente di Poisson tangente al 50% di σ_p :	0.12
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

COMPRESSIONE MONOASSIALE IN CONTROLLO DI DEFORMAZIONE

Normativa di nferimento: ASTM D7012/10

SPEA ENGINEERING GALLERIA BRUSCHETO NORD

CD3: carotatrice sez.3 dx

Area: Sperimentatore: Direttore: Data emissione:

74.69272134 Angeloni Saccelut 30/08/2018

Committente:
Cantiere:
Sondaggio:
Provino:
Provino:
Profondità (m):
Sigla prova:
Data prova:
Altezza ini (mm):
Dia ini (mm):
Peso di volume (KN/m³)
Umidita' iniziale (%)

UXDC1 43342 198.36 97.52 22.80

	Umidita' iniziale (%)				
Sollecitazione assiale [MPa]	E assiale (%)	E radiale (%)	tempo [min]	E tangente [MPa]	Poisson tangente
0.00	0.000	0.000	0.0		
0.00	0.000	0.000	0.1		
0.14	0.002	-0.001	0.1		
0.28	0.004	-0.001	0.2		
0.42	0.006	-0.001	0.3		
0.58	0.008	0.000	0.3		
0.76	0.011	0.000	0.4		
0.94	0.013	0.000	0.5		
1.15	0.015	0.001	0.5	8264	
1.37	0.018	0.001	0.6	8764	
1.63	0.020	0.001	0.7	9190	
1.89	0.023	0.001	0.7	9636	
2.44	0.028	0.002	0.9	10033 10464	
2.72	0.030	0.002	0.9	10954	
3.02	0.033	0.002	1.0	11420	
3.35	0.035	0.002	1.1	12025	
3.68	0.037	0.002	1.1	12729	
3 99	0.040	0.002	1.2	13447	
4.33	0.042	0.002	1.3	14439	
4.70	0.044	0.003	1.3	15589	
5.09	0.046	0.002	1.4	16790	
5.48	0.048	0.002	1.5	17878	
5.86	0.050	0.002	1.5	18758	
6 24	0.052	0.002	1.6	19828	
6.63	0.053	0.002	1.7	20568	
7.05	0.055	0.002	1.7	21064	
7.46 7.83	0.057	0.002	1.8	21783	
8.22	0.059		1.9	21948	
8.66	0.063	0.001	2.0	22393 22488	
9.09	0.064	0.002	2.1	22807	
9.56	0.066	0.002	2 1	23153	
9.99	0.068	0.002	2.2	23288	
10.43	0.070	0.002	2.3	23848	-0.051
10.87	0.072	0.002	2.3	23797	0.078
11.31	0.074	0.001	2.4	24301	0.124
11.76	0.075	0.001	2.5	23998	0.095
12.20	0.077	0.001	2.5	24083	0.064
12.63	0.079	0.001	2.6	23852	0.085
13.06	0.081	0.001	2.7	23452	0.086
13.51	0.083	0.000	2.7	23669	0.064
13.98 14.44	0.085	-0.000	2.8	23563	0.107
14.89	0.089	0.000	2.9	23814 23280	0.172 0.118
15.33	0.091	-0.001	3.0	22997	0.150
15.80	0.093	-0.001	3.1	22666	0.119
16.25	0.095	-0.002	3.1	22312	0.182
16.71	0.097	-0.001	3.2	22005	0.048
17.13	0.099	-0.002	3.3	21622	0.121
17.52	0.101	-0.002	3.3	21461	0.172
17.94	0.103	-0.003	3.4	20995	0.193
18.38	0.105	-0.003	3.5	21073	0.161
18.81	0.107	-0.004	3.5	20684	0.251
19.22	0.109	-0.004	3.6	20243	0.269
19.60	0.111	-0.005	3.7	20062	0.283
19.98	0.113	-0.006	3.7	19027	0.347
20.38	0.116	-0.007	3.8	18646	0.389
20.80	0.118	-0.008 -0.009	3.9	18067	0.405
21.19 21.56	0.120	-0.009	3.9 4.0	17363 17059	0.468
21.56	0.123	0.012	4.0	16405	0.463
22.31	0.128	-0.013	4.1	15858	0.400
22.69	0.130	-0.015	4.2	15388	
23.08	0.133	-0.016	4.3	14836	
23.43	0.137	-0.018	4.3	13089	
23.76	0.140	-0.021	4.4	12008	
24 10	0.143	-0.022	4.5	10982	
24.40	0.146	-0.025	4.5		
24.70	0.150	-0.029	4.6		
24.97	0.154	-0.033	4.7		
25.20	0.157	-0.038	4.7		
25.43	0.161	-0.043	4.8		
25.65	0.166	-0.049	4.9		
25.82	0.169	-0.062	4.9		
25.93 25.98	0.175 0.181	-0.072 -0.086	5.0 5.1		
25.98 25.97	0.186	-0.086	5.1		
25.92	0.193	-0.119	5.2		
25.80	0.201	-0.119	5.3		
25.66	0.209	-0.165	5.3		
25 43	0.217	-0.192	5.4		
25.03	0.227	-0.226	5.5		
24.51	0.238	-0.270	5.5		
	0.251	-0.321	5.6		
23.85	0.266	-0.387	5.7		
22.88			5.7		
	0.290	-0.501	5.7		
22.88 21.04 18.97	0.290 0.317	-0.642	5.8		
22.88 21.04 18.97 17.30	0.290 0.317 0.341	-0.642 -0.764	5.8 5.9		
22 88 21.04 18.97 17.30 16.29	0.290 0.317 0.341 0.358	-0.642 -0.764 -0.850	5.8 5.9 5.9		
22.88 21.04 18.97 17.30	0.290 0.317 0.341	-0.642 -0.764	5.8 5.9		

SPEA ENGINEERING

A1 INCISA VAL D'ARNO

Indagine GALLERIA BRUSCHETO NORD CS1: carotatrice sez.1 sin

RIPRESA FOTOGRAFICA

Ricerca sperimentale, modellazione fisica, prove di laboratorio ed in sito

Concessione Ministeriale Decreto Nr. 55126 del 12/07/06 Settori A, B e C

Sintofi

SPEA ENGINEERING Committente: **GALLERIA BRUSCHETO NORD** Cantiere: Sondaggio:

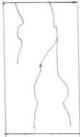
Campione:

CS1: carotatrice sez.1 sin

Profondità prelievo [m]:

28/08/2018 Data prova:

Descrizione macroscopica del campione:


Calcestruzzo con aspetto conglomeratico costituito da inerti poligenici, prevalentemente carbonatici, di forma da subangolosa ad arrotondata con sfericità medio bassa, scarsamente classati (Lmax = 55 mm). Distribuzione poco omogenea sulla circonferenza del campione con addensamento medio.

Porosità bassa data da bolle millimetriche.

Matrice omogenea di aspetto arenaceo, colore nocciola chiaro con buona adesione agli inerti.

Descrizione post-rottura:

Formazione di fratture sub verticali e verticali, irregolari, che seguono il contorno degli inerti e solo raramente li interessano. Distacco di qualche inerte superficiale.

Pagina

Via Pastrengo, 9 - 24068 Seriate (Bg) Tel. 035 303120 - Fax 035 290388 Email: ismsgeo@ismgeo.it

DETERMINAZIONE DEL PESO DI VOLUME SU PROVINI DI FORMA CILINDRICA

Concessione Ministeriale Decreto n°55126 del 12 luglio 2006 - Settori A, B e C

Sperimentatore:	Ranzin	Committente:	SPEA ENGINEERING
Direttore:	Saccent	Cantiere:	GALLERIA BRUSCHETO NORD
Data emissione:	11/06/2019	Sondaggio:	_
Rev.		Campione:	CS1: carotatrice sez.1 sin
		Profondità [m]:	-
Normativa di riferi	mento: ISRM 1977	Prova:	γ 1
N° certificato di pr	ova: 016/18/4/1137	Data:	30/08/2018
N° verbale di acce	026/2018		
Lungh	ezza provino (mm)	199.89	
Diame	tro provino (mm)	97.36	
Massa	provino (g)	3483.30	
Area p	rovino (cm²)	74.45	
Volum	e provino (cm³)	1488.13	
Peso	di volume provino (Mg/m³)	2.34	
Note:			

Via Pastrengo, 9 - 24068 Seriate (Bg) tel. 035 303120 - fax 035 290388 Email: ismgeo@ismgeo.it

MISURA VELOCITA' ONDE ELASTICHE

Concessione Ministeriale Decreto n° 55126 del 12 luglio 2006 - Settori A, B e C

	The same of the sa
Sperimentatore:	Saccenti
Direttore:	Saccenti
Data emissione:	11/06/2019
_	•

Rev. 0

Normativa di riferimento: ASTM D2845/95

N° certificato di prova: 016||6||4||138
N° verbale di accettazione: 026/2018

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD
Sondaggio: Campione: CS1: carotatrice sez.1 sin
Profondità prova [m]: -

 Prova:
 V_p

 Data prova:
 29/08/2018

Numero prova	1	
Profondità da (m):	-	
Profondità a (m):	-	
Diametro provino (cm):	9.736	
Altezza provino (cm):	19.99	
Massa provino (g):	3483.3	
Peso di volume (KN/m³):	22.96	
Contenuto d'acqua (%):	-	
Tensione assiale (MPa):		
Tensione radiale (MPa):	-	
Tempo di propagazioneo onde P (μs)	43.6	
Tempo di propagazione onde S (μs)	71.3	
Velocità onde compressione p (m/s):	4585	
Velocità onde di taglio s (m/s):	2804	
G (MPa)	18397	•
E (MPa)	44203	
v (-)	0.20	
K (MPa)	24670	

N	0	te	

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

data emiss. sperimentatore responsabile Angeloni Saccenti 30/08/2018

Normativa di riferimento: ASTM D7012/10 066/18/3/1238

N° certificato di prova:

N° verbale di accettazione:

Committente: SPEA ENGINEERING Cantiere: GALLERIA BRUSCHETO NORD

Sondaggio:

Provino: CS1: carotatrice sez.1 sin

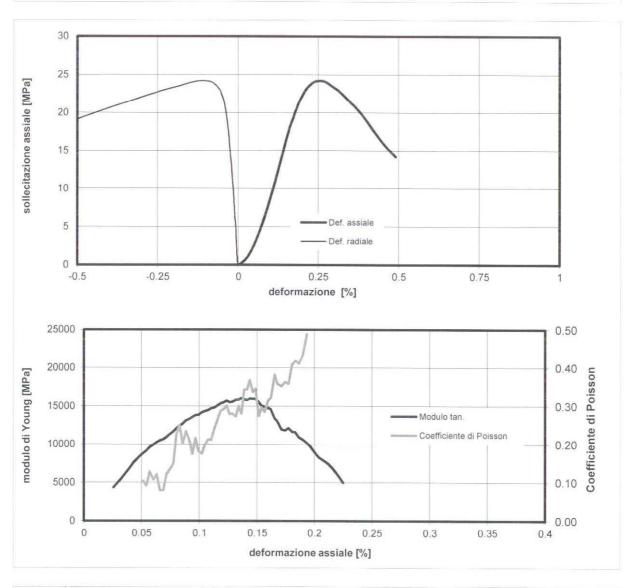
Profondità prelievo [m]:

Prova: UXDC1 Data prova: 30/08/2018

Dati provino

Altezza (cm):

19.99


26/2018

Peso di volume (KN/m3):

22.96

Diametro (cm): 9.74

Contenuto d'acqua (%)

Resistenza di picco σ_p [MPa]:	24.2
Modulo di Young secante al 50% di σ_p [MPa]:	9981
Modulo di Young tangente al 50% di σ_p [MPa]:	15590
Coefficiente di Poisson tangente al 50% di σ_p :	0.30
Calcestruzzo	
Velocità di deformazione =0.2 mm/min	
	Modulo di Young tangente al 50% di σ_p [MPa]: Coefficiente di Poisson tangente al 50% di σ_p : Calcestruzzo

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

rev. data emiss. sperimentatore responsabile
0 30/08/2018 Angelon Saccentr

Normativa di riferimento: ASTM D7012/10

N° certificato di prova:

N° verbale di accettazione: 26/2018

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD

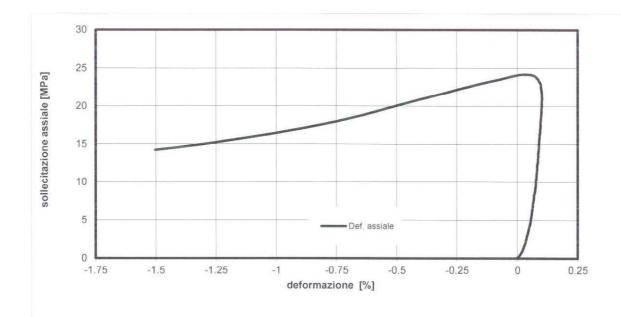
Sondaggio:

Provino: CS1: carotatrice sez.1 sin

Profondità prelievo [m]:

 Prova:
 UXDC1

 Data prova:
 30/08/2018


Dati provino

Altezza (cm): 1 Diametro (cm):

19.99 9.74 Peso di volume (KN/m³):

22.96

Contenuto d'acqua (%)

_	Resistenza di picco σ_p [MPa]:	24.2
Risultati prova	Modulo di Young secante al 50% di σ_p [MPa]:	9981
Risu	Modulo di Young tangente al 50% di σ_p [MPa]:	15590
LL.	Coefficiente di Poisson tangente al 50% di σ_p :	0.30
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

Area: Sperimentatore: Direttore: Data emissione:

COMPRESSIONE MONOASSIALE IN CONTROLLO DI DEFORMAZIONE

Normativa di riferimento: ASTM D7012/10

74.44782794 Angeloni Saccenti 30/08/2018

SPEA ENGINEERING GALLERIA BRUSCHETO NORD

Committente:
Cantiere:
Gondaggio:
Profondità (m):
Sigla prova:
Data prova:
Altezza ini (mm):
Dia ini (mm):
Peso di volume (KN/m³)
Umidita' iniziale (%)

CS1: carotatrice sez.1 sin UXDC1 43342 199.89 97.36 22.96

Sollecitazione assiale [MPa]	E assiale (%)	E radiale (%)	tempo [min]	E tangente [MPa]	Poisson tangent
0.00	0.000	0.000	0.0		
0.10	0.004	-0.002	0.1		
0.17	0.007	-0.002 -0.002	0.2		
0.37	0.013	-0.002	0.3		
0.48	0.017	-0.003	0.4		
0.61	0.020	-0.003	0.5		
0.74	0.023	-0.003 -0.003	0.5	4351	
1.07	0.029	-0.003	0.7	4888	
1.26	0.032	-0.004	0.7	5387	
1.45	0.035	-0.004	0.8	5930	
1.65 1.85	0.037	-0.005 -0.005	0.9	6438 6952	
2.10	0.043	-0.005	1.0	7562	
2.35	0.046	-0.005	1.1	7986	
2.61	0.049	-0.005 -0.006	1.1	8450 8810	0.104
3.13	0.054	-0.006	1.2	9157	0.092
3.43	0.057	-0.007	1.3	9609	0.128
3.75	0.060	-0.007	1.4	9941	0.107
4.06 4.37	0.063	-0.007 -0.007	1.5	10257 10501	0.121
4.68	0.069	-0.007	1.6	10658	0.080
5.00	0.072	-0.008	1.7	10959	0.122
5.36	0.075	-0.009	1.7	11356	0.135
5.72 6.05	0.078	-0.009 -0.011	1.8	11672 12083	0.149
6.39	0.083	-0.011	1.9	12417	0.250
6.75	0.085	-0.011	2.0	12693	0.203
7.13	0.088	-0.012	2.1	13101	0.234
7.53 7.90	0.091	-0.012 -0.013	2.1	13316 13559	0.211
8 26	0.096	-0.014	2.3	13807	0.217
8.63	0.099	-0.014	2.3	13834	0.182
9.03 9.45	0.102	-0.014 -0.015	2.4	14149 14325	0.175
9.86	0.108	-0.015	2.5	14459	0.213
10.24	0.110	-0.017	2.6	14699	0.212
10.63	0.113	-0.017	2.7	14776	0.240
11.05	0.118	-0.018 -0.019	2.7	15065 15359	0.264
11.93	0.121	-0.020	2.9	15496	0.292
12.32	0.123	-0.021	2.9	15695	0.301
12.71	0.126	-0.021 -0.022	3.0	15495 15554	0.279
13.55	0.129	-0.022	3.1	15801	0.273
13.95	0.134	0.024	3.2	15834	0.300
14.34	0.136	-0.024 -0.025	3.3	16019 15843	0.280
15.09	0.141	-0.025	3.4	15778	0.343
15.52	0.144	-0.027	3.5	15950	0.368
15.93	0.146	-0.028	3.5	15936	0.337
16.31 16.69	0.149	-0.029 -0.028	3.6	15916 15498	0.344
17.04	0.154	-0.030	3.7	15064	0.297
17.45	0.156	-0.031	3.8	14878	0.285
17.85	0.159	-0.032 -0.033	3.9	14744 14574	0.313
18.57	0.165	-0.034	4.0	13403	0.321
18.91	0.168	-0.035	4.1	12985	0.357
19.30	0.171	-0.036	4.1	11937	0.352
19.69	0.174	-0.037 -0.038	4.2	11835 12128	0.363
20.38	0.180	-0.040	4.3	11637	0.408
20.69	0.183	-0.041	4.4	11609	0.418
21.03	0.186	-0.042 -0.044	4.5 4.5	10910 10616	0.411
21.70	0.193	-0.046	4.6	10200	0.489
21.99	0.197	-0.048	4.7	9642	
22.25 22.52	0.200	-0.050 -0.053	4.7	8967 8292	
22.84	0.208	-0.055	4.9	7864	
23.11	0.212	-0.059	4.9	7445	
23.33	0.216	-0.063	5.0	6800	
23.52 23.69	0.220	-0.067 -0.072	5.1 5.1	5932 4977	
23.88	0.230	-0.077	5.2	4377	
24.04	0.235	-0.083	5.3		
24.13	0.241	-0.091	5.3		
24.17	0.246	-0.099 -0.108	5.4 5.5		
24.20	0.259	-0 117	5.5		
24.19	0.259	-0.118	5.6		
24.15	0.267	-0.129	5.6 5.7		
24.01 23.80	0.275	-0.145 -0.163	5.7		
23.53	0.291	-0.183	5.8		
23.27	0.300	-0.206	5.9		
23.00 22.63	0.310	-0.229 -0.257	6.0		
22.63	0.320	-0.287	6.1		
21.77	0.340	-0.319	6.2		
21 32	0.351	-0.351	6.2		
20.85	0.363	-0.385 -0.425	6.3		
19.64	0.388	-0.467	6.4		
18.82	0.402	-0.520	6.5		
	0.416	-0.582 -0.656	6.6		
17.99			6.6		
17.13	0.430				
17.13 16.34 15.68	0.430 0.445 0.458	-0.734 -0.807	6.7 6.8		
17.13 16.34	0.445	-0.734	6.7		

SPEA ENGINEERING

A1 INCISA VAL D'ARNO

Indagine GALLERIA BRUSCHETO NORD CS2: carotatrice sez.2 sin

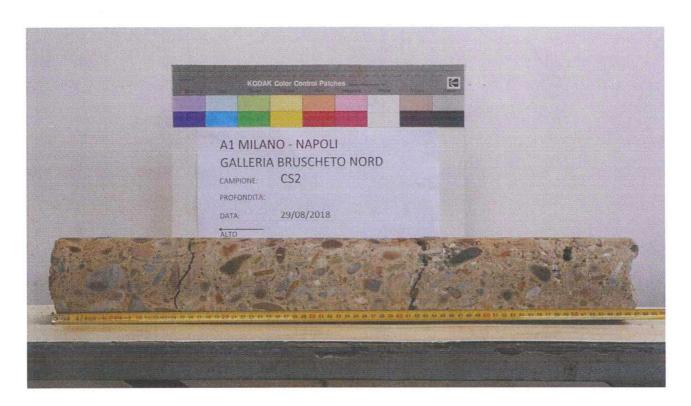
RIPRESA FOTOGRAFICA

Ricerca sperimentale, modellazione fisica, prove di laboratorio ed in sito

Concessione Ministeriale Decreto Nr. 55126 del 12/07/06 Settori A, B e C

Rev	data emiss.	eseguito da	elaborato da
0	09/07/2019	Sirtoli	Sindli

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD


Sondaggio: Campione:

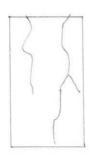
CS2: carotatrice sez.2 sin

Profondità prelievo [m]:

Data prova:

29/08/2018

Descrizione macroscopica del campione:


Calcestruzzo con aspetto conglomeratico costituito da inerti poligenici, prevalentemente carbonatici, di forma da subangolosa ad arrotondata con sfericità bassa, scarsamente classati ($L_{max}=40$ mm). Distribuzione omogenea con addensamento medio e locale isorientazione degli inerti allungati lungo un asse inclinato di 60° .

Porosità bassa data da bolle millimetriche.

Matrice omogenea di aspetto arenaceo, colore nocciola chiaro con buona adesione agli inerti.

Descrizione post-rottura:

Formazione di fratture sub verticali e verticali, irregolari, che seguono il contorno degli inerti e solo raramente li interessano. Distacco di qualche inerte superficiale.

Pagina

1 1

Via Pastrengo, 9 - 24068 Seriate (Bg) Tel. 035 303120 - Fax 035 290388 Email: ismsgeo@ismgeo.it

DETERMINAZIONE DEL PESO DI VOLUME SU PROVINI DI FORMA CILINDRICA

Concessione Ministeriale Decreto n°55126 del 12 luglio 2006 - Settori A, B e C

Sperime	entatore:	Rangihi		Committente:	SPEA ENGINEERING
Direttor	e:	Saccenti	-	Cantiere:	GALLERIA BRUSCHETO NORD
Data er	missione:	11/06/2019		Sondaggio:	-
Rev.				Campione:	CS2: carotatrice sez.2 sin
				Profondità [m]:	-
Normat	iva di riferir	mento: ISRM 1977		Prova:	γ 1
N° certi	ficato di pro	ova: 06/8/9/12	243	Data:	30/08/2018
N° verb	ale di acce	ttazione: 026/2018			
	Lunghe	ezza provino (mm)		199.35	
	Diamet	ro provino (mm)		97.58	
	Massa	provino (g)		3420.00	
	Area pı	rovino (cm²)		74.78	
	Volume	e provino (cm³)		1490.83	
	Peso o	di volume provino ((Mg/m³)	2.29	
Note:					

Via Pastrengo, 9 - 24068 Seriate (Bg) tel. 035 303120 - fax 035 290388 Email. ismgeo@ismgeo.it

MISURA VELOCITA' ONDE ELASTICHE

Concessione Ministeriale Decreto n° 55126 del 12 luglio 2006 - Settori A, B e C

	1.0
Sperimentatore:	Saccenti
Direttore:	Saccenti
Data emissione:	11/06/2019
Disco	0

Rev.

Normativa di riferimento: ASTM D2845/95

N° certificato di prova:

N° verbale di accettazione: 026/2

026/18/4/1244

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD
Sondaggio:

Campione: CS2: carotatrice sez.2 sin

Profondità prova [m]:

Prova: V_p

Data prova: 29/08/2018

Numero prova	1	
Profondità da (m):	-	
Profondità a (m):	-	
Diametro provino (cm):	9.758	
Altezza provino (cm):	19.94	
Massa provino (g):	3420	
Peso di volume (KN/m³):	22.50	
Contenuto d'acqua (%):	-	
Tensione assiale (MPa):	-	
Tensione radiale (MPa):	-	
Tempo di propagazioneo onde P (μs)	44.4	
Tempo di propagazione onde S (μs)	69.5	
Velocità onde compressione p (m/s):	4490	
Velocità onde di taglio s (m/s):	2868	
G (MPa)	18874	,
E (MPa)	43607	
v (-)	0.16	
K (MPa)	21080	

loto:		
Vote:		
	Serraggio con piastre a molla con accoppiamento di 20 kPa	

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

sperimentatore data emiss responsabile Angelowi 30/08/2018

Normativa di riferimento: ASTM D7012/10 06/18/18

N° certificato di prova:

N° verbale di accettazione:

Committente: SPEA ENGINEERING Cantiere: **GALLERIA BRUSCHETO NORD**

Sondaggio:

Provino: CS2: carotatrice sez.2 sin

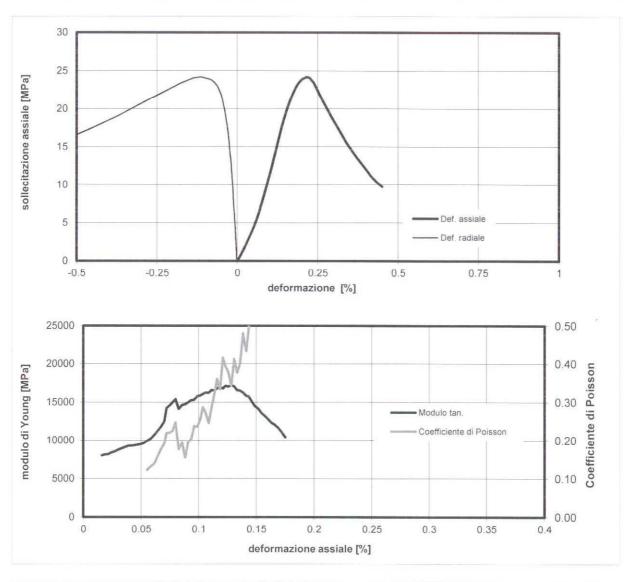
Profondità prelievo [m]:

Prova: UXDC1

Data prova: 30/08/2018

Dati provino

Altezza (cm):


19.94

26/2018

Peso di volume (KN/m3):

22.50

Diametro (cm): 9.76 Contenuto d'acqua (%)

	Resistenza di picco σ_p [MPa]:	24.2
Itati	Modulo di Young secante al 50% di σ_p [MPa]:	11550.8
Risultati prova	Modulo di Young tangente al 50% di σ_p [MPa]:	16170
II.	Coefficiente di Poisson tangente al 50% di σ_p :	0.27
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

sperimentatore data emiss. responsabile 30/08/2018 Angeloni

Normativa di riferimento: ASTM D7012/10

N° certificato di prova:

N° verbale di accettazione:

26/2018

Committente: SPEA ENGINEERING Cantiere: **GALLERIA BRUSCHETO NORD**

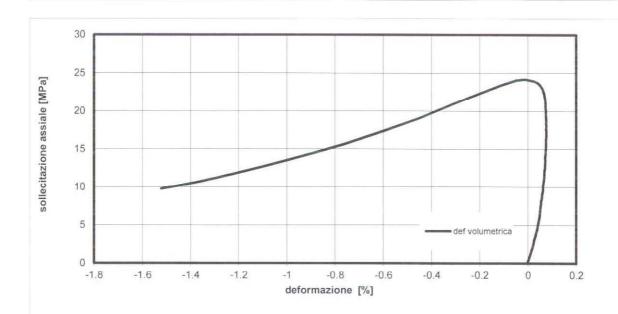
Sondaggio:

Provino: CS2: carotatrice sez.2 sin

Profondità prelievo [m]:

Prova: UXDC1

Data prova: 30/08/2018


Dati provino

Altezza (cm): Diametro (cm):

19.94 Peso di volume (KN/m3): 9.76

22.50

Contenuto d'acqua (%)

	Resistenza di picco σ_p [MPa]:	24.2
Itati	Modulo di Young secante al 50% di σ_p [MPa]:	11550.8
Risultati prova	Modulo di Young tangente al 50% di σ_p [MPa]:	16170
LE.	Coefficiente di Poisson tangente al 50% di σ_p :	0.27
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

Foglio

2

Normativa di riferimento: ASTM D7012/10

SPEA ENGINEERING GALLERIA BRUSCHETO NORD

CS2: carotatrice sez.2 sin

Area: Sperimentatore: Direttore: Data emissione:

Committente:
Cantiere:
Sondaggio:
Provino:
Profondità (m):
Sigla prova:
Data prova:
Altezza ini (mm):
Dia ini (mm):
Peso di volume (KN/m³)
Umidita' iniziale (%)

UXDC1 43342 199.35 97.58 22.50

			Umidita' iniziale	1000	
Sollecitazione assiale [MPa]	£ assiale (%)	E radiale (%)	tempo [min]	E tangente [MPa]	Poisson tangent
0.00	0.000	0.000	0.0		
0.07	0.001	-0.001	0.1		
0.23	0.003	-0.002	0.2		
0.36	0.005	-0.002 -0.002	0.3		
0.65	0.009	-0.002	0.4		
0.84	0.011	-0.003	0.5		
1.04	0.014	-0.002	0.5		
1.23	0.016	-0.003	0.6	8012	
1.45	0.018	-0.003	0.7	8121	
1.69	0.021	-0.003	0.7	8170	
1.93	0.024	-0.004	0.8	8390	
2.20	0.027	-0.004 -0.004	0.9	8548 8746	
2.71	0.033	-0.004	1.0	8927	
2.99	0.036	-0.005	1.1	9079	
3 30	0.039	-0.005	1.1	9270	
3.61	0.042	-0.006	1.2	9290	
3.90	0.046	-0.006	1.3	9371	
4.21	0.049	-0.006	1.3	9462	
4.53 4.88	0.052	-0.007	1.4 1.5	9606	0.100
5.24	0.055	-0.007 -0.008	1.5	9936 10249	0.122 0.132
5.58	0.061	-0.008	1.6	10736	0 140
5.91	0.064	-0.009	1.7	11246	0.158
6.29	0.067	-0.009	1.7	11788	0.176
6.67	0.070	-0.010	1.8	12470	0.191
7.07	0.072	-0.011	1.9	14227	0.220
7.45	0.075	-0.011	1.9	14583	0.220
7.81 8.18	0.077	-0.012 -0.012	2.0	14970 15398	0.225 0.247
8 59	0.083	-0.012	2.1	14122	0.177
9.01	0.085	-0.013	2.2	14606	0.195
9.42	0.088	-0.013	2.3	14720	0.155
9.81	0.091	-0.014	2.3	14944	0.195
10.19	0.093	-0.015	2.4	15219	0.202
10.61	0.096	-0.016	2.5 2.5	15313 15745	0.237 0.236
11.03 11.44	0.101	-0.016 -0.017	2.6	15822	0.252
11.84	0.103	-0.018	2.7	16065	0.287
12.23	0.106	-0.019	2.7	16219	0.274
12.66	0.109	-0.019	2.8	16197	0.245
13.08	0.111	-0.020	2.9	16546	0.286
13.51	0.114	-0.021	2.9	16519	0.324
13.91 14.32	0.116 0.118	-0.022 -0.023	3.0	16792 16925	0.360
14.73	0.121	-0.024	3.1	16771	0.416
15.15	0.123	-0.025	3.2	17108	0.393
15.58	0.126	-0.025	3.3	17014	0.378
16.01	0.128	-0.027	3.3	17176	0.343
16.40	0.131	-0.028	3.4	17070	0.412
16.82	0.133	-0.028	3.5 3.5	16550	0.377
17.24 17.67	0.136	-0.030 -0.031	3.6	16497 16240	0.401
18.06	0.141	-0.032	3.7	15816	0.434
18.44	0.144	-0.034	3.7	15728	0.500
18.81	0.146	-0.035	3.8	15030	0.531
19.20	0.149	-0.037	3.9	14454	0.545
19.57	0.152	-0.039	3.9	14144	0.531
19.93 20.27	0.155 0.157	-0.040 -0.042	4.0	13572 13211	0.578 0.534
20.60	0.160	-0.044	4.1	12815	0.607
20.95	0.163	-0.045	4.2	12327	10000
21.29	0.166	-0.046	4.3	12068	
21.63	0.169	-0.049	4.3	11665	
21.93	0.172	-0.051	4.4	11123	
22.22	0.175	-0.053	4.5	10432	
22.51 22.83	0.178	-0.057 -0.060	4.5 4.6		
23.11	0.186	-0.064	4.7		
23.35	0.189	-0.069	4.7		
23.57	0.194	-0.074	4.8		
23.78	0.198	-0.080	4.9		
23.94	0.203	-0.089	4.9		
24.06	0.209	-0.100	5.0		
24.18	0.214	-0.111 -0.119	5.1 5.1		
24.17	0.225	-0.119	5.1		
23.44	0.238	-0.174	5.3		
21.07	0.265	-0.284	5.3		
19.02	0.291	-0.373	5.4		
17.30	0.315	-0.462	5.5		
15.62	0.338	-0.552	5.5		
14.45 13.52	0.356	-0.624 -0.686	5.6 5.7		
	0.372	-0.746	5.7		
12 65		-0.802	5.8		
12 65 11 88	0.402	0.002			
11.88 11.14	0.415	-0.857	5.9		
11.88					

SPEA ENGINEERING

A1 INCISA VAL D'ARNO

Indagine GALLERIA BRUSCHETO NORD CS3: carotatrice sez.3 sin

RIPRESA FOTOGRAFICA

Ricerca sperimentale, modellazione fisica, prove di laboratorio ed in sito

Concessione Ministeriale Decreto Nr. 55126 del 12/07/06 Settori A, B e C

Rev	data emiss.	eseguito da	elaborato da
0	09/07/2019	Sirtoli	Sittof

SPEA ENGINEERING Committente: GALLERIA BRUSCHETO NORD Cantiere: Sondaggio:

Campione:

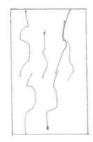
CS3: carotatrice sez.3 sin

Profondità prelievo [m]:

Data prova:

29/08/2018

Descrizione macroscopica del campione:


Calcestruzzo con aspetto conglomeratico costituito da inerti poligenici, prevalentemente carbonatici, di forma da subangolosa ad arrotondata con sfericità medio bassa, scarsamente classati (L_{max} = 55 mm). Distribuzione omogenea con addensamento medio basso.

Porosità media data da diffusa presenza di bolle millimetriche su tutto il campione.

Matrice omogenea di aspetto arenaceo, colore nocciola chiaro con buona adesione agli inerti.

Descrizione post-rottura:

Formazione di fratture sub verticali e verticali, irregolari, che seguono il contorno degli inerti e solo raramente li interessano. Distacco di qualche inerte superficiale.

Pagina

1 1

di

Via Pastrengo, 9 - 24068 Seriate (Bg) Tel. 035 303120 - Fax 035 290388 Email: ismsgeo@ismgeo.it

DETERMINAZIONE DEL PESO DI VOLUME SU PROVINI DI FORMA CILINDRICA

Concessione Ministeriale Decreto n°55126 del 12 luglio 2006 - Settori A, B e C

Sperimentatore:	Ranzini	Committente:	SPEA ENGINEERING
Direttore:	Saccenți	Cantiere:	GALLERIA BRUSCHETO NORD
Data emissione:	11/06/2019	Sondaggio:	-
Rev.		Campione:	CS3: carotatrice sez.3 sin
		Profondità [m]:	-
Normativa di rifer	imento: ISRM 1977	Prova:	γ1
N° certificato di p	rova: 026/18/A/1245	Data:	30/08/2018
N° verbale di acc	ettazione: 026/2018		
Lunah	actes proving (mm)	199.39	
Lungn	nezza provino (mm)	155.55	
D:	A	97.45	
Diame	etro provino (mm)	97.45	
Manage	i (n)	3419.60	
IVIassa	provino (g)	3419.60	
A		74.59	
Area p	provino (cm²)	74.55	
Volum	ne provino (cm³)	1487.16	
Volum	le provino (citi)	1407.10	
_			
Peso	di volume provino (Mg/m³)	2.30	
Note:			

Via Pastrengo, 9 - 24068 Seriate (Bg) tel. 035 303120 - fax 035 290388 Email: ismgeo@ismgeo.it

016/18/A/1250

026/2018

MISURA VELOCITA' ONDE ELASTICHE

Concessione Ministeriale Decreto n° 55126 del 12 luglio 2006 - Settori A, B e C

Sperimentatore: Saccenti
Direttore: Saccenti
Data emissione: 11/06/2019
Rev. 0

Normativa di riferimento: ASTM D2845/95

N° certificato di prova:

N° verbale di accettazione:

Campione: CS3: carotatrice sez.3 sin

Profondità prova [m]:

Prova: V_p

Data prova: 29/08/2018

Numero prova	1		
Profondità da (m):	-		
Profondità a (m):	-		
Diametro provino (cm):	9.745		
Altezza provino (cm):	19.94		
Massa provino (g):	3419.6		
Peso di volume (KN/m³):	22.56		
Contenuto d'acqua (%):	-		
Tensione assiale (MPa):	-		
Tensione radiale (MPa):	-		
Tempo di propagazioneo onde P (μs)	43.6		
Tempo di propagazione onde S (μs)	68.4		
Velocità onde compressione p (m/s):	4573		
Velocità onde di taglio s (m/s):	2915		
G (MPa)	19539	,	
E (MPa)	45246		
ν (-)	0.16		
K (MPa)	22037		

	\rightarrow
1400	۰

Concessione Ministeriale Decreto n° 55126 del 12 luglio 2006 - Settori A, B e C

rev. data emiss. sperimentatore responsabile
0 30/08/2018 Angeloni Saccenti

Normativa di riferimento: ASTM D7012/10

N° certificato di prova:

026/13/13/1251

N° verbale di accettazione:

26/2018

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD

Sondaggio:

Provino: CS3: carotatrice sez.3 sin

Profondità prelievo [m]:

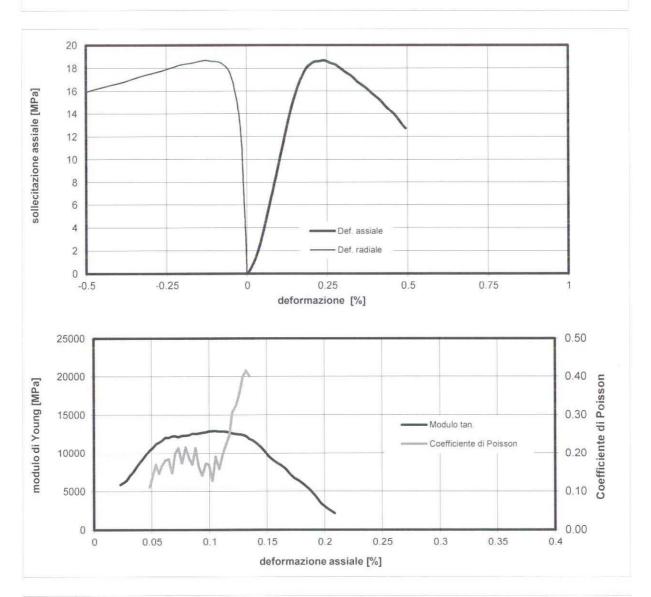
Prova: UXDC1

Data prova: 30/08/2018

Dati provino

Altezza (cm):

19.94


Peso di volume (KN/m³):

22.56

Diametro (cm): 9.75

Contenuto d'acqua (%)

22.00

_	Resistenza di picco σ_p [MPa]:	18.7
Itat	Modulo di Young secante al 50% di σ_p [MPa]:	9683
Risultati prova	Modulo di Young tangente al 50% di σ_p [MPa]:	12720
L.	Coefficiente di Poisson tangente al 50% di σ_p :	0.17
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

Tipologia Titolo Identificativo Foglio di 1 3

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

sperimentatore data emiss. responsabile Saccenti 30/08/2018 Angeloni 0

Normativa di riferimento: ASTM D7012/10

N° certificato di prova:

N° verbale di accettazione:

26/2018

Committente: SPEA ENGINEERING Cantiere: **GALLERIA BRUSCHETO NORD**

Sondaggio:

CS3: carotatrice sez.3 sin Provino:

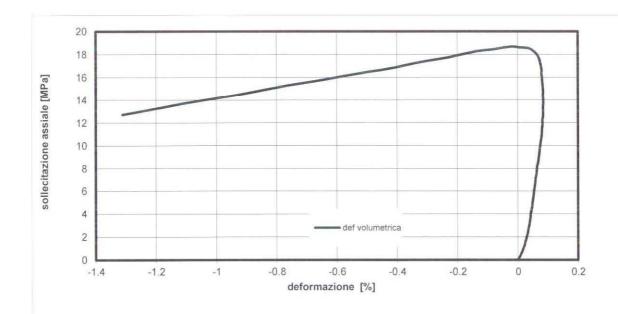
Profondità prelievo [m]:

UXDC1 Prova: Data prova: 30/08/2018

Dati provino

Altezza (cm):

19.94


Peso di volume (KN/m3):

22.56

Diametro (cm):

9.75

Contenuto d'acqua (%)

	Resistenza di picco σ_p [MPa]:	18.7
ltati va	Modulo di Young secante al 50% di σ_p [MPa]:	9683
Risultati prova	Modulo di Young tangente al 50% di σ_p [MPa]:	12720
œ	Coefficiente di Poisson tangente al 50% di σ_p :	0.17
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

Normativa di riferimento: ASTM D7012/10

SPEA ENGINEERING GALLERIA BRUSCHETO NORD

CS3: carotatrice sez.3 sin

Area: Sperimentatore: Direttore: Data emissione:

74.58553064 Angeloni Saccenti 30/08/2018

Committente:
Cantiere:
Sondaggio:
Provino:
Profondità (m):
Sigla prova:
Data prova:
Altezza ini (mm):
Dia ini (mm):
Peso di volume (KN/m³)
Umidita' iniziale (%) UXDC1 43342 199.39 97.45 22.56

ata emissioner	201.20		Umidita' iniziale		
Sollecitazione assiale [MPa]	E assiale (%)	€ radiale (%)	tempo [min]	E tangente [MPa]	Poisson tangente
0.00	0.000	0.000	0.0		
0.05	0.001	-0.001	0.1		
0.20	0.006	-0.001	0.2		
0.33	0.009	-0.001 -0.001	0.3		
0.61	0.014	-0.001	0.4		
0.77	0.017	-0.001	0.5		
0.94	0.020	-0.002	0.5		
1.14	0.023	-0.002	0.6	5867	
1.33	0.026	-0.002	0.7	6127 6405	
1.52	0.028	-0.002 -0.003	0.7	7063	
1.99	0.034	-0.003	0.9	7545	
2.25	0.037	-0.003	0.9	8185	
2.52	0.040	-0.003	1.0	8758	
2.80	0.043	-0.004	1.1	9257	
3.09	0.048	-0.004 -0.004	1.2	9840 10354	0.111
3.73	0.051	-0.005	1.3	10732	0.144
4.03	0.054	-0.006	1.3	11186	0.170
4.34	0.056	-0.006	1.4	11421	0.146
4.65	0.059	-0.006	1.5	11635	0.167
4.99 5.35	0.062	-0.007 -0.007	1.5	12008	0.181
5.70	0.068	-0.008	1.7	12206	0.147
6.04	0.070	-0.009	1.7	12224	0.201
6.38	0.073	-0.009	1.8	12106	0.213
6.76	0.076	-0.009	1.9	12268	0.173
7.15 7.52	0.079	-0.010 -0.010	1.9	12299 12362	0.216
7.89	0.085	-0.011	2.1	12543	0.169
8.22	0.088	-0.012	2.1	12511	0.214
8.58	0.091	-0.012	2.2	12573	0.166
8.97	0.094	-0.012	2.3	12686	0.141
9.36	0.097	-0.013	2.3	12720	0.172
9.73	0.100	-0.014	2.4	12852	0.169
10.46	0.105	-0.014	2.5	12903	0.190
10.87	0.108	-0.015	2.6	12833	0.158
11.24	0.111	-0.016	2.7	12840	0.195
11.62	0.114	-0.017	2.7	12817	0.223
11.97	0.117	-0.018	2.8	12719	0.246
12.31	0.120	-0.019 -0.019	2.9	12591 12506	0.307
13.08	0.126	-0.021	3.0	12459	0.355
13.43	0.129	-0.023	3.1	12391	0.398
13.77	0.132	-0.024	3.1	12253	0.416
14.11	0.135	-0.025	3.2	11859	0.401
14.46 14.83	0.138	-0.027 -0.029	3.3	11653 11266	
15.17	0.145	-0.031	3.4	10817	
15.47	0.148	-0.033	3.5	10262	
15.75	0.151	-0.035	3.5	9592	
16.05	0 155	-0.037	3.6	9128	
16.36 16.66	0.158	-0.040 -0.041	3.7	8734 8383	
16.92	0.166	-0.044	3.8	7947	
17.15	0.170	-0.047	3.9	7291	
17.39	0.174	-0.050	3.9	6722	
17.65	0.178	-0.053	4.0	6355	
17.88 18.06	0.183	-0.058 -0.063	4.1 4.1	5808 5207	
18.20	0.192	-0.068	4.2	4388	
18.30	0.197	-0.073	4.3	3418	
18.43	0.203	-0.078	4.3	2741	
18.52	0.209	-0.085	4.4	2144	
18.56	0.215	-0.093	4.5		
18.58 18.60	0.221	-0.102 -0.111	4.5		
18.65	0.234	-0.119	4.7		
18.67	0.241	-0.130	4.7		
18.61	0.248	-0.144	4.8		
18.59	0.250	-0.148	4.8		
18.50 18.41	0.257	-0.163 -0.177	4.9 5.0		
18.36	0.272	-0.192	5.0		
18.28	0.279	-0.208	5.1		
18.08	0.288	-0.230	5.2		
17.91	0.296	-0.248	5.2		
17.74	0.304	-0.267	5.3		
17.59 17.44	0.311	-0.287	5.4 5.4		
17.44	0.320	-0.310 -0.333	5.4		
17.03	0.338	-0.357	5.6		
16.81	0.346	-0.382	5.6		
16.63	0.354	-0.404	5.7		
16.48	0.362	-0.429	5.8		
16.31 16.10	0.371	-0.453 -0.479	5.8		
15.89	0.387	-0.505	6.0		
15.68	0.396	-0.532	6.0		
15.49	0.404	-0.560	6.1		
15.27	0.413	-0.590	6.2		
15.02	0.422	-0.621	6.2		
14.72 14.45	0.431	-0.655 -0.686	6.3 6.4		
14.45	0.449	-0.716	6.4		
	0.458	-0.749	6.5		
14.00					
13.68	0.467	-0.790	6.6		
	0.467 0.476 0.485	-0.790 -0.831 -0.869	6.6 6.6 6.7		

SPEA ENGINEERING

A1 INCISA VAL D'ARNO

Indagine GALLERIA BRUSCHETO NORD DD1: sovracarot. doorstopper sez.1 dx

RIPRESA FOTOGRAFICA

27/08/2018

Ricerca sperimentale, modellazione fisica, prove di laboratorio ed in sito

Data prova:

Concessione Ministeriale Decreto Nr. 55126 del 12/07/06 Settori A, B e C

Rev	data emiss.	eseguito da	elaborato da
0	09/07/2019	Sirtor	Sinol

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD
Campione: DD1: sovracarot. doostropper sez.1 dx
Profondità prelievo [m]:

Descrizione macroscopica del campione:

Calcestruzzo con aspetto conglomeratico costituito da inerti poligenici, prevalentemente carbonatici, di forma da subangolosa ad arrotondata con sfericità medio bassa, moderatamente classati ($L_{max} = 40$ mm). Distribuzione omogenea con addensamento medio.

Porosità bassa data da bolle millimetriche.

Matrice omogenea di aspetto arenaceo, colore nocciola chiaro con buona adesione agli inerti.

Descrizione post-rottura:

Formazione di fratture sub verticali e verticali, irregolari, che seguono il contorno degli inerti e solo raramente li interessano.

Pagina

di **1**

Via Pastrengo, 9 - 24068 Seriate (Bg) Tel. 035 303120 - Fax 035 290388 Email: ismsgeo@ismgeo.it

DETERMINAZIONE DEL PESO DI VOLUME SU PROVINI DI FORMA CILINDRICA

Concessione Ministeriale Decreto n°55126 del 12 luglio 2006 - Settori A, B e C

Sperimentatore: Ranzin		Committente:	SPEA ENGINEERING
Direttore: Saccenti/		Cantiere:	GALLERIA BRUSCHETO NORD
Data emissione: 11/06/2019		Sondaggio:	-
Rev.			DD1: sovracarot. doostropper sez.1 dx
		Profondità [m]:	
Normativa di riferimento: ISRM 1977	(Prova:	γ 1
N° certificato di prova:	18/9/12/6	Data:	29/08/2018
N° verbale di accettazione: 026/2	018		
Lunghezza provino (ı	nm)	121.40	
Diametro provino (mi	m)	59.29	
Massa provino (g)		772.21	
Area provino (cm²)		27.61	
Volume provino (cm ³)	335.17	
Peso di volume pro	ovino (Mg/m³)	2.30	
Note:			

Via Pastrengo, 9 - 24068 Seriate (Bg) tel. 035 303120 - fax 035 290388 Email: ismgeo@ismgeo.it

026/2018

MISURA VELOCITA' ONDE ELASTICHE

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

Sperimentatore: Saccenti
Direttore: Saccenti
Data emissione: 11/06/2019

Rev.

Normativa di riferimento: ASTM D2845/95

N° certificato di prova:

N° verbale di accettazione:

Cantiere: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD
Campione: DD1: sovracarot. doostropper
sez.1 dx

Profondità prova [m]:

Prova: V_p Data prova: 29/08/2018

Numero prova	1	
Profondità da (m):	-	
Profondità a (m):	-	
Diametro provino (cm):	5.929	
Altezza provino (cm):	12.14	
Massa provino (g):	772.2	
Peso di volume (KN/m³):	22.60	
Contenuto d'acqua (%):	-	
Tensione assiale (MPa):	-	
Tensione radiale (MPa):	-	
Tempo di propagazioneo onde P (μs)	26.4	
Tempo di propagazione onde S (μs)	43.2	
Velocità onde compressione p (m/s):	4598	
Velocità onde di taglio s (m/s):	2810	
G (MPa)	18194	
E (MPa)	43737	
v (-)	0.20	
K (MPa)	24459	

te:		
	Serraggio con piastre a molla con accoppiamento di 20 kPa	
	corraggio con plactic a mona con accoppiamento di 20 Kr a	

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

data emiss. sperimentatore responsabile Saccenti 29/08/2018 Angeloni

Normativa di riferimento: ASTM D7012/10

N° certificato di prova:

026/18/3/12/8

26/2018 N° verbale di accettazione:

Committente: SPEA ENGINEERING Cantiere: GALLERIA BRUSCHETO NORD

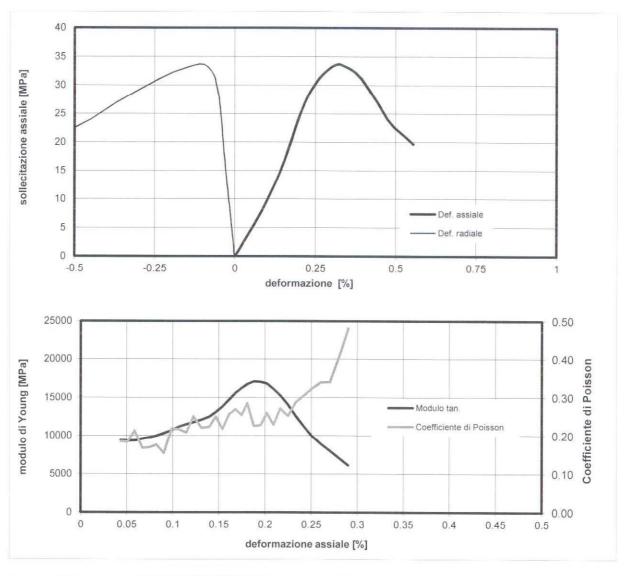
Sondaggio:

Provino: DD1: sovracarot. doostropper sez.1 dx

Profondità prelievo [m]:

Prova: UXDC1

Data prova: 29/08/2018


Dati provino

Altezza (cm): Diametro (cm): 12.14 5.93

Peso di volume (KN/m3):

22.60

Contenuto d'acqua (%)

	Resistenza di picco σ_p [MPa]:	33.7
Risultati prova	Modulo di Young secante al 50% di σ_p [MPa]:	10945
Risu	Modulo di Young tangente al 50% di σ_p [MPa]:	13810
u.	Coefficiente di Poisson tangente al 50% di σ_p :	0.22
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

Foglio

Concessione Ministeriale Decreto n° 55126 del 12 luglio 2006 - Settori A, B e C

rev.	data emiss.	sperimentatore	responsabile
0	29/08/2018	Angelonil	Sackenti

Normativa di riferimento: ASTM D7012/10

N° certificato di prova:

N° verbale di accettazione:

26/2018

Committente: SPEA ENGINEERING Cantiere: GALLERIA BRUSCHETO NORD

Sondaggio:

Provino: DD1: sovracarot. doostropper sez.1 dx

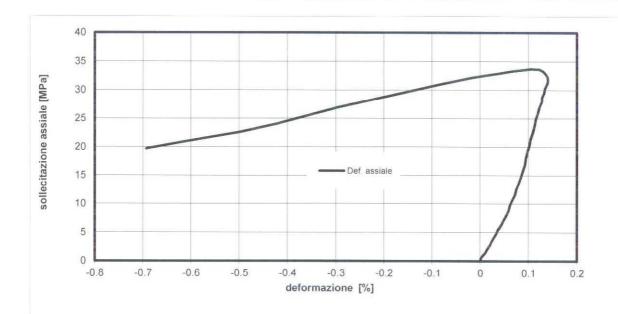
Profondità prelievo [m]:

Prova: UXDC1

Data prova: 29/08/2018

Dati provino

Altezza (cm):


12.14

Peso di volume (KN/m3):

22.60

Diametro (cm): 5.93

Contenuto d'acqua (%)

	Resistenza di picco σ_p [MPa]:	33.7
Risultati prova	Modulo di Young secante al 50% di σ_p [MPa]:	10945
Risu	Modulo di Young tangente al 50% di σ_p [MPa]:	13810
L	Coefficiente di Poisson tangente al 50% di σ_p :	0.22
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

Normativa di riferimento: ASTM D7012/10 Cantiere:

SPEA ENGINEERING GALLERIA BRUSCHETO NORD

Sondaggio:

.

Provino: Profondità (m): DD1: sovracarot. doostropper sez.1 dx

Area: Sperimentatore:

Data emissione:

Direttore:

27.6091984 Angeloni Saccenti 29/08/2018
 Sigla prova:
 UXDC1

 Data prova:
 43341

 Altezza ini (mm):
 121.4

 Dia ini (mm):
 59.29

 Peso di volume (KN/m³)
 22.60

Umidita' iniziale (%)

Sollecitazione assiale [MPa]	E assiale (%)	E radiale (%)	tempo [min]	E tangente [MPa]	Poisson tangente
0.00	0.000	0.000	0.0		
0.49	0.006	-0.002	0.2		
0.92	0.011	-0.003	0.3		
1.36	0.015	-0.003	0.3		
1.79	0.020	-0.003	0.4		
2.25	0.024	-0.004	0.5		
2.82	0.030	-0.005	0.6		
3.41	0.037	-0.006	0.7		
4.02	0.044	-0.008	0.7	9448	0.184
4.70	0.051	-0.009	0.8	9332	0.184
5.46	0.059	-0.011	0.9	9352	0.213
6.30	0.067	-0.011	1.0	9582	0.167
7.07	0.075	-0.013	1.1	9759	
7.84	0.082	-0.014	1.2	9963	0.169
8.72	0.090	-0.016	1.2	10296	0.176
9.67	0.099	-0.018	1.3	10699	0.154
10.62	0.107	-0.020	1.4		0.218
11.55	0.115	-0.020	1.5	11165	0.217
12.50	0.122	-0.021	1.6	11466	0.208
13.64	0.131	-0.024	1.7	11741	0.250
14.73	0.140			12076	0.220
15.74		-0.027	1.8	12451	0.223
	0.147	-0.029	1.8	13067	0.250
16.84 18.02	0.154 0.161	-0.031 -0.033	1.9	13796	0.217
			2.0	14702	0.256
19.16	0.168	-0.035	2.1	15579	0.269
20.28	0.175	-0.036	2.2	16214	0.254
21.35	0.181	-0.038	2.3	16724	0.285
22.58	0.188	-0.039	2.3	17081	0.225
23.79	0.195	-0.041	2.4	17033	0.228
24.86	0.202	-0.043	2.5	16822	0.259
25.86	0.209	-0.045	2.6	16122	0.229
26.93	0.216	-0.047	2.7	15285	0.271
27.96	0.225	-0.049	2.8	14079	0.252
28.76	0.233	-0.052	2.8	12616	0.287
29.53	0.241	-0.055	2.9	11321	0.304
30.33	0.250	-0.058	3.0	10009	0.323
31.13	0.260	-0.061	3.1	8948	0.340
31.76	0.270	-0.065	3.2	8034	0.340
32.28	0.280	-0.070	3.2	7083	0.406
32.77	0.290	-0.077	3.3	6124	0.481
33.28	0.302	-0.085	3.4		
33.62	0.314	-0.095	3.5		
33.70	0.325	-0.110	3.6		
33.35	0.340	-0.135	3.7		
32.89	0.357	-0.160	3.7		
32.23	0.375	-0.194	3.8		
31.13	0.394	-0.236	3.9		
29.21	0.417	-0.297	4.0		
26.95	0.444	-0.369	4.1		
24.03	0.474	-0.448	4.2		
22.59	0.496	-0.497	4.2		
21.67	0.514	-0.537	4.3		
20.76	0.534	-0.579	4.4		
19.67	0.555	-0.624	4.5		

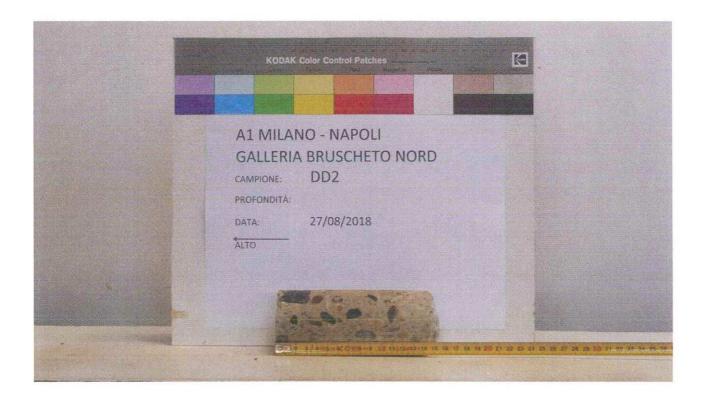
SPEA ENGINEERING

A1 INCISA VAL D'ARNO

Indagine GALLERIA BRUSCHETO NORD DD2: sovracarot. doorstopper sez.2 dx

RIPRESA FOTOGRAFICA

27/08/2018


Ricerca sperimentale, modellazione fisica, prove di laboratorio ed in sito

Data prova:

Concessione Ministeriale Decreto Nr. 55126 del 12/07/06 Settori A, B e C

Rev	data emiss.	eseguito da	elaborato da
0	09/07/2019	Sinol	Sictoli

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD
Campione: DD2: sovracarot. doostropper
sez.2 dx
Profondità prelievo [m]:

Descrizione macroscopica del campione:


Calcestruzzo con aspetto conglomeratico costituito da inerti poligenici, prevalentemente carbonatici, di forma da subangolosa ad arrotondata con sfericità medio bassa, moderatamente classati ($L_{max} = 32 \text{ mm}$). Distribuzione omogenea con addensamento medio.

Porosità medio bassa data da bolle millimetriche e qualche piccolo vespaio.

Matrice omogenea di aspetto arenaceo, colore nocciola chiaro o grigio chiaro con geneale buona adesione agli inerti.

Descrizione post-rottura:

Formazione di fratture sub verticali e verticali, irregolari, che seguono il contorno degli inerti.

Pagina

1 1

Via Pastrengo, 9 - 24068 Seriate (Bg) Tel. 035 303120 - Fax 035 290388 Email: ismsgeo@ismgeo.it

DETERMINAZIONE DEL PESO DI VOLUME SU PROVINI DI FORMA CILINDRICA

Concessione Ministeriale Decreto n°55126 del 12 luglio 2006 - Settori A, B e C

Sperimentatore:	Ranzim	Committente:	SPEA ENGINEERING
Direttore:	Saccenti	Cantiere:	GALLERIA BRUSCHETO NORD
Data emissione:	11/06/2019	Sondaggio:	
Rev.		Campione: DD2	: sovracarot. doostropper sez.2 dx
		Profondità [m]:	_
Normativa di riferin		Prova:	γ1
N° certificato di pre	ova: 026/18/4/1222	Data:	29/08/2018
N° verbale di acce	ttazione: 026/2018		
Lungh	ezza provino (mm)	120.78	
Diamet	tro provino (mm)	59.29	
Massa	provino (g)	759.28	
Area p	rovino (cm²)	27.61	
Volum	e provino (cm³)	333.46	
Peso	di volume provino (Mg/m³)	2.28	
Note:			
Note:			

Via Pastrengo, 9 - 24068 Seriate (Bg) tel. 035 303120 - fax 035 290388 Email: ismgeo@ismgeo.it

MISURA VELOCITA' ONDE ELASTICHE

Concessione Ministeriale Decreto n° 55126 del 12 luglio 2006 - Settori A, B e C

Sperimentatore: Saccenti

Direttore: Saccenti

Data emissione: 11/06/2019

Rev.

Normativa di riferimento: ASTM D2845/95

N° certificato di prova: N° verbale di accettazione:

026/2018

Committente:

SPEA ENGINEERING

Cantiere:

GALLERIA BRUSCHETO NORD

Campione:

DD2: sovracarot. doostropper

sez.2 dx

Profondità prova [m]:

Prova:

V,

Data prova:

29/08/2018

Numero prova	1	
Profondità da (m):	-	
Profondità a (m):	-	
Diametro provino (cm):	5.929	
Altezza provino (cm):	12.08	
Massa provino (g):	759.3	
Peso di volume (KN/m³):	22.34	
Contenuto d'acqua (%):	-	
Tensione assiale (MPa):	-	
Tensione radiale (MPa):	-	
Tempo di propagazioneo onde P (μs)	24.8	
Tempo di propagazione onde S (μs)	39.4	
Velocità onde compressione p (m/s):	4870	
Velocità onde di taglio s (m/s):	3065	
G (MPa)	21397	
E (MPa)	50152	
v (-)	0.17	
K (MPa)	25477	

N I	-	1	~	
IN	0	ι	е	

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

data emiss. sperime/statore responsabile Angeloni Saccenti 29/08/2018

Normativa di riferimento: ASTM D7012/10 N° certificato di prova:

N° verbale di accettazione:

Committente: SPEA ENGINEERING Cantiere: **GALLERIA BRUSCHETO NORD**

Sondaggio:

Provino: DD2: sovracarot. doostropper sez.2 dx

Profondità prelievo [m]:

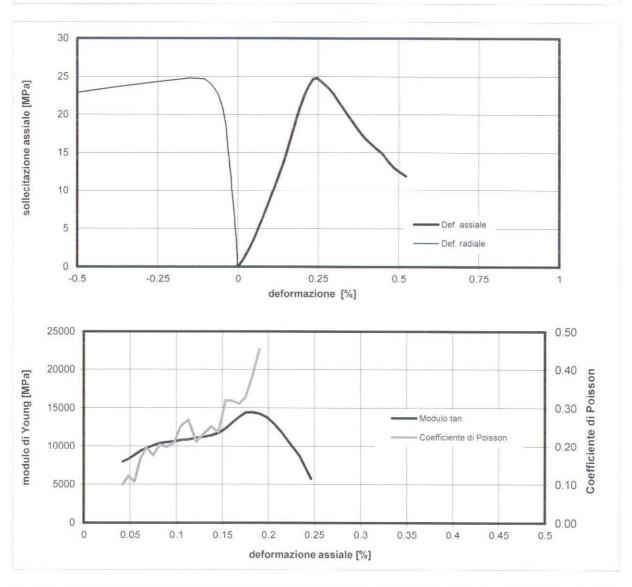
Prova: UXDC1

Data prova: 29/08/2018

Dati provino

Altezza (cm):

12.08


26/2018

Peso di volume (KN/m3):

22.34

5.93 Diametro (cm):

Contenuto d'acqua (%)

	Resistenza di picco σ_p [MPa]:	24.8
Risultati prova	Modulo di Young secante al 50% di σ_p [MPa]:	9629
Risu	Modulo di Young tangente al 50% di σ_p [MPa]:	11260
u.	Coefficiente di Poisson tangente al 50% di σ_p :	0.25
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

1

Concessione Ministeriale Decreto n° 55126 del 12 luglio 2006 - Settori A, B e C

rev. data emiss.	sperimentatore	responsabile
0 29/08/2018	Angeloni	Saccenti

Normativa di riferimento: ASTM D7012/10

N° certificato di prova:

N° verbale di accettazione:

26/2018

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD

Sondaggio:

Provino: DD2: sovracarot. do

DD2: sovracarot. doostropper sez.2 dx

Profondità prelievo [m]:

Prova:

UXDC1

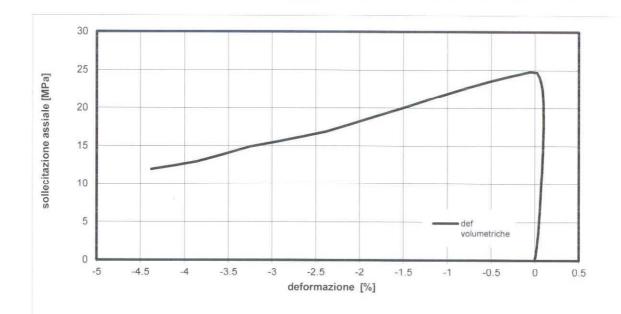
Data prova: 29/08/2018

Dati provino

Altezza (cm):

12.08

Peso di volume (KN/m³):


22.34

Diametro (cm):

5.93

Contenuto d'acqua (%)

.....

	Resistenza di picco σ_p [MPa]:	24.8
ıltat	Modulo di Young secante al 50% di σ_p [MPa]:	9629
Risultati prova	Modulo di Young tangente al 50% di σ_p [MPa]:	11260
LL.	Coefficiente di Poisson tangente al 50% di σ_p :	0.25
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

Foglio 2

Normativa di riferimento: ASTM D7012/10

Committente:

SPEA ENGINEERING

Cantiere:

Sondaggio:

GALLERIA BRUSCHETO NORD

Provino:

Profondità (m):

ovracarot. doostropper sez.2 dx

Area: Sperimentatore:

Data emissione:

Direttore:

27.6091984 Angeloni Saccenti

29/08/2018

Sigla prova: Data prova: Altezza ini (mm): Dia ini (mm):

UXDC1 43341 120.78 59.29

Peso di volume (KN/m³) Umidita' iniziale (%)

22.34 **#VALORE!**

		Simulta iniziale (78)		#VALORE	
Sollecitazione assiale [MPa]	€ assiale (%)	E radiale (%)	tempo [min]	E tangente [MPa]	Poisson tangente
0.00	0.000	0.000	0.0		
0.29	0.005	-0.003	0.2		
0.52	0.009	-0.002	0.2		
0.87	0.014	-0.002	0.3		
1.23	0.019	-0.003	0.4		
1.62	0.025	-0.003	0.5		
2.06	0.030	-0.004	0.6		
2.50	0.036	-0.004	0.7		
3.01	0.042	-0.005	0.7	7925	0.100
3.56	0.048	-0.006	0.8	8296	0.121
4.18	0.055	-0.006	0.9	8791	0.107
4.84	0.061	-0.009	1.0	9326	0.166
5.54	0.068	-0.010	1.1	9780	0.196
6.26	0.075	-0.010	1.2	10110	0.175
7.01	0.082	-0.012	1.2	10400	0.205
7.81	0.089	-0.014	1.3	10539	
8.67	0.097	-0.014	1.4		0.198
9.51	0.105	-0.018	1.5	10635 10829	0.209
10.41	0.113	-0.020	1.6		0.253
11.36	0.121	-0.020	1.7	10895	0.269
12.30	0.121			11105	0.212
13.24		-0.024 -0.026	1.7	11239	0.233
14.23	0.138		1.8	11405	0.251
	0.146	-0.028	1.9	11752	0.238
15.30	0.153	-0.031	2.0	12308	0.319
16.37	0.161	-0.034	2.1	13079	0.319
17.44	0.168	-0.036	2.2	13797	0.311
18.50	0.175	-0.038	2.3	14389	0.328
19.53	0.183	-0.042	2.3	14437	0.384
20.57	0.190	-0.047	2.4	14234	0.454
21.58	0.198	-0.053	2.5	13788	
22.48	0.206	-0.060	2.6	12978	
23.32	0.215	-0.071	2.7	11810	
24.07	0.224	-0.085	2.7	10263	
24.70	0.234	-0.106	2.8	8664	
24.81	0.246	-0.151	2.9	5744	
24.23	0.263	-0.269	3.0		
23.59	0.281	-0.391	3.1		
22.69	0.299	-0.539	3.2		
21.42	0.318	-0.725	3.2		
20.16	0.338	-0.898	3.3		
19.05	0.357	-1.065	3.4		
17.83	0.377	-1.244	3.5		
16.87	0.396	-1.392	3.6		
16.19	0.413	-1.538	3.7		
15.50	0.431	-1.697	3.7		
14.88	0.449	-1.854	3.8		
13.76	0.469	-2.031	3.9		
12.93	0.487	-2.174	4.0		
12.39	0.504	-2.311	4.1		
11.92	0.522	-2.449	4.2		

SPEA ENGINEERING

A1 INCISA VAL D'ARNO

Indagine GALLERIA BRUSCHETO NORD DD3: sovracarot. doorstopper sez.3 dx

RIPRESA FOTOGRAFICA

Ricerca sperimentale, modellazione fisica, prove di laboratorio ed in sito

Concessione Ministeriale Decreto Nr. 55126 del 12/07/06 Settori A, B e C

Rev	data emiss.	eseguito da	elaborato da
0	09/07/2019	Stredi	Stoli

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD
DD3: sovracarot. doostropper
sez.3 dx

Profondità prelievo [m]:
Data prova: 28/08/2018

Descrizione macroscopica del campione:

Calcestruzzo con aspetto conglomeratico costituito da inerti poligenici, prevalentemente carbonatici, di forma da subangolosa ad arrotondata con sfericità medio bassa, moderatamente classati ($L_{max} = 45 \text{ mm}$). Distribuzione omogenea con addensamento medio.

Porosità medio bassa data da bolle millimetriche.

Matrice omogenea di aspetto arenaceo, colore nocciola chiaro con generale buona adesione agli inerti.

Descrizione post-rottura:

Formazione di fratture sub verticali e verticali, irregolari, che seguono il bordo degli inerti. Rari distacchi di inerti.

Pagina

1 1

Via Pastrengo, 9 - 24068 Seriate (Bg) Tel. 035 303120 - Fax 035 290388 Email: ismsgeo@ismgeo.it

DETERMINAZIONE DEL PESO DI VOLUME SU PROVINI DI FORMA CILINDRICA

Concessione Ministeriale Decreto n°55126 del 12 luglio 2006 - Settori A, B e C

Sperimentatore:	Ranzini	Committente:	SPEA ENGINEERING	
Direttore:	Saccenti	Cantiere:	GALLERIA BRUSCHETO NORD	
Data emissione:	11/06/2019	Sondaggio:	-	
Rev.		Campione: Profondità [m]:	DD3: sovracarot. doostropper sez.3 dx	
Normativa di riferi	mento: ISRM 1977	Prova:	γ1	
N° certificato di pr	1 -1 1 -1 4	Data:	29/08/2018	
N° verbale di acce				
Lungh	ezza provino (mm)	121.52	1	
Lungn	ezza provino (mm)	121.02		
Diame	tro provino (mm)	60.99		
Massa	provino (g)	809.90		
Area p	rovino (cm²)	29.22		
Volum	e provino (cm³)	355.02		
Peso	di volume provino (Mg/m³)	2.28		
Note:				

Via Pastrengo, 9 - 24068 Seriate (Bg) tel. 035 303120 - fax 035 290388 Email: ismgeo@ismgeo.it

026/18/4/1219

MISURA VELOCITA' ONDE ELASTICHE

Concessione Ministeriale Decreto n° 55126 del 12 luglio 2006 - Settori A, B e C

Sperimentatore: Saccenti
Direttore: Saccenti
Data emissione: 11/06/2019

Rev.

Normativa di riferimento: ASTM D2845/95

N° certificato di prova:

N° verbale di accettazione: 026/2018

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD
Campione: DD3: sovracarot. doostropper

sez.3 dx

Profondità prova [m]:

Prova: V_p Data prova: 29/08/2018

Numero prova	1	
Profondità da (m):	₩.	
Profondità a (m):	-	
Diametro provino (cm):	6.099	
Altezza provino (cm):	12.15	
Massa provino (g):	809.9	
Peso di volume (KN/m³):	22.38	
Contenuto d'acqua (%):	-	
Tensione assiale (MPa):	-	
Tensione radiale (MPa):	-	
Tempo di propagazioneo onde P (μs)	24.8	
Tempo di propagazione onde S (μs)	38.2	
Velocità onde compressione p (m/s):	4900	
Velocità onde di taglio s (m/s):	3181	
G (MPa)	23086	1
E (MPa)	52438	
ν (-)	0.14	
K (MPa)	23992	

	te

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

sperimentatore responsabile data emiss. Angelon Saccenti 29/08/2018

Normativa di riferimento: ASTM D7012/10

N° certificato di prova:

N° verbale di accettazione:

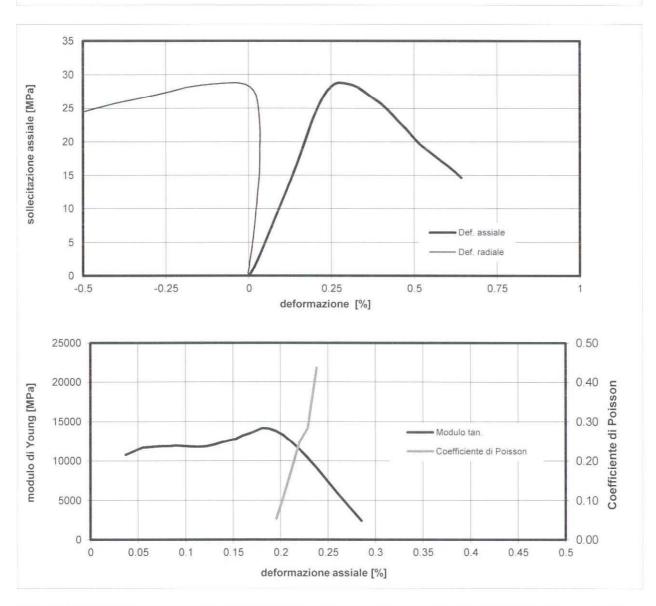
Committente: SPEA ENGINEERING Cantiere: GALLERIA BRUSCHETO NORD

Sondaggio:

Provino: DD3: sovracarot. doostropper sez.3 dx

Profondità prelievo [m]:

Prova: UXDC1


Data prova: 29/08/2018

Dati provino

Altezza (cm): Diametro (cm): 12.15 6.10 Peso di volume (KN/m³):

22.38

Contenuto d'acqua (%)

_	Resistenza di picco σ_p [MPa]:	28.8
Itati	Modulo di Young secante al 50% di σ_p [MPa]:	11262.4
Risultati prova	Modulo di Young tangente al 50% di σ_p [MPa]:	12020
LE.	Coefficiente di Poisson tangente al 50% di σ_p :	-
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

sperimentatore responsabile rev. data emiss. Angeloni Q Sacdenti 29/08/2018

Normativa di riferimento: ASTM D7012/10

N° certificato di prova:

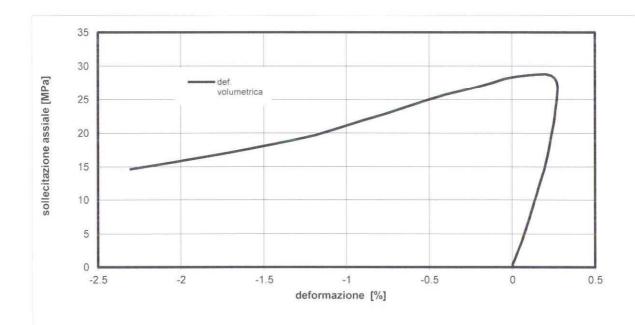
26/2018 N° verbale di accettazione:

Committente: SPEA ENGINEERING Cantiere: **GALLERIA BRUSCHETO NORD**

Sondaggio:

Provino: DD3: sovracarot. doostropper sez.3 dx

Profondità prelievo [m]:


Prova: UXDC1

Data prova: 29/08/2018

Dati provino

12.15 Altezza (cm): Diametro (cm): 6.10

Peso di volume (KN/m3): 22.38 Contenuto d'acqua (%)

	Resistenza di picco σ_p [MPa]:	28.8
ltati va	Modulo di Young secante al 50% di σ_p [MPa]:	11262.4
Risultati prova	Modulo di Young tangente al 50% di σ_p [MPa]:	12020
IL.	Coefficiente di Poisson tangente al 50% di σ_p :	-
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

Titolo Identificativo Tipologia Foglio

Committente: SPEA ENGINEERING Normativa di riferimento: ASTM D7012/10 Cantiere: GALLERIA BRUSCHETO NORD Sondaggio:

Provino: DD3: sovracarot. doostropper sez.3 dx

Profondità (m): UXDC1

Sigla prova: Data prova: 29.21515291 Angeloni Saccenti Area: 43341 Sperimentatore: Altezza ini (mm): 121.52 Direttore: Dia ini (mm): 60.99 29/08/2018 Data emissione: Peso di volume (KN/m³) 22.38

	Umidita'	iniziale	(%

ata emissione.	29/06/2010		Umidita' iniziale	lita' iniziale (%)	
Sollecitazione assiale [MPa]	€ assiale (%)	€ radiale (%)	tempo [min]	E tangente [MPa]	Poisson tangente
0.00	0.000	0.000	0.0		
0.03	0.000	0.001	0.1		
0.48	0.007	-0.003	0.2		
0.91	0.012	-0.001	0.2		
1.41	0.017	0.001	0.3		
1.90	0.021	0.002	0.4		
2.38	0.026	0.003	0.5		
2.98	0.032	0.005	0.6		
3.62	0.037	0.007	0.7	10769	
4.27	0.043	0.010	0.7	11062	
4.97	0.049	0.011	0.8	11377	
5.70	0.055	0.013	0.9	11662	
6.47	0.062	0.015	1.0	11720	
7.28	0.068	0.017	1.1	11805	
8.11	0.075	0.019	1.2	11854	
8.93	0.082	0.020	1.2	11859	
9.81	0.089	0.022	1.3	11937	
10.74	0.098	0.024	1.4	11871	
11.63	0.105	0.025	1.5	11808	
12.56	0.113	0.027	1.6	11795	
13.54	0.121	0.029	1.7	11834	
14.53	0.129	0.031	1.7	12043	
15.52	0.137	0.033	1.8	12322	
16.50	0.144	0.033	1.9	12553	
17.53	0.152	0.033	2.0	12776	
18.58	0.160	0.034	2.1	13208	
19.55	0.167	0.034	2.2	13474	
20.50	0.173	0.034	2.2	13797	
21.53	0.180	0.035	2.3	14170	
22.56	0.188	0.034	2.4	14102	
23.53	0.195	0.032	2.5	13776	0.054
24.44	0.203	0.031	2.6	13278	0.111
25.36	0.211	0.029	2.7	12466	0.176
26.23	0.220	0.026	2.8	11509	0.247
26.98	0.229	0.023	2.8	10384	0.284
27.63	0.238	0.016	2.9	9124	0.436
28.18	0.248	0.005	3.0	7666	
28.61	0.259	-0.011	3.1	6093	
28.83	0.271	-0.035	3.2	4333	
28.78	0.285	-0.067	3.2	2435	
28.65	0.300	-0.103	3.3		
28.47	0.315	-0.144	3.4		
28.10 27.56	0.331 0.347	-0.191	3.5		
		-0.232	3.6		
26.94 26.37	0.364 0.381	-0.284 -0.340	3.7 3.7		
25.77	0.399	-0.398			
24.91	0.417		3.8		
23.94	0.436	-0.465	3.9		
22.87	0.456	-0.535 -0.611	4.0		
21.94	0.476	-0.686	4.1 4.2		
20.78	0.496	-0.770	4.2		
19.68	0.496	-0.770	4.2		
18.99	0.533	-0.926	4.3		
18.31	0.553	-1.002	4.5		
17.60	0.569	-1.002	4.6		
16.93	0.587	-1.167			
16.29	0.604	-1.157	4.7 4.7		
15.52	0.623	-1.253 -1.352			
151.516	0.020	-1.352	4.8		
14.66	0.642	-1.473	4.9		

SPEA ENGINEERING

A1 INCISA VAL D'ARNO

Indagine GALLERIA BRUSCHETO NORD DS1: sovracarot. doorstopper sez.1 sin

RIPRESA FOTOGRAFICA

Ricerca sperimentale, modellazione fisica, prove di laboratorio ed in sito

Concessione Ministeriale Decreto Nr. 55126 del 12/07/06 Settori A, B e C

Rev	data emiss.	eseguito da	elaborato da
0	09/07/2019	Sirton	Sirtofi

SPEA ENGINEERING Committente: GALLERIA BRUSCHETO NORD Cantiere: Campione:

DS1: sovracarot. doostropper sez.1 sin

Profondità prelievo [m]:

28/08/2018 Data prova:

Descrizione macroscopica del campione:

Calcestruzzo con aspetto conglomeratico costituito da inerti poligenici, prevalentemente carbonatici, di forma da subangolosa ad arrotondata con sfericità medio bassa, moderatamente classati (L_{max} = 35 mm). Distribuzione omogenea con addensamento medio.

Porosità medio bassa data da bolle millimetriche e piccoli vespai; la superficie di alcuni vuoti si presenta parzialmente ricoperta da patine biancastre.

Matrice omogenea di aspetto arenaceo, colore nocciola chiaro con generale buona adesione agli inerti.

Descrizione post-rottura:

Formazione di fratture sub verticali e verticali, irregolari, che seguono il bordo degli inerti raramente li attraversa.

Pagina

1

Via Pastrengo, 9 - 24068 Seriate (Bg) Tel. 035 303120 - Fax 035 290388 Email: ismsgeo@ismgeo.it

DETERMINAZIONE DEL PESO DI VOLUME SU PROVINI DI FORMA CILINDRICA

Concessione Ministeriale Decreto n°55126 del 12 luglio 2006 - Settori A, B e C

Sperimenta	tore: Ranzini		Committente:	SPEA ENGINEERING
Direttore:	Saccenti		Cantiere:	GALLERIA BRUSCHETO NORD
Data emiss	ione: 11/06/2019		Sondaggio:	-
Rev.			Campione: D	S1: sovracarot. doostropper sez.1 sin
			Profondità [m]:	-
Normativa	di riferimento: ISRM 1977		Prova:	γ 1
N° certifica	to di prova: \$26/(8/5	11218	Data:	29/08/2018
N° verbale	di accettazione: 026/2018	10000		
Li	unghezza provino (mm)	119.72	
	g p. o v (,	100000000000000000000000000000000000000	
Di	ametro provino (mm)		60.67	
N/I	assa provino (g)		802.40	
IVI	assa provino (g)		002.40	1
				_
A	rea provino (cm²)		28.91	
V	aluma muayina (am²)		246 40	1
V	olume provino (cm³)		346.10	
P	eso di volume provi	$no(Ma/m^3)$	2.32	
,	eso ai voiaine provi	io (mg/m)	ma i V ma	
Note:				

Via Pastrengo, 9 - 24068 Seriate (Bg) tel. 035 303120 - fax 035 290388 Email: ismgeo@ismgeo.it

MISURA VELOCITA' ONDE **ELASTICHE**

Concessione Ministeriale Decreto n° 55126 del 12 luglio 2006 - Settori A, B e C

Sperimentatore: Direttore: Saccenti 11/06/2019 Data emissione:

Rev.

Normativa di riferimento: ASTM D2845/95

N° certificato di prova: N° verbale di accettazione:

026/18/1/1220 026/2018

Committente: SPEA ENGINEERING Cantiere: GALLERIA BRUSCHETO NORD Campione: DS1: sovracarot. doostropper sez.1 sin

Profondità prova [m]:

Prova: Data prova: 29/08/2018

Numero prova	1	
Profondità da (m):	-	
Profondità a (m):	-	
Diametro provino (cm):	6.067	
Altezza provino (cm):	11.97	
Massa provino (g):	802.4	
Peso di volume (KN/m³):	22.74	
Contenuto d'acqua (%):	-	
Tensione assiale (MPa):	-	
Tensione radiale (MPa):	-	
Tempo di propagazioneo onde P (μs)	24.4	
Tempo di propagazione onde S (μs)	38.0	
Velocità onde compressione p (m/s):	4907	
Velocità onde di taglio s (m/s):	3151	
G (MPa)	23012	
E (MPa)	52892	
ν (-)	0.15	
K (MPa)	25131	

Note:	
	Serraggio con piastre a molla con accoppiamento di 20 kPa

Concessione Ministeriale Decreto n° 55126 del 12 luglio 2006 - Settori A, B e C

rev. data emiss. sperimentatore responsabile
0 29/08/2018 Angelonil Sagranti

Normativa di riferimento: ASTM D7012/10

N° certificato di prova:

N° verbale di accettazione:

012/10

Cantiere: GALLERIA BRUSCHETO NORD
Sondaggio:

Committente:

Provino: DS1: sovracarot. doostropper sez.1 sin

SPEA ENGINEERING

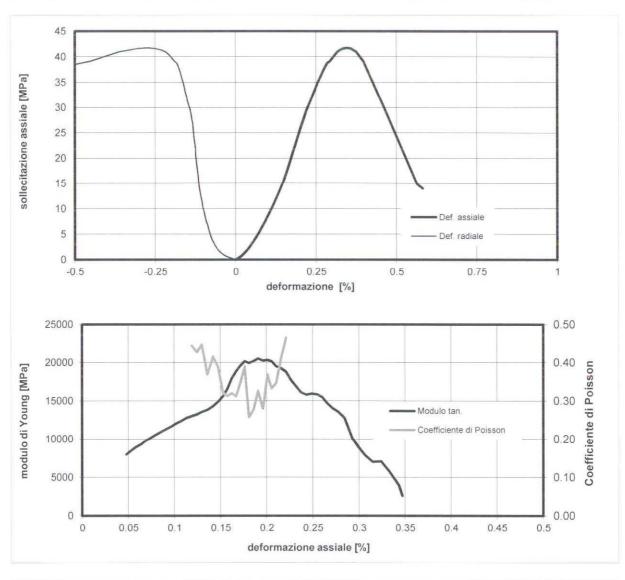
Profondità prelievo [m]:

 Prova:
 UXDC1

 Data prova:
 29/08/2018

Dati provino

Altezza (cm): Diametro (cm): 11.97 6.07


26/2018

Peso di volume (KN/m³):

22.74

Contenuto d'acqua (%)

.....

	Resistenza di picco σ_p [MPa]:	41.7
Itati	Modulo di Young secante al 50% di σ_p [MPa]:	12019
Risultati prova	Modulo di Young tangente al 50% di σ_p [MPa]:	20130
LE.	Coefficiente di Poisson tangente al 50% di σ_p :	0.26
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

responsabile data emiss. sperimentatore Angeloni 29/08/2018

Normativa di riferimento: ASTM D7012/10

N° certificato di prova:

N° verbale di accettazione:

26/2018

Committente: SPEA ENGINEERING Cantiere: **GALLERIA BRUSCHETO NORD**

Sondaggio:

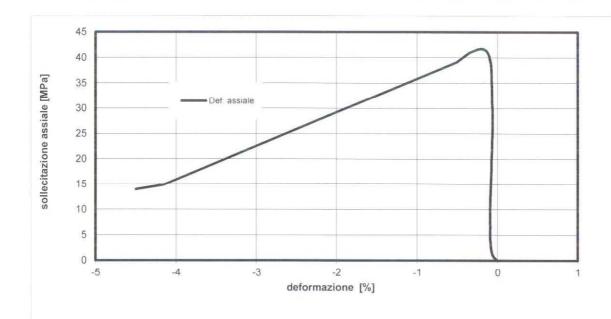
Provino: DS1: sovracarot. doostropper sez.1 sin

Profondità prelievo [m]:

Prova: UXDC1

Data prova: 29/08/2018

Dati provino


Altezza (cm):

11.97

Peso di volume (KN/m³):

22.74

Diametro (cm): 6.07 Contenuto d'acqua (%)

Risultati prova	Resistenza di picco σ_p [MPa]:	41.7
	Modulo di Young secante al 50% di σ_p [MPa]:	12019
	Modulo di Young tangente al 50% di σ_p [MPa]:	20130
	Coefficiente di Poisson tangente al 50% di σ_p :	0.26
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

Committente: SPEA ENGINEERING Normativa di riferimento: ASTM D7012/10 Cantiere: GALLERIA BRUSCHETO NORD

Sondaggio:

Provino: DS1: sovracarot. doostropper sez.1 sin Profondità (m):

UXDC1 43341 119.72 60.67 Sigla prova: 28.90938/726 Angeloni Saccenti 29/08/2018 Data prova:
Data prova:
Altezza ini (mm):
Dia ini (mm):
Peso di volume (KN/m³)
Umidita' iniziale (%) Area: Sperimentatore: Direttore: Data emissione: 22.74

	E assiale (%)	E radiale (%)	tempo [min]	[MPa]	Poisson tangente
0.00	0.000	0.000	0.0		
0.00	0.000	0.000	0.1		
0.33	0.008	-0.017	0.1		
0.55	0.014	-0.026	0.2		
0.79	0.018	-0.034	0.3		
1.07	0.023	-0.041	0.3		
1.41	0.028	-0.047	0.4		
1.77			0.5		
	0.033	-0.053			
2.13	0.038	-0.057	0.5		
2.51	0.043	-0.061	0.6	2000	
2.95	0.048	-0.065	0.7	7968	
3.43	0.053	-0.069	0.7	8485	
3.93	0.058	-0.074	0.8	8946	
4.45	0.064	-0.077	0.9	9289	
4.98	0.069	-0.080	0.9	9753	
5.54	0.074	-0.082	1.0	10138	
6.19	0.080	-0.085	1.1	10552	
6.85	0.085	-0.087	1.1	10939	
7.47	0.091	-0.091	1.2	11283	
8.10	0.096	-0.093	1.3	11599	
8.77	0.101	-0.096	1.3	12001	
9.53	0.107	-0.099	1.4	12363	
10.30	0.113	-0.102	1.5	12741	
11.09	0.119	-0.104	1.5	13010	0.445
11.85	0.124	-0.106	1.6	13224	0.428
12.59	0.130	-0.109	1.7	13557	0.447
13.47	0.136	-0.111	1.7	13813	
14.38	0.142	-0.113	1.8	14300	0.369
15.27	0.147				0.415
16.17		-0.115	1.9	14885	0.388
17.04	0.153	-0.116	1.9	15617	0.321
	0.157	-0.118	2.0	16567	0.313
17.97	0.162	-0.120	2.1	17905	0.319
18.93	0.167	-0.121	2.1	18854	0.312
19.86	0.171	-0.123	2.2	19570	0.348
20.81	0.176	-0.125	2.3	20140	0.389
21.74	0.181	-0.125	2.3	19922	0.258
22.71	0.186	-0.126	2.4	20167	0.277
23.78	0.191	-0.129	2.5	20507	0.326
24.83	0.196	-0.130	2.5	20227	0.280
25.78	0.201	-0.132	2.6	20321	0.368
26.70	0.205	-0.133	2.7	20154	0.332
27.62	0.210	-0.136	2.7	19493	0.346
28.60	0.216	-0.138	2.8	19255	0.411
29.60	0.221	-0.141	2.9	18776	0.466
30.46	0.227	-0.146	2.9	17677	3.400
31.29	0.232	-0.150	3.0	16886	
32.12	0.237	-0.152	3.1	16095	
33.05	0.243	-0.156	3.1	15792	
34.00	0.249	-0.159	3.2		
34.87	0.255	-0.163		15944	
			3.3	15821	
35.65	0.260	-0.166	3.3	15492	
36.39	0.266	-0.169	3.4	14683	
37.17	0.271	-0.173	3.5	14021	
37.99	0.278	-0.177	3.5	13543	
38.74	0.284	-0.182	3.6	12781	
39.13	0.293	-0.189	3.7	10084	
39.67	0.300	-0.197	3.7	8912	
40.27	0.307	-0.205	3.8	7845	
40.88	0.315	-0.216	3.9	7007	
41.33	0.324	-0.231	3.9	7073	
41.59	0.333	-0.249	4.0	5665	
41.71	0.343	-0.270	4.1	3946	
41.71	0.347	-0.278	4.1	2587	
41.60	0.359	-0.306	4.2		
40.96	0.375	-0.363	4.2		
39.09	0.373	-0.454	4.3		
30.27	0.460		4.3		
		-1.153			
14.86 13.97	0.564 0.582	-2.361 -2.541	4.4 4.5		

SPEA ENGINEERING

A1 INCISA VAL D'ARNO

Indagine GALLERIA BRUSCHETO NORD DS2: sovracarot. doorstopper sez.2 sin

RIPRESA FOTOGRAFICA

Ricerca sperimentale, modellazione fisica, prove di laboratorio ed in sito

Concessione Ministeriale Decreto Nr. 55126 del 12/07/06 Settori A, B e C

Rev	data emiss.	eseguito da	elaborato da
0	09/07/2019	Sirtali	Sirtoli

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD
Campione: DS2: sovracarot. doostropper
sez.2 sin
Profondità prelievo [m]:
Data prova: 28/08/2018

Descrizione macroscopica del campione:


Calcestruzzo con aspetto conglomeratico costituito da inerti poligenici, prevalentemente carbonatici, di forma da subangolosa ad arrotondata con sfericità bassa, moderatamente classati ($L_{max} = 45 \text{ mm}$). Distribuzione omogenea con addensamento medio

Porosità medio bassa data da qualche bolla millimetrica.

Matrice omogenea di aspetto arenaceo, colore grigio chiaro con generale buona adesione agli inerti.

Descrizione post-rottura:

Formazione di fratture sub verticali e verticali, irregolari, che seguono il bordo degli inerti raramente li attraversa. Rari distacchi di inerti superficiali.

Pagina

1 1

Via Pastrengo, 9 - 24068 Seriate (Bg) Tel. 035 303120 - Fax 035 290388 Email: ismsgeo@ismgeo.it

DETERMINAZIONE DEL PESO DI VOLUME SU PROVINI DI FORMA CILINDRICA

Concessione Ministeriale Decreto n°55126 del 12 luglio 2006 - Settori A, B e C

		MAR					
Sperimen		Ranzini		Committente:	SPEA ENGINEERING		
Direttore: Data emissione:		Saccenti 11/06/2019		Cantiere:	GALLERIA BRUSCHETO NORD		
				Sondaggio:	-		
Rev.				Campione: DS2: sovracarot. doostroppe			
				Profondità [m]:	-		
		nento: ISRM 1977	1225	Prova:			
N° certific		O - Ct - C	1669	Data:	29/08/2018		
N° verbale	e di accet	tazione: 026/2018					
L	.unghe	zza provino (mm)		120.51			
Diametro provino (mm)				59.31			
N	/lassa	provino (g)		781.60			
A	∖rea pr	ovino (cm²)		27.63			
٧	/olume	provino (cm³)		332.94			
F	Peso d	li volume provino	(Mg/m ³)	2.35			
Note:							

Via Pastrengo, 9 - 24068 Seriate (Bg) tel. 035 303120 - fax 035 290388 Email: ismgeo@ismgeo.it

MISURA VELOCITA' ONDE **ELASTICHE**

Concessione Ministeriale Decreto n° 55126 del 12 luglio 2006 - Settori A, B e C

Sperimentatore: Direttore: Saccenti 11/06/2019 Data emissione:

Rev.

Normativa di riferimento: ASTM D2845/95 066 [184] 226

N° certificato di prova:

026/2018 N° verbale di accettazione:

Committente: SPEA ENGINEERING Cantiere: GALLERIA BRUSCHETO NORD Campione: DS2: sovracarot. doostropper sez.2 sin

Profondità prova [m]:

Prova:

Data prova: 29/08/2018

Numero prova	1	
Profondità da (m):	-	
Profondità a (m):	-	
Diametro provino (cm):	5.931	
Altezza provino (cm):	12.05	
Massa provino (g):	781.6	
Peso di volume (KN/m³):	23.03	
Contenuto d'acqua (%):	-	
Tensione assiale (MPa):	-	
Tensione radiale (MPa):	-	
Tempo di propagazioneo onde P (μs)	24.0	
Tempo di propagazione onde S (μs)	38.0	
Velocità onde compressione p (m/s):	5021	
Velocità onde di taglio s (m/s):	3171	
G (MPa)	23610	1
E (MPa)	55162	
ν (-)	0.17	
K (MPa)	27709	

Note:	
	Serraggio con piastre a molla con accoppiamento di 20 kPa

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

sperimentatore responsabile data emiss. Angelonil Saccenti 29/08/2018

Normativa di riferimento: ASTM D7012/10 066/18/13/17/17

N° certificato di prova:

N° verbale di accettazione:

Committente: SPEA ENGINEERING **GALLERIA BRUSCHETO NORD** Cantiere: Sondaggio:

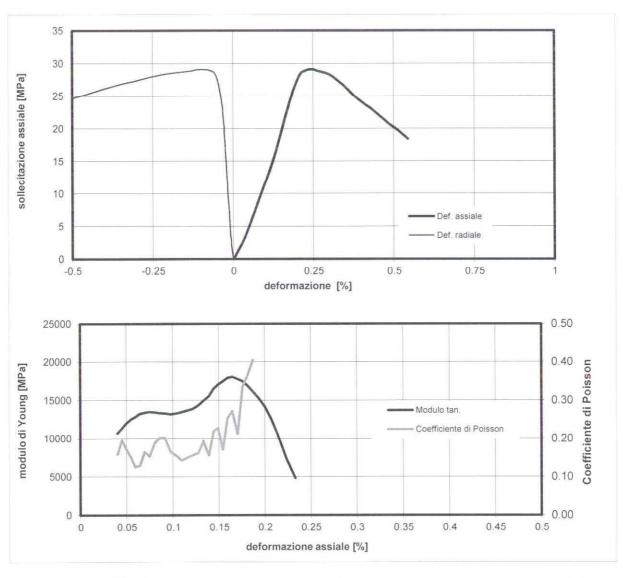
Provino: DS2: sovracarot. doostropper sez.2 sin

Profondità prelievo [m]:

Prova: UXDC1

29/08/2018 Data prova:

Dati provino


Altezza (cm): Diametro (cm): 12.05 5.93

26/2018

Peso di volume (KN/m3):

23.03

Contenuto d'acqua (%)

	Resistenza di picco σ_p [MPa]:	29.1
Risultati prova	Modulo di Young secante al 50% di σ_p [MPa]:	12288
	Modulo di Young tangente al 50% di σ_p [MPa]:	13790
	Coefficiente di Poisson tangente al 50% di σ_p :	0.16
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

Titolo Identificativo Tipologia 3 1

Concessione Ministeriale Decreto n° 55126 del 12 luglio 2006 - Settori A, B e C

rev.	data emiss.	sperimentatore	responsabile
0	29/08/2018	Angeloni	Saccenti

Normativa di riferimento: ASTM D7012/10

N° certificato di prova:

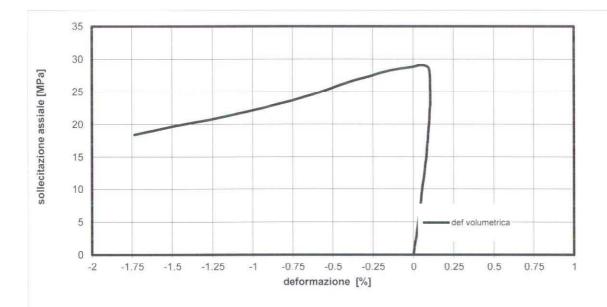
N° verbale di accettazione: 26/2018

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD

Sondaggio:

Provino: DS2: sovracarot. doostropper sez.2 sin

Profondità prelievo [m]:


Prova: UXDC1

Data prova: 29/08/2018

Dati provino

Altezza (cm): 12.05 Peso di volume (KN/m³): 23.03

Diametro (cm): 5.93 Contenuto d'acqua (%)

Risultati prova	Resistenza di picco σ_p [MPa]:	29.1
	Modulo di Young secante al 50% di σ_p [MPa]:	12288
lisu	Modulo di Young tangente al 50% di σ_p [MPa]:	13790
œ	Coefficiente di Poisson tangente al 50% di σ_p :	0.16
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

Tipologia Titolo Identificativo Foglio di 2 3

Committente: SPEA ENGINEERING Normativa di riferimento: ASTM D7012/10 Cantiere: GALLERIA BRUSCHETO NORD

Sondaggio:

DS2: sovracarot. doostropper sez.2 sin Provino: Profondità (m):

Sigla prova:
Data prova:
Altezza ini (mm):
Dia ini (mm): UXDC1 27.62782809 Angeloni Saccenti 29/08/2018 43341 120.51 59.31 Area: Sperimentatore: Direttore: Data emissione: 23.03

Peso di volume (KN/m³) Umidita' iniziale (%)

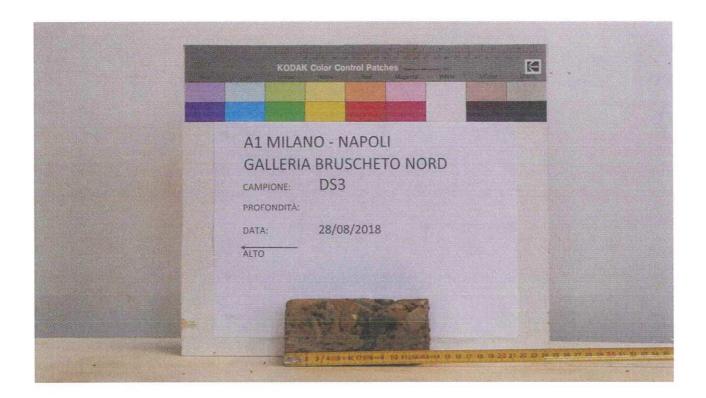
Umidita' iniziale (%)					
Sollecitazione assiale [MPa]	& assiale (%)	€ radiale (%)	tempo [min]	E tangente [MPa]	Poisson tangente
0.00	0.000	0.000	0.0		
0.02	0.000	0.001	0.1		
0.39	0.005	-0.002	0.1		
0.67	0.008	-0.002	0.2		
0.97	0.011	-0.003	0.3		
1.30	0.015	-0.004	0.3		
1.66	0.019	-0.005	0.4		
2.02	0.023	-0.006	0.5		
2.45	0.027	-0.006	0.5		
2.90	0.032	-0.007	0.6		
3.36	0.036	-0.008	0.7		
3.89	0.040	-0.009	0.7	10708	0.159
4.45	0.045	-0.010	0.8	11322	0.195
5.06	0.050	-0.010	0.9	11983	0.172
5.70	0.055	-0.011	0.9	12501	0.151
6.33	0.059	-0.011	1.0	12813	0.125
7.01	0.064	-0.012	1.1	13223	0.129
7.69	0.069	-0.012	1.1	13389	0.164
8.42	0.075	-0.014	1.2	13483	0.153
9.14	0.080	-0.015	1.3	13423	0.188
9.88	0.086	-0.017	1.3	13316	0.202
10.61	0.091	-0.018	1.4	13290	0.202
11.41	0.097	-0.018	1.5	13171	0.165
12.23	0.103	-0.019	1.5	13276	0.155
13.06	0.110	-0.020	1.6	13455	0.142
13.89	0.115	-0.021	1.7	13642	0.150
14.74	0.121	-0.022	1.7	13883	0.156
15.65	0.127	-0.023	1.8	14325	0.162
16.58	0.133	-0.024	1.9	14920	0.193
17.56	0.139	-0.025	1.9	15518	0.156
18.49	0.144	-0.026	2.0	16498	0.220
19.36	0.149	-0.028	2.1	17041	0.227
20.24	0.154	-0.028	2.1	17441	0.171
21.18	0.159	-0.030	2.2	17899	0.253
22.16	0.164	-0.032	2.3	18053	0.272
23.10	0.170	-0.032	2.3	17752	0.212
23.99	0.176	-0.035	2.4	17483	0.335
24.87	0.181	-0.038	2.5	16894	0.365
25.78	0.187	-0.041	2.5	16129	0.404
26.64	0.193	-0.044	2.6	15239	
27.44	0.200	-0.048	2.7	14150	
28.10	0.207	-0.053	2.7	12590	
28.62	0.214	-0.058	2.8	10554	
28.84	0.223	-0.067	2.9	7340	
29.04	0.233	-0.080	2.9	4822	
29.08	0.244	-0.097	3.0	4022	
29.08	0.245	-0.099	3.0		
29.06	0.252	-0.111	3.1		
28.85	0.264	-0.133	3.1		
28.69	0.276	-0.159	3.2		
28.54	0.288	-0.188	3.3		
28.31	0.301	-0.222	3.3		
27.88	0.314	-0.261	3.4		
27.33	0.327	-0.304	3.5		
26.85	0.341	-0.349	3.5		
26.13	0.356	-0.402	3.6		
25.31	0.371	-0.453	3.7		
24.68	0.386	-0.499	3.7		
24.16	0.400	-0.542	3.8		
23.65	0.413	-0.583	3.9		
23.16	0.427	-0.631	3.9		
22.55	0.442	-0.686	4.0		
21.94	0.457	-0.747	4.1		
21.30	0.472	-0.812	4.1		
20.70	0.486	-0.876	4.2		
20.22	0.499	-0.938	4.3		
	0.514	=1 003			
19.68	0.514	-1.003	4.3		
	0.514 0.530 0.544	-1.003 -1.073 -1.139	4.4 4.5		

SPEA ENGINEERING

A1 INCISA VAL D'ARNO

Indagine GALLERIA BRUSCHETO NORD DS3: sovracarot. doorstopper sez.3 sin

RIPRESA FOTOGRAFICA



Ricerca sperimentale, modellazione fisica, prove di laboratorio ed in sito

Concessione Ministeriale Decreto Nr. 55126 del 12/07/06 Settori A, B e C

Rev	data emiss.	eseguito da	elaborato da
0	09/07/2019	Sinoli	Sholi

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD
Campione: DS3: sovracarot. doostropper
sez.3 sin
Profondità prelievo [m]:
Data prova: 28/08/2018

Descrizione macroscopica del campione:

Calcestruzzo con aspetto conglomeratico costituito da inerti poligenici, prevalentemente carbonatici, di forma da subangolosa ad arrotondata con sfericità medio bassa, moderatamente classati ($L_{max} = 45$ mm). Distribuzione omogenea con addensamento medio.

Porosità medio alta data da bolle millimetriche e vespai localizzati tra li inerti di maggiori dimensioni.

Matrice di aspetto arenaceo, colore nocciola chiaro con discreta adesione agli inerti. Locale presenza di patine biancastre.

Descrizione post-rottura:

Formazione di fratture sub verticali e verticali, irregolari, che seguono il contorno degli inerti.

Pagina

1 1

di

Via Pastrengo, 9 - 24068 Seriate (Bg) Tel. 035 303120 - Fax 035 290388 Email: ismsgeo@ismgeo.it

DETERMINAZIONE DEL PESO DI VOLUME SU PROVINI DI FORMA CILINDRICA

Concessione Ministeriale Decreto n°55126 del 12 luglio 2006 - Settori A, B e C

Sperimentatore.	Ranzini	Committente: SPEA ENGINEERING
Direttore:	Saccenti	Cantiere: GALLERIA BRUSCHETO NORD
Data emissione	W .	Sondaggio:
Rev.	N (10 m) (10 m) (10 m) (10 m)	Campione: DS3: sovracarot. doostropper sez.3 sin
		Profondità [m]:
Normativa di rife	erimento: ISRM 1977	Prova: γ 1
N° certificato di	prova: 066[8(4/1231	Data: 29/08/2018
N° verbale di ad	ccettazione: 026/2018	
Lung	hezza provino (mm)	122.95
Diam	etro provino (mm)	59.22
Mass	a provino (g)	719.90
Area	provino (cm²)	27.54
Volum	me provino (cm³)	338.65
Peso	o di volume provino (Mg/m³)	2.13
Note:		

Via Pastrengo, 9 - 24068 Seriate (Bg). tel. 035 303120 - fax 035 290388 Email: ismgeo@ismgeo.it

MISURA VELOCITA' ONDE **ELASTICHE**

Concessione Ministeriale Decreto n° 55126 del 12 luglio 2006 - Settori A, B e C

Sperimentatore: Direttore: Saccenti 11/06/2019 Data emissione:

Rev.

Normativa di riferimento: ASTM D2845/95

04/18/4/1232 N° certificato di prova: N° verbale di accettazione:

Committente: SPEA ENGINEERING Cantiere: GALLERIA BRUSCHETO NORD Campione: DS3: sovracarot. doostropper

sez.3 sin

Profondità prova [m]:

Prova:

Data prova: 29/08/2018

Numero prova	1	
Profondità da (m):	-	
Profondità a (m):	-	
Diametro provino (cm):	5.922	
Altezza provino (cm):	12.30	
Massa provino (g):	719.9	
Peso di volume (KN/m³):	20.85	
Contenuto d'acqua (%):	-	
Tensione assiale (MPa):	-	
Tensione radiale (MPa):	-	
Tempo di propagazioneo onde P (μs)	30.4	
Tempo di propagazione onde S (μs)	50.0	
Velocità onde compressione p (m/s):	4044	
Velocità onde di taglio s (m/s):	2459	
G (MPa)	12854	1
E (MPa)	31023	
v (-)	0.21	
K (MPa)	17633	

N	0	t	0
	~	े	~

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

sperimentatore data emiss. responsabile Angelon Saccenti 29/08/2018

Normativa di riferimento: ASTM D7012/10

N° certificato di prova:

N° verbale di accettazione:

Committente: SPEA ENGINEERING Cantiere: **GALLERIA BRUSCHETO NORD**

Sondaggio:

Provino: DS3: sovracarot. doostropper sez.3 sin

Profondità prelievo [m]:

Prova: UXDC1

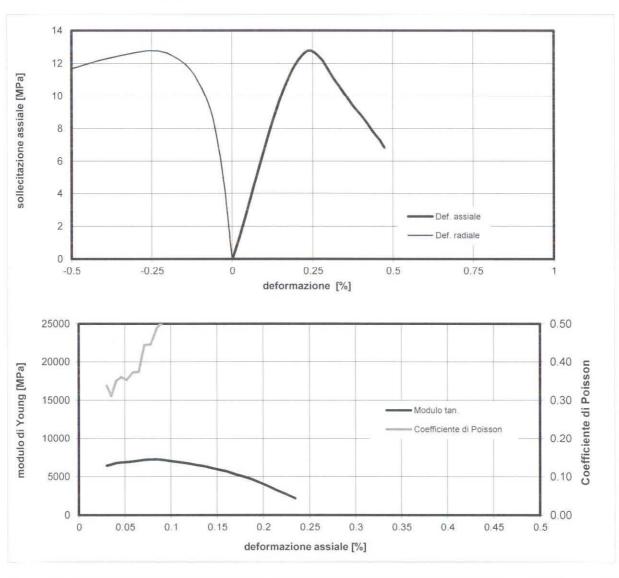
29/08/2018 Data prova:

Dati provino

Altezza (cm):

12.30

26/2018


Peso di volume (KN/m3):

20.85

Diametro (cm):

5.92

Contenuto d'acqua (%)

	Resistenza di picco σ_p [MPa]:	12.8
Itati	Modulo di Young secante al 50% di σ_p [MPa]:	6777
Risultati prova	Modulo di Young tangente al 50% di σ_p [MPa]:	7120
LE.	Coefficiente di Poisson tangente al 50% di σ_p :	-
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

Foglio

1

Concessione Ministeriale Decreto nº 55126 del 12 luglio 2006 - Settori A, B e C

rev. data emiss.	sperimentatore	responsabile
0 29/08/2018	Angelenik	Saccenti

Normativa di riferimento: ASTM D7012/10

N° certificato di prova:

N° verbale di accettazione:

26/2018

Committente: SPEA ENGINEERING
Cantiere: GALLERIA BRUSCHETO NORD

Sondaggio:

Provino: DS3: sovracarot. doostropper sez.3 sin

Profondità prelievo [m]:

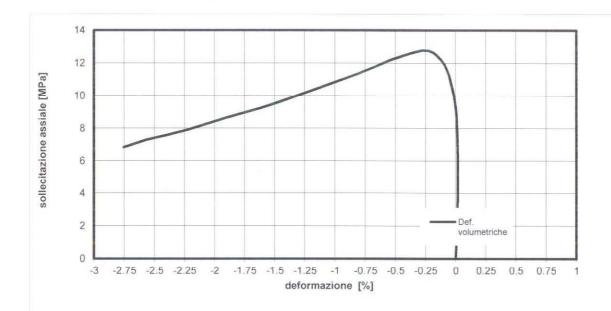
Prova: UXDC1
Data prova: 29/08/2018

Dati provino

Altezza (cm):

12.30

Peso di volume (KN/m³):


20.85

Diametro (cm):

5.92

Contenuto d'acqua (%)

20.85

	Resistenza di picco σ_p [MPa]:	12.8
Itati	Modulo di Young secante al 50% di σ_p [MPa]:	6777
Risultati prova	Modulo di Young tangente al 50% di σ_p [MPa]:	7120
LE	Coefficiente di Poisson tangente al 50% di σ_p :	
Note:	Calcestruzzo	
	Velocità di deformazione =0.2 mm/min	

SPEA ENGINEERING Committente: Normativa di riferimento: ASTM D7012/10 Cantiere: GALLERIA BRUSCHETO NORD

Sondaggio: Provino: DS3: sovracarot. doostropper sez.3 sin

Profondità (m):

Sigla prova: Data prova: UXDC1 27.54404397 Angeloni Saccenti 43341 Area: Sperimentatore: Altezza ini (mm): 122.95 Direttore: Dia ini (mm): 59.22

Peso di volume (KN/m³) Umidita' iniziale (%) 29/08/2018 Data emissione: 20.85

Poisson tangente				Umidita' iniziale (%)		
0.83	Sollecitazione assiale [MPa]	€ assiale (%)	€ radiale (%)	tempo [min]		Poisson tangente
0.83	0.00	0.000	0.000	0.0		
0.88	0.33	0.006	-0.002			
0.88						
1.22						
1.57 0.026 -0.008 0.4 1.86 0.030 -0.010 0.5 6425 0.338 2.18 0.035 -0.011 0.5 6574 0.311 2.54 0.040 -0.014 0.6 6763 0.350 2.93 0.046 -0.015 0.7 6884 0.353 3.35 0.052 -0.018 0.7 6884 0.353 3.81 0.058 -0.023 0.9 7071 0.372 4.28 0.065 -0.023 0.9 7071 0.374 4.74 0.071 -0.027 0.9 7185 0.445 5.73 0.085 -0.033 1.1 7252 0.490 6.21 0.092 -0.037 1.1 7152 0.505 6.68 0.099 -0.041 1.2 7040 7.15 0.106 -0.045 1.3 6894 8.10 0.120 -0.054 1.4 6866 8.50 0.136 -0.064 1.5 6339 9.54						
1.186 0.030 -0.010 0.5 6425 0.338 2.18 0.035 -0.011 0.5 6574 0.311 2.54 0.040 -0.015 0.7 6847 0.360 2.93 0.046 -0.015 0.7 6847 0.360 3.35 0.052 0.018 0.7 6894 0.353 3.81 0.058 -0.020 0.8 6973 0.372 4.28 0.065 -0.023 0.9 7071 0.374 4.74 0.071 -0.027 0.9 7071 0.345 5.23 0.078 -0.030 1.0 7211 0.446 5.73 0.085 -0.033 1.1 7252 0.490 6.21 0.092 -0.037 1.1 7152 0.505 6.68 0.099 -0.041 1.2 7040 7040 7.15 0.106 -0.045 1.3 6934 6934 7.63 0.113 -0.049 1.3 6806 686 6933 9.9 9.9						
2.18					6425	0.338
2.54						
2.93						
3.35						
3.81 0.058 -0.020 0.8 6973 0.372 4.28 0.065 -0.023 0.9 7071 0.374 4.74 0.071 -0.027 0.9 7185 0.445 5.23 0.078 -0.030 1.0 7211 0.446 5.73 0.085 -0.033 1.1 7252 0.490 6.21 0.092 -0.037 1.1 7152 0.505 6.68 0.099 -0.041 1.2 7040 7.15 0.106 -0.045 1.3 6934 7.63 0.113 -0.049 1.3 6806 8.10 0.120 -0.054 1.4 6666 8.60 0.128 -0.059 1.5 6489 9.09 0.136 -0.066 1.5 6339 9.54 0.144 -0.074 1.6 6101 10.00 0.152 -0.083 1.7 5882 10.44 0.161 -0.093 1.7 5664 10.86 0.170 -0.105 1.8						
4.28 0.065 -0.023 0.9 7071 0.374 4.74 0.071 -0.027 0.9 7185 0.445 5.23 0.078 -0.030 1.0 7211 0.446 5.73 0.085 -0.033 1.1 7252 0.490 6.21 0.092 -0.037 1.1 7152 0.505 6.68 0.099 -0.041 1.2 7040 7.15 0.106 -0.045 1.3 6806 8.10 0.120 -0.054 1.4 6666 8.60 0.128 -0.059 1.5 6489 9.09 0.136 -0.066 1.5 6339 9.54 0.144 -0.074 1.6 6101 10.00 0.152 -0.083 1.7 5882 10.44 0.161 -0.093 1.7 5664 10.86 0.170 -0.105 1.8 5303 11.26 0.187 -0.130 1.9 4671 11.93 0.196 -0.145 2.0 4222 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
4.74 0.071 -0.027 0.9 7185 0.445 5.23 0.078 -0.030 1.0 7211 0.446 5.73 0.085 -0.033 1.1 7252 0.490 6.21 0.092 -0.037 1.1 7152 0.505 6.68 0.099 -0.041 1.2 7040 7.15 0.106 -0.045 1.3 6894 7.63 0.113 -0.049 1.3 6806 8.10 0.120 -0.054 1.4 6666 8.60 0.128 -0.059 1.5 6489 9.09 0.136 -0.066 1.5 6339 9.54 0.144 -0.074 1.6 6101 10.00 0.152 -0.083 1.7 5684 10.44 0.161 -0.093 1.7 5664 10.86 0.170 -0.105 1.8 5303 11.62 0.187 -0.130 1.9 4671 11.93 0.196 -0.145 2.0 4222						
5.23 0.078 -0.030 1.0 7211 0.446 5.73 0.085 -0.033 1.1 7252 0.490 6.21 0.092 -0.037 1.1 7152 0.505 6.68 0.099 -0.041 1.2 7040 7.15 0.106 -0.045 1.3 6934 7.63 0.113 -0.049 1.3 6806 8.10 0.120 -0.054 1.4 6666 8.60 0.128 -0.059 1.5 6489 9.09 0.136 -0.066 1.5 6339 9.54 0.144 -0.074 1.6 6101 10.00 0.152 -0.083 1.7 5882 10.44 0.161 -0.093 1.7 5864 10.86 0.170 -0.105 1.8 5303 11.26 0.178 -0.116 1.9 5007 11.62 0.187 -0.130 1.9 4671 <						
5.73 0.085 -0.033 1.1 7252 0.490 6.21 0.092 -0.037 1.1 7152 0.505 6.68 0.099 -0.041 1.2 7040 7.15 0.106 -0.045 1.3 6934 7.63 0.113 -0.049 1.3 6806 8.10 0.120 -0.054 1.4 6666 8.60 0.128 -0.059 1.5 6489 9.09 0.136 -0.066 1.5 6339 9.54 0.144 -0.074 1.6 6101 10.00 0.152 -0.083 1.7 5882 10.44 0.161 -0.093 1.7 5664 10.86 0.170 -0.105 1.8 5303 11.26 0.178 -0.116 1.9 5007 11.62 0.187 -0.130 1.9 4671 11.93 0.196 -0.145 2.0 4222 12.19<						
6.21						
6.68 0.099 -0.041 1.2 7040 7.15 0.106 -0.045 1.3 6934 7.63 0.113 -0.049 1.3 6806 8.10 0.120 -0.054 1.4 6666 8.60 0.128 -0.059 1.5 6489 9.09 0.136 -0.066 1.5 6339 9.54 0.144 -0.074 1.6 6101 10.00 0.152 -0.083 1.7 5882 10.44 0.161 -0.093 1.7 5664 10.86 0.170 -0.105 1.8 5303 11.26 0.178 -0.116 1.9 5007 11.62 0.187 -0.130 1.9 4671 11.93 0.196 -0.145 2.0 4222 12.19 0.205 -0.162 2.1 3774 12.42 0.214 -0.182 2.1 3241 12.64 0.224 -0.204 2.2 2743 12.77 0.245 -0.263 2.3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
7.15 0.106 -0.045 1.3 6934 7.63 0.113 -0.049 1.3 6806 8.10 0.120 -0.054 1.4 6666 8.60 0.128 -0.059 1.5 6489 9.09 0.136 -0.066 1.5 6339 9.54 0.144 -0.074 1.6 6101 10.00 0.152 -0.083 1.7 5882 10.44 0.161 -0.093 1.7 5664 10.86 0.170 -0.105 1.8 5303 11.26 0.178 -0.116 1.9 5007 11.62 0.187 -0.130 1.9 4671 11.93 0.196 -0.145 2.0 4222 12.19 0.205 -0.162 2.1 3774 12.42 0.214 -0.182 2.1 3241 12.64 0.224 -0.204 2.2 2743 12.77 0.245 -0.263 2.3 12.77 0.245 -0.263 2.3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0.000</td></t<>						0.000
7.63 0.113 -0.049 1.3 6806 8.10 0.120 -0.054 1.4 6666 8.60 0.128 -0.059 1.5 6489 9.09 0.136 -0.066 1.5 6339 9.54 0.144 -0.074 1.6 6101 10.00 0.152 -0.083 1.7 5882 10.44 0.161 -0.093 1.7 5664 10.86 0.170 -0.105 1.8 5303 11.26 0.178 -0.116 1.9 5007 11.62 0.187 -0.130 1.9 4671 11.93 0.196 -0.145 2.0 4222 12.19 0.205 -0.162 2.1 3774 12.42 0.214 -0.182 2.1 3241 12.76 0.234 -0.231 2.3 2165 12.77 0.245 -0.263 2.3 12.66 0.256 -0.303 2.4 12.45 0.268 -0.354 2.5 12.17<						
8.10 0.120 -0.054 1.4 6666 8.60 0.128 -0.059 1.5 6489 9.09 0.136 -0.066 1.5 6339 9.54 0.144 -0.074 1.6 6101 10.00 0.152 -0.083 1.7 5882 10.44 0.161 -0.093 1.7 5664 10.86 0.170 -0.105 1.8 5303 11.26 0.178 -0.116 1.9 5007 11.62 0.187 -0.130 1.9 4671 11.93 0.196 -0.145 2.0 4222 12.19 0.205 -0.162 2.1 3774 12.42 0.214 -0.182 2.1 3241 12.64 0.224 -0.204 2.2 2743 12.77 0.245 -0.263 2.3 12.66 0.256 -0.303 2.4 12.45 0.268 -0.354 2.5 12.17 0.281 -0.415 2.5 11.77 0.29						
8.60 0.128 -0.059 1.5 6489 9.09 0.136 -0.066 1.5 6339 9.54 0.144 -0.074 1.6 6101 10.00 0.152 -0.083 1.7 5882 10.44 0.161 -0.093 1.7 5664 10.86 0.170 -0.105 1.8 5303 11.26 0.187 -0.116 1.9 5007 11.62 0.187 -0.130 1.9 4671 11.93 0.196 -0.145 2.0 4222 12.19 0.205 -0.162 2.1 3774 12.42 0.214 -0.182 2.1 3241 12.64 0.224 -0.204 2.2 2743 12.76 0.234 -0.231 2.3 2165 12.77 0.245 -0.263 2.3 12.66 0.256 -0.303 2.4 12.45 0.268 -0.354 2.5 12.17 0.281 -0.415 2.5 11.77 0.293 -0.484 2.6 11.34 0.306 -0.562 2.7 10.98 0.319 -0.634 2.7 10.63 0.331 -0.705 2.8 10.28 0.344 -0.778 2.9 9.91 0.357 -0.854 2.9 9.54 0.370 -0.931 3.0 9.21 0.383 -1.005 3.1 8.93 0.395 -1.081 3.1 8.62 0.408 -1.159 3.2 8.28 0.421 -1.240 3.3 7.59 0.445 -1.511 3.5						
9.09						
9.54						
10.00 0.152 -0.083 1.7 5882 10.44 0.161 -0.993 1.7 5664 10.86 0.170 -0.105 1.8 5303 11.26 0.178 -0.116 1.9 5007 11.62 0.187 -0.130 1.9 4671 11.93 0.196 -0.145 2.0 4222 12.19 0.205 -0.162 2.1 3774 12.42 0.214 -0.182 2.1 3241 12.64 0.224 -0.204 2.2 2743 12.76 0.234 -0.231 2.3 2165 12.77 0.245 -0.263 2.3 12.66 0.256 -0.303 2.4 12.45 0.268 -0.354 2.5 12.17 0.281 -0.415 2.5 11.77 0.293 -0.484 2.6 11.34 0.306 -0.562 2.7 10.98 0.319 -0.634 2.7 10.63 0.331 -0.705 2.8 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
10.44 0.161 -0.093 1.7 5664 10.86 0.170 -0.105 1.8 5303 11.26 0.178 -0.116 1.9 5007 11.62 0.187 -0.130 1.9 4671 11.93 0.196 -0.145 2.0 4222 12.19 0.205 -0.162 2.1 3774 12.42 0.214 -0.182 2.1 3241 12.64 0.224 -0.204 2.2 2743 12.76 0.234 -0.231 2.3 2165 12.77 0.245 -0.263 2.3 12.66 0.256 -0.303 2.4 12.45 0.268 -0.354 2.5 12.17 0.281 -0.415 2.5 11.77 0.293 -0.484 2.6 11.34 0.306 -0.562 2.7 10.98 0.319 -0.634 2.7 10.63 0.331 -0.705 2.8 10.28 0.344 -0.778 2.9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
10.86 0.170 -0.105 1.8 5303 11.26 0.178 -0.116 1.9 5007 11.62 0.187 -0.130 1.9 4671 11.93 0.196 -0.145 2.0 4222 12.19 0.205 -0.162 2.1 3774 12.42 0.214 -0.182 2.1 3241 12.64 0.224 -0.204 2.2 2743 12.76 0.234 -0.231 2.3 2165 12.77 0.245 -0.263 2.3 12.66 0.256 -0.303 2.4 12.45 0.268 -0.354 2.5 12.17 0.281 -0.415 2.5 11.34 0.306 -0.562 2.7 10.98 0.319 -0.634 2.7 10.63 0.331 -0.705 2.8 10.28 0.344 -0.778 2.9 9.54 0.370 -0.931 3.0 9.91 0.3857 -0.854 2.9 9.54						
11.26 0.178 -0.116 1.9 5007 11.62 0.187 -0.130 1.9 4671 11.93 0.196 -0.145 2.0 4222 12.19 0.205 -0.162 2.1 3774 12.42 0.214 -0.182 2.1 3241 12.64 0.224 -0.204 2.2 2743 12.76 0.234 -0.231 2.3 2165 12.77 0.245 -0.263 2.3 12.66 0.256 -0.303 2.4 12.45 0.268 -0.354 2.5 12.17 0.281 -0.415 2.5 11.77 0.293 -0.484 2.6 11.34 0.306 -0.562 2.7 10.98 0.319 -0.634 2.7 10.63 0.331 -0.705 2.8 10.28 0.344 -0.778 2.9 9.91 0.357 -0.854 2.9 9.94 0.370 -0.931 3.0 9.21 0.383						
11.62 0.187 -0.130 1.9 4671 11.93 0.196 -0.145 2.0 4222 12.19 0.205 -0.162 2.1 3774 12.42 0.214 -0.182 2.1 3241 12.64 0.224 -0.204 2.2 2743 12.76 0.234 -0.231 2.3 2165 12.77 0.245 -0.263 2.3 12.66 0.256 -0.303 2.4 12.45 0.268 -0.354 2.5 12.17 0.281 -0.415 2.5 11.77 0.293 -0.484 2.6 11.34 0.306 -0.562 2.7 10.98 0.319 -0.634 2.7 10.63 0.331 -0.705 2.8 10.28 0.344 -0.778 2.9 9.91 0.357 -0.854 2.9 9.54 0.370 -0.931 3.0 9.21 0.383 -1.05 3.1 8.93 0.395 -1.081						
11.93 0.196 -0.145 2.0 4222 12.19 0.205 -0.162 2.1 3774 12.42 0.214 -0.182 2.1 3241 12.64 0.224 -0.204 2.2 2743 12.76 0.234 -0.231 2.3 2165 12.77 0.245 -0.263 2.3 12.66 0.256 -0.303 2.4 12.45 0.268 -0.354 2.5 12.17 0.281 -0.415 2.5 11.77 0.293 -0.484 2.6 11.34 0.306 -0.562 2.7 10.98 0.319 -0.634 2.7 10.63 0.331 -0.705 2.8 10.28 0.344 -0.778 2.9 9.91 0.357 -0.854 2.9 9.54 0.370 -0.931 3.0 9.21 0.383 -1.005 3.1 8.93 0.395 -1.081 3.1 8.02 0.442 -1.159 3.2						
12.19 0.205 -0.162 2.1 3774 12.42 0.214 -0.182 2.1 3241 12.64 0.224 -0.204 2.2 2743 12.76 0.234 -0.231 2.3 2165 12.77 0.245 -0.263 2.3 12.66 0.256 -0.303 2.4 12.45 0.268 -0.354 2.5 12.17 0.281 -0.415 2.5 11.77 0.293 -0.484 2.6 11.34 0.306 -0.562 2.7 10.98 0.319 -0.634 2.7 10.63 0.331 -0.705 2.8 10.28 0.344 -0.778 2.9 9.91 0.357 -0.854 2.9 9.54 0.370 -0.931 3.0 9.21 0.383 -1.005 3.1 8.93 0.395 -1.081 3.1 8.62 0.408 -1.159 3.2 8.28 0.421 -1.240 3.3 7.5						
12.42 0.214 -0.182 2.1 3241 12.64 0.224 -0.204 2.2 2743 12.76 0.234 -0.231 2.3 2165 12.77 0.245 -0.263 2.3 12.66 0.256 -0.303 2.4 12.45 0.268 -0.354 2.5 12.17 0.281 -0.415 2.5 11.77 0.293 -0.484 2.6 11.34 0.306 -0.562 2.7 10.98 0.319 -0.634 2.7 10.63 0.331 -0.705 2.8 10.28 0.344 -0.778 2.9 9.91 0.357 -0.854 2.9 9.54 0.370 -0.931 3.0 9.21 0.383 -1.005 3.1 8.93 0.395 -1.081 3.1 8.62 0.408 -1.159 3.2 8.28 0.421 -1.240 3.3 7.90 0.434 -1.330 3.3 7.59 0.44						
12.64 0.224 -0.204 2.2 2743 12.76 0.234 -0.231 2.3 2165 12.77 0.245 -0.263 2.3 12.66 0.256 -0.303 2.4 12.45 0.268 -0.354 2.5 12.17 0.281 -0.415 2.5 11.77 0.293 -0.484 2.6 11.34 0.306 -0.562 2.7 10.98 0.319 -0.634 2.7 10.63 0.331 -0.705 2.8 10.28 0.344 -0.778 2.9 9.91 0.357 -0.854 2.9 9.54 0.370 -0.931 3.0 9.21 0.383 -1.005 3.1 8.93 0.395 -1.081 3.1 8.62 0.408 -1.159 3.2 8.28 0.421 -1.240 3.3 7.90 0.434 -1.330 3.3 7.59 0.447 -1.419 3.4 7.50 0.459 -1.5						
12.76 0.234 -0.231 2.3 2165 12.77 0.245 -0.263 2.3 12.66 0.256 -0.303 2.4 12.45 0.268 -0.354 2.5 12.17 0.281 -0.415 2.5 11.77 0.293 -0.484 2.6 11.34 0.306 -0.562 2.7 10.98 0.319 -0.634 2.7 10.63 0.331 -0.705 2.8 10.28 0.344 -0.778 2.9 9.91 0.357 -0.854 2.9 9.54 0.370 -0.931 3.0 9.21 0.383 -1.005 3.1 8.93 0.395 -1.081 3.1 8.62 0.408 -1.159 3.2 8.28 0.421 -1.240 3.3 7.90 0.434 -1.330 3.3 7.59 0.447 -1.419 3.4 7.30 0.459 -1.511 3.5						
12.77 0.245 -0.263 2.3 12.66 0.256 -0.303 2.4 12.45 0.268 -0.354 2.5 12.17 0.281 -0.415 2.5 11.77 0.293 -0.484 2.6 11.34 0.306 -0.562 2.7 10.98 0.319 -0.634 2.7 10.63 0.331 -0.705 2.8 10.28 0.344 -0.778 2.9 9.91 0.357 -0.854 2.9 9.54 0.370 -0.931 3.0 9.21 0.383 -1.005 3.1 8.93 0.395 -1.081 3.1 8.62 0.408 -1.159 3.2 8.28 0.421 -1.240 3.3 7.90 0.434 -1.330 3.3 7.59 0.447 -1.419 3.4 7.30 0.459 -1.511 3.5						
12.66 0.256 -0.303 2.4 12.45 0.268 -0.354 2.5 12.17 0.281 -0.415 2.5 11.77 0.293 -0.484 2.6 11.34 0.306 -0.562 2.7 10.98 0.319 -0.634 2.7 10.63 0.331 -0.705 2.8 10.28 0.344 -0.778 2.9 9.91 0.357 -0.854 2.9 9.54 0.370 -0.931 3.0 9.21 0.383 -1.005 3.1 8.93 0.395 -1.081 3.1 8.62 0.408 -1.159 3.2 8.28 0.421 -1.240 3.3 7.90 0.434 -1.330 3.3 7.59 0.447 -1.419 3.4 7.30 0.459 -1.511 3.5					2103	
12.45 0.268 -0.354 2.5 12.17 0.281 -0.415 2.5 11.77 0.293 -0.484 2.6 11.34 0.306 -0.562 2.7 10.98 0.319 -0.634 2.7 10.63 0.331 -0.705 2.8 10.28 0.344 -0.778 2.9 9.91 0.357 -0.854 2.9 9.54 0.370 -0.931 3.0 9.21 0.383 -1.005 3.1 8.93 0.395 -1.081 3.1 8.62 0.408 -1.159 3.2 8.28 0.421 -1.240 3.3 7.90 0.434 -1.330 3.3 7.59 0.447 -1.419 3.4 7.30 0.459 -1.511 3.5						
12.17 0.281 -0.415 2.5 11.77 0.293 -0.484 2.6 11.34 0.306 -0.562 2.7 10.98 0.319 -0.634 2.7 10.63 0.331 -0.705 2.8 10.28 0.344 -0.778 2.9 9.91 0.357 -0.854 2.9 9.54 0.370 -0.931 3.0 9.21 0.383 -1.005 3.1 8.93 0.395 -1.081 3.1 8.62 0.408 -1.159 3.2 8.28 0.421 -1.240 3.3 7.90 0.434 -1.330 3.3 7.59 0.447 -1.419 3.4 7.30 0.459 -1.511 3.5						
11.77 0.293 -0.484 2.6 11.34 0.306 -0.562 2.7 10.98 0.319 -0.634 2.7 10.63 0.331 -0.705 2.8 10.28 0.344 -0.778 2.9 9.91 0.357 -0.854 2.9 9.54 0.370 -0.931 3.0 9.21 0.383 -1.005 3.1 8.93 0.395 -1.081 3.1 8.62 0.408 -1.159 3.2 8.28 0.421 -1.240 3.3 7.90 0.434 -1.330 3.3 7.59 0.447 -1.419 3.4 7.30 0.459 -1.511 3.5						
11.34 0.306 -0.562 2.7 10.98 0.319 -0.634 2.7 10.63 0.331 -0.705 2.8 10.28 0.344 -0.778 2.9 9.91 0.357 -0.854 2.9 9.54 0.370 -0.931 3.0 9.21 0.383 -1.005 3.1 8.93 0.395 -1.081 3.1 8.62 0.408 -1.159 3.2 8.28 0.421 -1.240 3.3 7.90 0.434 -1.330 3.3 7.59 0.447 -1.419 3.4 7.30 0.459 -1.511 3.5						
10.98 0.319 -0.634 2.7 10.63 0.331 -0.705 2.8 10.28 0.344 -0.778 2.9 9.91 0.357 -0.854 2.9 9.54 0.370 -0.931 3.0 9.21 0.383 -1.005 3.1 8.93 0.395 -1.081 3.1 8.62 0.408 -1.159 3.2 8.28 0.421 -1.240 3.3 7.90 0.434 -1.330 3.3 7.59 0.447 -1.419 3.4 7.30 0.459 -1.511 3.5						
10.63 0.331 -0.705 2.8 10.28 0.344 -0.778 2.9 9.91 0.357 -0.854 2.9 9.54 0.370 -0.931 3.0 9.21 0.383 -1.005 3.1 8.93 0.395 -1.081 3.1 8.62 0.408 -1.159 3.2 8.28 0.421 -1.240 3.3 7.90 0.434 -1.330 3.3 7.59 0.447 -1.419 3.4 7.30 0.459 -1.511 3.5						
10.28 0.344 -0.778 2.9 9.91 0.357 -0.854 2.9 9.54 0.370 -0.931 3.0 9.21 0.383 -1.005 3.1 8.93 0.395 -1.081 3.1 8.62 0.408 -1.159 3.2 8.28 0.421 -1.240 3.3 7.90 0.434 -1.330 3.3 7.59 0.447 -1.419 3.4 7.30 0.459 -1.511 3.5						
9.91 0.357 -0.854 2.9 9.54 0.370 -0.931 3.0 9.21 0.383 -1.005 3.1 8.93 0.395 -1.081 3.1 8.62 0.408 -1.159 3.2 8.28 0.421 -1.240 3.3 7.90 0.434 -1.330 3.3 7.59 0.447 -1.419 3.4 7.30 0.459 -1.511 3.5						
9.54 0.370 -0.931 3.0 9.21 0.383 -1.005 3.1 8.93 0.395 -1.081 3.1 8.62 0.408 -1.159 3.2 8.28 0.421 -1.240 3.3 7.90 0.434 -1.330 3.3 7.59 0.447 -1.419 3.4 7.30 0.459 -1.511 3.5						
9.21 0.383 -1.005 3.1 8.93 0.395 -1.081 3.1 8.62 0.408 -1.159 3.2 8.28 0.421 -1.240 3.3 7.90 0.434 -1.330 3.3 7.59 0.447 -1.419 3.4 7.30 0.459 -1.511 3.5						
8.93 0.395 -1.081 3.1 8.62 0.408 -1.159 3.2 8.28 0.421 -1.240 3.3 7.90 0.434 -1.330 3.3 7.59 0.447 -1.419 3.4 7.30 0.459 -1.511 3.5						
8.62 0.408 -1.159 3.2 8.28 0.421 -1.240 3.3 7.90 0.434 -1.330 3.3 7.59 0.447 -1.419 3.4 7.30 0.459 -1.511 3.5						
8.28 0.421 -1.240 3.3 7.90 0.434 -1.330 3.3 7.59 0.447 -1.419 3.4 7.30 0.459 -1.511 3.5						
7.90 0.434 -1.330 3.3 7.59 0.447 -1.419 3.4 7.30 0.459 -1.511 3.5						
7.59 0.447 -1.419 3.4 7.30 0.459 -1.511 3.5						
7.30 0.459 -1.511 3.5						
	6.83	0.459	-1.614	3.5		