

AUTOSTRADA (A1): MILANO-NAPOLI

AMPLIAMENTO ALLA TERZA CORSIA NEL TRATTO INCISA - VALDARNO LOTTO1

PROGETTO ESECUTIVO

DOCUMENTAZIONE GENERALE

GEOLOGIA INDAGINI GEOGNOSTICHE IN SITO

PROSPEZIONI SISMICHE - PREGRESSE (CROSS HOLE FASE B - INCISA VALDARNO)

IL GEOLOGO

Dott. Vittorio Boerio Ord. Geol. Lombardia N. 794

Responsabile Geologia

IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Paola Castiglioni Ord. Ingg. Varese N. 2725 IL DIRETTORE TECNICO

Ing. Orlando Mazza Ord. Ingg. Pavia N. 1496

Progettazione Nuove Opere Autostradali

CODICE IDENTIFICATIVO									ORDINATORE				
RIFERIMENTO PROGETTO			RIFERIMENTO DIRETTORIO RIFERIMENTO ELABORATO										
Codice Commessa	Lotto, Sub-Prog, Cod. Appalto	Fase	Capitolo	Capitolo Paragrafo W.B.S Parte d'opera T					Progressivo	Rev.	. XXX		
119941	LL01	PE	DG	GEO	SI000	00000	R	GEO	1026	-0	SCALA -		

	PROJECT MAN	AGER:	SUPPORTO SPECIALISTICO:			REVISIONE
spea					n.	data
opea		Ing. Paola Castiglioni			0	OTTOBRE 2019
FNICHNIEFDINIC		Ord. Ingg. Varese N. 2725				
ENGINEERING						
A 41 43	REDATTO:		VERIFICATO:			
Atlantia Atlantia	REDATIO.		VERTIONTO.			

VISTO DEL COMMITTENTE

IL RESPONSABILE UNICO DEL PROCEDIMENTO Ing. Furio Cruciani

VISTO DEL CONCEDENTE

Ministero delle Infrastrutture e dei Trasporti dipartimento per le infrastrutture, gli affari generali ed il personale struttura di vigilanza sulle concessionarie autostradali

DOCUMENTAZIONE INERENTE LA TRATTA COMPLETA TRA INCISA E VALDARNO

SPEA Ingegneria Europea S.p.A.

AUTOSTRADA A1 MILANO-NAPOLI TRATTO INCISA-VALDARNO FASE B

INDAGINI GEOGNOSTICHE PROPEDEUTICHE ALLA REALIZZAZIONE DELLA 3^ CORSIA DELL'AUTOSTRADA A1 MILANO NAPOLI NEL TRATTO INCISA-VALDARNO

MISURE SISMICHE CROSS-HOLE

INDAGINE GEOFISICA CROSS-HOLE

La presente relazione descrive i risultati della prospezione sismica in foro tipo Cross–Hole eseguita per conto di SPEA INGEGNERIA EUROPEA S.P.A. nel cantiere A1 Incisa-Valdarno ampliamento 3° corsia, nelle coppie di fori identificate dalle sigle SV1, SV5, SV13, SV22, SV25 e SA32b.

Tale prospezione è stata eseguita al fine di valutare le caratteristiche sismostratigrafiche proprie dei terreni costituenti il sottosuolo locale, nell'ambito dell'indagine geognostica eseguita, sono state eseguite prove sismiche in foro di sondaggio tipo Cross-hole che hanno interessato sei coppie di fori.

L'acquisizione e la successiva elaborazione ha permesso il calcolo dei seguenti parametri e moduli elastici:

- velocità delle onde elastiche longitudinali (Vp)
- velocità delle onde elastiche trasversali (Vs)
- coefficiente di Poisson
- modulo di elasticità
- modulo di compressibilità
- modulo di rigidità

In ogni coppia di fori di sondaggio sono state poste in opera n. 2 tubazioni in PVC per prove sismiche in foro, diam. 80mm e spessore ≥3mm, cementate alle pareti del foro con iniezione di miscela cementizia fino alla profondità prevista da p.c. (in questo caso variabile da 30 a 40m).

Le misure sismiche Cross-hole sono state eseguite nelle n.6 coppie di fori sopra citate, attrezzate con tubo liscio, dove sono state eseguite misure di verticalità con sonda inclinometrica opportunamente accessoriata al fine di stabilire la distanza reale tra i due fori ad ogni metro di profondità.

INDAGINI SISMICHE IN FORO

L'obiettivo delle indagini geofisiche in foro è quello di ottenere dalla determinazione delle velocità delle onde longitudinali (P) e trasversali (S) i parametri elasto-meccanici, coefficiente di Poisson (v), Modulo di Young (E), modulo di Taglio (G) attraverso l'ausilio di formule matematiche.

Tra i fattori che influenzano la velocità di propagazione delle onde longitudinali e trasversali, e quindi il valore del coefficiente Poisson, vanno ricordate la fratturazione, la presenza di fluidi, la porosità, la facies mineralogica e petrografica, il carico litostatico e l'età geologica.

CORRELAZIONE TRA LE VELOCITÀ DELLE ONDE SISMICHE ED I PARAMETRI ELASTICO DINAMICI

La liberazione istantanea di energia nel terreno genera un treno di onde sismiche la cui propagazione è regolata dalle leggi della fisica.

Le deformazioni e le tensioni generate da una sollecitazione artificiale impulsiva sono abbastanza complesse, ma nell'ambito di queste note è sufficiente far riferimento ai due tipi principali di onde sismiche, dette anche onde di volume: le onde sismiche di compressione (longitudinali, onde prime) e le onde sismiche di taglio (trasversali, onde seconde).

Le onde di volume si propagano nel terreno in ogni direzione ed intercettando il piano topografico danno origine sullo stesso ad onde di natura diversa (Rayleigh, Love, etc.) che si propagano esclusivamente in superficie, da cui il nome onde superficiali.

Nel loro complesso, le onde sismiche creano sollecitazioni e conseguenti deformazioni, nel mezzo attraversato, che generalmente ricadono nel campo elastico del diagramma sforzi/deformazioni; in questo ambito, sono quindi applicabili le classiche relazioni della teoria dell'elasticità.

Le onde sismiche longitudinali sono deformazioni che si propagano in linea retta, con un'alternanza continua di compressioni e dilatazioni della materia lungo il percorso di propagazione.

Le onde sismiche di taglio sono invece deformazioni che si propagano nella stessa direzione delle precedenti, ma con movimento oscillatorio delle particelle ortogonale alla traiettoria dei raggi sismici.

La velocità di propagazione delle onde sismiche dipende dalle costanti elastiche e dalla densità del mezzo attraversato, e pertanto risulta variabile in funzione delle caratteristiche geomeccaniche e fisiche del terreno o delle rocce.

Le onde più veloci sono le onde di compressione, a cui seguono le onde di taglio e successivamente i vari tipi di onde superficiali (Rayleigh, Love, etc.).

Poiché le tensioni e le deformazioni che si generano nel campo sismico sono di modestissima entità, anche il terreno e le rocce sollecitate in questo ambito possono essere considerate in prima approssimazione come materiali omogenei, isotropi ed elastici. E' applicabile quindi la legge di Hooke $\sigma = \epsilon \cdot \mathbf{E}$ che stabilisce la proporzionalità tra lo sforzo applicato (σ) e la deformazione prodotta (ϵ) .

La costante E, definita come rapporto tra sollecitazione e conseguente deformazione longitudinale, rappresenta il modulo elastico (o di Young) del materiale. In campo sismico si parla di modulo elastico dinamico. Il modulo di Young ha le dimensioni di una pressione; nei terreni e nelle rocce è molto variabile con valori massimi dell'ordine di 10⁵ MPa.

Il rapporto tra la sollecitazione ortogonale (trasversale o di taglio) e la deformazione definisce il modulo di elasticità tangenziale (o di taglio) **G**.

Anche questo parametro ha le dimensioni di una pressione ed il suo valore dipende, dalla velocità delle onde trasversali (Vs) e densità del materiale; nei terreni e nelle rocce è quindi molto variabile con valori normalmente compresi tra 10 e 1x10⁵ MPa.

Il modulo di compressibilità volumetrica **K** (o di Bulk) esprime la variazione di volume di un corpo sottoposto a forze tridimensionali, ovvero a pressione idrostatica uniforme.

Infine il modulo, o rapporto, di Poisson ν è definito come il rapporto tra la deformazione trasversale e quella longitudinale. Tale modulo varia da 0,0 a 0,5, con valore medio di 0,25 per molte rocce: i valori tendono a 0,05 per materiali estremamente duri ed a 0,48 per i materiali soffici. Per i fluidi il modulo assume il valore limite di 0,5 (adimensionale).

Pertanto, avendo determinato i valori di Vp e Vs con rilievi sismici ed il valore del peso di volume per mezzo di prove di laboratorio o stimato, è possibile calcolare i valori delle costanti elastiche che caratterizzano i terreni esaminati con le espressioni:

$$\nu = 0.5 \cdot [(Vp/Vs)^2 - 2] / [(Vp/Vs)^2 - 1] \qquad \mathbf{G} = \gamma \cdot Vs^2 \qquad \mathbf{K} = \gamma \cdot Vp^2 \cdot (4/3 \cdot Vs^2) / g$$

$$\mathbf{E} = \gamma \cdot Vp^2 \cdot [(1 + \nu) \cdot (1 - 2\nu)] / (1 - \nu) = 2 \cdot \gamma \cdot Vs^2 \cdot (1 + \nu)$$

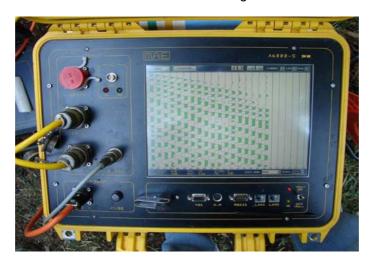
Il confronto fra le espressioni delle velocità delle onde conferma come per uno stesso materiale la velocità longitudinale abbia sempre un valore superiore a quello trasversale.

Va sottolineato infine che i parametri ricavati per via dinamica hanno in genere valori superiori a quelli ricavati da prove statiche in laboratorio, in considerazione del diverso campo di sollecitazione applicata e della diversa deformazione raggiunta.

Per quanto riguarda le terre è da considerare che, la grande variabilità delle caratteristiche elastiche, anche nell'ambito di una stessa unità geolitologica, dovuta alla naturale eterogeneità di tipo strutturale, tessiturale e chimico-fisica, conduce a sensibili difformità nei parametri elastici calcolati.

PROSPEZIONE CROSS-HOLE

Le prospezioni sismiche cross-hole consistono in misure orizzontali di velocità delle onde elastiche longitudinali che si propagano nei terreni. Nella pratica ciò è reso possibile utilizzando due o tre fori di sondaggio, posti a breve distanza affinché la propagazione delle onde avvenga in terreni simili. In uno dei fori si inducono sollecitazioni meccaniche, per mezzo di un'idonea attrezzatura, che generano delle onde elastiche il cui tempo di arrivo è registrato da uno o due geofoni tridimensionali posto nell'altro foro alla stessa quota dell'energizzatore.


I sismogrammi, registrati a partire da un tempo T_0 fornito dal circuito starter, permettono la rilevazione dei tempi di arrivo delle onde P ed S con i quali, attraverso opportune operazioni si determinano le velocità con cui le onde P e S si propagano nei terreni, dalle quali, attraverso idonee formule si ottengono poi i parametri elastici in regime dinamico.

Con questa tecnica peraltro si possono evidenziare strati a bassa velocità che non vengono rilevati con le classiche prospezioni sismiche a rifrazione.

APPARECCHIATURE IMPIEGATE

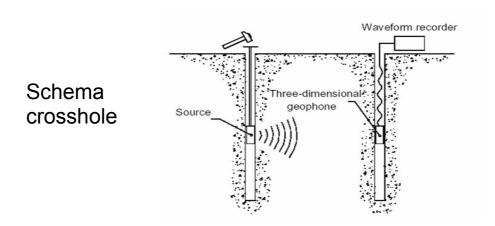
Per le indagini sismiche è stata utilizzata un'attrezzatura costituita da:

- Sismografo digitale marca M.A.E. mod. A 6000S a 24 canali dotato di:
 - possibilità di visualizzazione istantanea delle tracce su display LCD 10.4" a colori retroilluminato;
 - possibilità di registrazione ad incremento di segnale (stacking);
 - funzione di monitoraggio dei disturbi e del trigger;
 - ritardo di acquisizione preselezionabile;
 - zoom delle tracce video:
 - computer interno CPU 300 MHz/128 Mb RAM con software di acquisizione M.A.E.;
 - Hard Disk 2Gb on Compact Flash Disk;
 - Fast Ethernet 10/100 connectors + porte USB;
 - sample for channel: 20.000 sampling : da 50 a 15.000 c/s;
 - resolution: 24 bit band width: from 0 to 8 Khz max signal IN: 10V

- Geofono da pozzo tridimensionale, marca AMBROGEO mod. 3D, a 3 sensori di cui 2 orizzontali disposti a 90° tra loro.
- Energizzatore sismico meccanico da foro, marca AMBROGEO mod. "P/S-wave" energizzatore da foro ad attivazione meccanica con la possibilità di creare onde trasversali con polarità invertita.
- Sonda servo-inclinometrica con sensibilità 20.000 senα, con centralina di acquisizione SISGEO C800 con cavo graduato e strozzacavo, serie di aste quadre in alluminio, centratore e bussola.

MODALITA' OPERATIVE

Per determinare esattamente la distanza tra i fori delle coppie attrezzate per le misure Cross-Hole, sono state eseguite, a partire dal piano campagna misure di verticalità fino a fondo foro. Per effettuare queste misure, in fori attrezzati con tubazioni a pareti lisce, è stata impiegata una sonda in grado di misurare l'angolo di scostamento dalla verticale e la direzione verso la quale tale scostamento si verifica.


Misurando in sito la distanza fra i boccafori e la direzione data dall'allineamento dei due fori si valuta l'andamento reciproco fra i due fori e si calcola la distanza reale ad ogni profondità di misura.

Le misure sismiche sono state effettuate sfruttando la coppia di fori di sondaggio opportunamente attrezzata con tubi PVC, nei quali l'intercapedine tra il terreno ed i tubi è stata iniettata con miscela cementizia allo scopo di rendere solidale il sistema tubo-terreno ed ottenere una buona continuità acustica tra terreno e sensori.

Le misure sono state eseguite nella coppia di fori inserendo in un foro l'energizzatore e nel secondo foro parallelo il geofono tridimensionale, procedendo ad energizzare (generazione di onde elastiche) in uno e registrando nell'altro ad ogni metro di profondità, procedendo dal basso verso l'alto.

L'impulso sismico è stato generato da un energizzatore meccanico, ancorato alle pareti del foro tramite un sistema di pistoncini pneumatici azionati ad azoto, con una massa battente in grado di scorrere ed impattare sia verso l'alto che verso il basso, generando un onda a prevalente componente trasversale, con uguale direzione e verso opposto, permette il rilievo del tempo di arrivo dell'onda S.

Il geofono da pozzo è costituito da tre geofoni a tenuta stagna così orientati: uno verticale e due orizzontali posti a 90° uno dall'altro che viene anch'esso ancorato alle pareti del foro tramite un sistema pneumatico a pistoncini azionati ad azoto.

I sismogrammi acquisiti in campagna e registrati su *pen drive* sono stati successivamente esaminati per l'acquisizione dei tempi d'arrivo delle onde longitudinali (P) e trasversali (S). Noti i tempi di arrivo delle onde e le distanze tra i fori sono state calcolate le velocità di propagazione per ogni metro di profondità delle onde P ed S.

Infine, inserendo le velocità misurate nelle formule soprariportate, sono stati ricavati il coefficiente di Poisson (ν) ed i parametri elastici E e G. Per il calcolo di questi ultimi è stato introdotto, in questo caso, un peso di volume naturale ricavato da analisi di laboratorio o stimato.

ANALISI DEI DATI

La procedura operativa standard (generazione di onde in un foro e ricezione nell'adiacente) è stata adottata per le sei coppie di fori indagate:

- 1. (SV1B SV1Bbis) 35m;
- 2. (SV5B SV5Bbis) 35m;
- 3. (SV13B SV13Bbis) 40m;
- 4. (SV22B SV22Bbis) 40m;
- 5. (SV25B SV25Bbis) 30m;
- 6. (SA32bis SA32ter) 35m.

Le velocità e i parametri elastici dinamici, sintetizzati nelle tabelle e visualizzati nei grafici allegati, sono pertanto i seguenti:

- **Vp** Velocità onde longitudinali (m/s)
- Vs Velocità onde trasversali (m/s)
- v Modulo di Poisson (adimensionale)
- E Modulo di elasticità (Mpa)
- K Modulo di compressibilità (Mpa)
- G Modulo di rigidità o di taglio (Mpa)

I risultati ottenuti dopo l'elaborazione dei dati sono visualizzati negli allegati in calce al presente lavoro; in particolare, per la coppia di fori esaminata, sono stati restituiti tre diversi elaborati:

1. Tabella riassuntiva dei seguenti valori (formato A4):

- tempi e velocità di Vp e Vs;
- coefficiente di Poisson;
- parametri elastici dinamici E K G;
- peso di volume naturale (da analisi di laboratorio o stimato).
- 2. Grafici riassuntivi delle velocità Vp e Vs (formato A3).
- 3. Grafici riassuntivi dei coefficienti di Poisson e parametri elastici dinamici E K G (formato A3).

Le misure sismiche in foro, eseguite nel periodo compreso tra il 1 e 4 febbraio 2011, hanno indagato verticali diverse e distanti tra loro, ognuna con una successione litostratigrafica peculiare.

A seguire si riportano sei tabelle, una per ogni coppia di fori indagata, dove per ogni intervallo stratigrafico si restituiscono i valori di Vp e Vs medi

Nella tabella seguente sono riportate le velocità medie del sondaggio **SV1Bbis** per ogni livello stratigrafico investigato.

LITOTIPO	Vp (m/sec) media	Vs (m/sec) media	Spessore (m)
Terreno vegetale	529	197	1
Argilla limosa/Limo argilloso	1244	543	2
Calcare siltitico	2800	754	5
Calcare	2956	943	6
Calcare deb. Marnoso	1938	750	11
Marna argillosa	1644	770	1
Calcare marnoso	2461	865	3
Marna argillosa	2527	895	6

Nella tabella seguente sono riportate le velocità medie del sondaggio SV5Bbis per ogni livello

stratigrafico investigato.

LITOTIPO	Vp (m/sec) media	Vs (m/sec) media	Spessore (m)
Ghiaia sabbiosa	928	177	1
Sabbia limosa	1035	220	3
Argilla limoso sabbiosa	954	260	2
Sabbia limosa deb. argillosa	1037	256	2
Argilla limosa deb. sabbiosa	1654	433	6
Argilla limosa	1679	504	14
Argilla limosa	1590	381	7

Nella tabella seguente sono riportate le velocità medie del sondaggio SV13Bbis per ogni livello

stratigrafico investigato.

LITOTIDO			
LITOTIPO	Vp (m/sec) media	Vs (m/sec) media	Spessore (m)
Sabbia con limo	971	185	3
Sabbia	1346	186	1
Sabbia con ghiaia	1649	268	6
Limo con argilla	1677	311	3
Sabbia limosa	1672	342	3
Argilla limosa	1770	435	2
Sabbia limosa e argilla	1725	407	4
Sabbia limosa	1574	320	2
Argilla deb. limosa	1664	373	3
Sabbia	1585	460	2
Sabbia deb. limosa	1599	442	1
Sabbia da limosa a con limo	1653	403	6
Argilla limosa	1909	382	4

Nella tabella seguente sono riportate le velocità medie del sondaggio SV22Bbis per ogni livello

stratigrafico investigato.

LITOTIPO	Vp (m/sec) media	Vs (m/sec) media	Spessore (m)
Sabbia con ghiaia	1122	290	6
Argilla da limosa a con limo	1553	343	6
Sabbia da limosa a con limo	1617	325	2
Sabbia deb. limosa	1697	369	4
Argilla da limosa a deb. limosa	1552	400	8
Sabbia deb. limosa	1646	398	1
Limo con sabbia	1762	381	3
Sabbia limosa	1789	340	4
Limo sabbioso a tratti argilloso	2112	391	4
Argilla limosa	1717	404	2

Nella tabella seguente sono riportate le velocità medie del sondaggio SV25Bbis per ogni livello stratigrafico investigato.

LITOTIPO	Vp (m/sec) media	Vs (m/sec) media	Spessore (m)
Limo sabbioso	743	306	2
Calcare siltitico fratturato	1761	610	3
Calcare compatto	2769	764	3
Marna argillosa	1944	537	1
Calcare siltitico con intercalazioni			8
di marna argillosa	2576	777	
Marna calcarea con livelli di			5
calcare marnoso	2705	915	
Calcare fratturato	2608	973	4
Calcare marnoso con livelli di			4
marna argillosa	2178	918	

Nella tabella seguente sono riportate le velocità medie del sondaggio SA32bis per ogni livello

stratigrafico investigato.

LITOTIPO	Vp (m/sec) media	Vs (m/sec) media	Spessore (m)
Clasti calcareo marnosi con Argilla limosa	439	169	4
Sabbia medio fine	466	161	6
Limo sabbioso	2455	714	6
Clasti calcarei con Limo	2823	749	1
Limo sabbioso con clasti calcarei	2672	842	8
Calcare marnoso compatto con tratti molto fratturati	2838	837	10

Le velocità delle onde elastiche misurate in sito nell'ambito delle profondità investigate (max 40.0m) sono risultate compatibili con le caratteristiche e lo stato di aggregazione dei terreni investigati.

DOCUMENTAZIONE FOTOGRAFICA

SV1B + SV1Bbis

SA32bis + SA32ter

SV5B + SV5Bbis

SV13B + SV13Bbis

SV22B+ SV22Bbis

SV25B + SV25Bbis

Rilievo di verticalità

COMMITTENTE: SPEA INGEGNERIA EUROPEA S.p.a

CANTIERE: A1 Incisa-Valdarno (Fase B)

LOCALITA': Incisa (FI)

Profondità in m	Distanza tra i fori SV1B-SV1Bbis
0	5,250
1	5,254
2	5,252
3	5,240
4	5,232
5	5,223
6	5,213
7	5,204
8	5,195
9	5,186
10	5,177
11	5,168
12	5,158
13	5,149
14	5,140
15	5,131
16	5,122
17	5,113
18	5,104
19	5,094
20	5,085
21	5,076
22	5,067
23	5,058
24	5,049
25	5,040
26	5,030
27	5,021
28	5,012
29	5,003
30	4,994
31	4,985
32	4,975
33	4,966
34	4,957
35	4,948

Note:

I rilievi sono stati eseguiti con passo pari ad 1.0m mediante l'impiego di sonda servo-inclinometrica con sensibilità pari a 20.000 sen α , modello SIS GEO VP412C — N° serie S020911, munita di centralina di acquisizione dati tipo SIS GEO C800, cavo antistrappo graduato. La sonda inclinometrica è stata calata con aste a sezione quadra con connessione a baionetta e guida in testa foro, in grado di evitare modifiche dell'orientazione azimutale della sonda per l'intera profondità.

Cantiere SPEA A1 Incisa-Valdarno ampl. 3° corsia Prospezione sismica in foro Cross-Hole SV1Bbis Tabella

2,10

1872

Prof. Dist. Ts ۷p ۷s Vp/Vs Ε Κ G Тр γ nat Stratigrafia di massima (milli<u>sec</u> (MPa) (MPa (MPa (m) (millised (m/s (adim. (m) (m/s (ton/mc) 5.250 0 TERRENO VEGETALE 1 5,254 9.93 26.73 529 197 2.69 0.42 176 363 62 1.60 2 5,252 5,71 11,43 920 459 2,00 0,33 1042 1037 391 1,85 ARGILLA LIMOSA/ LIMO ARGILLOSO 3 5,240 3,34 8,37 1.569 626 2,51 0,41 2038 3560 725 1,85 4 5.232 8.23 1.989 636 0.44 2799 8142 970 2.40 2.63 3.13 5 5,223 1,77 6,03 2.951 866 3,41 0,45 5231 18355 1800 2,40 6 5,213 1,81 6,97 2.880 748 3,85 0,46 3931 17985 1343 2,40 CALCARE SILTITICO 5,204 7,20 2.974 723 0,47 3683 19407 1254 2,40 1,75 4,11 5.195 6.53 3.207 796 4.03 0.47 4458 22486 1519 2.40 8 1.62 9 5,186 1,60 6,20 3.241 836 3,88 0,46 4918 22802 1679 2,40 3.546 10 5,177 1,46 5,43 953 3,72 0,46 6374 27061 2181 2,40 4,96 1.042 0,44 11 5,168 1,60 3.230 3,10 7513 21400 2605 2,40 CALCARE 12 5,158 1,48 4,88 3.485 1.057 3,30 0,45 7774 25389 2682 2,40 13 5,149 2,23 6,33 2.309 813 2,84 0,43 4540 10599 1588 2,40 14 5,140 2.67 5.37 1.925 957 2,01 0.34 5875 5918 2199 2,40 2,55 15 5,131 2,67 6,80 1.922 755 0.41 3690 6697 1310 2,30 16 5,122 2,80 6,05 1.829 847 2,16 0,36 4496 5457 1648 2,30 17 5,113 2,37 6,47 2.157 790 2,73 0,42 4086 8723 1436 2,30 2.017 8138 18 5.104 2,53 8,30 615 3.28 0.45 2520 870 2,30 CALCARE DEB. MARNOSO 19 5.094 1.715 708 3218 5193 1151 2.97 7.20 2.42 0.40 2.30 2,67 730 2,61 3462 2,30 20 5,085 6,97 1.905 0,41 6661 1224 21 5,076 2,93 6,85 1.732 741 2,34 0,39 3506 5180 1263 2,30 22 5,067 2,40 6,53 2.111 776 2,72 0,42 3938 8342 1385 2,30 23 5,058 2,40 6,53 2.107 775 2,72 0,42 3924 8312 1380 2,30 24 5,049 2,40 6,67 2.104 757 2,78 0,43 3757 8358 1318 2,30 25 5,040 2,93 6,63 1.720 2,26 0,38 3664 4995 1329 2,30 26 5,030 3,06 6,53 1.644 770 2,13 0,36 3388 3983 1246 2,10 MARNA ARGILLOSA 27 5,021 2,53 6,40 1.985 785 2,53 0,41 3812 6809 1354 2,20 28 5,012 2,00 5,60 2.506 895 2,80 0,43 5029 11381 1762 2,20 CALCARE MARNOSO 29 5,003 2.892 915 5316 15825 2,20 1,73 5,47 3,16 0,44 1840 30 4 994 2.00 7,20 2.497 694 3.60 0.46 2946 11657 1010 2.10 31 4.985 1.60 5.74 3.115 868 3.59 0.46 4618 18133 1584 2.10 32 4,975 2,00 5,47 2.488 910 2,74 0,42 4944 10600 1737 2,10 MARNA ARGILLOSA 4,966 4,98 2.197 997 2,20 0,37 5724 7301 2088 2,26 2,10 5,18 2.316 957 5374 1923 34 4,957 2,14 2,42 0,40 8639 2,10

5320

11081

944

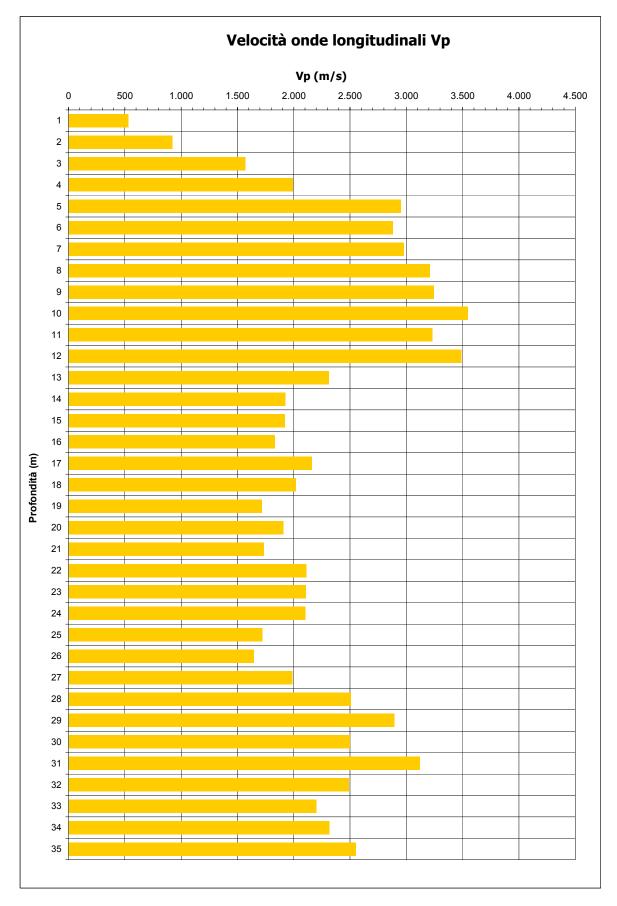
2.70

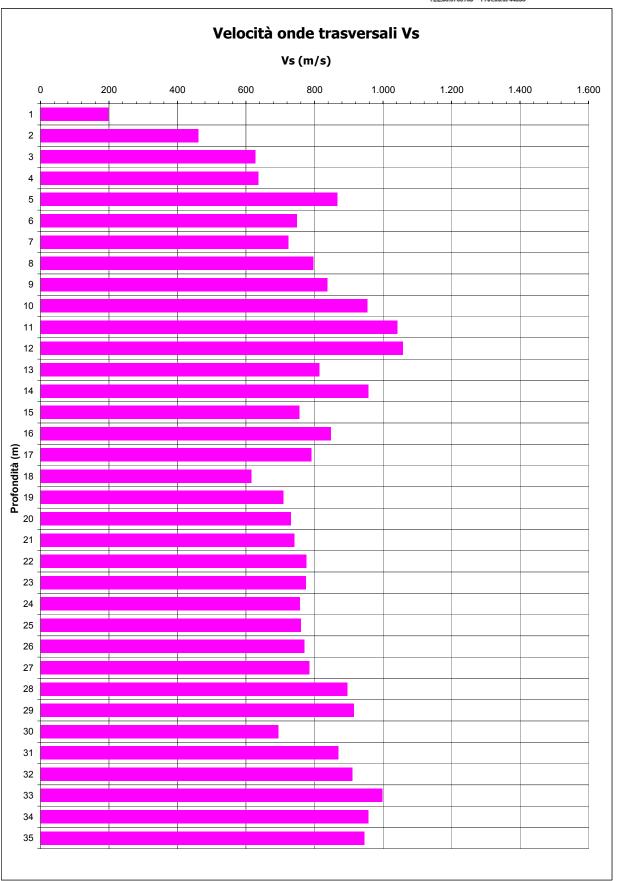
0.42

Prof.	Profondità da p.c. in metri
Dist.	Distanza tra gli assi dei fori
Vp	Velocità onde longitudinali in metri al secondo
Vs	Velocità onde trasversali in metri al secondo
ν	Coefficiente di Poisson
E	Modulo di elasticità dinamico (Young) in MPa
G	Modulo di taglio dinamico in MPa
K	Modulo di compressibilità dinamico in MPa
γ	peso di volume naturale stimato in ton/m ³

35

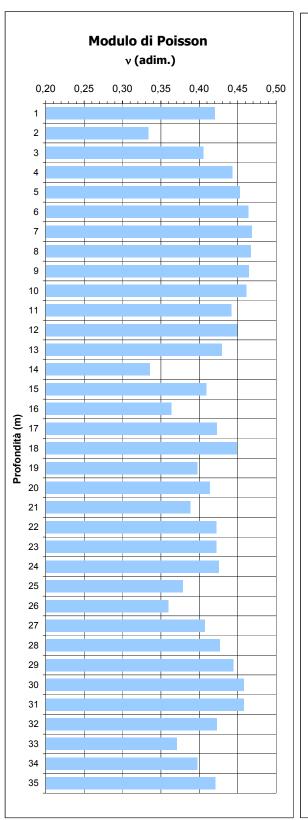
4.948

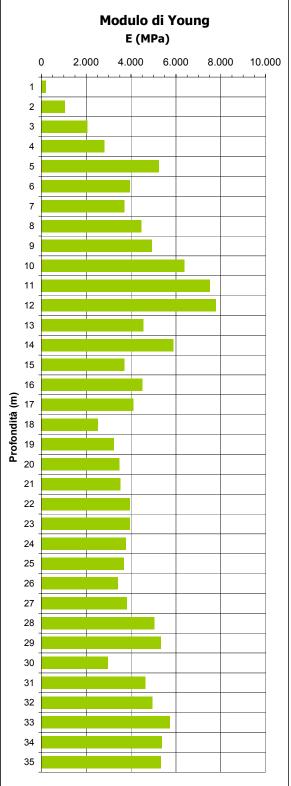

1.94

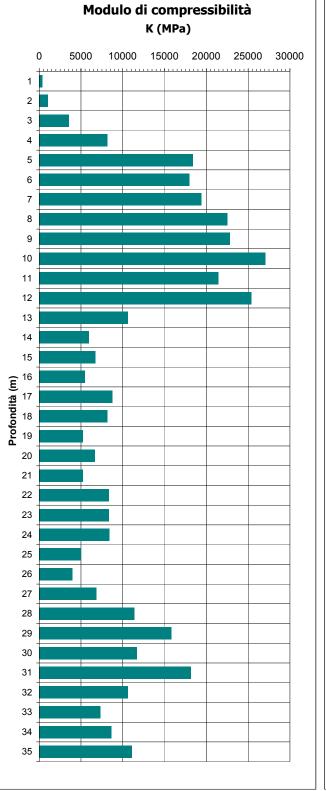

5.24

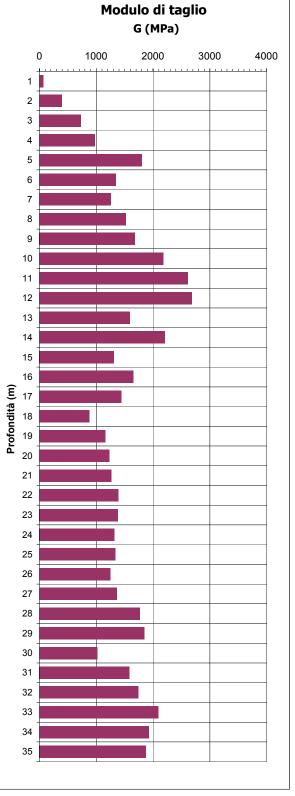
2.551

Cantiere SPEA A1 Incisa-Valdarno ampl. 3° corsia Prospezione sismica in foro Cross-Hole SV1Bbis Grafici Vp e Vs








Cantiere SPEA A1 Incisa-Valdarno ampl. 3° corsia Prospezione sismica in foro Cross-Hole SV1Bbis Grafici Vp e Vs

Rilievo di verticalità

COMMITTENTE: SPEA INGEGNERIA EUROPEA S.p.a

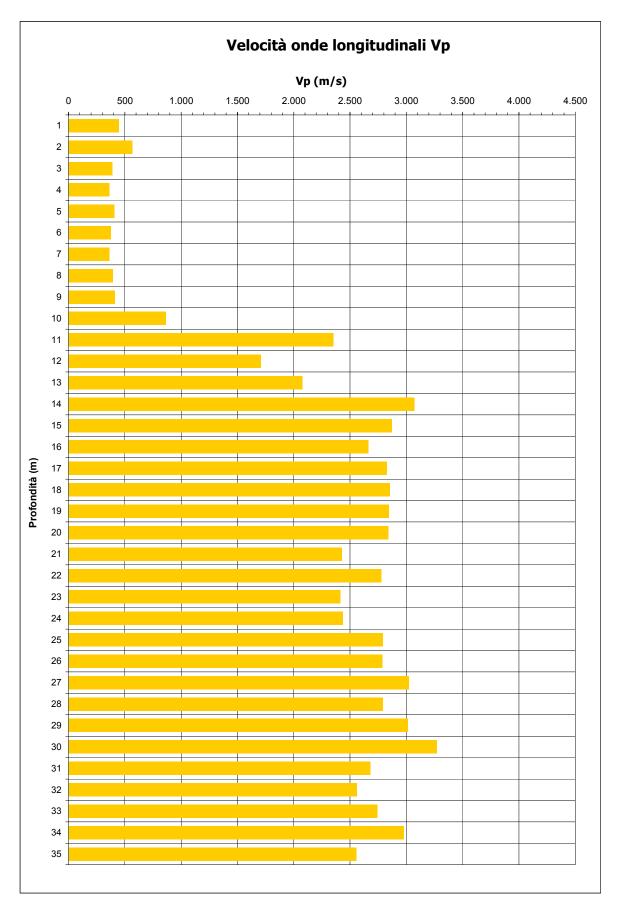
CANTIERE: A1 Incisa-Valdarno (Fase B)

LOCALITA': Incisa (FI)

Profondità in m	Distanza tra i fori SA32bis-SA32ter
0	5,120
1	5,109
2	5,099
3	5,088
4	5,078
5	5,067
6	5,057
7	5,046
8	5,036
9	5,025
10	5,015
11	5,004
12	4,993
13	4,983
14	4,972
15	4,962
16	4,951
17	4,941
18	4,930
19	4,920
20	4,909
21	4,899
22	4,888
23	4,877
24	4,867
25	4,856
26	4,846
27	4,835
28	4,825
29	4,814
30	4,804
31	4,793
32	4,783
33	4,772
34	4,761
35	4,751

Cantiere SPEA A1 Incisa-Valdarno ampl. 3° corsia Prospezione sismica in foro Cross-Hole SA32bis Tabella

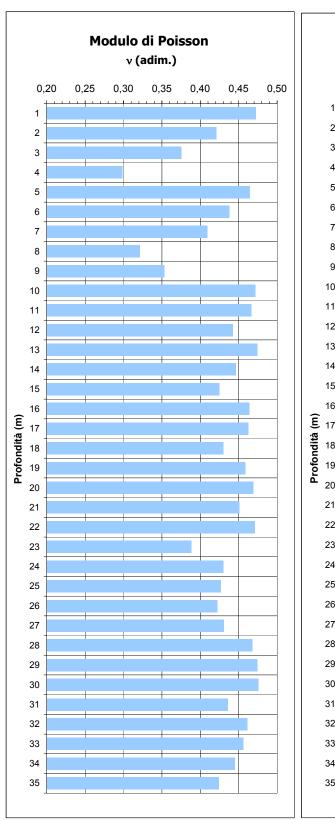
Prof.	Dist.	Тр	Ts	Vp	Vs	Vp/Vs	ν	Е	К	G	γ nat	
(m)	(m)		(millisec.)	(m/s)	(m/s)	. p. 10	(adim.)	(MPa)	(MPa)	(MPa)	(ton/mc)	Stratigrafia di massima
0	5.120	(1111111000.)	(1111111300.)	(111/3)	(11175)		(ddiiii.)	(iiii u)	(IIII U)	(iiii u)	(tonnino)	SA32
1	5,109	11,47	50,00	445	102	4,36	0,47	51	302	17	1,65	
2	5,099	9,07	24,57	562	208	2,71	0,42	226	475	80	1,85	CLASTI CALCAREO MARNOSI
3	5,088	13,17	29,47	386	173	2,24	0,38	152	201	55	1,85	CON ARGILLA LIMOSA
4	5,078	14,10	26,30	360	193	1,87	0,30	179	147	69	1,85	
5	5,067	12,53	48,73	404	104	3,89	0,46	60	281	21	1,90	
6	5,057	13,60	40,90	372	124	3,01	0,44	84	222	29	1,90	
7	5,046	14,00	35,67	360	141	2,55	0,41	107	195	38	1,90	SABBIA MEDIO FINE
8	5,036	12,94	25,20	389	200	1,95	0,32	200	185	76	1,90	
9	5,025	12,26	25,73	410	195	2,10	0,35	196	221	72	1,90	
10	5,015	5,82	25,14	862	199	4,32	0,47	223	1300	76	1,90	
11	5,004	2,13	8,50	2.349	589	3,99	0,47	1931	9537	658	1,90	
12	4,993	2,93	9,13	1.704	547	3,12	0,44	1640	4725	568	1,90	
13	4,983	2,40	10,87	2.076	458	4,53	0,47	1177	7601	399	1,90	LIMO SABBIOSO
14	4,972	1,62	5,20	3.069	956	3,21	0,45	5025	15467	1737	1,90	
15	4,962	1,73	4,78	2.868	1.038	2,76	0,42	5833	12803	2047	1,90	
16	4,951	1,86	7,13	2.662	694	3,83	0,46	2682	12150	916	1,90	
17	4,941	1,75	6,60	2.823	749	3,77	0,46	3441	15056	1177	2,10	CLASTI CALCAREI CON LIMO
18	4,930	1,73	4,94	2.850	998	2,86	0,43	5698	13485	1992	2,00	
19	4,920	1,73	6,26	2.844	786	3,62	0,46	3604	14418	1235	2,00	
20	4,909	1,73	7,13	2.838	689	4,12	0,47	2785	14729	948	2,00	LIMO SABBIOSO CON
21	4,899	2,02	6,75	2.425	726	3,34	0,45	3056	10279	1053	2,00	CLASTI CALCAREI
22	4,888	1,76	7,48	2.777	653	4,25	0,47	2512	14181	854	2,00	
23	4,877	2,02	4,73	2.415	1.031	2,34	0,39	5906	8759	2127	2,00	
24	4,867	2,00	5,70	2.433	854	2,85	0,43	4170	9825	1458	2,00	
25	4,856	1,74	4,87	2.791	997	2,80	0,43	5675	12831	1989	2,00	
26	4,846	1,74	4,74	2.785	1.022	2,72	0,42	6837	14524	2404	2,30	
27	4,835	1,60	4,58	3.022	1.056	2,86	0,43	7334	17456	2564	2,30	
28	4,825	1,73	7,00	2.789	689	4,05	0,47	3207	16309	1093	2,30	
29	4,814	1,60	7,23	3.009	666	4,52	0,47	3007	19317	1020	2,30	CALCARE MARNOSO COMPATTO
30	4,804	1,47	6,79	3.268	707	4,62	0,48	3397	22853	1151	2,30	CON TRATTI MOLTO FRATTURATI
31	4,793	1,79	5,30	2.678	904	2,96	0,44	5401	13878	1881	2,30	
32	4,783	1,87	6,97	2.558	686	3,73	0,46	3165	13498	1083	2,30	
33	4,772	1,74	6,14	2.743	777	3,53	0,46	4047	15331	1389	2,30	
34	4,761	1,60	5,07	2.976	939	3,17	0,44	5861	17532	2029	2,30	
35	4,751	1,86	5,13	2.554	926	2,76	0,42	5619	12283	1973	2,30	

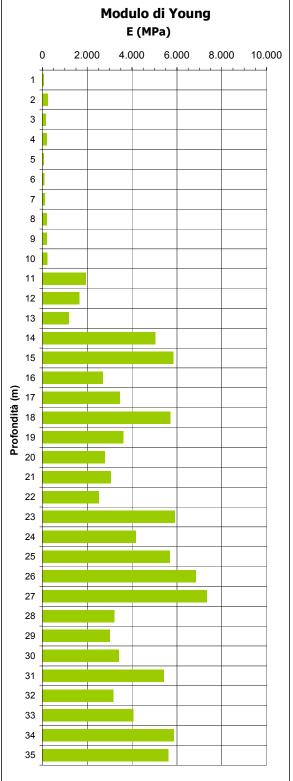

N.B.: Il sondaggio di riferimento a c.c. SA32 è stato eseguito nel 2003 da altra impresa.

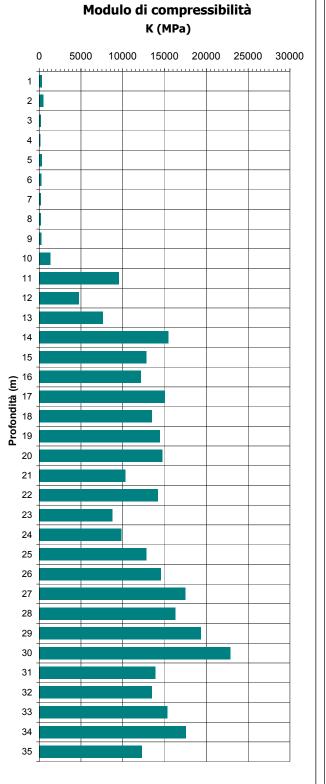

Prof.	Profondita da p.c. in metri
Dist.	Distanza tra gli assi dei fori
Vp	Velocità onde longitudinali

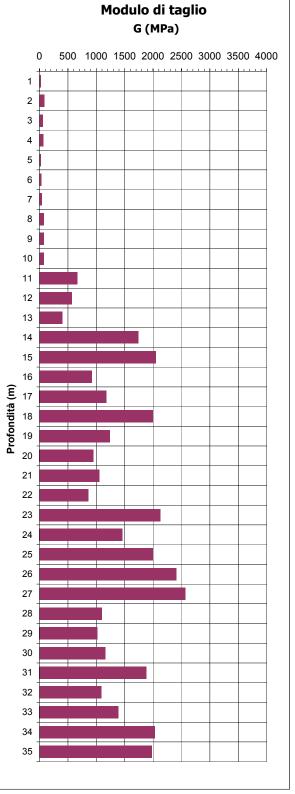
Distanza tra gli assi dei fori
Velocità onde longitudinali in metri al secondo
Velocità onde trasversali in metri al secondo
Coefficiente di Poisson
Modulo di elasticità dinamico (Young) in MPa
Modulo di taglio dinamico in MPa
Modulo di compressibilità dinamico in MPa
peso di volume naturale stimato in ton/m3

Cantiere SPEA A1 Incisa-Valdarno ampl. 3° corsia Prospezione sismica in foro Cross-Hole SA32bis Grafici Vp e Vs








Cantiere SPEA A1 Incisa-Valdarno ampl. 3° corsia Prospezione sismica in foro Cross-Hole SA32bis Grafici Vp e Vs

Rilievo di verticalità

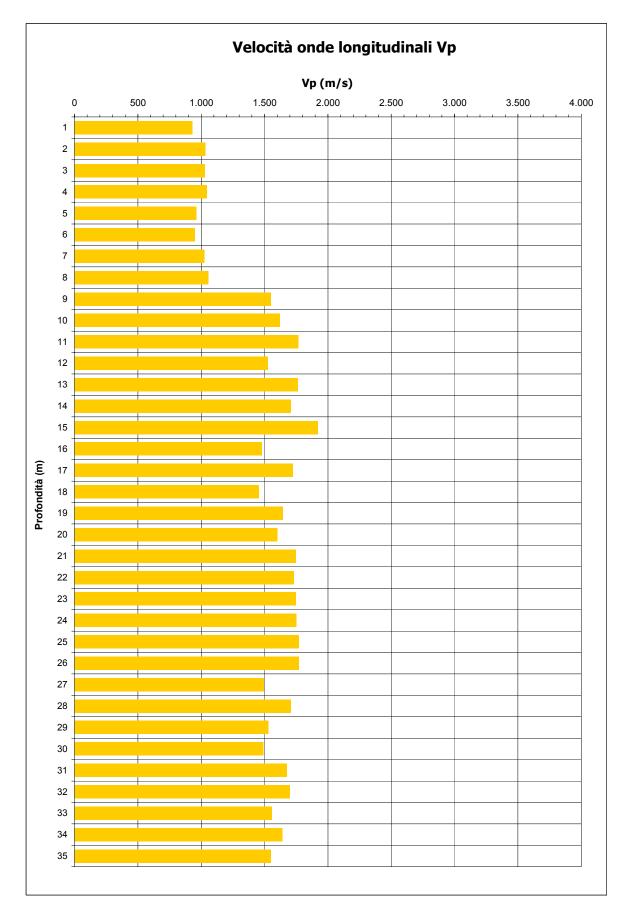
COMMITTENTE: SPEA INGEGNERIA EUROPEA S.p.a

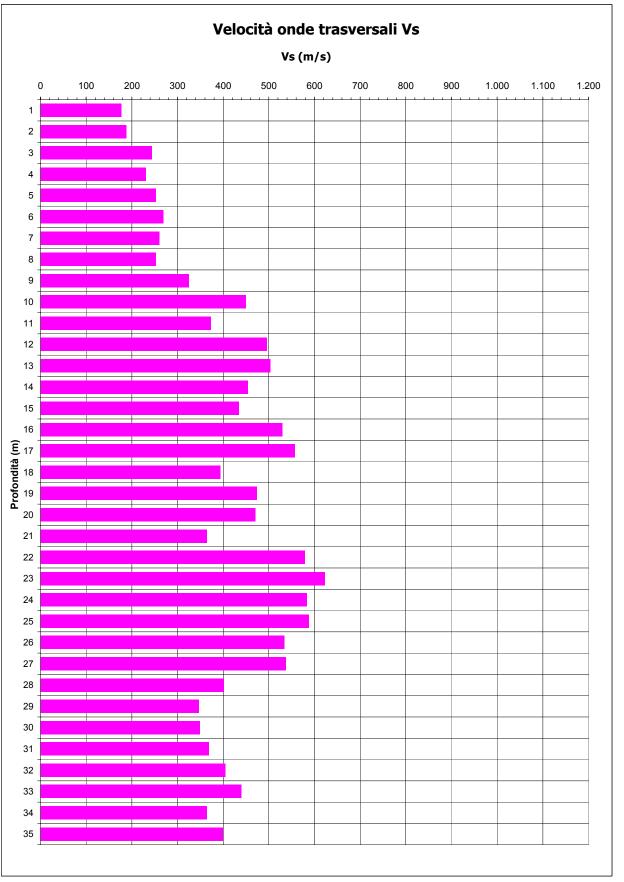
CANTIERE: A1 Incisa-Valdarno (Fase B)

LOCALITA': Incisa (FI)

Profondità in m	Distanza tra i fori SV5B-SV5Bbis
0	8,420
1	8,404
2	8,387
3	8,371
4	8,354
5	8,338
6	8,321
7	8,305
8	8,289
9	8,272
10	8,256
11	8,239
12	8,223
13	8,206
14	8,190
15	8,174
16	8,157
17	8,141
18	8,124
19	8,108
20	8,091
21	8,075
22	8,059
23	8,042
24	8,026
25	8,009
26	7,993
27	7,976
28	7,960
29	7,944
30	7,927
31	7,911
32	7,894
33	7,878
34	7,861
35	7,845

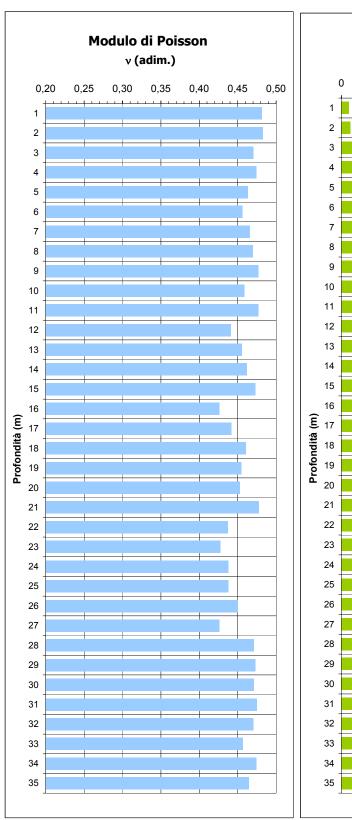
Cantiere SPEA A1 Incisa-Valdarno ampl. 3° corsia Prospezione sismica in foro Cross-Hole SV5Bbis Tabella

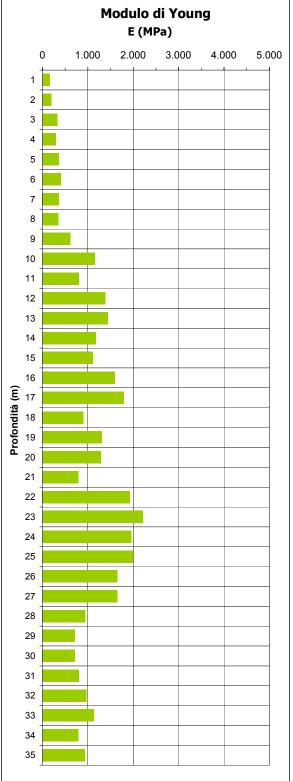


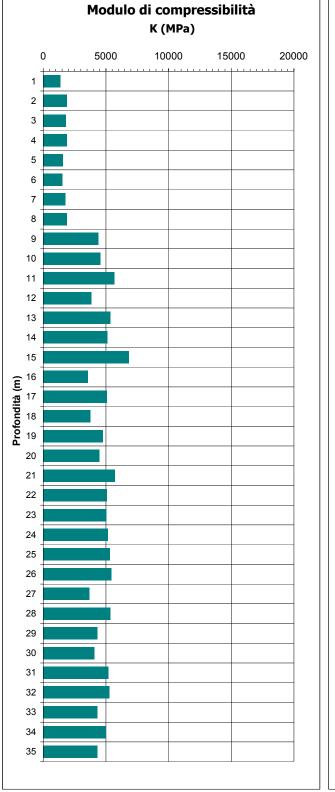

Prof.	Dist.	Тр	Ts	Vp	Vs	Vp/Vs	ν	E	K	G	γ nat	
(m)	(m)	(millisec.)	(millisec.)	(m/s)	(m/s)		(adim.)	(MPa)	(MPa)	(MPa)	(ton/mc)	Stratigrafia di massima
0	8,420											
1	8,404	9,06	47,53	928	177	5,25	0,48	157	1381	53	1,70	GHIAIA SABBIOSA
2	8,387	8,13	44,63	1.032	188	5,49	0,48	194	1868	65	1,85	
3	8,371	8,14	34,47	1.028	243	4,23	0,47	321	1797	109	1,85	SABBIA LIMOSA
4	8,354	8,00	36,27	1.044	230	4,53	0,47	289	1872	98	1,85	
5	8,338	8,67	33,07	962	252	3,81	0,46	353	1584	121	1,90	ARGILLA LIMOSO SABBIOSA
6	8,321	8,80	31,00	946	268	3,52	0,46	399	1505	137	1,90	
7	8,305	8,13	32,03	1.022	259	3,94	0,47	365	1751	124	1,85	SABBIA LIMOSA DEB. ARGILLOSA
8	8,289	7,87	32,87	1.053	252	4,18	0,47	346	1881	118	1,85	
9	8,272	5,34	25,46	1.549	325	4,77	0,48	608	4372	206	1,95	
10	8,256	5,10	18,40	1.619	449	3,61	0,46	1145	4552	393	1,95	
11	8,239	4,67	22,15	1.764	372	4,74	0,48	797	5667	270	1,95	ARGILLA LIMOSA DEB. SABBIOSA
12	8,223	5,40	16,60	1.523	495	3,07	0,44	1379	3855	478	1,95	
13	8,206	4,66	16,33	1.761	503	3,50	0,46	1434	5350	492	1,95	
14	8,190	4,80	18,07	1.706	453	3,76	0,46	1171	5104	401	1,95	
15	8,174	4,26	18,83	1.919	434	4,42	0,47	1110	6810	377	2,00	
16	8,157	5,53	15,43	1.475	529	2,79	0,43	1594	3579	559	2,00	
17	8,141	4,73	14,63	1.721	556	3,09	0,44	1786	5061	619	2,00	
18	8,124	5,60	20,67	1.451	393	3,69	0,46	902	3769	309	2,00	
19	8,108	4,93	17,13	1.645	473	3,47	0,45	1304	4776	448	2,00	
20	8,091	5,06	17,23	1.599	470	3,41	0,45	1281	4492	441	2,00	ARGILLA LIMOSA
21	8,075	4,63	22,20	1.744	364	4,79	0,48	782	5688	265	2,00	
22	8,059	4,66	13,93	1.729	579	2,99	0,44	1924	5051	669	2,00	
23	8,042	4,61	12,93	1.744	622	2,80	0,43	2208	5017	774	2,00	
24	8,026	4,59	13,78	1.749	582	3,00	0,44	1951	5171	678	2,00	
25	8,009	4,53	13,63	1.768	588	3,01	0,44	1986	5291	691	2,00	
26	7,993	4,52	15,00	1.768	533	3,32	0,45	1647	5456	568	2,00	
27	7,976	5,34	14,87	1.494	536	2,78	0,43	1641	3667	575	2,00	
28	7,960	4,67	19,87	1.704	401	4,25	0,47	944	5342	321	2,00	
29	7,944	5,20	22,92	1.528	347	4,41	0,47	708	4315	240	2,00	
30 31	7,927 7.911	5,33	22,73	1.487	349 368	4,26	0,47	716 798	4069	243 271	2,00	
31	7,911	4,73	21,51	1.673	368 404	4,55	0,47	798 961	5195	327	- 1	
	,	4,65	19,53	1.698		4,20	0,47		5288		2,00	ARGILLA LIMOSA
33	7,878	5,06	17,93	1.557	439	3,54	0,46	1125	4301	386	2,00	
34	7,861	4,80	21,60	1.638	364	4,50	0,47	781	4973	265	2,00	
35	7,845	5,07	19,70	1.547	398	3,89	0,46	929	4333	317	2,00	

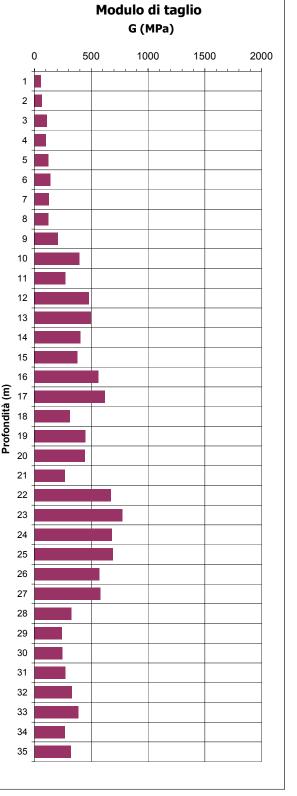
Prof.	Profondità da p.c. in metri
Dist.	Distanza tra gli assi dei fori
Vp	Velocità onde longitudinali in metri al secondo
Vs	Velocità onde trasversali in metri al secondo
n	Coefficiente di Poisson
E	Modulo di elasticità dinamico (Young) in MPa
G	Modulo di taglio dinamico in MPa
K	Modulo di compressibilità dinamico in MPa
Y	peso di volume naturale stimato in ton/m3

Cantiere SPEA A1 Incisa-Valdarno ampl. 3° corsia Prospezione sismica in foro Cross-Hole SV5Bbis Grafici Vp e Vs








Cantiere SPEA A1 Incisa-Valdarno ampl. 3° corsia Prospezione sismica in foro Cross-Hole SV5Bbis Grafici Vp e Vs

Rilievo di verticalità

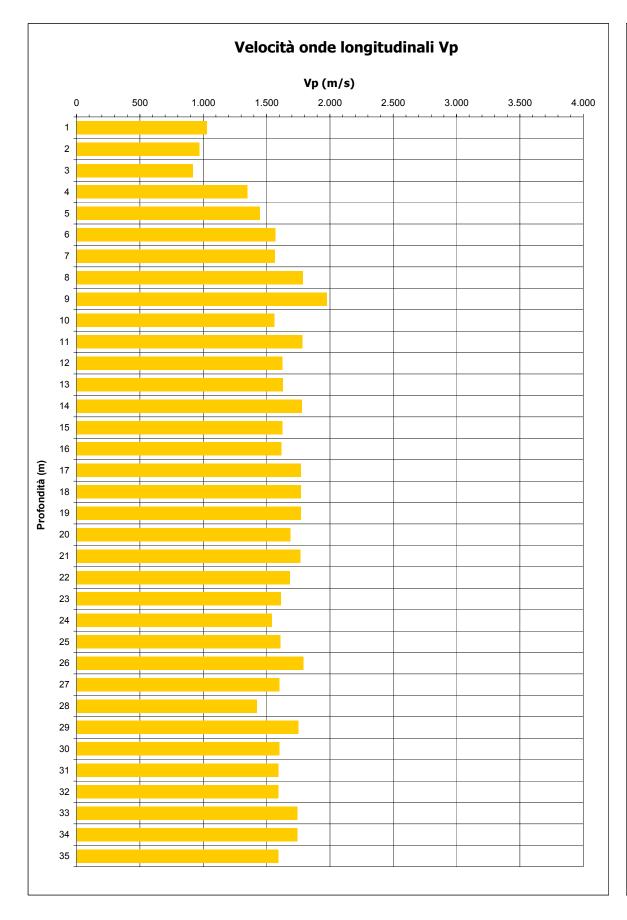
COMMITTENTE: SPEA INGEGNERIA EUROPEA S.p.a

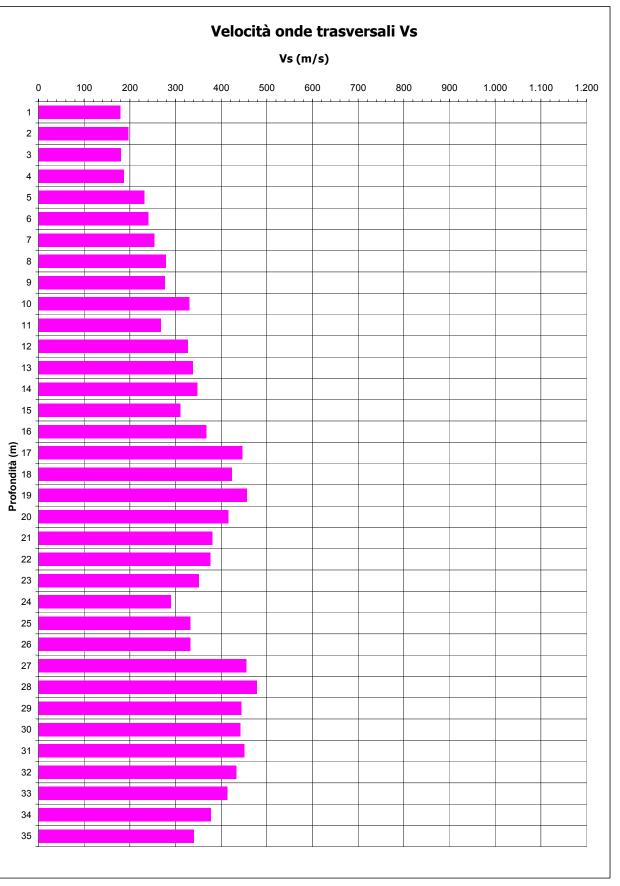
CANTIERE: A1 Incisa-Valdarno (Fase B)

LOCALITA': Incisa (FI)

	_
Profondità in m	Distanza tra i fori SV13B-SV13Bbis
0	5,040
1	5,035
2	5,030
3	5,025
4	5,021
5	5,016
6	5,011
7	5,006
8	5,001
9	4,996
10	4,991
11	4,986
12	4,982
13	4,977
14	4,972
15	4,967
16	4,962
17	4,957
18	4,952
19	4,947
20	4,943
21	4,938
22	4,933
23	4,928
24	4,923
25	4,918
26	4,913
27	4,908
28	4,904
29	4,899
30	4,894
31	4,889
32	4,884
33	4,879
34	4,874
35	4,869
36	4,865
37	4,860
38	4,855
39	4,850
40	4,845

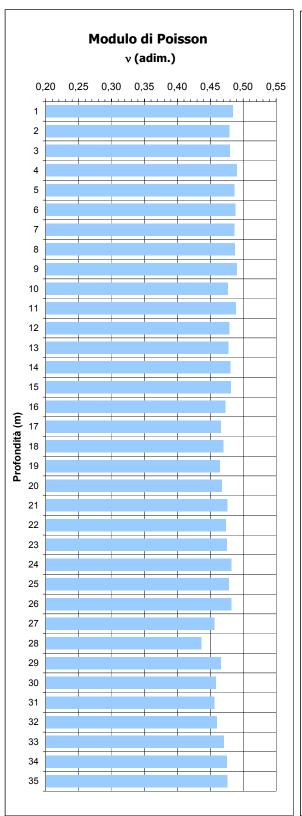
Cantiere SPEA A1 Incisa-Valdarno ampl. 3° corsia Prospezione sismica in foro Cross-Hole SV13Bbis Tabella

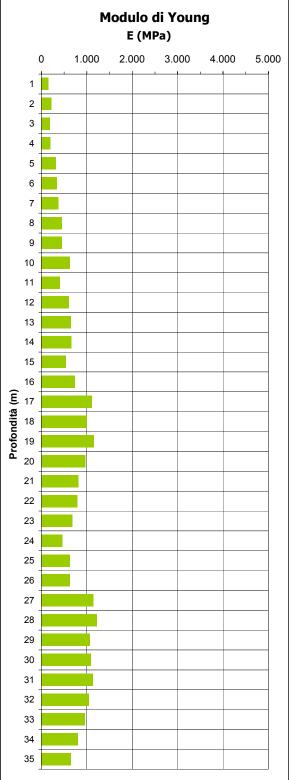


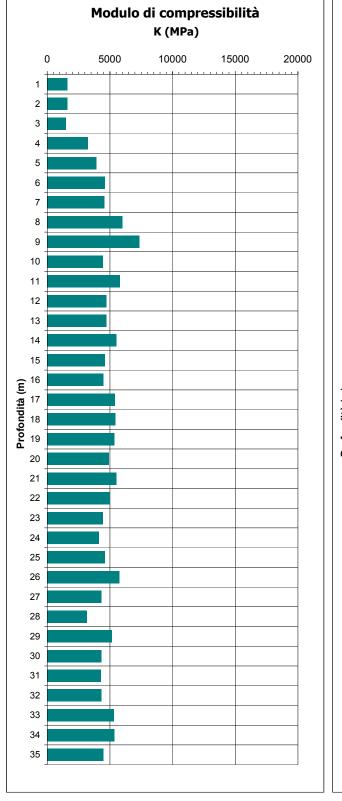

Prof.	Dist.	Тр	Ts	Vp	Vs	Vp/Vs	v	E	K	G	γ nat	
(m)	(m)	(millisec.)	(millisec.)	(m/s)	(m/s)	·	(adim.)	(MPa)	(MPa)	(MPa)	(ton/mc)	Stratigrafia di massima
O	5,040	,	,		1 -1							
1	5,035	4,90	28,20	1.028	179	5,76	0,48	151	1609	51	1,60	
2	5,030	5,20	25,60	967	196	4,92	0,48	211	1624	71	1,85	SABBIA CON LIMO
3	5,025	5,47	27,90	919	180	5,10	0,48	178	1470	60	1,85	
4	5,021	3,73	26,93	1.346	186	7,22	0,49	192	3241	64	1,85	SABBIA
5	5,016	3,47	21,72	1.445	231	6,26	0,49	309	3906	104	1,95	
6	5,011	3,20	20,91	1.566	240	6,53	0,49	333	4597	112	1,95	
7	5,006	3,20	19,73	1.564	254	6,17	0,49	373	4570	126	1,95	SABBIA CON GHIAIA
8	5,001	2,80	18,00	1.786	278	6,43	0,49	448	5975	151	1,95	
9	4,996	2,53	18,13	1.975	276	7,17	0,49	441	7351	148	1,95	
10	4,991	3,20	15,13	1.560	330	4,73	0,48	627	4428	212	1,95	
11	4,986	2,80	18,67	1.781	267	6,67	0,49	403	5801	136	1,90	
12	4,982	3,07	15,25	1.623	327	4,97	0,48	600	4697	203	1,90	LIMO CON ARGILLA
13	4,977	3,06	14,73	1.626	338	4,81	0,48	641	4701	217	1,90	
14	4,972	2,80	14,34	1.776	347	5,12	0,48	658	5495	222	1,85	
15	4,967	3,06	16,00	1.623	310	5,23	0,48	528	4602	178	1,85	SABBIA LIMOSA
16	4,962	3,07	13,50	1.616	368	4,40	0,47	736	4466	250	1,85	
17	4,957	2,80	11,12	1.770	446	3,97	0,47	1107	5411	378	1,90	ARGILLA LIMOSA
18	4,952	2,80	11,70	1.769	423	4,18	0,47	1001	5449	340	1,90	
19	4,947	2,80	10,85	1.767	456	3,88	0,46	1157	5365	395	1,90	
20	4,943	2,93	11,90	1.687	415	4,06	0,47	962	4932	328	1,90	SABBIA LIMOSA E ARGILLA
21	4,938	2,80	13,00	1.763	380	4,64	0,48	809	5501	274	1,90	
22	4,933	2,93	13,13	1.684	376	4,48	0,47	790	4990	268	1,90	
23	4,928	3,06	14,03	1.610	351	4,58	0,48	673	4460	228	1,85	SABBIA LIMOSA
24	4,923	3,20	17,00	1.538	290	5,31	0,48	460	4140	155	1,85	
25	4,918	3,06	14,83	1.607	332	4,85	0,48	618	4595	209	1,90	
26	4,913	2,75	14,80	1.787	332	5,38	0,48	621	5742	209	1,90	ARGILLA DEB. LIMOSA
27	4,908	3,07	10,80	1.599	454	3,52	0,46	1143	4301	392	1,90	
28	4,904	3,45	10,27	1.421	477	2,98	0,44	1212	3151	422	1,85	SABBIA
29	4,899	2,80	11,05	1.750	443	3,95	0,47	1066	5139	364	1,85	
30	4,894	3,06	11,08	1.599	442	3,62	0,46	1081	4333	371	1,90	SABBIA DEB. LIMOSA
31	4,889	3,07	10,85	1.592	451	3,53	0,46	1124	4272	386	1,90	
32	4,884	3,07	11,30	1.591	432	3,68	0,46	1037	4303	355	1,90	
33	4,879	2,80	11,80	1.743	413	4,21	0,47	955	5296	325	1,90	SABBIA DA LIMOSA A CON LIMO
34	4,874	2,80	12,93	1.741	377	4,62	0,48	797	5357	270	1,90	
35	4,869	3,06	14,33	1.591	340	4,68	0,48	648	4485	219	1,90	
36	4,865	2,93	12,03	1.660	404	4,11	0,47	912	4787	311	1,90	
37	4,860	2,70	11,50	1.800	423	4,26	0,47	1051	5958	357	2,00	
38	4,855	2,56	12,83	1.896	378	5,01	0,48	847	6760	286	2,00	ARGILLA LIMOSA
39	4,850	2,67	13,12	1.816	370	4,91	0,48	808	6188	273	2,00	
40	4.845	2.28	13,53	2.125	358	5.93	0.49	762	8624	256	2.00	

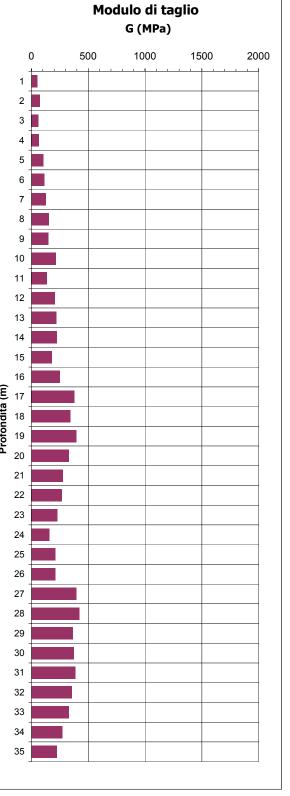
Prof.	Profondità da p.c. in metri
Dist.	Distanza tra gli assi dei fori
Vp	Velocità onde longitudinali in metri al secondo
Vs	Velocità onde trasversali in metri al secondo
n	Coefficiente di Poisson
E	Modulo di elasticità dinamico (Young) in MPa
G	Modulo di taglio dinamico in MPa
K	Modulo di compressibilità dinamico in MPa
γ	peso di volume naturale stimato in ton/m3

Cantiere SPEA A1 Incisa-Valdarno ampl. 3° corsia Prospezione sismica in foro Cross-Hole SV13Bbis Grafici Vp e Vs








Cantiere SPEA A1 Incisa-Valdarno ampl. 3° corsia Prospezione sismica in foro Cross-Hole SV13Bbis Grafici Vp e Vs

Rilievo di verticalità

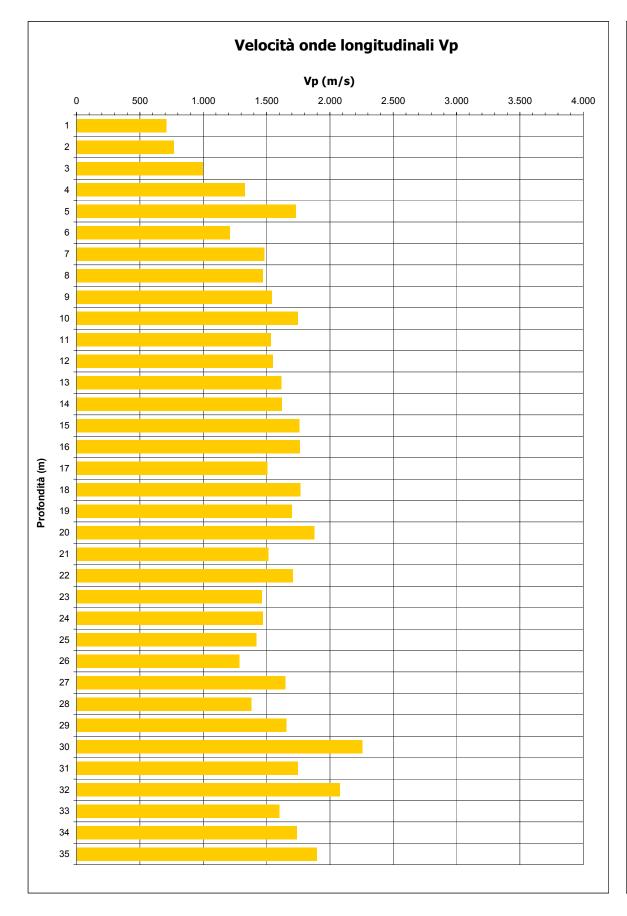
COMMITTENTE: SPEA INGEGNERIA EUROPEA S.p.a

CANTIERE: A1 Incisa-Valdarno (Fase B)

LOCALITA': Incisa (FI)

Profondità in m	Distanza tra i fori SV22B-SV22Bbis
0	5,270
1	5,278
2	5,287
3	5,295
4	5,304
5	5,312
6	5,321
7	5,329
8	5,337
9	5,346
10	5,354
11	5,363
12	5,371
13	5,380
14	5,388
15	5,396
16	5,405
17	5,413
18	5,422
19	5,430
20	5,439
21	5,447
22	5,455
23	5,464
24	5,472
25	5,481
26	5,489
27	5,497
28	5,506
29	5,514
30	5,523
31	5,531
32	5,540
33	5,548
34	5,556
35	5,565
36	5,573
37	5,582
38	5,590
39	5,599
40	5,607
	J. J

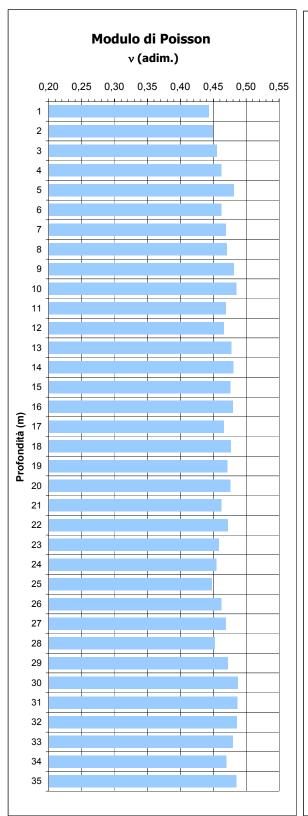
Cantiere SPEA A1 Incisa-Valdarno ampl. 3° corsia Prospezione sismica in foro Cross-Hole SV22Bbis Tabella

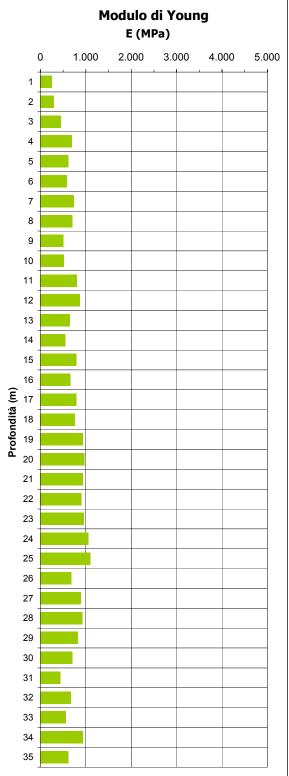


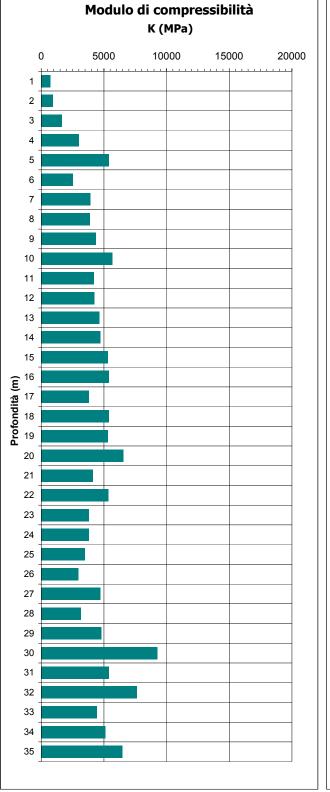
Prof.	Dist.	Тр	Ts	Vp	Vs	Vp/Vs	ν	E	K	G	γ nat	
(m)	(m)	(millisec.)	(millisec.)	(m/s)	(m/s)		(adim.)	(MPa)	(MPa)	(MPa)	(ton/mc)	Stratigrafia di massima
0	5,250											
1	5,278	7,47	23,37	707	226	3,13	0,44	250	728	87	1,70	
2	5,287	6,90	22,80	766	232	3,30	0,45	288	946	99	1,85	
3	5,295	5,33	18,70	993	283	3,51	0,46	444	1660	152	1,90	SABBIA CON GHIAIA
4	5,304	4,00	15,13	1.326	351	3,78	0,46	683	3006	233	1,90	
5	5,312	3,07	16,14	1.730	329	5,26	0,48	610	5374	206	1,90	
6	5,321	4,40	16,54	1.209	322	3,76	0,46	575	2497	197	1,90	
7	5,329	3,60	14,87	1.480	358	4,13	0,47	736	3909	250	1,95	
8	5,337	3,63	15,33	1.470	348	4,22	0,47	695	3871	236	1,95	
9	5,346	3,47	18,07	1.541	296	5,21	0,48	505	4368	171	1,95	ARGILLA DA LIMOSA A CON LIMO
10	5,354	3,07	18,00	1.744	297	5,86	0,49	512	5659	173	1,95	
11	5,363	3,50	14,42	1.532	372	4,12	0,47	792	4187	270	1,95	
12	5,371	3,47	13,80	1.548	389	3,98	0,47	866	4246	295	1,95	
13	5,380	3,33	15,90	1.615	338	4,77	0,48	643	4634	217	1,90	SABBIA DA LIMOSA A CON LIMO
14	5,388	3,33	17,33	1.618	311	5,20	0,48	544	4694	184	1,90	
15	5,396	3,07	14,27	1.758	378	4,65	0,48	781	5323	265	1,85	
16	5,405	3,07	15,67	1.761	345	5,10	0,48	651	5400	220	1,85	SABBIA DEBOLMENTE LIMOSA
17	5,413	3,60	14,27	1.504	379	3,96	0,47	781	3799	266	1,85	
18	5,422	3,07	14,57	1.766	372	4,75	0,48	757	5388	256	1,85	
19	5,430	3,20	13,67	1.697	397	4,27	0,47	928	5298	316	2,00	
20	5,439	2,90	13,47	1.875	404	4,64	0,48	962	6550	326	2,00	
21	5,447	3,60	13,63	1.513	400	3,79	0,46	934	4122	319	2,00	
22	5,455	3,20	13,94	1.705	391	4,36	0,47	902	5364	306	2,00	ARGILLA DA LIMOSA A DEB. LIMOSA
23	5,464	3,74	13,54	1.461	404	3,62	0,46	950	3806	326	2,00	
24	5,472	3,73	12,87	1.467	425	3,45	0,45	1052	3794	362	2,00	
25	5,481	3,87	12,60	1.416	435	3,26	0,45	1096	3480	378	2,00	
26	5,489	4,27	16,12	1.285	341	3,78	0,46	678	2973	232	2,00	
27	5,497	3,34	13,82	1.646	398	4,14	0,47	883	4711	301	1,90	SABBIA DEBOLMENTE LIMOSA
28	5,506	4,00	13,52	1.376	407	3,38	0,45	915	3156	315	1,90	
29	5,514	3,33	14,40	1.656	383	4,32	0,47	820	4802	279	1,90	LIMO CON SABBIA
30	5,523	2,45	15,67	2.254	352	6,40	0,49	702	9270	236	1,90	
31	5,531	3,17	19,67	1.745	281	6,21	0,49	435	5397	146	1,85	
32	5,540	2,67	15,94	2.075	348	5,97	0,49	664	7608	223	1,85	SABBIA LIMOSA
33	5,548	3,47	17,47	1.599	318	5,03	0,48	552	4447	187	1,85	
34	5,556	3,20	13,45	1.736	413	4,20	0,47	928	5118	316	1,85	
35	5,565	2,94	16,97	1.893	328	5,77	0,48	607	6486	204	1,90	
36	5,573	2,47	14,37	2.256	388	5,82	0,48	849	9223	286	1,90	LIMO SABBIOSO A TRATTI ARGILLOSO
37	5,582	2,53	13,90	2.206	402	5,49	0,48	909	8773	306	1,90	
38	5,590	2,67	12,47	2.094	448	4,67	0,48	1127	7761	382	1,90	
39	5,599	3,33	15,53	1.681	361	4,66	0,48	767	5267	260	2,00	ARGILLA LIMOSA
40	5,607	3,20	12,53	1.752	447	3,92	0,47	1174	5564	400	2,00	

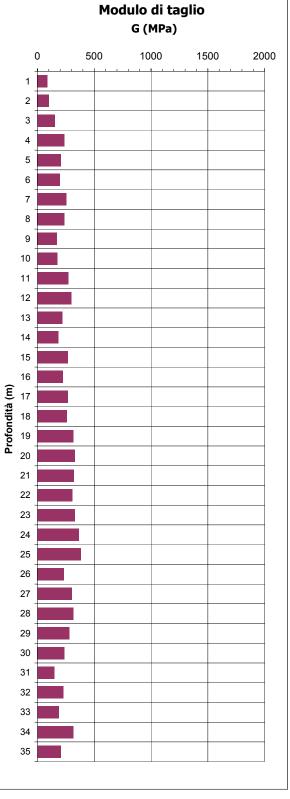
Prof.	Profondita da p.c. in metri
Dist.	Distanza tra gli assi dei fori
Vp	Velocità onde longitudinali in metri al secondo
Vs	Velocità onde trasversali in metri al secondo
n	Coefficiente di Poisson
E	Modulo di elasticità dinamico (Young) in MPa
G	Modulo di taglio dinamico in MPa
K	Modulo di compressibilità dinamico in MPa
γ	peso di volume naturale stimato in ton/m3

Cantiere SPEA A1 Incisa-Valdarno ampl. 3° corsia Prospezione sismica in foro Cross-Hole SV22Bbis Grafici Vp e Vs








Cantiere SPEA A1 Incisa-Valdarno ampl. 3° corsia Prospezione sismica in foro Cross-Hole SV22Bbis Grafici Vp e Vs

Rilievo di verticalità

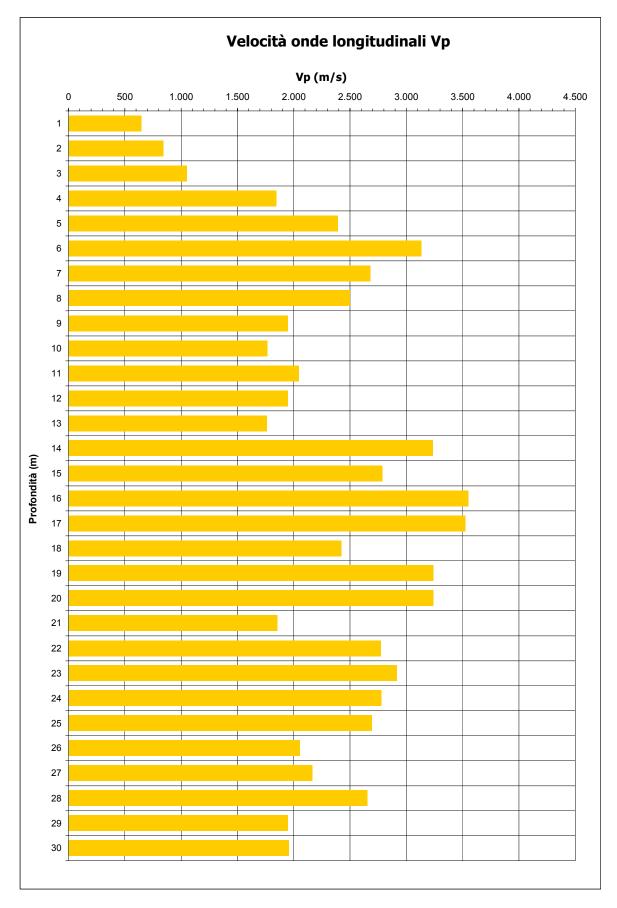
COMMITTENTE: SPEA INGEGNERIA EUROPEA S.p.a

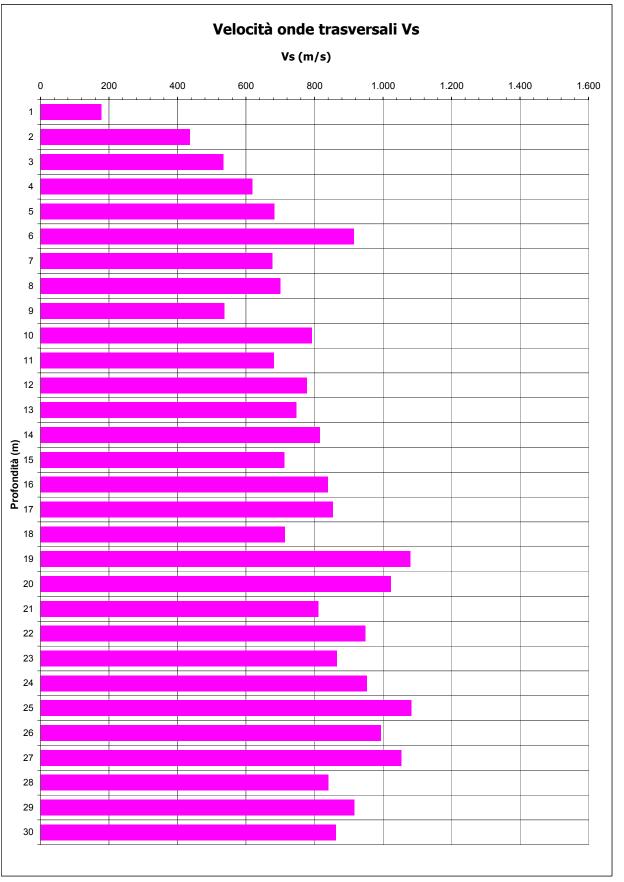
CANTIERE: A1 Incisa-Valdarno (Fase B)

LOCALITA': Incisa (FI)

	1
Profondità in m	Distanza tra i fori SV25B-SV25Bbis
0	5,160
1	5,161
2	5,162
3	5,164
4	5,165
5	5,166
6	5,167
7	5,168
8	5,170
9	5,171
10	5,172
11	5,173
12	5,174
13	5,176
14	5,177
15	5,178
16	5,179
17	5,180
18	5,182
19	5,183
20	5,184
21	5,185
22	5,186
23	5,188
24	5,189
25	5,190
26	5,191
27	5,192
28	5,194
29	5,195
30	5,196

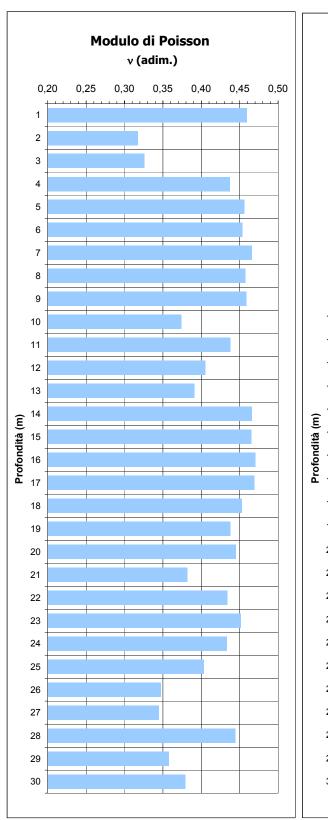
Cantiere SPEA A1 Incisa-Valdarno ampl. 3° corsia Prospezione sismica in foro Cross-Hole SV25Bbis Tabella

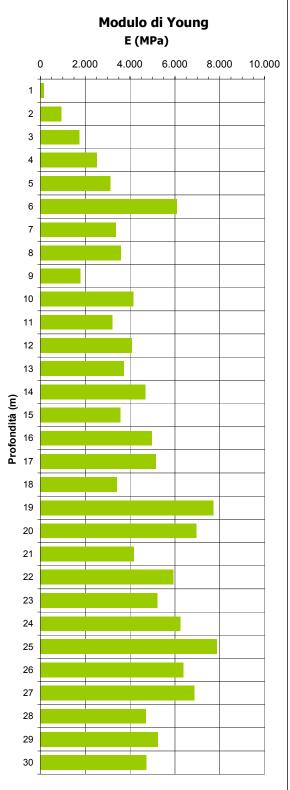


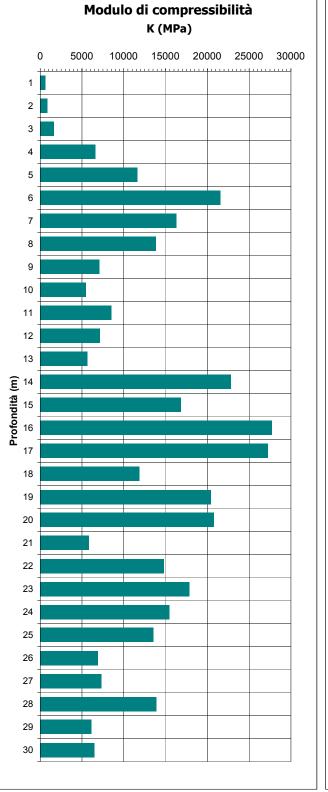

Prof.	Dist.	Тр	Ts	Vp	Vs	Vp/Vs	ν	Е	К	G	γ nat	
(m)	(m)		(millisec.)	(m/s)	(m/s)	, p. 10	(adim.)	(MPa)	(MPa)	(MPa)	(ton/mc)	Stratigrafia di massima
0	5,160	((()	()		()	(2)	(4.)	(2)	(001111110)	-
1	5,161	8,00	29,17	645	177	3,65	0,46	146	595	50	1,60	LIMO SABBIOSO
2	5,162	6,14	11,87	841	435	1,93	0,32	922	835	350	1,85	
3	5,164	4,93	9,70	1.047	532	1,97	0,33	1728	1642	652	2,30	CALCARE SILTITICO
4	5,165	2,80	8,37	1.845	617	2,99	0,44	2517	6608	876	2,30	FRATTURATO
5	5,166	2,16	7,58	2.392	682	3,51	0,46	3111	11644	1068	2,30	
6	5,167	1,65	5,65	3.132	915	3,42	0,45	6078	21567	2091	2,50	
7	5,168	1,93	7,65	2.678	676	3,96	0,47	3346	16284	1141	2,50	CALCARE COMPATTO
8	5,170	2,07	7,38	2.497	700	3,57	0,46	3575	13852	1227	2,50	
9	5,171	2,66	9,63	1.944	537	3,62	0,46	1766	7075	605	2,10	MARNA ARGILLOSA
10	5,172	2,93	6,53	1.765	792	2,23	0,37	4137	5430	1506	2,40	
11	5,173	2,53	7,60	2.045	681	3,00	0,44	3197	8488	1112	2,40	
12	5,174	2,66	6,66	1.945	777	2,50	0,41	4071	7097	1449	2,40	CALCARE SILTITICO CON
13	5,176	2,94	6,94	1.760	746	2,36	0,39	3712	5616	1335	2,40	INTERCALAZIONI DI MARNA ARGILLOSA
14	5,177	1,60	6,35	3.236	815	3,97	0,47	4677	22825	1595	2,40	
15	5,178	1,86	7,28	2.784	711	3,91	0,47	3558	16854	1214	2,40	
16	5,179	1,46	6,18	3.547	838	4,23	0,47	4957	27745	1686	2,40	
17	5,180	1,47	6,07	3.524	853	4,13	0,47	5135	27269	1748	2,40	
18	5,182	2,14	7,27	2.421	713	3,40	0,45	3394	11837	1168	2,30	
19	5,183	1,60	4,80	3.239	1.080	3,00	0,44	7709	20404	2681	2,30	MARNA CALCAREA CON
20	5,184	1,60	5,07	3.240	1.022	3,17	0,44	6948	20782	2405	2,30	LIVELLI DI CALCARE MARNOSO
21	5,185	2,80	6,40	1.852	810	2,29	0,38	4172	5831	1510	2,30	
22	5,186	1,87	5,47	2.773	948	2,93	0,43	5929	14823	2068	2,30	
23	5,188	1,78	6,00	2.914	865	3,37	0,45	5209	17858	1794	2,40	
24	5,189	1,87	5,45	2.775	952	2,91	0,43	6236	15461	2175	2,40	CALCARE FRATTURATO
25	5,190	1,93	4,80	2.689	1.081	2,49	0,40	7876	13512	2806	2,40	
26	5,191	2,53	5,23	2.052	993	2,07	0,35	6371	6900	2365	2,40	
27	5,192	2,40	4,93	2.164	1.053	2,05	0,34	6862	7309	2551	2,30	
28	5,194	1,96	6,18	2.650	840	3,15	0,44	4691	13879	1624	2,30	CALCARE MARNOSO CON
29	5,195	2,67	5,67	1.946	916	2,12	0,36	5242	6086	1931	2,30	LIVELLI DI MARNA ARGILLOSA
30	5,196	2,66	6,03	1.953	862	2,27	0,38	4711	6450	1708	2,30	

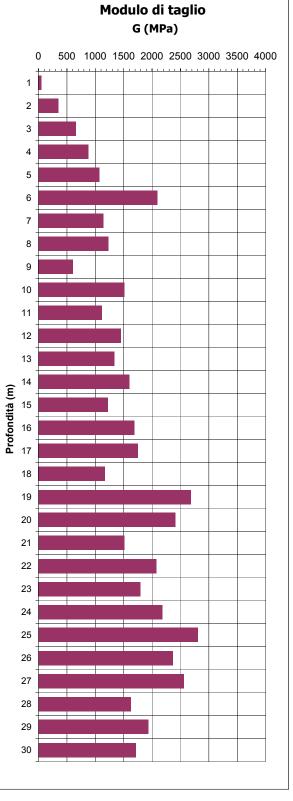
Prof.	Profondità da p.c. in metri
Dist.	Distanza tra gli assi dei fori
Vp	Velocità onde longitudinali in metri al secondo
Vs	Velocità onde trasversali in metri al secondo
n	Coefficiente di Poisson
E	Modulo di elasticità dinamico (Young) in MPa
G	Modulo di taglio dinamico in MPa
K	Modulo di compressibilità dinamico in MPa
γ	peso di volume naturale stimato in ton/m3

Cantiere SPEA A1 Incisa-Valdarno ampl. 3° corsia Prospezione sismica in foro Cross-Hole SV25Bbis Grafici Vp e Vs








Cantiere SPEA A1 Incisa-Valdarno ampl. 3° corsia Prospezione sismica in foro Cross-Hole SV25Bbis Grafici Vp e Vs

