

AUTOSTRADA (A1): MILANO-NAPOLI

AMPLIAMENTO ALLA TERZA CORSIA NEL TRATTO INCISA - VALDARNO LOTTO1

PROGETTO ESECUTIVO

DOCUMENTAZIONE GENERALE

GEOLOGIA INDAGINI GEOGNOSTICHE IN SITO

PROSPEZIONI SISMICHE - PROGETTO ESECUTIVO (DOWN HOLE)

IL GEOLOGO

Dott. Vittorio Boerio Ord. Geol. Lombardia N. 794

Responsabile Geologia

IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Paola Castiglioni Ord. Ingg. Varese N. 2725 IL DIRETTORE TECNICO

Ing. Orlando Mazza Ord. Ingg. Pavia N. 1496

Progettazione Nuove Opere Autostradali

CODICE IDENTIFICATIVO							ORDINATORE				
RIFERIMENTO	RIFERIMENTO PROGETTO RIFERIMENTO DIRETTORIO RIFERIMENTO ELABORATO					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
Codice Commessa	Lotto, Sub-Prog, Cod. Appalto	Fase	Capitolo	apitolo Paragrafo WBS Parte d'opera				Disciplina	Progressivo	XXX	
119941	LL01	PE	DG	GEO	SI000	00000	R	GEO	1028	-0	SCALA -

	PROJECT MAN	AGER:	SUPPORTO SPECIALISTICO:			REVISIONE
SDEa	chea					data
opea		Ing. Paola Castiglioni			0	OTTOBRE 2019
FNICHNIEFDINIC		Ord. Ingg. Varese N. 2725				
ENGINEERING						
A 41 - 11 - 15	REDATTO:		VERIFICATO:			
Atlantia Atlantia	REDATTO.		VERTION TO.			

VISTO DEL COMMITTENTE

IL RESPONSABILE UNICO DEL PROCEDIMENTO Ing. Furio Cruciani

VISTO DEL CONCEDENTE

Ministero delle Infrastrutture e dei Trasporti dipartimento per le infrastrutture, gli affari generali ed il personale

SPEA ENGINEERING S.p.A.

AUTOSTRADA A1 MILANO - NAPOLI Ampliamento alla terza corsia del tratto Incisa Valdarno – Firenze Sud

Progetto esecutivo INDAGINI IN SITO LOTTO 1 RELAZIONE TECNICA INDAGINI GEOFISICHE

ALLEGATO F INDAGINE SISMICA DOWN HOLE

Emissione	Data	Redatto	Verificato	Approvato
Ed. 01	Novembre	Dott. Geol. Marco Abbigliati	Dott. Geol. Enrico Isetta	Dott. Geol. Marco Arecco
Rev. 00	2018			

4 PROSPEZIONE SISMICA IN FORO - DOWN HOLE

4.1 Metodo di acquisizione

Una prospezione sismica in foro con tecnica Down-Hole prevede la misura dei tempi di propagazione delle onde di compressione (P) e di taglio, quest'ultime polarizzate nel piano orizzontale (SH), tra un punto di energizzazione in superficie (shot) e due punti di ricezione mobili in profondità entro un foro di sondaggio (Figura 11).

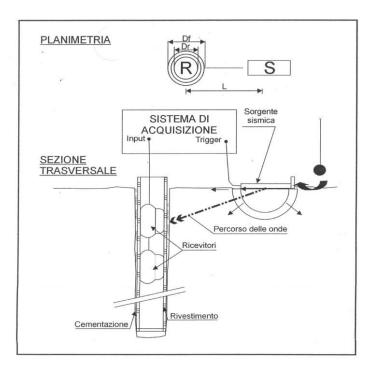


Figura 11 - Schema Down Hole impiegando una coppia di ricevitori costituiti ognuna da una tripletta di ricevitori ad interasse 1m.

Per la generazione di onde P e SH le energizzazioni devono essere effettuate rispettivamente sia in compressione che di taglio.

L'apparato di ricezione deve essere composto da:

- uno o più geofoni tridimensionali, con appropriata risposta in frequenza (4,5-14 Hz), direzionali (Verticale: Up-Down (U-D) ed orizzontali: Nord-Sud (N-S), Est-Ovest (E-W)) e dotati di un sistema di ancoraggio alle pareti del tubo-foro e di un sistema di orientamento dei sensori orizzontali secondo un azimuth definito dall'operatore;
- un sismografo multi-canale, in grado di registrare su memoria di massa le forme d'onda in modo digitale;
- un trasduttore (trigger) alloggiato nella sorgente necessario per l'identificazione dell'istante di partenza della sollecitazione dinamica mediante massa battente.

La procedura di acquisizione prevede il posizionamento dell'energizzazione ad una distanza prossima al boccaforo, quindi la registrazione per ogni spostamento ad intervalli di profondità

uguali e prestabiliti, a partire dalla massima profondità fino al piano di campagna (p.d.c.), dei segnali alle tre componenti (U-D, N-S, E-W) lungo il foro.

4.2 Interpretazione dei risultati: metodo diretto

L'interpretazione dei risultati di un'indagine Down Hole mediante il metodo diretto prevede in primo luogo la correzione dei tempi di tragitto (t) impiegati dalle onde per percorrere la distanza sorgente-ricevitore, così da considerare l'inclinazione del percorso. Se "d" è la distanza della sorgente dall'asse del foro, "r" la distanza fra la sorgente e la terna dei sensori, "z" la profondità di misura (Figura 12), i tempi corretti (tcorr) saranno uguali a:

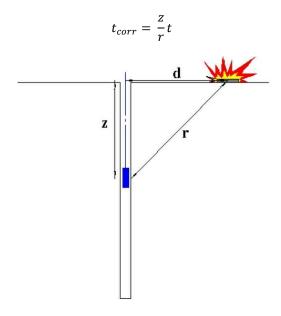


Figura 12 - Schema per la correzione dei tempi mediante interpretazione con metodo diretto

In secondo luogo lo studio dei tempi mediante osservazione degli scarti ottenuti tra i valori a profondità consecutive, così da individuare eventuali rallentamenti o accelerazioni nell'arrivo del segnale ai sensori e l'inserimento dei suddetti e delle profondità di misura in un grafico tempo-profondità, così da ottenere segmenti di retta relativi a strati omogenei di terreno caratterizzati da una determinata velocità pari all'inclinazione della retta (Figura 13).

Attraverso la determinazione delle velocità delle onde P e Sh è possibile ricavare (ISRM, 1998) (Corrao M. & Coco G., 2006):

- Coefficiente di Poisson	(<i>v</i>)	
- Peso di volume	(γ_d)	in T/m³
- Modulo di Elasticità dinamico	(E_d)	in Kg/cm²
- Modulo di Taglio dinamico	(G_d)	in Kg/cm²
- Modulo di Compressibilità dinamico	(K _d)	in Kg/cm²

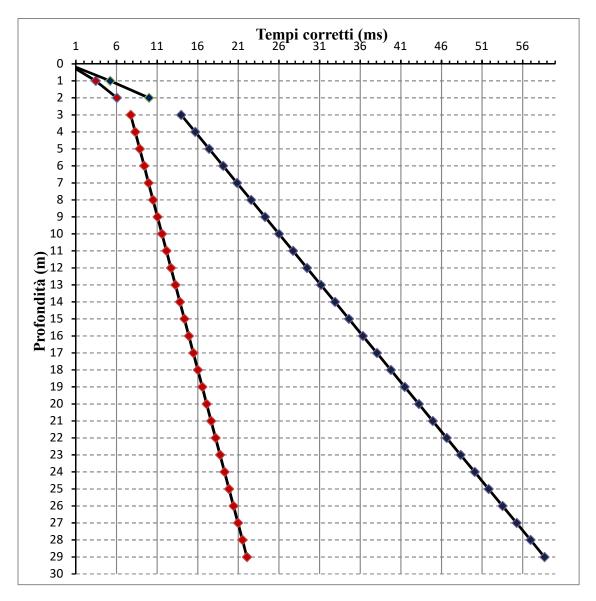


Figura 13 - Esempio a due strati di un grafico dei tempi corretti di arrivo delle onde P ed Sh alle varie profondità d'indagine; in rosso i tempi delle onde di compressione, in blu di quelle di taglio polarizzate orizzontalmente.

Il Coefficiente di Poisson (v), noto come la costante che lega le deformazioni in un corpo, può essere collegato, da un punto di vista bidimensionale, ad uno sforzo di trazione, che causa nel corpo stesso un allungamento in una direzione e un raccorciamento nell'altra, o ad uno sforzo di compressione che, analogamente, determina una contrazione in una direzione e una dilatazione nella direzione opposta.

Tale parametro può presentare un range di variazione compreso tra un massimo di 0.5 ed un minimo di 0; il valore di 0.5 è caratteristico di materiali che si deformano senza cambiamenti di volume (es. acqua), valori leggermente inferiori (0.47 - 0.49) sono tipici di argille o materiali molto saturi; valori inferiori sono indicativi di materiali da poco consolidati a sovraconsolidati.

Per le rocce si presentano range di variazioni molto ampi collegati in particolare sia al grado di fratturazione sia alla presenza di cavità, stratificazioni e litologie e comunque tra (0.46 e 0.20).

Il Coefficiente di Poisson , in funzione della V_p e della V_{sh} è definito dalla (2):

(2)
$$v_d = \frac{Vp^2 - 2 \cdot Vs^2}{2 \cdot (Vp^2 - Vs^2)}$$
.

Dalla velocità delle onde di compressione sulla base della (3) è possibile ricavare in via empirica il peso di volume del terreno:

(3)
$$\gamma_d = 0.51 \cdot \text{Vp}^{0.19}$$

Conoscendo il peso di volume del terreno, dalla (4) è possibile calcolare la densità il cui valore è indispensabile per ricavare i moduli di elasticità e di taglio:

$$(4) \ \rho = \frac{\gamma_d}{g}$$

dove g è l'accelerazione di gravità pari a 9.8 m/sec²

Il Modulo di Young o di Elasticità normale E_{din}. definisce la deformazione longitudinale di un corpo, intesa come il rapporto tra l'allungamento (o l'accorciamento) e la lunghezza originale del corpo stesso, è definito dalla (5):

(5)
$$E_d = \rho V p^2 \cdot \frac{(1 + v_d) \cdot (1 - 2v_d)}{(1 - v_d)}$$

Il Modulo di Taglio o di Rigidità G_{din} definisce la deformazione tangenziale di un corpo, intesa come l'angolo di rotazione del corpo stesso, quest'ultima generata da uno sforzo di taglio, esso è definito dalla (6):

(6)
$$G_d = \rho V s^2$$

Il Modulo di Compressibilità o Modulo di Volume è ottenibile qualora lo sforzo venga applicato nelle tre direzioni, generando uniforme e di conseguenza componenti dello sforzo uguali e con deformazione rappresentata da una variazione di volume che può essere indicata numericamente dall'inverso di tale coefficiente, descritto dalla (7):

(7)
$$K_d = \frac{E_d}{(3 - 6v_d)}$$

I parametri elastici dinamici così calcolati risultano comunque sempre più elevati di quelli statici forniti da prove di carico in situ in quanto gli impulsi sismici sono di breve durata e le sollecitazioni ad essi associate sono relativamente modeste e rientrano nel campo delle deformazioni istantanee.

Mediante la prova down hole potrà altresì essere caratterizzato il sito d'indagine in corrispondenza del sondaggio meccanico secondo le classi di terreno previste dalla nuova normativa sismica fino alle profondità raggiunte dalla prova stessa, calcolando il valore medio della velocità delle onde di taglio fino alla profondità raggiunta, o significativa.

4.3 SCELTE OPERATIVE

La campagna di acquisizione dati ha visto la realizzazione di 1 prospezioni sismiche in foro nel sondaggio SE3, tale prova è stata denominata SE3DH. La prova ha raggiunto la profondità di 40 m.

In particolare sono stati scelti tempi di campionamento pari a 0.125 ms e di registrazione pari a 1 s, l'intervallo di misura all'interno del foro è stato di 1m la prospezione è stata effettuata in risalita da fondo foro fino al piano di campagna.

La distanza tra l'energizzazione ed il boccaforo è stata di 4 m, in relazione alla logistica del sito.

Durante le registrazioni sono stati generati e salvati 4 file ad ogni singola profondità, relativi alla energizzazione:

- di compressione,
- di taglio con battuta destra con determinata polarità,
- di taglio con battuta sinistra con stessa polarità,
- di taglio con battuta destra con polarità invertita.

Tale scelta è stata effettuata al fine di ottenere in campagna la somma delle tracce con polarità invertita per la sottrazione del contributo dell'onda di compressione, ed inoltre per poter osservare in fase di elaborazione, la sovrapposizione delle due singole registrazioni con polarità invertite per un maggiore riscontro nella scelta del primo arrivo dell'onda SH.

Per ogni file si sono registrate tre tracce dei segnali ai geofoni: Verticale (U-D) ed orizzontali (N-S, E-W).

4.4 RISULTATI DELLE INDAGINI SIMICHE

Nell'allegato fuori testo denominato Allegato F sono riportati i risultati delle indagini raccolti in schede comprendenti:

- indicazioni sondaggio e data in cui è stata effettuata la prospezione con foto di riferimento;
- posizione energizzazione;
- profondità massima della prova
- tabella con:
 - profondità di indagine in metri dal piano di campagna;
 - tempi misurati e tempi corretti in msec per onde P ed SH sia per il Ricevitore 1 che per il ricevitore 2;
- tabella con:
 - o profondità di indagine in metri dal piano di campagna;
 - o tempi differenziali in msec;
 - velocità differenziali e velocità alle varie profondità sia per le Onde P che per le Onde S;
- tabella con i valori dei moduli elasto-dinamici per ogni metro:
 - o coefficiente di Poisson;
 - o peso di volume;
 - o densità;
 - modulo di elasticità dinamico;
 - o modulo di taglio dinamico;
 - o modulo di compressibilità dinamico;
- tabella con i valori di Vp e Vs e moduli elasto-dinamici dei sismostrati omogenei;
- diagrammi tempo-profondità e profili di velocità Onde P e Onde S;
- valore medio della velocità delle onde di taglio fino alla profondità massima raggiunta con indicazione della categoria di sottosuolo.
- Diagrammi dei valori dei moduli elasto dinamici in funzione della profondità.
- Sismogrammi complessivi di tutte le tracce alle varie profondità sia per le onde P che SH;

SPEA Engineering S.p.A.

Ampliamento A1 Milano-Napoli - Tratta Incisa Valdarno-Firenze Sud Lotto 1 - Progetto Esecutivo

RILIEVO TOPOGRAFICO UBIC	SONDAGGIO SE3	
Località Ciliegi	via di Bruscheto	Giugno 2018

DOCUMENTAZIONE FOTOGRAFICA	COORDINATE			
	Coordinate WGS 84			
	Long = 11°27'15.660" Lat = 43°40'33.650"			
	Coordinate Piane Gauss-Boaga			
	E = 1697876,563 N = 4838836,036			
	Coordinate Piane Rettilinee Locali			
	E = 1697892,030 N = 4838837,425			
	Quota (m.s.l.m.) 106,285			

INQUADRAMENTO DELL'AREA

STRALCIO PLANIMETRICO

PROVA SISMICA IN FORO DOWN HOLE - SE3DH

Id. sondaggio
SE3DH
Data esecuzione prova
20/07/18
Energizzazione-boccaforo
4 m
Intervallo di misura
1m
Profondità massima prova
40 m

RICEVITORE 1

	ONI	DE P	ONDE S _H			
Profondità	Tempi misurati	Tempi corretti	Tempi misurati	Tempi corretti		
(m)	(msec)	(msec)	(msec)	(msec)		
1	6.13	1.49	10.07	2.44		
2	6.36	2.85	10.16	4.54		
3	6.57	3.94	13.75	8.25		
4	7.01	4.95	16.76	11.85		
5	6.79	5.30	17.71	13.83		
6	7.18	5.97	20.60	17.14		
7	7.11	6.17	22.41	19.46		
8	7.47	6.68	23.21	20.76		
9	7.95	7.27	25.50	23.30		
10	8.59	7.98	28.20	26.18		
11	8.61	8.10	29.68	27.90		
12	9.01	8.55	30.49	28.92		
13	9.04	8.64	31.99	30.57		
14	9.38	9.02	33.10	31.83		
15	9.70	9.38	34.72	33.55		
16	10.22	9.91	36.77	35.67		
17	10.35	10.07	37.91	36.90		
18	11.04	10.78	38.91	37.99		
19	11.39	11.15	40.29	39.43		
20	11.88	11.65	42.24	41.42		
21	11.94	11.73	43.35	42.58		
22	12.46	12.26	45.15	44.42		
23	12.53	12.34	46.23	45.55		
24	12.98	12.80	47.03	46.39		
25	13.04	12.87	48.00	47.40		
26	13.72	13.56	49.15	48.58		
27	13.72	13.57	50.47	49.93		
28	14.22	14.08	51.87	51.35		
29	14.30	14.17	53.07	52.58		
30	14.66	14.53	54.49	54.01		
31	14.62	14.50	55.59	55.13		
32	15.10	14.98	56.59	56.15		
33	15.12	15.01	57.67	57.26		
34	15.48	15.37	58.67	58.27		
35	15.43	15.33	59.47	59.08		
36	15.60	15.51	60.48	60.11		
37	16.09	16.00	61.53	61.18		
38	16.17	16.08	62.72	62.38		
39	16.52	16.44	63.67	63.33		
40	-	-	-	-		

terrach s.a. Indagini geognostiche, servizi di geologia tecnica e geofisica applicata all'ingegneria Investigations géognostiques et études de géologie technique et de géophysique appliquée pour la construction Geognostische Ermittlungen sowie geotechnische und geophysikalische Anwendungen im Tiefbaubereich Geotechnical site investigation and geoengineering - geophysical surveys and consultancy

RICEVITORE 2

	ONI	DE P	ONDE S _H			
Profondità	Tempi misurati	Tempi corretti	Tempi misurati	Tempi corretti		
(m)	(msec)	(msec)	(msec)	(msec)		
1	-	-	-	-		
2	6.22	2.78	10.13	4.53		
3	6.85	4.11	14.00	8.40		
4	6.87	4.86	16.62	11.75		
5	7.20	5.62	17.88	13.96		
6	6.97	5.80	20.47	17.03		
7	7.26	6.30	22.55	19.58		
8	7.20	6.44	23.17	20.72		
9	8.29	7.58	25.50	23.30		
10	8.30	7.71	28.17	26.16		
11	8.77	8.25	29.70	27.92		
12	8.85	8.40	30.38	28.82		
13	9.25	8.84	32.11	30.69		
14	9.23	8.87	33.00	31.73		
15	9.86	9.53	34.80	33.63		
16	10.01	9.71	36.71	35.62		
17	10.50	10.22	37.96	36.95		
18	10.85	10.59	38.81	37.89		
19	11.64	11.39	40.32	39.46		
20	11.67	11.45	42.21	41.39		
21	12.18	11.97	43.45	42.68		
22	12.26	12.06	45.08	44.36		
23	12.69	12.50	46.29	45.61		
24	12.73	12.55	47.10	46.46		
25	13.33	13.16	47.93	47.33		
26	13.47	13.32	49.08	48.51		
27	13.95	13.80	50.48	49.94		
28	13.98	13.84	51.83	51.31		
29	14.47	14.34	53.17	52.68		
30	14.49	14.36	54.36	53.88		
31	14.86	14.74	55.72	55.26		
32	14.86	14.74	56.64	56.20		
33	15.29	15.18	57.62	57.21		
34	15.30	15.20	58.55	58.15		
35	15.68	15.58	59.59	59.20		
36	15.64	15.54	60.45	60.08		
37	15.81	15.72	61.56	61.21		
38	16.32	16.23	62.59	62.25		
39	16.37	16.29	63.80	63.46		
40	16.73	16.64	64.67	64.35		

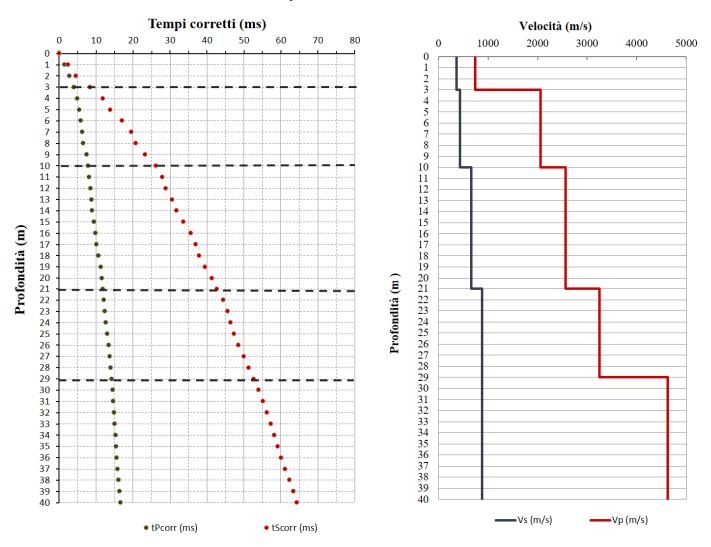
Onde P

Profondità	Profondità	Tempi	Velocità diff
(m)	(m)	differenziale	(m/s)
		(msec)	
0	1	1.49	673
1	2	1.29	773
2	3	1.27	790
3	4	0.91	1094
4	5	0.67	1499
5	6	0.50	2013
6	7	0.33	3007
7	8	0.27	3736
8	9	0.89	1117
9	10	0.44	2263
10	11	0.27	3717
11	12	0.30	3343
12	13	0.30	3352
13	14	0.23	4387
14	15	0.51	1979
15	16	0.34	2965
16	17	0.31	3265
17	18	0.52	1920
18	19	0.61	1648
19	20	0.30	3354
20	21	0.32	3100
21	22	0.33	3021
22	23	0.24	4135
23	24	0.21	4713
24	25	0.36	2776
25	26	0.44	2264
26	27	0.25	4071
27	28	0.27	3724
28	29	0.26	3884
29	30	0.20	5085
30	31	0.20	4912
31	32	0.25	4077
32	33	0.20	5034
33	34	0.19	5324
34	35	0.21	4704
35	36	0.21	4826
36	37	0.21	4827
37	38	0.24	4233
38	39	0.20	4932
39	40	0.21	4817

Onde S

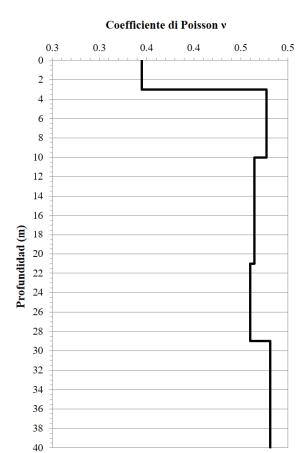
Profondità	Profondità	Tempi	Velocità diff	
(m)	(m)	differenziale	(m/s)	
		(msec)		
0	1	2.44	409	
1	2	2.09	479	
2	3	3.85	259	
3	4	3.50	286	
4	5	2.11	474	
5	6	3.20	313	
6	7	2.44	410	
7	8	1.27	790	
8	9	2.54	394	
9	10	2.86	350	
10	11	1.74	576	
11	12	0.93	1080	
12	13	1.77	564	
13	14	1.16	865	
14	15	1.79	557	
15	16	2.07	483	
16	17	1.29	778	
17	18	0.98	1017	
18	19	1.47	680	
19	20	1.96	510	
20	21	1.26	791	
21	22	1.78	563	
22	23	1.19	840	
23	24	0.91	1094	
24	25	0.94	1067	
25	26	1.11	903	
26	27	1.36	734	
27	28	1.38	725	
28	29	1.33	753	
29	30	1.30	767	
30	31	1.25	799	
31	32	1.07	932	
32	33	1.05	951	
33	34	0.89	1124	
34	35	0.94	1066	
35	36	1.00	1004	
36	37	1.10	910	
37	38	1.07	933	
38	39	1.08	923	
39	40	1.01	987	

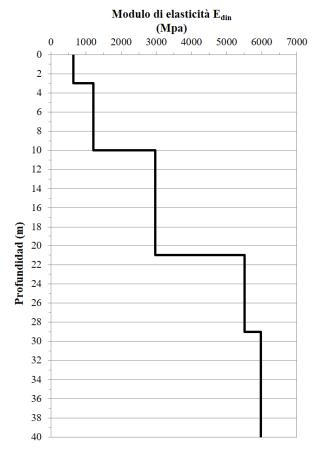
Valori dei moduli elasto-dinamici per ogni metro


Profondità	Profondità	V P (m/s)	Vs	Coefficiente	γ din	d	Modulo	Modulo	Modulo di
(m)	(m)		(m/s)	di Poisson	(T/m³)	din	di	di	Compressibilità
				n		u	elasticità	Taglio	K _{din} (MPa)
							E _{din} (MPa)	G _{din} (MPa)	
0	1	673	409	0.21	1.76	0.18	724	300	410
1	2	773	479	0.19	1.80	0.18	1004	422	536
2	3	790	259	0.44	1.81	0.18	358	124	987
3	4	1094	286	0.46	1.93	0.20	469	160	2140
4	5	1499	474	0.44	2.05	0.21	1354	469	4065
5	6	2013	313	0.49	2.16	0.22	641	215	8652
6	7	3007	410	0.49	2.34	0.24	1195	401	21001
7	8	3736	790	0.48	2.43	0.25	4569	1547	32562
8	9	1117	394	0.43	1.94	0.20	875	306	2055
9	10	2263	350	0.49	2.21	0.23	821	276	11179
10	11	3717	576	0.49	2.43	0.25	2447	822	33150
11	12	3343	1080	0.44	2.38	0.24	8165	2832	23369
12	13	3352	564	0.49	2.38	0.24	2298	773	26276
13	14	4387	865	0.48	2.51	0.26	5667	1915	46677
14	15	1979	557	0.46	2.16	0.22	1989	683	7699
15	16	2965	483	0.49	2.33	0.24	1643	553	20135
16	17	3265	778	0.47	2.37	0.24	4301	1463	23835
17	18	1920	1017	0.31	2.14	0.22	5897	2259	5043
18	19	1648	680	0.40	2.08	0.21	2748	983	4461
19	20	3354	510	0.49	2.38	0.24	1881	632	26510
20	21	3100	791	0.47	2.35	0.24	4389	1498	21022
21	22	3021	563	0.48	2.34	0.24	2242	756	20737
22	23	4135	840	0.48	2.48	0.25	5280	1786	40860
23	24	4713	1094	0.47	2.54	0.26	9135	3104	53463
24	25	2776	1067	0.41	2.30	0.23	7551	2671	14515
25	26	2264	903	0.41	2.21	0.23	5168	1839	9107
26	27	4071	734	0.48	2.47	0.25	4035	1360	39973
27	28	3724	725	0.48	2.43	0.25	3862	1304	32648
28	29	3884	753	0.48	2.45	0.25	4192	1416	35817
29	30	5085	767	0.49	2.58	0.26	4611	1549	65970
30	31	4912	799	0.49	2.56	0.26	4956	1667	60829
31	32	4077	932	0.47	2.47	0.25	6455	2192	39014
32	33	5034	951	0.48	2.58	0.26	7031	2373	63368
33	34	5324	1124	0.48	2.60	0.27	9907	3354	70763
34	35	4704	1066	0.47	2.54	0.26	8683	2948	53419
35	36	4826	1004	0.48	2.56	0.26	7762	2627	57165
36	37	4827	910	0.48	2.56	0.26	6396	2159	57826
37	38	4233	933	0.47	2.49	0.25	6522	2212	42582
38	39	4932	923	0.48	2.57	0.26	6601	2227	60667
39	40	4817	987	0.48	2.55	0.26	7501	2537	57037

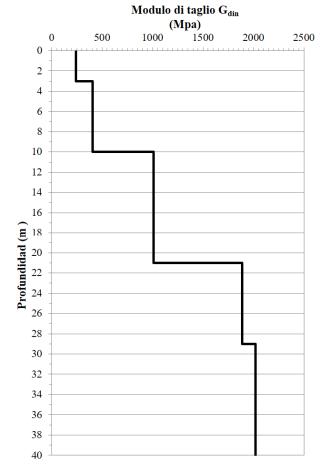
Valori dei sismostrati omogenei

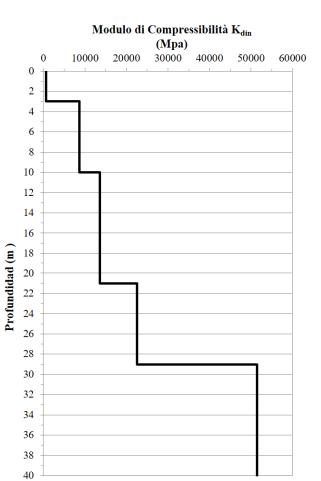
Sismostrato	Profondità (m)	Vp (m/s)	Vs (m/s)	Coefficiente di Poisson v	γ _d (T/m³)	Modulo di elasticità Ed (MPa)	Modulo di Taglio Gd (MPa)	Modulo di Compressibilità K _d (MPa)
1	0-3	744	362	0.34	1.79	644	239	678
2	3-10	2056	429	0.48	2.17	1204	408	8643
3	10-21	2565	662	0.46	2.27	2965	1012	13572
4	21-29	3247	884	0.46	2.37	5513	1888	22495
5	29-40	4621	884	0.48	2.53	5980	2019	51425

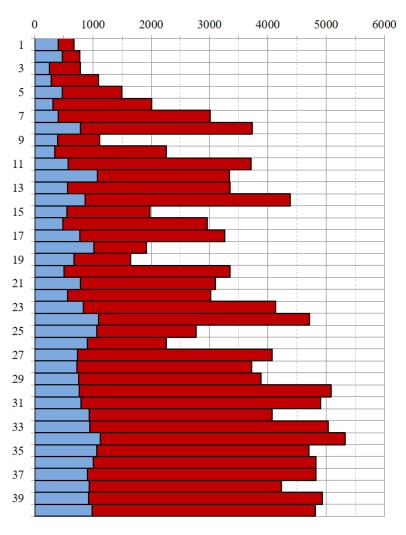

Dromocrone Onde P e Onde S e profilo di velocità delle Onde S



Calcolo Vs_{eq} nei primi 21 m di sottosuolo (tratto 0-21 m)

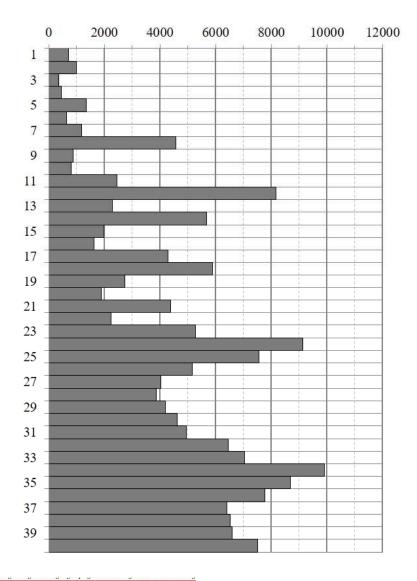

Vs21: 509 m/s





\blacksquare Vp diff (m/s) \blacksquare Vs diff (m/s)

terrach s.a. Indagini geognostiche, servizi di geologia tecnica e geofisica applicata all'ingegneria Investigations géognostiques et études de géologie technique et de géophysique appliquée pour la construction Geognostische Ermittlungen sowie geotechnische und geophysikalische Anvendungen im Tiejbabereich Geotechnical site investigation and geoengineering - geophysical surveys and consultancy

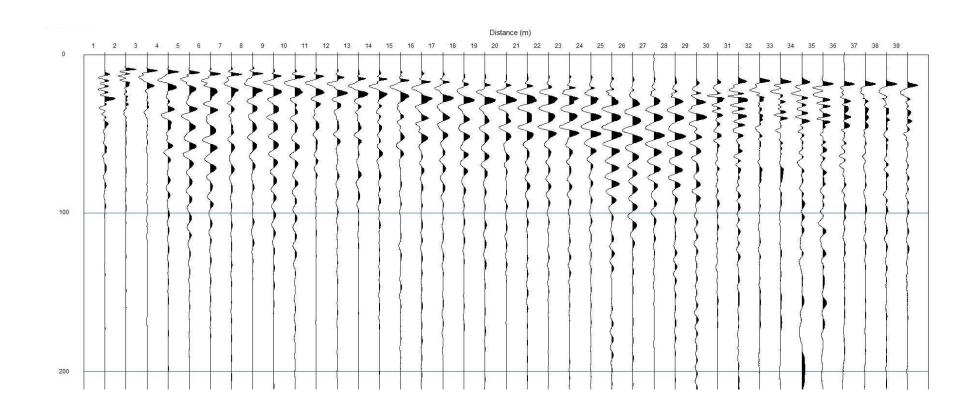

Sede unità secondaria Italia: Via Alessandro Volta, 53 22100 COMO (ITALIA) Partita Iva: 03770540130 Cod. Fiscale: 92107260090 Sede legale: Via Crocicchio Cortogna, 6 CH 6900, Lugano (TI) Svizzera Tel. e Fax +41 (0)91 9712893 www.terrach.ch info@terrach.ch

Coefficiente di Poisson v

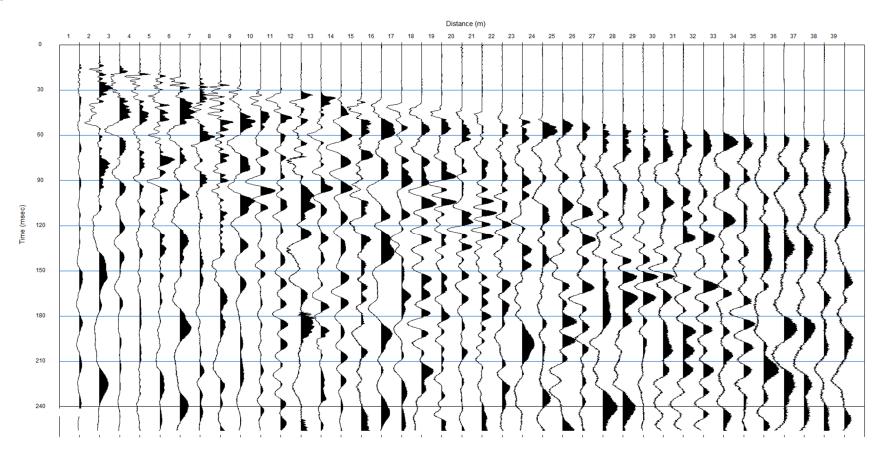
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50



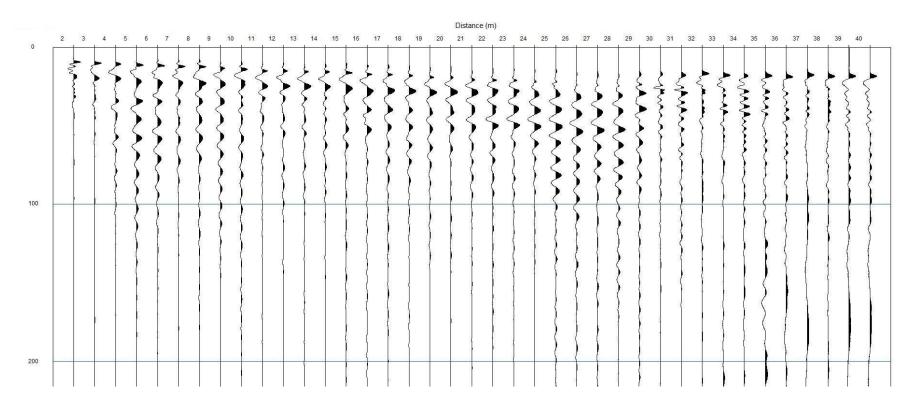
Modulo di taglio G_{din} (MPa)


Modulo di Compressibilità K_{din} (MPa)

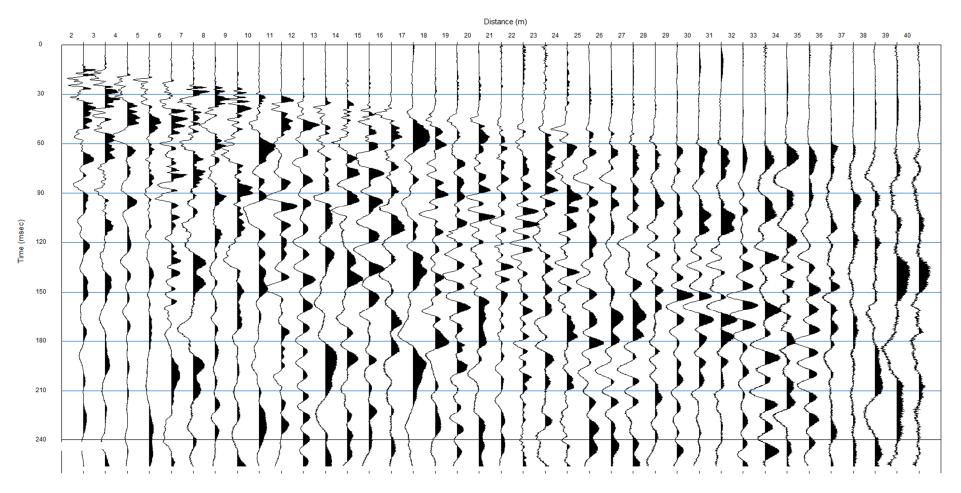
Investigations géognostiques et études de géologie technique et de géophysique appliquée pour la construction Geognostische Ermittlungen sowie geotechnische und geophysikalische Anwendungen im Tiefbaubereich Geotechnical site investigation and geoengineering - geophysical surveys and consultancy


Sismogrammi Onde P - Ricevitore 1

terrach s.a. Indagini geognostiche, servizi di geologia tecnica e geofisica applicata all'ingegneria Investigations géognostiques et études de géologie technique et de géophysique appliquée pour la construction Geognostische Ermittlungen sowie geotechnische und geophysikalische Anvendungen im Tiefbaubereich Geotechnical site investigation and geoengineering - geophysical surveys and consultancy


Sismogrammi Onde S - Ricevitore 1

terrach s.a. Indagini geognostiche, servizi di geologia tecnica e geofisica applicata all'ingegneria Investigations géognostiques et études de géologie technique et de géophysique appliquée pour la construction Geognostische Ermittlungen sowie geotechnische und geophysikalische Anvendungen im Tiefbaubereich Geotechnical site investigation and geoengineering - geophysical surveys and consultancy


Sismogrammi Onde P - Ricevitore 2

terrach s.a. Indagini geognostiche, servizi di geologia tecnica e geofisica applicata all'ingegneria Investigations géognostiques et études de géologie technique et de géophysique appliquée pour la construction Geognostische Ermittlungen sowie geotechnische und geophysikalische Anvendungen im Tiefbaubereich Geotechnical site investigation and geoengineering - geophysical surveys and consultancy

Sismogrammi Onde S - Ricevitore 2

terrach s.a. Indagini geognostiche, servizi di geologia tecnica e geofisica applicata all'ingegneria Investigations géognostiques et études de géologie technique et de géophysique appliquée pour la construction Geognostische Ermittlungen sowie geotechnische und geophysikalische Anwendungen im Tiefbaubereich Geotechnical site investigation and geoengineering - geophysical surveys and consultancy