

AUTOSTRADA (A1): MILANO-NAPOLI

AMPLIAMENTO ALLA TERZA CORSIA NEL TRATTO INCISA - VALDARNO LOTTO2

PROGETTO ESECUTIVO

DOCUMENTAZIONE GENERALE

GEOLOGIA PROVE DI LABORATORIO

PROVE DI LABORATORIO - PREGRESSE (FASE B INCISA - VALDARNO) - VOL.7/11

IL GEOLOGO

Dott. Vittorio Boerio Ord. Geol. Lombardia N. 794

Responsabile Geologia

IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Paola Castiglioni Ord. Ingg. Varese N. 2725 IL DIRETTORE TECNICO

Ing. Orlando Mazza Ord. Ingg. Pavia N. 1496

Progettazione Nuove Opere Autostradali

				С	ODICE IDENTIFICATIV	/O					ORDINATORE
RIFERIMENTO	D PROGETTO				RIFERIMENTO DIRETTOR	IO		RIFERIM	ENTO ELABORATO		
Codice Commessa	Lotto, Sub-Prog, Cod. Appalto	Fase	Capitolo	Paragrafo	WBS	Parte d'opera	Tip.	Disciplina	Progressivo	Rev.	XXX
119941	LL02	PE	DG	GEO	LA000	00000	R	GEO	2059	-0	SCALA -

	PROJECT MANA	AGER:	SUPPORTO SI	PECIALISTICO:		REVISIONE
spea					n.	data
opeu		Ing. Paola Castiglioni			0	OTTOBRE 2019
ENGINEERING		Ord. Ingg. Varese N. 2725				
ENGINEERING						
Atlantia	REDATTO:		VERIFICATO:			
grappo Attantia	KEBATTO.		VEIXII IO/XI O.			

VISTO DEL COMMITTENTE

IL RESPONSABILE UNICO DEL PROCEDIMENTO Ing. Furio Cruciani

VISTO DEL CONCEDENTE

Ministero delle Infrastrutture e dei Trasporti dipartimento per le infrastrutture, gli affari generali ed il personale struttura di vigilanza sulle concessionarie autostradali

DOCUMENTAZIONE INERENTE LA TRATTA COMPLETA TRA INCISA E VALDARNO

	×					
			Total Constant for a Vision			
				River	well -	Wholen
	Giugno - 2011		Prove su terre	A.Ricco		8.Sanchi
EM/RE	DATA		DESCRIZIONE	REDATTO	VERIF.	APPROV.
08.040.00	A C2 01.00 Pr TP Elab.	RA Rev.	Prove su terre Descrizione			
Commessa	WESTER STREET		AILAB – Labor			_
SG	AI)			0541988972 - e.mail: <u>info@</u> C.F. e P.IVA 03686910401	sgailab.net	
SGAILAB - Laborate	ori e Ricerche s.r.l.		www	.sgailab.net	Cert. Sistema Qualità l RINA 17533/08	
		In	SPEA GEGNERIA EUROP	EA S.P.A.		
	AUTOSTR	RADA A	A1 MILANO-NAPOLI AN TRATTO INCISA – VAL FASE B		RSIA	
Oggetto:						
oggotto.		DDO	OF DII ADADAWADI	OCHTEDDE		
		<u>PRO</u>	VE DI LABORATORIO SONDAGGIO: SV18			
Timbri e Firr	me:				Elabora	to:

COMMITTENIE:		OF EA S.P.A.	1.0.										ABELLARIASSINIVA	A	1000	AVI				The second			T V C				ŀ		
LAVORO:	A1 MI-NA	<	2	CALIT	OCALITA: Amnliam 3a coreia tratto Incira Valdama	meilor	23 65	reis fr	- Tu	N coi	0		PROVE	DILA	BORA	PROVE DI LABORATORIO SU:	SU:			SG	AT TO		SGAILAB - Laboratori e Ricerche S.r.	e l	porato	ri e R	cerche	S.r.l.	
	9	November 2040			FA	FASE B	2 6	i sia ila	on on	15a-Va	darno		ROCCE							7	Lab		Via Mariotti Tel./F	Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel./Fax +39 054198972 - e mail: info@sgailab.net	33 - Morcia 1988972 - e	ano di Rom e.mail: infe	agna (RN)	- ITALY	
SECTION	Overing	102 910	-	Z _	N COMMESSA:	MESSA 30		08.040.00					MATER. STRADALI	STRAE	JALI					www.sgailab.net	ilab.net		RE	REA: RN-304214 - C.F. e P.IVA 03686910401	14 - C.F. e	P.IVA 03	386910401		
SONDAGGIO	CAMP.	prof.	ALCOHOL:	z §	DNITA" UNITA"	Ø	_	RANUI	METRIA	AR	V-0	LIMITI DI ATTERBERG	POCKET PENET.	VANE	CLA	CLASSIFICAZIONE	JONE		TAGLIO AL CASAGRANDE		TAGLIO	щ		PROVA E	PROVA EDOMETRICA	- A	TENORE	_	SONICA
ć	Ė	j.	LINE CONTRACTOR OF THE CONTRAC	Mg %		,u/	v %	- %	K+ %	∢ %	∑ %	₫%	КРа	KPa ≤	U.S.C.S.U	U.S.C.S.A.A.S.H.O. indice di UNI 10006 gruppo	indice di gruppo	K C.	ъ. о	КРа		Φ ∘	KPa	Cv cm ^z /s	Α S/m	oo %		7'S Ma/m ³	
SV18B	CH CH	10.50	18	18.93	2.142 1.801	301 0.93	26.03	62 42.12	2 76.45	34.33	37.01	20.25	500.0	187.5	ರ	A - 6	10.2			199.24	n	0.00	(2) 22394	1.66E-03 1.41E-03	3 1.14E-10 8 6.17E-11	10 0.068	ω κ	2.698	m.
SV18B	CIS	25.50 25.85	1 21	21.18 2.1	2.123 1.752	752 0.40 0.24	23.26	26, 34,85 96, 36,31	5 76.34 1 77.80	41.19	47.85	28.38	190.0	147.5	5	A-7-6	16.9		L	130.28	3	0.00	(02)					2.662	0
SV18B	CI3	31.50	1 22	22.60 1.9	1.995 1.627	2.19	9 3.05	49.06	6 94.47 5 94.76	3 45.41	51.98	25.81	490.0	212.5	5	A-7-6	16.7												
SV18B	CR1	1.50	œ	-		00.00		59.41 33.96 40.59 56.29 37.06 43.71	6 40.59	6.63	20.61	1.38			SC	A-4	6.0												
SV18B	CR2	3.00	œ			5.88	8 37.02 7 35.24		43.08 57.10 46.97 60.99	14.02	27.48	9.36			ರ	A-4	5.2												
SV18B	CR3	4.20	œ			29.37	29.37 35.23 20.90 41.95	23 26.33 95 28.08	3 35.40 8 37.15	70.6 6 5 9.07	22.67	8.23			SC	A-4	0.4												
SV18B	CR4	6.00	œ			37.17	43.57 71 52.26	57 14.78 26 15.55	8 19.26 5 20.03	5 4.48 3 4.48	21.34	5.46			SC	A-2-4	0.0												
SV18B	CR5		œ			0.89	9 73.34 5 72.64	34 22.47 34 23.61	7 25.77 1 26.91	3.30	n.d.	n.p.			SC	A-2-4	0.0												
SV18B	CR6	9.00	œ			0.50	8 28.89 0 26.27	39 38.98 27 41.78	8 70.43 8 73.23	31.45	36.65	18.76			ರ	A-6	11.2												
SV18B	CR7	12.20	œ			7.00		72.64 15.77 77.36 17.70	7 20.36	4.59	22.58	4.88			SC	A-2-4	0.0												
SV18B	CR8	13.50	œ			00.00	0 40.05	37 49.83	5 59.95 3 62.33	12.50	26.76	7.75			ರ	A-4	5.5									-			-
SV18B	CR9	15.00	œ			4.02	91.86	1 98	4.78	-																			
SV18B (CR10	18.30	œ			0.00	9 24.38 0 21.94	38 56.06 34 58.69	5 75.43 9 78.06	75.43 19.37 78.06 19.37	31.14	11.67			ರ	A-6	8.7												
TERRE R	INDISTU	= INDISTURBATO = RIMANEGGIATO		2 2 3 3		VA DI TAC VA TRIAS VA TRIAS: VA TRIAS:	SIALE CC SIALE CC SIALE CC	PROVA DI TAGLIO DIRETTO AL CASAGRANDE PROVA TRIASSIALE CONSOLIDATA E DRENATA PROVA TRIASSIALE CONSOLIDATA NON DRENATA PROVA TRIASSIALE NON CONSOLIDATA NON DRENATA	CASAGR. ATA E DR ATA NON ATA NON	ANDE ENATA DRENAT,	A ENATA	i i i i i i i i i i i i i i i i i i i	AST	STM				pp = para pr = para	pp = parametri di picco pr = parametri residui	ilicco		(2) = (2b)	(2) = passo 200 KPa. Metodo di Casagrande (1° ciclo di carico) (2b) = passo 200 KPa. Metodo di Casagrande (2° ciclo di carico)	0 KPa. M	etodo di C Aetodo di	Casagrar	inde (2° c	odi cari	ico)
	SEMILLIS	SI UKBA	2	Ccu - 4 C' - 4'		cu = parametri cons = parametri efficaci uu = parametri non	i consoll ficaci ì non cor	idati non i nsolidati i	drenati non dren	ati				MOD 026 Edg. 7cti, Sistems qt EINA 1733308	MOD.026 Fefrieme n. 1 del 13,10.2109 Crt. Stetema qualità ISO 9601-2168 RINA 17333.08.8	2008					Dod Da	Funda Man. Runda Man. A Stanfor: 03:04:20		ontrollato V.C. M. Pog 1.2	Il Directore Dott. Smelif.	M			
																					The	razione Operativa	2000		1				

LOCALITA': Ampliam. 3a c FASE B N° COMMESSA: 08		ALITA: Ampliam. 3a corsia trati FASE B N° COMMESSA: 08.040.00	FASE B COMMESSA: 08.040.00	iam. 3a corsia trati EB SSA: 08.040.00	sa corsia trati 08.040.00	ia trati		to Incisa	a-Valdar	2		PROVE DI LABO TERRE ROCCE MATER, STRADALI	LABOR	TERRE ROCCE MATER. STRADALI	SU:			SGAI	Lab Lab	Via Mai	SGAILAB - Laboratori e Ricerche S.r.i. Via Manotti, 18la - 47833 - Morciano di Romagna (RN) - ITALY Tel./Fax +39 0541988972 - e.mail: info@sgailab.net REA: RN:304214 - C.F. e P.IVA 03686910401	100 S33 - Morciano 1988972 - e.1	e Rice	na (RN) - IT sgailab net	ALY	
Q	prof. STATO DEL CAMP.	D'ACQUA	UA UNITA' VOLUME Mg/m³	A SECCO	GHIAIA E G	8	GRANULOMETRIA BBIA LIMO S L L++	-	ARGILLA A	ATTERBERG WI IP	Vict:	POCKET VANE PENET, TEST PP VT KPa KPa		CLASSIFICAZIONE	CLASSIFICAZIONE U.S.C.S.A.A.S.H.O indice di UNI 10006 gruppo		TAGLIO AL CASAGRANDE C'	O R	TAGLIO TRIASSIALE	KPa KPa		PROVA EDOMETRICA Cv K cm²/s m/s	% C	TENORE CARBON.	PESO SPECIF. DEL TERRENO 7S	VELOC. SONICA Vp
21.00	œ				0.02	66.03	27.91	33.95	6.04 22	7 77 7	7.23	-	SC	A-2-4	0.1										Mg/m³	
22.20	œ				0.00	74.54	0.17 74.54 21.66 25.29 0.06 72.93 23.38 27.01		3,63	17.18 2	2.62		၁၄	3 A-2-4	0.0			77								
3.00	α α																									
4.50	œ																			-						
6.00	œ						11																			
7.50	œ																									
12.20	ĸ																									
13.50	œ																									
15.00	œ																									
18.00	œ																									
21.00	œ																									
22.50	œ																									
= INDISTURBATO = RIMANEGGIATO	00!		2 2 3 3	PROVA PROVA PROVA	DI TAGL TRIASSI TRIASSI TRIASSI	IO DIRET ALE CON ALE CON	TO AL C. ISOLIDAT ISOLIDAT	PROVA DI TAGLIO DIRETTO AL CASAGRANDE PROVA TRIASSIALE CONSOLIDATA E DRENATA PROVA TRIASSIALE CONSOLIDATA NON DRENATA PROVA TRIASSIALE NON CONSOLIDATA NON DREN	PROVA DI TAGLIO DIRETTO AL CASAGRANDE PROVA TRIASSIALE CONSOLIDATA E DRENATA PROVA TRIASSIALE CONSOLIDATA NON DRENATA PROVA TRIASSIALE NON CONSOLIDATA NON DRENATA	<		AGI/S ASTM				pp = par pr = par	pp = parametri di picco pr = parametri residui	oicco		4			,			
/AZP	2		Ccu -	Ccu - Φcu = parametri consolidati non drenati C' - Φ' = parametri efficaci	rametri (netri effi	consolida	ati non dr	enati				McD.6	MCD,02o Fdizione n.f. del 13,10,2000	64.13,10,2600					Dott. sandy VL		tow Controllate	Il Direction Dott. Samehje.	1			
			Cun	Cuu - Фuu = parametri non consolidati non drenati	rametri	SUOD HOL	solidati no	on drenati				Cert, Su RINA 1	Cert, Stelema qualità ISO 0001;2008 RDA 17533 08.5	s Outl-200K					Data Starting 03.1	04/2012 V	Pag 2.2	M	\			

SGAILAB — Laboratori e Ricerche S.r.I. Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: <u>info@sgailab.net</u> REA: RN-304214 - C.F. e P.IVA 03686910401

COMMITTENTE:	SPEA S.p.A.	DATA:	20 December 2010
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
	<u> </u>	N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	10.50
Campione no:	CI1	profondità a mt.	10.90

LABORATORIO GEOTECNICO Procedura PO.06 RAPPORTO DI PROVA

Data di ricevimento campione	6 August 2010

Note:

APERTURA CAMPIONE

Rapp N° 10.2100

Descrizione Campione:

Limo con sabbia con argilla dura di colore grigio.

Stato del campione:

indisturbato

Programma prove:

Sommario Caratteristiche Fisico-Meccaniche

Peso Specifico del Terreno Caratteristiche Fisiche del Provino

Analisi Granulometrica

Determinazione dei Limiti di Atterberg

Triassiale UU Prova Edometrica

Osservazioni:	

MOD.023 Ed	lizione nº1 del 13 Ottobre 2009
Cert. Sisten	na Qualità ISO 9001:2008 RINA 17533/08/S.

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore		
Giusti M.,	Giusti M.	Giusti M.	Sanchi S.		
Data Stampa 04/04	/2012	Pag 1/6			
Procedura Operativ	a 1O 005a	\\Sgailab\SV18B-C	Il,doex		

www.sgailab.net

SGAILAB – Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 – Fax. +39 0541988972 - e.mail: info@sgailab.net

REA: RN-304214 – C.F. e P.IVA 03686910401

COMMITTENTE:	SPEA S.p.A.	DATA:	20 December 2010
LAVORO:	A1 MI-NA		Incisa Valdarno (FI)
Sondaggio nº:	SV18B	profondità da mt.	10.50
Campione no:	CII	profondità a mt.	10.90

SOMMARIO DELLE CARATTERISTICHI	E FISICO-MECCANICHE	Rapp N° 10.2100
CARATTERISTICHE GENERALI Contenuto d'acqua $W = 18.93$ % Peso dell'unità di volume $\gamma = 2.142$ Mg/m³ Peso secco dell'unità di vol. $\gamma d = 1.801$ Mg/m³ Peso specifico del terreno $\gamma s = 2.698$ Mg/m³ Indice dei vuoti $V = 1.801$ Mg/m³ Indice dei vuoti $V = 1.801$ Mg/m³ Tenore in Carbonati $V = 1.801$ Mg/m³ Velocità Ultrasonica $V = 1.801$ Mg/m³	Limite di plasticità \text{\text{\text{V}}} Indice di plasticità Limite di ritiro \text{\text{\text{V}}}	WI = 37.01 % Wp = 16.76 % Ip = 20.25 % Ws = % IC = 0.89 / A = //
Limo (>0.002<0.06mm) L = 37.80 %	GRANULOMETRIA (ASTM) Ghiaia (>4.75 mm) Sabbia (>0.075<4.75 mm) Limo + Argilla L+ Limo (>0.002<0.075mm) Argilla (<0.002 mm)	G = 0.93 % S = 22.62 % A = 76.45 % L = 42.12 % A = 34.33 %
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pocket Penetr PP m ma Vane test VT m	in = 500.0 kPa ax = >600 kPa in = 187.5 kPa ax = >250 kPa
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gradino di carico Indice Rigonfiamento	σ = 200.0 kPa Ir = % ca = 0.068 %
· · · · · · · · · · · · · · · · · · ·	TTO AL CASAGRANDE Test CD Coesione efficace Test CR Coesione efficace	C' = kPa C' = kPa
Angolo di resistenza a taglio φcu = ο	CD Coesione efficace CU Coesione non dren.	C' = kPa Ccu = kPa Cuu = 199.24 kPa
Osservazioni		

MOI	0.024 Edizione nº1 del 13 Ottobre 2009
Cert	. Sistema Qualità ISO 9001:2008 RINA 17533/08/S

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore	
Giusti M	Giusti M	Giusti M.	Sanchi S.	
Data Stampa 19/05	/2011	Pag 2/6		
Procedura Operativ	a 1O 005a	\\ Sgailab \SV18B-CI1.docx		

Campione no:

CI1

SGAILAB — Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tet. +39 0541988972 — Fax. +39 0541988972 - e.mail: info@sqailab.net

REA: RN-304214 — C.F. e P.IVA 03686910401

profondità a mt.

10.90

COMMITTENTE	: SPEA S.p.A.	DATA:	20 December 2010
LAVORO:	AI MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00
Sondaggio nº:	SV18B	profondità da mt	10.50

(BS 1377 (1990)) CARAT	(BS 1377 (1990)) CARATTERISTICHE FISICHE DEL PROVINO Rapp N° 11				
-	Provino 1	Provino 2	Provi	no 3	
Diametro	6.00			(cm)	
Altezza	3.00			(cm)	
Area	28.27			(cm ²)	
Volume	84.82			(cm ³)	
Peso umido	181.68			(gr.)	
Peso secco	152.76			(gr.)	
Peso dell'unità di volume	2.142	4.		(Mg/m ³)	
Peso secco dell'unità di volume	1.801			(Mg/m ³)	
Contenuto d'acqua	18.93			(%)	
	Valori M	(ediati			
Peso dell'unità di volume		2.142	(Mg/m ³)		
Peso secco dell'unità di volume		1.801	(Mg/m³)	# P	
Contenuto d'acqua		18.93	(%)	3	
Oncomical			701		
Osservazioni				on the second se	
				1	

M	1OD.025 Edizione nº1 del 13 Ottobre 2009
Pr	rova eseguita con calibro e bilancia digitale, Inct. ±0.05 e 0.00%
M	fatricola nº UG 51,1.90 e UG 50,1.06
Ri	if. camp. 1° linea PL 3. (1-7) 97

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M.	Giusti M	Giusti M,	Sanchí S.
Data Stampa 19/05	/2011	Pag 3/6	
Procedura Operativ	⁄a IO 005a	\\ Sgailab \SV18B-CI1.doex	

Campione no:

CII

SGAILAB — Laboratori e Ricerche S.r.I.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sqailab.net
REA: RN-304214 - C.F. e P.IVA 03686910401

profondità a mt.

10.90

	PEA S.p.A.	DATA:	20 December 2010
I AVORO:	1377371		
ETTORO. A	I MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

(ASTM D854–02) – PES	Rapp Nº 10.209		
			The state of the s
Peso Secco netto	(g)	Provino 1 20.676	Provino 2 20.690
Peso picnometro- acqua-provino	(g)	191.048	190.553
Peso Picnometro	(g)	68.229	68.638
Peso picnometro-acqua (T=20°)	(g)	178.025	177.544
Peso Specifico del terreno γs	(Mg/m^3)	2.702	2.694
Peso specifico del terreno γs	(Mg/m^3)		
reso s	PECIFICO DE	L TERRENO γs	$2.698 \qquad (Mg/m^3)$
Peso secco dell'unità di volume	(Mg/m³)		
Indice dei vuoti Iv	-		
			J
	INDICE	DEI VUOTI IV	
194			<u>-</u>
Osservazioni			

MOD.025 Edizione nº1 del 13	Ottobre 2009
Cert. Sistema Qualità ISO 9	001:2008 RINA 17533/08/S.
Prova eseguita con picnometro	
Matricola nº PF 2,.(1-10),.02	

Lo Sperimentatore	Lo Sperimentatore	Controllato	II Direttore
Giusti M,	Giusti M.,	Giusti M.	Sanchi S.
Data Stampa 19/05	/2011	Pag 4/6	
Procedura Operativ	a IO 005a	\\ Sgailab \SV18B-	CI1.doex

SPEA S.p.A.

Committente:

Lavoro:

SGAILAB - Laboratori e Ricerche S.r.l.

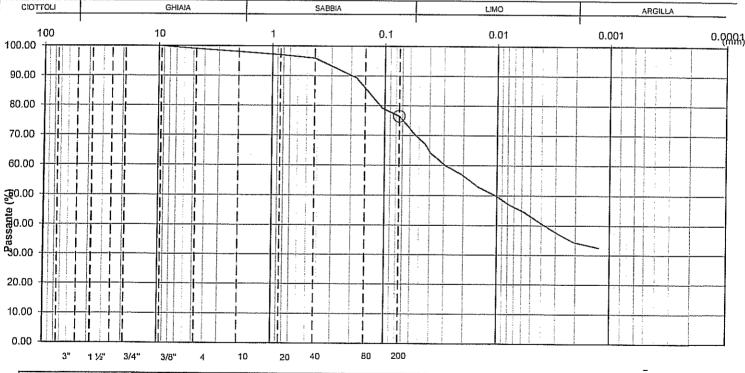
Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982 Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY teiffax. +39 0541988972 - e.mail: info@sgailab.net - PEC sgailab@pec.sgailab.net REA: RN-304214 -- C.F. e P.IVA 03686910401

Commessa: 08.040.00 Sondaggio: SV18B Campione.s CI₁ dam. - am. 10.5-10.9 nf.Prova: TE GR

DISTRIBUZIONE GRANULOMETRICA UNI CEN ISO/TS 178892-4

11.0108 Cert.N.-Data 26-01-11 24-11-11 Data Esecuzione: Località; Incisa-Valdarno (FI)

A1 MI-NA Commessa Sondaggio Campione sub dam am CAMPIONE 08.040.00 SV18B 10.50 10.90 CI1 0


Verb.Accettezione Data ric. descr.campione descr.prelievo 0 06-08-10

Setacci A	.S.T.M. (mm)	Passante totale	Trattenuto totale	Trattenuto Totale
		(%)	(%)	(g)
3"	75.00	100.0	0.00	0.00
2 1/2"	63.00	100.0	0.00	0.00
2"	50.00	100.0	0.00	0.00
1 1/2"	37.50	100.0	0.00	0.00
1"	25.00	100.0	0.00	0.00
3/4"	19.00	100.0	0.00	0.00
1/2"	12.50	100.0	0.00	0.00
3/8"	9.50	100.0	0.00	0.00
n.4	4.75	99.1	0.93	4.01
n.10	2.00	98.2	1.84	7.90
n.20	0.850	97.1	2.89	12.41
n.40	0.425	96.0	4.03	17.33
n.80	0.180	89.3	10.66	45.81
n.140	0.106	79.2	20.78	89.29
n.200	0.075	76.5	23.55	101.18

Materiale Esaminato: 429.67 g

Materiale Passante al setaccio

% n.10 98.2 n.40 96.0 % n.200 76.5 %

CLASSIFICAZIONE AGI/S	Ciottoli	Ghiaia	Sabbia	Limo	Argilla	Limo+Argilla
Limo con sabbia con argilla	0.00	1.84	26.03	37.80	34.33	72.13
Percentuale delle frazioni (ASTM)	0.00	0.93	22.62	42.12	34.33	76.45

Osservazioni

0

_		
	MOD.025 Edizione n°2 del 1 Ottobre 2010	
	Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S	
	Setacci ASTM e densimetro 151H	
	MAT.n.GR1.(2-24)-085 - GR2.14.85	
	Autotopolic and Topo de Carret	

Sperimentatore		Controli	lato	Il Direttore
Ricco A.		Giusti	M.	S.Sanchi
Data Stampa	26-01-11			Pag. 1/2
Procedura Operaliva IO 005a		file:	0	

08.040.00

CAMPIONE

SGAILAB - Laboratori e Ricerche S.r.I.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982 Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY tel/fax. +39 0541988972 - e.mail: info@sgaitab.net - PEC sgailab@pec.sgailab.net

Sondaggio: SV18B Campione.s CI1 REA: RN-304214 - C.F. e P.IVA 03686910401 da m. - a m. 10.5-10.9 rif.Prova: UNI CEN ISO/TS 178892-4 TE_GR

DISTRIBUZIONE GRANULOMETRICA

10.90

Cert.N.-Data 11.0108 26-01-11 Data Esecuzione: 24-11-11

Committente: SPEA S.p.A. A1 MI-NA Lavoro: Commessa Sondaggio Campione dam sub am

CII

SV18B

Località: Incisa-Valdarno (FI) Verb.Accettazione Data ric. descr.campione descr.prelievo 0 06-08-10

Commessa:

08.040.00

STAMPA VALORI CARATTERISTICI

0

10.50

Setaco	iatura - Peso	Campione Ir	niziale =	429.67	g	Sedimentazione Peso Secco Campione Ps = 50		
Setacci A	.S.T.M. (mm)	Trattenuto Parz. (g)	Trattenuto Parziale (%)	Trattenuto Tot. (%)	Passante Tot. (%)	Dispersivo 125 g/l		
3"	75.00	0.0	0.00	0.0	100.0	911		
2 1/2"	63.00	0.0	0.00	0.0	100.0			
2"	50.00	0.0	0.00	0.0	100.0	Distanza dal Baricentro:		
1 1/2"	37.50	0.0	0.00	0.0	100.0	Hg=15.86 - 0.245 R'		
1"	25.00	0.0	0.00	0.0	100.0			
3/4"	19.00	0.0	0.00	0.0	100.0	Correzione menisco		
1/2"	12.50	0.0	0.00	0.0	100.0	См =+0.5		
3/8"	9.50	0.0	0.00	0.0	100.0			
n.4	4.75	4.0	0.93	0.9	99.1			
n.10	2.00	3.9	0.91	1.8	98.2	Correzione Dispersivo:		
n.20	0.850	4.5	1.05	2.9	97.1	$C_D = -4.0$		
n.40	0.425	4.9	1.15	4.0	96.0			
п.80	0.180	28.5	6.63	10.7	89.3	Correzione Temperatura		
n.140	0.106	43.5	10.12	20.8	79.2	$C_T = -5 + 0.25 T$		
п.200	0.075	11.9	2.77	23.5	76.5			
	< 0.075	328.5	76.45			Costante K		
Som	ma (g)	429.7		FRAZIONE <	0.075	K=gs/(gs-1) x 100/PS = 3.178		
	lita (g)	0.0		X =	0.765			

Tempo	Temp.	Lettura	L corr.	L temp.	D	L cor	Tratt.Parz.	Tratt.
(min)	J	R	R'=R+CM	CT	mm	R'+CT+CD	KxR"	XxKxR"
0.5	20.0	32.3	32.8	0.00	0.0537	28.8	91.5	70.0
0.75	20.0	31.2	31.7	0.00	0.0446	27.7	88.0	67.3
1	20.0	29.9	30.4	0.00	0,0394	26.4	83.9	64.1
2	20.0	28.1	28.6	0.00	0.0285	24.6	78.2	59.8
4	20.0	26.9	27.4	0.00	0.0205	23.4	74.4	56.9
8	20.0	25.3	25.8	0.00	0.0148	21.8	69.3	53.0
18	20.0	24.0	24.5	0.00	0.0100	20.5	65.1	49.8
30	20.0	22.9	23.4	0.00	0.0079	19.4	61.7	47.1
60	20.0	21.8	22.3	0.00	0.0056	18.3	58.2	44.5
120	20.0	20.3	20.8	0.00	0.0041	16.8	53,4	40.8
180	20.0	19.5	20.0	0.00	0.0033	16.0	50.8	38.9
255	20.0	18.8	19.3	0.00	0.0028	15.3	48.6	37.2
480	20.0	17.7	18,2	0.00	0.0021	14.2	45.1	34.5
1370	20.0	16.9	17.4	0.00	0.0012	13.4	42.6	32.6

Densità della miscela (g/cmc) = (R/1000) + 1

Soluzione preparata il:

07-01-11

MOD.025 Edizione	n°2 del 1 Ottobre 2010
Cert. Sistema Qualità ISO	9001:2008 RINA 17533/08/S
Setacci ASTM	e densimetro 151H
MAT.n.GR1.(2-2	24)-085 - GR2.14.85
	7

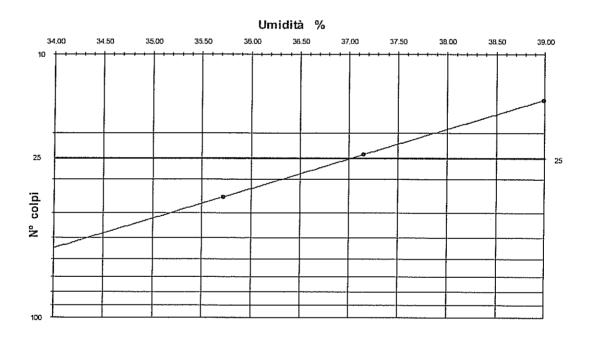
Sperimentatore	Controllato	If Direttore
Ricco A.	Giusti M.	S.Sanchi
Data Stampa 26-01-11		Pag. 2/2
Procedura Operativa IO 005a	file:	0

SGAILAB — Laboratori e Ricerche S.r.l. Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: <u>info@sqailab.net</u> REA: RN-304214 - C.F. e P.IVA 03686910401

COMMITTENTE:	SPEA S.p.A.	DATA:	20 December 2010
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdamo (FI)
		N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	10.50
Campione n°:	CI1	profondità a mt.	10.90


(ASTM D4318-00) DETERMINAZIONE DEI LIMITI DI ATTERBERG Rapp N° 11.0107

LIMITE DI LIQUIDITA'

Prova n° Contenuto d'acqua (%) Numero Colpi

1	2	3	4	5
38.99	37.14	35.72		
15	24	35		

LIMITE DI LIQUIDITA' (%) 37.01

LIMITE DI PLASTICITA'

Prova n. Contenuto d'acqua (%)

1	2	3	4	5
16.83	16.70	16.76		

LIMITE DI PLASTICITA' (%) 16.76 INDICE DI PLASTICITA' (%) 20.25

Osservazioni

Rif camp, 1º linea PL3 (1-4) 97

MOD.025 Edizione n°1 del 13 Ottobre 2009			
Prova eseguita con Cucchiaio Casagrande e bilancia elett, di Pred	;.		
Mat. nº.PF 5.1.06 - PF 3. 73, 85 - UG 6. 1. 85 Inc. 0.021%			

Lo Sperimentatore	Lo Sperimentatore	Centrollato	Il Direttore		
Giusti M.	Giusti M.	Giusti M.	Sanchi S.		
Data Stampa 26/05	/2011	Pag 5/6			
Procedura Operativ	a 10 005a	\\ Sgailab \SV18B-C11.doex			

PROVA Nº	1	2	3	4
p.u.t.	25.896	26.105	25.667	*******
p.s.t.	23.291	23.935	23.290	
tara	16.609	18.093	16.635	
peso H2O	2.605	2,170	2,377	
peso secco	6.682	5.842	6.655	
W	38.99	37 14	35.72	
V. colpi	15	24	35	
PROVA №	1	2	3	
PROVA № D.U.t.	1 11.221	2	9.791	
I			·····	MULL 1
o.u.t.	11.221	10.661	9.791	
o.u.t. o.s.t.	11.221 10.994	10.661 10.506	9.791 9.635	
o.u.t. o.s.t. ara	11.221 10.994 9.645	10.661 10.506 9.578	9.791 9.635 8.704	

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail; info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00
ld. Camp.:	SV18B CI1
Da mt. a mt.:	10.50-10.90 mt.
Rif. Prova:	TX UU ELAB -1
cert, nº/data:	11.0105/26 GEN 11

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8) Dati del cliente

Cliente - Richiedente: SPEA S.p.A.

Commessa:

08.040.00

Sito:

A1 MI-NA 3^{corsia}

Sondaggio:

SV18B

Campione: Profonditá:

CI1

10.50-10.90 mt.

File: I18CI1T1

data esecuzione: 20 GEN 2011

verbale accettazione nº:

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Risultati di prova

Provino	Ho	Ao	γ_n	Υa	Wo	So	σ3	e	$\sigma_1 - \sigma_2$
	mm	cm²	Mg/m³	Mg/m³	%	%	kPa	%	kPa
	76.00	11.34	2.163	1.848	17.03	100.00	100.00	2.06	285.93
118CI1T2	76.00	11.34	2.104	1.810	16.19	89.12	200.00	6.89	536.55
118CI1T3	76.00	11.34	2.173	1.886	15.18	95.20	300.00	4.96	373.37

data ricevimento: 06 AGO 10

Certificato nº/data: 11.0105/26 GEN 11

Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S

	Lo Sperimentatore	Controllato	Il Direttore
i	Dott. Sanchi	Dott. Giusti	Dott, Sanchî
	Dott, Giusti		
	Dott. Ricco		

Mod. 025 I	Edizione n. 1 del 03/10/07	
pressa matr	: UG21.1.85 e CT1.7,9.85	
I.O. 005a	Rif. 1º linea, PL2.(1-5).95	

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00		
ld. Camp.:	SV18B CI1		
Da mt. a mt.;	10.50-10.90 mt.		
Rif, Prova:	TX UU ELAB - 1		
cert, nº/data;	11.0105/26 GEN 11		

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8) Dati del cliente

Cliente - Richiedente: SPEA S.p.A.

Commessa:

08.040.00

Sito:

A1 MI-NA 3[^]corsia

Sondaggio: Campione:

Profonditá:

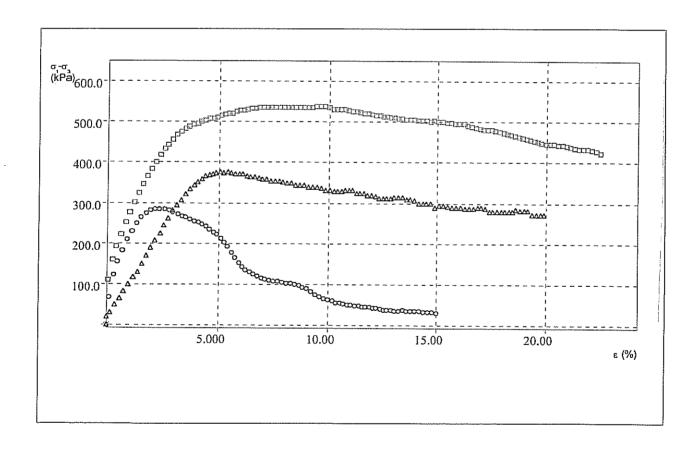
CI1

SV18B

10.50-10.90 mt.

File: I18CI1T1

data esecuzione: 20 GEN 2011


verbale accettazione nº:

n° progressivo campione:

data ricevimento: 06 AGO 10 velocità di deformazione (mic/min) = 700

Risultati di prova

Provino	Ho mm	Ao cm²	γ _n Mg/m³	γ _d Mg/m³	Wo %	So %	σ3 kPa	ε %	σ ₁ . σ ₃ kPa
I18CI1T1	76.00	11.34	2.163	1.848	17.03	100.00	100.00	2.06	285.93
I18CI1T2	76.00	11.34	2.104	1.810	16.19	89.12	200.00	6.89	536.55
I18CI1T3	76.00	11.34	2.173	1.886	15.18	95.20	300.00	4.96	373.37

Certificato nº/data:

RINA 17533/08/S

Cert. Sistema Qualità ISO 9001:2008

11.0105/26 GEN 11

Lo Sperimentatore	Controllato	Il Direttore
Dott. Sanchí	Dott. Giusti	Dott, Sanchi
Dott. Giusti		
Dott. Ricco		

Mod. 025 I	Edizione n. 1 del 03/10/07	
pressa matr	: UG21.1.85 e CT1.7,9.85	
I.O. 005a	Rif. 1º linea, PL2.(1-5).95	

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00			
ld. Camp.:	SV18BCI1			
Da mt. a mt.:	10.50-10.90 mt.			
Rif. Prova;	TX UU - 1			
cert. nº/data:	11.0105/26 GEN 11			

Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

data ricevimento: 06 AGO 10

Cliente - Richiedente: Commessa:

SPEA S.p.A. 08.040.00

Sito:

A1 MI-NA 3[^]corsia

Sondaggio:

SV18B

Campione:

Cl1

Profonditá:

10.50-10.90 mt.

File: 118CI1T1

data esecuzione: 20 GEN 2011

verbale accettazione nº:

nº progressivo campione:

velocità di deformazione (mic/min) = 700

Dati provino

Sezione 11.341 cm² Altezza iniziale 76.000 mm Altezza finale 64.439 mm Numero Tara 1 1 Peso tara 1 102.070 g Tara+p.umido iniziale 288.530 g Numero Tara 2 Peso tara 2 102.070 g Tara+p.umido finale 293.300 g Tara+p.provino secco

261.390 g 2.698 Mg/m³ Peso dell'unità di volume iniziale Peso dell'unità di volume finale Peso secco dell'unità di volume Contenuto d'acqua iniziale Contenuto d'acqua finale Saturazione iniziale

Saturazione finale Indice dei vuoti iniziali Indice dei vuoti finali Peso secco dell'unià di vol. finale

Pressione în cella = 100 kPa

2.163 Mg/m³ γ Mg/m³γ, 1.848 Mg/m γ, 17.035 % W_0 W, S. 99.998 % S, 0.460 Iv, ĺ٧,

Mg/m³

Elaborazione dati acquisiti

Peso specifico del terreno

Fase di Rottura

Epsilon	Α	s1-s3	Epsilon	Α	s1-s3	Epsilon	Α	s1-s3
%	cm2	kPa	%	cm2	kPa	%	cm2	kPa
0.01	11.34	0.97	4.74	11.91	228.12	9.25	12.50	84.13
0.12	11.35	69.44	4.90	11.92	221.32	9.44	12.52	76.08
0.29	11.37	122.27	5.08	11.95	212.64	9.63	12.55	71.56
0.47	11.39	154.74	5.24	11.97	201.31	9.81	12.57	67.06
0.66	11.42	183.21	5.40	11.99	192.74	10.00	12.60	62.57
0.86	11.44	208.70	5.57	12.01	178.72	10.20	12.63	59.83
1.06	11.46	230.24	5.73	12.03	164.76	10.38	12.66	56.25
1.26	11.49	248.86	5.91	12.05	152.64	10.56	12.68	56.14
1.46	11.51	264.52	6.05	12.07	143.33	10.73	12.70	53.44
1.66	11.53	274.42	6.23	12.09	135.82	10.92	12.73	50.75
1.89	11.56	282.32	6.40	12.12	129.24	11.08	12.75	49.80
2.09	11.58	285.51	6.58	12.14	124.49	11.25	12.78	48.85
2.30	11.61	284.92	6.76	12.16	119.74	11.43	12.80	47.90
2.50	11.63	284.32	6.95	12.19	115.91	11.59	12.83	46.95
2.71	11.66	280.91	7.13	12.21	112.99	11.77	12.85	46.01
2.89	11.68	277.56	7.33	12.24	110.07	11.93	12.88	46.77
3.10	11.70	273.21	7.51	12.26	108.06	12.10	12.90	43.29
3.30	11.73	266.12	7.70	12.29	106.95	12.26	12.93	42.36
3.48	11.75	263.75	7.89	12.31	104.95	12.42	12.95	40.59
3.67	11.77	259.52	8.09	12.34	102.95	12.57	12.97	38.83
3.85	11.80	254.38	8.29	12.37	101.84	12.73	13.00	38.76
4.03	11.82	252.99	8.49	12.39	99.85	12.91	13.02	37.84
4.20	11.84	246.98	8.67	12.42	97.89	13.08	13.05	36.93
4.39	11.86	241.89	8.86	12.44	93.29	13.26	13.08	36.85
4.56	11.88	235.91	9,05	12.47	89.58	13.45	13.10	37.61

ertificato nº/data: 11.0105/26 GEN 11

'ert. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	Il Direttore
Dett. Ricco	Dott, Giusti	Dott. Sanchi
Dott. Giusti		
Dott. Sanchi		

Mod, 025 Ed	lizione n. 1 del 13/10/09	
pressa matr.	UG21.1.85 e CT1.7,9.85	
LO, 005a	Rif. 1° linea, PL2.(1-5).95	
def 0.0109m	m, press.0.6%	

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail; info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00
ld. Camp.:	SV18BCI1
Da mt. a mt.:	10.50-10.90 mt.
Rif. Prova:	TX UU - 2
cert. nº/data;	11.0105/26 GEN 11

Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

Cliente - Richiedente:

SPEA S.p.A.

Commessa:

08.040.00

Sito:

A1 MI-NA 3[^]corsia

Sondaggio:

SV18B

Campione: Profonditá: CI1

10.50-10.90 mt.

data esecuzione: 20 GEN 2011

File: |18C|1T1

verbale accettazione n°:

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Fase di Rottura

data ricevimento: 06 AGO 10

Epsilon	Α	s1-s3
%	cm2	kPa
13.63	13.13	36.69
13.83	13.16	35.78
14.01	13.19	35.70
14.22	13.22	34.79
14.41	13.25	33.88
14.61	13.28	32.98
14.82	13.31	32.90
15.02	13.34	31.18
15.21	13.38	31.93

ertificato nº/data: 11.0105/26 GEN 11

ert. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	Il Direttore
Dott. Ricco	Dott. Giusti	Dott. Sanchi
Dott. Giusti		***
Dott. Sanchi		

İ		
Mod. 025 Ed	lizione n. 1 del 13/10/09	
pressa matr.	UG21.1.85 e CT1.7,9.85	
I.O. 005a	Rif. 1º linea, PL2.(1-5).95	
def 0.0109m	m, press.0.6%	****

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net

REA: RN-304214 - C.F. e P. IVA03686910401

Id. Camp.: SV18B CI1 Da mt. a mt.: 10.50-10.90 mt. Rif. Prova; TX UU - 3 cert. n°/data: 11.0105/26 GEN 11

Commessa

08.040.00

www.sgailab.net
Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

data ricevimento: 06 AGO 10

Cliente - Richiedente:

SPEA S.p.A. 08.040.00

Commessa:

A1 MI-NA 3^corsia

Sondaggio:

Sito:

:V18R

Campione:

SV18B

Profonditá:

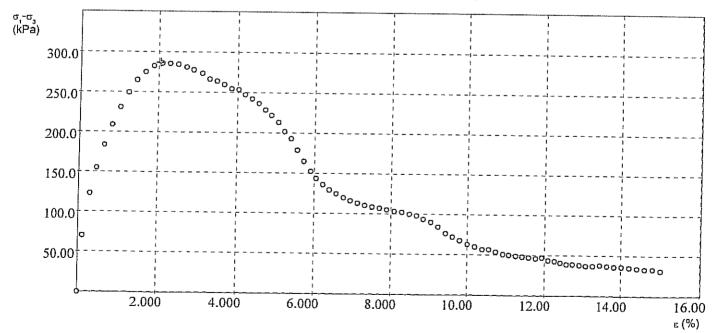
Ci1 10.50-10.90 mt. File: I18CI1T1

data esecuzione: 20 GEN 2011

verbale accettazione nº:

nº progressivo campione:

velocità di deformazione (mic/min) = 700


Dati acquisiti

Fase di Rottura

dH	dN
mm	N
0.01	1.10
0.09	78.85
0.22	139.08
0.36	176.31
0.50	209.16
0.65	238.73
0.81	263.92
0.95	285.82
1.11	304.44
1.26	316.48
1.43	326.34
1.59	330.72
1.75	330.72
1.90	330.72
2.06	327.44
2.20	324.15
2.36	319.77

·	o ai Nottai
dH	dN
mm	N N
2.51	312.10
2.65	309.91
2.79	305.53
2.93	300.06
3.06	298.96
3.20	292.39
3.34	286.92
3.47	280.35
3.60	271.59
3.72	263.92
3.86	254.06
3.98	240.92
4.11	231.07
4.23	214.64
4.36	198.21
4.49	183.98
4.60	173.03

dH	dN
mm	N
4.73	164.27
4.87	156.60
5.00	151.12
5.14	145.65
5.28	141.27
5.42	137.98
5.57	134.70
5.71	132.51
5.85	131.41
6.00	129.22
6.15	127.03
6.30	125.94
6.45	123.75
6.59	121.56
6.73	116.08
6.88	111.70

ertificato nº/data: 11.0105/26 GEN 11

rt. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	II Direttore
Dott. Ricco	Dott. Giusti	Dott. Sanchi
Dott. Giusti		
Dott. Sanchi		

Dressa IICO I I		
pressit 0021.1.0	35 e CT1.7,9.85	
I.O. 005a R	if. 1º linea, PL2.(1-5).95	

SGAILAB - Laboratorie Ricerche s.r.l. www.sgailab.net Dati del cliente

SGAILAB - Laboratori e Ricerche S.r.L.

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net

REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00
ld. Camp.:	SV18B CI1
Da mt. a mt.:	10.50-10.90 mt.
Rif. Prova:	TX UU - 4
cert. nº/data;	11.0105/26 GEN 11

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

data ricevimento: 06 AGO 10

Cliente - Richiedente:

SPEA S.p.A.

Commessa:

08.040.00

Sito:

A1 MI-NA 3^corsia

Sondaggio:

SV18B

Campione:

CI1

Profonditá:

10.50-10.90 mt.

File: I18CI1T1

data esecuzione: 20 GEN 2011

verbale accettazione nº:

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Fase di Rottura

dΗ	dΝ
mm	N
7.03	105.13
7.17	95.27
7.32	89.80
7.46	84.32
7.60	78.85
7.75	75.56
7.89	71.18
8.03	71.18
8.16	67.90
8.30	64.61
8.42	63.52
8.55	62.42
8.68	61.33
8.81	60.23
8.94	59.14
9.07	60.23
9.19	55.85
9.32	54.76
9.44	52.56
9.56	50.37
9.67	50.37
9.82	49.28
9.94	48.18
10.08	48.18
10.22	49.28
10.36	48.18
10.51	47.09
10.65	47.09
10.81	45.99
10.95	44.90
11.10	43.80
11.26	43.80
11.41	41.61
11.56	42.71

ertificato nº/data: 11.0105/26 GEN 11

ert. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	II Direttore
Dott. Ricco	Dott. Giusti	Dott. Sanchi
Dott. Giusti		
Dott. Sanchi		

Mod, 025 P	dizione n. 1 del 03/10/07	
pressa UG2	1.1.85 e CT1.7,9.85	
I.O. 005a	Rif. 1° linea, PL2.(1-5).95	
def 0.0109r	nm, press.0.6%	

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net
REA: RN-304214 - C.F. e P. IVA03586910401

Commessa:	08.040.00
ld, Camp.:	SV18BCI1
Damt. emt.:	10.50-10.90 mt.
Ríf. Prova:	TX UU - 1
cert. nº/data:	11.0105/26 GEN 11

Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

Cliente - Richiedente:

SPEA S.p.A.

Commessa:

08.040.00

Sito:

A1 MI-NA 3^corsia

Sondaggio: Campione: SV18B

Profonditá:

CI1

10.50-10.90 mt.

data ricevimento: 06 AGO 10

File: 118CI1T2

data esecuzione: 20 GEN 2011

verbale accettazione nº:

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Dati provino

Sezione 11.341 cm² Altezza iniziale 76.000 mm Altezza finale 58.796 mm Numero Tara 1 1 99.670 g Peso tara 1 Tara+p.umido iniziale 280.980 g Numero Tara 2 99.670 g Peso tara 2 Tara+p.umido finale 280.880 g Tara+p.provino secco 255.710 g

Peso dell'unità di volume iniziale
Peso dell'unità di volume finale
Peso secco dell'unità di volume
Contenuto d'acqua iniziale
Contenuto d'acqua finale
Saturazione iniziale
Saturazione finale
Indice dei vuoti iniziali
Indice dei vuoti finali
Peso secco dell'unià di vol. finale

Pressione in cella = 200 kPa

2.104 Mg/m³ γ
Mg/m³ γ,
1.810 Mg/m³ γ,
16.195 % W,
89.116 % S,
0.490 IV,
Mg/m³ γ,

255.710 g 2.698 Mg/m³

Elaborazione dati acquisiti

Peso specifico del terreno

Fase di Rottura

Epsilon	Α	s1-s3	Epsilon	Α	s1-s3	Epsilon	Α	s1-s3
%	cm2	kPa	%	cm2	kPa	%	cm2	kPa
0.00	11.34	0.97	4.55	11.88	507.82	9.07	12.47	535.60
0.08	11.35	109.99	4.72	11.90	507.86	9.26	12.50	536.26
0.24	11.37	160.87	4.90	11.92	510.60	9.45	12.52	536.86
0.42	11.39	193.28	5.07	11.95	515.16	9.64	12.55	537.45
0.60	11.41	222.67	5.24	11.97	517.01	9.83	12.58	538.09
0.79	11.43	251.00	5.41	11.99	519.70	10.01	12.60	535.25
0.96	11.45	277.33	5.59	12.01	521.48	10.20	12.63	529.81
1.15	11.47	302.58	5.76	12.03	524.15	10.37	12.65	530.51
1.33	11.49	324.88	5.94	12.06	526.81	10.56	12.68	529.42
1.53	11.52	346.11	6.12	12.08	528.49	10.74	12.71	530.05
1.72	11.54	365.36	6.30	12.10	531.12	10.93	12.73	527.23
1.92	11.56	384.52	6.48	12.13	531.88	11.10	12.76	524.47
2.11	11.59	401.72	6.65	12.15	533.65	11.28	12.78	524.30
2.31	11.61	418.84	6.82	12.17	534.44	11.46	12.81	524.06
2.50	11.63	433.07	7.01	12.20	534.28	11.65	12.84	521.26
2.70	11.66	444.42	7.19	12.22	535.01	11.82	12.86	520.23
2.88	11.68	455.77	7.38	12.24	534.84	12.01	12.89	518.29
3.07	11.70	467.07	7.55	12.27	534.72	12.19	12.92	516.35
3.26	11.72	475.47	7.74	12.29	534.54	12.37	12.94	514.47
3.45	11.75	482.96	7.93	12.32	535.19	12.54	12.97	513.44
3.62	11.77	488.59	8.13	12.34	534.95	12.70	12.99	512.53
3.82	11.79	492.20	8.31	12.37	534.76	12.88	13.02	511.50
3.99	11.81	495.06	8.51	12.40	535.39	13.04	13.04	510.53
4.18	11.84	501.51	8.69	12.42	536.07	13.22	13.07	508.66
4.37	11.86	503.26	8.88	12.45	535.86	13.39	13.09	507.64
					· · · · · · · · · · · · · · · · · · ·	L		

ertificato nº/data: 11.0105/26 GEN 11

ert. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	Il Direttore
Dott. Ricco	Dett. Giusti	Dott. Sanchi
Dott, Giusti		
Dott. Sanchi		

Mod. 025 Ed	fizione n. 1 del 13/10/09	
pressa matr.	UG21.1.85 e CT1.7,9.85	
I.O. 005a	Rif. 1° linea, PL2.(1-5).95	
def 0.0109m	m, press.0.6%	

Via Mariolti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00
ld. Camp.;	SV18BCI1
Da mt. a mt.:	10.50-10.90 mt.
Rif. Prova;	TX UU - 2
cert. nº/data;	11.0105/26 GEN 11

Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

Cliente - Richiedente:

SPEA S.p.A. Commessa: 08.040.00

Sito:

A1 MI-NA 3[^]corsia

Sondaggio:

SV18B

Campione: Profonditá: CI1

10.50-10.90 mt.

File: I18CI1T2

data esecuzione: 20 GEN 2011

verbale accettazione n°:

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Fase di Rottura

data ricevimento: 06 AGO 10

Epsilon	Α	s1-s3
%	cm2	kPa
13.57	13.12	505.77
13.75	13.15	505.53
13.95	13.18	504.38
14.12	13.21	504.19
14.32	13.24	503.87
14.49	13.26	502.02
14.69	13.29	501.70
14.84	13.32	502.43
15.06	13.35	500.34
15.24	13.38	499.25
15.43	13.41	498.16
15.62	13.44	497.02
15.81	13.47	495.06
16.01	13.50	495.54
16.21	13.54	494.33
16.40	13.57	490.82
16.59	13.60	488.06
16.78	13.63	484.57
16.96	13.66	484.30
17.14	13.69	480.07
17.32	13.72	480.60
17.50	13.75	480.38
17.68	13.78	479.30
17.86	13.81	475.90
18.03	13.84	473.30
18.21	13.87	471.50
18.37	13.89	468.97
18.56	13.93	465.55
18.73	13.96	462.19
18.91	13.99	460.42
19.08	14.01	458.69
19.25	14.04	456.14
19.44	14.08	454.32
19.60	14.11	451.83
19.75	14.13	449.46

tificato nº/data: 11.0105/26 GEN 11

t. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	Il Direttore
Datt. Ricco	Dott. Giusti	Dott. Sanchi
Dott. Giusti		
Dott. Sanchi	F#10/1	

Mod. 025 Ed		
pressa matr.	UG21.1.85 e CT1.7,9.85	
I.O. 005a Rif. 1º linea, PL2.(1-5).95		
def 0.0109m	m, press.0.6%	

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00
ld. Camp.;	SV18BCI1
Da mt. a mt.:	10.50-10.90 mt.
Rif. Prova;	TX UU - 3
cert. nº/data:	11.0105/26 GEN 11

Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

Cliente - Richiedente:

SPEA S.p.A.

Commessa:

Sito:

08.040.00 A1 MI-NA 3^corsia

Sondaggio:

SV18B

Campione:

Cl1

Profonditá:

10.50-10.90 mt.

File: I18CI1T2

data esecuzione: 20 GEN 2011

verbale accettazione nº:

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Fase di Rottura

data ricevimento: 06 AGO 10

Epsilon	Α	s1-s3
%	cm2	kPa
19.96	14.17	446.72
20.14	14.20	446.51
20.33	14.24	444.65
20.52	14.27	443.62
20.70	14.30	442.59
20.89	14.34	439.98
21.07	14.37	437.48
21.27	14.41	436.35
21.46	14.44	434.56
21.65	14.48	433.49
21.86	14.51	432.35
22.06	14.55	430.47
22.27	14.59	427.84
22.45	14.62	424.58
22.64	14.66	422.07

rtificato nº/data: 11.0105/26 GEN 11

rt. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	Il Direttore
Dott, Ricco	Dott. Giusti	Dott, Sanchi
Dott. Giusti		
Dott, Sanchi		·····

Mod. 025 Ec	lizione n. 1 del 13/10/09	***.
pressa matr.	UG21.1.85 e CT1.7,9.85	<u></u>
I.O. 005a Rif. 1° linea, PL2.(1-5).95		
def 0.0109m	m, press.0.6%	

SGAILAB - Laboratori e Ricerche s.r.l. www.sgailab.net Dati del cliente

SGAILAB - Laboratori e Ricerche S.r.L.

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ¡TALY
Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net
REA: RN-304214 - C.F. e P. IVA03686910401

Commessa: 08.040.00

Id. Camp.: SV18B CI1

Da ml. a ml.: 10.50-10.90 mt.

Rif. Prova: TX UU - 4

cert. n*/data: 11.0105/26 GEN 11

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

data ricevimento: 06 AGO 10

Cliente - Richiedente: SPEA S.p.A. Commessa: 08.040.00

Sito: A1 MI-NA 3^corsia

Sondaggio: SV18B Campione: Ci1

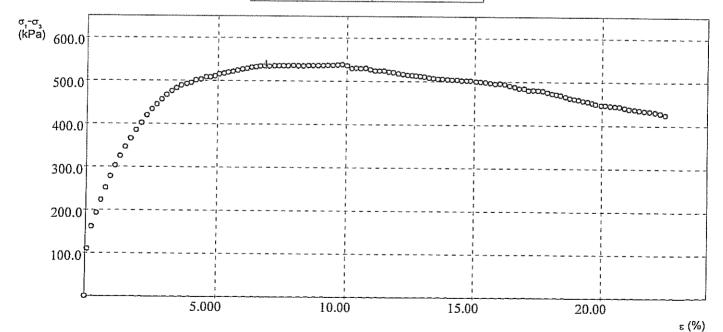
Profonditá: 10.50-10.90 mt.

File: I18CI1T2

data esecuzione: 20 GEN 2011

verbale accettazione n°: n° progressivo campione:

velocità di deformazione (mic/min) = 700


Dati acquisiti

Fase di Rottura

dH	dN
mm	N
0.00	1.10
0.06	124.84
0.18	182.88
0.32	220.12
0.46	254.06
0.60	286.92
0.73	317.58
0.87	347.15
1.01	373.43
1.16	398.62
1.31	421.61
1.46	444.61
1.61	465.42
1.75	486.23
1.90	503.75
2.05	517.98
2.19	532.22

dH	dN
mm	N
2.33	546.46
2.48	557.41
2.62	567.26
2.75	574.93
2.91	580.40
3.03	584.78
3.17	593.55
3.32	596.83
3.46	603.40
3.59	604.50
3.72	608.88
3.85	615.45
3.98	618.73
4.11	623.11
4.25	626.40
4.38	630.78
4.51	635.16

dH	dN
mm	N
4.65	638.44
4.79	642.82
4.93	645.02
5.05	648.30
5.18	650.49
5.33	651.59
5.47	653.78
5.61	654.87
5.74	655.97
5.88	657.06
6.03	659.25
6.18	660.35
6.32	661.44
6.46	663,63
6.61	665.82
6.75	666.92

ertificato nº/data: 11.0105/26 GEN 11

lert. Sistema Qualità ISO 9001:2008 UNA 17533/08/S

Lo Sperimentatore	Controllato	Il Direttore
Dott. Ricco	Dott, Giusti	Dott. Sanchi
Dott. Gíusti		
Dott. Sanchi		

Mod. 025 Edizione n. I del 03/10/07		***
pressa UG2	1.1.85 e CT1.7,9.85	*****
I.O. 005a Rif. 1° linea, PL2.(1-5).95		
def 0.0109r	nm, press.0.6%	<u> </u>

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

08.040.00 Commessa: SV18B CI1 ld, Camp.: 10.50-10.90 mt. Da mt. a mt.: TX UU - 5 Rif, Prova: 11.0105/26 GEN 11 cert, nº/data;

www.sgailab.net Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

data ricevimento: 06 AGO 10

Cliente - Richiedente:

SPEA S.p.A.

Commessa:

08.040.00

Sito:

A1 MI-NA 3[^]corsia

Sondaggio:

SV18B

Campione:

Profonditá:

CI1

10.50-10.90 mt.

File: I18CI1T2

data esecuzione: 20 GEN 2011

verbale accettazione nº:

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Fase di Rottura

dH	dN
mm	N
6.89	668.01
7.03	670.20
7.18	672.39
7.33	674.58
7.47	676.77
7.61	674.58
7.75	669.11
7.88	671.30
8.03	671.30
8.17	673.49
8.31	671.30
8.44	669.11
8.57	670.20
8.71	671.30
8.85	669.11
8.99	669.11
9.13	668.01
9.27	666.92
9.40	665.82
9.53	665.82
9.65	665.82
9.79	665.82
9.91	665.82
10.04	664.73
10.18	664.73
10.31	663.63
10.45	664.73
10.60	664.73
10.73	665.82
10.88	666.92
11.01	665.82
11.16	666.92
11.28	669.11
11.44	668.01
11.58	668.01
11.72	668.01
11.87	668.01

Certificato nº/data: 11.0105/26 GEN 11

Cert. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	II Direttore
Dott. Ricco	Dott. Giusti	Dott. Sanchi
Dott. Giusti		
Dott. Sanchi		

Mod. 025 E	dizione n. 1 del 03/10/07	
pressa UG2	1.1.85 e CT1.7,9.85	
I.O. 005a Rif. 1º linea, PL2.(1-5).95		
def 0.0109r	nm, press.0.6%	

www.sgailab.net Dati del cliente

SGAILAB - Laboratori e Ricerche S.r.L.

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net

REA: RN-304214 - C.F. e P. IVA03686910401

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

Cliente - Richiedente: SPEA S.p.A.

Commessa: 08.040.00 Sito: A1 MI-NA 3[^]corsia

Sondaggio: SV18B Campione:

Profonditá: 10.50-10.90 mt.

CI1

File: 118CI1T2

data esecuzione: 20 GEN 2011

verbale accettazione nº: n° progressivo campione:

velocità di deformazione (mic/min) = 700

Commessa:

Id. Camp.:

Da mt. a mt.:

Rif. Prova: cert, nº/data; 08.040.00

TX UU - 6

SV18B CI1

10.50-10.90 mt.

11.0105/26 GEN 11

Fase di Rottura

data ricevimento: 06 AGO 10

dH	dN
mm	N
12.02	666.92
12.17	669.11
12.32	669.11
12.46	665.82
12.61	663.63
12.75	660.35
12.89	661.44
13.03	657.06
13.17	659.25
13.30	660.35
13.44	660.35
13.57	657.06
13.71	654.87
13.84	653.78
13.96	651.59
14.11	648.30
14.24	645.02
14.37	643.92
14.50	642.82
14.63	640.63
14.77	639.54
14.90	637.35
15.01	635.16
15.17	632.97
15.30	634.06
15.45	632.97
15.59	632.97
15.73	632.97
15.88	630.78
16.01	628.59
16.17	628.59
16.31	627.49
16.46	627.49
16.61	627.49
16.77	626.40
16.92	624.21
17.06	620.92
······································	

Dertificato nº/data: 11.0105/26 GEN 11

Cert. Sistema Qualità ISO 9001:2008

1	Lo Sperimentatore	Controllato	Il Direttore
	Dott. Ricco	Dott. Giusti	Dott. Sanchi
	Dott. Giusti		***
	Dott. Sanchi		

Mod. 025 E	dizione n. 1 del 03/10/07		
pressa UG21.1.85 e CT1.7,9.85			
I.O. 005a Rif. 1° linea, PL2.(1-5).95			
def 0.0109mm, press.0.6%			

www.sgailab.net Dati del cliente

SGAILAB - Laboratori e Ricerche S.r.L.

Via Mariolti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net

REA: RN-304214 - C.F. e P. IVA03686910401

08.040.00 Commessa: SV18B CI1 ld. Camp.; Da mt. a mt.: 10.50-10.90 mt. Rif. Prova: TX UU - 7 11.0105/26 GEN 11 cert. nº/data;

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

Cliente - Richiedente:

Commessa:

SPEA S.p.A.

08.040.00 A1 MI-NA 3^{corsia}

Sondaggio:

Sito:

SV18B

Campione: Profonditá: CI1

10.50-10.90 mt.

File: I18CI1T2

data ricevimento: 06 AGO 10

data esecuzione: 20 GEN 2011

verbale accettazione nº:

п° progressivo campione:

velocità di deformazione (mic/min) = 700

Fase di Rottura

dH	dN
mm	N
17.20	618.73

ertificato nº/data: 11.0105/26 GEN 11

rt. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	ll Direttore
Dott. Ricco	Dott. Giusti	Dott. Sanchi
Dott. Giusti		
Dott. Sanchi		

Mod. 025 Edizione n. 1 del 03/10/07			
pressa UG21.1.85 e CT1.7,9.85			
I.O. 005a Rif. 1º linea, PL2.(1-5).95			

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541987506 - e.mail: info@sgailab.net
REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00
Id. Camp.:	SV18BCI1
Damt.amt.:	10.50-10.90 mt.
Rif, Prova:	TX UU - 1
cert. nº/data:	11.0105/26 GEN 11

Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

data ricevimento: 06 AGO 10

Cliente - Richiedente: SPEA S.p.A.

Commessa: 08.040.00

Sito: A1 MI-NA 3^corsia

Sondaggio: SV18B Campione: CI1

Profonditá: 10.50-10.90 mt.

File: I18CI1T3

data esecuzione: 24 GEN 2011

verbale accettazione nº:

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Dati provino

	Sezione	11.341	cm 2
	Altezza iniziale	76.000	mm
l	Altezza finale	60.608	шш
	Numero Tara 1	1	
	Peso tara 1	102.100	g
	Tara+p.umido iniziale	289.380	g
	Numero Tara 2	1	
	Peso tara 2	102.100	g
	Tara+p.umido finale	288.460	g
	Tara+p.provino secco	264.700	g
	Peso specifico del terreno	2.698	Mg/m³

Peso dell'unità di volume iniziale
Peso dell'unità di volume finale
Peso secco dell'unità di volume
Contenuto d'acqua iniziale
Contenuto d'acqua finale
Saturazione iniziale
Saturazione finale
Indice dei vuoti iniziali
Indice dei vuoti finali

Peso secco dell'unià di vol. finale Pressione in cella = 300 kPa

Elaborazione dati acquisiti

Fase di Rottura

Epsilon	Α	s1-s3	Epsilon	Α	s1-s3	Epsilon	A	s1-s3
%	cm2	kPa	%	cm2	kPa	%	cm2	kPa
0.00	11.34	0.00	4.53	11.88	368.70	9.09	12.47	339.34
0.03	11.34	22.19	4.70	11.90	370.49	9.29	12.50	338.58
0.17	11.36	31.18	4.87	11.92	373.53	9.50	12.53	337.82
0.34	11.38	50.42	5.04	11.94	376.51	9.69	12.56	337.09
0.54	11.40	67.01	5.21	11.96	374.64	9.89	12.59	331.71
0.72	11.42	83.55	5.38	11.99	375.16	10.07	12.61	331.03
0.91	11.45	100.01	5.56	12.01	373.25	10.27	12.64	330.31
1.10	11.47	117.69	5.73	12.03	372.56	10.43	12.66	329.70
1.30	11.49	131.46	5.91	12.05	371.87	10.60	12.69	329.09
1.50	11.51	150.27	6.09	12.08	372.35	10.77	12.71	331.90
1.69	11.54	169.01	6.27	12.10	366.81	10.95	12.74	331.25
1.91	11.56	188.90	6.44	12.12	363.71	11.12	12.76	330.60
2.10	11.58	207.48	6.62	12.14	363.03	11.30	12.79	325.37
2.31	11.61	225.96	6.80	12.17	362.31	11.47	12.81	324.73
2.49	11.63	244.41	6.98	12.19	359.23	11.65	12.84	324.09
2.69	11.65	261.51	7.15	12.21	358.55	11.81	12.86	318.93
2.88	11.68	281.04	7.37	12.24	354.14	12.00	12.89	318.26
3.07	11.70	295.52	7.54	12.27	353.47	12.17	12.91	317.66
3.26	11.72	307.41	7.73	12.29	352.76	12.35	12.94	312.46
3.46	11.75	320.47	7.91	12.32	350.87	12.52	12.96	311.87
3.65	11.77	334.78	8.10	12.34	350.16	12.69	12.99	311.25
3.83	11.79	344.06	8.30	12.37	349.38	12.88	13.02	310.59
4.02	11.82	352.07	8.50	12.39	345.10	13.04	13.04	314.49
4.19	11.84	360.09	8.70	12.42	344.33	13.23	13.07	313.82
4.36	11.86	365.64	8.88	12.45	343.67	13.41	13.10	313.15

rtificato n°/data: 11.0105/26 GEN 11

rt. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	Il Direttore	
Dott, Ricco	Dott. Giusti	Dott. Sanchi	
Dott. Giusti			
Dott. Sanchí	*		

•		
pressa matr. UG2	1.1.85 c CT1.7,9.85	
l.O. 005a F	tif. 1º linea, PL2.(1-5).95	

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail; info@sgailab.net

REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00
Id. Camp.:	SV18BCI1
Da.mt, a.mt.;	10.50-10.90 mt.
Rif. Prova:	TX UU - 2
cert, n°/data:	11.0105/26 GEN 11

Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

Cliente - Richiedente:

SPEA S.p.A.

Commessa:

08.040.00

Sito:

A1 MI-NA 3[^]corsia

Sondaggio:

SV18B

Campione:

CI1

Profonditá:

CI1 10.50-10.90 mt. File: I18CI1T3

data esecuzione: 24 GEN 2011

verbale accettazione n°:

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Fase di Rottura

data ricevimento: 06 AGO 10

Α_	s1-s3
	kPa
	309.14
,	308.48
1 ' '	307.82
	300.51
	299.86
	299.21
13.30	298.53
13.33	288.43
13.36	295.04
13.39	294.37
13.42	291.31
13.45	289.68
13.48	288.98
13.52	288.31
13.55	287.64
13.58	286.97
13.61	286.30
13.64	288.89
13.67	288.25
13.70	287.60
13.73	280.60
13.76	280.00
13.79	279.34
13.82	278.75
13.85	280.27
13.88	279.67
13.91	279.07
13.94	283.82
13.97	283.14
14.00	282.53
14.03	281.92
14.06	272.98
14.09	272.35
14.13	271.69
14.16	271.10
	cm2 13.13 13.15 13.18 13.21 13.24 13.27 13.30 13.33 13.36 13.39 13.42 13.45 13.48 13.52 13.55 13.55 13.55 13.55 13.61 13.64 13.67 13.70 13.73 13.76 13.79 13.82 13.85 13.88 13.91 13.94 13.97 14.00 14.03 14.06 14.09 14.13

Certificato nº/data: 11.0105/26 GEN 11

Cert. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	Il Direttore
Dott. Ricco	Dott. Giusti	Dott. Sanchi
Dott. Giusti	1000	
Dott. Sanchi		

Mod. 025 Edizione n. 1 del 13/10/09	
pressa matr. UG21.1.85 e CT1.7,9.85	
I.O. 005a Rif. 1° linea, PL2.(1-5),95	
def 0.0109mm, press.0.6%	

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00
ld. Camp.:	SV18BCI1
Da mt. a mt.:	10.50-10.90 mt.
Rif, Prova:	TX UU -3
cert. n°/data:	11.0105/26 GEN 11

Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

Cliente - Richiedente:

SPEA S.p.A.

Commessa:

08.040.00

Sito:

A1 MI-NA 3[^]corsia

Sondaggio:

SV18B

Campione: Profonditá: CI1

10.50-10.90 mt.

File: I18CI1T3

data esecuzione: 24 GEN 2011

verbale accettazione nº:

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Fase di Rottura

data ricevimento: 06 AGO 10

Epsilon	А	s1-s3
%	cm2	kPa
20.07	14.19	270.51

ertificato nº/data: 11.0105/26 GEN 11

ert. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	Il Direttore
Dott. Ricco	Dott. Giusti	Dett. Sanchi
Dott. Giusti		
Dott, Sanchi	*********	· · ·

Mod. 025 Ed	lizione n. 1 del 13/10/09	
pressa matr.	UG21,1.85 e CT1.7,9.85	
I.O. 005a	Rif. 1º linea, PL2.(1-5).95	
def 0.0109mm, press.0.6%		

SGAILAB - Laboratori e Ricerche s.r.t. www.sgailab.net Dati del cliente

SGAILAB - Laboratori e Ricerche S.r.L.

Via Mariotti 18/a - 47633 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax, +39 0541987605 - e.mail: info@sgailab.net

REA: RN-304214 - C.F. e P. IVA03686910401

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

data ricevimento: 06 AGO 10

Fase di Rottura

Cliente - Richiedente: SPEA S.p.A.

Commessa: Sito: 08.040.00 A1 MI-NA 3^corsia

Sondaggio:

SV18B

Campione: Profonditá: CI1

10.50-10.90 mt.

File: I18CI1T3

data esecuzione: 24 GEN 2011

verbale accettazione n°: n° progressivo campione:

velocità di deformazione (mic/min) = 700

Commessa:

ld. Camp.:

Da mt. a mt.:

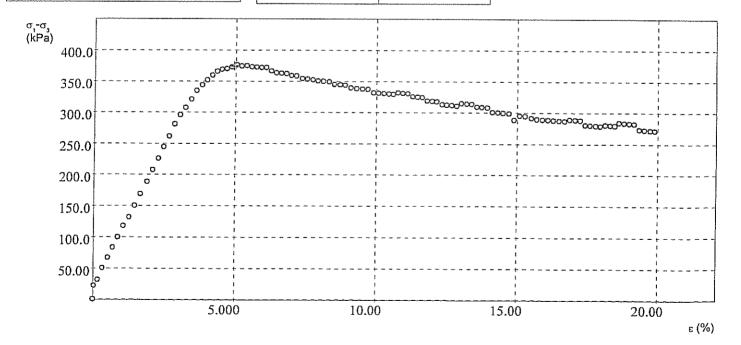
Rif. Prova;

cert. nº/data

08.040.00

SV18B CI1

10.50-10.90 mt. TX UU - 4


11.0105/26 GEN 11

Dati acquisiti

dH	dN
mm	N
0.00	0.00
0.02	25.18
0.13	35.42
0.26	57.38
0.41	76.41
0.55	95.44
0.70	114.47
0.84	134.96
0.99	151.06
1.14	173.02
1.29	194.98
1.45	218.40
1.60	240.35
1.75	262.31
1.89	284.27
2.04	304.76
2.19	328.18

dH	dN
mm	N
2.33	345.75
2.48	360.38
2.63	376.49
2.77	394.05
2.91	405.76
3.05	416.01
3.19	426.25
3.31	433.57
3.44	437.96
3.57	440.89
3.70	445.28
3.83	449.67
3.96	448.21
4.09	449.67
4.22	448.21
4.36	448.21
4.49	448.21

dH	dN
mm	N
4.63	449.67
4.76	443.82
4.90	440.89
5.03	440.89
5.17	440.89
5.30	437.96
5.44	437.96
5.60	433.57
5.73	433.57
5.87	433.57
6.01	432.11
6.15	432.11
6.31	432.11
6.46	427.72
6.61	427.72
6.75	427.72

ertificato nº/data: 11.0105/26 GEN 11

Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S

Lo S _I	erimentatore	Controllato	Il Direttore
Dott. 1	Ricco	Dott, Giusti	Dott. Sanchi
Dott.	Giusti		
Dott. S	Sanchi		

Mod. 025 E	dizione n. 1 del 03/10/07
pressa UG21.1.85 e CT1.7,9.85	
I.O. 005a Rif. 1º tinea, PL2.(1-5).95	
def 0.0109mm, press.0.6%	

SGAILAB-Laboratorie Ricerhe s.r.l. www.sgailab.net Dati del cliente

SGAILAB - Laboratori e Ricerche S.r.L.

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net

REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00
Id, Camp.:	SV18B Cl1
Damt.amt;	10.50-10.90 mt.
Rif. Prova:	TX UU - 5
cert. nº/data;	11.0105/26 GEN 11

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

data ricevimento: 06 AGO 10

Cliente - Richiedente:

SPEA S.p.A.

Commessa:

08.040.00

Sito: Sondaggio: A1 MI-NA 3^{corsia} SV18B

Campione:

C14

Profonditá:

CI1

10.50-10.90 mt.

File: |18C|1T3

data esecuzione: 24 GEN 2011

verbale accettazione nº:

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Fase di Rottura

dH	dN
mm	N
6.91	423.33
7.06	423.33
7.22	423.33
7.37	423.33
7.51	417.47
7.66	417.47
7.80	417.47
7.93	417.47
8.05	417.47
8.19	421.86
8.32	421.86
8.45	421.86
8.59	416.01
8.72	416.01
8.85	416.01
8.98	410.15
9.12	410.15
9.25	410.15
9.39	404.30
9.51	404.30
9.64	404.30
9.79	404.30
9.91	410.15
10.05	410.15
10.19	410.15
10.33	405.76
10.47	405.76
10.61	405.76
10.75	396.98
10.89	396.98
11.04	396.98
11.18	396.98
11.32	384.38
11.46	394.05
11.61	394.05
11.78	390.95
11.92	389.66

artificato nº/data: 11.0105/26 GEN 11

ert. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	Il Direttore
Dott. Ricco	Dott, Giusti	Dott. Sanchi
Dott. Giusti		
Dott. Sanchi		

Mod. 025 E	dizione n. 1 del 03/10/07	
pressa UG2	1.1.85 e CT1.7,9.85	
I.O. 005a	Rif. 1º linea, PL2.(1-5).95	

www.sgailab.net Dati del cliente

SGAILAB - Laboratori e Ricerche S.r.L.

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e,mail: info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

08.040.00 Commessa: ld. Camp.; SV18B CI1 10.50-10.90 mt. Da mt. a mt.: Rif. Prova: TX UU - 6 cert, nº/data; 11.0105/26 GEN 11

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

data ricevimento: 06 AGO 10

Cliente - Richiedente:

Commessa:

SPEA S.p.A.

08.040.00 A1 MI-NA 3^{corsia}

Sito: Sondaggio:

SV18B

Campione:

CI1

Profonditá:

10.50-10.90 mt.

File: I18CI1T3

data esecuzione: 24 GEN 2011

verbale accettazione nº:

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Fase di Rottura

dH	dN
mm	N
12.08	389.66
12.23	389.66
12.37	389.66
12.52	389.66
12.67	389.66
12.81	394.05
12.95	394.05
13.09	394.05
13.22	385.27
13.36	385.27
13.51	385.27
13.64	385.27
13.77	388.20
13.91	388.20
14.04	388.20
14.15	395.51
14.30	395.51
14.43	395.51
14.56	395.51
14.70	383.80
14.84	383.80
14.99	383.80
15.12	383.80
15.25	383.80

ertificato nº/data: 11.0105/26 GEN 11

'ert. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	Il Direttore
Dott. Ricco	Dott. Giusti	Dott. Sanchi
Dott. Giusti	******	
Dott. Sanchi		

Mod. 025 E	dizione n. 1 del 03/10/07	
pressa UG2	1.1.85 e CT1.7,9.85	
I.O. 005a	Rif. 1º linea, PL2.(1-5).95	****

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00
ld. Camp.;	CSV18B
Da ml. a mt.:	10.50-10.90 mt
Rif. Prova:	EDO - 1
cert, n°/data:	11.0008/04 DIC 11

www.sgailab.net

PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

Cliente - Richiedente: SPEA S.p.A.

Commessa: Sito:

08.040.00 A1 MI-NA 3[^]corsia fase B

Sondaggio: Campione:

SV18B CI1

Profonditá:

10.50-10.90 mt

File: I18BC1E1

data esecuzione: 6 DEC 2010

verbale accettazione nº:

nº progressivo campione:

edometro nº: 1

	Sezione	19,635 cm ²
	Altezza iniziale	20.000 mm
	Altezza finale	19.050 mm
	Numero Tara 1	1
	Peso lara 1	59.460 g
	Tara + p.umido iniziale	145.150 g
	Numero Tara 2	2
ĺ	Peso tara 2	59.460 g
	Tara + p.umido finale	145.090 g
	Tara + p.provino secco	133.320 g
i	Peso specifico del terreno	2.698 Mg/m ³

data ricevimento: 06 AGO 10	edometro n°: 1	
		_
Peso dell'unità di volume iniziale	2.182 Mg/m³ γ	
Peso dell'unità di volume finale	2.289 Mg/m²γ,	
Peso secco dell'unità di volume	1.881 Mg/m³ γ _α	
Contenuto d'acqua iniziale	16.017 % W _a	
Contenuto d'acqua finale	15.936 % W,	
Saturazione iniziale	99.460 % S	
Saturazione finale	% S,	
Indice dei vuoti iniziali	0.434 lv _o	
Indice dei vuoti finali	0.366 lv,	
Peso secco dell'unità di vol. finale	1.975 Mg/m³ γ _a	

Letture dei cedimenti in funzione del tempo

Darco	01	10 E	VD.
Passo	υı	12.0	nra.

Passo	02	25.	0.	KP:

dt	dH
min	mm
0.050	0.032
0.084	0.032
0.139	0.032
0.233	0.035
0.389	0.035
0.649	0.035
1.085	0.035
1.811	0.035
3.025	0.035
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000

Passo 03 50.0 KPa

dt	dH
min	mm
0.050	0.067
0.084	0.067
0.139	0.070
0.233	0.073
0.389	0.073
0.649	0.076
1.085	0.076
1.811	0.080
3.025	0.080
5.051	0.080
8.436	0.080
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000

Passo 04 100.0 KPa

,	
dt	dH
min	mm
0.050	0.140
0.084	0.143
0.139	0.147
0.233	0.153
0.389	0.156
0.649	0.159
1.085	0.163
1.811	0.166
3.025	0.169
5.051	0.172
8.436	0.175
14.088	0.178
23.527	0.178
39.290	0.178
65.615	0.182
109.576	0.178
	i

Risultati

ε=	0.080	%
lv =	0.433	
}		
Cv =		
Ca =		
M =		
V -		

K =

ε=	0.175	%
ε = lv =	0.432	
Cv=		
Ca = M =		
M =	13.098	MPa

Risultati

$\epsilon =$	0.398	%
lv =	0.429	
Cv=		
Ca =		
M =	11.191	MPa
K =		

Risultati

$\epsilon =$	0.957	%
lv =	0.421	
Cv=		
Ca=		
M =	8.954	MPa
K =		

Certificato nº/data: 11.0008/04 DIC 11

Cert. Sistema Qualità ISO 9001:2008

Mod. 025 Edizione n. 1 del 03/10/07	
Prova eseguita con matr. ED.1,2.5,6,7.85	
I.O. 005a incert. def. max. 0,0022 mm	
Rif. Campione di 1° linea PL2.(1-3).95	

Lo Sperimentatore	Controllato	Il Direttore
Dott. Giusti	Dott. Giusti	Dott. Sanchi
Dott. Ricco		
Dott, Branchi		

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541987606 - e.maif; info@sgailab.net
REA: RN-304214 - C.F. e P. IVA03686910401

Commessa;	08.040.00
Id. Camp.;	CSIV18B
Da mt, a mt.:	10.50-10.90 mt
Rif. Prova:	EDO - 2
cert. nº/data:	11.0008/04 DIC 11

SGAILAB - Laboratori e Ricerche s.r.t.

www.sgailab.net PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

Cliente - Richiedente: SPEA S.p.A.

Commessa:

08.040.00

Sito:

A1 MI-NA 3^corsia fase B

Sondaggio: Campione: SV18B CI1

Profonditá:

JII

data esecu:

data esecuzione: 6 DEC 2010

verbale accettazione nº:

n° progressivo campione:

edometro nº: 1

File: I18BC1E1

10.50-10.90 mt

data ricevimento: 06 AGO 10

Passo 01 12.5 KPa

Passo 02 25.0 KPa

Passo 03 50.0 KPa

Passo 04 100.0 KPa

dt	dH
min	mm
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000

dt	dΗ
min	mm
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000

dt	dH
min	mm
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000

dt	dH
min	mm
182.993	0.185
305.598	0.185
510.348	0.188
852.281	0.191
1423.300	0.191

Certificato nº/data: 11.0008/04 DIC 11

Cert. Sistema Qualità ISO 9001:2008

Mod. 025 Edi	zione n. 1 del 03/10/07	
Prova eseguit	1 con matr. ED.1,2.5,6,7.85	
I.O. 005a incert. def. max. 0,0022 mm		
Rif. Campion	e di 1º linea PL2.(1-3),95	

Lo Sperimentatore	Controllato	Il Direttore
Dott. Giusti	Dott. Giusti	Dott. Sanchi
Dott, Ricco		
Dott, Branchí		

SGAILAB - Laboratori e Ricerche S.r.L

Via Mariotil 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P. (VA0368691040†

Commessa:	08.040.00
ld. Camp.;	CSIV18B
Da mt. a mt.;	10.50-10.90 mt
Rif, Prova:	EDO-3
cert. nº/data:	11.0008/04 DIC 11

www.sgailab.net

PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

Cliente - Richiedente: SPEA S.p.A. Commessa: 08.040.00

Sito: A1 MI-NA 3^corsia fase B

Sondaggio: SV18B Campione: CI1

Profonditá: 10.50-10.90 mt

File: I18BC1E1

data esecuzione: 6 DEC 2010

verbale accettazione nº:

п° progressivo campione:

edometro nº: 1

Sezione	19.635 cm²	Peso dell'unità di volume iniziale	2.182	Mg/m³	γ
Altezza iniziale	20.000 mm	Peso dell'unità di volume finale	2.289	Mg/m³	γ.
Altezza finale	19.050 mm	Peso secco dell'unità di volume		Mg/m³	* 1
Numero Tara 1	1	Contenuto d'acqua iniziale	16.017		W _a
Peso tara 1	59.460 g	Contenuto d'acqua finale	15.936	%	w.
Tara + p.umido iniziale	145.150 g	Saturazione iniziale	99.460	%	S,
Numero Tara 2	2	Saturazione finale		%	s,
Peso tara 2	59.460 g	Indice dei vuoti iniziali	0.434		lv _n
Tara + p.umido finale	145.090 g	Indice dei vuoti finali	0.366		lvi
Tara + p.provino secco	133.320 g	Peso secco dell'unità di vol. finale	1.975	Mg/m³	•
Peso specifico del terreno	2.698 Mg/m³		,,,,,,		≠ tit

data ricevimento: 06 AGO 10

Letture dei cedimenti in funzione del tempo

Passo 05	200.0) KPa
----------	-------	-------

dH
mm
0.226
0.233
0.236
0.239
0.245
0.249
0.258
0.265
0.274
0.280
0.290
0.296
0.303
0.306
0.312
0.315

Passo	N6	400	n	KP2
F 0 3 5 U	UO	400	U	NP:

dt	dH
min	mm
0.050	0.395
0.084	0.398
0.139	0.405
0.233	0.414
0.389	0.421
0.649	0.430
1.085	0.446
1.811	0.456
3.025	0.468
5.051	0.484
8.436	0.500
14.088	0.513
23.527	0.519
39.290	0.526
65.615	0.529
109.576	0.535

Passo 07 200.0 KPa

F	T
dt	dH
min	mm
0.050	0.532
0.084	0.532
0.139	0.532
0.233	0.529
0.389	0.526
0.649	0.526
1.085	0.519
1.811	0.519
3.025	0.513
5.051	0.510
8.436	0.507
14.088	0.504
23.527	0.500
39.290	0.500
65.615	0.497
109.576	0.494

Passo 08 100.0 KPa

dt	dH
min	mm
0.050	0.478
0.084	0.478
0.139	0.475
0.233	0.472
0.389	0.472
0.649	0.468
1.085	0.465
1.811	0.459
3.025	0.453
5.051	0.446
8.436	0.440
14.088	0.433
23.527	0.427
39.290	0.424
65.615	0.417
109.576	0.414

Risultati

%

 $\epsilon = 1.658$ Iv = 0.411

Metodo Casagrande Cv = 1.659e-003 cm²/s

Ca = 0.068 % M = 14.262 MPa K = 1.141e-010 m/s

Risultati

 $\varepsilon = 2.772$ % lv = 0.395

Metodo Casagrande Cv = 1.943e-003 cm²/s

Ca = 0.087 % M = 17.951 MPa K = 1.062e-010 m/s

Risultati

 $\varepsilon = 2.439$ % lv = 0.399

__Risultati

 $\varepsilon = 2.008$ % lv = 0.406

Certificato nº/data: 11.0008/04 DIC 11

Cert. Sistema Qualità ISO 9001:2008

Mod. 025 Edi	zione n. 1 del 03/10/07	
Prova eseguit	con matr. ED.1,2.5,6,7.85	
I.O. 005a incert, def. max. 0,0022 mm		
Rif. Campione di 1º linea PL2.(1-3).95		

Lo Sperimentatore	Controllato	Il Direttore
Dott. Giusti	Dott. Giusti	Dott. Sanchi
Dott. Ricco		
Dott. Branchi		

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541986972 - Fax. +39 0541987606 - e.mail: info@sgaitab.net REA: RN-304214 - C.F. a P. IVA03686910401

Commessa:	08.040.00
ld. Camp.;	CSV18B
Da mt. a mt.:	10.50-10.90 mt
Rif. Prova;	EDO - 4
cert. n°/data:	11.0008/04 DIC 11

www.sgailab.net

PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

data ricevimento: 06 AGO 10

Cliente - Richiedente: SPEA S.p.A.

Commessa:

08.040.00

Sito:

A1 MI-NA 3^corsia fase B

Sondaggio: Campione: SV18B

Profonditá:

CI1

10.50-10.90 mt

File: I18BC1E1

NC. HODO IL I

data esecuzione: 6 DEC 2010 verbale accettazione n°:

•

n° progressivo campione:

edometro nº: 1

Passo 05 200.0 KPa

Passo 06 400.0 KPa

Passo 07 200.0 KPa

Passo 08 100.0 KPa

dt	dH
min	mm
182.993	0.319
305.598	0.322
510.348	0.325
852.281	0.328
1423.309	0.331
2376.917	0.334
0.000	0.000

dt	dΗ
min	mm
182.993	0.539
305.583	0.543
510.333	0.547
852.281	0.551
1423.300	0.554
0.000	0.000
0.000	0.000

dt	dH
min	mm
182.993	0.497
305.598	0.494
510.348	0.494
852.281	0.491
1423.309	0.488
2376.926	0.491
3969.466	0.491

dt	dΗ
min	mm
182.983	0.410
305.598	0.408
510.333	0.405
852.267	0.404
1423.309	0.402
0.000	0.000
0.000	0.000

Certificato nº/data: 11.0008/04 DIC 11

Cert. Sistema Qualità ISO 9001:2008

Mod. 025 Edi	zione n. 1 del 03/10/07	
Prova eseguita	1 con matr. ED.1,2.5,6,7.85	
I.O. 005a incert. def. max. 0.0022 mm		
Rif. Campione	e di 1º linea PL2.(1-3),95	

Lo Sperimentatore	Controllato	Il Direttore
Dott. Giusti	Dott. Giusti	Dott. Sanchi
Dott. Ricco		
Dott, Branchi		

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987605 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa;	08.040.00	
ld. Camp.:	CSIV18B	
Damt.amt;	10.50-10.90 mt	
Rif. Prova:	EDO - 5	
cert. n°/data:	11.0008/04 DIC 11	

SGAILAB - Laboratori a Ricerche s.c.l.

www.sgailab.net PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

Cliente - Richiedente: SPEA S.p.A.

Commessa: Sito:

A1 MI-NA 3^corsia fase B

Sondaggio: Campione: SV18B Cl1

08.040.00

Profonditá:

10.50-10.90 mt

data esecu

data esecuzione: 6 DEC 2010

verbale accettazione nº:

n° progressivo campione:

edometro nº: 1

File: I18BC1E1

Sezione	19.635 cm²	Peso dell'unità di volume iniziale	2.182 M	a/m³ v
Altezza iniziale	20.000 mm	Peso dell'unità di volume finale	2.289 M	- ,
Altezza finale	19.050 mm	Peso secco dell'unità di volume	1.881 M	
Numero Tara 1	1	Contenuto d'acqua iniziale	16.017 %	· · -
Peso tara 1	59.460 g	Contenuto d'acqua finale	15.936 %	•
Tara + p.umido iniziale	145.150 g	Saturazione iniziale	99.460 %	•
Numero Tara 2	2	Saturazione finale	%	s,
Peso tara 2	59.460 g	Indice dei vuoti iniziali	0.434	lvo
Tara + p.umido finale	145.090 g	Indice dei vuoti finali	0.366	lv,
Tara + p.provino secco	133.320 g	Peso secco dell'unità di vol. finale	1.975 Mg	•
Deso specifico del terreno	2.698 Mg/m ³			grir e df

data ricevimento: 06 AGO 10

Letture dei cedimenti in funzione del tempo

Passo 09 50.0 KPa

	-	
dt	dH	
min	mm	
0.050	0.389	
0.084	0.389	
0.139	0.389	
0.233	0.389	
0.389	0.386	
0.649	0.382	
1.085	0.379	
1.811	0.376	
3.025	0.373	
5.051	0.370	
8.436	0.360	
14.088	0.354	
23.527	0.344	
39.290	0.338	
65.615	0.331	
109.576	0.325	

Passo 10 100.0 KPa

dt	dH	
min	mm	
0.050	0.312	
0.084	0.315	
0.139	0.315	
0.233	0.315	
0.389	0.319	
0.649	0.319	
1.085	0.319	
1.811	0.322	
3.025	0.325	
5.051	0.325	
8.436	0.328	
14.088	0.331	
23.527	0.331	
39.290	0.331	
65.615	0.335	
109.576	0.335	

Passo 11 200.0 KPa

dt dH		
min	mm	
0.050	0.354	
0.084	0.357	
0.139	0.357	
0.233	0.360	
0.389	0.363	
0.649	0.366	
1.083	0.373	
1.811	0.379	
3.025	0.386	
5.050	0.394	
8.436	0.402	
14.088	0.408	
23.527	0.411	
39.283	0.413	
65.615	0.417	
109.567	0.420	

Passo 12 400.0 KPa

dt	dH
min	mm
0.050	0.456
0.084	0.462
0.139	0.462
0.233	0.468
0.389	0.475
0.649	0.481
1.083	0.491
1.811	0.504
3.025	0.516
5.051	0.526
8.436	0.539
14.088	0.545
23.527	0.551
39.283	0.554
65.615	0.558
109.576	0.558

Risultati

ε=	1.530	%
lv =	0.413	

Risultati

31.517

M =

K=

Risultati

= 3	2.135	%
lv =	0.404	
Metodo	Casagrand	le
Cv =	1.409e-003	cm³/s
Ca =	0.033	%
M =	22.394	MPa
K =	6.173e-011	m/s

Risultati

3 =	2.853	%
v =	0.394	
Metodo	Casagrand	le
Cv =	1.971e-003	cm²/s
Ca =	0.047	%
VI =	27.885	MPa
(=	6.936e-011	m/s

Certificato nº/data: 11.0008/04 DIC 11

Cert. Sistema Qualità ISO 9001:2008

RINA 17533/08/S

Mod. 025 Edi	zione n. 1 del 03/10/07	
Prova eseguit	n con matr. ED.1,2.5,6,7.85	
I.O. 005a	incert. def. max. 0.0022 mm	
Rif. Campion	e di 1º linea PL2.(1-3).95	

MPa

Lo Sperimentatore	Controllato	Il Direttore
Dott, Giusti	Dott, Giusti	Dott. Sanchi
Dott. Ricco		
Dott. Branchi		

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00
ld. Camp.;	CSIV18B
Da mt. a mt.:	10.50-10.90 mt
Rif. Prova:	EDO - 6
cert. nº/dala;	11.0008/04 DIC 11

PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5) www.sgailab.net

Cliente - Richiedente: SPEA S.p.A.

Commessa: Sito:

08.040.00 A1 MI-NA 3^corsia fase B

Sondaggio:

SV18B

Profondità:

CI1

Campione:

10.50-10.90 mt

data esecuzione: 6 DEC 2010

verbale accettazione nº:

n° progressivo campione:

edometro nº: 1

File: I18BC1E1

data ricevimento: 06 AGO 10

Passo 09 50.0 KPa

Passo 10 100.0 KPa

Passo 11 200.0 KPa

Passo 12 400.0 KPa

dt	dH
min	mm
182.993	0.319
305.598	0.315
510.348	0.312
852.267	0.308
1423.309	0.306
0.000	0.000
0.000	0.000

dt	dΗ
min	mm
182.993	0.338
305.598	0.338
510.348	0.338
852.281	0.338
1423,300	0.338
0.000	0.000
0.000	0.000

dt	dH
min	mm
182.993	0.421
305.583	0.422
510.348	0.424
852.267	0.425
1423.309	0.427
0.000	0.000
0.000	0.000

dt	dH
min	mm
182.993	0.561
305.598	0.564
510.348	0.567
852.281	0.567
1423.309	0.570
2376.917	0.573
3969.450	0.574

Certificato n°/data: 11.0008/04 DIC 11

Cert. Sistema Qualità ISO 9001:2008

Mod. 025 Edizione n. 1 del 03/10/07		
Prova eseguita con matr. ED.1,2.5,6,7.85		
I.O. 005a incert, def. max, 0,0022 mm		
Rif. Campione di 1º linea PL2.(1-3).95		

Lo Sperimentatore	Controllato	Il Direttore
Dott. Giusti	Dott. Giusti	Dott. Sanchi
Dott. Ricco		
Dott, Branchi	***************************************	

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: Info@sgaitab.net REA: RN-304214 ~ C.F. a P. IVA03686910401

Commessa:	08.040.00
ld. Camp.;	CSIV18B
Da mt. a mt.:	10.50-10.90 mt
Rif. Prova;	EDO -7
cert. nº/data;	11.0008/04 DIC 11

www.sgailab.net

PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

Cliente - Richiedente: SPEA S.p.A. 08.040.00

Commessa: Sito:

A1 MI-NA 3^{corsia} fase B

Sondaggio: Campione:

SV18B CI1

Profonditá:

10.50-10.90 mt

File: I18BC1E1

data esecuzione: 6 DEC 2010

verbale accettazione nº:

nº progressivo campione:

edometro nº: 1

Sezione	19.635 cm²	Peso dell'unità di volume iniziale	2 400 14-4-3	
Altezza iniziale	20.000 mm	Peso dell'unità di volume finale	2.182 Mg/m³ 2.289 Mg/m³	•
Altezza finale	19.050 mm	Peso secco dell'unità di volume	1.881 Mg/m ³	
Numero Tara 1	1	Contenuto d'acqua iniziale	16.017 %	W _a
Peso tara 1	59.460 g	Contenuto d'acqua finale	15.936 %	W,
Tara + p.umido iniziale	145.150 g	Saturazione iniziale	99.460 %	Ş,
Numero Tara 2	2	Saturazione finale	%	s,
Peso tara 2	59.460 g	Indice dei vuoti iniziali	0.434	iv _o
Tara + p.umido finale	145.090 g	Indice dei vuoti finali	0.366	Iv_r
Тага + p.provino secco	133.320 g	Peso secco dell'unità di vol. finale	1.975 Mg/m³	$\gamma_{\rm df}$
Peso specifico del terreno	2.698 Mg/m³			

data ricevimento: 06 AGO 10

Letture dei cedimenti in funzione del tempo

Passo 13 800.0 KPa

dt	dH	
min	mm	
0.050	0.625	
0.084	0.631	
0.139	0.637	
0.233	0.647	
0.389	0.660	
0.649	0.672	
1.085	0.692	
1.811	0.711	
3.025	0.733	
5.051	0.755	
8.436	0.778	
14.088	0.790	
23.527	0.800	
39.290	0.809	
65.615	0.816	
109.567	0.824	

Passo 14 1600.0 KPa

dt	dH
min	mm
0.050	0.911
0.084	0.921
0.139	0.934
0.233	0.946
0.389	0.962
0.649	0.994
1.085	1.007
1.811	1.036
3.025	1.068
5.051	1.109
8.436	1.150
14.088	1.185
23.527	1.214
39.290	1.236
65.615	1.249
109.576	1.265

Passo 15 3200.0 KPa

dH
mm
1.351
1.361
1.405
1.428
1.450
1.475
1.507
1.549
1.593
1.651
1.714
1.785
1.845
1.890
1.922
1.944

Passo 16 6400.0 KPa

dt	dH
min	mm
0.050	2.059
0.084	2.068
0.139	2.087
0.233	2.126
0.389	2.180
0.649	2.208
1.085	2.243
1.811	2.282
3.025	2.333
5.051	2.390
8.436	2.460
14.088	2.533
23.527	2.607
39.290	2.661
65.615	2.702
109.576	2.728

Risultati

4.237 % = 3 0.374 lv =

Metodo Casagrande

Cv = 1.507e-003 cm²/s Ca = 0.071 % M =28.885 MPa

K= 5.117e-011 m/s

Risultati

6.580 % = 3 0.340 Iv =

Metodo Casagrande

Cv = 9.840e-004 cm²/s Ca = 0.196

M =34.157 MPa K = 2.826e-011 m/s

Risultati

10.103 % $\epsilon =$ Iv = 0.290 Metodo Casagrande

Cv = 5.800e-004 cm²/s Ca = 0.300 %

M =45.410 MPa K = 1.253e-011 m/s

Risultati

= 3 14.036 **Iv** = 0.233

Metodo Casagrande

Cv = 5.870e-004 cm²/s Ca = 0.261 %

%

M =81.362 MPa K = 7.081e-012 m/s

Certificato nº/data: 11.0008/04 DIC 11

Cert, Sistema Qualità ISO 9001:2008

RINA 17533/08/S

Mod. 025 Edi	zione n. 1 del 03/10/07	
Prova eseguita	a con matr. ED.1,2.5,6,7.85	
I.O. 005a	incert. def. max. 0.0022 mm	
Rif. Campione	e di 1º linea PL2.(1-3).95	

%

Lo Sperimentatore	Controllato	ll Direttore
Dott, Giusti	Dott, Giusti	Dott, Sanchi
Dott. Ricco		
Dott. Branchi		

Via Mariotti 18/a - 47933 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net
REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00
ld, Camp.:	CSIV18B
Da mt. a mt.:	10.50-10.90 mt
Rif. Prova;	EDO - 8
cert. nº/data:	11.0008/04 DIC 11

www.sgailab.net

PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

data ricevimento: 06 AGO 10

Cliente - Richiedente: SPEA S.p.A.

Commessa:

08.040.00

Sito:

A1 MI-NA 3°corsia fase B

Sondaggio: Campione: SV18B CI1

Profonditá:

10.50-10.90 mt

File: I18BC1E1

data esecuzione: 6 DEC 2010

verbale accettazione nº:

n° progressivo campione:

edometro nº: 1

Passo 13 800.0 KPa

Passo 14 1600.0 KPa

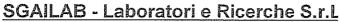
Passo 15 3200.0 KPa

Passo 16 6400.0 KPa

dt	dH
min	mm
182.983	0.830
305.583	0.837
510.348	0.841
852.281	0.844
1423.309	0.848
0.000	0.000
0.000	0.000

dt	dH
min	mm
182.993	1.275
305.598	1.287
510.348	1.297
852.281	1.307
1423.309	1.316
0.000	0.000
0.000	0.000

dt	dH
min	mm
182.993	1.963
305.598	1.979
510.348	1.995
852.281	2.011
1423.309	2.024
2376.926	2.040
0.000	0.000


dt	dH
min	mm
182.993	2.747
305.598	2.766
510.348	2.782
852.281	2.795
1423,309	2.808
2376.926	2.820
3969.466	2.833

Certificato nº/data: 11.0008/04 DIC 11

Cert. Sistema Qualità ISO 9001:2008

Mod. 025 Edi	zione n. 1 del 03/10/07		
Prova eseguita	con matr. ED.1,2.5,6,7.85		
I.O. 005a incert. def. max. 0.0022 mm			
Rif. Campione	di 1º linea PL2.(1-3).95		

Lo Sperimentatore	Controllato	Il Direttore
Dott. Giusti	Dott. Giusti	Dott. Sanchi
Dott. Ricco		
Dott. Branchi		

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net
REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00
ld. Camp.;	CSIV18B
Da mt. a mt.:	10.50-10.90 mt
Rif. Prova:	EDO - 9
cert. nº/data:	11.0008/04 DIC 11

www.sgailab.net

PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

Cliente - Richiedente: SPEA S.p.A. Commessa: 08.040.00

Commessa: Sito:

A1 MI-NA 3^corsia fase B

Sondaggio:

SV18B

Campione:

CI1

Profonditá:

10.50-10.90 mt

File: I18BC1E1

data esecuzione: 6 DEC 2010

verbale accettazione n°:

n° progressivo campione:

edometro nº: 1

[
Sezione	19.635 cm²	Peso dell'unità di volume iniziale	2.182 Mg/m³ γ
Altezza iniziale	20.000 mm	Peso dell'unità di volume finale	2.289 Mg/m³ γ
Altezza finale	19.050 mm	Peso secco dell'unità di volume	1.881 Mg/m³ γ
Numero Tara 1	1	Contenuto d'acqua iniziale	16.017 % V
Peso tara 1	59.460 g	Contenuto d'acqua finale	15.936 % V
Tara + p.umido iniziale	145. 1 50 g	Saturazione iniziale	99.460 % S
Numero Tara 2	2	Saturazione finale	% S
Peso tara 2	59.460 g	Indice dei vuoti iniziali	0.434 lv
Tara + p.umido finale	145.090 g	Indice dei vuoti finali	0.366 N
Tara + p.provino secco	133.320 g	Peso secco dell'unità di vol. finale	1.975 Mg/m³ γ
Peso specifico del terreno	2.698 Mg/m ³		•

Letture dei cedimenti in funzione del tempo

data ricevimento: 06 AGO 10

Passo 17 3200.0 KPa

dH
mm
2.827
2.814
2.811
2.779
2.772
2.766
2.760
2.757
2.750
2.744
2.737
2.734
2.731
2.728
2.728
2.725

Passo 18 800.0 KPa

dt	dH
min	mm
0.050	2.702
0.084	2.680
0.139	2.648
0.233	2.629
0.389	2.613
0.649	2.600
1.085	2.588
1.811	2.572
3.025	2.553
5.051	2.530
8.436	2.502
14.088	2.470
23.527	2.435
39.290	2.396
65.615	2.368
109.576	2.345

Passo 19 200.0 KPa

dt	dH
min	mm
0.050	2.279
0.084	2.272
0.139	2.266
0.233	2.259
0.389	2.250
0.649	2.240
1.085	2.231
1.811	2.218
3.025	2.202
5.051	2.183
8.436	2.161
14.088	2.132
23.527	2.097
39.290	2.052
65.615	1.998
109.576	1.941

Passo 20 50.0 KPa

dt	dH
min	mm
0.050	1.762
0.084	1.762
0.139	1.759
0.233	1.756
0.389	1.753
0.649	1.746
1.085	1.743
1.811	1.734
3.025	1.727
5.051	1.714
8.436	1.699
14.088	1.679
23.527	1.654
39.290	1.622
65.615	1.584
109.576	1.536

Risultati

ε=	13.592	%
lν =	0.240	

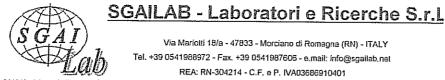
Risultati

$$\varepsilon = 11.562$$
 % $Iv = 0.269$

Risultati

$$\varepsilon = 8.895$$
 % lv = 0.307

Risultati


ε=	6.578	%
lν=	0.340	

Certificato nº/data: 11.0008/04 DIC 11

Cert. Sistema Qualità ISO 9001:2008

Mod. 025 Edizione n. 1 del 03/10/07		
Prova eseguita con matr. ED.1,2.5,6,7.85		
LO. 005a	incert. def. max. 0.0022 mm	
Rif. Campione di 1º linea PL2.(1-3).95		

Lo Sperimentatore	Controllato	Il Direttore
Dott. Giusti	Dott. Giusti	Dott. Sanchi
Dott. Ricco		——————————————————————————————————————
Dott. Branchi		

Via Mariolti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgallab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00
ld. Camp.:	C8V18B
Da mt. a mt.:	10.50-10.90 mt
Rif, Prova:	EDO - 10
cerl. nº/data:	11.0008/04 DIC 11

www.sgailab.net

PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

data ricevimento: 06 AGO 10

Cliente - Richiedente: SPEA S.p.A.

Commessa:

08.040.00

Sito:

A1 MI-NA 3^corsia fase B

Sondaggio: Campione:

SV18B CI1

Profonditá:

10.50-10.90 mt

File: I18BC1E1

data esecuzione: 6 DEC 2010

verbale accettazione nº:

n° progressivo campione:

edometro nº: 1

Passo 17 3200.0 KPa

Passo 18 800.0 KPa

Passo 19 200.0 KPa

Passo 20 50.0 KPa

dt	dH
min	mm
182.993	2.721
305.598	2.718
510.348	2.718
852.281	2.718
1423.300	2.718

dt	dH
min	mm
182.993	2.333
305.598	2.323
510.348	2.320
852.281	2.317
1423.309	2.314

dt	dH
min	mm
182.993	1.887
305.598	1.839
510.348	1.807
852.281	1.791
1423.309	1.778

dt	dH
min	mm
182.993	1.482
305.598	1.428
510.348	1.377
852.281	1.345
1423,309	1.316

Certificato nº/data: 11.0008/04 DIC 11

Cert. Sistema Qualità ISO 9001:2008

Mod. 025 Edi	zione n. 1 del 03/10/07	
Prova eseguita con matr. ED.1,2.5,6,7.85		
I.O. 005a incert, def. max. 0.0022 mm		
Rif. Campion	e di 1º linea PL2.(1-3).95	

Lo Sperimentatore	Controllato	Il Direttore
Dott. Giusti	Dott. Giusti	Dott, Sanchi
Dott. Ricco	***	
Dott. Branchi		

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00
ld. Camp.:	C6V18B
Da mt. a mt.:	10.50-10.90 mt
Rif. Prova:	EDO - 11
cert. nº/data:	11.0008/04 DIC 11

SGAILAB – Laboratori e Ricarche a.c.)

www.sgailab.net PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

Cliente - Richiedente: SPEA S.p.A.

Commessa:

08.040.00

Sito:

A1 MI-NA 3^corsia fase B

Sondaggio:

SV18B

Campione:

CI1

Profonditá:

10.50-10.90 mt

File: I18BC1E1

data esecuzione: 6 DEC 2010

verbale accettazione n°;

n° progressivo campione:

edometro nº: 1

Sezione	19.635	cm²	Peso dell'unità di volume iniziale	2.182	Mg/m³	γ
Altezza iniziale	20.000	mm	Peso dell'unità di volume finale	2.289	Mg/m³	γ,
Altezza finale	19.050	mm	Peso secco dell'unità di volume	1.881	Mg/m³	$\gamma_{\scriptscriptstyle d}$
Numero Tara 1	1		Contenuto d'acqua iniziale	16.017	%	$W_{\mathfrak{o}}$
Peso tara 1	59.460	g	Contenuto d'acqua finale	15.936	%	W,
Tara + p.umido iniziale	145.150	g	Saturazione iniziale	99.460	%	S
Numero Tara 2	2		Saturazione finale		%	Sr
Peso tara 2	59.460	g	Indice dei vuoti iniziali	0.434		$l\nu_{\scriptscriptstyle D}$
Tara + p.umido finale	145.090	g	Indice dei vuoti finali	0.366		lv_r
Tara + p.provino secco	133.320	g	Peso secco dell'unità di vol. finale	1.975	Mg/m³	$\gamma_{\rm df}$
Peso specifico del terreno	2.698	Ma/m³				

data ricevimento: 06 AGO 10

Letture dei cedimenti in funzione del tempo

Passo 21	12.5 KPa
dt	dH
min	mm
0.050	1.307
0.084	1.307
0.139	1.307
0.233	1.307
0.389	1.307
0.649	1.303
1.085	1.300
1.811	1.297
3.025	1.294
5.051	1.287
8.436	1.278
14.088	1.268
23.527	1.252
39.290	1.230
65.615	1.208
109.576	1.173

	Risultati		Risultati	Risultati	Risultati
ε = v =	4.748 0.366	%			

Certificato nº/data: 11.0008/04 DIC 11

Cert. Sistema Qualità ISO 9001:2008

Prova eseguita	con matr. ED.1,2.5,6,7.85	
I.O. 005a incert. def. max. 0.0022 mm		

Lo Sperimentatore	Controllato	Il Direttore
Dott. Giusti	Dott. Giusti	Dott. Sanchi
Dott. Ricco		
Dott. Branchi		

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987605 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00
Id. Camp.:	CSIV18B
Da mt. a mt.;	10.50-10.90 mt
Rif. Prova:	EDO - 12
cert, ก"/data:	11.0008/04 DIC 11

www.sgailab.net

PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

Cliente - Richiedente: SPEA S.p.A.

Commessa:

08.040.00

Sito:

A1 MI-NA 3^corsia fase B

Sondaggio: Campione: SV18B Cl1

Profonditá:

10.50-10.90 mt

data ricevimento: 06 AGO 10

verbale accettazione n°: n° progressivo campione:

data esecuzione: 6 DEC 2010

edometro nº: 1

File: I18BC1E1

Passo 21 12.5 KPa

Passo 00 0.0 KPa

Passo 00 0.0 KPa

Passo 00 0.0 KPa

dt	dH
min	mm
182.993	1.134
305.598	1.090
510.348	1.036
852.281	0.988
1423.309	0.950

	dt	dH
	min	mm
	0.000	0.000
	0.000	0.000
i	0.000	0.000
	0.000	0.000
	0.000	0.000

dt	dH
min	mm
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000


dt	dH
min	mm
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000

Certificato n°/data: 11.0008/04 DIC 11

Cert. Sistema Qualità ISO 9001:2008

Mod. 025 Edizione n. 1 del 03/10/07		
Prova eseguita con matr. ED.1,2.5,6,7.85		
I.O. 005a incert, def. max. 0.0022 mm		
Rif. Campione di 1º linea PL2.(1-3).95		

Lo Sperimentatore	Controllato	Il Dîrettore
Dott. Giustí	Dott. Giusti	Dott. Sanchi
Dott. Ricco	*	
Dott. Branchi		

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

 Commessa:	08.040.00
ld. Camp.:	C\$W18B
Da mt. a mt.:	10.50-10.90 mt
Rif. Prova:	EDO - 17
cert. n°/data;	11.0008/04 DIC 11

www.sgailab.net

PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

Cliente - Richiedente: SPEA S.p.A.

Commessa:

08.040.00

Sito:

A1 MI-NA 3^corsia fase B

Sondaggio:

SV18B CI1

Campione: Profonditá:

10.50-10.90 mt

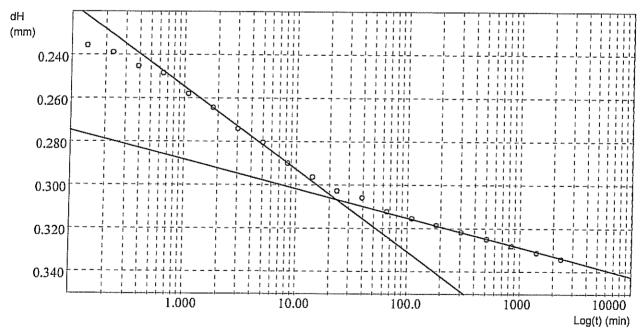
File: I18BC1E1

data esecuzione: 6 DEC 2010

verbale accettazione nº:

n° progressivo campione:

edometro nº: 1


Dati relativi al passo 05

dt	dH
min	mm
0.050	0.226
0.084	0.233
0.139	0.236
0.233	0.239
0.389	0.245
0.649	0.249
1.085	0.258
1.811	0.265
3.025	0.274
5.051	0.280
8.436	0.290
14.088	0.296

$\sigma_{v} = 200.0 \, KPa$

data ricevimento: 06 AGO 10

dt	dH
min	mm
23.527	0.303
39.290	0.306
65.615	0.312
109.576	0.315
182.993	0.319
305.598	0.322
510.348	0.325
852.281	0.328
1423.309	0.331
2376.917	0.334

Risultati elaborazione


ε = Iv =	1.658	%
lv =	0.411	
Metodo	Casagrande	Э
Cv =	1.66e-003 0.068 14.262	cm²/s
Ca =	0.068	%
M =	14.262	MPa
K =	1.14e-010	m/s

Certificato nº/data: 11.0008/04 DIC 11

Cert. Sistema Qualità ISO 9001:2008

Mod. 025 Ed	izione n. 1 del 03/10/07	
Prova eseguita con matr. ED.1,2.5,6,7.85		
I.O. 005a incert. def. max. 0.0022 mm		
Rif. Campione di 1º linea PL2.(1-3).95		

Lo Sperimentatore	Controllato	Il Direttore
Dott. Giusti	Dott. Giusti	Dott. Sanchí
Dott. Ricco		
Dott. Branchi		

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - iTALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00
ld. Camp.;	C\$1/18B
Da mt, a mt.:	10.50-10.90 mt
Rif. Prova:	EDO - 18
cert. n°/data;	11.0008/04 DIC 11

www.sgailab.net

PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

Cliente - Richiedente: SPEA S.p.A.

Commessa:

08.040.00

Sito:

A1 MI-NA 3^corsia fase B

Sondaggio: Campione: SV18B Cl1

Profonditá:

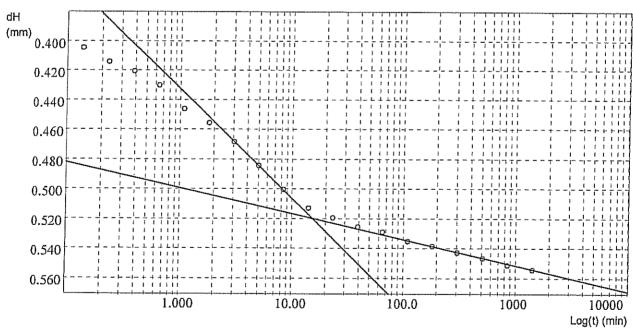
10.50-10.90 mt

File: I18BC1E1

data esecuzione: 6 DEC 2010 verbale accettazione n°:

n° progressivo campione:

edometro nº: 1


Dati relativi al passo 06

dt	dH
min	mm
0.050	0.395
0.084	0.398
0.139	0.405
0.233	0.414
0.389	0.421
0.649	0.430
1.085	0.446
1.811	0.456
3.025	0.468
5.051	0.484
8.436	0.500
14.088	0.513

$\sigma_{v} = 400.0 \text{ KPa}$

data ricevimento: 06 AGO 10

dt	dH
min	mm
23.527	0.519
39.290	0.526
65.615	0.529
109.576	0.535
182.993	0.539
305.583	0.543
510,333	0.547
852.281	0.551
1423.300	0.554

Risultati elaborazione

ε= 2.772 (v = 0.395 Metodo Casagrande Cv = 1.94e-003 cm²/s Ca = 0.087 % M =17.951 MPa K = 1.06e-010 m/s

Certificato nº/data: 11.0008/04 DIC 11

Cert. Sistema Qualità ISO 9001:2008

Mod. 025 Ed	izione n. 1 del 03/10/07	
Prova eseguita	on matr. ED.1,2.5,6,7.85	
I.O. 005a incert. def. max. 0,0022 mm		
Rif. Campion	e di 1º linea PL2.(1-3).95	

Lo Sperimentatore	Controlisto	Il Direttore
Dott. Giusti	Dott. Giusti	Dott. Sanchi
Dott. Ricco		
Dott. Branchi		

Via Mariotil 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgallab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00
ld. Camp.:	CSV18B
Da mt. a mt.:	10.50-10.90 mt
Rif. Prova:	EDO - 23
cerl. n°/data:	11.0008/04 DIC 11

www.sgailab.net

PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

Cliente - Richiedente: SPEA S.p.A.

Commessa:

08.040.00

Sito:

A1 MI-NA 3[^]corsia fase B

Sondaggio:

SV18B Cl1

Campione: Profonditá:

10.50-10.90 mt

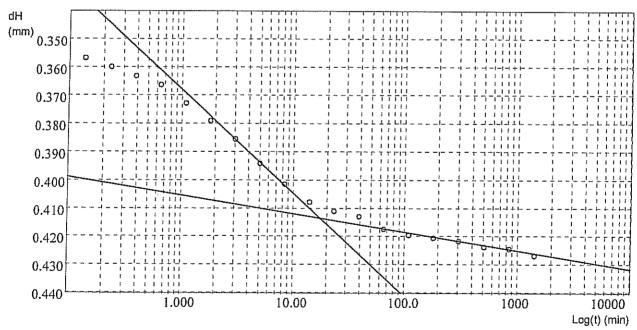
File: I18BC1E1

data esecuzione: 6 DEC 2010

verbale accettazione n°:

n° progressivo campione:

edometro nº: 1


Dati relativi al passo 11

dH
mm
0.354
0.357
0.357
0.360
0.363
0.366
0.373
0.379
0.386
0.394
0.402
0.408

$\sigma_{V} = 200.0 \text{ KPa}$

data ricevimento: 06 AGO 10

dt	dH
min	mm
23.527	0.411
39.283	0.413
65.615	0.417
109.567	0.420
182.993	0.421
305.583	0.422
510.348	0.424
852.267	0.425
1423.309	0.427

Risultati elaborazione

ε= 2.135 /v = 0.404 Metodo Casagrande cm²/s Cv = 1.41e-003 Ca = 0.033 % M =22.394 MPa K = 6.17e-011 m/s

Certificato nº/data: 11.0008/04 DIC 11

Cert, Sistema Qualità ISO 9001:2008

	izione n. 1 del 03/10/07 a con matr. ED.1,2.5,6,7.85	
I.O. 005a incert. def. max. 0.0022 mm		
Rif. Campion	e di 1º linea PL2.(1-3).95	

Lo Sperimentatore	Controllato	Il Direttore
Dott. Giusti	Dott. Giusti	Dott. Sanchi
Dott. Ricco		
Dott. Branchi		

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00
ld. Camp.:	C\$1/18B
Da mt. a mt.;	10.50-10.90 mt
Rif. Prova:	EDO - 24
cert. nº/data:	11.0008/04 DIC 11

www.sgailab.net

PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

Cliente - Richiedente: SPEA S.p.A.

Commessa:

08.040.00

Sito:

A1 MI-NA 3^corsia fase B

Sondaggio:

Campione: Profonditá: CI1

SV18B

10.50-10.90 mt

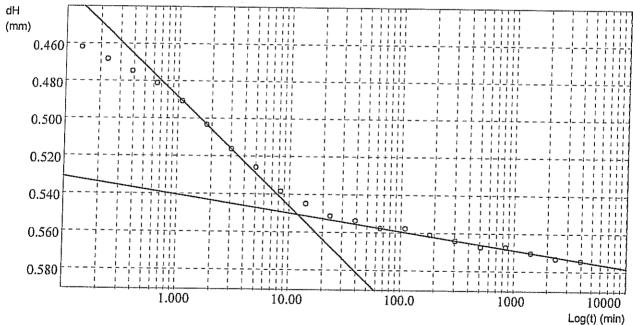
data ricevimento: 06 AGO 10

File: I18BC1E1

data esecuzione: 6 DEC 2010

verbale accettazione nº:

n° progressivo campione:


edometro nº: 1

Dati relativi al passo 12

dt	dH
min	mm
0.050	0.456
0.084	0.462
0.139	0.462
0.233	0.468
0.389	0.475
0.649	0.481
1.083	0.491
1.811	0.504
3.025	0.516
5.051	0.526
8.436	0.539
14.088	0.545

$\sigma_{V} = 400.0 \text{ KPa}$

dt	dH
min	mm
23.527	0.551
39.283	0.554
65.615	0.558
109.576	0.558
182.993	0.561
305.598	0.564
510.348	0.567
852.281	0.567
1423.309	0.570
2376.917	0.573
3969.450	0.574

Risultati elaborazione

ε=	2.853	%
lv =	0.394	
Metodo	o Casagrando	e
Cv =	1.97e-003	cm²/s
Ca =	0.047	%
M =	27.885	MPa
K =	6.94e-011	m/s

Certificato nº/data: 11.0008/04 DIC 11

Cert. Sistema Qualità ISO 9001:2008

Mod. 025 Ed	izione n. 1 del 03/10/07	
Prova eseguita	on matr. ED.1,2.5,6,7.85	
I.O. 005a incert. def. max, 0.0022 mm		
Rif. Campione	di 1° linea PL2.(1-3).95	

Lo Sperimentatore	Controllato	Il Direttore
Dott. Giusti	Dott, Giusti	Dott. Sanchi
Dott. Ricco		
Dott, Branchi		

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail; info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa;	08.040.00
ld. Camp.:	C95W18B
Da mt. a mt.:	10.50-10.90 mt
Rif. Prova:	EDO - 25
cert. n°/data:	11,0008/04 DIC 11

www.sgailab.net

PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

Cliente - Richiedente: SPEA S.p.A.

Dati relativi al passo 13

Commessa:

08.040.00 A1 MI-NA 3[^]corsia fase B

Sito: Sondaggio:

SV18B

Campione:

CI1

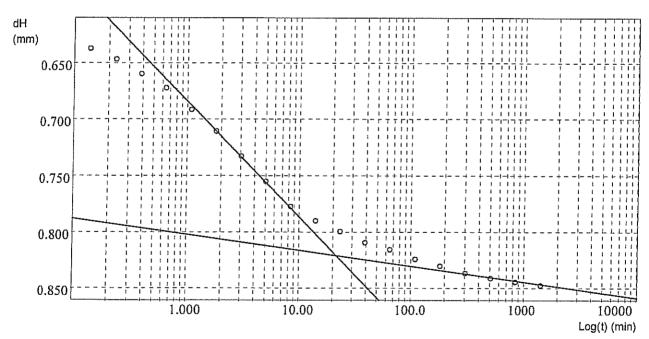
Profonditá:

10.50-10.90 mt

File: I18BC1E1

data esecuzione: 6 DEC 2010

verbale accettazione π°: n° progressivo campione:


edometro nº: 1

dt	dH
min	mm
0.050	0.625
0.084	0.631
0.139	0.637
0.233	0.647
0.389	0.660
0.649	0.672
1.085	0.692
1.811	0.711
3.025	0.733
5.051	0.755
8.436	0.778
14.088	0.790

$\sigma_{\rm v} = 800.0 \, {\rm KPa}$

data ricevimento: 06 AGO 10

dt	дΗ
min	mm
111111	111111
23.527	0.800
39.290	0.809
65.615	0.816
109.567	0.824
182.983	0.830
305.583	0.837
510.348	0.841
852.281	0.844
1423.309	0.848

Risultati elaborazione

ε= 4.237 lv = 0.374 Metodo Casagrande cm²/s Cv= 1.51e-003 Ca = 0.071 % M = 28.885 MPa K= 5.12e-011 m/s

Certificato nº/data: 11.0008/04 DIC 11

Cert, Sistema Qualità ISO 9001:2008

on matr. ED.1,2.5,6,7.85
incert. def. max. 0.0022 mm

Lo Sperimentatore	Controllato	Il Direttore
Dott. Giusti	Dott. Giusti	Dott. Sanchi
Dott. Ricco		
Dott. Branchi		

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net REA: RN-304214 - C.F. a P. IVA03686910401

08.040.00 Commessa: ld. Camp.: C\$1/18B Da mt. a mt.: 10.50-10.90 mt Rif. Prova: EDO - 26 11.0008/04 DIC 11 cert. nº/data:

www.sgailab.net

PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

Cliente - Richiedente: SPEA S.p.A.

Commessa:

08.040,00 A1 MI-NA 3°corsia fase B

Sito: Sondaggio:

SV18B

Campione:

CI1

Profonditá:

10.50-10.90 mt

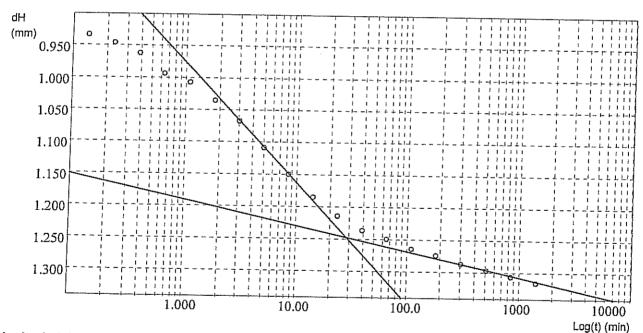
File: I18BC1E1

data esecuzione: 6 DEC 2010

verbale accettazione nº:

n° progressivo campione:

edometro nº: 1


Dati relativi al passo 14

dt	dH
min	mm
0.050	0.911
0.084	0.921
0.139	0.934
0.233	0.946
0.389	0.962
0.649	0.994
1.085	1.007
1.811	1.036
3.025	1.068
5.051	1.109
8.436	1.150
14.088	1.185

$\sigma_{\rm V} = 1600.0 \, \rm KPa$

data ricevimento: 06 AGO 10

dt	dH
min	mm
23.527	1.214
39.290	1.236
65.615	1.249
109.576	1.265
182.993	1.275
305.598	1.287
510.348	1.297
852.281	1.307
1423.309	1.316

Risultati elaborazione

ε	=	6.580	%	
l۷	=	0.340		
		Casagrand	e	
C	v = a =	9.84e-004	cm²/s	
C	a =	0.196	%	
М	=	34.157	MPa	
K	=	2.83e-011	m/s	
	·			

Certificato nº/data: 11.0008/04 DIC 11

Cert. Sistema Qualità ISO 9001:2008

Mod. 025 Ed	izione n. 1 del 03/10/07
Prova eseguita	con matr. ED.1,2.5,6,7.85
I.O. 005a incert. def. max. 0.0022 mm	
Rif. Campione	di 1º linea PL2.(1-3).95

Lo Sperimentatore	Controllato	Il Direttore
Dott. Giusti	Dott. Giusti	Dott, Sanchi
Dott, Ricco		
Dott. Branchi		

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P. IVA03585910401

Commessa:	08.040.00
ld. Camp.:	C\$1/18B
Da mt. a mt.:	10.50-10.90 mt
Rif. Prova;	EDO - 27
cert. n°/data:	11.0008/04 DIC 11

www.sgailab.net

PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

Cliente - Richiedente: SPEA S.p.A.

Commessa: 08.040,00
Sito: A1 MI-NA 3^corsia fase B

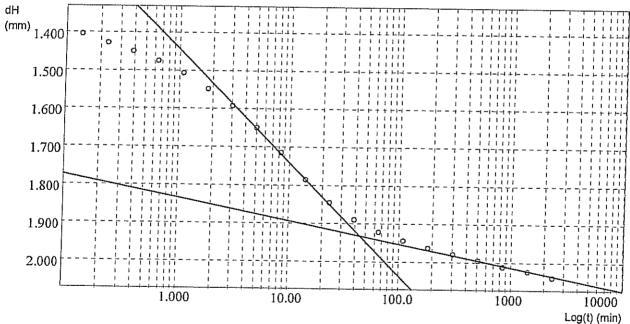
Sondaggio: SV18B Campione: Cl1

Profonditá: 10.50-10.90 mt

File: I18BC1E1

data esecuzione: 6 DEC 2010 verbale accettazione n°: n° progressivo campione:

edometro nº: 1


Dati relativi al passo 15

dt	dH
min	mm
0.050	1.351
0.084	1.361
0.139	1.405
0.233	1.428
0.389	1.450
0.649	1.475
1.085	1.507
1.811	1.549
3.025	1.593
5.051	1.651
8.436	1.714
14.088	1.785

$\sigma_{\rm v} = 3200.0 \, \rm KPa$

data ricevimento: 06 AGO 10

dH
mm
1.845
1.890
1.922
1.944
1.963
1.979
1.995
2.011
2.024
2.040

Risultati elaborazione

ε = v =	10.103	%
iv =	0.290	
Metodo	Casagrand	е
	5.80e-004	cm²/s
Ca =	0.300	%
M =	45.410	MPa
K=	1.25e-011	m/s

Certificato nº/data: 11.0008/04 DIC 11

Cert. Sistema Qualità ISO 9001:2008

Prova eseguita	con matr. ED.1,2.5,6,7.85	
I.O. 005a incert, def. max, 0.0022 mm		

Lo Sperimentatore	Controllato	Il Direttore
Dott, Giusti	Dott. Giusti	Dott. Sanchi
Dott, Ricco		
Dott, Branchi		

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - iTALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail; info@sgallab.net REA: RN-304214 - C.F. e P. IVA03685910401

Commessa:	08.040.00
ld. Camp.:	C\$M18B
Da mt. a mt.:	10.50-10.90 mt
Rif. Prova:	EDO - 28
cert. n°/data;	11.0008/04 DIC 11

www.sgailab.net

PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

Cliente - Richiedente: SPEA S.p.A. Commessa: 08.040.00

Sito: A1 MI-NA 3^corsia fase B Sondaggio: SV18B

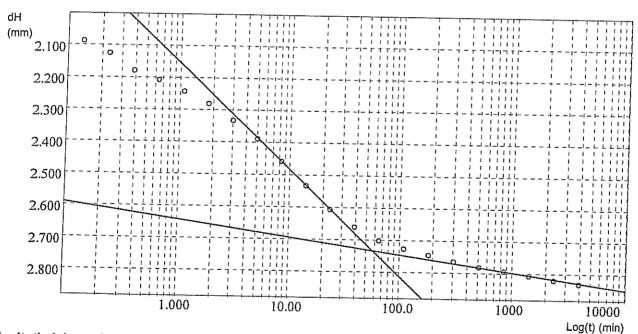
Campione: CI1

Profonditá: 10.50-10.90 mt

File: I18BC1E1

data esecuzione: 6 DEC 2010 verbale accettazione n°: n° progressivo campione:

edometro nº: 1


Dati relativi al passo 16

dt	dH
min	mm
0.050	2.059
0.084	2.068
0.139	2.087
0.233	2.126
0.389	2.180
0.649	2.208
1.085	2.243
1.811	2.282
3.025	2.333
5.051	2.390
8.436	2.460
14.088	2.533

$\sigma_{V} = 6400.0 \, KPa$

data ricevimento: 06 AGO 10

dt	dH
min	mm
23.527	2.607
39.290	2.661
65.615	2.702
109.576	2.728
182.993	2.747
305.598	2.766
510.348	2.782
852.281	2.795
1423.309	2.808
2376.926	2.820
3969.466	2.833

Risultati elaborazione

ε=	14.036	%
ε= lv=	0.233	
Metodo	Casagrand	e
Cv = Ca =	5.87e-004	cm²/s
Ca =	0.261	%
M =	81.362	MPa
K =	7.08e-012	m/s

Certificato nº/data: 11.0008/04 DIC 11

Cert. Sistema Qualità ISO 9001:2008

Mod. 025 Ed	lizione n. 1 del 03/10/07	
Prova eseguit	a con matr. ED.1,2.5,6,7.85	
I.O. 005a incert. def. max, 0.0022 mm		
Rif. Campion	e di 1º linea PL2.(1-3).95	

Lo Sperimentatore	Controllato	Il Direttore
Dott. Giusti	Dott, Giusti	Dott. Sanchi
Dott. Ricco		
Dott. Branchi		

SGAILAB - Laboratori e Ricercire e.t.l.

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401 Commessa: 08.040.00

Id. Camp.: CI 6V18B

Da mt. a mt.: 10.50-10.90 mt

Rif. Prova: EDO - 34

cert. n³/data: 11.0008/04 DIC 11

SGAILAB - Laboratori e Ricercine s.r.l.

www.sgailab.net

PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

Cliente - Richiedente: SPEA S.p.A.

Commessa;

08.040.00

Sito:

A1 MI-NA 3^corsia fase B

Sondaggio: Campione: SV18B CI1

Profonditá:

10.50-10.90 mt

D

data ricevimento: 06 AGO 10

File: I18BC1E1

data: 6 DEC 2010 verbale accettazione n°:

n° progressivo campione:

edometro nº: 1

Dati provino

!		
Sezione	19.635 cm ²	Peso dell'unità di volun
Altezza iniziale	20.000 mm	Peso dell'unità di volun
Altezza finale	19.050 mm	Peso secco dell'unità d
Numero tara 1	1	Contenuto d'acqua in
Peso tara 1	59.460 g	Contenuto d'acqua fir
Tara+p.umido iniziale	145.15 g	Saturazione iniziate
Numero tara 2	2	Saturazione finale
Peso tara 2	59.460 g	Indice dei vuoti inizial
Tara+p.umido finale	145.090 g	Indice dei vuoti finali
Tara+p.provino secco	133.320 g	Peso secco dell'unità di v
Peso specifico del terreno	2.698 Mg/m ³	

Peso dell'unità di volume iniziale	2.182 Mg/m³	γ
Peso dell'unità di volume finale	2.289 Mg/m ³	γ.
Peso secco dell'unità di volume	1.881 Mg/m ³	γ
Contenuto d'acqua iniziale	16.017 %	W,
Contenuto d'acqua finale	15.936 %	W,
Saturazione iniziale	99.460 %	s.
Saturazione finale	%	s,
Indice dei vuoti iniziali	0.434	lv.
Indice dei vuoti finali	0.366	lv,
Peso secco dell'unità di vol. finale	1.975 Mg/m ³	γ ,,

Passo	P' kPa	ε %	lv	M MPa	Cv cm2/s	K m/s	C alfa %	Metodo
1	12.5	0.080	0.433		0.112.0	111/3		
2	25.0	0.175	0.432	13.098			0.000	
3	50.0	0.398	0.429	11.191			0.000	
4	100.0	0.957	0.421	8.954			0.000	
5	200.0	1.658	0.411	14.262	1.659e-003	1.141e-010		0
6	400.0	2.772	0.395	17.951	1.943e-003	1.062e-010	0.068 0.087	Casagrande
7	200.0	2.439	0.399	1	1.0400-003	1.0026-010	0.087	Casagrande
8	100.0	2.008	0.406					
9	50.0	1.530	0.413					
10	100.0	1.689	0.410	31.517			0.000	
11	200.0	2.135	0.404	22.394	1.409e-003	6.173e-011	0.000	C
12	400.0	2.853	0.394	27.885	1.971e-003	6.936e-011	0.033	Casagrande
13	800.0	4.237	0.374	28.885	1.507e-003	5.117e-011	0.047	Casagrande
14	1600.0	6.580	0.340	34.157	9.840e-004	2.826e-011	0.071	Casagrande
15	3200.0	10.103	0.290	45.410	5.800e-004	1.253e-011	0.300	Casagrande
16	6400.0	14.036	0.233	81.362	5.870e-004	7.081e-012	0.300	Casagrande
17	3200.0	13.592	0.240		0.07.00.004	7.0016-012	0.201	Casagrande
18	800.0	11.562	0.269					
19	200.0	8.895	0.307					
20	50.0	6.578	0.340					
21	12.5	4.748	0.366					

Certificato nº/data:

11.0008/04 DIC 11

Cert. Sistema Qualità ISO 9001:2008

Mod, 025 Edi	zione n. 1 del 03/10/07		
Prova eseguita	con matr. ED.1,2.5,6,7.85		
I.O. 005a incert. def. max. 0.0022 mm			
Rif. Campione	di 1º linea PL2.(1-3).95		

Lo Sperimentatore	Controllato	II Direttore
Dott. Giusti	Dott. Giusti	Dott. Sanchi
Dott, Ricco		
Dott. Branchi		***************************************

SGAILAB - Laboratori o Ricerche s.cl.

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab,net REA: RN-304214 - C.F. e P, IVA03686910401

Commessa:	08.040.00
ld. Camp.:	C3¥18B
Da mt. a mt.:	10.50-10.90 mt
Rif. Prova:	EDO - 35
cert. nº/data:	11.0008/04 DIC 11

www.sgailab.net

PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

Cliente - Richiedente: SPEA S.p.A.

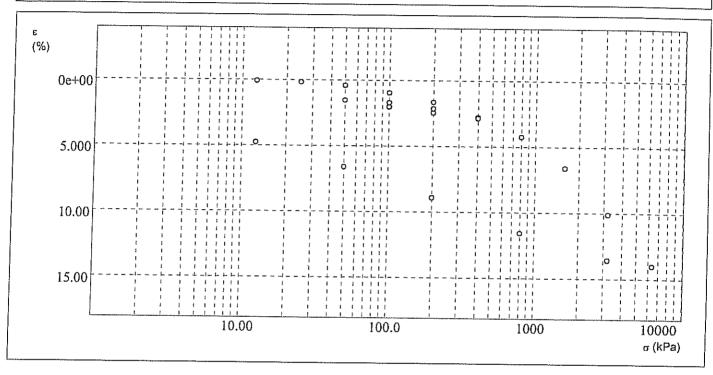
Commessa:

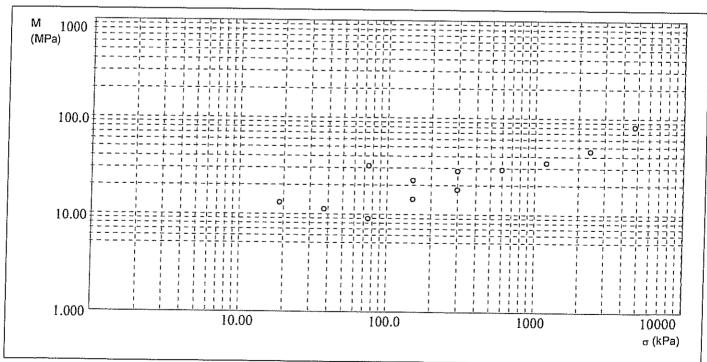
08.040.00

Sito:

A1 MI-NA 3°corsia fase B

Sondaggio: Campione: SV18B Cl1


Profonditá:


10.50-10.90 mt

data ricevimento: 06 AGO 10

File: I18BC1E1 data: 6 DEC 2010 verbale accettazione n°: n° progressivo campione:

edometro nº: 1

Certificato n°/data:

11.0008/04 DIC 11

Cert. Sistema Qualità ISO 9001:2008

Mod, 025 Edi	zione n. 1 del 03/10/07	
Prova eseguita	1 con matr. ED.1,2.5,6,7.85	
I.O. 005a incert. def. max. 0.0022 mm		
Rif. Campion	di 1° linea PL2.(1-3).95	

Sperimentatore	Controllato	Approvato
Dott. Giusti	Dott. Giustí	Dott. Sanchi
Dott. Ricco		
Dott. Branchi		***************************************

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00
ld. Camp.:	CBV18B
Da <i>m</i> t, a mt.:	10.50-10.90 mt
Rif. Prova:	EDO - 36
cert. nº/data;	11.0008/04 DIC 11

www.sgailab.net

PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

Cliente - Richiedente: SPEA S.p.A. Commessa:

08.040.00

Sito:

A1 MI-NA 3[^]corsia fase B

10.00

Sondaggio:

SV18B

Campione:

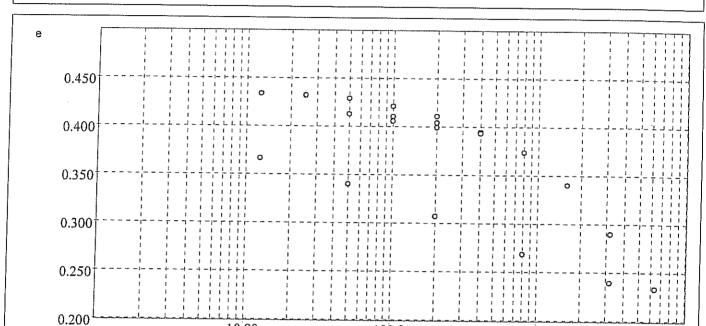
CI1

Profonditá:

10.50-10.90 mt

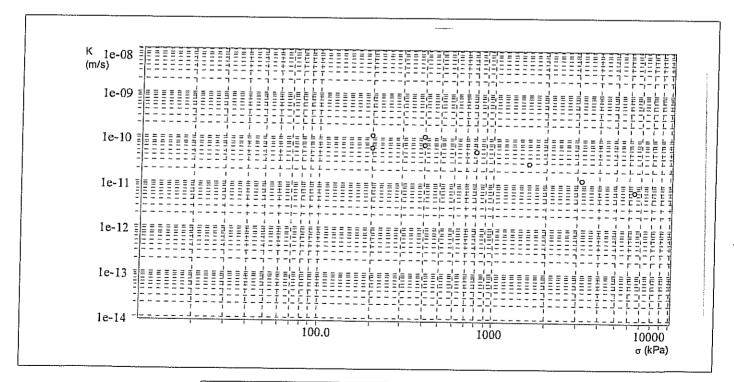
data: 6 DEC 2010

File: I18BC1E1


verbale accettazione nº:

1000

10000 σ (kPa)


nº progressivo campione:

edometro nº: 1

100.0

data ricevimento: 06 AGO 10

Certificato nº/data: 11.0008/04 DIC 11

Cert. Sistema Qualità ISO 9001:2008

Prova eseguita	ı con matr. ED.1,2.5,6,7.85
I.O. 005a incert, def. max. 0,0022 mm	
Rif. Campions	di 1º linea PL2.(1-3).95

Lo Sperimentatore	Controllato	Il Direttore
Dott. Giusti	Dott. Giusti	Dott, Sanchi
Dott, Ricco		
Dott. Branchi		

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail; info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	08.040.00
ld. Camp.:	CBV18B
Da mt. a mt.;	10.50-10.90 mt
Rif. Prova:	EDO - 37
cert. nº/dala:	11.0008/04 DIC 11

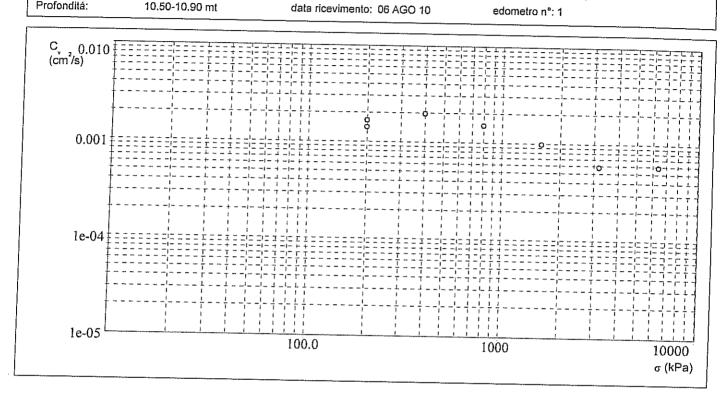
www.sgailab.net

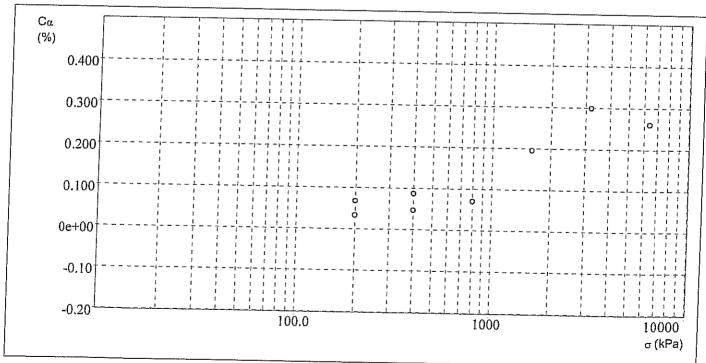
PROVA EDOMETRICA (UNI CEN ISO/TS 17892-5)

Cliente - Richiedente: SPEA S.p.A. Commessa: 08.040.00

Sito: Sondaggio: A1 MI-NA 3^corsia fase B

Campione:


SV18B CI1


Profonditá:

10.50-10.90 mt

File: I18BC1E1 data: 6 DEC 2010 verbale accettazione nº: ก° progressivo campione:

edometro nº: 1

Certificato nº/data:

11.0008/04 DIC 11

Cert. Sistema Qualità ISO 9001:2008

Prova eseguita	a con matr. ED.1,2.5,6,7.85	
I.O. 005a	incert, def. max. 0.0022 mm	
Rif. Campione	di 1° linea PL2.(1-3).95	

Lo Sperimentatore	Controllato	Il Direttore
Dott. Giusti	Dott. Giusti	Dott. Sanchi
Dott. Ricco		
Dott, Branchi		

SGAILAB — Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sgailab.net REA: RN-304214 – C.F. e P.IVA 03686910401

www.sgailab.net

COMMITTENTE:	SPEA S.p.A.	DATA:	20 December 2010
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio n°:	SV18B	profondità da mt.	10.50
Campione n°:	CI1	profondità a mt.	10.90

DOCUMENTAZIONE FOTOGRAFICA

Rapp N° 10.2100

Osservazioni

MOD.025 Edizione n°1 del 13 Ottobre 2009			
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S.			

Prova eseguita con Macchina fotografica digitale
Matricola nº UG 35. 2. 02

Lo Sperimentatore Lo Sperimentatore		Controllato	Il Direttore	
Giusti M. Giusti M.		Giusti M. Sanchi S.		
Data Stampa 13/04	/2012	Pag 6/6		
Procedura Operativa IO 005a		\\ Sgailab \SV18B-	CI1.docx	

SGAILAB – Laboratori e Ricerche S.r.l.
Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P.IVA 03686910401

COMMITTENTE:	SPEA S.p.A.	DATA:	16 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	25.50
Campione n°:	CI2	profondità a mt.	25.85

LABORATORIO GEOTECNICO	Procedura	PO.06	RAPPORTO DI PROVA
	1 1000000	. 0.00	TOTAL OR TO DIT HOWA

Data di ricevimento campione	6 August 2010

Note:

APERTURA CAMPIONE

Rapp N° 11.0274

Descrizione Campione:

Argilla con limo sabbiosa da consistente a molto consistente di colore grigio

verdastro. Presenza di mica.

Stato del campione:

indisturbato

Programma prove:

Sommario Caratteristiche Fisico-Meccaniche

Peso Specifico del Terreno Caratteristiche Fisiche del Provino

Analisi Granulometrica

Determinazione dei Limiti di Atterberg

Triassiale UU

Osservazioni:		and the state of t	 - 14 <u>-</u>	•

Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S.				
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/0				
Cert. Sistemii Quanta 180 9001.2008 KiiVA 17533/08/8				

Lo Sperimentatore	Lo Sperimentatore	Controllato	II Direttore
Giusti M.,	Giusti M.	Giusti M.	Sanchi S.
Data Stampa 04/04/2012		Pag 1/6	
Procedura Operativa IO 005a		\\Sgailab\SV18B-C	12.doex

www.sgailab.net

SGAILAB — Laboratori e Ricerche S.r.I.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sqailab.net

REA: RN-304214 - C.F. e P.IVA 03686910401

COMMITTENTE:	SPEA S.p.A.	DATA:	16 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
	<u> </u>	N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	25.50
Campione n°:	CI2	profondità a mt.	25.85

SOMMARIO DELLE CARATTERISTICHI	E FISICO-MECCANICHE	Rapp N° 11.0274	
CARATTERISTICHE GENERALI Contenuto d'acqua $W = 21.18$ % Peso dell'unità di volume $\gamma = 2.123$ Mg/m³ Peso secco dell'unità di vol. $\gamma d = 1.752$ Mg/m³ Peso specifico del terreno $\gamma s = 2.662$ Mg/m³ Indice dei vuoti $V = 0.662$ Mg/m³ Indice di vuoti $V = 0.662$ Mg/m³ Tenore in Carbonati $V = 0.662$ Mg/m³ Velocità Ultrasonica $V = 0.662$ Mg/m³ GRANULOMETRIA (AGI/S)	LIMITI DI ATTERBERG Limite di liquidità WI Limite di plasticità Wp Indice di plasticità Ip Limite di ritiro Ws Indice di consistenza IC	= 47.85 % = 19.47 % = 28.38 % = %	
Ghiaia (>2.00 mm)	Ghiaia (>4.75 mm) G = Sabbia (>0.075<4.75 mm) S = Limo + Argilla L+A = Limo (>0.002<0.075mm) L = Argilla (<0.002 mm) A =	= 21.96 % = 77.80 % = 36.31 %	
RESISTENZA A Compressione Semplice $\sigma c = \begin{bmatrix} kPa \\ v = \end{bmatrix}$ kPa Modulo Elastico Tangente. $E = \begin{bmatrix} MPa \\ MPa \\ MPa \end{bmatrix}$	Pocket Penetr PP Vane test VT min = max = min = max =	290.0 kPa 147.5 kPa	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gradino di carico $\sigma =$ Indice Rigonfiamento Ir =		
	Test CD Coesione efficace C'	kPa kPa	
Angolo di resistenza a taglio φcu = ο	SIONE TRIASSIALE CD Coesione efficace C' = Cu Coesione non dren. Cuu =	kPa kPa kPa 130.28 kPa	
Osservazioni			

MOI	0.024 Edizione nº1 del 13 Ottobre 2009	
Cert	Sistema Qualità ISO 9001:2008 RINA 17533	/08/S.
7516	Sistema Quanta ISO 9001:2008 RINA 17533	/08/5.

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M	Giusti M	Giusti M.	Sanchi S.
Data Stampa 19/05/2011		Pag 2/6	
Procedura Operativa 1O 005a		\\ Sgailab \SV18B-	CI2.doex

SGAILAB — Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sgailab.net
REA: RN-304214 - C.F. e P.IVA 03686910401

	SPEA S.p.A.	DATA:	16 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
· · · · · · · · · · · · · · · · · · ·		N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	25.50
Campione n°:	CI2	profondità a mt.	25.85

(BS 1377 (1990)) CARAT	TERISTICHE FI	SICHE DEL PRO	OVINO	Rapp Nº 11.0275
	Provino I	Provino 2	Provi	10 3
Diametro	6.00			(cm)
Altezza	3.00			(cm)
Area	28.27			(cm ²)
Volume	84.82			(cm ³)
Peso umido	180.07			(gr.)
Peso secco	148.60			(gr.)
Peso dell'unità di volume	2.123			(Mg/m ³)
Peso secco dell'unità di volume	1.752			(Mg/m ³)
Contenuto d'acqua	21.18			(%)
	Valori M	ediati		İ
Peso dell'unità di volume		2.123	(Mg/m³)	
Peso secco dell'unità di volume		1.752	(Mg/m³)	
Contenuto d'acqua		21.18	(%)	
Osservazioni	1641			

MOI	0.025 Edizione nº1 del 13 Ottobre 2009
Prov	a eseguita con calibro e bilancía digitale. Inct. ±0.05 e 0.00%
Matr	icola nº UG 51,1,90 e UG 50,1.06
Rif. c	eamp, 1° linea PL 3, (1-7) 97

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M.	Giusti M.,	Giusti M.	Sanchi S.
Data Stampa 19/05/2011		Pag 3/6	
Procedura Operativa (O 005a		// Sgailab \SV18B-	Cl2.doex

SGAILAB — Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sqailab.net
REA: RN-304214 - C.F. c P.IVA 03686910401

COMMITTENTE:	SPEA S.p.A.	DATA:	16 February 2011
LAVORO:	A1 MI-NA	LOCALITA';	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

	Sondaggio nº:	SV18B	profondità da mt.	25.50
Į	Campione n°:	CI2	profondità a mt.	25.85

(ASTM D854-02) - PES	(ASTM D854-02) - PESO SPECIFICO DEL TERRENO					
Peso Secco netto	(g)	Provino 1 20.541	Provino 2 20.522			
Peso picnometro- acqua-provino	(g)	184.799	191.136			
Peso Picnometro	(g)	66.671	68.480			
Peso picnometro-acqua (T=20°)	(g)	171.970	178.326			
Peso Specifico del terreno γs	(Mg/m^3)	2.664	2.661			
PESO S	SPECIFICO DE	L TERRENO γs	2.662 (Mg/m ³)			
Peso specifico del terreno γs	(Mg/m³)					
Peso secco dell'unità di volume	(Mg/m^3)		10.10			
Indice dei vuoti Iv						
	INDICE	DEI VUOTI IV				
Osservazioni						

MOD	0.025 Edizione nº1 del 13 Ottobre 2009
Cert.	. Sistema Qualità ISO 9001:2008 RINA 17533/08/S.
Prova	a eseguita con picnometro
Matri	icola nº PF 2,,(1-10),,02

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore	
Giusti M. Giusti M.,		Giusti M. Sanc		
Data Stampa 19/05	/201 t	Pag 4/6		
Procedura Operativa IO 005a		\\ Sgailab \SV18B-	C12.docx	

Committente: Lavoro:

<u> AB – L</u>aboratori e Ricerche S.r.l.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982 Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY tel/fax. +39 0541988972 - e.mail: info@sgailab.net - PEC sgallab@pec.sgailab.net REA: RN-304214 - C.F. e P.IVA 03686910401

Commessa: 08.040.00 Sondaggio: SV18B Campione.s CI2 da m. - a m. 25.5-25.85 nf.Prova: TE_GR

11511	KIRU	ZION	E GF	3NAS	TOM	IETRI	CA
	UNI	CEN	ISO/	TS 1	78892	2-4	

Cert.N.-Data 11.0306 18-02-11 14-02-11 Data Esecuzione: SPEA S.p.A. A1 MI-NA Incisa-Valdarno (FI) Località:

Commessa Sondaggio | Campione sub dam am Verb.Accettazione CAMPIONE 08.040.00 SV18B CI2 0 25,50 25.85

Data ric. descr.campione descr.prelievo 06-08-10

Setacci A	.S.T.M. (mm)	Passante totale	Trattenuto totale	Trattenuto Totale
		(%)	(%)	(g)
3"	75.00	100.0	0.00	0.00
2 1/2"	63.00	100.0	0.00	0.00
2"	50.00	100.0	0.00	0.00
1 1/2"	37.50	100.0	0.00	0.00
1"	25.00	100.0	0.00	0.00
3/4"	19.00	100.0	0.00	0.00
1/2"	12.50	100,0	0.00	0.00
3/8"	9.50	100.0	0.00	0.00
п.4	4.75	99,8	0.24	1.00
n.10	2.00	99.6	0.40	1.69
n.20	0.850	99.1	0.86	3.61
n.40	0.425	98.2	1.76	7.42
n.80	0.180	93.9	6.10	25.68
n.140	0,106	83.1	16.94	71.36
n.200	0.075	77.8	22.20	93.51
CIOTTOLI		GHIAIA	SABBIA	

Materiale Esaminato:

421.22

g

%

n.10 99.6 n.40

Materiale Passante al setaccio

LIMO

98.2 % n.200 77.8 %

ARGILLA 100 10 1 0.1 0.01 0.001 0.0001 100,00 90.00 80.00 70.00 60.00 **3**0.00 00.00 00.00 00.00 20.00 10.00 0.00 1 1/3" 3/4" 10 40 200 3/8* 20 4

CLASSIFICAZIONE AGI/S	Ciottoli	Ghiaia	Sabbia	Limo	Argilla	Limo+Argilla
Argilla con limo sabbiosa	0.00	0.40	23.26	34.85	41.49	76.34
Percentuale delle frazioni (ASTM)	0.00	0.24	21.96	36.31	41.49	77.80

Osservazioni

MOD.025 Edizione nº2 del 1 Ottobre 2010	
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S	
Setacci ASTM e densimetro 151H	
MAT.n.GR1.(2-24)-085 - GR2.14.85	\neg

Sperin	rentatore	Controllato	Il Direttore
Ricco A.		Giusti M.	S.Sanchi
Data Stampa	18-02-11		Pag. 1/2
Procedura Operativa IO 005a		file:	0

Committente:

Lavoro:

SPEA S.p.A.

A1 MI-NA

SGAILAB - Laboratori e Ricerche S.r.l.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982 Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY tel/fax. +39 0541988972 - e.mail: info@sgallab.net - PEC sgallab@pec.sgallab.net REA: RN-304214 - C.F. e P.IVA 03686910401

DISTRIBUZIONE GRANULOMETRICA

Commessa: 08.040.00 Sondagglo: SV18B Camplone.s CI2 da m. - a m. 25.5-25.85 nt.Prova: TE_GR

THEORIGINE GIVANOLONIC INICA	
UNI CEN ISO/TS 178892-4	
	-

Cer	T.NDat	а	11.0306	- 18-	-02-11 [Data Esecuzione:	14-02-11
			Locali	là:	Incisa-Va	ldarno (FI)	
ıb	dam	am	Verb.A	ccettazione	Data ric.	descr.campione	descr.prelievo

06-08-10

0

Commessa Sondaggio Campione CAMPIONE 08.040.00 SV18B 0 25.50 25.85

STAMPA VALORI CARATTERISTICI

Setaco	ciatura - Peso	Campione Ir	niziale =	421.22	g	Sedimentazione Peso Secco Campione Ps = 50 c
Setacci A	.S.T.M. (mm)	Trattenuto	Trattenuto	Trattenuto	Passante	
3"	75.00	Parz. (g) 0.0	Parziałe (%) 0.00	Tot. (%)	Tot. (%)	Dispersivo 125 g/l
2 1/2"	63.00			0.0	100.0	
		0.0	0.00	0.0	100.0	
2"	50.00	0,0	0.00	0.0	100.0	Distanza dal Baricentro:
1 1/2"	37.50	0.0	0.00	0.0	100.0	Hg=15.86 - 0.245 R'
1"	25.00	0.0	0.00	0.0	100.0	11g 10.00 0.240 (C
3/4"	19.00	0.0	0.00	0.0	100.0	Correzione menisco
1/2"	12.50	0,0	0.00	0.0	100.0	См =+0.5
3/8"	9.50	0.0	0.00	0.0	100.0	ON: 10.0
п.4	4.75	1.0	0.24	0.2	99.8	
n.10	2.00	0.7	0.16	0.4	99.6	Correzione Dispersivo:
n.20	0.850	1.9	0.46	0.9	99.1	Cp = -4.0
n.40	0.425	3.8	0.90	1,8	98.2	1
л.80	0.180	18.3	4.34	6.1	93.9	Correzione Temperatura
п,140	0.106	45.7	10.84	16.9	83.1	Cr = -5 + 0.25 T
n.200	0.075	22.2	5.26	22.2	77.8	0, 0,0,201
	< 0.075	327.7	77.80			Costante K
Som	ma (g)	421.2	-	FRAZIONE < (0.075	K=gs/(gs-1) x 100/PS = 3,203
	lita (g)	0.0	ļ	X =	0.778	17 gar(ga-1) x 100/10 - 3,203

Tempo	Temp.	Lettura	L corr.	L temp.	D	L cor	Tratt.Parz.	Tratt.
(min)	J	R	R'=R+CM	CT	mm	R'+CT+CD	KxR"	XxKxR"
0.5	20.0	33.8	34.3	0.00	0.0530	30.3	97.1	75.5
0.75	20.0	33.0	33.5	0.00	0.0438	29.5	94.5	73.5
1	20.0	31.9	32.4	0.00	0.0386	28.4	91.0	70.8
2	20.0	30.1	30.6	0.00	0.0280	26.6	85.2	66.3
4	20.0	29.4	29.9	0.00	0.0200	25.9	83.0	64.5
8	20.0	28.2	28.7	0.00	0.0144	24.7	79.1	61.6
15	20.0	27.1	27.6	0.00	0.0107	23.6	75.6	58.8
30	20.0	25.9	26.4	0.00	0.0077	22.4	71.8	55.8
60	20.0	24.6	25.1	0.00	0.0055	21.1	67.6	52.6
120	20.0	23.1	23.6	0.00	0.0040	19.6	62.8	48.8
180	20.0	22.2	22.7	0.00	0.0033	18.7	59.9	46.6
256	20.0	21.6	22.1	0.00	0.0028	18.1	58.0	45.1
495	20.0	20.2	20.7	0.00	0.0020	16.7	53.5	41.6
1440	20.0	18.0	18.5	0.00	0.0012	14.5	46.4	36.1

Densità della miscela (g/cmc) = (R/1000) + 1

Soluzione preparata il:

07-02-11

MOD.025 Edizione n°2 del 1 Ottobre 2010	
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S	
Setacci ASTM e densimetro 151H	
MAT.n.GR1.(2-24)-085 - GR2.14.85	

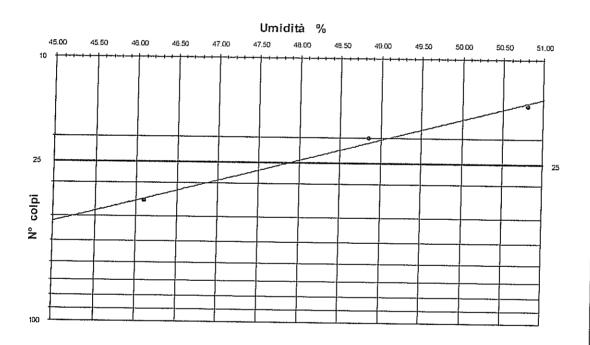
Sperimentatore		Cor	ntrollato	li Direttore
Ric	Ricco A.		usti M.	S.Sanchi
Data Stampa	18-02-11			Pag. 2/2
Procedura O	perativa IO 005a	file;		0

SGAILAB — Laboratori e Ricerche S.r.I. Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: <u>info@sgailab.net</u> REA: RN-304214 - C.F. e P.IVA 03686910401

COMMITTENTE:	SPEA S.p.A.	DATA:	16 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
<u></u>		N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	25.50	
Campione nº:	CI2	profondità a mt.	25.85	


(ASTM D4318-00) DETERMINAZIONE DEI LIMITI DI ATTERBERG Rapp N° 11.0365

LIMITE DI LIQUIDITA'

Prova n° Contenuto d'acqua (%) Numero Colpi

I	2	3	4	5
50.81	48.85	46.09		
15	20	35		

LIMITE DI LIQUIDITA' (%) 47.85

LIMITE DI PLASTICITA'

Prova n.
Contenuto d'acqua (%)

		J	4	5
19.59	19.14	19.68		

LIMITE DI PLASTICITA' (%)

19.47

INDICE DI PLASTICITA' (%)

28.38

Osservazioni

Rif camp. 1º linea PL3 (1-4) 97

Ì	MOD.025 Edizione nº1 del 13 Ottobre 2009
l	Prova eseguita con Cucchiaio Casagrande e bilancia elett. di Prec.
ĺ	Mat. n°.PF 5.1.06 - PF 3, 73, 85 - UG 6, 1, 85 Inc, 0.021%

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M.	Giusti M.	Giusti M.	Sanchi S.
Data Stampa 19/05	/2011	Pag 5/6	
Procedura Operativ	a IO 005a	\\ Sgailab \SV18B-	C12.doex

PROVA Nº	I	2	3	4
p.u.t,	25.616	25.542	27.369	****
p.s.t.	22.596	23.106	24.460	
tara	16.652	18.119	18.149	
peso H2O	3,020	2,436	2,909	
peso secco	5.944	4.987	6,311	
W	50,81	48.85	46.09	
N. colpi	15	20	35	
PROVA №	1	2	3	
PROVA N° p.u.t.	1 10.973	2	3	
г	1 10.973 10.725		10.786	
p.u.t.		10.065		
p.u.t. p.s.t.	10.725	10.065 9.864	10.786 10.587	
p.u.t. p.s.t. arn	10.725 9.459	10.065 9.864 8.814	10.786 10.587 9.576	

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	06 AGO 10
Id. Camp.;	SV18B CI2
Da mt. a mt.:	25.50-25.85 mt.
Rif. Prova:	TX UU ELAB - 1
cert. nº/data;	11.0277/16 FEB 11

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8) Dati del cliente

Cliente - Richiedente: SPEA S.p.A.

Commessa:

06 AGO 10

Sito:

A1 MI-NA 3[^]corsia

Sondaggio:

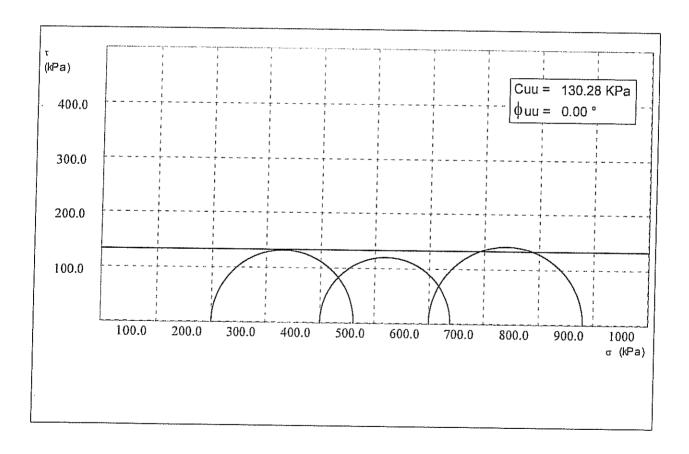
SV18B

Campione: Profonditá: CI2

25.50-25.85 mt.

data esecuzione: 14 FEB 2011

File: I18CI2T3


verbale accettazione nº:

n° progressivo campione:

data ricevimento: velocità di deformazione (mic/min) = 700

Risultati di prova

Provino	Но	1 10			1 4 4				· · · · · · · · · · · · · · · · · · ·
1 10VIIIO	110	Ao	lγ _n	γ _d	Wo	So	σ3	c	0.0
	mm	cm²	Mg/m³	Mg/m³	%	%	kPa	%	σ ₁ - σ ₃ kPa
I18CI2T3	76.00	11.34	2.102	1.775	18.47	98,33	600.00	7.39	281.46
118Cl2T1	76.00	11.34	2.118	1.801	17.58	97.90	200.00	7.99	262.09
I18CI2T2	76.00	11.34	2.136	1.823	17.17	99.28	400.00	10.61	239.74
						00.20	400.00	10.01	200.74

Certificato nº/data: 11.0277/16 FEB 11

Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S

	Lo Sperimentatore	Controllato	Il Direttore
	Dott, Sanchí	Dott, Giusti	Dott. Sanchi
	Dott. Giusti		
	Dott. Ricco		
L			<u> </u>

Mod. 025 I	Edizione n. 1 del 03/10/07	
pressa matr	: UG21.1.85 e CT1.7,9.85	
I.O. 005a	Rif. 1º linea, PL2.(1-5).95	

www.sqailab.net

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	06 AGO 10
ld. Camp.:	SV18B CI2
Da mt. a mt.;	25.50-25.85 mt.
Rif. Prova:	TX UU ELAB - 1
cert. n°/data:	11.0277/16 FEB 11

Dati del cliente PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

data ricevimento:

Cliente - Richiedente: SPEA S.p.A.

Commessa:

06 AGO 10

Sito:

A1 MI-NA 3[^]corsia

Sondaggio: Campione:

SV18B

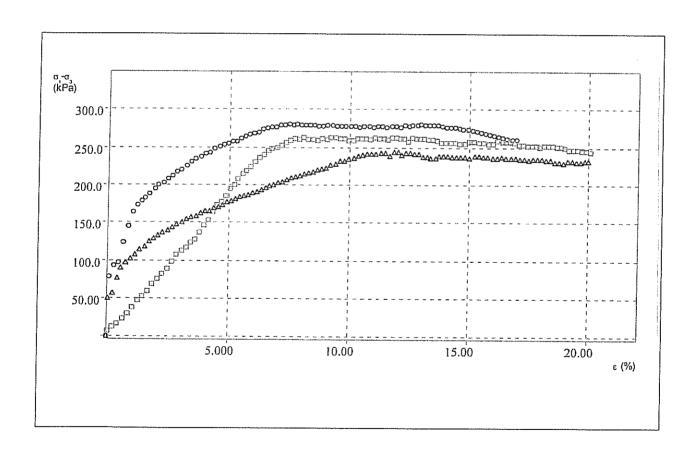
Profondità:

CI2

25.50-25.85 mt.

File: 118C12T3

data esecuzione: 14 FEB 2011


verbale accettazione nº:

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Risultati di prova

Provino	Ho mm	Ao cm²	γ _π Mg/m³	γ _d Mg/m³	Wo %	So %	σ3 kPa	٤ %	σ _ງ - σ ₃ kPa
118CI2T3	76.00	11.34	2.102	1.775	18.47	98,33	600.00	7.39	281.46
I18CI2T1	76.00	11.34	2.118	1.801	17.58	97.90	200.00	7.99	262,09
I18Cl2T2	76.00	11.34	2.136	1.823	17.17	99.28	400.00	10.61	239.74

Certificato nº/data:

11.0277/16 FEB 11

Cert, Sistema Qualità ISO 9001:2008 RINA 17533/08/S

Lo Sperimentatore	Controllato	Il Direttore
Dott. Sanchi	Dott, Giusti	Dott, Sanchi
Dott. Giusti		
Dott. Ricco		

Mod. 025 1	Edizione n. 1 del 03/10/07	
pressa matr	. UG21.1.85 e CT1.7,9.85	
l.O. 005a	Rif. 1º linea, PL2,(1-5),95	

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.nel

REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	06 AGO 10
ld. Camp.:	SV18BCl2
Da mt. a mt.:	25,50-25.85 mt.
Rif. Prova:	TX UU - 1
cert. n°/date:	11.0277/16 FEB 11

Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

Cliente - Richiedente:

SPEA S.p.A. 06 AGO 10

Commessa: Sito:

A1 MI-NA 3^corsia

Sondaggio:

SV18B

Campione:

CI2

Campione: Profonditá:

25.50-25.85 mt.

2.662 Mg/m3

data cooqua

data esecuzione: 11 FEB 2011

verbale accettazione n°:

File: I18CI2T1

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Dati provino

Sezione 11.341 cm² Altezza iniziale 76.000 mm Altezza finale 60.601 mm Numero Tara 1 Peso tara 1 102.080 g Tara+p.umido iniziale 284.610 g Numero Tara 2 Peso tara 2 102.080 g Tara+p.umido finale 283.320 g Tara+p.provino secco 257.320 g

Peso dell'unità di volume iniziale
Peso dell'unità di volume finale

data ricevimento:

Peso dell'unità di volume finale
Peso secco dell'unità di volume
Contenuto d'acqua iniziale
Contenuto d'acqua finale
Saturazione iniziale
Saturazione finale
Indice dei vuoti finali

Peso secco dell'unià di vol. finale Pressione in cella = 200 kPa 2.118 Mg/m³ γ

17.579 % W₀ W₁ 97.903 % S₀

Mg/m³ γ,

1.801 Mg/m γ₄

% S, 0.478 Iv_

iv,

Mg/m³γ_{ar}

Elaborazione dati acquisiti

Peso specifico del terreno

Fase di Rottura

Epsilon	Α	s1-s3	Epsilon	A	s1-s3	Epsilon	Α	s1-s3
%	cm2	kPa	%	cm2	kPa	%	cm2	kPa
0.02	11.34	0.00	4.66	11.90	177.48	9.21	12.49	262.78
0.05	11.35	7.16	4.83	11.92	185.03	9.41	12.52	262.18
0.22	11.37	12.64	5.01	11.94	195.13	9.60	12.54	261,65
0.41	11.39	16.73	5.19	11.96	200.00	9.78	12.57	261.11
0.62	11.41	23.53	5.36	11.98	207.45	9.97	12.60	259.34
0.81	11.43	30.32	5.55	12.01	214.84	10.14	12.62	258.83
1.00	11.46	38.44	5.71	12.03	218.36	10.33	12.65	262.01
1.22	11.48	47.88	5.89	12.05	224.43	10.51	12.67	261.47
1.42	11.50	53.21	6.06	12.07	230.48	10.70	12,70	260.92
1.64	11.53	59.86	6.23	12.09	236.53	10.87	12.72	260.41
1.84	11.55	69.20	6.41	12.12	239.93	11.05	12.75	262.35
2.04	11.58	75.80	6.59	12.14	245.91	11.23	12.78	261.81
2.24	11.60	82.38	6.76	12.16	248.02	11.43	12.80	261.23
2.43	11.62	88.93	6.96	12.19	250.07	11.59	12.83	260.74
2.63	11.65	98.14	7.14	12.21	252.13	11.78	12.85	262.63
2.83	11.67	107.30	7.33	12.24	256.73	11.94	12.88	262.13
3.02	11.69	112.44	7.51	12,26	258.76	12,11	12.90	261.64
3.21	11.72	117.54	7.69	12.29	260.81	12.27	12.93	261.15
3.41	11.74	123.95	7.86	12.31	260.32	12.44	12.95	257.04
3.59	11.76	127.70	8.06	12.33	262.57	12.61	12.98	262.54
3.78	11.79	136.73	8,25	12.36	260.48	12.79	13.00	262.02
3.95	11.81	147.06	8.45	12.39	259.93	12.94	13.03	261.55
4.13	11.83	153.39	8.63	12.41	259.40	13.13	13.05	260.99
4.31	11.85	163.64	8.84	12.44	261.34	13.30	13.08	260.47
4.49	11.87	172.54	9.03	12.47	260.78	13.49	13.11	259.91

tificato n°/data: 11.0277/16 FEB 11

t. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	Il Direttore
Dott, Ricco	Dott. Giusti	Dott. Sanchi
Dott. Giusti		
Dott. Sanchi		1

pressa matr. UG21.1.85 e CT1.7,9.85				
pressa matr. UG21.1.85 e CT1.7,9.85				
I.O. 005a Rif. 1º linea, PL2.(1-5).95				

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgallab.net

REA: RN-304214 - C.F. e P. IVA03686910401

data ricevimento:

Commessa:	06 AGO 10
ld. Camp.:	SV18BCI2
Da mt, a mt.:	25.50-25.85 mt.
Rif. Prova:	TX UU - 2
cert. n°/data:	11.0277/16 FEB 11

Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

Cliente - Richiedente:

SPEA S.p.A.

Commessa:

Sito:

06 AGO 10 A1 MI-NA 3[^]corsia

Sondaggio:

SV18B

Campione:

CI2

Profonditá:

CI2 25.50-25.85 mt. File: I18C!2T1

data esecuzione: 11 FEB 2011

verbale accettazione n°:

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Fase di Rottura

Epsilon	Α	s1-s3
%	cm2	kPa
13.67	13.14	259.36
13.86	13.17	256.43
14.04	13.19	255.88
14.24	13.22	256.48
14.42	13.25	255.93
14.62	13.28	255.34
14.82	13.31	254.73
15.02	13.34	257.66
15.20	13.37	257.10
15.42	13.41	256.45
15.61	13.44	255.86
15.82	13.47	255.21
16.02	13.50	254.62
16.20	13.53	258.68
16.40	13.57	258.07
16.56	13.59	257.56
16.75	13,62	256.99
16.93	13.65	256.42
17.08	13.68	253.69
17.28	13.71	253.06
17.45	13.74	252.56
17.62	13.77	252.02
17.81	13.80	251.46
17.98	13.83	250.95
18.15	13.86	252.67
18.33	13.89	252.13
18.49	13.91	251.62
18.66	13.94	251.11
18.84	13.97	250,53
19.00	14.00	250.05
19.17	14.03	247.29
19.35	14.06	246.75
19.52	14.09	246.22
19.71	14.12	245.65
19.89	14.16	245.08

rtificato nº/data: 11.0277/16 FEB 11

rt. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	Il Direttore
Dott. Ricco	Dott, Giusti	Dott. Sanchi
Dott. Giusti		
Dott, Sanchi		

Mod. 025 Ed	lizione n. 1 del 13/10/09	
pressa matr.	UG21.1.85 e CT1.7,9.85	
I.O. 005a	Rif. 1º linea, PL2.(1-5).95	
def 0.0109m	n, press.0.6%	

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net
REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	06 AGO 10
Id. Camp.:	SV18BCI2
Da mt. a mt.:	25.50-25.85 mt.
Rif. Prova:	TX UU - 3
cert. nº/dala;	11.0277/16 FEB 11

Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

Cliente - Richiedente:

SPEA S.p.A.

Commessa:

06 AGO 10

Sito:

A1 Mi-NA 3°corsia

Sondaggio: Campione: SV18B Cl2

Profonditá:

25.50-25.85 mt.

data ricevimento:

File: I18CI2T1

data esecuzione: 11 FEB 2011

verbale accettazione nº:

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Fase di Rottura

Epsilon	Α	s1-s3
%	cm2	kPa
20.08	14.19	244.52
20.26	14.22	243,95

ertificato nº/data: 11.0277/16 FEB 11

ert. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	Il Direttore
Dott. Ricco	Dott, Giusti	Dott, Sanchi
Dott. Giusti	* *********	
Dott, Sanchi		

Mod. 025 Ediz	zione n. 1 del 13/10/09	
pressa matr. U	JG21.1.85 e CT1,7,9.85	
I.O, 005a	Rif. 1º linea, PL2.(1-5).95	···········

Via Mariolti 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net

REA: RN-304214 - C.F. e P. IVA03686910401

Commessa: 06 AGO 10

td. Camp.: SV18B CI2

Da mt. a mt.: 25.50-25.85 mt.

Rif. Prova: TX UU - 4

cert. n*/data: 11.0277/16 FEB 11

www.sgailab.net Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

data ricevimento:

Cliente - Richiedente:

SPEA S.p.A.

Commessa:

06 AGO 10 A1 MI-NA 3^corsia

Sondaggio:

Sito:

SV18B

Campione: Profonditá: CI2

25.50-25.85 mt.

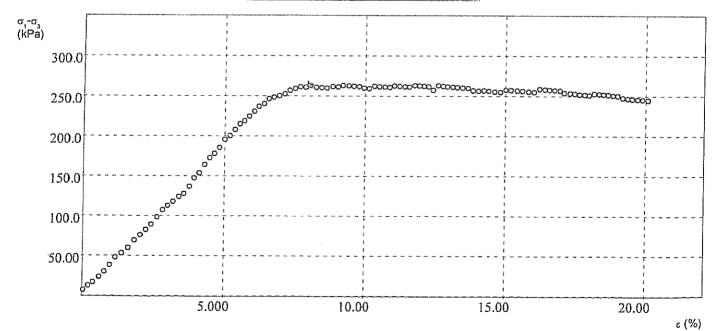
File: 118CI2T1

data esecuzione: 11 FEB 2011

verbale accettazione nº:

n° progressivo campione:

velocità di deformazione (mic/min) = 700


Dati acquisiti

Fase di Rottura

l		
dH	dΝ	
mm	N	
0.01	0.00	
0.04	8.12	
0.17	14.37	
0.31	19.05	
0.47	26.86	
0.61	34.67	
0.76	44.03	
0.92	54.97	
1.08	61,21	
1.24	69.02	
1.40	79.95	
1.55	87.76	
1.70	95.57	
1.85	103.37	
2.00	114.30	
2.15	125.23	
2.29	131.48	

ďΗ	dN
mm	N
2.44	137.73
2.59	145.53
2.73	150.22
2.87	161.15
3.00	173.64
3.14	181.45
3.28	193.94
3.41	204.87
3.54	211.12
3.67	220.49
3.81	232.98
3.94	239.23
4.08	248.59
4.22	257.96
4.34	262.65
4.47	270.46
4.61	278.26
	· · · · · · · · · · · · · · · · · · ·

dH	dN
mm	N
4.73	286.07
4.87	290.76
5.01	298.56
5.14	301.69
5.29	304.81
5.43	307.93
5.57	314.18
5.71	317.30
5.84	320.42
5.98	320.42
6.12	323.88
6.27	321.99
6.42	321.99
6.56	321.99
6.72	325.11
6.86	325.11

ertificato n°/data: 11.0277/16 FEB 11

lert, Sistema Qualità ISO 9001:2008

UNA 17533/08/S

Lo Sperimentatore	Controllato	II Direttore
Dott. Ricco	Dott. Giusti	Dott. Sanchi
Dott. Giusti		
Dott. Sanchi		

Mod. 025 E	dizione n. 1 del 03/10/07	
pressa UG2	1.1.85 e CT1.7,9.85	
1.O. 005a	Rif. 1º linea, PL2.(1-5).95	
def 0.0109r	nm, press.0.6%	

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net
REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	06 AGO 10
ld. Camp.:	SV18B CI2
Da mt. a mt.:	25.50-25.85 mt.
Rif. Prova:	TX UU - 5
cert. nº/data;	11.0277/16 FEB 11

www.sgailab.net
Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

data ricevimento:

Cliente - Richiedente:

SPEA S.p.A.

Commessa:

06 AGO 10

Sito: Sondaggio: A1 MI-NA 3[^]corsia

Sondaggio: Campione: SV18B CI2

Profondità:

25.50-25.85 mt.

data eseci

data esecuzione: 11 FEB 2011

verbale accettazione n°:

File: [18C[2T1

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Fase di Rottura

dH	dN
mm ·	N
7.00	328.23
7.15	328.23
7.29	328.23
7.43	328.23
7.57	326.67
7.71	326.67
7.85	331.36
7.99	331.36
8.13	331.36
8.26	331.36
8.39	334.48
8.54	334.48
8.68	334.48
8.81	334.48
8.95	337.60
9.08	337.60
9.20	337.60
9.33	337.60
9.45	332.92
9.59	340.72
9.72	340.72
9.84	340.72
9.98	340.72
10.11	340.72
10.25	340.72
10.39	340.72
10.53	337.60
10.67	337.60
10.82	339.16
10.96	339.16
11.11	339.16
11.26	339.16
11.41	343.85
11.55	343.85
11.72	343.85
11.86	343.85
12.03	343.85

ertificato nº/data: 11.0277/16 FEB 11

'ert, Sistema Qualità ISO 9001:2008

UNA 17533/08/S

i	Lo Sperimentatore	Controllato	Il Direttore
	Dott. Ricco	Dott. Giusti	Dott. Sanchi
	Dott. Giusti		*
	Dott. Sanchi		

Mod. 025 Edizione n. 1 del 03/10/07		
pressa UG2	1.1.85 e CT1.7,9.85	
I.O. 005a	Rif. 1º linea, PL2.(1-5).95	****

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgallab.net REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	06 AGO 10
ld, Camp.;	SV18B CI2
Da mt, a mt.:	25.50-25.85 mt.
Rif. Prova:	TX UU - 6
cert. nº/data:	11.0277/16 FEB 11

www.sgailab.net Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

data ricevimento:

Cliente - Richiedente:

SPEA S.p.A.

Commessa:

06 AGO 10 A1 Mi-NA 3^corsia

Sito: Sondaggio:

SV18B

Campione: Profonditá: CI2

25.50-25.85 mt.

File: 118CI2T1

data esecuzione: 11 FEB 2011

verbale accettazione nº:

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Fase di Rottura

dH	dN
mm	N
12.17	343.85
12.32	350.09
12.46	350.09
12.59	350.09
12.73	350.09
12.87	350.09
12.98	346.97
13.14	346.97
13.26	346.97
13.39	346.97
13.54	346.97
13.66	346.97
13.79	350.09
13.93	350.09
14.05	350.09
14.18	350.09
14.32	350.09
14.44	350.09
14.57	346.97
14.70	346.97
14.84	346.97
14.98	346.97
15.12	346.97
15.26	346.97
15.40	346.97

ertificato nº/data: 11.0277/16 FEB 11

ert. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	Il Direttore
Dott. Ricco	Dott, Giusti	Dott. Sanchi
Dott. Giusti		
Dott. Sanchi		

Mod. 025 E	dizione n. 1 del 03/10/07	
pressa UG2	1,1,85 e CT1.7,9.85	
I.O. 005a	Rif. 1º linea, PL2.(1-5).95	
def 0.0109n	nm, press.0.6%	

Via Mariotli 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net
REA: RN-304214 - C.F. e P. IVA03686910401

data ricevimento:

Commessa:	06 AGO 10		
ld. Camp.:	SV18BCI2		
Da ml. a mt.:	25.50-25.85 mt.		
Rif. Prova:	TX UU - 1		
cert. n°/data:	11.0277/16 FEB 11		

Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

Cliente - Richiedente:

SPEA S.p.A.

Commessa:

06 AGO 10

Sito:

A1 MI-NA 3[^]corsia

Sondaggio:

SV18B

Campione: Profonditá: Cl2

25.50-25.85 mt.

File: I18CI2T2

data esecuzione: 11 FEB 2011

verbale accettazione nº:

verbale accellazione n :

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Dati provino

Sezione 11.341 cm² Altezza iniziale 76.000 mm Altezza finale 60.660 mm Numero Tara 1 1 Peso tara 1 99.670 g Tara+p.umido iniziale 283.750 g Numero Tara 2 Peso tara 2 99.670 g Tara+p.umido finale 282.190 g Tara+p.provino secco 256.770 g Peso specifico del terreno 2.662 Mg/m3

Peso dell'unità di volume iniziale 2.136 Mg/m³ γ Peso dell'unità di volume finate Mg/m³ γ, Peso secco dell'unità di volume 1.823 Mg/m γ_e Contenuto d'acqua iniziale 17.174 % Contenuto d'acqua finale W, % S, Saturazione iniziale 99.279 % Saturazione finale S, Indice dei vuoti iniziali 0.460 Iv, Indice dei vuoti finali Peso secco dell'unià di vol. finale Mg/m³ γ_d

Pressione in cella = 400 kPa

Elaborazione dati acquisiti

Fase di Rottura

Epsilon	Α	s1-s3	Epsilon	Α	s1-s3	Epsilon	Α	s1-s3
%	cm2	kPa	· %	cm2	kPa	%	cm2	kPa
0.00	11.34	0.00	4.54	11.88	170.54	9.02	12.47	223.14
0.07	11.35	50.18	4.72	11.90	172.97	9.21	12.49	226.68
0.23	11.37	56.84	4.91	11.93	177.22	9.39	12.52	228.14
0.40	11.39	76.94	5.08	11.95	178.73	9.59	12.54	232.45
0.56	11.41	90.26	5.27	11.97	181.13	9.77	12.57	231.98
0.75	11.43	96.80	5.45	11.99	183.51	9.97	12.60	235.30
0.93	11.45	102.36	5.63	12.02	184.97	10.16	12.62	236.70
1.11	11.47	107.90	5.80	12.04	186.47	10.36	12.65	238.09
1.29	11.49	114.37	5.98	12.06	188.85	10.53	12.68	239.52
1.48	11.51	118.92	6.15	12.08	191.21	10.72	12.70	240.90
1.66	11.53	124.39	6.32	12.11	193.59	10.92	12.73	241.32
1.86	11.56	128.88	6.50	12.13	195.92	11.10	12.76	240.82
2.04	11.58	132.42	6.67	12.15	198.27	11.29	12.78	242.20
2.23	11.60	136.89	6.85	12.18	200.58	11.48	12.81	242.74
2.43	11.62	140.38	7.02	12,20	202.92	11.66	12.84	239.31
2.62	11.65	143.87	7.20	12.22	204.30	11.83	12.86	243.48
2.82	11.67	147,32	7.39	12.25	206.58	12.02	12.89	243.82
3.03	11.69	150.76	7.55	12.27	208.89	12.18	12.91	240.69
3.21	11.72	154.21	7.74	12.29	211.14	12.37	12.94	242,97
3.42	11.74	156.68	7.92	12.32	212.50	12.54	12.97	242.51
3.62	11.77	159.14	8.10	12.34	214.76	12.72	12.99	242.00
3.82	11.79	162.54	8.28	12.37	216.10	12.90	13.02	241.51
3.99	11.81	165.02	8.46	12.39	217.45	13.07	13.05	237.34
4.18	11.84	165.63	8.64	12.41	219.66	13.26	13.07	236.83
4.36	11.86	169.00	8.83	12.44	221.86	13.41	13.10	236.41
							10.10	200.11

tificato nº/data: 11.0277/16 FEB 11

rt. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	Il Direttore
Dott. Ricco	Dott. Giusti	Dott, Sanchi
Dott, Giusti		<u> </u>
Dott. Sanchi		

Mod. 025 Ed	lizione n. 1 del 13/10/09	
pressa matr.	UG21.1.85 e CT1.7,9.85	
.O. 005a	Rif. 1º linea, PL2.(1-5).95	
lef 0.0109m	m, press.0.6%	

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net
REA: RN-304214 - C.F. e P. IVA03686910401

data ricevimento:

Commessa;	06 AGO 10
ld. Camp.;	SV18BCI2
Damt.amt.:	25.50-25.85 mt.
Rif. Prova:	TX UU - 2
cert. n°/data;	11.0277/16 FEB 11

Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

Cliente - Richiedente:

SPEA S.p.A.

Commessa: Sito: 06 AGO 10 A1 Mi-NA 3[^]corsia

Sondaggio:

SV18B

Campione:

CI2

Profonditá:

25.50-25.85 mt.

data esecu

data esecuzione: 11 FEB 2011

verbale accettazione n°:

File: I18CI2T2

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Fase di Rottura

P 21		
Epsilon	A	s1-s3
%	cm2	kPa
13.60	13.13	235.90
13.77	13.15	239.08
13.95	13.18	238.60
14.12	13.21	238.11
14.30	13.23	237.63
14.48	13.26	238.02
14.67	13.29	237.51
14.85	13.32	236.99
15.04	13.35	236.48
15.22	13.38	238.66
15.42	13.41	238.12
15.61	13.44	237.57
15.80	13.47	237.05
15.99	13.50	236.50
16.19	13.53	235.92
16.37	13.56	237.21
16.56	13.59	236.65
16.76	13.62	236.10
16.95	13.66	235.55
17.13	13.69	235.05
17.33	13.72	234.47
17.51	13.75	233.98
17.69	13.78	235.20
17.87	13.81	234.70
18.06	13.84	234.14
18.24	13.87	233.64
18.41	13.90	233.14
18.60	13.93	230.88
18.77	13.96	230.39
18.96	13.99	229.86
19.13	14.02	231.94
19.31	14.05	231.44
19.48	14.09	230.94
19.67	14.12	230.41
19.84	14.15	232.46

artificato nº/data: 11.0277/16 FEB 11

ert. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	ll Direttore
Dott. Ricco	Dott. Giusti	Dott. Sanchi
Dott. Giusti	***************************************	
Dott. Sanchi		

Mod. 025 Ed	izione n. 1 del 13/10/09	
pressa matr.	UG21.1.85 e CT1.7,9.85	
1.O. 005a	Rif. 1º linea, PL2.(1-5).95	
	n, press.0.6%	*****

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - iTALY
Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net
REA: RN-304214 - C.F. e P. iVA03686910401

data ricevimento:

Commessa:	06 AGO 10
td, Camp.:	SV18BCI2
Da mt. a mt.:	25.50-25.85 mt.
Rif. Prova:	TX UU - 3
cert. n°/dala:	11.0277/16 FEB 11

Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

Cliente - Richiedente:

SPEA S.p.A.

Commessa:

06 AGO 10

Sito:

A1 MI-NA 3[^]corsia

Sondaggio: Campione: SV18B Cl2

Profonditá:

25.50-25.85 mt.

File: I18CI2T2

data esecuzione: 11 FEB 2011

verbale accettazione nº:

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Fase di Rottura

Epsilon	Α	s1-s3
%	cm2	kPa
20.01	14.18	231.98
20.18	14.21	231.47

rtificato nº/data: 11.0277/16 FEB 11

rt. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	Il Direttore
Dott. Ricco	Dott. Giusti	Dott. Sanchi
Dott. Giusti	7,00	
Dott. Sanchi		

Mod. 025 Edizione n. 1 del 13/10/09		
pressa matr.	UG21,1.85 e CT1.7,9.85	
1.O. 005a	Rif. 1º linea, PL2.(1-5).95	
def 0.0109m	m, press.0.6%	

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P. IVA03686910401

06 AGO 10 Commessa: SV18B CI2 ld. Camp.: 25.50-25.85 mt. Da mt. a mt.: Rif. Prova: TX UU - 4 cert. nº/data: 11.0277/16 FEB 11

www.sgailab.net Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

Cliente - Richiedente:

SPEA S.p.A.

Commessa:

06 AGO 10 A1 MI-NA 3[^]corsia

Sondaggio:

Sito:

Campione:

SV18B CI2

Profondità:

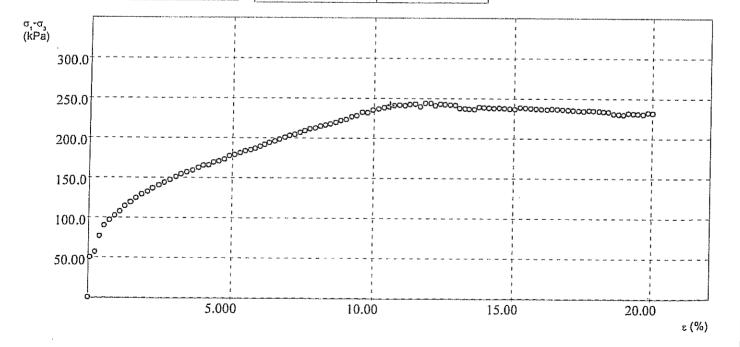
25.50-25.85 mt.

data ricevimento:

File: I18CI2T2

data esecuzione: 11 FEB 2011

verbale accettazione nº:


n° progressivo campione:

velocità di deformazione (mic/min) = 700

Dati acquisiti

Fase di Rottura

			oo ai itottala		
dH	dN	dH	dN	dH	dN
mm	N	mm	N	mm	N
0.00	0.00	2.30	176.31	4.67	231.07
0.05	56.95	2.44	180.69	4.80	234.35
0.18	64.61	2.60	183.98	4.94	237.64
0.30	87.61	2.75	187.26	5.07	240.92
0.43	102.94	2.90	191.64	5.21	244.21
0.57	110.61	3.03	194.93	5.33	247.49
0.71	117.18	3.17	196.02	5.47	249.68
0.84	123.75	3.31	200.40	5.61	252.97
0.98	131.41	3.45	202.59	5.74	256.25
1.12	136.89	3.59	205.88	5.88	259.54
1,26	143.46	3.73	211.35	6.02	261.73
1.41	148.93	3,86	213.54	6.15	265.01
1.55	153.31	4.00	216.83	6.29	267.20
1.69	158.79	4.14	220.12	6.43	269.40
1.85	163.17	4.28	222.31	6.57	272.68
1.99	167.55	4.41	224.50	6.71	275.97
2.14	171.93	4.54	227.78		1
	·	1	,		

ertificato nº/data: 11.0277/16 FEB 11

ert. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	Il Direttore
Dott. Ricco	Dott. Giusti	Dott. Sanchi
Dott, Giusti	777-74-1-	
Dott. Sanchi		

Mod. 025 E	Edizione n. 1 del 03/10/07	
pressa UG2	1.1,85 e CT1.7,9.85	
I.O. 005a	Rif. 1º linea, PL2.(1-5).95	1

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net
REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	06 AGO 10	
ld. Camp.:	SV18B Cl2	
Da mt. a mt.:	25.50-25.85 mt.	
Rif. Prova:	TX UU - 5	
cert. n°/data:	11.0277/16 FEB 11	

www.sgailab.net
Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

Cliente - Richiedente:

SPEA S.p.A.

Commessa:

06 AGO 10

Sito:

A1 MI-NA 3^corsia

Sondaggio:

SV18B

Campione: Profonditá: CI2

25.50-25.85 mt.

data ricevimento:

File: I18CI2T2

data esecuzione: 11 FEB 2011

verbale accettazione n°:

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Fase di Rottura

dH	dN
mm	N
6.86	278.16
7.00	283,15
7.14	285.56
7.29	291.57
7.43	291.57
7.57	296.39
7.72	298.80
7.87	301.21
8.00	303.61
8.15	306.02
8.30	307.23
8.44	307.23
8.58	309.63
8.73	311.01
8.86	307.23
8.99	313.20
9.13	314.29
9.26	310.84
9.40	314.45
9.53	314.45
9.67	314.45
9.80	314.45
9.93	309.63
10.07	309.63
10.19	309.63
10.33	309.63
10.47	314.45
10.60	314.45
10.73	314.45
10.87	314.45
11.01	315,65
11.15	315.65
11.29	315.65
11.43	315.65
11.57	319.26
11.72	319.26
11.86	319.26
•	

ertificato nº/data: 11.0277/16 FEB 11

lert. Sistema Qualità ISO 9001:2008

1	Lo Sperimentatore	Controllato	Il Direttore	
	Dett. Ricco	Dott. Giusti	Dott. Sanchi	
	Dott. Giusti			
	Dott. Sanchi			

Mod. 025 E	Edizione n. 1 del 03/10/07	
pressa UG2	1.1.85 e CT1.7,9.85	
I.O. 005a	Rif. 1º linea, PL2.(1-5).95	
def 0.0109r	nm, press.0.6%	

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - iTALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net

REA: RN-304214 - C.F. e P. IVA03686910401

06 AGO 10 Commessa; Id. Camp.: SV18B CI2 25.50-25.85 mt. Da mt. a mt.: TX UU - 6 Rif. Prova: cert, nº/data: 11.0277/16 FEB 11

www.sgailab.net Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

data ricevimento:

Cliente - Richiedente:

SPEA S.p.A.

Commessa:

06 AGO 10 A1 MI-NA 3[^]corsia

Sondaggio:

Sito:

Campione: Profonditá:

SV18B CI2

25.50-25.85 mt.

File: 118C12T2

data esecuzione: 11 FEB 2011

verbale accettazione nº:

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Fase di Rottura

dH	dN
mm	N
12.00	319.26
12.15	319.26
12.31	319.26
12.44	321.67
12.59	321.67
12.74	321.67
12.88	321.67
13.02	321.67
13.17	321.67
13.31	321.67
13.45	324.08
13,58	324.08
13.73	324.08
13.86	324.08
13.99	324.08
14.13	321.67
14.27	321.67
14.41	321.67
14.54	325.28
14.67	325.28
4.81	325.28
4.95	325.28
5.08	328.89
5.21	328.89
5.34	328.89

rtificato nº/data: 11.0277/16 FEB 11

rt. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	Il Direttore
Dott. Ricco	Dott, Giusti	Dott. Sanchi
Dott. Giusti		
Dott. Sanchi		

Mod. 025 Edizione n. 1 del 03/10/07				
pressa UG21.1.85 e CT1.7,9.85				
I.O. 005a Rif. 1º linea, PL2.(1-5).95				
def 0.0109r	nm, press.0.6%			

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net

REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	06 AGO 10	
ld. Camp.:	SV18BCI2	
Da mt. a mt.:	25.50-25.85 mt.	
Rif. Prova:	TX UU - 1	
cert. nº/dala;	11.0277/16 FEB 11	

Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

Cliente - Richiedente:

SPEA S.p.A. 06 AGO 10

Commessa:

A1 MI-NA 3^corsia

2.662 Mg/m³

Sondaggio:

Sito:

SV18B

Campione: Profonditá: Cl2

25.50-25.85 mt.

data ricevimento:

File: I18CI2T3

data esecuzione: 14 FEB 2011

verbale accettazione nº:

nº progressivo campione:

velocità di deformazione (mic/min) = 700

Dati provino

Sezione 11.341 cm² Altezza iniziale 76.000 mm Altezza finale 62.916 mm Numero Tara 1 Peso tara 1 102.060 g Tara+p.umido iniziale 283.270 g Numero Tara 2 Peso tara 2 102.060 g Tara+p.umido finale 280.540 g Tara+p.provino secco 255.020 g

Peso specifico del terreno

Peso dell'unità di volume iniziale
Peso dell'unità di volume finale
Peso secco dell'unità di volume
Contenuto d'acqua iniziale
Contenuto d'acqua finale
Saturazione iniziale
Saturazione finale
Indice dei vuoti finali

Peso secco dell'unià di vol. finale Pressione in cella = 600 kPa 2.102 Mg/m³ γ
Mg/m³ γ,
1.775 Mg/m³ γ,
18.469 % W₀
% W,
98.326 % S₀
% S,
0.500 Iv₀
Iv,
Mg/m³ γ gf

Fase di Rottura

Elaborazione dati acquisiti

Epsilon	Α	s1-s3	Epsilon	Α	s1-s3	Epsilon	A	s1-s3
%	cm2	kPa	%	cm2	kPa	%	cm2	kPa
0.00	11.34	0.97	4.57	11.88	250.63	9.06	12.47	278.36
0.11	11.35	78.13	4.76	11.91	252.91	9.26	12.50	278.65
0.29	11.37	92.43	4.93	11.93	255.20	9.44	12.52	278.08
0.47	11.39	97.07	5.12	11.95	257.45	9.63	12.55	277.48
0.64	11.41	123.76	5.30	11.98	257.86	9.84	12.58	277.72
0.82	11.43	144.62	5.49	12.00	261.92	10.02	12.60	277.15
0.99	11.45	163.48	5.67	12.02	264.14	10.23	12.63	277.39
1.17	11.48	172.73	5.86	12.05	267.26	10.42	12.66	276.79
1.34	11.50	178.14	6.03	12.07	268.58	10.60	12.69	277.11
1.51	11.51	182.60	6.21	12.09	269.89	10.80	12.71	277.34
1.69	11.54	187.95	6.38	12.11	273.00	10.99	12.74	276.76
1.89	11.56	194.21	6.57	12.14	275.16	11.17	12.77	277.90
2.06	11.58	199.54	6.74	12.16	276.45	11.35	12.79	277.36
2.26	11.60	202.92	6.92	12.18	276.83	11.55	12.82	275.86
2.45	11.63	208.17	7.09	12.21	279.00	11.75	12.85	277.81
2.64	11.65	212.47	7.27	12.23	279.37	11.93	12.88	277.23
2.82	11.67	216.76	7.45	12.25	279.74	12.11	12,90	275.83
3.01	11.69	220.10	7.63	12.28	279.18	12.29	12.93	278.64
3.20	11.72	225.26	7.81	12.30	279.54	12.47	12.96	278.08
3.40	11.74	230.41	7.98	12.32	279.01	12.64	12.98	279.21
3.59	11.76	234.60	8.15	12.35	278.50	12.83	13.01	279.46
3.79	11.79	236.91	8.32	12.37	278.86	13.00	13.04	279.74
3.98	11.81	241.07	8.51	12.40	278.30	13.18	13.06	279.18
4.18	11.84	243.35	8.69	12.42	277.73	13.34	13.09	278.65
4.37	11.86	248.40	8.88	12.45	278.05	13.52	13.11	278.92

rtificato nº/data: 11.0277/16 FEB 11

rt. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	Il Direttore
Dott. Ricco	Dott. Giusti	Dott. Sanchí
Dott, Giusti	7304	
Dott. Sanchi		

Mod. 025 Ed	lizione n. 1 del 13/10/09	
pressa matr.	UG21.1.85 e CT1.7,9.85	
I.O, 005a	Rif. 1º linea, PL2.(1-5).95	
def 0.0109m	m, press.0.6%	

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541987605 - e.mail: info@sgailab.net
REA: RN-304214 - C.F. e P. IVA03686910401

data ricevimento:

Commessa:	06 AGO 10	
ld. Camp.:	SV18BCI2	
Da mt. a ml.:	25.50-25.85 mt.	
Rif. Prova:	TX UU - 2	
cert. n°/data;	11.0277/16 FEB 11	

Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

Cliente - Richiedente:

SPEA S.p.A.

Commessa:

06 AGO 10

Sito:

A1 MI-NA 3^corsia

Sondaggio: Campione: SV18B

Profondita:

CI2 25.50-25.85 mt. data esecu

data esecuzione: 14 FEB 2011

verbale accettazione n°:

File: I18CI2T3

п° progressivo campione:

velocità di deformazione (mic/min) = 700

Fase di Rottura

Epsilon	Α	s1-s3
%	cm2	kPa
13.70	13.14	278.32
13.88	13.17	277.76
14.05	13.20	276.36
14.24	13.22	276.59
14.41	13.25	276.03
14.59	13.28	274.64
14.76	13.31	274.08
14.96	13.34	273.45
15.13	13.36	272.07
15.32	13.39	270.66
15.49	13.42	269.28
15.68	13.45	267.88
15.87	13.48	267.26
16.06	13.51	265.86
16.24	13.54	263.66
16.43	13.57	263.08
16.59	13.60	261.75
16.82	13.63	260.24
17.02	13.67	259.61
17.22	13.70	257.40

rtificato nº/data: 11.0277/16 FEB 11

rt. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	Il Direttore
Dott. Ricco	Dott. Giusti	Dott. Sanchi
Dott, Giusti		
Dott. Sanchi		

Mod. 025 Ed	lizione n. 1 del 13/10/09	
pressa matr.	UG21.1.85 e CT1.7,9.85	
I.O. 005a	Rif. 1º linea, PL2.(1-5).95	
def 0.0109m	m, press.0.6%	,

Via Mariotti 18/a - 47633 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net

REA: RN-304214 - C.F. e P. IVA03686910401

Commessa:	06 AGO 10
ld. Camp.:	SV18B CI2
Da mt. a mt.:	25.50-25.85 mt.
Rif. Prova:	TX UU - 3
cert, n°/data:	11.0277/16 FEB 11

www.sgailab.net Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

data ricevimento:

Cliente - Richiedente:

SPEA S.p.A. 06 AGO 10

Commessa:

A1 MI-NA 3[^]corsia

Sondaggio:

Sito:

SV18B

Campione:

CI2

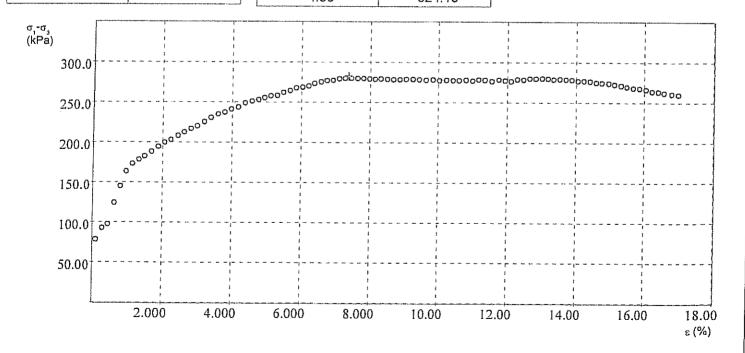
Profonditá:

25.50-25.85 mt.

File: 118Cl2T3

data esecuzione: 14 FEB 2011

verbale accettazione nº:


n° progressivo campione:

velocità di deformazione (mic/min) = 700

Dati acquisiti

Fase di Rottura

dH	dN	dH	dN	dH	dN
mm	N	mm	N	mm	N
0.00	1.10	2.29	257.35	4.72	326.34
0.08	88.70	2.43	263.92	4.85	330.72
0.22	105.13	2.58	270.49	4.99	334.01
0.36	110.61	2.73	275.97	5.13	336.20
0.49	141.27	2.88	279.25	5.26	337.29
0.62	165.36	3.03	284.73	5.39	340.58
0.75	187.26	3.17	288.01	5.53	341.67
0.89	198.21	3.32	294.58	5.66	342.77
1.02	204.78	3.48	297.87	5.80	342.77
1.15	210.26	3.62	301.15	5.93	343.86
1.29	216,83	3.75	304.44	6.07	343.86
1.43	224.50	3.89	307.72	6.19	343.86
1.57	231.07	4.03	308.82	6.32	344.96
1.72	235.45	4.17	314.29	6.46	344.96
1.86	242.02	4.31	317.58	6.61	344.96
2.00	247.49	4.45	321.96	6.75	346.05
2.14	252.97	4.59	324.15		<u> </u>

ertificato n°/data: 11.0277/16 FEB 11

ert. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	Il Direttore
Dott. Ricco	Dott, Giusti	Dott. Sanchi
Dott. Giusti		
Dott. Sanchi		

Mod. 025 E	Edizione n. 1 del 03/10/07	
pressa UG2	1.1.85 e CT1.7,9,85	
I.O. 005a	Rif. 1º linea, PL2.(1-5).95	******
def 0.0109r	nm, press.0.6%	

Via Mariotti 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net

REA: RN-304214 - C.F. e P. IVA03686910401

06 AGO 10 Commessa: SV18B CI2 ld. Camp.: 25.50-25.85 mt. Daimt, aimt.; TX UU - 4 Rif. Prova: cert. nº/data: 11.0277/16 FEB 11

www.sgailab.net Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

data ricevimento:

Cliente - Richiedente:

SPEA S.p.A. 06 AGO 10

Commessa:

A1 MI-NA 3[^]corsia

Sondaggio:

Sito:

SV18B

Campione: Profonditá: CI2

25.50-25.85 mt.

File: I18CI2T3

data esecuzione: 14 FEB 2011

verbale accettazione nº:

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Fase di Rottura

dH	dN
mm	N
6.89	347.15
7.03	348.24
7.17	348.24
7.32	348.24
7.48	349.34
7.62	349.34
7.77	350.43
7.92	350.43
8.05	351.53
8.21	352.62
8.35	352.62
8.49	354.81
8.62	354.81
8.78	353.72
8.93	357.00
9.07	357.00
9.20	355.91
9.34	360.29
9.47	360.29
9.61	362.48
9.75	363.57
9.88	364.67
10.01	364.67
10.14	364.67
10.27	365.76
10.41	365.76
10.55	365.76
10.68	364.67
10.82	365.76
10.95	365.76
11.09	364.67
11.22	364.67
11.37	364.67
11.50	363.57
11.64	362.48
11.78	361.38
11,92	360.29

rtificato n°/data: 11.0277/16 FEB 11

rt. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controllato	II Direttore
Dott. Ricco	Dott. Giustí	Dott. Sanchi
Dott. Giusti		
Dott, Sanchi		

Mod. 025 E	dizione n. 1 del 03/10/07	
pressa UG2	1.1.85 e CT1.7,9.85	
I.O. 005a	Rif. 1º linea, PL2.(1-5).95	

Via Mariotti 18/a - 47633 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541987606 - e.mail: info@sgailab.net
REA: RN-304214 - C.F. e P. IVA03685910401

Commessa:	06 AGO 10
ld. Camp.:	SV18B CI2
Da mt. a mt.;	25.50-25.85 mt.
Rif. Prova:	TX UU - 5
cert. nº/data:	11.0277/16 FEB 11

www.sgailab.net
Dati del cliente

PROVA TRIASSIALE UU (UNI CEN ISO/TS 17892-8)

data ricevimento:

Cliente - Richiedente:

SPEA S.p.A.

Commessa:

06 AGO 10

Sito:

A1 MI-NA 3[^]corsia

Sondaggio:

SV18B

Campione: Profonditá:

CI2

25.50-25.85 mt.

File: I18CI2T3

data esecuzione: 14 FEB 2011

verbale accettazione nº:

n° progressivo campione:

velocità di deformazione (mic/min) = 700

Fase di Rottura

dN
N
360.29
359.19
357.00
357.00
355.91
354.81
354.81
352.62

ertificato n°/data: 11.0277/16 FEB 11

ert. Sistema Qualità ISO 9001:2008

Lo Sperimentatore	Controliato	Il Direttore
Dott, Ricco	Dott, Giusti	Dott. Sanchi
Dott. Giusti		
Dott. Sanchi		

Mod. 025 Edizione n. 1 del 03/10/07		
pressa UG2	1,1.85 e CT1.7,9.85	
I.O. 005a	Rif. 1º linea, PL2.(1-5).95	
def 0.0109n	nm, press.0.6%	

SGAI

SGAILAB — Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sgailab.net REA: RN-304214 – C.F. e P.IVA 03686910401

www.sgailab.net

COMMITTENTE:	SPEA S.p.A.	DATA:	16 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio n°:	SV18B	profondità da mt.	25.50
Campione n°:	CI2	profondità a mt.	25.85

DOCUMENTAZIONE FOTOGRAFICA

Rapp N° 11.0274

Osservazioni

MOD.025 Edizione n°1 del 13 Ottobre 2009
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S.

Prova eseguita con Macchina	fotografica	digitale
Matricola nº UG 35, 2, 02		

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M.	Giusti M.	Giusti M.	Sanchi S.
Data Stampa 13/04/2012		Pag 6/6	
Procedura Operativa IO 005a		\\ Sgailab \SV18B-CI2.docx	

SGAILAB – Laboratori e Ricerche S.r.l.
Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P.IVA 03686910401

COMMITTENTE:	SPEA S.p.A.	DATA:	23 March 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	31.50
Campione no:	CI3	profondità a mt.	31.90

LABORATORIO GEOTECNICO Procedura PO.06 RAPPORTO DI PROVA

Data di ricevimento campione	6 August 2010

Note:

APERTURA CAMPIONE

Rapp N° 11.0549

Descrizione Campione:

Limo con argilla dura di colore grigio.

Stato del campione:

indisturbato

Programma prove:

Sommario Caratteristiche Fisico-Meccaniche

Caratteristiche Fisiche del Provino

Analisi Granulometrica

Determinazione dei Limiti di Atterberg

Osservazioni:

Munsell Gley2 4/5B dark bluish gray

MOD.	023 Edizione aº	I del 13 C	Hobre 200	9	
Cert. S	Sistema Quali	tá ISO 90	001:2008	RINA 175	533/08/S.
	motornia Quitari	1150 70	301.2008		

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M	Giusti M.	Giusti M.	Sanchi S.
Data Stampa 04/04	/2012	Pag 1/5	
Procedura Operativ	Procedura Operativa IO 005a		13,doex

Campione nº:

CI3

SGAILAB — Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 — Fax. +39 0541988972 - e.mail: info@sgailab.net

REA: RN-304214 — C.F. e P.IVA 03686910401

profondità a mt.

31.90

SPEA S.p.A.	DATA:	23 March 2011
A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
	N° COMMESSA:	08.040.00
SV18B		31.50
	A1 MI-NA SV18B	A1 MI-NA LOCALITA': N° COMMESSA:

SOMMARIO DELLE CARATTERISTICHI	E FISICO-MECCANICHE	Rapp N° 11.0549
CARATTERISTICHE GENERALI	LIMITI DI ATTERBERG	644 T-4446 - 44
Contenuto d'acqua $W = 22.60$ % Peso dell'unità di volume $\gamma = 1.995$ Mg/m³ Peso secco dell'unità di vol. $\gamma_d = 1.627$ Mg/m³ Peso specifico del terreno $\gamma_S = 1.627$ Mg/m³ Indice dei vuoti $\gamma_S = 1.627$ Mg/m³ Indice dei vuoti $\gamma_S = 1.627$ Mg/m³ Indice dei vuoti $\gamma_S = 1.627$ Mg/m³ Velocità Ultrasonica $\gamma_S = 1.627$ Mg/m³ Velocità Ultrasonica $\gamma_S = 1.627$ Mg/m³ Velocità Ultrasonica $\gamma_S = 1.627$ Mg/m³	Limite di liquidità WI Limite di plasticità Wp Indice di plasticità Ip Limite di ritiro Ws Indice di consistenza IC Attività A	= 26.17 % = 25.81 % = %
GRANULOMETRIA (AGI/S)	GRANULOMETRIA (ASTM)	
Ghiaia (>2.00 mm) G = 3.22 % Sabbia (>0.06<2.00 mm)	Sabbia (>0.075<4.75 mm) S Limo + Argilla L+A Limo (>0.002<0.075mm) L	= 2.19 % = 3.05 % = 94.76 % = 49.35 % = 45.41 %
RESISTENZA A	COMPRESSIONE	1000000000
Compressione Semplice $\sigma_{C} = kPa$ Deformazione a Rottura $\varepsilon_{V} = kPa$ Modulo Elastico Tangente. $\varepsilon_{C} = kPa$ MPa Modulo Elastico Secante $\varepsilon_{C} = kPa$ MPa MPa	Pocket Penetr PP min max Vane test VT min max	= 530.0 kPa
PROVA ED	OMETRICA	
Modulo edometricoEed kPaCoeff. di consolidazione $Cv =$ cm^2/s Coeff.di compressib. edo. $Mv =$ m^2/kl	Indice Rigonfiamento Ir	kPa %
Coeff. di permeabilità K = m/s	Coeff di cons. second Ca	= 0%
PROVA DI TAGLIO DIRE Angolo resistenza a taglio efficace φ' =	Test CD Coesione efficace C' Test CR Coesione efficace C'	kPa kPa
PROVA DI COMPRES	SIONE TRIASSIALE	**************************************
·	CD Coesione efficace C' CU Coesione non dren. Ccu UU Coesione non dren. Cuu	kPa kPa kPa kPa
Osservazioni	PER SECURIT REPORT FOR	***************************************

MOD.024 Edizione α°1 del 13 Ottobre 2009	Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S.	Giusti M	Giusti M.,	Giusti M.	Sanchi S.
	Data Stampa 26/05	/2011	Pag 2/5	
	Procedura Operativa 1O 005a		// Sgailab \SV18B-(Cl3.docx

SGAILAB — Laboratori e Ricerche S.r.l. Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: <u>info@sqailab.net</u> REA: RN-304214 - C.F. c P.IVA 03686910401

COMMITTENTE:	SPEA S.p.A.	DATA:	23 March 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio n°:	SV18B	profondità da mt.	31.50
Campione n°:	CI3	profondità a mt.	31.90

(BS 1377 (1990)) CARATTERISTICHE FISICHE DEL PROVINO Rapp Nº 11.0681 Provino 1 Provino 2 Provino 3 Diametro 6.00 (cm) Altezza 3.00 (cm) Area 28.27 (cm²) Volume 84.82 (cm³) Peso umido 169.18 (gr.) Peso secco 137.99 (gr.) Peso dell'unità di volume 1.995 (Mg/m^3) Peso secco dell'unità di volume 1.627 (Mg/m^3) Contenuto d'acqua 22.60 (%) Valori Mediati Peso dell'unità di volume 1.995 (Mg/m^3) Peso secco dell'unità di volume 1.627 (Mg/m^3) Contenuto d'acqua 22,60 (%) Osservazioni

MOD.	25 Edizione nº1 del 13 Ottobre 2009
Prova e	seguita con calibro e bilancia digitale. Inct. ±0.05 e 0.00%
Matrice	la nº UG 51,1,90 e UG 50,1,06
Rif. cas	ip. 1º linea PL 3, (1-7) 97

Lo Sperimentatore Lo Sperimentatore		Controllato	Il Direttore
Giusti M. Giusti M		Giusti M.	Sanchi S.
Data Stampa 19/05	/2011	Pag 3/5	
Procedura Operativ	a 10 005a	\\ Sgailnb \SV18B-	CI3,docx

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982 Via Marlotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY tel/fax. +39 0541988972 - e.mail: info@sgailab.net - PEC sgallab@pec.sgailab.net REA: RN-304214 - C.F. e P.IVA 03686910401

DISTRIBUZIONE GRANULOMETRICA UNI CEN ISO/TS 178892-4

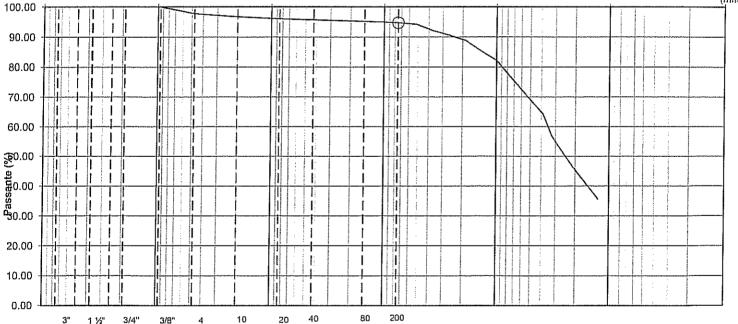
Commessa: 08.040.00 Sondaggio: SV18B Campione,s CI3 da m. - a m. 31.5-31.9 rif.Prova: TE GR

Cert.N.-Data 11.0583 25-03-11 Data Esecuzione: 21-03-11 SPEA S.p.A. Committente: A1 MI-NA Incisa-Valdarno (FI) Lavoro: Località: descr.prelievo

Commessa Sondaggio Campione Verb.Accettezione Data ric. descr.campione dam am CAMPIONE 08.040.00 SV18B CI₃ 31.50 31.90 0 06-08-10

Passante totale Trattenuto totale Trattenuto Totale Setacci A.S.T.M. (mm) (%)(%) 75.00 100.0 0.00 0.00 2 1/2 63.00 100.0 0.00 0.00 0.00 2" 50.00 100.0 0.00 1 1/2 37.50 100.0 0.00 0.00 25.00 100.0 0.00 0.00 3/4 19.00 100.0 0.00 0,00 1/2" 12.50 100.0 0.00 0.00 3/8" 9.50 100.0 0.00 0.00 4.75 97.8 2.19 7.65 п.4 n.10 2,00 96.8 3.22 11.25 96.1 0.850 3.85 13.45 n.20 n.40 0.425 95.8 4.25 14.82 n.80 0,180 95.3 4.66 16.26 n.140 0.106 95.0 4 99 17 42 n.200 0.075 94.8 5.24 18.28

Materiale Esaminato:


348.99

g

Materiale Passante al setaccio

n.10 96.8 % n.40 95.8 % n.200 94.8 %

CIOTTOLI GHIAIA SABBIA LIMO ARGILLA 0.1 0.001 10 0.01 100 0.0001 111

CLASSIFICAZIONE AGI/S	Ciottoli	Ghiaia	Sabbia	Limo	Argilla	Limo+Argilla
Limo con argilla	0.00	3.22	2.31	49.06	45.41	94.47
Percentuale delle frazioni (ASTM)	0.00	2.19	3.05	49.35	45.41	94.76

Osservazioni

0

MOD.025 Edizione nº2 del 1 Ottobre 2010 Cert, Sistema Qualità ISO 9001;2008 RINA 17533/08/S Setacci ASTM e densimetro 151H MAT.n.GR1.(2-24)-085 - GR2.14.85

	nentatore		Controllato		II Direttore	
Ric	Ricco A.		Giusti M.		S.Sanchi	
Data Stampa	25-03-11				Pag. 1/2	
Procedura Operativa IO 005a file:		file:		0		

SPEA S.p.A. A1 MI-NA

08.040.00

SV18B

Committente:

CAMPIONE

Lavoro:

.AB – Laboratori e Ricerche S.r.I.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982 Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY tel/fax. +39 0541988972 - e.mail: info@sgailab.net - PEC sgailab@pec.sgailab.net REA: RN-304214 - C.F. e P.IVA 03686910401

DISTRIBUZIONE GRANULOMETRICA UNI CEN ISO/TS 178892-4

Commessa:	08.040.00
Sondaggio:	SV18B
Campione.s	Cl3
da m a m.	31.5-31.9
nf.Prova:	TE GR

21-03-11

Cert.NData		11.0583		
	\exists			
		i	Logol	

Località: Incisa-Valdarno (FI)

25-03-11

Verb.Accellazione Data ric. descr.campione descr.prelievo 0 06-08-10

Data Esecuzione:

Commessa Sondaggio Campione sub dam am 31.50 CI3 0 31.90

STAMPA VALORI CARATTERISTICI

Setaco	ciatura - Peso	Campione Ir	niziale =	348.99	g	Sedimentazione Peso Secco Campione Ps = 50 g
Setacci A	S.T.M. (mm)	Trattenuto Parz. (g)	Trattenuto Parziale (%)	Trattenuto Tot. (%)	Passante Tot. (%)	Dispersivo 125 g/l
3"	75.00	0.0	0.00	0.0	100.0	<u> </u>
2 1/2"	63.00	0.0	0.00	0.0	100.0	
2"	50.00	0.0	0.00	0.0	100.0	Distanza dal Baricentro:
1 1/2"	37.50	0.0	0.00	0.0	100.0	Hg=15.86 - 0.245 R'
1"	25.00	0.0	0.00	0.0	100.0	
3/4"	19.00	0.0	0.00	0.0	100.0	Correzione menisco
1/2"	12,50	0.0	0.00	0.0	100.0	См =+0.5
3/8"	9.50	0.0	0.00	0.0	100.0	
n.4	4.75	7.7	2.19	2.2	97.8	
n.10	2.00	3.6	1.03	3.2	96.8	Correzione Dispersivo:
n.20	0,850	2,2	0.63	3.9	96.1	$C_D = -4.0$
п.40	0.425	1.4	0.39	4.2	95.8	
ก.80	0.180	1.4	0.41	4.7	95,3	Correzione Temperatura
п.140	0.106	1.2	0.33	5.0	95,0	$C_T = -5 + 0.25 T$
n.200	0.075	0.9	0.25	5.2	94.8	
	< 0.075	330.7	94.76			Costante K
Som	ma (g)	349.0		FRAZIONE <	0.075	K=gs/(gs-1) x 100/PS = 3,178
	lita (g)	0.0		X =	0.948	

Tempo	Temp.	Lettura	L corr.	L temp.	D	L cor	Tratt.Parz.	Tratt.
(min)	Ç	R	R'=R+CM	CT	mm	R'+CT+CD	KxR"	XxKxR'
0.5	20.0	34.8	35.3	0.00	0.0515	31.3	99.5	94.3
0.75	20.0	34.4	34.9	0.00	0.0424	30.9	98.2	93,1
1	20.0	34.1	34.6	0.00	0.0369	30.6	97.2	92.1
2	20.0	33.6	34.1	0.00	0.0263	30.1	95.7	90.6
4	20.0	33.0	33.5	0.00	0.0188	29.5	93.7	88.8
8	20.0	31.8	32.3	0.00	0.0135	28.3	89.9	85.2
15	20.0	30.8	31.3	0.00	0.0100	27.3	86.8	82.2
30	20.0	28.8	29.3	0.00	0.0073	25.3	80.4	76.2
60	20.0	26.8	27.3	0.00	0.0053	23.3	74.0	70.2
120	20.0	24.8	25.3	0.00	0.0038	21.3	67.7	64.1
180	20.0	22.4	22.9	0.00	0.0032	18.9	60,1	56.9
240	20.0	21.3	21.8	0.00	0.0028	17.8	56.6	53.6
480	20.0	18.8	19.3	0.00	0.0021	15.3	48.6	46.1
1440	20.0	15.3	15.8	0.00	0.0012	11.8	37.5	35.5

Densità della miscela (g/cmc) = (R/1000) + 1

Soluzione preparata il: 23-02-11

MOD.025 Edizione n°2 del 1 Ottobre 2010	
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S	
Setacci ASTM e densimetro 151H	
МАТ.л.GR1.(2-24)-085 - GR2.14.85	
2	

Sperimentatore	Controllato	Il Direttore
Ricco A.	Giusti M.	S.Sanchi
Data Stampa 25-03-11		Pag. 2/2
Procedura Operativa IO 005a	file:	0

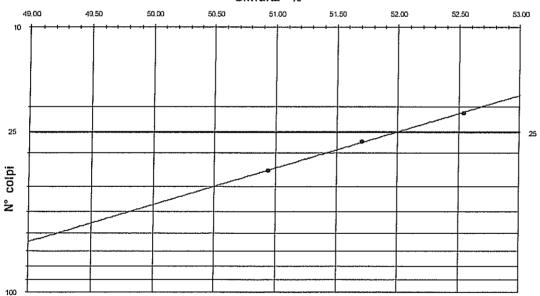
SGAILAB — Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P.IVA 03686910401

COMMITTENTE:	SPEA S.p.A.	DATA:	23 March 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	31.50
Campione no:	CI3	profondità a mt.	31.90

(ASTM D4318-00) DETERMINAZIONE DEI LIMITI DI ATTERBERG Rapp Nº 11.0584


LIMITE DI LIQUIDITA'

Prova nº Contenuto d'acqua (%) Numero Colpi

. 1	2	3	4	5
52.54	51.71	50.94		
21	27	35		

LIMITE DI LIQUIDITA' (%) 51.98

Umidità %

LIMITE DI PLASTICITA'

Prova n. Contenuto d'acqua (%)

1	2	3	4	5
26.39	25.95			

LIMITE DI PLASTICITA' (%) 26.17 INDICE DI PLASTICITA' (%) 25.81

Osservazioni

MOD.025 Edizione nº1 del 13 Ottobre 2009	
Prova eseguita con Cucchiaio Casagrande e bifancia elett. di Prec.	

Mat. n°.PF 5.1.06 PF 3, 73, 85 UG 6	i, 1, 85 Inc. 0,021%
Rif camp, 1º linea PL3 (1-4) 97	

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M.	Giusti M,	Giusti M.	Sanchi S.
Data Stampa 19/05/2011		Pag 4/5	
Procedura Operativa IO 005a		\\ Sgailab \SV18B-	CI3,doex

PROVA Nº	1	2	3	4
p.u.t.	30.051	29.489	28.464	
p.s.t.	25.903	25.667	24.928	
tara	18.008	18.276	17.986	
peso H2O	4.148	3.822	3,536	
peso secco	7.895	7.391	6.942	
W	52,54	51,71	50,94	
N, colpi	21	27	35	
PROVA №	1	2	3	
	1 9.897	2	3	
p. u.t.			3	
PROVA № p. u. t. p. s. t. tara	9.897	10.092	3	
p. u.t. p. s. t.	9.897 9.678	10.092 9.825	3	
p. u.t. p. s.t. tara	9.897 9.678 8.848	9.825 8.796	3	

26.17

SGAILAB — Laboratori e Ricerche S.r.I.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: <u>info@sgailab.net</u>

REA: RN-304214 - C.F. e P.IVA 03686910401

www.sgailab.net

COMMITTENTE:	SPEA S.p.A.	DATA:	23 March 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio n°:	SV18B	profondità da mt.	31.50
Campione n°:	CI3	profondità a mt.	31.90

DOCUMENTAZIONE FOTOGRAFICA

Rapp N° 11.0549

Osservazioni

MOD.025 Edizione n°1 del 13 Ottobre 2009
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S.

Prova eseguita con Macchina fotografica digitale
Matricola nº UG 35. 2. 02

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M.	Giusti M.	Giusti M.	Sanchi S.
Data Stampa 13/04/2012		Pag 5/5	
Procedura Operativa IO 005a		\\ Sgailab \SV18B-	CI3.docx

SGAILAB – Laboratori e Ricerche S.r.I.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 – Fax. +39 0541988972 - e.mail: info@sqailab.net

REA: RN-304214 – C.F. e P.IVA 03686910401

COMMITTENTE:	SPEA S.p.A.	DATA:	18 February 2011
LAVORO:	AI MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio n°:	SV18B	profondità da mt.	1.50
Campione no:	CR1	profondità a mt.	1.90

Campione ii : CR	. 1	protondita	a mt. 1.90	
LABORAT	ORIO GEOTECNICO	Procedura PO.06	RAPPORTO DI PROV	/A
Data di ricevimento c	ampione [6 Aug	ust 2010	
Note:	V-4-00-00-00-00-00-00-00-00-00-00-00-00-0			- Patrick Advances of the Control of
a the Application of the Applica	APERTURA CAMPI	ONE	Rapp №	11.0312
Descrizione Campione:	Sabbia con limo deboln	nente argillosa di colo	re marrone chiaro.	
Stato del campione:	rimaneggiato			
Programma prove:	Sommario Caratteristicl Analisi Granulometrica	ne Fisico-Meccaniche		

Determinazione dei Limiti di Atterberg

i			
Osservazioni:			
OSSCIVAZIOIII.			
1			
1			
İ			
1			
1	 		Į.

MOE	D.023 Edizione n°1 del 13 Ottobre 2009	
Cert.	t. Sistema Qualità ISO 9001:2008 RINA 1	7533/08/S.
ert	t. Sistema Qualità ISO 9001:2008 RINA 1	7533/08/S.
	,	

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M	Giusti M.	Giusti M.	Sanchi S.
Data Stampa 04/04	/2012	Pag 1/3	
Procedura Operativ	ra 1O 005a	\\Sgailab\SVI8B-C	R1,docx

www.sgallab.net

SGAILAB — Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sqailab.net

REA: RN-304214 - C.F. c P.IVA 03686910401

COLORGEDIES	I CDE L C		
COMMITTENTE:	SPEA S.p.A.	DATA:	18 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
- Colabolica		N° COMMESSA:	08.040.00
Sondaggio n°:	SV18B	profondità da mt.	1.50
Campione nº:	CRI	profondità a mt.	1.90

SOMMARIO DELLE CARATTERISTICH	E FISICO-MECCANICHE	Rapp Nº 11.0312
CARATTERISTICHE GENERALI	LIMITI DI ATTERBERG	
Contenuto d'acqua $W = $	Limite di liquidità W Limite di plasticità W Indice di plasticità I Limite di ritiro W Indice di consistenza IC	S = 0%
GRANULOMETRIA (AGI/S)	GRANULOMETRIA (ASTM)	
Ghiaia (>2.00 mm)	Ghiaia (>4.75 mm) G Sabbia (>0.075<4.75 mm)	56.29 % = 43.71 % = 37.08 %
RESISTENZA A	COMPRESSIONE	
Compressione Semplice $\sigma c = \begin{bmatrix} kPa \\ w = b \end{bmatrix}$ kPa Deformazione a Rottura $b = b $ % Modulo Elastico Tangente. $b = b $ MPa Modulo Elastico Secante $b = b $ MPa	Pocket Penetr PP min max Vane test VT min max	= kPa = kPa
PROVA EDO	OMETRICA	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Modulo edometricoEed $=$ kPa Coeff. di consolidazione $Cv =$ cm^2/s Coeff.di compressib. edo. $Mv =$ m^2/kN Coeff. di permeabilità $K =$ m/s		= kPa = % = %
PROVA DI TAGLIO DIRE	TTO AL CASAGRANDE	
	Test CD Coesione efficace efficace effi	
PROVA DI COMPRES	SIONE TRIASSIALE	
Angolo di resistenza a taglio φcu = ο	CD Coesione efficace CCU Coesione non dren. Cul UU Coesione non dren. Cul	u = kPa
Osservazioni	7 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No. 10 No.	

Cert. Sistema Qualità ISO 9001;2008 RINA 17533/08/5	Cert.	Sistema Qualità ISO 9001:2008 RINA 17533/08/S.
---	-------	--

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M	Giusti M	Giusti M.	Sanchi S.
Data Stampa 26/05	/2011	Pag 2/3	
Procedura Operativ	n IO 005a	\\ Sgnilab \SV18B-	CR1.docx

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982 Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY tel/fax. +39 0541988972 - e.mail: info@sgailab.net - PEC sgalfab@pec.sgailab.net

Commessa: 08.040.00 Sondaggio: SV18B Campione.s CR1 da m. - a m. 1.5-1.9

UNI CEN ISO/TS 178892-4

REA: RN-304214 - C.F. e P.IVA 03686910401 DISTRIBUZIONE GRANULOMETRICA rif.Prova: TE_GR Cert.N.-Data 11.0376 28-02-11 Data Esecuzione: 23-02-11

Committente: SPEA S.p.A. Lavoro: A1 MI-NA Località: Incisa-Valdarno (FI) Commessa Sondaggio Campione sub dam descr.campione am Verb.Accettezione Data ric descr.prelievo CAMPIONE 08.040.00 SV18B 1.90 CR1 1.50 06-08-10 Passante totale Trattenuto totale Trattenuto Totale Setacci A.S.T.M. (mm) (%) (%) 31 75.00 100.0 0.00 0.00 2 1/2 63,00 100.0 0.00 0.00 Materiale Esaminato: 571 g 50.00 100.0 0.00 0.00 1 1/2 37.50 100.0 0.00 0.00 25.00 100.0 0.00 0.00 n.10 100.0 % 3/4" 100.0 19.00 0.00 0.00 Materiale 1/2 12.50 100.0 0.00 0.00 Passante al n.4099.7 % 3/8 9.50 100.0 0.00 0.00 п.4 4.75 100.0 setaccio 0.00 0.00 n.20043.7 % n.10 2.00 100.0 0.00 0.00 n.20 0.850 100.0 0.03 0.15 n.40 0.425 99.7 0.27 1.54 n.80 0.180 89.3 10.74 61.33 n.140 0.106 56.1 43.91 250.70 n.200 0.075 43.7 56.29 321.44 CIOTTOLI GHIAIA SARRIA LIMO ARGILLA 100 10 0.1 0.01 0.001 0.0001 100.00 90.00 1 80.00 70.00 60.00 ₹0.00 Crassante (00.00 00.00 20.00 10.00 0.00 3" 200 1 1/2" 3/4" 3/8" 4 10 20 40 80 CLASSIFICAZIONE AGI/S Ciottoli Ghiaia Sabbia Limo Argilla Limo+Argilla Sabbia con limo debolmente argillosa 0.00 0.00 59.41 33.96 40.59 6.63 Percentuale delle frazioni (ASTM) 56.29 0.00 0.00 37.08 6.63 43.71 Osservazioni 0

	· · · · · · · · · · · · · · · · · · ·	
	MOD.025 Edizione nº2 del 1 Ottobre 2010	
	Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S	
	Setacci ASTM e densimetro 151H	
	MAT.n.GR1.(2-24)-085 - GR2.14.85	

Sperin	nentatore	Controlla	o II Direttore
Brand	chi M.A.,	Giusti M	. S.Sanchi
ala Slampa	28-02-11		Pag. 1/2
Procedura Or	perativa IO 005a	file:	0

D.

SPEA S.p.A. A1 MI-NA

08.040.00

Commessa Sondaggio Campione

SV18B

Committente:

CAMPIONE

Lavoro:

SGAILAB - Laboratori e Ricerche S.r.I.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N, 7982 Via Marlotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY tel/fax. +39 0541988972 - e.mail: info@sgailab.net - PEC sgailab@pec.sgailab.net REA; RN-304214 - C.F. e P.IVA 03686910401

DISTRIBUZIONE GRANULOMETRICA

am

1,90

Commessa:	08.040.00
Sondaggio:	SV18B
Camplone.s	CR1
damam.	1.5-1.9
rii.Prova:	TE_GR

INDUZIC	ME GIVANOLOME HIGH
UNI CE	N ISO/TS 178892-4

Cert.N.-Data 11.0376 28-02-11 23-02-11 Data Esecuzione: Località:

Incisa-Valdarno (FI) Verb.Accettazione Data ric. descr.campione descr.prelievo 0 06-08-10

STAMPA VALORI CARATTERISTICI

dam

1.50

sub

0

CR1

Setaco	iatura - Peso	Campione Ir	niziale =	571	g	Sedimentazione Peso Secco Campione Ps = 50 g
Setacci A	.S.T.M. (mm)	Trattenuto Parz. (g)	Trattenuto Parziale (%)	Trattenuto Tot. (%)	Passante Tot. (%)	Dispersivo 125 g/l
3"	75.00	0.0	0.00	0.0	100.0	3)1
2 1/2"	63.00	0.0	0.00	0.0	100.0	
2"	50.00	0.0	0.00	0,0	100.0	Distanza dal Baricentro:
1 1/2"	37.50	0.0	0.00	0.0	100.0	Hg=15.86 - 0.245 R'
1"	25.00	0.0	0.00	0.0	100.0	
3/4"	19.00	0.0	0.00	0.0	100.0	Correzione menisco
1/2"	12.50	0.0	0.00	0.0	100.0	$C_{M} = +0.5$
3/8"	9.50	0.0	0.00	0.0	100.0	
n.4	4.75	0.0	0.00	0.0	100.0	
n.10	2.00	0.0	0.00	0.0	100.0	Correzione Dispersivo:
n.20	0.850	0.2	0.03	0.0	100.0	$C_{D} = -4.0$
n.40	0.425	1.4	0.24	0,3	99.7	
п.80	0.180	59.8	10.47	10.7	89.3	Correzione Temperatura
n.140	0.106	189.4	33.16	43.9	56,1	$C_T = -5 + 0.25 T$
n.200	0.075	70.7	12.39	56.3	43.7	
	< 0.075	249.6	43.71			Costante K
Som	ma (g)	571.0		FRAZIONE <	0.075	K=gs/(gs-1) x 100/PS = 3.178
	lita (g)	0.0		X =	0.437	1

Tempo	Temp.	Lettura	L corr.	L temp.	D	L cor	Tratt.Parz.	Tratt.
(min)	J	R	R'=R+CM	CT	mm	R'+CT+CD	KxR"	XxKxR"
0.5	20.0	31.7	32.2	0.00	0.0542	28.2	89.6	39.2
0.75	20.0	29.2	29.7	0.00	0.0459	25.7	81.7	35.7
1	20.0	27.5	28.0	0.00	0.0407	24.0	76.3	33.3
2	20.0	22.5	23.0	0.00	0.0307	19.0	60.4	26.4
4	20.0	18.7	19.2	0.00	0.0227	15.2	48.3	21.1
8	20.0	16.6	17.1	0.00	0.0164	13.1	41.6	18.2
15	20.0	13.9	14.4	0.00	0.0123	10.4	33.0	14.4
30	20.0	13.0	13.5	0.00	0.0088	9.5	30.2	13.2
60	20.0	11.3	11.8	0.00	0.0063	7.8	24.8	10.8
135	20,0	9.8	10.3	0.00	0.0043	6.3	20.0	8.8
180	20.0	9.5	10.0	0.00	0.0037	6.0	19.1	8.3
240	20.0	8.7	9.2	0.00	0.0032	5,2	16.5	7.2
480	20.0	8.4	8.9	0.00	0.0023	4.9	15.6	6.8
1450	20.0	7.9	8.4	0.00	0.0013	4.4	14.0	6.1

Densità della miscela (g/cmc) = (R/1000) + 1

Soluzione preparata il: 12-02-11

MOD.025 Edizione n°2 del 1 Ottobre 2010	
Cert, Sistema Qualità ISO 9001:2008 RINA 17533/08/S	
Setacci ASTM e densimetro 151H	
МАТ.п.GR1.(2-24)-085 - GR2.14.85	

Sperimentatore	Controllato	Il Direttore
Branchi M.A	Giusti M.	S.Sanchi
Data Stampa 28-02-11		Pag. 2/2
Procedura Operativa IO 005a	file:	0

SGAILAB — Laboratori e Ricerche S.r.I. Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Via Mariotti, 16/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: <u>info@sqailab.net</u> REA: RN-304214 - C.F. e P.IVA 03686910401

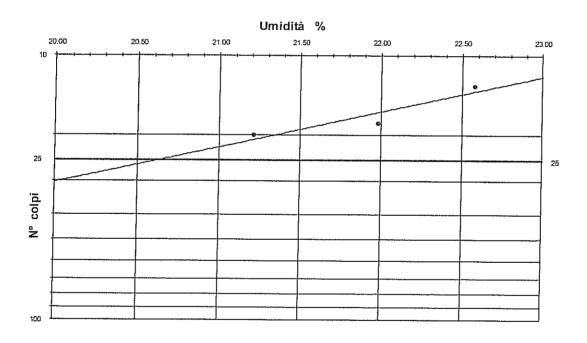
COMMITTENTE:	SPEA S.p.A.	DATA:	18 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	00000

Sondaggio	n°:	SV18B	profondità da mt.	1.50
Campione	n°: (CRI	profondità a mt.	1.90

(ASTM D4318-00) DETERMINAZIONE DEI LIMITI DI ATTERBERG Rapp N° 11.0366

LIMITE DI LIQUIDITA'

Prova nº Contenuto d'acqua (%)


Numero Colpi

 1
 2
 3
 4
 5

 22.58
 21.98
 21.21

 13
 18
 20

LIMITE DI LIQUIDITA' (%) 20.61

LIMITE DI PLASTICITA'

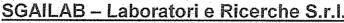
Prova n. Contenuto d'acqua (%)

1	2	3	4	5
19.65	18.83	!		

LIMITE DI PLASTICITA' (%)

19.23

INDICE DI PLASTICITA' (%)


1.38

Osservazioni

MOD.025 Edizione n°1 del 13 Ottobre 2009
Prova eseguita con Cucchiaio Casagrande e bilancia elett, di Prec.
Mat. n°.PF 5,1,06 - PF 3, 73, 85 - UG 6, 1, 85 Inc, 0.021%
Rif camp. 1º linea PL3 (1-4) 97

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M.	Giusti M.	Giustí M.	Sanchi S.
Data Stampa 26/05	/2011	Pag 3/3	
Procedura Operativ	a (O 005a	\\ Sgailab \SVI8B-	CR1.docx

PROVA Nº	1	2	3	4
p.u.t.	36.512	28.010	30.373	
p.s.t.	33.126	26,209	28.175	7
tara	18.129	18.017	17.813	
peso H2O	3.386	1.801	2,198	
peso secco	14.997	8.192	10,362	
W	22.58	21,98	21.21	
N. colpi	13	18	20	*****
PROVA №	1	2	3	
PROVA № 5.u.t.	1 9.959	2 10.064	3	
ī		· · · · · · · · · · · · · · · · · · ·	3	
o.u.t.	9.959	10.064	3	
o.u.t. o.s.t.	9.959 9.715	10.064 9.871	3	
o.u.t. o.s.t. ara	9,959 9,715 8,473	9.871 8.846	3	

Data di ricevimento campione

SGAILAB – Laboratori e Ricerche S.r.l.
Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sgailab.net

6 August 2010

NTE: SPEA S.p.A.	DATA:	18 February 2011
A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
	N° COMMESSA:	08.040.00
: SV18B	profondità da mt.	3.00
CR2	profondità a mt.	3.40
	A1 MI-NA : SV18B	A1 MI-NA LOCALITA': N° COMMESSA: SV18B profondità da mt.

Note:		
	APERTURA CAMPIONE	Rapp N° 11.0313
Descrizione Campione:	Limo con sabbia debolmente argilloso deboln chiaro. Presenza di rari inclusi litici.	nente ghiaioso di colore marrone
Stato del campione:	rimaneggiato	

Programma prove: Sommario Caratteristiche Fisico-Meccaniche Analisi Granulometrica

Determinazione dei Limiti di Atterberg

1				
1	Osservazioni:			
Į,	200. (40.01			
1				
1				
l				

Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/5	MOD	.023 Edizi	one nº1 del 1	3 Ottobre 20	109	
	Cert.	Sistema	Qualità ISC	9001:200	8 RINA 17533	/08/S.
	ert.	Sistema	Qualità ISC	7 9001:200	8 RINA 17533	708/S.

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore	
Giusti M	Giusti M.	Giusti M,	Sanchi S.	
Data Stampa 04/04/2012		Pag 1/3		
Procedura Operativa 10 005a		\\Sgailab\SV18B-CR2.doex		

Campione n°:

CR2

SGAILAB — Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sqailab.net

REA: RN-304214 - C.F. e P.IVA 03686910401

profondità a mt.

3.40

www.aganab.ncc				
COMMITTENTE:	SPEA S.p.A.	DATA:	18 February 2011	
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)	
		N° COMMESSA:	08.040.00	
Sondaggio nº:	SV18B	profondità da mt.	3.00	

SOMMARIO DELLE CARATTERISTICHE FISICO-MECCANICHE Rapp N° 11.0313						
CARATTERISTICHE GENERALI	LIMITI DI ATTERBERG					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Limite di liquidità WI Limite di plasticità Wp Indice di plasticità Ip Limite di ritiro Ws Indice di consistenza IC Attività A	= 18.12 % = 9.36 %				
GRANULOMETRIA (AGI/S) Ghiaia (>2.00 mm)	GRANULOMETRIA (ASTM) Ghiaia (>4.75 mm) G Sabbia (>0.075<4.75 mm) S	= 3.77 % = 35.24 %				
Limo (>0.002<0.06mm) L = 43.08 %	Limo + Argilla L+A Limo (>0.002<0.075mm) L Argilla (<0.002 mm) A	= 60.99 % = 46.97 % = 14.02 %				
RESISTENZA A C						
Compressione Semplice $\sigma c = kPa$ Deformazione a Rottura $\epsilon v = kPa$ Modulo Elastico Tangente. $\epsilon v = kPa$ Modulo Elastico Secante $\epsilon v = kPa$ MPa MPa	Pocket Penetr PP min max Wane test VT min max	= kPa				
PROVA EDO	DMETRICA					
Modulo edometrico Eed = kPa Coeff. di consolidazione $Cv = cm^2/s$ Coeff.di compressib. edo. $Mv = m^2/kN$	11.0.00 10.00 11.	= kPa = %				
Coeff. di permeabilità K = m/s		=				
PROVA DI TAGLIO DIRE Angolo resistenza a taglio efficace φ' =	TTO AL CASAGRANDE Test CD Coesione efficace C Test CR Coesione efficace C					
PROVA DI COMPRES	SIONE TRIASSIALE					
Angolo di resistenza a taglio φcu = °	CD Coesione efficace C CU Coesione non dren. Cut UU Coesione non dren. Cut	kPa				
Osservazioni						

MOD.024 Edizione nº1 del 13 Ottobre 2009	Lo Sperimentatore	Lo Sperimentatore	C
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S.	Giusti M	Giusti M	
	Data Stampa 19/05	/2011	Pag
	Procedura Operativ	a 10 005a	\\ Sg

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore	
Giusti M	Giusti M	Giusti M.	Sanchi S.	
Data Stampa 19/05/2011		Pag 2/3		
Procedura Operativa 10 005a		\\ Sgailab \SV18B-CR2.docx		

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982
Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY
tel/fax. +39 0541988972 - e.mail: info@sgailab.net - PEC sgailab@pec.sgailab.net
REA: RN-304214 - C.F. e P.IVA 03686910401

DISTRIBUZIONE GRANULOMETRICA UNI CEN ISO/TS 178892-4

%

%

%

	Cert.NData	11.0	0377 -	01-03-11	Data Esecuzione:	23-02-11
Committente:	SPEA S.p.A.					
Lavoro:	A1 MI-NA		Località:	Incisa-	Valdarno (FI)	
	Commerce Sondennia Campiano sub dom com	_		- 1 5 1		

 Commessa
 Sondaggio
 Campione
 sub
 dam
 am
 Verb.Accettazione
 Data ric.

 CAMPIONE
 08.040.00
 SV18B
 CR2
 0
 3.00
 3.40
 0
 06-08-10

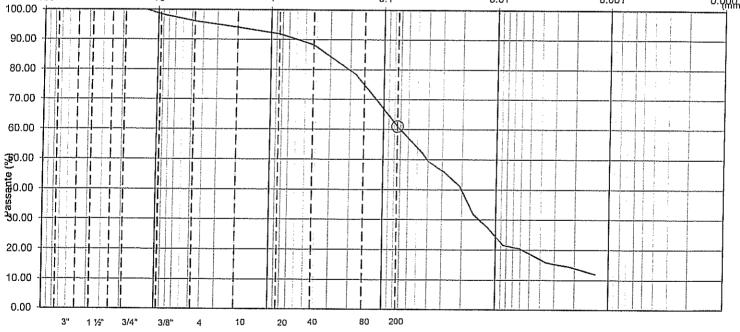
mora variatio (17)							
Verb.Accettazione	Data ric.	descr.campione	descr.prellevo				
0	06-08-10						

Setacci A	.S.T.M. (mm)	Passante totale	Trattenuto totale	Trattenuto Totale
	`	(%)	(%)	(g)
3"	75.00	100.0	0.00	0.00
2 1/2"	63.00	100.0	0.00	0.00
2"	50.00	100.0	0.00	0.00
1 1/2"	37.50	100.0	0.00	0.00
1"	25.00	100.0	0.00	0.00
3/4"	19.00	100.0	0.00	0.00
1/2"	12.50	100.0	0,00	0.00
3/8"	9.50	98.6	1.44	10.26
n.4	4.75	96.2	3.77	26.88
n.10	2.00	94.1	5.88	41.92
n.20	0,850	91.9	8.09	57.64
n.40	0.425	88.3	11.68	83.23
п.80	0.180	78.5	21,52	153.42
n.140	0.106	68.0	31.99	228.04
n.200	0.075	61.0	39.01	278.07

Materiale Esaminato: 712.82 g

 Materiale
 n.10
 94.1

 Passante al setaccio
 n.40
 88.3


 n.200
 61.0

 n.200
 0.075
 61.0
 39.01
 278.07

 CIOTTOLI
 GHIAIA
 SABBIA
 LIMO
 ARGILLA

 100
 10
 1
 0.1
 0.01
 0.001
 0.0001

 0.00 transmitted
 10
 1
 0.1
 0.01
 0.001
 0.0001

CLASSIFICAZIONE AGI/S	Ciottoli	Ghiala	Sabbia	Limo	Argilla	Limo+Argilla
Limo con sabbia debolmente argilloso debolmente ghiaioso	0.00	5.88	37.02	43.08	14.02	57.10
Percentuale delle frazioni (ASTM)	0.00	3.77	35.24	46.97	14.02	60.99

Osservazioni

MOD.025 Edizione nº2 del 1 Ottobre 2010	
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S	
Setacci ASTM e densimetro 151H	
MAT.n.GR1.(2-24)-085 - GR2.14.85	

=

Committente: Lavoro:

SGAILAB - Laboratori e Ricerche S.r.l.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982 Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY tel/fax. +39 0541988972 - e.mail: info@sgailab.net - PEC sgailab@pec.sgailab.net REA: RN-304214 - C.F. e P.IVA 03686910401

Commessa: 08.040.00 Sondagglo: SV18B Campione.s CR2 da m. - a m. 3-3.4 rif.Prova: TE_GR

DISTRIBUZIONE GRANULOMETRICA UNI CEN ISO/TS 178892-4

				С	er	t.NDa	ta	11.0)377 - 01-	03-11 D	oata Esecuzione:	23-02-11	
ommittente:	SPEA S.p.A.												-
avoro:	A1 MI-NA								Località:	Incisa-Va	ldarno (FI)		
	Commessa	Sondaggio	Campione	sub]	dam	am		Verb.Accettazione	Data ric.	descr.campione	descr.prelievo	
CAMPIONE	08.040.00	SV18B	CR2	0		3.00	3.40		0	06-08-10			

STAMPA VALORI CARATTERISTICI

Setaco	ciatura - Peso	Campione Ir	niziale =	712.82	g	Sedimentazione Peso Secco Campione Ps = 50 g
Setacci A	.S.T.M. (mm)	Trattenuto	Trattenuto	Trattenuto	Passante	
		Parz. (g)	Parziale (%)	Tot. (%)	Tot. (%)	Dispersivo 125 g/l
3"	75.00	0.0	0.00	0.0	100.0	
2 1/2"	63,00	0.0	0.00	0.0	100.0	
2"	50.00	0.0	0.00	0.0	100.0	Distanza dal Baricentro:
1 1/2"	37.50	0.0	0.00	0.0	100.0	Hg=15.86 - 0.245 R'
1"	25.00	0.0	0,00	0.0	100.0	
3/4"	19.00	0.0	0.00	0.0	100.0	Correzione menisco
1/2"	12,50	0.0	0.00	0.0	100.0	C _M =+0.5
3/8"	9.50	10.3	1.44	1.4	98.6	
л.4	4.75	16.6	2.33	3.8	96.2	
л.10	2.00	15.0	2.11	5.9	94.1	Correzione Dispersivo:
n.20	0.850	15.7	2.21	8.1	91.9	$C_D = -4.0$
n.40	0.425	25.6	3.59	11.7	88.3	
n.80	0.180	70.2	9.85	21.5	78.5	Correzione Temperatura
n.140	0.106	74.6	10.47	32.0	68.0	$C_T = -5 + 0.25 T$
n.200	0.075	50.0	7.02	39.0	61.0	
	< 0.075	434.8	60.99			Costante K
		FRAZIONE < 0.075		K=gs/(gs-1) x 100/PS = 3,178		
		X =	0.610			

Tempo	Temp.	Lettura	L corr.	L temp.	D	L cor	Tratt.Parz.	Tratt.
(min)	ొ	R	R'=R+CM	СТ	mm	R'+CT+CD	KxR"	XxKxR"
0.5	20.0	32.0	32.5	0.00	0.0539	28.5	90.6	55.2
0.75	20.0	30.4	30.9	0.00	0.0451	26.9	85.5	52,1
1	20.0	29.0	29.5	0.00	0.0399	25.5	81.0	49.4
2	20.0	27.2	27.7	0.00	0.0289	23.7	75.3	45.9
4	20.0	24.8	25.3	0.00	0.0211	21.3	67.7	41.3
8	20.0	20.0	20.5	0.00	0.0158	16.5	52.4	32.0
15	20.0	17.7	18.2	0.00	0.0118	14.2	45.1	27.5
30	20.0	14.7	15.2	0.00	0.0086	11.2	35.6	21.7
60	20.0	14.1	14.6	0.00	0.0061	10.6	33.7	20.5
130	20.0	12.5	13.0	0.00	0.0042	9,0	28.6	17.4
180	20.0	11.8	12.3	0.00	0.0036	8.3	26.4	16.1
240	20.0	11.5	12.0	0.00	0.0031	8.0	25.4	15.5
480	20.0	11.0	11.5	0.00	0.0022	7.5	23.8	14.5
1450	20.0	9.7	10.2	0.00	0.0013	6.2	19.7	12.0

Densità della miscela (g/cmc) = (R/1000) + 1

Soluzione preparata il: 12-02-11

MOD.025 Edizione n°2 del 1 Ottobre 2010	\neg
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S	
Setacci ASTM e densimetro 151H	
MAT.n.GR1.(2-24)-085 - GR2.14.85	

Sperimentatore		Controllato	II Direttore
Branchi M.A		Giusti M.	S.Sanchi
Data Stampa 01-03-11			Pag. 2/2
Procedura Operativa (O 005a		file:	0

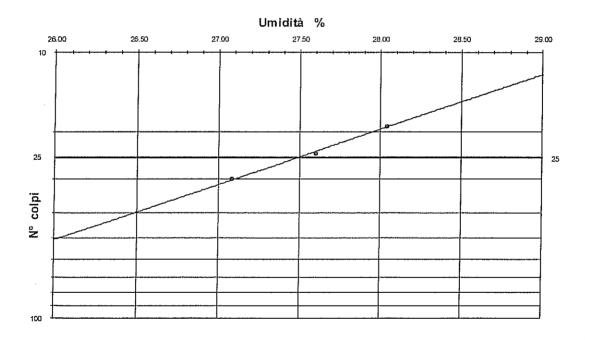
Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sqailab.net
REA: RN-304214 - C.F. e P.IVA 03686910401

www.syanau.net			
COMMITTENTE:	SPEA S.p.A.	DATA:	18 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	3.00
Campione n°:	CR2	profondità a mt.	3.40

(ASTM D4318-00) DETERMINAZIONE DEI LIMITI DI ATTERBERG Rapp N° 11.0367

LIMITE DI LIQUIDITA'


Prova nº

Contenuto d'acqua (%) Numero Colpi

11	2	3	4	5
28.04	27.60	27.08		
19	24	30		

LIMITE DI LIQUIDITA' (%)

27.48

LIMITE DI PLASTICITA'

Prova n.

Contenuto d'acqua (%)

1	2	3	4	5
18.54	17.69			

LIMITE DI PLASTICITA' (%) 18.12 INDICE DI PLASTICITA' (%) 9.36

Osservazioni

Rif camp. 1º linea PL3 (1-4) 97

MOD.025 Edizione n°1 del 13 Ottobre 2009			
Prova eseguita con Cucchiaio Casagrande e bilancia elett. di Prec.			
Mat. n°.PF 5.1.06 PF 3, 73, 85 UG 6, 1, 85 Inc. 0.021%			

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M,	Giusti M.	Giusti M.	Sanchi S.
Data Stampa 19/05/2011		Pag 3/3	
Procedura Operativ	a 10 005a	\\ Sgailab \SV18B-CR2,docx	

PROVA Nº	1	2	3	4
p.u.t.	33.937	30.746	31.474	
p.s.t.	30.457	28,024	28.565	
tara	18.046	18.162	17.823	
peso H2O	3.480	2.722	2.909	
peso secco	12,411	9.862	10.742	
W	28.04	27.60	27.08	
N. colpi	19	24	30	
PROVA №	1	2	3	
PROVA N° p.u.t.	1 10.252	2 9.929	3	
	· · · · · · · · · · · · · · · · · · ·		3	
p.u.t.	10.252	9,929	3	man - A - A - A - A - A - A - A - A - A -
p.u.t. p.s.t.	10.252	9,929 9,725	3	
p.u.t. p.s.t. tara	10.252 10.033 8.852	9.929 9.725 8.572	3	

SGAILAB – Laboratori e Ricerche S.r.l. Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

	Via Mariotti, 18/a - 4/833 Tel. +39 0541988972 – Fax	+39 0541988972 - e.mail: <u>ir</u>	nfo@sgailab.net
SGARAS - Lisanstan e Romine sui	REA: RN-30421	4 – C.F. e P.IVA 0368691040	1
www.sgailab.net COMMITTENTE:	SPEA S.p.A.	DATA:	10 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	18 February 2011
LAVORO.	A I WII-INA		Incisa Valdarno (FI)
L		N° COMMESSA:	08.040.00
[C	03/100		1.00
Sondaggio nº:	SV18B	profondità da mt.	4.20
Campione n°:	CR3	profondità a mt.	4.50
LABOR	ATORIO GEOTECNICO Pro	ocedura PO.06 RAP	PORTO DI PROVA
Data di ricevimen	to campione	6 August 20	10
A I = 4			
Note:			
	APERTURA CAMPIONI	E	Rapp N° 11.0314
	APERTURA CAMPION	C .	Rapp Nº 11.0314
Dogaviziono Compio			
Descrizione Campion			
Descrizione Campion			
Descrizione Campion			
	ne: Sabbia con ghiaia con limo d		
Descrizione Campione:			
Stato del campione:	ne: Sabbia con ghiaia con limo e	debolmente argillosa di d	
	rimaneggiato Sommario Caratteristiche Fi	debolmente argillosa di d	
Stato del campione:	rimaneggiato Sommario Caratteristiche Fis	debolmente argillosa di d	
Stato del campione:	rimaneggiato Sommario Caratteristiche Fi	debolmente argillosa di d	
Stato del campione:	rimaneggiato Sommario Caratteristiche Fis	debolmente argillosa di d	
Stato del campione:	rimaneggiato Sommario Caratteristiche Fis	debolmente argillosa di d	
Stato del campione:	rimaneggiato Sommario Caratteristiche Fis	debolmente argillosa di d	
Stato del campione:	rimaneggiato Sommario Caratteristiche Fis	debolmente argillosa di d	
Stato del campione:	rimaneggiato Sommario Caratteristiche Fis	debolmente argillosa di d	
Stato del campione:	rimaneggiato Sommario Caratteristiche Fis	debolmente argillosa di d	
Stato del campione:	rimaneggiato Sommario Caratteristiche Fis	debolmente argillosa di d	

Osservazioni:		1-15-OUT FORMA	\
			ļ
	 	 TT 18414	

MOD.0	23 Edizione nº1 d	del 13 Ottobre 2009	
Cert. S	istema Qualità l	ISO 9001:2008 RINA 17533/08	/S.
		War	

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M	Giusti M.	Giusti M.	Sanchi S,
Data Stampa 04/04	/2012	Pag 1/3	
Procedura Operativ	a IO 005a	\\Sgnilnb\SV18B-C	R3.docx

SGAILAB — Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sqailab.net

REA: RN-304214 - C.F. e P.IVA 03686910401

** ** ** ** **			
COMMITTENTE:	SPEA S.p.A.	DATA:	18 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00
		******	· · ·

Sondaggio nº:	SV18B	profondità da mt.	4.20
Campione n°:	CR3	profondità a mt.	4.50

SOMMARIO DELLE CARATTERISTICHI	E FISICO-MECCANICHE Rapp Nº 11.0314
CARATTERISTICHE GENERALI	LIMITI DI ATTERBERG
Contenuto d'acqua $W = $ % Peso dell'unità di volume $\gamma = $ Mg/m³ Peso secco dell'unità di vol. $\gamma d = $ Mg/m³ Peso specifico del terreno $\gamma s = $ Mg/m³ Indice dei vuoti $V = $ / Grado di saturazione $V = $ %	Limite di liquidità WI = 22.67 % Limite di plasticità Wp = 14.44 % Indice di plasticità Ip = 8.23 % Limite di ritiro Ws = % Indice di consistenza IC = /
Tenore in Carbonati = % Velocità Ultrasonica V = m/s	Attività A =/
GRANULOMETRIA (AGI/S)	GRANULOMETRIA (ASTM)
Ghiaia (>2.00 mm)	Ghiaia (>4.75 mm)
RESISTENZA A	COMPRESSIONE
Compressione Semplice $\sigma c = $	Vana tart VII
PROVA ED	OMETRICA
Modulo edometrico Eed = kPa Coeff. di consolidazione $Cv = cm^2/s$ Coeff.di compressib. edo. $Mv = m^2/kl$	
Coeff. di permeabilità K = m/s	Coeff di cons. second Ca = \%
PROVA DI TAGLIO DIRE	ETTO AL CASAGRANDE
Angolo resistenza a taglio efficace $\phi' = $	Test CD Coesione efficace C' = kPa
Angolo resistenza a taglio efficace $\phi' = \Box$	Test CR Coesione efficace C' = kPa
PROVA DI COMPRES	SSIONE TRIASSIALE
Angolo resistenza a taglio efficace $\qquad \phi' \ = \ \ ^\circ$	CD Cocsione cirreace C
Angolo di resistenza a taglio $\phi_{\text{cu}} = 0$ Angolo di resistenza a taglio $\phi_{\text{uu}} = 0$	CO Cocstolic from them.
Angolo di resistenza a taglio	Cocarone non dren.
Osservazioni	

	idizione nº1 del 13 Ottobre 2009 ma Qualità ISO 9001:2008 RINA 17533/08/S.
Cert, Siste	anii Quanta 150 9001,2006 Kana 17555/06/5.

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M	Giusti M	Giusti M.	Sanchi S.
Data Stampa 19/05/2011		Pag 2/3	
Procedura Operativa IO 005a		\\ Sgailab \SV18B-	CR3.docx

CIOTTOLI

SGAILAB – Laboratori e Ricerche S.r.I.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982
Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY
tel/lax. +39 0541988972 - e.mail: info@sgallab.net - PEC sgallab@pec.sgallab.net
REA: RN-304214 - C.F. e P.IVA 03686910401

DISTRIBUZIONE GRANULOMETRICA UNI CEN ISO/TS 178892-4

Cert.NData	11.0378	- 01-03-11	Data Esecuzione:	23-02-11

Committente: SPEA S.p.A.
Lavoro: A1 Mi-NA

Località: Incisa-Valdarno (FI)

 Commessa
 Sondaggio
 Campione
 sub
 dam
 am

 CAMPIONE
 08.040.00
 SV18B
 CR3
 0
 4.20
 4.50

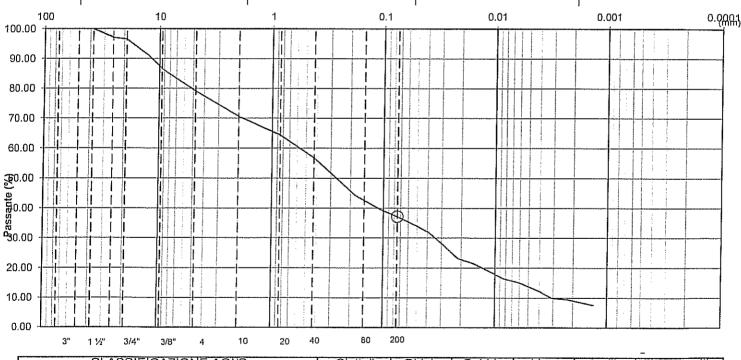
GHIAIA

Verb.Acceltazione Data ric. descr.campione descr.prelievo
0 06-08-10

Setacci A.S.T.M. (mm)		Passante totale	Trattenuto totale	Trattenuto Totale	
		(%)	(%)	(g)	
3"	75.00	100.0	0.00	0.00	
2 1/2"	63.00	100.0	0.00	0.00	
2"	50.00	100.0	0.00	0.00	
1 1/2"	37,50	100.0	0.00	0.00	
1"	25.00	97.1	2.87	52.38	
3/4"	19.00	96.6	3.36	61.23	
1/2"	12.50	91.2	8.81	160.71	
3/8"	9.50	86.7	13,34	243.19	
n.4	4.75	79.1	20,90	381.14	
ก.10	2.00	70.6	29.38	535.69	
n.20	0.850	64.4	35,60	649.18	
n.40	0.425	56.8	43,17	787.28	
ก.80	0.180	44.2	55.77	1017.01	
n.140	0.106	39.5	60.53	1103.87	
n.200	0.075	37.2	62,85	1146.13	

Materiale Esaminato: 1823.6 g

Materiale Passante al setaccio


LIMO

 n.10
 70.6
 %

 n.40
 56.8
 %

 n.200
 37.2
 %

ARGILLA

SABBIA

CLASSIFICAZIONE AGI/S	Ciottoli	Ghiala	Sabbia	Limo	Argilla	Limo+Argilla
Sabbia con ghiaia con limo debolmente argillosa	0.00	29.37	35.23	26.33	9.07	35.40
Percentuale delle frazioni (ASTM)	0,00	20.90	41.95	28.08	9.07	37.15

Osservazioni

0

MOD.025 Edizione n°2 del 1 Ottobre 2010 Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S Setacci ASTM e densimetro 151H MAT.n.GR1.(2-24)-085 - GR2.14.85

Sperimentatore		Controllato	Il Direttore	
Branchi M.A		Giusti M.	S.Sanchi	
Data Stampa	01-03-11		Pag. 1/2	
Procedura O	perativa IO 005a	file:	0	

SGAILAB - Laboratori e Ricerche S.r.I.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982 Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY lel/fax. +39 0541988972 - e.mail: info@sgailab.net - PEC sgailab@pec.sgailab.net REA: RN-304214 - C.F. e P.IVA 03686910401

Commessa:	08.040.00
Sondaggio:	SV18B
Campiona.s	CR3
dam am.	4.2-4.5
nt.Prova:	TE_GR

DISTRIBUZIONE GRANULOMETRICA UNI CEN ISO/TS 178892-4

am

4.50

 Cert.N.-Data
 11.0378
 - 01-03-11
 Data Esecuzione:
 23-02-11

Committente: SPEA S.p.A.
Lavoro: A1 MI-NA

CAMPIONE	08.040.00	SV18B	CR3	0
	Commessa	Sondaggio	Campione	sub

Località:	Incisa-Vald	arno (FI)	
Verb.Accettazione	Data ric.	descr.campione	descr.prelievo
0	06-08-10		

STAMPA VALORI CARATTERISTICI

dam

4.20

Setaco	ciatura - Peso	Campione Ir	ıiziale =	1823.6	g	Sedimentazione Peso Secco Campione Ps = 50 g
Setacci A	S.T.M. (mm)	Trattenuto Parz. (g)	Trattenuto Parziale (%)	Trattenuto Tot. (%)	Passante Tot. (%)	Dispersivo 125 g/l
3"	75,00	0.0	0.00	0.0	100.0	120 y/
2 1/2"	63.00	0.0	0.00	0.0	100.0	
2"	50.00	0.0	0.00	0.0	100.0	Distanza dal Baricentro:
1 1/2"	37.50	0.0	0.00	0,0	100.0	Hg=15.86 - 0.245 R'
1"	25.00	52.4	2.87	2.9	97.1	
3/4"	19.00	8.8	0.49	3,4	96.6	Correzione menisco
1/2"	12.50	99.5	5.46	8.8	91.2	См =+0.5
3/8"	9.50	82.5	4.52	13.3	86.7	
n.4	4.75	138.0	7.56	20.9	79.1	
n,10	2.00	154.6	8.47	29.4	70.6	Correzione Dispersivo:
n.20	0.850	113.5	6,22	35.6	64.4	$C_D = -4.0$
n.40	0.425	138.1	7.57	43.2	56,8	
n.80	0.180	229.7	12.60	55.8	44.2	Correzione Temperatura
n.140	0.106	86.9	4.76	60.5	39.5	Ст = -5 + 0.25 Т
n.200	0.075	42.3	2.32	62.8	37.2	
	< 0.075	677.5	37,15	, , , , , , , , , , , , , , , , , , , 		Costante K
Som	ma (g)	1823.6		FRAZIONE <	0.075	K=qs/(qs-1) x 100/PS = 3,178
Perc	lita (g)	0.0		X =	0.372	5.35-1/10

Tempo	Temp.	Lettura	L corr.	L temp.	D	L cor	Tratt.Parz.	Tratt.
(min)	C	R	R'=R+CM	CT	mm	R'+CT+CD	KxR"	XxKxR"
0.5	20.0	32.7	33.2	0.00	0.0533	29.2	92.8	34.5
0.75	20.0	31.4	31.9	0.00	0.0444	27.9	88.7	32.9
1	20.0	30.5	31.0	0.00	0.0390	27.0	85.8	31.9
2	20.0	27.0	27.5	0.00	0.0290	23.5	74.7	27.7
4	20.0	23.2	23.7	0.00	0.0215	19.7	62.6	23.3
8	20.0	21.7	22.2	0.00	0.0155	18.2	57.8	21.5
15	20.0	19.7	20.2	0.00	0.0116	16.2	51.5	19.1
30	20.0	17.5	18.0	0.00	0.0084	14.0	44.5	16.5
60	20.0	16.3	16.8	0.00	0.0060	12.8	40.7	15.1
150	20.0	13.7	14.2	0.00	0.0039	10.2	32.4	12.0
180	20.0	13.0	13.5	0.00	0.0036	9.5	30.2	11.2
240	20.0	12.0	12.5	0.00	0.0031	8.5	27.0	10.0
480	20.0	11.5	12.0	0.00	0.0022	8.0	25.4	9.4
1440	20.0	9.9	10.4	0.00	0.0013	6.4	20.3	7.6

Densità della miscela (g/cmc) = (R/1000) + 1

Soluzione preparata il:

12-02-11

MOD.025 Edizione n°2 del 1 Ottobre 2010	*****
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S	
Setacci ASTM e densimetro 151H	
MAT.n.GR1.(2-24)-085 - GR2.14.85	

····			
Sperimentatore		Controllato	Il Direttore
Branchi M.A		Giusti M.	S.Sanchi
Data Slampa	01-03-11		Pag. 2/2
Procedura O	perativa (O 005a	file;	0

PROVA Nº	1	2	3	4
p.u.t.	31.371	31.537	31.952	
p.s.t.	28.783	28.924	29.374	
tara	18.094	17.834	18.083	
peso H2O	2,588	2.613	2,578	
peso secco	10,689	11,090	11.291	
W	24.21	23.56	22.83	
N. colpi	16	19	24	
PROVA №	1	2	3	
PROVA № 3.u.t.	1 10.840	2 9.959	3	
	1 10.840 10.572			
o.u.t.		9.959	10.190	
).u.t.).s.t.	10.572	9.959 9.777	10.190 9.987	
).u.t.).s.t. ara	10.572 8.668	9.959 9.777 8.544	10.190 9.987 8.586	

SGAILAB - Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 -- Fax. +39 0541988972 - e.mail: info@sqailab.net REA: RN-304214 - C.F. c P.IVA 03686910401

re es reinguia d'ince			
COMMITTENTE:	SPEA S.p.A.	DATA:	18 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	4.20
Campione n°:	CR3	profondità a mt.	4.50

(ASTM D4318-00) DETERMINAZIONE DEI LIMITI DI ATTERBERG Rapp N° 11.0368

LIMITE DI LIQUIDITA'

Prova n° Contenuto d'acqua (%) Numero Colpi

1	2	3	4	5
24.21	23.56	22.83		
16	` 19	24		

LIMITE DI LIQUIDITA' (%) 22.67

LIMITE DI PLASTICITA'

Prova n.

Contenuto d'acqua (%)

1	2	3	4	5
14.08	14.76	14.49		

LIMITE DI PLASTICITA' (%) 14.44 INDICE DI PLASTICITA' (%) 8.23

Osservazioni

MOD.025 Edizione	n°1 del 13 Ottobre 2009
Prova eseguita con	Cuechiaio Casagrande e bilancia elett. di Prec.

l	Prova eseguita con Cuechiaio Casagrande e bilancia elett. di Prec.
Ī	Mat. n°.PF 5.1.06 – PF 3, 73, 85 – UG 6, 1, 85 Inc. 0.021%
	Rif camp, 1º linea PL3 (1-4) 97

Lo Sperimentatore	Lo Sperimentatore	Controllato	II Direttore	
Giusti M.	Giusti M.	sti M. Giusti M. Sanchi S		
Data Stampa 19/05	/2011	Pag 3/3		
Procedura Operativa IO 005a		\\ Sgailab \SV18B-CR3.docx		

SGAILAB — Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 - Fax, +39 0541988972 - e.mail: info@sqailab.net

REA: RN-304214 - C.F. e P.IVA 03686910401

COMMITTENTE:	SPEA S.p.A.	DATA:	18 February 2011
LAVORO: A1 MI-NA		LOCALITA':	Incisa Valdarno (FI)
		Nº COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	6.00
Campione no:	CR4	profondità a mt.	6.40

	<u> </u>	11. 001.11.1200.11	00.0.0.00		
01	[03/107)		6.00		
Sondaggio nº:	ondaggio n°: SV18B profondità da mt. 6.00 ampione n°: CR4 profondità a mt. 6.40				
Campione ii .	CR4	profondita a mi.	0.40		
LABOR	ATORIO GEOTECNICO	Procedura PO.06 RAP	PPORTO DI PROVA		
Data di ricevimer	to campione [6 August 20	010		
hloto:					
Note:					
			parameter and the second secon		
	APERTURA CAMP	IONE	Rapp N° 11.0315		
Descrizione Campic	ne: Sabbia con abiaia deba	almente limosa di colore mar	rone chiaro		
Descrizione Campione: Sabbia con ghiaia debolmente limosa di colore marrone chiaro.					
Stato del campione:	tato del campione: rimaneggiato				
	William 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990				
Programma prove:	Sommario Caratteristic	he Fisico-Meccaniche			
e i	Analisi Granulometrica				
	Determinazione dei Li	niti di Atterberg			
······································					
Osservazioni:					

	Osservazioni:	
ļ		J

Cert, Sistema Qualità ISO 9001:2008 RINA 17533/08/S.				

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore	
Giusti M	Giusti M.	Giusti M. Sanchi S.		
Data Stampa 04/04	/2012	Pag 1/3		
Procedura Operativa IO 005a		\\Sgailab\SV18B-C	R4.docx	

Campione nº:

CR4

SGAILAB — Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sgailab.net

REA: RN-304214 - C.F. e P.IVA 03686910401

profondità a mt.

6.40

COMMITTENTE:	SPEA S.p.A.	DATA:	18 February 2011	
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)	
		N° COMMESSA:	08.040.00	
Sondaggio nº:	SV18B	profondità da mt.	6.00	

		HE Rapp N° 11.0315			
CARATTERISTICHE GENERALI	LIMITI DI ATTERBERG	77/1/1/4			
Contenuto d'acqua $W = $	Indice di plasticità	WI = 21.34 % Wp = 15.88 % Ip = 5.46 % Ws = // //			
GRANULOMETRIA (AGI/S)	GRANULOMETRIA (AST	ГМ)			
Ghiaia (>2.00 mm)	Ghiaia (>4,75 mm) Sabbia (>0.075<4.75 mm) Limo + Argilla Limo (>0.002<0.075mm) Argilla (<0.002 mm)	L+A = 20.03%			
RESISTENZA A COMPRESSIONE					
Compressione Semplice $\sigma_{C} = \begin{bmatrix} kPa \\ Ev = \end{bmatrix}$ Modulo Elastico Tangente. Modulo Elastico Secante E = MP MP	Pocket Penetr PP Vane test VT	min =			
PROVA EI	OOMETRICA				
	s Indice Rigonfiamento	G = kPa Ir = % Ca = %			
PROVA DI TAGLIO DIR	ETTO AL CASAGRANDE				
Angolo resistenza a taglio efficace $\phi' =$	Test CD Coesione efficace Test CR Coesione efficace	 			
PROVA DI COMPRE	SSIONE TRIASSIALE				
Angolo resistenza a taglio efficace φ' = Angolo di resistenza a taglio φcu =	CD Coesione efficace CU Coesione non dren. COESIONE non dren.	C' = kPa Ccu = kPa Cuu = kPa			
Osservazioni					

MOD.024 Edizione nº1 del 13 Ottobre 2009	Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Cert. Sistema Qualità ISO 9001;2008 RINA 17533/08/S.	Giusti M	Giusti M	Giusti M,	Sanchí S.
	Data Stampa 19/05	/2011	Pag 2/3	
	Procedura Operativ	a IO 005a	\\ Sgailab \SV18B-CR4.docx	

AB – Laboratori e Ricerche S.r.l.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982 Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY tel/fax. +39 0541988972 - e.mail: info@sgailab.net - PEC sgailab@pec.sgailab.net REA: RN-304214 - C.F. e P.IVA 03686910401

DISTRIBUZIONE GRANULOMETRICA UNI CEN ISO/TS 178892-4

Commessa: 08.040.00 Sondagglo: SV18B Campione.s CR4 da m. - a m. 6-6.4 rif.Prova: TE GR

	Cert.NDa	ıta 1	11.037) -	01-0	3-11	Data Esecuzione:	24-02-11
Committente:	SPEA S.p.A.							
Lavoro:	A1 MI-NA		L.oc	alità:	I	ncisa-Va	idarno (FI)	
							T	

Commessa Sondaggio Campione dam am Verb.Accettazione Data ric. descr.campione descr.prelievo CAMPIONE 08.040.00 SV18B CR4 0 6.00 6.40 06-08-10

Setacci A	.S.T.M. (mm)	Passante totale	Trattenuto totale (%)	Trattenuto Totale (g)
3"	75,00	100.0	0.00	0.00
2 1/2"	63,00	100.0	0.00	0.00
2"	50.00	100.0	0.00	0.00
1 1/2"	37.50	94.2	5.85	155.16
1"	25.00	89.4	10.62	281.90
3/4"	19.00	87.6	12.44	330.21
1/2"	12.50	82.9	17.06	452.99
3/8"	9.50	80.3	19.70	522,97
n.4	4.75	72.3	27,71	735.64
п.10	2.00	62.8	37.16	986.54
n.20	0.850	49.1	50.88	1350.54
п.40	0.425	34.5	65.49	1738.50
n.80	0.180	25.4	74.56	1979.12
n.140	0.106	21.8	78.24	2076.83
n.200	0.075	20.0	79.97	2122.90

Materiale Esaminato: 2654.5 g

n.10 62.8 % Materiale % Passante al n.40 34.5 setaccio n.200 20.0 %

CIOTTOLI GHIAIA SABBIA LIMO ARGILLA 0.01 0.1 0.001 100 10 1 0.0001 100.00 90.00 80.00 70.00 60.00 Passante (%) 20.00 10.00

CLASSIFICAZIONE AGI/S	Ciottoli	Ghiaia	Sabbia	Limo	Argilla	Limo+Argilla
Sabbia con ghiaia debolmente limosa	0.00	37.17	43.57	14.78	4.48	19.26
Percentuale delle frazioni (ASTM)	0.00	27.71	52.26	15.55	4.48	20.03

80

200

Osservazioni

1 1/2"

3/4"

3/8"

10

20

40

0.00

0

3"

	_
MOD.025 Edizione n°2 del 1 Ottobre 2010	
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S	
Setacci ASTM e densimetro 151H	
MAT.n.GR1.(2-24)-085 - GR2.14.85	

Sperimentatore	Controllato	Il Direttore
Branchi M.A.,	Giusti M.	S.Sanchi
Dala Stampa 01-03-	11	Pag. 1/2
Procedura Operativa IO 00	5a file;	0

SGAILAB - Laboratori e Ricerche S.r.I.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982 Via Mariotti, 18/a - 47833 - Mordano di Romagna (RN) - ITALY tel/fax. +39 0541988972 - e.mall: info@sgailab.net - PEC sgallab@pec.sgallab.net

REA: RN-304214 - C.F. e P.IVA 03686910401 DISTRIBUZIONE GRANULOMETRICA

2	Commessa:	08.040.00
	Sondaggio:	SV18B
r	Campione.s	CR4
t	a m a m.	6-6.4
n	f.Prova:	TE 00

24-02-11

UNI CEN ISO/TS 178892-4

		Cert.NData	11.0	0379 - 01-		ata Esecuzione:	T
Committente:	SPEA S.p.A.						_
Lavoro:	A1 MI-NA			Località:	Incisa-Val	darno (FI)	
	Commessa Sondaggio Campione s	sub dam an		Verb.Acceltazione	Data ric.	descr.campione	T

····	Commessa		Campione		dam	am
CAMPIONE	08.040.00	SV18B	CR4	0	6.00	6.40

ocalità:	Incisa-Valdarno (FI)						
Verb.Acceltazione	Data ric.	descr.campione	descr.prelievo				
0	06-08-10						

STAMPA VALORI CARATTERISTICI

Setaco	iatura - Peso	Campione Ir	niziale =	2654.5	g	Sedimentazione Peso Secco Campione Ps = 50
Satacci A	.S.T.M. (mm)	Trattenuto	Trattenuto	Trattenuto	Passante	
OCIACOI / C	.0. 1.30. (11111)	Parz. (g)	Parziale (%)	Tot. (%)	Tot. (%)	Dispersivo 125 g/
3"	75.00	0.0	0.00	0.0	100.0	
2 1/2"	63.00	0.0	0.00	0.0	100.0	
2"	50.00	0.0	0.00	0.0	100.0	Distanza dal Baricentro:
1 1/2"	37.50	155.2	5.85	5.8	94,2	Hg=15.86 - 0.245 R'
1"	25,00	126.7	4.77	10.6	89.4	
3/4"	19.00	48.3	1.82	12.4	87.6	Correzione menisco
1/2"	12.50	122.8	4.63	17.1	82.9	C _M =+0.5
3/8"	9.50	70.0	2.64	19.7	80.3	
ก.4	4.75	212.7	8.01	27.7	72.3	
n.10	2.00	250.9	9.45	37.2	62.8	Correzione Dispersivo:
n.20	0.850	364.0	13.71	50.9	49,1	$C_{D} = -4.0$
п.40	0.425	388.0	14.62	65.5	34.5	
n.80	0.180	240.6	9.06	74.6	25.4	Correzione Temperatura
п.140	0.106	97.7	3.68	78.2	21.8	$C_T = -5 + 0.25 T$
n.200	0.075	46.1	1.74	80.0	20.0	
	< 0.075	531,6	20.03			Costante K
Somi	ma (g)	2654.5		FRAZIONE < (0.075	K=gs/(gs-1) x 100/PS = 3.178
	ita (g)	0.0		X =	0.200	

Tempo	Temp.	Lettura	L corr.	L temp.	D	L cor	Tratt.Parz.	Tratt.
(min)	Ç	R	R'=R+CM	CT	mm	R'+CT+CD	KxR"	XxKxR"
0.5	20.0	33.1	33.6	0.00	0.0530	29.6	94.1	18.8
0.75	20.0	32.1	32.6	0.00	0.0440	28.6	90.9	18.2
1	20.0	30.1	30.6	0.00	0.0392	26.6	84.5	16.9
2	20.0	28.1	28.6	0.00	0.0285	24.6	78.2	15.7
4	20.0	23.1	23.6	0.00	0.0215	19.6	62.3	12.5
8	20.0	20.9	21.4	0.00	0.0156	17.4	55.3	11.1
15	20.0	19.9	20.4	0.00	0.0115	16.4	52.1	10.4
30	20.0	17.3	17.8	0.00	0.0084	13.8	43.9	8.8
70	20.0	15.4	15.9	0.00	0.0056	11.9	37.8	7.6
120	20.0	14.0	14.5	0.00	0.0043	10.5	33.4	6.7
180	20.0	12.9	13.4	0.00	0.0036	9.4	29.9	6.0
240	20.0	12.1	12.6	0.00	0.0031	8.6	27.3	5.5
480	20.0	10.9	11.4	0.00	0.0022	7.4	23.5	4.7
1465	20.0	9.2	9.7	0.00	0.0013	5.7	18.1	3.6

Densità della miscela (g/cmc) = (R/1000) + 1

Soluzione preparata il:

12-02-11

MOD.025 Edizione n°2 del 1 Ottobre 2010	
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S	
 Setacci ASTM e densimetro 151H	
 MAT.n.GR1.(2-24)-085 - GR2.14.85	
Autorizzazione N. 7982 del Ministr	ero della

Sperimentatore		Controllato	Il Direttore
Brand	chi M.A	Giusti M.	S.Sanchí
Data Stampa 01-03-11			Pag. 2/2
Procedura O	perativa (O 005a	file:	0

SGAILAB — Laboratori e Ricerche S.r.l. Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: <u>info@sgailab.net</u> REA: RN-304214 - C.F. e P.IVA 03686910401

AAAAA '2 dallan 'life'r			
COMMITTENTE:	SPEA S.p.A.	DATA:	18 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	6.00
Campione nº:	CR4	profondità a mt.	6.40

(ASTM D4318-00) DETERMINAZIONE DEI LIMITI DI ATTERBERG Rapp N° 11.0369

LIMITE DI LIQUIDITA'

Prova nº Contenuto d'acqua (%) Numero Colpi

1	2	3	4	5
22.29	21.27	20.58		
15	28	35		

LIMITE DI LIQUIDITA' (%) 21.34

LIMITE DI PLASTICITA'

Prova n.

Contenuto d'acqua (%)

1	2	3	4	5
16.40	15.44	15.78		

LIMITE DI PLASTICITA' (%) 15.88 INDICE DI PLASTICITA' (%) 5.46

Osservazioni

MOD.025 Ediziona	n°1 del 13 Ottobre 2009
Prova eseguita con	Cucchiaio Casagrande e bilancia elett. di Prec.

Mat, n°.PF 5.1.06 - PF 3, 73, 85 - UG 6, 1, 85 Inc. 0.021%
Rif camp. 1º linea PL3 (1-4) 97

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M.	Giusti M.	Giusti M.	Sanchí S.
Data Stampa 19/05	/2011	Pag 3/3	
Procedura Operativ	⁄a IO 005a	\\ Sgailab \SV18B-	CR4.docx

PROVA Nº	1	2	3	4
p.u.t.	33.023	34.812	33.969	
p.s.t.	30.303	31.867	31.223	
tara	18.098	18,018	17.879	
peso H2O	2.720	2.945	2,746	
peso secco	12.205	13,849	13.344	
w	22.29	21,27	20.58	•
N. colpi	15	28	35	
-				
		2	3	
PROVA №	1 11.855	2	3	
PROVA № p.u.t.	1			
PROVA N° p.u.t. p.s.t.	1 11.855	11.772	10.767	
PROVA N° p.u.t. p.s.t. tara	1 11.855 11.414	11.772 11.381	10.767 10.470	
PROVA N° p.u.t. p.s.t. tara peso H2O peso secco	1 11.855 11.414 8.725	11.772 11.381 8.848	10.767 10.470 8.588	

SGAILAB – Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 – Fax. +39 0541988972 - e.mail: info@sqailab.net

REA: RN-304214 – C.F. e P.IVA 03686910401

COMMITTENTE:	SPEA S.p.A.	DATA:	18 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	7.20
Campione no:	CR5	profondità a mt.	7.50

Sondaggio nº:	SV18B	profondità da mt.	7.20
Campione no:	CR5	profondità a mt.	7.50
•		protonality with	17.50
T L DOT			<u> </u>
LABOI	RATORIO GEOTECNICO	Procedura PO.06 RAF	PPORTO DI PROVA
/m-a-m-			
D. (
Data di ricevimer	ito campione	6 August 20	010
<u> </u>			
Note:			
	APERTURA CAMPI	ONE	Rapp Nº 11.0316
Descrizione Campio	ne: Sabbia Iimosa di colore	marrana	
Descrizione Campio	de. Sabola liniosa di colole	marrone.	
Stato del campione:	rimaneggiato		
Programma prove:	Sommario Caratteristich	o Fisian Magaziaka	
1106ramma provo.	Analisi Granulometrica	ie risico-imeccamiche	
	Determinazione dei Lim	iti di Atterberg	
Osservazioni:			ĺ
OBSCI VAZIOIII.			

MOD.023 Edizione nº1 del 13 Ottobre 2009
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S.

Lo Sperimentatore Lo Sperimentatore Giusti M Giusti M.		Controliato	Il Direttore	
		Giusti M.	Sanchi S.	
Data Stampa 19/05	/2011	Pag 1/3		
Procedura Operativ	а IO 005а	\\Sgnilab\SV18B-C	R5 daex	

SGAILAB — Laboratori e Ricerche S.r.I.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sqailab.net

REA: RN-304214 - C.F. e P.IVA 03686910401

WWW.SGUNDO.EICE			
COMMITTENTE:	SPEA S.p.A.	DATA:	18 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio n°:	SV18B	profondità da mt.	7.20
	CR5	profondità a mt.	7.50

SOMMARIO DELLE CARATTERISTICHI	E FISICO-MECCANICHE Rapp Nº 11.0316
CARATTERISTICHE GENERALI Contenuto d'acqua W =	LIMITI DI ATTERBERG Limite di liquidità W1 = n.d. % Limite di plasticità Wp = n.d. % Indice di plasticità Ip = n.p. % Limite di ritiro Ws = % Indice di consistenza IC = / Attività / A = //
GRANULOMETRIA (AGI/S) Ghiaia (>2.00 mm)	GRANULOMETRIA (ASTM) Ghiaia (>4.75 mm)
Compressione Semplice $\sigma_{C} = \begin{bmatrix} kPa \\ kPa \end{bmatrix}$ Deformazione a Rottura $\sigma_{C} = \begin{bmatrix} kPa \\ kPa \end{bmatrix}$ Modulo Elastico Tangente. $\sigma_{C} = \begin{bmatrix} kPa \\ kPa \end{bmatrix}$ Modulo Elastico Secante $\sigma_{C} = \begin{bmatrix} kPa \\$	Pocket Penetr PP Vane test VT Pocket Penetr PP min = kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa
Modulo edometrico $Eed = $	Gradino di carico $\sigma = kPa$ Indice Rigonfiamento Ir $= %$ Coeff di cons. second Ca $= %$
Angolo resistenza a taglio efficace φ' =° PROVA DI COMPRES	Test CD Coesione efficace C' kPa kPa Test CR Coesione efficace C' kPa kPa SIONE TRIASSIALE
Angolo di resistenza a taglio φcu = ο	CD Coesione efficace C' = kPa CU Coesione non dren. Ccu = kPa UU Coesione non dren. Cuu = kPa
Osservazioni	

MOD.02	24 Edizione nº	l del 13 Ot	tobre 2009	
Cert. Si	stema Quali	tà ISO 900	01:2008 RIN	A 17533/08/S
JEI I. 31	Stema Quan	ta 150 900	J1:2006 KIN	A 17333108/3

Lo Sperimentatore	Sperimentatore Lo Sperimentatore		Il Direttore	
Giusti M	Giusti M Giusti M		Sanchi S.	
Data Stampa 19/05	/2011	Pag 2/3		
Procedum Operativ	a 1O 005a	\\ Sgailab \SVI8B-CR5.docx		

SGAILAB - Laboratori e Ricerche S.r.I.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982 Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY tel/fax. +39 0541988972 - e.mail: info@sgailab.net - PEC sgallab@pec.sgallab.net REA: RN-304214 - C.F. e P.IVA 03686910401

Commessa: 08.040.00 Sondaggio: SV18B Campione.s CR5 da m. - a m. 7.2-7.5

DISTRIBUZIONE GRANULOMETRICA

ril Prova: UNI CEN ISO/TS 178892-4 TE GR Cert.N.-Data 11.0380 - 01-03-11 Data Esecuzione: 23-02-11

SPEA S.p.A. Committente: Lavoro: A1 MI-NA Località: Incisa-Valdarno (FI) Sondaggio Campione Commessa sub dam am Verb.Accettazione Data ric. descr.campione descr.prelievo CAMPIONE 08.040.00 SV18B CR5 7.20 7.50 0 06-08-10 Passante totale Trattenuto totale Trattenuto Totale Setacci A.S.T.M. (mm) (%) 0.00 (%) <u>(g)</u> 75.00 100.0 0.00 2 1/2 63.00 100.0 0.00 0.00 Materiale Esaminato: 568.8 g 50.00 100.0 0.00 0.00 1 1/2" 37.50 100.0 0.00 0.00 1" 25.00 100.0 0.00 0.00 n.10 99.1 % 3/4' 19.00 100.0 0.00 0.00 Materiale 1/2 12.50 100.0 0.00 0.00 Passante al n.40 93.0 % 3/8' 9.50 99.8 0.24 1.38 setaccio n.4 4.75 99.6 0.452.54 n.200 26.9 % n.10 2.00 99.1 0.89 5,04 n.20 0.850 97.9 2.09 11.91 0.425 7.03 n.40 93.0 39.97 п.80 0.180 44.4 55.63 316.44 n. 140 0.106 30.7 69.29 394.12 0.075 п.200 26.9 73.08 415.70 CIOTTOLI GHIAIA SABBIA LIMO ARGILLA 100 10 0.1 0.01 0.001 ወ. ዐለር ያ 100.00 90.00 80.00 70.00 60.00 \$60.00 oo.oo ହ୍ଛି ଅପ.୦୦ 1 20.00 10.00 0.00 80 200 3" 1 1/2" 3/4" 3/8" 10 20 40 CLASSIFICAZIONE AGI/S Ciottoli Ghiaia Sabbia Limo Limo+Argilla Argilla Sabbia limosa 0.00 0.89 73.34 22.47 3.30 25.77 Percentuale delle frazioni (ASTM) 0.00 0.45 72.64 23.61 3.30 26.91 Osservazioni 0

MOD.025 Edizione n°2 del 1 Ottobre 2010
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S
Setacci ASTM e densimetro 151H
MAT n GR1 (2-24) 085 - GR2 14 85

Sperimentatore		Controllato	Il Direttore	
Brand	chi M.A.,	Giusti M.	S.Sanchi	
ata Stampa	01-03-11		Pag. 1/2	_
Procedura Operativa IO 005a		file:	0	_

SPEA S.p.A.

A1 MI-NA

Committente:

Lavoro:

AB – Laboratori e Ricerche S.r.l.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982 Via Mariolti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY tel/fax. +39 0541988972 - e.mail: info@sgalfab.net - PEC sgallab@pec.sgalfab.net REA: RN-304214 - C.F. e P.IVA 03686910401

Commessa:	08.040.00
Sondaggio:	SV18B
Campione.s	CR5
da m a m.	7.2-7.5
rif.Prova:	TE_GR

DIST	KIBU	ZION	EGF	RANU	LOME	FRICA
	UNI	CEN	ISO/	TS 17	8892-4	

Cert.N.-Data 11.0380 01-03-11 Data Esecuzione: 23-02-11 Località: Incisa-Valdarno (FI) Verb.Accettazione Data ric. descr.campione descr.prelievo

06-08-10

0

Commessa Sondaggio Campione sub dam am CAMPIONE 08.040.00 SV18B CR5 7.20 7.50

STAMPA VALORI CARATTERISTICI

Setaco	ciatura - Peso	Campione Ir	niziale =	568.8	g	Sedimentazione Peso Secco Campione Ps = 50
Setacci A	.S.T.M. (mm)	Trattenuto Parz. (g)	Trattenuto Parziale (%)	Trattenuto Tot. (%)	Passante Tot. (%)	Dispersivo 125 g/l
3"	75.00	0.0	0.00	0.0	100.0	<u> </u>
2 1/2"	63,00	0.0	0.00	0.0	100.0	
2"	50.00	0.0	0.00	0.0	100.0	Distanza dal Baricentro:
1 1/2"	37.50	0.0	0.00	0.0	100.0	Hg=15.86 - 0.245 R'
1"	25.00	0.0	0.00	0.0	100.0	
3/4"	19.00	0.0	0.00	0.0	100.0	Correzione menisco
1/2"	12.50	0.0	0.00	0.0	100.0	См =+0,5
3/8"	9.50	1.4	0.24	0.2	99.8	
n.4	4.75	1,2	0.20	0.4	99.6	
n.10	2.00	2.5	0.44	0.9	99.1	Correzione Dispersivo:
n.20	0.850	6.9	1.21	2.1	97.9	$C_D = -4.0$
n.40	0.425	28.1	4.93	7.0	93.0	
n.80	0.180	276.5	48.61	55.6	44.4	Correzione Temperatura
n.140	0.106	77.7	13.66	69.3	30.7	$C_T = -5 + 0.25 T$
n.200	0.075	21,6	3.79	73.1	26.9	Luci
	< 0.075	153.1	26.92			Costante K
Som	ma (g)	568.8		FRAZIONE < 0	0.075	K=gs/(gs-1) x 100/PS = 3.178
	ita (g)	0.0		X =	0.269	

Tempo	Temp.	Lettura	L corr.	L temp.	D	L cor	Tratt.Parz.	Tratt.
(min)	J	R	R'=R+CM	CT	mm	R'+CT+CD	KxR"	XxKxR"
0.5	20.0	32.9	33.4	0.00	0.0532	29.4	93.4	25.1
0.75	20.0	30.7	31.2	0.00	0.0449	27.2	86.4	23.3
1	20.0	29.6	30.1	0.00	0.0395	26.1	82.9	22.3
2	20.0	24.7	25.2	0.00	0.0299	21.2	67.4	18.1
4	20.0	21.7	22.2	0.00	0.0219	18.2	57.8	15.6
8	20.0	19.9	20.4	0.00	0.0158	16.4	52.1	14.0
20	20.0	15.0	15.5	0.00	0.0105	11.5	36.5	9.8
30	20.0	13.7	14.2	0.00	0.0087	10.2	32.4	8.7
60	20.0	11.7	12.2	0.00	0.0063	8.2	26.1	7.0
160	20.0	9.7	10.2	0.00	0.0039	6.2	19.7	5.3
180	20.0	9.3	9.8	0.00	0.0037	5.8	18.4	5.0
240	20.0	8.6	9.1	0.00	0.0032	5.1	16.2	4.4
480	20.0	7.6	8.1	0.00	0.0023	4.1	13.0	3.5
1440	20.0	6.7	7.2	0.00	0.0013	3.2	10.2	2.7

Densità della miscela (g/cmc) = (R/1000) + 1

Soluzione preparata il:

12-02-11

MOD.025 Edizione nº2 del 1 Ottobre 2010	
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S	
 Setacci ASTM e densimetro 151H	
 MAT.n.GR1.(2-24)-085 - GR2.14.85	
 Autodzanzione N. 7007 dei Minie	tore delle

Sperimentatore	Controllato	II Direttore
Branchi M.A	Giusti M.	S.Sanchi
Data Stampa 01-03-11		Pag. 2/2
Procedura Operativa IO 005a	file:	0

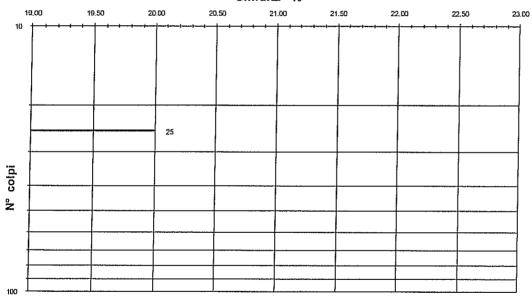
SGAILAB — Laboratori e Ricerche S.r.I. Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sqailab.net REA: RN-304214 - C.F. e P.IVA 03686910401

COMMITTENTE:	SPEA S.p.A.	DATA:	18 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	7.20
Campione n°:	CR5	profondità a mt.	7.50

Rapp Nº 11.0370 (ASTM D4318-00) DETERMINAZIONE DEI LIMITI DI ATTERBERG


LIMITE DI LIQUIDITA'

Prova nº Contenuto d'acqua (%) Numero Colpi

1	2	3	4	5
19.67	·			
6			******	

LIMITE DI LIQUIDITA' n.d.

Umidità %

LIMITE DI PLASTICITA'

Prova n. Contenuto d'acqua (%)

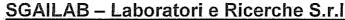
	1	2	3	4	5
I					

LIMITE DI PLASTICITA' (%) INDICE DI PLASTICITA' (%) n.d. n.p.

Osservazioni

Il materiale è stato preparato secondo le norme ASTM D4318-00, è stato posizionato nel cucchiaio di Casagrande, inciso (se possibile) con L'apposito utensile solcatore, sono stati quindi conteggiati il numero dei colpi. Il limite liquido non è risultato determinabile,

MOD.025 Edizione nº1 del 13 Ottobre 2009
Prova eseguita con Cucchiaio Casagrande e bilancia elett. di Prec.


Mat, n°.PF 5.1.06 – PF 3, 73, 85 – UG 6,	1, 85 lnc. 0,021%
m'e 181' m n (1 1) 00	

Mat, n°,PF 5.1.06 - PF 3, 73, 85 - UG 6, 1, 85 Inc. 0.0219	O
Rif camp. In linea PL3 (1-4) 97	

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M.	Giusti M.	Giusti M.	Sanchi S.
Data Stampa 04/04	/2012	Pag 3/3	
Procedura Operativ	a IO 005a	\\ Sgailab \SV18B-	CR5,doex

PROVA Nº	1	2	3	4
p.u.t.	39.984			
p.s.t.	36.378			
tara	18.049			
peso H2O	9,606	holisiintus k		
peso secco	18.329			
W	19.67			
N. colpi	6			
20,5.	-			
PROVA №	1	2	3	
	<u> </u>	2	3	,, , ,, <u>, , , , , , , , , , , , , , , </u>
PROVA №	1	2	3	
PROVA Nº	1		3	
PROVA Nº D.u.t. D.s.t.	1		3	
PROVA Nº).u.t.).s.t. ara				

0.00

SGAILAB – Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 – Fax. +39 0541988972 - e.mail: info@sqailab.net

REA: RN-304214 – C.F. e P.IVA 03686910401

	T		
COMMITTENTE:	SPEA S.p.A.	DATA:	18 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Solidaggio II .	24100	protonutta da Int. 9.00	
Campione no:	CR6	profondità a mt. 9.40	
LABOR	ATORIO GEOTECNICO F	Procedura PO.06 RAPPORTO DI PROVA]
LABOR	TOMO GEOTECITCO	Tocedura 1 0.00 ICAT I OCTO DIT KOVA	J
			
Data di ricaviment	o compiono	6 August 2010	
Data di riceviment	Campione	o August 2010	
Note:			
11010.			
	APERTURA CAMPIO	NE Rapp N° 11.	0317
	AI ENTURA CAM IO	Kapp N 11.	UJI/
		PROJECT CONTROL OF CONTROL CON	
Descrizione Campion	e: Limo con sabbia con argil	lla di colore grigio-azzurro.	
Stato del campione:	rimaneggiato		
D	Comments Companies in the	This Meanwhile	
Programma prove:	Sommario Caratteristiche Analisi Granulometrica	Fisico-Meccanicne	
	Determinazione dei Limiti	i di Atterbera	
	Determinazione dei Emmi	di Attorborg	
Osservazioni;			,
Jasci vazioni,			ĺ
	· III a constant sem		

08 RINA 17533/08/S.

Lo Sperimentatore Lo Sperimentat		Controllato	lato II Direttore		
Giusti M	Giusti M.	Giusti M.	Sanchi S.		
Data Stampa 04/04/2012		Pag 1/3			
Procedura Operativa IO 005a		\\Sgailab\SV18B-C	R6.docx		

SGAILAB - Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: <u>info@sgailab.net</u> REA: RN-304214 - C.F. e P.IVA 03686910401

COMMITTENTE:	SPEA S.p.A.	DATA:	18 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio n°:	SV18B	profondità da mt.	9.00
Campione n°:	CR6	profondità a mt.	9.40

SOMMARIO DELLE CARATTERISTICHE FISICO-MECCANICHE Rapp N° 11.0317 CARATTERISTICHE GENERALI LIMITI DI ATTERBERG Contenuto d'acqua % Limite di liquidità W1 =36,65 % Peso dell'unità di volume Mg/m^3 Limite di plasticità Wp =17.89 % γ Peso secco dell'unità di vol. Mg/m³ γď = Indice di plasticità Ip = 18.76 % Peso specifico del terreno Mg/m³ γs = Limite di ritiro $W_S =$ % Indice dei vuoti Iν ----Grado di saturazione S = % Indice di consistenza IC = Tenore in Carbonati % Attività Velocità Ultrasonica m/s GRANULOMETRIA (AGI/S) GRANULOMETRIA (ASTM) Ghiaia (>2.00 mm) G =0.68 % Ghiaia (>4.75 mm) G =0.50 Sabbia (>0.06<2.00 mm) S =28.89 % Sabbia (>0.075<4.75 mm) S =26.27 % Limo + Argilla Limo + Argilla I + A =70.43 % % 73.23 L+A =Limo (>0.002<0.06mm) 38.98 % L =Limo (>0.002<0.075mm) 41.78 % A = Argilla (<0.002 mm) 31.45 % Argilla (<0.002 mm) 31.45 % RESISTENZA A COMPRESSIONE Compressione Semplice kPa kPa σc <u>=</u> min =Pocket Penetr PP Deformazione a Rottura % max = kPa ٤v Modulo Elastico Tangente. MPa E kPa min = Vane test VT Modulo Elastico Secante E =MPa max = kPa PROVA EDOMETRICA Modulo edometrico Eed = kPa Gradino di carico kPa σ Coeff, di consolidazione Cv =cm²/s Indice Rigonfiamento % Ir Coeff.di compressib. edo. Mv =m²/kN Coeff. di permeabilità K =m/s Coeff di cons. second Ca = % PROVA DI TAGLIO DIRETTO AL CASAGRANDE Test CD Angolo resistenza a taglio efficace Coesione efficace kPa C' Test CR Angolo resistenza a taglio efficace == C' kPa Coesione efficace PROVA DI COMPRESSIONE TRIASSIALE Angolo resistenza a taglio efficace CD Coesione efficace C' kPa Angolo di resistenza a taglio CU Coesione non dren. Ccu kPa фси Angolo di resistenza a taglio UU Coesione non dren. kPa Cuu фuu Osservazioni

MOD.024	Edizione nº1 del	13 Ottobre 200	9
Cert. Sis	tema Qualità IS	O 9001:2008	RINA 17533/08/5
Jert. Sis	iema Qualità is	O 9001;2008	RINA 17533/08/8

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore	
Giusti M	Giusti M.,	Giusti M.	Sanchí S.	
Data Stampa 19/05/2011		Pag 2/3		
Procedura Operativa IO 005a		\\ Sgailab \SV18B-CR6.doex		

SGAILAB - Laboratori e Ricerche S.r.I.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982
Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY
tel/lax. +39 0541988972 - e.mail: info@sgailab.net - PEC sgailab@pec.sgailab.net
REA: RN-304214 - C.F. a P.IVA 03686910401

DISTRIBUZIONE GRANULOMETRICA UNI CEN ISO/TS 178892-4

Commessa: 08.040.00

Sondaggio: SV18B

Campione.s CR6

da m. - a m. 9-9.4

nt.Prova: TE GR

 Committente:
 SPEA S.p.A.

 Lavoro:
 A1 MI-NA

 11.0381 - 01-03-11
 Data Esecuzione:
 24-02-11

 Località:
 Incisa-Valdarno (FI)

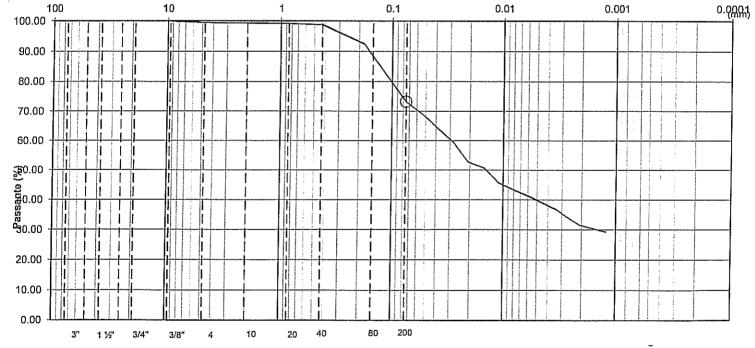
Commessa Sondaggio | Campione sub dam Verb.Accettazione Data ric. descr.campione descr.prelievo am CAMPIONE 08.040.00 SV18B CR6 0 9.00 9.40 Λ 06-08-10

Passante totale Trattenuto totale Trattenuto Totale Setacci A.S.T.M. (mm) (%) (%) (g) 3, 75,00 100.0 0.00 0.00 63.00 100.0 0.00 2 1/2 מח מ 2" 50.00 100.0 0.00 0.00 1 1/2 37.50 100.0 0.00 0.00 25.00 100.0 0.00 0.00 3/4 19.00 100.0 0.00 0.00 1/2" 12,50 100.0 0.00 0.00 3/8' 9.50 100.0 0.00 0.00 99.5 4.75 n.4 0.50 1.81 n.10 2.00 99.3 0.68 2 44 п.20 0.850 99.2 0.79 2.85 0.425 n.40 98.8 1.18 4.25 0.180 92.5 7.53 27.19 n.80 n.140 0.106 19.19 80.8 69.27 n.200 0.075 73.2 26.77 96.65

Materiale Esaminato:

361

g


ÞΙ

Materiale Passante al setaccio
 n.10
 99.3
 %

 n.40
 98.8
 %

 n.200
 73.2
 %

CIOTTOLI GHIAIA SABBIA LIMO ARGILLA

CLASSIFICAZIONE AGI/S	Ciottoli	Ghiaia	Sabbia	Limo	Argilla	Limo+Argilla
Limo con sabbia con argilla	0.00	0.68	28.89	38.98	31.45	70.43
Percentuale delle frazioni (ASTM)	0.00	0.50	26.27	41.78	31.45	73.23

Osservazioni

0

MOD,025 Edizione n°2 del 1 Ottobre 2010 Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S Setacci ASTM e densimetro 151H MAT.n.GR1.(2-24)-085 - GR2.14.85

Sperimentatore		Controllato	II Direttore
Вгало	hi M.A	Giusti M.	S.Sanchi
Data Stampa	01-03-11		Pag. 1/2
Procedura Operativa IO 005a		file:	0

SGAILAB - Laboratori e Ricerche S.r.l.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982 Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY lel/fax, +39 0541988972 - e,mail: Info@sgailab,net - PEC sgailab@pec.sgailab.net REA: RN-304214 - C.F. e P.IVA 03686910401

DISTRIBUZIONE GRANULOMETRICA UNI CEN ISO/TS 178892-4

Commessa:	08.040.00
Sondaggio:	SV18B
Campione.s	CR6
da m a m.	9-9.4
rif.Prova:	TE CD

			Cei	rt.NDat	а	11.0	381 -	01-03-	1 D	ata Esecuzione:	24-02-11
Committente:	SPEA S.p.A.					Ī					
Lavoro:	A1 MI-NA]	Località:	Inc	sa-Val	darno (FI)	
	Commessa Sono	laggio Campione	sub	dam	am	1	Verb, Accettazi	one Di	ata ric.	descr.campione	descr.prelievo

	Commessa	Sondaggio	Campione	sub	į l	dam	am	ĺ
CAMPIONE	08.040.00	SV18B	CR6	0		9.00	9.40	

Località:	là: Incisa-Valdarno (FI)					
Verb.Accettazione	Data ric.	descr.campione	descr.prelievo			
0	06-08-10					

STAMPA VALORI CARATTERISTICI

Setaco	iatura - Peso	Campione Ir	niziale =	361	g	Sedimentazione Peso Secco Campione Ps = 50
Cotacoi A	.S.T.M. (mm)	Trattenuto	Trattenuto	Trattenuto	Passante	
Setato A	.S. F.IVI. (IIIIII)	Parz. (g)	Parziale (%)	Tot. (%)	Tot. (%)	Dispersivo 125 g/
3"	75.00	0.0	0.00	0.0	100.0	
2 1/2"	63,00	0.0	0.00	0.0	100.0	
2"	50.00	0.0	0.00	0.0	100.0	Distanza dal Baricentro:
1 1/2"	37.50	0.0	0.00	0.0	100.0	Hg=15.86 - 0.245 R'
1"	25.00	0.0	0.00	0.0	100.0	
3/4"	19.00	0.0	0.00	0.0	100.0	Correzione menisco
1/2"	12.50	0.0	0.00	0.0	100.0	См =+0.5
3/8"	9.50	0.0	0.00	0.0	100.0	
n.4	4.75	1.8	0.50	0.5	99.5	
n.10	2.00	0.6	0.17	0.7	99.3	Correzione Dispersivo;
п.20	0.850	0.4	0.11	0.8	99.2	C _D = -4.0
п.40	0.425	1.4	0.39	1.2	98.8	
n.80	0.180	22.9	6.35	7.5	92.5	Correzione Temperatura
n.140	0.106	42.1	11.66	19.2	80.8	$C_T = -5 + 0.25 T$
n.200	0.075	27.4	7.58	26.8	73.2	
	< 0.075	264.4	73.23			Costante K
Som	ma (g)	361.0		FRAZIONE <	0.075	K=gs/(gs-1) x 100/PS = 3.178
Perc	lita (g)	0.0		X =	0.732	

Tempo	Temp.	Lettura	L corr.	L temp.	D	L cor	Tratt.Parz.	Tratt.
(min)	J	R	R'=R+CM	CT	mm	R'+CT+CD	KxR"	XxKxR'
0.5	20.0	33.1	33.6	0.00	0.0530	29.6	94.1	68.9
0.75	20.0	32.0	32.5	0.00	0.0440	28.5	90.6	66.3
1	20.0	31.1	31.6	0.00	0.0387	27.6	87.7	64.2
2	20.0	29.1	29.6	0.00	0.0281	25.6	81.4	59.6
4	20.0	26.2	26.7	0.00	0.0207	22.7	72.1	52.8
8	20.0	25.3	25.8	0.00	0.0148	21.8	69.3	50.7
15	20.0	23.2	23.7	0.00	0.0111	19.7	62.6	45.8
30	20.0	22.1	22.6	0.00	0.0080	18.6	59.1	43.3
60	20.0	21.1	21.6	0.00	0.0057	17.6	55.9	41.0
120	20.0	19.9	20.4	0.00	0.0041	16.4	52.1	38.2
180	20.0	19.3	19.8	0.00	0.0034	15.8	50.2	36.8
240	20.0	18.6	19.1	0.00	0.0029	15.1	48.0	35.1
485	20.0	17.1	17.6	0.00	0.0021	13.6	43.2	31.6
1480	20.0	16.1	16.6	0.00	0.0012	12.6	40.0	29.3

Densità della miscela (g/cmc) = (R/1000) + 1

Soluzione preparata il:

23-02-11

MOD.025 Edizione n°2 del 1 Ottobre 2010	
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S	
 Setacci ASTM e densimetro 151H	
 MAT.n.GR1.(2-24)-085 - GR2.14.85	
 Autoricanian 31 7003 del Minister	- 4-1

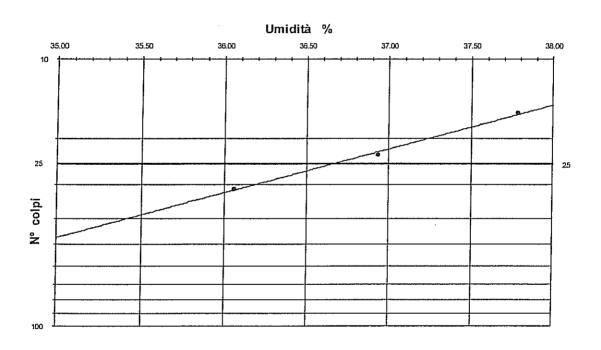
Sperin	nentatore	Controllato		II Direttore
Brand	chi M.A	Giusti M.		S.Sanchi
Data Stampa	01-03-11			Pag. 2/2
Procedura O	perativa IO 005a	file:	0	

SGAILAB - Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel: +39 0541988972 - Fax, +39 0541988972 - e.mail: info@sqailab.net
REA: RN-304214 - C.F. e P.IVA 03686910401

www.sganab.net			
COMMITTENTE:	SPEA S.p.A.	DATA:	18 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	9.00
Campione no:	CR6	profondità a mt.	9.40


(ASTM D4318-00) DETERMINAZIONE DEI LIMITI DI ATTERBERG Rapp N° 10.3250

LIMITE DI LIQUIDITA'

Prova n° Contenuto d'acqua (%) Numero Colpi

	1	2	3	4	5
	37.79	36.94	36.06		
Г	16	23	31		

LIMITE DI LIQUIDITA' (%) 36.65

LIMITE DI PLASTICITA'

Prova n.

Contenuto d'acqua (%)

1	2	3	4	5
17.87	18.03	17.79		

LIMITE DI PLASTICITA' (%) 17.89 INDICE DI PLASTICITA' (%) 18.76

Osservazioni

MOD.025 Edizione	n°1 del 13 Ottobre 2009
Prova eseguita con	Cucchiaio Casagrande e bilancia elett. di Prec.
Mat. n°.PF 5,1,06	PF 3, 73, 85 - UG 6, 1, 85 Inc. 0,021%
Rif camp. Io linea	PL3 (1-4) 97

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M.	Giusti M.	Giusti M.	Sanchi S.
Data Stampa 19/05/2011		Pag 3/3	
Procedura Operativa IO 005a		\\ Sgailab \SV18B-CR6.docx	

PROVA Nº	1	2	3	4
p.u.t.	34.176	32.162	33.270	
p.s.t.	29.767	28.365	29.180	
tara	18.099	18.086	17.837	
peso H2O	4 409	3 797	10 4 090	
peso secco	11,668	10,279	11343	
W	37.79	36,94	36.06	
N. colpi	16	23	31	****
PROVA Nº	1	2	3	
PROVA Nº D.u.t.	10.388	2	3	
			10.039	
o.u.t.	10.388 10.130 8.686	10.247 10.014 8.722	10.039 9.838	
o.u.t. o.s.t.	10.388 10.130 8.686	10.247 10.014 8.722	9.838 8.708	
o.u.t. o.s.t. ara	10.388 10.130 8.686	10.247 10.014 8.722	10.039 9.838 8.708	

17.89

SGAILAB — Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 — Fax. +39 0541988972 - e.mail: info@sgailab.net

REA: RN-304214 — C.F. c P.IVA 03686910401

www.sganab.net			
COMMITTENTE:	SPEA S.p.A.	DATA:	18 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00
		•	

Sondaggio nº:	SV18B	profondità da mt.	12.20
Campione n°:	CR7	profondità a mt.	12.60

Sondagg		SV18B	profondità da mt.	12.20
Campion	ne nº:	CR7	profondità a mt.	12.60
	LABOR	ATORIO GEOTECNICO	Procedura PO.06 RAP	PORTO DI PROVA
Data di	ricevimen	to campione	6 August 20	010
Note:				
		APERTURA CAMP	PIONE	Rapp N° 11.0318
Descrizio	one Campion	ne: Sabbia limosa debolm	nente ghiaiosa di colore grigio	-azzurro.
Stato del	campione:	rimaneggiato		
Programm	na prove:	Sommario Caratteristi Analisi Granulometric Determinazione dei Li		
Osservazi	oni:			

rt. Sistema Qualità ISO 9001:2008 RINA 17533/08/

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore	
Giusti M	Giusti M.	Giusti M.	Sanchi S.	
Data Stampa 04/04	/2012	Pag 1/3		
Procedura Operativ	a IO 005a	\\Sgailab\SV18B-C	R7.docx	

Campione no:

CR7

SGAILAB — Laboratori e Ricerche S.r.l.
Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 — Fax. +39 0541988972 - e.mail: info@sqailab.net
REA: RN-304214 — C.F. e P.IVA 03686910401

profondità a mt.

12.60

COMMITTENTE:	SPEA S.p.A.	DATA:	18 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00
<u> </u>			
Sondaggio nº:	SV18B	profondità da mt.	12,20

SOMMARIO DELLE CARATTERISTICI	HE FISICO-MECCANICHE Rapp N° 11.0318
CARATTERISTICHE GENERALI	LIMITI DI ATTERBERG
	Indice di plasticità Ip = 4.88 %
GRANULOMETRIA (AGI/S)	GRANULOMETRIA (ASTM)
Ghiaia (>2.00 mm)	Ghiaia (>4.75 mm)
RESISTENZA A	COMPRESSIONE
Compressione Semplice oc = kPa Deformazione a Rottura ev = % Modulo Elastico Tangente. E = MPa Modulo Elastico Secante E = MPa	Pocket Penetr PP max = kPa where test VT min = kPa
PROVA EI	DOMETRICA
Modulo edometrico Eed = kPa Coeff. di consolidazione $Cv = cm^2/c$ Coeff. di permeabilità $K = cm^2/c$ m/s	's Indice Rigonfiamento Ir = %
PROVA DI TAGLIO DIR	ETTO AL CASAGRANDE
Angolo resistenza a taglio efficace φ' =	Test CD Coesione efficace C' = kPa Representation
PROVA DI COMPRE	SSIONE TRIASSIALE
ngolo di resistenza a taglio $\phi_{\text{cu}} =$	CD Coesione efficace C' = kPa CU Coesione non dren. Ccu = kPa LUU Coesione non dren. Cuu = kPa LUU Coesione non dren. Cuu = kPa
sservazioni	

MOD.024 Edizione nº1 del 13 Ottobre 2009
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M	Giusti M.,	Giusti M.	Sanchi S.
Data Stampa 19/05	/2011	Pag 2/3	
Procedura Operativ	n IO 005a	// Sgailab \SV18B-	CR7.docx

SGAILAB – Laboratori e Ricerche S.r.I.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N, 7982
Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY
tel/lax. +39 0541988972 - e.mail: info@sgallab.net - PEC sgallab@pec.sgallab.net
REA: RN-304214 – C.F. e P.IVA 03686910401

DISTRIBUZIONE GRANULOMETRICA UNI CEN ISO/TS 178892-4

Cert.NData	11.0382	_	01-03-11	Data Esecuzione:	22-02-11

Committente: SPEA S.p.A.
Lavoro: A1 MI-NA

	Località:	Incisa-Valdarno (FI)
ľ		

 Commessa
 Sondaggio
 Campione
 sub

 CAMPIONE
 08.040.00
 SV18B
 CR7
 0

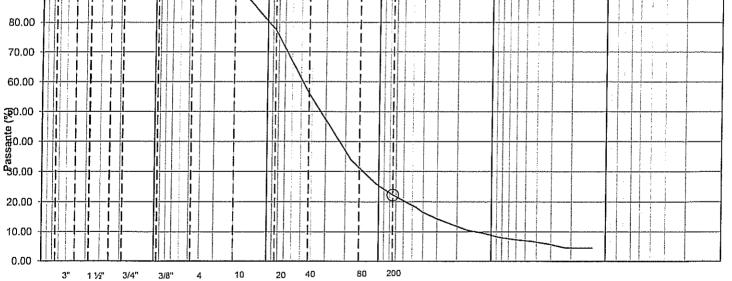
dam am 12.20 12.60 Verb.Accettazione Data ric. descr.campione descr.prelievo
0 06-08-10

Setacci A	.S.T.M. (mm)	Passante totale	Trattenuto totale	Trattenuto Totale
OCIDCO A	.0.1.191. (11111)	(%)	(%)	(g)
3"	75.00	100.0	0.00	0.00
2 1/2"	63.00	100.0	0.00	0.00
2"	50.00	100.0	0.00	0.00
1 1/2"	37.50	100.0	0.00	0.00
1"	25.00	100,0	0.00	0.00
3/4"	19.00	100.0	0.00	0.00
1/2"	12.50	100.0	0.00	0.00
3/8"	9.50	100.0	0.00	0.00
n.4	4.75	99.7	0.35	1.60
n.10	2.00	93.0	7.00	32.10
n.20	0.850	77.4	22.61	103.66
n.40	0.425	56.2	43.78	200.68
n.80	0.180	34.1	65.93	302.23
n.140	0.106	26.0	74.03	339.35
n.200	0.075	22.3	77.71	356.24

Materiale Passante al

setaccio

Materiale Esaminato:


 n.10
 93.0
 %

 n.40
 56.2
 %

 n.200
 22.3
 %

458.4

g

CLASSIFICAZIONE AGI/S	Ciottoli	Ghiaia	Sabbia	Limo	Argilla	Limo+Argilla
Sabbia limosa debolmente ghiaiosa	0.00	7.00	72.64	15.77	4.59	20.36
Percentuale delle frazioni (ASTM)	0.00	0.35	77.36	17.70	4.59	22.29

Osservazioni

0

MOD.025 Edizione nº2 del 1 Ottobre 2010
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S
 Selacci ASTM e densimetro 151H
 MAT.n.GR1.(2-24)-085 - GR2.14.85

Sperin	nentatore		Controllato		II Direttore	
Branc	hi M.A		Giusti M.		S.Sanchi	
Data Stampa	01-03-11	T			Pag. 1/2	
Procedura Or	perativa IO 005a	file:		0		

SGAILAB - Laboratori e Ricerche S.r.l.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982 Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY tel/fax. +39 0541988972 - e.mail: info@sgallab.net - PEC sgallab@pec.sgallab.net REA: RN-304214 - C.F. a P.IVA 03686910401

DISTRIBUZIONE GRANULOMETRICA UNI CEN ISO/TS 178892-4

Commessa:	08.040.00
Sondaggio:	SV18B
Campione.s	CR7
da m a m.	12.2-12.6
nt.Prova:	TE CD

22-02-11

		Cert.NData	11.	0382
Committente:	SPEA S.p.A.			
Lavoro:	A1 MI-NA			Localii

					-		
	Commessa	Sondaggio	Campione	sub	ſ	dam	am
CAMPIONE	08.040.00	SV18B	CR7	0	ſ	12.20	12.60

Località:	Incisa-Vald	larno (FI)	
Verb.Accettazione	Data ric.	descr.campione	descr.prelievo
0	06-08-10		

Data Esecuzione:

- 01-03-11

STAMPA VALORI CARATTERISTICI

Setaco	ciatura - Peso	Campione Ir	niziale =	458.4	g	Sedimentazione Peso Secco Campione Ps = 50
Catanai A	CTM (mm)	Trattenuto	Trattenuto	Trattenuto	Passante	<u> </u>
Selacti A	S.T.M. (mm)	Parz. (g)	Parziale (%)	Tot. (%)	Tot. (%)	Dispersivo 125 g/
3"	75.00	0.0	0.00	0.0	100.0	<u></u>
2 1/2"	63.00	0.0	0.00	0.0	100.0	
2"	50.00	0.0	0.00	0.0	100.0	Distanza dal Baricentro:
1 1/2"	37.50	0.0	0.00	0.0	100.0	Hg=15.86 - 0.245 R'
1"	25.00	0.0	0.00	0.0	100.0	
3/4"	19.00	0.0	0.00	0.0	100.0	Correzione menisco
1/2"	12,50	0.0	0.00	0.0	100.0	C _M =+0.5
3/8"	9.50	0.0	0.00	0.0	100.0	
n.4	4.75	1.6	0.35	0.3	99.7	
n.10	2.00	30.5	6.65	7.0	93.0	Correzione Dispersivo:
n.20	0.850	71.6	15.61	22.6	77.4	$C_D = -4.0$
n.40	0.425	97.0	21,16	43.8	56.2	
n.80	0.180	101.6	22.15	65.9	34.1	Correzione Temperatura
n.140	0.106	37.1	8.10	74.0	26.0	Ст = -5 + 0.25 Т
n.200	0.075	16.9	3.68	77.7	22,3	<u> </u>
	< 0.075	102.2	22.29	1		Costante K
Som	ma (g)	458.4		FRAZIONE <	0.075	K=gs/(gs-1) x 100/PS = 3.178
	dita (g)	0.0		X =	0.223	

Tempo	Temp.	Lettura	L corr.	L temp.	D	L cor	Tratt.Parz.	Tratt.
(min)	J	R	R'=R+CM	CT	mm	R'+CT+CD	KxR"	XxKxR"
0.5	20.0	31.1	31.6	0.00	0.0547	27.6	87.7	19.5
0.75	20.0	29.1	29.6	0.00	0.0460	25.6	81.4	18.1
1	20.0	27.1	27.6	0.00	0.0409	23.6	75.0	16.7
2	20.0	23.9	24.4	0.00	0.0302	20.4	64.8	14.4
4	20.0	21.1	21.6	0.00	0.0221	17.6	55.9	12.5
8	20.0	18.3	18.8	0.00	0.0161	14.8	47.0	10.5
15	20.0	17.1	17.6	0.00	0.0119	13.6	43.2	9.6
30	20.0	15.1	15.6	0.00	0.0086	11.6	36.9	8.2
60	20.0	13.9	14.4	0.00	0.0062	10.4	33.0	7.4
120	20.0	13.1	13.6	0.00	0.0044	9.6	30.5	6.8
180	20.0	12.3	12.8	0.00	0.0036	8.8	28.0	6.2
240	20.0	11.8	12.3	0.00	0.0031	8.3	26.4	5.9
480	20.0	10.0	10.5	0.00	0.0023	6.5	20.7	4.6
1460	20.0	9.9	10.4	0.00	0.0013	6.4	20.3	4.5
1460	20.0	9.9	10.4	0.00	0.0013	5.4	20.3	4.5

Densità della miscela (g/cmc) = (R/1000) + 1

Soluzione preparata il:

19-02-11

	MOD.025 Edizione n°2 del 1 Ottobre 2010	
Ce	ert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S	
	Setacci ASTM e densimetro 151H	
	MAT.n.GR1.(2-24)-085 - GR2.14.85	

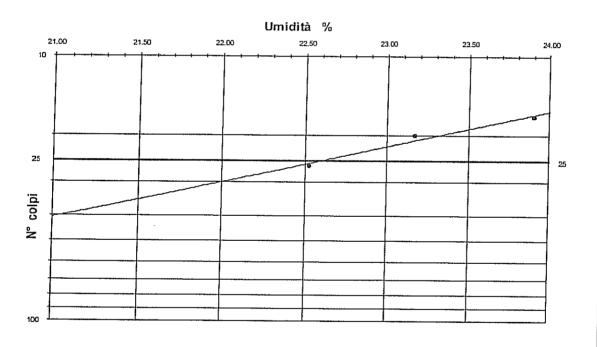
Sperimentatore	Controllato	II Direttore
Branchi M.A	Giusti M.	S.Sanchi
Data Stampa 01-03-11		Pag. 2/2
Procedura Operativa IO 005a	file;	0

<u>SGAILAB — Laboratori e Ricerche S.r.l.</u> Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P.IVA 03686910401

COMMITTENTE:	SPEA S.p.A.	DATA:	18 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	12.20
Campione nº:	CR7	profondità a mt.	12.60


(ASTM D4318-00) DETERMINAZIONE DEI LIMITI DI ATTERBERG Rapp N° 11.0371

LIMITE DI LIQUIDITA'

Prova nº Contenuto d'acqua (%) Numero Colpi

1	2	3	4	5
23.90	23.17	22.53		
17	20	26		

LIMITE DI LIQUIDITA' (%) 22.58

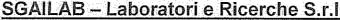
LIMITE DI PLASTICITA'

Prova n. Contenuto d'acqua (%)

1	2	3	4	5
17.95	17.77	17.39		

LIMITE DI PLASTICITA' (%) 17.70 INDICE DI PLASTICITA' (%) 4.88

Osservazioni


	MOD.025 Edizione nº1 del 13 Ottobre 2009
İ	Prova eseguita con Cucchiaio Casagrande e bilancia elett. di Prec.
i	

Mat. n°.PF 5.1.06 - PF 3, 73, 85 - UG 6, 1, 85 Inc. 0.021%

Rif camp. 1º linea PL3 (1-4) 97		2 2 201 721, 210	000.1.00	
	•	. ,		

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M.	Giusti M.	Giusti M.	Sanchi S.
Data Stampa 26/05/2011		Pag 3/3	
Procedura Operativa IO 005a		\\ Sgailab \SV18B-	CR7.docx

PROVA Nº	1	2	3	4
p.u.t.	35.422	32.162	33.098	
p.s.t.	32.036	29.524	30.351	
tara	17.870	18.141	18.157	
peso H2O	3.386	2.638	2747	
peso secco	14.166	11.383	12 194	
W	23 90	23.17	22.53	
V. colpi	17	20	26	
PROVA N°	I	2	3	
PROVA Nº	11.104	2 10.557	3	
r		2 10.557 10.292	3 10.657 10.363	
.u.t.	11.104	10.557	10.657	
.u.t.	11.104 10.719	10.557 10.292	10.657 10.363 8.672	
.u.t. .s.t. ara	11.104 10.719 8.574	10.557 10.292 8.801	10.657 10.363 8.672	

SGAILAB – Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P.IVA 03686910401

WWW.3gunub.ncc			
COMMITTENTE:	SPEA S.p.A.	DATA:	18 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	13.50
Campione n°:	CR8	profondità a mt.	13.90

LABORATORIO GEOTECNICO Procedura PO.06 RAPPORTO DI PROVA

Data di ricevimento campione	6 August 20	10
Note:		
APERTURA CA	MPIONE	Rann Nº 11 0310

Descrizione Campione: Limo con sabbia debolmente argilloso di colore grigio.

Stato del campione: rimaneggiato

Sommario Caratteristiche Fisico-Meccaniche Programma prove:

Analisi Granulometrica

Determinazione dei Limiti di Atterberg

Osservazioni:	:		

C-4 Pi-t O 100 100 0001 3000 DD14 13633/0	
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/0	8/S.
Cert. Sistema Qualita 18O 9001;2008 RINA 17533/0	5/5.

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giustí M.,	Giusti M., Giusti M.		Sanchi S.
Data Stampa 04/04/2012		Pag 1/3	
Procedura Operativa 10 005a		\\Sgaifab\SV18B-CI	88.doex

Campione no:

CR8

SGAILAB — Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sgailab.net

REA: RN-304214 - C.F. e P.IVA 03686910401

profondità a mt.

13.90

COMMITTENTE:	CDEAC - A		
	SPEA S.p.A.	∫DATA:	18 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

SOMMARIO DELLE CARATTERISTICE	IE FISICO-MECCANICHE Rapp Nº 11.0319
CARATTERISTICHE GENERALI	LIMITI DI ATTERBERG
Contenuto d'acqua $W = $	Indice di plasticità Ip = 7.75 %
GRANULOMETRIA (AGI/S)	GRANULOMETRIA (ASTM)
Ghiaia (>2.00 mm)	Ghiaia (>4.75 mm)
RESISTENZA A	COMPRESSIONE
Compressione Semplice $\sigma_C = \begin{bmatrix} kPa \\ kPa \end{bmatrix}$ Deformazione a Rottura $\epsilon_V = \begin{bmatrix} kPa \\ \% \end{bmatrix}$ Modulo Elastico Tangente. $\epsilon_V = \begin{bmatrix} kPa \\ \% \end{bmatrix}$ Modulo Elastico Secante $\epsilon_V = \begin{bmatrix} kPa \\ \% \end{bmatrix}$	Vane feet VT
PROVA ED	OMETRICA
Modulo edometrico Eed = kPa Coeff. di consolidazione $Cv =$ cm^2/s Coeff. di compressib. edo. $Mv =$ m^2/s Coeff. di permeabilità $K =$ m/s	
DROVA DI TAGLIO DINI	· • • • • • • • • • • • • • • • • • • •
Angolo resistenza a taglio efficace φ' =o	Test CD Coesione efficace C' kPa Test CR Coesione efficace C' kPa
PROVA DI COMPRES	SSIONE TRIASSIALE
Angolo resistenza a taglio efficace φ' = ο ο Angolo di resistenza a taglio φu = ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	CU Coesione non dren. Ccu = kPa
Osservazioni	
· · · · · · · · · · · · · · · · · · ·	
The state of the s	

024 Edizione nº1 del 13 Ottobre 2009
Sistema Qualità ISO 9001:2008 RINA 17533/08/S.

Lo Sperimentatore	rimentatore Lo Sperimentatore Controllato		Il Direttore	
Giusti M	Giusti M Giusti M		Sanchi S.	
Data Stampa 19/05/2011		Pag 2/3		
Procedura Operativ	а ЈО 005а	\\ Sgailab \SVI8B-CR8.docx		

SGAILAB - Laboratori e Ricerche S.r.I.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982 Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY tel/fax. +39 0541988972 - e.mall: info@sgailab.net - PEC sgailab@pec.sgailab.net REA: RN-304214 - C.F. e P.IVA 03686910401

Commessa:	08.040.00
Sondaggio:	SV18B
Campione,s	CR8
da m a m.	13.5-13.9

DISTRIBUZIONE GRANULOMETRICA UNI CEN ISO/TS 178892-4 TE GR Cert.N.-Data 11.0383 - 01-03-11 Data Esecuzione: 22-02-11

Committente: SPEA S.p.A. Lavoro: A1 MI-NA Località: Incisa-Valdarno (FI) Commessa Sondaggio | Campione | sub dam am Verb.Accetlazione Data ric. descr,campione descr.prelievo CAMPIONE 08.040.00 SV18B CR8 13.50 13.90 0 06-08-10 Trattenuto Totale Passante totale Trattenuto totale Setacci A.S.T.M. (mm) (%) (g) 0.00 (%)75.00 100.0 0.00 2 1/2 63.00 100.0 0.00 0,00 Materiale Esaminato: 310.7 g 2" 50.00 100.0 0.00 0.00 1 1/2" 37.50 100.0 0.00 0.00 25.00 1" 100.0 0.00 0.00 n.10 100.0 % 3/4" 19.00 100.0 0.00 0.00 Materiale 1/2" 12.50 100.0 0.00 0.00 Passante al n.40 99.9 3/8 9.50 % 100.0 0.00 0.00 setaccio n.4 4.75 100.0 0.00 0.00 n.200 62.3 % n.10 2.00 100.0 0.00 0.00п.20 0.850 100.0 0.02 0.06 n.40 0.425 99.9 0.09 0.29 n.80 0.180 95.5 4.54 14.10 0.106 n.140 76.4 23.60 73.33 n.200 0.075 62.3 37.67 117.04 CIOTTOLI GHIAIA SABBIA LIMO ARGILLA 100 10 0.1 0.01 0.001 0.የቧቢኂ 100.00 90.00 80.00 70.00 60.00 **3**00.00 Passante (00.00 00.00 1 20.00 10.00 1 1 0.00 3" 200 1 1/2" 3/4" 3/8" 4 10 20 40 80 CLASSIFICAZIONE AGI/S Ciottoli Ghiaia Sabbia Limo Argilla Limo+Argilla Limo con sabbia debolmente argilloso 0.00 0.00 40.05 47.45 59.95 12,50 Percentuale delle frazioni (ASTM) 0.00 0.00 37.67 49.83 12.50 62,33 Osservazioni

MOD.025 Edizione n°2 del 1 Ottobre 2010	
Cert, Sistema Qualità ISO 9001:2008 RINA 17533/08/S	
Setacci ASTM e densimetro 151H	
MAT.n.GR1.(2-24)-085 - GR2.14.85	_

Sperin	nentatore	Controllato	Il Direttore
Brand	chi M.A	Giusti M,	S.Sanchi
ata Slampa	01-03-11		Pag. 1/2
Procedura Op	perativa IO 005a	file:	0

ľοa

SGAILAB - Laboratori e Ricerche S.r.I.

Autorizzazione Ministeriale Prove Geolecniche Terre e Rocce N. 7982 Via Mariotli, 18/a - 47833 - Morciano di Romagna (RN) - ITALY tel/fax. +39 0541988972 - e.mail: info@sgallab.net - PEC sgallab@pec.sgailab.net REA: RN-304214 - C.F. e P.IVA 03686910401

	06.040.00
Sondaggio:	SV18B
Campione.s	CR8
da m a m.	13.5-13.9
nt.Prova:	TE_GR

Commessa:

DISTRIBUZIONE GRANULOMETRICA UNI CEN ISO/TS 178892-4

 Cert.N.-Data
 11.0383
 - 01-03-11
 Data Esecuzione:
 22-02-11

Committente: SPEA S.p.A.
Lavoro: A1 MI-NA

Commessa Sondaggio Campione sub
CAMPIONE 08.040.00 SV18B CR8 0

dam am 13.50 13.90

Località:	Incisa-Valdarno (FI)		
Verb.Accettazione	Data ric.	descr.campione	descr.prelievo
0	06-08-10		

STAMPA VALORI CARATTERISTICI

Setaco	iatura - Peso	Campione Ir	niziale =	310.7	g	Sedimentazione Peso Secco Campione Ps = 50
Setacci A	.S.T.M. (mm)	Trattenuto	Trattenuto	Trattenuto	Passante	
	.O. T.INI. (ITILITY	Parz. (g)	Parziale (%)	Tot. (%)	Tot. (%)	Dispersivo 125 g
3"	75.00	0.0	0.00	0.0	100.0	
2 1/2"	63.00	0.0	0.00	0.0	100.0	
2"	50.00	0.0	0.00	0.0	100.0	Distanza dal Baricentro:
1 1/2"	37.50	0.0	0.00	0.0	100.0	Hg=15.86 - 0,245 R
1"	25.00	0.0	0.00	0.0	100.0	
3/4"	19.00	0.0	0.00	0.0	100.0	Correzione menisco
1/2"	12.50	0.0	0.00	0.0	100.0	C _M =+0.5
3/8"	9.50	0.0	0,00	0.0	100.0	
n.4	4.75	0.0	0.00	0.0	100.0	
n.10	2.00	0.0	0.00	0.0	100.0	Correzione Dispersivo:
n.20	0.850	0.1	0.02	0.0	100.0	$C_D = -4.0$
n.40	0.425	0.2	0.07	0.1	99.9	
п.80	0.180	13.8	4.44	4.5	95.5	Correzione Temperatura
n.140	0.106	59.2	19.06	23.6	76.4	$C_T = -5 + 0.25 \text{ T}$
n.200	0.075	43.7	14.07	37.7	62.3	
	< 0.075	193.7	62.33			Costante K
Som	ma (g)	310.7		FRAZIONE <	0.075	K=gs/(gs-1) x 100/PS = 3.178
	lita (g)	0.0		X =	0.623	

Tempo	Temp.	Lettura	L corr.	L temp.	D	L cor	Tratt.Parz.	Tratt.
(min)	C	R	R'=R+CM	CT	mm	R'+CT+CD	KxR"	XxKxR"
0.5	20.0	33.1	33.6	0.00	0.0530	29.6	94.1	58.6
0.75	20.0	31.3	31.8	0.00	0.0445	27.8	88.3	55.1
1	20.0	29.1	29.6	0.00	0.0398	25.6	81.4	50.7
2	20.0	25.1	25.6	0.00	0.0297	21.6	68.6	42.8
4	20.0	22.3	22.8	0.00	0.0217	18.8	59.7	37.2
8	20.0	19.0	19.5	0.00	0.0160	15.5	49.3	30.7
15	20.0	17.1	17.6	0.00	0.0119	13.6	43.2	26.9
30	20.0	15.2	15.7	0.00	0.0086	11.7	37.2	23.2
60	20.0	14.1	14.6	0.00	0.0061	10.6	33.7	21.0
120	20.0	12.9	13.4	0.00	0.0044	9.4	29.9	18.6
180	20.0	12.1	12.6	0.00	0.0036	8.6	27.3	17.0
240	20.0	11.2	11.7	0.00	0.0032	7.7	24.5	15.3
495	20.0	10.1	10,6	0.00	0.0022	6.6	21.0	13.1
1500	20.0	8.6	9.1	0.00	0.0013	5.1	16.2	10.1

Densità della miscela (g/cmc) = (R/1000) + 1

Soluzione preparata il:

23-02-11

MOD.025 Edizione n°2 del 1 Ottobre 2010	
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S	
Setacci ASTM e densimetro 151H	
MAT.n.GR1.(2-24)-085 - GR2.14.85	

Sperimentatore	Controllato	II Direttore
Branchi M.A	Giusti M.	S.Sanchi
Data Stampa 01-03-11		Pag. 2/2
Procedura Operativa IO 005a	file:	0

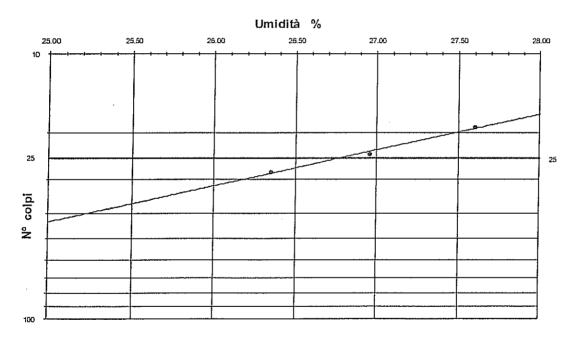
SGAILAB – Laboratori e Ricerche S.r.I. Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

SGAI SCAA-LEOWEIE BREVE LL. WWW.sgailab.net

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: <u>info@sgallab.net</u> REA: RN-304214 - C.F. e P.IVA 03686910401

WWW.5gallab.lict			
COMMITTENTE:	SPEA S.p.A.	DATA:	18 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	13.50
Campione n°:	CR8	profondità a mt.	13.90


(ASTM D4318-00) DETERMINAZIONE DEI LIMITI DI ATTERBERG Rapp N° 11.0372

LIMITE DI LIQUIDITA'

Prova n° Contenuto d'acqua (%) Numero Colpi

1	2	3	4	5
27.60	26.96	26.35		
19	24	28		

LIMITE DI LIQUIDITA' (%) 26.76

LIMITE DI PLASTICITA'

Prova n.

Contenuto d'acqua (%)

1	2	3	4	5
18.64	19.05	19.32	".	

LIMITE DI PLASTICITA' (%) 19.01 INDICE DI PLASTICITA' (%) 7.75

Osservazioni

	MOD.025 Edizione n°1 del 13 Ottobre 2009	
i	Prova eseguita con Cucchiaio Casagrande e bilancia elett. di Pre	c.

Mat. n°.PF 5.1.06 - PF 3, 73, 85 - UG 6, 1, 85 lnc, 0.02	11%
Rif camp, 1° linea PL3 (1-4) 97	

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M.	Giusti M.	Giusti M.	Sanchi S.
Data Stampa 19/05	/2011	Pag 3/3	
Procedura Operativ	a IO 005a	\\ Sgailab \SV18B-	CR8.docx

PROVA №	1	2	3	4
p.u.t.	30.485	33.270	31.961	
p.s.t.	27.814	30.051	29.024	••
tara	18.138	18.112	17.878	
peso H2O	生活を担じませる2.67 間 生	4 計量 3,219 湯	21937	
peso secco	9.676	11 939	11.146	
W	27.60	26.96	26.35	
N. colpi	. 19	24	28	
PROVA Nº	1	2	3	
PROVA № J.u.t.	1 9.784	2 9.840	3 9.985	
1				
o.u.t.	9.784	9.840	9.985	
).u.t.).s.t.	9.784 9.611 8.683	9.840 9.671	9.985 9.741	
o.u.t. o.s.t. ara	9.784 9.611 8.683	9.840 9.671 8.784 0.169 0.887	9.985 9.741 8.478	

SGAILAB — Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 — Fax. +39 0541988972 - e.mail: info@sgailab.net

REA: RN-304214 — C.F. e P.IVA 03686910401

COMMITTENTE:	SPEA S.p.A	DATA:	23 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	15.00
Campione no:	CR9	profondità a mt.	15.30

LABORATORIO GEOTECNICO Procedura PO.06 RAPPORTO DI PROVA

Data di ricevimento campione	6 August 2010

Note:

APERTURA CAMPIONE

Rapp Nº 11.0334

Descrizione Campione:

Sabbia di colore grigio-azzurro.

Stato del campione:

rimaneggiato

Programma prove:

Sommario Caratteristiche Fisico-Meccaniche

Analisi Granulometrica

Osservazioni:

Munsell Gley2 4/5BG dark greenish gray

MOD.023	Edizione nº1 del 13 Ottobre 2009
Cert. Sist	ema Qualità ISO 9001:2008 RINA 17533/08/S.
Cen. Sist	ema Quanta ISO 9001:2008 RINA 17533/08/S.

Lo Sperimentatore	Lo Sperimentatore	Controllato	11 Direttore
Giusti M	Giusti M.	Giusti M.	Sanchi S.
Data Stampa 04/04	/2012	Pag 1/2	
Procedura Operativa IO 005a		\\Sgailab\SV18B-C	R9 does

SGAILAB — Laboratori e Ricerche S.r.l.

Via Mariottli, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sgailab.net

REA: RN-304214 - C.F. e P.IVA 03686910401

COMMITTENTE:	SPEA S.p.A	DATA:	23 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
4-2	<u> </u>	N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	15.00
Campione n°:	CR9	profondità a mt.	15.30

SOMMARIO DELLE CARATTERISTICHE	E FISICO-MECCANICHE	Rapp N° 11.0334
CARATTERISTICHE GENERALI Contenuto d'acqua $W = $	LIMITI DI ATTERBERG Limite di liquidità Wl Limite di plasticità Up Indice di plasticità Ip Limite di ritiro Ws Indice di consistenza IC Attività A	
GRANULOMETRIA (AGI/S) Ghiaia (>2.00 mm)	The same of the sa	= 1.06 % = 94.16 % = 4.78 % = %
Compressione Semplice $\sigma_{C} = \begin{bmatrix} kPa \\ kPa \end{bmatrix}$ Deformazione a Rottura $\epsilon_{V} = \begin{bmatrix} kPa \\ \% \\ MOdulo Elastico Tangente. \\ E = \begin{bmatrix} MPa \\ MPa \\ MPa \end{bmatrix}$	Pocket Penetr PP min max Vane test VT min	= kPa = kPa = kPa = kPa kPa
Modulo edometrico Coeff. di consolidazione Coeff. di compressib. edo. Coeff. di permeabilità Mv = m²/kN m/s	Gradino di carico σ Indice Rigonfiamento Ir	= kPa = %
	Test CD Coesione efficace C' Test CR Coesione efficace C'	kPa kPa
Angolo resistenza a taglio efficace φ' = ο ο Αngolo di resistenza a taglio φcu = ο ο	CD Coesione efficace C' CU Coesione non dren. Ccu UU Coesione non dren. Cuu	= kPa = kPa = kPa
Osservazioni		

MOD.024 Edizione nº1 del 13 Ottobre	2009
Cert. Sistema Qualità ISO 9001:20	008 RINA 17533/08/S.
	700 Territ 17 25 57 0 67 0.

Lo Sperimentatore	Lo Sperimentatore	Controllato	II Direttore
Giusti M	Giusti M.,	Giusti M.	Sanchi S.
Data Stampa 06/04	/2012	Pag 2/2	
Procedura Operativa IO 005a		\\ Sgailab \SV18B-	CR9.doex

0

SGAILAB - Laboratori e Ricerche S.r.I.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982 Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY tel/fax, +39 0541988972 - e.mail: info@sgallab.net - PEC sgallab@pec.sgallab.net REA: RN-304214 - C.F. e P.IVA 03686910401

DISTRIBUZIONE GRANULOMETRICA UNI CEN ISO/TS 178892-4

11.0344

24-02-11

Data Esecuzione:

Cert.N.-Data

Commessa: 08,040,00 Sondaggio: SV18B Campione.s CR9 da m. - a m. 15-15.3 rif.Prova: TE GR

22-02-11 Committente: SPEA S.p.A. A1 MI-NA Lavoro: Località: Incisa-Valdarno (FI) Commessa Sondaggio Campione sub dam Verb.Accettazione am Data ric. descr.campione descr.prelievo CAMPIONE 08.040.00 SV18B 15.00 CR9 15.30 06-08-11 Passante totale Trattenuto totale Trattenuto Totale Setacci A.S.T.M. (mm) (%) (%)(g) 31 75.00 100.0 0.00 0.00 2 1/2 63,00 100.0 0.00 Materiale Esaminato: 0.00 690.2 g 50.00 100.0 0.00 0.00 1 1/2 37.50 100.0 0.00 0.00 25.00 100.0 0.00 0.00 n.10 96.0 % 3/4' 19.00 100.0 0.00 0.00 Materiale 1/2 12.50 100.0 0.00 0.00 Passante al n.40 45.8 % 3/8 9.50 100.0 0.00 0.00 setaccio 4.75 98.9 n.4 1.07 7.38 n.200 % 4.8 n.10 2.00 96.0 4.01 27.70 n.20 0.850 86.4 13.63 94.05 n.40 0.42545.8 54.18 373.96 0.180 n.80 9.4 90.62 625,45 n.140 0,106 5.8 94.21 650.27 n.200 0.075 95.22 657.24 4.8 CIOTTOLI GHIAIA SABBIA LIMO ARGILLA 100 10 0.1 0.01 0.001 0.0001 100.00 90.00 80.00 70.00 60.00 £0.00 Sante 00.00 ್ಷ ೨೦.00 ŀ 20.00 1 L 10.00 0.00 200 3" 3/4" 40 1 1/3" 3/8 10 20 **CLASSIFICAZIONE AGI/S** Ciottoli Ghiaia Sabbia Limo+Argilla Limo Argilla Sabbia 0.00 4.02 91.86 4.12 Percentuale delle frazioni (ASTM) 0.00 94.16 1.06 4.78 Osservazioni

MOD.025 Edizione n°2 del 1 Ottobre 2010	Sperimentatore	Controllato	If Direttore
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S	Ricco A.	Giusti M.	S.Sanchi
Setacci ASTM e densimetro 151H	Data Slampa 24-02-11		Pag. 1/1
MAT.n.GR1.(2-24)-085 - GR2.14.85	Procedura Operativa IO 005a	file:	0

SGAILAB – Laboratori e Ricerche S.r.I.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sgailab.net

REA: RN-304214 - C.F. e P.IVA 03686910401

COMMITTENTE:	SPEA S.p.A	DATA:	23 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
··········		N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	18.00
Campione nº:	CR10	profondità a mt.	18.30

LABORATORIO GEOTECNICO Procedura PO.06 RAPPORTO DI PROVA

Data di ricevimento cam	pione	6 August 2	2010
Note:			
	APERTURA CAMI	PIONE	Rapp N° 11.0335
			rappit Trosss
Descrizione Campione:	Limo sabbioso-argillo	oso di colore grigio.	
Stato del campione:	rimaneggiato		
Programma prove:	Sommario Caratterist	iche Fisico-Meccaniche	

Osservazioni:

Munsell Gley2 3/10BG very dark greenish gray

Analisi Granulometrica

Determinazione dei Limiti di Atterberg

MOD.023 Edizione n°1 del 13 Ottobre 2009
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S.

Lo Sperimentatore	Lo Sperimentatore	Controllato Il Direttor				
Giusti M., Giusti M.		Giusti M. Sanchi S.				
Data Stampa 04/04	/2012	Pag 1/3				
Procedura Operativ	ra 1O 005#	\\Sgailab\SV18B-CR10.doex				

SGAILAB – Laboratori e Ricerche S.r.I.
Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 – Fax. +39 0541988972 - e.mail: info@sqailab.net
REA: RN-304214 – C.F. e P.IVA 03686910401

COMMITTENTE: SPEA S.p.A DATA: 23 February 2011 LAVORO: A1 MI-NA LOCALITA': Incisa Valdarno (FI)	www.syanab.itet			
BOOTESTIT: Intellar valuation (11)	COMMITTENTE:			23 February 2011
	LAVORO:	A1 MI-NA		
			N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	18.00
Campione no:	CR10	profondità a mt.	18.30

SOMMARIO DELLE CARATTERISTICH	E FISICO-MECCANICHE Rapp Nº 11.0335
CARATTERISTICHE GENERALI	LIMITI DI ATTERBERG
Contenuto d'acqua $W = \frac{9}{6}$ Peso dell'unità di volume $\gamma = \frac{9}{6}$ Mg/m³ Peso secco dell'unità di vol. $\gamma d = \frac{9}{6}$ Mg/m³ Peso specifico del terreno $\gamma s = \frac{9}{6}$ Indice dei vuoti $V = \frac{9}{6}$ Tenore in Carbonati $V = \frac{9}{6}$ Velocità Ultrasonica $V = \frac{9}{6}$	Indice di plasticità Ip = 11.67 %
GRANULOMETRIA (AGI/S) Ghiaia (>2.00 mm) G = 0.19 %	GRANULOMETRIA (ASTM) Ghiaia (>4.75 mm) G = 0.00 %
Sabbia (>0.06<2.00 mm) S = 24.38 % Limo + Argilla L+A = 75.43 % Limo (>0.002<0.06mm) L = 56.06 % Argilla (<0.002 mm) A = 19.37 %	Ghiaia (>4.75 mm) G = 0.00 %
	Vana test VT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gradino di carico $\sigma = kPa$ Indice Rigonfiamento Ir = %
PROVA DI TAGLIO DIRE	ETTO AL CASAGRANDE
Angolo resistenza a taglio efficace $\phi' = $ \circ Angolo resistenza a taglio efficace $\phi' = $ \circ	
PROVA DI COMPRES	SIONE TRIASSIALE
Angolo di resistenza a taglio φcu = ο	CD Coesione efficace C' = kPa CU Coesione non dren. Ccu = kPa UU Coesione non dren. Cuu = kPa
Osservazioni	

MOD.024 Edizione nº	°1 del 13 Ottobre 2009
Cert. Sistema Quali	ità ISO 9001:2008 RINA 17533/08/S.
zert, aisteinii Quaii	180 9001:2008 RINA 17533/08/S.

Lo Sperimentatore Lo Sperimentato		Controllato	Il Direttore			
Giusti M	Giusti M.,	Giusti M.	Sanchi S.			
Data Stampa 19/05	/2011	Pag 2/3				
Procedura Operativa IO 005a		\\ Sgailab \SV18B-CR10.doex				

SGAILAB - Laboratori e Ricerche S.r.l.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982
Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY
tel/lax. +39 0541988972 - e.mail: info@sgailab.net - PEC sgallab@pec.sgallab.net
REA: RN-304214 - C.F. e P.IVA 03686910401

DISTRIBUZIONE GRANULOMETRICA UNI CEN ISO/TS 178892-4

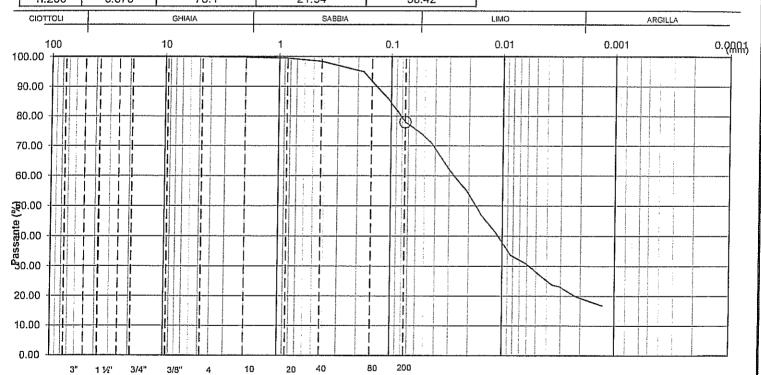
Commessa: 08.040.00

Sondaggio: SV18B

Campione.s CR10

da m. - a m. 18-18.3

nf.Prova: TE GR


				Cer	t.NData	a .	11.0	384	- 01-	-03-11	Data Esecuzione:	22-0	2-11
С	ommittente:	SPEA S.p.A.											
Li	avoro:	A1 MI-NA					İ	Località:	1	Incisa-V	/aldarno (FI)		
		Commessa	Sondaggio Camp	ione sub	dam	am		Verb.Acce	eltazione	Data ric.	. descr.campione	descr. p	relievo
	CAMPIONE	08.040.00	SV18B CR	10 0	18.00	18.30	1	0)	06-08-1	0		
	Setacci A.	S.T.M. (mm)	Passante totale (%)	Trattenuto to	otale	Tratte	nutc (g)	Totale					
	3"	75.00	100.0	0.00			0.00		7				
	2 1/2"	63.00	100.0	0.00			0.00			Material	e Esaminato:	266.25	g
2" 50.00 100.0 0.		0.00	0.00			1			_				

	3"	75.00	100.0	0.00	0.00		
	2 1/2"	63.00	100.0	0,00	0.00	Materiale Esamin	ato:
	2"	50.00	100.0	0.00	0,00		
	1 1/2"	37.50	100.0	0.00	0.00		
	1"	25.00	100.0	0.00	0.00		40
	3/4"	19.00	100.0	0.00	0.00	Materiale	n.10
	1/2"	12.50	100.0	0,00	0.00		- 10
	3/8"	9.50	100.0	0.00	0.00	Passante al	n.40
	п.4	4.75	100.0	0.00	0.00	setaccio	7 200
	n.10	2.00	99.8	0.19	0.51		n.200
İ	n.20	0.850	99.5	0.48	1.27		
	n.40	0,425	98.5	1.55	4.12		
	n.80	0.180	95.0	4.97	13.22		
-	n.140	0.106	85.6	14.36	38.24		
1	n 200	0.075	78.1	21.94	58.42		

 n.10
 99.8
 %

 n.40
 98.5
 %

 n.200
 78.1
 %

CLASSIFICAZIONE AGI/S	Ciottoli	Ghiaia	Sabbia	Limo	Argilla	Limo+Argilla
Limo sabbioso-argilloso	0.00	0.19	24.38	56.06	19.37	75.43
Percentuale delle frazioni (ASTM)	0.00	0.00	21.94	58.69	19.37	78.06

Osservazioni

0

MOD.025 Edizione n°2 del 1 Ottobre 2010

Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S

Setacci ASTM e densimetro 151H

MAT.n.GR1.(2-24)-085 - GR2.14.85

Sperimentatore		Controllato	Il Direttore
Brand	chi M.A.,	Giusti M.	S.Sanchi
Data Stampa	01-03-11		Pag. 1/2
Procedura O	perativa IO 005a	file:	0

SGAILAB - Laboratori e Ricerche S.r.l.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982 Via Mariotti, 18/a - 47833 - Morcíano di Romagna (RN) - ITALY tel/fax, +39 0541988972 - e.mail: info@sgailab.net - PEC sgailab@pec.sgailab.net REA: RN-304214 - C.F. e P.IVA 03686910401

DISTRIBUZIONE GRANULOMETRICA

Commessa: 08.040.00 Sondaggio: SV18B Campione.s CR10 dam.-am. 18-18.3 rif.Prova: TE GR

					A17-1	I VI OM
UNI	CEN	ISO	TS	17889	2-4	

				С	ert.	NDa	ta	11.0	0384 - 01	-03-11	Data Esecuzione:	22-02-11
Committente:	SPEA S.p.A	•						7				
Lavoro:	A1 MI-NA								Località: Incisa-Valdarno (FI)			
	Commessa	Sondaggio	Campione	sub	1 [dam	am]	Verb.Accettaziona	Data ric.	descr.campione	descr.prelievo
CAMPIONE	08.040.00	SV18B	CR10	0		18.00	18.30		0	06-08-1	0	<u> </u>

STAMPA VALORI CARATTERISTICI

Setacciatura - Peso Campione Iniziale =				266.25	g	Sedimentazione Peso Secco Campione Ps = 50 g
Setacci A	.S.T.M. (mm)	Trattenuto	Trattenuto	Trattenuto	Passante	9
	.0.1.101. (11111)	Parz. (g)	Parziale (%)	Tot. (%)	Tot. (%)	Dispersivo 125 g/l
3"	75.00	0.0	0.00	0.0	100.0	9/1
2 1/2"	63.00	0.0	0.00	0.0	100.0	1
2"	50.00	0.0	0.00	0.0	100.0	Distanza dal Baricentro:
1 1/2"	37.50	0.0	0.00	0.0	100,0	Ha=15.86 - 0.245 R'
1"	25.00	0.0	0.00	0.0	100.0	1.19 10.00 0.12.1017
3/4"	19.00	0.0	0.00	0.0	100.0	Correzione menisco
1/2"	12.50	0.0	0.00	0.0	100.0	CM =+0.5
3/8"	9.50	0.0	0.00	0.0	100.0	
n.4	4.75	0.0	0.00	0.0	100.0	
n.10	2.00	0.5	0.19	0.2	99.8	Correzione Dispersivo:
n.20	0.850	0.8	0.29	0.5	99.5	Cp = -4.0
n.40	0.425	2.9	1.07	1.5	98.5	
n.80	0.180	9.1	3.42	5.0	95.0	Correzione Temperatura
n.140	0.106	25.0	9.40	14.4	85.6	Cr = -5 + 0.25 T
n.200	0.075	20.2	7.58	21,9	78.1	5. 5.0.251
	< 0.075	207.8	78.06			Costante K
Somi	na (g)	266.3		FRAZIONE < 0	0.075	K=gs/(gs-1) x 100/PS = 3,178
Perdita (g)		0.0		X =	0.781	1. 95.(95.17.1.100.1.0 - 3.170

Tempo	Temp.	Lettura	L corr.	L temp.	D	L cor	Tratt.Parz.	Tratt.
(min)	C	R	R'=R+CM	CT	mm	R'+CT+CD	KxR"	XxKxR"
0.5	20.0	33.3	33.8	0.00	0.0528	29.8	94.7	73.9
0.75	20.0	32.2	32.7	0.00	0.0439	28.7	91.2	71.2
1	20.0	31.0	31.5	0.00	0.0387	27.5	87.4	68.2
2	20.0	28.1	28.6	0.00	0.0285	24.6	78.2	61.0
4	20.0	25.6	26.1	0.00	0.0209	22.1	70.2	54.8
8	20.0	22.4	22.9	0.00	0.0154	18.9	60.1	46.9
15	20.0	20.1	20.6	0.00	0.0115	16.6	52.8	41.2
30	20.0	17.1	17.6	0.00	0.0084	13.6	43.2	33.7
60	20.0	15.9	16.4	0.00	0.0060	12.4	39.4	30.8
120	20.0	14.1	14.6	0.00	0.0043	10.6	33.7	26.3
180	20.0	13.1	13.6	0.00	0.0036	9.6	30.5	23.8
240	20.0	12.9	13.4	0.00	0.0031	9.4	29.9	23.3
500	20.0	11.5	12.0	0.00	0.0022	8.0	25.4	19.8
1500	20.0	10.3	10.8	0.00	0.0013	6.8	21.6	16.9

Densità della miscela (g/cmc) = (R/1000) + 1

Soluzione preparata il:

23-02-11

	MOD.025 Edizione n°2 del 1 Ottobre 2010
Cert.	Sistema Qualità ISO 9001:2008 RINA 17533/08/S
	Setacci ASTM e densimetro 151H
	MAT.n.GR1.(2-24)-085 - GR2.14.85

Sperimentatore	Controllato	II Direttore
Branchi M.A	Giusti M.	S.Sanchi
Data Slampa 01-03-11		Pag. 2/2
Procedura Operaliya 10 005a	file:	C

SGAILAB — Laboratori e Ricerche S.r.l. Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

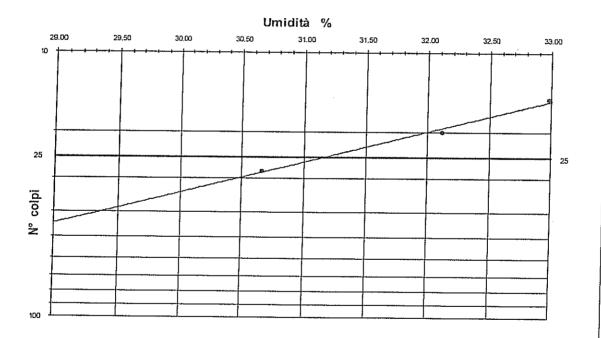
Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: <u>info@sqailab.net</u> REA: RN-304214 - C.F. e P.IVA 03686910401

COMMITTENTE:	SPEA S.p.A	DATA:	23 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	18.00
Campione n°:	CR10	profondità a mt.	18.30

(ASTM D4318-00) DETERMINAZIONE DEI LIMITI DI ATTERBERG Rapp N° 11.0373

LIMITE DI LIQUIDITA'


Prova nº Contenuto d'acqua (

Contenuto d'acqua (%) Numero Colpi

1	2	3	4	5
32.98	32.12	30.66		
15	20	28		

LIMITE DI LIQUIDITA' (%)

31.14

LIMITE DI PLASTICITA'

Prova n.
Contenuto d'acqua (%)

1	2	3	4	5
20.06	19.31	19.05		

LIMITE DI PLASTICITA' (%)

19.47

INDICE DI PLASTICITA' (%)

11.67

Osservazioni

MOD.025 Ediziona	e n°1 del 13 Ottobre 2009
Prova eseguita con	Cucchinio Casagrande e bilancia elett. di Prec.
N. ODE 2105	

Mat. nº.PF	1.06 - PF 3, 73, 85 - UG 6, 1, 85 Inc. 0.0219	ú
Rif camp. 1	inea PL3 (1-4) 97	

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M.	Giusti M.	Giusti M.	Sanchi S.
Data Stampa 19/05/2011		Pag 3/3	
Procedura Operativa IO 005a		\\ Sgailab \SV18B-CR10.docx	

PROVA №	1	2	3	4
p.u.t.	34.671	32.792	33.562	
p.s.t.	30.571	29,223	29.867	
tara	18.138	18,111	17.817	
peso H2O	4,100	3.569	18/695	
eso secco	12,4331	11,112	12.050	
W	32.98	32.12	30.66	
V. colpi	15	20	28	
			,	
'ROVA Nº	1	2		
'ROVA N° .u.t. [1 9.964	9.959	3 9,917	0 = 0 = 0 = 0 = 0
i	1 9.964 9.751		1	
. u.t.	9.751 8.689	9.959	9.917	
. u, t. .s.t.	9.751	9.959 9.759	9.917 9.724	
.v.t. .s.t. ira	9.751 8.689	9.959 9.759 8.723	9.917 9.724 8.711	

SGAILAB — Laboratori e Ricerche S.r.I.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: info@sgailab.net REA: RN-304214 - C.F. e P.IVA 03686910401

vv vv vv i 3 gana Dinice			
COMMITTENTE:	SPEA S.p.A.	DATA:	23 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	21.00
Campione n°:	CR11	profondità a mt.	21.40

LABORATORIO GEOTECNICO Procedura PO.06 RAPPORTO DI PROVA

Data di ricevimento campione	6 August 2010

Note:

APERTURA CAMPIONE

Rapp Nº 11.0333

Descrizione Campione:

Sabbia con limo debolmente argillosa di colore grigio-azzurro.

Stato del campione:

rimaneggiato

Programma prove:

Sommario Caratteristiche Fisico-Meccaniche

Analisi Granulometrica

Determinazione dei Limiti di Atterberg

Osservazioni:

Munsell Gley2 3/10BG very dark greenish gray

MOD.023 Edizione n°1 del 13 Ottobre 2009
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S.

Lo Sperimentatore	Lo Sperimentatore	Controllato	II Direttore
Giusti M	Giusti M.	Giusti M.	Sanchi S.
Data Stampa 04/04/2012		Pag 1/3	
Procedura Operativa IO 005a		\\Sgailab\SV18B-CR11.doex	

SGAILAB — Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Tel. +39 0541988972 — Fax. +39 0541988972 - e.mail: info@sqailab.net

REA: RN-304214 — C.F. e P.IVA 03686910401

COMMITTENTE	: SPEA S.p.A.	DATA:	23 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
west		N° COMMESSA:	08.040.00
Sondaggio nº:	SV18B	profondità da mt.	21.00
Campione n°:	CR11	profondità a mt.	21.40

SOMMARIO DELLE CARATTERISTICH	E FISICO-MECCANICHE Rapp Nº 11.0333
CARATTERISTICHE GENERALI	LIMITI DI ATTERBERG
Contenuto d'acqua $W = $	Indice di plasticità Ip = 7.23 %
GRANULOMETRIA (AGI/S)	GRANULOMETRIA (ASTM)
Ghiaia (>2.00 mm)	Ghiaia (>4.75 mm)
1	COMPRESSIONE
Compressione Semplice $\sigma_{C} = \begin{bmatrix} kPa \\ kPa \end{bmatrix}$ Deformazione a Rottura $\sigma_{C} = \begin{bmatrix} kPa \\ kPa \end{bmatrix}$ Modulo Elastico Tangente. $\sigma_{C} = \begin{bmatrix} kPa \\ kPa \end{bmatrix}$ Modulo Elastico Secante $\sigma_{C} = \begin{bmatrix} kPa \\ kPa \\ kPa \end{bmatrix}$	Vana fact VT
PROVA EDO	OMETRICA
PROVA DI TAGLIO DIRE	CTTO AL CASAGRANDE
Angolo resistenza a taglio efficace $\phi' = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Test CD Coesione efficace C' = kPa Test CR Coesione efficace C' = kPa
PROVA DI COMPRES	SIONE TRIASSIALE
Angolo di resistenza a taglio φcu = ο	CD Coesione efficace C' = kPa CU Coesione non dren. Ccu = kPa UU Coesione non dren. Cuu = kPa
Osservazioni	

MOD	.024 Edizio	ne n°t del I	3 Ottobre 200)9	
Cert.	Sistema (Qualità ISC	9001:2008	RINA	17533/08/S.
CIL.	Sistema C	Zuanta 18C	9001;2008	RINA	17533/08/S.

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore		
Giusti M	Giusti M	Giusti M.	Sanchi S.		
Data Stampa 19/05	Data Stampa 19/05/2011		Pag 2/3		
Procedura Operativ	a IO 005u	\\ Sgailab \SV18B-CR11.docx			

<u> SGAILAB – Laboratori e Ricerche S.r.l.</u>

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982
Via Mariotli, 18/a - 47833 - Morciano di Romagna (RN) - ITALY
tel/fax. +39 0541988972 - a.mail: info@sgallab.net - PEC sgallab@pec.sgallab.net
REA: RN-304214 -- C.F. e P.IVA 03686910401

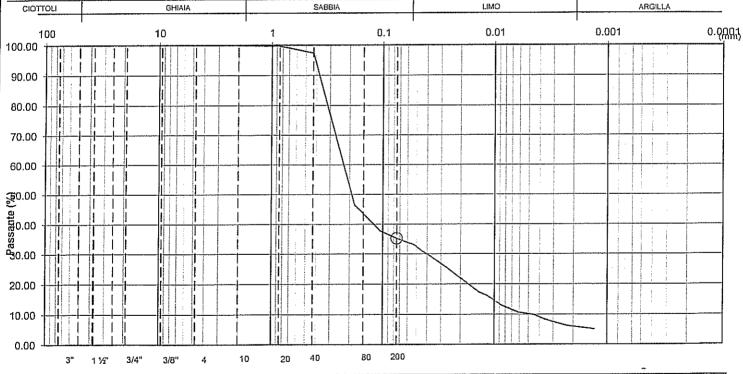
DISTRIBUZIONE GRANULOMETRICA UNI CEN ISO/TS 178892-4

	Cert.NData	11.0385 -	07-03-11	Data Esecuzione:	22-02-11
Committente:	SPEA S.p.A.				
Lavoro:	A1 MI-NA	Località:	Incisa	-Vaidarno (FI)	

sub Verb.Acceltazione Data ric. descr.campione descr.prelievo Commessa Sondaggio Campione dam am CAMPIONE 08.040.00 SV18B CR11 0 21.00 21.40 06-08-10

Setacci A	.S.T.M. (mm)	Passante totale	Trattenuto totale	Trattenuto Totale
00.000,	.0.1 (1)	(%)	(%)	(g)
3"	75.00	100.0	0.00	0.00
2 1/2"	63.00	100.0	0.00	0.00
2"	50.00	100.0	0.00	0.00
1 1/2"	37.50	100.0	0.00	0.00
1"	25.00	100.0	0.00	0.00
3/4"	19.00	100.0	0.00	0.00
1/2"	12.50	100.0	0.00	0.00
3/8"	9.50	100.0	0.00	0.00
n.4	4.75	100.0	0,00	0.00
n.10	2.00	100.0	0.02	0.18
n.20	0.850	99.8	0.23	1.68
n.40	0.425	97.4	2.59	18.98
п.80	0.180	46.4	53.55	393.03
n.140	0.106	37.8	62.16	456.18
n.200	0.075	35.3	64.71	474.92

Materiale Esaminato: 733.9


Materiale
Passante al n.40
setaccio

 n.10
 100.0
 %

 n.40
 97.4
 %

 n.200
 35.3
 %

g

CLASSIFICAZIONE AGI/S	Ciottoli	Ghiaia	Sabbia	Limo	Argilla	Limo+Argilla
Sabbia con limo debolmente argillosa	0.00	0.02	66.03	27.91	6.04	33.95
Percentuale delle frazioni (ASTM)	0.00	0.00	64.71	29.25	6.04	35.29

Osservazioni

0

MOD.025 Edizione n°2 del 1 Ottobre 2010

Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S

Setacci ASTM e densimetro 151H

MAT.n.GR1.(2-24)-085 - GR2.14.85

Sperin	nentatore	Cont	rollato	Il Direttore	
Branc	chi M.A	Gius	sti M.	S.Sanchi	
Data Stampa	01-03-11			Pag. 1/2	
Procedura O	perativa IO 005a	file:		0	

08.040.00

SGAILAB - Laboratori e Ricerche S.r.l.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982 Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY tel/lax. +39 0541988972 - e.mail: info@sgallab.net - PEC sgallab@pec.sgallab.net REA: RN-304214 - C.F. a P.IVA 03686910401

DISTRIBUZIONE GRANULOMETRICA UNI CEN ISO/TS 178892-4

21.40

GOTTING CO.	08.040.00
Sondaggio:	SV18B
Camplone.s	CR11
da m a m.	21-21.4
nt.Prova:	TE CD

Cert.NData	11.0385	- 01-03-11	Data Esecuzione:	22-02-11

Committente: SPEA S.p.A. Lavoro: A1 MI-NA Commessa Sondaggio Campione sub dam am CAMPIONE

CR11

SV18B

Località:	Incisa-Valo	larno (FI)	
Verb.Accettazione	Data ric.	descr.campione	descr.prelievo
0	06-08-10		

STAMPA VALORI CARATTERISTICI

21.00

Setacci A. 3" 2 1/2" 2"	S.T.M. (mm) 75.00 63.00	Trattenuto Parz. (g) 0.0 0.0	Trattenuto Parziale (%) 0.00	Trattenuto Tot. (%)	Passante	Campione Ps = 50
3" 2 1/2"	75.00 63.00	0.0		Tot. (%)		
2 1/2"	63.00		0.00		Tot. (%)	Dispersivo 125 g
		0.0		0.0	100.0	
2"			0.00	0.0	100.0	
	50.00	0.0	0.00	0.0	100.0	Distanza dal Baricentro:
1 1/2"	37.50	0.0	0.00	0.0	100.0	Hg=15.86 - 0.245 R'
1"	25.00	0.0	0.00	0,0	100.0	L 13.00 - 0.243 K
3/4"	19.00	0.0	0.00	0.0	100.0	Correzione menisco
1/2"	12.50	0.0	0.00	0.0	100.0	См =+0.5
3/8"	9.50	0.0	0.00	0.0	100.0	UW 0.3
n.4	4.75	0.0	0.00	0.0	100.0	
n.10	2.00	0.2	0.02	0.0	100.0	Correzione Dispersivo:
n.20	0.850	1.5	0.20	0.2	99.8	CD = -4.0
n.40	0.425	17.3	2.36	2.6	97.4	
n.80	0.180	374.1	50.97	53.6	46.4	Correzione Temperatura
n.140	0.106	63.2	8.60	62.2	37.8	Cr = -5 + 0.25 T
n.200	0.075	18.7	2.55	64.7	35.3	[-3+0.25]
	< 0.075	259.0	35.29	UT./	33.3	Contents I/
Somn		733.9		FRAZIONE < C	1075	Costante K
Perdi		0.0] '	-KAZIONE < (X =	0.353	K=gs/(gs-1) x 100/PS = 3.178

Tempo	Temp.	Lettura	L corr.	L temp.	D	L cor	Tratt.Parz.	Tratt.
(min)	೮	R	R'=R+CM	CT	mm	R'+CT+CD	KxR"	XxKxR"
0.5	20.0	33.1	33.6	0.00	0.0530	29.6	94.1	33.2
0.75	20.0	31.2	31.7	0.00	0.0446	27.7	88.0	31.1
1	20.0	30.1	30.6	0.00	0.0392	26.6	84.5	29.8
2	20.0	27.1	27.6	0.00	0.0289	23.6	75.0	26.5
4	20.0	23.8	24.3	0.00	0.0214	20.3	64.5	22.8
11	20.0	19.0	19.5	0.00	0.0136	15.5	49.3	17.4
15	20.0	18.1	18.6	0.00	0.0118	14.6	46.4	16.4
30	20.0	15.1	15.6	0.00	0.0086	11.6	36.9	13.0
60	20.0	13.1	13.6	0.00	0.0062	9.6	30.5	10.8
120	20.0	12.3	12.8	0.00	0.0044	8.8	28.0	9.9
180	20.0	11.1	11.6	0.00	0.0036	7.6	24.2	8.5
240	20.0	10.5	11.0	0.00	0.0032	7.0	22.2	7.8
490	20.0	9.1	9.6	0.00	0.0023	5.6	17,8	6.3
1495	20.0	8.1	8.6	0.00	0.0013	4.6	14.6	5.2

Densità della miscela (g/cmc) = (R/1000) + 1

Soluzione preparata il:

23-02-11

Sperimentatore	Controllato	Il Direttore
Branchi M.A	Giusti M.	S.Sanchi
Data Stampa 01-03-11		Pag. 2/2
Procedura Operaliva IO 005a	file:	0

SGAILAB - Laboratori e Ricerche S.r.l. Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: <u>info@sgailab.net</u> REA: RN-304214 - C.F. e P.IVA 03686910401

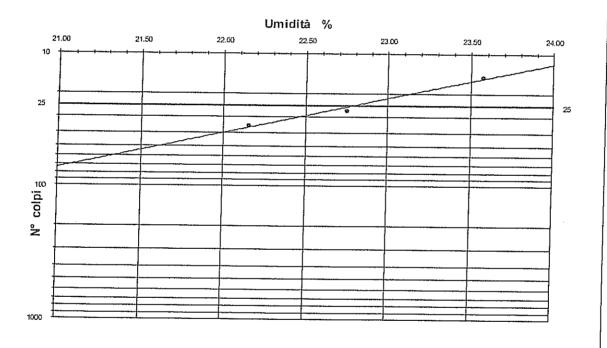
COMMITTENTE:	SPEA S.p.A.	DATA:	23 February 2011
LAVORO:	AI MI-NA	LOCALITA':	Incisa Valdamo (FI)
		N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	21.00
Campione n°:	CRII	profondità a mt.	21.40

(ASTM D4318-00) DETERMINAZIONE DEI LIMITI DI ATTERBERG Rapp N° 11.0374

LIMITE DI LIQUIDITA'

Prova nº Contenuto d'acqua (%)


Numero Colpi

 1
 2
 3
 4
 5

 23.57
 22.75
 22.15
 22.15
 22.15
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57
 23.57

LIMITE DI LIQUIDITA' (%)

22.77

LIMITE DI PLASTICITA'

Prova n. Contenuto d'acqua (%)

	1 1)	ą	//	5
1		<u> </u>		-7	
	16.12	15 23	15 29		
J	10.12	10.20	10.27		

LIMITE DI PLASTICITA' (%)

15.54

INDICE DI PLASTICITA' (%)

7.23

Osservazioni

MOD,025 Edizione	: n°1 del 13 Ottobre 2009
Prova eseguita con	Cucchiaio Casagrande e bilancia elett, di Prec.

Mat. n°.PF 5.1.06 – PF 3. 73. 85 – UG 6. 1. 85 Inc. 0.021%
Rif camp, 1º linea PL3 (1-4) 97

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M.	Giusti M.	Giusti M.	Sanchi S.
Data Stampa 26/05	/2011	Pag 3/3	
Procedura Operativ	a IO 005a	\\ Sgailab \SV18B-	CR11.docx

PROVA Nº	1	2	3	4
p.u.t.	34.499	33,399	35.897	
p.s.t.	31,361	30.574	32.680	
tara	18.050	18.157	18.159	
peso H2O	3.138	2,825	3,217	
peso secco	13.301	12.417	14.521	
W	23.57	22.75	带带型22.15	
N. colpi	15	27	35	
PROVA Nº	I	2	3	
PROVA Nº D.U.t.	10.159	2 10.581	3 10.239	- · ·
o.u.t.	10.159	10.581	10.239	
o.u.t. o.s.t.	10.159 9.935	10.581 10.352 8.848	10.239 10.020	
o.u.t. o.s.t. ara	10.159 9.935 8.545	10.581 10.352 8.848	10.239 10.020 8.588	

15.54

SGAILAB – Laboratori e Ricerche S.r.I. Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax, +39 0541988972 - e.mail: <u>info@sgailab.net</u> REA: RN-304214 - C.F. e P.IVA 03686910401

www.sgailab.net			
COMMITTENTE:	SPEA S.p.A.	DATA:	25 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio nº:	SV18B	profondità da mt.	22.20
Campione no:	CR12	profondità a mt.	22.50

LABORATORIO GEOTECNICO Procedura PO.06 RAPPORTO DI PROVA

Data di ricevimento campione	6 August 2010
•	

Note:

APERTURA CAMPIONE

Rapp Nº 11.0347

Descrizione Campione:

Alternanza di livelli centimetrici sabbioso limosi e livelli millimetrici limosi.

Colore d'insieme grigio-azzurro.

Stato del campione:

rimaneggiato

Programma prove:

Sommario Caratteristiche Fisico-Meccaniche

Analisi Granulometrica

Determinazione dei Limiti di Atterberg

Osservazioni: Munsell Gley2 3/10BG very dark greenish gray

	MOD,023 Edizione nº1 del 13 Ottobre 2009	
ert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S.	Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S.	
	The second secon	

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore		
Giusti M	Giusti M.	Giusti M.	Sanchi S.		
Data Stampa 04/04	/2012	Pag 1/3			
Procedura Operativa IO 005a		\\Sgailab\SV18B-CR12.docx			

SGAILAB — Laboratori e Ricerche S.r.I.
Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY
Tel. +39 0541988972 – Fax. +39 0541988972 - e.mail: info@sgailab.net
REA: RN-304214 – C.F. e P.IVA 03686910401

profondità a mt.

22.50

AAAA AATTO TITLE			
COMMITTENTE:	SPEA S.p.A.	DATA:	25 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00
			, n. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sondaggio nº:	SV18B	profondità da mt.	22.20
Campione n°:	CR12	profondità a mt.	22.50

SOMMARIO DELLE CARATTERISTICH	E FISICO-MECCANICHE Rapp Nº 11.034
CARATTERISTICHE GENERALI	LIMITI DI ATTERBERG
Contenuto d'acqua $W = \frac{9}{100}$ % Peso dell'unità di volume $\gamma = \frac{9}{100}$ Mg/m³ Peso secco dell'unità di vol. $\gamma d = \frac{9}{100}$ Mg/m³ Peso specifico del terreno $\gamma s = \frac{9}{100}$ Mg/m³ Indice dei vuoti $\gamma s = \frac{9}{100}$ Mg/m³ Indice dei vuoti $\gamma s = \frac{9}{100}$ % Tenore in Carbonati $\gamma s = \frac{9}{100}$ % Velocità Ultrasonica $\gamma s = \frac{9}{100}$ % m/s	Limite di liquidità Limite di plasticità Indice di plasticità Limite di ritiro WI = 17.18 % Wp = 14.56 % Indice di plasticità Ip = 2.62 % Ws =
GRANULOMETRIA (AGI/S)	GRANULOMETRIA (ASTM)
Ghiaia (>2.00 mm) G = 0.17 % Sabbia (>0.06<2.00 mm) S = 74.54 % Limo + Argilla L+A = 25.29 % Limo (>0.002<0.06mm) L = 21.66 % Argilla (<0.002 mm) A = 3.63 %	Ghiaia (>4.75 mm)
RESISTENZA A	COMPRESSIONE
Compressione Semplice oc = kPa Deformazione a Rottura ev = % Modulo Elastico Tangente. E = MPa Modulo Elastico Secante E = MPa	Vane test V'
PROVA ED	OMETRICA
PROVA DI TAGLIO DIRE	ETTO AL CASAGRANDE
Angolo resistenza a taglio efficace $\phi' = $ ϕ' = ϕ' = ϕ' = ϕ' = ϕ' = ϕ'	Test CD Coesione efficace C' = kPa
PROVA DI COMPRES	SSIONE TRIASSIALE
Angolo di resistenza a taglio φcu = o	CD Coosione ciricace C - Ki a
Osservazioni	10 THE STATE OF TH

MOD.024 Edizione nº1 del 13	Ottobre 2009
Cert. Sistema Qualità ISO	9001:2008 RINA 17533/08/S.
	;
<u></u>	

Lo Sperimentatore	Lo Sperimentatore Lo Sperimentatore		Il Direttore		
Giusti M	Giusti M Giusti M		Sanchi S.		
Data Stampa 19/05	/2011	Pag 2/3			
Procedura Operativ	a IO 005a	\\ Sgailab \SV18B-CR12.docx			

08.040.00

SV18B

GHIAIA

CAMPIONE

.AB – Laboratori e Ricerche S.r.I.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982 Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY tel/fax, +39 0541988972 - e.mail: info@sgailab.net - PEC sgailab@pac.sgailab.net REA: RN-304214 - C.F. e P.IVA 03686910401

DISTRIBUZIONE GRANULOMETRICA UNI CEN ISO/TS 178892-4

Commessa: 08.040.00 Sandaggio: SV18B Campione.s **CR12** da m. • a m. 22.2-22.5 ní.Prova: TE GR

	Cert	.ivData	411		-03-11	Data Esecuzione:	25-02-11
Committente:	SPEA S.p.A.						
avoro:	A1 MI-NA		Località	1.	Incisa-	Valdarno (FI)	***************************************

22.50

22.20

SABBIA

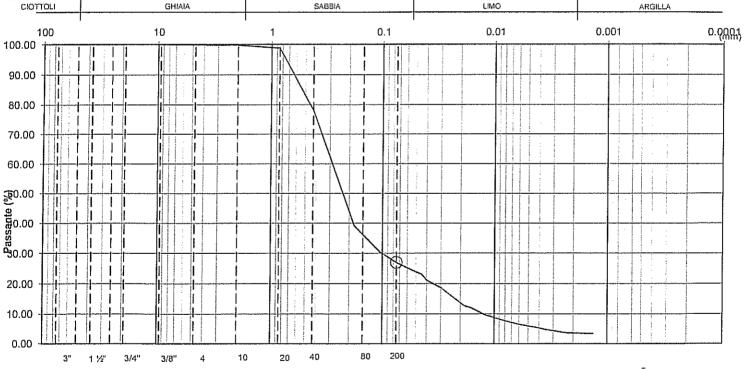
Lavoro: A1 MI-NA li ocalità: Commessa Sondaggio Campione sub ɗam am

CR12

0

-		motor van	aamo (1 1)	
ĺ	Verb.Accettazione	Data ric.	descr.campione	descr.prelievo
	0	06-08-10		

Cotagoi A	STM /mm\	Passante totale	Trattenuto totale	Trattenuto Totale
Setacci A.S.T.M. (mm)		(%)	(%)	(g)
3"	75.00	100.0	0.00	0.00
2 1/2"	63.00	100.0	0.00	0.00
2"	50.00	100.0	0.00	0.00
1 1/2"	37.50	100.0	0.00	0.00
1"	25.00	100.0	0,00	0.00
3/4"	19.00	100.0	0.00	0.00
1/2"	12.50	100.0	0.00	0.00
3/8"	9.50	100.0	0.00	0.00
n,4	4.75	99.9	0,06	0.30
n.10	2.00	99.8	0.17	0.86
п.20	0.850	98.8	1.22	6.31
n.40	0.425	78.2	21.81	112.48
n.80	0.180	39.2	60.82	313.65
n.140	0.106	30.5	69.46	358.18
n.200	0.075	27.0	72.99	376.39


Materiale Esaminato: 515.7 g

Materiale Passante al setaccio

LIMO

n.10 99.8 % n.40 78.2 % n.200 27.0 %

ARGILLA

CLASSIFICAZIONE AGI/S	Ciottoli	Ghiaia	Sabbia	Limo	Argilla	Limo+Argilla
Sabbia limosa	0.00	0.17	74.54	21.66	3.63	25.29
Percentuale delle frazioni (ASTM)	0.00	0.06	72.93	23.38	3.63	27.01

Osservazioni

0

MOD,025 Edizione nº2 del 1 Ottobre 2010 Cert. Sistema Qualità ISO 9001;2008 RINA 17533/08/S Setacci ASTM e densimetro 151H MAT.n.GR1.(2-24)-085 - GR2.14.85

Sperim	entatore	Controllato	II Direttore	
Ricco A.		Giusti M.	S.Sanchi	
Data Stampa	03-03-11		Pag. 1/2	
Procedura Op	erativa IO 005a	file: 0		

Committente:

Lavoro:

SPEA S.p.A.

A1 MI-NA

SGAILAB - Laboratori e Ricerche S.r.l.

Autorizzazione Ministeriale Prove Geotecniche Terre e Rocce N. 7982 Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY tel/fax. +39 0541988972 - e.mail: info@sgallab.net - PEC sgallab@pec.sgallab.net REA: RN-304214 - C.F. e P.IVA 03686910401

DISTRIBUZIONE GRANULOMETRICA UNI CEN ISO/TS 178892-4

Cert.N.-Data 11.0411 - 03-03-11 Data Esecuzione: 25-02-11

Località: Incisa-Valdarno (FI)

 Commessa
 Sondaggio
 Campione
 sub
 dam
 am

 CAMPIONE
 08.040.00
 SV18B
 CR12
 0
 22.20
 22.50

STAMPA VALORI CARATTERISTICI

Setaco	iatura - Peso	Campione Ir	niziale =	515.7	g	Sedimentazione Peso Secco Campione Ps = 50		
Setacci A	.S.T.M, (mm)	Trattenuto Parz. (g)	Trattenuto Parziale (%)	Trattenuto Tot. (%)	Passante Tot. (%)	Dispersivo 125 g/l		
3"	75.00	0.0	0.00	0.0	100.0			
2 1/2"	63.00	0.0	0.00	0.0	100.0			
2"	50.00	0.0	0.00	0.0	100.0	Distanza dal Baricentro:		
1 1/2"	37.50	0.0	0.00	0.0	100.0	Hg=15.86 - 0.245 R'		
1"	25.00	0.0	0.00	0.0	100.0			
3/4"	19.00	0.0	0.00	0.0	100.0	Correzione menisco		
1/2"	12.50	0.0	0.00	0.0	100.0	См =+0.5		
3/8"	9.50	0.0	0.00	0.0	100.0			
n.4	4.75	0.3	0.06	0.1	99.9			
n.10	2.00	0.6	0.11	0.2	99.8	Correzione Dispersivo:		
n.20	0.850	5.5	1.06	1.2	98.8	$C_{D} = -4.0$		
п.40	0.425	106.2	20.59	21.8	78.2			
n.80	0.180	201.2	39.01	60.8	39.2	Correzione Temperatura		
n.140	0.106	44.5	8,63	69.5	30.5	$C_T = -5 \div 0.25 T$		
n,200	0.075	18.2	3.53	73.0	27.0			
	< 0.075	139.3	27.01			Costante K		
Som	ma (g)	515.7		FRAZIONE <	0.075	K=gs/(gs-1) x 100/PS = 3.178		
	lita (g)	0.0		X =	0.270			

Tempo	Temp.	Lettura	L corr.	L temp.	D	L cor	Tratt.Parz.	Tratt.
(min)	C	R	R'=R+CM	CT	mm	R'+CT+CD	KxR"	XxKxR"
0.5	20.0	32.0	32.5	0.00	0.0539	28.5	90.6	24.5
0.75	20.0	30.5	31.0	0.00	0.0450	27.0	85.8	23.2
1	20.0	28.3	28.8	0.00	0.0403	24.8	78.8	21.3
2	20.0	25.2	25.7	0.00	0.0297	21.7	69.0	18.6
6	20.0	18.4	18.9	0.00	0.0186	14.9	47.4	12.8
8	20.0	17.6	18.1	0.00	0.0162	14.1	44.8	12.1
15	20.0	14.9	15.4	0.00	0.0122	11.4	36.2	9.8
30	20.0	13.0	13.5	0.00	0.0088	9.5	30.2	8.2
60	20.0	11.3	11.8	0.00	0.0063	7.8	24.8	6.7
150	20.0	9.8	10.3	0.00	0.0040	6.3	20.0	5.4
180	20.0	9.3	9.8	0.00	0.0037	5.8	18.4	5.0
235	20.0	8.9	9.4	0.00	0.0033	5.4	17.2	4.6
485	20.0	7.8	8.3	0.00	0.0023	4.3	13.7	3.7
1440	20.0	7.5	8.0	0.00	0.0013	4.0	12.7	3.4

Densità della miscela (g/cmc) = (R/1000) + 1

Soluzione preparata il:

25-02-11

MOD.025 Edizione n°2 del 1 Ottobre 2010	
Cert. Sistema Qualità ISO 9001:2008 RINA 17533/08/S	
Setacci ASTM e densimetro 151H	
MAT.n.GR1.(2-24)-085 - GR2.14.85	
Autorizzazione N. 7982 del Minister	ligh or

Sperin	nentatore	Controllato	II Direttore
Rio	co A.	Giusti M.	S.Sanchi
Data Stampa	03-03-11		Pag. 2/2
Procedura Op	peraliva (O 005a	file:	0

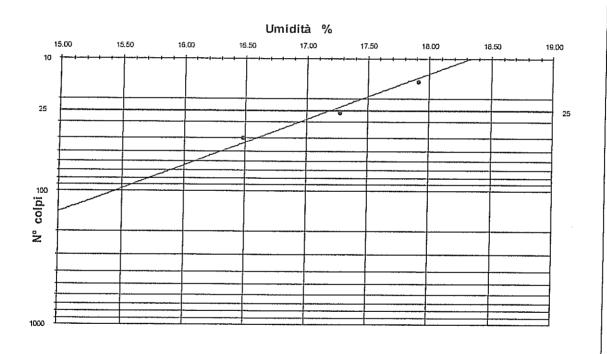
SGAI Lab

SGAILAB - Laboratori e Ricerche S.r.l.

Via Mariotti, 18/a - 47833 - Morciano di Romagna (RN) - ITALY Tel. +39 0541988972 - Fax. +39 0541988972 - e.mail: <u>info@sgailab.net</u> REA: RN-304214 - C.F. e P.IVA 03686910401

COMMITTENTE:	SPEA S.p.A.	DATA:	25 February 2011
LAVORO:	A1 MI-NA	LOCALITA':	Incisa Valdarno (FI)
		N° COMMESSA:	08.040.00

Sondaggio n°:	SV18B	profondità da mt.	22.20
Campione no:	CR12	profondità a mt.	22,50


(ASTM D4318-00) DETERMINAZIONE DEI LIMITI DI ATTERBERG Rapp N° 11.0375

LIMITE DI LIQUIDITA'

Prova n° Contenuto d'acqua (%) Numero Colpi

1	2	3	4	5
18.49	17.92	17.28	16.48	
8	15	26	40	

LIMITE DI LIQUIDITA' (%) 17.18

LIMITE DI PLASTICITA'

Prova n.
Contenuto d'acqua (%)

1	2	3	4	5
14.56	14.56			

LIMITE DI PLASTICITA' (%) 14.56 INDICE DI PLASTICITA' (%) 2.62

Osservazioni

MOD.025 Edizione	e n°1 del 13 Ottobre 2009
Prova eseguita con	Cucchiaio Casagrande e bilancia elett. di Prec.

Mat. n°.PF 5.1.06 - PF 3, 73, 85 - UG 6, 1, 85 Inc. 0.021%	Ú
Rif camp. 1º linea PL3 (1-4) 97	

Lo Sperimentatore	Lo Sperimentatore	Controllato	Il Direttore
Giusti M.	Giusti M.	Giusti M.	Sanchi S.
Data Stampa 19/05	/2011	Pag 3/3	
Procedura Operativ	л IO 005a	\\ Sgnilab \SV18B-	CR12.docx

PROVA №	1	2	3	4
p.u.t.	34.141	29.781	28.622	33.467
p.s.t.	31.624	28.014	27.067	31.303
tara	18.014	18.151	18.067	18.172
peso H2O	2.517	1,767	1.555	2,164
peso secco	13,610	9.863	9.000	13,131
W	18.49	17,92	17,28	16.48
N. colpi	8	15	26	40
PROVA №	1	2	3	
PROVA Nº	1 10.785	2 10.952	3	
o.u.t.			3	
	10.785 10.531 8.786	10.952	3	
o.u.t. o.s.t. ara	10.785 10.531	10.952 10.695	3	
o.u.t. o.s.t.	10.785 10.531 8.786	10.952 10.695 8.930	3	