

Direzione Tecnica

E45 - SISTEMAZIONE STRADALE DEL NODO DI PERUGIA Tratto Madonna del Piano - Collestrada

PROGETTO DEFINITIVO

PG 372

AIMC

14035

ANAS - DIREZIONE TECNICA

IL GEOLOGO

Dott. Geol. Marco Leonardi Ordine Geologi Regione Lazio n. 1541

COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE

Arch. Santo Salvatore Vermiglio Ordine Architetti Provincia di Reggio Calabria n. 1270

VISTO: IL RESP. DEL PROCEDIMENTO

Ing. Alessandro Micheli

VISTO: IL RESP. DEL PROGETTO Arch. Pianif. Marco Colazza I PROGETTISTI SPECIALISTICI

Ing. Ambrogio Signorelli

Ordine Ingegneri Provincia di Roma n. A35111

Ing. Mcieno Perfili Sezione A

Ordine ingegori N° A2657 Provincia di Perusia in A2867 CNERE

MORENO PANFILI

INGEGNERI DELLA PROVINCI

Ing. Giovarni creativing. E Ambientali Settore industriale Dalen zerudke isell'informazione

Ordine Ingegneri Provincia di Roma n. 14069

Ing. Giuseppe Resta

Ordine Ingegneri Provincia di Roma n. 20629 PROGETTAZIONE ATI:

(Mandataria)

(Mandante)

(Mandante)

GPIngegneria

GESTIONE PROGETTI INGEGNERIA srl

cooprogetti

(Mandante)

Studio di Architettura e Ingegneria Moderna

SPECIALISTICHE. (DPR207/10 ART 15 COMMA 12):
Date large Classic Science of the prestations of the prestation of the pres

Dott. Ing. GIORGIO GUIDUCCI Ordine Ingegneri Provincia di Roma n. 14035

OPERE D'ARTE MINORI — OPERE IDRAULICHE

Vasche di prima pioggia e sversamenti accidentali Relazione tecnica e di calcolo

CODICE PF		NOME FILE TOOOMOOSTRE	REVISIONE	SCALA		
DTPG3	B 7 2 D 2 2	CODICE TOOOOMOOSTRREO1		В	_	
D						
С						
В	Rev. a seguito istruttorio	e Prot. U.0834569 e U.0862037	Gennaio '23	Cecchetti	Panfili	Guiducci
А	Emissione		Ottobre '22	Cecchetti	Panfili	Guiducci
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

INDICE

<u>1.</u>	PRE	MESSA	<u>. 4</u>
<u>2.</u>	NOR	RMATIVA DI RIFERIMENTO	<u>. 6</u>
<u>3.</u>	CAR	RATTERISTICHE DEI MATERIALI	<u>. 7</u>
	3.1	CALCESTRUZZO	. 7
	3.2	ACCIAIO	. 7
	3.3	ULTERIORI SPECIFICHE RELATIVE AI MATERIALI	. 8
	3.3.	.1 Calcestruzzo	. 8
<u>4.</u>	STR	ATIGRAFIA DI RIFERIMENTO	<u>11</u>
	4.1	PARAMETRI DEL TERRENO	11
	4.2	LIVELLO DI FALDA	12
	4.3	DEFINIZIONE DELLA COSTANTE DI SOTTOFONDO	12
<u>5.</u>	<u>VAL</u>	UTAZIONE SISMICA	<u>13</u>
	5.1	VITA NOMINALE, CLASSE D'USO E PERIODO DI RIFERIMENTO	13
	5.2	PERICOLOSITÀ SISMICA	14
	5.3	CATEGORIE DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE	15
	5.4	VALUTAZIONE DELL'AZIONE SISMICA LOCALE	16
	5.5	VALUTAZIONE DELL'AZIONE SISMICA SUI MANUFATTI	17
<u>6.</u>	<u>CRI1</u>	TERI DI PROGETTAZIONE E COMBINAZIONI DI CALCOLO	<u>18</u>
	6.1	COMBINAZIONE DELLE AZIONI (CAP. 2.5.3 D.M. 17/01/2018)	18
	6.2	COEFFICIENTI DELLE AZIONI AGLI STATI LIMITE	19
<u>7.</u>	<u>IMP</u>	OSTAZIONE DEL MODELLO	<u>22</u>
	7.1	PROGRAMMA DI CALCOLO UTILIZZATO	22
	7.2	SCHEMATIZZAZIONE DELLA STRUTTURA	23
	7.2.	.1 Elementi Frame2	26
	7.3	SEZIONI DI VERIFICA	29
<u>8.</u>	<u>ANA</u>	ALISI DEI CARICHI	<u>30</u>
	8.1	CARICHI PERMANENTI STRUTTURALI (G1)	30
	8.2	CARICHI PERMANENTI NON STRUTTURALI (G2)	30
	8.2.	.1 Ricoprimento	30
	8.2.	.2 Spinta statica del terreno	31
	8.2.	.3 Pressione dell'acqua	31
	8.3	CARICHI VARIABILI (Q)	33
	8.3.	.1 Pressione dell'acqua interna	33
	8.3.	.2 Traffico	34
PRC	GETTAZIONE	E ATI:	

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

	8.4	CAF	RICHI SISMICI	35
	8.4.	. 1	Forze derivanti dall'eccitazione dei carichi permanenti	36
	8.4.	.2	Sovra spinta del terreno (Wood)	36
	8.4.	.3	Sovra spinta acqua libera	37
<u>9.</u>	CRI	TER	DI VERIFICA	38
	9.1	STA	TI LIMITE DI ESERCIZIO (SLE)	38
	9.1.	. 1	Verifica delle tensioni	38
	9.1.	.2	Verifica dell'apertura delle fessure	39
	9.1	STA	TI LIMITE ULTIMI (SLU)	40
	9.1.	. 1	Verifica degli elementi in calcestruzzo armato	40
	9.2	VEF	RIFICHE DI TIPO GEOTECNICO (GEO)	42
	9.2.	. 1	Collasso per carico limite del complesso fondazione-terreno	42
<u>10</u>	. RISI	ULT/	ATI DEI MODELLI	44
<u>10</u>	<u>INVI</u>	LUP	PI COMBINAZIONI	45
	10.1	SLU	J	45
	10.2	SL\	/	46
	10.3	SLE	= – RARA/SLD	47
	10.4	SLE	= - Frequente	47
	10.5	SLE	E – QUASI PERMANENTI	48
<u>11</u>	<u>VER</u>	IFIC	HE STRUTTURALI	<u>50</u>
	11.1	VEF	RIFICHE STRUTTURALI – SOLETTA SUPERIORE	51
	11.	1.1	SLU/SLV – Verifica a flessione	51
	11.	1.2	SLU/SLV – Verifica a Taglio	52
	11.	1.3	SLE Quasi Permanente – Verifica a fessurazione	53
	11.	1.4	SLE Frequente – Verifica a fessurazione	55
	11.	1.5	SLE Rara – Verifica delle tensioni	57
	11.2	VEF	RIFICHE STRUTTURALI – PIEDRITTO	58
	11.	2.1	SLU/SLV – Verifica a flessione	58
	11.	2.2	SLU/SLV – Verifica a Taglio	59
	11.	2.3	SLE Quasi Permanente – Verifica a fessurazione	60
	11.	2.4	SLE Frequente – Verifica a fessurazione	62
	11.	2.5	SLE Rara – Verifica delle tensioni	64
	11.3	VEF	RIFICHE STRUTTURALI – FONDAZIONE	65
	11.	3.1	SLU/SLV – Verifica a flessione	65
	11.	3.2	SLU/SLV – Verifica a Taglio	
PRC	OGETTAZIONI	E ATI:	-	

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

11.3.3	SLE Quasi Permanente – Verifica a fessurazione	. 67
11.3.4	SLE Frequente – Verifica a fessurazione	. 69
11.3.5	SLE Rara – Verifica delle tensioni	. 71
11.4 VE	RIFICHE STRUTTURALI – MURI INTERNI	. 72
11.4.1	SLU/SLV – Verifica a flessione	. 72
11.4.2	SLU/SLV – Verifica a Taglio	. 74
11.4.3	SLE Quasi Permanente – Verifica a fessurazione	. 75
11.4.4	SLE Frequente – Verifica a fessurazione	. 76
11.4.5	SLE Rara – Verifica delle tensioni	. 76
12 VERIFIC	CHE GEOTECNICHE	<u>. 78</u>
12.1 VE	RIFICHE A GALLEGGIAMENTO	. 78
12.2 VE	RIFICA DELLA CAPACITÀ PORTANTE DEL TERRENO DI FONDAZIONE	. 79
13 ALLEG	ATI DI CALCOLO	. 82

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

1. PREMESSA

La presente relazione illustra l'analisi e le verifiche geotecniche e strutturali effettuate per la progettazione definitiva delle opere minori relative al progetto "E E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA".

L'intervento prevede una serie di viadotti e svincoli che hanno lo scopo di migliorare la viabilità della zona Est della città di Perugia, in località Collestrada, fino a raggiungere la Strada Statale 3bis nei pressi dello svincolo di Montebello (PG).

Lo studio è mirato a fornire il percorso critico seguito per la progettazione degli elementi strutturali presenti e le verifiche eseguite ai sensi delle NTC 18.

Tali vasche risultano interrate con un ricoprimento minimo di 1.00 m composto principalmente dal terreno di riempimento.

La vasca presenta un riempimento minimo di acqua pari a: 0.75m e un riempimento massimo pari a 1.70m .

Gli elementi presentano i seguenti spessori:

Muro contro-terra: 0.30m;Soletta superiore: 0.25m;

Fondazione: 0.40m Muri interni :0.30m

Tra le vasche presenti nel progetto, si dimensiona quella che presenta le condizioni al contorno peggiori. In particolare per quanto concerne le caratteristiche di terreno e di amplificazione del terreno, si fa riferimento alla vasca VPP6 posta alla progressiva 4+016.30 dell'asse principale, mentre per quanto concerna le condizioni al contorno relative ai carichi variabili si fa rifermento alla vasca adiacenti al cappio Ovest.

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Figura 1-1: Area di intervento

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

2. NORMATIVA DI RIFERIMENTO

Il progetto è sviluppato nell'osservanza della vigente normativa tecnica:

- D.P.R. n° 380 del 06/06/2001, integrato ai sensi del D.Lgs. n° 301 del 27/12/2002 Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica;
- UNI EN 206-1:2016 "Calcestruzzo-Parte 1: Specificazione, prestazione, produzione e [2] conformità";
- UNI 11104:2016 "Calcestruzzo Specificazione, prestazione, produzione e conformità -[3] Specificazioni complementari per l'applicazione della EN 206";
- D.M. 17/01/2018 "Aggiornamento delle norme tecniche per le costruzioni" GU n°42 del [4] 20/2/2018;
- Circolare 21 gennaio 2019, n. 7 del Ministero delle Infrastrutture e dei Trasporti approvata [5] Consiglio Superiore Lavori Pubblici "Istruzioni per dei dell'«Aggiornamento delle Norme tecniche per le costruzioni» - Gazzetta Ufficiale del 11.02.2019 n. 35, supplemento ordinario n. 5;
- CNR-DT 207 R1/2018 Istruzioni per la valutazione delle azioni e degli effetti del vento [6] sulle costruzioni:
- UNI EN 1997-1: Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali; [7]
- UNI EN 1998-5: Eurocodice 8 Progettazione delle strutture per la resistenza sismica -[8] Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

3. CARATTERISTICHE DEI MATERIALI

3.1 CALCESTRUZZO

Per garantire la durabilità delle strutture in calcestruzzo e per la definizione della classe di resistenza di queste ultime in funzione delle condizioni ambientali, si farà riferimento alle indicazioni contenute nelle norme UNI EN 206-1 ed UNI 11104. Dato il contatto con acque di prima pioggia, generalmente acide, si considerano i seguenti materiali:

Calcestruzzo

Conforme alla norma UNI EN 206-1/UNI11104					
Classe di resistenza minima:	C_{\min}	C32/40			
Classe di esposizione:		XC2			
Classe di consistenza:	S	S4			
Dimensione massima aggregati [mm]	D _{max}	20			
Copriferro minimo [mm]	С	40			

3.2 ACCIAIO

Acciaio per armature ordinarie

Acciaio in barre ad aderenza migliorata tipo B450C controllato in stabilimento				
Tensione caratteristica di	f_{vk}	$\geq 450N/mm^2$		
snervamento	Jyk	≥ 430N/IIIII		
Tensione caratteristica di rottura	f_{tk}	$\geq 540N/mm^2$		

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

3.3 **ULTERIORI SPECIFICHE RELATIVE AI MATERIALI**

3.3.1 CALCESTRUZZO

La prescrizione del calcestruzzo all'atto del progetto deve essere caratterizzata almeno mediante la classe di resistenza, la classe di consistenza al getto ed il diametro massimo dell'aggregato, nonché la classe di esposizione ambientale, di cui alla norma UNI EN 206:2016.

Per le caratteristiche dei calcestruzzi si fa riferimento alle formule indicate di seguito:

resistenza a compressione cubica: R_{ck}

resistenza a compressione cilindrica: $f_{ck} = 0.83 \cdot R_{ck}$

resistenza a compressione cilindrica media: $f_{cm} = f_{ck} + 8 [N/mm^2]$

resistenza media a trazione semplice per classi <C50/60: $f_{\rm ctm} = 0.30 \cdot f_{\rm ck}^{2/3}$

modulo elastico: $E_{cm} = 22000 \cdot \left[\frac{f_{cm}}{10}\right]^{0.3}$ [N/mm2]

La forte importanza che riveste la durabilità dell'opera in funzione dell'ambiente nel quale è inserita ha comportato una notevole attenzione alle tipologie dei materiali da utilizzarsi per le strutture da realizzare. Si consideri, infatti, che il manufatto deve garantire adeguati livelli di sicurezza anche dopo l'inevitabile degrado dei materiali dovuto al tempo ed all'azione degli agenti atmosferici.

Tutti questi elementi ambientali costituiscono dei fattori importantissimi dai quali non è possibile esulare quando si stabilisce la tipologia dei materiali che saranno impiegati per la realizzazione dell'opera, pensando questo nell'ottica di garantire alla stessa una vita media compatibile con l'investimento che si sta realizzando.

Ai fini di una corretta prescrizione del calcestruzzo, occorre classificare l'ambiente nel quale ciascun elemento strutturale sarà inserito. Per "ambiente", in questo contesto, si intende l'insieme delle azioni chimico-fisiche alle quali si presume che potrà essere esposto il calcestruzzo durante il periodo di vita delle opere e che causa effetti che non possono essere classificati come dovuti a carichi o ad azioni indirette quali deformazioni impresse, cedimenti e variazioni termiche.

In funzione di tali azioni, sono individuate le classi e sottoclassi di esposizione ambientale del calcestruzzo elencate nella tabella che segue.

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Classi di esposizione per calcestruzzo strutturale, in funzione delle condizioni ambientali secondo norma UNI 11104:2004 e UNI EN 206-1:2006

Classe esposizione norma UNI 9858 Classe esposizione norma UNI 11104 UNI EN 206 –1		Descrizione dell'ambiențe	Esempio	Massimo rapporto a/c	Minima Classe di resistenza	Contenuto minimo in aria (%)
1 Assenza	a di rischio di	corrosione o attacco	•			
1 X0		Per calcestruzzo privo di armatura o inserti metallici: tutte le esposizioni eccetto dove c'è gelo/disgelo, o attacco chimico. Calcestruzzi con armatura o inserti metallici:in ambiente molto asciutto.	armatura o inserti metallici: tutte le esposizioni eccetto dove c'è gelo'disgelo, o attacco chimico. Calcestruzzo non armato immerso in suolo non aggressivo o in acqua non aggressiva. Calcestruzzo non armato all'interno di edifici.		C 12/15	
2 Corrosi	one indotta d	a carbonatazione			•	
condizioni riflet	ttano quelle dell'amb	feriscono a quelle presenti nel copi piente circostante.In questi casi la c estruzzo e il suo ambiente.	riferro o nel ricoprimento di inserti metallici, ma in r lassificazione dell'ambiente circostante può esser	molti casi su e adeguata	può considera Questo può no	re che tali en essere il
2 a	XC1	Asciutto o permanentemente bagnato.	Interni di edifici con umidità relativa bassa. Calcestruzzo armato ordinario o precompresso con le superfici all'interno di strutture con eccezione delle parti esposte a condensa, o immerse i acqua.	0,60	C 25/30	
2 a	XC2	Bagnato, raramente asciutto.	Parti di strutture di contenimento liquidi, fondazioni. Calcestruzzo armato ordinario o precompresso prevalentemente immerso in acqua o terreno non aggressivo.	0,60	C 25/30	
5 a	ХСЗ	Umidità moderata.	Calcestruzzo armato ordinario o precompresso in esterni con superfici esterne riparate dalla pioggia, o in interni con umidità da moderata ad alta.	0,55	C 28/35	
4 a 5 b	XC4	Ciclicamente asciutto e bagnato.	Calcestruzzo armato ordinario o precompresso in esterni con superfici soggette a alternanze di asciutto ed umido. Calcestruzzi a vista in ambienti urbani. Superfici a contatto con l'acqua non comprese nella classe XC2.	0,50	C 32/40	
3 Corrosi	one indotta d	a cloruri esclusi quelli	provenenti dall'acqua di mare			
5 a	XD1	Umidità moderata.	Calcestruzzo armato ordinario o precompresso in superfici o parti di ponti e viadotti esposti a spruzzi d'acqua contenenti cloruri.	0,55	C 28/35	
4 a 5 b	XD2	Bagnato, raramente asciutto.	Calcestruzzo armato ordinario o precompresso in elementi strutturali totalmente immersi in acqua anche industriale contenete cloruri (Piscine).	0,50	C 32/40	
5 c	XD3	Ciclicamente bagnato e asciutto.	Calcestruzzo armato ordinario o precompresso, di elementi strutturali direttamente soggetti agli agenti disgelanti o agli spruzzi contenenti agenti disgelanti. Calcestruzzo armato ordinario o precompresso, elementi con una superficie immersa in acqua contenente cloruri e l'altra esposta all'aria. Parti di ponti, pavimentazioni e parcheggi per auto.	0,45	C 35/45	

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Classe esposizione norma UNI 9858	Sizione		Massimo rapporto a/c	Minima Classe di resistenza	Contenuto minimo in aria (%)	
4 Corrosi	one indotta c	la cloruri presenti nell'a	acqua di mare		•	•
4 a 5 b			Calcestruzzo armato ordinario o precompresso con elementi strutturali sulle coste o in prossimità.	0,50	C 32/40	
	XS2	Permanentemente sommerso.	Calcestruzzo armato ordinario o precompresso di strutture marine completamente immersi in acqua.	0,45	C 35/45	
	XS3	Zone esposte agli spruzzi o alle marea.	Calcestruzzo armato ordinario o precompresso con elementi strutturali esposti alla battigia o alle zone soggette agli spruzzi ed onde del mare.	0,45	C 35/45	
5 Attacco	dei cicli di ge	elo/disgelo con o senza				
2 b	XF1	Moderata saturazione d'acqua,in assenza di agente disgelante.	Superfici verticali di calcestruzzo come facciate e colonne esposte alla pioggia ed al gelo. Superfici non verticali e non soggette alla completa saturazione ma esposte al gelo, alla pioggia o all'acqua.	0,50	C 32/40	
3	XF2	Moderata saturazione d'acqua, in presenza di agente disgelante.	Elementi come parti di ponti che in altro modo sarebbero classificati come XF1 ma che sono esposti direttamente o indirettamente agli agenti disgelanti.	0,50	C 25/30	3,0
2 b	XF3	Elevata saturazione d'acqua, in assenza di agente disgelante	Superfici orizzontali in edifici dove l'acqua può accumularsi e che possono essere soggetti ai fenomeni di gelo, elementi soggetti a frequenti bagnature ed esposti al gelo.	0,50	C 25/30	3,0
3	XF4	Elevata saturazione d'acqua, con presenza di agente antigelo oppure acqua di mare.	Superfici orizzontali quali strade o pavimentazioni esposte al gelo ed ai sali disgelanti in modo diretto o indiretto, elementi esposti al gelo e soggetti a frequenti bagnature in presenza di agenti disgelanti o di acqua di mare.	0,45	C 28/35	3,0
6 Attacco	chimico**					
5 a	XA1	Ambiente chimicamente debolmente aggressivo secondo il prospetto 2 della UNI EN 206-1	Contenitori di fanghi e vasche di decantazione. Contenitori e vasche per acque reflue.	0,55	C 28/35	
4 a 5 b	XA2	Ambiente chimicamente moderatamente aggressivo secondo il prospetto 2 della UNI EN 206-1	Elementi strutturali o pareti a contatto di terreni aggressivi.	0,50	C 32/40	
5 c	ХАЗ	Ambiente chimicamente fortemente aggressivo secondo il prospetto 2 della UNI EN 206-1	Elementi strutturali o pareti a contatto di acque industriali fortemente aggressive. Contenitori di foraggi, mangimi e liquame provenienti dall'allevamento animale. Torri di raffreddamento di fumi di gas di scarico industriali.	0,45	C 35/45	

 ^{*)} Il grado di saturazione della seconda colonna riflette la relativa frequenza con cui si verifica il gelo in condizioni di saturazione:

 moderato: occasionalmente gelato in condizione di saturazione;
 elevato: alta frequenza di gelo in condizioni di saturazione.

Le resistenze caratteristiche R_{ck} della tabella precedente sono da considerarsi quelle minime in relazione agli usi indicati in funzione della classe di esposizione.

Le miscele non presenteranno un contenuto di cemento minore di 340 kg/m³. La definizione di una soglia minima per il dosaggio di cemento risponde all'esigenza di garantire in ogni caso una sufficiente quantità di pasta di cemento, condizione essenziale per ottenere un calcestruzzo indurito a struttura chiusa e poco permeabile. Nelle normali condizioni operative, il rispetto dei valori di R_{ck} e a/c della tabella precedente può comportare dosaggi di cemento anche sensibilmente più elevati del valore minimo indicato.

^{**)} Da parte di acque del terreno e acque fluenti.

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

4. STRATIGRAFIA DI RIFERIMENTO

Per la definizione della stratigrafia di progetto e delle caratteristiche dei materiali si è fatto riferimento alla relazione geotecnica e ai profili geotecnici a cui si rimanda.

La zona geotecnica è caratterizzata da due strati di limo e argilla debolmente e mediamente sabbioso, con al di sotto è presente uno strato ghiaioso.

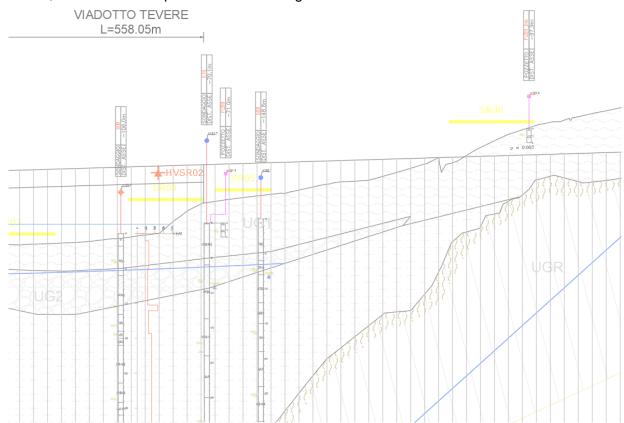


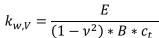
Figura 4.1 Stralcio del Profilo geotecnico

4.1 PARAMETRI DEL TERRENO

I parametri geotecnici assunti in fase di progetto, in via cautelativa, sono:

	CARATTERISTICHE MECCANICHE DELLE UNITA' GEOTECNICHE									
	U NITA'	Descrizione	?n (kN/m³)	c' (kPa)	f '	c₁ (kPa)		E (MPa)		
П	UG1	Limo con argilla sabbioso	18 - 19	5 - 10	25 - 27	50 - 80		20 -25		
٦	UG2	Ghiaia sabbiosa limosa/Sabbia limosa	18 - 22	0 - 5	29 - 35	-		40 - 60		
						z<10m	170 - 200			
	UG3	Limo e argilla da sabbioso a debolmente sabbioso	19 - 21	5 - 20	24 - 30	10m <z<30m< td=""><td>200 - 250</td><td>45</td><td>- 60</td></z<30m<>	200 - 250	45	- 60	
						z>30m 250 - 300				
		l :ill h.i	40.00		05.00	100 - 140		z<10m	25 - 35	
	UG4	Limo con argilla sabbioso	18 - 20	0 - 10	25 - 29			z>10m	35 - 45	

Tabella 4-1: Caratteristiche geotecniche dei terreni


OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

4.2 LIVELLO DI FALDA

Nei calcoli si è assunto un livello di falda ad una quota di circa 2.00 m sotto il piano campagna.

DEFINIZIONE DELLA COSTANTE DI SOTTOFONDO

Il terreno viene considerato all'interno del modello attraverso una trave su suolo elastico. Il suo valore viene valutato attraverso la trattazione di Vesic.

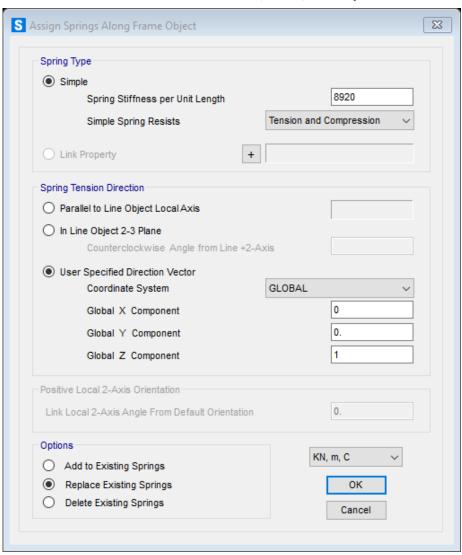


Figura 4.2 Valore della molla k di fondazione

Il valore orizzontale della molla viene preso pari alla metà di quella verticale.

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

5. VALUTAZIONE SISMICA

In accordo alle NTC2018, l'azione sismica da considerare nelle verifiche dei diversi stati limite di progetto è definita a partire dalla "pericolosità sismica di base" del sito di costruzione, a sua volta espressa in termini di:

- accelerazione orizzontale massima attesa in condizioni di campo libero su suolo rigido, con superficie topografica orizzontale (ag);
- ordinate dello spettro di risposta elastica in accelerazione Se(T) "ancorato" al valore di a₀. facendo riferimento a prefissate probabilità di eccedenza PVR nel periodo di riferimento VR per la vita utile della struttura.

Data la probabilità di superamento nel periodo di riferimento considerato, funzione dello Stato Limite di interesse per la verifica, la forma spettrale è definita attraverso i valori dei seguenti parametri relativi ad un sito di riferimento rigido e orizzontale:

- a_a accelerazione orizzontale massima su sito rigido e superficie topografica orizzontale;
- Fo valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T_c* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Nei paragrafi sequenti saranno stabiliti il periodo di riferimento per l'azione sismica sulla base della classificazione delle opere in progetto e gli stati limite di interesse per la verifica strutturale, insieme ai periodi di ritorno corrispondenti.

VITA NOMINALE. CLASSE D'USO E PERIODO DI RIFERIMENTO

La Vita Nominale di progetto di un'opera (V_N), intesa come il numero di anni in cui la stessa può essere usata per lo scopo al quale è destinata purché soggetta alla manutenzione ordinaria, è così stabilita dalle NTC2018:

- Vn ≤ 10 anni, per costruzioni temporanee e provvisorie;
- Vn ≥ 50 anni, per costruzioni con livelli di prestazioni ordinari;
- Vn ≥ 100 anni per costruzioni con livelli di prestazioni elevati.

Le verifiche sismiche di opere con V_N ≤ 10 anni o di opere in fase di costruzione possono omettersi quando il progetto prevede che la condizione provvisoria permanga per meno di 2 anni.

Ai fini della definizione dell'azione sismica di progetto, per tutte le in esami si assumerà:

$V_N = 50$ anni.

Con riferimento alle conseguenze di un'interruzione di operatività o di un eventuale collasso in presenza di azioni sismiche, le Norme Tecniche distinguono le costruzioni in classi d'uso, legate ad esigenze di operatività nelle fasi immediatamente successive ad un evento sismico.

Le classi d'uso, caratterizzate mediante il coefficiente d'uso (C_U), sono così definite:

- Classe I (CU=0.7): costruzioni con presenza solo occasionale di persone, edifici agricoli;
- Classe II (CU=1.0): [...] Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. [...];
- Classe III (CU = 1.5): [...] Reti viarie extraurbane non ricadenti in Classe d'uso IV. Reti ferroviarie la cui interruzione provochi situazioni di emergenza [...].
- Classe IV (CU = 2.0): [...] Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade" e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico [...].

Di conseguenza è attribuita la Classe IV ($C_U=2.0$).

GESTIONE PROGETTI INGEGNERIA srl

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

L'azione sismica da considerare nelle verifiche è fissata in relazione ad un periodo di riferimento V_R che, per ciascun tipo di opera, si ricava moltiplicandone la vita nominale VN per il coefficiente d'uso C_U:

$$V_R = V_N \cdot C_U$$

Alla luce di quanto sopra esposto, il periodo di riferimento V_R rispetto al quale calcolare l'azione sismica di progetto è, per tutte le opere:

$V_R = 50 \cdot 2 = 100 \text{ anni.}$

La strategia di progettazione per i differenti stati limite di cui al punto 3.2.1 delle NTC-2018 è quindi ricavata dalla seguente formula (formula 3.2.0 delle NTC-2018), in funzione delle probabilità di superamento P_{VR} indicate in tabella 3.2.1 nel periodo di riferimento V_R (si veda anche la tabella sequente):

$$T_R = -\frac{V_R}{\ln(1 - P_{VR})}$$

 $extbf{Tab. 3.2.I}$ – Probabilità di superamento $P_{ extbf{V}_{ extbf{D}}}$ in funzione dello stato limite considerato

Stati Limite	$P_{V_{\overline{R}}}$: Probabilità di superamento nel periodo di riferimento $V_{\overline{R}}$				
Stati limite di esercizio	SLO	81%			
Stati illilite di esercizio	SLD	63%			
Stati limite ultimi	SLV	10%			
Stati illinte ultilli	SLC	5%			

Tabella 5-1: Probabilità di superamento nel periodo di riferimento V_R per differenti stati limite (NTC-2018)

I valori del tempo di ritorno T_R in anni per l'opera in esame risultano pertanto:

Tempo di di ritorno T_R				
SLO	60 anni			
SLD	101 anni			
SLV	949 anni			
SLC	1950 anni			

Tabella 5-2: Tempo di ritorno sismico

5.2 PERICOLOSITÀ SISMICA

Nelle norme tecniche NTC-2018 (Allegato B) sono forniti, secondo un reticolo di riferimento e per differenti intervalli di riferimento, i parametri sismici a_g , F_O e $T_{\mathcal{C}}^*$ per un sito rigido orizzontale (come definiti al paragrafo 3.2 delle NTC-2018) necessari per la determinazione delle azioni sismiche. Qualora l'area in esame non ricada in corrispondenza dei nodi del reticolo di riferimento, i valori dei parametri di interesse possono essere calcolati come media pesata dei valori assunti nei quattro vertici della maglia elementare del reticolo di riferimento, mediante la seguente espressione:

$$p = \frac{\sum_{i=1}^{4} \frac{p_i}{d_i}}{\sum_{i=1}^{4} \frac{1}{d_i}}$$

in cui:

- è il valore del parametro di interesse nel punto in esame; р
- è il valore del parametro di interesse nell'i-esimo punto della maglia elementare contenente p_i il punto in esame:
- d_i è la distanza del punto in esame dall'i-esimo punto della maglia suddetta.

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Inoltre, qualora le tabelle di pericolosità sismica su reticolo di riferimento non contemplino il periodo di ritorno T_R corrispondente alla V_R e P_{VR} prefissati, il valore del generico parametro p (a_g , F_O , T_c^*) ad esso corrispondente potrà essere ricavato per interpolazione a partire dai dati relativi di T_R previsti nella pericolosità sismica, utilizzando la seguente espressione, in allegato A alle NTC-2018:

$$\log(p) = \log(p_1) + \log\left(\frac{p_2}{p_1}\right) \cdot \log\left(\frac{T_R}{T_{R1}}\right) \cdot \left[\log\left(\frac{T_{R2}}{T_{R1}}\right)\right]^{-1}$$

in cui:

è il valore del parametro di interesse al T_R desiderato;

 T_{R1} , T_{R2} sono i periodi di ritorno più prossimi a T_R per i quali si dispone dei valori di p_1 e p_2 del generico parametro p.

Di seguito si riportano i valori dei parametri sismici a_q , F_0 , T_c^* riferiti alle coordinate geografiche dell'opera oggetto di verifica.

Coo	Coordinate 43, 0619° N / 12, 4218° O								
	$T_R (anni)$ $a_g [g]$ F_0 $T_C^* (s)$								
SLD	101	0.141	2.402	0.294					
SLV	949	0.291	2.474	0.326					
SLC	1950	0.314	2.482	0.330					

Tabella 5-3: Parametri sismici

CATEGORIE DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE 5.3

In accordo alle Norme Tecniche, le categorie di sottosuolo vengono distinte principalmente in funzione dei valori di V_S che caratterizzano il volume significativo del terreno con cui l'opera interagisce. La scelta deriva dal fatto che l'amplificazione sismica di un deposito è dipendente dal modulo di taglio a piccole deformazioni (G₀), a sua volta legato alla velocità di propagazione delle onde di taglio a piccole deformazioni mediante la ben nota relazione:

$$G_0 = \rho \cdot V_S^2$$

essendo ρ la densità del materiale che costituisce il deposito.

Per un dato sito, le Norme definiscono la velocità equivalente di propagazione delle onde di taglio (V_{S,eq}) mediante la formula:

$$V_{S,eq} = \frac{H}{\displaystyle\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

essendo H lo spessore complessivo del deposito sopra al substrato, hi=spessore (in metri) dell'iesimo strato compreso e V_{s.i}=velocità delle onde di taglio nell'i-esimo strato.

Per i siti nei quali la profondità del substrato è maggiore di 30 m (condizione sempre riscontrata lungo il tracciato), si pone H=30 m e nella formula si considereranno gli strati fino a 30 m. La velocità equivalente viene indicata come V_{S,30}.

In accordo alle NTC2018, l'effetto della risposta sismica locale sulla pericolosità di base si valuta mediante il coefficiente di sito (S), funzione sia della categoria di sottosuolo sopra determinata (Ss) sia dell'andamento plano altimetrico della superficie topografica (S_T):

$$S = S_S \cdot S_T$$
.

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Il coefficiente S_S per ciascuna categoria di sottosuolo si ricava dalle espressioni fornite in Tabella 3.2.IV al par. 3.2.3 delle Norme Tecniche.

Tabella 5-4: Tab. 3.2.IV delle Norme Tecniche (espressioni di SS e di CC)

Categoria sottosuolo	S_{s}	C _C
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10 \cdot (T_{\rm C}^*)^{-0,20}$
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_{\rm C}^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	$1,25 \cdot (T_{\rm C}^*)^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1,15 \cdot (T_{\rm C}^*)^{-0,40}$

Per le opere in progetto si assume la categoria di suolo B.

Per quanto riguarda l'eventuale amplificazione topografica, al coefficiente S_T possono essere assegnati i valori seguenti in funzione della categoria topografica corrispondente.

Tabella 5-5: Tab. 3.2.III delle Norme Tecniche (categorie topografiche)

Categoria topografica	Ubicazione dell'opera o dell'intervento	S_T
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
T3	In corrispondenza della cresta di un rilievo con pendenza media minore o uguale a 30°	1,2
T4	In corrispondenza della cresta di un rilievo con pendenza media maggiore di 30°	1,4

Considerato che il tracciato insiste su terreni sostanzialmente terreni con inclinazione media i > 15° (cat. T2), si assume, indipendentemente dall'ubicazione dell'opera, $S_T = 1.20$.

5.4 VALUTAZIONE DELL'AZIONE SISMICA LOCALE

In funzione delle categorie sopra definite è possibile definire i corrispondenti coefficienti amplificativi (secondo SLV):

- S_S = coefficiente di amplificazione stratigrafica = 1.110
- S_T = coefficiente di amplificazione topografica = 1.200
- C_C = coefficiente funzione della cat. di sottosuolo = 1.332

L'accelerazione massima di progetto è data da $A_{\text{max}}[g] = a_g \cdot S_s \cdot S_T$

Categoria di sottosuolo					
В		T _R (anni)	$a_{g}[g]$	S	A _{max} [g]
	SLD	101	0.141	1.332	0.187
	SLV	949	0.291	1.332	0.387
	SLC	1950	0.314	1.332	0.418

Tabella 5-6: Azioni delle accelerazioni massime attese in sito

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

5.5 VALUTAZIONE DELL'AZIONE SISMICA SUI MANUFATTI

Le azioni sismiche di progetto sono definite sulla base dei dati derivanti dalla pericolosità sismica $(a_g,\,F_0,\,T_c^*)$, della categoria di sottosuolo e delle condizioni topografiche del sito come definite al paragrafo 3.2.2 delle NTC-2018.

In funzione delle categorie sopra definite è possibile ottenere i corrispondenti coefficienti amplificativi agli SLV:

$$A_{\text{max}}(\text{SLV})[g] = a_g \cdot S_s \cdot S_T = 0.387 g$$

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

6. CRITERI DI PROGETTAZIONE E COMBINAZIONI DI CALCOLO

Il progetto del sottovia in esame è stato svolto, secondo quanto prescritto dalle normative vigenti (NTC 2018), valutandone la sicurezza e le prestazioni in relazione agli stati limite che si possono verificare durante la vita nominale delle opere stesse:

- Stati limite ultimi (SLU), il superamento dei quali ha carattere irreversibile e si definisce collasso: crolli, perdite di equilibrio e dissesti gravi (totali o parziali), anche a seguito di eventi eccezionali (ad es. urti);
- Stati limite di esercizio (SLE), il superamento dei quali può avere carattere reversibile o irreversibile e determina l'incapacità delle opere di garantire le prestazioni previste per le condizioni di esercizio.

6.1 COMBINAZIONE DELLE AZIONI (CAP. 2.5.3 D.M. 17/01/2018)

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\sum_{j \geq l} \gamma_{G,j} G_{k,j} " + " \gamma_P P " + " \gamma_{Q,l} Q_{k,l} " + " \sum_{i \geq l} \gamma_{Q,i} \psi_{0,i} Q_{k,i}$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili:

$$\sum_{i \geq 1} G_{k,j} \text{"+"} P \text{"+"} Q_{k,1} \text{"+"} \sum_{i \geq 1} \psi_{0,i} Q_{k,i}$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$\sum_{{}_{i>1}}\!G_{k,j}"+"P"+"\psi_{l,l}Q_{k,l}"+"\sum_{{}_{i>1}}\!\psi_{2,i}Q_{k,i}$$

Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$\sum_{i \geq 1} G_{k,j} "+" P"+" \sum_{i \geq 1} \psi_{2,i} Q_{k,i}$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica:

$$\sum_{i\geq 1} G_{k,j} + P' + A_{Ed} + \sum_{i\geq 1} \psi_{2,i} Q_{k,i}$$

La progettazione e verifica degli elementi strutturali è condotta in conformità alla normativa vigente Norme Tecniche per le Costruzioni 2018 (DM 17/01/2018). Le verifiche tensionali degli elementi strutturali sono esequite col metodo degli stati limite. Ai fini del dimensionamento e delle verifiche sono stati presi in esame i seguenti approcci di calcolo, secondo quanto specificato in NTC 2018:

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Per ognuno degli stati limite sopra definiti si adotteranno le combinazioni di carico definite precedentemente.

COEFFICIENTI DELLE AZIONI AGLI STATI LIMITE 6.2

Per ogni Stato Limite Ultimo (SLU) deve essere rispettata la condizione:

 $E_d \leq R_d$.

E_d è il valore di progetto dell'azione o dell'effetto dell'azione e R_d è il valore di progetto della resistenza. La verifica della condizione (E_d ≤ R_d) deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3). I diversi gruppi di coefficienti di sicurezza parziali sono scelti nell'ambito di due approcci progettuali distinti.

Nel primo approccio progettuale (Approccio 1) sono previste due diverse combinazioni di gruppi di coefficienti:

Combinazione 1 A1+M1+R1 Combinazione 2 A2+M2+R2

Nel secondo approccio progettuale (Approccio 2) è prevista un'unica combinazione di gruppi di coefficienti:

Combinazione A1+M1+R3

Per entrambi gli approcci, i coefficienti parziali sulle azioni (A) e sui materiali (M) sono riassunti rispettivamente nelle tabelle 2 e 3.

Nel caso in cui si consideri la condizione di urto per svio (condizione applicata unicamente agli SLU), per la definizione dei fattori parziali sulle azioni si fa riferimento alla combinazione "eccezionale", definita al Par. 2.5.3 delle NTC2018. In tale combinazione si applicano i fattori parziali delle azioni secondo quanto prescritto, mentre i fattori parziali sugli spostamenti e sulle resistenze sono definiti in accordo con l'approccio considerato.

In presenza di sisma, gli Stati Limite di riferimento per le verifiche sono suddivisi in:

Stati limite di Esercizio:

- Stato Limite di immediata Operatività SLO per le strutture ed apparecchiature che debbono restare operative dopo l'evento sismico.
- Stato Limite di Danno SLD definito come lo stato limite da rispettare per garantire la sostanziale integrità dell'opera ed il suo immediato utilizzo.

Stati Limite Ultimi:

- Stato Limite di Salvaguardia della Vita umana SLV, definito come lo stato limite in cui la struttura subisce una significativa perdita della rigidezza nei confronti dei carichi orizzontali ma non nei confronti dei carichi verticali. Permane un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali.
- Stato Limite di Prevenzione del Collasso SLC, stato limite nel quale la struttura subisce gravi danni strutturali, mantenendo comunque un margine di sicurezza per azioni verticali ed un esiguo margine di sicurezza a collasso per carichi orizzontali.

In condizioni sismiche, la resistenza di progetto R_d deve essere confrontata con azioni di progetto E_d definite adottando un coefficiente unitario sulle azioni.

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Per la verifica agli SLU si adottano i valori dei coefficienti parziali della tabella sotto riportata (Rif. Cap 5 delle NTC 2018):

Tab. 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU(t)	A1	A2
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	Vc2		0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	ΥQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto favorevoli sfavorevoli		Υε 1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti favorevoli vincolari sfavorevoli		Υε2· Υε3· Υε4	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

Tab. 5.1.VI - Coefficienti ψ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente Ψ ₀ di combi- nazione	Coefficiente Ψ ₁ (valori frequenti)	Coefficiente Ψ ₂ (valori quasi permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

[🕮] Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ 1,30 per instabilità in strutture con precompressione esterna

^{(4)1,20} per effetti locali

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

I valori caratteristici dei azioni dovute al traffico sono funzione del gruppo di carico considerato, come mostrato in Tab. 5.1.IV delle NTC 2018 sotto riportata:

Tab. 5.1.IV – Valori caratteristici delle azioni dovute al traffico

	Carichi sulla superficie carrabile				Carichi su marciapiedi e piste ciclabili non sormontabili	
	Carichi verticali		Carichi orizzontali		Carichi verticali	
Gruppo di azioni	Modello principale (schemi di carico 1, 2, 3, 4 e 6)	Veicoli spe- ciali	Folla (Sche- ma di carico 5)	Frenatura	Forza centrifuga	Carico uniformemente distribuito
1	Valore carat- teristico					Schema di carico 5 con valore di combinazione 2,5KN/m²
2a	Valore fre- quente			Valore carat- teristico		
2b	Valore fre- quente				Valore caratteri- stico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0KN/m²
4 (**)			Schema di carico 5 con valore carat- teristico 5,0KN/m²			Schema di carico 5 con valore caratterístico 5,0KN/m²
5 (***)	Da definirsi per il singo- lo progetto	Valore carat- teristico o nominale				

^(*) Ponti pedonali

^(**) Da considerare solo se richiesto dal particolare progetto (ad es. ponti in zona urbana)

^(***) Da considerare solo se si considerano veicoli speciali

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

7. IMPOSTAZIONE DEL MODELLO

7.1 PROGRAMMA DI CALCOLO UTILIZZATO

L'analisi della struttura viene condotta con l'ausilio del programma di calcolo agli elementi finiti per analisi lineari e non lineari SAP 2000 v22.2.0 prodotto da Computer&Structures Inc. Prima di procedere all'analisi del modello si rilasciano le dichiarazioni previste dalle NTC al paragrafo 10.2.

Origine e caratteristiche dei codici di calcolo

Titolo SAP2000 – Structural Analysis Program

Versione 22.2.0

Produttore Computer&Structures, Inc.

Tipo di analisi svolta

L'analisi strutturale è condotta con l'ausilio di un codice di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni, attraverso il software VCAslu - ver 7.7, e fogli Excel predisposti al calcolo.

La struttura viene discretizzata in elementi beam e shell. Per simulare il comportamento del terreno di fondazione e di rinfianco vengono inserite delle molle alla Winkler non reagenti a trazione.

L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni del capitolo 7 del D.M. 17/01/2018.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta, ed esplicitate nei capitoli che seguono.

Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego.

La società produttrice ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

Informazioni generali sull'elaborazione

Il software prevede una serie di controlli automatici che consentono l'individuazione di errori di modellazione, di non rispetto di limitazioni geometriche e di armatura e di presenza di elementi non verificati se viene svolta la verifica strutturale con esso. Il codice di calcolo consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In base a quanto sopra, si asserisce che l'elaborazione è corretta ed idonea al caso specifico, pertanto i risultati di calcolo sono da ritenersi validi ed accettabili. Il software tiene conto del vincolo esercitato dal terreno di fondazione e di rinfianco, modellato con molle di rigidezza pari alla costante di sottofondo.

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA Tratto Madonna del Piano - Collestrada

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Strategia di soluzione

La struttura viene schematizzata come interconnessione di elementi posti nelle 3 dimensioni e viene risolta mediante il metodo degli elementi finiti (FEM). Più dettagliatamente il telaio viene discretizzato in una serie di elementi connessi fra di loro nei nodi.

Il terreno di fondazione viene invece schematizzato con una serie di elementi molle non reagenti a trazione (modello di Winkler). L'area della singola molla è direttamente proporzionale alla costante di Winkler del terreno e all'area di influenza della molla stessa.

A partire dalla matrice di rigidezza del singolo elemento, Ke, si assembla la matrice di rigidezza di tutta la struttura K. Tutti i carichi agenti sulla struttura vengono trasformati in carichi nodali (reazioni di incastro perfetto) ed inseriti nel vettore dei carichi nodali p.

Indicando con u il vettore degli spostamenti nodali (incogniti), la relazione risolutiva può essere scritta nella forma:

$$K^*u = p$$

Da questa equazione matriciale si ricavano gli spostamenti incogniti u:

$$u = K - 1p$$

Noti gli spostamenti nodali è possibile risalire alle sollecitazioni nei vari elementi. La soluzione del sistema viene fatta per ogni combinazione di carico agente sulla struttura. Il successivo calcolo delle armature nei vari elementi viene condotto tenendo conto delle condizioni più gravose che si possono verificare nelle sezioni fra tutte le combinazioni di carico.

7.2 SCHEMATIZZAZIONE DELLA STRUTTURA

La struttura viene discretizzata con un modello 2D con elementi Beam (Frame) vincolata attraverso dei line spring atte a simulare l'interazione terreno struttura come precedentemente enunciato.

- Modello 2D unifilare

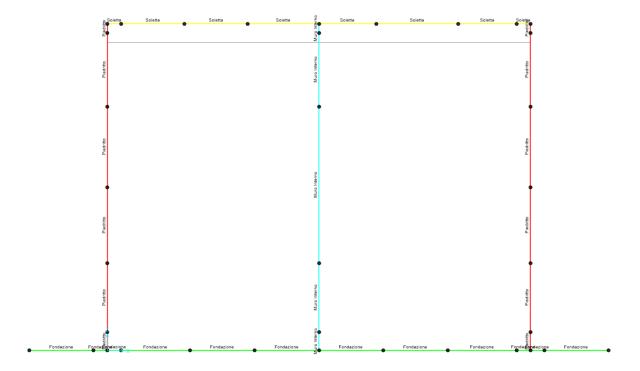


Figura 7.1 Modello 2D unifilare

GPINGEGNERIAGESTIONE PROGETTI INGEGNERIA STI

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Modello 2D estruso

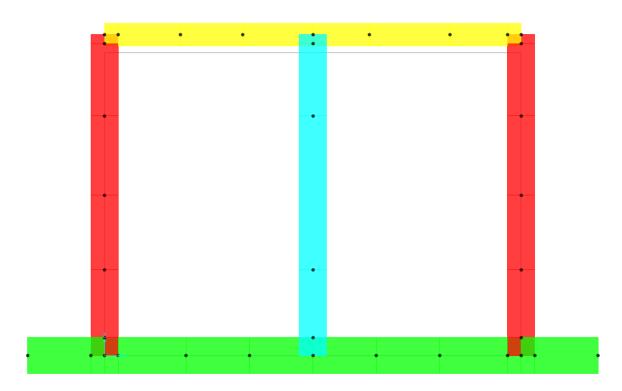
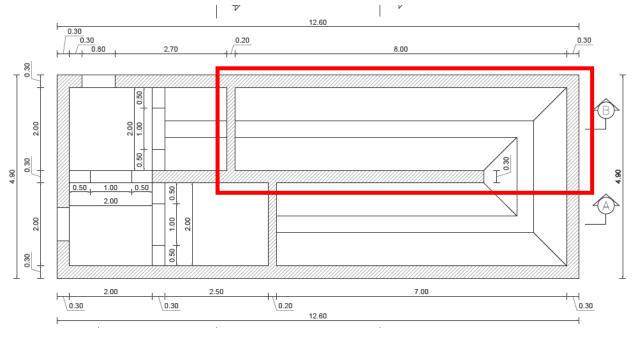



Figura 7.2 Modello 2D estrusa

A giustificazione della strategia di modellazione 2D rispetto a una 3D viene giustificata dal metodo di Grashof il quale permette di avere una stima dell'effetto piastra. In particolare, si prende in considerazione il rettangolo di piastra compreso tra il setto interno e il muro più esterno.

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA Tratto Madonna del Piano - Collestrada

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Tale metodo considera una piastra rettangolare, con lati pari ad "a" e "b" caricata da un carico p, divisa in strisce di larghezza unitarie ortogonali tra loro. Tra le varie strisce in cui è divisa la piastra si scelgono due in cui il comportamento flettente è prevalente sul momento torsionale (vedi figura successiva).

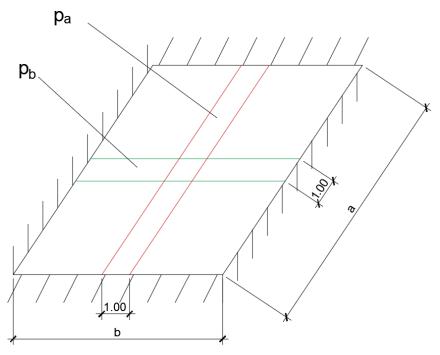


Figura 7.3 - Semplificazione del metodo di Grashof

Il metodo si basa sull'ipotesi che il carico si distribuisca in maniera congruente e cioè che la deformata delle due travi derivante dai due rispettivi carichi produca lo stesso valore della freccia nel punto di deformazione massimo. Considerando i quattro lati incastrati, tale condizione si traduce in:

$$\frac{p_a \cdot a^4}{384EJ} = \frac{p_b \cdot b^4}{384EJ}$$

Dato che tale equazione è in due incognite, l'equazione mancante per risolvere il sistema risulta semplicemente:

$$p_a + p_b = p$$

Risolvendo tale sistema, si ottiene quindi:

$$p_b = p \frac{a^4}{(a^4 + b^4)}$$

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Nel caso in esame b = 2.00m e a = 8.00m, da cui:

$$p_{h} = p \cdot 0.99$$

Per tale motivo, il carico si ridistribuisce principalmente in una direzione sola.

7.2.1 ELEMENTI FRAME

Si riportano di seguito le sezioni modellate nel programma agli elementi finiti:

7.2.1.1 Sezione Soletta di fondazione: "Fondazione"

La soletta di fondazione è modellata attraverso un elemento frame con larghezza unitaria e altezza pari a 0.40 m. Il materiale assegnato è un calcestruzzo C32/40.

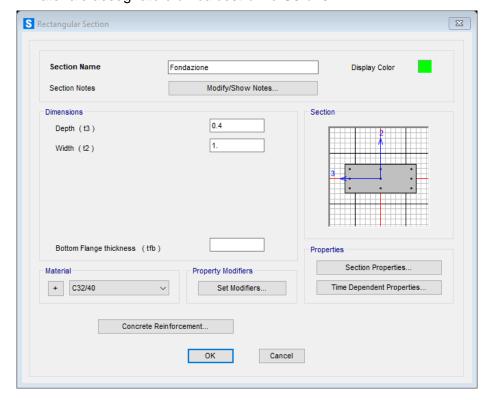


Figura 7.4 - Sezione "Fondazione"

7.2.1.2 Sezione Soletta di copertura: "Soletta"

La soletta di copertura è modellata attraverso un elemento frame con larghezza unitaria e altezza pari a 0.30 m. Il materiale assegnato è un calcestruzzo C32/40.

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

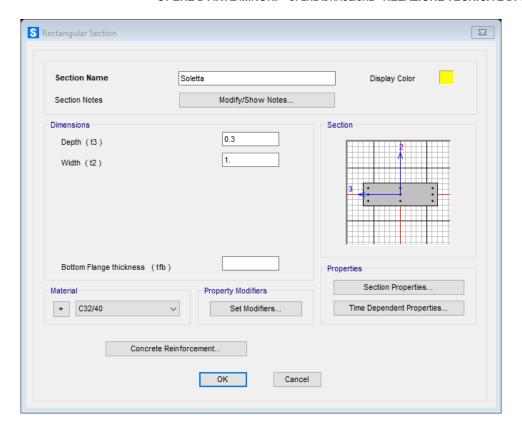


Figura 7.5 - Sezione "Soletta"

7.2.1.3 Sezione piedritti: "Piedritto"

I piedritti sono modellati attraverso un elemento frame con larghezza unitaria e spessore pari a 0.30 m. Il materiale assegnato è un calcestruzzo C32/40.

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

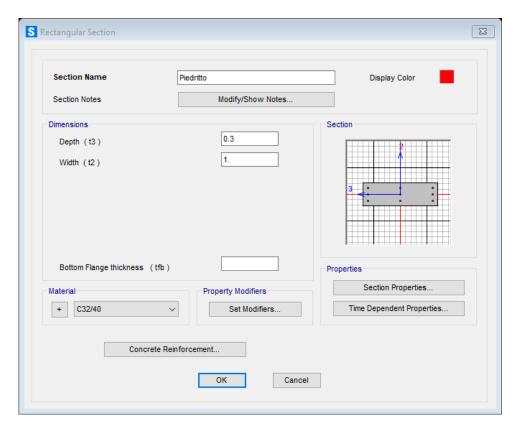


Figura 7.6 - Sezione "Piedritto"

7.2.1.4 Sezione muri interni: "Muro interno"

I muri interni sono modellati attraverso un elemento frame con larghezza unitaria e spessore pari a 0.30 m. Il materiale assegnato è un calcestruzzo C32/40.

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

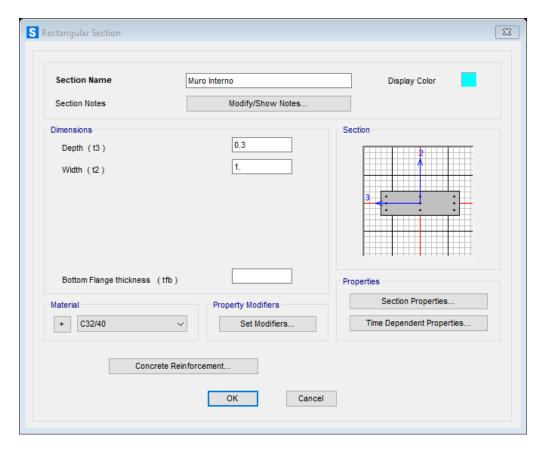


Figura 7.7 - Sezione "Muro interno"

7.3 **SEZIONI DI VERIFICA**

Si riportano di seguito le sezioni (indicate tramite i joint del modello di calcolo) per le quali si sono effettuate le verifiche allo stato limite, nei confronti della flessione (o pressoflessione), del taglio e dello sforzo normale, oltre che delle tensioni.

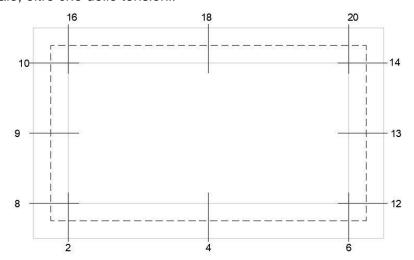


Figura 7.8: Sezioni considerate per la verifica di Momento e Taglio ai SL

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

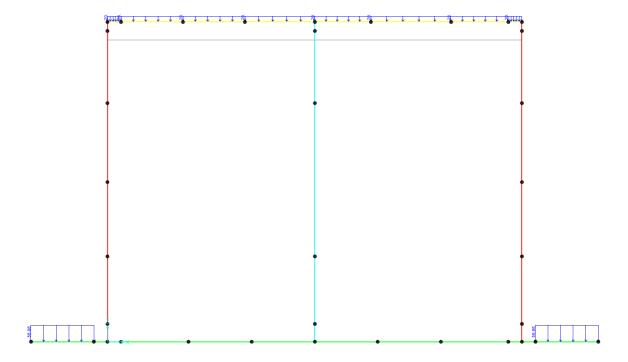
8. ANALISI DEI CARICHI

In questo capitolo sono riportati unicamente i valori numerici delle azioni e la loro applicazione agli elementi del modello.

8.1 CARICHI PERMANENTI STRUTTURALI (G1)

Gli elementi strutturali, in calcestruzzo armato, presentano un peso specifico pari a $\gamma_{cls} = 25 \ kN/m^3$. Tale carico viene valutato automaticamente dal software a partire dalla definizione della geometria dell'elemento e dal peso specifico del materiale.

8.2 CARICHI PERMANENTI NON STRUTTURALI (G2)


I carichi permanenti non strutturali si riferiscono al peso del terreno di ricoprimento, alla spinta laterale delle terre e alla pressione dell'acqua.

8.2.1 RICOPRIMENTO

Si considera in sommità agente il carico del terreno di ricoprimento pari a 1.00m. A favore di sicurezza si tiene conto che tutto il ricoprimento sia composto da sola pavimentazione industriale come:

$$q_{ricopr} = \gamma_{terr} \cdot h = 20 \; kN/m^2$$

Con γ_{terr} pari al peso specifico della pavimentazione.

OPERE D'ARTE MINORI – OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Figura 8.1 - Carico riempimento superiore

8.2.2 SPINTA STATICA DEL TERRENO

L'entità e la distribuzione delle spinte del terreno sulla vasca dipendono dallo spostamento relativo che lo stesso può subire. Avendo una struttura piuttosto rigida e poco deformabile, si può considerare che le deformazioni del terreno siano impedite dalla struttura che non cede in nessun punto; per questo motivo la pressione esercitata è una spinta a riposo espressa secondo la teoria di Coulomb dalla seguente relazione:

$$S = \frac{1}{2} \cdot \gamma_t \cdot H^2 \cdot K_0$$

 K_0 rappresenta il coefficiente di spinta a riposo, ricavabile tramite la formula di Jacky:

$$K_0 = 1 - \sin \phi' = 0.625$$

Dove ϕ' è l'angolo di attrito interno del terreno.

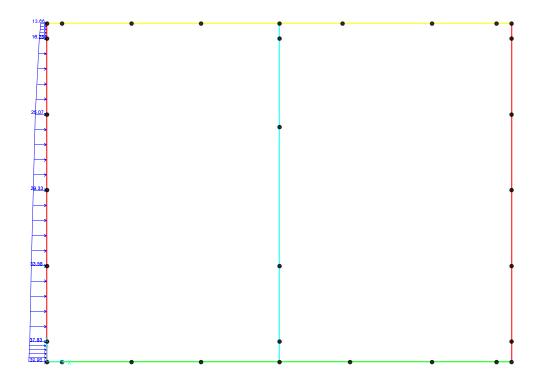


Figura 8.2 - Spinta terre su paramento sinistro

8.2.3 PRESSIONE DELL'ACQUA

L'acqua a differenza del terreno, risulta un materiale isotropo e la sua pressione agisce con la stessa intensità in ogni direzione. Il suo valore risulta quindi pari a:

GPINGEGNERIA
GESTIONE PROGETTI INGEGNERIA STI

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

$$p_{idro} = \gamma_w * h_{falda}$$

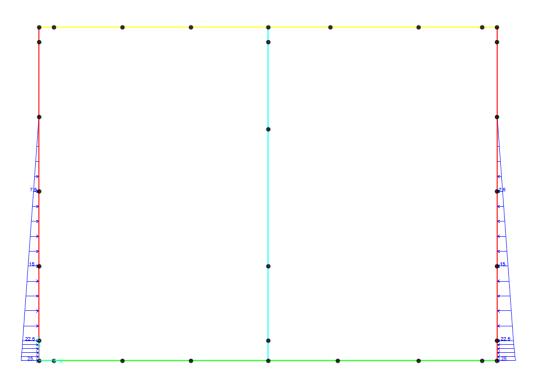


Figura 8.3 - Spinta acqua di falda su paramenti

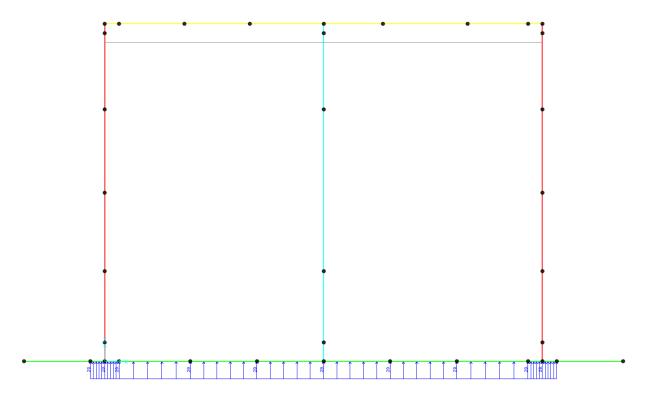


Figura 8.4 - Spinta acqua di falda sulla fondazione

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

8.3 **CARICHI VARIABILI (Q)**

Di seguito si riportano i carichi che hanno carattere variabile in termini di tempi di applicazione sulla struttura. Questi si distinguono in: spinta dell'acqua interna alla vasca, mezzi pesanti passanti al di sopra o a lato della struttura.

8.3.1 PRESSIONE DELL'ACQUA INTERNA

Per la pressione interna dell'acqua si considerano principalmente due livelli dell'acqua: il massimo e il minimo.

Il primo si crea nelle condizioni di "piena" mentre la seconda è considerabile come una situazione permanente, intesa come livello minimo di acqua presente all'interno della vasca. Agli SLU quest'ultimo carico non viene considerato in quanto risulta favorevole alla verifica della fondazione. per gli SLV invece tale carico verrà considerato in quanto verrà tenuta in conto la sovra spinta sismica dell'acqua libera di muoversi.

I due livelli sono quindi:

- Livello massimo dell'acqua: h= 2.00m (per semplicità al posto dei 1.7m di progetto)
- Livello minimo dell'acqua: h=0.75m

Di seguito vengono riportati i carichi applicati nel modello.

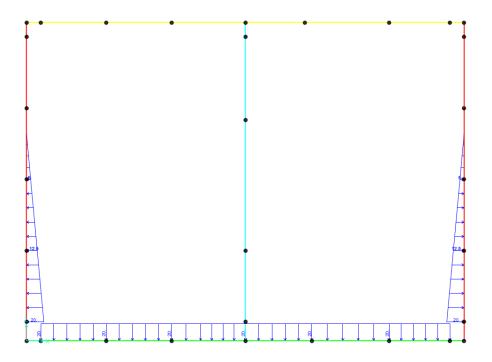


Figura 8.5 - Spinta acqua con battente massimo

OPERE D'ARTE MINORI – OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

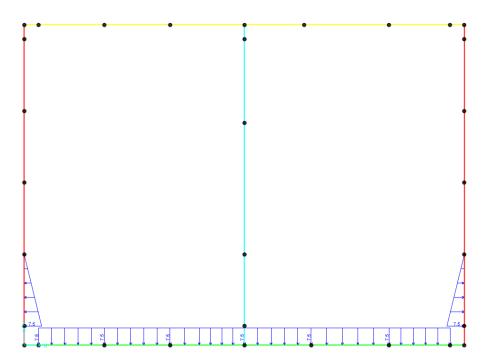


Figura 8.6 - Spinta acqua con battente minimo

8.3.2 TRAFFICO

La presenza a lato della strada induce uno stato di sforzo ulteriore nel terreno che si traduce in una sovra spinta sui piedritti. Per tale motivo si considera agenti i carichi tipici della progettazione del ponte. La presenza del traffico interessa solo il terreno a lato della struttura. Tuttavia a favore di sicurezza si considera un carico di 10 kPa derivante da possibili mezzi che transitano al di sopra per la manutenzione dell'area.

Per il calcolo dei carichi agenti sulla soletta e sui piedritti si farà riferimento al Cap. C5.1.3.3.5.1 della Circolare NTC2018, dove ai fini del calcolo delle spalle, dei muri d'ala e delle altre pari del ponte a contatto con il terreno, sul rilevato o sul terrapieno si possono sostituire i carichi tandem con dei carichi uniformemente distribuiti applicati su una superficie rettangolare larga 3.00m e lunga 2.20m.

8.3.2.1 Distribuzione della sovrappressione del terreno derivante dal traffico

La distribuzione delle pressioni orizzontali σ_x dovute alla presenza del carico concentrato al di fuori della vasca viene calcolata, in accordo con la teoria di Boussinesq, in funzione della posizione del carico, della superficie su cui insiste e della sua intensità come indicato di seguito:

$$\sigma_x = q / \pi [\alpha - \sin \alpha \cos 2\beta]$$

Nell'immagine che segue viene rappresentata la distribuzione di pressioni orizzontali agenti sul ritto valutata secondo la trattazione di Boussinesq che definisce l'andamento delle pressioni orizzontali nel semispazio elastico dovute ad un carico di dimensioni finite posto sulla superficie.

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

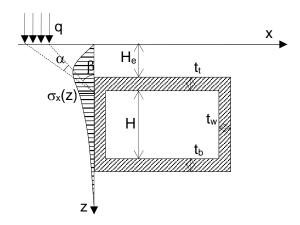


Figura 8.7 - Diffusione del carico per spinta orizzontale

Di seguito i valori della spinta agenti sulla parete.

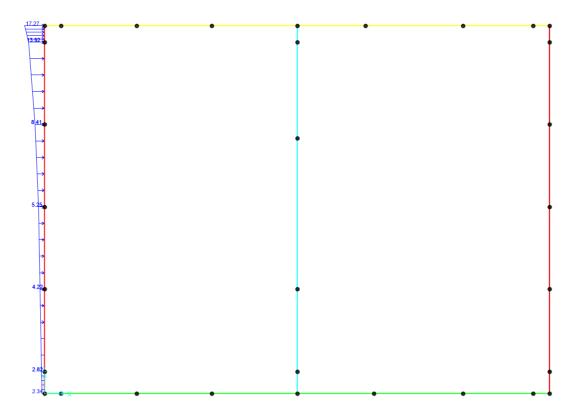


Figura 8.8 - Diffusione del carico per spinta orizzontale sul modello

CARICHI SISMICI

I carichi sismici considerati provengono dalle eccitazioni delle diverse masse presenti nel sistema. Questi possono riassumersi in:

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

- Forze derivanti dall'eccitazione della massa della struttura;
- Forze derivanti dall'eccitazione dei pesi quasi permanenti non strutturali;
- Sovraspinta del terreno;
- Sovraspinta dell'acqua presente all'interno della vasca

8.4.1 FORZE DERIVANTI DALL'ECCITAZIONE DEI CARICHI PERMANENTI

Le masse dei carichi permanenti (strutturali e non), se eccitate dal sisma, creano delle sollecitazioni ulteriori a quelle statiche agenti. Data la rigidezza della struttura, si suppone che la risposta sismica sia uno spostamento coincidente con quello del terreno. Il suo contributo è considerato applicando un'accelerazione pari all'accelerazione massima al suolo alla massa della struttura.

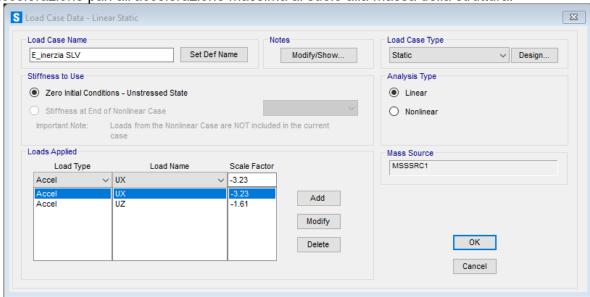


Figura 8.9 - Applicazione dell'accelerazione alle masse della struttura

Le masse vengono definite a partire dai carichi precedentemente definiti.

8.4.2 SOVRA SPINTA DEL TERRENO (WOOD)

Nel caso in esame, la teoria di spinta sismica è quella in caso di strutture rigide. Il metodo di Wood fornisce la sovraspinta sismica del terreno su una parete interrata soggetta a deformazioni molto contenute, tali da poter assumere che il terreno si trovi in fase elastica sia in condizioni statiche, sia durante il sisma. La sovraspinta sismica da assumere è data dall'espressione:

$$\Delta P = \frac{a_g}{g} \cdot S \cdot \gamma \cdot H^2$$

in cui y rappresenta il peso specifico del terreno.

Tale spinta non dipende dalle proprietà di resistenza del terreno, rimanendo elastico anche in condizioni sismiche, e viene applicata come pressione uniforme sulla parete dello scatolare. Tale formula vale per terreni omogenei in assenza di falda e per manufatti di altezza contenuta. In caso di strutture molto profonde è opportuno condurre valutazioni basate su metodi più rigorosi. Nel caso il manufatto sia parzialmente in falda e il terreno sia dinamicamente permeabile, l'acqua si

GPIngegneria

GESTIONE PROGETTI INGEGNERIA srl

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

comporta indipendentemente dallo scheletro solido. Dovranno pertanto essere calcolate la spinta idrostatica, la sovraspinta sismica assumendo il peso specifico efficace del terreno e la spinta idrodinamica. Nel caso di terreno dinamicamente impermeabile la sovraspinta di Wood dovrà essere calcolata considerando il peso specifico del terreno definito dall'espressione:

$$\bar{\gamma} = \frac{\gamma_d \cdot H_1 + \gamma_{sat} \cdot H_2}{H} = 17.00 kN/m^3$$

in cui H1 e H2 rappresentano gli spessori del terreno rispettivamente secco e sommerso

Nel caso in esame:

$$\Delta p = \frac{a_g}{g} \cdot S \cdot \gamma \cdot H = 23.25 \; kN/m$$

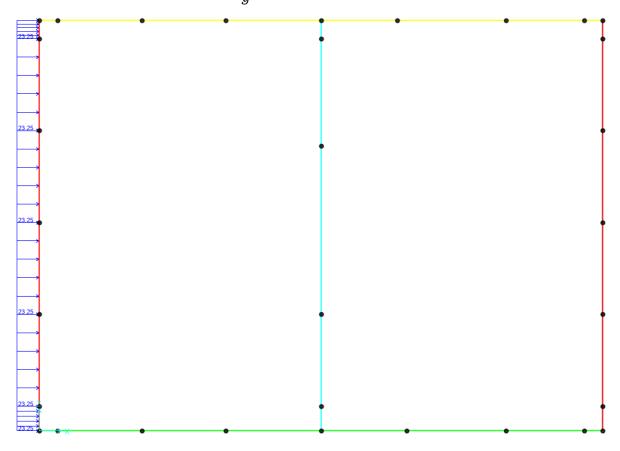


Figura 8.10 - Spinta di Wood

8.4.3 **SOVRA SPINTA ACQUA LIBERA**

All'interno della struttura risulta presente sempre un livello minimo di acqua. Questa risulta libera di muoversi, e per tal motivo, è possibile che questa generi una sovrappressione la cui espressione è valutabile come segue:

$$q_{wE}(z) = \frac{7}{8} \cdot S \cdot \frac{a_g}{g} \cdot \gamma_w \sqrt{H_w z}$$

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Dove H_w è il livello d'acqua presente pari a quello minimo in quanto la combinazione sismica presenta come carichi statici quelli quasi permanenti.

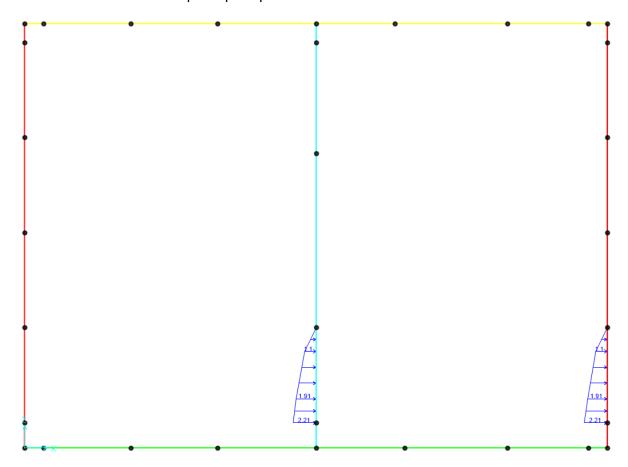


Figura 8.11 - Spinta sismica acqua libera

9. CRITERI DI VERIFICA

STATI LIMITE DI ESERCIZIO (SLE)

Le verifiche agli Stati Limite di Esercizio (SLE) sono eseguite sulle tensioni massime degli elementi della sezione resistente in c.a. sulle condizioni di esercizio e sull'apertura delle fessure nella soletta in calcestruzzo. In questa fase non si considera, a favore di sicurezza, il contributo dovuto all'armatura lenta.

9.1.1 VERIFICA DELLE TENSIONI

Le verifiche delle tensioni sono eseguite in fasi di applicazione dei carichi: si verifica l'intera sezione alle combinazioni di carico Rara, Frequente e Quasi permanente.

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

9.1.2 VERIFICA DELL'APERTURA DELLE FESSURE

Per gli SLE occorre verificare che l'ampiezza delle fessure w_k, per gli elementi con armature lente, sia al di sotto del valore limite fissato per le classi di esposizione in oggetto. Si riportano per completezze le tabelle Tab. 4.1.III e 4.1.IV delle NTC18.

Tab. 4.1.III - Descrizione delle condizioni ambientali

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tab. 4.1.IV - Criteri di scelta dello stato limite di fessurazione

	Condizioni S		Combinazione di	Armatura					
	Gruppi di Esigenze	ambientali	azioni	Sensibile Stato limite	w _k	Poco sensibile Stato limite	w _k		
Г	Α	Ordinarie	frequente	apertura fessure	≤ w ₂	apertura fessure	≤ w ₃		
	A Ordinarie		quasi permanente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂		
_	В	Accessions	frequente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂		
	Б	Aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁		
		Molto	frequente	formazione fessure	-	apertura fessure	≤ w ₁		
	aggressive		quasi permanente	decompressione	-	apertura fessure	≤ w ₁		

In particolare, devono essere rispettati i seguenti limiti:

Combinazione di carico frequente: $w_k = 0.3 \text{ mm};$

Combinazione di carico quasi permanente: $w_k = 0.2 \text{ mm}$

Si preferisce una condizione di armatura sensibile data l'impossibilità di manutenzione dell'armatura lungo un lato.

L'ampiezza caratteristica w_k delle lesioni si valuta attraverso l'espressione:

$$w_k = s_{r,max}(\varepsilon_{sm} - \varepsilon_{cm})$$

Dove:

è il massimo interasse tra le fessure; $S_{r,max}$

è il valor medio della deformazione nell'acciaio. ε_{sm}

è il valor medio della deformazione nel calcestruzzo fra le fessure. ε_{cm}

La differenza $\varepsilon_{sm}-\varepsilon_{cm}$ può valutarsi attraverso l'espressione:

$$\varepsilon_{sm} - \varepsilon_{cm} = \frac{\sigma_s - \frac{k_t}{\rho_{p,eff}} \cdot \left(1 + \alpha_e \cdot \rho_{p,eff}\right)}{E_s} \ge 0.6 \cdot \frac{\sigma_s}{E_s}$$

Dove:

è la tensione nell'acciaio calcolata in sezione parzializzata; $\sigma_{\!\scriptscriptstyle S}$

è il modulo elastico dell'acciaio;

è il rapporto tra l'area dell'armatura tesa e l'area effettiva di calcestruzzo in trazione; $\rho_{p,eff}$

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA Tratto Madonna del Piano - Collestrada

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

 $lpha_e$ è il rapporto tra il modulo elastico dell'acciaio e quello del calcestruzzo $k_t=0.4$ (carico di lunga durata).

Detta s la distanza massima tra le barre di armatura, il massimo interasse tra le fessure si può valutare attraverso la seguente espressione:

$$\begin{cases} s_{r,max} = k_3 \cdot c + k_1 \cdot k_2 \cdot k_4 \cdot \frac{\phi}{\rho_{p,eff}}, & se \ s \leq 5 \cdot (c + \phi/2) \\ s_{r,max} = 1.3 \cdot (H - y_n), & se \ s > 5 \cdot (c + \phi/2) \end{cases}$$

Dove:

c è il copriferro (distanza tra bordo del calcestruzzo e l'armatura; assunto uguale a

4*cm*);

 y_n è la distanza dell'asse neutro dal lembo superiore;

φ è il diametro delle barre;H è l'altezza della sezione;

 $k_1 = 0.8$ (per barre ad aderenza migliorata);

 $k_2 = 0.5$ (per flessione); $k_3 = 3.4$ (valore consigliato); $k_4 = 0.425$ (valore consigliato).

9.1 STATI LIMITE ULTIMI (SLU)

Le verifiche agli Stati Limite Ultimi (SLU) sono eseguite sulle azioni interne della sezione resistente per definire le caratteristiche sezionali dell'elemento principale (trave in acciaio) e della soletta in calcestruzzo.

9.1.1 VERIFICA DEGLI ELEMENTI IN CALCESTRUZZO ARMATO

9.1.1.1 Verifica a flessione

Con riferimento alla sezione pressoinflessa retta, la capacità, in termini di resistenza e duttilità, si determina in base alle ipotesi di calcolo e ai modelli $\sigma - \epsilon$:

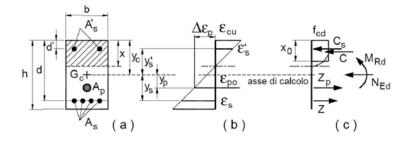


Figura 9.1 - Schema di verifiche a flessione

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Le verifiche a flessione vengono condotte confrontando le resistenze ultime e le sollecitazioni massime agenti, valutando il corrispondente fattore di sicurezza (FS) come rapporto tra la sollecitazione resistente e la massima agente. FS = $\frac{M_{Rd}}{M_{Ed}} \ge 1$.

$$\left(\frac{M_{E_{yd}}}{M_{R_{yd}}}\right)^{\alpha} + \left(\frac{M_{E_{zd}}}{M_{R_{zd}}}\right)^{\alpha} \leq 1$$

Le verifiche flessionali agli SLU sono eseguite adottando le seguenti ipotesi:

- Conservazione delle sezioni piane;
- Perfetta aderenza tra acciaio e calcestruzzo;
- Resistenza a trazione del calcestruzzo nulla;
- Rottura del calcestruzzo determinata dal raggiungimento della sua capacità deformativa ultima a compressione:
- Rottura dell'armatura tesa determinata dal raggiungimento della sua capacità deformativa ultima.

Nel caso di pressoflessione deviata la verifica della sezione può essere posta nella forma:

- M_{Eyd}, M_{Ezd} sono i valori di progetto delle due componenti di flessione retta della sollecitazione attorno agli assi y e z;
- M_{Ryd}, M_{Rzd} sono i valori di progetto dei momenti resistenti di pressoflessione retta corrispondenti a N_{Ed} valutati separatamente attorno agli assi y e z.

Il copriferro netto assunto è pari a 40 mm. Quindi per conseguenza il valore della distanza "d" e "d" delle barre longitudinali superiori ed inferiori dovrà essere definita come somma di copriferro, diametro armatura di taglio e raggio dell'armatura longitudinale definita nella relativa verifica.

9.1.1.2 Verifica a taglio

Per la verifica di resistenza agli SLU, con riferimento alle sollecitazioni taglianti, deve risultare: FS = $\frac{V_{Rd}}{1} \ge 1$

Per il calcolo della resistenza di calcolo V_{Rd} si fa riferimento ai seguenti valori:

Resistenza di calcolo dell'elemento privo di armatura a taglio:

$$V_{Rd,c} = \max \left\{ \left[\frac{0.18}{v_c} \cdot k \cdot (100 \cdot \rho_I \cdot f_{ck})^{\frac{1}{3}} + k_1 \cdot \sigma_{cp} \right] \cdot b_w \cdot d; \left(v_{min} + 0.15 \cdot \sigma_{cp} \right) \cdot b_w \cdot d \right\}$$

Valore di progetto dello sforzo di taglio che può essere sopportato dall'armatura a taglio alla tensione di snervamento:

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

$$V_{Rd,s} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot \left(ctg(\alpha) + ctg(\theta) \right) \cdot \sin \alpha$$

Valore di progetto del massimo di sforzo di taglio che può essere sopportato dall'elemento, limitato dalla rottura delle bielle compresse:

 $V_{Rd,max} = 0.9 \cdot d \cdot b_w \cdot f'_{cd} \cdot \frac{ctg(\alpha) + ctg(\theta)}{1 + ctg^2(\theta)}$

Nelle espressioni precedenti, i simboli hanno i seguenti significati:

- $k = 1 + \sqrt{\frac{200}{d}} \le 2.0$, con d espresso in mm;
- $\rho_l = \frac{A_{Sl}}{h_{cl}} \le 0.02$ è il rapporto geometrico di armatura longitudinale;
- è l'area dell'armatura tesa; A_{S1}
- è la larghezza minima della sezione in zona tesa; b_{w}
- $\sigma_{\rm cp} = \frac{N_{\rm Ed}}{A_{\rm c}} < 0.2 \cdot f_{\rm cd}$ è la tensione media di compressione della sezione;
- è l'area della sezione in calcestruzzo;
- $v_{min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2};$
- A_{sw} è l'area della sezione trasversale dell'armatura a taglio;
- è il passo delle staffe;
- è la tensione di snervamento di progetto dell'armatura a taglio
- è l'inclinazione dell'armatura resistente a taglio rispetto all'asse dell'elemento;
- è l'inclinazione della biella di calcestruzzo compressa e deve essere $1 \le \cot \theta \le 2.5$.

VERIFICHE DI TIPO GEOTECNICO (GEO)

9.2.1 COLLASSO PER CARICO LIMITE DEL COMPLESSO FONDAZIONE-TERRENO

Vista la natura dei terreni, la valutazione della capacità portante della fondazione dello scatolare viene condotta in condizioni non drenate. La formula generale risulta essere:

$$q_{\lim} = s_u \cdot N_c \cdot s_c \cdot d_c \cdot i_c \cdot b_c \cdot g_c + q$$

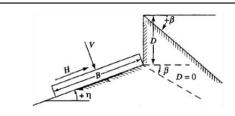
Con:

 $N_c = 2 + \pi$ fattori di capacità portante fattori correttivi che tengono conto della forma della fondazione; fattori correttivi che tengono conto della profondità del piano di fattori correttivi che tengono conto dell'inclinazione dei carichi; fattori correttivi che tengono conto dell'inclinazione del piano camapagna;

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO


fattori correttivi che tengono conto dell'inclinazione del piano di

tensione verticale efficace agente al piano di posa della fondazione:

Inoltre, si definisce efficace la parte di fondazione reale rispetto alla quale la risultante dei carichi verticali di progetto Q_V risulta centrata. Per fondazioni rettangolari di larghezza B e lunghezza L, indicate con e_B ed e_L le componenti della eccentricità del carico rispettivamente in direzione B e L, le corrispondenti dimensioni efficaci sono:

$$B' = B - 2 e_B \qquad \qquad L' = L - 2 e_L$$

Nella figura seguente sono mostrati i valori dei coefficienti sopra citati:

Shape and depth factors for use in either the Hansen (1970) or Vesić (1973, 1975b) bearing-capacity equations of Table 4-1. Use s'_c , d'_c when $\phi = 0$ only for Hansen equations. Subscripts H, V for Hansen, Vesić, respectively.

Shape factors	Depth factors
$s'_{c(H)} = 0.2 \frac{B'}{L'}$ $(\phi = 0^{\circ})$ $s_{c(H)} = 1.0 + \frac{N_q}{N_c} \cdot \frac{B'}{L'}$ $s_{c(V)} = 1.0 + \frac{N_q}{N_c} \cdot \frac{B}{L}$ $s_c = 1.0$ for strip	$d'_c = 0.4k (\phi = 0^\circ)$ $d_c = 1.0 + 0.4k$ $k = D/B for D/B \le 1$ $k = \tan^{-1}(D/B) for D/B > 1$ $k in radians$
$s_{q(H)} = 1.0 + \frac{B'}{L'} \sin \phi$ $s_{q(V)} = 1.0 + \frac{B}{L} \tan \phi$ for all ϕ	$d_q = 1 + 2\tan\phi(1 - \sin\phi)^2 k$ $k \text{ defined above}$
$s_{\gamma(H)} = 1.0 - 0.4 \frac{B'}{L'} \ge 0.6$ $s_{\gamma(V)} = 1.0 - 0.4 \frac{B}{L} \ge 0.6$	$d_{\gamma} = 1.00$ for all ϕ

- 1. Note use of "effective" base dimensions B', L' by Hansen but not by Vesić.
- 2. The values above are consistent with either a vertical load or a vertical load accompanied by a horizontal load H_B .
- 3. With a vertical load and a load H_L (and either $H_B = 0$ or $H_B > 0$) you may have to compute two sets of shape s_i and d_i as $s_{i,B}$, $s_{i,L}$ and $d_{i,B}$, $d_{i,L}$. For i,L subscripts of Eq. (4-2), presented in Sec. 4-6, use ratio L'/B' or D/L'.

Table of inclination, ground, and base factors for the Hansen (1970) equations. See Table 4-5c for equivalent Vesić equations.

Inclination factors	Ground factors (base on slope)
$i_c' = 0.5 - \sqrt{1 - \frac{H_i}{A_f C_a}}$	$g_c' = \frac{\beta^{\circ}}{147^{\circ}}$
$i_c = i_q - \frac{1 - i_q}{N_q - 1}$	$g_c = 1.0 - \frac{\beta^{\circ}}{147^{\circ}}$
$i_q = \left[1 - \frac{0.5H_i}{V + A_f c_a \cot \phi}\right]^{\alpha_1}$ $2 \le \alpha_1 \le 5$	$g_q = g_{\gamma} = (1 - 0.5 \tan \beta)^5$
	Base factors (tilted base)
$y = \left[1 - \frac{0.7H_i}{V + A_f c_a \cot \phi}\right]^{\alpha_2}$	$b_c'=\frac{\eta^\circ}{147^\circ}\qquad (\phi=0)$
$Y_{\gamma} = \left[1 - \frac{(0.7 - \eta^{\circ}/450^{\circ})H_i}{V + A_f c_a \cot \phi}\right]^{\alpha_2}$ $2 \le \alpha_2 \le 5$	$b_c = 1 - \frac{\eta^{\circ}}{147^{\circ}} \qquad (\phi > 0)$ $b_{\eta} = \exp(-2\eta \tan \phi)$ $b_{\gamma} = \exp(-2.7\eta \tan \phi)$
$A_f = B \cdot L'$	η in radians

Notes:

- Use H_i as either H_B or H_L, or both if H_L > 0.
- 2. Hansen (1970) did not give an i_c for $\phi > 0$. The value above is from Hansen (1961) and also used by Vesić.
- Variable c_a = base adhesion, on the order of 0.6 to 1.0 × base cohesion.
- Refer to sketch for identification of angles η and β , footing depth D, location of H_i (parallel and at top of base slab; usually also produces eccentricity). Especially V =force normal to base and is not the resultant R from combining V and H_i .

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

10. RISULTATI DEI MODELLI

E' descritto in seguito un riassunto delle sollecitazioni, per ogni tipologia di inviluppo di combinazione di carico, individuate per ogni elemento strutturale. Vengono riportati i valori significativi ai fini delle verifiche.

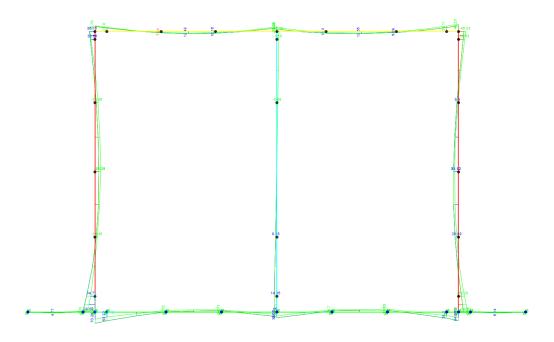
A favore di sicurezza viene trascurato il contributo dell'azione assiale nelle verifiche.

Soletta S Sollecitazione	Soletta Superiore Sollecitazione Joint		SLE R - SLD	SLE Freq	SLE QP
M (kNm)	Max	16.37 kNm	11.00 kNm	7.02 kNm	3.87 kNm
	Min		-37.37 kNm	-21.60 kNm	-16.10 kNm
	Max	76.14 kN			
V (kN)					
	Min	-68.41 kN			
	Max				
N (kN)					
	Min				

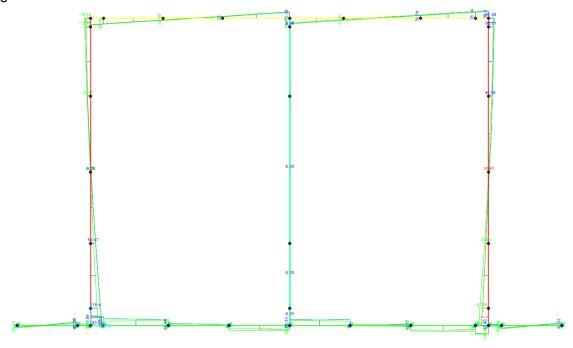
Piedritti Sollecitazione	Piedritti esterni Sollecitazione Joint		SLE R-SLD	SLE Freq	SLE QP
M (kNm)	Max	91.49 kNm	76.62 kNm	41.12 kNm	36.87 kNm
	Min		-33.11 kNm	-31.95 kNm	-34.31 kNm
	Max				
V (kN)	V (kN)				
	Min	-97.68 kN			
	Max	-30.28 kN	-37.97 kN	-73.74 kN	-62.76 kN
N (kN)	N (kN) (N-M)				
	Min	-59.48 kN	-63.96 kN	-80.08 kN	-64.48 kN

Muri interni Sollecitazione Joint		SLU-SLV	SLE R-SLD	SLE Freq	SLE QP
M (kNm)	M (kNm)		48.89 kNm	7.99 kNm	2.18 kNm
	Min		-54.52 kNm -40.68 kNm -		-1.89 kNm
	Max				
V (kN)					
	Min	-0.004 kN			
	Max	-85.88 kN	-90.36 kN	-111.25 kN	-87.24 kN
N (kN)					
	Min	-66.55 kN	-99.68 kN	-89.12 kN	-63.47 kN

Soletta di j Sollecitazione	Soletta di fondazione Sollecitazione Joint		SLE R - SLD	SLE Freq	SLE QP
M (kNm)	M (kNm)		65.08 kNm	37.99 kNm	32.4 kNm
	Min	-44.48 kNm	-39.22 kNm	-14.30 kNm	-15.65 kNm
V (kN)	Max	87.30 kN			
	Min	-71.05 kN			
N (kN)	Max Min				



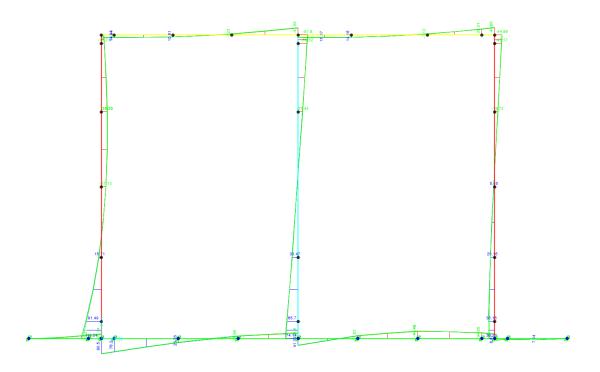
OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

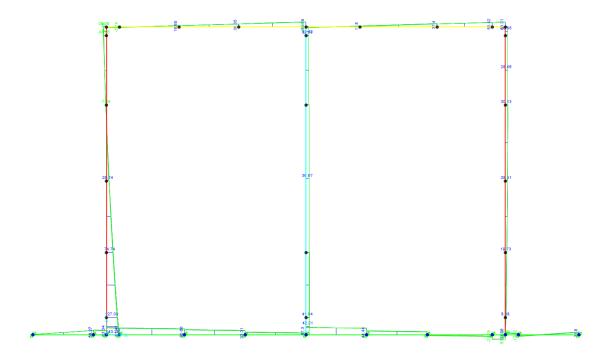

10 INVILUPPI COMBINAZIONI

10.1 SLU

Momento flettente

Taglio

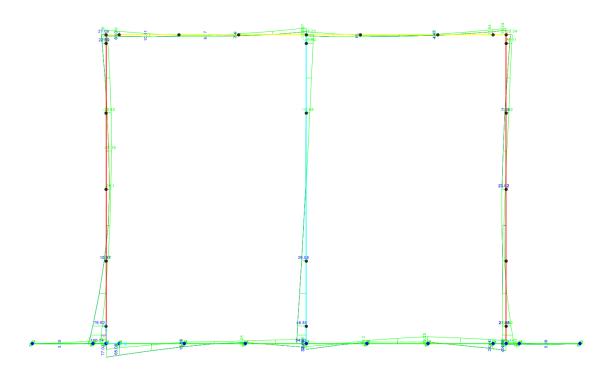



OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

10.2 SLV

Momento flettente

Taglio



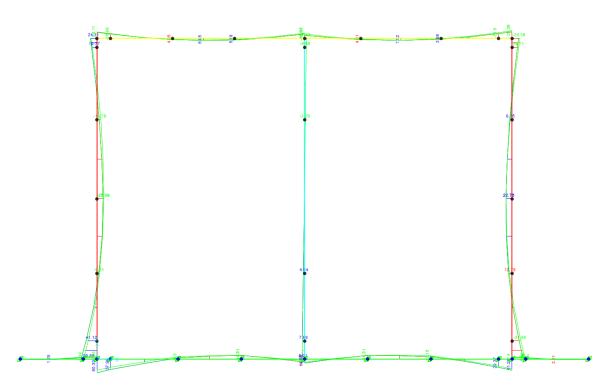
OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

10.3 SLE - RARA/SLD

Momento flettente

10.4 SLE - FREQUENTE

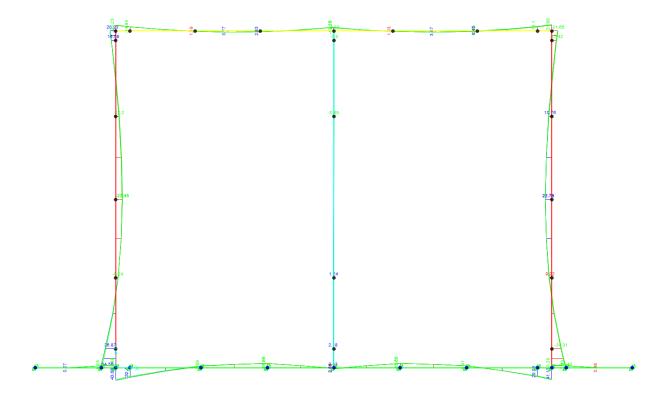
Momento flettente



OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

10.5 SLE - QUASI PERMANENTI

Momento flettente



OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

11 VERIFICHE STRUTTURALI

Per ciascun elemento strutturale considerato di volta in volta (fondazione, solettone superiore ed elevazioni) vengono considerare diverse sezioni di verifica. Per ciascuna di esse viene specificato il quantitativo di armatura predisposto, sulla base del quale vengono condotte le verifiche strutturali riportate nei paragrafi seguenti. Di seguito si riassumono le caratteristiche geometriche (Larghezza della sezione B e altezza della sezione H) e le armature assunte per il dimensionamento dei principali elementi strutturali (numero, diametro e posizione delle barre previste per l'elemento di lunghezza unitaria).

Soletta superiore

	Soletta	
Dimension	Armature	
Sezione B H (m) (m)	d _i n _i ø _i (mm)	As _i (mm²)
Inviluppo 1.00 0.25	60 5 14	770
	Armatura a taglio (pe No arm. tagli	100 cm)

PS: i valori di A_{si} e A_{sj} sono uguali $(A_{sj}$ posto a $d_i = 190$ mm)

- Piedritto esterno

	Piedritto						
	Dime	nsioni		Arn	nature		
Sezione	B (m)	H (m)	d _i (mm)	n _i	ø _i (mm)	As _i (mm²)	
-	1.00	0.30	70	5	20	1571	
			Armat		l glio (per 1 0x20 – br.		

PS: i valori di A_{si} e A_{sj} sono uguali $(A_{sj}$ posto a $d_i = 230$ mm)

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Soletta di fondazione

		F					
	Dime	nsioni		Ar	mature		10 0 0 0
Sezione	B (m)	H (m)	d _i (mm)	n _i	ø _i (mm)	As _i (mm²)	
Inviluppo	1.00	0.40	70	6.66	14	1016	External side
			Arma		aglio (per 0x20 – br.		dj Asj
							di T
							Internal side

PS: i valori di A_{si} e A_{sj} sono uguali $(A_{sj}$ posto a $d_j = 330$ mm)

Muri interni

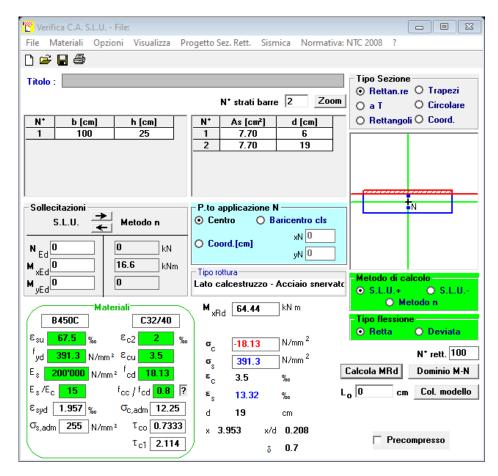
PS: i valori di A_{si} e A_{sj} sono uguali $(A_{sj}$ posto a $d_i = 230$ mm)

11.1 VERIFICHE STRUTTURALI - SOLETTA SUPERIORE

Saranno di seguito descritte le verifiche secondo la flessione, taglio per lo stato limite ultimo e fessurazione, limitazione delle tensioni e deformabilità per gli Stati limite d'esercizio.

11.1.1 SLU/SLV - VERIFICA A FLESSIONE

Nei risultati riassunti di seguito verranno considerati i set di sollecitazioni derivanti dalla massimizzazione/minimizzazione delle sollecitazioni interne flettenti (M,y,max e My,min) e per ciascuna di esse verranno calcolati i momenti resistenti (M_{Rd}) associati alle caratteristiche geometriche e meccaniche specificate per la sezione in esame.



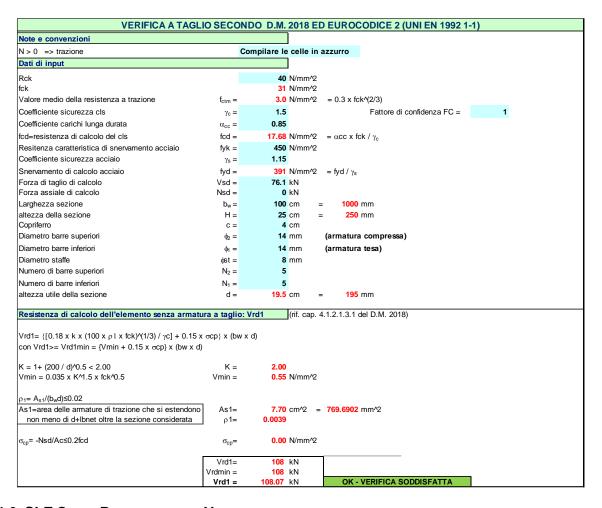
OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

 $M_{Ed} = -43.55 \text{ kNm/m}$; $A_S = (5014)/m = 1016 \text{ mm}^2/\text{ m}$; $A'_S = (5014)/m = 770 \text{ mm}^2$ $|M_{Rd}| = 64.44 \frac{kNm}{m} > |M_{Ed}| = 43.55 kNm/m$

11.1.2 SLU/SLV - VERIFICA A TAGLIO

 $|V_{Ed}| = 76.14 \text{ kN}$; $A_{sw} = \text{no arm. a taglio, spilli costruttivi } \emptyset 8 40x40 \text{ cm}$

 $|V_{Rd}| = 108.07 \text{ kN} > |V_{Ed}|$

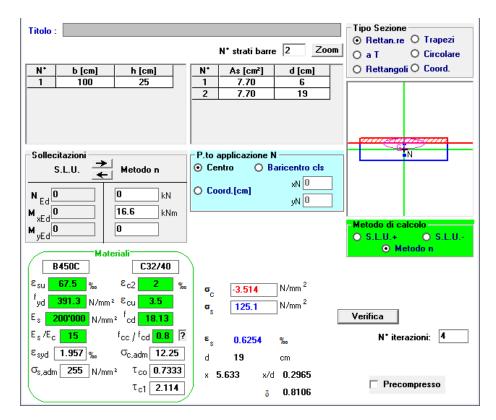


OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

11.1.3 SLE QUASI PERMANENTE - VERIFICA A FESSURAZIONE

Secondo quanto riportato al capitolo 4.1.2.2.5 della NTC, alle combinazioni caratteristiche le massime azioni interne non devono eccedere i seguenti valori:

 $\sigma_{c,\text{max}} \leq 0.45 \ fck = 14.40 \ MPa$



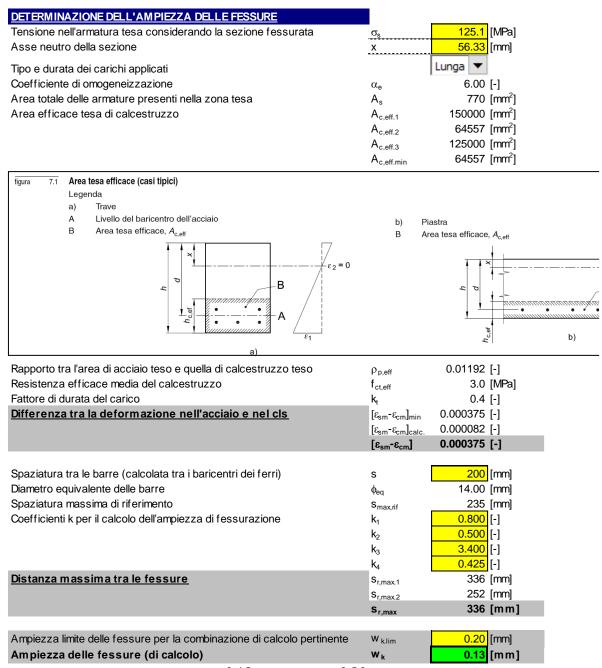
OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

La verifica risulta soddisfatta poiché si hanno come tensioni di esercizio:

 $\sigma_{c,\text{max}} = 3.51 \le 14.40 \ MPa;$

La classe di esposizione considerata è la XC2, pertanto per la combinazione quasi permanente è imposto il seguente vincolo all'apertura delle fessure: $w_k \le w_1 = 0.20 \text{ mm}$

Nel caso corrente si ha un'apertura uguale a:



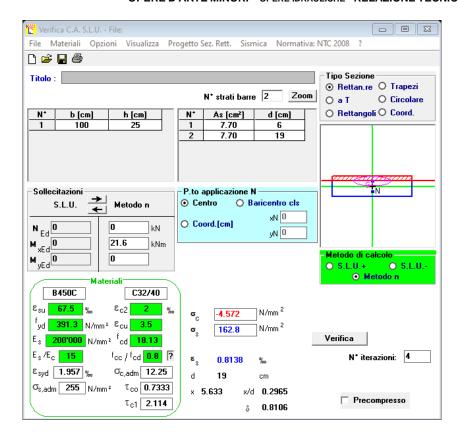
OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

 $w_k = 0.13 \text{ mm} \le w_1 = 0.20 \text{ mm}$

Pertanto la verifica è soddisfatta.

11.1.4 SLE FREQUENTE - VERIFICA A FESSURAZIONE

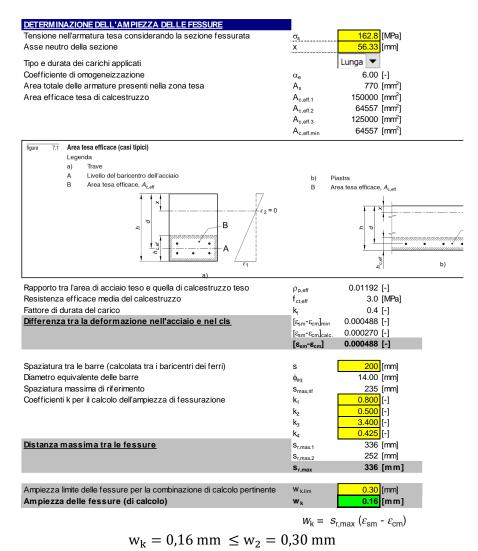
Secondo quanto riportato al capitolo 4.1.2.2.5 della NTC, si riportano inizialmente le massime azioni interne secondo l'inviluppo della SLE-Frequente:



OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

La classe di esposizione considerata è la XC2, pertanto per la combinazione frequente è imposto il seguente vincolo all'apertura delle fessure: $w_k \le w_2 = 0.30 \text{ mm}$

Nel caso corrente si ha un'apertura uguale a:



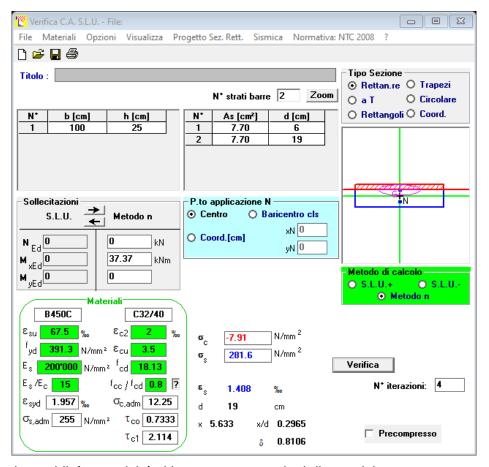
OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Pertanto la verifica è soddisfatta.

11.1.5 SLE RARA - VERIFICA DELLE TENSIONI

Secondo quanto riportato al capitolo 4.1.2.2.5 della NTC, si riportano inizialmente le massime azioni interne secondo l'inviluppo della SLEr-SLD, che non devono eccedere dei seguenti valori:

- $\sigma_{c,\text{max}} \le 0.60 \ f_{ck} = 19,32 \ MPa$
- $\sigma_{s,\text{max}} \le 0.80 \, f_{yk} = 360 \, MPa$



E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA Tratto Madonna del Piano - Collestrada

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

La verifica risulta soddisfatta poiché si hanno come tensioni di esercizio:

- $\sigma_{c,\text{max}} = 7.91 \le 19{,}32 MPa;$
- $\sigma_{s,\text{max}} = 281.60 \le 360 \text{ MPa}.$

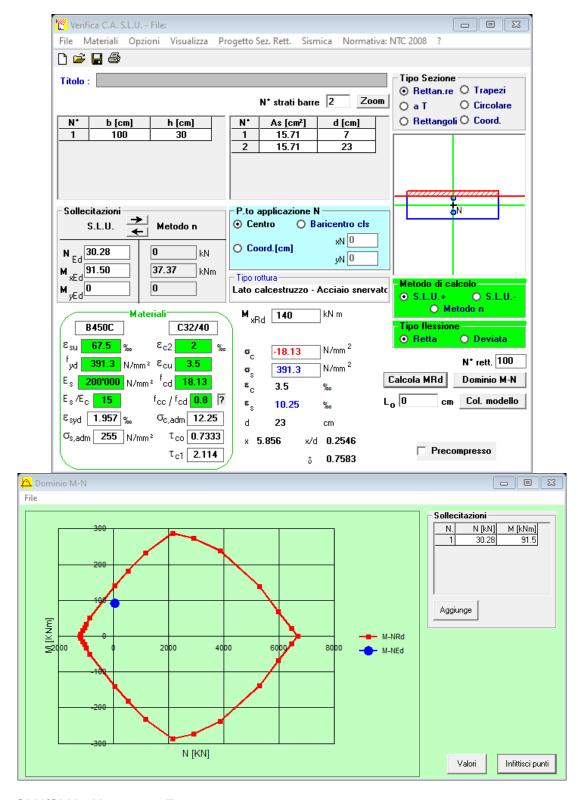
11.2 VERIFICHE STRUTTURALI - PIEDRITTO

Saranno di seguito descritte le verifiche secondo la flessione, taglio per lo stato limite ultimo e fessurazione, limitazione delle tensioni e deformabilità per gli Stati limite d'esercizio.

11.2.1 SLU/SLV - VERIFICA A FLESSIONE

Nei risultati riassunti di seguito verranno considerati i set di sollecitazioni derivanti dalla massimizzazione/minimizzazione delle sollecitazioni interne flettenti $(M_{y,max} e M_{y,min})$ e per ciascuna di esse verranno calcolati i momenti resistenti (M_{Rd}) associati alle caratteristiche geometriche e meccaniche specificate per la sezione in esame.

$$\begin{array}{l} M_{Ed} = 91.49 \ kNm/m \ ; \ N_{Ed} = -30.28 \ kN/m \\ A_S = (\ 5\emptyset20)/m \ = 1571 \ mm^2/m \ ; \ A'_S = (\ 5\emptyset20)/m \ = 1571 \ mm^2 \end{array}$$

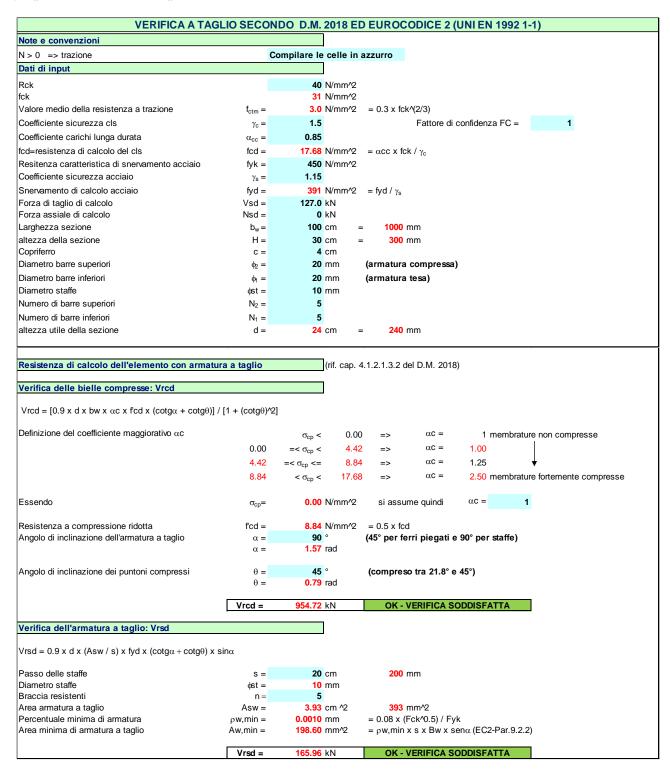


OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

 $|M_{Rd}| = 140.00 \text{ kNm/m} > |M_{Ed}|$

11.2.2 SLU/SLV - VERIFICA A TAGLIO

 $|V_{Ed}| = 127.08 \text{ kN}$; $A_{sw} = \text{spilli } \emptyset 10 / 20 \times 20 - 5 br$.

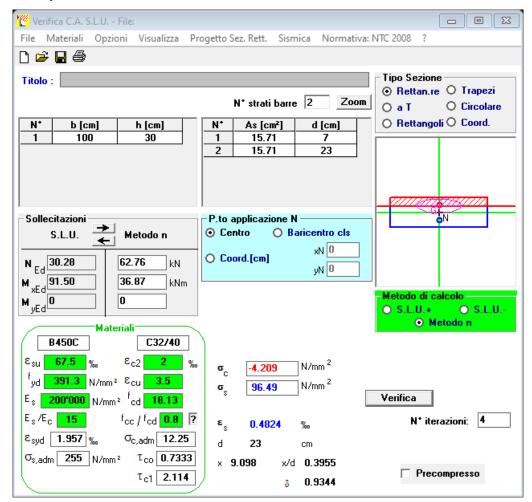


OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

 $|V_{Rd}| = 409.98 \text{ kN} > |V_{Ed}|$

11.2.3 SLE QUASI PERMANENTE - VERIFICA A FESSURAZIONE

Secondo quanto riportato al capitolo 4.1.2.2.5 della NTC, alle combinazioni caratteristiche le massime azioni interne non devono eccedere i seguenti valori:



OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

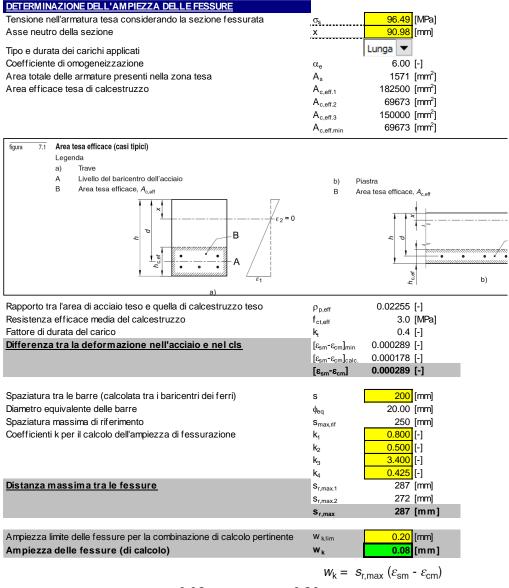
 $\sigma_{c,\text{max}} \le 0.45 \ fck = 14.40 \ MPa$

La verifica risulta soddisfatta poiché si hanno come tensioni di esercizio:

 $\sigma_{c,\max} = 4.20 \le 14.40 MPa;$

La classe di esposizione considerata è la XC2, pertanto per la combinazione quasi permanente è imposto il seguente vincolo all'apertura delle fessure: $w_k \le w_2 = 0.30 \text{ mm}$

Nel caso corrente si ha un'apertura uguale a:



E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA Tratto Madonna del Piano - Collestrada

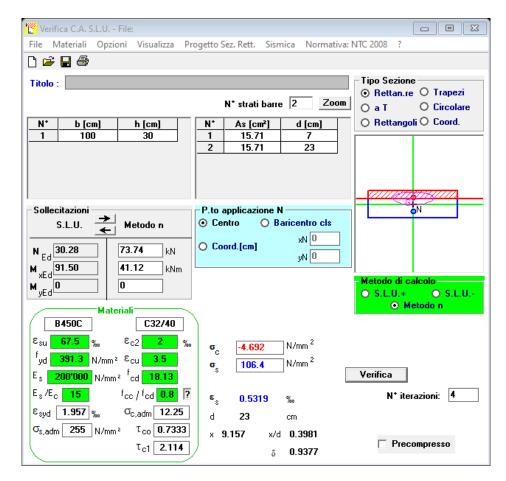
OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

 $w_k = 0.08 \text{ mm} \le w_1 = 0.20 \text{ mm}$

Pertanto la verifica è soddisfatta.

11.2.4 SLE FREQUENTE - VERIFICA A FESSURAZIONE

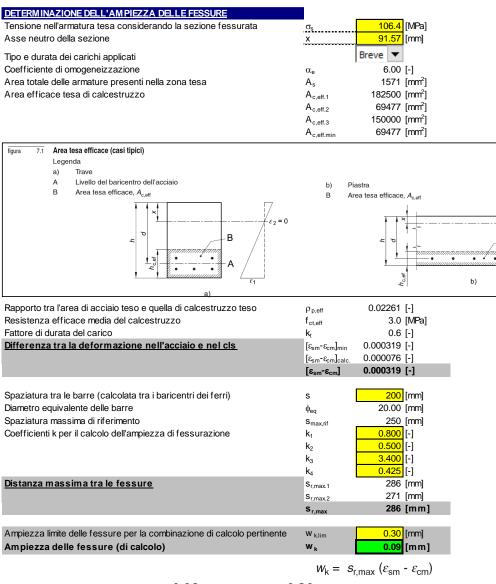
Secondo quanto riportato al capitolo 4.1.2.2.5 della NTC, si riportano inizialmente le massime azioni interne secondo l'inviluppo della SLE-Frequente:



OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

La classe di esposizione considerata è la XC2, pertanto per la combinazione frequente è imposto il seguente vincolo all'apertura delle fessure: $w_k \le w_2 = 0.30 \text{ mm}$

Nel caso corrente si ha un'apertura uguale a:



OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

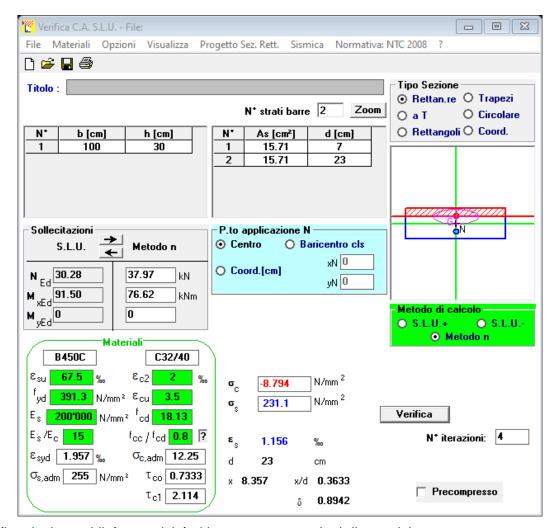
 $w_k = 0.09 \text{ mm} \le w_2 = 0.30 \text{ mm}$

Pertanto la verifica è soddisfatta.

11.2.5 SLE RARA - VERIFICA DELLE TENSIONI

Secondo quanto riportato al capitolo 4.1.2.2.5 della NTC, si riportano inizialmente le massime azioni interne secondo l'inviluppo della SLEr-SLD, che non devono eccedere dei seguenti valori:

- $\sigma_{c,\text{max}} \le 0.60 \ f_{ck} = 19,32 \ MPa$
- $\sigma_{s,\text{max}} \le 0.80 f_{yk} = 360 MPa$



OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

La verifica risulta soddisfatta poiché si hanno come tensioni di esercizio:

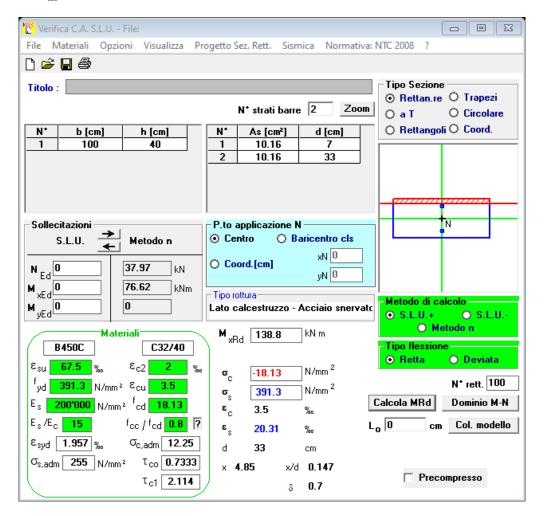
- $\sigma_{c,\text{max}} = 8.79 \le 19{,}32 MPa;$
- $\sigma_{s,\text{max}} = 231.10 \le 360 \text{ MPa}.$

11.3 VERIFICHE STRUTTURALI – FONDAZIONE

Saranno di seguito descritte le verifiche secondo la flessione, taglio per lo stato limite ultimo e fessurazione, limitazione delle tensioni e deformabilità per gli Stati limite d'esercizio.

11.3.1 SLU/SLV - VERIFICA A FLESSIONE

Nei risultati riassunti di seguito verranno considerati i set di sollecitazioni derivanti dalla massimizzazione/minimizzazione delle sollecitazioni interne flettenti (M,y,max e My,min) e per ciascuna



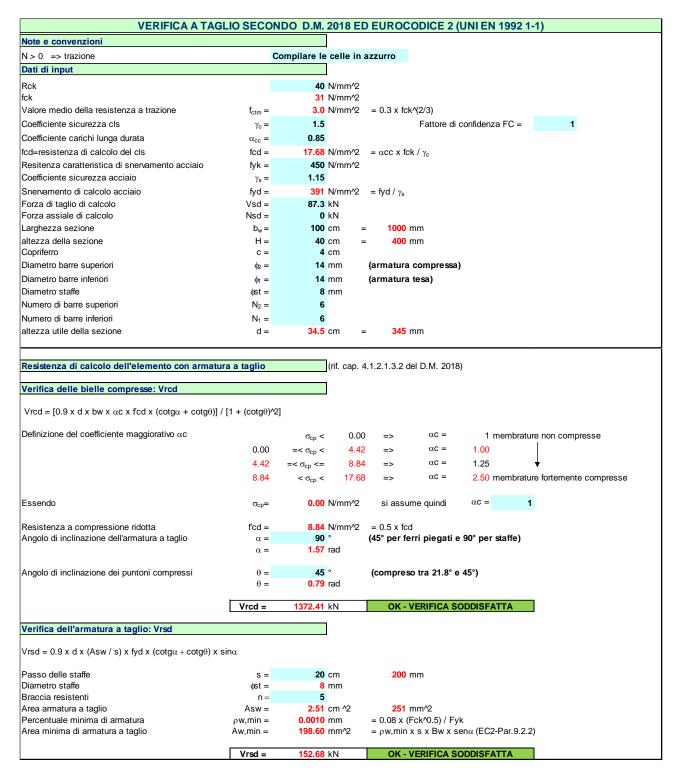
OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

di esse verranno calcolati i momenti resistenti (M_{Rd}) associati alle caratteristiche geometriche e meccaniche specificate per la sezione in esame.

$$M_{\rm Ed} = 78.20 \text{ kNm/m}$$
;
 $A_{\rm S} = (6014)/\text{m} = 1016 \text{ mm}^2/\text{ m}$; $A'_{\rm S} = (6014)/\text{m} = 1016 \text{ mm}^2/\text{m}$; $A'_{\rm Rd} = 138.8 \frac{\text{kNm}}{\text{m}} > |M_{\rm Ed}| = 78.20 \text{ kNm/m}$

11.3.2 SLU/SLV - VERIFICA A TAGLIO

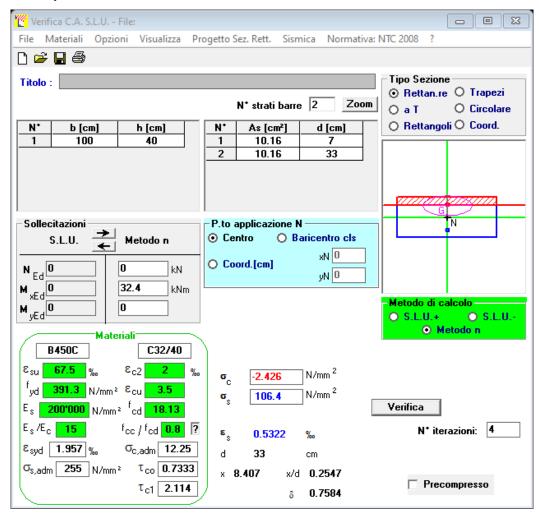
 $|V_{Ed}| = 87.30 \text{ kN}$; $A_{sw} = \text{spilli } \emptyset 8 / 20 \times 20 - 5 \text{ br}$. $|V_{Rd}| = 152.68 \text{ kN} > |V_{Ed}|$



OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

11.3.3 SLE QUASI PERMANENTE - VERIFICA A FESSURAZIONE

Secondo quanto riportato al capitolo 4.1.2.2.5 della NTC, alle combinazioni caratteristiche le massime azioni interne non devono eccedere i seguenti valori:



OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

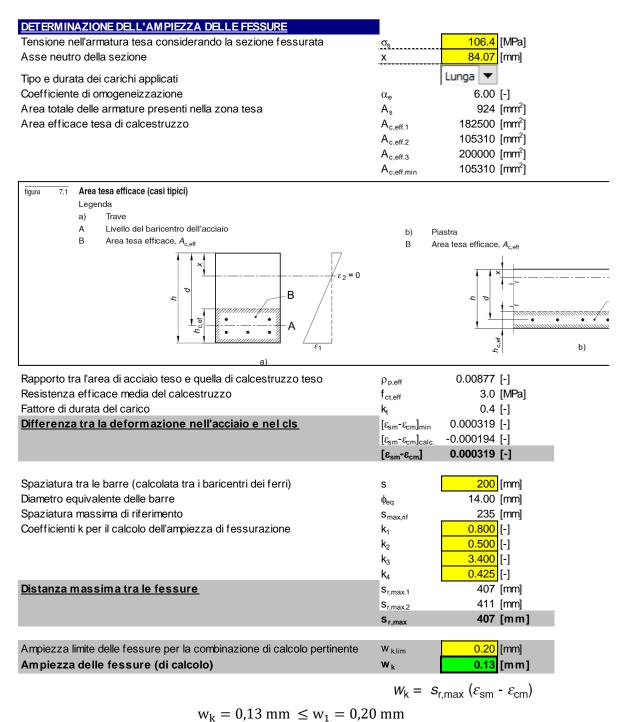
 $\sigma_{c,\text{max}} \le 0.45 \ fck = 14.40 \ MPa$

La verifica risulta soddisfatta poiché si hanno come tensioni di esercizio:

 $\sigma_{c,\text{max}} = 2.46 \le 14.40 \, MPa;$

La classe di esposizione considerata è la XC2, pertanto per la combinazione quasi permanente è imposto il seguente vincolo all'apertura delle fessure: $w_k \le w_1 = 0.20 \text{ mm}$

Nel caso corrente si ha un'apertura uguale a:

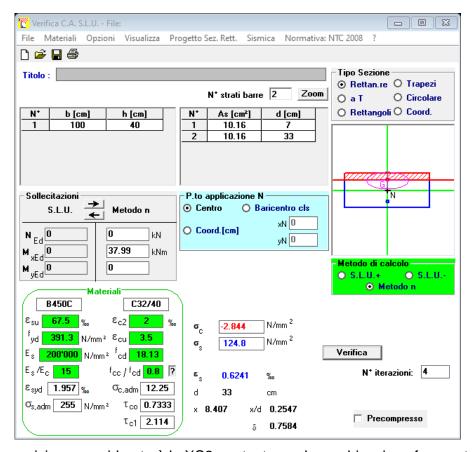


OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Pertanto la verifica è soddisfatta.

11.3.4 SLE FREQUENTE - VERIFICA A FESSURAZIONE

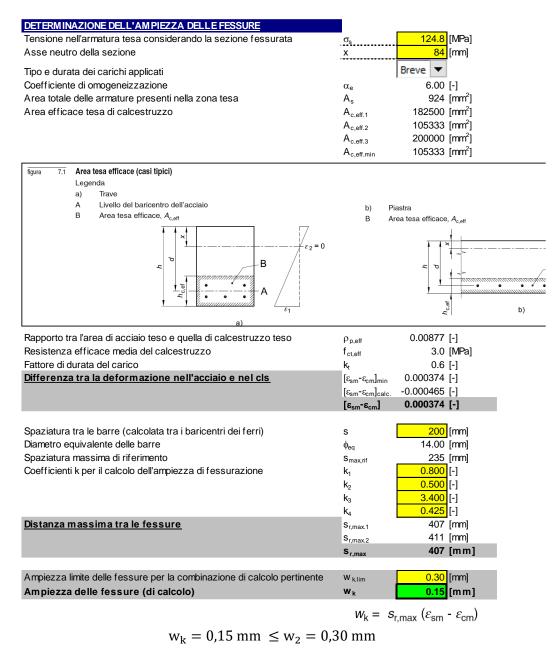
Secondo quanto riportato al capitolo 4.1.2.2.5 della NTC, si riportano inizialmente le massime azioni interne secondo l'inviluppo della SLE-Frequente:



OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

La classe di esposizione considerata è la XC2, pertanto per la combinazione frequente è imposto il seguente vincolo all'apertura delle fessure: $w_k \le w_2 = 0.30 \text{ mm}$

Nel caso corrente si ha un'apertura uguale a:



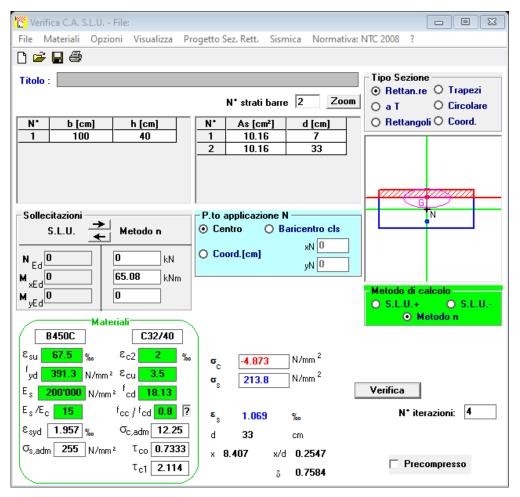
OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Pertanto la verifica è soddisfatta.

11.3.5 SLE RARA – VERIFICA DELLE TENSIONI

Secondo quanto riportato al capitolo 4.1.2.2.5 della NTC, si riportano inizialmente le massime azioni interne secondo l'inviluppo della SLEr-SLD, che non devono eccedere dei seguenti valori:

- $\sigma_{c,\text{max}} \le 0.60 \ f_{ck} = 19{,}32 \ MPa$
- $\sigma_{s,\text{max}} \le 0.80 \, f_{vk} = 360 \, MPa$



OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

La verifica risulta soddisfatta poiché si hanno come tensioni di esercizio:

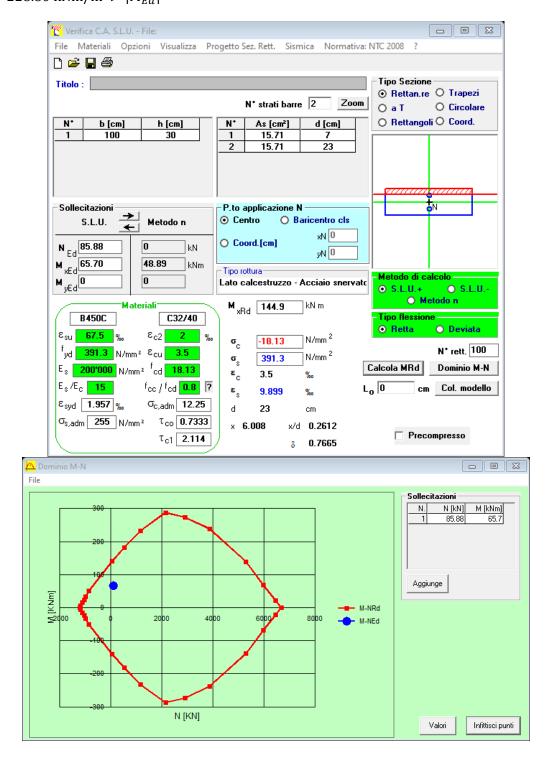
- $\sigma_{c.\text{max}} = 4.87 \le 19.32 \, MPa;$
- $\sigma_{s,\text{max}} = 213.80 \le 360 \text{ MPa}.$

11.4 VERIFICHE STRUTTURALI – MURI INTERNI

Saranno di seguito descritte le verifiche secondo la flessione, taglio per lo stato limite ultimo e fessurazione, limitazione delle tensioni e deformabilità per gli Stati limite d'esercizio.

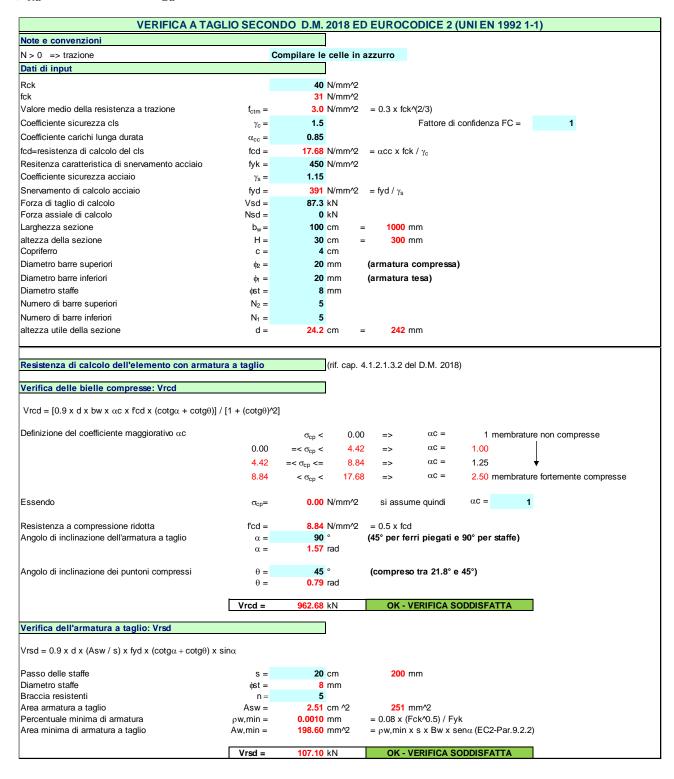
11.4.1 SLU/SLV - VERIFICA A FLESSIONE

Nei risultati riassunti di seguito verranno considerati i set di sollecitazioni derivanti dalla massimizzazione/minimizzazione delle sollecitazioni interne flettenti (M,y,max e My,min) e per ciascuna di esse verranno calcolati i momenti resistenti (M_{Rd}) associati alle caratteristiche geometriche e meccaniche specificate per la sezione in esame.



OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

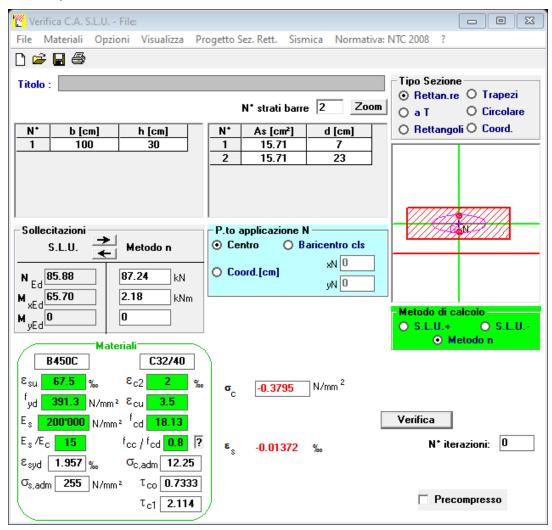
 $M_{Ed} = 65.70 \text{ kNm/m}$; $N_{Ed} = -85.88 \text{ kN/m}$ $A_S = (5020)/m = 1539 \text{ mm}^2/\text{ m}$; $A'_S = (5020)/m = 1539 \text{ mm}^2$ $|M_{Rd}| = 228.80 \text{ kNm/m} > |M_{Ed}|$



OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

11.4.2 SLU/SLV - VERIFICA A TAGLIO

 $|V_{Ed}| = 41.70 \text{ kN}$; $A_{sw} = \text{spilli } \emptyset 8 / 20 \times 20 - 5 br$. $|V_{Rd}| = 107.10 \text{ kN} > |V_{Ed}|$



OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

11.4.3 SLE QUASI PERMANENTE – VERIFICA A FESSURAZIONE

Secondo quanto riportato al capitolo 4.1.2.2.5 della NTC, alle combinazioni caratteristiche le massime azioni interne non devono eccedere i seguenti valori:

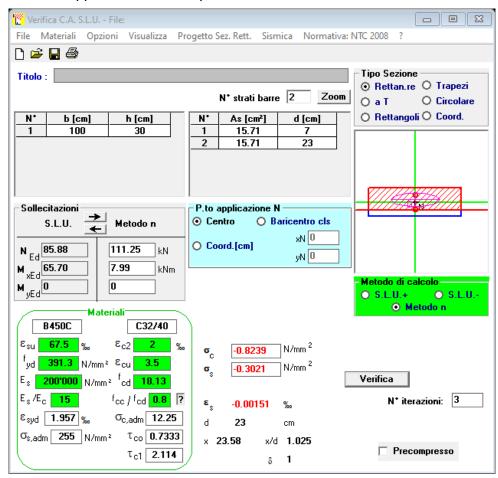
 $\sigma_{c,\text{max}} \le 0.45 \ fck = 14.40 \ MPa$

La verifica risulta soddisfatta poiché si hanno come tensioni di esercizio:

 $\sigma_{c,\text{max}} = 0.37 \le 14.40 \, MPa;$

La classe di esposizione considerata è la XC2, pertanto per la combinazione quasi permanente è imposto il seguente vincolo all'apertura delle fessure: $w_k \le w_1 = 0.20 \text{ mm}$

Nel caso corrente non risulta significativo eseguire tale verifica.



OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

11.4.4 SLE FREQUENTE - VERIFICA A FESSURAZIONE

Secondo quanto riportato al capitolo 4.1.2.2.5 della NTC, si riportano inizialmente le massime azioni interne secondo l'inviluppo della SLE-Frequente:

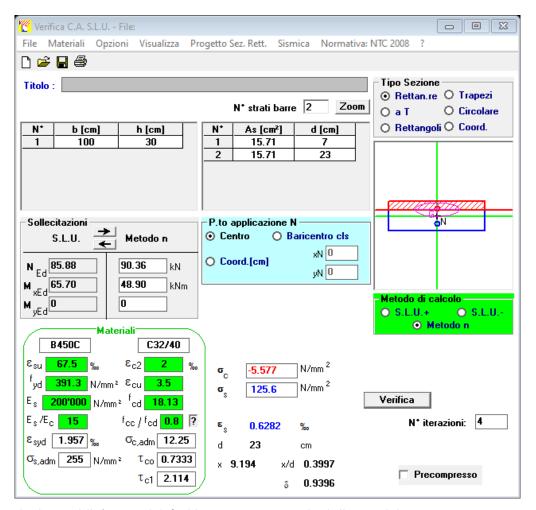
La classe di esposizione considerata è la XC2, pertanto per la combinazione frequente è imposto il seguente vincolo all'apertura delle fessure: $w_k \le w_2 = 0.30 \text{ mm}$

Nel caso corrente non si ritiene significativa tale verifica a causa dello stato di sforzo presente.

11.4.5 SLE RARA - VERIFICA DELLE TENSIONI

Secondo quanto riportato al capitolo 4.1.2.2.5 della NTC, si riportano inizialmente le massime azioni interne secondo l'inviluppo della SLEr-SLD, che non devono eccedere dei sequenti valori:

- $\sigma_{c,\text{max}} \le 0.60 \ f_{ck} = 19{,}32 \ MPa$
- $\sigma_{s, \text{max}} \le 0.80 \, f_{yk} = 360 \, MPa$



OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

La verifica risulta soddisfatta poiché si hanno come tensioni di esercizio:

- $\sigma_{c,\text{max}} = 5.57 \le 19{,}32 MPa;$
- $\sigma_{s,\text{max}} = 125.60 \le 360 \text{ MPa}.$

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

12 VERIFICHE GEOTECNICHE

12.1 VERIFICHE A GALLEGGIAMENTO

Vista la presenza della falda, la struttura può essere soggetta a fenomeni di galleggiamento. Per questo tipo di verifica la sezione viene considerata come se fosse un corpo rigido e ne viene valutato l'equilibrio in relazione al valore della spinta idrostatica.

Secondo quanto riportato al Cap. 6.2.4.2 delle NTC 2018, per la stabilità al sollevamento i coefficienti parziali sulle azioni fanno riferimento alla Tab. 6.2.III e qui sotto riportata, mentre i fattori parziali sui materiali sono nella combinazione M2. Nel caso specifico (terreno incoerente), il fattore parziale applicato sulla tangente dell'angolo d'attrito è quindi uguale a 1.25.

Tab. 6.2.III - Coefficienti parziali sulle azioni per le verifiche nei confronti di stati limite di sollevamento

	Effetto	Coefficiente Parziale γ_F (o γ_E)	Sollevamento (UPL)
Contrate in comment in Co	Favorevole		0,9
Carichi permanenti Gı	Sfavorevole	YG1	1,1
Carichi permanenti	Favorevole		0,8
$G_{2^{(1)}}$	Sfavorevole	YG2	1,5
A = i = = i = = = i = 1 : 11 : O	Favorevole		0,0
Azioni variabili Q	Sfavorevole	ΥQi	1,5

⁽I) Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γ_{G1}

La combinazione di carico utilizzata è la seguente:

$$0.9*G_1 + 0.9*G_2 + 1.1 *S > 0$$

Di seguito sono riportati i valori dei carichi utilizzati per la verifica:

- G_1 Peso proprio della vasca, pari a: $6.43 m^2 * 25 kN/m^3 = 160.00 kN/m$
- Peso del terreno di ricoprimento/pavimentazione, pari a: $(1.00m * 4.60m + 5.5 * 0.70 * \frac{2}{10})$
- $)*20kN/m^3 = 98.16 kN/m$
- Sottospinta idraulica (negativa perché verso l'alto): $(2.9 * 4.60) * 10 kN/m^3 =$ $-133.40 \ kN/m$

A favore di sicurezza si trascura l'effetto dell'attrito tra muri e terreno, da cui la disuguaglianza risulta:

$$0.9 * 160 \frac{kN}{m} + 0.9 * 98.16 \frac{kN}{m} - 1.1 * 133.40 \frac{kN}{m} = 85.60 kN/m > 0$$

Essendo la spinta complessiva positiva e, quindi, rivolta verso il basso, la verifica risulta soddisfatta.

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

12.2 VERIFICA DELLA CAPACITÀ PORTANTE DEL TERRENO DI FONDAZIONE

Di seguito è riportata la verifica della capacità portante. La soletta inferiore dello scatolare è considerata una fondazione superficiale, pertanto si seguono le indicazioni relative al relativo capitolo delle NTC2018: le verifiche sono condotte secondo la combinazione A1+M1+R3, con il fattore parziale sulla resistenza pari a 2,3.

Le verifiche sono state condotte agli SLU e agli SLV. Per ciascuno stato limite sono stati considerati 2 casi, corrispondenti alle massime azioni interne. Nelle seguenti tabella sono riportate le azioni massime e minime che la struttura scarica in fondazione agli SLU e SLV.

	Combinazione	N	V	М
SLU		kN	kN	kNm
	SLU1	7432.60	456.4	1043.00

	Combinazione	N	V	M
SLV		kN	kN	kNm
	SLV1	2734.06	3010.00	4770.64

I valori di momento sono riferiti alla direzione di massimo sviluppo della vasca. Nella direzione minore (presa come riferimento per la verifica), il momento agente considerato, dati i rapporti di forma, viene considerato pari alla metà di quello nell'altra direzione.

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

- SLU

CONDIZIONI NON DRENATE	Q lim = c	u · (3.14 +2)	· (dc · ic · sc ·	bc · gc) +	q	
D.M. 17/01/2018						
Approccio 1 - Combinazione SLU2	(A1 + M1	+ R3)			=>	γM = 1.00
Condizioni	Non drenate					γR = 2.30
Tipo di fondazione	Plinto					
Caratteristiche geotecniche terreno Peso specifico efficace del terreno di ricoprimento	γ' ric (kN/m^3) =	20				
Peso specifico efficace del terreno di fondazione	γ' (kN/m/3) =	20				
Angolo di attrito del terreno di fondazione		0				
	cu (kN/m^2) =	0.00 50.00				
Coesione del terreno di fondazione	cuver (kN/m^2) =	50.00				
Scometria della fondazione						
Geometria della fondazione Dimensione minore fondazione	B (m) =	6.30				
Dimensione maggiore fondazione	L (m) =	14.00				
Affondamento della fondazione	D (m) =	4.90				
nclinazione intradosso fondazione nclinazione piano campagna	α (°) = β (°) =	0.00				
	P () =	5.50				
Carichi di verifica	\$1.71.\$0	7400.00				
Carico verticale agente sulla fondazione Carico orizzontale agente sulla fondazione	N (kN) = H (kN) =	7432.60 456.40				
Momento flettente in direzione B	MB (kNm) =					
Momento flettente in direzione L	ML (kNm) =	521.50				
Eccentricità in direzione B Eccentricità in direzione L	EB (m) = EL (m) =	0.14 0.07				
-ccentricità in direzione L	LL (III) =	0.07				
Dati di calcolo						
Dim. minore fondazione efficace equivalente	B' (m) =	6.02				
Dim. maggiore fondazione efficace equivalente Azione laterale stabilizzante	L' (m) = q (kN/m/2) =	13.86 98.00				
	7 (*** **** =/					
$N_{Y} = 2^{*}(N_{Q}+1)^{*}tan($		0.00				
Fattori di capacità portante $Nq = \exp[\pi^* tan(\Phi')]$ $Nc = (Nq-1)^* cotan(\Phi')$		1.00 5.14				
	,					
Coefficienti correttivi						
Fattori correttivi dipendenti dall'inclinazione del carico (Vesi	c. 1975)					
m = 1.69 = [2+(B'/L')] / [1+(B'/L')]						
iγ = 1.00 iq= 1.00	ic=	0.96				
	(1/					
Fattori correttivi dipendenti dalla profondità del piano di pos dy = 1.00	sa (Vesic, 1975)					
<u> </u>						
D/B' = 0.81						
dq = 1.00 per D/B' <=1						
quindi dq =	1.00					
dq = 1.00 per D/B' >1						
dc = 1.32						
Fattori correttivi dipendenti dalla forma della fondazione (Ve	sic, 1975)	1.08				
sγ = 0.83 sq= 1.00	SC=	1.00				
Fattori correttivi dipendenti dall'inclinazione dell'intradosso bγ = 1.00 bq= 1.00	fondazione (Vesic. 1975) bc=	1.00				
Fattori correttivi dipendenti dall'inclinazione del piano camp g q = 1.00 gq= 1.00	gc=	1.00				
CAPACITA' PORTANTE LIMITE Q lim =	452 kN/mq	=>	37693 kN			
COEFFICIENTE DI SICUREZZA $\gamma_R =$	2.30					

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

- SLV

DETERMINAZIONE DELLA CAPA	CITA' PORTANTE LIN	IITE DI F	ONDAZIONI SUPE	RFICIAL	RETTANGOLARI
CONDIZIONI NON DRENATE	Q lim = c	u · (3.14 +	2) · (dc · ic · sc · bc · g	c) + q	
D.M. 17/01/2008 Combinazione sismica	Coefficienti	unitari	1	=>	γM = 1.00
					γR = 2.30
Condizioni	Non drenate				
Tipo di fondazione	Plinto				
Caratteristiche geotecniche terreno			_		
Peso specifico efficace del terreno di ricoprimento	γ' ric (kN/m/3) =	20	-		
Peso specifico efficace del terreno di fondazione	γ' (kN/m^3) =	20 0	-		
Angolo di attrito del terreno di fondazione		0			
Coesione drenata del terreno di fondazione	cu (kN/m^2) =	50	-		
	cuver (kN/m^2) =	50			
Geometria della fondazione			_		
Dimensione minore fondazione	B (m) =				
Dimensione maggiore fondazione Affondamento della fondazione	L (m) = D (m) =	14.00 4.90	1		
Inclinazione intradosso fondazione	α (°) =	0.00	j		
Inclinazione piano campagna	β (°) =	0.00	J		
Carichi di verifica					
Carico verticale agente sulla fondazione	N (kN) =	2734.06]		
Carico orizzontale agente sulla fondazione	H (kN) =				
Momento flettente in direzione B Momento flettente in direzione L	MB (kNm) = ML (kNm) =	4770.64 2385.32	-		
Eccentricità in direzione B	EB (m) =				
Eccentricità in direzione L	EL (m) =	0.87			
Dati di calcolo					
Dim. minore fondazione efficace equivalente	B' (m) =	2.81			
Dim. maggiore fondazione efficace equivalente	L' (m) =	12.26			
Azione laterale stabilizzante	q (kN/m^2) =	98.00			
$N\gamma = 2^*(Nq+1)^*t$		0.00]		
	Φ')]*tan^2(45+Φ'/2)	1.00	-		
Nc = (Nq-1)*cota	an(Φ)	5.14	1		
Coefficienti correttivi					
Fattori correttivi dipendenti dall'inclinazione del carico (V	'esic. 1975)				
m = 1.81 = [2+(B'/L')] / [1+(B'/L')]					
iγ = 1.00 iq= 1.00	ic=	0.38]		
Fattori correttivi dipendenti dalla profondità del piano di p	oosa (Vesic, 1975)				
D/B' = 1.74					
dq = 1.00 per D/B' <=1					
quindi dq dq = 1.00 per D/B' >1	= 1.00				
dc = 1.41					
Fattori correttivi dipendenti dalla forma della fondazione $S\gamma = \begin{bmatrix} 0.91 & Sq = \end{bmatrix} $	(<u>Vesic, 1975)</u>	1.04]		
Fattori correttivi dipendenti dall'inclinazione dell'intrados by = 1.00 bq= 1.00	sso fondazione (Vesic, 1975) bc=	1.00	1		
Fattori correttivi dipendenti dall'inclinazione del piano ca	mpagna (Vesic. 1975)				
g _γ = 1.00 gq= 1.00	gc=	1.00	J		
CAPACITA' PORTANTE LIMITE Q lim	= 243 kN/mq	=>	8370 kN		
COEFFICIENTE DI SICUREZZA γR	= 2.30				
CAPACITA' PORTANTE DI PROGETTO Q RD	= 106 kN/mq	=>	3639 kN FS	5 = 1.33	VERIFICA SODDISFATTA

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

13 ALLEGATI DI CALCOLO

Table: Material Properties 03b - Concrete Data, Part 1 of 3

Table: Material Properties 03b - Concrete Data, Part 1 of 3

Material	Temp	Fc	eFc	LtWtConc	LtWtFact	SSCurveOpt	SSHysType	SFc
	С	KN/m2	KN/m2					
C32/40		32000.	32000.	No		Mander	Takeda	0.001919

Table: Material Properties 03b - Concrete Data, Part 2 of 3

Table: Material Properties 03b - Concrete Data, Part 2 of 3

Material	SCap	FinalSlope	FAngle Degrees	DAngle Degrees	TimeType	TimeE	EFact	TimeCreep
C32/40	0.005	-0.1	0.	0.				

Table: Material Properties 03b - Concrete Data, Part 3 of 3

Table: Material Properties 03b - Concrete Data, Part 3 of 3

Material	CreepFact	TimeShrink	ShrinkFact	CreepType	CreepTerms	CoupModTy pe
C32/40						Modified Darwin- Pecknold

Table: Frame Section Properties 02 - Concrete Column, Part 1 of 2

Table: Frame Section Properties 02 - Concrete Column, Part 1 of 2

SectionNam e	RebarMatL	RebarMatC	ReinfConfig	LatReinf	Cover	NumBars3D ir	NumBars2D ir	NumBarsCir c
					m			
Fondazione	B450C	B450C	Rectangular	Ties	0.04	3	3	
Muro Interno	B450C	B450C	Rectangular	Ties	0.04	3	3	
Piedritto	B450C	B450C	Rectangular	Ties	0.04	3	3	
Soletta	B450C	B450C	Rectangular	Ties	0.04	3	3	

Table: Frame Section Properties 02 - Concrete Column, Part 2 of 2

Table: Frame Section Properties 02 - Concrete Column, Part 2 of 2

SectionNam e	BarSizeL	BarSizeC	SpacingC	NumCBars2	NumCBars3	ReinfType
			m			
Fondazione	#9	#4	0.15	3	3	Design
Muro Interno	#9	#4	0.15	3	3	Design
Piedritto	#9	#4	0.15	3	3	Design
Soletta	#9	#4	0.15	3	3	Design

GESTIONE PROGETTI INGEGNERIA srl

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Table: Function - Response Spectrum - User

Table: Function - Response Spectrum - User

Name	Period Sec	Accel	FuncDamp
UNIFRS	0.	1.	0.05
UNIFRS	1	1	

Table: Load Pattern Definitions, Part 1 of 2

Table: Load Pattern Definitions, Part 1 of 2

DesignType	SelfWtMult	AutoLoad	NotBasePat	NotRatio	NotDir	GUID
Dead	1.					36f976d1-5f3f-451f-abab- 511c8804e11e
Dead	0.					e3c06008-83d6-4962- 9f80-4b34396e6c3c
Dead	0.					cedf7843-71e5-4688- 997e-e21aac031f2c
Dead	0.					69cae124-74a8-402f- 937e-750e4ed6e6a0
Dead	0.					453ec736-f4cd-44a6- 80d5-5c5dbc1b4fe6
Live	0.					7a22d3d8-8428-44a6- 8816-2ec23f995891
Live	0.					690ae24c-010e-489f- af27-c24a334e7a2d
Dead	0.					ec94bc21-6e1c-455d- 97d1-9c4ac91d8884
Live	0.					b99a71f0-91c0-486e- a927-86a1c87daf01
Live	0.					c00cd994-b7c2-40ec- 9a05-ce79eadc535b
Live	0.					75e27bd4-cab0-4522- 9fb8-fb912087605f
Live	0.					17ee40a9-d9d9-493e- b518-c972e3cdbdd3
Live	0.					ebf2935b-4995-4989- 8897-fa18c2af2bf3
	Dead Dead Dead Dead Dead Live Live Dead Live Live Live	DesignType SelfWtMult Dead 1. Dead 0. Dead 0. Dead 0. Live 0.	DesignType SelfWtMult AutoLoad Dead 1. Dead 0. Dead 0. Dead 0. Live 0. Dead 0. Live 0.	DesignTypeSelfWtMultAutoLoadNotBasePatDead1.Dead0.Dead0.Dead0.Live0.Dead0.Live0.Live0.Live0.Live0.Live0.Live0.Live0.Live0.Live0.Live0.	Dead 1. Dead 0. Dead 0. Dead 0. Dead 0. Live 0.	DesignTypeSelfWtMultAutoLoadNotBasePatNotRatioNotDirDead1Dead0Dead0Live0Dead0Live0Live0Live0Live0Live0Live0Live0Live0

Table: Load Pattern Definitions, Part 2 of 2

Table: Load Pattern Definitions. Part 2 of 2

Table. Loau Fa	Table. Load Fattern Dennitions, Fart 2 of 2							
LoadPat	Notes							
DEAD								
G_ricopr terr	Added 14/03/2022 18:18:22							
G_terr sx	Added 14/03/2022 18:18:47							
G_terr dx	Added 14/03/2022 18:18:52							
P_water_lat	Added 14/03/2022 18:19:38							
Q_water_min	Added 14/03/2022 18:20:32							
Q_water_max	Added 14/03/2022 18:20:53							
P_water	Added 14/03/2022 18:51:39							
Wood	Added 15/03/2022 08:54:19							
Container lat	Added 15/03/2022 09:36:35							
Container sup M	Added 15/03/2022 09:43:27							
Container sup V	Added 15/03/2022 09:43:48							
E_water	Added 15/03/2022 10:04:01							

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Table: Load Case Definitions, Part 1 of 3

Table: Load Case Definitions, Part 1 of 3

Case	Туре	InitialCond	ModalCase	BaseCase	MassSource	IncludeSSI	DesTypeOpt
DEAD	LinStatic	Zero					Prog Det
MODAL	LinModal	Zero					Prog Det
G_ricopr terr	LinStatic	Zero					Prog Det
G_terr sx	LinStatic	Zero					Prog Det
G_terr dx	LinStatic	Zero					Prog Det
P_water_lat	LinStatic	Zero					Prog Det
P_water_vert	LinStatic	Zero					Prog Det
Q_water_min	LinStatic	Zero					Prog Det
Q_water_ma	LinStatic	Zero					Prog Det
X							
Wood SLV	LinStatic	Zero					Prog Det
Container lat	LinStatic	Zero					Prog Det
Container sup M	LinStatic	Zero					Prog Det
Container sup V	LinStatic	Zero					Prog Det
E_water_SL V	LinStatic	Zero					Prog Det
E_inerzia SLV	LinStatic	Zero					Prog Det
Wood SLD	LinStatic	Zero					Prog Det
E_inerzia SLD	LinStatic	Zero					Prog Det
E_water_SL D	LinStatic	Zero					Prog Det

Table: Load Case Definitions, Part 2 of 3

Table: Load Case Definitions, Part 2 of 3

Case	DesignType	DesActOpt	DesignAct	AutoType	RunCase	CaseStatus	GUID
DEAD	Dead	Prog Det	Non- Composite	None	Yes	Finished	329b1235-f123-422a- 936f-5b45a621213d
MODAL	Other	Prog Det	Other	None	Yes	Finished	5171cfec-da4f-4c50- a111-120b75b60f7b
G_ricopr terr	Dead	Prog Det	Non- Composite	None	Yes	Finished	e9ad40f8-4ab1-4358- 9873-0607bf5e26c8
G_terr sx	Dead	Prog Det	Non- Composite	None	Yes	Finished	7ed73251-a10f-4a06- bdd4-8e02a506dd78
G_terr dx	Dead	Prog Det	Non- Composite	None	Yes	Finished	2bd3fa73-9ede-415d- 8b85-de46494c9c61
P_water_lat	Dead	Prog Det	Non- Composite	None	Yes	Finished	46fc524f-4023-4a66- 8661-51601d206b6b
P_water_vert	Dead	Prog Det	Non- Composite	None	Yes	Finished	64f19b0a-0e7f-45d7- 973b-beaa50cae5a1
Q_water_min	Live	Prog Det	Short-Term Composite	None	Yes	Finished	732613ee-d05e-415a- 826e-3e21ceb4eb88
Q_water_ma x	Live	Prog Det	Short-Term Composite	None	Yes	Finished	84bb300f-3364-48b8- aadf-5f5fe6606b49
Wood SLV	Live	Prog Det	Short-Term Composite	None	Yes	Finished	ef17f472-5f1c-4b36- 83d4-9b15ccaa3641
Container lat	Live	Prog Det	Short-Term Composite	None	Yes	Finished	403e5b66-aca7-4908- a549-7fde44335d6d
Container sup M	Live	Prog Det	Short-Term Composite	None	Yes	Finished	5963aca4-750c-4086- a1a1-b0836066d71e

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Table: Load Case Definitions, Part 2 of 3

Case	DesignType	DesActOpt	DesignAct	AutoType	RunCase	CaseStatus	GUID
Container sup V	Live	Prog Det	Short-Term Composite	None	Yes	Finished	78f60127-d20a-458b- 80ef-46d5ece1409a
E_water_SL V	Live	Prog Det	Short-Term Composite	None	Yes	Finished	53127ae0-df6b-4a47- 81f5-f8a820e0f96d
E_inerzia SLV	Quake	Prog Det	Short-Term Composite	None	Yes	Finished	f9e74228-5dd6-47e8- ba1c-7226e908fdb5
Wood SLD	Live	Prog Det	Short-Term Composite	None	Yes	Finished	ef17f472-5f1c-4b36- 83d4-9b15ccaa3641
E_inerzia SLD	Quake	Prog Det	Short-Term Composite	None	Yes	Finished	f9e74228-5dd6-47e8- ba1c-7226e908fdb5
E_water_SL D	Live	Prog Det	Short-Term Composite	None	Yes	Finished	53127ae0-df6b-4a47- 81f5-f8a820e0f96d

Table: Load Case Definitions, Part 3 of 3

Table: Load Case	Definitions, Part 3 of 3
Case	Notes
DEAD	
MODAL	
G_ricopr terr	
G_terr sx	
G_terr dx	
P_water_lat	
P_water_vert	
Q_water_min	
Q_water_ma	
X	
Wood SLV	
Container lat	
Container	
sup M	
Container sup V	
E_water_SL	
_ · · ·	
E_inerzia SLV	
Wood SLD	
E_inerzia SLD	
E_water_SL D	

Table: Combination Definitions, Part 1 of 3

Table: Combination Definitions, Part 1 of 3

ComboName	ComboType	AutoDesign	СаѕеТуре	CaseName	ModeNumb er	ScaleFactor
SLV1	Linear Add	No	Linear Static	DEAD		1.
SLV1			Linear Static	G_ricopr terr		1.
SLV1			Linear Static	G_terr sx		1.
SLV1			Linear Static	P_water_lat		1.
SLV1			Linear Static	P_water_vert		1.
SLV1			Linear Static	Q_water_min		1.

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Table: Combination Definitions, Part 1 of 3

N I - N	O	Table: Com	O	0N	M - d - Novembr	01-51-
ComboName	ComboType	AutoDesign	CaseType	CaseName	ModeNumb er	ScaleFacto
SLV1			Linear Static	Wood SLV		0.38
SLV1			Linear Static	Container lat		0.3
SLV1			Linear Static	Container sup V		0.
SLV1			Linear Static	E_water_SLV		1
SLV1			Linear Static	E_inerzia SLV		1
SLV2	Linear Add	No	Linear Static	DEAD		1
SLV2			Linear Static	G_ricopr terr		1
SLV2			Linear Static	G_terr sx		1
SLV2			Linear Static	P_water_lat		1
SLV2			Linear Static	P_water_vert		1
SLV2			Linear Static	Wood SLV		0.3
SLV2 SLV2			Linear Static	Container lat		0.3
SLV2			Linear Static	Container sup V		0.:
SLV2	Line and Astal	NI-	Linear Static	E_inerzia SLV		1
SLD1	Linear Add	No	Linear Static	DEAD		1
SLD1			Linear Static	G_ricopr terr		1
SLD1			Linear Static	G_terr sx		1
SLD1			Linear Static	P_water_lat		1
SLD1			Linear Static	P_water_vert		1
SLD1			Linear Static	Q_water_min		1
SLD1			Linear Static	Container lat		0.
SLD1			Linear Static	Container sup V		0.
SLD1			Linear Static	Wood SLD		0.4
SLD1			Linear Static	E_water_SLD		•
SLD1			Linear Static	E_inerzia SLD		•
SLEr1	Linear Add	No	Linear Static	DEAD		•
SLEr1			Linear Static	G_ricopr terr		1
SLEr1			Linear Static	G_terr sx		
SLEr1			Linear Static	G_terr dx		
SLEr1			Linear Static	P_water_lat		
SLEr1			Linear Static	P_water_vert		1
SLEr1			Linear Static	Q_water_min		1
SLEr1			Linear Static	Container lat		,
SLEr1			Linear Static	Container sup V		,
SLEr2	Linear Add	No	Linear Static	DEAD		,
SLEr2	Linear Add	140	Linear Static	G_ricopr terr		1
SLEr2			Linear Static	G_terr sx		,
SLEr2			Linear Static	G_terr dx		
SLE12 SLEr2			Linear Static			
				P_water_lat		
SLEr2			Linear Static	P_water_vert		
SLEr2			Linear Static	Q_water_min		
SLEr2			Linear Static	Container sup M		•
SLEr3	Linear Add	No	Linear Static	DEAD		•
SLEr3			Linear Static	G_ricopr terr		•
SLEr3			Linear Static	G_terr sx		
SLEr3			Linear Static	G_terr dx		•
SLEr3			Linear Static	P_water_lat		•
SLEr3			Linear Static	P_water_vert		
SLEr3			Linear Static	Q_water_max		0
SLEr3			Linear Static	Container lat		
SLEr3			Linear Static	Container sup V		
SLEr4	Linear Add	No	Linear Static	DEAD .		
SLEr4			Linear Static	G_ricopr terr		
				- ,		

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Table: Combination Definitions, Part 1 of 3

Operation	O		nbination Definitions	·	Martall	0
ComboName	ComboType	AutoDesign	CaseType	CaseName	ModeNumb er	ScaleFactor
SLEr4			Linear Static	G_terr dx		1.
SLEr4			Linear Static	P_water_lat		1.
SLEr4			Linear Static	P_water_vert		1.
SLEr4			Linear Static	Q_water_max		0.5
SLEr4			Linear Static	Container sup M		1.
SLEr5	Linear Add	No	Linear Static	DEAD		1.
SLEr5			Linear Static	G_ricopr terr		1.
SLEr5			Linear Static	G_terr sx		1.
SLEr5			Linear Static	G_terr dx		1.
SLEr5			Linear Static	P_water_lat		1.
SLEr5			Linear Static	P_water_vert		1.
SLEr5			Linear Static	Q_water_max		1.
SLEr5			Linear Static	Container lat		1.
SLEr5			Linear Static	Container sup V		1.
SLEr6	Linear Add	No	Linear Static	DEAD		1.
SLEr6			Linear Static	G_ricopr terr		1.
SLEr6			Linear Static	G_terr sx		1.
SLEr6			Linear Static	G_terr dx		1.
SLEr6			Linear Static	P_water_lat		1.
SLEr6			Linear Static	P_water_vert		1.
SLEr6			Linear Static	Q_water_max		1.
SLEr6			Linear Static	Container sup M		1.
SLEf1	Linear Add	No	Linear Static	DEAD .		1.
SLEf1			Linear Static	G_ricopr terr		1.
SLEf1			Linear Static	G_terr sx		1.
SLEf1			Linear Static	G_terr dx		1.
SLEf1			Linear Static	P_water_lat		1.
SLEf1			Linear Static	P_water_vert		1.
SLEf1			Linear Static	Container lat		0.75
SLEf1			Linear Static	Container sup V		0.75
SLEf2	Linear Add	No	Linear Static	DEAD		1.
SLEf2			Linear Static	G_ricopr terr		1.
SLEf2			Linear Static	G_terr sx		1.
SLEf2			Linear Static	G_terr dx		1.
SLEf2			Linear Static	P_water_lat		1.
SLEf2			Linear Static	P water vert		1.
SLEf2			Linear Static	Container sup M		0.75
SLEq1	Linear Add	No	Linear Static	DEAD		1.
SLEq1	Elifodi 7 laa	110	Linear Static	G_ricopr terr		1.
SLEq1			Linear Static	G_terr sx		1.
SLEq1			Linear Static	G_terr dx		1.
SLEq1			Linear Static	P_water_lat		1.
SLEq1			Linear Static	P_water_vert		1.
SLEq1			Linear Static	Container lat		0.2
SLEq1			Linear Static	Container sup V		0.2
SLD2	Linear Add	No	Linear Static	DEAD		1.
SLD2	Lincal Add	140	Linear Static	G_ricopr terr		1.
SLD2 SLD2			Linear Static	G_terr sx		1.
SLD2 SLD2			Linear Static	G_terrisx P_water_lat		
SLD2 SLD2			Linear Static			1.
				P_water_vert		1.
SLD2			Linear Static	Container lat		0.2
SLD2			Linear Static	Container sup V		0.2
SLD2			Linear Static	Wood SLD		0.47
SLD2			Linear Static	E_inerzia SLD		1.

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Table: Combination Definitions, Part 1 of 3

		Table: Co	mbination Definitions,	Part 1 of 3		
ComboName	ComboType	AutoDesign	CaseType	CaseName	ModeNumb	ScaleFactor
					er	
SLD3	Linear Add	No	Linear Static	DEAD		1.
SLD3	Linear rad	140	Linear Static	G_ricopr terr		1.
SLD3			Linear Static	G terr sx		1.
SLD3			Linear Static	P_water_lat		1.
SLD3			Linear Static	P_water_vert		1.
SLD3			Linear Static	Q_water_min		1.
SLD3			Linear Static	Container sup M		0.2
SLD3			Linear Static	Wood SLD		0.2
SLD3			Linear Static	E_water_SLD		1.
SLD3			Linear Static	E_inerzia SLD		1.
SLD3	Linear Add	No	Linear Static	DEAD		1.
SLD4 SLD4	Lilleal Add	NO	Linear Static	G_ricopr terr		1.
SLD4 SLD4			Linear Static	G_terr sx		1.
SLD4 SLD4			Linear Static	P_water_lat		1.
SLD4 SLD4			Linear Static	P_water_rat		1.
SLD4 SLD4			Linear Static	Container sup M		0.2
SLD4 SLD4			Linear Static	Wood SLD		0.2
SLD4 SLD4			Linear Static	E_inerzia SLD		1.
	Envolono	No		SLD1		1.
ENV_SLEr ENV_SLEr	Envelope	NO	Response Combo Response Combo	SLD1		1.
_			•	SLD2 SLD3		1.
ENV_SLEr ENV SLEr			Response Combo			1.
_			Response Combo	SLD4		
ENV_SLEr			Response Combo	SLEr1 SLEr2		1. 1.
ENV_SLEr			Response Combo	SLE12 SLE13		1.
ENV_SLEr ENV_SLEr			Response Combo Response Combo	SLEr4		1.
			· ·	SLE14 SLEr5		1.
ENV_SLEr ENV_SLEr			Response Combo Response Combo	SLEIS SLEr6		1.
ENV_SLEr			Response Combo	SLEr5		1.
ENV_SLEr			Response Combo	SLEr6		1.
SLEq2	Linear Add	No	Linear Static	DEAD		1.
SLEq2	Lilleal Add	NO	Linear Static	G_ricopr terr		1.
SLEq2			Linear Static	G_terr sx		1.
SLEq2			Linear Static	G_terr dx		1.
SLEq2			Linear Static	P_water_lat		1.
SLEq2			Linear Static	P_water_vert		1.
SLEq2			Linear Static	Container sup M		0.2
ENV_SLEq	Envelope	No	Response Combo	SLEq1		1.
ENV_SLEq	Envelope	140	Response Combo	SLEq2		1.
SLU1	Linear Add	No	Linear Static	DEAD		1.35
SLU1	Linear Add	140	Linear Static	G_ricopr terr		1.35
SLU1			Linear Static	G_terr sx		1.35
SLU1			Linear Static	G_terr dx		1.35
SLU1			Linear Static	P_water_lat		1.35
SLU1			Linear Static	P_water_vert		1.35
SLU1			Linear Static	Q_water_min		1.5
SLU1			Linear Static	Container lat		1.35
SLU1			Linear Static	Container sup V		1.35
SLU2	Linear Add	No	Linear Static	DEAD		1.35
SLU2	Linear Add	140	Linear Static	G_ricopr terr		1.35
SLU2			Linear Static	G_terr sx		1.35
SLU2			Linear Static	G_terr dx		1.35
SLU2			Linear Static	P_water_lat		1.35
SLU2			Linear Static	P_water_vert		1.35
J_J_						1.00

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Table: Combination Definitions, Part 1 of 3

			nbination Definitions	·		
ComboName	ComboType	AutoDesign	CaseType	CaseName	ModeNumb	ScaleFactor
					er	
SLU2			Linear Static	Q_water_min		1.5
SLU2			Linear Static	Container sup M		1.35
SLU3	Linear Add	No	Linear Static	DEAD		1.35
SLU3	Linear Add	140	Linear Static	G_ricopr terr		1.35
SLU3			Linear Static	G_terr sx		1.35
SLU3			Linear Static	G_terr dx		1.35
SLU3			Linear Static	P_water_lat		1.35
SLU3			Linear Static	P_water_rat		1.35
SLU3			Linear Static	Q_water_max		0.75
SLU3			Linear Static	Container lat		1.35
SLU3			Linear Static	Container sup V		1.35
SLU4	Linear Add	No	Linear Static	DEAD		1.35
SLU4	Lilleal Add	NO	Linear Static	G_ricopr terr		1.35
SLU4			Linear Static	G_terr sx		1.35
SLU4			Linear Static	G_terr dx		1.35
SLU4			Linear Static	P_water_lat		1.35
SLU4 SLU4			Linear Static	P_water_rat		1.35
SLU4			Linear Static			0.75
SLU4 SLU4			Linear Static	Q_water_max Container sup M		1.35
SLU5	Linear Add	No	Linear Static	DEAD		1.35
SLU5	Lineal Add	NO	Linear Static			1.35
			Linear Static	G_ricopr terr		
SLU5			Linear Static	G_terr sx		1.35
SLU5 SLU5			Linear Static	G_terr dx		1.35 1.35
SLU5			Linear Static	P_water_lat		1.35
SLU5			Linear Static	P_water_vert		1.55
SLU5			Linear Static	Q_water_max Container lat		1.35
SLU5			Linear Static	Container sup V		1.35
SLU6	Linear Add	No	Linear Static	DEAD		1.35
	Linear Add	NO				
SLU6			Linear Static	G_ricopr terr		1.35
SLU6 SLU6			Linear Static Linear Static	G_terr sx G_terr dx		1.35
SLU6			Linear Static	P_water_lat		1.35 1.35
SLU6			Linear Static	P_water_rat		1.35
SLU6			Linear Static			1.55
SLU6			Linear Static	Q_water_max		1.35
SLV3	Lincar Add	No	Linear Static	Container sup M DEAD		
	Linear Add	No				1.
SLV3 SLV3			Linear Static Linear Static	G_ricopr terr		1. 1.
SLV3			Linear Static	G_terr sx		1. 1.
SLV3			Linear Static	P_water_lat P_water_vert		1.
SLV3			Linear Static	Q_water_min		1.
SLV3			Linear Static	Wood SLV		
SLV3			Linear Static			0.38 0.2
SLV3			Linear Static	Container sup M E_water_SLV		1.
			Linear Static			1.
SLV3 SLV4	Linear Add	No	Linear Static	E_inerzia SLV DEAD		1. 1.
SLV4 SLV4	Lineal Add	NO	Linear Static	G_ricopr terr		1. 1.
				- ·		
SLV4			Linear Static Linear Static	G_terr sx		1. 1.
SLV4			Linear Static	P_water_lat		1. 1.
SLV4 SLV4			Linear Static	P_water_vert		
			Linear Static	Wood SLV		0.38 0.2
SLV4 SLV4			Linear Static	Container sup M E_inerzia SLV		1.
JLV4			Linear Static	L_IIIGIZIA OLV		1.

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Table: Combination Definitions, Part 1 of 3

ComboName	ComboType	AutoDesign	CaseType	CaseName	ModeNumb er	ScaleFactor
ENV_SLU	Envelope	No	Response Combo	SLU1		1.
ENV_SLU			Response Combo	SLU2		1.
ENV_SLU			Response Combo	SLU3		1.
ENV_SLU			Response Combo	SLU4		1.
ENV_SLU			Response Combo	SLU5		1.
ENV_SLU			Response Combo	SLU6		1.
ENV_SLV	Envelope	No	Response Combo	SLV1		1.
ENV_SLV			Response Combo	SLV2		1.
ENV_SLV			Response Combo	SLV3		1.
ENV_SLV			Response Combo	SLV4		1.
ENV_SLEf	Envelope	No	Response Combo	SLEf1		1.
ENV_SLEf			Response Combo	SLEf2		1.

Table: Combination Definitions, Part 2 of 3

Table: Combination Definitions, Part 2 of 3

ComboName	CaseName	SteelDesign	ConcDesign	AlumDesign	ColdDesign
SLV1	DEAD	None	None	None	None
SLV1	G_ricopr terr				
SLV1	G_terr sx				
SLV1	P_water_lat				
SLV1	P_water_vert				
SLV1	Q_water_min				
SLV1	Wood SLV				
SLV1	Container lat				
SLV1	Container sup V				
SLV1	E_water_SLV				
SLV1	E_inerzia SLV				
SLV2	DEAD	None	None	None	None
SLV2	G_ricopr terr				
SLV2	G_terr sx				
SLV2	P_water_lat				
SLV2	P_water_vert				
SLV2	Wood SLV				
SLV2	Container lat				
SLV2	Container sup V				
SLV2	E_inerzia SLV				
SLD1	DEAD	None	None	None	None
SLD1	G_ricopr terr				
SLD1	G_terr sx				
SLD1	P_water_lat				
SLD1	P_water_vert				
SLD1	Q_water_min				
SLD1	Container lat				
SLD1	Container sup V				
SLD1	Wood SLD				
SLD1	E_water_SLD				
SLD1	E_inerzia SLD				
SLEr1	DEAD	None	None	None	None
SLEr1	G_ricopr terr				
SLEr1	G_terr sx				
SLEr1	G_terr dx				

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Table: Combination Definitions, Part 2 of 3

Table: Combination Definitions, Part 2 of 3					
ComboName	CaseName	SteelDesign	ConcDesign	AlumDesign	ColdDesign
SLEr1	P_water_lat				
SLEr1	P_water_vert				
SLEr1	Q_water_min				
SLEr1	Container lat				
SLEr1	Container sup V				
SLEr2	DEAD	None	None	None	None
SLEr2	G_ricopr terr				
SLEr2	G_terr sx				
SLEr2	G_terr dx				
SLEr2	P_water_lat				
SLEr2	P_water_vert				
SLEr2	Q_water_min				
SLEr2	Container sup M				
SLEr3	DEAD	None	None	None	None
SLEr3	G_ricopr terr				
SLEr3	G_terr sx				
SLEr3	G_terr dx				
SLEr3	P_water_lat				
SLEr3	P_water_vert				
SLEr3	Q_water_max				
SLEr3	Container lat				
SLEr3	Container sup V	Nama	Nama	Nama	Mana
SLEr4	DEAD	None	None	None	None
SLEr4	G_ricopr terr				
SLEr4	G_terr sx				
SLEr4 SLEr4	G_terr dx				
SLEr4	P_water_lat P_water_vert				
SLEr4	Q_water_max				
SLEr4	Container sup M				
SLEr5	DEAD	None	None	None	None
SLEr5	G_ricopr terr	140110	110110	110110	110110
SLEr5	G_terr sx				
SLEr5	G_terr dx				
SLEr5	P_water_lat				
SLEr5	P_water_vert				
SLEr5	Q_water_max				
SLEr5	Container lat				
SLEr5	Container sup V				
SLEr6	DEAD	None	None	None	None
SLEr6	G_ricopr terr				
SLEr6	G_terr sx				
SLEr6	G_terr dx				
SLEr6	P_water_lat				
SLEr6	P_water_vert				
SLEr6	Q_water_max				
SLEr6	Container sup M				
SLEf1	DEAD	None	None	None	None
SLEf1	G_ricopr terr				
SLEf1	G_terr sx				
SLEf1	G_terr dx				
SLEf1	P_water_lat				
SLEf1	P_water_vert				
SLEf1	Container lat				
SLEf1	Container sup V				

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Table: Combination Definitions, Part 2 of 3

	Table: Combination Definitions, Part 2 of 3				
ComboName	CaseName	SteelDesign	ConcDesign	AlumDesign	ColdDesign
SLEf2	DEAD	None	None	None	None
SLEf2	G_ricopr terr				
SLEf2	G_terr sx				
SLEf2	G_terr dx				
SLEf2	P_water_lat				
SLEf2	P_water_vert				
SLEf2	Container sup M				
SLEq1	DEAD	None	None	None	None
SLEq1	G_ricopr terr				
SLEq1	G_terr sx				
SLEq1	G_terr dx				
SLEq1	P_water_lat				
SLEq1	P_water_vert				
SLEq1	Container lat				
SLEq1	Container sup V				
SLD2	DEAD	None	None	None	None
SLD2	G_ricopr terr				
SLD2	G_terr sx				
SLD2	P_water_lat				
SLD2	P_water_vert				
SLD2	Container lat				
SLD2	Container sup V				
SLD2	Wood SLD				
SLD2	E_inerzia SLD				
SLD3	DEAD	None	None	None	None
SLD3	G_ricopr terr				
SLD3	G_terr sx				
SLD3	P_water_lat				
SLD3	P_water_vert				
SLD3	Q_water_min				
SLD3	Container sup M				
SLD3	Wood SLD				
SLD3	E_water_SLD				
SLD3	E_inerzia SLD				
SLD4	DEAD	None	None	None	None
SLD4	G_ricopr terr				
SLD4	G_terr sx				
SLD4	P_water_lat				
SLD4	P_water_vert				
SLD4	Container sup M				
SLD4	Wood SLD				
SLD4	E_inerzia SLD				
ENV_SLEr	SLD1	None	None	None	None
ENV_SLEr	SLD2				
ENV_SLEr	SLD3				
ENV_SLEr	SLD4				
ENV_SLEr	SLEr1				
ENV_SLEr	SLEr2				
ENV_SLEr	SLEr3				
ENV_SLEr	SLEr4				
ENV_SLEr	SLEr5				
ENV_SLEr	SLEr6				
ENV_SLEr	SLEr5				
ENV_SLEr	SLEr6				
SLEq2	DEAD	None	None	None	None

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Table: Combination Definitions, Part 2 of 3

		Table: Combination I	Definitions, Part 2 of 3		
ComboName	CaseName	SteelDesign	ConcDesign	AlumDesign	ColdDesign
SLEq2	G_ricopr terr				
SLEq2	G_terr sx				
SLEq2	G_terr dx				
SLEq2	P_water_lat				
SLEq2	P_water_vert				
SLEq2	Container sup M				
ENV_SLEq	SLEq1	None	None	None	None
ENV_SLEq	SLEq2				
SLU1	DEAD	None	None	None	None
SLU1	G_ricopr terr				
SLU1	G_terr sx				
SLU1	G_terr dx				
SLU1	P_water_lat				
SLU1	P_water_vert				
SLU1	Q_water_min				
SLU1	Container lat				
SLU1	Container sup V				
SLU2	DEAD	None	None	None	None
SLU2	G_ricopr terr				
SLU2	G_terr sx				
SLU2	G_terr dx				
SLU2	P_water_lat				
SLU2	P_water_vert				
SLU2	Q_water_min				
SLU2	Container sup M				
SLU3	DEAD	None	None	None	None
SLU3	G_ricopr terr				
SLU3	G_terr sx				
SLU3	G_terr dx				
SLU3	P_water_lat				
SLU3	P_water_vert				
SLU3	Q_water_max				
SLU3	Container lat				
SLU3	Container sup V				
SLU4	DEAD	None	None	None	None
SLU4	G_ricopr terr	None	None	NOTIC	None
SLU4	G_terr sx				
SLU4	G_terr dx				
SLU4	P_water_lat				
SLU4	P_water_vert				
SLU4	Q_water_max				
SLU4	Container sup M				
SLU5	DEAD	None	None	None	None
SLU5	G_ricopr terr				
SLU5	G_terr sx				
SLU5	G_terr dx				
SLU5	P_water_lat				
SLU5	P_water_vert				
SLU5	Q_water_max				
SLU5	Container lat				
SLU5	Container sup V				
SLU6	DEAD	None	None	None	None
SLU6	G_ricopr terr				
SLU6	G_terr sx				
SLU6	G_terr dx				
DDOCETTAZIONE ATI					

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Table: Combination Definitions, Part 2 of 3

ComboName	CaseName	SteelDesign	ConcDesign	AlumDesign	ColdDesign
SLU6	P_water_lat				
SLU6	P_water_vert				
SLU6	Q_water_max				
SLU6	Container sup M				
SLV3	DEAD	None	None	None	None
SLV3	G_ricopr terr				
SLV3	G_terr sx				
SLV3	P_water_lat				
SLV3	P_water_vert				
SLV3	Q_water_min				
SLV3	Wood SLV				
SLV3	Container sup M				
SLV3	E_water_SLV				
SLV3	E_inerzia SLV				
SLV4	DEAD	None	None	None	None
SLV4	G_ricopr terr				
SLV4	G_terr sx				
SLV4	P_water_lat				
SLV4	P_water_vert				
SLV4	Wood SLV				
SLV4	Container sup M				
SLV4	E_inerzia SLV				
ENV_SLU	SLU1	None	None	None	None
ENV_SLU	SLU2				
ENV_SLU	SLU3				
ENV_SLU	SLU4				
ENV_SLU	SLU5				
ENV_SLU	SLU6				
ENV_SLV	SLV1	None	None	None	None
ENV_SLV	SLV2				
ENV_SLV	SLV3				
ENV_SLV	SLV4				
ENV_SLEf	SLEf1	None	None	None	None
ENV_SLEf	SLEf2				

Table: Combination Definitions, Part 3 of 3

ComboName	CaseName	GUID	Notes
SLV1	DEAD	f541c50f-425d-4462- 81d2-f82958d7e0a0	
SLV1	G_ricopr terr		
SLV1	G_terr sx		
SLV1	P_water_lat		
SLV1	P_water_vert		
SLV1	Q_water_min		
SLV1	Wood SLV		
SLV1	Container lat		
SLV1	Container sup V		
SLV1	E_water_SLV		
SLV1	E_inerzia SLV		
SLV2	DEAD	d3a7b8b7-e876-4ec2- 8b95-7f5820b70b56	
SLV2	G_ricopr terr		
PROGETTAZIONE ATI:			

OPERE D'ARTE MINORI – OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Table: Combination Definitions, Part 3 of 3				
ComboName	CaseName	GUID	Notes	
01.1/0	0.1577			
SLV2 SLV2	G_terr sx P_water_lat			
SLV2	P_water_vert			
SLV2	Wood SLV			
SLV2	Container lat			
SLV2	Container sup V			
SLV2	E_inerzia SLV			
SLD1	DEAD	56c117dc-2caf-459d-		
		91ee-dd72dd00fccf		
SLD1	G_ricopr terr			
SLD1	G_terr sx			
SLD1	P_water_lat			
SLD1	P_water_vert			
SLD1	Q_water_min			
SLD1	Container lat			
SLD1	Container sup V			
SLD1	Wood SLD			
SLD1	E_water_SLD			
SLD1	E_inerzia SLD			
SLEr1	DEAD	f50928f2-0960-4d42- 8b86-1e7594d331b2		
SLEr1	G_ricopr terr			
SLEr1	G_terr sx			
SLEr1	G_terr dx			
SLEr1	P_water_lat			
SLEr1	P_water_vert			
SLEr1	Q_water_min			
SLEr1	Container lat			
SLEr1	Container sup V			
SLEr2	DEAD	173d6adc-b5c5-4e33- a7ae-2ed38a398f1f		
SLEr2	G_ricopr terr			
SLEr2	G_terr sx			
SLEr2	G_terr dx			
SLEr2	P_water_lat			
SLEr2	P_water_vert			
SLEr2	Q_water_min			
SLEr2	Container sup M			
SLEr3	DEAD	586147f5-2909-47c5- 8bb8-eb29fbb156f5		
SLEr3	G_ricopr terr			
SLEr3	G_terr sx			
SLEr3	G_terr dx			
SLEr3	P_water_lat			
SLEr3	P_water_vert			
SLEr3	Q_water_max			
SLEr3	Container lat			
SLEr3	Container sup V			
SLEr4	DEAD	59c67ef6-9f0f-4e03-af0a- 132d34b49141		
SLEr4	G_ricopr terr			
SLEr4	G_terr sx			
SLEr4	G_terr dx			
SLEr4	P_water_lat			
SLEr4	P_water_vert			
SLEr4	Q_water_max			

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Table: Combination Definitions, Part 3 of 3

	Table: Con	nbination Definitions, Part 3 of 3	
ComboName	CaseName	GUID	Notes
SLEr4	Container sup M		
SLEr5	DEAD	cbc48c22-6772-417e- 9ee5-0c489b459ab1	
SLEr5	G_ricopr terr		
SLEr5	G_terr sx		
SLEr5	G_terr dx		
SLEr5	P_water_lat		
SLEr5	P_water_vert		
SLEr5	Q_water_max		
SLEr5	Container lat		
SLEr5	Container sup V		
SLEr6	DEAD	7549d999-b51e-4b3a- b94d-1ac52acc8ef0	
SLEr6	G_ricopr terr		
SLEr6	G_terr sx		
SLEr6	G_terr dx		
SLEr6	P_water_lat		
SLEr6	P_water_vert		
SLEr6	Q_water_max		
SLEr6	Container sup M		
SLEf1	DEAD	d96de470-4c04-468f- 9cdd-1805cac8ddfc	
SLEf1	G_ricopr terr		
SLEf1	G_terr sx		
SLEf1	G_terr dx		
SLEf1	P_water_lat		
SLEf1	P_water_vert		
SLEf1	Container lat		
SLEf1	Container sup V		
SLEf2	DEAD	0e553dcf-9b8c-4d5a-	
		bcc7-b44ba40d3721	
SLEf2	G_ricopr terr		
SLEf2	G_terr sx		
SLEf2	G_terr dx		
SLEf2	P_water_lat		
SLEf2	P_water_vert		
SLEf2	Container sup M		
SLEq1	DEAD		
SLEq1	G_ricopr terr		
SLEq1	G_terr sx		
SLEq1	G_terr dx		
SLEq1	P_water_lat		
SLEq1	P_water_vert		
SLEq1	Container lat		
SLEq1	Container sup V		
SLD2	DEAD	d01b0da3-b1a2-4b2a- 9c7e-8efda1262f93	
SLD2	G_ricopr terr		
SLD2	G_terr sx		
SLD2	P_water_lat		
SLD2	P_water_vert		
SLD2	Container lat		
SLD2	Container sup V		
SLD2	Wood SLD		
SLD2	E_inerzia SLD		

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Table: Combination Definitions, Part 3 of 3

Table: Combination Definitions, Part 3 of 3				
ComboName	CaseName	GUID	Notes	
SLD3	DEAD	9ea3dd89-d330-4279-		
01.00	0	8b4e-d2e419298fc1		
SLD3	G_ricopr terr			
SLD3	G_terr sx			
SLD3	P_water_lat			
SLD3	P_water_vert			
SLD3	Q_water_min			
SLD3	Container sup M			
SLD3	Wood SLD			
SLD3	E_water_SLD			
SLD3	E_inerzia SLD			
SLD4	DEAD	33dad11b-8285-4075-		
SLD4	C ricens ters	a856-bc8fcf0e68c4		
SLD4 SLD4	G_ricopr terr G_terr sx			
SLD4	P_water_lat			
SLD4	P_water_vert			
SLD4	Container sup M			
SLD4	Wood SLD			
SLD4	E_inerzia SLD			
ENV_SLEr	SLD1	6bd700e1-d148-4c7e-		
LINV_SLLI	SLDT	87e1-f856ba2923ad		
ENV_SLEr	SLD2			
ENV_SLEr	SLD3			
ENV_SLEr	SLD4			
ENV_SLEr	SLEr1			
ENV_SLEr	SLEr2			
ENV_SLEr	SLEr3			
ENV_SLEr	SLEr4			
ENV_SLEr	SLEr5			
ENV_SLEr	SLEr6			
ENV_SLEr	SLEr5			
ENV_SLEr	SLEr6			
SLEq2	DEAD	04e29d56-5d20-44ac-		
·		bd47-4acdd4f57c72		
SLEq2	G_ricopr terr			
SLEq2	G_terr sx			
SLEq2	G_terr dx			
SLEq2	P_water_lat			
SLEq2	P_water_vert			
SLEq2	Container sup M			
ENV_SLEq	SLEq1			
ENV_SLEq	SLEq2			
SLU1	DEAD	c76eb60b-7fbd-494c-		
0.114		90b3-55ec6b99d559		
SLU1	G_ricopr terr			
SLU1	G_terr sx			
SLU1	G_terr dx			
SLU1	P_water_lat			
SLU1	P_water_vert			
SLU1	Q_water_min			
SLU1	Container lat			
SLU1	Container sup V	7f2d4144 020a 47h1		
SLU2	DEAD	7f2d4144-838e-47bf- a35d-f839f7c31909		
SLU2	G_ricopr terr	2004 100011 001000		
2202	GGOP! 10!!			

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Table: Combination Definitions, Part 3 of 3				
ComboName	CaseName	GUID	Notes	
SLU2	G_terr sx			
SLU2	G_terr dx			
SLU2	P_water_lat			
SLU2	P_water_vert			
SLU2	Q_water_min			
SLU2	Container sup M			
SLU3	DEAD	57350feb-aaad-45cc- b0f1-41ebb4b99103		
SLU3	G_ricopr terr			
SLU3	G_terr sx			
SLU3	G_terr dx			
SLU3	P_water_lat			
SLU3	P_water_vert			
SLU3	Q_water_max			
SLU3	Container lat			
SLU3	Container sup V			
SLU4	DEAD	679860b1-d19d-4550- 98f5-c7e9737fc250		
SLU4	G_ricopr terr			
SLU4	G_terr sx			
SLU4	G_terr dx			
SLU4	P_water_lat			
SLU4	P_water_vert			
SLU4	Q_water_max			
SLU4	Container sup M			
SLU5	DEAD	d518e352-57e4-479f- b4c0-132f509c6424		
SLU5	G_ricopr terr			
SLU5	G_terr sx			
SLU5	G_terr dx			
SLU5	P_water_lat			
SLU5	P_water_vert			
SLU5	Q_water_max			
SLU5	Container lat			
SLU5	Container sup V			
SLU6	DEAD	c3e9600c-4912-457e- a20e-538c58ef6b75		
SLU6	G_ricopr terr			
SLU6	G_terr sx			
SLU6	G_terr dx			
SLU6	P_water_lat			
SLU6	P_water_vert			
SLU6	Q_water_max			
SLU6	Container sup M			
SLV3	DEAD	5e9a476b-d0aa-4bc6- b059-dd24a1f19410		
SLV3	G_ricopr terr			
SLV3	G_terr sx			
SLV3	P_water_lat			
SLV3	P_water_vert			
SLV3	Q_water_min			
SLV3	Wood SLV			
SLV3	Container sup M			
SLV3	E_water_SLV			
SLV3	E_inerzia SLV			

OPERE D'ARTE MINORI - OPERE IDRAULICHE - RELAZIONE TECNICA E DI CALCOLO

Table: Combination Definitions, Part 3 of 3

ComboName	CaseName	GUID	Notes
SLV4	DEAD	c8cba8ac-217e-4f0a- b3d3-a89846ea8586	
SLV4	G_ricopr terr		
SLV4	G_terr sx		
SLV4	P_water_lat		
SLV4	P_water_vert		
SLV4	Wood SLV		
SLV4	Container sup M		
SLV4	E_inerzia SLV		
ENV_SLU	SLU1	9f6b3e18-8706-4ccd- 81df-2b385146378c	
ENV_SLU	SLU2		
ENV_SLU	SLU3		
ENV_SLU	SLU4		
ENV_SLU	SLU5		
ENV_SLU	SLU6		
ENV_SLV	SLV1	334e8c40-b95e-4fb0- 95fe-3eb43ac1f52e	
ENV_SLV	SLV2		
ENV_SLV	SLV3		
ENV_SLV	SLV4		
ENV_SLEf	SLEf1	01ce7c75-aa0c-48ad- bc86-eccd425e5dc8	
ENV_SLEf	SLEf2		

