

Direzione Tecnica

E45 - SISTEMAZIONE STRADALE DEL NODO DI PERUGIA Tratto Madonna del Piano - Collestrada

PROGETTO DEFINITIVO

PG 372

OMA

14035

ANAS - DIREZIONE TECNICA

IL GEOLOGO

Dott. Geol. Marco Leonardi Ordine Geologi Regione Lazio n. 1541

COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE

Arch. Santo Salvatore Vermiglio
Ordine Architetti
Provincia di Reggio Calabria n. 1270

VISTO: IL RESP. DEL PROCEDIMENTO

Ing. Alessandro Micheli

VISTO: IL RESP. DEL PROGETTO Arch. Pianif. Marco Colazza I PROGETTISTI SPECIALISTICI

Ing. Ambrogio Signorelli

Ordine Ingegneri Provincia di Roma n. A35111

Ing. Moreno Panfili

Ordine Ingegneri Provincia di Perugia n. A2657 REJ

ORDINE
Ing. Giovanni C. Alfredo NGEGNERI
Dalenz Cultyero VINCL DI ROMA

14069

Ordine Irus (1906) Provincia di Roma (1914)

Ing. Giuseppe Resta

Ordine Ingegneri Provincia di Roma n. 20629 PROGETTAZIONE ATI:

(Mandataria)

GPIngegneria

GESTIONE PROGETTI INGEGNERIA srl

(Mandante)

(Mandante)

cooprogetti

Mandante)

SPECIALISTICHE. (DPR207/10 ART 15 COMMA 12):
Date large Classic Science of the prestations of the prestation of the pres

Dott. Ing. GIORGIO GUIDUCCI Ordine Ingegneri Provincia di Roma n. 14035

OPERE D'ARTE MAGGIORI

Viadotti e Ponti

Viadotto Collestrada in DX

Impalcato — Relazione tecnica e di calcolo

CODICE PROGETTO		NOME FILE TOOVIO4STRRE01_B		REVISIONE	SCALA	
PROGETTO LIV.PROG. ANNO DTPG372 D 22		CODICE TOOVIO4STRRE01		В		
D						
С						
В	Rev. a seguito istruttorie Prot. U.0834569 e U.0862037		Gennaio '23	Dalenz	Dalenz	Guiducci
А	Emissione		Ottobre '22	Dalenz	Panfili	Guiducci
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

DDEMESSA

E45 - SISTEMAZIONE STRADALE DEL NODO DI PERUGIA

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

INDICE

<u>1.</u>	PKI		55A	<u></u>
	1.1.		SCRIZIONE DELL'OPERA	
<u>2.</u>	CAI	RAT	TERIZZAZIONE GEOTECNICA/SISMICA DEL TERRENO	8
<u>3.</u>		SCR	ZIONE DELL'OPERA	
<u>4.</u>			TIVE E RIFERIMENTI	
<u>5.</u>	CAI	RAT	TERISTICHE DEI MATERIALI	15
	5.1.		LCESTRUZZO	
	5.1.	Ac	CIAIO	17
<u>6.</u>	FAS		OSTRUTTIVE	
<u>7.</u>	<u>IMP</u>	ALC	ATO	19
	7.1.		EDIMENSIONAMENTO PONTE	
	7.2.	So	LETTA IN CALCESTRUZZO	34
	7.3.	TR	ASVERSI	34
	7.4.	An.	ALISI DEI CARICHI	34
	7.5.	RIT	TRO	35
	7.6.	Vis	COSITÀ	39
	7.7.	Са	RICHI VARIABILI	41
	7.7	7.1.	Carichi da traffico q1	41
	7.7	7.2.	Effetti globali - Courbon	45
	7.7	7.3.	Effetti locali	46
	7.7	.4.	Azioni variabili da traffico - incremento dinamico addizionale q2	47
	7.7	.5.	Azione di frenamento o accelerazione q3	47
	7.7	7.6.	Azione centrifuga q4	48
	7.7	7.7.	Azione del vento e della neve q5	49
	7.7	7.8.	Azioni idrodinamiche q6	56
	7.7	.9.	Variazione della temperatura q7	57
	7.7	7.10.	Azioni sui parapetti e urto di veicolo in svio: q8	59
	7.8.	Azı	ONE SISMICA	62
	7.8	3.1.	Parametri di progetto	62
	7.8	3.2.	Spettro di risposta elastico in accelerazione	64
	7.8	3.3.	Fattore di comportamento	70
	7.9.	Co	MBINAZIONI DI CARICO	75

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

	7.10.	EFF	FETTI LOCALI — MODELLO A TRAVE CONTINUA	78
	7.1	0.1.	Linee di influenza	79
	7.1	0.2.	Analisi delle sollecitazioni massime	81
	7.1	0.3.	Effetti locali – modello a piastra	82
	7.11.	VE	RIFICA DI RESISTENZA DELLA SOLETTA	90
	7.12.	CAI	COLO DELLE PREDALLES	93
	1.1.	1	Verifica di instabilità	95
	7.1	2.1.	Verifica di deformabilità	97
	1.2	IMP.	ALCATO — EFFETTI GLOBALI	98
	7.1	2.2.	Modellazione dei vincoli	99
	7.1	2.3.	Modellazione del ponte	102
	7.1	2.4.	Caratteristiche inerziali della sezione	107
	7.1	2.5.	Fessurazione della soletta	112
	7.1	2.6.	Suddivisione dei conci	113
	7.1	2.7.	Analisi delle sollecitazioni	114
	7.13.	VE	RIFICA DELLE TRAVI	117
	7.1	3.1.	Calcolo della sezione composta in campo elastico	117
	7.1	3.2.	Calcolo del sistema connessione A-CLS	121
	7.1	3.3.	Determinazione della classe di sezione composta	123
	7.1	3.4.	Verifica tensionale in esercizio	127
	7.1	3.5.	Stato limite di apertura delle fessure	128
	7.1	3.14	. Verifica instabilità flesso-torsionale	178
	7.1	3.15	. Stato limite di deformazione	184
	7.14.	VE	RIFICA DEI TRAVERSI	185
	7.15.	VE	RIFICA A FATICA	190
	1.2.	1	Spettri di carico	211
	1.2.	2	Verifica a danneggiamento	211
	1.2.	3	Modellazione FEM tramite SAP2000	212
<u>8.</u>	COI	NCLI	JSIONI	216
	8.1.		NERALITÀ	
	8.1.	Fsi	TO DELLE VERIFICHE	216

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

1. PREMESSA

La presente relazione di calcolo accompagna il progetto definitivo "E45 - SISTEMAZIONE DEL NODO DI PERUGIA - Tratto Madonna del Piano - Collestrada"

In particolare, il documento riguarda la verifica del VIADOTTO COLLESTRADA DX facente parte dello svincolo di Collestrada.

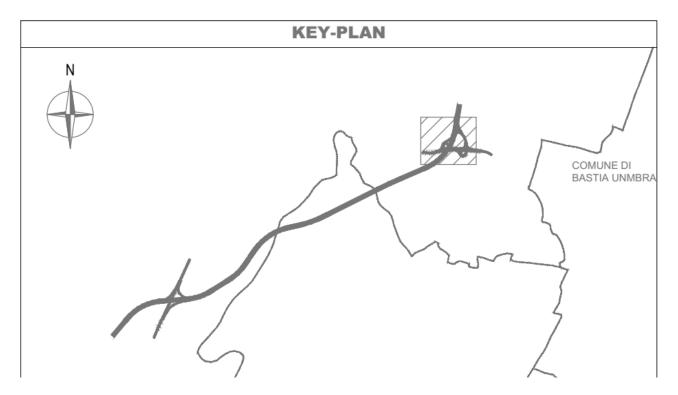


Figura 1.1 Key PLAN del viadotto

La relazione tratta il calcolo e la RELAZIONE DI CALCOLO - IMPALCATI

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

1.1. DESCRIZIONE DELL'OPERA

Il viadotto fa parte dello svincolo di Collestrada ha impalcato in parte continuo ed in parte in semplice appoggio, misto acciaio/cls con luci massime di 35mt e si sviluppa in curva. E' fondato su pali ed ha pile a sezione rettangolare di altezza massima 10.50mt. Il viadotto è isolato sismicamente.

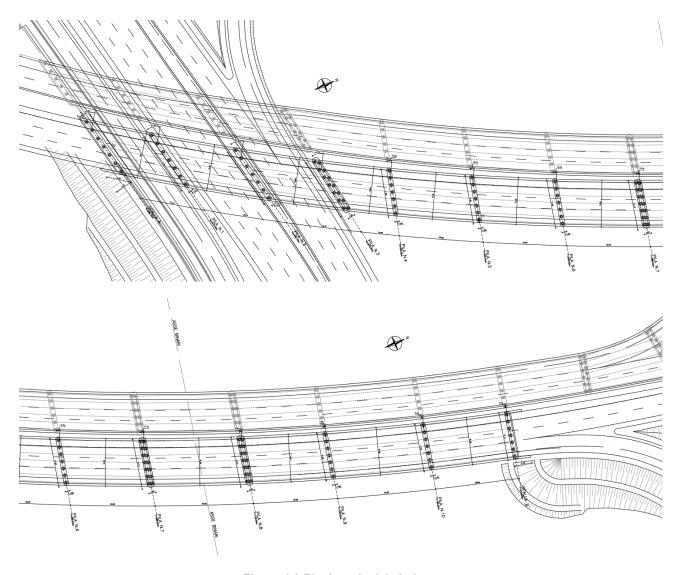


Figura 1.2 Planimetria del viadotto

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

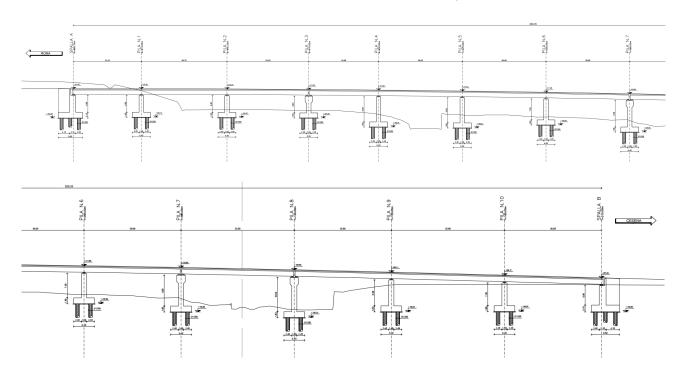


Figura 1.3 Profilo del viadotto

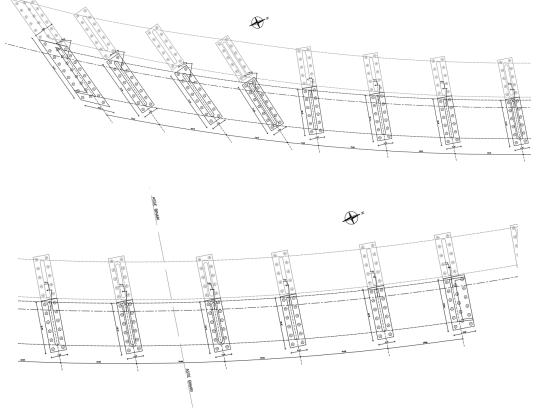


Figura 1.4 Fondazioni del viadotto

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

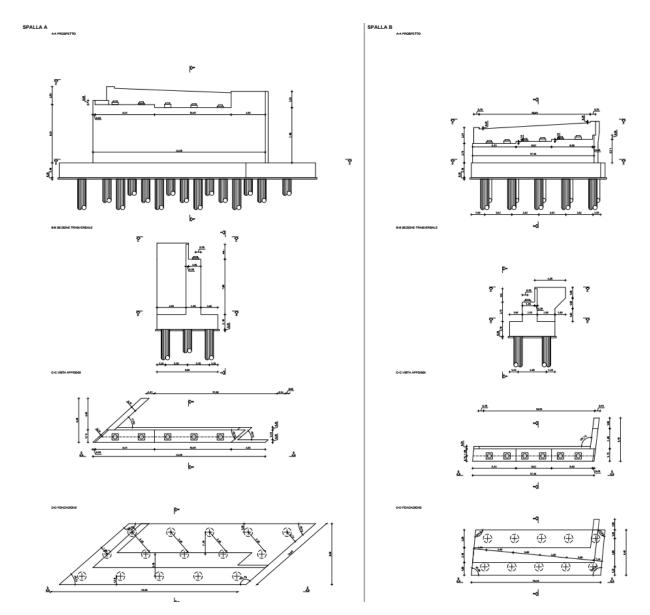
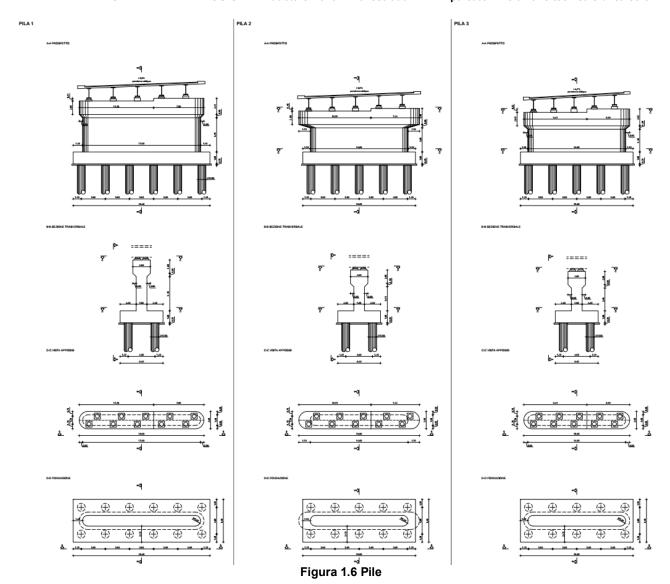


Figura 1.5 Spalle



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Si rimanda agli elaborati grafici per ulteriori dettagli.

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

2. CARATTERIZZAZIONE GEOTECNICA/SISMICA DEL TERRENO

Per la definizione della categoria di sottosuolo si è fatto riferimento alla caratterizzazione geologicageotecnica del sito in esame come riportato sulla relazione geologica che riguarda il presente intervento.

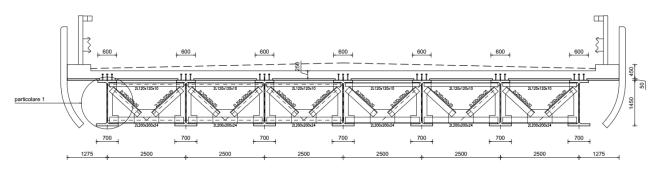
Si rimanda alle relazioni geologico e geotecnico del progetto.

Sanas GRUPPO FS ITALIANE

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo


3. **DESCRIZIONE DELL'OPERA**

La presente relazione di calcolo accompagna il progetto definitivo "E45 – SISTEMAZIONE DEL NODO DI PERUGIA – Tratto Madonna del Piano – Collestrada"

In particolare, il documento riguarda la verifica del VIADOTTO COLLESTRADA DX facente parte dello svincolo di Collestrada.

Il ponte, realizzato tramite una struttura mista A-CLS, si compone di due impalcati in continuità di luce massima 35m seguiti da 1 impalcato in semplice appoggio di luce massima 35m per una lunghezza complessiva 330 m; lo schema statico è quello di trave continua a 6 travi, e semplice appoggio a 5/6 travi; i trasversi, anch'essi in carpenteria metallica, sono posti a passo 5000 mm e si compongono di profili 2L 200x200x24 (correnti inferiori) - 200x200x20 (diagonali) - 120x120x10 (correnti superiori).

La soletta in c.a. ha uno spessore pari a 250 mm e una estensione complessiva pari a 17000 mm; lo schema seguente ne riporta la geometria trasversale:

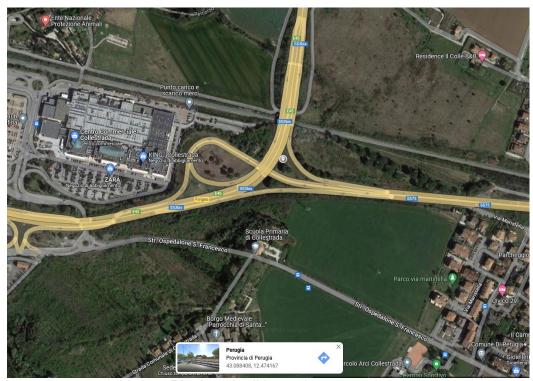
Sezione tipologica

Caratteristiche geometriche delle travi dei diversi impalcati

•	Passo	2500 mm
•	Altezza	1450 mm
•	L_{ALI_INF}	700 mm
•	L_{ALI_SUP}	600 mm
•	t, _{anima}	35 mm
•	$t_{,ali,inf}$	70 mm
•	t, _{ali,sup}	70 mm

• p,_{trasversi} 5000 mm (passo dei trasversi)

TRATTO MADONNA DEL PIANO - COLLESTRADA


OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

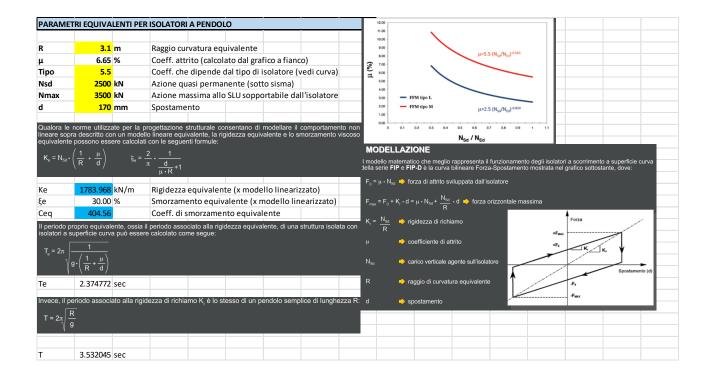
Caratteristiche geometriche della piattaforma

17000 mm L,piattaforma

N° corsie

3000 mm L,corsie 800 mm L,_{banchine} 1200 mm L,cordoli

Planimetria di inquadramento



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Il viadotto è continuo ed ISOLATO sismicamente per mezzo di isolatori a pendolo a doppia curvatura aventi le seguenti caratteristiche, per evitare il martellamento tra impalcati e limitare l'ampiezza dei giunti vengono messi dispositivi shock-trasmitter

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

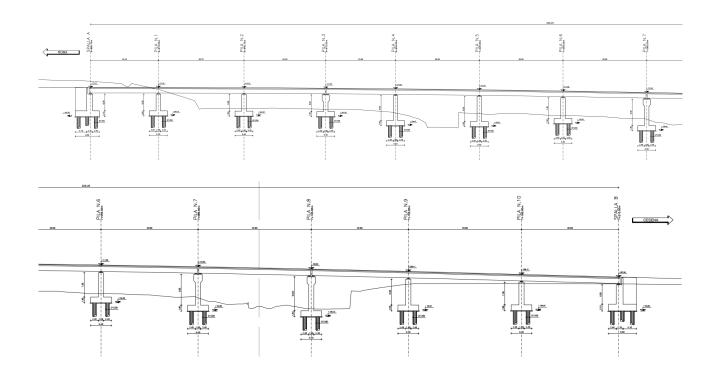


Figura 3.1 Profilo del viadotto

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

4. NORMATIVE E RIFERIMENTI

[1]	D.M. 17/01/2018, n.8	Norme Tecniche per le costruzioni
[2]	Circ. Min. 21 gennaio 2019, n. 7	Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per la costruzioni"» di cui al D.M. 17 gennaio 2018
[3]	Legge 05/11/1971, n.1086	Norma per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica" e relative istruzioni (Circ. LL.PP. 14/02/1974, n. 11951)
[4]	Legge 02/02/1974, n.64	Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche
[5]	UNI EN 1990	Basis of structural design
[6]	UNI EN 1991-1-1	Actions on structures - General actions - Densities, self-weight and imposed loads
[7]	UNI EN 1991-1-4	Actions on structures - General actions - Wind actions
[8]	UNI EN 1991-1-5	Actions on structures - General actions - Thermal actions
[9]	UNI EN 1992-1-1	Design of concrete structures -General - Common rules for building and civil engineering structures
[10]	UNI EN 1992-1-2	Design of concrete structures – Part 1-2: General rules – Structural fire design
[11]	UNI EN 1992-2	Design of concrete structures -Bridges
[12]	UNI EN 1993-1-1	Design of steel structures- General rules and rules for buildings
[13]	UNI EN 1993-1-8	Design of steel structures- Design of Joints
[14]	UNI EN 1994-1-1	Design of composite steel and concrete structures – General rules and rules for buildings
[15]	UNI EN 1994-2	Design of composite steel and concrete structures – General rules and rules for bridges

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

[16]	UNI EN 1997-1	Geotechnical design - General rules
[17]	UNI EN 1998-1	Design provisions for earthquake resistance of structures - General rules, seismic actions and rules for buildings
[18]	UNI EN 1998-2	Design of structures for earthquake resistance - Bridges
[19]	UNI EN 1998-5	Design of structures for earthquake resistance – Foundations, retaining structures and geotechnical aspects
[20]	Presidenza del Consiglio Superiore dei Lavori Pubblici – Servizio Tecnico Centrale	Linee guida sul calcestruzzo strutturale
[21]	UNI-EN 206-1	Calcestruzzo: specificazione, prestazione, produzione e conformità
[22]	UNI-EN 11104	Calcestruzzo: specificazione, prestazione, produzione e conformità – Istruzioni complementari per l'applicazione delle EN 206-1
[23]	RFIDTCSIPSMAIFS001C	Manuale di progettazione delle opere civili – Parte II – Sezione 2 – Ponti e Strutture
[24]	Mario Paolo Petrangeli	Progettazione e costruzione di ponti, 1996

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

5. CARATTERISTICHE DEI MATERIALI

5.1. CALCESTRUZZO

Riferimenti: D.M. 17.01.2018, par. 11.2;

Linee Guida per la messa in opera del calcestruzzo strutturale;

UNI EN 206-1/2006;

UNI 11104.

BAGGIOLI:

CLASSE DI RESISTENZA	C35/45
CLASSE DI ESPOSIZIONE	XC4+XD1
CLASSE DI CONSISTENZA	S4-S5
RAPPORTO A/C	≤ 0.50
DIAMETRO MAX. INERTI	20mm
SPESSORE COPRIFERRO	45mm

DALLE:

CLASSE DI RESISTENZA	C35/45
CLASSE DI ESPOSIZIONE	XC4+XD3
CLASSE DI CONSISTENZA	S4-S5
RAPPORTO A/C	≤ 0.45
DIAMETRO MAX. INERTI	20mm
SPESSORE COPRIFERRO	35mm

SOLETTA E CORDOLI:

CLASSE DI RESISTENZA	C35/45
CLASSE DI ESPOSIZIONE	XC4+XD3
CLASSE DI CONSISTENZA	S4-S5
RAPPORTO A/C	≤ 0.45
DIAMETRO MAX. INERTI	20mm

SPESSORE COPRIFERRO

soletta 35mm cordoli 45mm

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

CLASSE DI RESISTENZA	C35/45
CLASSE DI ESPOSIZIONE	XC4+XD1
CLASSE DI CONSISTENZA	S4-S5
RAPPORTO A/C	≤ 0.50
DIAMETRO MAX. INERTI	20mm
SPESSORE COPRIFERRO	40mm

FONDAZIONI:

CLASSE DI RESISTENZA	C35/45
CLASSE DI ESPOSIZIONE	XC2+XA2
CLASSE DI CONSISTENZA	S4-S5
RAPPORTO A/C	≤ 0.55
DIAMETRO MAX. INERTI	20mm
SPESSORE COPRIFERRO	40mm

PALI:

CLASSE DI RESISTENZA	C30/37
CLASSE DI ESPOSIZIONE	XC2+XA2
CLASSE DI CONSISTENZA	S5
RAPPORTO A/C	≤ 0.55
DIAMETRO MAX. INERTI	20mm
SPESSORE COPRIFERRO	75mm

CLS MAGRO PER LIVELLAMENTO:

CLASSE DI RESISTENZA C12/15 CLASSE DI ESPOSIZIONE X0

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

5.1. ACCIAIO

ACCIAIO PER C.A.:

CLASSE B450C

ACCIAIO DA CARPENTERIA:

- ACCIAIO CORTEN S355 J2W (EN 10025-5)

UNIONI BULLONATE:

- PIOLI ELETTROSALDATI NELSON S235 J2G3+C450 (EN ISO 13918) - VITI CLASSE 10.9 (UNI EN ISO 898/1) CLASSE 8G (UNI EN 898/2) - DADI - ROSETTE ACCIAIO C50 (EN10083/2)

ACCIAIO C50 (EN10083/2) - PIASTRINE

UNIONI SALDATE:

- SALDATURE IN ACCORDO CON ISTRUZIONE FS 44/S LEGAMI COSTITUTIVI

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

6. FASI COSTRUTTIVE

- A. REALIZZAZIONE DELLE FONDAZIONI
- B. REALIZZAZIONE DI PILE
- C. REALIZZAZIONE DELLE SPALLE
- D. POSA IN OPERA DELLE TRAVI
- E. REALIZZAZIONE DEI TRASVERSI
- F. POSA DELLE PREDALLES E GETTO DELLA SOLETTA
- G. REALIZZAZIONE DELLA SOVRASTRUTTURA

FASE	CARICHI AGENTI	SCHEMA STRUTTURALE
FASE 0	Peso proprio delle travi	Solo travi
FASE 1	Peso proprio predalles e soletta	Travi continue con trasversi e soletta non reagente (n=inf.)
FASE 2		Travi continue con trasversi e soletta reagente omogeneizzata a tempo infinito (considerando gli effetti della viscosità)
FASE 3	Carichi variabili + variazioni termiche	Travi continue con trasversi e soletta reagente omogeneizzata a tempo zero
FASE 4	Fase sismica: analisi dinamica modale	Travi continue con trasversi modellati tramite elementi frame e soletta reagente modellata con shell

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

7. IMPALCATO

7.1. PREDIMENSIONAMENTO PONTE

Per il predimensionamento si ricorre a formule empiriche che legano l'altezza della trave alla luce della campata:

H≈L/15

Nel caso di trave continua, è possibile ridurre la lunghezza della campata del 75%:

H≈0.75 *L*/15 = L/20

Di seguito vengono ripotati i calcoli speditivi di predimensionamento del ponte nella ipotesi di trave semplicemente poggiata per la fase 0 e continua per le successive fasi I,II,III.

Dopo breve iterazione si ottengono i dati sotto riportati

Il calcolo tiene conto delle fasi costruttive ed esegue le verifiche SLU ed SLE su calcestruzzo, e acciaio di carpenteria fornendo infine la stima della controfreccia necessaria (hp trave semplic.appogg.):

- Trave continua con $H\approx0.75$ $L/15 = \approx L/20 \rightarrow 40/20 = 2.00$ (viene posto 1800 mm)
- $B_{inf} \approx H/3 = 700 \text{ mm}$
- $B_{sup} \approx 2/3*B_{inf} = 467 \text{ mm (viene posto } 600 \text{ mm)}$
- $t_{anima} = 30 \text{ mm}$
- $t_{ali,sup} = 40 \text{ mm}$
- $t_{ali,inf} = 80 \text{ mm}$
- a (interasse costole irrigidim.) ≈ 1.3 H = 2340 mm (viene posto 2500 mm)
- Pesi propri incrementati del 50% per tener conto dei carichi variabili da traffico opp. (campata) carico Q1k concentrato in mezzeria + carico q1k uniform. distrib.;

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

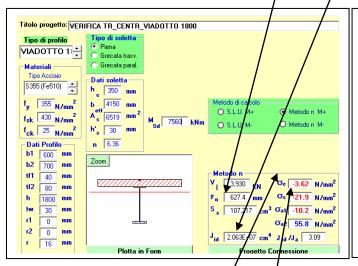
Classifica delle sezioni:

Altezza della sezione trasversale h	1800.00	[mm]
Larghezza della sezione trasversale b	700.00	[mm]
Spessore dell'anima t _w	30.00	[mm]
Spessore delle ali t_f	30.00	[mm]
Raggio di raccordo r	12.00	[mm]
Eventuale spessore della saldatura delle ali con l'anima s	0.00	[mm]

CLASSIFICAZIONE DELLA SEZIONE				
Valore di snervamento dell'acciaio	f_y	355 [MPa]		
Coefficiente ε	3	0.81 [-]		
Classificazione dell'anima				
Altezza dell'anima depurata dei raccordi o delle saldature	С	1716.00 [mm]		
Spessore dell'anima	t_w	30.00 [mm]		
Rapporto tra altezza e spessore	c/t _w	57.20 [-]		
Classificazione dell'anima per flessione		CLASSE 1		
Classificazione dell'anima per compressione		CLASSE 4		
<u>Classificazione delle ali</u>				
Semi larghezza delle ali depurata dei raccordi o delle saldature	С	323 [mm]		
Spessore delle ali	† _f	30.00 [mm]		
Rapporto tra semi larghezza e spessore	c/t _f	10.77 [-]		
Classificazione delle ali per flessione	CLASSE 3			

Altezza della sezione trasversale	h	1800.00	[mm]
Larghezza della sezione trasversale	b	700.00	[mm]
Spessore dell'anima	t _w	40.00	[mm]
Spessore delle ali	† _f	80.00	[mm]
Raggio di raccordo	r	12.00	[mm]
Eventuale spessore della saldatura delle ali con l'anima	S	0.00	[mm]

CLASSIFICAZIONE DELLA SEZIONE		
Valore di snervamento dell'acciaio	f_y	355 [MPa]
Coefficiente ε	3	0.81 [-]
Classificazione dell'anima		
Altezza dell'anima depurata dei raccordi o delle saldature	С	1616.00 [mm]
Spessore dell'anima	t_w	40.00 [mm]
Rapporto tra altezza e spessore	c/t _w	40.40 [-]
Classificazione dell'anima per flessione		CLASSE 1
Classificazione dell'anima per compressione		CLASSE 4
<u>Classificazione delle ali</u>	•	
Semi larghezza delle ali depurata dei raccordi o delle saldature	С	318 [mm]
Spessore delle ali	† _f	80.00 [mm]
Rapporto tra semi larghezza e spessore	c/t _f	3.98 [-]
rapporto ita semi laighezza e spessore		



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Validazione dei risultati: effettuata tramite il software Profili del Prof. Gelfi

CARATTERISTICHE MECCANICHE											
Ac	Ai,3 (+)	Si,3 (+)	X_3 (+)	Ja_3 (+)							
(mm^2)	(mm^2)	(mm^3)	(mm)	(mm^4)							
	Area ideale (M+)	Momento Statico	A.N. Fase III (M+)	Mom. Inerzia -							
Area cls	Area ideale (NI+)	(M+)	Soletta tutta compr.	Fase III (M+)							
452500	365303	2.292E+08	627	2.062730E+11							
				,							

Il foglio di calcolo riporta coincidenza totale delle caratteristiche inerziali e delle tensioni di calcolo sia per M⁺ che per M⁺;

il foglio di calcolo tiene conto della somma delle tensioni presenti sui materiali nelle diverse fasi, nonché della forza assiale dovuta al ritiro e della coppia che l'eccentricità della risultante del ritiro genera rispetto al baricentro della sezione omogeneizzata a tempo infinito. L'applicativo xls si compone di due fogli: il primo, di predimensionamento, utilizza i dati speditivi; il secondo, di dettaglio, utilizza i dati di output del solutore

Г			7	i						
					TENSIONI SLU - FASE III					
	M_3	σc,max	/ os		σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_iı		
	(KNm)	(MPa)	(MPa)		(MPa)	(MPa)	(MPa)	(MPa)		
	$\mathbf{M}_{\mathbf{-}}(\mathbf{Qik} \pm \Delta \mathbf{T})$	Tens.cls,max	Tens.arm. So	oletta	Tens.acc. ala sup	Tens.acc. anima sup	Tens.acc. quota irrigidim. longitud.	Tens.acc. al		
	7560.0	-3.62	-21.90		-10.17	-8.70	7.79	52.87		

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Il foglio di calcolo si compone una serie di moduli utilizzabili come post-processore del software di calcolo SAP2000 (o qualunque software che possa esportare le cds i xls) tramite i quali vengono eseguite in automatico le seguenti verifiche:

→ Calcolo del Beff

Progetto in fase di predimensionamento (**) e contestuale verifica per fasi di cls, acciaio e freccia; la fase di predimensionamento tiene debitamente conto di viscosità e ritiro;

- → Calcolo dettagliato in base ai dati di output del solutore SAP2000:
 - Verifiche SLU ed SLE nelle tre combinazioni CARATT. FREQ Q.PERM.
 - Verifiche tensionali per fasi (con viscosità e ritiro);
 - Verifica imbozzamento dei pannelli d'anima;
 - Verifica dei pioli di collegamento;
 - Verifica dei giunti d'anima e dei coprigiunti
 - Verifiche a fatica

Il calcolo manuale in fase di predimensionamento viene condotto sommando di volta in volta le tensioni (non le sollecitazioni) relative ai diversi valori delle grandezze meccaniche n,i/A,i/J,i/X,i (n=Ea/Ec; A=area ideale; J=mom. inerzia ideale; X= asse neutro; i=1-2-3 - fasi) in funzione della fase di applicazione

- FASE 0: SCHEMA DI TRAVE SEMPLICEMENTE APPOGGIATA SOLO TRAVE IN ACCIAIO
- FASE I: SCHEMA TRAVE CONTINUA SOLETTA NON REAGENTE CARICO PERM. SOLETTA G1k

nella prima fase la trave in acciaio non puntellata porta l'interezza del carico del PP e del G_{1K} (soletta non collaborante):

Nota: il PP della trave in acciaio lavora su uno schema di trave semplicemente poggiata; il getto della soletta avviene invece su uno schema di trave continua ma con soletta non collaborante;

- FASE II: SCHEMA TRAVE CONTINUA SOLETTA REAGENTE OMOGENEIZZATA A TEMPO INFINITO (VISCOSITA') - $n=E_a/E_c^*$ - SOVRACC. PERM. G2k + RITIRO CLS
- FASE III: SCHEMA TRAVE CONTINUA SOLETTA REAGENTE OMOGENEIZZATA A TEMPO ZERO - $n=E_a/E_c$ - SOVRACC. VARIABILI Qik. + VARIAZ. TERMICHE ΔT
- SOMMA DELLE TENSIONI NELLE FASI 0 I II III ALLA ASCISSA X PER GLI INVILUPPI DELLE **SOLLECITAZIONI MAX**

Nota_1:

il calcolo dettagliato che segue necessita di gestire in modo disaccoppiato le sollecitazioni derivate dalle complesse combinazioni di carico per cui verrà condotto sommando le tensioni secondo lo schema delle fasi di calcolo di cui al cap. 4 anziché come nel modo semplificato sopra riportato

Nota 2:

Il foglio di calcolo gestisce le sezioni rette, per cui le verifiche delle travate laterali verranno gestite con altro software

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Di seguito si riportano le schermate del primo modulo (predimensionamento): inserendo i pochi dati richiesti nelle celle gialle, si ottengono le verifiche speditive della travata (2 configurazioni possibili: trave semplicemente appoggiata o trave continua).

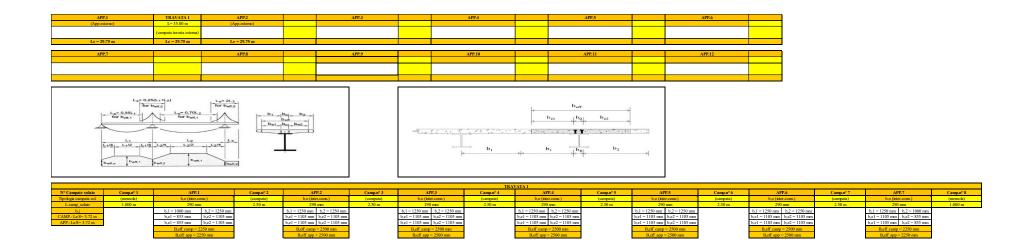
Le verifiche soddisfatte sono automaticamente riportate in color verde; quelle non soddisfatte in rosso.

Nota:

il calcolo speditivo di predimensionamento è risultato ben posto.

Le differenze non sostanziali registrate nel successivo calcolo di dettaglio sono dovute sia alll'effettivo grado di redistribuzione delle sollecitazioni nello schema di travata continua, sia all'effetto della riduzione di rigidezza agli appoggi dovuto alla fessurazione.

In caso di schemi semplicemente poggiati le soluzioni speditive e dettagliate possiedono un maggior grado di convergenza.



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

	CARATTERISTICHE GEOMETRICHE TRAVE A-CLS															
POSIZIONE	TIPOLOGIA TRAVATA	Ltr	Beff,soletta	h,sol	Htr	Bi	Bs	h,a	t,i	t,s	t,a	r1	Aa	Φ a,long.	p_a,l	d,a
TRAVATA	A TEMPO INF.	(m)	2.50 m	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm^2)	(mm)	(mm)	(mm)
		Lunghezza trave		Altezza soletta	Altezza trave acc.	Base piatto inferiore	Base piatto sup.	Altezza anima	Spessore piatto	Spessore piatto		raggio curvat.	Area trave acciaio	Armatura long, soletta	Passo arm. long.	Dist. baric. Aa,l dal bordo
ESTERNA	APPOGGIO - APPOGGIO	Lungnezza trave	Largh.impalcato	Altezza soletta	(Predim.= 1750.0)	(Predim.= 483.3)	(Predim.= 466.7)	Altezza anima	inferiore	superiore	Spessore anima	raccordo	Area trave acciaio	Armatura long. soletta	soletta	sup.
	AFFOGGIO	35.0	17.00 m	300	1450	700	600	1310	70	70	30	16	130300	16	200	47
						•			•	•	•			-		
Rek	f,cd	f,y	Ec,m	f,d	O ,infinito	n,2	n,3	8,rit	Ac,full	Ntr	N,rit_slu	ΔT,differ.	α	CLASSE SEZIO	NE NTC_4.2.3.1	Verifica imbozz CNR
(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(-)	(-)	(-)	(-)	(mmq)	(-)	(N)	(°C)	(1/°C)	Parametri	h/t	10011 p.to 7.2.6.1
Res cubica a		tens. snerv. acc.carpent.	Modulo elastico	Tens.lim. acc.carp.	Coeff.viscosità di	Coeff.Omog.	Coeff.Omogenizz.		Area compless.			Variaz, termica		β = 0.00065	Pareti sott.	
compr.	Res_ a compr. Pura	335 (40 <t<=80 mm)<="" td=""><td>medio</td><td>319 (40<t<=80 mm)<="" td=""><td>Withney</td><td>Fase II</td><td>Fase III</td><td>Coeff.ritiro</td><td>soletta cls</td><td>Numero travi ponte</td><td>Sumero travi ponte F. ritiro eccentr. (soletta)</td><td>differenz.</td><td>Coeff. dilat. term.</td><td>ε = 0.81362</td><td>h/t = 43.7</td><td>Occorre verif. dettagliata ad</td></t<=80></td></t<=80>	medio	319 (40 <t<=80 mm)<="" td=""><td>Withney</td><td>Fase II</td><td>Fase III</td><td>Coeff.ritiro</td><td>soletta cls</td><td>Numero travi ponte</td><td>Sumero travi ponte F. ritiro eccentr. (soletta)</td><td>differenz.</td><td>Coeff. dilat. term.</td><td>ε = 0.81362</td><td>h/t = 43.7</td><td>Occorre verif. dettagliata ad</td></t<=80>	Withney	Fase II	Fase III	Coeff.ritiro	soletta cls	Numero travi ponte	Sumero travi ponte F. ritiro eccentr. (soletta)	differenz.	Coeff. dilat. term.	ε = 0.81362	h/t = 43.7	Occorre verif. dettagliata ad
45	19.83	355 (t<=40 mm)	34077	338 (t<=40 mm)	1.81	6.16	17.29	0.0002410	5100000	7	2.559E+06	10.0 °C	1.2E-05	c/t = 130	h/t,lim = 36.0	imbozz.
1		,	•								•		•			
Glk	G2k	0	y G1,k	y G2,k	y_Q,k	_										
(KN/m)	(KN/m)	(KN/m)	(-)	(-)	(-)	Ga	K,m,car. unif.distr.	K,m,car. unif.distr.	K,m,car. unif.distr.	K,m,car.conc	K,m,car.conc	K,m,car.conc	K,v,car. unif.distr.	K,v,car. unif.distr.	K,v,car.conc	K,v,car.conc
PESO		SCHEMA CAR, 1 O1K=600	Coeff.parziale			(KN/m)	CAMPATA	OUARTI	APPOGGIO	CAMPATA	OUARTI	APPOGGIO	OUARTI	APPOGGIO	OUARTI	APPOGGIO
SOLETTA	SOVRACC. PERM.	KN q1k=9 KN/mq	Glk	Coeff.parziale G2k	Coeff.parziale Qk		Coeff, divisore	Coeff, divisore	Coeff, divisore	Coeff, divisore	ì	Coeff, divisore				
		Qk= 360.00 KN			(C. mobile)	Peso trave acciaio	momenti	momenti	momenti	momenti	Coeff. divisore momenti	momenti	Coeff. divisore taglio	Coeff. divisore taglio	Coeff. divisore taglio	Coeff. divisore taglio

FASE 0 - SLU
SCHEMA DI TRAVE SEMPLICEMENTE APPOGGIATA - SOLO TRAVE IN ACCIAIO

	CARATTERISTICHE MECCANICHE										
Aa	S	X_0	Ja_0								
(mm^2)	(mm^3)	(mm)	(mm^4)								
Area acciaio	Momento Statico	Asse Neutro - Fase I	Momento Inerzia - Fase I								
130300	99297500	762	4.880E+10								

	SOLLECITAZIONI SLU				TENSIONI SLU - FASE 0							VERIFICHE						
	N	V_2	M_3	σc,max	σs	σa,ali_sup	σa,an_sup	σ a,an_irr	σa,an_inf	σ a,ali_inf	τ	σ_id,max	VERIFICA ACC.					
CDS	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	VERIFICA ACC.	η,асс				
CDS	N_(pp_tr) V_(pp_tr)	V (4-)	V (4-)	V (4-)	V (m to)	M_(pp_tr)	Tens.cls.max	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima	Tens.acc. quota	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ id,max <f,d< th=""><th>C/D</th></f,d<>	C/D	
		M_(pp_tr)	M_(pp_tr)	M_(pp_tr)	м_(рр_п)		M_(pp_tt)	M_(pp_tr)	M_(pp_tr)	rens.cis,max	Tens.arm. Soletta	fd = 319 MPa	sup	irrigidim. longitud.	Tens.acc.an. mi.	fd = 319 MPa	rens.tagno annna	Tensione ideale
CAMPATA	0.0	0.0	2114.43			-33.02	-29.98	-19.15	26.77	29.80	0.00	33.02	Verificato	9.66				
L/4	0.0	120.8	1585.82			-24.76	-22.49	-14.36	20.08	22.35	3.07	25.33	Verificato	12.60				
APPOGGIO	0.0	241.6	0.00			0.00	0.00	0.00	0.00	0.00	6.15	10.65	Verificato	29.96				

FASE I - SLU SCHEMA TRAVE SEMPLICEM. APPOGGIATA - SOLETTA NON REAGENTE - CARICO PERM. SOLETTA GIK

	CARATTERIST	TICHE MECCANICHE	
Aa	S1(+)	X_1(+)	Ja_1(+)
(mm^2)	(mm^3)	(mm)	(mm^4)
Area acciaio	Momento Statico	Asse Neutro - Fase I	Momento Inerzia - Fase I
130300	99297500	762	4.880E+10

	SOLLEC	CITAZIONI SLU						TENSIONI SLU - FA	ASE I				VERIFIC	CHE
	N	V_2	M_3	♂ c,max	σs	σ a,ali_sup	σa,an_sup	σa,an_irr	♂ a,an_inf	♂ a,ali_inf	•	σ_id,max	VERIFICA ACC.	
GIACITURE	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	VERIFICA ACC.	η,acc
GIACITURE	N (Gk1)	V_(Gk1)	M_(Gk1)	Tens.cls.max	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima	Tens.acc. quota	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ id,max <f,d< td=""><td>C/D</td></f,d<>	C/D
	N_(GKI)	V_(GKI)	M_(GKI)	Tens.cis,max	rens.arm. Soietta	fd = 319 MPa	sup	irrigidim. longitud.	Tens.acc.an. mi.	fd = 319 MPa	Tens.tagno anima	Tensione ideale	o_id,max <i,d< td=""><td>CD</td></i,d<>	CD
CAMPATA		0.0	3876.0			-60.52	-54.96	-35.11	49.08	54.64	0.00	60.52	Verificato	5.27
L/4		221.5	2907.0			-45.39	-41.22	-26.33	36.81	40.98	5.64	46.43	Verificato	6.87
APPOGGIO		443.0	0.0			0.00	0.00	0.00	0.00	0.00	11.27	19.52	Verificato	16.34

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

								FASE II -	SLU							
			S	CHEMA TRAVE	SEMPLICEM, A	PPOGGIATA - SOL	ETTA REAGEN	TE OMOGENEIZ	ZATA A TEMPO	INFINITO (VISC	OSITA') - SOVRACC.	PERM. G2k + RIT	TRO CLS			
										,	,					
CARATTERIS	STICHE MECCANI	CHE													SOLLECITAZ, RIT	TRO
Ea	Ec	n,2	Aa	As	Ac	Ai,2 (+)	Si,2 (+)	X_2 (+)	Ja_2 (+)	Ai,2 (-)	Si,2 (-)	X_2 (-)	Ja_2 (-)	N,rit,soletta	σ,ritiro_slu	SOLLSAP
(Mpa)	(Mpa)	(-)	(mm^2)	(mm^2)	(mm^2)	(mm^2)	(mm^3)	(mm)	(mm^4)	(mm^2)	(mm^3)	(mm)	(mm^4)	(N)	(Mpa)	N,rit. (compr.)
Mod.Elast.Acc.	Mod.Elast.Cls	Coeff.Omog.	Area acciaio	Area armature	Area cls	Area ideale	Momento Statico	A.N Fase II	Mom. Inerzia -	Area ideale	Momento Statico	A.N Fase II	Mom. Inerzia - Fase II	Forza di ritiro	Tens. traz. nella	-2132.6 KN/Trave
MOU.E.BSU.ACC.	MOULEMSLEIS	Coeff.Omog.	Area acciaio	soletta	Area cis	Area ideale	Momento Statico	Soletta tutta compr.	Fase II	Area ideale	Momento Statico	A.N Pase II	Mom. merzia - rase ii	eccentrica (soletta)	soletta (connettori)	M,rit.(M. posit.)
210000	12145.6	17.29	130300	2614	750000	176291	1.450E+08	823	7.780E+10	132914	1.385E+08	1042	5.144E+10	2.559E+06	3.51	1434.4 KNm/Trave
	SOLLEC	CITAZIONI SLU					1	TENSIONI SLU - FA	ASE II					VERIF	CHE SLU	
	N	V_2	M_3	σc,max	σs	σ a,ali_sup	σa,an_sup	σ a,an_irr	σa,an_inf	σa,ali_inf	7	σ_id,max	VERIFICA TRAVE IN	VERIFICA CLS	VERIFICA ARMAT.	
GIACITURE	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	ACCIAIO	VERIFICA CLS	SOLETTA	VERIFICA
GIACITURE	N (Gk2 ±Rit.)	V (Gk2 ±Rit.)	M (Gk2 ±Rit.)	Tens.cls.max	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima	Tens.acc. quota	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ id,max <f,d< td=""><td>sigma,c max<0,85f,ed</td><td>-i</td><td>COMPLESSIVA</td></f,d<>	sigma,c max<0,85f,ed	-i	COMPLESSIVA
	N_(GK2 ±Kit.)	V_(GR2 ±Rit.)	M_(GK2 ±RIL)	rens.cis,max	rens.arm. Soietta	fd = 319 MPa	sup	irrigidim. longitud.	rens.acc.an. ini.	fd = 319 MPa	rens.tagno amma	i ensione ideale	o_iu,max <i,u< td=""><td>sigma,c_max<0,831,cu</td><td>sigma,a_max<f,yd< td=""><td></td></f,yd<></td></i,u<>	sigma,c_max<0,831,cu	sigma,a_max <f,yd< td=""><td></td></f,yd<>	
CAMPATA	0.0	0.0	4817.7	-2.95	-48.03	-32.36	-28.03	-12.55	53.10	57.43	0.00	57.43	5.56	5.72	8.15	Verificato
CAMPATA	-2559.1	0.0	6539.0	0.19	-79.71	-58.44	-52.56	-31.55	57.55	63.43	0.00	63.43	5.03	86.89	4.91	Verificato
	0.0	275.3	3613.3	-2.21	-36.02	-24.27	-21.02	-9.41	39.82	43.07	7.01	44.75	7.13	7.63	10.86	Verificato

																-20855.21347
								FASE III -	SLU							
			8	CHEMA TRAVI	E SEMPLICEM. A	PPOGGIATA - SOL	ETTA REAGE!	NTE OMOGENEIZ	ZATA A TEMPO	ZERO - SOVRA	.CC. VARIABILI Qik. +	VARIAZ. TERMI	CHE DT			
						CARATTERISTI	CHE MECCANI	СНЕ							SOLLECITAZ. ∆T_	diff
Ea	Ec	n,3	Aa	As	Ac	Ai,3 (+)	Si,3 (+)	X_3 (+)	Ja_3 (+)	Ai,3 (-)	Si,3 (-)	X_3 (-)	Ja_3 (-)	ε,ΔT_differ.	σ,ΔT_differ.	SOLL, AT, diff_SAP
(Mpa)	(Mpa)	(-)	(mm^2)	(mm^2)	(mm^2)	(mm^2)	(mm^3)	(mm)	(mm^4)	(mm^2)	(mm^3)	(mm)	(mm^4)	(-)	(Mpa)	N, AT_differ. (traz.)
Mod.Elast.Acc.	Mod.Elast.Cls	Coeff.Omog.	Area acciaio	Area armature soletta	Area cls	Area ideale (M+)	Momento Statico (M+)	A.N. Fase III (M+) Soletta tutta compr.	Mom. Inerzia - Fase III (M+)	Area ideale (M-)	Momento Statico (M-)	A.N Fase III (M-)	Mom. Inerzia - Fase III (M-		Tens. compr. nella soletta (soletta calda)	2979.3 KN M,\Darkart Tdiffer. (M negat.)
210000	34077	6.16	130300	2614	750000	254618	1.568E+08	616	1.029179E+11	132914	1.385E+08	1042	5.144E+10	1.200E-04	-4.09	-1387.4 KNm
							•		•							
	SOLLE	CITAZIONI SLU					Т	TENSIONI SLU - FA	SE III					VERIFI	CHE SLU	
	N	V_2	M_3	σ c,max	Q2	σa,ali_sup	σa,an_sup	♂ a,an_irr	♂ a,an_inf	σ a,ali_inf	τ	σ_id,max	VERIFICA TRAVE IN	VERIFICA CLS	VERIFICA ARMAT.	
GIACITURE	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	ACCIAIO	VERIFICA CLS	SOLETTA	VERIFICA
GIACITURE	$N_{(Qik \pm \Delta T)}$	$V_{-}(Qik \pm \Delta T)$	$M_{Qik} \pm \Delta T$	Tens.cls,max	Tens.arm. Soletta	Tens.acc. ala sup fd = 319 MPa	Tens.acc. anima sup	Tens.acc. quota irrigidim. longitud.	Tens.acc.an. inf.	Tens.acc. ali inf. fd = 319 MPa	Tens.taglio anima	Tensione ideale	σ_id,max <f,d< td=""><td>sigma,c_max<0,85f,cd</td><td>sigma,a_max<f,yd< td=""><td>COMPLESSIVA</td></f,yd<></td></f,d<>	sigma,c_max<0,85f,cd	sigma,a_max <f,yd< td=""><td>COMPLESSIVA</td></f,yd<>	COMPLESSIVA
CAMPATA	0.0	0.0	7601.3	-7.38	-42.00	-23.32	-18.15	0.32	78.61	83.78	0.00	83.78	3.81	2.28	9.32	Verificato
CAMPATA	2681.4	0.0	6352.6	-9.85	-14.52	1.09	5.41	20.84	86.27	90.59	0.00	90.59	3.52	1.71	26.94	Verificato
1./4	0.0	434.4	4637.9	-4.50	-25.63	-14.23	-11.07	0.19	47.96	51.12	11.05	54.58	5.85	3.74	15.27	Verificato

		SO	MMA DELLE TENS		TENSIONI TOT ASI 0 - I - II - IIIPER		I DELLE SOLLE	CITAZIONI MAX					
					TENSIONI SLU	J					VERIFI	CHE SLU	
	σ c,max	σs	σ a,ali_sup	σa,an_sup	σa,an_irr	♂ a,an_inf	σa,ali_inf	1	σ_id,max	VERIFICA TRAVE IN	VERIFICA CLS	VERIFICA ARMAT.	
GIACITURE	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	ACCIAIO	VERIFICA CLS	SOLETTA	VERIFICA
	Tens.cls.max	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima	Tens.acc. quota	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ id.max <f.d< td=""><td>sigma,c max<0,85f,cd</td><td></td><td>COMPLESSIVA</td></f.d<>	sigma,c max<0,85f,cd		COMPLESSIVA
	rens.cis,max	rens.arm. Soietta	fd = 319 MPa	sup	irrigidim. longitud.	rens.acc.an. ini.	fd = 319 MPa	rens.tagno amma	i ensione ideale	o_id,max <i,d< td=""><td>sigma,c_max<0,831,cu</td><td>sigma,a_max<f,yd< td=""><td></td></f,yd<></td></i,d<>	sigma,c_max<0,831,cu	sigma,a_max <f,yd< td=""><td></td></f,yd<>	
CAMPATA	-10.33	-90.03	-149.22	-131.12	-66.49	207.55	225.65	0.00	225.65	1.41	1.63	4.35	Verificato
CAMPATA	-9.65	-94.23	-150.89	-132.09	-64.96	219.67	238.47	0.00	238.47	1.34	1.75	4.15	Verificato
L/4	-6.71	-61.65	-108.65	-95.80	-49.91	144.67	157.52	26.77	164.20	1.94	2.51	6.35	Verificato
L/4	-6.04	-65.85	-110.32	-96.77	-48.38	156.79	170.34	26.77	176.54	1.81	2.79	5.94	Verificato
APPOGGIO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	47.35	82.02	3.89			Verificato
APPOGGIO	-2.16	13.06	12.51	12.36	11.83	9.55	9.40	47.35	82.97	3.85	7.80	29.97	Verificato

PROGETTAZIONE ATI:

550.6 550.6

625.7 625.7

24.27 35.62

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

							VEI	RIFICA SLE - SEZI	ONE CAMPATA						
L	Ea	PP	G1k	Ja 1	f,1 G1k	G2k	Ja 2	f,2 G2k	f,tot	f,lim	Qk	f,3_Qk	f,lim	σ c,max	VERIFICA CLS
(m)	(Mpa)	(KN/m)	(KN/m)	(mm^4)	(mm)	(KN/m)	(mm^4)	(mm)	(mm)	(mm)	(KN/m)	(mm)	(mm)	(MPa)	VERIFICA CLS
LUCE	MOD.ELAST. A.	PESO PROPRIO	PESO SOLETTA	Momento Inerzia -	FRECCIA FASE 1	SOVRACC.PERM.	Momento Inerzia -	FRECCIA FASE 2	FRECCIA TOT.	L/250	SOVRACC. ACCID.	Ja_3 = 1.03 E+11	L/400	Tens.cls.max	sigma,c_max<0,45f,ck
CAMPATA	MOD.ELAST. A.	PESO PROPRIO	PESO SOLETTA	Fase I	FRECCIA FASE I	SOVRACC.PERM.	Fase II	FRECCIA FASE 2	FRECCIA 101.	1./250	Qk= 360.00 KN	FRECCIA FASE 3	1./400	I ens.cis,max	sigma,c_max<0,431,ck
35.00	210000.00	10.23	18.75	4.880E+10	55.2	20.98	7.780E+10	25.1	80.3	140.0	qk= 16.20 KN/m	29.5	87.5	-7.4	Verificato
			n						f_perm. = 80.3 mm	<= L/250 = 140 mm	f_accid. =	= 29.5 mm <= L/400 = 8	37.5 mm		η,cls
			Realizzare trava	ata con controfreccia	pari a 80 mm				Veri	ficato		Verificato			C/D = 2.12

γ_acc.instab. Ponti-Tab. 4.2.7 322.7 1.10						V	ERIFICA IMBOZZ	ZAMENTO PANN	ELLO D'ANIMA	SUPERIORE					
Irrigidim. Trasvers. (a)	tensioni a	l bordo dell'anima	1		α	8.33				VERIFICA	IMBOZZAMENTO PA	ANNELLO D'ANIMA			
(Predim.= 1703 mm)	σ 1	σ0	Ψ	Tab. 7-VIII CNR	V-	Ke	σ cr	₹CT	τ, у	σ cr,id	σ cr,rid.	σ_id	σ id<=σcr,rid.	_ ou id/_ id >=0 0	σ_cr,id /g(3^0,5) >=1,1
150 cm	(Mpa)	(Mpa)	(σ0/σ1 = T/C)		Ker	N.E	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	ø_iu<-øcr,riu.	g_ cr,iu/ g, iu. >=0,8	6 _Cr,iu /•(3~0,5) >−1,1
Irrigidim. Longitud. (h)	-131.12	-66.49	0.51	1.00	5.23	4.32	27034.50	22334.07	0.00	27034.50	322.72	131.12	Verificato	2.46	
(cm)	-132.09	-64.96	0.49	1.00	5.28	4.32	27294.16	22334.07	0.00	27294.16	322.72	132.09	Verificato	2.44	
25 cm	-95.80	-49.91	0.52	1.00	5.18	4.32	26802.71	22334.07	26.77	27446.35	322.72	106.43	Verificato	3.03	6.96
gcr,0	-96.77	-48.38	0.50	1.00	5.25	4.32	27154.64	22334.07	26.77	27758.04	322.72	107.31	Verificato	3.01	6.96
(Mpa)	0.00	0.00	1.58	TRAZ.	TRAZ.	4.32	TRAZ.	22334.07	47.35	TRAZ.	TRAZ.	82.02	Verificato		
5172.2	12.36	11.83	1.05	TRAZ.	TRAZ.	4.32	TRAZ.	22334.07	47.35	TRAZ.	TRAZ.	82.02	Verificato		

					VI	ERIFICA NERV.	ATURE TRASVERS	SALI				
t1	SIMM.	Li	t1	1.2	t2	ta	ha	It	λ	α	γT	VERIFICA
	(-)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm4)	(-)	(-)	(-)	(-)
tl L2	nervat. Simm. o non simm.	dimens, nervatura	spessore di L1	dimens. flangia	spessore di L2		altezza anima	mom. inerzia	snellezza nervatura	a/h	coeff. rig. flessionale	It>=0,092*yt*h*ta^3
	nervat. Simin. o non simin.	dimens, nervatura	spessore di L1	nervatura	spessore di L2	spessore anima	anezza anima	nervat.	(<50)	(a<1.5)	coeff. rig. Hessionale	C/D = 24.01
	SI	300	30			30	1310	6.25.E+08	7.0	1.15	8.0	Verificato

					V	ERIFICA IMBO	ZZAMENTO PANI	NELLO D'ANIMA	INFERIORE						
L ritegno torsion.	tensioni a	l bordo dell'anima	1		α	1.42				VERIFICA I	MBOZZAMENTO PAN	NELLO D'ANIMA			
(cm)	σ 1	σ0	Ψ	Tab. 7-VIII CNR	W-	16-	gcr	₹CT	τ, у	♂ cr,id	σcr,rid.	σ_id		14/- 14 0.0	14 (-(040 5) 4 4
150	(Mpa)	(Mpa)	(σ0/σ1 = T/C)		Кσ	Kτ	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	σ_id <= σcr,rid.	σ _cr,ια/ σ, ια. >= 0,8	σ_cr,id /τ(3^0,5) >= 1,1
Irrigidim. Longitud. (h)	-66.49	225.65	-3.39	3.00	23.90	7.34	4086.48	1254.59	0.00	4086.48	337.86	66.49	Verificato	5.08	
(cm)	-64.96	238.47	-3.67	3.00	23.90	7.34	4086.48	1254.59	0.00	4086.48	337.86	64.96	Verificato	5.20	
106.0	-49.91	157.52	-3.16	3.00	23.90	7.34	4086.48	1254.59	26.77	3117.49	337.70	68.12	Verificato	4.96	7.28
gcr,0	-48.38	170.34	-3.52	3.00	23.90	7.34	4086.48	1254.59	26.77	3144.66	337.70	67.01	Verificato	5.04	7.28
(Mpa)	0.00	0.00	-0.61	2.00	14.11	7.34	2412.75	1254.59	47.35	2173.01	337.28	82.02	Verificato	4.11	4.11
171.0	11.83	9.40	1.26	TRAZ.	TRAZ.	7.34	TRAZ.	1254.59	47.35	TRAZ.	TRAZ.	82.02	Verificato		

		CONNESSIONE A COMP	LETO RIPRIST	TNO EC4 par. 6.2	2.1.1	
Beff	h,sol	L,tr	Piolo (mm)	Re	Ra	Fcf
(cm)	(cm)	(m)	φ = 22	Resist. soletta	Resist. Trave acc.	Vscorr = min(Re;Ra)
250	30	35.00	h = 200 mm	14875	44054	14875
Prd, piolo	Prd, cls	Prd,d	N°connettori	At,nec/m	Barre,trasv.	Pa,trasv,nec
KN	KN	KN	N° di file = 3	(mmq)	φ = 24	(cm)
109.48	122.6	109.5	45.29	608.2	N° br,tr. = 1	74.4
N°conn. posti	Fr,scorr/m	P,st	Aa,trasv	V,rd2	V,rd3	V,rd
(Passo,min= 77.3	(KN/m)	(cm)	(mmq)	(KN/m)	(KN/m)	(KN/m)
175	547.4	20	4523.9	7000.0	3174.6	3174.6
Passo	armat.trasvers.	Dist.min.pioli=5d= 1	10 mm	Resist	della sezione alla forza	di scorrim.
1	Verificato	Verificato			Verificato	
	η= 3.72	η= 1.82			η= 5.8	

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

								GIUNTO TRAV										
		ı		ı				OMETRICHE - ME									_	
CI	asse bullone	f,ub	Classe acciaio	f,ub	f,y	f,d	Beff	h,sol	Ac	Htr	Bi	Bs	h,a		t,i	Ls (t,a
	(-)	(Mpa) Resist. ultima	(-)	(Mpa) Resist. ultima	(Mpa) Resist. prog.	(Mpa) Resist. prog.	(m) Beff.soletta	(mm) Altezza soletta	(mm^2) Area cls	(mm) Altezza trave	(mm) Base piatto inferiore	(mm) Base piatto superiore	(mm) Altezza anima		nm) atto inferiore	(mm) Spessore piatto		(mm) ssore anima
	10.9	1000	S355	510	355	fd = 319 MPa (ala sup) fd = 319 MPa (ala inf)	2.50	300	750000	1450	700	600	1310		70	superiore 70		30
						Y 1 0							11470					
	Jtrave (mm^4)	Aa (mm^2)	X_1 (mm)	Janima (mm^4)	Jala (mm^4)	J,anima/J,tot (-)	n,2 (-)	Ai,2 (+) (mm^2)	Ja_2 (+) (mm^4)	Ai,2 (-) (mm^2)	Ja_2 (-) (mm^4)	n,3 (-)	Ai,3 (+) (mm^2)		3 (+) m^4)	Ai,3 (-) (mm^2)		Ja_3 (-) (mm^4)
Mo	mento Inerzia	Area acciaio	Asse Neutro	Momento Inerzia	Momento Inerzia	Momento Inerzia	Coeff.Omog.	Area ideale	Mom. Inerzia - Fase II	Area ideale	Mom. Inerzia - Fase II	Coeff.Omog.	Area ideale		erzia - Fase II	Area ideale	Mom. In	nerzia - Fase II
4	1.880E+10	130300	762	5.674E+09	4.313E+10	0.12	17.29	176291	7.78.E+10	132914	5.14.E+10	6.16	254618	_	.E+11	132914	5.1	.14.E+10
	МА	N A	V A	МА	N A	V A	M A-CLS	N A-CLS	V_A-CLS	M_A-CLS	N A-CLS	V_A-CLS						
CDS A-CLS	(KNm)	(KN)	(KN)	(KNm)	(KN)	(KN)	(KNm)	(KN)	(KN)	(KNm)	(KN)	(KN)			Coo	rdinate dei Bul	oni	
		CDS SEZ. ACC FASE 0			CDS SEZ. ACC F/	SE I	CDS	SEZ. COMP. A-CLS F	ASE II	CI	OS SEZ. COMP. A-CLS FAS	E III						
MAX	2114.4	0.0	0.0	3876.0	0.0	0.0	6539.0	0.0	0.0	7601.3	2681.4	0.0	·					
MIN	2114.4	0.0	0.0	3876.0	0.0	0.0	4817.7	-2559.1	0.0	6352.6	0.0	0.0		1000	T			7
	МА	N A	V A	M A	N A	V A	M A	N A	V A	МА	N A	V A		900	•	. .		
CDS ACC.	(KNm)	(KN)	(KN)	(KNm)	(KN)	(KN)	(KNm)	(KN)	(KN)	(KNm)	(KN)	(KN)		300	.	. .		
CDS ACC.		CDS SEZ. ACC FASE 0			CDS SEZ. ACC F/	SE I		CDS SEZ. ACC FASE	п		CDS SEZ. ACC FASE III			800			_	-
MAX	2114.4	0.0	0.0	3876.0	0.0	0.0	4102.0	0.0	0.0	3604.5	2681.4	0.0	•			. .	•	
MIN	2114.4	0.0	0.0	3876.0	0.0	0.0	3022.2	-1891.5	0.0	3012.4	0.0	0.0		700			١.	
	M A	N_A	V_A		LIMITI DIST. FO	RI		LIMITI DIST. FORI			LIMITI DIST, FORI			600	-			4
CDS TOT	(KNm)	(KN)	(KN)		COPRIGIUNTO AN			COPRIGIUNTO ALA SU	JP.		COPRIGIUNTO ALA INF.						•	
		CDS TOT. SEZ. ACC.		P1min = 63 mm P1max = 200 mm		n = 34 mm c = 160 mm	P1min = 63 mm P1max = 200 mm	e1,min = 3 e1,max = 2		P1min = 63 mm P1max = 200 mm	e1min = 34 e1max = 200			500		-	_	-
MAX	13697.0	2681.4	0.0	P2min = 68 mm		n = 34 mm	P2min = 68 mm	e2,min = 3	4.2 mm	P2min = 68 mm	e2min = 34	mm		400	•	. .	•	
MIN	12025.1	1891.5	0.0	P2max = 200 mm	e2ma	c = 160 mm	P2max = 200 mm	e2,max = 2	00.0 mm	P2max = 200 mm	e2max = 200	mm		400				
					C	OPRIGIUNTO ANIM	1A							300	-			A
p1 PASSO	p2	e1	e2	Nf	Ne	Φ,bull (mm)	t,copr_an (mm)	Pt_anima	Nb,anima	B_c,an	L_c,an	Jp			•	. .	•	4
ORIZZONTAL	PASSO VERTICALE	DIST. DAL MARG. ORIZZ.	DIST. DAL MARG. VERTIC.	N° FILE BULL.	Nº COLONNE BULLONI	Diametro bullone (sez.	(mm) Spessore coprig.	Nº PIANI DI TAGLIO ANIMA	N° TOT. BULL.	BASE. COPRIG. ANIMA	ALTEZZA COPRIG. ANIMA	MOM. IN. POLARE		200				i i
(mm) 100	(mm) 100	(mm) 50	(mm) 50	(-) 10	(-)	lorda) 27 mm	anima 30	(-)	(-) 40	(mm) 800.0 mm	H,an = 1450.0 mm 1000.0 mm	(mm^2) 3.80E+06	_	100			_	A
		30		10				_	•		1000.0 mm				•	. .	•	
Xg	Yg	Xmax	Ymax	N_anima	M_anima MOM. FLETT.	Fvr,d (Mpa)	Fbr,d (Mpa)	Fbr,d (Mpa)	Fbr,d (Mpa)	Vb V SUL SINGOLO	Smax	Rmax TAGLIO MAX		0	100	200	300	400
BARIC.	BARIC.	(-)	(-)	COMPR. ANIMA	ANIMA	Res. taglio bull. per sez.	Res. rifoll. coprig.			BULL.	SFORZO MAX BULL	BULL. ANIMA						
(mm)	(mm)	(mm)	(mm)	(KN)	(KNm)	lorda	anima	Res. rifoll. ala sup.	Res. rifoll. ala inf.	N	N	C/D,min = 2.28	l,	mm]				
200	500	150	450	1745 (Inv_max) 1231 (Inv_min)	1593 (Inv_max) 1398 (Inv_min)	274.8	510.0	1190.0	1190.0	0 (Inv_max) 0 (Inv_min)	198787 (Inv_max) 174522 (Inv_min)	120.3 KN (Inv_max) 102.0 KN (Inv_min)						
				1201 (111/21111)	Tese (mmm)	J				- ((-
								OPRIGIUNTO ALA										
PASSO	p2	el	e2 DIST. DAL	N_ali	M_ali	Ф,bull (mm)	Fvr,d (Mpa)	Nb,copr,sup N° PIANI DI TAGLIO	Nb,ali	N_file,b_ali	N_col,b_ali	B_c,al	L_e,al		N),bull	V_(M),bull		V,bull.
ORIZZONTAL	PASSO VERTICALE	DIST. DAL MARG. ORIZZ.	MARG. VERTIC.	COMPR. ALI	MOM. FLETT. ALI	Diametro bullone (sez. lorda)	Res. taglio bull. per sez. lorda	COPR.	N° TOT. BULL.	Nº FILE BULL. ALI	N° COL. BULL. ALI	BASE. COPRIG. ALI	LUNGH. COPRIG. ALI		.IO_(N)	TAGLIO_(M)		MAX BULL. ALI
(mm) 100	(mm) 166.7	(mm) 50	(mm) 50	(KN) 936 (Inv max)	(KNm) 12104 (Inv max)	27 mm	sez. lorda 274.8	(-)	20	(-)	(-)	(mm) 600	(mm) 1000		(N) v max)	(KN) 219 (Inv max)		/D = 1.19 KN (Inv max)
t,copr_ali		OPRIG. ALI SUP.	40 mm	660 (Inv_min)	10627 (Inv_min)										v_min)	193 (Inv_min)		KN (Inv_min)
								CORDICHINES	INFEDIODS									
p1	p2	e1	e2	N ali	M ali	Φ.bull	Fvr,d	OPRIGIUNTO ALA Nb,copr,sup	Nh.ali	N file,b ali	N colb ali	B c.al	L c,al	V O	S),bull	V (M),bull		V.bull.
PASSO ORIZZONTAL	PASSO VERTICALE	DIST. DAL MARG. ORIZZ.	DIST. DAL	COMPR. ALI	MOM. FLETT. ALI	(mm)	(Mpa)	Nº PIANI DI TAGLIO	N° TOT, BULL.	N° FILE BULL. ALI	N° COL. BULL. ALI	BASE, COPRIG. ALI	LUNGH. COPRIG. ALI		JO_(N)	TAGLIO (M)		MAX BULL, ALI
(mm)	(mm)	(mm)	MARG. VERTIC. (mm)	(KN)	(KNm)	Diametro bullone (sez. lorda)	Res. taglio bull. per sez. lorda	COPR. (-)	(-)	(-)	(-)	(mm)	(mm)		(N)	(KN)		/D = 1.19
100	200.0	50	50	936 (Inv_max)	12104 (Inv_max)	27 mm	274.8	2	20	4	5	700	1000	12 (In	v_max)	219 (Inv_max)	231.0 K	KN (Inv_max)
t,copr_ali	SPESS, CO	OPRIG. ALI INF.	40 mm	660 (Inv_min)	10627 (Inv_min)	J								8 (In	v_min)	193 (Inv_min)	200.8 K	KN (Inv_min)
		VERIFICA RI	FOLLAMENTO	LAMIERE - IN	V MAX						VERIFICA RI	FOLLAMENTO I	AMIERE - INV MIN					
σ,rif_al_s	σ,rif_cop_an_s	σ,rif_al_i	g,rif_cop_al_i	♂ ,rif_an	♂ ,rif_cop_an	σ,traz_c_al,s	σ,traz_c_al,i	σ,rif_al_s	σ,rif_cop_an_s	σ,rif_al_i	σ,rif_cop_al_i	♂ ,rif_an	σ,rif_cop_an		c_c_al,s		σ,traz_c_al,i	
TENS. RIF. ALA SUP.	TENS. RIF. COPR. ALA SUP.	TENS. RIF. ALA INF.	TENS. RIF. COPR. ALA INF	TENS. RIFOLL. ANIMA	TENS. RIFOLL. COPRIG. ANIMA	TENS. T/C COPR. ALA SUP	TENS. T/C COPR. ALA INF	TENS. RIF. ALA SUP.	TENS. RIF. COPR. ALA SUP.	TENS. RIF. ALA INF.	TENS. RIF. COPR. ALA INF	TENS. RIFOLL. ANIMA	TENS. RIF. COPRIG. AN.		COPR.	TENS.	T/C COPR. ALA	A INF
(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(N	(pa)		(Mpa)	
$\sigma = 122.2$	σ = 213.9	σ = 122.2	$\sigma = 213.9$	σ = 148.5	σ = 148.5	σ = 230.2	σ=191.3	$\sigma = 106.2$	σ = 185.9	$\sigma = 106.2$	σ = 185.9	$\sigma = 125.9$	σ = 125.9		198.0		$\sigma = 164.5$	
f,d = 1190.0 C/D = 9.74	f,d = 1084.6 C/D = 5.07	f,d = 1190.0 C/D = 9.74	f,d = 1084.6 C/D = 5.07	f,d = 510.0 C/D = 3.43	f,d = 510.0 C/D = 3.43	f,d = 319.0 C/D = 1.39	f,d = 319.0 C/D = 1.67	f,d = 1190.0 C/D = 11.20	f,d = 1084.6 C/D = 5.83	f,d = 1190.0 C/D = 11.20	f,d = 1084.6 C/D = 5.83	f,d = 510.0 C/D = 4.05	f,d = 510.0 C/D = 4.05		319.0		f,d = 319.0 C/D = 1.94	

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

APP.1	TRAVATA 1	APP.2	TRAVATA 2	APP.3	TRAVATA 3	APP.4		APP.5		APP.6				
(App.estemo)	L= 35.00 m	(App.interno)	L= 35.00 m (campata travata	(App.interno)	L= 35.00 m (campata travata	(App.estemo)								
	(campata travata esterna)		interna)		esterna)									
Le = 29.75 m	Le = 29.75 m	Le = 17.50 m	Le = 24.50 m	Le = 17.50 m	Le = 29.75 m	Le = 29.75 m								
APP.7		APP.8		APP.9		APP.10		APP.11		APP.12				
L _m = 0,85L ₁ for b _{en,1}	(5(L1*L2) Dent.2 L=0.70L2 for best.1 L2/4 L3/2 best.1	bei.	Do		- Tue S	b ₁	b _{u1}	b _{eff}	4 4 8 **					
						TI	RAVATA 1							
N° Campate solaio Camp.n° 1	APP.1	Camp.n° 2	APP.2	Camp.n° 3	API	3 Camp.nº 4	APP.4	Camp.nº 5	APP.5	Camp.n° 6	APP.6	Camp.nº 7	APP.7	Camp.n° 8
N° Campate solaio Camp.n° 1 Tipologii campata sol. (mensola) L camp solaio 1.000 m	APP.1 b,o (inter.com 290 mm		b,o (inter.com.) 290 mm	(campata) 2.50 m	b,o (inter 290 :	3 Camp.nº 4 conn.) (campata) m 2.50 m	h,o (inter.conn.) 290 mm	(campata) 2.50 m	b,o (inter.conn.) 290 mm	(campata) 2.50 m	b,o (inter.conn.) 290 mm	(campata) 2.50 m	b,o (inter.conn.) 290 mm	Camp.n° 8 (mersoh) 1.000 m
Tipologia campata sol. (mensola) L camp sohio 1.000 m b,i	b,o (inter.com 290 mm b,1 = 1000 mm	.) (campata) 2.50 m b,2 = 1250 mm	b,o (inter.com.) 290 mm b,1 = 1250 mm b,2 =	(campata) 2.50 m	b,0 (inter 290 : b,1 = 1250 mm	3 Camp.nº 4 conn.) (campata) m 2.50 m b,2 = 1250 mm	APP.4 b,o (inter.conn.) 290 mm b,1 = 1250 mm b,2 = 12	(campata) 2.50 m	b,o (inter.conn.) 290 mm b,1 = 1250 mm b,2 = 125	(campata) 2.50 m	b,o (inter.com.) 290 mm b,1 = 1250 mm b,2 = 1	(campata) 2.50 m	b,0 (inter.conn.) 290 mm b,1 = 1250 mm b,2 = 1000 mm	(mensola)
Tipologia campata sol. (mensola) L camp solnio 1.000 m	b,o (inter.com 290 mm b,1 = 1000 mm b,e1 = 855 mm b	.) (campata) 2.50 m	b,o (inter.com.) 290 mm	(campata) 2.50 m 1250 mm 1105 mm	b,o (inter 290 :	3 Camp.nº 4 com.) (campata) m 2.50 m b.2 = 1250 mm c.c2 = 1105 mm	h,o (inter.conn.) 290 mm	(campata) 2.50 m	b,o (inter.conn.) 290 mm	(campata) 2.50 m	b,o (inter.conn.) 290 mm	(campata) 2.50 m 250 mm 105 mm	b,o (inter.conn.) 290 mm	(mensols)
Tipologia campata sol. (mensola) L camp solaio 1,000 m b,i CAMP: Le%= 3.72 m	b,0 (inter.com 290 mm b,1 = 1000 mm b,c1 = 855 mm b,c1 = 855 mm B,eff_camp = 225	(campata) 2.50 m	b,o (inter.com.) 290 mm b,1 = 1250 mm b,2 = b,e1 = 1105 mm b,e2 = b,e1 = 1105 mm b,e2 = B,eff_camp = 2500	(campata) 2.50 m 1250 mm 1105 mm 1105 mm	b,0 (inter 290: b,1 = 1250 mm b,c1 = 1105 mm b,c1 = 1105 mm B,eff_camp	3 Camp.nº 4 conn.) (campata) m 2.50 m b,2 = 1250 mm s,c2 = 1105 mm s,c2 = 1105 mm 2500 mm	APP.4 b,o (inter.com.) 290 mm b,1 = 1250 mm b,2 = 12 b,e1 = 1105 mm b,e2 = 11 b,e1 = 1105 mm b,e2 = 11 B,eff_camp = 2500 mx	(campata) 2.50 m 0 mm 5 mm 5 mm	b,o (inter.conn.) 290 mm b,1 = 1250 mm b,2 = 125 b,e1 = 1105 mm b,e2 = 110 b,e1 = 1105 mm b,e2 = 110 B,eff_camp = 2500 mm	(campata) 2.50 m mm 5 mm 5 mm	b,o (inter.com.) 290 mm b,1 = 1250 mm b,2 = 1 b,e1 = 1105 mm b,e2 = 1 b,e1 = 1105 mm b,e2 = 1 B,eff_camp = 2500 m	(cumpatn) 2.50 mm 105 mm 105 mm m	b,o (inter.conn.) 290 mm b,1 = 1250 mm b,2 = 1000 mm b,c1 = 1105 mm b,c2 = 855 mm b,c1 = 1105 mm b,c2 = 855 mm B,eff_camp = 2250 mm	(mensols)
Tipologia campata sol. (mensola) L camp solaio 1,000 m b,i CAMP: Le%= 3.72 m	b,0 (inter.com 290 mm b,1 = 1000 mm b,c1 = 855 mm b,c1 = 855 mm	(campata) 2.50 m	b,o (inter.com) 290 mm b,1 = 1250 mm b,2 = b,e1 = 1105 mm b,e2 = b,e1 = 1105 mm b,e2 =	(campata) 2.50 m 1250 mm 1105 mm 1105 mm	b,0 (inter 290 : b,1 = 1250 mm b,e1 = 1105 mm b,e1 = 1105 mm	3 Camp.nº 4 conn.) (campata) m 2.50 m b,2 = 1250 mm s,c2 = 1105 mm s,c2 = 1105 mm 2500 mm	APP.4 b.o (inter.com.) 290 mm b.1 = 1250 mm b.2 = 12 b.c1 = 1105 mm b.c2 = 11 b.c1 = 1105 mm b.c2 = 11	(campata) 2.50 m 0 mm 5 mm 5 mm	b,0 (inter.conn.) 290 mm b,1 = 1250 mm b,2 = 125 b,e1 = 1105 mm b,e2 = 110 b,e1 = 1105 mm b,e2 = 110	(campata) 2.50 m mm 5 mm 5 mm	b,o (inter.com.) 290 mm b,1 = 1250 mm b,2 = 1 b,e1 = 1105 mm b,c2 = 1 b,e1 = 1105 mm b,c2 = 1	(cumpatn) 2.50 mm 105 mm 105 mm m	b,0 (inter.com.) 290 mm b,1 = 1250 mm b,2 = 1000 mm b,e1 = 1105 mm b,e2 = 855 mm b,e1 = 1105 mm b,e2 = 855 mm	(mensola)
Tipologia campata sol. (mensola) L camp solaio 1,000 m b,i CAMP: Le%= 3.72 m	b,0 (inter.com 290 mm b,1 = 1000 mm b,c1 = 855 mm b,c1 = 855 mm B,eff_camp = 225	(campata) 2.50 m	b,o (inter.com.) 290 mm b,1 = 1250 mm b,2 = b,e1 = 1105 mm b,e2 = b,e1 = 1105 mm b,e2 = B,eff_camp = 2500	(campata) 2.50 m 1250 mm 1105 mm 1105 mm	b,0 (inter 290: b,1 = 1250 mm b,c1 = 1105 mm b,c1 = 1105 mm B,eff_camp	3 Campat ² 4 cont.) (campata)	APP.4 b,o (inter.com.) 290 mm b,1 = 1250 mm b,2 = 12 b,e1 = 1105 mm b,e2 = 11 b,e1 = 1105 mm b,e2 = 11 B,eff_camp = 2500 mx	(campata) 2.50 m 0 mm 5 mm 5 mm	b,o (inter.conn.) 290 mm b,1 = 1250 mm b,2 = 125 b,e1 = 1105 mm b,e2 = 110 b,e1 = 1105 mm b,e2 = 110 B,eff_camp = 2500 mm	(campata) 2.50 m mm 5 mm 5 mm	b,o (inter.com.) 290 mm b,1 = 1250 mm b,2 = 1 b,e1 = 1105 mm b,e2 = 1 b,e1 = 1105 mm b,e2 = 1 B,eff_camp = 2500 m	(cumpatn) 2.50 mm 105 mm 105 mm m	b,o (inter.conn.) 290 mm b,1 = 1250 mm b,2 = 1000 mm b,c1 = 1105 mm b,c2 = 855 mm b,c1 = 1105 mm b,c2 = 855 mm B,eff_camp = 2250 mm	(mensola)
Teologic compute sel. (cercush)	b.o (inter.com 290 mm b,1 = 1000 mm b,cl = 855 mm l b,cl = 855 mm l B,cff camp = 225 R,cff app = 225((camput) 2.50 m 2.50 m 2.50 m 2.62 = 1105 mm 2.62 = 1105 mm 2.1105	b.0 (inter.com) 290 mm b.1 - 1250 mm b.2 - b.cl - 1105 mm b.c2 - b.cl - 1105 mm b.c2 - B.cf camp - 2500 B.cff app - 2500	(campata) 2.50 mm 1105 mm 1105 mm 11mm 11mm 11mm 11mm 11mm 11mm 11mm	b,o (inter 290) b,1 – 1250 mm bc1 – 1105 mm b,c1 – 1105 mm B,eff_camp B,eff_samp –	3 Campaf 4 com) (compil) m 2.90 m b.2 = 1250 m b.2 = 1250 m s.2 = 1105 m s.2 = 1105 m s.2 = 105 m s.2 = 105 m s.2 = 105 m 1590 mm TI 3 Campaf 4	APP.4 bo (rister.com) 290 mm b.1 - 1250 mm b.2 - 12 bc1 - 1105 mm b.c2 - 11 bc1 - 1105 mm b.c2 - 11 Bcf cmp - 2500 mm Bcf app - 2500 mm	(campata) 2.50 m 0 mm 5 mm 5 mm Campan*5	b,o (rier com) 290 mm b,1 = 1250 mm b,2 = 125 mm b,2 = 1105 mm B,2 = 100 mm B,2 = 2500 mm	(campata) 2.50 m) mm 5 mm 5 mm Campan ⁶ 6	b.o (inter.com.) 290 mm b.1 = 1250 mm b.2 = 1 b.c1 = 1105 mm b.2 = 1 b.c1 = 1105 mm b.c2 = 1 B.cf cmp = 2500 m B.cf app = 2500 m	(campata) 2.50 m 2.50 m 10.5 mm 10.5 mm 10.5 mm 10.5 mm	bo (eser.com) 290 mm b.1 = 1250 mm b.2 = 1000 mm b.2 = 1105 mm b.2 = 855 mm b.2 = 1105 mm b.2 = 855 mm B.eff camp = 2250 mm H.eff app = 2250 mm APP-7	(memoh) 1,000 m Camp.n° 8
Teckepis campus sel. (recroels) L. camp solvie L. camp solvie L. CAMP-Le8-3-72 m APP-Le8-3-72 m APP-Le8-3-72 m N° Campute solvie Teckepis campus sel. (recroels)	b.0 (refer core 250 mm 1,1 - 1000 mm b.1 - 1000 mm b.cl - 855 mm 1 b.cl - 855 mm 1 B.eff camp - 225 B.eff gap - 225 APP.1 b.o (refer core) (campata) 2.50 m 6.2 - 1250 mm 6.2 - 1105 mm 6.2 - 1105 mm 0.2 - 1105 mm 0.0	b,o (inter.com) 290 mm b,2 = b,1 = 1250 mm b,2 = b,e1 = 1105 mm b,e2 = b,e1 = 1105 mm b,e2 = B,eff camp = 2500 B,eff app = 2500 APP,2 b,o (inter.com.)	(campata) 2.50 mm 1105 mm 1105 mm mm mm mm (campata) (campata) (campata)	b,o (inter 29 b,1 = 1250 mm b,e1 = 1105 mm b,e1 = 1105 mm B,eff camp B,eff app API b,o (inter	3 Cumpat 4 (cumpats) The Company of Cumpats	APP.4 bo feter comp. 290 mm b.1 = 1250 mm b.2 = 12 b.1 = 1250 mm b.2 = 11 b.e1 = 1105 mm b.2 = 11 b.e1 = 1105 mm b.2 = 11 B.eff camp = 2500 mm B.eff app = 2500 mm RAVATA 2 APP.4 bo (feter.com)	(campata) 2.50 m 2.50 m 5 mm 5 mm Campan* 5 (campata)	b,0 (rice cons)	(campata) 2.50 m 5 mm 5 mm 5 mm Camparê 6 (campata)	b,o (inter.com.)	(campata) 2.50 m 10.5 mm 10.5 mm 10.5 mm 10.5 mm 10.5 mm 10.5 mm	bo (sizer.com)	(mensoh) 1,000 m Campar's 8 (mensoh)
Teologic compute sel. (necrosls)	bo (fetr corr 200 mm b_1 - 1000 mm b_1 - 1000 mm b_2 - 855 mm l b_2 - 855 mm l B_2 S55 mm l B_2 S55 mm l B_3 S55 mm l B_4	(campat) (campat) (2.50 m)	b,o (firer com) 290 mm b,1 = 1250 mm b,2 = 105 mm b,2 = 1105 mm b,2 = 104 mm b,2 = 105 mm b,2 = 105 mm b,2 = 2500 B,eff camp = 2500 B,eff capp = 2500 APP,2 b,o (firer com) 290 mm b,1 = 1250 mm b,2 = 2500	(cmputs) 2.50 m 2.50 m 1105 mm 1105 mm m Camput 3 (cmputs) 2.50 m 2.50 m	b,o (inter 2920 mm b,1 = 1250 mm bc1 = 1105 mm bc1 = 1105 mm B,eff_camp = B,eff_sapp = API b,o (inter 2,000 mm	3 Cangarf 4 (corepta) (cor	APP4 be (fere cons) 290 mm h.1 = 1250 mm h.2 = 12 h.el = 1105 mm h.2 = 12 h.el = 1105 mm h.2 = 21 h.el = 1105 mm h.2 = 21 Ref (app = 2500 mm Ref (app = 2500 mm APP4 be (fere cons) 290 mm h.1 = 1250 mm h.2 = 12	(computs) 2.50 m 2.50 m 5 mm 5 mm 6 mm Campus 5 mm (campus) 2.50 m	bo (ner cosn.) 290 mm b.2 = 125 b.1 = 1250 mm b.2 = 125 b.2 = 1105 mm b.2 = 125 b.2 = 1105 mm b.2 = 120 b.2 = 1105 mm b.2 = 120 B.2 = 1200 mm B.2 = 1200 mm APP.5	Campata Campata Campata Campata Campata Campata	b,s (rist corn)	(carputs) 2.50 m 105 mm 105 mm m n Camput 7 (carputs) 2.50 m	bo (rietz com) 200 m b.1-1250 mm b.2-1000 mm b.1-1250 mm b.2-855 mm b.1-105 mm b.2-855 mm b.1-105 mm b.2-855 mm B.1-105 mm b.2-855 mm R.1-105 mm b.2-855 mm R.2-105 mm	(memoh) 1,000 m Camp.n° 8
Teckeya camputs sel.	bo (istracow) 290 mm h.1 = 1000 mm h.1 = 1000 mm h.2 = 855 mm l.3 = 855 mm l.4 = 855 mm l.4 = 855 mm l.4 = 1000 mm h.2 = 1000 mm h.1 = 1000 mm h.1 = 1000 mm h.1 = 1000 mm	(computs) 2.50 m 2.21 1250 m 2.20 m 2.20 m 2.21 1105 mn 2.22 1105 mn 2.22 1105 mn 2.23 mn 2.24 mn 2.25 mn	bo (riter.com) 290 mm b.2 - b.1 - 1250 mm b.2 - b.2 - 1105 mm b.2 - b.2 - 1105 mm b.2 - b.1 - 1105 mm b.2 - B.6f camp - 2500 B.6f app - 2500 APP 2	(computs) 2.50 m 1250 mm 1105 mm 1105 mm mm mm Campus ² 3 (computs) 2.50 m 2.50 m	b,o (inter- 2920 ym) b,1 = 1250 ym) bc1 = 1105 ym) bc1 = 1105 ym) bc1 = 1105 ym) B,eff camp- R,eff app = APP bo (inter- 290 ym) b,1 = 1250 ym) b,1 = 1250 ym) b,1 = 1105 ym)	3 Campar 4 (computs) mm (computs) mm 2,500 mm 2,500 mm (computs) mm (c	APP4 bo (riet com) 200 mm h.1 = 1250 mm hg.2 = 12 ha.1 = 105 mm hg.2 = 12 ha.1 = 105 mm hg.2 = 11 ha.1 = 105 mm hg.2 = 15 ho (riet com) h.1 = 1250 mm hg.2 = 15 ha.1 = 105 mm hg.2 = 15	(computs) 2.50 m 2.50 m 5 mm 5 mm 6 mm 6 mm 7 mm 7 mm 7 mm 7 mm 7 mm 7	No (mrc.com) 200 mm b_1 = 1250 mm b_2 = 125 b_2 = 1105 mm b_2 = 135 b_3 = 1105 mm b_2 = 130 B_4 = 105 mm b_3 = 130 B_4 = 105 mm b_3 = 130 B_4 = 105 mm b_3 = 130 APP_5	Camputa 2.50 m 2.50 m	bo (set com)	(carpois) 2.50 m 2.50 m 105 mm 105 mm 10 m 11	bo (references) 250 cm b.2 - 1000 cm b.1 - 1250 cm b.2 - 855 cm b.4 - 1105 mm b.2 - 855 cm b.4 - 1105 cm b.2 - 855 cm b.4 - 1105 cm b.2 - 855 cm Beff app - 2250 cm Beff app - 2250 cm Bo (references) S00 cm b.1 - 1250 cm b.2 - 855 cm b.4 - 1105 cm b.4 - 815 cm B.4 - 1105 cm B.4 - 1100 cm B.4 - 1	(messoh) 1,000 m Campar' 8 (messoh)
Teologic compute sel. (necrosls)	bo (fist com 200 mm h_1 = 1000 mm h_2 = 855 mm l h_2 = 855 mm l H_2 = 855 mm l H_2 = 2256 H_2 = 100 mm 2256 H_2 = 100 mm h_2 = 100 mm h_1 = 1000 mm h_2 = 855 mm l h_2	(compata) (compata) 2.50 m 2.50 m 2.50 m 2.50 m 2.50 m (call = 10.50 m) (call = 10.50 m	bo (feet coun)	(camputs) 250 m 1250 m 1055 mm 1105 mm m Campus' 3. (camputs) 2.50 m 2.50 m 1105 mm 1105 mm 1105 mm	b,0 (tite: 200 mm b,1 - 1250 mm be2 - 1105 mm be2 - 1105 mm Beff camp - Beff sup - APP bo (steen 200 b,1 - 1250 mm be4 - 1105 mm be4 - 1105 mm be4 - 1105 mm Beff sup -	3 Campar 4 (computs) mm (computs) mm 2,500 m 5,27 1250 mm (coll = 100 mm (coll =	APP4 be (rietz com.) 200 mm h.1 = 1250 mm h.2 = 12 h.1 = 1105 mm h.2 = 12 h.1 = 1105 mm h.2 = 11 h.1 = 1105 mm h.2 = 11 h.1 = 1105 mm h.2 = 10 h.1 = 1105 mm h.2 = 10 h.1 = 1105 mm h.2 = 12 h.1 = 1250 mm h.2 = 12 h.1 = 1250 mm h.2 = 11 h.1 = 1105 mm h.	Campus 250 m 250 m 5 mm 5 mm Campus 5 (campus 5 5 mm	ho (sercoun) 200 m b ₁ = 1250 mm b ₂ = 1250 mm b ₂ = 1165 mm b ₂ = 110 mm b ₂ = 100 mm Reff upp = 2500 mm Reff upp = 2500 mm Reff upp = 2500 mm b ₂ = 200 mm b ₂ = 200 mm b ₂ = 100 mm b ₂ = 110 mm b ₂	Campus) 250 m 250 m 5 mm 5 mm 6 mm 6 mm 7 mm 7 mm 7 mm 7 mm 7 mm 7	bot (set comp.) 500 mm b.1 = 1250 mm b.2 = 1 bat = 1105 mm b.2 = 1 bat = 105 mm b.2 = 1 Bef comp = 2500 m Ref comp = 2500 m APP.6	(campus) 2.40 m 2.50 mm 10.55 mm	bo (references) 290 mm b_2 - 1000 mm b_1 - 1250 mm b_2 - 855 mm b_2 - 1100 mm b_2 - 855 mm b_2 - 1100 mm b_2 - 855 mm b_2 - 855 mm b_2 - 855 mm b_2 - 855 mm b_2 - 855 mm b_2 - 825 mm b_2 - 825 mm b_2 - 825 mm b_2 - 1200 mm b_2 - 1100 mm b_2 - 855 mm b_2 - 1100 mm b_2 - 855 mm b_2 - 1100 mm b_2 - 855 mm b_2 - 855 mm b_2 - 855 mm b_2 - 2550 mm b_2 - 855 mm b_2 - 2550 mm b_2 - 250 mm	(mensoh) 1,000 m Campar's 8 (mensoh)
Teckeya camputs sel.	bo (jetr.com) 200 nm bol = 555 mm l bol = 855 mm l	(compata) (compata) 2.50 m 2.50 m 2.50 m 2.50 m 2.50 m (call = 10.50 m) (call = 10.50 m	ba (fire; com) 290 mm b,2 - bel - 1105 mm b,2 - bel - 1105 mm b,2 - bel - 1105 mm b,2 - Beff camp - 2500 Beff app - 2500 Beff app - 2500 APP.2 ba (fire; com) b,1 - 1250 mm b,2 - bel - 1105 mm b,2 -	(camputs) 250 m 1250 m 1055 mm 1105 mm m Campus' 3. (camputs) 2.50 m 2.50 m 1105 mm 1105 mm 1105 mm	b.o (interest) 290 b,1 = 1250 mm bc1 = 1105 mm bc1 = 1105 mm Beff camp Beff camp Beff samp Compared to the com	3 Campar 4 (computs) mm (computs) mm 2,500 m 5,27 1250 mm (coll = 100 mm (coll =	APF4	Campus 250 m 250 m 5 mm 5 mm Campus 5 (campus 5 5 mm	bo (nercoom)	Campus) 250 m 250 m 5 mm 5 mm 6 mm 6 mm 7 mm 7 mm 7 mm 7 mm 7 mm 7	bo (rietr cons.) 200 rm b.1 - 1250 rm b.2 - 1 b.1 - 1150 rm b.2 - 1 b.1 - 1105 rm b.2 - 1 b.1 - 1105 rm b.2 - 1 b.1 - 1105 rm b.2 - 1 B.6f app - 2500 rm APF-6 b.0 (rietr cons.) 200 rm b.2 - 1 b.1 - 1250 rm b.2 - 1 b.1 - 1105 rm b.2 - 1 b.1 - 1105 rm b.2 - 1 b.1 - 1105 rm b.2 - 1	(campus) 2.40 m 2.50 mm 10.55 mm	bot (intercom)	(mensoh) 1,000 m Campar's 8 (mensoh)
Teckeya camputs sel.	bo (fist com 200 mm h_1 = 1000 mm h_2 = 855 mm l h_2 = 855 mm l H_2 = 855 mm l H_2 = 2256 H_2 = 100 mm 2256 H_2 = 100 mm h_2 = 100 mm h_1 = 1000 mm h_2 = 855 mm l h_2	(compata) (compata) 2.50 m 2.50 m 2.50 m 2.50 m 2.50 m (call = 10.50 m) (call = 10.50 m	bo (feet coun)	(camputs) 250 m 1250 m 1055 mm 1105 mm m Campus' 3. (camputs) 2.50 m 2.50 m 1105 mm 1105 mm 1105 mm	b,0 (tite: 200 mm b,1 - 1250 mm be2 - 1105 mm be2 - 1105 mm Beff camp - Beff sup - APP bo (steen 200 b,1 - 1250 mm be4 - 1105 mm be4 - 1105 mm be4 - 1105 mm Beff sup -	3 Campar 4 (computs) mm (computs) mm 2,500 m 5,27 1250 mm (coll = 100 mm (coll =	APP4 be (rietz com.) 200 mm h.1 = 1250 mm h.2 = 12 h.1 = 1105 mm h.2 = 12 h.1 = 1105 mm h.2 = 11 h.1 = 1105 mm h.2 = 11 h.1 = 1105 mm h.2 = 10 h.1 = 1105 mm h.2 = 10 h.1 = 1105 mm h.2 = 12 h.1 = 1250 mm h.2 = 12 h.1 = 1250 mm h.2 = 11 h.1 = 1105 mm h.	Campus 250 m 250 m 5 mm 5 mm Campus 5 (campus 5 5 mm	ho (sercoun) 200 m b ₁ = 1250 mm b ₂ = 1250 mm b ₂ = 1165 mm b ₂ = 110 mm b ₂ = 100 mm Reff upp = 2500 mm Reff upp = 2500 mm Reff upp = 2500 mm b ₂ = 200 mm b ₂ = 200 mm b ₂ = 100 mm b ₂ = 110 mm b ₂	Campus) 250 m 250 m 5 mm 5 mm 6 mm 6 mm 7 mm 7 mm 7 mm 7 mm 7 mm 7	bot (set comp.) 500 mm b.1 = 1250 mm b.2 = 1 bat = 1105 mm b.2 = 1 bat = 105 mm b.2 = 1 Bef comp = 2500 m Ref comp = 2500 m APP.6	(campus) 2.40 m 2.50 mm 10.55 mm	bo (references) 290 mm b_2 - 1000 mm b_1 - 1250 mm b_2 - 855 mm b_2 - 1100 mm b_2 - 855 mm b_2 - 1100 mm b_2 - 855 mm b_2 - 855 mm b_2 - 855 mm b_2 - 855 mm b_2 - 855 mm b_2 - 825 mm b_2 - 825 mm b_2 - 825 mm b_2 - 1200 mm b_2 - 1100 mm b_2 - 855 mm b_2 - 1100 mm b_2 - 855 mm b_2 - 1100 mm b_2 - 855 mm b_2 - 855 mm b_2 - 855 mm b_2 - 2550 mm b_2 - 855 mm b_2 - 2550 mm b_2 - 250 mm	(mensoh) 1,000 m Campar's 8 (mensoh)
Teledogn compute sel. (nemods)	ho (see com 200 cm h 1000 cm	(compat) 2,50 m 2,50 m 2,2 = 105 mm (2,2 = 105 mm (2,2 = 105 mm (2,3 = 105 mm (3,3 = 1	No (piet cours)	(computa) 2.50 m 2.50 m 1105 cm 1105 cm m (computa) 2.50 m 2.50 m 2.50 m 1105 cm m (computa) 2.50 cm 1105 cm m (computa) 2.50 cm 1105 cm 11	Do teste	3 Campar 4 computs on the part of the part	APF4 but intercent 290 mm bil - 11250 mm big2 - 12 50 mm bil - 11250 mm big2 - 11 mm bil - 1105 mm big2 - 11 Bill - 1105 mm big2	(compute) 2.50 m 2.50 m 2.50 m 7 mm 7 mm 6 mm 6 mm 6 mm 6 mm 6 mm 7 mm 7	ho (see count) 20 mm h_1 = 1250 mm h_2 = 1155 mm h_2 = 1165 mm h_2 = 1250 mm	Campus) 2.50 m mm m	No first costs	(composit) 2.50 m 2.50 m 2.50 m 3.50 m 105 mm 6 m 105 mm 7 (composit) 2.50 m 105 mm 10	bo (see coon)	(recensls) 1500 m Compat' 8 (recensls) 1500 m
Teckops compute sed. (cecrods)	No (text com No (Do (per cons)	Campat 2.50 m 2.50 m 2.50 m	Doc (me)	3 Campar 4 (computs) mt (computs) mt (computs) mt (2.50 m	APF4 but (seer cons.) 200 cm 1,1 = 1250 mm, bg2 - 12 200 cm bg1 = 1105 mm, bg2 - 12 200 cm bg2 = 1105 mm, bg2 - 12 200 cm Bg1 = 1105 mm, bg2 - 12 0 cm Bg2 = 2500 mm Bg2 = 2500 mm bg1 = 1250 mm, bg2 - 12 1 0 cm bg1 = 1105 mm, bg2 - 11 0 cm Bg2 = 1105 mm, bg2 - 12 0 cm Bg2 = 2500 mm	(corpos) 2 50 m 2 50 m 5 mm 6	No (ster-cosm) 200 cm b ₁ = 1250 cm b ₂ = 1105 cm b ₂ = 11105 cm b ₂ = 1105 cm b ₂ = 1105 cm b ₂ = 105 cm Ref upr = 2500 cm Ref upr = 2500 cm Ref upr = 2500 cm b ₂ = 1105 cm b ₂ = 105 cm com com com com com com com	(ситров) 2.50 m 2.50 m 3 mm 5 mm 6 mm 6 (ситров) 2.50 m 7 mm 7	Do first comp	Campal 250 m 250	bo (inter-com)	(remole) 1500 m Caread 8 (remole) 1000 m
Teckspin camputs sel. (cercusks)	No feet com	(cumpata) (cumpata)	Bot (resecons)	Compat 2 250 m 2	Do tene	3 Campar 4 (computs) m (computs) m 2,500 m 5,57 1250 m	APF4 but (test com) 200 mm but 1200 mm	Company 2.50 m	No (##c-com)	Company 2.50 m	Define come	Comput 250 m 250	bo (intercom)	(remole) 1500 m Compat' 8 (remole) 1500 m
Teologic compute sel. (cerceols)	No (Mex. co.) 200 cm A1 - 1000 cm A1 - 1000 cm A2 - 1000 cm A3 - 1000 cm A3 - 1000 cm A4 - 1000 cm A4 - 1000 cm A5 - 1000 c	Compate Compate	Do (intercoom)	Campat 250 m 250	Do (see- 200 ms b_1 - 1250 ms b_2 - 1105 ms b_2 - 1105 ms b_3 - 1105 ms b_4 - 1250 ms b_4 - 1105 ms b_5 - 1250 ms b_6 - 1250 ms b_7 -	Campar 4	APF4 but (test com) b. 1=1920 mm b.2=1200 mm b.2=1200 mm b.2=1200 mm b.2=1200 mm b.2=1200 mm b.2=1200 mm b.2=2500 mm b.3=2500 mm b.1=1250 mm b.2=211 b.6=1105 mm b.2=211 b.6=1105 mm b.2=210 b.6=1105 mm b.2=210 b.6=1105 mm b.2=210 b.6=105 mm b.2=200 mm b.1=105 mm b.2=200 mm	(compos) 2.50 m 2.50 m 3.50 m 5.50 m 5.50 m 6.50 m	No (feer-coms)	(compan) 2.50 m 2.50 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m 7	but free comp	(compat) 2.50 m	bo (inter-com)	(remode) 1500 m 1500 m Campar 8 (remode) 1500 m
Teckspin camputs sel. (cercusks)	ho (see	(cumpata) (cumpata)	Bot (resecons)	Campat 2.50 m 100 m 10	Do tene	3 Campar 4 (computs) m 5.2 - 1250 m 5.2 - 1250 m 5.2 - 1250 m 5.2 - 105 m 5.2 - 105 m 5.50	APF4 but (test com) 200 mm but 1200 mm	(compos) 2.50 m 2.50 m 7.50	No (##c-com)	(compan) 2.50 m mm. mm. mm. mm. mm. mm. mm. mm. mm. m	Definition Def	(compia) 2.50 m 2.50 m 2.50 m 2.50 m 3.50 m 1.50 m	bo (intercom)	(remode) 1500 m 1500 m Campar 8 (remode) 1500 m
Teologic compute sel. (nemods)	ho (see	Campa*2 Campa*2	No (see coors)	Campat 2,50 m 105 m 10	Do (see 200 ms b ₂ - 1250 ms b ₂ - 1105 ms b ₂ - 1105 ms b ₃ - 1105 ms Beff cap Reff app Reff a	3 Campar 4 compats 1	APF4 but (ster com) 290 mm but 1100 mm bu2 - 112 but - 1100 mm bu2 - 112 but - 1100 mm bu2 - 112 But - 1100 mm bu2 - 11 but - 1100 mm bu2 - 10 but - 1100 mm bu	Compan) 2.50 m 2.50 m 3 mm 5 mm 6	ho (ster.com) 200 m h_1 = 1250 mm h_2 = 1100 mm h_2 = 1105 mm h_2 = 1	(compan) 2.50 m 2.50 m 2.50 m 3.50 m 3.50 m 4.50 m	Mo (less costs)	(compat) 2.50 m 2.50 m 2.50 m 2.50 m 3.50 m	bot (see econs)	(remode) 1500 m 1500 m Campar 8 (remode) 1500 m

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

						C	ARATTERIS	ТІСНЕ БЕОМІ	ETRICHE TR	AVE A-CLS						
POSIZIONE	TIPOLOGIA TRAVATA	Ltr	Beff.soletta	h.sol	Htr	Bi	Bs	h.a	t.i	t.s	t.a	r1	Aa	Φ a,long.	p_a,l	d.a
TRAVATA	A TEMPO INF.	(m)	2.50 m	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm^2)	(mm)	(mm)	(mm)
ESTERNA	CONTINUA	Lunghezza trave	Largh.impalcato	Altezza soletta	Altezza trave acc. (Predim.= 1750.0)	Base piatto inferiore (Predim.= 483.3)	Base piatto sup. (Predim.= 466.7)	Altezza anima	Spessore piatto inferiore	Spessore piatto superiore	Spessore anima	raggio curvat. raccordo	Area trave acciaio	Armatura long. soletta	Passo arm. long. soletta	Dist. baric. Aa,l dal bordo sup.
		35.0	17.00 m	300	1450	700	600	1310	70	70	30	16	130300	16	200	47
Rck	f,cd	f,y	Ec,m	f,d	Φ, infinito	n,2	n,3	8,rit	Ac,full	Ntr	N,rit_slu	ΔT,differ.	α	CLASSE SEZIO	NE NTC_4.2.3.1	Verifica imbozz CNR
(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(-)	(-)	(-)	(-)	(mmq)	(-)	(N)	(°C)	(1/°C)	Parametri	h/t	10011 p.to 7.2.6.1
Res_cubica a	D	tens. snerv. acc.carpent.	Modulo elastico	Tens.lim. acc.carp.	Coeff.viscosità di	Coeff.Omog.	Coeff.Omogenizz.	Coeff.ritiro	Area compless.	Numero travi ponte	F. ritiro eccentr. (soletta)	Variaz, termica	Coeff, dilat, term.	β = 0.00065	Pareti sott.	
compr.	Res_ a compr. Pura	335 (40 <t<=80 mm)<="" td=""><td>medio</td><td>319 (40<t<=80 mm)<="" td=""><td>Withney</td><td>Fase II</td><td>Fase III</td><td>Coentriuro</td><td>soletta cls</td><td>Numero travi ponte</td><td>r. riuro eccentr. (soietta)</td><td>differenz.</td><td>Coen. duat. term.</td><td>e = 0.81362</td><td>h/t = 43.7</td><td>Occorre verif. dettagliata ad imbozz.</td></t<=80></td></t<=80>	medio	319 (40 <t<=80 mm)<="" td=""><td>Withney</td><td>Fase II</td><td>Fase III</td><td>Coentriuro</td><td>soletta cls</td><td>Numero travi ponte</td><td>r. riuro eccentr. (soietta)</td><td>differenz.</td><td>Coen. duat. term.</td><td>e = 0.81362</td><td>h/t = 43.7</td><td>Occorre verif. dettagliata ad imbozz.</td></t<=80>	Withney	Fase II	Fase III	Coentriuro	soletta cls	Numero travi ponte	r. riuro eccentr. (soietta)	differenz.	Coen. duat. term.	e = 0.81362	h/t = 43.7	Occorre verif. dettagliata ad imbozz.
45	19.83	355 (t<=40 mm)	34077	338 (t<=40 mm)	1.81	6.16	17.29	0.0002410	5100000	7	2.559E+06	10.0 °C	1.2E-05	c/t = 130	h/t,lim = 36.0	IIII0022.
G1k	G2k	0	¥ G1,k	y G2,k	γ Q,k			Y. 10 H.		**	**		T. 10 N .	Y 10 N .	**	
(KN/m)	(KN/m)	(KN/m)	(-)	(-)	(-)	Ga	K,m,car. unif.distr.	K,m,car. unif.distr.	K,m,car. unif.distr.	K,m,car.cone	K,m,car.cone	K,m,car.conc	K,v,car. unif.distr.	K,v,car. unif.distr.	K,v,car.cone	K,v,car.cone
PESO	SOVRACC, PERM.	SCHEMA CAR. 1 Q1K=600	Coeff.parziale	Coeff.parziale G2k	CW	(KN/m)	CAMPATA	QUARTI	APPOGGIO	CAMPATA	QUARTI	APPOGGIO	QUARTI	APPOGGIO	QUARTI	APPOGGIO
SOLETTA	SOVRACC, PERM.	KN q1k =9 KN/mq	G1k	Coen.parziale G2k	Coerr.parziale Qk	Peso trave acciaio	Coeff. divisore	Coeff. divisore	Coeff. divisore	Coeff. divisore	Coeff, divisore momenti	Coeff. divisore	Coeff. divisore taglio	Coeff, divisore taglio	Court Malana to No.	Coeff. divisore taglio
		Qk= 360.00 KN			(C. mobile)	reso trave acciaio	momenti	momenti	momenti	momenti	Coeff. divisore momenti	momenti	Coeff. divisore taglio	Coeff. divisore tagno	Coeff. divisore taglio	Coeff. divisore tagno
40.55	20.00	1 4 C 00 TOU	4.00	4.50	4.05	40.00	40.00	4400	0.500.00	5.00	C 00	4.0077.04	0.00	4.00	2.50	2.50

	FASE 0 - SLU
	SCHEMA DI TRAVE SEMPLICEMENTE APPOGGIATA - SOLO TRAVE IN ACCIAIO
CARATTERISTICHE MECCANICHE	

	CARATTERIS	TICHE MECCANICHE	
Aa	S	X_0	Ja_0
(mm^2)	(mm^3)	(mm)	(mm^4)
Area acciaio	Momento Statico	Asse Neutro - Fase I	Momento Inerzia - Fase I
130300	99297500	762	4.880E+10

	SOLLEG	CITAZIONI SLU						TENSIONI SLU - FA		VERIFICHE				
	N	V_2	M_3	σ c,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σ a,an_inf	♂ a,ali_inf		σ_id,max	VERIFICA ACC.	
CDS	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	VERIFICA ACC.	п,асс
CDS	N_(pp_tr)	V_(pp_tr)	M (t-)	Tens.cls.max	Tens.arm, Soletta	Tens.acc. ala sup	Tens.acc. anima	Tens.acc. quota	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ id.max <f.d< th=""><th>C/D</th></f.d<>	C/D
	N_(pp_tr)	v_(pp_tr)	M_(pp_tr)	1 ens.cis,max	Tens.arm. Soletta	fd = 319 MPa	sup	irrigidim. longitud.	rens.acc.an. mi.	fd = 319 MPa	rens.tagno anima	i ensione ideale	o_id,max <i,d< td=""><td>C/D</td></i,d<>	C/D
CAMPATA	0.0	0.0	2114.43			-33.02	-29.98	-19.15	26.77	29.80	0.00	33.02	Verificato	9.66
L/4	0.0	120.8	1585.82			-24.76	-22.49	-14.36	20.08	22.35	3.07	25.33	Verificato	12.60
APPOGGIO	0.0	241.6	0.00			0.00	0.00	0.00	0.00	0.00	6.15	10.65	Verificato	29.96

	FASE I - SLU	
	FASE 1 - SLU	
	SCHEMA TRAVE CONTINUA - SOLETTA NON REAGENTE - CARICO PERM. SOLETTA GIK	
CARATTERISTICHE MECCANICHE		

	CAKATTERIS	TICHE MECCANICHE	
Aa	S1(+)	X_1(+)	Ja_1(+)
(mm^2)	(mm^3)	(mm)	(mm ⁴)
Area acciaio	Momento Statico	Asse Neutro - Fase I	Momento Inerzia - Fase I
130300	99297500	762	4.880E+10

	SOLLEC	TTAZIONI SLU						VERIFICHE							
	N	V_2	M_3	σ c,max	σs	σa,ali_sup	σa,an_sup	σ a,an_irr	σ a,an_inf	σa,ali_inf		σ_id,max	VERIFICA ACC.		
GIACITURE	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	VERIFICA ACC.	η,асс	
GIACITURE	N (Gk1)	V_(Gk1)	M_(Gk1)	Tens.cls.max	Tens.arm, Soletta	Tens.acc. ala sup	Tens.acc. anima	Tens.acc. quota	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ id,max <f,d< th=""><th>C/D</th></f,d<>	C/D	
	N_(GKI)	V_(GRI)	M_(GKI)	i ens.cis,max	Tens.arm. Soletta	fd = 319 MPa	sup	irrigidim. longitud.	i ens.acc.an. ini.	fd = 319 MPa	rens.tagno anima	I ensione ideale	o_id,max <i,d< td=""><td colspan="2">C/D</td></i,d<>	C/D	
CAMPATA		0.0	2385.2			-37.25	-33.82	-21.61	30.20	33.62	0.00	37.25	Verificato	8.57	
L/4		316.4	2214.8			-34.58	-31.41	-20.06	28.04	31.22	8.05	37.29	Verificato	8.56	
APPOGGIO		553.7	-3264.0			50.97	46.29	29.57	-41.33	-46.01	14.09	56.51	Verificato	5.65	

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

								FASE II -	SLU							
				SCHEMA	TRAVE CONTI	NUA - SOLETTA RI	EAGENTE OMO	OGENEIZZATA A	TEMPO INFINIT	O (VISCOSITA')	- SOVRACC. PERM. G	2k + RITIRO CLS	S			
CARATTERI	ISTICHE MECCANI	CHE													SOLLECITAZ, RIT	TRO
Ea	Ec	n,2	Aa	As	Ac	Ai,2 (+)	Si,2 (+)	X_2 (+)	Ja_2 (+)	Ai,2 (-)	Si,2 (-)	X_2 (-)	Ja_2 (-)	N,rit,soletta	σ,ritiro_slu	SOLLSAP
(Mpa)	(Mpa)	(-)	(mm^2)	(mm^2)	(mm^2)	(mm^2)	(mm^3)	(mm)	(mm^4)	(mm^2)	(mm^3)	(mm)	(mm^4)	(N)	(Mpa)	N,rit. (compr.)
Mod.Elast.Acc.	Mod.Elast.Cls	Coeff.Omog.	Area acciaio	Area armature		Area ideale	Momento Statico	A.N Fase II	Mom. Inerzia -	Area ideale		A.N Fase II	Mom, Inerzia - Fase II	Forza di ritiro	Tens, traz, nella	-2132.6 KN/Trave
Mod.Elast.Acc.	Mod.Elast.Cls	Coeff.Omog.	Area acciaio	soletta	Area cls	Area ideale	Momento Statico	Soletta tutta compr.	Fase II	Area ideale	Momento Statico	A.N Fase II	Mom. Inerzia - Fase II	eccentrica (soletta)	soletta (connettori)	M,rit.(M. posit.)
210000	12145.6	17.29	130300	2614	750000	176291	1.450E+08	823	7.780E+10	132914	1.385E+08	1042	5.144E+10	2.559E+06	3.51	1434.4 KNm/Trave
	SOLLEG	CITAZIONI SLU					1	TENSIONI SLU - FA	ASE II					VERIFI	CHE SLU	
	N	V_2	M_3	σc,max	gs.	♂ a,ali_sup	σa,an_sup	♂ a,an_irr	♂ a,an_inf	♂ a,ali_inf	•	σ_id,max	VERIFICA TRAVE IN	VERIFICA CLS	VERIFICA ARMAT.	
GIACITURE	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	ACCIAIO	VERIFICA CLS	SOLETTA	VERIFICA
GIACITURE	N. (Clarible)	V. (CIA - PI)	M. (CIA . DI.)		Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima	Tens.acc. quota		Tens.acc. ali inf.		Tensione ideale	σ id,max <f,d< td=""><td>sigma,c max<0,85f,cd</td><td></td><td>COMPLESSIVA</td></f,d<>	sigma,c max<0,85f,cd		COMPLESSIVA
	N_(Gk2 ±Rit.)	V_(Gk2 ±Rit.)	M_(Gk2 ±Rit.)	Tens.cls,max	1 ens.arm. Soletta	fd = 319 MPa	sup	irrigidim. longitud.	Tens.acc.an. inf. fd = 319 MPa		Tens.taglio anima	I ensione ideale	o_id,max~i,d	sigma,c_max=0,851,cu	sigma,a_max <f,yd< td=""><td></td></f,yd<>	
CAMPATA	0.0	0.0	2964.7	-1.81	-29.56	-19.92	-17.25	-7.72	32.67	35.34	0.00	35.34	9.03	9.30	13.24	Verificato
CAMPATA	-2559.1	0.0	4686.0	1.33	-61.23	-45.99	-41.78	-26.72	37.13	41.34	0.00	45.99	6.94	12.70	6.39	Verificato
	0.0	202.2	2752.0	1.08	27.45	18.40	17.03	7.17	20.24	22.62	10.01	27.11	9.60	10.01	14.26	Visit

-20855.21347

FASE III - SLU SCHEMA TRAVE CONTINUA - SOLETTA REAGENTE OMOGENEIZZATA A TEMPO ZERO - SOVRACC, VARIABILI OK. + VARIAZ, TERMICHE DT																
				COMPA	. TRANSCONTE	NILL COLUMN	n . one on the	O CONTRACTOR AND A A CO	EDITO ADDO	CONTRACT NAME		· mpps recurr pa	,			
				SCHEM	A TRAVE CONTI	NUA - SOLETTA K	EAGENTE OMO	OGENEIZZATA A	I EMPO ZERO -	SOVRACC, VAR	HABILI Qik. + VARIAZ	C. TERMICHE DI				
						CARATTERISTI	CHE MECCANI	CHE							SOLLECITAZ. AT	diff
Ea	Ec	n,3	Aa	As	Ac	Ai,3 (+)	Si,3 (+)	X 3 (+)	Ja_3 (+)	Ai,3 (-)	Si,3 (-)	X 3 (-)	Ja 3 (-)	ε,ΔT differ.	σ,ΔT differ.	SOLL, AT, diff SAP
(Mpa)	(Mpa)	(-)	(mm^2)	(mm^2)	(mm^2)	(mm^2)	(mm^3)	(mm)	(mm^4)	(mm^2)	(mm^3)	(mm)	(mm^4)	(-)	(Mpa)	N,∆T_differ. (traz.)
	Mod.Elast.Cls Coeff.Omog. Area acciaio Area armature Area cls Area ideale (M+) Area cls Area ideale (M+) Momento Statico (M-) Area ideale (M-) Momento Statico (M-) A.S. Fase III (M+) Mom. Inc. (M-) Mom. Inc. (M-) Mom. Inc. (M-) Area ideale (M-) Mom. Inc. (M-) M														Tens. compr. nella	2979.3 KN
Mod.Elast.Acc.	Mod.Elast.Cls	Coeff.Omog.	Area acciaio	soletta	Area cis	Area ideale (M+)	(M+)	Soletta tutta compr.	Fase III (M+)	Area ideale (M-)	Momento Statico (M-)	A.N Fase III (M-))	Def.term. diff.	soletta (soletta calda)	M,∆Tdiffer. (M negat.)
210000	34077	6.16	130300	2614	750000	254618	1.568E+08	616	1.029179E+11	132914	1.385E+08	1042	5.144E+10	1.200E-04	-4.09	-1387.4 KNm
	SOLIECTIAZIONI SLU TENSIONI SLU - FASE III															
	SOLLEC	CITAZIONI SLU					T	TENSIONI SLU - FA	SE III					VERIFI	CHE SLU	
	N SOLLEC N	CITAZIONI SLU V_2	M_3	♂ c,max	6 5	σa,ali_sup	Ta,an_sup	TENSIONI SLU - FA	SE III ga,an_inf	σa,ali_inf	t	σ_id,max	VERIFICA TRAVE IN		CHE SLU VERIFICA ARMAT.	
CLACITUDE			M_3 (KNm)	gc,max (MPa)	gs (MPa)	gra,ali_sup (MPa)	1			ga,ali_inf (MPa)	t (MPa)	σ_id,max (MPa)	VERIFICA TRAVE IN ACCIAIO			VERIFICA
GIACITURE	N (KN)	V_2 (KN)	(KNm)	(MPa)	(MPa)		♂ a,an_sup	ga,an_irr (MPa) Tens.acc. quota	ga,an_inf (MPa)			(MPa)	ACCIAIO	VERIFICA CLS	VERIFICA ARMAT. SOLETTA	VERIFICA COMPLESSIVA
GIACITURE	N	V_2				(MPa)	♂ a,an_sup (MPa)	ga,an_irr (MPa)	♂ a,an_inf	(MPa)	t (MPa) Tens.taglio anima				VERIFICA ARMAT.	
	N (KN)	V_2 (KN)	(KNm)	(MPa) Tens.cls,max -5.30	(MPa) Tens.arm. Soletta -30.19	(MPa) Tens.acc. ala sup	MPa) Tens.acc. anima	ga,an_irr (MPa) Tens.acc. quota	ga,an_inf (MPa)	(MPa) Tens.acc. ali inf.		(MPa)	ACCIAIO	VERIFICA CLS	VERIFICA ARMAT. SOLETTA	
GIACITURE	N (KN) N_(Qik±ΔT)	V_{-2} (KN) $V_{-}(Qik \pm \Delta T)$	(KNm) M_(Qik±ΔT)	(MPa) Tens.cls,max	(MPa) Tens.arm. Soletta	(MPa) Tens.acc. ala sup fd = 319 MPa	(MPa) Tens.acc. anima	ga,an_irr (MPa) Tens.acc. quota irrigidim. longitud.	ga,an_inf (MPa) Tens.acc.an. inf.	(MPa) Tens.acc. ali inf. fd = 319 MPa	Tens.taglio anima	(MPa) Tensione ideale	ACCIAIO σ_id,max <f,d< td=""><td>VERIFICA CLS sigma,c_max<0,85f,cd</td><td>VERIFICA ARMAT. SOLETTA sigma,a_max<f,yd< td=""><td>COMPLESSIVA</td></f,yd<></td></f,d<>	VERIFICA CLS sigma,c_max<0,85f,cd	VERIFICA ARMAT. SOLETTA sigma,a_max <f,yd< td=""><td>COMPLESSIVA</td></f,yd<>	COMPLESSIVA
CAMPATA	N (KN) N_(Qik±ΔT) 0.0	V_{-2} (KN) $V_{-}(Qik \pm \Delta T)$ 0.0	(KNm) M_(Qik±ΔT) 5462.8	(MPa) Tens.cls,max -5.30	(MPa) Tens.arm. Soletta -30.19	(MPa) Tens.acc. ala sup fd = 319 MPa -16.76	(MPa) Tens.acc. anima sup -13.04	MPa) Tens.acc. quota irrigidim. longitud. 0.23	ga,an_inf (MPa) Tens.acc.an. inf.	(MPa) Tens.acc. ali inf. fd = 319 MPa 60.21	Tens.taglio anima 0.00	(MPa) Tensione ideale 60.21	ACCIAIO σ_id,max <f,d 5.30<="" td=""><td>VERIFICA CLS sigma,c_max<0,85f,cd 3.18</td><td>VERIFICA ARMAT. SOLETTA sigma,a_max<f,yd 12.96</f,yd </td><td>COMPLESSIVA Verificato</td></f,d>	VERIFICA CLS sigma,c_max<0,85f,cd 3.18	VERIFICA ARMAT. SOLETTA sigma,a_max <f,yd 12.96</f,yd 	COMPLESSIVA Verificato
	N (KN) N_(Qik±ΔT) 0.0 2681.4	V_2 (KN) V_(Qik±ΔT) 0.0 0.0	(KNm) M_(Qik±ΔT) 5462.8 4214.1	(MPa) Tens.els,max -5.30 -7.77	(MPa) Tens.arm. Soletta -30.19 -2.71	(MPa) Tens.acc. ala sup fd = 319 MPa -16.76 7.65	gra,an_sup (MPa) Tens.acc. anima sup -13.04 10.52	(MPa) Tens.acc. quota irrigidim. longitud. 0.23 20.75	### ##################################	(MPa) Tens.acc. ali inf. fd = 319 MPa 60.21 67.02	Tens.taglio anima 0.00 0.00	(MPa) Tensione ideale 60.21 67.02	ACCIAIO σ_id,max <f,d 4.76<="" 5.30="" td=""><td>VERIFICA CLS sigma,c_max<0,85f,cd 3.18 2.17</td><td>VERIFICA ARMAT. SOLETTA sigma,a_max<f,yd 12.96 144.53</f,yd </td><td>Verificato Verificato Verificato Verificato Verificato</td></f,d>	VERIFICA CLS sigma,c_max<0,85f,cd 3.18 2.17	VERIFICA ARMAT. SOLETTA sigma,a_max <f,yd 12.96 144.53</f,yd 	Verificato Verificato Verificato Verificato Verificato
CAMPATA	N (KN) N_(Qik±ΔT) 0.0 2681.4 0.0	V_{-2} (KN) $V_{-}(Qik \pm \Delta T)$ 0.0 0.0 412.2	(KNm) M_(Qik±ΔT) 5462.8 4214.1 4748.6	(MPa) Tens.cls,max -5.30 -7.77 -4.61	(MPa) Tens.arm. Soletta -30.19 -2.71 -26.24	(MPa) Tens.acc. ala sup fd = 319 MPa -16.76 7.65 -14.57	(MPa) Tens.acc. anima sup -13.04 10.52 -11.34	ga,an_irr (MPa) Tens.acc. quota irrigidim. longitud. 0.23 20.75 0.20	ga,an_inf (MPa) Tens.acc.an. inf. 56.49 64.16 49.11	(MPa) Tens.acc. ali inf. fd = 319 MPa 60.21 67.02 52.34	Tens.taglio anima 0.00 0.00 10.49	(MPa) Tensione ideale 60.21 67.02 55.40	ACCIAIO σ_id,max <f,d 4.76="" 5.30="" 5.76<="" td=""><td>VERIFICA CLS sigma,c_max<0,85f,ed 3.18 2.17 3.66</td><td>VERIFICA ARMAT. SOLETTA sigma,a_max<f,yd 12.96 144.53 14.91</f,yd </td><td>COMPLESSIVA Verificato Verificato Verificato</td></f,d>	VERIFICA CLS sigma,c_max<0,85f,ed 3.18 2.17 3.66	VERIFICA ARMAT. SOLETTA sigma,a_max <f,yd 12.96 144.53 14.91</f,yd 	COMPLESSIVA Verificato Verificato Verificato

		SO	MMA DELLE TENS		TENSIONI TOT ASI 0 - I - II - IIIPER		I DELLE SOLLE	CITAZIONI MAX					
	TENSIONI SLU												
	σ c,max	ØS	σ a,ali_sup	σ a,an_sup	♂ a,an_irr	♂ a,an_inf	σa,ali_inf	1	σ_id,max	VERIFICA TRAVE IN	VERIFICA CLS	VERIFICA ARMAT.	
GIACITURE	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	ACCIAIO	VERIFICA CLS	SOLETTA	VERIFICA
	Tens.cls,max Tens.arn	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima	Tens.acc. quota	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ id,max <f,d< td=""><td>sigma,c max<0,85f,cd</td><td>sigma,a max<f,yd< td=""><td>COMPLESSIVA</td></f,yd<></td></f,d<>	sigma,c max<0,85f,cd	sigma,a max <f,yd< td=""><td>COMPLESSIVA</td></f,yd<>	COMPLESSIVA
		Tens.arm. Soietta	fd = 319 MPa	sup	irrigidim. longitud.	rens.acc.an. mi.	fd = 319 MPa	Tens.tagno amma	rensione ideale	O_10,1180.4 -1,0	signal,c_max =0,051,ed	agma,a_max -1,yu	
CAMPATA	-7.12	-59.74	-106.93	-94.10	-48.25	146.14	158.98	0.00	158.98	2.01	2.37	6.55	Verificato
CAMPATA	-6.44	-63.94	-108.60	-95.07	-46.72	158.26	171.80	0.00	171.80	1.86	2.62	6.12	Verificato
L/4	-6.29	-53.69	-92.41	-81.25	-41.40	127.57	138.73	31.62	149.15	2.14	2.68	7.29	Verificato
1.4	-5.62	-57.88	-94.08	-82.22	-39.87	139.69	151.55	31.62	161.14	1.98	3.00	6.76	Verificato
APPOGGIO	0.00	165.93	174.71	158.36	99.95	-147.69	-164.05	53.46	197.73	1.61		2.36	Verificato
ALLOGGIO	-2.16	162.85	173.96	158.25	102.14	-135.77	-151.48	53.46	197.06	1.62	7.80	2.40	Verificato

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

							VEI	RIFICA SLE - SEZI	ONE CAMPATA						
L	Ea	PP	G1k	Ja 1	f,1 G1k	G2k	Ja 2	f,2 G2k	f,tot	f,lim	Qk	f,3_Qk	f,lim	σ c,max	VERIFICA CLS
(m)	(Mpa)	(KN/m)	(KN/m)	(mm^4)	(mm)	(KN/m)	(mm ⁴)	(mm)	(mm)	(mm)	(KN/m)	(mm)	(mm)	(MPa)	VERIFICA CLS
LUCE	MOD.ELAST. A.	PESO PROPRIO	PESO SOLETTA	Momento Inerzia -	FRECCIA FASE 1	SOVRACC.PERM.	Momento Inerzia -	FRECCIA FASE 2	FRECCIA TOT.	L/250	SOVRACC. ACCID.	Ja_3 = 1.03 E+11	L/400		
CAMPATA	MOD.ELAST. A.	PESO PROPRIO	PESO SOLETTA	Fase I	FRECCIA FASE I	SOVRACC.PERM.	Fase II	FRECCIA FASE 2	FRECCIA IOI.	1.7250	Qk=360.00 KN	FRECCIA FASE 3	1/400	Tens.cls,max	sigma,c_max<0,45f,ck
35.00	210000.00	10.23	18.75	4.880E+10	55.2	20.98	7.780E+10	25.1	80.3	140.0	qk= 16.20 KN/m	29.5	87.5	-5.1	Verificato
			D P	ata con controfreccia					f_perm. = 80.3 mm	<- L/250 = 140 mm	f_accid.	- 29.5 mm <- L/400 - 8	77.5 mm		η,cls
			Realizzare trava	ata con controlreccia	pari a 80 mm				Verif	icato		Verificato			C/D = 3.07

7_acc.instab. Ponti-Tab. 4.2.7 322.7 1.10						,	VERIFICA IMBOZ	ZAMENTO PANN	ELLO D'ANIMA	A SUPERIORE					
Irrigidim, Trasvers. (a)	tensioni al	l bordo dell'anim	a		α	8.33				VERIFICA	IMBOZZAMENTO PA	ANNELLO D'ANIMA			
(Predim.= 1703 mm)	σ1	a 0	¥	Tab. 7-VIII CNR	Кот	Kτ	a ct	*cr	τ, γ	σ cr,id	σ cr,rid.	σ_id			
150 cm	(Mpa)	(Mpa)	(a0/a1 = T/C)		KØ	KT.	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	σ_id<=σcr,rid.	σ_cr,ia/σ,ia. >=0,8	σ_ cr,id / r (3^0,5) >=1,1
Irrigidim. Longitud. (h)	-94.10	-48.25	0.51	1.00	5.21	4.32	26939.12	22334.07	0.00	26939.12	322.72	94.10	Verificato	3.43	
(cm)	-95.07	-46.72	0.49	1.00	5.28	4.32	27299.69	22334.07	0.00	27299.69	322.72	95.07	Verificato	3.39	
25 cm	-81.25	-41.40	0.51	1.00	5.22	4.32	26993.60	22334.07	31.62	28119.26	322.72	97.99	Verificato	3.29	5.89
gcr,0	-82.22	-39.87	0.48	1.00	5.30	4.32	27412.43	22334.07	31.62	28456.52	322.72	98.79	Verificato	3.27	5.89
(Mpa)	158.36	99.95	1.58	TRAZ.	TRAZ.	4.32	TRAZ.	22334.07	53.46	TRAZ.	TRAZ.	92.59	Verificato		
5172.2	158.25	102.14	1.55	TRAZ.	TRAZ.	4.32	TRAZ.	22334.07	53.46	TRAZ.	TRAZ.	92.59	Verificato		

		VERIFICA NERVATURE TRASVERSALI													
t1	SIMM.	L1	t1	I.2	t2	ta	ha	It	λ	α	Y T	VERIFICA			
	(-)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm4)	(-)	(-)	(-)	(-)			
tl L2	nervat. Simm. o non simm. di	dimens. nervatura spesso	eneccore di I 1	dimens, flangia nervatura	spessore di L2	spessore anima	a altezza anima	mom. inerzia	snellezza nervatura (<50)	a/h	coeff, rig, flessionale	It>=0,092°yt°h°ta^3			
			spessore ur L1			spessore annua		nervat.		(α<1.5)	coen. rig. nessionate	C/D = 24.01			
	SI	300	30			30	1310	6,25,E+08	7.0	1.15	8.0	Verificato			

VERIFICA IMBOZZAMENTO PANNELLO D'ANIMA INFERIORE																
L ritegno torsion.	tensioni a	l bordo dell'anim	a		α	1.42	VERIFICA IMBOZZAMENTO PANNELLO D'ANIMA									
(cm)	σ 1	σ0	Ψ	Tab. 7-VIII CNR	b. 7-VIII CNR		Kτ	o cr	*CT	τ, у	σ cr,id	σcr,rid.	σ_id	- 14 4	14/- 14 >- 0.0	o_cr,id /r(3^0,5) >= 1,1
150	(Mpa)	(Mpa)	(a0/a1 = T/C)			KT	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	σ_id <= σcr,rid.	6_cr,iu/6,iu. >= 0,6	6_cr,id /6(3**0,5) >= 1,1	
Irrigidim. Longitud. (h)	-48.25	158.98	-3.29	3.00	23.90	7.34	4086.48	1254.59	0.00	4086.48	337.86	48.25	Verificato	7.00		
(cm)	-46.72	171.80	-3.68	3.00	23.90	7.34	4086.48	1254.59	0.00	4086.48	337.86	46.72	Verificato	7.23		
106.0	-41.40	138.73	-3.35	3.00	23.90	7.34	4086.48	1254.59	31.62	2867.14	337.62	68.66	Verificato	4.92	6.16	
gcr,0	-39.87	151.55	-3.80	3.00	23.90	7.34	4086.48	1254.59	31.62	2902.30	337.64	67.75	Verificato	4.98	6.16	
(Mpa)	99.95	-164.05	-0.61	2.00	14.11	7.34	2413.21	1254.59	53.46	2316.27	337.37	136.25	Verificato	2.48	3.64	
171.0	102.14	-151.48	-0.67	2.00	15.95	7.34	2727.15	1254.59	53.46	2500.61	337.48	137.86	Verificato	2.45	3.64	

CONNESSIONE A COMPLETO RIPRISTINO EC4 par. 6.2.1.1									
Beff	h,sol	L,tr	Piolo (mm)	Re	Ra	Fcf			
(cm)	(cm)	(m)	φ = 22	Resist. soletta	Resist. Trave acc.	Vscorr = min(Rc;Ra)			
250	30	35.00	h = 200 mm	14875	44054	14875			
Prd, piolo	Prd, cls	Prd,d	N°connettori	At,nec/m	Barre,trasv.	Pa,trasv,nec			
KN	KN	KN	N° di file = 3	(mmq)	φ = 24	(cm)			
109.48	122.6	109.5	45.29	608.2	N° br,tr. = 1	74.4			
N°conn. posti	Fr,scorr/m	P,st	Aa,trasv	V,rd2	V,rd3	V,rd			
(Passo,min= 77.3	(KN/m)	(cm)	(mmq)	(KN/m)	(KN/m)	(KN/m)			
175	547.4	20	4523.9	7000.0	3174.6	3174.6			
Passo	armat.trasvers.	Dist.min.pioli=5d= 1	10 mm	Resist. della sezione alla forza di scorrim.					
	Verificato	Verificato		Verificato					
	η= 3.72	η= 1.82			η= 5.8				

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

								GIUNTO TRAV	E-TRAVE							
		1						EOMETRICHE - ME								
Cla	asse bullone	f,ub (Mpa)	Classe acciaio	f,ub (Mpa)	f,y (Mpa)	f,d (Mpa)	Beff (m)	h,sol (mm)	Ac (mm ²)	Htr (mm)	Bi (mm)	Bs (mm)	h,a (mm)	t,i (mm)	t,s (mm)	t,a (mm)
						Resist. prog.					` ′	· · · /	` ′		Spessore piatto	
	(-)	Resist. ultima	(-)	Resist. ultima	Resist. prog.	fd = 319 MPa (ala sup)	Beff,soletta	Altezza soletta	Area cls	Altezza trave	Base piatto inferiore	Base piatto superiore	Altezza anima	Spessore piatto inferiore	superiore	Spessore anima
	10.9	1000	S355	510	355	fd = 319 MPa (ala inf)	2.50	300	750000	1450	700	600	1310	70	70	30
	Jtrave	Aa		Janima	Jala	J.anima/J.tot	n.2	Ai.2 (+)	Ja 2 (+)	Ai.2 (-)	Ja 2 (-)	n.3	Ai.3 (+)	Ja 3 (+)	Ai.3 (-)	Ja 3 (-)
	(mm^4)	(mm^2)	X_1 (mm)	(mm ⁴)	(mm^4)	J,anima/J,tot	n,2	A1,2 (+) (mm^2)	Ja_2 (+) (mm^4)	(mm^2)	Ja_2 (-) (mm^4)	n,3	(mm^2)	Ja_3 (+) (mm^4)	(mm^2)	Ja_3 (-) (mm^4)
			(11111)						Mom. Inerzia -					Mom. Inerzia - Fase		
	mento Inerzia	Area acciaio	Asse Neutro	Momento Inerzia	Momento Inerzia	Momento Inerzia	Coeff.Omog.	Area ideale	Fase II	Area ideale	Mom. Inerzia - Fase II	Coeff.Omog.	Area ideale	II	Area ideale	Mom. Inerzia - Fase II
4.	1.880E+10	130300	762	5.674E+09	4.313E+10	0.12	17.29	176291	7.78.E+10	132914	5.14.E+10	6.16	254618	1.03.E+11	132914	5.14.E+10
	M A	N A	V A	M A	N A	V A	M A-CLS	N ACIS	V A-CLS	M A-CLS	N A-CLS	V A-CLS				
	(KNm)	(KN)	(KN)	(KNm)	(KN)	(KN)	(KNm)	(KN)	(KN)	(KNm)	(KN)	(KN)		Co	ordinate dei Bullon	ni .
CDS A-CLS		CDS SEZ. ACC FASE 0			CDS SEZ. ACC FA			SEZ, COMP. A-CLS F			DS SEZ, COMP. A-CLS FAS			200	or diffinite der Danion	ř.
MAX MIN	2114.4 2114.4	0.0	0.0	2385.2 2385.2	0.0	0.0	4686.0 2964.7	0.0 -2559.1	0.0	5462.8 4214.1	2681.4 0.0	0.0		1000 -		
MIN	2114.4	0.0	0.0	2383.2	0.0	0.0	2904.7	-2559.1	0.0	4214.1	0.0	0.0		.	. .	
	M_A	N_A	V_A	M_A	N_A	V_A	M_A	N_A	V_A	M_A	N_A	V_A		900		
CDS ACC.	(KNm)	(KN)	(KN)	(KNm)	(KN)	(KN)	(KNm)	(KN)	(KN)	(KNm)	(KN)	(KN)				
2DD ACC.		CDS SEZ, ACC FASE 0			CDS SEZ. ACC FA	SE I		CDS SEZ, ACC FASE I	11		CDS SEZ, ACC FASE III			800		_
Will	2114.4	0.0	0.0	2385.2	0.0	0.0	2939.6	0.0	0.0	2590.5	2681.4	0.0				
MAX MIN	2114.4	0.0	0.0	2385.2 2385.2	0.0	0.0	2939.6 1859.8	-1891.5	0.0	2590.5 1998.3	2681.4	0.0		700		-
		***					100000			1						
	M_A	N_A	V_A		LIMITI DIST. FO			LIMITI DIST. FORI			LIMITI DIST. FORI			600		_
CDS TOT	(KNm)	(KN)	(KN)		COPRIGIUNTO AN			COPRIGIUNTO ALA SU			COPRIGIUNTO ALA INF.			.		
		CDS TOT. SEZ. ACC.		P1min = 63 mm		n = 34 mm	P1min = 63 mm	e1,min = 34		P1min = 63 mm	el min = 34			500		+
MAX	10029.7	2681.4	0.0	P1max = 200 mm P2min = 68 mm		s = 160 mm n = 34 mm	P1max = 200 mm P2min = 68 mm	e1,max = 20 e2,min = 34		P1max = 200 mm P2min = 68 mm	e1 max = 200 e2min = 34			•		
MIN	8357.8	1891.5	0.0	P2max = 200 mm		c = 160 mm	P2max = 200 mm	e2,max = 20		P2max = 200 mm	e2max = 20			400		
		•	•	•	•		•				•			•		
						OPRIGIUNTO ANI!								300		
pl PASSO	p2	el	e2 DIST. DAL	Nf	Ne N° COLONNE	Φ,bull (mm)	t,copr_an (mm)	Pt_anima N° PIANI DI TAGLIO	Nb,anima	B_c,an BASE. COPRIG.	L_c,an	Jp		200		
ORIZZONTAL	PASSO VERTICALE	DIST. DAL MARG. ORIZZ.	MARG. VERTIC.	N° FILE BULL.	BULLONI	Diametro bullone (sez.	Spessore coprig.	ANIMA	N° TOT. BULL.	ANIMA	ALTEZZA COPRIG. ANIMA	MOM. IN. POLARE		200		
(mm)	(mm)	(mm)	(mm)	(-)	(-)	lorda)	anima	(•)	(-)	(mm)	H,an = 1450.0 mm	(mm^2)		100		
100	100	50	50	10	4	27 mm	30	2	40	800.0 mm	1000.0 mm	3.80E+06	ī	.		
											_		트	0		
Xg	Yg	Xmax	Ymax	N_anima	M_anima MOM_FLETT	Fvr,d (Mpa)	Fbr,d (Mpa)	Fbr,d (Mpa)	Fbr,d (Mpa)	Vb V SUL SINGOLO	Smax	Rmax TAGLIO MAX		0 100	0 200	300 400
BARIC.	BARIC.	(-)	(-)	COMPR. ANIMA	ANIMA	Res, taglio bull, per sez.	Res. rifoll. coprig.			BULL.	SFORZO MAX BULL	BULL. ANIMA				
(mm)	(mm)	(mm)	(mm)	(KN)	(KNm)	lorda	anima	Res. rifoll. ala sup.	Res. rifoll. ala inf.	N	N	C/D,min = 2.93		[mm]		
200	500	150	450	1745 (Inv_max)	1166 (Inv_max)	274.8	510.0	1190.0	1190.0	0 (Inv_max)	145564 (Inv_max)	93.7 KN (Inv_max)				
				1231 (Inv_min)	972 (Inv_min)	I				0 (Inv_min)	121299 (Inv_min)	75.4 KN (Inv_min)	1			
							C	OPRIGIUNTO ALA	SUPERIORE							
pl	p2	el	e2	N_ali	M_ali	Φ,bull	Fvr,d	Nb,copr,sup	Nb,ali	N_file,b_ali	N_col,b_ali	B_c,al	L_c,al	V_(N),bull	V_(M),bull	V,bull.
ORIZZONTAL	PASSO VERTICALE	DIST. DAL MARG. ORIZZ.	DIST. DAL	COMPR. ALI	MOM. FLETT. ALI	(mm)	(Mpa)	N° PIANI DI TAGLIO	N° TOT. BULL.	N° FILE BULL. ALI	N° COL. BULL. ALI	BASE, COPRIG. ALI	LUNGH, COPRIG. ALI	TAGLIO (N)	TAGLIO (M)	TAGLIO MAX BULL, AL
(mm)	(mm)	(mm)	MARG. VERTIC.	(KN)	(KNm)	Diametro bullone (sez. lorda)	Res. taglio bull. per sez. lorda	COPR.	(+)	(-)	(*)	(mm)	(mm)	(KN)	(KN)	C/D = 1.60
(mm) 100	(mm) 166.7	(mm) 50	(mm) 50	936 (Inv max)	(KNm) 8864 (Inv max)	27 mm	274.8	2	20	4	(-)	(mm) 600	(mm) 1000	12 (Inv max)	(KN) 161 (Inv max)	172.3 KN (Inv. max)
t,copr_ali		OPRIG. ALI SUP.	40 mm	660 (Inv min)	7386 (Inv_min)	27 11111								8 (Inv min)	134 (Inv min)	142.1 KN (Inv min)
				'		•										
								OPRIGIUNTO ALA								
pl PASSO	p2	el	e2 DIST DAL	N_ali	M_ali	Φ,bull (mm)	Fvr,d (Mpa)	Nb,copr,sup N° PIANI DI TAGLIO	Nb,ali	N_file,b_ali	N_col,b_ali	B_c,al	L_c,al	V_(N),bull	V_(M),bull	V,bull.
ORIZZONTAL	PASSO VERTICALE	DIST. DAL MARG. ORIZZ.	MARG. VERTIC.	COMPR. ALI	MOM. FLETT. ALI	(mm) Diametro bullone (sez.	(Mpa) Res. taglio bull, per	N° PIANI DI TAGLIO COPR.	N° TOT. BULL.	N° FILE BULL. ALI	N° COL. BULL. ALI	BASE. COPRIG. ALI	LUNGH. COPRIG. ALI	TAGLIO_(N)	TAGLIO_(M)	TAGLIO MAX BULL, AL
(mm)	(mm)	(mm)	(mm)	(KN)	(KNm)	lorda)	sez. lorda	(-)	(-)	(-)	(-)	(mm)	(mm)	(KN)	(KN)	C/D = 1.60
100	200.0	50	50	936 (Inv_max)	8864 (Inv_max)	27 mm	274.8	2	20	4	5	700	1000	12 (Inv_max)	161 (Inv_max)	172.3 KN (Inv_max)
t,copr_ali	SPESS. CO	OPRIG. ALI INF.	40 mm	660 (Inv_min)	7386 (Inv_min)									8 (Inv_min)	134 (Inv_min)	142.1 KN (Inv_min)
		VEDIEICA DI	EOL LAMENTA	D LAMIERE - IN	V MAY						VEDIEICA DI	TEOL LAMENTO I	AMIERE - INV MIN			
			σ,rif cop al i		V_MAX or,rif_cop_an	♂ ,traz c al,s	σ ,traz c al,i	σ,rif al s	σ,rif cop an s	σ ,rif al i	VERIFICA RI σ,rif cop al i	o,rif an	Grif cop an	o ,traz c al,s		,traz_c_al,i
Crif al s	Crif con an						TENS. T/C COPR.		TENS. RIF. COPR.	TENS. RIF. ALA		TENS. RIFOLL.		TENS. T/C COPR.		C COPR. ALA INF
σ,rif_al_s TENS. RIF.	### G,rif_cop_an_s TENS. RIF. COPR. ALA	σ,rif_al_i	TENS. RIF.	TENS. RIFOLL.	TENS. RIFOLL.	TENS. T/C COPR. ALA										
TENS. RIF. ALA SUP.	TENS. RIF. COPR. ALA SUP.	TENS. RIF. ALA INF.	TENS. RIF. COPR. ALA INF	ANIMA	COPRIG. ANIMA	SUP	ALA INF	TENS. RIF. ALA SUP.	ALA SUP.	INF.	TENS. RIF. COPR. ALA INF	ANIMA	TENS. RIF. COPRIG. AN.	ALA SUP	TENS. 1A	
TENS. RIF. ALA SUP. (Mpa)	TENS. RIF. COPR. ALA SUP. (Mpa)	TENS. RIF. ALA INF. (Mps)	TENS. RIF. COPR. ALA INF (Mpa)	ANIMA (Mpa)	COPRIG. ANIMA (Mpa)	SUP (Mpa)	ALA INF (Mpa)	(Mpa)	(Mpa)	INF. (Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)		(Mpa)
TENS. RIF. ALA SUP. (Mpa) σ = 91.2	TENS. RIF. COPR. ALA SUP. (Mpa) σ = 159.5	TENS. RIF. ALA INF. (Mpa) σ=91.2	TENS. RIF. COPR. ALA INF (Mpa) $\sigma = 159.5$	ANIMA (Mpa) σ = 115.7	COPRIG. ANIMA (Mpa) σ = 115.7	SUP (Mpa) σ = 174.9	ALA INF (Mpa) σ = 145.4	(Mpa) σ = 75.2	(Mpa) σ = 131.5	INF. (Mpa) σ = 75.2	(Mpa) σ=131.5	(Mpa) σ = 93.1	(Mpa) σ = 93.1	(Mpa) σ = 142.7	c	(Mpa) σ = 118.6
TENS. RIF. ALA SUP. (Mpa)	TENS. RIF. COPR. ALA SUP. (Mpa)	TENS. RIF. ALA INF. (Mps)	TENS. RIF. COPR. ALA INF (Mpa)	ANIMA (Mpa)	COPRIG. ANIMA (Mpa)	SUP (Mpa)	ALA INF (Mpa)	(Mpa)	(Mpa)	INF. (Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	c f,	(Mpa)

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

7.2. SOLETTA IN CALCESTRUZZO

Viene considerata una altezza complessiva di 35 cm, comprensiva di 5 cm di predalle; si specifica che a differenza della direzione trasversale, in direzione longitudinale (asse ponte) la verifica sezionale dovrà tener conto di una altezza complessiva a meno dello spessore della predalle (30 cm)

7.3. TRASVERSI

Le forze orizzontali laterali prodotte dal vento vengono ripartite sulle travi tramite i trasversi che svolgono un opportuno sistema di controventamento. I trasversi metallici vengono posti ad interasse di 5 metri e vengono conformati a K tramite elementi inclinati e correnti superiori ed inferiori; per il dimensionamento dei trasversi si faccia rifermento ai successivi paragrafi

7.4. ANALISI DEI CARICHI

Carichi permanenti – pesi propri

Il calcolo dei pesi DEAD della carpenteria metallica è effettuato in automatico dal solutore SAP 2000 imponendo un valore di densità pari a 78.50 KN/mc per l'acciaio e 25 KN/mc per il c.a:

Pesi propri G1								
TIPO D CARICO	Н	γ Gk		Note				
TIPO D CARICO	(m)	(KN/mc)	(KN/mq)	Note				
Soletta	0.30	25.00	7.50	Si applica all'intero impalcato				
Predalles	0.05	25.00	1.25	Si applica all'intero impalcato				
Pesi propri portati G2								
TIPO D CARICO	Н	γ	Gk	Note				
TIFO D CARICO	(m)	(KN/mc)	(KN/mq - KN/m)	Note				
Pavimentazione	0.08	24.00	1.92	Si applica solo alla carreggiata				
Massetto pendenze	0.07000	21.00	1.47	Si applica solo alla carreggiata				
Cordolo (n° 2)	0.18	25.00	4.50	Si applica solo alle fasce laterali larghe 120 cm				
Veletta	0.12	25.00	3.00	Si applica solo agli estremi dell'impalcato, su ambo i lati				
Sicurvia (n° 2)	-	4.00	4.00	Si applica a 90 cm dall'estremo dell'imp., su ambo i lati				
Rete antiproiezione (n° 2)	2.00	0.25	1.00	Si applica A 20 cm dall'estremo dell'imp., su ambo i lati				

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

7.5. RITIRO

La procedura per il calcolo del ritiro è descritta al par. 11.2.10.6 delle NTC18:

11.2.10.6 RITIRO

La deformazione assiale per ritiro del calcestruzzo può essere determinata a mezzo di apposite prove, da eseguirsi secondo la norma UNI 11307:2008.

In sede di progettazione strutturale, e quando non si ricorra ad additivi speciali, il ritiro del calcestruzzo può essere valutato sulla base delle indicazioni di seguito fornite.

La deformazione totale da ritiro si può esprimere come:

 $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$ [11.2.6]

dove:

è la deformazione totale per ritiro

è la deformazione per ritiro da essiccamento

è la deformazione per ritiro autogeno.

Il valore medio a tempo infinito della deformazione per ritiro da essiccamento:

$$\varepsilon_{\text{cd},\infty} = k_h \varepsilon_{c0}$$
 [11.2.7]

può essere valutato mediante i valori delle seguenti Tabelle 11.2.Va ed 11.2.Vb in funzione della resistenza caratteristica a compressione, dell'umidità relativa e del parametro h₀:

Tab. 11.2.Va – Valori di ε_{c0}

f _{ck}	Deformazione da ritiro per essiccamento (in ‰) Umidità Relativa (in %)										
*ck											
	20	40	60	80	90	100					
20	-0,62	-0,58	-0,49	-0,30	-0,17	+0,00					
40	-0,48	-0,46	-0,38	-0,24	-0,13	+0,00					
60	-0,38	-0,36	-0,30	-0,19	-0,10	+0,00					
80	-0,30	-0,28	-0,24	-0,15	-0,07	+0,00					

Tab. 11.2.Vb - Valori di k,

h ₀ (mm)	k _h
100	1,00
200	0,85
300	0,75
≥ 500	0,70

Per valori intermedi dei parametri indicati è consentita l'interpolazione lineare. Lo sviluppo nel tempo della deformazione ϵ_{cd} può essere valutato come:

$$\varepsilon_{cd}(t) = \beta_{ds}(t - t_s) \cdot \varepsilon_{cd,\infty}$$
 [11.2.8]

dove la funzione di sviluppo temporale assume la forma

$$\beta_{ds}(t-t_s) = (t-t_s) / [(t-t_s)+0.04 h_o^{3/2}]$$
 [11.2.9]

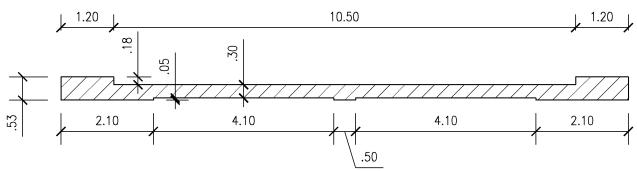
in cui:

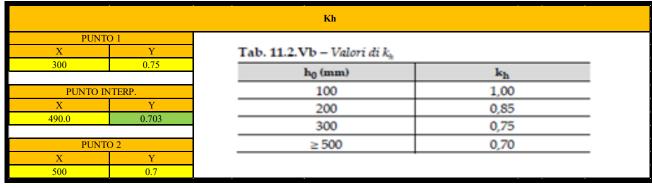
- è l'età del calcestruzzo nel momento considerato (in giorni)
- è l'età del calcestruzzo a partire dalla quale si considera l'effetto del ritiro da essiccamento (normalmente il termine della maturazione, espresso in giorni).
- h_0 è la dimensione fittizia (in mm) pari al rapporto 2Ac/u
- è l'area della sezione in calcestruzzo A٠
- è il perimetro della sezione in calcestruzzo esposto all'aria.

Il valore medio a tempo infinito della deformazione per ritiro autogeno ε_{ca∞} può essere valutato mediante l'espressione:

$$\varepsilon_{\text{ca},\infty} = -2.5 \cdot (f_{\text{ck}} - 10) \cdot 10^{-6}$$
 [11.2.10]

con f_{ck} in N/mm².




TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

UMIDITA' RELATIVA								
PUN	TO 1							
X	Y	Tab. 11.	2.Va – Valori d	iε _{c0}				
20	-0.3			Deform	nazione da ritiro	per essiccamente	(in ‰)	
PUNTO	INITEDD	f _{ck}	Umidità Relativa (in %)					
X	V V	_	20	40	60	80	90	100
	1	20	-0,62	-0,58	-0,49	-0,30	-0,17	+0,00
35	-0.255	40	-0,48	-0,46	-0,38	-0,24	-0,13	+0,00
PUN	TO 2	60	-0,38	-0,36	-0,30	-0,19	-0,10	+0,00
X	Y	80	-0,30	-0,28	-0,24	-0,15	-0,07	+0,00
40	-0.24							

Ur = 80% → valore interpolato \Box_{c0} = -0.255%₀

 $h_0 = 2Ac/u = 2*45371/2742 = 49.0 \text{ cm} = 490 \text{ mm} \rightarrow k_h = 0.703$

La superficie di calcestruzzo soggetta a ritiro è quella a meno delle predalles

Nota 2

Il perimetro u è quello superiore direttamente a contatto con l'atmosfera

La deformazione causata dal ritiro per essiccamento a tempo infinito ammonta a: $\square_{cd,\infty} = k_h^* \square \square_{c0} = -0.703^*0.255\%_0 = -0.179\%_0$

La deformazione causata dal ritiro per ritiro autogeno a tempo infinito ammonta a:

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

$$\Box_{ca,\infty}$$
 = -2.5*(fck-10)*1E-6 = -2.5*(35-10)*1E-6 = -0.0625%₀

→ la deformazione totale da ritiro a tempo infinito vale

$$\varepsilon_{cs,\infty} = \varepsilon_{ca,\infty} + \varepsilon_{cd,\infty} = -0.0625\%_0 - 0.179\%_0 = -0.242\%_0$$

Per l'implementazione nel modello SAP2000 è possibile imporre questa deformazione tramite una variazione di temperatura equivalente:

 $\Delta Tequ = \varepsilon_{cs,\sim}/\alpha_{cls} = -0.242$ [%]/10E-5 [1/°C]= -24.16° C (gradiente uniforme alla soletta pari a - 24° C).

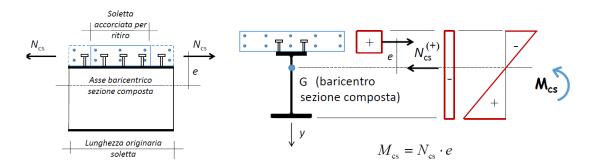
In alternativa è possibile applicare sulla travata una forza di compressione ed un momento positivo; nel calcolo delle tensioni occorrerà poi tener conto anche della tensione di trazione che la soletta subisce (N_{cs}/A_c), come meglio specificato di seguito.

Si possono distinguere i seguenti tipi di effetti da ritiro :

Ritiro primario

Effetti del ritiro su trave isostatica (o iperstatica in cui non è considerata la compatibilità delle deformazioni)

Ritiro secondario


Effetti addizionali in strutture iperstatiche conseguenti al ripristino della congruenza

Per restituire alla soletta la lunghezza che aveva prima del ritiro, occorre applicare al calcestruzzo una tensione di trazione pari a :

$$\sigma = \varepsilon_{\rm cs} E_{\rm a} / n_{\rm L}$$

e quindi uno sforzo normale pari a

$$N_{\rm es} = \boldsymbol{\sigma} \cdot A$$

Per poter riequilibrare il sistema, occorrerà applicare uno sforzo di compressione sull'intera sezione composta di intensità pari ad N_{cs} ed un momento flettente positivo M_{cs} .

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Nota: il ritiro primario può essere trascurato nelle regioni dove la soletta è assunta fessurata. EC4 parte 1.1 -6.2.1.5

Tensione nel calcestruzzo
$$\sigma_{\rm c} = + \frac{N_{\rm cs}}{A} - \frac{N_{\rm cs}}{A}$$

$$\sigma_{\rm c} = +\frac{N_{\rm cs}}{A_{\rm c}} - \frac{N_{\rm cs}^{(+)}}{A_{\rm id} \cdot n_{\rm L}} + \frac{M_{\rm cs}}{I_{\rm id} \cdot n_{\rm L}} y$$

$$\sigma_{\rm s} = -\frac{N_{\rm cs}}{A_{\rm id}} + \frac{M_{\rm cs}}{I_{\rm id}} y$$

Gli effetti secondari da ritiro sono quelli che, in strutture iperstatiche, servono a ripristinare la congruenza violata nel calcolo degli effetti primari.

Un modo semplice per calcolare gli effetti secondari prevede l'applicazione di una variazione di temperatura equivalente, lineare nello spessore della trave.

$$\frac{M_{\rm cs}}{E_{\rm a}I_{\rm 1}} = \frac{\alpha_{\rm T}\Delta T_{\rm MP}}{h} \qquad \square \hspace{1cm} \Delta T_{\rm MP} = \frac{M_{\rm cs}}{E_{\rm a}I_{\rm 1}} \cdot \frac{h}{\alpha_{\rm T}}$$

$$\Delta T_{\rm MP} = \frac{M_{\rm cs}}{E_{\rm a} I_{\rm l}} \cdot \frac{h}{\alpha_{\rm T}}$$

dove:

altezza totale della trave h

momento d'inerzia della sezione composta I_1

coefficiente d'espansione termica dell'acciaio

Nota: la variazione termica può essere trascurata in regioni dove la soletta è assunta fessurata EC4 5.4.2.2

Calcolando tali termini per la trave oggetto di studio si ha:

$$\sigma$$
,r = ϵ ,cs*Ec/(1+ Φ) = 0.24%0 * 34625/(1+1.84) = 2.95 MPa

$$N_r = Ac \times \sigma_r = 4537100^*2.95 = -13382.3 \text{ KN (compr.)}$$

$$M_r = F \times e = 13382 \times (922 - 0.175) = 9992 \text{ KNm}$$

Tenuto conto del numero di travi pari a 3 si ha:

$$F_{r,tr}$$
 = -13382/3 = -5353 KN (compr.)
 $M_{r,tr}$ = 9992/3 = 3331 KNm

SOLLECITAZ, RITIRO					
N,rit,soletta	σ,ritiro_slu	SOLLSAP			
(N)	(Mpa)	N,rit. (compr.)			
Forza di ritiro	Tens. traz. nella	-4460.8 KN/Trave			
eccentrica (soletta)	soletta (connettori)	M,rit.(M. posit.)			
5.353E+06	3.54	3330.6 KNm/Trave			

Il foglio di calcolo riporta correttamente in automatico i valori calcolati a lato

il ritiro è un carico del tipo G_{2k} (γ =1.20 – Tab. 5.1.V NTC18)

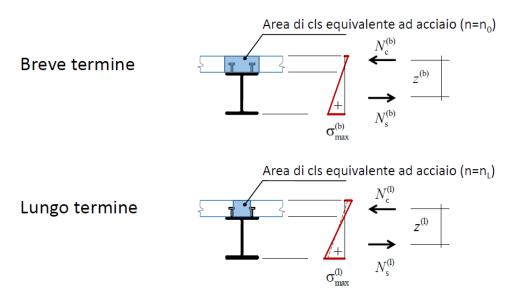
i valori di Nrit e Mrit indicati in tabella sono caratteristici, per cui vanno affetti dal coeff. 1.2; PROGETTAZIONE ATI:

Sanas

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo


il valore della tensione σrit è già affetto dal coeff.moltipl. 1.2 poiché tale valor va combinato con i dati di output del solutore.

7.6. VISCOSITÀ

Nelle travi isostatiche (appoggiate-appoggiate), la riduzione di rigidezza dovuta alla viscosità ha luogo in tutta la lunghezza della trave.

Pertanto, nelle travi isostatiche (appoggiate-appoggiate), la viscosità provoca :

- Incremento di inflessioni
- Nessun cambiamento nei diagrammi dei momenti flettenti e dei tagli
- Redistribuzione delle tensioni nelle sezioni, con aumento delle tensioni dell'acciaio e riduzione di quelle del calcestruzzo.

Redistribuzione delle tensioni per viscosità

Nelle travi iperstatiche, la riduzione di rigidezza dovuta alla viscosità ha luogo solo nelle zone non fessurate (ovvero in campata). Ciò significa che la rigidezza flessionale delle zone di appoggio aumenta in relazione a quella delle zone di campata.

Pertanto, nelle travi iperstatiche, la viscosità provoca :

- Incremento di inflessioni
- Modifica dei diagrammi dei momenti flettenti con aumento all'appoggio e riduzione in campata
- Forze di scorrimento all'interfaccia calcestruzzo-acciaio

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Redistribuzione delle tensioni nelle sezioni con momento flettente positivo, con aumento delle tensioni dell'acciaio e riduzione di quelle del calcestruzzo.

L'effetto della viscosità è tenuto in considerazione andando a considerare un modulo elastico del calcestruzzo diversificato fra breve e lungo termine;

 $E_{cls,BT} \rightarrow$ effetti dei carichi variabili

 $E_{cls,LT} \rightarrow$ calcolo delle sollecitazioni e deformazioni dovute ai carichi permanenti

11.2.10.7

In sede di progettazione, se la tensione di compressione del calcestruzzo, al tempo t₀ = j di messa in carico, non è superiore a 0,45 ·f_{ckj}, il coefficiente di viscosità φ (∞, t₀), a tempo infinito, a meno di valutazioni più precise (per es. § 3.1.4 di UNI EN 1992-1-1:2005), può essere dedotto dalle seguenti Tabelle 11.2.VI e 11.2.VII dove h₀ è la dimensione fittizia definita in § 11.2.10.6:

Tab. 11.2.VI – Valori di φ (∞, t₀). Atmosfera con umidità relativa di circa il 75%

t ₀	h ₀ ≤75 mm	h ₀ = 150 mm	h ₀ = 300 mm	h0 ≥ 600 mm
3 giorni	3,5	3,2	3,0	2,8
7 giorni	2,9	2,7	2,5	2,3
15 giorni	2,6	2,4	2,2	2,1
30 giorni	2,3	2,1	1,9	1,8
≥ 60 giorni	2,0	1,8	1,7	1,6

Tab. 11.2.VII - Valori di ϕ (∞ , t_0). Atmosfera con umidità relativa di circa il 55%

t ₀	h ₀ ≤ 75 mm	h ₀ = 150 mm	h ₀ = 300 mm	h ₀ ≥ 600 mm
3 giorni	4,5	4,0	3,6	3,3
7 giorni	3,7	3,3	3,0	2,8
15 giorni	3,3	3,0	2,7	2,5
30 giorni	2,9	2,6	2,3	2,2
≥ 60 giorni	2,5	2,3	2,1	1,9

La normativa fornisce dei valori tabellati della funzione di viscosità per il tempo in giorni t_0 e per il valore h₀ trovato in precedenza.

Per h_0 501.7 mm t_0 =30 gg si procede attraverso interpolazione lineare:

$$\Phi_t(\infty,to)=1.84$$

Il modulo di elasticità della soletta è dato da:

$$E_{ct}=E_c/[1+\Phi_t(\infty,to)]=E_c/2.83$$

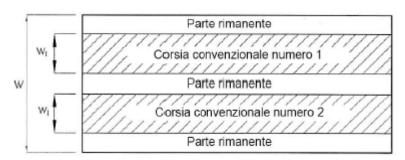
FASE	MODULO ELASTICO ACCIAIO	MODULO ELASTICO CLS	COEFFICIENTE DI OMOGENIZZAZIONE
BREVE TERMINE	Es = 210.00 GPa	Ec = 34.63 GPa	$N_bt = Es/Ec = 6.06$
LUNGO TERMINE	Es = 210.00 GPa	Ec = 12.21 GPa	N_lt = Es/Ec = 17.20

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

7.7. CARICHI VARIABILI

Le azioni variabili agenti sull'impalcato sono dovute alla neve, al vento, alle variazioni di temperatura e al traffico (trattato separatamente come combinazione di vari schemi in condizioni caratteristiche o frequenti secondo le indicazioni di cui alla tabella 5.1.IV)


7.7.1. CARICHI DA TRAFFICO Q1

In assenza di spartitraffico (mobile o fisso), la sede stradale occupa tutta la larghezza dell'impalcato, largo 10.50 m

La tabella 5.I.I NTC18 riporta la definizione di corsie convenzionali:

Tab. 5.1.I - Numero e larghezza delle corsie

Larghezza della superfi- cie carrabile "w"	Numero di corsie con- venzionali	Larghezza di una corsia convenzionale [m]	Larghezza della zona rimanente [m]
w < 5,40 m	n ₁ = 1	3,00	(w-3,00)
5,4 ≤ w < 6,0 m	n _l = 2	w/2	0
6,0 m ≤ w	$n_l = Int(w/3)$	3,00	w - (3,00 x n _l)

- \rightarrow Numero di corsie: $n_i = Int(w/3) = 10.50/3 = 3$
- → Larghezza zona rimanente = 1.50

Le corsie devono essere posizionate in moto tale da ottenere gli effetti più sfavorevoli secondo gli schemi di cui al par. 5.1.3.3.3 NTC18

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

5.1.3.3.3 Schemi di Carico

Schema di Carico 3:

Le azioni variabili del traffico, comprensive degli effetti dinamici, sono definite dai seguenti Schemi di Carico:

è costituito da carichi concentrati su due assi in tandem, applicati su impronte di pneumatico di forma Schema di Carico 1:

> quadrata e lato 0,40 m, e da carichi uniformemente distribuiti come mostrato in Fig. 5.1.2. Questo schema è da assumere a riferimento sia per le verifiche globali, sia per le verifiche locali, considerando un solo carico tandem per corsia, disposto in asse alla corsia stessa. Il carico tandem, se presente, va

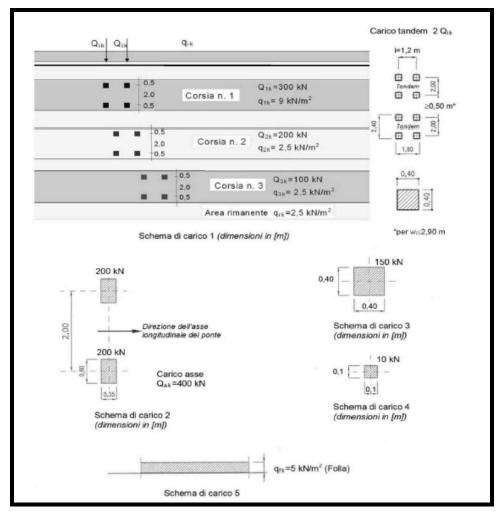
considerato per intero.

Schema di Carico 2: è costituito da un singolo asse applicato su specifiche impronte di pneumatico di forma rettangolare,

di larghezza 0,60 m ed altezza 0,35 m, come mostrato in Fig. 5.1.2. Questo schema va considerato autonomamente con asse longitudinale nella posizione più gravosa ed è da assumere a riferimento solo per

è costituito da un carico isolato da 150 kN con impronta quadrata di lato 0,40 m. Si utilizza per verifi-

verifiche locali. Qualora sia più gravoso si considererà il peso di una singola ruota di 200 kN.

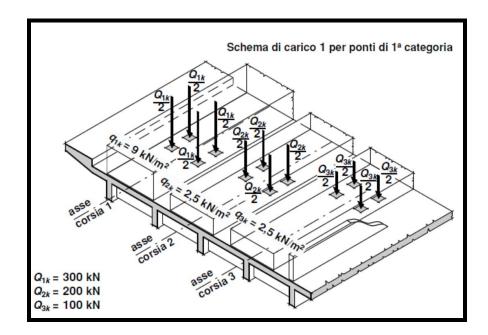

che locali su marciapiedi non protetti da sicurvia.

Schema di Carico 4: è costituito da un carico isolato da 10 kN con impronta quadrata di lato 0,10 m. Si utilizza per verifiche

locali su marciapiedi protetti da sicurvia e sulle passerelle pedonali.

Schema di Carico 5: costituito dalla folla compatta, agente con intensità nominale, comprensiva degli effetti dinamici, di 5,0 kN/m². Il valore di combinazione è invece di 2,5 kN/m². Il carico folla deve essere applicato su tutte le

zone significative della superficie di influenza, inclusa l'area dello spartitraffico centrale, ove rilevante.



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

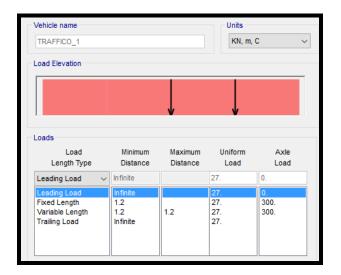
Tab. 5.1.II - Intensità dei carichi Q_{ik} e q_{ik} per le diverse corsie						
Posizione	Carico asse Q _{ik} [kN]	q _{ik} [kN/m²]				
Corsia Numero 1	300	9,00				
Corsia Numero 2	200	2,50				
Corsia Numero 3	100	2,50				
Altre corsie	0,00	2,50				

L'applicazione dei carichi da traffico avviene a mezzo di elementi frames di rigidezza trascurabile sui quali vengono imposte le corsie poste in posizione tale da massimizzare gli effetti tramite il comando SAP Moving Load.

Le schermate seguenti riportano le tre corsie di carico variamente utilizzate nelle combinazioni di carico (tutte le corsie caricate per le massime reazioni agli appoggi; caricate le due corsie più estreme per i massimi valori delle CDS sulla trave di bordo).

Nota:

le sollecitazioni di progetto sono derivate dalla combinazione inviluppo max e inviluppo min fra tutte le combinazioni di carico.



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

7.7.2. EFFETTI GLOBALI - COURBON

Il metodo di Courbon consente di ottenere con buona approssimazione la distribuzione dei carichi sugli elementi resistenti in modo speditivo; ciò consente di individuare sotto certe ipotesi (*) la posizione trasversale delle corsie convenzionali tale da determinare la maggiore sollecitazione sulla trave oggetto di verifica (trave esterna).

- impalcato infinitamente rigido in direzione trasversale (hp molto approssimata);
- ugual rigidezza delle travi (hp accettabile);
- impalcato libero di deformarsi torsionalmente in maniera analoga in tutti i punti (hp molto approssimata)

La procedura, speditiva ma conservativa, consiste nell'analizzare le singole travi come indipendenti (rigidezza nulla dei trasversi) quando sottoposte ai carichi permanenti, e assumere una ripartizione detta appunto alla Courbon (infiniti trasversi rigidi) quando sottoposte a carichi variabili:

Qi = Fj/n + Fj * dj*xi/
$$\sum x^2$$
 dove

- = azione verticale trasmessa alla trave i dalla colonna di carico Fi
- = numero di travi
- = distanza della trave i-ma dal baricentro delle travate;
- = distanza della colonna Fi dal baricentro delle travate

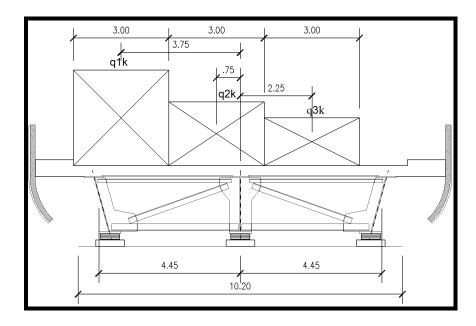
L'espressione può essere scritta:

$$Qi = Fi^*(1/n + di^*xi/\sum x_i^2)$$

- → il treno di carico Fj trasmette azioni di carico negative sulla trave i se (1/n + dj*xi/∑ x²i)<0
- \rightarrow dj < - $\sum x^2$ _i/(n*xi)
- interasse travi: 4.45 m
- $\sum x_i^2 = 2*(4.45^2) = 39.605$

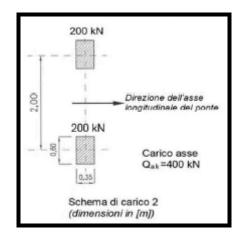
Pertanto la terza corsia di carico allevia le sollecitazioni sulla trave di riva sinistra se

$$d_3 < -39.6/(3*4.45) = -2.97$$



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo



7.7.3. EFFETTI LOCALI

Gli effetti locali sull'impalcato verranno analizzati tramite un modello a trave e uno a shell; gli schemi di carico da utilizzare sono:

SCHEMA DI CARICO 2

è costituito da un singolo asse applicato su specifiche impronte di pneumatico di forma rettangolare, di larghezza 0,60 m ed altezza 0,35 m, come mostrato in Fig. 5.1.2. Questo schema va considerato autonomamente con asse longitudinale nella posizione più gravosa ed è da assumere a riferimento solo per verifiche locali. Qualora sia più gravoso si considererà il peso di una singola ruota di 200 kN.

DIFFUSIONE DEI CARICHI (NTC 5.1.3.3.6)

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

I carichi concentrati da considerarsi ai fini delle verifiche locali ed associati agli Schemi di Carico 1, 2, 3 e 4 si assumono uniformemente distribuiti sulla superficie della rispettiva impronta. La diffusione attraverso la pavimentazione e lo spessore della soletta si considera avvenire secondo un angolo di 45°, fino al piano medio della struttura della soletta sottostante (Fig. 5.1.3.a). Nel caso di piastra ortotropa la diffusione va considerata fino al piano medio della lamiera superiore d'impalcato (Fig. 5.1.3.b).

Fig. 5.1.3.a - Diffusione dei carichi concentrati nelle solette

Fig. 5.1.3.b - Diffusione dei carichi concentrati negli impalcati a piastra ortotropa

Impronta schema di carico 1: 40x40

 $H_{soletta} = 30 cm$

H pavimentazione = 8 cm

→ Impronta in asse soletta = $40+2*8+2*30/2 = 86 \rightarrow 86x86$

Impronta schema di carico 2: 35x60

 $H_{soletta} = 30 cm$

H pavimentazione = 8 cm

→ Impronta in asse soletta = 35+2*8+2*30/2 = 81

→ Impronta in asse soletta = $60+2*8+2*30/2 = 106 \rightarrow 81x106$

7.7.4. AZIONI VARIABILI DA TRAFFICO - INCREMENTO DINAMICO ADDIZIONALE Q2

In prossimità dei giunti di dilatazione, può essere necessario considerare un coefficiente dinamico addizionale q2 dovuto alla discontinuità strutturale, da valutare in riferimento alla specifica situazione considerata: nel presente caso non ricorre.

7.7.5. AZIONE DI FRENAMENTO O ACCELERAZIONE Q3

Per i ponti di la categoria la forza di frenamento o di accelerazione q3 è funzione del carico verticale totale agente sulla corsia convenzionale n. 1 ed è uguale a:

 $q3 = min \{ max [180 kN; 1.2 \cdot Q1k + 0.1 \cdot q1k \cdot w1 \cdot L]; 900 kN \}$

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

essendo wi la larghezza della corsia e L la lunghezza della zona caricata. La forza, applicata a livello della pavimentazione ed agente lungo l'asse della corsia, è assunta uniformemente distribuita sulla lunghezza caricata e include gli effetti di interazione.

L=180 m(lunghezza della zona caricata)

 $q3 = min \{max [180 kN; 1026 kN]; 900 kN\} = 900 KN$

Questa azione deve essere applicata al livello della pavimentazione e lungo l'asse della corsia 1 in modo uniformemente distribuito lungo tutta la lunghezza caricata:

→ occorre applicare una azione pari a: $q_{3dist} = q_3/L = 900 \text{ kN/300 m} = 3.0 \text{ kN/m}$

7.7.6. AZIONE CENTRIFUGA Q4

5.1.3.6 AZIONI VARIABILI DA TRAFFICO. AZIONE CENTRIFUGA: q_4

Nei ponti con asse curvo di raggio R (in metri) l'azione centrifuga corrispondente ad ogni colonna di carico si valuta convenzionalmente come indicato in Tab. 5.1.III, essendo $Q_v = \sum_i 2Q_{ik}$ il carico totale dovuto agli assi tandem dello schema di carico 1 agenti sul ponte.

Il carico concentrato q4, applicato a livello della pavimentazione, agisce in direzione normale all'asse del ponte.

Tab. 5.1.III - Valori caratteristici delle forze centrifughe

Raggio di curvatura [m]	q ₄ [kN]
R < 200	0,2 Q _v
200 ≤ R ≤ 1500	40 Q _v /R
1500 ≤ R	0

Poiché il viadotto è rettilineo, non si considera il carico q4.

GESTIONE PROGETTI INGEGNERIA srl

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

7.7.7. AZIONE DEL VENTO E DELLA NEVE Q5

AZIONE DEL VENTO

La distribuzione della pressione esercitata dal vento sulla superficie dell'impalcato viene calcolata secondo le indicazioni del cap. 5.1.3.7 delle NTC18, che prescrivono quanto segue:

La superficie dei carichi transitanti sul ponte esposta al vento si assimila ad una parete rettangolare continua dell'altezza di 3 m a partire dal piano stradale

Il calcolo della pressione del vento viene condotto in ottemperanza al cap. 3.3.4 delle NTC18; dal calcolo risulta una pressione del vento pari a 1.23 KN/mg

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

CLASSE D'USO	Cu		Vn	Vr		
IV		2	50	100		
Tab. $3.2.I$ – Probabilità di superamento P_{V_R} in funzione dello stato limite considerato						
Stati Limite	$P_{V_{\overline{R}}}$: Probabilità di superamento nel periodo di riferimento $V_{\overline{R}}$					
Stati limite di esercizio	SLO	LO 81%				
Stati fiffite di esercizio	SLD	D 63%				
Stati limite ultimi	SLV	LV 10%				
Stati infine tridiffi	SLC	5%				
Pvr				Tr		
10	.0%			949		

3) Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)

Zona	v _{b,0} [m/s]	a ₀ [m]	k _s			
3	27	500	0.37			
a _s (altitudi	a _s (altitudine sul livello del mare [m]) 220					
T _R	(Tempo di ritori	no)	949			
v	$\mathbf{v_b} = \mathbf{v_{b,0}} \cdot \mathbf{c_a}$ $\mathbf{c_a} = 1$ per $\mathbf{a_s} \le \mathbf{a_0}$					
c _a = 1	$c_a = 1 + k_s (a_s/a_0 - 1) per a_0 < a_s \le 1500 m$					
c _a =	c _a = 1					
$\mathbf{v_r} = \mathbf{v_b} \cdot \mathbf{c_r}$ $\mathbf{c_r} = 0.75 \cdot \{1-0.2 \cdot \ln[-\ln(1-1/T_r]\}^{0.5}$						
c _r =	31.181					

p (pressione del vento [N/mq]) = $q_r \cdot c_e \cdot c_p \cdot c_d$

q_r (pressione cinetica di riferimento [N/mq])

ce (coefficiente di esposizione)

c_p (coefficiente di pressione)

c_d (coefficiente dinamico)

Figura 3.3.1 – Mappa delle zone in cui è suddiviso il territorio italiano

Pressione cinetica di riferimento

 $q_r = 1/2 \cdot \rho \cdot v_r^2$ ($\rho = 1,25 \text{ kg/mc}$)

q_r [N/mq] 607.66

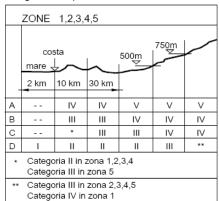
Coefficiente di pressione

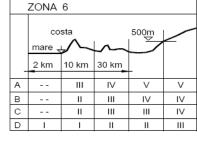
Esso dipende dalla tipologia e dalla geometria della costruzione e del suo orientamento rispetto alla direzione del vento. Il suo valore può essere ricavato da dati suffragati da opportuna documentazione o da prove sperimentali in galleria del vento.

Coefficiente dinamico

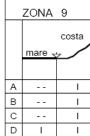
Esso può essere assunto autelativamente pari ad 1 nelle costruzioni di tipologia ricorrente, quali gli edifici di forma regolare non eccedenti 80 m di altezza ed i capannoni industriali, oppure può essere determinato mediante analisi specifiche o facendo riferimento a dati di comprovata affidabilità.

TRATTO MADONNA DEL PIANO - COLLESTRADA


OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

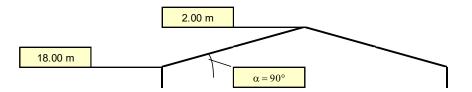

Coefficiente di esposizione

Classe di rugosità del terreno


B) Aree urbane (non di classe A), suburbane, industriali e boschive

Categoria di esposizione

	ZONE	7,8			
	mare	cos	sta		
_	1.5 km	0.5 km			
А			IV		
В			IV		
С			III		
D	Ι	П	*		
⋆ Categoria II in zona 8 Categoria III in zona 7					

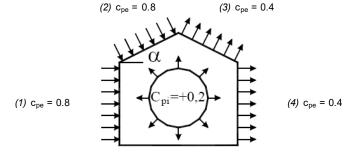


$c_e(z) = k_r^2 \cdot c_t \cdot \ln(z/z_0) \left[7 + c_t \cdot \ln(z/z_0)\right]$	per z≥z _{min}
$c_{e}(z) = c_{e}(z_{min})$	per z < z _{min}

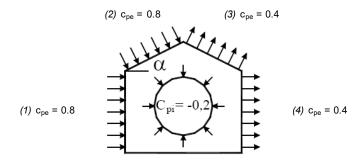
Zona	Classe di rugosità	a _s [m]
3	В	220

Cat. Esposiz.	k _r	z ₀ [m]	z _{min} [m]	Ct
Ш	0.2	0.1	5	1

z [m]	C _e
z ≤ 5	1.708
z = 18	2.533
z = 2	1.708


TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo


 $\underline{\text{Coefficiente di forma}} \text{ (Edificio aventi una parete con aperture di superficie < 33\% di quella totale)}$

Strutture stagne

(1)	Cp	p [kN/mq]
(1)	0.80	1.231
(2)	Cp	p [kN/mq]
(2)	0.80	0.830
(2)	Cp	p [kN/mq]
(3)	0.40	0.415
(4)	Cp	p [kN/mq]
(4)	0.40	0.616

(1)	Сp	p [kN/mq]
(1)	0.80	1.231
(2)	Cp	p [kN/mq]
(2)	0.80	0.830
(2)	C _p	p [kN/mq]
(3)	0.40	0.415
(4)	Cp	p [kN/mq]
(4)	0.40	0.616

Combinazione più sfavorevole:

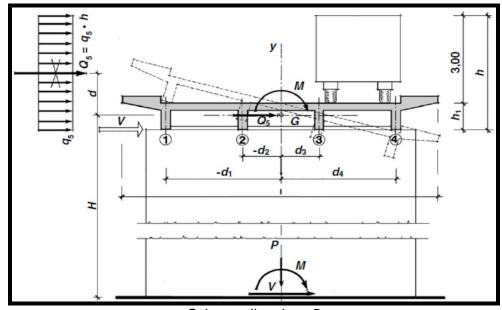
	p [kN/mq]
(1)	1.231
(2)	0.830
(3)	0.415
(4)	0.616

1.231 kN/mq 0.616 kN/mq

0.415 kN/mq

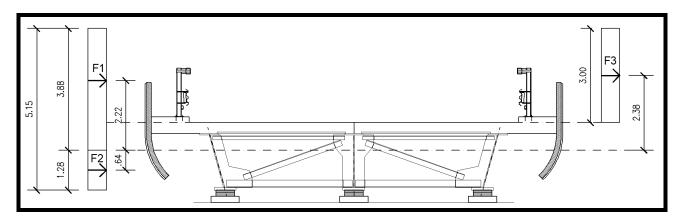
0.830 kN/mq

<u>N.B.</u> Se p (o c_{pe}) è > 0 il verso è concorde con le frecce delle figure



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo


L'azione del vento può essere convenzionalmente assimilata ad un carico orizzontale statico, diretto ortogonalmente all'asse del ponte:

Schema di carico q5

→ La forza statica equivalente del vento agente sull'impalcato ammonta a:

(5.15+3.00)*1.23 = 10.03 KN/m

Volendo considerare l'azione esplicata dal vento agente nel baricentro del modello, occorre tener conto anche delle azioni verticali che le forze generano con la loro eccentricità rispetto al baricentro:

F1 = 3.88*1.23

= 4.77 KN/m

F3 = 3.00*1.23 $= 3.69 \, KN/m$

PROGETTAZIONE ATI:

Pag. 53 di 216

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

F2 = 1.28*1.23 $= 1.57 \, KN/m$

Mt = 4.77*2.22 + 3.69*2.38 - 1.57*0.64 = 18.36 KNm

Per applicare più agevolmente il Mt sulle travi è sufficiente operare una ripartizione tramite azioni verticali equivalenti:

 $Q_{i,tor} = Mt^*yi/(\sum y_i^2)$

con yi distanza della trave dal baricentro dell'impalcato

v1 = 0.0 my2 = 4.45 m $\sum y_i^2 = 39.6$ $Q_{tor,est}$ = 18.36 *4.45/39.6 = 2.06 KN/m

Il vento è assegnato alle travi in entrambe le direzioni applicando i valori ottenuti precedentemente dal metodo di Courbon (cfr paragrafo dedicato):

 $Q_{tor,est} = 2.06 \text{ KN/m} \text{ (solo travi esterne)}$ = 3.43 KN/m (tutte le travi)

PROGETTAZIONE ATI:

GPIngegneria GESTIONE PROGETTI INGEGNERIA srl

TRATTO MADONNA DEL PIANO - COLLESTRADA

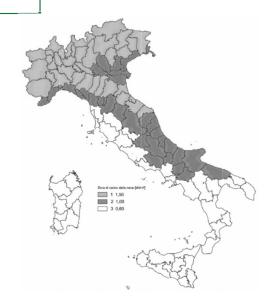
OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

AZIONE DELLA NEVE

Il carico da neve ammonta a 0.82 KN/mq Le schermate seguenti riportano il calcolo secondo indicazioni di cui I cap. 3.4 NTC18

CALCOLO DELL'AZIONE DELLA NEVE

0	Zona I - Alpina Aosta, Belluno, Bergamo, Biella, Bolzano, Brescia, Como, Cuneo, Lecco, Pordenone, Sondrio, Torino, Trento, Udine, Verbano-Cusio-Ossola, Vercelli, Vicenza.	q_{sk} = 1,50 kN/mq m q_{sk} = 1,39 [1+($a_s/728$) 2] kN/mq m	a _s ≤ 200 a _s > 200
0	Zona I - Mediterranea Alessandria, Ancona, Asti, Bologna, Cremona, Forli-Cesena, Lodi, Milano, Modena, Monza Brianza, Novara, Parma, Pavia, Pesaro e Urbino, Piacenza, Ravenna, Reggio Emilia, Rimini, Treviso, Varese.	q_{sk} = 1,50 kN/mq m q_{sk} = 1,35 [1+(a _s /602) ²] kN/mq m	a _s ≤ 200 a _s > 200
•	Zona II Arezzo, Ascoli Piceno, Avellino, Bari, Barletta-Andria-Trani, Benevento, Campobasso, Chieti, Fermo, Ferrara, Firenze, Foggia, Frosinone, Genova, Gorizia, Imperia, Isernia, L'Aquila, La Spezia, Lucca, Macerata, Mantova, Massa Carrara, Padova, Perugia, Pescara, Pistoia, Prato, Rieti, Rovigo, Savona, Teramo, Trieste, Venezia, Verona.	q_{sk} = 1,00 kN/mq m q_{sk} = 0,85 [1+(a_s /481) 2] kN/mq m	a _s ≤ 200 a _s > 200
0	Zona III Agrigento, Brindisi, Cagliari, Caltanisetta, Carbonia-Iglesias, Caserta, Catania, Catanzaro, Cosenza, Crotone, Enna, Grosseto, Latina, Lecce, Livorno, Matera, Medio Campidano, Messina, Napoli, Nuoro, Ogliastra, Olbia Tempio, Oristano, Palermo, Pisa, Potenza, Ragusa, Reggio Calabria, Roma, Salerno, Sassari, Siena, Siracusa, Taranto, Terni, Trapani, Vibo Valentia, Viterbo.	$q_{sk} = 0.60 \text{ kN/mq}$ m $q_{sk} = 0.51 [1+(a_s/481^2] \text{ kN/mq}$	a _s ≤ 200 a _s > 200 m

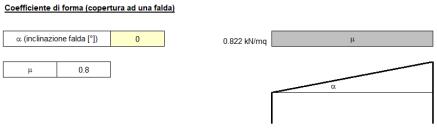

 q_s (carico neve sulla copertura [N/mq]) = $q_{sk} \cdot \mu_i \cdot C_E \cdot C_t$ q_{sk} (valore caratteristico della neve al suolo [kN/mq]) μ_i (coefficiente di forma) C_E (coefficiente di esposizione) C_t (coefficiente termico)

Valore carratteristicio della neve al suolo

a _s (altitudine sul livello del mare [m])	220
q _{sk} (val. caratt. della neve al suolo [kN/mq])	1.03

Coefficiente termico

Il coefficiente termico tiene conto della riduzione del carico neve a causa dello scioglimento della stessa, causata dalla perdita di calore della costruzione. Tale coefficiente dipende dalle proprietà di isolamento termico del materiale utilizzato in copertura. In assenza di uno specifico e documentato studio, deve essere utilizzato Ct = 1



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Coefficiente di esposizione

Topografia	Descrizione			
Mormala	ree in cui non è presente una significativa rimozione di neve sulla costruzione prodotta dal vento, a causa del terreno, altre ostruzioni o alberi.			
	ella neve al suolo [kN/mq]) 1.03			

7.7.8. AZIONI IDRODINAMICHE Q6

Non ricorrono nel presente caso.

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

7.7.9. VARIAZIONE DELLA TEMPERATURA Q7

L'azione della temperatura è trattata al cap. 3.5 delle NTC18 e riferita genericamente ad edifici:

Tipo di struttura	$\Delta T_{ m u}$
Strutture in c.a. e c.a.p. esposte	± 15 °C
Strutture in c.a. e c.a.p. protette	± 10 °C
Strutture in acciaio esposte	± 25 °C
Strutture in acciaio protette	± 15 °C

In assenza di dati specifici può assumersi:

 $Tmax = 45^{\circ}C$

Tmin = -15 °C

To = 15 °C

→ La variazione uniforme di temperatura annua è quindi pari a:

 $\Delta Tu = \pm 30^{\circ}C$

Nota:

la variazione termica uniforme è intesa come variazione termica stagionale, pertanto è una azione variabile di lunga durata da applicare al modello in fase II

Lo schema di vincolo adottato non impedisce le deformazioni longitudinali e non provoca sollecitazioni nell'impalcato se non per effetto della resistenza parassita negli appoggi. Le reazioni orizzontali parassite sollecitano l'impalcato a pressoflessione o a tensoflessione, e il momento flettente è direttamente proporzionale alla differenza di quota h tra baricentro della travatura portante e quota degli appoggi. Nel caso in esame, h è modesto e le reazioni verticali negli appoggi non sono tali da provocare notevoli azioni orizzontali dovute agli attriti. Non si considera, di conseguenza, tale azione nella verifica dell'impalcato.

Gli effetti dovuti alle resistenze parassite degli appoggi devono essere quindi considerati solo nella verifica delle sottostrutture e nelle verifiche degli appoggi stessi.

In aggiunta occorre applicare una variazione termica differenziale sull'altezza della trave considerando alternativamente (a seconda dell'effetto più gravoso) un gradiente termico di ±10°C

Con riferimento al gradiente termico fra soletta e impalcato, nel caso di impalcato in acciaio e soletta in cls collaborante, è possibile considerare sia un andamento uniforme che discontinuo (10°C); in quest'ultimo caso, assumendo un andamento discontinuo fra soletta ed impalcato, l'effetto del gradiente termico può essere trattato in analogia all'azione del ritiro, ma con soletta in espansione (+ 10 °C).

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Nota

la variazione termica differenziale (soletta calda) è intesa come variazione termica giornaliera, pertanto è una azione variabile di breve durata da applicare al modello in fase III

Al fine di mantenere sempre un ponderato controllo delle sollecitazioni in output del calcolatore è utile procedere al calcolo manuale delle sollecitazioni attese per le variazioni termiche differenziali:

- Differenza fra temperatura della soletta e temperatura della carpenteria metallica: +10°C (soletta calda – andamento discontinuo)
- Deformazione nella soletta: $\varepsilon_{\Delta t}$ = $\alpha^* \Delta T$ = 1.2E-5*10°C = 0.12E-3
- $\sigma_{\Delta T} = +\epsilon_{\Delta T} * Ea/n_{acc} = 0.12E-3*210000/(210000/34625) = 4.16 Mpa$
- $N_{\Delta T} = \sigma_{\Delta T} Ac = 4.16 4537100 = 18852 \text{ KN}$ (Ac = 4.537.100 mmg)
- $M_{\Delta T} = N_{\Delta T} * (y_g-e) = 18852* (0.614-0.175) = -8277.1 \text{ KNm}$

Le azioni vengono distribuite fra le 3 travi costituenti l'impalcato:

- $N_{\Delta T,i} = 18852/3 = 6284 \text{ KN}$
- $M_{\Delta T,i} = 8277.1/3 = -2579 \text{ KNm}$

a cui deve essere sommato lo stato tensionale dovuto alla deformazione impedita della soletta:

 $\sigma_{\Delta T}$ = -4.16 Mpa

RI	IABILI Qik. + VARIAZ. TERMICHE DT						
					SOLLECITAZ. AT_d	iff	
	Si,3 (-)	X_3 (-)	Ja_3 (-)	ε,ΔT_differ.	σ,ΔT_differ.	SOLL. \(\Delta T, \diff_SAP \)	
	(mm^3)	(mm)	(mm^4)	(-)	(Mpa)	N,∆T_differ. (traz.)	
	Momento Statico (M-)	A.N Fase III (M-	Mom. Inerzia - Fase III (M-	D-64 3:66	Tens. compr. nella	6284.0 KN	
	Momento Statico (M-))	- rase III (M-	Dei.term. dm.	soletta (soletta calda)	M,∆Tdiffer. (M negat.)	
	1.892E+08	1382	7.923E+10	1.200E-04	-4.16	-2759.0 KNm	

Stralcio di calcolo automatico del post-processore

Nota:

CLASSIFICAZIONE DELLE AZIONI SECONDO LA VARIAZIONE DELLA LORO INTENSITÀ NEL TEMPO

a) permanenti (G): azioni che agiscono durante tutta la vita nominale di progetto della costruzione, la cui variazione di intensità nel tempo è molto lenta e di modesta entità:

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

- peso proprio di tutti gli elementi strutturali; peso proprio del terreno, quando pertinente; forze indotte dal terreno (esclusi gli effetti di carichi variabili applicati al terreno); forze risultanti dalla pressione dell'acqua (quando si configurino costanti nel tempo) (G1);
- peso proprio di tutti gli elementi non strutturali (G2);
- spostamenti e deformazioni impressi, incluso il ritiro;
- presollecitazione (P).
- b) variabili (Q): azioni che agiscono con valori istantanei che possono risultare sensibilmente diversi fra loro nel corso della vita nominale della struttura:
 - sovraccarichi;
 - azioni del vento:
 - azioni della neve;
 - azioni della temperatura.

Le azioni variabili sono dette di lunga durata se agiscono con un'intensità significativa, anche non continuativamente, per un tempo non trascurabile rispetto alla vita nominale della struttura. Sono dette di breve durata se agiscono per un periodo di tempo breve rispetto alla vita nominale della struttura. A seconda del sito ove sorge la costruzione, una medesima azione climatica può essere di lunga o di breve durata.

- c) eccezionali (A): azioni che si verificano solo eccezionalmente nel corso della vita nominale della struttura;

 - esplosioni:
 - urti ed impatti;
- d) sismiche (E): azioni derivanti dai terremoti.

azione della temperatura → costituisce azione variabile

7.7.10. AZIONI SUI PARAPETTI E URTO DI VEICOLO IN SVIO: Q8

Nel progetto dell'impalcato bisogna tenere conto della eventualità che si verifichino azioni eccezionali quali per esempio l'urto accidentale dei veicoli in transito sul ponte. Le NTC18 tengono conto di questa eventualità nei paragrafi 3.6.3.3.2 e 5.1.3.10:

3.6.3.3.2 Traffico veicolare sopra i ponti

In assenza di specifiche prescrizioni, nel progetto strutturale dei ponti si può tener conto delle forze causate da collisioni accidentali sugli elementi di sicurezza attraverso una forza orizzontale equivalente di collisione pari a 100 kN. Essa rappresenta l'effetto dell'impatto da trasmettere ai vincoli e deve essere considerata agente trasversalmente ed orizzontalmente 100 mm sotto la sommità dell'elemento o 1,0 m sopra il livello del piano di marcia, a seconda di quale valore sia più piccolo.

Le azioni da considerare nelle verifiche locali dell'impalcato dovranno essere definite in accordo al § 5.1.3.10.

Le forze di collisione da veicoli sugli elementi strutturali eventualmente presenti al disopra del livello di carreggiata sono quelle specificate nel § 3.6.3.3.1

GPIngegneria GESTIONE PROGETTI INGEGNERIA STI

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

AZIONI SUI PARAPETTI E URTO DI VEICOLO IN SVIO: q_8 5.1.3.10

L'altezza dei parapetti non può essere inferiore a 1,10 m. I parapetti devono essere calcolati in base ad un'azione orizzontale di 1,5 kN/m applicata al corrimano.

Le barriere di sicurezza stradali e gli elementi strutturali ai quali sono collegate devono essere dimensionati in funzione della classe di contenimento richiesta, per l'impiego specifico, dalle norme nazionali applicabili.

Nel progetto dell'impalcato deve essere considerata una combinazione di carico nella quale al sistema di forze orizzontali, equivalenti all'effetto dell'azione d'urto sulla barriera di sicurezza stradale, si associa un carico verticale isolato sulla sede stradale costituito dallo Schema di Carico 2, posizionato in adiacenza alla barriera stessa e disposto nella posizione più gravosa.

Tale sistema di forze orizzontali potrà essere valutato dal progettista, alternativamente, sulla base:

- delle risultanze sperimentali ottenute nel corso di prove d'urto al vero, su barriere della stessa tipologia e della classe di contenimento previste in progetto, mediante l'utilizzo di strumentazione idonea a registrare l'evoluzione degli effetti
- del riconoscimento di equivalenza tra il sistema di forze e le azioni trasmesse alla struttura, a causa di urti su barriere della stessa tipologia e della classe di contenimento previste in progetto, laddove tale equivalenza risulti da valutazioni teoriche e/o modellazioni numerico-sperimentali;

In assenza delle suddette valutazioni, il sistema di forze orizzontali può essere determinato con riferimento alla resistenza caratteristica degli elementi strutturali principali coinvolti nel meccanismo d'insieme della barriera e deve essere applicato ad una quota h, misurata dal piano viario, pari alla minore delle dimensioni h1 e h2, dove h1 = (altezza della barriera - 0,10m) e h2 = 1,00 m. Nel dimensionamento degli elementi strutturali ai quali è collegata la barriera si deve tener conto della eventuale sovrapposizione delle zone di diffusione di tale sistema di forze, in funzione della geometria della barriera e delle sue condizioni di vincolo. Per il dimensionamento dell'impalcato, le forze orizzontali così determinate devono essere amplificate di un fattore pari a 1,50.

Il coefficiente parziale di sicurezza per la combinazione di carico agli SLU per l'urto di veicolo in svio deve essere assunto unitario.

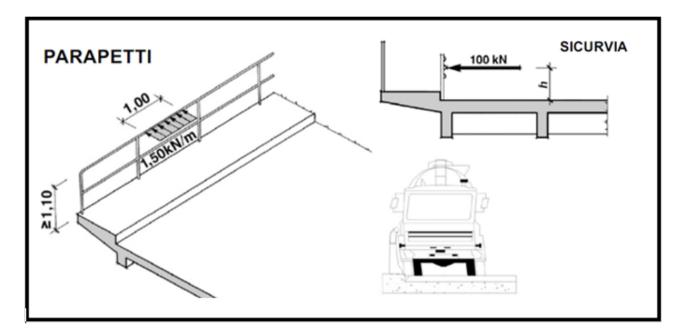
L'altezza dei parapetti non potrà essere inferiore a 1,10 m. I parapetti devono essere calcolati in base ad un'azione orizzontale di 1,5 kN/m applicata al corrimano. I sicurvia e gli elementi strutturali ai quali sono collegati devono essere dimensionati in funzione della classe di contenimento richiesta per l'impiego specifico (vedi D.M. 21-06-04 n.2367). Se non diversamente indicato, la forza deve essere considerata distribuita su 0,50 m ed applicata ad una quota h, misurata dal piano viario, pari alla minore delle dimensioni h1, h2, dove h1 = (altezza della barriera - 0,10m) h2 = 1,00 m. Nel progetto dell'impalcato deve essere considerata una condizione di carico eccezionale nella quale alla forza orizzontale d'urto su sicurvia si associa un carico verticale isolato sulla sede stradale costituito dal Secondo Schema di Carico, posizionato in adiacenza al sicurvia stesso e disposto nella posizione più gravosa.

→ Poiché si tratta di una azione eccezionale questa dovrà essere combinata con le altre azioni agenti sulla struttura secondo quanto prevede la combinazione eccezionale allo stato

Con riferimento al paragrafo 2.5.3 delle NTC18 questa combinazione è scritta nel modo seguente:

 $G1+G2+P+Ad+\psi_{21}Qk1+\psi_{22}Qk2+\cdots$

In cui Ad è l'azione eccezionale considerata.



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

7.8. AZIONE SISMICA

L'attuale norma per le costruzioni individua più livelli prestazionali che dovrebbero essere soddisfatti; in generale si parla di quattro classi: due sono stati limite di esercizio mentre gli altri due sono stati limite ultimi:

- Stato Limite di Operatività (SLO): quando si richiede che la costruzione nel suo complesso, includendo impianti ed elementi non strutturali, non subisca danni e interruzioni d'uso significative;
- Stato Limite di Danno (SLD): o di immediato utilizzo, quando si richiede che la costruzione subisca danni tali da non mettere a rischio gli utenti e da non compromettere significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali e orizzontali, mantenendosi pertanto immediatamente utilizzabile pur nell'interruzione d'uso di parte delle apparecchiature.
- Stato Limite di Salvaguardia della Vita (SLV) o stato limite ultimo: quando si accetta che la costruzione subisca rotture o crolli dei componenti non strutturali, con perdita significativa di rigidezza nei confronti delle azioni orizzontali, ma si richiede che essa conservi una parte di resistenza e rigidezza per azioni verticali ed un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali.
- Stato Limite di prevenzione del Collasso (SLC): quando si accetta che la struttura subisca gravi rotture e crolli degli elementi non strutturali, e danni molto gravi delle componenti strutturali, ma si richiede che essa conservi una parte della rigidezza e resistenza per azioni verticali ed un esiguo margine di sicurezza nei confronti del collasso per azioni orizzontali.

7.8.1. PARAMETRI DI PROGETTO

Vita nominale Vn = 50 anniClasse d'Uso III Cu = 2.0

Periodo di riferimento Vr = Vn*Cu = 50*2.0 = 100 anni

Probabilità di superamento Pvr SLV → 10%

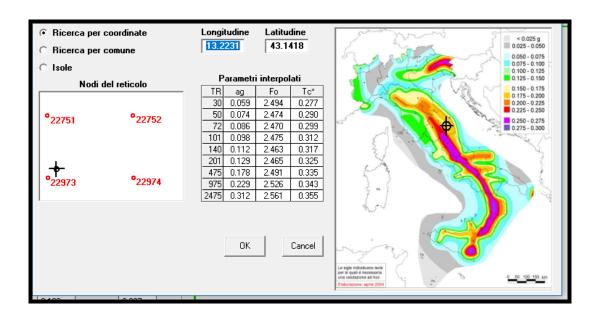
SLC \rightarrow 5%

longitudine = 13.479 Coordinate del sito sono:

latitudine = 43.074

Categoria di sottosuolo C Condizioni topografiche T3

CLASSE D'USO		Cu	Vn	Vr		
IV		2	50	100		
Tab. $3.2.I$ – Probabilità di superamento $P_{V_{\Sigma}}$ in funzione dello stato limite considerato						
Stati Limite	F	$P_{V_{\overline{R}}}$: Probabilità di superamento nel periodo di riferimento $V_{\overline{R}}$				
Stati limite di esercizio	SLO	81%				
Stati liffilite di esercizio	SLD 63%					
Stati limite ultimi	SLV		10%			
	SLC	5%				
1		Tr				
10	0.0%			949		



E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Tab. 3.2.II - Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.

Categoria	Caratteristiche della superficie topografica
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde
	di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteri-
	stiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi-
	stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da
	valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi-
	stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-
	le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra
	180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consi-
	stenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-
	le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra
	100 e 180 m/s.
Е	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le catego-
	rie C o D, con profondità del substrato non superiore a 30 m.

Tab. 3.2.III - Categorie topografiche

Categoria	Caratteristiche della superficie topografica		
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°		
T2	Pendii con inclinazione media i > 15°		
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°		
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°		

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

7.8.2. SPETTRO DI RISPOSTA ELASTICO IN ACCELERAZIONE

COMPONENTI ORIZZONTALI

$$\begin{split} 0 \leq T \leq T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \Bigg[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \cdot \left(1 - \frac{T}{T_B} \right) \Bigg] \\ T_B \leq T \leq T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \\ T_C \leq T \leq T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \frac{T_C}{T} \\ T_D \leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \end{split}$$

Т periodo di vibrazione

• Se accelerazione spettrale orizzontale

 $S = S_S \times S_T$

coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche

coefficiente di amplificazione stratigrafica $S_{\rm S}$ ST coefficiente di amplificazione topografica

 $\eta = \sqrt{10/(5+\xi)} \ge 0.55$ η:

> fattore che altera lo spettro elastico per coefficienti di smorzamento viscosi convenzionali diversi dal 5%

fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale

Tc

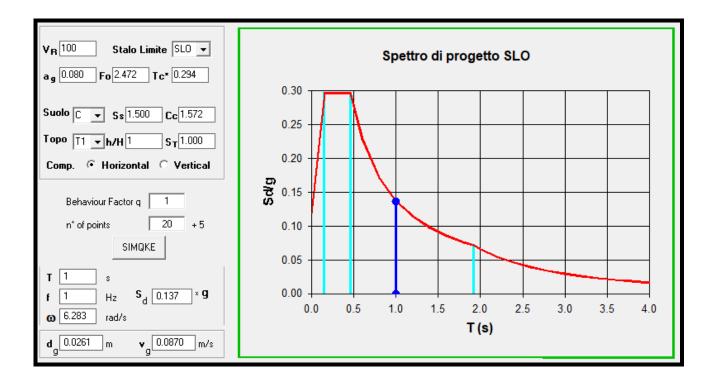
$$T_{_{\rm C}} = C_{_{\rm C}} \cdot T_{_{\rm C}}^*$$

periodo corrispondente all'inizio del tratto a velocità costante dello spettro Cc coefficiente funzione della categoria di sottosuolo;

Тв

$$T_B = T_C / 3$$

periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante

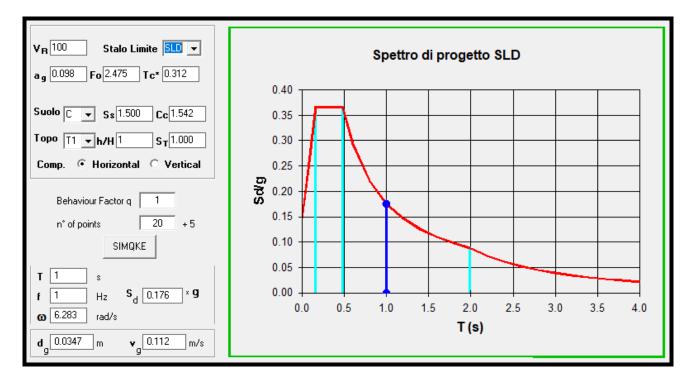


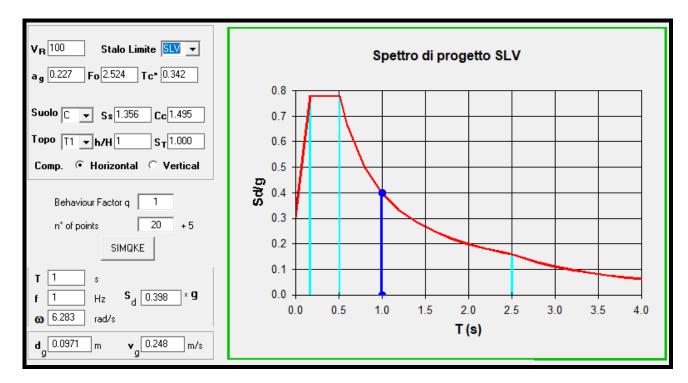
TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

periodo corrispondente all'inizio del tratto a spostamento costante dello TD spettro

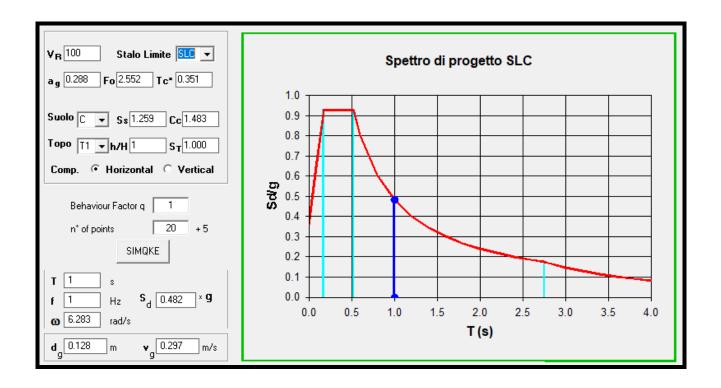
$$T_{\rm D} = 4.0 \cdot \frac{a_{\rm g}}{g} + 1.6$$





TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

COMPONENTI VERTICALI

$$\begin{split} 0 &\leq T < T_B & S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D & S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \end{split}$$

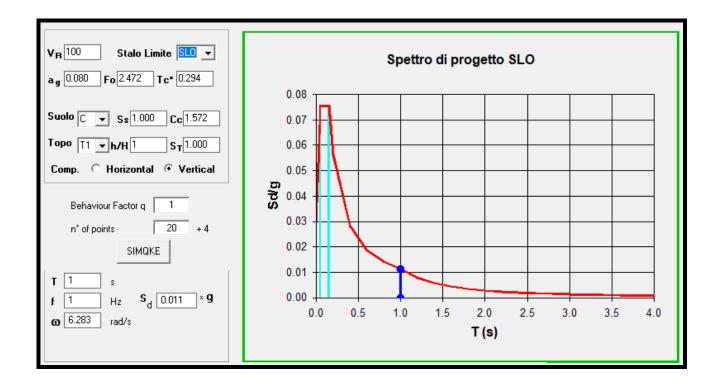
T periodo di vibrazione verticale

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Sve

accelerazione spettrale verticale

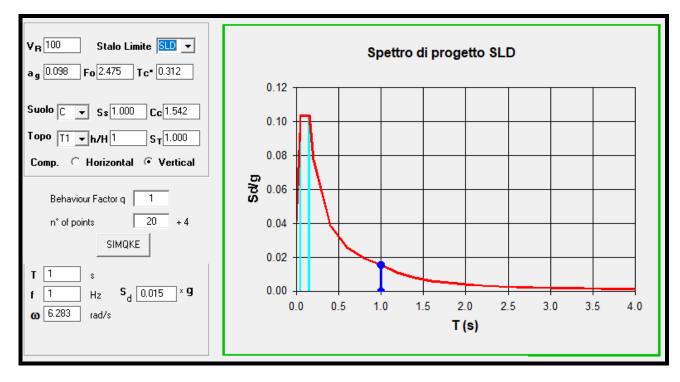

$$F_{v} = 1,35 \cdot F_{o} \cdot \left(\frac{a_{g}}{g}\right)^{0.5}$$

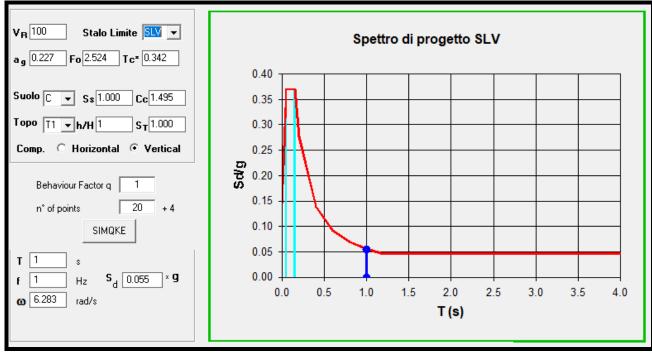
Fν

fattore che quantifica l'amplificazione spettrale massima, in termini di accelerazione orizzontale massima del terreno ag su sito di riferimento rigido orizzontale

Tab. 3.2.VI - Valori dei parametri dello spettro di risposta elastico della componente verticale

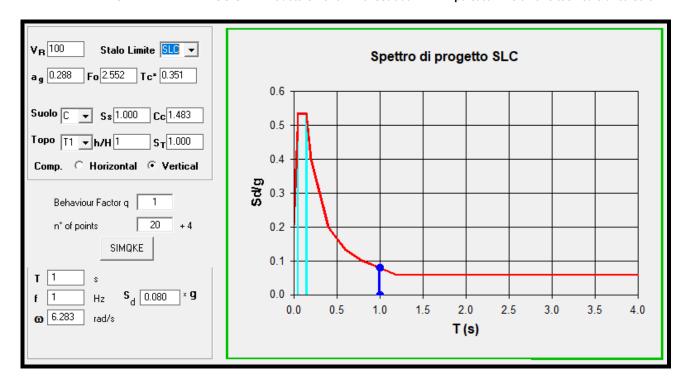
Categoria di sottosuolo	Ss	T _B	T _c	T _D
A, B, C, D, E	1,0	0,05 s	0,15 s	1,0 s





TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

7.8.3. FATTORE DI COMPORTAMENTO

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

ANALISI LINEARE O NON LINEARE 7.3.1.

L'analisi delle strutture soggette ad azione sismica può essere lineare o non lineare.

ANALISI LINEARE

L'analisi lineare può essere utilizzata per calcolare la domanda sismica nel caso di comportamento strutturale sia non dissipativo sia dissipativo (§ 7.2.2). In entrambi i casi, la domanda sismica è calcolata, quale che sia la modellazione utilizzata per l'azione sismica, riferendosi allo spettro di progetto (§ 3.2.3.4 e § 3.2.3.5) ottenuto, per ogni stato limite, assumendo per il fattore di comportamento q, i limiti riportati nella tabella 7.3.I con i valori dei fattori di base q_0 riportati in Tab. 7.3.II.

Valori del fattore di comportamento q

Nel caso di comportamento strutturale dissipativo (§ 7.2.2), il valore del fattore di comportamento q, da utilizzare per lo stato limite considerato e nella direzione considerata per l'azione sismica, dipende dalla tipologia strutturale, dal suo grado di iperstaticità e dai criteri di progettazione adottati e tiene conto, convenzionalmente, delle capacità dissipative del materiale. Le strutture possono essere classificate come appartenenti ad una tipologia in una direzione orizzontale e ad un'altra tipologia nella direzione orizzontale ortogonale alla precedente, utilizzando per ciascuna direzione il fattore di comportamento corrispondente.

Il limite superiore q_{lim} del fattore di comportamento relativo allo SLV è calcolato tramite la seguente espressione:

$$q_{lim} = q_0 \cdot K_R \tag{7.3.1}$$

dove:

- q_0 è il valore base del fattore di comportamento allo SLV, i cui massimi valori sono riportati in tabella 7.3.II in dipendenza della Classe di Duttilità, della tipologia strutturale, del coefficiente λ di cui al § 7.9.2.1 e del rapporto $\alpha_{\rm U}/\alpha_{\rm I}$ tra il valore dell'azione sismica per il quale si verifica la plasticizzazione in un numero di zone dissipative tale da rendere la struttura un meccanismo e quello per il quale il primo elemento strutturale raggiunge la plasticizzazione a flessione; la scelta di qo deve essere esplicitamente giustificata;
- K_R è un fattore che dipende dalle caratteristiche di regolarità in altezza della costruzione, con valore pari ad 1 per costruzioni regolari in altezza e pari a 0,8 per costruzioni non regolari in altezza.

Tab. 7.3.II – Valori massimi del valore di base q_0 del fattore di comportamento allo SLV per diverse tecniche costruttive ed in funzione della tipologia strutturale e della classe di duttilità CD

	q_0	
Tipologia strutturale	CD"A"	CD"B"

Ponti (§ 7.9.2.1)					
Pile in calcestruzzo armato					
Pile verticali inflesse	3,5 λ	1,5			
Elementi di sostegno inclinati inflessi	2,1 λ	1,2			
Pile in acciaio: Pile verticali inflesse Elementi di sostegno inclinati inflessi Pile con controventi concentrici Pile con controventi eccentrici	3,5 2,0 2,5 3,5	1,5 1,2 1,5 -			
Spalle In genere Se si muovono col terreno	1,5 1,0	1,5 1,0			

Il valore di q utilizzato per la componente verticale dell'azione sismica allo SLV, a meno di adeguate analisi giustificative, è q = 1,5 per qualunque tipologia strutturale e di materiale, tranne che per i ponti per i quali è q = 1.

Per le strutture a comportamento strutturale non dissipativo si adotta un fattore di comportamento qnd, ridotto rispetto al valore minimo relativo alla CD"B" (Tab. 7.3.II) secondo l'espressione:

$$1 \le q_{ND} = \frac{2}{3} q_{CD''B''} \le 1,5$$
 [7.3.2]

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

7.9.2 CRITERI GENERALI DI PROGETTAZIONE

Nel caso di comportamento strutturale non dissipativo, la capacità delle membrature e dei collegamenti deve essere valutata in accordo con le regole di cui al Capitolo 4, senza nessun requisito aggiuntivo, a condizione che: per le strutture di calcestruzzo armato, nessuna sezione superi la curvatura convenzionale di prima plasticizzazione, come definita al § 7.4.4.1.2; per le strutture di calcestruzzo armato precompresso e per le strutture in carpenteria metallica, nessun materiale superi la deformazione di snervamento di progetto.

Nel caso di comportamento strutturale dissipativo, la struttura del ponte deve essere concepita e dimensionata in modo tale che, sotto l'azione sismica relativa allo SLV, essa dia luogo alla formazione di un meccanismo dissipativo stabile nel quale la dissipazione sia limitata alle pile.

Ai soli fini del progetto dei pali di fondazione, con riferimento al § 7.2.5, è possibile considerare una limitata capacità dissipativa, dividendo per 1,5 le sollecitazioni sismiche sui pali derivanti dall'analisi strutturale con comportamento non dissipativo. In questo caso, per una lunghezza pari a 10 diametri dalla sommità del palo, devono applicarsi i dettagli costruttivi di cui al § 7.9.6.1 relativi alla CD"B".

La capacità delle membrature e dei collegamenti deve essere valutata in accordo con le regole di cui dal § 7.1 al § 7.3, integrate dalle regole di progettazione e di dettaglio fornite ai paragrafi successivi.

Nel valutare la capacità delle sezioni in calcestruzzo armato, si può tener conto dell'effetto del confinamento (v. § 4.1.2.1.2.1), purché si consideri la perdita dei copriferri al raggiungimento, in essi, della deformazione ultima di compressione del calcestruzzo non confinato (0,35%).

Il proporzionamento della struttura deve essere tale da favorire l'impegno plastico del maggior numero possibile di pile. Il comportamento inelastico dissipativo deve essere di tipo flessionale, con esclusione di possibili meccanismi di rottura per taglio. Per quanto possibile, le zone dissipative devono essere posizionate in punti accessibili, pur con ragionevole difficoltà, per facilitarne l'ispezione e la riparazione.

In genere, il comportamento sismico di ponti con impalcato continuo è migliore di quello di ponti a travata appoggiata, purché si riesca ad assicurare una formazione delle cerniere plastiche pressoché simultanea sotto tutte le pile scelte come elementi

Gli elementi ai quali non è mai richiesta capacità dissipativa devono mantenere un comportamento sostanzialmente elastico; essi sono: gli elementi progettati per avere un comportamento non dissipativo, le porzioni esterne alle zone dissipative delle pile, l'impalcato, gli apparecchi di appoggio, le strutture di fondazione, le spalle, le pile che non scambiano azioni orizzontali con l'impalcato. A tal fine si adotta il criterio della "progettazione in capacità" descritto nel seguito per ogni caso specifico.

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

7.9.2.1 VALORI DEL FATTORE DI COMPORTAMENTO

Nel caso di comportamento strutturale non dissipativo, per le due componenti orizzontali dell'azione sismica, qo è assunto pari a 1,0.

Nel caso di comportamento strutturale dissipativo, per le due componenti orizzontali dell'azione sismica, i valori massimi del valore di base q_0 del fattore di comportamento sono riportati in Tab. 7.3.II; in essa: $\lambda(\alpha)=1$, se $\alpha \geq 3$, $\lambda(\alpha)=(\alpha/3)^{0.5}$, se $3 > \alpha \geq 1$, essendo α = L/H, dove L è la distanza della sezione di cerniera plastica dalla sezione di momento nullo ed H è la dimensione della sezione nel piano di inflessione della cerniera plastica.

Per gli elementi duttili di calcestruzzo armato i valori di q_0 della Tab. 7.3.II valgono solo se la sollecitazione di compressione normalizzata v_k , ottenuta dividendo lo sforzo di progetto N_{Ed} per la resistenza a compressione semplice della sezione ($v_k = N_{Ed}/A_c$ f_{ck}), non eccede il valore 0,3.

La sollecitazione di compressione normalizzata non può superare il valore v_k = 0,6.

Per valori di v, intermedi tra 0,3 e 0,6, il valore di q, è dato da:

$$q_0(v_k) = q_0 - \left[\frac{v_k}{0.3} - 1\right] \cdot (q_0 - 1)$$
 [7.9.1]

essendo q_0 il valore applicabile per $v_k \le 0.3$

Nella tabella 7.3.II sono riportate anche le strutture che si muovono con il terreno. Esse non subiscono amplificazione dell'accelerazione del suolo poiché sono caratterizzate da periodi naturali di vibrazione in direzione orizzontale molto bassi (T ≤0,03 s). Appartengono a questa categoria anche le spalle connesse all'impalcato mediante collegamenti flessibili o appoggi

Per ciascuna delle due direzioni principali, i valori massimi qo del fattore di comportamento sono da applicare, nel caso di ponti isostatici, alle singole pile, nel caso di ponti a travata continua, all'intera opera.

Nel caso di ponti con elementi strutturali duttili di diverso tipo si adotta, per ciascuna delle due direzioni, il fattore di comportamento degli elementi di ugual tipo che contribuiscono in misura maggiore alla resistenza nei confronti delle azioni sismiche.

Il requisito di regolarità, quindi l'applicabilità di un valore K_R = 1, può essere verificato a posteriori mediante il seguente

- per ciascun elemento duttile si calcoli il rapporto: r_i= q₀M_{Edi}/M_{Rdi}, dove M_{Edi} è il momento alla base dell'elemento duttile iesimo prodotto dalla combinazione sismica di progetto, M_{Rdi} è il corrispondente momento resistente;
- la geometria del ponte si considera "regolare" se il rapporto tra il massimo ed il minimo dei rapporti ri, calcolati per le pile facenti parte del sistema resistente al sisma nella direzione considerata, risulta inferiore a 2 ($\tilde{\mathbf{r}} = \mathbf{r}_{i,max} / \mathbf{r}_{i,min} < 2$).

Nel caso risulti $\tilde{r} \ge 2$, l'analisi deve essere ripetuta utilizzando il seguente valore ridotto di K_R

$$\mathbf{K}_{R} = 2/\widetilde{\mathbf{r}} \tag{7.9.2}$$

e comunque assumendo sempre $q = q_0 K_R \ge 1$.

Ai fini della determinazione di r_{max} e r_{min} nella direzione orizzontale considerata si possono escludere le pile la cui resistenza a taglio non ecceda il 20% della resistenza sismica totale diviso il numero degli elementi resistenti.

Per ponti a geometria irregolare (ad esempio con angolo di obliquità maggiore di 45°, con raggio di curvatura molto ridotto, ecc.) si adotta un fattore di comportamento q pari a 1,5. Valori maggiori di 1,5, e comunque non superiori a 3,5, possono essere adottati solo qualora le richieste di duttilità siano verificate mediante analisi non lineare.

Nel caso presente l'elemento dissipativo della struttura è costituito da pila in c.a. (elemento verticale inflesso) in classe CDB per cui si ha:

$$q_0 = 1.5$$

Essendo la struttura isolata, si pone q = 1

Nota:

lo sforzo di compressione adimensionalizzato risulta $\nu k = N_{ed}/(A_c^* f_{ck}) < 0.3$

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Il requisito di regolarità (K_R=1) può essere verificato a posteriori calcolando, per ogni elemento duttile, il rapporto ri tra il momento alla base dell'elemento duttile prodotto dalla combinazione sismica di progetto M_{Ed,}i e il corrispondente momento resistente M_{Rd,i}.

La geometria del ponte si considera "regolare" se il rapporto tra il massimo e il minimo dei rapporti ri, calcolati per le pile facenti parte del sistema resistente al sisma nella direzione considerata, risulta inferiore a 2.

Per quanto riguarda invece l'azione sismica verticale va considerato un fattore di struttura unitario (spettro elastico) e si ha: $q_V=1$

5.1.3.11 RESISTENZE PASSIVE DEI VINCOLI: qq

Nel calcolo delle pile, delle spalle, delle fondazioni, degli stessi apparecchi di appoggio e, se del caso, dell'impalcato, si devono considerare le forze che derivano dalle resistenze parassite dei vincoli.

Nel caso di appoggi in gomma dette forze devono essere valutate sulla base delle caratteristiche dell'appoggio e degli spostamenti previsti.

Le resistenze passive dei vincoli devono essere considerate associate a quelle azioni per le quali danno effetto.

Il coefficiente parziale di sicurezza per le combinazioni di carico agli SLU deve essere assunto come per le azioni variabili.

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

7.9. COMBINAZIONI DI CARICO

I carichi variabili da traffico devono essere tra loro combinati come indicato in tabella 5.1.IV: l'azione di traffico è quindi suddivisa in gruppi di carico che combinano in modo differente le varie componenti. Il singolo gruppo è poi trattato come singola azione Qi e combinato nel modo ordinario con le altre azioni. I valori dei coefficienti per le diverse categorie di azioni sono riportati nella tabella 5.1.VI. Le azioni sono infine combinate come riportato nella tabella del punto 5.1.V

Per le combinazioni di carico occorre far riferimento ai paragrafi §2.5.3 e alle tabelle 5.1.IV - 5.1.V e 5.1.VI delle NTC18.

Nota 1

Vengono realizzati tre modelli di calcolo (*):

modello di calcolo 0	→ relativo alla fase 0 (sezione resistente: solo acciaio; modello di
	trave semplicem. appoggiata);
modello di calcolo 1	→ relativo alla fase 1 (sezione resistente: solo acciaio; soletta in cls:
	non reagente; modello di trave continua);
modello di calcolo 2	\rightarrow relativo alla fase 2 ($t=\infty$ - $n=E_a/E_c^*$; sezione resistente: A-CLS;
	$G_{1K}+G_{2K}+ritiro$; modello di trave continua);
modello di calcolo 3	\rightarrow relativo alla fase 3 (t=0 - n=E _a /E _c ; sezione resistente: A-CLS;
	Qi _K + □T; modello di trave continua)

- il calcolo della fase 0 viene condotto manualmente;
- il modello di calcolo 2 riporta nelle combinazioni di carico le ennuple inviluppo denominate FASE 2 e FASE 3, che vengono attivate modificando semplicemente il valore del modulo elastico del calcestruzzo rispettivamente pari a E_c* e E_c.

In alternativa è possibile implementare la funzione staged contruction di SAP2000; si è constatato come la redazione di due modelli lineari risulti più agevole riguardo al controllo dei risultati

Nota 2

Nelle combinazioni di carico non vengono considerate come principali le sollecitazioni Qi_K ininfluenti ai fini della massimizzazione dei carichi (ad esempio, il carico neve viene considerato in permutazione affetto dal coeff. \square_0 ma non come principale);

Nota 3

Ai fini delle combinazioni globali, il modello di calcolo è interessato dalle sollecitazioni q1 (gruppi di azioni 1 e 2 – schemi di carico 1 (tandem) e 5 (folla compatta)), dal ritiro (azione pemanente), dal carico q5 vento e neve (variabile), dalla azione della temperatura q7 (a. variabile), dalle azioni sismiche (E); ai fini delle combinazioni di carico per gli effetti locali, oltre agli schemi 2 e 5, verrà utilizzato lo schema di carico 4 (q1) e non lo schema 3 poiché il marciapiede è protetto da sicurvia.

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Ai fini delle verifiche degli stati limite, si definiscono le seguenti combinazioni delle azioni. Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU); (γ ₁ γ ₁ γ ₂ γ ₂ γ ₃ γ ₄	2.5.3.	COMBINA	ZIONI DELLE A	ZIONI			
$\begin{aligned} &\gamma_{G_1} \cdot G_1 + \gamma_{G_2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q_1} \cdot Q_{11} + \gamma_{Q_2} \cdot Q_{12} + \gamma_{Q_1} \cdot Q_{12} - \gamma_{Q_2} \cdot Q_{22} + \gamma_{Q_1} \cdot Q_{23} + \dots \end{aligned} \endaligned [2.5.1] \\ &- Combinazione caratteristica, cosideleta rara, generalmente impiegata per gli stati limite di esercizio (SLE) irrevers G_1 + G_2 + P + \gamma_{Q_1} + \gamma_{Q_2} \cdot Q_{22} + \gamma_{Q_2} \cdot Q_{23} + \dots \\ &- (2.5.2) \\ &- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili: G_1 + G_2 + P + \gamma_{Q_1} \cdot Q_{21} + \gamma_{Q_2} \cdot Q_{22} + \gamma_{Q_3} \cdot Q_{33} + \dots \\ &- (2.5.3) \\ &- Combinazione quasi permanente (SLE) generalmente impiegata per gli effetti a lungo termine: G_1 + G_2 + P + \gamma_{Q_1} \cdot Q_{21} + \gamma_{Q_2} \cdot Q_{22} + \dots \\ &- (2.5.4) \\ &- Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio cornessi all' azione sismica E: E + G_1 + G_2 + P + \gamma_{Q_1} \cdot Q_{21} + \gamma_{Q_2} \cdot Q_{22} + \dots \\ &- (2.5.5) \\ &- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A: G_1 + G_2 + P + A_4 + \gamma_{Q_1} \cdot Q_{21} + \gamma_{Q_2} \cdot Q_{22} + \dots \\ &- (2.5.6) \\ &- Gli effetti dell' azione sismica asraruno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali: G_1 + G_2 + \sum_j \psi_{Q_j} Q_{Q_j}. - (2.5.7) \\ &- ($	Ai fini d	elle verifiche d	egli stati limite	, si definisco	ono le segue	nti combinazior	ii delle azioni.
$\begin{aligned} &\gamma_{G_1} \cdot G_1 + \gamma_{G_2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q_1} \cdot Q_{11} + \gamma_{Q_2} \cdot Q_{12} + \gamma_{Q_1} \cdot Q_{12} - \gamma_{Q_2} \cdot Q_{22} + \gamma_{Q_1} \cdot Q_{23} + \dots \end{aligned} \endaligned [2.5.1] \\ &- Combinazione caratteristica, cosideleta rara, generalmente impiegata per gli stati limite di esercizio (SLE) irrevers G_1 + G_2 + P + \gamma_{Q_1} + \gamma_{Q_2} \cdot Q_{22} + \gamma_{Q_2} \cdot Q_{23} + \dots \\ &- (2.5.2) \\ &- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili: G_1 + G_2 + P + \gamma_{Q_1} \cdot Q_{21} + \gamma_{Q_2} \cdot Q_{22} + \gamma_{Q_3} \cdot Q_{33} + \dots \\ &- (2.5.3) \\ &- Combinazione quasi permanente (SLE) generalmente impiegata per gli effetti a lungo termine: G_1 + G_2 + P + \gamma_{Q_1} \cdot Q_{21} + \gamma_{Q_2} \cdot Q_{22} + \dots \\ &- (2.5.4) \\ &- Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio cornessi all' azione sismica E: E + G_1 + G_2 + P + \gamma_{Q_1} \cdot Q_{21} + \gamma_{Q_2} \cdot Q_{22} + \dots \\ &- (2.5.5) \\ &- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A: G_1 + G_2 + P + A_4 + \gamma_{Q_1} \cdot Q_{21} + \gamma_{Q_2} \cdot Q_{22} + \dots \\ &- (2.5.6) \\ &- Gli effetti dell' azione sismica asraruno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali: G_1 + G_2 + \sum_j \psi_{Q_j} Q_{Q_j}. - (2.5.7) \\ &- ($	- Comb	inazione fonda	mentale, gene	almente im	oiegata per s	ili stati limite ul	timi (SLU):
$ G_1 + G_2 + P + Q_{3,1} + \psi_{Q_2} - Q_{3,2} + \psi_{Q_3} - Q_{3,2} + \dots $ [2.5.2] $ - Combinazione requente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili: $							
$G_1+G_2+P+\psi_{11}\cdot Q_{31}+\psi_{22}\cdot Q_{32}+\psi_{33}\cdot Q_{33}+\dots \end{2mm} \begin{tabular}{l} [2.5.3] \end{2mm} \begin{tabular}{l} G_1+G_2+P+\psi_{11}\cdot Q_{31}+\psi_{22}\cdot Q_{32}+\psi_{33}\cdot Q_{33}+\dots \end{2mm} \begin{tabular}{l} [2.5.4] \end{tabular} \begin{tabular}{l} G_1+G_2+P+\psi_{31}\cdot Q_{31}+\psi_{32}\cdot Q_{32}+\psi_{33}\cdot Q_{33}+\dots \end{tabular} \begin{tabular}{l} [2.5.4] \end{tabular} \begin{tabular}{l} G_1+G_2+P+\psi_{31}\cdot Q_{31}+\psi_{22}\cdot Q_{32}+\dots \end{tabular} \begin{tabular}{l} [2.5.5] \end{tabular} \begin{tabular}{l} G_1+G_2+P+Q_2+Q_{31}+\psi_{22}\cdot Q_{32}+\dots \end{tabular} \begin{tabular}{l} G_2+G_2+P+Q_3+Q_{31}+Q_{32}\cdot Q_{32}+\dots \end{tabular} \begin{tabular}{l} [2.5.6] \end{tabular} \begin{tabular}{l} G_1+G_2+P+Q_3+Q_{31}+Q_{32}\cdot Q_{32}+\dots \end{tabular} \begin{tabular}{l} G_2+G_3+G_3+G_3+G_3+G_3+G_3+G_3+G_3+G_3+G_3$					neralmente	impiegata per g	
- Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine: $G_1 + G_2 + P + \psi_{11} \cdot Q_{11} + \psi_{21} \cdot Q_{21} + \psi_{31} \cdot Q_{21} + \psi_{32} \cdot Q_{22} + \dots$ [2.5.4] - Combinazione estamica impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E: $E + G_1 + G_2 + P + \psi_{21} \cdot Q_{21} + \psi_{22} \cdot Q_{22} + \dots$ [2.5.5] - Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A: $G_1 + G_2 + F_3 + \psi_{31} \cdot Q_{31} + \psi_{32} \cdot Q_{32} + \dots$ [2.5.6] Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali: $G_1 + G_2 + \sum_j \psi_{3j} Q_{3j}$. [2.5.7] $G_1 + G_2 + \sum_j \psi_{3j} Q_{3j} \cdot Q_{3j$					ata per gli st	ati limite di ese	
$ E + C_1 + C_2 + P + \psi_{21} \cdot Q_{21} + \psi_{22} \cdot Q_{22} + \dots $ $ = Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A: $	- Comb	inazione quasi	permanente (S	LE), general	lmente impie	egata per gli eff	
$G_1+G_2+P+A_0+\psi_{21}\cdot Q_{k1}+\psi_{22}\cdot Q_{k2}+\dots \end{tabular} \begin{tabular}{l} $\{2.5.6\}$ \\ Git effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali: G_1+G_2+\sum_j \psi_j Q_{kj} \ . \end{tabular} \begin{tabular}{l} $\{2.5.7\}$ \\ Tab. $8.1.1V-Volleri corottenstici delle azioni devote al reglico \\ \hline & Carichi volla superficire carabile \\ \hline & Carichi volla volla superficire carabile \\ \hline & Carichi volla superficire carabile \\ \hline & $					mite ultimi e	e di esercizio co	
$G_1 + G_2 + \sum_{j} \psi_{2j} Q_{kj} \ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $					ati limite ulti	imi connessi all	
$G_1 + G_2 + \sum_{j} \Psi_2\rangle Q_{ij} \ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Gli effet	ti dell'azione si	smica saranno	valutati ten	endo conto d	lelle masse asso	ciate ai seguenti carichi gravitazionali:
Tab. 8.I.IV – Valori corretteratico delle azioni devotre al reglico Carichi rullia superficie cararbile Carichi rullia s			parace seament		inio como i	terre rampoe more	
Carichi rulla superficie cazzabile Carichi rulla superficie cazzabile Carichi run marciagnida e piato ciclabili non sementabili Carichi runticali Carichi runtic	0,+0	$V_2 + \sum_j \Psi_{2j} Q_{kj}$.					[2007]
Carichi sulla superficie carachile Carichi sulla superficie carachile Carichi sun marciagniste prints ciclabili non sementabili Carichi verticali Carichi verticali Carichi sun marciagniste prints ciclabili non sementabili Carichi sun marciagniste prints ciclabili non carichi sun marciagniste print							
Carichi sulla superficie carachile Carichi sulla superficie carachile Carichi sun marciagniste prints ciclabili non sementabili Carichi verticali Carichi verticali Carichi sun marciagniste prints ciclabili non sementabili Carichi sun marciagniste prints ciclabili non carichi sun marciagniste print							
Carichi rulla superficie cazzabile Carichi rulla superficie cazzabile Carichi run marciagnida e piato ciclabili non sementabili Carichi runticali Carichi runtic							
Carichi sulla superficie carachile Carichi sulla superficie carachile Carichi sun marciagniste prints ciclabili non sementabili Carichi verticali Carichi verticali Carichi sun marciagniste prints ciclabili non sementabili Carichi sun marciagniste prints ciclabili non carichi sun marciagniste print							
Carichi sulla superficie carachile Carichi sulla superficie carachile Carichi sun marciagniste prints ciclabili non sementabili Carichi verticali Carichi verticali Carichi sun marciagniste prints ciclabili non sementabili Carichi sun marciagniste prints ciclabili non carichi sun marciagniste print							
Carichi rulla superficie cazzabile Carichi rulla superficie cazzabile Carichi run marciagnida e piato ciclabili non sementabili Carichi runticali Carichi runtic							
Carchi vulta seperince carachi e sommontabili Carchi verticali C							
Gruppo di azioni canto 1, 2, 5, cali de	Tab	5.1.IV – Valeri osreti	leristici delle azioni d	ovute al traffico			
Geopp de attention de la cate de	Tab.	5.1.IV – Valori carati			ie carrabile		
	Tab.		Cariel	ii sulla superfic		orizzostali	sormontabili
Valore carat-	Gruș	Modello principal (schemi d	Carichi vertical	i sulla superfici Folla (Sche- ma di carico	Carichi		sormontabili Carichi verticali

2.5.1.3 CLASSIFICAZIONE DELLE
AZIONI SECONDO LA VARIAZIONE
DELLA LORO INTENSITÀ NEL TEMPO
a) permanenti (G):
- peso proprio (G1)
 peso proprio di tutti gli elementi
non strutturali (G2);
 spostamenti e deformazioni
impressi, incluso il <mark>ritiro</mark> ;
 presollecitazione (P).
b) variabili (Q):
- sovraccarichi;
- azioni del vento;
 azioni della neve;
- azioni della temperatura.
c) eccezionali (A):
- incendi:
- esplosioni;
- urti ed impatti:
d) sismiche (E)
40
A. VAR.TRAFF: CARICHI VERTICALI
A. VAR.TRAFF: INCR. DIN. DISCONT. STRUTT.
A. VAR.TRAFF: A. LONGIT. FRENAM/ACCEL.
A. VAR.TRAFF: AZIONE CENTRIFUGA
AZIONI DI NEVE E DI VENTO
AZIONI IDRODINAMICHE AZIONI DELLA TEMPERATURA
AZIONI DELLA TEMPERATURA AZIONI SUI PARAP, E URTO DI VEICOLO IN SVI
RESISTENZE PASSIVE DEI VINCOLI
AZIONI SISMICHE
AZIONI ECCEZIONALI

Sch. di Car. 1 carichi concentrati su due assi

Sch. di Car. 1 carichi concentrati su due assi in tandem applicati su impronte 0,40 m e carichi umiformemente distribuiti -sia per le verifiche globali che locali, -un solo carico tandem per corsia, -disposto in asse alla corsia stessa.

Sch. di Car. 2 carico concentrato su singolo asse applicato su impronte 0,60 m x 0,35 m; asse longitudinale nella posizione più gravosa; solo per verifiche locali.

Sch. di Car. 3 carico isolato da 150 kN; impronta lato 0,40 m; per verifiche locali su marciapiedi non protetti.

impronta ato 0,40 m, per verifiche locari su marciapiedi non protetti. Sch. di Car. 4 carico isolato da 10 kN; impronta lato 0,10 m; verifiche locali su marciapiedi protetti Sch. di Car. 5 folla compatta 5,0 kN/m². -valore di combinazione 2,5 kN/m².

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente \$\psi_0\$ di combi- nazione	Coefficiente V ₁ (valori frequenti)	Coefficiente ψ (valori quasi permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLUeSLE	0,0	0,0	0,0
Neve	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

		Coefficiente	EQU ¹⁰⁰	A1	A:
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,0 1,0
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	YG2	0,00 1,50	0,00 1,50	0,0 1,3
Azioni variabili da traffico	favorevoli sfavorevoli	Ϋ́Q	0,00 1,35	0,00 1,35	0,0
Azioni variabili	favorevoli sfavorevoli	Yομ	0,00 1,50	0,00 1,50	0,0
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Yel	0,90 1,00 ⁽³⁾	1,00 1,00®	1,0
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Ye2 Ye3 Ye4	0,00 1,20	0,00 1,20	0,0

		Caricki verticali		Carichi	orizzostali	Carichi verticali	
Gruppo di azioni	Modello principale (schemi di carico 1, 2, 3, 4 e 6)	Veicoli spe- ciali	Folla (Sche- ma di carico 5)	Frenatura	Forza centrifuga	Carico uniformemente distribuito	
1	Valore carat- teristico					Schema di carico 5 con valore di combinazione 2,5KN/m ²	
2a	Valore fre- quente			Valore carat- teristico			
2b	Valore fre- quente				Valore caratteri- stico		
3 (*)						Schema di carico 5 con valore caratteristico 5,0KN/m ²	
4 (**)			Schema di carico 5 con valore carat- teristico 5,0KN/m ²			Schema di carico 5 con valore caratteristico 5,0KN/m²	
5 (***)	Da definirsi per il singo- lo progetto	Valore carat- teristico o nominale					
(*) Posti pe	donali						

Combinazioni SLU: $1.35*G_1+1.5*G_2+1.35*Q_{Tr}$, $i + 1.5*\psi_{0i}*Q_{ki}$

dove i termini Q_k vanno permutati con i coefficienti di cui alla tab. 5.1.IV NTC18

Nota:

con rifermento alle azioni da ritiro e alla viscosità, nelle combinazioni di carico si utilizza un approccio semplificato per cui:

- l'azione da ritiro è assimilata ad un gradiente termico uniforme negativo (cfr paragrafo relativo):
- la viscosità è tenuta in conto tramite un modulo elastico ridotto (cfr paragrafo relativo).

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

FASI	SCHEMA	COMPONENTI	CARICHI	COMBINAZIONI	n	Ec
FASE 0	Tr. appogg.	Solo Tr_acc.	G1k_Tr,acc	γ,G1 x G1k_tr 1,35 x G1k_tr	- ∞	0.0 MPa
FASE 1	Tr. continua				∞	0.0 MPa
FASE 2	Tr. continua	Sez. comp. A-CLS	G2k+Ritiro	γ,G2 x G2k + γ,ε x Rit. 1,5 x G2k + 1,2 x Rit.	17.20	12206.4 MPa
FASE 3	Tr. continua	Sez. comp. A-CLS	Qik+∆T	γ,Q x Inv_(q1;q3) + γ,Q x ψ,0 x q5 + γ,Q x ψ,0 x q7 1,35 x Inv_(q1;q3) + 1,5 x 0,6 x q5 + 1,5 x 0,6 x q7	6.06	34625.5 MPa

Nota:

le combinazioni di cui alla fase 3 vengono permutate

Per quanto attiene alle combinazioni SLE, è sufficiente tener conto dei coefficienti ψ0 per la combinazione caratteristica o rara, e ψ_2 per la combinazione quasi permanente.

Per quanto infine attiene le combinazioni sismiche, si ha:

$$G_1 + G_2 + P + E + \sum_{i} \psi_{2i} Q_{kj}$$

- coefficienti unitari per G1 (acciaio-soletta -pila);
- coefficienti unitari per G2 (sovracc. permanenti);
- coefficienti unitari per E (distorsioni ritiro cedimenti);
- coeff. nulli per carichi Qi (traffico frenam. vento neve)
- permutazione degli indici per sisma longitudinale (L) trasversale (T) verticale (V)

Ex+0.3 Ey+0.3 Ez0.3 Ex + Ey + 0.3 Ez0.3 Ex + 0.3 Ey + Ez

GESTIONE PROGETTI INGEGNERIA srl

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

7.10. **EFFETTI LOCALI – MODELLO A TRAVE CONTINUA**

L'analisi della soletta viene condotta mediante due modellazioni di calcolo complementari:

- Modello di calcolo a frames
- Modello di calcolo a shell

Nel modello a frame la soletta è modellata a trave continua su tre appoggi con campate di 4.6 metri e due sbalzi da 1.85 m, di cui 1.2 m gravati da rialzo del marciapiede.

Azioni da combinare

Carichi permanenti strutturali G1

- Peso proprio soletta
- Peso proprio predalles

Carichi permanenti non strutturali G2

- Peso proprio barriera sicurvia
- Peso proprio cordolo in c.a.
- Peso proprio veletta
- Peso proprio pavimentazione

Azioni variabili:

- Azione del vento;
- Carico neve

Azioni dovute al traffico, gruppi di azione 1 e 2a:

- Schema di carico 1;
- Schema di carico 2.

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Azioni eccezionali:

- Urto di veicolo in svio.

Ai sensi sella NTC18 il carico neve non deve essere applicato concomitante al traffico.

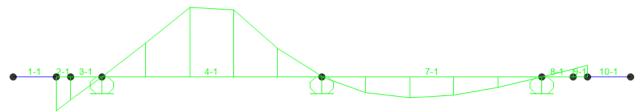
7.10.1. LINEE DI INFLUENZA

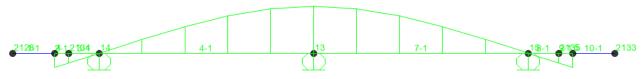
Per individuare le massime sollecitazioni agenti si fa ricorso alle linee di influenza; tramite le linee di influenza è possibile individuare tutte le giaciture dei carichi mobili in tandem dello schema 1 e per i carichi mobili dello schema 2 in cui posizionare i carichi che massimizzano le sollecitazioni.

La linea di influenza è una funzione che fornisce la risposta della struttura in una data sezione, in funzione della posizione della forza: per ogni sezione S voluta, si calcolano le sollecitazioni al variare di un carico unitario P, ottenendo la variazione della sollecitazione nella sezione di interesse la variare della posizione della azione: l'ascissa del valore massimo della azione unitaria individua la giacitura in cui ottenere il massimo valore della sollecitazione nella posizione voluta. Il metodo vene implementato tramite solutore SAP2000 tramite apposite funzioni:

- Si definisce un percorso;
- Si assegnano tutti i frames della travata e dal comando assegna → frames → percorso
- Si definisce schema di carico dal comando definisci→schemi di carico
- Si definisce caso di carico dal comando definisci→ caso di carico → modify show load case → load case type → moving load
- Per visualizzare la linea di influenza, comando visualizza mostra linee di influenza:

A titolo di esempio si riporta la linea di influenza del momento flettente generato dal carico da traffico q1 sulla prima campata e la LDI della massima reazione sull'appoggio cenrale:




TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

LDI mom.flettente sulla campata 4

LDI della reazione sull'appoggio centrale

Nota:

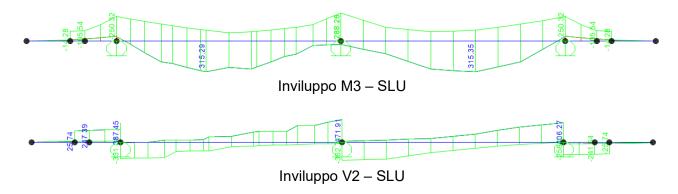
le sollecitazioni massime sono ottenute dall'inviluppo di 3 tipologie di carico di tipo 1:

- Carico traslante entro la carreggiata composto da 3 colonne di carico (Qik+qik, i=1;3);
- Idem da due colonne;
- Idem, da una sola colonna Q1k+q1k

Schema di carico 1 - ponti di 1ª categoria.										
Posizione	Carico asse Q _k [kN]	q _k [kN/m²]								
Corsia n°1 300 9.00										
Corsia n°2	200	2.50								
Corsia n°3	Corsia n°3 100 2.50									
Altre corsie	0	2.50								

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo


		Carichi sui marciapiedi e piste ciclabili				
	C	arichi verticali		Carichi ori	zzontali	Carichi verticali
Gruppo di azioni	Modello principale (sch. 1, 2, 3, 4, 6)	Veicoli speciali	Folla (schema di carico 5)	Frenature 9 ₃	Forza centrifuga 9 ₄	Carico uniformemente distribuito
1	Valore caratteristico					Schema 5 con valore di comb. 2.5 kN/m²
2a	Valore frequente			Valore caratter.		
2b	Valore frequente				Valore caratter.	
3 [*]						Schema 5 con valore caratter. 5.0 kN/m²
4 [**]			Schema 5 con valore caratt. 5.0 kN/m²			Schema 5 con valore caratter. 5.0 kN/m²
5 [***]	da definirsi per progetto	Valore caratter.				

Per quanto attiene il carico da urto, si fa riferimento alla combinazione 2.5.6:

- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A: $G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$ [2.5.6]

dove A = 100 KN apllicato alla quota di 1.0 m

7.10.2. ANALISI DELLE SOLLECITAZIONI MASSIME

Valori massimi in asse:

Momento massimo positivo: $M^+ = 315$ KNm Momento massimo negativo $M^- = -288$ KNm Taglio massimo agente V = 472 KN

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Volendo ottenere dei valori più realistici, occorre passare alla modellazione bidimensionale: l'effetto Poisson apporta infatti per congruenza una diminuzione delle sollecitazioni poiché chiama a compartecipare ad effetto piastra anche le giaciture longitudinali.

7.10.3. EFFETTI LOCALI – MODELLO A PIASTRA

Le impronte di carico relative agli schemi 1 e 2 hanno le seguenti dimensioni:

Impronta schema di carico 1: 40x40

 $H_{soletta} = 30 cm$

H pavimentazione = 8 cm

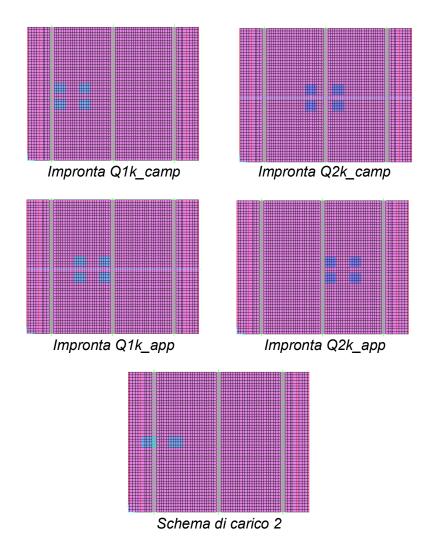
- → Impronta in asse soletta = $40+2*8+2*30/2 = 86 \rightarrow 86x86$
- → $Q_{1K} = 150 \text{ KN} \rightarrow Q_{1K,s} = 150/(0.86*0.86) = 203 \text{ KN/mq}$
- → Q_{2K} = 100 KN → $Q_{2K,s}$ =100/(0.86*0.86) = 152 KN/mq → Q_{3K} = 50 KN → $Q_{3K,s}$ =50/(0.86*0.86) = 68 KN/mq

Impronta schema di carico 2: 35x60

H _{soletta} = 30 cm

H pavimentazione = 8 cm

- → Impronta in asse soletta = 35+2*8+2*30/2 = 81
- → Improta in asse soletta = $60+2*8+2*30/2 = 106 \rightarrow 81x106$
- → $Q_{aK} = 200 \text{ KN} \rightarrow Q_{2K.s} = 200/(0.81*1.06) = 233 \text{ KN/mg}$

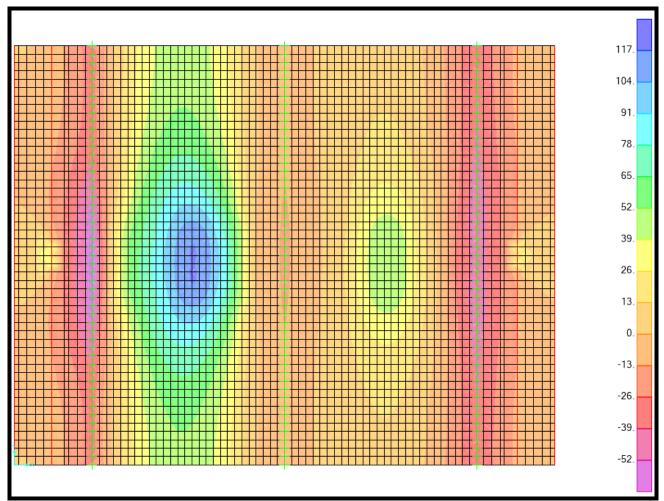


TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Di seguito si riportano le schermate delle sollecitazioni agenti sulle piastre

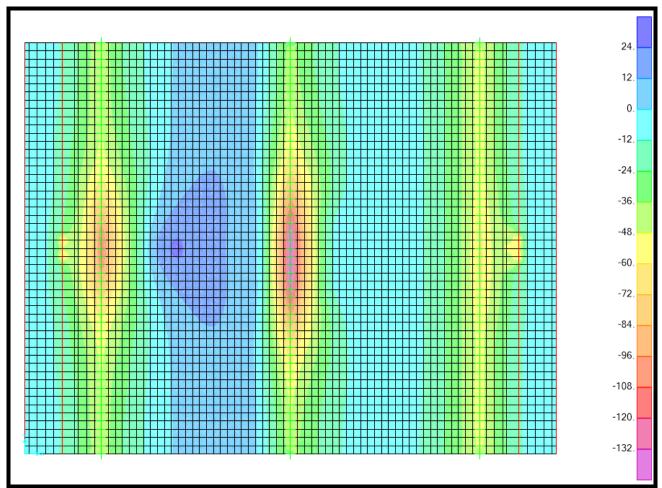
GESTIONE PROGETTI INGEGNERIA srl



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

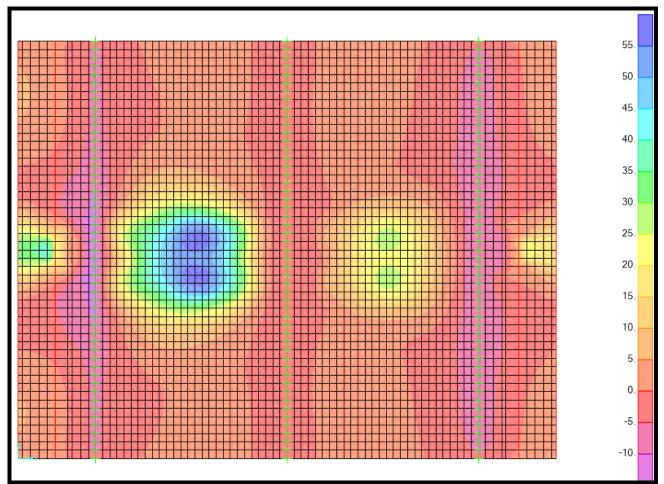
Inv M11 max



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

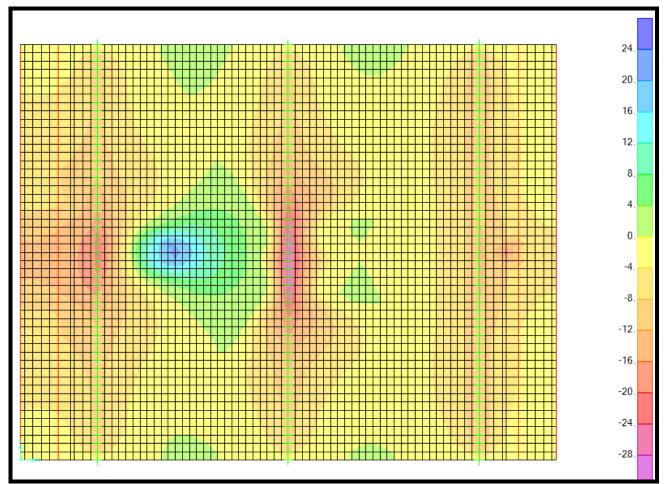
Inv M11 min



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Inv M22 max

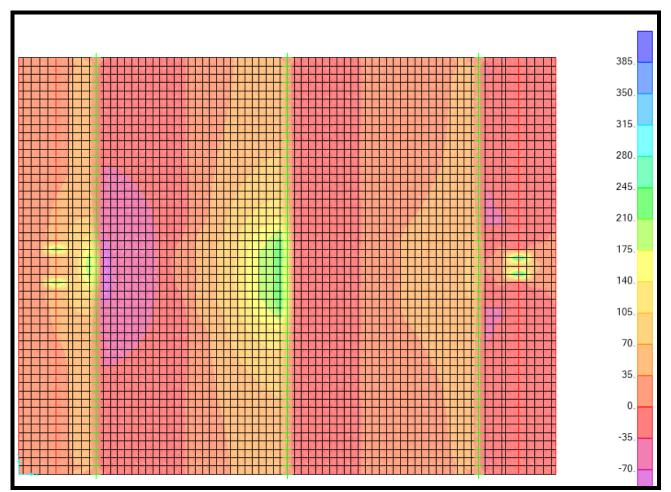


TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Inv M22 min

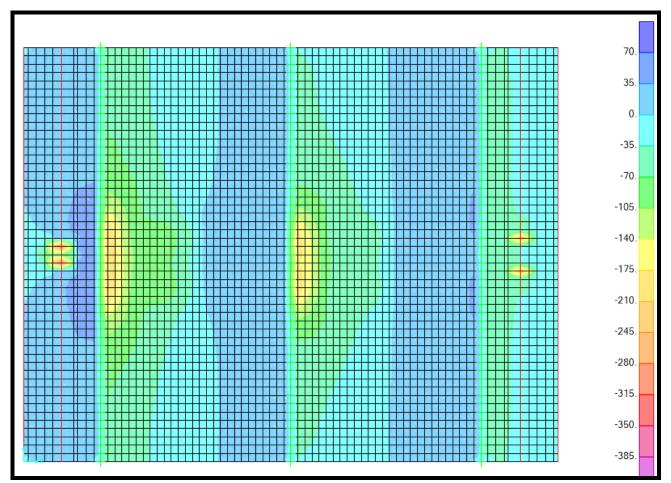
GESTIONE PROGETTI INGEGNERIA srl



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Inv V13 max



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Inv V13 min

GESTIONE PROGETTI INGEGNERIA srl

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

7.11. VERIFICA DI RESISTENZA DELLA SOLETTA

I valori di calcolo delle sollecitazioni sono:

Modellazione a frame (in asse):

Momento massimo positivo: $M^+ = 315$ **KNm** Momento massimo negativo $M^{-} = -288$ **KNm** Taglio massimo agente V = 472KN

Modellazione a shell

Il modello a shell tiene conto del comportamento bidirezionale che l'effetto Poisson comporta per congruenza; il contributo alla resistenza nella deformazione sul piano in direzione longitudinale comporta una diminuzione delle sollecitazioni:

 $M_{11,max} = 117 \text{ KNm}$ $M_{11.min} = -141 \text{ KNm}$

 $M_{22,max} = 58 \text{ KNm}$ $M_{22,min} = -30 \text{ KNm}$

 $V_{13,max} = 230 \text{ KN}$

Considerando la presenza della predalle (spessore 50 mm), e la posa delle armature (esterne in direzione asse ponte, interne in direz. perpendicolare all'asse del ponte), i valori effettivi delle caratteristiche geometriche della sezione di verifica valgono:

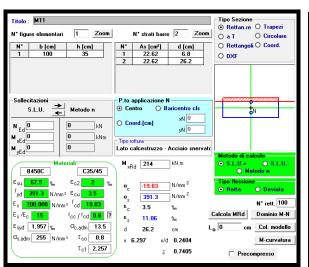
Armature perpendicolari all'asse del ponte – flessione M11

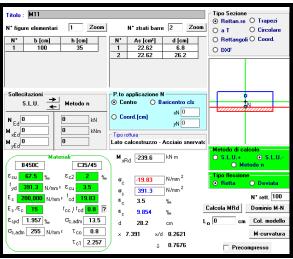
- H soletta = 350 mm
- Coprif sup = 40+16 mm(asse barra = $c+\Phi/2$)
- Coprif inf = 50 (predalle) +10 +16 mm (asse barra = $c+\Phi/2$)

Armature dirette come l'asse del ponte – flessione M22

- H soletta = 300 mm
- Coprif sup = 40 mm(asse barra = $c+\Phi/2$)
- Coprif inf = 50 (predalle) +10 mm (asse barra = $c+\Phi/2$)

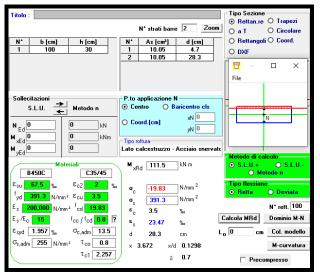
Le armature che assorbono lo sforzo principale M11 poste in direzione perpendicolare al ponte vengono poste all'interno; quelle che assorbono lo sforzo M22 (sollecitazione diretta parallelamente all'asse del ponte) vengono poste all'esterno.

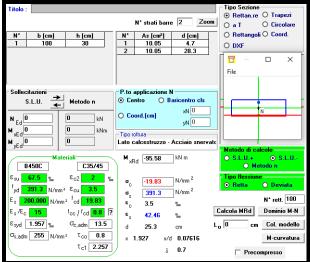

TRATTO MADONNA DEL PIANO - COLLESTRADA


OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Campata

Armando la sezione 100x30 con ferri Φ 24/20 sup ed inf si ha:


 $\rightarrow \eta^+ = Mr/Ms = 214/117 = 1.83$ $Mr,^{+} = 214$ KNm/m $Mr^{-}_{,} = -185.6$ KNm/m $\rightarrow \eta^{-}$ = Mr/Ms = 239.6/141 = 1.7



In direzione longitudinale vengono poste barre Φ16/20, cui corrispondono i seguenti valori resistenti:

 $Mr,^+ = 111.5$ KNm/m $\rightarrow \eta^+ = Mr/Ms = 111.5/58 = 1.92$ $Mr^{-}_{,} = -95.6$ $\rightarrow \eta^{-}$ = Mr/Ms = 95.6/30 = 3.18 KNm/m

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

100x30

Per quanto riguarda il taglio, si ha:

Sezione resistente unitaria:

Taglio max agente: 230 KN/m

Taglio resistente in assenza di specifica armatura a taglio: 243 KN/m (taglio resistente per sezione h=35 cm: 261 KN)

 $\eta = 243/230 = 1.06$ Coeff.sicurezza:

В	H	c	Φst	n	N°	Φ	θ	α	a 1
(cm)	(cm)	(cm)	(mm)			(mm)	21.8°<=0<=45°	0°<=α<=90°	(cm)
Larghezza anima	Altezza sezione	Copriferro	diametro staffa	n° braccia	n° ferri longitud.tesi	diameter Claus	(incl.bielle cls)	(incl. staffe)	prolung. Along.
Largitezza anima	A nezza sezione	Соринено	diametro staria	п втасста	ii leiii longitud.tesi	diametro i. iong.	(rott.cont.bielle-	-staffe per teta=15,63°)	prolung. Along.
100	30	2	10	5	10	24	33,0	90,0	19
70									
Vsd	Ned	Vr,sd	s	Vr,cd	Verifica	S	Vrd	η	Vrd_
(KN)	(KN)	(KN)	(cm)	(KN)	Vsd <vred< td=""><td>(cm)</td><td>(KN)</td><td>Tras1.M =19,4 cm</td><td>(KN)</td></vred<>	(cm)	(KN)	Tras1.M =19,4 cm	(KN)
Toolio ogonto	Sforzo di compr.	Res. a taglio	n of noons	Resist.biella	Rott.duttile	p St. scelto	Res. a taglio di	Coeff. Sicur.	(NTC18 4.1.23 ELEMENTI
Taglio agente	Storzo di compi.	Res. a tagno	p_st. necess.	Resist.biena	Rottauttile	p_st. sceno	prog.	Vrd/Ved	SENZA ARMAT. A TAGLIO
230	0	298,2	25,9	1218	BIELLA OK	20	298,2	1,30	243,13

→ non è necessario disporre specifica armatura a taglio.

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

7.12. **CALCOLO DELLE PREDALLES**

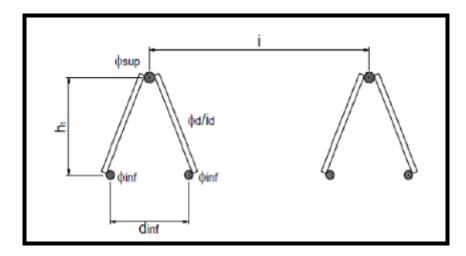
Verranno utilizzate predalles aventi le seguenti caratteristiche:

 spessore soletta s = 50 mmlarghezza L =1200 mm • numero di tralicci n = 3 i= 400 mm interasse

alt.traliccio ht= 205 mm • dist.armature inf d inf = 100 mm

			VERIFICA DI	RESISTENZA PREI	DALLE			
spessore predalle	alt. Soletta	largh. predalle	n°tralicci	interasse	alt.traliccio	dist.arm. inf.	peso sol.+pred.	
S	h,s	L	n	i	ht	d,inf	р	
(mm)	(mm)	(mm)	-	(mm)	(mm)	(mm)	KN/mq	
50	300	1200,0	3,0	400,0	205	100	8,75	
distanza appoggi pred.	sbalzo	coeff. ampl.	mom. camp.	mom. sbalzo	mor	n. tral. camp-	mom. tral. sbalzo	
Li	Le	γ	M ⁺ ,int	M ⁻ ,sb		M _T ⁺ ,int	M _T -,sb	
m	m	-	KNm/pred	KNm/pred		KNm/tral.	KNm/tral.	
4,20	1,85	1,35	26,05	20,21		10,42	8,09	
		forzo assiale	barre	teso /compresso			1	
PREDAI	LE	N tot	N barre			фзир		
		(KN)	(KN)	T/C		da/id		
CAMPATA	SUP	50,8	50,8	С	=	(I)		
CAMPATA	INF	50,8	25,4	T	1 4	p dinf	4	
APPOGGIO	SUP	39,4	39,4	T				
AFFOGGIO	INF	39,4	19,7	C		dinf		
		dimensionamento		Aa, po	acto			
PREDALLE		Npl,rd=A*fyk/γ _{M0}		Aa, po	Jaid		VERIFICA	
		Aa, min	Φ	n°	A	η		
		(mmq)	(mm)	-	(mmq)	-		
CAMPATA	SUP	118,6	16	1	201,1	1,70	OK	
CAMI ATA	INF	118,6	12	2	226,2	1,9	OK	
APPOGGIO	SUP	92,0	16	1	201,1	2,2	OK	
711 0 0 0 10	INF	92,0	12	2	226,2	2,5	OK	

Di seguito vengono esplicitati i calcoli:



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Nella fase iniziale la predalle deve sostenere il peso della soletta prima che faccia presa, per cui si ha:

- carico caratteristico p = 0.35*25 = 8.75 KN/mq
- $\gamma d = 1.35$
- Lapp = 4.2 m \rightarrow M⁺ = 8.75*1.35*L^2/8 = 26.05 KNm/pred.
- Lest = 1.75 m \rightarrow M⁻ = 8.75*1.35*L^2/2 = 20.21 KNm/pred

per cui la sollecitazione spettante al singolo traliccio ammonta a:

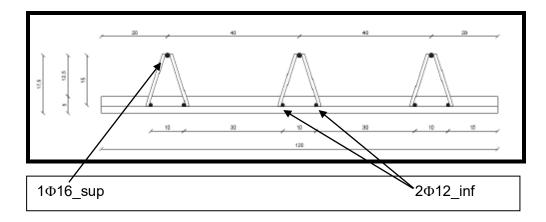
 $M^+ = 26.05 *0.4$ = 10.42 KNm/tral. = 8.09 KNm/tral. $M^{-} = 20.21 *0.4$

Lo sforzo assiale agente sulla barra ammonta a M/ht:

- campata sup (una barra) \rightarrow Nsd = M⁺/ht = (10.42E3/205) = 50.8 KN/corrente com.
- campata inf (due barre) \rightarrow Nsd = M⁺/ht = (10.42E3/205)/2 = 25.4 KN/corrente teso
- appoggio sup (una barra) → Nsd = M⁻/ht = (8.09E3/205) = 39.4 KN/corrente teso
- appoggio inf (due barre) \rightarrow Nsd = M⁻/ht = (8.09E3/205)/2 = 19.7 KN/corrente compr.

Dimensionamento barre

 $N_{pl,Rd} = A^* f_{vk} / \gamma_{M0}$ con γ_{M0} =1.05 f_{vk} =450 Mpa



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

		forzo assiale	barre	teso /compresso			i
PREDAI	LE	N_tot	N barre	T/C	,	фsup S	
		(KN)	(KN)	1/C		↓ ↓ ↓ d/id	
CAMPATA	SUP	50,8	50,8	C		// //	
CAMPATA	INF	50,8	25,4	T	<u> </u>	φinf φinf	4 2
APPOGGIO	SUP	39,4	39,4	T			
AFFOGGIO	INF	39,4	19,7	C		dinf	
		dimensionamento					
PREDAI	LE	Npl,rd=A*fyk/γ _{M0}		Aa, po	osta		VERIFICA
		Aa, min	Φ	n°	A	η	
		(mmq)	(mm)	-	(mmq)	-	
CAMPATA	SUP	118,6	16	1	201,1	1,70	OK
CAMPATA	INF	118,6	12	2	226,2	1,9	OK
APPOGGIO	SUP	92,0	16	1	201,1	2,2	OK
Arroddlo	INF	92,0	12	2	226,2	2,5	OK

1.1.1 VERIFICA DI INSTABILITÀ

Le barre compresse devono essere verificate all'instabilità secondo I seguente espressione:

$$N_{Ed} \leq N_{b,Rd}$$

dove $N_{b,Rd}$ è la resistenza all'instabilità dell'asta compressa che per sezioni di classe 1,2 e 3 vale:

$$N_{b,Rd} = \chi \frac{A f_{yk}}{\gamma_{M1}}$$

dove:

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 + {\lambda^*}^2}}$$

$$\Phi = 0.5[1 + \alpha(\lambda^* - 0.2) + {\lambda^*}^2]$$

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

$$\lambda = \frac{l_0}{i}$$
 $i = \sqrt{\frac{J}{A}}$ $\lambda^* = \sqrt{A \cdot \frac{f_{yk}}{N_{cr}}}$ $N_{cr} = \frac{E\pi^2 A}{\lambda}$

lo = β *I = lunghezza libera di inflessione

i = raggio giratore di inerzia

 λ^* = snellezza adimensionalizzata

Il fattore di imperfezione α si ottiene dalla tab. 4.2.VIII NTC18 di seguito riportata, e vale: $\alpha = 0.49$

Ta	Tab. 4.2.VIII - Curve d'instabilità per varie tipologie di sezioni e classi d'acciaio, per elementi compressi										
							Inflections		Curva di instabilità		
	Sezione trasversale			Limiti		interno all'asse		\$2: \$2: \$3: \$4	75, 55,	S460	
		IZ A			t _f ≤ 40 1	m m	y-y z-z		a t		a ₀
	minate	h y y	40 mm < t _t ≤ 100 mm		y-y z-z	1		a a			
	Sezioni laminate		y 1	h/b ≤ 1,2	t _f ≤100	mm		y-y z-z	1		a
					t _f > 100	nım		y-y z-z	ć		c
	ad I	=	,2 t _f	t _f ≤ 40 mm			y-y z-z	t		b	
	Sezioni ad I saldate	y - +	- '-y		t _f > 40 m m			y-y z-z			c d
	Sezioni cave			Sezione formata "a caldo"		qu	alunque	a	ı	a ₀	
	Sezion				ezione formata "	a freddo"	qı	alunque	c	:	c
	Sezioni scatolari saldate	h y c			In generale		qu	alunque	t	,	b
	Sezioni scat	I _Z	_ s		aldature "spesse" b/t _f <30; h/t _w		qı	alunque	c		c
	Sezioni piene, ad U e T				- 666		qualunque		c	:	c
	Sezioni ad L	귤			 		qualunque		t	,	b
	Curva di instabilità a ₀				a	ь	с		d		d
	Fattore di imperfezione α 0,13				0,21	0,34	0,49			0,76	

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

VERIFICA DI INSTABILITA' ARMAURA PREDALLE								
		1						
E= 210000 MPa	fyk =450 MPa	$\gamma = 1,05$						
CORRENTE	φ_barra	A	β	10	1	J	i	λ
COMPRESSO	(mm)	(mm^2)	-	(mm)	(mm)	(mm^4)	mm	-
SUPERIORE	16	201,1	1,0	150	150	3217,0	4,00	37,5
INFERIORE	12	113,1	1,0	150	150	1017,9	3,00	50,0
Ner	λ*	α	Φ	χ	Ned	Nb,rd	η	VERIFICA
(N)		curva C			(KN)	(KN)	(Nbrd/Ned)	
11112649,56	0,090	0,49	0,477	1,04	50,8	89,50	1,76	OK
4688149,034	0,104	0,49	0,482	1,03	19,7	49,71	2,52	OK

7.12.1. VERIFICA DI DEFORMABILITÀ

In fase costruttiva la predalle porta l'interezza del carico, compreso il peso proprio; in particolare nella verifica delle compatibilità degli spostamenti (freccia limite) si assume che l'intero carico venga portato dal solo traliccio di acciaio

Freccia mensola

$$f = \frac{pl^4}{8EI}$$

$$f = \frac{5}{384} \frac{pl^4}{EI}$$

Freccia in campata

Il carico permanente agente sul singolo traliccio, incrementato del 10% per carico dinamico, vale:

p = 0.35*26*0.4*1.1 = 3.64 KN/m (peso specifico cls liquido 26 KN/mc)

Il momento di inerzia del traliccio vale:

$$I = I_{c,s} + 2I_{c,i} + A_{s,s} * \left(\frac{h_t}{2}\right)^2 + 2A_{s,i} * \left(\frac{ht}{2}\right)^2$$

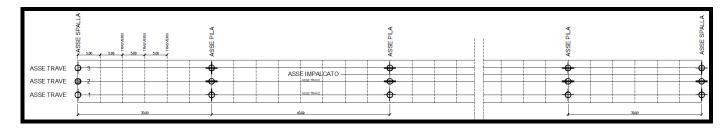
dove Ic momento inerzia barra di raggio r

$$I_c = \frac{\pi r^4}{4}$$

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

VERIFICA DI DEFORMABILITA' PREDALLE									
	MOMENTO INERZIA TRALICCIO								
CORRENTE		φ_barra	n°	A	J	htral.	Baricentro	J_traliccio	
		(mm)	(-)	(mm^2)	(mm^4)	(mm)	(mm)	(mm^4)	
SUPERIO	SUPERIORE		1	201,1	3217,0	205	96,5	4478585,002	
INFERIO	INFERIORE		2	113,1	1017,9	203	90,3	4478383,002	
FRECCIA MENSOLA	(γ=26 KN/mc incr.diam.getto)		$f = \frac{pl^4}{8EI}$	f= 5,7 mm	freccia limite	f,lim_mens. = 7,4 mm	VERI	FICATO	
FRECCIA CAMPATA			$f = \frac{5}{384} \frac{pl^4}{EI}$	f= 15,7 mm	K =L/250,00	f,lim_camp = 16,8 mm	VERI	FICATO	


Freccia mensola: $3.64*1850^4/(8*210000*4478585) = 5.7 \text{ mm} < L/250 = 7.4 \text{ mm}$

Freccia campata: $3.64*4200^4*5/384/(210000*4478585) = 15.7 \text{ mm} < L/250 = 16.8 \text{ mm}$

→ Non occorrono puntelli

1.2 Impalcato – effetti globali

L'analisi degli effetti globali viene condotta a mezzo di modello tridimensionale agli elementi finiti realizzato tramite elementi frame (travi, traversi e controventi) e shell (soletta). L'impalcato con soletta a trave continua presenta la seguente disposizione degli appoggi:

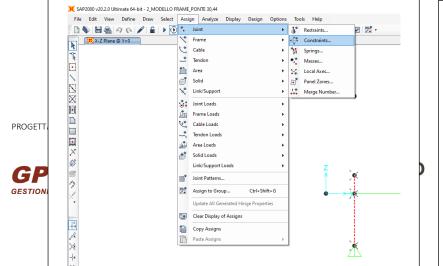
La disposizione degli appoggi è tale da consentire le dilatazioni termiche trasversali e longitudinali nel rispetto della staticità del sistema.

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

7.12.2. MODELLAZIONE DEI VINCOLI

Il vincolo fra l'asse della trave metallica ed il contorno (appoggi in basso e soletta in alto) può essere efficacemente modellato in due modi:


- Ricorrendo ad elementi rigidi
- Ricorrendo al vincolo sap2000 "elemento rigido" (body)

Il secondo metodo possiede due pregi rispetto al primo:

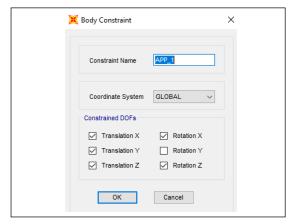
- · Possiede una maggiore precisione;
- Non ingenera mai instabilità nella matrice delle rigidezze

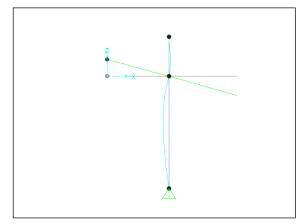

Si riportano di seguito le indicazioni utili all'applicazione del vincolo body:

→ Selezionare i nodi cui associare vincolo rigido → assegnare Constraint Body

ASSEGNAZIONE VINCOLO RIGIDO FRA APPOGGI E TRAVE

→ In alternativa ai BR, di non sempre facile calibrazione, e a vantaggio di speditezza ed efficienza della soluzione in termini di congruenza, è possibile applicare il vincolo



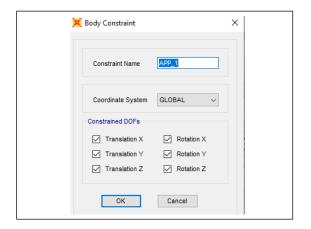

TRATTO MADONNA DEL PIANO - COLLESTRADA

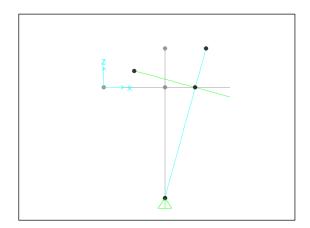
OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

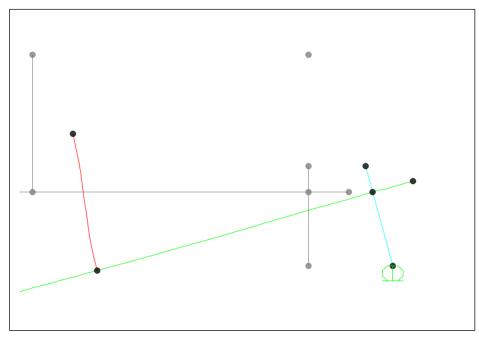
Note per il vincolo constraint BODY:

→ Occorre selezionare tutti i gradi di libertà dei nodi interessati dal vincolo rigido che si vuole dare; se ad esempio si omette di dare la rotazione attorno a Y, si ottiene la deformazione per rotazione dell'asta, ancora indeformabile sugli altri GDL: questa soluzione non è accettabile perché non fornisce la risposta corretta degli appoggi

Ponendo invece anche il vincolo alla mutua rotazione dei nodi selezionati (allineamento traveappoggio), il comportamento locale e globale risulta corretto







TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Sopra: si nota la rotazione corretta dell'appoggio A lato: si nota lo spostamento vincolo del carrello e la indeformabilità dell'allineamento simulante della l'ingombro trave principale; si noti inoltre per confronto leggera deformazione dell'asta BR (in rosso)

In caso di un elevato numero di nodi l'applicazione del vincolo body potrebbe risultare eccessivamente laborioso.

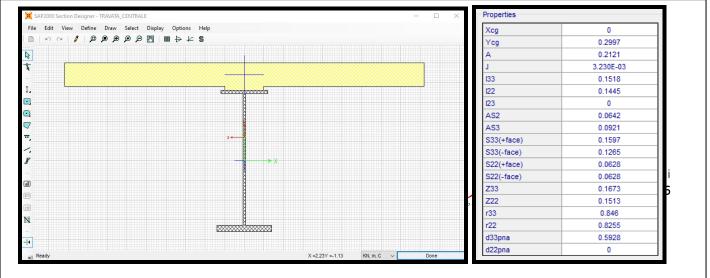
Pertanto anziché reiterare centinaia o migliaia di volte la seguente operazione:

- Definizione vincolo body
- Selezione nodi interessato da comportamento rigido
- Assegnazione del vincolo precedentemente creato
 - → Dal punto di vista operativo risulta più agevole:
- Definire un vincolo body
- Selezionare un allineamento di nodi
- Assegnare un vincolo body

Sanas GRUPPO ES ITALIANE

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA

TRATTO MADONNA DEL PIANO - COLLESTRADA

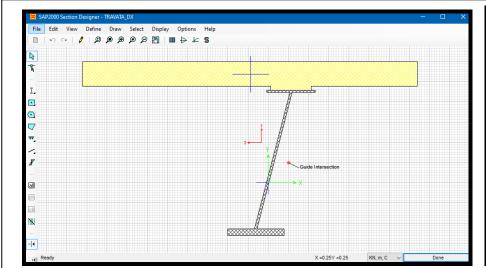

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

- Selezionare nodi interessati dai body nell'intero modello, esportarne le coordinate, ordinarle con excel in funzione di stessa ascissa, creare a fianco nome del body;
- Comando Edita → editazione interattiva del database → Aprire xls definizione body → crearne rapidamente le ennuple occorrenti copiando i nomi precedentemente creati;
- Comando Edita → editazione interattiva del database → Aprire xls assegnazione body → incollare ennuple nomi joints-nomi body.

L'operazione comporta in genere qualche decina di minuti anziché diverse ore.

7.12.3. MODELLAZIONE DEL PONTE

Il modello di calcolo prevede la modellazione delle 3 travi tramite elementi frames; le sezioni composte sono state modellate tramite il section-designer implementato nel SAP2000:



Travata as ntral

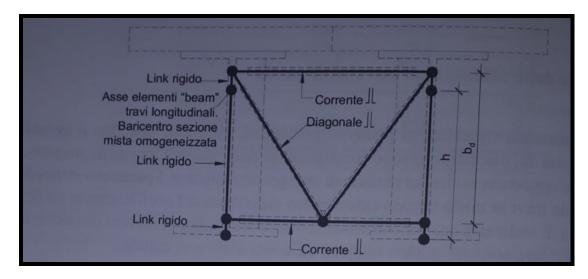
TRATTO MADONNA DEL PIANO - COLLESTRADA

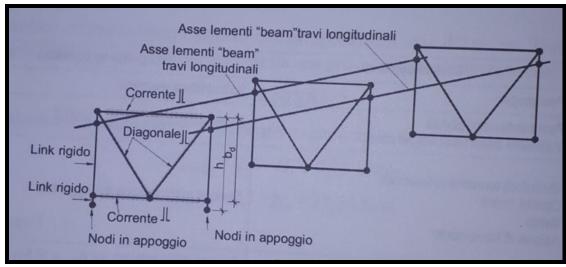
OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Travate laterali

Per quanto attiene le dimensioni efficaci della larghezza della soletta, occorre far riferimento a paragrafo 4.2.2.1 dell'Eurocodice 4, che introduce un criterio valido per le travi continue su più appoggi finalizzato alla valutazione della larghezza collaborante bef (cfr paragrafi seguenti).

L' EC4 al #4.5.3 consente di considerare, limitatamente alla sola analisi globale della struttura, una larghezza collaborante di cls anche dove il momento flettente è negativo (cioè dove il cls si fessura perché soggetto a trazione); in fase di verifica sezionale i momenti negativi sono infatti supportati dalla sola trave in acciaio.

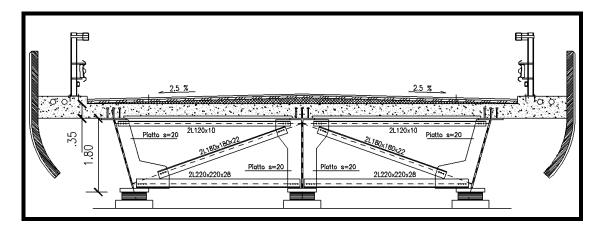


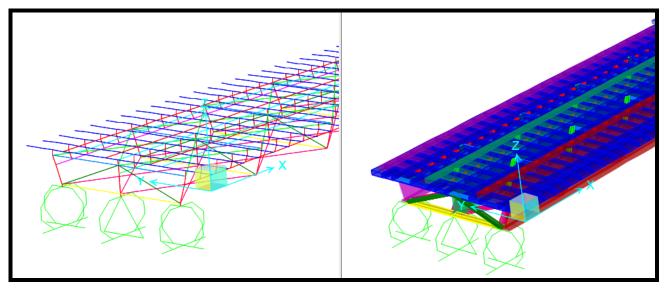


TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

Il modello di calcolo viene completato tramite diaframmi (controventi diagonali 2L180x22) realizzati con elementi frames nel piano YZ e nel piano XY posti a passo 5.0 m; la soletta viene modellata tramite aste frames dicretizzate sul piano longitudinale con medesimo passo di discretizzazione delle travi principali; le linee di carico vengono poste tramite elementi frames fittizi (rigidezza longitudinale e trasversale trascurabile) poste in posizione tale da massimizzare le sollecitazioni e vincolate agli elementi frames simulanti la soletta:





TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Il modello di calcolo del ponte a grigliato possiede il prego di essere ben controllabile sia nei dati di input che di output: sia le travi principali longitudinali che i traversi d'impalcato sono schematizzati infatti con elementi frame; la soletta è modellata con elementi frame fittizi che simulano solo la rigidezza trasversale.

Il modello di calcolo in fase sismica prevedrà invece un impalcato a shell per tener conto opportunamente della rigidezza nel piano dell'impalcato.

Nel calcolo dell'impalcato in fase statica, come è prassi progettuale, si è proceduto ad un calcolo elastico delle sollecitazioni tramite la redazione di tre modelli di calcolo:

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

FASE 0

SCHEMA DI TRAVE SEMPLICEMENTE APPOGGIATA - SOLO TRAVE IN ACCIAIO - n = ∞

FASE I

SCHEMA TRAVE CONTINUA - SOLETTA NON REAGENTE - SOVRACC. PERM. SOLETTA G1k - n = ∞

II FASE

SCHEMA TRAVE CONTINUA - SOLETTA REAGENTE OMOGENEIZZATA A TEMPO INFINITO (VISCOSITA') - SOVRACC. PERM. G2k + RITIRO CLS - n = 17.20

III FASE

SCHEMA TRAVE CONTINUA - SOLETTA REAGENTE OMOGENEIZZATA A TEMPO ZERO - SOVRACC. VARIABILI QIK. + VARIAZ. TERMICHE 🗆 T - n = 6.06

TENSIONI TOTALI

SOMMA DELLE TENSIONI NELLE FASI 0 - I - II - III PER GLI INVILUPPI DELLE SOLLECITAZIONI MAX (per ogni identica giacitura)

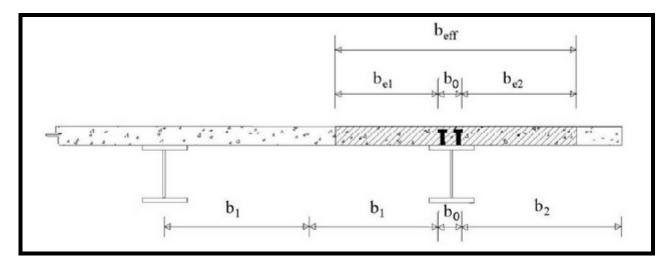
Riepilogando, sono state prese in considerazioni le seguenti fasi di analisi:

	FASE	CARICHI AGENTI	SCHEMA STRUTTURALE
	FASE 0	Peso proprio delle travi	Solo travi
	FASE 1	Peso proprio predalles e soletta non reagente	Travi continue con trasversi (n=inf.)
	FASE 2	Pesi propri portati (pavimentazione, arredo urbano) + ritiro del cls	
	FASE 3	Carichi variabili + variazioni termiche	Travi continue con trasversi e soletta reagente omogeneizzata a tempo zero
	FASE 4	Fase sismica: analisi dinamica modale	Travi continue con trasversi modellati tramite elementi frame e soletta reagente modellata con shell

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

7.12.4. CARATTERISTICHE INERZIALI DELLA SEZIONE


La distribuzione delle tensioni normali negli elementi composti deve essere determinata mediante un modello che tenga conto della diffusione degli sforzi nelle ali della trave metallica e nella soletta in calcestruzzo.

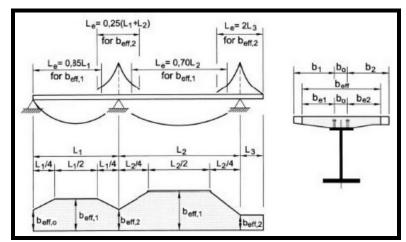
Per quanto attiene le dimensioni efficaci della larghezza della soletta, occorre far riferimento a paragrafo 4.2.2.1 dell'Eurocodice 4, che introduce un criterio valido per le travi continue su più appoggi finalizzato alla valutazione della larghezza collaborante beff.

La larghezza efficace, beff, di una soletta in calcestruzzo può essere determinata mediante l'espressione:

$$b_{eff} = b_0 + b_{e1} + b_{e2}$$

dove b₀ è la distanza tra gli assi dei connettori e b_{ei}=min (L_e/8, b_i) è il valore della larghezza collaborante da ciascun lato della sezione composta

Le indica approssimativamente la distanza tra due punti di nullo del diagramma dei momenti. Nel caso di travi continue con flessione determinata prevalentemente da carichi distribuiti uniformi si possono utilizzare le indicazioni seguenti:



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo


Larghezza efficace, beff, e luci equivalenti, Le, per le travi continue

Per gli appoggi di estremità la formula diviene:

$$b_{\text{eff}} = b_0 + \beta_1 b_{e-1} + \beta_2 b_{e-2},$$
dove $\beta_i = \left(0,55 + 0,025 \cdot \frac{L_e}{b_{\text{eff},i}}\right) \le 1,0$

essendo Le e beff,i relativi alla campata di estremità.

La tabella seguente riporta il calcolo del la larghezza collaborante della sezione mista A-CLS, pari ripettivamente a 3250 e 3000 mm per le travate esterne e quelle interne:

GPINGEGNERIA GESTIONE PROGETTI INGEGNERIA srl

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

APP.1	TRAVATA 1	APP.2	TRAVATA 2	APP.3	TRAVATA 3	APP.4	TRAVATA 4	APP.5	TRAVATA 5	APP.6		APP.7		APP.8
(App.esterno)	L= 30,00 m	(App.interno)	L= 40,00 m	(App.interno)	L= 40,00 m	(App.interno)	L= 40,00 m	(App.interno)	L= 30,00 m	(App.esterno)		FALSO		
	(campata travata esterna)		(campata travata interna)		(campata travata interna)		(campata travata interna)		(campata travata esterna)				(campata travata esterna)	
	Le = 25,50 m	Le = 17,50 m	Le = 28,00 m	Le = 20,00 m	Le = 28,00 m	Le = 20,00 m	Le = 28,00 m	Le = 17,50 m	Le = 25,50 m				Le = 0,00 m	
L _e = 0.25(L ₁ +L ₂)														
						TRAVA								
Nº Campate solaio	Camp.n° 1	APP.1	Camp.n° 2	APP.2	Camp.n° 3	APP.3	Camp.n° 4	APP.4	Camp.n° 5		Camp.n° 6		Camp.n° 7	
Tipologia campata sol.	(mensola)	b,o (inter.conn.)	(campata)	b,o (inter.conn.)	(campata)	b,o (inter.conn.)	(mensola)	b,o (inter.conn.)	(campata)	b,o (inter.conn.)	(campata)	b,o (inter.conn.)	(mensola)	b,o (inter.conn.)
L camp_solaio	1,85 m	290 mm	4,60 m	290 mm	4,60 m	290 mm	1,85 m				-			
b,i	1705 mm		2155 mm		2155 mm		1705 mm 1705 mm		0 mm		0 mm		0 mm	
(be= 3188 mm) b,ei=	1705 mm		2155 mm		2155 mm		1 /05 mm		0 mm		0 mm		0 mm	
b,eff		4150 mm		4600 mm		4150 mm								
						TRAVA	ΓΑ 2							
Nº Campate solaio	Camp.nº 1	APP.1	Camp.n° 2	APP.2	Camp.n° 3	APP.3	Camp.nº 4	APP.4	Camp.n° 5		Camp.n° 6		Camp.nº 7	
Tipologia campata sol.	(mensola)	b,o (inter.conn.)	(campata)	b,o (inter.conn.)	(campata)	b,o (inter.conn.)	(mensola)	b,o (inter.conn.)	(campata)	b,o (inter.conn.)	(campata)	b,o (inter.conn.)	(mensola)	b,o (inter.conn.)
L camp solaio	1,85 m	290 mm	4,60 m	290 mm	4,60 m	290 mm	1,85 m	0 mm	0.00 m	0 mm	0.00 m	0 mm	0,00 m	0 mm
h.i	1705 mm	2,0	2155 mm	270	2155 mm	270	1705 mm	V	0 mm	V	0 mm	V	0 mm	V
(be= 3500 mm) b,ei=	1705 mm		2155 mm		2155 mm		1705 mm		0 mm		0 mm	1	0 mm	
b,eff		4150 mm		4600 mm		4150 mm								

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

						TRAVAT	TA 3							
N° Campate solaio	Camp.nº 1	APP.1	Camp.n° 2	APP.2	Camp.n° 3	APP.3	Camp.n° 4	APP.4	Camp.n° 5		Camp.n° 6		Camp.n° 7	
Tipologia campata sol.	(mensola)	b,o (inter.conn.)	(campata)	b,o (inter.conn.)	(campata)	b,o (inter.conn.)	(mensola)	b,o (inter.conn.)	(campata)	b,o (inter.conn.)	(campata)	b,o (inter.conn.)	(mensola)	b,o (inter.conn.)
L camp_solaio	1,85 m	290 mm	4,60 m	290 mm	4,60 m	290 mm	1,85 m	0 mm	0,00 m	0 mm	0,00 m	0 mm	0,00 m	0 mm
b,i	1705 mm		2155 mm		2155 mm		1705 mm		0 mm		0 mm		0 mm	
(be= 3500 mm) b,ei=	1705 mm		2155 mm		2155 mm		1705 mm		0 mm		0 mm		0 mm	
b,eff		4150 mm		4600 mm		4150 mm								
						TRAVAT	TA 4							
Nº Campate solaio	Camp.n° 1	APP.1	Camp.n° 2	APP.2	Camp.n° 3	APP.3	Camp.n° 4	APP.4	Camp.n° 5		Camp.n° 6		Camp.n° 7	
Tipologia campata sol.	(mensola)	b,o (inter.conn.)	(campata)	b,o (inter.conn.)	(campata)	b,o (inter.conn.)	(mensola)	b,o (inter.conn.)	(campata)	b,o (inter.conn.)	(campata)	b,o (inter.conn.)	(mensola)	b,o (inter.conn.)
L camp_solaio	1,85 m	290 mm	4,60 m	290 mm	4,60 m	290 mm	1,85 m	0 mm	0,00 m	0 mm	0,00 m	0 mm	0,00 m	0 mm
b,i	1705 mm		2155 mm		2155 mm		1705 mm		0 mm		0 mm		0 mm	
(be= 3500 mm) b,ei=	1705 mm		2155 mm		2155 mm		1705 mm		0 mm		0 mm		0 mm	
b,eff		4150 mm		4600 mm		4150 mm								
						TRAVAT								
Nº Campate solaio	Camp.n° 1	APP.1	Camp.n° 2	APP.2	Camp.n° 3	APP.3	Camp.n° 4	APP.4	Camp.n° 5		Camp.n° 6		Camp.n° 7	
Tipologia campata sol.	(mensola)	b,o (inter.conn.)	(campata)	b,o (inter.conn.)	(campata)	b,o (inter.conn.)	(mensola)	b,o (inter.conn.)	(campata)	b,o (inter.conn.)	(campata)	b,o (inter.conn.)	(mensola)	b,o (inter.conn.)
L camp_solaio	1,85 m	290 mm	4,60 m	290 mm	4,60 m	290 mm	1,85 m	0 mm	0,00 m	0 mm	0,00 m	0 mm	0,00 m	0 mm
b,i	1705 mm		2155 mm		2155 mm		1705 mm		0 mm		0 mm		0 mm	
(be= 3188 mm) b,ei=	1705 mm		2155 mm		2155 mm		1705 mm		0 mm		0 mm		0 mm	
b,eff		4150 mm		4600 mm		4150 mm								

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

TRATTO MADONNA DEL PIANO - COLLESTRADA

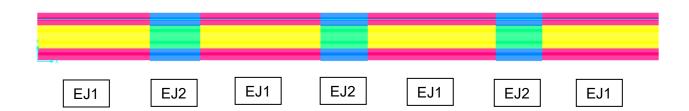
OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

7.12.5. FESSURAZIONE DELLA SOLETTA

La fessurazione della soletta in prossimità del momento negativo agli appoggi determina una riduzione della rigidezza cui corrisponde un aumento del momento flettente in campata.

Al par. 7.9.3 NTC18 la Norma prescrive che la rigidezza degli elementi in calcestruzzo armato deve essere valutata tenendo conto del loro effettivo stato di fessurazione, che è in generale diverso per l'impalcato (spesso interamente reagente) e per le pile.

In particolare, al cap. 4.3.2.2.1 Analisi lineare elastica delle NTC2018 viene riportato quanto segue:


Per tenere in conto la fessurazione delle travi composte è possibile utilizzare due metodi.

Il primo consiste nell'effettuare una prima "analisi non fessurata" in cui l'inerzia omogeneizzata di tutte le travi è pari a quella della sezione interamente reagente, EJ1. Individuate, alla conclusione dell'analisi, le sezioni soggette a momento flettente negativo, nelle quali si hanno fenomeni di fessurazione, si esegue una seconda "analisi fessurata". In tale analisi la rigidezza EJ1 è assegnata

alle porzioni di trave soggette a momento flettente positivo, mentre la rigidezza fessurata ottenuta trascurando il calcestruzzo teso, EJ2, è assegnata alle porzioni di trave soggette a momento flettente negativo. La nuova distribuzione delle rigidezze e delle sollecitazioni interne è utilizzata per le verifiche agli stati limite di servizio ed ultimo. Il secondo metodo, applicabile alle travi continue in telai controventati in cui le luci delle campate non differiscono tra loro di più del 60%, considera una estensione della zona fessurata all'estremità di ogni campata, caratterizzata da rigidezza EJ2, pari al 15% della luce della campata; la rigidezza EJ1 è assegnata a tutte le altre zone.

Applicando il secondo metodo (45:35 → 28%) si assume una rigidezza EJ2 ottenuta agendo sul modulo elastico del cls per una zona pari al 15% della campata:

- 0.15*40 = 6.0 m
- 0.15*30 = 4.5 m

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

7.12.6. SUDDIVISIONE DEI CONCI

La suddivisione dei conci viene effettuata in base a due requisiti:

- agevolarne sia il trasporto che il montaggio (L<12.0 m);
- consentire la variazione degli spessori in funzione dei campi di sollecitazione

L/(int.(L/12)) = 40/4 = 10.0

LUNGHEZZA IMPALCATO	40.00 m
LUNGH.MAX TRASPORTO	12.00 m
DIVISORE (int(L/12)	4
LUNGHEZZA CONCI CAMPATA	10.00 m

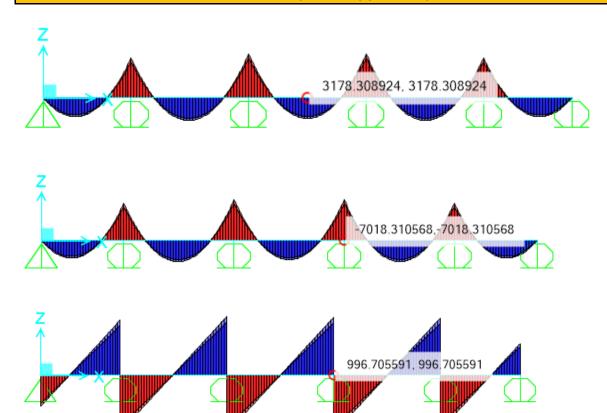
_																	
CO	NCI	S01	S02	S03	S04	S05	S06	S07	S08	S09	S10	S11	S12	S13	S14	S15	
TI	PO	C1	C2	C1	C1	C2	C2	C1	C1	C2	C2	C1	C1	C2	C2	C1	
bs	(mm)	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600	
ts	(mm)	40	30	40	40	30	30	40	40	30	30	40	40	30	30	40	
tw	(mm)	35	30	35	35	30	30	35	35	30	30	35	35	30	30	35	
bi	(mm)	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	
ti	(mm)	80	40	80	80	50	50	80	80	50	50	80	80	50	50	80	
L,si	(mm)	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	
CAM	CAMPATE 30				4	10			4	10				10			
CAM	TAIL		CAMP. ES	Г.		CAM	P.INT.			CAM	P.INT.			CAM	P.INT.		
CO	NCI	S16	S17	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27	S28	S29	S30	
TI	PO	C1	C2	C2	C1	C1	C2	C2	C1	C1	C2	C2	C1	C1	C2	C1	
bi	(mm)	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600	
ti	(mm)	40	30	30	40	40	30	30	40	40	30	30	40	40	30	40	
tw	(mm)	35	30	30	35	35	30	30	35	35	30	30	35	35	30	35	
bs	(mm)	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	
ts	(mm)	80	50	50	80	80	50	50	80	80	50	50	80	80	40	80	
L,si	(mm)	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	
CAM	PATE			10				0				10			30		
Crivi	TATE		CAM	P.INT.			CAM	P.INT.			CAM	P.INT.		(AMP. EST.		
		1	_	_									1	_	_		
<u></u>	C1	' 		02		C1		C1		C2		C2			C1		
al T	S01			02	 	S03		S04		S05		S06			507	<u></u>	
7	10.00	·	. 10	0.00	-}	10.00	7	10.00		10.00	<u>}</u>	10.0	0	1	0.00	才	
l				0.00							40.00						
1							1									1	
4							<u>-</u>									A	
. ∃							뭂									님	
Ϋ́							Щ									Щ	
S U							ASSE PILA									ASSE PILA	
ASSE SPALLA							4									~	
٩																	
																لــــــــــــــــــــــــــــــــــــــ	

Sanas GRUPPO ES ITALIANE

E45 - SISTEMAZIONE STRADALE DEL NODO DI PERUGIA

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo


7.12.7. ANALISI DELLE SOLLECITAZIONI

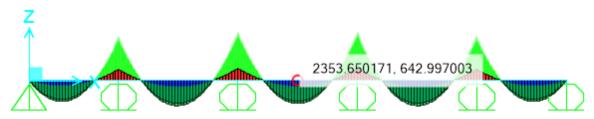
• TRAVATA CENTRALE- M e V - SLU

FASE 0: SCHEMA DI TRAVE SEMPLICEMENTE APPOGGIATA – SOLO TRAVE IN ACCIAIO

Si faccia riferimento alle tabelle di verifica di cui al par. seguente

FASE I: ENNUPLE SOLLECITAZ. DA SAP - SCHEMA TRAVE CONTINUA - SOLETTA NON REAGENTE - CARICO PERM. SOLETTA G1k

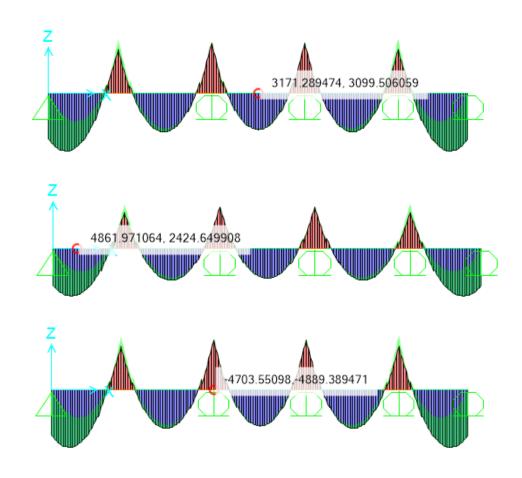
Sollecitazioni SLU



Sanas

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA

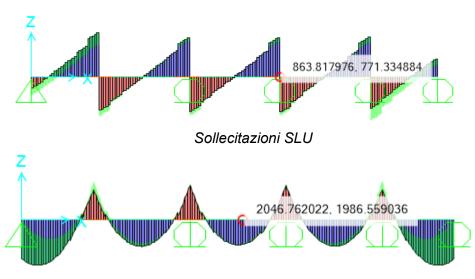
TRATTO MADONNA DEL PIANO - COLLESTRADA


OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Sollecitazioni SLE

FASE II: SCHEMA TRAVE CONTINUA - SOLETTA REAGENTE OMOGENEIZZATA A TEMPO INFINITO (VISCOSITA') - SOVRACC. PERM. G2k + RITIRO CLS

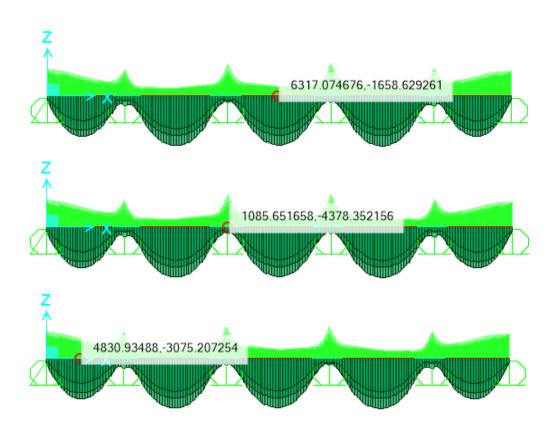
Coeff.viscosità di Withney Φ = 1.84 Ec* = Ec/(1+ Φ) = 34077/2.84 = 12013 MPa n_2 = Ea/Ec* = 17.48



Sanas GRUPPO ES ITALIANE

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA

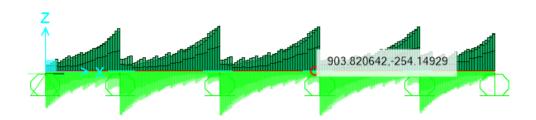
TRATTO MADONNA DEL PIANO - COLLESTRADA

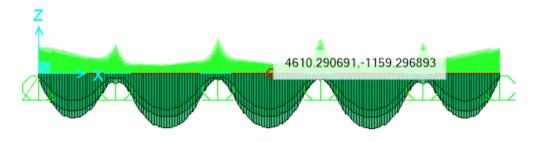

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Sollecitazioni SLE

FASE III: ENNUPLE SOLLECITAZ. DA SAP - SCHEMA TRAVE CONTINUA - SOLETTA REAGENTE OMOGENEIZZATA A TEMPO ZERO - SOVRACC. VARIABILI QIK. + VARIAZ. TERMICHE □T

Ec = 34077 MPa n₃ = Ea/Ec = 6.16




TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Sollecitazioni SLU

Sollecitazioni SLE

7.13. **VERIFICA DELLE TRAVI**

7.13.1. CALCOLO DELLA SEZIONE COMPOSTA IN CAMPO ELASTICO

Il calcolo delle tensioni flessionali in una struttura a sezione composta di acciaio e calcestruzzo si svolge sostanzialmente sulla base delle ipotesi fondamentali della teoria elastica del cemento armato. Dalla ipotesi di conservazione delle sezioni piane deriva la possibilità di ridurre la sezione composta a un'altra ideale, costituita tutta di acciaio, nella quale la parte di sezione in calcestruzzo viene omogeneizzata a quella in acciaio tramite un coefficiente n di omogeneizzazione mentre le tensioni relative al conglomerato dovranno dedursi da quelle ottenute per la sezione ridotta ad acciaio, ossia:

$$\sigma_c = \frac{\sigma_a}{n} \qquad \text{con } n = \frac{E_a}{E_c}$$

La definizione del coefficiente di omogeneizzazione deve tener conto del tipo di carico che produce le tensioni che si vogliono determinare. Infatti mentre nel c.a. si adotta un coefficiente di omogeneizzazione (n=15) che tiene forfettariamente conto di una presenza di carichi permanenti e variabili di simile entità, nelle travi composte si tiene generalmente distinto l'effetto dei carichi permanenti da quello dei carichi variabili, potendo essere assai diverso il loro rapporto in casi diversi. Di conseguenza per carichi variabili, non capaci di produrre effetti viscosi, il coefficiente di omogeneizzazione no assume il valore base:

$$n_o = \frac{E_s}{E_c}$$

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Per la valutazione degli effetti tensionali dei carichi permanenti sulla trave composta, (carichi applicati alla trave dopo che la parte in calcestruzzo ha raggiunto la piena collaborazione con la trave metallica) occorre tener conto della viscosità. A tale scopo si usano in genere i cosiddetti metodi algebrizzati per evitare la soluzione di complesse equazioni integro-differenziali derivanti dall'essere le deformazioni totali (elastiche più viscose) funzioni delle tensioni applicate, mentre queste ultime in solette solidarizzate a parti metalliche, sono a loro volta funzione delle deformazioni. Tra i metodi algebrizzati il più frequentemente adottato è il metodo EM ovvero del modulo efficace. Secondo tale metodo le deformazioni nel calcestruzzo sono valutate con un modulo elastico ridotto [Et=Ec/(1+φ)] che è coerente con la teoria classica della viscosità nella ipotesi di tensione costante nel calcestruzzo ma sovrastima leggermente gli effetti viscosi nel caso in cui, come succede in genere nelle travi composte, le tensioni si riducono nel

$$n_t = \frac{E_s}{E_c} \cdot \left(1 + \varphi(t_o, t)\right)$$

essendo (to ,t) of il coefficiente di viscosità pari al rapporto tra la deformazione viscosa intervenuta nell'intervallo temporale (to,t) e la deformazione elastica corrispondente, immaginata costante nel tempo e pari a quella finale.

Nel metodo EM gli effetti tensionali del ritiro vengono poi valutati separatamente e sommati ai rimanenti dovuti ai carichi permanenti e variabili, adottando un coefficiente di omogeneizzazione intermedio tra i due visti in precedenza (no ed nt). La ragione di tale assunto è nel fatto che il ritiro, producendo tensioni variabili e crescenti nel tempo produce minori effetti viscosi per effetto del fenomeno dell'invecchiamento del calcestruzzo:

$$n_r = \frac{E_s}{E_c} \cdot (1 + 0.5 \cdot \varphi(t_o, t))$$

La giustificazione numerica della relazione precedente si può ottenere attraverso metodi più accurati.

Lo studio delle sezioni deve essere eseguito con diverse metodologie in rapporto alle finalità della analisi. In presenza di azioni di servizio il comportamento della struttura è sostanzialmente elastico salvo la fessurazione delle solette nelle zone sottoposte a momento negativo. In presenza di carichi ultimi il comportamento può essere ancora elastico o più frequentemente elastoplastico ed i metodi di analisi assunti nelle normative assumono in questo caso legami costitutivi rigido-plastici con diagrammi di tensione a blocchi. Tali analisi sono però condizionate dalla capacità dei profili metallici di deformarsi plasticamente senza raggiungere la instabilità delle parti compresse. E' pertanto necessario controllare la snellezza delle parti compresse dei profili metallici libere di instabilizzarsi.

Per procedere alla scrittura delle relazioni analitiche necessarie alla verifica delle sezioni composte. si distinguono tre casi:

- soletta integralmente compressa;
- soletta parzialmente compressa;
- soletta integralmente tesa nelle zone di momento negativo.

Nel primo e nel terzo caso la sezione reagente è nota a priori. La determinazione dell'asse neutro, baricentrico della sezione reagente, si esegue con gli ordinari metodi della geometria delle masse omogeneizzando la parte di sezione in calcestruzzo rispetto all'acciaio. Indicando con il pedice a, s, c, le aree e le distanze dal bordo superiore rispettivamente

del profilato metallico, della armatura metallica longitudinale della soletta ed infine della soletta di calcestruzzo, la distanza dell'asse neutro dal bordo superiore ed il momento di inerzia valgono:

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

$$y_n = \frac{n \cdot (A_a y_a + A_s y_s) + A_c y_c}{n \cdot (A_a + A_s) + A_c}$$

$$I_n = I_a + A_a \cdot (y_n - y_a)^2 + A_s \cdot (y_n - y_s)^2 + \frac{I_c + A_c \cdot (y_n - y_c)^2}{n}$$

essendo la il momento di inerzia della trave metallica rispetto al proprio baricentro ed lc, Ac l'inerzia baricentrica e l'area della soletta di calcestruzzo. In entrambe le espressioni precedenti n rappresenta il coefficiente di omogeneizzazione dell'acciaio rispetto al calcestruzzo, pari, per carichi di breve durata, al rapporto Es/Ec.

Nelle espressioni sopra riportate, ponendo pari a zero le quantità relative al calcestruzzo, si ottengono le grandezze meccaniche relative al caso di trave composta con soletta tutta tesa, ovvero, non reagente.

Nel caso di soletta parzializzata (soletta parzialmente compressa), la posizione del baricentro meccanico si ottiene imponendo che il momento statico della sezione reagente composta dalla trave metallica, dalla armatura della soletta e dalla parte compressa della soletta stessa, sia pari a zero; tale condizione, con i simboli introdotti e con bc larghezza della soletta, si scrive:

$$\frac{b_c \cdot y_n^2}{2 \cdot n} + A_z \cdot (y_n - y_s) - A_a \cdot (y_a - y_n) = 0$$

L'equazione di 2° grado sopra descritta, semplificata, diventa:

$$y_n^2 + \frac{2 \cdot n}{b_c} \cdot \left(A_a + A_z \right) \cdot y_n - \frac{2 \cdot n}{b_c} \cdot \left(A_a \cdot y_a + A_z \cdot y_z \right) = 0$$

La soluzione dell'equazione precedente si scrive:

$$y_{n} = \frac{n \cdot (A_{a} + A_{s})}{b_{c}} \cdot \left(-1 + \sqrt{1 + \frac{2 \cdot b_{c} \cdot (A_{a} \cdot y_{a} + A_{s} \cdot y_{s})}{n \cdot (A_{a} + A_{s})^{2}}}\right)$$

che è identica alla espressione ottenuta nella sezione rettangolare a doppia armatura indicando con Aa l'armatura tesa, con As l'armatura compressa, con ya altezza utile della sezione (corrispondente nella flessione alla distanza del baricentro del profilo dal bordo superiore della soletta) e con ys il copriferro.

Il momento di inerzia della sezione nel caso di soletta parzializzata, si scrive:

$$I_n = I_a + A_a \cdot (y_n - y_a)^2 + A_s \cdot (y_n - y_s)^2 + \frac{b_c \cdot y_n^3}{3 \cdot n}$$

Il calcolo delle tensioni si effettua con la formula di Navier per la flessione, omogeneizzando le tensioni del solo calcestruzzo. Le tensioni rilevanti sono quella estrema della soletta (σc), dell'armatura (os), degli estremi inferiore (oai) e superiore (oas) della trave metallica. Tali tensioni si scrivono:

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

$$\sigma_c = \frac{M}{n \cdot I_n} \cdot y_n$$

$$\sigma_s = \frac{M}{I_n} \cdot (y_n - y_s)$$

$$\sigma_{a,s} = \frac{M}{I_n} \cdot (y_n - h_c)$$

$$\sigma_{a,j} = \frac{M}{I_n} \cdot (y_n - h)$$

essendo hc ed h le distanze del bordo inferiore e superiore della trave metallica dall'estremo superiore della trave composta.

Per la verifica delle sezioni dell'impalcato è stato redatto un foglio di calcolo che funge da postprocessore del solutore SAP2000; per ogni sezione scelta, le ennuple contemporanee di sollecitazioni massime degli inviluppi vengono importate nel foglio di calcolo in funzione della fase di calcolo. Il foglio esegue le seguenti verifiche:

- verifiche di resistenza della trave semplice in FASE 0
- verifiche di resistenza della trave composta in FASE I, II, III sia per cls che acciaio;
- implementazione del calcolo delle forze assiali e momenti di estremità per le sollecitazioni dovute alle azioni termiche e al ritiro;
- verifiche di imbozzamento dei pannelli d'anima;
- progettazione degli irrigidimenti trasversali e longitudinali;
- progetto e verifica dei connettori;

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

• verifica di resistenza della soletta per l'azione dei connettori

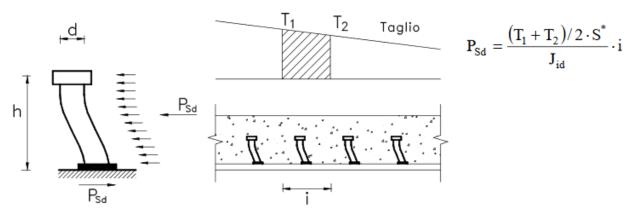
Per quanto attiene le fasi di calcolo, si ha:

- FASE 0: SCHEMA DI TRAVE SEMPLICEMENTE APPOGGIATA SOLO TRAVE IN ACCIAIO
- FASE I: ENNUPLE SOLLECITAZ. DA SAP SCHEMA TRAVE CONTINUA SOLETTA NON REAGENTE - CARICO PERM. SOLETTA G1k
- FASE II: ENNUPLE SOLLECITAZ. DA SAP SCHEMA TRAVE CONTINUA SOLETTA REAGENTE OMOGENEIZZATA A TEMPO INFINITO (VISCOSITA') - SOVRACC. PERM. G2k + RITIRO CLS
- FASE III: ENNUPLE SOLLECITAZ. DA SAP SCHEMA TRAVE CONTINUA SOLETTA REAGENTE OMOGENEIZZATA A TEMPO ZERO - SOVRACC. VARIABILI Qik. + VARIAZ. TERMICHE ΔT
- SOMMA DELLE TENSIONI NELLE FASI 0 I II III ALLA ASCISSA X PER GLI INVILUPPI DELLE **SOLLECITAZIONI MAX**

7.13.2. CALCOLO DEL SISTEMA CONNESSIONE A-CLS

Il presente paragrafo riporta lo schema di calcolo assunto per il dimensionamento dei connettori (cf. dispense Prof. Gelfi); il calcolo è stato direttamente implementato nei fogli di calcolo delle verifiche globali dell'impalcato (cfr. par. seguenti).

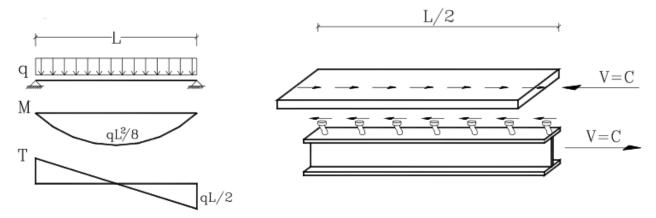
L'insieme dei connettori deve resistere alla forza di scorrimento totale V (longitudinal shear) risultante dal flusso degli sforzi di scorrimento tra la soletta in cls e la trave in acciaio. La forza di scorrimento agente sul singolo piolo vale:



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Integrando lungo metà luce gli sforzi di scorrimento alla Jouraswki e ricordando che il taglio è la derivata del momento e che Jid/S=z (braccio della coppia interna) si ha:


$$V = \int_{0}^{L/2} \tau \cdot b \cdot dx = \frac{T \cdot S^*}{J} \cdot \frac{L}{2} \cdot \frac{1}{2} = \frac{q \cdot L^2}{8} \cdot \frac{S^*}{J} = \frac{M}{z}$$

dove

z= braccio della coppia interna

V= forza di scorrimento assorbita dai pioli su metà luce

M= momento in campata

Si può pervenire allo stesso risultato in modo più semplice e intuitivo imponendo l'equilibrio alla traslazione della soletta fra la sezione di momento massimo e la sezione di momento nullo, anziché fra due sezioni a distanza infinitesimale come per la dimostrazione alla Jourawski.

La forza di scorrimento totale V deve quindi equilibrare la risultante delle compressioni C della soletta. I connettori presenti nel tratto compreso fra la sezione di momento nullo e la sezione di momento massimo (metà luce per trave semplicemente appoggiata con carico simmetrico) devono trasferire alla trave in acciaio la forza di scorrimento V.

Detta quindi P_{Rd} la resistenza a taglio del singolo connettore, si calcolerà il numero di connettori nel tratto considerato come np=V_I/P_{Rd}.

La resistenza dei connettori è determinata come il più piccolo dei seguenti valori [EC4 #6.3.2.1]:

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

$$\begin{split} P_{Rd} &= 0.8 \cdot f_u (\pi d^2/4)/\gamma_v \\ P_{Rd} &= 0.29 \cdot \alpha \cdot d^2 \sqrt{(f_{ck} E_{cm)}}/\gamma_V \\ con & \alpha = 0.2 \cdot [(h/d)+1] & per & 3 \leq h/d \leq 4 \\ \alpha &= 1 & per & h/d > 4 \\ h & altezza \ del \ piolo \\ d & diametro \ del \ singolo \ piolo \\ f_u & resistenza \ ultima \ a \ trazione \ del \ piolo \ (\leq 500 \ N/mm^2) \\ f_{ck} & resistenza \ cilindrica \ caratteristica \ del \ cls \ considerato \\ E_{cm} & valore \ medio \ del \ modulo \ secante \ del \ cls \end{split}$$

Nelle connessioni a completo ripristino [EC4 #6.2.1.1] bisogna predisporre un numero di connettori tali da poter assorbire una forza di scorrimento pari a

coeff. parziale di sicurezza

$$V = M_{pl,Rd} / z = min\{R_c; R_a\} = F_{cf}$$

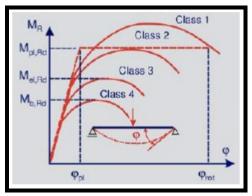
 $\gamma_{v} = 1.25$

$$R_c = \frac{0,85 \cdot f_{ck} \cdot b_{eff} \cdot h_c}{\gamma_c}$$
resistenza soletta di cls

$$R_a = \frac{A_a \cdot f_{y,ad}}{\gamma_a}$$
 resistenza a trazione della trave in acciaio

7.13.3. DETERMINAZIONE DELLA CLASSE DI SEZIONE COMPOSTA

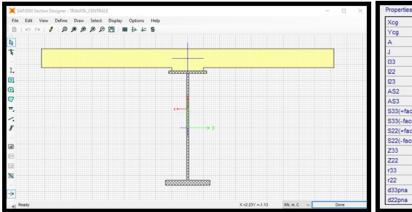
Ai sensi del §4.3.2.1 delle NTC18, la classificazione della sezione composta viene effettuata con riferimento alla sola sezione in acciaio:

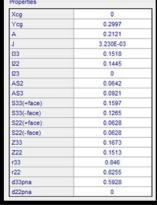


TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

La classificazione delle sezioni composte è eseguita secondo lo schema introdotto per le sezioni in acciaio in § 4.2.3. Nel calcolo si possono adottare distribuzioni di tensioni plastiche o elastiche per le classi 1 e 2, mentre per le classi 3 e 4 si debbono utilizzare distribuzioni di tensioni elastiche.


La classificazione delle sezioni è finalizzata alla determinazione della capacità deformativa della sezione:

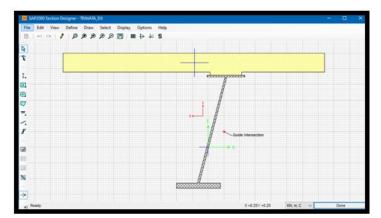


Le sezioni di classe 1 e 2 possiedono ottime capacità plastiche; le classi 3 e 4 risentono di fenomeni di instabilità che limitano il plateau plastico, che impone di limitare il calcolo della resistenza al solo tratto elastico.

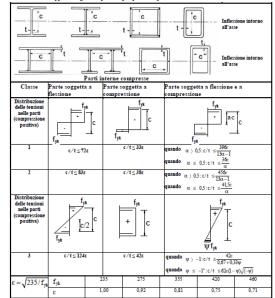
Per queste motivazioni la classificazione preliminare delle sezione costituisce operazione fondamentale.

Il modello di calcolo prevede la modellazione delle 3 travi tramite elementi frames; le sezioni composte sono state modellate tramite il section-designer implementato nel SAP2000:

Travata centrale



TRATTO MADONNA DEL PIANO - COLLESTRADA


OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

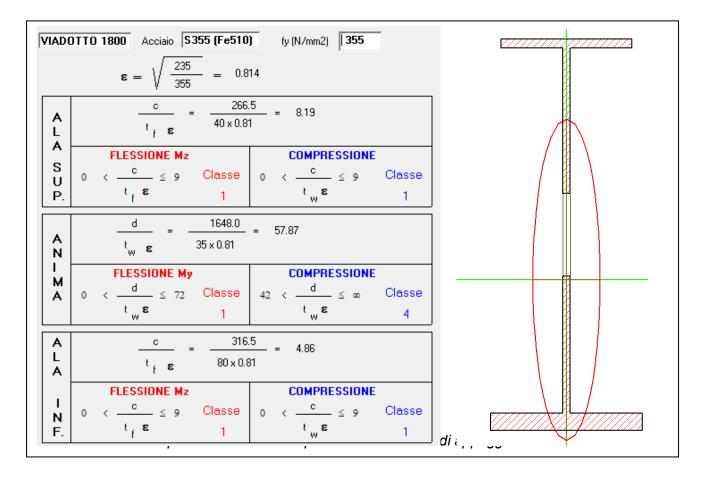
Xcg	-0.0806
Ycg	0.4958
A	0.2002
J	2.919E-03
33	0.1449
22	0.1131
23	-1.634E-03
AS2	0.0659
AS3	0.1027
S33(+face)	0.1449
S33(-face)	0.126
S22(+face)	0.0509
S22(-face)	0.0586
Z33	0.1661
722	0.1367
r33	0.8507
722	0.7517
d33pna	0.6362
d22pna	-0.0771

Travate laterali

$$\varepsilon = \sqrt{\frac{235}{fyk}}$$

$$(^{c}/_{t})_{anima} \leq 72 \cdot \varepsilon$$

$$(^{C}/_{t})_{ala} \leq 14 \cdot \varepsilon$$



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Di seguito si riportano le classificazioni della tipologia di sezione centrale:

Nota

Poiché non è logico penalizzare la resistenza a pressoflessione della sezione classificandola in base alla classe a compressione dell'anima anche in presenza di azioni assiali modeste, si adotta un criterio mutuato dalla regola EC3 6.2.9.1 (4):

se Nsd < 9.751 KN (valore minore fra metà della resistenza plastica dell'anima ed 1/4 della resistenza plastica della sezione), si assume la classe a flessione; altrimenti si assume la classe a compressione

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

7.13.4. VERIFICA TENSIONALE IN ESERCIZIO

Le verifiche tensionali agli SLE previste dalle NTC18 (cap. 4.1.2.2.5.1) prescrivono i seguenti limiti:

Tensione massima di compressione del calcestruzzo nelle condizioni di esercizio 4.1.2.2.5.1

La massima tensione di compressione del calcestruzzo $\sigma_{c,max}$, deve rispettare la limitazione seguente:

 $\sigma_{c,max} \le 0,60 f_{ck}$ per combinazione caratteristica

[4.1.15]

 $\sigma_{c,max} \le 0.45 f_{ck}$ per combinazione quasi permanente.

[4.1.16]

Nel caso di elementi piani (solette, pareti, ...) gettati in opera con calcestruzzi ordinari e con spessori di calcestruzzo minori di 50 mm i valori limite sopra prescritti vanno ridotti del 20%.

Tensione massima dell'acciaio in condizioni di esercizio

La tensione massima, $\sigma_{s,max}$, per effetto delle azioni dovute alla combinazione caratteristica deve rispettare la limitazione seguen-

 $\sigma_{s,\max} \leq 0.8 \; f_{vk}$

[4.1.17]

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

7.13.5. STATO LIMITE DI APERTURA DELLE FESSURE

L'apertura delle fessure è trattata al cap. 4.1.2.2.4.5 delle NTC2018 e al cap. C4.1.2.2.4.5 della Circolare:

Stato limite di apertura delle fessure

Il valore caratteristico di apertura delle fessure (wk) non deve superare i valori nominali wt, w2, w3 secondo quanto riportato nel-

L'ampiezza caratteristica delle fessure w, è calcolata come 1,7 volte il prodotto della deformazione media delle barre d'armatura ε_{sm} per la distanza media tra le fessure Δ_{sm} :

$$w_k = 1.7 \epsilon_{sm} \Delta_{sm} \qquad [4.1.14]$$

Per il calcolo di Esm e Asm vanno utilizzati criteri consolidati riportati in documenti di comprovata validità.

La verifica dell'ampiezza di fessurazione può anche essere condotta senza calcolo diretto, limitando la tensione di trazione nell'armatura, valutata nella sezione parzializzata per la combinazione di carico pertinente, ad un massimo correlato al diametro delle barre ed alla loro spaziatura.

Ai fini della durabilità delle strutture, risulta molto importante eseguire il controllo in condizioni di servizio dell'apertura delle fessure in zona tesa. Tale fenomeno deve essere limitato ad un livello tale da non pregiudicare la durabilità o rendere inaccettabile l'aspetto ed il corretto funzionamento. Il problema è assente nelle campate appoggiate in quanto la soletta è compressa dai carichi esterni ed il solo ritiro non è sufficiente a determinare una fessurazione significativa. Nel caso di trave continua occorre procedere al controllo della fessurazione nelle zone di appoggio a momento negativo.

Per quanto attiene i limiti di apertura, si faccia riferimento al cap. 4.1.2.2.4 delle NTC18:

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

4.1.2.2.4 Stato limite di fessurazione

In ordine di severità decrescente, per la combinazione di azioni prescelta, si distinguono i seguenti stati limite:

- a) stato limite di decompressione, nel quale la tensione normale è ovunque di compressione ed al più uguale a 0;
- b) stato limite di formazione delle fessure, nel quale la tensione normale di trazione nella fibra più sollecitata è:

$$\sigma_t = \frac{f_{ctm}}{1.2}$$
[4.1.13]

dove f_{ctm} è definito nel § 11.2.10.2;

c) stato limite di apertura delle fessure, nel quale il valore limite di apertura della fessura calcolato al livello considerato è pari ad uno dei seguenti valori nominali:

$$w_1 = 0.2 \text{ mm}$$
 $w_2 = 0.3 \text{ mm}$ $w_3 = 0.4 \text{ mm}$

Lo stato limite di fessurazione deve essere fissato in funzione delle condizioni ambientali e della sensibilità delle armature alla corrosione, come descritto nel seguito.

Combinazioni di azioni

Si prendono in considerazione le seguenti combinazioni:

- combinazioni quasi permanenti;
- combinazioni frequenti.

Per quanto attiene i limiti d considerare nelle diverse combinazioni Frequente e Quasi Permanente, si faccia riferimento alla tabella 4.1.IV delle NTC18:

4.1.2.2.4.4 Scelta degli stati limite di fessurazione

Nella Tab. 4.1.IV sono indicati i criteri di scelta dello stato limite di fessurazione con riferimento alle esigenze sopra riportate.

Tab. 4.1.IV - Criteri di scelta dello stato limite di fessurazione

pi ze	Condizioni	Combinazione di		Arma	tura	
Gruppi di Esigenze	ambientali	azioni	Sensibile	Poco sensibile		
G. Esi			Stato limite	wk	Stato limite	wk
	Ordinarie	frequente	apertura fessure	≤w ₂	apertura fessure	≤w ₃
A	Ordinarie	quasi permanente	apertura fessure	≤w ₁	apertura fessure	$\leq w_2$
В	Δ	frequente	apertura fessure	≤w ₁	apertura fessure	$\leq w_2$
ь	Aggressive	quasi permanente	decompressione	-	apertura fessure	$\leq w_1$
С	Molto	frequente	formazione fessure	-	apertura fessure	$\leq w_1$
	aggressive	quasi permanente	decompressione	-	apertura fessure	$\leq w_1$

 w_1 , w_2 , w_3 sono definiti al § 4.1.2.2.4, il valore w_k è definito al § 4.1.2.2.4.5.

Per quanto infine attiene alle modalità di calcolo dell'ampiezza delle fessure, piò farsi riferimento al cap. C4.1.2.2.4.5 della Circolare Esplicativa:

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Verifica dello stato limite di fessurazione

Calcolo dell'ampiezza delle fessure

L'ampiezza caratteristica di verifica delle fessure, $w_{\rm k}$ può essere calcolata con l'espressione:

$$w_k = 1.7 \ \varepsilon_{sm} \Delta_{sm}$$
 [C4.1.5 e 4.1.14]

dove:

è la deformazione unitaria media delle barre d'armatura;

è la distanza media tra le fessure.

La deformazione unitaria media delle barre ϵ_{sm} può essere calcolata con l'espressione:

$$\epsilon_{sm} = \frac{\sigma_s - k_t \frac{f_{ctm}}{\rho_{eff}} \left(1 + \alpha_e \rho_{eff}\right)}{E_s} \ge 0, 6 \frac{\sigma_s}{E_s} \tag{C4.1.6}$$

in cui:

è la tensione nell'armatura tesa considerando la sezione fessurata; $\sigma_{\rm s}$

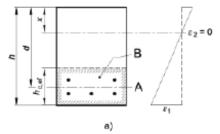
è il rapporto Es/Ecm; α_{e}

è pari a A_s/A_{c,eff} ρ_{eff}

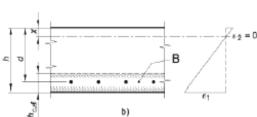
Ac,eff è l'area efficace di calcestruzzo teso attorno all'armatura, di altezza hc,ef, dove hc,ef è il valore minore tra 2,5 (h-d), (h-x)/3 o h/2 (vedere Figura C4.1.10); nel caso di elementi in trazione, in cui esistono due aree efficaci, l'una all'estradosso e l'altra all'intradosso, entrambe le aree vanno considerate separatamente;

è un fattore dipendente dalla durata del carico e vale:

kt = 0,6 per carichi di breve durata,


kt = 0,4 per carichi di lunga durata.

Legenda


a) Trave

Livello del baricentro dell'acciaio А

Area tesa efficace, A_{cut}

- b) Piastra
- Area tesa efficace, A_{cet}

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

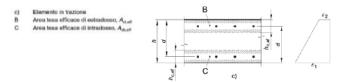


Figura C4.1.10- Area tesa efficace. Casi tipici

Nei casi in cui l'armatura sia disposta con una spaziatura non superiore a 5(c + $\phi/2$) (vedi Figura C4.1.11), la distanza media tra le fessure, Δ_{sm}, può essere valutata con l'espressione:

$$\Delta_{\rm sm} = (k_3 c + k_1 k_2 k_4 \frac{\phi}{\rho_{\rm eff}})/1.7$$
 [C4.1.7]

in cui:

è il diametro delle barre. Se nella sezione considerata sono impiegate barre di diametro diverso, si raccomanda di adottare un opportuno diametro equivalente, ϕ_{eq} . Se n_1 è il numero di barre di diametro ϕ_1 ed n_2 è il numero di barre di diametro ϕ_2 , si raccomanda di utilizzare l'espressione seguente:

$$\varphi_{eq} = \frac{n_1 \varphi_1^2 + n_2 \varphi_2^2}{n_1 \varphi_1 + n_2 \varphi_2} \tag{C4.1.8} \label{eq:phieq}$$

c è il ricoprimento dell'armatura;

k₁ = 0,8 per barre ad aderenza migliorata,

= 1,6 per barre lisce;

k₂ = 0,5 nel caso di flessione,

= 1,0 nel caso di trazione semplice.

In caso di trazione eccentrica, o per singole parti di sezione, si raccomanda di utilizzare valori intermedi di k2, che possono essere calcolati con la relazione:

$$k_2 = (\varepsilon_1 + \varepsilon_2)/2\varepsilon_1$$
 [C4.1.9]

in cui £1 ed £2 sono rispettivamente la più grande e la più piccola deformazione di trazione alle estremità della sezione considerata, calcolate considerando la sezione fessurata.

 $k_3 = 3.4$

 $k_4 = 0.425$.

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Nelle zone in cui l'armatura è disposta con una spaziatura superiore a $5(c + \phi/2)$ (vedi Figura C4.1.11), per la parte di estensione $5(c + \phi/2)$ nell'intorno delle barre la distanza media tra le fessure, Δ_{sm} , può essere valutata ancora con l'espressione C4.1.7:

Nella parte rimanente la distanza media tra le fessure, Δ_{sm} , può, invece, essere valutata con l'espressione:

$$\Delta \sigma \mu = 0.75 \text{ (h - x)}$$
 [C4.1.10]

in cui:

h ed x sono definite in Figura C4.1.10;

(h − x) è la distanza tra l'asse neutro ed il lembo teso della membratura.

Legenda:

A Asse neutro

B Superficie del cal cestruzzo teso

C Zona in cui si applica la formula [C.4.1.9]

D Zona in cui si applica la formula [C.4.1.12]

Figura C4.1.11- Ampiezza delle fessure, w, in funzione della posizione rispetto alle barre di armatura

In alternativa, è possibile ricorrere alla verifica indiretta dell'ampiezza senza calcolo analitico qualora siano rispettati i seguenti limiti:

La verifica dell'ampiezza di fessurazione per via indiretta può riferirsi ai limiti di tensione nell'acciaio d'armatura definiti nelle Tabelle C4.1.II e C4.1.III. La tensione σ_s è quella nell'acciaio d'armatura prossimo al lembo teso della sezione calcolata nella sezione parzializzata per la combinazione di carico pertinente (v. Tabella 4.1.IV delle NTC). Per le armature di pretensione aderenti la tensione σ_s si riferisce all'escursione oltre la decompressione del calcestruzzo. Per le sezioni precompresse a cavi posttesi si fa riferimento all'armatura ordinaria aggiuntiva.

Tabella C4.1.II Diametri massimi delle barre per il controllo di fessurazione

Tensione nell'acciaio	Diametro massimo									
σ _s [MPa]	w3=0,4 mm	$w_2 = 0.3 \text{ mm}$	w ₁ = 0,2 mm							
160	40	32	25							
200	32	25	16							
240	20	16	12							
280	16	12	8							
320	12	10	6							
360	10	8	-							

 ${\bf Tabella\ C4.1.III}\ - Spaziatura\ massima\ delle\ barre\ per\ il\ controllo\ di\ fessurazione$

Tensione nell'acciaio	Spaziatura	massima s delle	barre (mm)
σ _s [MPa]	w ₃ = 0,4 mm	$w_2 = 0.3 \text{ mm}$	w ₁ = 0,2 mm
160	300	300	200
200	300	250	150
240	250	200	100
280	200	150	50
320	150	100	-
360	100	50	-
360	100	50	-

GPINGEGNERIAGESTIONE PROGETTI INGEGNERIA STI

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

7.13.6. VERIFICA DELLE TRAVI CENTRALI L = 40 M SEZ. DI APPOGGIO - SLU

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

	CARATTERISTICHE GEOMETRICHE TRAVE A-CLS															
Ltr	Beff,soletta	h,sol	Φ a,long.	p_a,l	d,a	As,long.	Htr	Bi	Bs	h,a	t,i	t,s	t,a	r1	Aa	Ga
(m)	4,60 m	(mm)	(mm)	(mm)	(mm)	(mm^2)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm^2)	(KN/m)
Lunghezza trave	Largh.impalcato	Altezza soletta	Armatura long. soletta	Passo arm. long. soletta	Dist. baric. Aa,l dal bordo sup.	A. arm. soletta	Altezza trave acc.	Base piatto inferiore	Base piatto superiore	Altezza anima	Spessore piatto inferiore	Spessore piatto superiore	Spessore anima	raggio curvat. raccordo	Area trave acciaio	Peso trave acciaio
40,00	12,90 m	350	16	200	47	4825	1800	700	600	1680	80	40	35	16	138800	10,896
Rek	f,cd	f,yk	Ec,m	f,d	Φ,infinito	n,2	n,3	8,rit	Ac,full	Ntr	N,rit_slu	ΔT,differ.	α	CLASSE SEZIONE N	TC_4.2.3.1	Verifica imbozz CNR
(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(-)	(-)	(-)	(-)	(mmq)	(-)	(N)	(°C)	(1/°C)	Parametri	h/t	10011 p.to 7.2.6.1
Res_cubica a	Res_ a compr.	snerv. acc.carp.	Modulo elastico	Tens.lim.acc.carp.	Coeff.viscosità di	Coeff.Omog.	Coeff.Omogenizz.	Coeff.ritiro	Area compless.	Numero travi ponte	F. ritiro eccentr.	Variaz. termica	Coeff. dilat. term.	$-\beta = 0,00156$	Pareti sott.	0
compr.	Pura	335 (40 <t<=80 mm)<="" td=""><td>medio</td><td>319 (40<t<=80 mm)<="" td=""><td>Withney</td><td>Fase II</td><td>Fase III</td><td>Cocil.ruro</td><td>soletta cls</td><td>Numero travi ponte</td><td>(soletta)</td><td>differenz.</td><td>Coen. dilat. teriii.</td><td>ε = 0,81362</td><td>h/t = 48,0</td><td>Occorre verif. dettagliata ad imbozz.</td></t<=80></td></t<=80>	medio	319 (40 <t<=80 mm)<="" td=""><td>Withney</td><td>Fase II</td><td>Fase III</td><td>Cocil.ruro</td><td>soletta cls</td><td>Numero travi ponte</td><td>(soletta)</td><td>differenz.</td><td>Coen. dilat. teriii.</td><td>ε = 0,81362</td><td>h/t = 48,0</td><td>Occorre verif. dettagliata ad imbozz.</td></t<=80>	Withney	Fase II	Fase III	Cocil.ruro	soletta cls	Numero travi ponte	(soletta)	differenz.	Coen. dilat. teriii.	ε = 0,81362	h/t = 48,0	Occorre verif. dettagliata ad imbozz.
	19.83	355 (t<=40 mm)	34077	338 (t<=40 mm)	1.84	6,16	17,48	0,0002416	4537100		5,268E+06	10,0 °C	1,2E-05	c/t = 171	h/t, lim = 36,0	

FASE 0 - SLU

SCHEMA DI TRAVE SEMPLICEMENTE APPOGGIATA - SOLO TRAVE IN ACCIAIO

CA	RATTERISTI	HE	ASCISSA DI VERIF.				
Aa	S	x					
(mm^2)	(mm^3)	(mm)	(mm^4)	(val.compr. fra 0 e 40 m)			
Area acciaio	Momento Statico	Asse Neutro - Fase I	Momento Inerzia - Fase I	0,00 m			
138800	150784000	1086	6,907E+10				

SOLLECITAZIONI SLU TENSIONI SLU - FASE 0										VERIFICHE				
	N	V_2	M_3	σc,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σ a,ali_inf	τ	σ_id,max	VERIFICA ACC.	
	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	VERIFICA ACC.	η,асс
CDS	N (t)	V (mm tm)	M (t-)	Tens.cls.max	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima	Tens.acc. quota irrigidim.	Tens.acc.an. inf.	Tens.acc. ali inf.	T 4 P	Tensione ideale	σ id,max <f,d< td=""><td>C/D</td></f,d<>	C/D
	N_(pp_tr)	V_(pp_tr)	M_(pp_tr)	i ens.cis,max	i ens.arm. Soietta	fd = 338 MPa	sup	longitud.	rens.acc.an. int.	fd = 319 MPa	Tens.taglio anima	i ensione ideale	O_iu,iiiax~i,u	CB
	0,0	294,2	0,00			0,00	0,00	0,00	0,00	0,00	5,00	8,67	Verificato	39,02

FASE I - SLU

SCHEMA TRAVE CONTINUA - SOLETTA NON REAGENTE - CARICO PERM. SOLETTA GIK

CARATTERISTICHE MECCANICHE										
Aa	S1(+)	X_1(+)	Ja_1(+)							
(mm^2)	(mm^3)	(mm)	(mm^4)							
Area acciaio	Momento Statico	Asse Neutro - Fase I	Momento Inerzia - Fase I							
138800	150784000	1086	6,907E+10							

	SOLLECI	TAZIONI SLU					TI	ENSIONI SLU - FASE	I				V	ERIFICHE
	N	V_2	M_3	σc,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	4	σ_id,max	VERIFICA ACC.	
ENNUPLE DI COMB. MAX	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	VERIFICA ACC.	η,асс
CONTEMP.	N_(Gk1)	V_(Gk1)	M_(Gk1)	Tens.cls,max	Tens.arm. Soletta	Tens.acc. ala sup fd = 338 MPa	Tens.acc. anima sup	Tens.acc. quota irrigidim. longitud.	Tens.acc.an. inf.	Tens.acc. ali inf. fd = 319 MPa	Tens.taglio anima	Tensione ideale	σ_id,max <f,d< th=""><th>C/D</th></f,d<>	C/D
MAX N	0,0	-1038,4	-6699,9			105,38	101,50	72,40	-61,47	-69,23	17,66	109,73	Verificato	3,08
MIN N	0,0	821,0	-2981,0			46,89	45,16	32,21	-27,35	-30,80	13,96	52,76	Verificato	6,41
MAX V2	0,0	1103,1	-7352,4			115,64	111,38	79,45	-67,45	-75,97	18,76	120,12	Verificato	2,81
MIN V2	0,0	-1103,1	-7352,4			115,64	111,38	79,45	-67,45	-75,97	18,76	120,12	Verificato	2,81
MAX M3	0,0	853,1	-2852,9			44,87	43,22	30,83	-26,17	-29,48	14,51	51,43	Verificato	6,57
MIN M3	0,0	-1103,1	-7352,4			115,64	111,38	79,45	-67,45	-75,97	18,76	120,12	Verificato	2,81

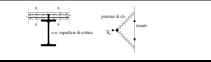
TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

								FASE II	- SLU							
				SCHEM	A TRAVE CON	TINUA - SOLETT.	A REAGENTE	OMOGENEIZZATA		NITO (VISCOSI	ΓA') - SOVRACC	. PERM. G2k + RI	TIRO CLS			
						CARATTERISTI									LECITAZ, RITIRO	
Ea	Ec	n,2	Aa	As	Ac	Ai,2 (+)	Si,2 (+)	X_2 (+)	Ja_2 (+)	Ai,2 (-)	Si,2 (-)	X_2 (-)	Ja_2 (-)	N,rit,soletta	σ,ritiro_slu	SOLL_SAP
(Mpa) Mod.Elast.Acc.	(Mpa) Mod.Elast.Cls	(-) Coeff.Omog.	(mm^2) Area acciaio	(mm^2) Area armature soletta	(mm^2) Area cls	(mm^2) Area ideale	(mm^3) Momento Statico	(mm) A.N Fase II	(mm^4) Mom. Inerzia - Fase II	(mm^2) Area ideale	(mm^3) Momento Statico	(mm) A.N Fase II	(mm^4) Mom. Inerzia - Fase II	(N) Forza di ritiro eccentrica (soletta)	(Mpa) Tens. traz. nella soletta (connettori)	N,rit. (compr.) -4390,1 KN/Trave M,rit.(M. posit.)
210000	12013.0	17.48	138800	4825	1610000	235726	2,157E+08	Soletta tutta compr. 915	1.618E+11	143625	1,996E+08	1390	7.807E+10	5,268E+06	3,48	3249,1 KNm/Trave
		2.1.0		1940					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1,000.00.00	.,	-1.0	00.00,000.000.000
	SOLLECI	TAZIONI SLU						NSIONI SLU - FASE						VERIFIC		
ENNUPLE DI	N (KN)	V_2 (KN)	M_3 (KNm)	Gc,max (MPa)	(MPa)	σa,ali_sup (MPa)	σa,an_sup (MPa)	ga,an_irr (MPa)	ga,an_inf (MPa)	σa,ali_inf (MPa)	(MPa)	σ_id,max (MPa)	VERIFICA TR. ACCIAIO	VERIFICA CLS	VERIFICA ARMAT. SOLETTA	
COMB. MAX		` /			` '	Tens.acc. ala sup	Tens.acc. anima	Tens.acc. quota irrigidim.	ì	Tens.acc. ali inf.	` '	` ′				VERIFICA COMPLESSIVA
CONTEMP.	N_(Gk2+Rit.)	V_(Gk2+Rit.)	M_(Gk2+Rit.)	Tens.cls,max	Tens.arm. Soletta	fd = 338 MPa	sup	longitud.	Tens.acc.an. inf.	fd = 319 MPa	Tens.taglio anima	Tensione ideale	σ_id,max <f,d< td=""><td>sigma,c_max<0,85f,ed</td><td>sigma,a_max<f,yd< td=""><td></td></f,yd<></td></f,d<>	sigma,c_max<0,85f,ed	sigma,a_max <f,yd< td=""><td></td></f,yd<>	
MAX N	363,6	831,1	-2728,7	0,00	49,55	38,96	37,56	27,07	-21,16	-23,96	14,13	46,01	7,35		7,90	Verificato
MIN N	-5704,3	604,0	-1083,5	-1,38	-5,57	-9,77	-10,33	-14,49	-33,64	-34,75	10,27	39,04	8,17	12,18	70,31	Verificato
MAX V2 MIN V2	306,0 -5688,5	966,9 -967,9	-4629,0 -4629,0	0,00 -1,38	81,81 55,48	63,85 37,51	61,48 35,14	43,69 17,35	-38,13 -64,47	-42,88 -69,21	16,44 16,46	69,91 74,86	4,84 4,26	12,21	4,78 7,05	Verificato Verificato
MAX M3	278,7	-967,9	-4629,0	0,00	17,36	13,89	13,43	17,35	-64,47	-69,21	11,16	23,81	14,20	14,41	22,55	Verificato
MIN M3	-5688,5	-967,9	-4629,0	-1,38	55,48	37,51	35,14	17,35	-64,47	-69,21	16,46	74,86	4,26	12,21	7,05	Verificato
	_															
								FASE III	I - SLU							
				SCHEM	IA TRAVE CON	TINUA - SOLETT	A REAGENTE	OMOGENEIZZATA .	A TEMPO ZER	O - SOVRACC.	VARIABILI Qik.	+ VARIAZ. TERM	MICHE DT			
				, , ,		CARATTERISTI									LLECITAZ. ∆T_diff	
Ea	Ec	n,3	Aa	As	Ac	Ai,3 (+)	Si,3 (+)	X_3 (+)	Ja_3 (+)	Ai,3 (-)	Si,3 (-)	X_3 (-)	Ja_3 (-)	ε,ΔT_differ.	σ,ΔT_differ.	SOLL. ∆T,diff_SAP
(Mpa)	(Mpa)	(-)	(mm^2)	(mm^2)	(mm^2)	(mm^2)	(mm^3) Momento Statico	(mm) A.N. Fase III (M+)	(mm^4) Mom. Inerzia -	(mm^2)	(mm^3) Momento Statico	(mm)	(mm^4) Mom. Inerzia - Fase	(-)	(Mpa) Tens. compr. nella	N,ΔT_differ. (traz.) 6184,5 KN
Mod.Elast.Acc.	Mod.Elast.Cls	Coeff.Omog.	Area acciaio	Area armature soletta	Area cls	Area ideale (M+)	(M+)	Soletta tutta compr.	Fase III (M+)	Area ideale (M-)	(M-)	A.N Fase III (M-)	III (M-)	Def.term. diff.	soletta (soletta calda)	M.ΔTdiffer. (M negat.)
210000	34077	6,16	138800	4825	1610000	404884	2,453E+08	606	2,175E+11	143625	1,996E+08	1390	7,807E+10	1,200E-04	-4,09	-2664,8 KNm
		TAZIONI SLU	м 2		_	II		NSIONI SLU - FASE I		N C	_	- 14	VEDUCA ED VE	VERIFIC		
ENNUPLE DI	N	V_2	M_3 (KNm)	σc,max (MPa)	OS (MPa)	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	T (MPa)	σ_id,max	VERIFICA TRAVE IN ACCIAIO	VERIFIC VERIFICA CLS	VERIFICA ARMAT.	VEDIEICA
ENNUPLE DI COMB. MAX CONTEMP.			M_3 (KNm) M_(Qik+ΔT)	σc,max (MPa) Tens.cls,max	(MPa) Tens.arm, Soletta	(MPa) Tens.acc. ala sup	MPa) Tens.acc. anima	▼a,an_irr (MPa) Tens.acc. quota irrigidim.		(MPa) Tens.acc. ali inf.	(MPa) Tens.taglio anima	σ_id,max (MPa) Tensione ideale	_VERIFICA TRAVE IN ACCIAIO σ_id,max <f,d< td=""><td></td><td></td><td>VERIFICA COMPLESSIVA</td></f,d<>			VERIFICA COMPLESSIVA
COMB. MAX	N (KN)	V_2 (KN)	(KNm) M_(Qik+ΔT)	(MPa) Tens.cls,max	(MPa) Tens.arm. Soletta	(MPa)	σa,an_sup (MPa)	♂ a,an_irr (MPa)	Ga,an_inf (MPa) Tens.acc.an. inf.	(MPa)	(MPa) Tens.taglio anima	(MPa)	IN ACCIAIO	VERIFICA CLS	VERIFICA ARMAT. SOLETTA	
COMB. MAX CONTEMP.	N (KN) N_(Qik+ΔT)	V_2 (KN) V_(Qik+ΔT)	(KNm)	(MPa)	(MPa)	(MPa) Tens.acc. ala sup fd = 338 MPa	σa,an_sup (MPa) Tens.acc. anima sup	▼a,an_irr (MPa) Tens.acc. quota irrigidim. longitud.	▼a,an_inf (MPa)	(MPa) Tens.acc. ali inf. fd = 319 MPa	(MPa)	(MPa) Tensione ideale	IN ACCIAIO σ_id,max <f,d< td=""><td>VERIFICA CLS sigma,c_max<0,85f,cd</td><td>VERIFICA ARMAT. SOLETTA sigma,a_max<f,yd< td=""><td>COMPLESSIVA</td></f,yd<></td></f,d<>	VERIFICA CLS sigma,c_max<0,85f,cd	VERIFICA ARMAT. SOLETTA sigma,a_max <f,yd< td=""><td>COMPLESSIVA</td></f,yd<>	COMPLESSIVA
COMB. MAX CONTEMP. MAX N MIN N MAX V2	N (KN) N_(Qik+ΔT) 9293,2 -1660,1 9235,9	V_2 (KN) V_(Qik+ΔT) 446,5 -714,2 1757,1	(KNm) M_(Qik+ΔT) 1421,4 -2490,4 -4931,8	(MPa) Tens.cls,max -4,32 -4,35 -3,68	(MPa) Tens.arm. Soletta 63,30 38,73 151,36	(MPa) Tens.acc. ala sup fd = 338 MPa 65,28 29,06 132,22	(MPa) Tens.acc. anima sup 65,54 27,79 129,69	Ga,an_irr (MPa) Tens.acc. quota irrigidim. longitud. 67,50 18,22 110,74	Ga,an_inf (MPa) Tens.acc.an. inf. 76,52 -25,80 23,56	(MPa) Tens.acc. ali inf. fd = 319 MPa 77,05 -28,35 18,51	(MPa) Tens.taglio anima 7,59 12,15 29,88	(MPa) Tensione ideale 78,16 35,88 141,99	IN ACCIAIO σ_id,max <f,d 2,38<="" 4,08="" 9,42="" td=""><td>VERIFICA CLS sigma,c_max<0,85f,cd 3,90 3,88 4,58</td><td>VERIFICA ARMAT. SOLETTA sigma,a_max<f,yd 10,10="" 2,59<="" 6,18="" td=""><td>Verificato Verificato Verificato</td></f,yd></td></f,d>	VERIFICA CLS sigma,c_max<0,85f,cd 3,90 3,88 4,58	VERIFICA ARMAT. SOLETTA sigma,a_max <f,yd 10,10="" 2,59<="" 6,18="" td=""><td>Verificato Verificato Verificato</td></f,yd>	Verificato Verificato Verificato
COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2	N (KN) N_(Qik+ΔT) 9293,2 -1660,1 9235,9 -1550,2	V_2 (KN) V_(Qik+AT) 446.5 -714.2 1757.1 -1757.5	(KNm) M_(Qik+∆T) 1421,4 -2490,4 -4931,8 -4931,8	(MPa) Tens.els,max -4,32 -4,35 -3,68 -4,30	(MPa) Tens.arm. Soletta 63,30 38,73 151,36 80,99	(MPa) Tens.acc. ala sup fd = 338 MPa 65,28 29,06 132,22 61,85	Ga,an_sup (MPa) Tens.acc. anima sup 65,54 27,79 129,69 59,32	Øa,an irr (MPa) Tens.acc. quota irrigidim. longitud. 67,50 18,22 110,74 40,37	76,52 -25,80 23,56 -46,81	(MPa) Tens.acc. ali inf. fd = 319 MPa 77,05 -28,35 18,51 -51,86	(MPa) Tens.taglio anima 7,59 12,15 29,88 29,89	(MPa) Tensione ideale 78,16 35,88 141,99 80,66	IN ACCIAIO σ_id,max <f,d 2,38="" 4,08="" 4,19<="" 9,42="" td=""><td>VERIFICA CLS sigma,c_max<0,85f,cd 3,90 3,88 4,58 3,92</td><td>VERIFICA ARMAT. SOLETTA sigma,a_max<f,yd 10,10="" 2,59="" 4,83<="" 6,18="" td=""><td>Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd></td></f,d>	VERIFICA CLS sigma,c_max<0,85f,cd 3,90 3,88 4,58 3,92	VERIFICA ARMAT. SOLETTA sigma,a_max <f,yd 10,10="" 2,59="" 4,83<="" 6,18="" td=""><td>Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd>	Verificato Verificato Verificato Verificato Verificato Verificato
COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	N (KN) N_(Qik+AT) 9293,2 -1660,1 9235,9 -1550,2 9142,3	V_2 (KN) V_(Qik+AT) 446.5 -714,2 1757,1 -1757,5 710,2	(KNm) M_(Qik+ΔT) 1421,4 -2490,4 -4931,8 -4931,8 2597,3	(MPa) Tens.cls,max -4,32 -4,35 -3,68 -4,30 -4,85	(MPa) Tens.arm. Soletta 63,30 38,73 151,36 80,99 59,19	(MPa) Tens.acc. ala sup fd = 338 MPa 65,28 29,06 132,22 61,85 62,81	Ga,an_sup (MPa) Tens.acc. anima sup 65,54 27,79 129,69 59,32 63,29	Øa,an irr (MPa) Tens.acc, quota irrigidim. longitud. 67,50 18,22 110,74 40,37 66,87	Ga,an_inf (MPa) Tens.acc.an. inf. 76,52 -25,80 23,56 -46,81 83,35	(MPa) Tens.acc. ali inf. fd = 319 MPa 77,05 -28,35 18,51 -51,86 84,31	(MPa) Tens.taglio anima 7,59 12,15 29,88 29,89 12,08	(MPa) Tensione ideale 78,16 35,88 141,99 80,66 86,86	IN ACCIAIO σ_id,max <f,d 2.38="" 3.67<="" 4.08="" 4.19="" 9.42="" td=""><td>VERIFICA CLS sigma,c_max<0,85f,ed 3,90 3,88 4,58 3,92 3,47</td><td>VERIFICA ARMAT. SOLETTA sigma,a_max<f,yd 10,10="" 2,59="" 4,83="" 6,18="" 6,61<="" td=""><td>COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd></td></f,d>	VERIFICA CLS sigma,c_max<0,85f,ed 3,90 3,88 4,58 3,92 3,47	VERIFICA ARMAT. SOLETTA sigma,a_max <f,yd 10,10="" 2,59="" 4,83="" 6,18="" 6,61<="" td=""><td>COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd>	COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato
COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2	N (KN) N_(Qik+ΔT) 9293,2 -1660,1 9235,9 -1550,2	V_2 (KN) V_(Qik+AT) 446.5 -714.2 1757.1 -1757.5	(KNm) M_(Qik+∆T) 1421,4 -2490,4 -4931,8 -4931,8	(MPa) Tens.els,max -4,32 -4,35 -3,68 -4,30	(MPa) Tens.arm. Soletta 63,30 38,73 151,36 80,99	(MPa) Tens.acc. ala sup fd = 338 MPa 65,28 29,06 132,22 61,85	Ga,an_sup (MPa) Tens.acc. anima sup 65,54 27,79 129,69 59,32	Øa,an irr (MPa) Tens.acc. quota irrigidim. longitud. 67,50 18,22 110,74 40,37	76,52 -25,80 23,56 -46,81	(MPa) Tens.acc. ali inf. fd = 319 MPa 77,05 -28,35 18,51 -51,86	(MPa) Tens.taglio anima 7,59 12,15 29,88 29,89	(MPa) Tensione ideale 78,16 35,88 141,99 80,66	IN ACCIAIO σ_id,max <f,d 2,38="" 4,08="" 4,19<="" 9,42="" td=""><td>VERIFICA CLS sigma,c_max<0,85f,cd 3,90 3,88 4,58 3,92</td><td>VERIFICA ARMAT. SOLETTA sigma,a_max<f,yd 10,10="" 2,59="" 4,83<="" 6,18="" td=""><td>Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd></td></f,d>	VERIFICA CLS sigma,c_max<0,85f,cd 3,90 3,88 4,58 3,92	VERIFICA ARMAT. SOLETTA sigma,a_max <f,yd 10,10="" 2,59="" 4,83<="" 6,18="" td=""><td>Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd>	Verificato Verificato Verificato Verificato Verificato Verificato
COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	N (KN) N_(Qik+AT) 9293,2 -1660,1 9235,9 -1550,2 9142,3	V_2 (KN) V_(Qik+AT) 446.5 -714,2 1757,1 -1757,5 710,2	(KNm) M_(Qik+ΔT) 1421,4 -2490,4 -4931,8 -4931,8 2597,3	(MPa) Tens.cls,max -4,32 -4,35 -3,68 -4,30 -4,85	(MPa) Tens.arm. Soletta 63,30 38,73 151,36 80,99 59,19	(MPa) Tens.acc. ala sup fd = 338 MPa 65,28 29,06 132,22 61,85 62,81	Ga,an_sup (MPa) Tens.acc. anima sup 65,54 27,79 129,69 59,32 63,29	Øa,an irr (MPa) Tens.acc, quota irrigidim. longitud. 67,50 18,22 110,74 40,37 66,87	Ga,an_inf (MPa) Tens.acc.an. inf. 76,52 -25,80 23,56 -46,81 83,35	(MPa) Tens.acc. ali inf. fd = 319 MPa 77,05 -28,35 18,51 -51,86 84,31	(MPa) Tens.taglio anima 7,59 12,15 29,88 29,89 12,08	(MPa) Tensione ideale 78,16 35,88 141,99 80,66 86,86	IN ACCIAIO σ_id,max <f,d 2.38="" 3.67<="" 4.08="" 4.19="" 9.42="" td=""><td>VERIFICA CLS sigma,c_max<0,85f,ed 3,90 3,88 4,58 3,92 3,47</td><td>VERIFICA ARMAT. SOLETTA sigma,a_max<f,yd 10,10="" 2,59="" 4,83="" 6,18="" 6,61<="" td=""><td>Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd></td></f,d>	VERIFICA CLS sigma,c_max<0,85f,ed 3,90 3,88 4,58 3,92 3,47	VERIFICA ARMAT. SOLETTA sigma,a_max <f,yd 10,10="" 2,59="" 4,83="" 6,18="" 6,61<="" td=""><td>Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd>	Verificato Verificato Verificato Verificato Verificato Verificato Verificato
COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	N (KN) N_(Qik+AT) 9293,2 -1660,1 9235,9 -1550,2 9142,3	V_2 (KN) V_(Qik+AT) 446.5 -714,2 1757,1 -1757,5 710,2	(KNm) M_(Qik+ΔT) 1421,4 -2490,4 -4931,8 -4931,8 2597,3	(MPa) Tens.cls,max -4,32 -4,35 -3,68 -4,30 -4,85	(MPa) Tens.arm. Soletta 63,30 38,73 151,36 80,99 59,19	(MPa) Tens.acc. ala sup fd = 338 MPa 65,28 29,06 132,22 61,85 62,81	Ga,an_sup (MPa) Tens.acc. anima sup 65,54 27,79 129,69 59,32 63,29	Øa,an irr (MPa) Tens.acc, quota irrigidim. longitud. 67,50 18,22 110,74 40,37 66,87	Ga,an_inf (MPa) Tens.acc.an. inf. 76,52 -25,80 23,56 -46,81 83,35	(MPa) Tens.acc. ali inf. fd = 319 MPa 77,05 -28,35 18,51 -51,86 84,31	(MPa) Tens.taglio anima 7,59 12,15 29,88 29,89 12,08	(MPa) Tensione ideale 78,16 35,88 141,99 80,66 86,86	IN ACCIAIO σ_id,max <f,d 2.38="" 3.67<="" 4.08="" 4.19="" 9.42="" td=""><td>VERIFICA CLS sigma,c_max<0,85f,ed 3,90 3,88 4,58 3,92 3,47</td><td>VERIFICA ARMAT. SOLETTA sigma,a_max<f,yd 10,10="" 2,59="" 4,83="" 6,18="" 6,61<="" td=""><td>Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd></td></f,d>	VERIFICA CLS sigma,c_max<0,85f,ed 3,90 3,88 4,58 3,92 3,47	VERIFICA ARMAT. SOLETTA sigma,a_max <f,yd 10,10="" 2,59="" 4,83="" 6,18="" 6,61<="" td=""><td>Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd>	Verificato Verificato Verificato Verificato Verificato Verificato Verificato
COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	N (KN) N_(Qik+AT) 9293,2 -1660,1 9235,9 -1550,2 9142,3	V_2 (KN) V_(Qik+AT) 446.5 -714,2 1757,1 -1757,5 710,2	(KNm) M_(Qik+ΔT) 1421,4 -2490,4 -4931,8 -4931,8 2597,3	(MPa) Tens.cls,max -4,32 -4,35 -3,68 -4,30 -4,85	(MPa) Tens.arm. Soletta 63,30 38,73 151,36 80,99 59,19	(MPa) Tens.acc. ala sup fd = 338 MPa 65,28 29,06 132,22 61,85 62,81	Ga,an_sup (MPa) Tens.acc. anima sup 65,54 27,79 129,69 59,32 63,29	Øa,an irr (MPa) Tens.acc, quota irrigidim. longitud. 67,50 18,22 110,74 40,37 66,87	Ga,an_inf (MPa) Tens.acc.an. inf. 76.52 -25.80 -23.56 -46.81 83.35 -48,34	(MPa) Tens.acc. ali inf. fd = 319 MPa 77,05 -28,35 18,51 -51,86 84,31	(MPa) Tens.taglio anima 7,59 12,15 29,88 29,89 12,08	(MPa) Tensione ideale 78,16 35,88 141,99 80,66 86,86	IN ACCIAIO σ_id,max <f,d 2.38="" 3.67<="" 4.08="" 4.19="" 9.42="" td=""><td>VERIFICA CLS sigma,c_max<0,85f,ed 3,90 3,88 4,58 3,92 3,47</td><td>VERIFICA ARMAT. SOLETTA sigma,a_max<f,yd 10,10="" 2,59="" 4,83="" 6,18="" 6,61<="" td=""><td>Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd></td></f,d>	VERIFICA CLS sigma,c_max<0,85f,ed 3,90 3,88 4,58 3,92 3,47	VERIFICA ARMAT. SOLETTA sigma,a_max <f,yd 10,10="" 2,59="" 4,83="" 6,18="" 6,61<="" td=""><td>Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd>	Verificato Verificato Verificato Verificato Verificato Verificato Verificato
COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	N (KN) N_(Qik+AT) 9293,2 -1660,1 9235,9 -1550,2 9142,3	V_2 (KN) V_(Qik+AT) 446.5 -714,2 1757,1 -1757,5 710,2	(KNm) M_(Qik+ΔT) 1421,4 -2490,4 -4931,8 -4931,8 2597,3	(MPa) Tens.cls,max -4,32 -4,35 -3,68 -4,30 -4,85	(MPa) Tens.arm. Soletta 63.30 38.73 151.36 80.99 59.19 84.37	(MPa) Tens.acc. ala sup fd = 338 MPa 65.28 29.06 133.22 61.85 62.81 64.49	Ga.an_sup (MPa) Tens.acc. anima sup 65,54 27,79 129,69 59,32 63,29 61,87	### ### ##############################	од.ап_inf (MPa) Тепь.асс.ап. inf. 76.52 -25.80 23.56 -46.81 83.35 -48.34	(MPa) Tens.acc. ali inf. fd = 319 MPa 77,05 -28,35 18,51 -51,86 84,31 -53,59	(MPa) Tens.taglio anima 7,59 12,15 29,88 29,89 12,08 7,66	(MPa) Tensione ideale 78.16 35.88 141.99 80.66 86.86 65.84	IN ACCIAIO σ_id,max <f,d 2.38="" 3,67="" 4,08="" 4,19="" 5,14<="" 9,42="" td=""><td>VERIFICA CLS sigma,c_max<0,85f,ed 3,90 3,88 4,58 3,92 3,47</td><td>VERIFICA ARMAT. SOLETTA sigma,a_max<f,yd 10,10="" 2,59="" 4,83="" 6,18="" 6,61<="" td=""><td>Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd></td></f,d>	VERIFICA CLS sigma,c_max<0,85f,ed 3,90 3,88 4,58 3,92 3,47	VERIFICA ARMAT. SOLETTA sigma,a_max <f,yd 10,10="" 2,59="" 4,83="" 6,18="" 6,61<="" td=""><td>Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd>	Verificato Verificato Verificato Verificato Verificato Verificato Verificato
COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	N (KN) N_(Qik+AT) 9293,2 -1660,1 9235,9 -1550,2 9142,3	V_2 (KN) V_(Qik+AT) 446.5 -714,2 1757,1 -1757,5 710,2	(KNm) M_(Qik+ΔT) 1421,4 -2490,4 -4931,8 -4931,8 2597,3	(MPa) Tens.cls,max -4,32 -4,35 -3,68 -4,30 -4,85	(MPa) Tens.arm. Soletta 63.30 38.73 151.36 80.99 59.19 84.37	(MPa) Tens.acc. ala sup fd = 338 MPa 65.28 29.06 133.22 61.85 62.81 64.49	Ga.an_sup (MPa) Tens.acc. anima sup 65,54 27,79 129,69 59,32 63,29 61,87	### ### ##############################	од.ап_inf (MPa) Тепь.асс.ап. inf. 76.52 -25.80 23.56 -46.81 83.35 -48.34	(MPa) Tens.acc. ali inf. fd = 319 MPa 77,05 -28,35 18,51 -51,86 84,31 -53,59	(MPa) Tens.taglio anima 7,59 12,15 29,88 29,89 12,08 7,66	(MPa) Tensione ideale 78.16 35.88 141.99 80.66 86.86 65.84	IN ACCIAIO σ_id,max <f,d 2.38="" 3,67="" 4,08="" 4,19="" 5,14<="" 9,42="" td=""><td>VERIFICA CLS sigma,c_max<0,85f,ed 3,90 3,88 4,58 3,92 3,47</td><td>VERIFICA ARMAT. SOLETTA sigma,a_max<f,yd 10,10="" 2,59="" 4,83="" 6,18="" 6,61<="" td=""><td>Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd></td></f,d>	VERIFICA CLS sigma,c_max<0,85f,ed 3,90 3,88 4,58 3,92 3,47	VERIFICA ARMAT. SOLETTA sigma,a_max <f,yd 10,10="" 2,59="" 4,83="" 6,18="" 6,61<="" td=""><td>Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd>	Verificato Verificato Verificato Verificato Verificato Verificato Verificato
COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	N (KN) N_(Qik+AT) 9293,2 -1660,1 9235,9 -1550,2 9142,3	V_2 (KN) V_(Qik+AT) 446.5 -714,2 1757,1 -1757,5 710,2	(KNm) M_(Qik+ΔT) 1421,4 -2490,4 -4931,8 -4931,8 2597,3	(MPa) Tens.cls,max -4,32 -4,35 -3,68 -4,30 -4,85	(MPa) Tens.arm. Soletta 63.30 38.73 151.36 80.99 59.19 84.37	(MPa) Tens.acc. ala sup fd = 338 MPa 65.28 29.06 133.22 61.85 62.81 64.49	Ga.an_sup (MPa) Tens.acc. anima sup 65,54 27,79 129,69 59,32 63,29 61,87	### ### ##############################	од.ап_inf (MPa) Тепь.асс.ап. inf. 76.52 -25.80 23.56 -46.81 83.35 -48.34	(MPa) Tens.acc. ali inf. fd = 319 MPa 77,05 -28,35 18,51 -51,86 84,31 -53,59	(MPa) Tens.taglio anima 7,59 12,15 29,88 29,89 12,08 7,66	(MPa) Tensione ideale 78.16 35.88 141.99 80.66 86.86 65.84	IN ACCIAIO σ_id,max <f,d 2.38="" 3,67="" 4,08="" 4,19="" 5,14<="" 9,42="" td=""><td>VERIFICA CLS sigma,c_max<0,85f,ed 3,90 3,88 4,58 3,92 3,47</td><td>VERIFICA ARMAT. SOLETTA sigma_max<f,yd 10,10="" 2,59="" 4,64<="" 4,83="" 6,18="" 6,61="" td=""><td>Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd></td></f,d>	VERIFICA CLS sigma,c_max<0,85f,ed 3,90 3,88 4,58 3,92 3,47	VERIFICA ARMAT. SOLETTA sigma_max <f,yd 10,10="" 2,59="" 4,64<="" 4,83="" 6,18="" 6,61="" td=""><td>Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd>	Verificato Verificato Verificato Verificato Verificato Verificato Verificato
COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	N (KN) N_Q(Bit-AT) 9293,2 -1660,1 9235,9 -1550,2 9142,3 -1501,5	V_2 (KN) V_(Qik+AT) -446.5 -714.2 1757.1 -1757.5 710.2 -450.1	(KNm) M_(Qik+ΔT) 1421,4 -2490,4 -4931,8 -4931,8 2597,3	(MPa) Tens.cls.max -4.32 -4.35 -3.68 -4.30 -4.85 -4.28	(MPa) Tens.arm. Soletta 63,30 38,73 151,36 80,99 59,19 84,37	(MPa) Tens.acc. ala sup fd = 338 MPa 65.28 29.06 132,22 61.85 62.81 64.49	Ga,an_sup (MPa) Tens.acc. anima sup 65,54 27,79 129,69 59,32 63,29 61,87	Ga.an_irr (MPa)	Ga.an_inf (MPa) Tens.acc.an.inf. 76.52 -25.80 23.56 -46.81 83.35 -48.34 DTALI - SLU SA X = 0 m PER	(MPa) Tens.acc. ali inf. fd = 319 MPa 77.05 -28,35 -18,51 -51,86 84,31 -53,59 GLI INVILUPP	(MPa) Tens.taglio anima 7,59 12,15 29,88 29,89 12,08 7,66	(MPa) Tensione ideale 78.16 78.16 35.88 141,99 80.66 86.86 65.84 CITAZIONI MA2	IN ACCIAIO σ_id,max <f,d 2,38="" 3,67="" 4,08="" 4,19="" 5,14="" 9,42="" td="" trave<="" verifica="" =""><td>VERIFICA CLS sigma,c_max=0,85f,ed 3,90 3,88 4,58 3,92 3,47 3,94 VERIFIC</td><td>VERIFICA ARMAT. SOLETTA sigma_max<f,yd 10,10="" 2,59="" 4,64="" 4,83="" 6,18="" 6,61="" armat.<="" he="" slu="" td="" verifica=""><td>COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd></td></f,d>	VERIFICA CLS sigma,c_max=0,85f,ed 3,90 3,88 4,58 3,92 3,47 3,94 VERIFIC	VERIFICA ARMAT. SOLETTA sigma_max <f,yd 10,10="" 2,59="" 4,64="" 4,83="" 6,18="" 6,61="" armat.<="" he="" slu="" td="" verifica=""><td>COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd>	COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato
COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	N (KN) N_Q(Bit-AT) 9293,2 -1660,1 9235,9 -1550,2 9142,3 -1501,5	V_2 (KN) V_(Qik+AT) 446.5 -714,2 1757,1 -1757,5 710,2	(KNm) M_(Qik+ΔT) 1421,4 -2490,4 -4931,8 -4931,8 2597,3	(MPa) Tens.cls,max 4,32 4,35 3,68 4,30 4,85 4,28	(MPa) Tens.arm. Soletta 63.30 38.73 151.36 80.99 59.19 84.37	(MPa) Tens.acc. ala sup fd = 338 MPa 65.28 29.06 132.22 61.85 62.81 64.49 LE TENSIONI NE	Ga,an_sup (MPa) Tens.acc. anima sup 65,54 27,79 129,69 29,32 63,29 61,87 LLE FASI 0 - I	Ga,an_irr (MPa)	Tens.acc.an. inf (MPa) Tens.acc.an. inf. 76.52 -25.80 23.56 -46.81 83.35 -48.34 DTALI - SLU SA X = 0 m PER	(MPa) Tensacc ali inf. fel = 319 MPa 77.05 -28.35 -18.51 -51.86 84.31 -53.59 GLI INVILUPP onali inf (MPa)	(MPa) Tens.taglio anima 7.59 12.15 29.88 29.89 12.08 7.66	(MPa) Tensione ideale 75,16 75,16 75,18 141,99 80,66 86,86 65,84 CITAZIONI MAX	IN ACCIAIO σ_id,max <f,d 2.38="" 3.67="" 4.08="" 4.19="" 5.14="" 9.42="" td="" ="" <=""><td>VERIFICA CLS sigma.c. max=0,85f.ed 3,90 3,88 4,58 3,92 3,47 3,94</td><td>VERIFICA ARMAT. SOLETTA sigma,a_max<f,yd 10,10="" 2,59="" 4,64="" 4,83="" 6,18="" 6,61="" he="" slu<="" td=""><td>COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd></td></f,d>	VERIFICA CLS sigma.c. max=0,85f.ed 3,90 3,88 4,58 3,92 3,47 3,94	VERIFICA ARMAT. SOLETTA sigma,a_max <f,yd 10,10="" 2,59="" 4,64="" 4,83="" 6,18="" 6,61="" he="" slu<="" td=""><td>COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd>	COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato
COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	N (KN) N_Q(Bit-AT) 9293,2 -1660,1 9235,9 -1550,2 9142,3 -1501,5	V_2 (KN) V_(Qik+AT) -446.5 -714.2 1757.1 -1757.5 710.2 -450.1	(KNm) M_(Qik+ΔT) 1421,4 -2490,4 -4931,8 -4931,8 2597,3	(MPa) Tens.cls.max -4.32 -4.35 -3.68 -4.30 -4.85 -4.28	(MPa) Tens.arm. Soletta 63,30 38,73 151,36 80,99 59,19 84,37	(MPa) Tens.acc. ala sup fd = 338 MPa 65.28 29.06 132.22 61.85 62.81 64.49 LE TENSIONI NE Ga.ali sup (MPa) Tens.acc. ala sup	Ga,an_sup (MPa) Tens.acc. anima sup 65,54 27,79 129,69 59,32 63,29 61,87 LLE FASI 0 - I	Grann irr (MPa)	Ga.an_inf (MPa) Tens.acc.an.inf. 76.52 -25.80 23.56 -46.81 83.35 -48.34 DTALI - SLU SA X = 0 m PER	(MPa) Tens.acc. ali inf. fd = 319 MPa 77.05 -28.35 -18.51 -51.86 84.31 -53.59 GLI INVILUPP Ga.ali inf (MPa) Tens.acc. ali inf.	(MPa) Tens.taglio anima 7,59 12,15 29,88 29,89 12,08 7,66	(MPa) Tensione ideale 78.16 78.16 35.88 141,99 80.66 86.86 65.84 CITAZIONI MA2	IN ACCIAIO σ_id,max <f,d 2,38="" 3,67="" 4,08="" 4,19="" 5,14="" 9,42="" td="" trave<="" verifica="" =""><td>VERIFICA CLS sigma,c_max=0,85f,ed 3,90 3,88 4,58 3,92 3,47 3,94 VERIFIC</td><td>VERIFICA ARMAT. SOLETTA sigma_max<f,yd 10,10="" 2,59="" 4,64="" 4,83="" 6,18="" 6,61="" armat.<="" he="" slu="" td="" verifica=""><td>COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd></td></f,d>	VERIFICA CLS sigma,c_max=0,85f,ed 3,90 3,88 4,58 3,92 3,47 3,94 VERIFIC	VERIFICA ARMAT. SOLETTA sigma_max <f,yd 10,10="" 2,59="" 4,64="" 4,83="" 6,18="" 6,61="" armat.<="" he="" slu="" td="" verifica=""><td>COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd>	COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato
COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	N (KN) N_QQik+AT) 9293,2 -1660,1 9235,9 -1550,2 9142,3 -1501,5	V_2 (KN) V_(Qik+AT) 446.5 -714.2 1757.1 -1757.5 710.2 -450.1	(KNm) M_(Qik+ΔT) 1421,4 -2490,4 -4931,8 -4931,8 2597,3	(MPa) Tens.cls,max -4.32 -4.35 -3.68 -4.30 -4.85 -4.28 Oc.max (MPa) Tens.cls,max	(MPa) Tens.arm. Soletta 63,30 38,73 151,36 80,99 59,19 84,37 SOMMA DEL os (MPa) Tens.arm. Soletta	(MPa) Tens.acc. ala sup fd = 338 MPa 65.28 29.06 132.22 61.85 62.81 64.49 LE TENSIONI NE Ga.ali_sup (MPa) Tens.acc. ala sup fd = 338 MPa	Ga,an_sup (MPa) Tens.acc. anima sup 65,54 27,79 129,69 59,32 63,29 61,87 	Ga.an_irr (MPa) Tens.acc. quota irrigidim. longitud. 67.50 18,22 110.74 40,37 66.87 42,19 TENSIONI TC -II - III ALLA ASCIS TENSIONI SU Gaan irr (MPa) Tens.acc. quota irrigidim. longitud.	Tensaccan. inf. (MPa) Tensaccan. inf. 76.52 -25.80 -23.56 -46.81 83.35 -48.34 TALI - SLU SA X = 0 m PER Gaan_inf (MPa) Tensaccan. inf.	(MPa) Tens.acc. ali inf. fd = 319 MPa 77.05 -28,35 -18,51 -51,86 84,31 -53,59 GLI INVILUPP Gaali_inf (MPa) Tens.acc. ali inf. fd = 319 MPa	(MPa) Tens.taglio anima 7,59 12,15 29,88 29,89 12,68 7,66 I DELLE SOLLE T (MPa) Tens.taglio anima	(MPa) Tensione ideale 78.16 35.88 141,99 80.66 86.86 65.84 CITAZIONI MA2 Ø_id.max (MPa) Tensione ideale	IN ACCIAIO σ_id,max <f,d td="" ="" <=""><td>VERIFICA CLS sigma,c_max<0,85f,cd 3,90 3,88 4.58 3,92 3,47 3,94 VERIFICA CLS sigma,c_max<0,85f,cd</td><td>VERIFICA ARMAT. SOLETTA sigma_max<f,yd 10,10="" 2,59="" 4,64="" 4,83="" 6,18="" 6,61="" armat.="" he="" sigma_max<f,yd<="" slu="" soletta="" td="" verifica=""><td>Verificato Verificato Verificato</td></f,yd></td></f,d>	VERIFICA CLS sigma,c_max<0,85f,cd 3,90 3,88 4.58 3,92 3,47 3,94 VERIFICA CLS sigma,c_max<0,85f,cd	VERIFICA ARMAT. SOLETTA sigma_max <f,yd 10,10="" 2,59="" 4,64="" 4,83="" 6,18="" 6,61="" armat.="" he="" sigma_max<f,yd<="" slu="" soletta="" td="" verifica=""><td>Verificato Verificato Verificato</td></f,yd>	Verificato
COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	N (KN) N_(Qil+AT) 9293.2 -1660,1 9235.9 -1550,2 9142.3 -1501,5	V_2 (KN) V_(Qik+AT) -446.5 -714.2 1757.1 -1757.5 710.2 -450.1	(KNm) M_(Qik+ΔT) 1421,4 -2490,4 -4931,8 -4931,8 2597,3	(MPa) Tens.cls,max 4.32 4.35 3.68 4.30 4.85 4.28 Orc.max (MPa) Tens.cls,max -4.32	(MPa) Tens.arm. Soletta 63.30 38.73 151.36 80.99 59.19 84.37 SOMMA DEL ors (MPa) Tens.arm. Soletta 112.85	(MPa) Tens.acc. ala sup fd = 338 MPa 65.28 29.06 132.22 61.85 62.81 64.49 LE TENSIONI NE Ga.ali sup (MPa) Tens.acc. ala sup	Ga,an_sup (MPa) Tens.acc. anima sup 65,54 27,79 129,69 59,32 63,29 61,87 LLE FASI 0 - I	Ga,an_irr (MPa) Tens.acc. quota irrigidim. longitud. 67,50 18,22 1110,74 40,37 66,87 42,19 TENSIONI TC -II - III ALLA ASCIS: TENSIONI SLU Ga.an irr (MPa) Tens.acc. quota irrigidim. longitud.	Tensaccan. inf. (MPa) Tensaccan. inf. 76.52 -25.80 23.56 -46.81 83.35 -48,34 DTALI - SLU SA X = 0 m PER Gaan inf (MPa) Tensaccan. inf.	(MPa) Tens.acc. ali inf. fd = 319 MPa 77.05 -28.35 -18.51 -51.86 84.31 -53.59 GLI INVILUPP Ga.ali inf (MPa) Tens.acc. ali inf.	(MPa) Tens.taglio anima 7,59 12,15 29,88 29,89 12,08 7,66	(MPa) Tensione ideale 78.16 35.88 141.99 80.66 86.86 65.84 CITAZIONI MA2	INACCIAIO σ_id,max <f,d 2.38="" 3.67="" 4.08="" 4.19="" 5.14="" 9.42="" td="" ="" <=""><td>VERIFICA CLS sigma,c_max=0,85f.ed 3,90 3,88 4,58 3,92 3,47 3,94 VERIFIC VERIFICA CLS sigma,c_max=0,85f.ed 3,90</td><td>VERIFICA ARMAT. SOLETTA sigma_a_max<f,yd 10,10="" 2,59="" 3,47<="" 4,64="" 4,83="" 6,18="" 6,61="" armat.="" sigma_a_max<f,yd="" soletta="" td="" verifica=""><td>COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd></td></f,d>	VERIFICA CLS sigma,c_max=0,85f.ed 3,90 3,88 4,58 3,92 3,47 3,94 VERIFIC VERIFICA CLS sigma,c_max=0,85f.ed 3,90	VERIFICA ARMAT. SOLETTA sigma_a_max <f,yd 10,10="" 2,59="" 3,47<="" 4,64="" 4,83="" 6,18="" 6,61="" armat.="" sigma_a_max<f,yd="" soletta="" td="" verifica=""><td>COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd>	COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato
COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	N (KN) N_Q(Bik-AT) 9293,2 -1660,1 9235,9 -11550,2 9142,3 -1501,5	V_2 (KN) V_(Qik+AT) 446.5 -714.2 1757.1 -1757.5 710.2 -450.1	(KNm) M_(Qik+ΔT) 1421,4 -2490,4 -4931,8 -4931,8 2597,3	(MPa) Tens.cls,max -4.32 -4.35 -3.68 -4.30 -4.85 -4.28 Oc.max (MPa) Tens.cls,max	(MPa) Tens.arm. Soletta 63,30 38,73 151,36 80,99 59,19 84,37 SOMMA DEL os (MPa) Tens.arm. Soletta	(MPa) Tens.acc. ala sup fd = 338 MPa 65.28 29.06 132.22 61.85 62.81 64.49 LE TENSIONI NE	Ga,an_sup (MPa) Tens.acc. anima sup 65,54 27,79 129,69 59,32 63,29 61,87 LLE FASI 0 - I Ga,an_sup (MPa) Tens.acc. anima sup 204,60	Ga.an_irr (MPa) Tens.acc. quota irrigidim. longitud. 67.50 18,22 110.74 40,37 66.87 42,19 TENSIONI TC -II - III ALLA ASCIS TENSIONI SU Gaan irr (MPa) Tens.acc. quota irrigidim. longitud.	Tensaccan. inf. (MPa) Tensaccan. inf. 76.52 -25.80 -23.56 -46.81 83.35 -48.34 TALI - SLU SA X = 0 m PER Gaan_inf (MPa) Tensaccan. inf.	(MPa) Tens.acc. ali inf. fd = 319 MPa 77.05 -28.35 -18.51 -51.86 84.31 -53.59 GLI INVILUPP Ga.ali inf (MPa) Tens.acc. ali inf. fd = 319 MPa -16.14	(MPa) Tens.taglio anima 7,59 12,15 29,88 29,89 12,08 7,66 DELLE SOLLE	(MPa) Tensione ideale 78.16 35.88 141.99 80.66 86.86 65.84 CITAZIONI MA3	IN ACCIAIO σ_id,max <f,d td="" ="" <=""><td>VERIFICA CLS sigma,c_max<0,85f,cd 3,90 3,88 4.58 3,92 3,47 3,94 VERIFICA CLS sigma,c_max<0,85f,cd</td><td>VERIFICA ARMAT. SOLETTA sigma_max<f,yd 10,10="" 2,59="" 4,64="" 4,83="" 6,18="" 6,61="" armat.="" he="" sigma_max<f,yd<="" slu="" soletta="" td="" verifica=""><td>Verificato Verificato Verificato</td></f,yd></td></f,d>	VERIFICA CLS sigma,c_max<0,85f,cd 3,90 3,88 4.58 3,92 3,47 3,94 VERIFICA CLS sigma,c_max<0,85f,cd	VERIFICA ARMAT. SOLETTA sigma_max <f,yd 10,10="" 2,59="" 4,64="" 4,83="" 6,18="" 6,61="" armat.="" he="" sigma_max<f,yd<="" slu="" soletta="" td="" verifica=""><td>Verificato Verificato Verificato</td></f,yd>	Verificato
COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	N (KN) N_Q(lik+\Delta T) 9293,2 -1660,1 9235,9 -1550,2 9142,3 -1501,5	V_2 (KN) V_(Qik+AT) 446.5 -714.2 1757.1 -1757.5 710.2 -450,1	(KNm) M_(Qik+ΔT) 1421,4 -2490,4 -4931,8 -4931,8 2597,3	(MPa) Tens.cls,max 4.32 4.35 3.68 4.30 4.85 -4.28 Ge,max (MPa) Tens.cls,max -4.32 -5.73	(MPa) Tens.arm. Soletta 63.30 38.73 151.36 80.99 59.19 84.37 SOMMA DEI or (MPa) Tens.arm. Soletta 112.83 33.16	(MPa) Tens.acc. ala sup fd = 338 MPa 65.28 29.06 132,22 61.85 62.81 64.49 LE TENSIONI NE Ga.ali_sup (MPa) Tens.acc. ala sup fd = 338 MPa 209.62 209.66	Ga.an_sup (MPa) Tens.acc. anima sup 65.5.4 27.79 129.69 59.32 63.29 61.87 LLE FASI 0 - 1 Ga.an_sup (MPa) Tens.acc. anima sup 204.60 62.62	TENSIONI TU Tensace, quota irrigidim. 67,50 18,22 110,74 40,37 66,87 42,19 TENSIONI TU TENSIONI TU Gaan irr (MPa) 10,74 10,74 10,75 11	Ga.an inf (MPa) Tens.acc.an. inf. 76,52 -25,80 23,56 -46,81 83,35 -48,34 DTALI - SLU SA X = 0 m PER Ga.an inf (MPa) Tens.acc.an. inf. -6,10 -86,79	(MPa) Tensacc. ali inf. fd = 319 MPa 77,05 -28,35 -18,51 -51,86 -84,31 -53,59 GLI INVILUPP Gaali_inf (MPa) Tensacc. ali inf. fd = 319 MPa -16,14 -33,91	(MPa) Tens.taglio anima 7,59 12,15 29,88 29,89 12,08 7,66 DELLE SOLLE T (MPa) Tens.taglio anima 444,39 41,39	(MPa) Tensione ideale 78,16 78,16 78,16 80,66 86,86 65,84 CITAZIONI MA) G id.max (MPa) Tensione ideale 223,27 118,14	IN ACCIAIO	VERIFICA CLS sigma,c_max<0,85f.ed 3.90 3.88 4.58 3.92 3.47 3.94 VERIFICA VERIFICA CLS sigma,c_max<0,85f.ed 3.90 2.94	VERIFICA ARMAT. SOLETTA sigma_max <f,yd 10,10="" 11,80<="" 2,59="" 3,47="" 4,64="" 4,83="" 6,18="" 6,61="" armat.="" sigma_max<f,yd="" soletta="" td="" verifica=""><td>COMPLESSIVA Verificato Verificato</td></f,yd>	COMPLESSIVA Verificato Verificato
COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	N (KN) N_Q(ik+\Delta T) 9293,2 -1660,1 9235,9 -1550,2 9142,3 -1501,5 COMB	V_2 (KN) V_(Qlk+\Delta T) 446.5 -714.2 1757.1 -1757.5 710.2 -450.1 INAZIONI INAZIONI IAX N IIN N AX V2	(KNm) M_(Qik+ΔT) 1421,4 -2490,4 -4931,8 -4931,8 2597,3	(MPa) Tens.cls,max 4.32 4.35 3.68 4.30 4.85 4.28 Tens.cls,max (MPa) Tens.cls,max (MPa) Tens.cls,max 4.32 5.73 3.68	(MPa) Tens.arm. Soletta 6.3.30 38.73 151.36 80.99 59.19 84.37 SOMMA DEL gs (MPa) Tens.arm. Soletta 112.85 3.3.16 233.17	(MPa) Tens.acc. ala sup fd = 338 MPa 65.28 29.06 132.22 61.85 62.81 64.49 LE TENSIONI NE Ga.ali_sup (MPa) Tens.acc. ala sup fd = 338 MPa 209.62 66.18 311.70	Ga,an_sup (MPa) Tens.acc. anima sup 65.54 27.79 129.69 59.32 63.29 61.87 LLE FASI 0 - I Ga,an_sup (MPa) Tens.acc. anima sup 204.60 204.60 302.55	Ga.an_irr (MPa)	Tensaccan. inf. (MPa) Tensaccan. inf. 76.52 -25.80 23.56 -46.81 83.35 -48.34 DTALI - SLU SA X = 0 m PER Graan. inf. (MPa) Tensaccan. inf.	(MPa) Tensacc, ali inf. fd = 319 MPa 77,05 -28,35 -18,51 -51,86 84,31 -53,59 GLI INVILUPP On,ali_inf (MPa) Tens.acc, ali inf. fd = 319 MPa -16,14 -93,91 -100,33 -197,04	(MPa) Tens.taglio anima 7.59 12.15 29.88 29.89 12.08 7.66 Tens.taglio anima 4.439 41.39 70.09	(MPa) Tensione ideale 78,16 35,88 141,99 80,66 86,86 65,84 CITAZIONI MAY G id.max (MPa) Tensione ideale 223,27 118,14 334,41	INACCIAIO σ_id,max <f,d 2.28="" 3.67="" 4.08="" 4.19="" 5.14="" 9.42="" td="" ="" <=""><td>VERIFICA CLS sigma.c. max=0,85f.cd 3,90 3,88 4,58 3,92 3,47 3,94 VERIFICA CLS sigma.c. max=0,85f.cd 3,90 2,94 4,58</td><td>VERIFICA ARMAT. SOLETTA sigma_max<f.yd 1.68<="" 10,10="" 11.80="" 2.59="" 3.47="" 4.64="" 4.83="" 6.18="" 6.61="" armat.="" sigma_max<f.yd="" soletta="" td="" verifica=""><td>Verificato Verificato Verificato</td></f.yd></td></f,d>	VERIFICA CLS sigma.c. max=0,85f.cd 3,90 3,88 4,58 3,92 3,47 3,94 VERIFICA CLS sigma.c. max=0,85f.cd 3,90 2,94 4,58	VERIFICA ARMAT. SOLETTA sigma_max <f.yd 1.68<="" 10,10="" 11.80="" 2.59="" 3.47="" 4.64="" 4.83="" 6.18="" 6.61="" armat.="" sigma_max<f.yd="" soletta="" td="" verifica=""><td>Verificato Verificato Verificato</td></f.yd>	Verificato

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo


γ_acc.instab. Ponti-Tab. 4.2.7 322,7 1,10							VERIFICA IMBOZ	ZAMENTO PAN	NELLO D'ANIN	MA SUPERIORE					
Irrigidim. Trasvers. (a)	tensioni al bordo dell'anima α 9,62 VERIFICA IMBOZZAMENTO PANNELLO D'ANIMA														
(Predim.= 2184 mm)	σ1	σ0	Ψ	Tab. 7-VIII CNR	Ко	Kτ	σcr	τcr	τ,γ	σcr,id	σcr,rid.	σ_id	σ id<=σcr,rid.		σ_cr,id /τ(3^0,5) >=1,1
250 cm	(Mpa)	(Mpa)	(σ0/σ1 = T/C)		N.O	Nτ	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	σ_iu<−σcr,riu.	σ_cr,id/σ,id. >=0,8	6_ Cr,id /₹(3**0,5) >=1,1
Irrigidim. Longitud. (h)	204,60	166,97	1,23	TRAZ.	TRAZ.	4,31	TRAZ.	14531,31	44,39	TRAZ.	TRAZ.	76,89	Verificato		
(cm)	62,62	35,94	1,74	TRAZ.	TRAZ.	4,31	TRAZ.	14531,31	41,39	TRAZ.	TRAZ.	95,18	Verificato		
30 cm	302,55	233,87	1,29	TRAZ.	TRAZ.	4,31	TRAZ.	14531,31	70,09	TRAZ.	TRAZ.	326,00	Verificato		
σcr,0	205,84	137,17	1,50	TRAZ.	TRAZ.	4,31	TRAZ.	14531,31	70,11	TRAZ.	TRAZ.	239,00	Verificato		
(Mpa)	119,94	107,70	1,11	TRAZ.	TRAZ.	4,31	TRAZ.	14531,31	42,75	TRAZ.	TRAZ.	140,96	Verificato		
3374,2	208,39	138,99	1,50	TRAZ.	TRAZ.	4,31	TRAZ.	14531,31	47,88	TRAZ.	TRAZ.	224,28	Verificato		

						VERII	FICA NERVATURE T	RASVERSALI				
t1	SIMM.	L1	t1	L2	t2	ta	ha	It	λ	α	γT	VERIFICA
,, [(-)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm4)	(-)	(-)	(-)	(-)
t1 L2	nervat. Simm. o non	dimens. nervatura	spessore di L1	dimens. flangia	spessore di L2		altezza anima	mom. inerzia	snellezza nervatura	- 4-	coeff, rig. flessionale	It>=0,092*γt*h*ta^3
	simm.	dimens. nervatura	spessore at L1	nervatura	spessore di L2	spessore anima	anezza anima	nervat.	(<50)	a/h	coeff, rig. flessionale	C/D = 2,46
	NO	250	25	0	0	35	1680	1,30,E+08	11,6	1,49	8	Verificato

						VERIFICA IN	MBOZZAMENTO PA	NNELLO D'ANI	MA INFERIOR	E					
L ritegno torsion.	tens	ioni al bordo dell'a	nima		α	1,81				VERIF	ICA IMBOZZAMENTO	PANNELLO D'ANIM	IA		
(cm)	σ1	σ0	Ψ	Tab. 7-VIII CNR	Ка	Kτ	σcr	τcr	τ, у	σcr,id	σcr,rid.	σ_id	_ :	:	id (-(240 F) >- 4.4
250	(Mpa)	(Mpa)	(σ0/σ1 = T/C)		NØ	N.T	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	σ_id <= σcr,rid.	σ_ cr,ια/ σ, ια. >= 0,ο	σ_cr,id /τ(3^0,5) >= 1,1
Irrigidim. Longitud. (h)	166,97	-16,14	-10,35	3,00	23,90	5,25	3036,02	666,53	44,39	1390,48	336,09	183,83	Verificato	1,83	4,37
(cm)	35,94	-93,91	-0,38	2,00	11,65	5,25	1479,87	666,53	41,39	1286,08	335,75	80,19	Verificato	4,19	4,68
138,0	233,87	-100,33	-2,33	3,00	23,90	5,25	3036,02	666,53	70,09	1528,92	336,44	263,51	Verificato	1,28	2,77
σcr,0	137,17	-197,04	-0,70	2,00	22,55	5,25	2864,85	666,53	70,11	1806,50	336,91	183,20	Verificato	1,84	2,77
(Mpa)	107,70	48,15	2,24	TRAZ.	TRAZ.	5,25	TRAZ.	666,53	42,75	TRAZ.	TRAZ.	74,05	Verificato		
127,0	138,99	-198,77	-0,70	2,00	22,67	5,25	2879,83	666,53	47,88	2126,40	337,24	161,85	Verificato	2,08	4,07

	C	ONNESSIONE A C	OMPLETO RIP	RISTINO EC4 par.	6.2.1.1	
Beff	h,sol	L,tr	Piolo (mm)	Rc	Ra	Fcf
(cm)	(cm)	(m)	φ = 20	Resist. soletta	Resist. Trave acc.	Vscorr = min(Rc;Ra)
460	35	40,00	h = 150 mm	31932	46928	31932
Prd, piolo	Prd, cls	Prd,d	N°connettori	At,nec/m	Barre,trasv.	Pa,trasv,nec
KN	KN	KN	N° di file = 3	(mmq)	φ = 24	(cm)
90,48	101,3	90,5	117,64	296,6	N° br,tr. = 1	152,5
N°conn. posti	Fr,scorr/m	P,st	Aa,trasv	V,rd2	V,rd3	V,rd
(P,conn= 33,9 cm)	(KN/m)	(cm)	(mmq)	(KN/m)	(KN/m)	(KN/m)
118	266,9	20	4523,9	15026,66667	4784,9	4784,9
Passo arma	t.trasvers.	Dist.min.pioli=5	d= 100 mm	Resist. de	lla sezione alla forza d	scorrim.
Verifi	cato	Verific	ato		Verificato	
η= 7,	,63	η= 3,3	39		η= 17,93	

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

7.13.7. VERIFICA DELLE TRAVI CENTRALI L = 40 M SEZ. DI APPOGGIO – SLE_CARATT.

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

						(CARATTER	ISTICHE GEO	METRICHE	TRAVE	A-CLS					
Ltr	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -															Ga
(m)	3,25 m	(mm)	(mm)	(mm)	(mm)	(mm^2)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm^2)	(KN/m)
Lunghezza trave	Largh.impalcato	Altezza soletta	Armatura long. soletta		Dist. baric. Aa,l dal bordo sup.	A. arm. soletta	Altezza trave acc.	Base piatto inferiore	Base piatto superiore	Altezza anima	Spessore piatto inferiore	Spessore piatto superiore	Spessore anima	raggio curvat. raccordo	Area trave acciaio	Peso trave acciaio
40,00	12,90 m	350	16	200	47	4825	1800	700	600	1680	80	40	35	16	138800	10,896
Rck	f,cd	f,y	Ec,m	f,d	Φ,infinito	n,2	n,3	8,rit	Ac,full	Ntr	N,rit_slu	ΔT ,differ.	α	CLASSE SEZ	IONE NTC_4.2.3.1	Verifica imbozz CNR
(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(-)	(-)	(-)	(-)	(mmq)	(-)	(N)	(°C)	(1/°C)	Parametri	h/t	10011 p.to 7.2.6.1
Res_cubica a compr.	Res_ a compr. Pura	tens. snerv. acc.carpent.	Modulo elastico medio	Tens.lim. acc.	Coeff.viscosità di Withney	1	Fase III	Coeff.ritiro	Area compless. soletta cls	Numero travi ponte	F. ritiro eccentr. (soletta)	Variaz. termica	Coeff. dilat. term.	$-\beta = 0,00156$ $\epsilon = 0,81362$	Pareti sott. h/t = 48,0	Occorre verif. dettagliata ad
			34077				17,48	0.00024	4537100		5,268E+06	10,0 °C	1.2E-05	c/t = 171	h/t,lim = 36,0	imbozz.

FASE 0 - SLE COMB. RARA

SCHEMA DI TRAVE SEMPLICEMENTE APPOGGIATA - SOLO TRAVE IN ACCIAIO

	CARATTERISTICHE M	IECCANICHE		ASCISSA DI VERIF.
Aa	S	X_0	Ja_0	x
(mm^2)	(mm^3)	(mm)	(mm^4)	(val.compr. fra 0 e 40 m)
Area acciaio	Momento Statico	Asse Neutro - Fase I	Momento Inerzia - Fase I	0,00 m
138800	150784000	1086	6,907E+10	

SOLLECITAZION	NI SLU						TENSIONI SLE -	FASE 0				VER	FICHE
N	V_2	M_3	σc,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	τ	σ_id,max	VERIFICA	
(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	ACC.	η,асс
N_(pp_tr)	V_(pp_tr)	M_(pp_tr)	Tens.cls,ma x	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima sup	Tens.acc. quota irrigidim. longitud.	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ_id,max < 0,8f,d	C/D
0,0	294,2	0,00			0,00	0,00	0,00	0,00	0,00	5,00	8,67	Verificato	39,02
	N (KN) N_(pp_tr)	N V_2 (KN) (KN) N_(pp_tr) V_(pp_tr)	N V_2 M_3 (KN) (KN) (KNm) N_(pp_tr) V_(pp_tr) M_(pp_tr)	N V_2 M_3 ос, max (KN) (KN) (KNm) (MPa) N_(pp_tr) V_(pp_tr) M_(pp_tr) Tens.cls, max x Tens.cls, max x	N V_2 M_3 σc,max σs (KN) (KN) (KNm) (MPa) (MPa) N_(pp_tr) V_(pp_tr) M_(pp_tr) Tens.cls,ma x Tens.arm. Soletta	N V_2 M_3 orc,max os oa,ali_sup (KN) (KN) (KNm) (MPa) (MPa) (MPa) N_(pp_tr) V_(pp_tr) M_(pp_tr) Tens.cls,max Tens.arm. Soletta Tens.acc. ala sup	N V_2 M_3 σc,max σs σa,ali_sup σa,an_sup (KN) (KN) (KNm) (MPa) (MPa) (MPa) (MPa) N_(pp_tr) V_(pp_tr) Tens.cls,max Tens.arm. Soletta Tens.acc. ala sup Tens.acc. anima sup	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N V_2 M_3 σc,max σs σa,ali_sup σa,an_sup σa,an_irr σa,an_inf σa,an_inf σa,ali_inf (KN) (KN) (KNm) (MPa) (MPa)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

FASE I - SLE COMB. RARA

SCHEMA TRAVE CONTINUA - SOLETTA NON REAGENTE - CARICO PERM. SOLETTA G1k

	CARATTERISTICHE MI	ECCANICHE	
Aa	S	X_1	Ja_1
(mm^2)	(mm^3)	(mm)	(mm^4)
Area acciaio	Momento Statico	Asse Neutro - Fase I	Momento Inerzia - Fase I
138800	150784000	1086	6,907E+10

	SOLLECITAZION	NI SLU						TENSIONI SLE -	FASE I				VER	IFICHE
ENNUPLE	N	V_2	M_3	σc,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	τ	σ_id,max	VERIFICA	
DI COMB.	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	ACC.	η,асс
MAX CONTEMP.	N_(pp+Gk1)	V_(pp+Gk1)	M_(pp+Gk1	Tens.cls,ma x	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima sup	Tens.acc. quota irrigidim. longitud.	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ_id,max < 0,8f,d	C/D
MAX N	0,0	-195,6	-1262,2			19,85	19,12	13,64	-11,58	-13,04	3,33	20,67	Verificato	13,08
MIN N	0,0	154,7	-2208,2			34,73	33,45	23,86	-20,26	-22,82	2,63	35,03	Verificato	7,72
MAX V2	0,0	817,1	-5446,2			85,66	82,50	58,85	-49,96	-56,27	13,90	88,98	Verificato	3,04
MIN V2	0,0	-817,1	-5446,2			85,66	82,50	58,85	-49,96	-56,27	13,90	88,98	Verificato	3,04
MAX M3	0,0	631,9	-537,4			8,45	8,14	5,81	-4,93	-5,55	10,75	20,44	Verificato	13,23
MIN M3	0,0	-817,1	-5446,2			85,66	82,50	58,85	-49,96	-56,27	13,90	88,98	Verificato	3,04

FASE II - SLE COMB. RARA

SCHEMA TRAVE CONTINUA - SOLETTA REAGENTE OMOGENEIZZATA A TEMPO INFINITO (VISCOSITA') - SOVRACC. PERM. G2k + RITIRO CLS

						CARATTE	RISTICHE MECO	CANICHE							SOLLECITAZ, RITIR	0
Ea	Ec	n,2	Aa	As	Ac	Ai,2 (+)	Si,2 (+)	X_2 (+)	Ja_2 (+)	Ai,2 (-)	Si,2 (-)	X_2 (-)	Ja_2 (-)	N,rit,soletta	σ,ritiro_slu	SOLL_SAP
(Mpa)	(Mpa)	(-)	(mm^2)	(mm^2)	(mm^2)	(mm^2)	(mm^3)	(mm)	(mm^4)	(mm^2)	(mm^3)	(mm)	(mm^4)	(N)	(Mpa)	N,rit. (compr.)
Mod.Elast.	Mod.Elast.Cls	Coeff.Omog.	A waa aaaiaia	Area	Area cls	Area	Momento	A.N Fase II	Mom. Inerzia -	Area ideale	Momento Statico	A.N	Mom. Inerzia -	Forza di ritiro	Tens. traz. nella	-4390,1 KN/Trave
Acc.	MOULEIASTICIS	Coen.Omog.	Area acciaio	soletta	Areacis	ideale	Statico	Soletta tutta compr.	Fase II	Area ideale	Momento Statico	Fase II	Fase II	eccentrica (soletta)	soletta (connettori)	M,rit.(M. posit.)
210000	12013,0	17,48	138800	4825	1137500	208696	2,110E+08	1011	1,448E+11	143625	1,996E+08	1390	7,807E+10	5,268E+06	3,48	3669,9 KNm/Trave

	SOLLECI	TAZIONI SLU		TENSIONI SLE - FASE II										VERIFICHE SLU			
ENNUE	N N	V_2	M_3	σc,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	τ	σ_id,max	VERIFICA		VERIFICA CLS		
DICON		(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	ACC.	η,асс	VERIFICA CLS	η,cls	
MAX		N. CWA	M_GK2	Tens.cls,ma x	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima sup	Tens.acc. quota irrigidim. longitud.	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione	σ_id,max < 0,8f,d	C/D	σ,c_max <= 0,6*f,Ck	C/D	
CONTE	MP. N_(Gk2)	V_GK2										ideale					
MAX	242,4	569,1	-1815,2	0,00	32,96	25,92	24,99	18,01	-14,07	-15,93	9,68	30,87	Verificato	8,76			
MIN	-4805,9	-522,8	-1355,9	-1,32	0,29	-4,97	-5,67	-10,88	-34,84	-36,23	8,89	39,37	Verificato	6,87	Verificato	17,01	
MAX	204,0	689,9	-3240,4	0,00	57,20	44,62	42,96	30,51	-26,77	-30,09	11,73	49,03	Verificato	5,52			
MIN V	-4791,9	-690,6	-3240,4	-1,31	32,77	20,19	18,53	6,08	-51,20	-54,52	11,74	58,19	Verificato	4,65	Verificato	17,06	
MAX !	185,8	-437,5	-594,9	0,00	11,57	9,26	8,96	6,67	-3,85	-4,46	7,44	15,87	Verificato	17,04			
MIN N	-4791,9	-690,6	-3240,4	-1,31	32,77	20,19	18,53	6,08	-51,20	-54,52	11,74	58,19	Verificato	4,65	Verificato	17,06	

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

								FASE III - SLE	COMP D	DA							
				SCHE	MA TRAVE CONTINUA	- SOLETT/	A REAGENTE	1.5			CC. VARIABILI Qik. + VARIAZ. T	ERMICHE	DT				
				Jenz	MIT THE TO BE OF THE TOP	COLLII	· ILL. IGE. (II	oour.	THE PERSON OF TH	10 50 11.1		Littinging					
					CARATTERISTICHE MECCANICHE SOLLECTIAZ ÅT dif									rr			
Ea	Ec	n,3	Aa	As	Ac	Ai,3 (+)	Si,3 (+)	X_3 (+)	Ja_3 (+)	Ai,3 (-)	Si,3 (-)	X_3 (-)	Ja_3 (-)	ε,ΔT_differ.	σ,ΔT_differ.	SOLL. ∆T,diff_SA	
(Mpa)	(Mpa)	(-)	(mm^2)	(mm^2)	(mm^2)	(mm^2)	(mm^3)	(mm)	(mm^4)	(mm^2)	(mm^3)	(mm)	(mm^4)	(-)	(Mpa)	N,ΔT_differ. (traz	
Mod.Elast.	M IEL (CI	0.00		Area		Area	Momento	A.N. Fase III (M+)	Mom. Inerzia -	Area ideale	M. (St.C. OII)	A.N	Mom. Inerzia	D 64 1100	Tens. compr. nella	7177,3 KN	
Acc.	Mod.Elast.Cls	Coeff.Omog.	Area acciaio	armature soletta	Area cls	ideale (M+)	Statico (M+)	Soletta tutta compr.	Fase III (M+)	(M-)	Momento Statico (M-)	Fase III	Fase III (M-)	Def.term. diff.	soletta (soletta	M,ΔTdiffer. (M nega	
210000	34625	6,06	138800	4825	1137500	331180	2,324E+08	702	2,000E+11	143625	1,996E+08	1390	7,807E+10	1,200E-04	-4,16	-3780,8 KNm	
																•	
	SOLLECITAZIO	NI SLU		TENSIONI SLE - FASE III								VERIFICHE SLU					
ENNUPLE	N	V_2	M_3	σc,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	τ	σ_id,max	VERIFICA	η,асс	VERIFICA CLS	η,cls	
DI COMB.	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	ACC.	II,acc	VERIFICA CES		
MAX CONTEMP.	N_(Gk2)	V_GK2	M_GK2	Tens.cls,ma x	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima sup	Tens.acc. quota irrigidim. longitud.	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ_id,max < 0,8f,d	C/D	σ,c_max <= 0,6*f,Ck	C/D	
MAX N	7122,5	982,1	1886,2	-4,83	45,14	48,00	48,37	51,20	64,22	64,97	16,70	71,12	Verificato	3,80	Verificato	4,64	
MIN N	-1128,7	-487,1	-1824,8	-4,30	27,98	20,89	19,96	12,95	-19,31	-21,18	8,28	25,58	Verificato	10,57	Verificato	5,21	
MAX V2	7062,3	1289,9	-3613,7	-3,74	113,03	99,00	97,15	83,27	19,39	15,69	21,94	106,04	Verificato	2,55	Verificato	5,99	
MIN V2	-1050,1	-1289,9	-3613,7	-4,26	58,98	44,95	43,10	29,21	-34,66	-38,36	21,94	58,86	Verificato	4,60	Verificato	5,26	
MAX M3	7024,4	484,0	1918,0	-4,85	44,33	47,23	47,62	50,50	63,73	64,50	8,23	66,05	Verificato	4,09	Verificato	4,62	
MIN M3	-1014,3	-305,0	-3753,9	-4,24	61,50	46,93	45,00	30,58	-35,78	-39,62	5,19	47,78	Verificato	5,66	Verificato	5,28	
					COMMA DELLE TE	NCIONI NE		SIONI TOTALI			UPPI DELLE SOLLECITAZIONI	MAY					
					SOMMA DELLE TE	NSIONI NE	LLE FASI 0 - I	I - II - III ALLA ASCI	33A A - U III F E	K GLI INVIL	OFFI DELLE SOLLECTIAZIONI	MAA					
								TENSIONI S	LE					VEF	RIFICHE SLU		
				σc,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	τ	σ_id,max	VERIFICA		VERIFICA CLS	l-	
COMBINAZIONI			(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	ACC.	η,асс	VERIFICA CLS	η,cls		
			Tens.cls,ma x	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima sup	Tens.acc. quota irrigidim. longitud.	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ_id,max < 0,8f,d	C/D	σ,c_max <= 0,6*f,Ck	C/D		
	MAX N				78,10	93,77	92,48	82,86	38,57	36,00	34,71	111,39	Verificato	2,43	Verificato	4,64	
	MIN N				28,27	50,65	47,74	25,93	-74,41	-80,23	24,81	91,01	Verificato	2,97	Verificato	3,99	
	MAX V2				170,23	229,28	222,62	172,63	-57,34	-70,67	52,57	246,70	Verificato	1,10	Verificato	5,99	
	MIN V2			-5,58	91,74	150,80	144,14	94,14	-135,82	-149,16	52,58	176,17	Verificato	1,54	Verificato	4,02	
MAX M3				-4,85	55,90	64,95	64,72	62,97	54,95	54,49	31,42	84,74	Verificato	3,19	Verificato	4,62	

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

7.13.8. VERIFICA DELLE TRAVI CENTRALI L = 40 M SEZ. DI APPOGGIO – SLE FREQUENTE

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

							CARATT	ERISTICHE (GEOMETRI	CHE TRA	VE A-CLS					
Ltr	Beff,soletta	h,sol	Φa,long.	p_a,l	d,a	As,long.	Htr	Bi	Bs	h,a	t,i	t,s	t,a	r1	Aa	Ga
(m)	3,25 m	(mm)	(mm)	(mm)	(mm)	(mm^2)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm^2)	(KN/m)
Lunghezza trave	Largh.im palcato	Altezza soletta	Armatura long. soletta	Passo arm. long. soletta	Dist. baric. Aa,l dal bordo sup.	A. arm. soletta	Altezza trave acc.	Base piatto inferiore	Base piatto superiore	Altezza anima	Spessore piatto inferiore	Spessore piatto superiore	Spessore anima	raggio curvat. raccordo	Area trave acciaio	Peso trave acciaio
40,00	12,90 m	350	16	200	47	4825	1800	700	600	1680	80	40	35	16	138800	10,896
															Verifica imbozz	
(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(-)	(-)	(-)	(-)	(mmq)	(-)	(N)	(°C)	(1/°C)	Parametri	h/t	CNR 10011 p.to 7.2.6.1
Res_cubica	Res_ a	tens. snerv.	Modulo	Tens.lim.		Coeff.Om	Coett.Omogen	Configuration	Area compless.	Numero	E -:4: (1-44-)	Variaz.	Coeff.	$-\beta = 0,00156$	Pareti sott.	Occorre verif.
a compr.	compr.	acc.carpent.	elastico medio	acc.	Coeff.viscosità di Withney	Fase II	Fase III	Coeff.ritiro	soletta cls	travi ponte	F. ritiro eccentr. (soletta)	termica	dilat. term.	ε = 0,81362	h/t = 48,0	dettagliata ad
45	19,83	355	34077	338	1,84	6,16	17,48	0,00024	4537100	3	5,268E+06	10,0 °C	1,2E-05	c/t = 171	h/t, lim = 36,0	imbozz.
								FASE 0 -	SLE COMB.	FREQ.						
						SCE	IEMA DI TRAV	E SEMPLICEME	NTE APPOGGIA	ATA - SOLO	TRAVE IN ACCIAIO					
CARA	TTERISTI	CHE MECCA	NICHE	AS	CISSA DI VERIF.											
Aa	S	X_0	Ja_0		x											
(mm^2)	(mm^3)	(mm)	(mm^4)	(val	.compr. fra 0 e 40 m)											
Area acciaio	Momento Statico	Asse Neutro - Fase I	Momento Inerzia -		0.00 m											

σa,an_inf

(MPa)

Tens.acc.an.

inf.

σa,ali_inf

(MPa)

Tens.acc. ali

inf.

0,00

TENSIONI SLE - FASE 0

σa,an_irr

(MPa)

irrigidim.

-22,19

ens.acc. quota

PROGETTAZIONE ATI:

138800 ########

CDS

(KN)

N_(pp_tr

0,0

1086

 V_2

(KN)

V_(pp_tr)

294,2

SOLLECITAZIONI SLU

6,907E+10

 M_3

(KNm)

M_(pp_tr)

σc,max

(MPa)

Tens.cls,m

σa,ali_sup

(MPa)

Tens.acc.

ala sup

0,00

σa,an_sup

(MPa)

Tens.acc.

anima sup

 σ_s

(MPa)

Tens.arm. Soletta

τ

(MPa)

Tens.taglio anima

VERIFICHE

η,acc

C/D

39,02

σ_id,max VERIFIC

A ACC.

σ_id,max

0.8f.d

Verificato

(MPa)

Tensione

ideale

8,67

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

FASE I - SLE COMB. FREQ.

SCHEMA TRAVE CONTINUA - SOLETTA NON REAGENTE - CARICO PERM. SOLETTA G1k

CARA	TTERISTI	CHE MECCA	NICHE
Aa	S	X_1	Ja_1
(mm^2)	(mm^3)	(mm)	(mm^4)
Area acciaio	Momento Statico	Asse Neutro - Fase I	Momento Inerzia - Fase I
138800	########	1086	6,907E+10

	SOLLECI	TAZIONI SLI	U					TENSIONI SLE - F	ASE I				V	ERIFICHE
ENNUPLE	N	V_2	M_3	σc,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	τ	σ_id,max	VERIFIC	
DI COMB.	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	A ACC.	η,асс
MAX CONTEM P.	N_(pp+G k1)	V_(pp+Gk1)	M_(pp+Gk1	Tens.cls,m ax	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima sup	Tens.acc. quota irrigidim. longitud	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ_id,max < 0,8f,d	C/D
MAX N	0,0	-195,6	-1262,2			19,85	19,12	-37,37	-11,58	-13,04	3,33	20,67	Verificato	13,08
MIN N	0,0	154,7	-2208,2			34,73	33,45	-37,37	-20,26	-22,82	2,63	35,03	Verificato	7,72
MAX V2	0,0	817,1	-5446,2			85,66	82,50	-37,37	-49,96	-56,27	13,90	88,98	Verificato	3,04
MIN V2	0,0	-817,1	-5446,2			85,66	82,50	-37,37	-49,96	-56,27	13,90	88,98	Verificato	3,04
MAX M3	0,0	631,9	-537,4			8,45	8,14	-37,37	-4,93	-5,55	10,75	20,44	Verificato	13,23
MIN M3	0,0	-817,1	-5446,2		-	85,66	82,50	-37,25	-49,96	-56,27	13,90	88,98	Verificato	3,04

FASE II - SLE COMB. FREQ.

SCHEMA TRAVE CONTINUA - SOLETTA REAGENTE OMOGENEIZZATA A TEMPO INFINITO (VISCOSITA') - SOVRACC. PERM. G2k + RITIRO CLS

						CARATTE	RISTICHE ME	CCANICHE						SC	OLLECITAZ, RITIRO	
Ea	Ec	n,2	Aa	As	Ac	Ai,2 (+)	Si,2 (+)	X_2 (+)	Ja_2 (+)	Ai,2 (-)	Si,2 (-)	X_2 (-)	Ja_2 (-)	N,rit,soletta	σ,ritiro_slu	SOLLSAP
(Mpa)	(Mpa)	(-)	(mm^2)	(mm^2)	(mm^2)	(mm^2)	(mm^3)	(mm)	(mm^4)	(mm^2)	(mm^3)	(mm)	(mm^4)	(N)	(Mpa)	N,rit. (compr.)
Mod.Elast. Acc.	Mod.Elas t.Cls	Coeff.Omog.	Area acciaio	Area armature	Area cls	Area ideale	Momento Statico	A.N Fase II Soletta tutta	Mom. Inerzia - Fase II	Area ideale	Momento Statico	A.N Fase II	Mom. Inerzia - Fase II	Forza di ritiro eccentrica (soletta)	Tens. traz. nella soletta (connettori)	######################################
210000	12013,0	17,48	138800	4825	1137500	208696	2,110E+08	1011	1,448E+11	143625	1,996E+08	1390	7,807E+10	5,268E+06	3,48	################

								VERIFICA API	ERTURA DELL	E FESSURE						
Tipol	logia durata	carichi		LU	INGA DURATA		Condizio	ni ambientali		AGGRE	ESSIVE	Combin	logia nazioni		FREQUENTE	
K1	K2	К3	K4	σs	$A_{c,eff.min}$		Kt		$ ho_{ m p,eff}$	$[e_{sm}$ - $\epsilon_{cm}]_{min}$	$[e_{sm} ext{-}\epsilon_{cm}]_{min}$	$[e_{\sf sm}$ - $\varepsilon_{\sf cm}]_{\sf calc}$	S _{r,max.1}	S _{r,max.2}	S _{r,max}	w _k
Coefficie	enti k per il	calcolo dell'an	npiezza di	(MPa)	(mmq)	W _{k.lim}	Κί	S _{max,rif}	(-)	(-)	(-)	(-)	(mm)	(mm)	(mm)	(mm)
	fessurazione Tens. arm. Area effic calces					Amp. lim.	Fatt. dur.	Spaziatura max	As,teso/cls teso	Differenza t	ra la deformazione nell'acc	igio e nel cls		Distanza massima tr	ra le fessure	Ampiezza di
0,8	0,5	3,4	0,425	soletta	calcestruzzo	fessure	carico	(mm)	As,teso/eis teso	Differenza	i a ia ucioi mazione nen acc	iaio e nei eis		Distanza massima ti	a ic iessui e	calc. fessure
MAX N	242,4	569,1	-1815,2	32,96	823700					0,000094	-0,000972	0,000094	596,9	988	597	0,06
MIN N	-4805,9	-522,8	-1355,9	0,29	Ac eff,1,2,3					0,000001	-0,001127	0,000001	596,9	988	597	0,00
MAX V2	ONE AT 1:	689,9	-3240,4	57,20	Ac_en,1,2,5	0.30	0.4	235	0.00586	0,000163	-0,000856	0,000163	596,9	988	597	0,10
MIN V2	-4791,9	-690,6	-3240,4	32,77	1137500	0,30	0,4	233	0,00380	0,000094	-0,000973	0,000094	596,9	988	597	0,06
MAX M3	185,8	-437,5	-594,9	11,57	823700					0,000033	Pag0 1,45 ,7di	0,000033	596,9	988	597	0,02
MIN M3	-4791,9	-690,6	-3240,4	32,77	1137500	236	ngek	0	\ \ \ \	,000094	-0,00 2 2 1 6	0,000094	596,9	988	597	0,06
	NGE	GNEK	IA (coor	rogetti		9	Studio di Archite	ettura e Ingegneria Mod	derna	·	·	<u>"</u>	·	·	

cooprogetti

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

FASE III - SLE COMB. FREQ. SCHEMA TRAVE CONTINUA - SOLETTA REAGENTE OMOGENEIZZATA A TEMPO ZERO - SOVRACC. VARIABILI Qik. + VARIAZ. TERMICHE DT SOLLECITAZ ∆T diff CARATTERISTICHE MECCANICHE Ea Ec n,3 As Ai,3 (+) Si,3 (+) X 3 (+) Ja_3 (+) Ai,3 (-) Si,3 (-) X_3 (-) Ja_3 (-) ε,ΔT_differ. $\sigma,\Delta T_differ.$ SOLL, AT.diff SAP Aa Ac (Mpa) (Mpa) (-) (mm²) (mm²) (mm²) (mm^2) (mm³) (mm⁴) (mm^2) (mm³) (mm) (mm⁴) N,ΔT differ. (traz.) (mm) (-) 7177,3 KN Mod.Elast. Mod.Elas Momento Mom. Inerzia Area ideale Tens. compr. nella soletta Coeff.Omog. armature Area cls ideale Soietta tutta Momento Statico (M-) Fase III Inerzia -Def.term. diff. t.Cls Statico (M+) Fase III (M+ (M-) (soletta calda) M,ΔTdiffer. (M negat. (M_{-}) Face III soletta 210000 34625 138800 4825 1137500 331180 2,324E+08 702 2,000E+11 143625 1,996E+08 1390 7,807E+10 1 200F-04 -3780,8 KNm 6,06 -4,16 VERIFICA APERTURA DELLE FESSURE Tipologia durata carichi BREVE DURATA Condizioni ambientali AGGRESSIVE FREQUENTE K1 K2 К3 σs $A_{c,eff.min}$ $[e_{sm}-\varepsilon_{cm}]_{min}$ e_{sm}-ε_{cm}]_{calc} S_{r,max.1} $\mathbf{w}_{\mathbf{k}}$ $\rho_{p,eff}$ Sr,max.2 S_{r,max} Kt Smax rif Coefficienti k per il calcolo dell'ampiezza di (MPa) (mmq) (-) (-) (-) (-) (mm) (mm) (mm) (mm) fessurazione Tens. arm Area efficace tesa di Amp. lim. Fatt. dur. Spaziatura max Ampiezza di As,teso/cls teso Differenza tra la deformazione nell'acciaio e nel cls Distanza massima tra le fessure 0,8 0,5 3,4 0,425 soletta calcestruzzo fessure carico (mm) calc. fessure IAX N 4108,4 243,7 1028,5 823700 0,000075 -0,001568 0,000075 596,9 0,04 26,23 988 597 IIN N -676,4 -260,0 -1445,4 22,82 0,000065 -0,001584 0,000065 596,9 988 0,04 Ac_eff,1,2,3 -0,001328 597 IAX V2 4097,0 976,2 -2739,9 76,64 0,000219 0,000219 596.9 988 0,13 0,00586 0,30 0,6 235 1137500 597 MIN V2 -607,9 -976,4 -2739,9 45,29 0,000129 -0,001477 0,000129 596,9 988 0,08 MAX M3 4091.8 294,9 1443.0 24.76 823700 0.000071 -0.001575 0.000071 596.9 988 597 0.04 -573,5 -2845,2 47,20 1137500 0,000135 -0,001468 0,000135 596,9 988 597 MIN M3 -177,1 0,08 VERIF. APERT. TOT. DELLE FESSUR Σw_k (mm) Ampiezza tot. di Amp. lim. fessure calc. fessure 0.10 0,04 0.23 0,30 0,13 0,06 0,14

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

7.13.9. VERIFICA DELLE TRAVI CENTRALI L = 40 M SEZ. DI APPOGGIO – SLE QUASI PERMANENTE

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

							C	CARATTERISTICHE	GEOMETR	ACHE TR	AVE A-CLS					
Ltr	Beff,soletta	h,sol	Φa,long.	p_a,l	d,a	As,long.	Htr	Bi	Bs	h,a	t,i	t,s	t,a	r1	Aa	Ga
(m)	Paccagn Space arm															(KN/m)
Lunghezza trave	Largh.impalca to	Altezza A	Armatura long. soletta	Passo arm. long.	Dist. baric. Aa,l dal bordo sup.	A. arm. soletta	Altezza trave acc.	Base piatto inferiore	Base piatto superiore	Altezza anima	Spessore piatto inferiore	Spessore piatto	spessore	raggio curvat. raccordo	Area trave acciaio	Peso trave acciaio
40,00	12,90 m	350	16	200	47	4825	1800	700	600	1680	80	40	35	16	138800	10,896
	-															-
Rck	f,cd	f,y	Ec,m	f,d	Φ,infinito	n,2	n,3	g,rit	Ac,full	Ntr	N,rit_slu	ΔT,differ.	. α	CLASSE SEZI	IONE NTC_4.2.3.1	Verifica imbozz CNR 10011 p.to
(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(-)	(-)	(-)	(-)	(mmq)	(-)	(N)	(°C)	(1/°C)	Parametri	h/t	7.2.6.1
Res cubica	a Res a compr.	tens. snerv.	Modulo	Tens.lim.		1	Coeff.Omogen		Area compless.	Numero	F :: (1 ()	Variaz.	Coeff.	-β = 0,00156	Pareti sott.	1
a compr.	Pura	acc.carpent.	elastico medio	acc. carpenteri	Coeff.viscosità di Withney	Fase II	Fase III	Coeff.ritiro	soletta cls	travi ponte	F. ritiro eccentr. (soletta)	termica differenz		ε = 0,81362	h/t = 48,0	Occorre verif. dettagliata ad imbozz.
45	19,83	355	34077	338	1,84	6,16	17,48	0,00024	4537100	3	5,268E+06	10,0 °C	1,2E-05	c/t = 171	h/t, lim = 36,0	

FASE 0 - SLE COMB. QUASI PERM.

SCHEMA DI TRAVE SEMPLICEMENTE APPOGGIATA - SOLO TRAVE IN ACCIAIO

CA	RATTERISTIC	CHE MECCA!	NICHE	ASCISSA DI VERIF.
Aa	S	X_0	Ja_0	x
(mm^2)	(mm^3)	(mm)	(mm^4)	(val.compr. fra 0 e 40 m)
Area acciaio	Momento Statico	Asse Neutro - Fase I	Momento Inerzia - Fase	0,00 m
138800	150784000	1086	6,907E+10	

	SOLLECIT	AZIONI SLU						TENSIONI SLE - FASI	Ε 0				V	ERIFICHE
	N	V_2	M_3	σc,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	τ	σ_id,max	VERIFIC	
	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	A ACC.	η,асс
CDS	N_(pp_tr)	V_(pp_tr)	M_(pp_tr)	Tens.cls,m ax	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima sup	Tens.acc. quota irrigidim. longitud.	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ_id,max < 0,8f,d	C/D
	0,0	294,2	0,00			0,00	0,00	-22,19	0,00	0,00	5,00	8,67	Verificato	39,02

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

FASE I - SLE COMB. QUASI PERM.

SCHEMA TRAVE CONTINUA - SOLETTA NON REAGENTE - CARICO PERM. SOLETTA G1k

CA	RATTERISTIC	CHE MECCA!	NICHE
Aa	S	X_1	Ja_1
(mm^2)	(mm^3)	(mm)	(mm^4)
Area acciaio	Momento Statico	Asse Neutro - Fase I	Momento Inerzia - Fase
138800	150784000	1086	6,907E+10

	SOLLECIT	AZIONI SLU						TENSIONI SLE - FASE	ΕI				V	ERIFICHE
ENNUPLE	N	V_2	M_3	σc,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	τ	σ_id,max	VERIFIC	
DI COMB. MAX	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	A ACC.	η,асс
CONTEM P.	N_(pp+Gk1)	V_(pp+Gk1)	M_(pp+Gk1)	Tens.cls,m ax	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima sup	Tens.acc. quota irrigidim. longitud.	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ_id,max < 0,8f,d	C/D
MAX N	0,0	-195,6	-1262,2			19,85	19,12	-37,37	-11,58	-13,04	3,33	20,67	Verificato	13,08
MIN N	0,0	154,7	-2208,2			34,73	33,45	-37,37	-20,26	-22,82	2,63	35,03	Verificato	7,72
MAX V2	0,0	817,1	-5446,2			85,66	82,50	-37,37	-49,96	-56,27	13,90	88,98	Verificato	3,04
MIN V2	0,0	-817,1	-5446,2			85,66	82,50	-37,37	-49,96	-56,27	13,90	88,98	Verificato	3,04
MAX M3	0,0	631,9	-537,4			8,45	8,14	-37,37	-4,93	-5,55	10,75	20,44	Verificato	13,23
MIN M3	0,0	-817,1	-5446,2			85,66	82,50	-37,25	-49,96	-56,27	13,90	88,98	Verificato	3,04

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

								FASE II - SLE	COMB. QU	ASI PERM	ſ.					
					SCHEMA TRAVE C	ONTINUA	- SOLETTA R	EAGENTE OMOGENEIZ	ZATA A TEMP	O INFINITO (VISCOSITA') - SOVRACC. I	PERM. G21	k + RITIRO	CLS		
					CA		STICHE MECO	CANICHE							SOLLECITAZ. F	
Ea	Ec	n,2	Aa	As	Ac	Ai,2 (+)	Si,2 (+)	X_2 (+)	Ja_2 (+)	Ai,2 (-)	Si,2 (-)	X_2 (-)	Ja_2 (-)	N,rit,soletta	σ,ritiro_slu	SOLL,_SAP
(Mpa)	(Mpa)	(-)	(mm^2)	(mm^2)	(mm^2)	(mm^2)	(mm^3)	(mm)	(mm^4)	(mm^2)	(mm^3)	(mm)	(mm^4)	(N)	(Mpa)	N,rit. (compr.)
Mod.Elast.	Mod.Elast.Cls	Coeff.Omog.	Area acciaio	Area armature	Area cls	Area	Momento	A.N Fase II	Mom. Inerzia -	Area ideale	Momento Statico	A.N	Mom. Inerzia -	Forza di ritiro	Tens. traz. nella soletta	-4390,1 KN/Trave
Acc.				soletta		ideale	Statico	Soletta tutta compr.	Fase II			Fase II	Fase II	eccentrica (soletta)	(connettori)	M,rit.(M. posit.)
210000	12013,0	17,48	138800	4825	1137500	208696	2,110E+08	1011	1,448E+11	143625	1,996E+08	1390	7,807E+10	5,268E+06	3,48	3669,9 KNm/Trave
								TENNESS OF THE PARTY							**************************************	
ENNUPLE		AZIONI SLU						TENSIONI SLE - FASE II							VERIFICHE SLU	
DI COMB.	N	V_2	M_3	σc,max	OS CONTRACTOR OF	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	τ	σ_id,max	VERIFIC A ACC.	η,асс	VERIFICA CLS	η,cls
MAX	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)		-		
CONTEM	N_(Gk2)	V_GK2	M_GK2	Tens.cls,max	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima sup	Tens.acc. quota irrigidim. longitud.	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ_id,max < 0,8f,d	C/D	σ,c_max <= 0,6*f,Ck	C/D
MAX N	242.4	569.1	-1815.2	0.00	32.96	25,92	24,99	-4.33	-14.07	-15.93	9,68	30.87	Verificato	8,76		
MIN N	-4805,9	-522,8	-1355,9	-1,32	0,29	-4,97	-5,67	-34,54	-34,84	-36,23	8,89	39,37	Verificato	6,87	Verificato	17,01
MAX V2	204,0	689,9	-3240,4	0,00	57,20	44,62	42,96	-3,99	-26,77	-30,09	11,73	49,03	Verificato	5,52		
MIN V2	-4791,9	-690,6	-3240,4	-1,31	32,77	20,19	18,53	-34,54	-51,20	-54,52	11,74	58,19	Verificato	4,65	Verificato	17,06
MAX M3	185,8	-437,5	-594,9	0,00	11,57	9,26	8,96	-4,33	-3,85	-4,46	7,44	15,87	Verificato	17,04		
MIN M3	-4791,9	-690,6	-3240,4	-1,31	32,77	20,19	18,53	-34,54	-51,20	-54,52	11,74	58,19	Verificato	4,65	Verificato	17,06
								VERIFICA API	ERTURA DELL				NI STATE OF THE ST			
Tip	ologia durata ca			LUNG	A DURATA		Cond	lizioni ambientali		AGGRE		comb	inazioni		QUASI PERMAN	JENTE
K1	K2	К3	K4	σs	A _{c,eff.min}	w _{k.lim}	Kt	S _{max.rif}	ρ _{p,eff}	$[e_{sm}\text{-}\epsilon_{cm}]_{min}$	$[e_{sm}$ - $\varepsilon_{cm}]_{min}$	[e _{sm} -ε _{cm}] _{cald}	s _{r,max.1}	\$ _{r,max.2}	S _{r,max}	w _k
Coefficienti	k per il calcolo	dell'ampiezza o	li fessurazione	(MPa)	(mmq)			· max,m	(-)	(-)	(-)	(-)	(mm)	(mm)	(mm)	(mm)
0.8					Area efficace tesa di calcestruzzo	Amp. lim. fessure	Fatt. dur. carico	Spaziatura max (mm)	As,teso/cls teso	Differenza t	ra la deformazione nell'acciai	o e nel cls		Distanza massima t	ra le fessure	Ampiezza di calc. fessure
MAX N	242,4	569.1	-1815.2	32,96	823700	4. 4				0,000094	-0,000972	0.000094	596,9	988	597	0.06
MIN N	-4805,9	-522,8	-1355,9	0.29						0,000001	-0,000372	0.000001	596,9	988	597	0.00
MAX V2	204,0	689,9	-3240,4	57,20	Ac_eff,1,2,3					0,000163	-0,000856	0,000163	596,9	988	597	0,10
MIN V2	-4791,9	-690,6	-3240,4	32,77	1137500	0,20	0,4	235	0,00586	0,000094	-0,000973	0,000094	596,9	988	597	0,06
MAX M3	185,8	-437,5	-594,9	11,57	823700					0,000033	-0,001074	0,000033	596,9	988	597	0,02
MIN M3	-4791,9	-690,6	-3240,4	32,77	1137500	†				0,000094	-0,000973	0,000094	596,9	988	597	0,06

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

								FASE III - SLE	COMP OF	IASI DEDI	Л					
					COMEN A TRANS	ONITE VALUE	COLETTA D					VII DVII 2	EDM CHE	n nor		
					SCHEMA TRAVE C	ONTINUA	- SOLETTA R	EAGENTE OMOGENEIZ	ZATA A TEMP	O ZERO - SC	VRACC. VARIABILI Qik. +	VARIAZ. I	ERMICHE	, D1		
					CA	RATTERI	STICHE MECO	ANICHE							SOLLECITAZ, Z	AT diff
Ea	Ec	n,3	Aa	As	Ac	Ai,3 (+)	Si,3 (+)	X 3 (+)	Ja 3 (+)	Ai,3 (-)	Si,3 (-)	X 3 (-)	Ja 3 (-)	ε,ΔT_differ.	σ,ΔT_differ.	SOLL. ΔT,diff SAP
(Mpa)	(Mpa)	(-)	(mm^2)	(mm^2)	(mm^2)	(mm^2)	(mm^3)	(mm)	(mm^4)	(mm^2)	(mm^3)	(mm)	(mm^4)	(-)	(Mpa)	N,ΔT_differ. (traz.)
Mod.Elast.	Mod.Elast.Cls	CooffOmog	Area acciaio	Area armature	Area cls	Area ideale	Momento	A.N. Fase III (M+)	Mom. Inerzia -	Area ideale	Momento Statico (M-)	A.N Fase III	Mom. Inerzia -	Def.term. diff.	Tens. compr. nella	7177,3 KN
Acc.	viou.Elast.Cis	Coeff.Offiog.	Area acciaio	soletta	Area cis	(M+)	Statico (M+)	Soletta tutta compr.	Fase III (M+)	(M-)	Momento Statico (M-)	(M-)	Face III	Der.teriii. diri.	soletta (soletta calda)	M,ΔTdiffer. (M negat.)
210000	34625	6,06	138800	4825	1137500	331180	2,324E+08	702	2,000E+11	143625	1,996E+08	1390	7,807E+10	1,200E-04	-4,16	-3780,8 KNm
		AZIONI SLU						TENSIONI SLE - FASE II							VERIFICHE SLU	
ENNUPLE DI COMB.	N	V_2	M_3	σc,max		σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	τ	σ_id,max	VERIFIC	n,acc	VERIFICA CLS	η,cls
MAX	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	A ACC.	циес	VERNITOR CES	11,013
CONTEM P.	N_(Gk2)	V_GK2	M_GK2	Tens.cls,max	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima sup	Tens.acc. quota irrigidim. longitud.	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ_id,max < 0,8f,d	C/D	σ,c_max <= 0,6*f,Ck	C/D
MAX N	3423,6	115,5	47,5	-3,77	24,51	24,58	24,59	85,03	24,99	25,01	1,96	25,24	Verificato	10,72	Verificato	5,95
MIN N	-457,6	-83,6	-95,9	-3,97	0,27	-0,10	-0,15	14,14	-2,22	-2,32	1,42	3,38	Verificato	80,03	Verificato	5,65
MAX V2	3402,4	202,4	-245,0	-3,74	28,73	27,77	27,65	96,62	22,38	22,13	3,44	28,41	Verificato	9,52	Verificato	5,99
MIN V2	-445,9	-202,0	-245,0	-3,96	2,87	1,92	1,79	14,68	-3,48	-3,73	3,43	7,02	Verificato	38,51	Verificato	5,66
MAX M3	3404,6	105,9	614,8	-4,10	22,52	23,45	23,57	85,03	28,73	28,98	1,80	29,15	Verificato	9,28	Verificato	5,47
MIN M3	-445,9	-202,0	-350,9	-3,96	4,69	3,33	3,15	14,68	-4,40	-4,76	3,43	7,62	Verificato	35,49	Verificato	5,66
									ERTURA DELLI	E FESSURE						
Tip	ologia durata ca			BREVE	E DURATA		Cond	izioni ambientali		AGGRI	ESSIVE	combi	nozioni		QUASI PERMAN	IENTE
K1	K2	К3	K4	σs	$A_{c,eff.min}$	w _{k,lim}	Kt	S _{max.rif}	$ ho_{ m p,eff}$	$[e_{sm}$ - $\epsilon_{cm}]_{min}$	[e _{sm} -ε _{cm}] _{min}	e _{sm} -ε _{cm}] _{calc}	S _{r,max.1}	S _{r,max.2}	S _{r,max}	w _k
Coefficienti	k ner il calcolo	dell'amniezza	di fessurazione	(MPa)	(mmq)	··· Kaimi		"max,ni	(-)	(-)	(-)	(-)	(mm)	(mm)	(mm)	(mm)
0.8	0,5	3,4	0,425	Tens. arm. soletta	Area efficace tesa di calcestruzzo	Snaziatura may (mm)			As,teso/cls teso	Differenza t	ra la deformazione nell'acciai	o e nel cls		Distanza massima t	ra le fessure	Ampiezza di calc. fessure
MAX N	3423.6	115,5	47,5	24,51	823700					0,000070	-0,001576	0,000070	596.9	988	597	0,04
MIN N	-457.6	-83.6	-95,9	0,27	023700					0,000070	-0.001576	0,000070	596,9	988	597	0.00
MAX V2	3402.4	202.4	-245.0	28,73	Ac_eff,1,2,3					0,000082	-0.001556	0,000082	596,9	988	597	0.05
MIN V2	-445.9	-202.0	-245,0	2,87	1137500	0,20	0,6	235	0,00586	0,000002	-0.001530	0,000008	596,9	988	597	0.00
MAX M3	3404,6	105,9	614,8	22,52	823700	†				0,000064	-0,001586	0,000064	596,9	988	597	0,04
MIN M3	-445.9	-202.0	-350,9	4.69	1137500					0,000013	-0.001671	0,000013	596,9	988	597	0.01
	,,,	202,0	230,5	.,07						5,550015	-,/10/1	5,550015	2.0,0	. 50	271	9,01

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

TENSIONI TOTALI - SLE COMB. QUASI PERM. SOMMA DELLE TENSIONI NELLE FASI 0 - I - II - III ALLA ASCISSA X = 0 m PER GLI INVILUPPI DELLE SOLLECITAZIONI MAX TENSIONI SLE VERIFICHE SLU σc,max σa,ali_sup σa,an_sup σa,an irr σa,an inf σa,ali inf σ_id,max VERIFIC η,acc VERIFICA CLS η,cls COMBINAZIONI (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) A ACC. Tens.acc. Tens.acc. Tens.acc. quota irrigidim Tens.acc.an. Tens.acc. ali Tensione σ_id,max < C/D σ,c max <= 0,6*f,Ck C/D Tens.cls,max Tens.arm. Soletta Tens.taglio anima 0,8f,d ala sup anima sup longitud. inf. inf. ideale MAX N Verificato Verificato -3,77 57,47 -3,96 78,40 5,95 70,35 68,70 21,15 -0,66 19,97 3,45 MIN N -5,28 -57,32 17,95 68,79 3,93 Verificato 4,24 0,56 29,65 27,63 -79,96 -61,36 Verificato 85,92 168,71 5,99 MAX V2 -3,74 158,06 153,12 33,07 -54,35 -64,23 34,07 Verificato 1,60 Verificato MIN V2 -5,28 35,63 107,77 102,83 -79,42 -104,64 -114,52 34,08 128,84 Verificato 2,10 Verificato 4,25 MAX M3 -4,10 34.09 40,67 21,15 19,96 18,97 24,99 59,73 Verificato 4,53 Verificato 5,47 41,16 MIN M3 -5,28 37,45 109,18 104,18 -79,29 -105,57 -115,56 34,08 129,76 Verificato Verificato VERIF. APERT. TOT. DELLE FESSURE $\Sigma \mathbf{w}_k$ (mm) Amp. lim. fessure Ampiezza tot. di calc. fessure 0,10

PROGETTAZIONE ATI:

0,00 0,15

0.06 0,06 0,06

0,20

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

7.13.10. VERIFICA DELLE TRAVI CENTRALI L = 40 M SEZ. DI CAMPATA - SLU

GESTIONE PROGETTI INGEGNERIA srl

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

							CARATTE	RISTICHE GEON	METRICHE 1	TRAVE A-CLS	8					
			_							ı						ı
Ltr	Beff,soletta	h,sol	Φ a,long.	p_a,l	d,a	As,long.	Htr	Bi	Bs	h,a	t,i	t,s	t,a	rl	Aa	Ga
(m)	4,60 m	(mm)	(mm)	(mm)	(mm)	(mm^2)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm^2)	(KN/m)
Lunghezza trave	Largh.impalcato	Altezza soletta	Armatura long. soletta	Passo arm. long. soletta	Dist. baric. Aa,l dal bordo sup.	A. arm. soletta	Altezza trave acc.	Base piatto inferiore	Base piatto superiore	Altezza anima	Spessore piatto inferiore	Spessore piatto superiore	Spessore anima	raggio curvat. raccordo	Area trave acciaio	Peso trave acciaio
40,00	12,90 m	350	16	200	47	4825	1800	700	600	1720	50	30	30	16	104600	8,211
Rek	f,cd	f,y	Ec,m	f,d	Φ,infinito	n,2	n,3	8,rit	Ac,full	Ntr	N,rit_slu	ΔT,differ.	α	CLASSE SEZIONE !	NTC_4.2.3.1	Verifica imbozz CNR
(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(-)	(-)	(-)	(-)	(mmq)	(-)	(N)	(°C)	(1/°C)	Parametri	h/t	10011 p.to 7.2.6.1
Res_cubica a	Res_ a compr.	snerv. acc.carp.	Modulo elastico	Tens.lim.acc.carp.	Coeff.viscosità di	Coeff.Omog.	Coeff.Omogenizz.	Coeff.ritiro	Area compless.	Numero travi ponte	F. ritiro eccentr.	Variaz. termica	Coeff, dilat, term.	β = 0,00116	Pareti sott.	Occorre verif, dettagliata ad
compr.	Pura	335 (40 <t<=80 mm)<="" td=""><td>medio</td><td>319 (40<t<=80 mm)<="" td=""><td>Withney</td><td>Fase II</td><td>Fase III</td><td>Coen.ritiro</td><td>soletta cls</td><td>Numero travi ponte</td><td>(soletta)</td><td>differenz.</td><td>Coen, unat, term.</td><td>ε = 0,81362</td><td>h/t = 57,3</td><td>imbozz.</td></t<=80></td></t<=80>	medio	319 (40 <t<=80 mm)<="" td=""><td>Withney</td><td>Fase II</td><td>Fase III</td><td>Coen.ritiro</td><td>soletta cls</td><td>Numero travi ponte</td><td>(soletta)</td><td>differenz.</td><td>Coen, unat, term.</td><td>ε = 0,81362</td><td>h/t = 57,3</td><td>imbozz.</td></t<=80>	Withney	Fase II	Fase III	Coen.ritiro	soletta cls	Numero travi ponte	(soletta)	differenz.	Coen, unat, term.	ε = 0,81362	h/t = 57,3	imbozz.
45	19.83	355 (t<=40 mm)	34077	338 (t<=40 mm)	1.84	6.16	17,48	0,0002416	4537100	_	5,268E+06	10,0 °C	1,2E-05	c/t = 173	h/t, lim = 36,0	IIIIOOZZ.

FASE 0 - SLU

SCHEMA DI TRAVE SEMPLICEMENTE APPOGGIATA - SOLO TRAVE IN ACCIAIO

CA	RATTERISTI	CHE MECCANICI	HE	ASCISSA DI VERIF.
Aa	S	X_0	Ja_0	x
(mm^2)	(mm^3)	(mm)	(mm^4)	(val.compr. fra 0 e 40 m)
Area acciaio	Momento Statico	Asse Neutro - Fase I	Momento Inerzia - Fase I	20,00 m
104600	108319000	1036	5,171E+10	

	SOLLECI	TAZIONI SLU					TI	ENSIONI SLU - FASE	0				V	ERIFICHE
	N	V_2	M_3	σc,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σ a,ali_inf	τ	σ_id,max	VERIFICA ACC.	
	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	VERIFICA ACC.	η,асс
CDS	N (t)	V (m. to)	M (t-)	Tens.cls.max	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima	Tens.acc. quota irrigidim.	Tens.acc.an. inf.	Tens.acc. ali inf.	T 4 P	Tensione ideale	σ id,max <f,d< td=""><td>C/D</td></f,d<>	C/D
	N_(pp_tr)	V_(pp_tr)	M_(pp_tr)	i ens.cis,max	i ens.arm. Soietta	fd = 338 MPa	sup	longitud.	Tens.acc.an. ini.	fd = 319 MPa	Tens.taglio anima	i ensione ideale	G_Iu,IIIax~I,u	CB
	0,0	0,0	2217,00			-44,40	-43,11	-30,25	30,63	32,78	0,00	44,40	Verificato	7,61

FASE I - SLU

SCHEMA TRAVE CONTINUA - SOLETTA NON REAGENTE - CARICO PERM. SOLETTA GIK

CA	RATTERISTI	CHE MECCANIC	HE
Aa	S1(+)	X_1(+)	Ja_1(+)
(mm^2)	(mm^3)	(mm)	(mm^4)
Area acciaio	Momento Statico	Asse Neutro - Fase I	Momento Inerzia - Fase I
104600	108319000	1036	5,171E+10

	SOLLECI	TAZIONI SLU					TI	ENSIONI SLU - FASE	I				V	ERIFICHE
	N	V_2	M_3	σc,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	τ	σ_id,max	VERIFICA ACC.	
ENNUPLE DI COMB, MAX	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	VERIFICA ACC.	η,асс
CONTEMP.	N_(Gk1)	V_(Gk1)	M_(Gk1)	Tens.cls,max	Tens.arm. Soletta	Tens.acc. ala sup fd = 338 MPa	Tens.acc. anima sup	Tens.acc. quota irrigidim. longitud.	Tens.acc.an. inf.	Tens.acc. ali inf. fd = 319 MPa	Tens.taglio anima	Tensione ideale	σ_id,max <f,d< th=""><th>C/D</th></f,d<>	C/D
MAX N	0,0	-54,3	3487,9			-69,85	-67,83	-47,59	48,19	51,57	1,05	69,88	Verificato	4,84
MIN N	0,0	-92,4	3765,3			-75,41	-73,22	-51,38	52,02	55,67	1,79	75,47	Verificato	4,48
MAX V2	0,0	125,0	3700,0			-74,10	-71,95	-50,49	51,12	54,70	2,42	74,22	Verificato	4,56
MIN V2	0,0	-125,0	3700,0			-74,10	-71,95	-50,49	51,12	54,70	2,42	74,22	Verificato	4,56
MAX M3	0,0	10,9	3842,7			-76,96	-74,73	-52,43	53,09	56,81	0,21	76,96	Verificato	4,39
MIN M3	0,0	-108,7	3406,4			-68,22	-66,24	-46,48	47,07	50,36	2,11	68,32	Verificato	4,95

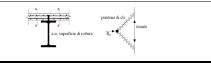
TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

								FASE II	- SLU							
				SCHEM	IA TRAVE CON	TINUA - SOLETT	A REAGENTE	OMOGENEIZZATA A	A TEMPO INFI	NITO (VISCOSI	ΓA') - SOVRACC	PERM. G2k + RI	TIRO CLS			
						CARATTERISTI	CHE MECCAN	ICUE						SOI	LECITAZ, RITIRO)
Ea	Ec	n,2	Aa	As	Ac	Ai,2 (+)	Si,2 (+)	X_2 (+)	Ja_2 (+)	Ai,2 (-)	Si,2 (-)	X_2 (-)	Ja_2 (-)	N,rit,soletta	σ,ritiro slu	SOLLSAP
(Mpa)	(Mpa)	(-)	(mm^2)	(mm^2)	(mm^2)	(mm^2)	(mm^3)	(mm)	(mm^4)	(mm^2)	(mm^3)	(mm)	(mm^4)	(N)	(Mpa)	N,rit. (compr.)
Mod.Elast.Acc.	Mod.Elast.Cls	Coeff.Omog.	Area acciaio	Area armature soletta	Area cls	Area ideale	Momento Statico	A.N Fase II Soletta tutta compr.	Mom. Inerzia - Fase II	Area ideale	Momento Statico	A.N Fase II	Mom. Inerzia - Fase	Forza di ritiro eccentrica (soletta)	Tens. traz. nella soletta (connettori)	-4390,1 KN/Trave M,rit.(M. posit.)
210000	12013,0	17,48	104600	4825	1610000	201526	1,613E+08	800	1,272E+11	109425	1,452E+08	1327	5,997E+10	5,268E+06	3,48	2745,0 KNm/Trave
			•													
	SOLLECI	V 2	М 3	♂ c,max	σs	σa,ali sup	σa,an sup	NSIONI SLU - FASE	II ga,an_inf	σa,ali_inf	7	σ id.max	VERIFICA TR.	VERIFIC	VERIFICA ARMAT.	
ENNUPLE DI COMB, MAX	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	ACCIAIO	VERIFICA CLS	SOLETTA	VERIFICA
CONTEMP.	N_(Gk2+Rit.)	V_(Gk2+Rit.)	M_(Gk2+Rit.)	Tens.cls,max	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima	Tens.acc. quota irrigidim.	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ_id,max <f,d< td=""><td>sigma,c_max<0,85f,cd</td><td>sigma,a_max<f,yd< td=""><td>COMPLESSIVA</td></f,yd<></td></f,d<>	sigma,c_max<0,85f,cd	sigma,a_max <f,yd< td=""><td>COMPLESSIVA</td></f,yd<>	COMPLESSIVA
MAX N	-145.9	60,0	3130.6	-1.17	-19,26	fd = 338 MPa -11.80	sup -11.07	longitud. -3.68	31,26	fd = 319 MPa 32,49	1,16	32.55	9,80	14.43	20.32	Verificato
MIN N	-6445,4	-28,7	3059,8	-2,93	-50,10	-42,81	-42,09	-34,88	-0,72	0,48	0,56	42,82	7,90	5,75	7,81	Verificato
MAX V2	-167,8	74,2	2976,6	-1,12	-18,46	-11,37	-10,67	-3,65	29,58	30,75	1,44	30,85	10,34	15,07	21,20	Verificato
MIN V2 MAX M3	-6437,3 -168,4	-74,7 40,2	2976,6 3364.8	-2,90 -1,26	-49,57 -20,76	-42,48 -12,74	-41,78 -11,95	-34,76 -4.02	-1,53 33,54	-0,36 34.86	1,45 0,78	42,55 34.89	7,95 9,14	5,82 13,39	7,89 18,85	Verificato Verificato
MIN M3	-6435,0	-64,3	2957,1	-2,89	-49,44	-42,40	-41,70	-34,73	-1,72	-0,56	1,25	42,45	7,96	5,83	7,91	Verificato
								FASE III	I - SI II							
				o coverns		IMPRILIT A COLUMN						nr a. mnnr.	TOTAL DE			
				SCHEN	4A TRAVE CON	NTINUA - SOLETT	A REAGENTE	OMOGENEIZZATA .	A TEMPO ZER	D - SOVRACC.	VARIABILI Qik.	+ VARIAZ. TERM	HCHE DT			
						CARATTERISTI	CHE MECCAN	ICHE						SO	LLECITAZ. ∆T diff	f
Ea	Ec	n,3	Aa	As	Ac	Ai,3 (+)	Si,3 (+)	X_3 (+)	Ja 3 (+)	Ai,3 (-)	Si,3 (-)	X_3 (-)	Ja 3 (-)	ε,ΔT differ.	σ,ΔT differ.	SOLL. ∆T,diff_SAP
			-													
(Mpa)	(Mpa)	(-)	(mm^2)	(mm^2)	(mm^2)	(mm^2)	(mm^3)	(mm)	(mm^4)	(mm^2)	(mm^3)	(mm)	(mm^4)	6,41_unici.	(Mpa)	N,ΔT_differ. (traz.)
(Mpa) Mod.Elast.Acc.	(Mpa) Mod.Elast.Cls		(mm^2) Area acciaio	(mm^2) Area armature soletta	(mm^2) Area cls											
		(-)			1	(mm^2)	(mm^3) Momento Statico	(mm) A.N. Fase III (M+)	(mm^4) Mom. Inerzia -	(mm^2)	(mm^3) Momento Statico	(mm)	(mm^4) Mom. Inerzia - Fase	(-)	(Mpa) Tens. compr. nella	N,ΔT_differ. (traz.) 6184,5 KN
Mod.Elast.Acc.	Mod.Elast.Cls 34077	(-) Coeff.Omog. 6,16	Area acciaio	Area armature soletta	Area cls	(mm^2) Area ideale (M+)	(mm^3) Momento Statico (M+) 1,909E+08	(mm) A.N. Fase III (M+) Soletta tutta compr. 515	(mm^4) Mom. Inerzia - Fase III (M+) 1,649E+11	(mm^2) Area ideale (M-)	(mm^3) Momento Statico (M-)	(mm) A.N Fase III (M-)	(mm^4) Mom. Inerzia - Fase III (M-)	(-) Def.term. diff. 1,200E-04	(Mpa) Tens. compr. nella soletta (soletta calda) -4,09	N,ΔT_differ. (traz.) 6184,5 KN M,ΔTdiffer. (M negat.)
Mod.Elast.Acc. 210000	Mod.Elast.Cls 34077	(-) Coeff.Omog.	Area acciaio	Area armature soletta	Area cls	(mm^2) Area ideale (M+)	(mm^3) Momento Statico (M+) 1,909E+08	(mm) A.N. Fase III (M+) Soletta tutta compr.	(mm^4) Mom. Inerzia - Fase III (M+) 1,649E+11	(mm^2) Area ideale (M-)	(mm^3) Momento Statico (M-)	(mm) A.N Fase III (M-)	(mm^4) Mom. Inerzia - Fase III (M-)	(-) Def.term. diff. 1,200E-04 VERIFIC	(Mpa) Tens. compr. nella soletta (soletta calda) -4,09	N,ΔT_differ. (traz.) 6184,5 KN M,ΔTdiffer. (M negat.)
Mod.Elast.Acc.	Mod.Elast.Cls 34077 SOLLECI	Coeff.Omog. 6,16 FAZIONI SLU	Area acciaio 104600	Area armature soletta 4825	Area cls 1610000	(mm^2) Area ideale (M+) 370684 Ga,ali_sup (MPa)	(mm^3) Momento Statico (M+) 1,909E+08 TE σa,an_sup (MPa)	(mm) A.N. Fase III (M+) Soletta tutta compr. 515 NSIONI SLU - FASE I Øa,an irr (MPa)	(mm^4) Mom. Inerzia - Fase III (M+) 1,649E+11	(mm^2) Area ideale (M-) 109425 Ga,ali_inf (MPa)	(mm^3) Momento Statico (M-) 1,452E+08	(mm) A.N Fase III (M-) 1327	(mm^4) Mom. Inerzia - Fase III (M-) 5,997E+10	(-) Def.term. diff. 1,200E-04	(Mpa) Tens. compr. nella soletta (soletta calda) -4,09 CHE SLU	N, ΔT_differ. (traz.) 6184,5 KN M, ΔTdiffer. (M negat.) -2102,3 KNm VERIFICA
Mod.Elast.Acc. 210000 ENNUPLE DI	Mod.Elast.Cls 34077 SOLLECT N	Coeff.Omog. 6,16 TAZIONI SLU V_2	Area acciaio 104600	Area armature soletta 4825 • Ge,max	Area cls 1610000	(mm^2) Area ideale (M+) 370684 Ga,ali_sup (MPa) Tens.acc. ala sup	(mm^3) Momento Statico (M+) 1,909E+08 TE Ga,an sup (MPa) Tens.acc. anima	(mm) A.N. Fase III (M+) Soletta tutta compr. 515 NSIONI SLU - FASE I Ga,an irr (MPa) Tens.acc, quota irrigidim.	(mm^4) Mom. Inerzia - Fase III (M+) 1,649E+11 III Ga,an_inf	(mm^2) Area ideale (M-) 109425 Ga,ali_inf (MPa) Tens.acc. ali_inf.	(mm^3) Momento Statico (M-) 1,452E+08	(mm) A.N Fase III (M-) 1327 σ_id,max	(mm^4) Mom. Inerzia - Fase III (M-) 5,997E+10 VERIFICA TRAVE	(-) Def.term. diff. 1,200E-04 VERIFIC	(Mpa) Tens. compr. nella soletta (soletta calda) -4,09 CHE SLU VERIFICA ARMAT.	N,ΔT_differ. (traz.) 6184,5 KN M,ΔTdiffer. (M negat.) -2102,3 KNm
Mod.Elast.Acc. 210000 ENNUPLE DI COMB. MAX	Mod.Elast.Cls 34077 SOLLECI N (KN)	(-) Coeff.Omog. 6,16 FAZIONI SLU V.2 (KN)	Area acciaio 104600 M_3 (KNm)	Area armature soletta 4825 Ge.max (MPa)	Area cls 1610000	(mm^2) Area ideale (M+) 370684 Ga,ali_sup (MPa)	(mm^3) Momento Statico (M+) 1,909E+08 TE σa,an_sup (MPa)	(mm) A.N. Fase III (M+) Soletta tutta compr. 515 NSIONI SLU - FASE I Øa,an irr (MPa)	(mm^4) Mom. Inerzia - Fase III (M+) 1,649E+11 Ga,an_inf (MPa)	(mm^2) Area ideale (M-) 109425 Ga,ali_inf (MPa)	(mm^3) Momento Statico (M-) 1,452E+08	(mm) A.N Fase III (M-) 1327 id.max (MPa)	(mm^4) Mom. Inerzia - Fase III (M-) 5,997E+10 VERIFICA TRAVE IN ACCIAIO	(-) Def.term. diff. 1,200E-04 VERIFIC VERIFICA CLS	(Mpa) Tens. compr. nella soletta (soletta calda) -4,09 THE SLU VERIFICA ARMAT, SOLETTA	N, ΔT_differ. (traz.) 6184,5 KN M, ΔTdiffer. (M negat.) -2102,3 KNm VERIFICA
Mod.Elast.Acc. 210000 ENNUPLE DI COMB. MAX CONTEMP. MAX N MIN N	Mod.Elast.Cls 34077 SOLLECI N (KN) N_(Qik+∆T) 10950,4 -1796,0	(-) Coeff.Omog. 6,16 FAZIONI SLU V_2 (KN) V_(Qik+ΔT) 644,5 -591,1	M_3 (KNm) M_(Qik+\Delta T) 7657,1 -1212,4	Area armature soletta 4825 Ge.max (MPa) Tens.cls,max -7,56 -4,47	Area cls 1610000 SS (MPa) Tens.arm. Soletta 82,96 21,02	(mm ²) Area ideale (M+) 370684 Ga.ali sup (MPa) Tens.acc. ala sup fd = 338 MPa 97.03 14.90	(mm^3) Momento Statico (M+) 1,909E+08 TE Ga,an_sup (MPa) Tens.acc. anima sup 98,42 14,29	(mm) A.N. Fase III (M+) Soleta tutta compr. 515 SIONI SLU - FASE I Ga,an irr (MPa) Tens.acc, quota irrigidim. longitud. 112,35 8,22	(mm^4) Mom. Incrzia Fase III (M+) 1,649E+11 III Ga,an_inf (MPa) Tens.acc.an. inf. 178,29 -20,48	(mm ²) Area ideale (M-) 109425 Oa,ali_inf (MPa) Tens.acc. ali_inf. fd = 319 MPa 180,61 -21,49	(mm^3) Momento Statico (M-) 1,452E+08 7 (MPa) Tens.taglio anima 12,49 11,46	(mm) A.N Fase III (M-) 1327 G_id.max (MPa) Tensione ideale 181,90 29,25	(mm^4) Mom. Inerzia - Fase III (M-) 5.997E+10 VERIFICA TRAVE IN ACCIAIO	(-) Def.term. diff. 1,200E-04 VERIFIC VERIFICA CLS sigma.c_max<0,85f.cd 2,23 3,77	(Mpa) Tens. compr. nella soletta (soletta calda) -4,89 HE SLU VERIFICA ARMAT. SOLETTA sigma,a_max <f,yd 18,61<="" 4,72="" td=""><td>N,AT_differ (traz) 6184,5 KN M,ATdiffer (M negat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato</td></f,yd>	N,AT_differ (traz) 6184,5 KN M,ATdiffer (M negat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato
Mod.Elast.Acc. 210000 ENNUPLE DI COMB. MAX CONTEMP. MAX N MIN N MAX V2	Mod.Elast.Cls 34077 SOLLECI N (KN) N_(Qik+\Delta T) 10950,4 -1796,0 10942,4	(-) Coeff.Omog. 6,16 TAZIONI SLU V.2 (KN) V_(Qik+ΔT) 644,5 -591,1 722,0	M 3 (KNm) M_(Qik+ΔT) 7657,1 -1212,4 -1386,5	Area armature soletta 4825 Ge.max (MPa) Tens.els,max -7.56 -4.47 -3.68	Area els 1610000	(mm ²) Area ideale (M+) 370684 Ga.ali sup (MPa) Tens.ace. ala sup fd = 338 MPa 97.03 14.90 127.19	(mm*3) Momento Statico (M+) 1,909E+08 TE Ga.an_sup (MPa) Tens.acc. anima sup 98,42 14,29 126,49	(mm) A.N. Fase III (M+) Soletta tutta compr. 515 NSIONI SLU - FASE I Gaan irr (MPa) Tens.acc. quota irrigidim. longitud. 112,35 8,22 119,56	(mm'4) Mom. Inerzia - Fase III (M+) 1,649E+11 III Ga.an inf (MPa) Tens.acc.an. inf. 178,29 -20,48 86,73	(mm ² 2) Area ideale (M-) 109425 Saaii_inf (MPa) Tens.acc. ali inf. fd = 319 MPa 180,61 -21,49 85,57	(mm ³) Momento Statico (M-) 1,452E+08 T (MPa) Tens.taglio anima 12,49 11,46 13,99	(mm) A.N Fase III (M-) 1327	(mm^4) Mom. Inerzia - Fase III (M-) 5.997E+10 VERIFICA TRAVE IN ACCIAIO	(-) Def.term. diff. 1,200E-04 VERIFICA VERIFICA CLS sigma.c. max~0,85f.cd 2,23 3,777 4,58	(Mpa) Tens. compr. nella soletta (soletta calda) 4,09 HE SLU VERIFICA ARMAT. SOLETTA sigma,a_max <f,yd 18,61="" 2,92<="" 4,72="" td=""><td>N,AT_differ (traz) 6184,5 KN M,ATdiffer (Megat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato</td></f,yd>	N,AT_differ (traz) 6184,5 KN M,ATdiffer (Megat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato
Mod.Elast.Acc. 210000 ENNUPLE DI COMB. MAX CONTEMP. MAX N MIN N	Mod.Elast.Cls 34077 SOLLECI N (KN) N_(Qik+∆T) 10950,4 -1796,0	(-) Coeff.Omog. 6,16 FAZIONI SLU V_2 (KN) V_(Qik+ΔT) 644,5 -591,1	M_3 (KNm) M_(Qik+\Delta T) 7657,1 -1212,4	Area armature soletta 4825 Ge.max (MPa) Tens.cls,max -7,56 -4,47	Area cls 1610000 SS (MPa) Tens.arm. Soletta 82,96 21,02	(mm ²) Area ideale (M+) 370684 Ga.ali sup (MPa) Tens.acc. ala sup fd = 338 MPa 97.03 14.90	(mm^3) Momento Statico (M+) 1,909E+08 TE Ga,an_sup (MPa) Tens.acc. anima sup 98,42 14,29	(mm) A.N. Fase III (M+) Soleta tutta compr. 515 SIONI SLU - FASE I Ga,an irr (MPa) Tens.acc, quota irrigidim. longitud. 112,35 8,22	(mm^4) Mom. Incrzia Fase III (M+) 1,649E+11 III Ga,an_inf (MPa) Tens.acc.an. inf. 178,29 -20,48	(mm ²) Area ideale (M-) 109425 Oa,ali_inf (MPa) Tens.acc. ali_inf. fd = 319 MPa 180,61 -21,49	(mm^3) Momento Statico (M-) 1,452E+08 7 (MPa) Tens.taglio anima 12,49 11,46	(mm) A.N Fase III (M-) 1327 G_id.max (MPa) Tensione ideale 181,90 29,25	(mm^4) Mom. Inerzia - Fase III (M-) 5.997E+10 VERIFICA TRAVE IN ACCIAIO	(-) Def.term. diff. 1,200E-04 VERIFIC VERIFICA CLS sigma.c_max<0,85f.cd 2,23 3,77	(Mpa) Tens. compr. nella soletta (soletta calda) -4,89 HE SLU VERIFICA ARMAT. SOLETTA sigma,a_max <f,yd 18,61<="" 4,72="" td=""><td>N,AT_differ (traz) 6184,5 KN M,ATdiffer (Mregat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato</td></f,yd>	N,AT_differ (traz) 6184,5 KN M,ATdiffer (Mregat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato
Mod.Elast.Acc. 210000 ENNUPLE DI COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2	Mod.Elast.Cls 34077 SOLLECI N (KN) N_(Qik+ΔT) 10950,4 -1796,0 10942,4 -1713,2	(°) Coeff.Omog. 6,16 I AZION1 SLU V.2 (KN) V_(Qik+\Delta T) 644,5 -591,1 722.0 -723.0	M 3 (KNm) M_(Qik+AT) 7657.1 -1212.4 -1386.5	Area armature soletta 4825 Ge.max (MPa) Tens.cls.max -7.56 -4.47 -3.68 -4.43	Area cls 1610000 GS (MPa) Tens.arm. Soletta 82,96 21,02 134,19 24,96	(mm^2) Area ideale (M+) 370684 Gaali sup (MPa) Tens.acc. ala sup fd = 338 MPa 97.03 14.90 127.19 17.95	(mm ³) Momento Statico (M ⁴) 1,909E+08 TE Ga,an sup (MPa) Tens,acc. anima sup 98,42 14,29 126,49 17,26	(mm) A.N. Fase III (M+) Soletta tutta compr. 515 SIGNI SLU - FASE I Ga.an irr (MPa) Tens.acc, quota irrigidim. longitud. 112,35 8,22 119,56 10,33	(mm ⁴ 4) Mom. Inerzia - Fase III (M+) 1,649E+11 Ga,an inf (MPa) Tens.acc.an. inf. 178,29 -20,48 6,73 -22,50	(mm ² 2) Area ideale (M-) 109425 Ga,ali_inf (MPa) Tens.acc. ali inf. fd = 319 MPa 180,61 -21,49 -23,66	(mm ² 3) Momento Statico (M-) 1.452E+08 T (MPa) Tens.taglio anima 12,49 11,46 13,99 14,01	(mm) A.N Fase III (M-) 1327 G.id.max (MPa) Tensione ideale 181,90 29,25 129,48 33,89	(mm^4) Mom. Inerzia - Fase III (M-) 5,997E+10 VERIFICA TRAVE IN ACCIAIO \$\sigma_i\text{dimax} \cdot f_i\text{d} 1,75 10,91 2,61 9,41	(-) DeLterm, diff. 1,200E-04 VERIFIC VERIFICA CLS sigma,c_max<0,85f.ed 2,23 3,77 4,58 3,81	(Mpa) Tens. compr. nella soletta (soletta soletta) 4,09 HE SLU VERIFICA ARMAT. SOLETTA signa_a_mx <fyd 15,68<="" 18,61="" 2,92="" 4,72="" td=""><td>N,AT_differ, (traz) 6184,5 KN M,ATdiffer, (M negat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato Verificato Verificato</td></fyd>	N,AT_differ, (traz) 6184,5 KN M,ATdiffer, (M negat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato Verificato Verificato
Mod Elast Acc. 210000 ENNUPLE DI COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	Mod.Elast.Cls 34077 SOLLECI N (KN) N_(Qik+\Delta T) 10950,4 -1796,0 10942,4 -1713,2 10882,1	(·) Coeff.Omog. 6,16 TAZIONI SLU V.2 (KN) V_(Qlk+\Delta T) 644.5 -591.1 722.0 -723.0 634.8	M_3 (KNm) M_(Qik+AT) -1212,4 -1386,5 -7795,9	Area armature soletta 4825 Gc.max (MPa) Tens.cls.max -7.56 4.47 -3.68 -4.43 -7.63	Area cls 1610000 OS (MPa) Tens.arm. Soletta 82,96 21,02 134,19 24,96 81,91	(mm ²) Area ideale (M+) 370684 Ga.ali sup (MPa) Tens.acc. ala sup fd = 338 MPa 97.03 14.90 127.19 17.95 96.24	(mm ² 3) Momento Statico (M ⁴) 1,909E+08 TE Ga,an_sup (MPa) Tens.acc. anima sup 126.49 17,26 97,66	(mm) A.N. Fase III (M+) Soletta tutta compr. 515 NSIONI SLU - FASE I Ga,an irr (MPa) Tens.acc. quota irrigidim. longitud. 112,35 8,22 119,56 10,33 111,84	(mm ⁴) Mom. Inerzia - Fase III (M+) 1,649E+11 II	(mm^2) Area ideale (M-) 109425 Ga.ali inf (MPa) Tens.acc. ali inf. fd = 319 MPa 180.61 -21.49 88.57 -23.66 181.33	(mm°3) Momento Statico (M-) 1,452E+08 7 (MPa) Tens.taglio anima 12,49 11,46 13,99 14,91 12,20	(mm) A.N Fase III (M-) 1327 G_id.max (MPa) Tensione ideale 181.90 29.25 129.48 33.89 182.58	(mm^4) Mom. Inerzia - Fase III (M-) 5,997E+10 VERIFICA TRAVE IN ACCIAIO	(-) Def.term. diff. 1,200E-04 VERIFICA VERIFICA CLS sigma.c_max<0,85f.cd 2,23 3,77 4,58 3,81 2,21	(Mpa) Tens. compr. nella soletta (soletta calda) -4,89 HE SLU VERIFICA ARMAT. SOLETTA sigma_max <f,yd 15,68="" 18,61="" 2,92="" 4,72="" 4,78<="" td=""><td>N,AT_differ, (traz.) 6184,5 KN M,ATdiffer, (M negat.) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd>	N,AT_differ, (traz.) 6184,5 KN M,ATdiffer, (M negat.) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato
Mod.Elast.Acc. 210000 ENNUPLE DI COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	Mod.Elast.Cls 34077 SOLLECI N (KN) N_(Qik+\Delta T) 10950,4 -1796,0 10942,4 -1713,2 10882,1	(·) Coeff.Omog. 6,16 TAZIONI SLU V.2 (KN) V_(Qlk+\Delta T) 644.5 -591.1 722.0 -723.0 634.8	M_3 (KNm) M_(Qik+AT) -1212,4 -1386,5 -7795,9	Area armature soletta 4825 Gc.max (MPa) Tens.cls.max -7.56 4.47 -3.68 -4.43 -7.63	Area cls 1610000 OS (MPa) Tens.arm. Soletta 82,96 21,02 134,19 24,96 81,91	(mm ²) Area ideale (M+) 370684 Ga.ali sup (MPa) Tens.acc. ala sup fd = 338 MPa 97.03 14.90 127.19 17.95 96.24	(mm ² 3) Momento Statico (M ⁴) 1,909E+08 TE Ga,an_sup (MPa) Tens.acc. anima sup 126.49 17,26 97,66	(mm) A.N. Fase III (M+) Soletta tutta compr. 515 NSIONI SLU - FASE I Ga,an irr (MPa) Tens.acc. quota irrigidim. longitud. 112,35 8,22 119,56 10,33 111,84	(mm ⁴) Mom. Inerzia - Fase III (M+) 1,649E+11 II	(mm^2) Area ideale (M-) 109425 Ga.ali inf (MPa) Tens.acc. ali inf. fd = 319 MPa 180.61 -21.49 88.57 -23.66 181.33	(mm°3) Momento Statico (M-) 1,452E+08 7 (MPa) Tens.taglio anima 12,49 11,46 13,99 14,91 12,20	(mm) A.N Fase III (M-) 1327 G_id.max (MPa) Tensione ideale 181.90 29.25 129.48 33.89 182.58	(mm^4) Mom. Inerzia - Fase III (M-) 5,997E+10 VERIFICA TRAVE IN ACCIAIO	(-) Def.term. diff. 1,200E-04 VERIFICA VERIFICA CLS sigma.c_max<0,85f.cd 2,23 3,77 4,58 3,81 2,21	(Mpa) Tens. compr. nella soletta (soletta calda) -4,89 HE SLU VERIFICA ARMAT. SOLETTA sigma_max <f,yd 15,68="" 18,61="" 2,92="" 4,72="" 4,78<="" td=""><td>N,AT_differ (traz) 6184,5 KN M,ATdiffer (Mregat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd>	N,AT_differ (traz) 6184,5 KN M,ATdiffer (Mregat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato
Mod.Elast.Acc. 210000 ENNUPLE DI COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	Mod.Elast.Cls 34077 SOLLECI N (KN) N_(Qik+\Delta T) 10950,4 -1796,0 10942,4 -1713,2 10882,1	(·) Coeff.Omog. 6,16 TAZIONI SLU V.2 (KN) V_(Qlk+\Delta T) 644.5 -591.1 722.0 -723.0 634.8	M_3 (KNm) M_(Qik+AT) -1212,4 -1386,5 -7795,9	Area armature soletta 4825 Gc.max (MPa) Tens.cls.max -7.56 4.47 -3.68 -4.43 -7.63	Area cls 1610000 OS (MPa) Tens.arm. Soletta 82,96 21,02 134,19 24,96 81,91	(mm ²) Area ideale (M+) 370684 Ga.ali sup (MPa) Tens.acc. ala sup fd = 338 MPa 97.03 14.90 127.19 17.95 96.24	(mm ² 3) Momento Statico (M ⁴) 1,909E+08 TE Ga,an_sup (MPa) Tens.acc. anima sup 126.49 17,26 97,66	(mm) AN, Fase III (M+) Soleta tutta compr. 515 NSIONI SLU - FASE I Ga,an irr (MPa) Tens.acc. quota irrigidim. longitud. 112,35 8,22 119,56 10,33 111,84 13,96	(mm ⁻⁴) Mom. Inerzia - Fase III (M+) 1,649E+11 Ga.an inf (MPa) Tens.acc.an. inf. 178,29 -20,48 86,73 -21,50 178,97 -26,02	(mm^2) Area ideale (M-) 109425 Ga.ali inf (MPa) Tens.acc. ali inf. fd = 319 MPa 180.61 -21.49 88.57 -23.66 181.33	(mm°3) Momento Statico (M-) 1,452E+08 7 (MPa) Tens.taglio anima 12,49 11,46 13,99 14,91 12,20	(mm) A.N Fase III (M-) 1327 G_id.max (MPa) Tensione ideale 181.90 29.25 129.48 33.89 182.58	(mm^4) Mom. Inerzia - Fase III (M-) 5,997E+10 VERIFICA TRAVE IN ACCIAIO	(-) Def.term. diff. 1,200E-04 VERIFICA VERIFICA CLS sigma.c_max<0,85f.cd 2,23 3,77 4,58 3,81 2,21	(Mpa) Tens. compr. nella soletta (soletta calda) -4,89 HE SLU VERIFICA ARMAT. SOLETTA sigma_max <f,yd 15,68="" 18,61="" 2,92="" 4,72="" 4,78<="" td=""><td>N,AT_differ (traz) 6184,5 KN M,ATdiffer (Mregat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd>	N,AT_differ (traz) 6184,5 KN M,ATdiffer (Mregat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato
Mod.Elast.Acc. 210000 ENNUPLE DI COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	Mod.Elast.Cls 34077 SOLLECI N (KN) N_(Qik+\Delta T) 10950,4 -1796,0 10942,4 -1713,2 10882,1	(·) Coeff.Omog. 6,16 TAZIONI SLU V.2 (KN) V_(Qlk+\Delta T) 644.5 -591.1 722.0 -723.0 634.8	M_3 (KNm) M_(Qik+AT) -1212,4 -1386,5 -7795,9	Area armature soletta 4825 Gc.max (MPa) Tens.cls.max -7.56 4.47 -3.68 -4.43 -7.63	Area cls 1610000 78 (MPa) Tens.arm. Soletta 82,96 21,02 134,19 24,96 81,91 30,48	(mm^2) Area ideale (M+) 370684 Ga.ali sup (MPa) Tens.acc. ala sup fd = 338 MPa 97.03 14.90 127.19 17.95 96.24 22,14	(mm ² 3) Momento Statico (M ⁴) 1,999E+08 TE Ga,an sup (MPa) Tens.acc. anima sup 98,42 14,29 126,49 17,26 97,66 21,31	(mm) A.N. Fase III (M+) Soletta tutta compr. 515 SIGNI SLU - FASE I Ga.an irr (MPa) Tens.acc. quota irrigidim. longitud. 112,35 8,22 119,56 10,33 111,84 13,06	(mm°4) Mom. Inerzia Fase III (M+) 1.649E+11 III Ga.an inf (MPa) Tens.acc.an. inf. 178.29 -20.48 86.73 -22.50 178.97 -26.02	(mm ² 2) Area ideale (M-) 109425 Ga.ali inf (MPa) Tens.ace. ali inf. fd = 319 MPa 180.61 -21,49 25,57 -23,66 181,33 -27,40	(mm*3) Momento Statico (M-) 1.452E+08 7 (MPa) Tens.taglio anima 12.49 11.46 13.99 14.01 12.50	(mm) A.N Fase III (M-) 1327 g_id.max (MPa) Tensione ideale 181.90 29.25 129.48 33.89 182.58 34,86	(mm^4) Mom. Inerzia - Fase III (M-) 5,997E+10 VERIFICA TRAVE IN ACCIAIO G_id,max <f,d 1,75="" 10.91="" 2,61="" 9,15<="" 9,41="" td=""><td>(-) Def.term. diff. 1,200E-04 VERIFICA VERIFICA CLS sigma.c_max<0,85f.cd 2,23 3,77 4,58 3,81 2,21</td><td>(Mpa) Tens. compr. nella soletta (soletta calda) -4,89 HE SLU VERIFICA ARMAT. SOLETTA sigma_max<f,yd 15,68="" 18,61="" 2,92="" 4,72="" 4,78<="" td=""><td>N,AT_differ (traz) 6184,5 KN M,ATdiffer (Mregat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd></td></f,d>	(-) Def.term. diff. 1,200E-04 VERIFICA VERIFICA CLS sigma.c_max<0,85f.cd 2,23 3,77 4,58 3,81 2,21	(Mpa) Tens. compr. nella soletta (soletta calda) -4,89 HE SLU VERIFICA ARMAT. SOLETTA sigma_max <f,yd 15,68="" 18,61="" 2,92="" 4,72="" 4,78<="" td=""><td>N,AT_differ (traz) 6184,5 KN M,ATdiffer (Mregat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd>	N,AT_differ (traz) 6184,5 KN M,ATdiffer (Mregat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato
Mod.Elast.Acc. 210000 ENNUPLE DI COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	Mod.Elast.Cls 34077 SOLLECI N (KN) N_(Qik+\Delta T) 10950,4 -1796,0 10942,4 -1713,2 10882,1	(·) Coeff.Omog. 6,16 TAZIONI SLU V.2 (KN) V_(Qlk+\Delta T) 644.5 -591.1 722.0 -723.0 634.8	M_3 (KNm) M_(Qik+AT) -1212,4 -1386,5 -7795,9	Area armature soletta 4825 Gc.max (MPa) Tens.cls.max -7.56 4.47 -3.68 -4.43 -7.63	Area cls 1610000 78 (MPa) Tens.arm. Soletta 82,96 21,02 134,19 24,96 81,91 30,48	(mm^2) Area ideale (M+) 370684 Ga.ali sup (MPa) Tens.acc. ala sup fd = 338 MPa 97.03 14.90 127.19 17.95 96.24 22,14	(mm ² 3) Momento Statico (M ⁴) 1,999E+08 TE Ga,an sup (MPa) Tens.acc. anima sup 98,42 14,29 126,49 17,26 97,66 21,31	(mm) AN, Fase III (M+) Soleta tutta compr. 515 NSIONI SLU - FASE I Ga,an irr (MPa) Tens.acc. quota irrigidim. longitud. 112,35 8,22 119,56 10,33 111,84 13,96	(mm°4) Mom. Inerzia Fase III (M+) 1.649E+11 III Ga.an inf (MPa) Tens.acc.an. inf. 178.29 -20.48 86.73 -22.50 178.97 -26.02	(mm ² 2) Area ideale (M-) 109425 Ga.ali inf (MPa) Tens.ace. ali inf. fd = 319 MPa 180.61 -21,49 25,57 -23,66 181,33 -27,40	(mm*3) Momento Statico (M-) 1.452E+08 7 (MPa) Tens.taglio anima 12.49 11.46 13.99 14.01 12.50	(mm) A.N Fase III (M-) 1327 g_id.max (MPa) Tensione ideale 181.90 29.25 129.48 33.89 182.58 34,86	(mm^4) Mom. Inerzia - Fase III (M-) 5,997E+10 VERIFICA TRAVE IN ACCIAIO G_id,max <f,d 1,75="" 10.91="" 2,61="" 9,15<="" 9,41="" td=""><td>(-) Def.term. diff. 1,200E-04 VERIFICA VERIFICA CLS sigma.c_max<0,85f.cd 2,23 3,77 4,58 3,81 2,21</td><td>(Mpa) Tens. compr. nella soletta (soletta calda) -4,89 HE SLU VERIFICA ARMAT. SOLETTA sigma_max<f,yd 15,68="" 18,61="" 2,92="" 4,72="" 4,78<="" td=""><td>N,AT_differ (traz) 6184,5 KN M,ATdiffer (Mregat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd></td></f,d>	(-) Def.term. diff. 1,200E-04 VERIFICA VERIFICA CLS sigma.c_max<0,85f.cd 2,23 3,77 4,58 3,81 2,21	(Mpa) Tens. compr. nella soletta (soletta calda) -4,89 HE SLU VERIFICA ARMAT. SOLETTA sigma_max <f,yd 15,68="" 18,61="" 2,92="" 4,72="" 4,78<="" td=""><td>N,AT_differ (traz) 6184,5 KN M,ATdiffer (Mregat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato</td></f,yd>	N,AT_differ (traz) 6184,5 KN M,ATdiffer (Mregat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato
Mod Elast Acc. 210000 ENNUPLE DI COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	Mod.Elast.Cls 34077 SOLLECI N (KN) N_(Qik+\Delta T) 10950,4 -1796,0 10942,4 -1713,2 10882,1	(·) Coeff.Omog. 6,16 TAZIONI SLU V.2 (KN) V_(Qlk+\Delta T) 644.5 -591.1 722.0 -723.0 634.8	M_3 (KNm) M_(Qik+AT) -1212,4 -1386,5 -7795,9	Area armature soletta 4825 Ge.max (MPa) Tens.cls.max -7,56 -4,47 -3,68 -4,43 -7,63 -4,45	Area els 1610000 Tens.arm. Soletta 82,96 21,02 134,19 24,96 81,91 30,48	(mm^2) Area ideale (M+) 370684 Gaail sup (MPa) Tens.ace. als sup fd = 338 MPa 97,03 14,90 127,19 17,95 96,24 22,14	(mm ² 3) Momento Statico (M ⁴) 1,999E+08 TE Ga,an sup (MPa) Tens.acc. anima sup 98,42 14,29 126,49 17,26 97,66 21,31	(mm) A.N. Fase III (M+) Soletta tutta compr. 515 SIONI SLU - FASE I Ga.an irr (MPa) Tens.acc. quota irrigidim. longitud. 112,35 8,22 119,56 10,33 111,84 13,06 TENSIONI TC II - III ALLA ASCISS TENSIONI SLU	(mm ⁻⁴) Mom. Inerzia Fase III (M+) 1.649E+11 III Ga.an inf (MPa) Tens.ac.c.an. inf. 178,29 -20,48 86,73 -22,50 178,97 -26,02 OTALI - SLU SA X = 20 m PEI	(mm ² 2) Area ideale (M-) 109425 Ga.ali_inf (MPa) Tens.acc. ali inf, fd = 319 MPa 180.61 -21.49 -88.57 -23.66 181.33 -27.40	(mm*3) Momento Statico (M-) 1,452E+08 T (MPa) Tens.taglio anima 12,49 11,46 13,99 14,91 12,30 12,45	(mm) A.N Fase III (M-) 1327 G_id.max (MPa) Tensione ideale 181.90 29.25 129.48 33.89 182.58 34.86	(mm*4) Mom. Inerzia - Fase III (M-) 5,997E+10 VERIFICA TRAVE IN ACCIAIO	(-) Def.term. diff. 1,200E-04 VERIFICA VERIFICA CLS sigma.c_max<0,85f.cd 2,23 3,77 4,58 3,81 2,21	(Mpa) Tens.compr. nella soletta (soletta calda) -4,09 HE SLU VERIFICA ARMAT. SOLETTA sigma,a max=fyd 4,72 18,61 2,92 15,68 4,78 12,84	N,AT_differ, (traz.) 6184,5 KN M,ATdiffer, (M negat.) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato
Mod Elast Acc. 210000 ENNUPLE DI COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	Mod.Elast.Cls 34077 SOLLECI N (KN) N_((kN) 10950.4 -1796.0 10942.4 -1713.2 10882.1 -1756.1	(-) Coeff.Omog. 6,16 TAZIONI SLU V.2 (KN) V.(Qik+AT) 644.5 -591,1 722.0 -723.0 634.8 -642,2	M_3 (KNm) M_(Qik+AT) -1212,4 -1386,5 -7795,9	Area armature soletta 4825 Ge.max (MPa) Tens.cls.max -7.56 -4.47 -3.68 -4.43 -7.63 -4.45	Area els 1610000 S. (MPa) Tens.arm. Soletta 82.96 21.02 134.19 124.96 81.91 30.48	(mm^2) Area ideale (M+) 370684 Gaaili sup (MPa) Tens.acc. ala sup fd = 338 MPa 97,03 14,90 127,19 17,95 96,24 22,14 LE TENSIONI NE	(mm ² 3) Momento Statico (M+) 1,909E+08 TE Ga,an sup (MPa) Tens.acc. anima sup 98,42 14,29 126,49 17,26 97,66 21,31	(mm) A.N. Fase III (M+) Soletta tutta compr. 515 SIONI SLU - FASE I Ga.an irr (MPa) Tens.acc. quota irrigidim. longitud. 112,35 8,22 119,56 10,33 111,84 13,06 TENSIONI TO II - III ALLA ASCISS TENSIONI SLU Ga.an irr	(mm ^A 4) Mom. Inerzia - Fase III (M+) 1.649E+11 III Ga,an inf (MPa) Tens.acc.an. inf. 178,29 -20,48 86,73 -22,50 178,97 -26,02 TALI - SLU Ga,an inf Ga,an inf	(mm ² 2) Area ideale (M-) 109425 Ga,ali_inf (MPa) Tens.acc. ali inf. fd = 319 MPa 180,61 -21,49 85,57 -23,66 181,33 -27,40	(mm ³) Momento Statico (M-) 1,452E+08 T (MPa) Tens.taglio anima 12,49 11,46 13,99 14,01 12,30 12,45	(mm) A.N Fase III (M-) 1327 G. id,max (MPa) Tensione ideale 181,90 29,25 129,48 33,89 182,58 34,86	(mm^4) Mom. Inerzia - Fase III (M-) 5.997E+10 VERIFICA TRAVE IN ACCIAIO \$\sigma_{\text{id},\text{max}} < f_{\text{d}} = f_{\text{d}} 1.75 10.91 2.61 9.41 1.75 9.15	(-) Def.term. diff. 1,200E-04 VERIFIC VERIFICA CLS sigma.c_max<0,85f.ed 2,23 3,77 4.58 3,81 2,21 3,79	(Mpa) Tens, compr. nella soletta (soletta (soletta calda) 4,09 HE SLU VERIFICA ARMAT. SOLETTA sigma_a max <f.yd 12.84<="" 15.68="" 18.61="" 2,92="" 4,72="" 4,78="" td=""><td>N,AT_differ, (traz) 6184,5 KN MATdiffer, (M negat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f.yd>	N,AT_differ, (traz) 6184,5 KN MATdiffer, (M negat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato
Mod.Elast.Acc. 210000 ENNUPLE DI COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	Mod.Elast.Cls 34077 SOLLECI N (KN) N_((kN) 10950.4 -1796.0 10942.4 -1713.2 10882.1 -1756.1	(·) Coeff.Omog. 6,16 TAZIONI SLU V.2 (KN) V_(Qlk+\Delta T) 644.5 -591.1 722.0 -723.0 634.8	M_3 (KNm) M_(Qik+AT) -1212,4 -1386,5 -7795,9	Area armature soletta 4825 Ge.max (MPa) Tens.cls,max -7,56 -4,47 -3,68 -4,43 -7,63 -4,45 Ge.max (MPa)	Area els 1610000 OS. (MPa) Tens.arn. Soletta 82.96 21.02 134.19 24.96 81.91 30.48 SOMMA DEL	(mm^2) Area ideale (M+) 370684 Gaail sup (MPa) Tens.ace. als sup fd = 338 MPa 97,03 14,90 127,19 17,95 96,24 22,14	(mm ² 3) Momento Statico (M ⁴) 1,999E+08 TE Ga,an sup (MPa) Tens.acc. anima sup 98,42 14,29 126,49 17,26 97,66 21,31	(mm) A.N. Fase III (M+) Soletta tutta compr. 515 SIONI SLU - FASE I Ga.an irr (MPa) Tens.acc. quota irrigidim. longitud. 112,35 8,22 119,56 10,33 111,84 13,06 TENSIONI TC II - III ALLA ASCISS TENSIONI SLU	(mm ^A 4) Mom. Inerzia Fase III (M+) 1.649E+11 III Ga,an inf (MPa) Tens.accan inf. 178,29 -20,48 86,73 -22,50 178,97 -26,02 TALI - SLU Ga,an inf (MPa)	(mm ² 2) Area ideale (M-) 109425 Ga.ali_inf (MPa) Tens.acc. ali inf, fd = 319 MPa 180.61 -21.49 -88.57 -23.66 181.33 -27.40	(mm ³) Momento Statico (M-) 1,452E+08 T (MPa) Tens.taglio anima 12,49 11,46 13,99 14,01 12,30 12,45 TDELLE SOLLE (MPa)	(mm) A.N Fase III (M-) 1327 G. id,max (MPa) Tensione ideale 181,90 29,25 129,48 33,89 182,58 34,86 CUTAZIONI MAX	(mm^4) Mom. Inerzia - Fase III (M-) \$.997E+10 VERIFICA TRAVE IN ACCIAIO σ_id,max <f,d 1.75="" 10.91="" 2.61="" 9.15="" 9.41="" acciaio<="" in="" td="" trave="" verifica=""><td>(-) Def.term. diff. 1,200E-04 VERIFIC VERIFICA CLS sigma,c_mux<0,85f,cd 2,23 3,77 4,58 3,81 2,21 3,79 VERIFIC VERIFICA CLS</td><td>(Mpa) Tens. compr. nella soletta (soletta tealda) 4,09 HE SLU VERIFICA ARMAT. SOLETTA sigma_a max<f.yd 12.84="" 15.68="" 18.61="" 2,92="" 4,72="" 4,78="" armat.="" he="" slu="" soletta<="" td="" verifica=""><td>N,AT_differ (traz) 6184,5 KN M,ATdiffer (Mregat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato</td></f.yd></td></f,d>	(-) Def.term. diff. 1,200E-04 VERIFIC VERIFICA CLS sigma,c_mux<0,85f,cd 2,23 3,77 4,58 3,81 2,21 3,79 VERIFIC VERIFICA CLS	(Mpa) Tens. compr. nella soletta (soletta tealda) 4,09 HE SLU VERIFICA ARMAT. SOLETTA sigma_a max <f.yd 12.84="" 15.68="" 18.61="" 2,92="" 4,72="" 4,78="" armat.="" he="" slu="" soletta<="" td="" verifica=""><td>N,AT_differ (traz) 6184,5 KN M,ATdiffer (Mregat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato</td></f.yd>	N,AT_differ (traz) 6184,5 KN M,ATdiffer (Mregat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato
Mod Elast Acc. 210000 ENNUPLE DI COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	Mod.Elast.Cls 34077 SOLLECI N (KN) N_((kh\Delta T)) 10950.4 -1796.0 10942.4 -1713.2 10882.1 -1756.1	(·) Coeff.Omog. 6,16 TAZIONI SLU V.2 (KN) V.(Qik+\Delta T) 644.5 -591,1 722.0 -723.0 634.8 -642,2	M_3 (KNm) M_(Qik+AT) -1212,4 -1386,5 -7795,9	Area armature soletta 4825 Ge.max (MPa) Tens.cls.max -7.56 -4.47 -3.68 -4.43 -7.63 -4.45 Ge.max (MPa) Tens.cls.max	Area els 1610000 S. (MPa) Tens.arm. Soletta 82.96 21.02 134.19 24.96 81.91 30.48 SOMMA DEL SOMMA DEL GS (MPa) Tens.arm. Soletta	(mm^2) Area ideale (M+) 370684 Gaaili sup (MPa) Tens.acc. ala sup fd = 338 MPa 14,90 127,19 17,95 96,24 22,14 LE TENSIONI NE Gaaili sup (MPa) Tens.acc. ala sup fd = 38 MPa	(mm ² 3) Momento Statico (M+) 1,909E+08 TE Ga.an sup (MPa) Tens.acc. anima sup 126,49 17,26 97,66 21,31 LLE FASI 0 - 1 Ga.an_sup (MPa) Tens.acc. anima sup (MPa)	(mm) A.N. Fase III (M+) Soletta tutta compr. 515 SIONI SLU - FASE I Ga.an irr (MPa) Tens.ace. quota irrigidim. longitud. 112,35 8,22 119,56 10,33 111,84 13,06 TENSIONI TC II - III ALLA ASCISS TENSIONI SLU Ga.an irr (MPa) Tens.ace. quota irrigidim. longitud.	(mm ^{-\(4\)}) Mom. Inerzia - Fase III (M+) 1.649E+11 III Ga,an inf (MPa) Tens.acc.an. inf. 178.29 -20.48 86.73 -22.50 178.97 -26.02 TALI - SLU Ga,an inf (MPa) Tens.acc.an. inf. Tens.acc.an. inf.	(mm°2) Area ideale (M-) 109425 Ga,ali_inf (MPa) Tens.acc. ali inf. fd = 319 MPa 85,57 -23,66 181,33 -27,40 GLI INVILUPI Ga,ali_inf (MPa) Tens.acc. ali inf. fd fd = 319 MPa	(mm*3) Momento Statico (M-) 1,452E+08 Tens.taglio anima 12,49 11,46 13,99 14,01 12,30 12,45 **IDELLE SOLL** **Tom.taglio anima Tens.taglio anima Tens.taglio anima	(mm) A.N Fase III (M-) 1327 G. id,max (MPa) Tensione ideale 181,90 29,25 129,48 33,89 182,58 34,86 CITAZIONI MAX G. id,max (MPa) Tensione ideale	(mm^4) Mom. Inerzia - Fase III (M-) \$.997E+10 VERIFICA TRAVE IN ACCIAIO	(-) Def.term. diff. 1,200E-04 VERIFIC VERIFICA CLS sigma,c_mux<0,85f,cd 2,23 3,77 4,58 3,81 2,21 3,79 VERIFICA CLS sigma,c_mux<0,85f,cd	(Mpa) Tens. compr. nella soletta (soletta tada) 4,09 HE SLU VERIFICA ARMAT. SOLETTA sigma_a max <f.yd 12.84="" 15.68="" 18.61="" 2,92="" 4,72="" 4,78="" armat.="" he="" max<f.yd<="" sigma_a="" slu="" soletta="" td="" verifica=""><td>N,AT_differ (traz) 6184,5 KN M,ATdiffer (M egat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato Verificato</td></f.yd>	N,AT_differ (traz) 6184,5 KN M,ATdiffer (M egat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato
Mod Elast Acc. 210000 ENNUPLE DI COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	Mod.Elast.Cls 34077 SOLLECI N (KN) N_(Qik+ΔT) 10950,4 -1796,0 10942,4 -1713,2 10882,1 -1756,1	(-) Coeff.Omog. 6,16 TAZIONI SLU V.2 (KN) V_(Qik+\DeltaT) 644.5 -591,1 722.0 -723.0 634.8 -642,2	M_3 (KNm) M_(Qik+AT) -1212,4 -1386,5 -7795,9	Area armature soletta 4825 Oc.max (MPa) Tens.cls.max -7.56 -4.47 -3.68 -4.43 -7.63 -4.45 Oc.max (MPa) Tens.cls.max -7.63 -4.77 -7.63 -	Area els 1610000 os (MPa) Tens.arm. Soletta 82,96 21,02 134,19 24,96 81,91 30,48 SOMMA DEL os (MPa) Tens.arm. Soletta 63,70	(mm^2) Area ideale (M+) 370684 Gaail sup (MPa) Tens.acc. ala sup fd = 338 MPa 97,03 14,90 127,19 17,95 96,24 22,14 LE TENSIONI NE Gaail sup (MPa) Tens.acc. ala sup fd = 338 MPa	(mm ² 3) Momento Statico (M ⁴) 1,999E+08 TE Ga,an sup (MPa) Tens.acc. anima sup 14,29 126,49 17,26 97,66 21,31 LLE FASI 0 - 1 Ga,an sup (MPa) Tens.acc. anima sup 17,26 97,66 21,31	(mm) A.N. Fase III (M+) Soletta tutta compr. 515 Soletta tutta compr. 515 SIGNI SLU - FASE I Ga.an irr (MPa) Tens.acc. quota irrigidim. longitud. 112,35 8,22 119,56 10,33 111,84 13,06 TENSIONI TC II - III ALLA ASCISS TENSIONI SLU Ga.an irr (MPa) Tens.acc. quota irrigidim. longitud. 30,83	(mm ⁻⁴) Mom. Inerzia Fase III (M+) 1.649E+11 III Ga.an inf (MPa) Tens.acc.an. inf. 178.29 -20.48 86.73 -22.50 178.97 -26.02 TALI - SLU SA X = 20 m PEI Ga.an inf (MPa) Tens.acc.an. inf.	(mm*2) Area ideale (M-) 109425 Ga.ali inf (MPa) Tens.ace. ali inf. fd = 319 MPa 180.61 -21,49 85.57 -23,66 181,33 -27,40 Ga.1 INVILUPI Ga.ali inf (MPa) Tens.acali inf. fd = 319 MPa 297,44	(mm*3) Momento Statico (M*-) 1.452E+08 ** (MPa) Tens.taglio anima 12.49 11.46 13.99 14.01 12.30 12.45 ** (MPa) ** (MPa) ** Tens.taglio anima 14.71 ** Tens.taglio anima 12.49 11.40 11.40 11.40 11.40 11.40 11.40 11.40 11.41 11.40 11.45 11.41 11.45 11	(mm) A.N Fase III (M-) 1327 g_id.max (MPa) Tensione ideale 181.90 29.25 129.48 33.89 182.58 34.86 CITAZIONI MAX g_id.max (MPa) Tensione ideale	(mm*4) Mom. Inerzia - Fase III (M-) 5,997E+10 VERIFICA TRAVE IN ACCIAIO □ id,max <f,d 1,75="" 10.91="" 2,61="" 9,15="" 9,41="" acciaio="" i="" id,max<f,d="" id,max<f,d<="" in="" td="" trave="" verifica="" □=""><td>(-) Def.term. diff. 1,200E-04 VERIFIC VERIFICA CLS sigma,c_max=0,85f.ed 2,23 3,77 4,58 3,81 2,21 3,79 VERIFIC VERIFICA CLS sigma,c_max=0,85f.ed 1,93</td><td>(Mpa) Tens.compr. nella soletta (soletta tealda) -4,09 HE SLU VERIFICA ARMAT. SOLETTA sigma,a max<fyd 12,84="" 15,68="" 18,61="" 2,92="" 4,72="" 4,78="" 6,14<="" armat.="" gletta="" he="" max<fyd="" sigma,a="" slu="" soletta="" td="" verifica=""><td>N,AT_differ, (traz) 6184,5 KN M,AT_differ, (M negat.) 2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato</td></fyd></td></f,d>	(-) Def.term. diff. 1,200E-04 VERIFIC VERIFICA CLS sigma,c_max=0,85f.ed 2,23 3,77 4,58 3,81 2,21 3,79 VERIFIC VERIFICA CLS sigma,c_max=0,85f.ed 1,93	(Mpa) Tens.compr. nella soletta (soletta tealda) -4,09 HE SLU VERIFICA ARMAT. SOLETTA sigma,a max <fyd 12,84="" 15,68="" 18,61="" 2,92="" 4,72="" 4,78="" 6,14<="" armat.="" gletta="" he="" max<fyd="" sigma,a="" slu="" soletta="" td="" verifica=""><td>N,AT_differ, (traz) 6184,5 KN M,AT_differ, (M negat.) 2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato</td></fyd>	N,AT_differ, (traz) 6184,5 KN M,AT_differ, (M negat.) 2102,3 KNm VERIFICA COMPLESSIVA Verificato
Mod Elast Acc. 210000 ENNUPLE DI COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	Mod.Elast.Cls 34077 SOLLECI N (KN) N_((kN) 10950.4 -1796.0 10942.4 -1713.2 10882.1 -1756.1	(-) Coeff.Omog. 6,16 FAZIONI SLU V.2 (KN) V.(08t-\Delta T) 644.5 -591.1 722.0 -723.0 634.8 -642.2	M_3 (KNm) M_(Qik+AT) -1212,4 -1386,5 -7795,9	Area armature soletta 4825 Ge.max (MPa) Tens.cls.max -7.56 -4.47 -3.68 -4.43 -7.63 -4.45 Ge.max (MPa) Tens.cls.max	Area els 1610000 OS (MPa) Tens.arm. Soletta 21.02 134.19 24.96 81.91 30.48 SOMMA DEL OS (MPa) Tens.arm. Soletta Cos (MPa) Tens.arm. Soletta	(mm^2) Area ideale (M+) 370684 Ga,ali sup (MPa) Tens.acc. ala sup fd = 338 MPa 14.90 127,19 17,95 96,24 22,14 LE TENSIONI NE Ga,ali sup (MPa) Ga,ali sup (MPa) 17,95 96,24 22,14	(mm ² 3) Momento Statico (M+) 1,909E+08 TE Ga,an sup (MPa) Tens.acc. anima sup 14,29 126,49 17,26 97,66 21,31 LLE FASI 0 - I -	(mm) A.N. Fase III (M+) Soletta tutta compr. 515 **Tasan irr (MPa) Tens.acc. quota irrigidim. longitud. 112,35 8,22 119,56 10,33 111,84 13,96 **TENSIONI TC II - III ALLA ASCISS **TENSIONI SLU **Gham irr (MPa) Tens.acc. quota irrigidim. longitud. 30,83 -108,28	(mm ⁻⁴) Mom. Inerzia - Fase III (M+) 1.649E+11 III Ga.an inf (MPa) Tens.acc.an. inf. 178.29 -20.48 86.73 -22.50 178.97 -26.02 DTALI - SLU Ga.an inf (MPa) Tens.acc.an. inf. Ga.an inf (MPa) Tens.acc.an. inf. Ga.an inf (MPa)	(mm ² 2) Area ideale (M-) 109425 Ga,ali_inf (MPa) Tens.acc, ali inf. fd = 319 MPa 180,61 -21,49 85,57 -23,66 181,33 -27,40 Gall inf (MPa) Gall inf (MPa) Tens.acc, ali inf. fd = 319 MPa 297,44 67,43	(mm*3) Momento Statico (M-) 1,452E+08 7 (MPa) Tens.taglio anima 12,49 11,46 13,99 14,01 12,30 12,45 PI DELLE SOLLE (MPa) Tens.taglio anima 14,71 13,80	(mm) A.N Fase III (M-) 1327 G_id,max (MPa) Tensione ideale 181,90 29,25 129,48 33,89 182,58 34,86 CCITAZIONI MAX G_id,max (MPa) Tensione ideale 298,53	(mm^4) Mom. Inerzia - Fase III (M-) 5,997E+10 VERIFICA TRAVE IN ACCIAIO σ_id,max <f,d 1,07="" 1,75="" 10,91="" 2,26<="" 2,61="" 9,15="" 9,41="" acciaio="" in="" td="" trave="" verifica="" σ_id,max<f,d=""><td>(-) DeLterm, diff. 1,200E-04 VERIFIC VERIFICA CLS sigma,c_max<0,85f.ed 2,23 3,77 4,58 3,81 2,21 3,79 VERIFIC VERIFICA CLS sigma,c_max<0,85f.ed 1,93 2,28</td><td> (Mpa) Tens. compr. nella soletta (soletta calda) 4,09 44,09 HE SLU VERIFICA ARMAT. SOLETTA sigma_a max=f,yd 4.72 18,61 2,92 15,68 4.78 12,84 12,84 </td><td>N,AT_differ, (traz) 6184,5 KN MATdiffer, (M negat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato</td></f,d>	(-) DeLterm, diff. 1,200E-04 VERIFIC VERIFICA CLS sigma,c_max<0,85f.ed 2,23 3,77 4,58 3,81 2,21 3,79 VERIFIC VERIFICA CLS sigma,c_max<0,85f.ed 1,93 2,28	(Mpa) Tens. compr. nella soletta (soletta calda) 4,09 44,09 HE SLU VERIFICA ARMAT. SOLETTA sigma_a max=f,yd 4.72 18,61 2,92 15,68 4.78 12,84 12,84	N,AT_differ, (traz) 6184,5 KN MATdiffer, (M negat) -2102,3 KNm VERIFICA COMPLESSIVA Verificato
Mod.Elast.Acc. 210000 ENNUPLE DI COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	Mod.Elast.Cls 34077 SOLLECI N (KN) N_(Qik+\DeltaT) 10950,4 -1796,0 10942,4 -1713,2 10882,1 -1756,1 COMB	(-) Coeff.Omog. 6,16 TAZIONI SLU V.2 (KN) V_(Qik+\DeltaT) 644.5 -591,1 722.0 -723.0 634.8 -642,2	M_3 (KNm) M_(Qik+AT) -1212,4 -1386,5 -7795,9	Tens.cls,max Ge.max (MPa) Tens.cls,max -7,56 -4,47 -3,68 -4,43 -7,63 -4,45 Ge.max (MPa) Tens.cls,max	Area els 1610000 Tens.arm. Soletta 82,96 21,02 134,19 24,96 81,91 30,48 SOMMA DEL Tens.arm. Soletta 63,70 29,98 115,74 -24,61	(mm^2) Area ideale (M+) 370684 Gaail sup (MPa) Tens.acc. ala sup fd = 338 MPa 14,90 127,19 17,95 96,24 22,14 LE TENSIONI NE Gaail sup (MPa) Tens.acc. ala sup fd = 338 MPa 29,03 -147,72 -2,68	(mm ² 3) Momento Statico (M ⁴) 1,999E+08 TE Ga,an_sup (MPa) Tens.acc. anima sup 98,42 14,29 17,26 97,66 21,31 LLE FASI 0 - 1- Ga,an_sup GWPa) Tens.acc. anima sup 14,29 17,26 97,66 21,31	(mm) A.N. Fase III (M+) Soletta tutta compr. 515 **Taxan irr (MPa) Tens.acc, quota irrigidim. longitud. 112,35 8,22 119,56 10,33 111,84 13,06 **TENSIONI TC II - III ALLA ASCISS **TENSIONI SLU **Ga.an irr (MPa) Tens.acc quota irrigidim. longitud. 30,83 -108,28 35,17 -108,17	(mm ⁻⁴) Mom. Inerzia Fase III (M+) 1.649E+11 III Ga.an inf (MPa) Tens.ac.an. inf. 178,29 -20.48 86,73 -22,50 178,97 -26,02 OTALI - SLU SA X = 20 m PEI Ga.an inf (MPa) Tens.ac.an. inf. 288,37 61,45 198,06 51,72	(mm*2) Area ideale (M-) 109425 Ga,ali_inf (MPa) Tens.acc. ali inf, fd = 319 MPa 180,61 21,49 88,57 -23,66 181,33 -27,40 Gall INVILUPF Ga,ali_inf (MPa) Tens.acc ali inf, fd = 319 MPa 21,49 227,40 Ga,ali_inf fd= 319 MPa 227,44 67,43 203,80 63,45	(mm*3) Momento Statico (M*-) 1.452E+08 7 (MPa) Tens.taglio anima 12.49 11.46 13.39 14.01 12.30 12.45 PI DELLE SOLLE (MPa) Tens.taglio anima 11.45 11.46 11.40 11.40 11.45 11.40 11.45 1	(mm) A.N Fase III (M-) 1327 G_id,max (MPa) Tensione ideale 181,90 29,25 129,48 33,89 182,58 34,86 CCITAZIONI MAN G_id,max (MPa) Tensione ideale 298,53 149,65 206,13 146,34	(mm*4) Mom. Inerzia - Fase III (M-) 5.997E+10 VERIFICA TRAVE IN ACCIAIO	(-) DeLterm. diff. 1,200E-04 VERIFIC VERIFICA CLS sigma,c_max<0,85f.ed 2,23 3,77 4,58 3,81 2,21 3,79 VERIFIC VERIFICA CLS sigma,c_max<0,85f.ed 1,93 2,28 3,51 2,20	(Mpa) Tens.compr. nella soletta (soletta calda) 4,09 HE SLU VERIFICA ARMAT. SOLETTA sigma,a max <fyd 12,84="" 12,84<="" 15,68="" 18,61="" 2,92="" 4,72="" 4,73="" 4,78="" armat.="" max<fyd="" sigma,a="" slu="" soletta="" td="" the="" verifica=""><td>N,AT_differ, (traz.) 6184,5 KN M,ATdiffer, (M negat.) 2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato</td></fyd>	N,AT_differ, (traz.) 6184,5 KN M,ATdiffer, (M negat.) 2102,3 KNm VERIFICA COMPLESSIVA Verificato
Mod.Elast.Acc. 210000 ENNUPLE DI COMB. MAX CONTEMP. MAX N MIN N MAX V2 MIN V2 MAX M3	Mod.Elast.Cls 34077 SOLLECI N (KN) N_((kN-1) 10950,4 -1796,0 10942,4 -1713,2 10882,1 -1756,1 COMB	(·) Coeff.Omog. 6,16 FAZIONI SLU V.2 (KN) V.(Qik+ΔT) 644.5 -591,1 722.0 634.8 -642.2 INAZIONI INAZIONI INAZIONI INAXIONI INAX.N IMIN AX.V.2	M_3 (KNm) M_(Qik+AT) -1212,4 -1386,5 -7795,9	Area armature soletta 4825 Ge.max (MPa) Tens.cls.max -7.56 -4.47 -3.68 -4.43 -7.63 -4.45 Ge.max (MPa) Tens.cls.max -7.63 -4.45	Area els 1610000 OS (MPa) Tens.arm. Soletta 82,96 21,02 134,19 24,96 81,91 30,48 SOMMA DEL OS (MPa) Tens.arm. Soletta 63,70 -29,08 115,74	(mm^2) Area ideale (M+) 370684 Gaali sup (MPa) Tens.acc. ala sup fd = 338 MPa 14,90 127,19 17,95 96,24 22,14 LE TENSIONI NE Gaali sup (MPa) Tens.acc. ala sup fd = 388 MPa 14,70 127,19 17,95 18,100	(mm ² 3) Momento Statico (M+) 1,909E+08 TE Gaan sup (MPa) Tens.acc. anima sup 14,29 126,49 17,26 21,31 LLE FASI 0 - 1- Gaan sup (MPa) Tens.acc. anima sup 14,29 12,49 17,26 14,29 12,49 17,26 14,29 12,49 17,26 14,29 12,49 17,26 14,14 14,14 1,076	(mm) A.N. Fase III (M+) Soletta tutta compr. 515 Soletta tutta compr. 515 Sa.an irr (MPa) Tens.acc. quota irrigidim. longitud. 112,35 8,22 119,56 10,33 111,84 13,06 TENSIONI TC II - III ALLA ASCISS TENSIONI SLU Gaan irr (MPa) Tens.acc. quota irrigidim. longitud. 30,83 30,83 30,83 30,83	(mm ⁻⁴) Mom. Inerzia - Fase III (M+) 1.649E+11 III Ga.an inf (MPa) Tens.ac.an. inf. 178.29 -20.48 86.73 -22.50 178.97 -26.02 TALI - SLU Ga.an inf (MPa) Tens.ac.an. inf. 283.37 Tens.ac.an. inf. 283.37 Tens.ac.an. inf. 283.37	(mm°2) Area ideale (M-) 109425 Gaali, inf (MPa) Tens.acc. ali inf. id = 319 MPa 180,61 -21,49 88,57 -23,66 181,33 -27,40 Gaali, inf (MPa) Gaali, inf (MPa) Tens.acc. ali inf. id = 319 MPa 297,44 67,43 203,80	(mm°3) Momento Statico (M-) 1,452E+08 7 (MPa) Tens.taglio anima 112,49 11,46 13,99 14,01 12,230 12,45 Tens.taglio anima 14,71 14,71 13,80 17,85	(mm) A.N Fase III (M-) 1327	(mm^4) Mom. Inerzia - Fase III (M-) 5,997E+10 VERIFICA TRAVE IN ACCIAIO	(-) Def.term. diff. 1,200E-04 VERIFIC VERIFICA CLS sigma,e_max<0,85f.ed 2,23 3,77 4,58 3,81 2,21 3,79 VERIFICA CLS sigma,e_max<0,85f.ed 1,93 2,28 3,51	(Mpa) Tens, compr. nella soletta (soletta tealda) 4,09 HE SLU VERIFICA ARMAT. SOLETTA sigma_a max <f.yd 112,84="" 115,68="" 13,38<="" 13,46="" 18,61="" 2,92="" 4,78="" 6,14="" armat.="" he="" max<f.yd="" sigma_a="" slu="" soletta="" td="" verifica=""><td>N,AT_driffer (traz) 6184,5 KN MATdriffer (M megat.) 2102,3 KNm VERIFICA COMPLESSIVA Verificato Verificato</td></f.yd>	N,AT_driffer (traz) 6184,5 KN MATdriffer (M megat.) 2102,3 KNm VERIFICA COMPLESSIVA Verificato

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo


γ_acc.instab. Ponti-Tab. 4.2.7 322,7 1,10							VERIFICA IMBOZ	ZAMENTO PAN	NELLO D'ANI	MA SUPERIORE					
Irrigidim. Trasvers. (a)	tens	ioni al bordo dell'a	nima		α	9,26				VERI	FICA IMBOZZAMENT	O PANNELLO D'ANI	MA		
(Predim.= 2236 mm)	σ1	σ0	Ψ	Tab. 7-VIII CNR	Ка	Kτ	σcr	τcr	τ, y	σcr,id	σcr,rid.	σ_id	σ id<=σcr,rid.		σ_cr,id /τ(3^0,5) >=1,1
250 cm	(Mpa)	(Mpa)	(σ0/σ1 = T/C)		NO	Nτ	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	ø_iu<=øcr,riu.	σ_cr,id/σ,id. >=0,8	6_ Cr,id / t (3**0,5) >=1,1
Irrigidim. Longitud. (h)	-23,58	30,83	-1,31	3,00	23,90	4,31	54940,49	9906,13	14,71	22809,02	322,72	34,71	Verificato	9,30	12,67
(cm)	-144,14	-108,28	0,75	1,00	4,54	4,31	10430,76	9906,13	13,80	10479,26	322,70	146,11	Verificato	2,21	13,50
30 cm	0,76	35,17	46,19	TRAZ.	TRAZ.	4,31	TRAZ.	9906,13	17,85	TRAZ.	TRAZ.	30,93	Verificato		
gcr,0	-139,58	-105,17	0,75	1,00	4,53	4,31	10418,16	9906,13	17,88	10504,16	322,70	142,98	Verificato	2,26	10,42
(Mpa)	-32,14	25,14	-0,78	2,00	457,44	4,31	1051537,25	9906,13	13,29	29417,17	322,72	39,53	Verificato	8,16	14,02
2298,8	-129,75	-98,40	0,76	1,00	4,52	4,31	10390,30	9906,13	15,80	10468,44	322,70	132,60	Verificato	2,43	11,79

						VERII	FICA NERVATURE T	RASVERSALI				
t1	SIMM.	L1	t1	L2	t2	ta	ha	It	λ	α	γT	VERIFICA
,, N	(-)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm4)	(-)	(-)	(-)	(-)
t1 L2	nervat. Simm. o non			dimens. flangia				mom. inerzia	snellezza nervatura	- 0-		It>=0,092*yt*h*ta^3
	simm.	dimens. nervatura	spessore di L1	nervatura	spessore di L2	spessore anima	altezza anima	nervat.	(<50)	a/h	coeff. rig. flessionale	C/D = 3,81
	NO	250	25	0	0	30	1720	1,30,E+08	11,9	1,45	8	Verificato

						VERIFICA IN	MBOZZAMENTO PA	NNELLO D'ANI	MA INFERIOR	E					
L ritegno torsion.	tensio	oni al bordo dell'ai	nima		α	1,76				VERIF	ICA IMBOZZAMENTO	PANNELLO D'ANIM	IA		
(cm)	σ1	σ0	Ψ	Tab. 7-VIII CNR	Кσ	Ke	σcr	τcr	τ, y	σcr,id	σcr,rid.	σ_id	_ 14 0014		id (-(240 F) >= 4.4
250	(Mpa)	(Mpa)	(σ0/σ1 = T/C)		Nσ	N.T	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	σ_id <= σcr,rid.	6_cr,id/6,id. >= 0,6	σ _cr,id / τ (3^0,5) >= 1,1
Irrigidim. Longitud. (h)	30,83	297,44	9,65	TRAZ.	TRAZ.	5,30	TRAZ.	460,07	14,71	TRAZ.	TRAZ.	25,47	Verificato		
(cm)	-108,28	67,43	-0,62	2,00	19,06	5,30	1653,37	460,07	13,80	1526,40	336,43	110,89	Verificato	3,03	14,07
142,0	35,17	203,80	5,79	TRAZ.	TRAZ.	5,30	TRAZ.	460,07	17,85	TRAZ.	TRAZ.	30,92	Verificato		
gcr,0	-105,17	63,45	-0,60	2,00	18,38	5,30	1594,48	460,07	17,88	1413,91	336,16	109,63	Verificato	3,07	10,85
(Mpa)	25,14	305,78	12,16	TRAZ.	TRAZ.	5,30	TRAZ.	460,07	13,29	TRAZ.	TRAZ.	23,02	Verificato		
86,7	-98,40	55,18	-0,56	2,00	16,92	5,30	1467,24	460,07	15,80	1339,71	335,93	102,14	Verificato	3,29	12,28

	c	ONNESSIONE A C	OMPLETO RIP	RISTINO EC4 par	6.2.1.1	
Beff	h,sol	L,tr	Piolo (mm)	Rc	Ra	Fcf
(cm)	(cm)	(m)	φ = 20	Resist. soletta	Resist. Trave acc.	Vscorr = min(Rc;Ra)
460	35	40,00	h = 150 mm	31932	35365	31932
Prd, piolo	Prd, cls	Prd,d	N°connettori	At,nec/m	Barre,trasv.	Pa,trasv,nec
KN	KN	KN	N° di file = 3	(mmq)	φ = 24	(cm)
90,48	101,3	90,5	117,64	296,6	N° br,tr. = 1	152,5
N°conn. posti	Fr,scorr/m	P,st	Aa,trasv	V,rd2	V,rd3	V,rd
(P,conn= 33,9 cm)	(KN/m)	(cm)	(mmq)	(KN/m)	(KN/m)	(KN/m)
118	266,9	20	4523,9	15026,66667	4784,9	4784,9
Passo arma	t.trasvers.	Dist.min.pioli=5	d= 100 mm	Resist. de	lla sezione alla forza d	i scorrim.
Verifi	cato	Verific	ato		Verificato	
η= 7,	,63	η= 3,3	39		η= 17,93	

TRATTO MADONNA DEL PIANO - COLLESTRADA

GRUPPO FS ITALIANE OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

								CHINTO TRAVE	TDAVE							
						CADATT		GIUNTO TRAVE		SOLI ECITAZIO	ONE					
<i>a</i> 1		f,ub		f,ub	f,y	f,d	Beff	h,sol	Ac Ac	Htr	Bi	Bs	h,a	t,i	t,s	t,a
Classe b	bullone	(Mpa)	Classe acciaio	(Mpa)	(Mpa)	(Mpa)	(m)	(mm)	(mm^2)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
(-))	Resist. ultima	(-)	Resist. ultima	Resist. prog.	Resist. prog. fd = 338 MPa (ala sup)	Beff,soletta	Altezza soletta	Area cls	Altezza trave	Base piatto inferiore	Base piatto superiore	Altezza anima	Spessore piatto inferiore	Spessore piatto superiore	Spessore anima
10,	.9	1000	S355	510	355	fd = 319 MPa (ala sup)	4,60	350	1610000	1800	700	600	1720	50	30	30
						` '										
Jtra		Aa	X_1	Janima	Jala	J,anima/J,tot	n,2	Ai,2 (+)	Ja_2 (+)	Ai,2 (-) (mm^2)	Ja_2 (-)	n,3	Ai,3 (+)	Ja_3 (+) (mm^4)	Ai,3 (-)	Ja_3 (-)
(mm		(mm^2)	(mm)	(mm^4)	(mm^4)	(-)	(-)	(mm^2)	(mm^4) Mom. Inerzia -		(mm^4) Mom. Inerzia - Fase	(-)	(mm^2)	` /	(mm^2)	(mm^4)
Momento		Area acciaio	Asse Neutro	Momento Inerzia	Momento Inerzia	Momento Inerzia	Coeff.Omog.	Area ideale	Fase II	Area ideale	II	Coeff.Omog.	Area ideale	Mom. Inerzia - Fase II	Area ideale	Mom. Inerzia - Fase II
5,171E	E+10	104600	1036	1,367E+10	3,789E+10	0,26	17,48	201526	1,27,E+11	109425	6,00,E+10	6,16	370684	1,65,E+11	109425	6,00,E+10
	M_A	N_A	V_A	M_A	N A	V_A	M A-CLS	N A-CLS	V A-CLS	M A-CLS	N A-CLS	V A-CLS				
CDS A-CLS	(KNm)	(KN)	(KN)	(KNm)	(KN)	(KN)	(KNm)	(KN)	(KN)	(KNm)	(KN)	(KN)				
CDS A-CLS		CDS SEZ. ACC FASE	E 0		CDS SEZ. ACC.	- FASE I	CDS	S SEZ. COMP. A-CLS FA	SE II	CDS	SEZ. COMP. A-CLS	FASE III		Coordinate	dei Bulloni	
MAX	2217,0	0,0	0,0	3842,7	0,0	10,9	3364,8	-168,4	40,2	7795,9	10882,1	634,8				
MIN	0	0,0	0,0	3406,4	0,0	108,7	2957,1	-6435,0	64,3	-1650,5	-1756,1	642,2		1800		
								•								
	M_A (KNm)	N_A (KN)	V_A (KN)	M_A (KNm)	N_A (KN)	V_A (KN)	M_A (KNm)	N_A (KN)	V_A (KN)	M_A (KNm)	N_A (KN)	V_A (KN)		1600		
CDS ACC.	(22,111)	CDS SEZ. ACC FASE		(111)	CDS SEZ. ACC.			CDS SEZ. ACC FASE II		` ′	CDS SEZ. ACC FASI	/				I
	22171			20:2-2										1400		
MAX MIN	2217,0 0	0,0	0,0	3842,7 3406.4	0,0	10,9	1367,6 1201,8	-87,4 -3340,0	40,2 64,3	2444,5 -1423,0	10882,1 -495,5	634,8 642,2				
			0,0	3100,1	•	1000	1201,0		01,0	1123,0				1200	- • -	
	M_A	N_A	V_A		LIMITI DIST.			LIMITI DIST. FORI			LIMITI DIST. FOR					
CDS TOT	(KNm)	(KN)	(KN)	P1min = 63 mm	COPRIGIUNTO	ANIMA el min = 34 mm	P1min = 63 mm	coprigiunto ala sul e1,min = 34		P1min = 63 mm	COPRIGIUNTO ALA	INF. = 34 mm		1000		<u> </u>
		CDS TOT. SEZ. ACC		P1max = 200 mm		elmax = 160 mm	P1max = 200 mm	e1,max = 12		P1max = 200 mm		= 160 mm				1
MAX	9871,7	10794,7	685,9	P2min = 68 mm		e2min = 34 mm	P2min = 68 mm	e2,min = 34		P2min = 68 mm		= 34 mm		800		<u> </u>
MIN	3185,2	3835,6	815,2	P2max = 200 mm		e2max = 160 mm	P2max = 200 mm	e2,max = 12	0,0 mm	P2max = 200 mm	e2max	= 160 mm				1
						COPRIGIUNTO ANIMA	A							600	•	<u> </u>
p1	p2	e1	e2	Nf	Ne	Φ,bull	t,copr_an	Pt_anima	Nb,anima	B_c,an	L_c,an	Jp				ļ <u> </u>
PASSO ORIZZONTALE	PASSO VERTICALE	DIST. DAL MARG. ORIZZ.	DIST. DAL MARG. VERTIC.	N° FILE BULL.	N° COLONNE BULLONI	(mm)	(mm)	N° PIANI DI TAGLIO ANIMA	N° TOT. BULL.	BASE. COPRIG. ANIMA	ALTEZZA COPRIG. ANIMA	MOM. IN. POLARE		400		-
(mm)	(mm)	(mm)	(mm)	(-)	(-)	Diametro bullone (sez. lorda)	Spessore coprig. anima	(-)	(-)	(mm)	H,an = 1800,0 mm	(mm^2)			•	+
150	100	50	50	16	4	27 mm	30	2	64	1100,0 mm	1600,0 mm	1,54E+07		200	•	-
				T		Fvr.d		Fbr.d	Fbr.d		Smax	_			•	+
Xg										Vb		Rmax				
	Yg	Xmax	Ymax	N_anima	M_anima MOM. FLETT.	7	Fbr,d (Mpa)	,-	-					0 100 200		500 600
BARIC.	BARIC.	(-)	(-)	COMPR. ANIMA	MOM. FLETT. ANIMA	(Mpa)	(Mpa) Res. rifoll. coprig.	(Mpa)	(Mpa)	V SUL SINGOLO BULL.	SFORZO MAX BULL	TAGLIO MAX BULL. ANIMA				500 600
BARIC.	BARIC.	(-) (mm)	(-) (mm)	COMPR. ANIMA (KN)	MOM. FLETT. ANIMA (KNm)	(Mpa) Res. taglio bull. per sez. lorda	(Mpa) Res. rifoll. coprig. anima	(Mpa) Res. rifoll. ala sup.	(Mpa) Res. rifoll. ala inf.	V SUL SINGOLO BULL. N	SFORZO MAX BULL N	TAGLIO MAX BULL. ANIMA C/D,min = 2,06		[mm]		500 600
BARIC.	BARIC.	(-)	(-)	COMPR. ANIMA (KN) 8060 (Inv_max)	MOM. FLETT. ANIMA (KNm) 2798 (Inv_max)	(Mpa)	(Mpa) Res. rifoll. coprig.	(Mpa)	(Mpa)	V SUL SINGOLO BULL. N 10718 (Inv_max)	SFORZO MAX BULL N 142280 (Inv_max)	TAGLIO MAX BULL. ANIMA C/D,min = 2,06 133,6 KN (Inv_max)				500 600
BARIC.	BARIC.	(-) (mm)	(-) (mm)	COMPR. ANIMA (KN)	MOM. FLETT. ANIMA (KNm)	(Mpa) Res. taglio bull. per sez. lorda	(Mpa) Res. rifoll. coprig. anima 510,0	(Mpa) Res. rifoll. ala sup. 510,0	(Mpa) Res. rifoll. ala inf. 1275,0	V SUL SINGOLO BULL. N	SFORZO MAX BULL N	TAGLIO MAX BULL. ANIMA C/D,min = 2,06				500 600
BARIC. (mm) 275	BARIC. (mm) 800	(-) (mm) 225	(-) (mm) 750	COMPR. ANIMA (KN) 8060 (Inv_max) 2864 (Inv_min)	MOM. FLETT. ANIMA (KNm) 2798 (Inv_max) 1066 (Inv_min)	(Mpa) Res. taglio bull. per sez. lorda 274,8	(Mpa) Res. rifoll. coprig. anima 510,0	(Mpa) Res. rifoll. ala sup. 510,0 OPRIGIUNTO ALA	(Mpa) Res. rifoll. ala inf. 1275,0 SUPERIORE	V SUL SINGOLO BULL. N 10718 (Inv_max) 12738 (Inv_min)	SFORZO MAX BULL N 142280 (Inv_max) 54212 (Inv_min)	TAGLIO MAX BULL. ANIMA C/D,min = 2,06 133,6 KN (Inv_max) 50,4 KN (Inv_min)		[mm]	300 400	
BARIC. (mm) 275	BARIC. (mm) 800	(-) (mm) 225	(-) (mm) 750	COMPR. ANIMA (KN) 8060 (Inv_max) 2864 (Inv_min)	MOM. FLETT. ANIMA (KNm) 2798 (Inv_max) 1066 (Inv_min)	(Mpa) Res. taglio bull. per sez. lorda 274,8 0,bull	(Mpa) Res. rifoll. coprig. anima 510,0	(Mpa) Res. rifoll. ala sup. 510,0 OPRIGIUNTO ALA Nb.copr.sup	(Mpa) Res. rifoll. ala inf. 1275,0 SUPERIORE Nb,ali	V SUL SINGOLO BULL. N 10718 (Inv_max) 12738 (Inv_min) N_file,b_ali	SFORZO MAX BULL N 142280 (Inv_max) 54212 (Inv_min)	TAGLIO MAX BULL. ANIMA C/D,min = 2,06 133,6 KN (Inv_max) 50,4 KN (Inv_min) B_c,al	L_c,al	[mm] V_(N),bull	300 400 V_(M),bull	V,bull.
BARIC. (mm) 275	BARIC. (mm) 800	(-) (mm) 225	(-) (mm) 750	COMPR. ANIMA (KN) 8060 (Inv_max) 2864 (Inv_min)	MOM. FLETT. ANIMA (KNm) 2798 (Inv_max) 1066 (Inv_min)	(Mpa) Res. taglio bull. per sez. lorda 274,8 O-bull (mm)	(Mpa) Res. rifoll. coprig. anima 510,0	(Mpa) Res. rifoll. ala sup. 510,0 OPRIGIUNTO ALA	(Mpa) Res. rifoll. ala inf. 1275,0 SUPERIORE	V SUL SINGOLO BULL. N 10718 (Inv_max) 12738 (Inv_min)	SFORZO MAX BULL N 142280 (Inv_max) 54212 (Inv_min)	TAGLIO MAX BULL. ANIMA C/D,min = 2,06 133,6 KN (Inv_max) 50,4 KN (Inv_min)	L_c,al LUNGH. COPRIG. ALI	[mm]	300 400	
BARIC. (mm) 275 pl PASSO ORIZZONTALE (mm)	PASSO VERTICALE (mm)	el DIST. DAL MARG. ORIZZ. (mm)	(-) (mm) 750 e2 DIST. DAL MARG. VERTIC. (mm)	COMPR. ANIMA (KN) 8060 (Inv_max) 2864 (Inv_min) N_ali COMPR. ALI (KN)	MOM. FLETT. ANIMA (KNm) 2798 (Inv_max) 1066 (Inv_min) M_ali MOM. FLETT. ALI (KNm)	(Mpa) Res. taglio bull. per sez. lorda 274.8 4.bull (mm) Diametro bullone (sez. lorda)	(Mpa) Res. rifoll. coprig. anima 510,0 CO Fvr,d (Mpa) Res. taglio bull. per sez. lorda	(Mpa) Res. rifoll. ala sup. 510,0 OPRIGIUNTO ALA Nb.copr.sup N° PIANI DI TAGLIO	(Mpa) Res. rifoll. ala inf. 1275,0 SUPERIORE Nb,ali N° TOT. BULL. (-)	V SUL SINGOLO BULL. N 10718 (Inv_max) 12738 (Inv_min) N_file,b_ali N° FILE BULL. ALI	SFORZO MAX BULL N 142280 (Inv_max) 54212 (Inv_min)	TAGLIO MAX BULL. ANIMA CD_min = 2,06 133,6 KN (Inv_max) 50,4 KN (Inv_min) B_c,al BASE. COPRIG. ALI (mm)	LUNGH. COPRIG. ALI (mm)	[mm] V_(N),bull TAGLIO_(N) (KN)	V_(M),bull TAGLIO_(M) (KN)	V,bull. TAGLIO MAX BULL. AI C/D = 2,04
BARIC. (mm) 275 pl PASSO ORIZZONTALE (mm) 100	p2 PASSO VERTICALE (mm) 166,7	et DIST. DAL MARG. ORIZZ. (mm) 50	(-) (mm) 750 e2 DIST. DAL MARG. VERTIC. (mm) 50	COMPR. ANIMA (KN) 8060 (Inv. max) 2864 (Inv. min) N_ali COMPR. ALI (KN) 2735 (Inv. max)	MOM. FLETT. ANIMA (KNm) 2798 (Inv_max) 1066 (Inv_min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv_max)	(Mpa) Res. taglio bull. per sez. lorda 274,8 O-bull (mm)	(Mpa) Res. rifoll. coprig. anima 510,0 Ct Fvr,d (Mpa) Res. taglio bull. per	(Mpa) Res. rifoll. ala sup. 510,0 OPRIGIUNTO ALA Nb.copr.sup N° PIANI DI TAGLIO COPR.	(Mpa) Res. rifoll. ala inf. 1275,0 SUPERIORE Nb,ali N° TOT. BULL.	V SUL SINGOLO BULL. N 10718 (Inv_max) 12738 (Inv_min) N_file,b_ali N° FILE BULL. ALI	SFORZO MAX BULL N 142280 (Inv_max) 54212 (Inv_min) N_col,b_ali N° COL. BULL. ALI	TAGLIO MAX BULL. ANIMA C/D,min = 2,06 133,6 KN (Inv_min) 50,4 KN (Inv_min) B_c,al BASE. COPRIG. ALI	LUNGH. COPRIG. ALI	[mm] V_(N),bull TAGLIO_(N) (KN) 34 (Inv. max)	V_(M),bull TAGLIO_(M) (KN) 100 (Inv max)	V,bull. TAGLIO MAX BULL. Al C/D = 2,04 134,7 KY, (inv. max)
BARIC. (mm) 275 pl PASSO ORIZZONTALE (mm)	p2 PASSO VERTICALE (mm) 166,7	el DIST. DAL MARG. ORIZZ. (mm)	(-) (mm) 750 e2 DIST. DAL MARG. VERTIC. (mm)	COMPR. ANIMA (KN) 8060 (Inv_max) 2864 (Inv_min) N_ali COMPR. ALI (KN)	MOM. FLETT. ANIMA (KNm) 2798 (Inv_max) 1066 (Inv_min) M_ali MOM. FLETT. ALI (KNm)	(Mpa) Res. taglio bull. per sez. lorda 274.8 4.bull (mm) Diametro bullone (sez. lorda)	(Mpa) Res. rifoll. coprig. anima 510,0 CO Fvr,d (Mpa) Res. taglio bull. per sez. lorda	(Mpa) Res. rifoll. ala sup. 510,0 OPRIGIUNTO ALA Nb.copr.sup N° PIANI DI TAGLIO COPR.	(Mpa) Res. rifoll. ala inf. 1275,0 SUPERIORE Nb,ali N° TOT. BULL. (-)	V SUL SINGOLO BULL. N 10718 (Inv_max) 12738 (Inv_min) N_file,b_ali N° FILE BULL. ALI	SFORZO MAX BULL N 142280 (Inv_max) 54212 (Inv_min) N_col,b_ali N° COL. BULL. ALI	TAGLIO MAX BULL. ANIMA CD_min = 2,06 133,6 KN (Inv_max) 50,4 KN (Inv_min) B_c,al BASE. COPRIG. ALI (mm)	LUNGH. COPRIG. ALI (mm)	[mm] V_(N),bull TAGLIO_(N) (KN)	V_(M),bull TAGLIO_(M) (KN)	V,bull. TAGLIO MAX BULL. AI C/D = 2,04
BARIC. (mm) 275 pl PASSO ORIZZONTALE (mm) 100 t.copr_ali	p2 PASSO VERTICALE (mm) 166,7 SPESS. CO	et DIST. DAL MARG. ORIZZ. (mm) 50 DPRIG. ALI SUP.	(-) (mm) 750 e2 DIST. DAL MARG. VERTIC. (mm) 50 20	COMPR. ANIMA (KN) 8060 (Inv max) 2864 (Inv min) N_ali COMPR. ALI (KN) 2735 (Inv max) 972 (Inv min)	MOM. FLETT. ANIMA (IKNm) 2798 (Inv. max) 1066 (Inv. min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv. max) 2119 (Inv. min)	(Mpa) Res. taglio bull. per scz. lorda 274,8 4.bull (mm) Diametro bullone (scz. lorda) 27 mm	(Mpa) Res. rifoll. coprig. anima 510,0 CO Fvr.d (Mpa) Res. taglio bull. per sez. lorda 274,8	(Mpa) Res. rifoll. ala sup. 510,0 OPRIGIUNTO ALA. Nb.copr.sup N° PIANI DI TAGLIO COPR. (-) 2 OPRIGIUNTO ALA.	(Mpa) Res. rifoll. ala inf. 1275,0 SUPERIORE Nb,aii N° TOT. BULL. (-) 20	V SUL SINGOLO BULL. N 10718 (Inv max) 12738 (Inv min) N_file,b_ali N° FILE BULL. ALI (-) 4	SFORZO MAX BULL N 142280 (Inv max) 54212 (Inv min) N_col.b_ali N° COL. BULL ALI (-) 5	TAGLIO MAX BULL. ANIMA C/D,min = 2,06 133,6 KN (Inv. max) 50,4 KN (Inv. min) B_c,all BASE. COPRIG. ALI (mm) 600	LUNGH. COPRIG. ALI (mm) 1000	[mm] V_(N),bull TAGLIO_(N) (KN) 34 (Inv max) 12 (Inv min)	V.(M),bull TAGLIO_(M) (KN) 100 (Inv max) 30 (Inv min)	V,bull. TAGLIO MAX BULL. A: C/D = 2,04 134.7 KN (Inv mix) 42.2 KN (Inv min)
BARIC. (mm) 275 pl PASSO ORIZZONTALE (mm) 100 t.copr_ali	BARIC. (mm) 800 p2 PASSO VERTICALE (mm) 166,7 SPESS. CC	el DIST. DAL MARG. ORIZZ. (mm) 50 DPRIG. ALI SUP.	(-) (mm) 750 e2 DIST. DAL MARG. VERTIC. (mm) 50 20	COMPR. ANIMA (KN) 8060 (Inv. max) 2864 (Inv. min) N_ali COMPR. ALI (KN) 2735 (Inv. max)	MOM. FLETT. ANIMA (KNm) 2798 (Inv_max) 1066 (Inv_min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv_max)	(Mpa) Res. taglio bull. per sez. lorda 274.8 4.bull (mm) Diametro bullone (sez. lorda) 27 mm	(Mpa) Res rifoll coprig- anima 510.0 CI Fvr.d (Mpa) Res taglio bull.per soz. Jorda 274.8	(Mpa) Res. rifoll. ala sup. \$10,0 PRIGIUNTO ALA: Nb.copr.sup N° PIANI DI TAGLIO COPR. (-) 2 OPRIGIUNTO ALA Nb.copr.sup	(Mpa) Res. rifoll. ala inf. 1275,0 SUPERIORE Nb.ali N° TOT. BULL. (-) 20	V SUL SINGOLO BULL. N 10718 (Inv_max) 12738 (Inv_min) N_file,b_ali N° FILE BULL. ALI	SFORZO MAX BULL N 142280 (Inv_max) 54212 (Inv_min) N_col,b_ali N° COL. BULL. ALI	TAGLIO MAX BULL. ANIMA CD_min = 2,06 133,6 KN (Inv_max) 50,4 KN (Inv_min) B_c,al BASE. COPRIG. ALI (mm)	LUNGH. COPRIG. ALI (mm) 1000	[mm] V_(N),bull TAGLIO_(N) (KN) 34 (Inv. max)	V_(M),bull TAGLIO_(M) (KN) 100 (Inv max)	V,bull. TAGLIO MAX BULL. Al C/D = 2,04 134,7 KY, (inv. max)
BARIC. (mm) 275 pl PASSO ORIZZONTALE (mm) 100 t.copr_ali	p2 PASSO VERTICALE (mm) 166,7 SPESS. CO	et DIST. DAL MARG. ORIZZ. (mm) 50 DPRIG. ALI SUP.	(-) (mm) 750 e2 DIST. DAL MARG. VERTIC. (mm) 50 20	COMPR. ANIMA (KN) 8060 (Inv max) 2864 (Inv min) N_ali COMPR. ALI (KN) 2735 (Inv max) 972 (Inv min)	MOM. FLETT. ANIMA (IKNm) 2798 (Inv. max) 1066 (Inv. min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv. max) 2119 (Inv. min)	(Mpa) Res. taglio bull. per sez. lorda 274,8 4.bull (mm) Diametro bullone (sez. lorda) 27 mm 4.bull (mm)	(Mpa) Res rifoll coprig anima 510,0 C Fvr.d (Mpa) Res taglio bull. per sez. Jorda 274,8 C Fvr.d (Mpa)	(Mpa) Res. rifoll. ala sup. 510,0 OPRIGIUNTO ALA. Nb.copr.sup N° PIANI DI TAGLIO COPR. (-) 2 OPRIGIUNTO ALA.	(Mpa) Res. rifoll. ala inf. 1275,0 SUPERIORE Nb,aii N° TOT. BULL. (-) 20	V SUL SINGOLO BULL. N 10718 (Inv max) 12738 (Inv min) N_file,b_ali N° FILE BULL. ALI (-) 4	SFORZO MAX BULL N 142280 (Inv max) 54212 (Inv min) N_col.b_ali N° COL. BULL ALI (-) 5	TAGLIO MAX BULL. ANIMA C/D,min = 2,06 133,6 KN (Inv. max) 50,4 KN (Inv. min) B_c,all BASE. COPRIG. ALI (mm) 600	LUNGH. COPRIG. ALI (mm) 1000	[mm] V_(N),bull TAGLIO_(N) (KN) 34 (Inv max) 12 (Inv min)	V.(M),bull TAGLIO_(M) (KN) 100 (Inv max) 30 (Inv min)	V,bull. TAGLIO MAS BULL. AI C/D = 2,04 1347, KN (Inv. max) 42.2 KN (Inv. min)
BARIC. (mm) 275 pt PASSO ORIZZONTALE (mm) 100 t.copr_ali pt PASSO	p2 PASSO VERTICALE (mm) 166,7 SPESS. CO PASSO VERTICALE (mm) 16,7 SPESS. CO	el DIST. DAL MARG. ORIZZ. (mm) 50 PPRIG. ALI SUP.	(-) (mm) 750 e2 DIST. DAL MARG. VERTIC. (mm) 50 20 e2 DIST. DAL MARG. VERTIC. (mm)	COMPR. ANIMA (KN) 8060 (Inv max) 2864 (Inv min) N_ali COMPR. ALI (KN) 2735 (Inv max) 972 (Inv min) N_ali COMPR. ALI (KN)	MOM. FLETT. ANIMA (KNm) 2798 (Inv. max) 1066 (Inv. min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv. max) 2119 (Inv. min) M_ali MOM. FLETT. ALI (KNm)	(Mpa) Res. taglio bull. per sez. lorda 274,8 4.bull (mm) Diametro bullone (sez. lorda) 27 mm 4.bull (mm) Diametro bullone (sez. lorda)	(Mpa) Res rifoll coprig, anima 510.0 Ct Fvr.d (Mpa) Res taglio bull.per sez. lorda 274.8 Ct Fvr.d (Mpa) Res taglio bull.per sez. lorda Res taglio bull.per sez. lorda Res taglio bull.per sez. lorda	(Mpa) Res. rifoll. ala sup. 510,0 OPRIGIUNTO ALA: Nb.copr.sup N° PIANI DITAGLIO COPR. (-) 2 OPRIGIUNTO ALA Nb.copr.sup N° PIANI DITAGLIO COPR. (-) (-) (-) (-) (-)	(Mpa) Res. rifoll. ala inf. 1275,0 SUPERIORE Nb,ali N° TOT. BULL. (-) 20 INFERIORE Nb,ali N° TOT. BULL. (-) (-) (-) (-) (-) (-)	V SUL SINGOLO BULL. N 10718 (fiv max) 12738 (fiv min) N file.b_ali N° FILE BULL. ALI (-) 4 N file.b_ali N° FILE BULL. ALI (-)	SFORZO MAX BULL N 142280 (Inv. max) 54212 (Inv. min) N colb. ali N COL. BULL. ALI 1 N COL. BULL. ALI N COL. BULL. ALI (-)	TAGLIO MAX BULL. ANIMA CDmin = 2.06 133,6 KN (Inv max) 50,4 KN (Inv min) B_cal BASE COPRIG. ALI (mm) 600 B_cal BASE. COPRIG. ALI (mm)	LUNGH. COPRIG. ALI (mm) 1000 L_c,al LUNGH. COPRIG. ALI (mm)	[mm] V_(N),bull TAGLIO_(N) (KN) 34 (Inv_max) 12 (Inv_min) V_(N),bull TAGLIO_(N) (KN)	V_(M),bull TAGLIO_(M) (KN) 100 (Inv max) 30 (Inv min) V_(M),bull TAGLIO_(M) (KN)	V,bull. TAGLIO MAX BULL. AI C/D = 2,04 134.7 KN (fnv max) 42,2 KN (lnv min) V,bull. TAGLIO MAX BULL. AI C/D = 2,04
BARIC. (mm) 275 pl PASSO ORIZZONTALE (mm) pl PASSO ORIZZONTALE (mm) loo	P2 PASSO VERTICALE (mm) 166,7 PASSO PASSO VERTICALE (mm) PASSO PASSO	el DIST. DAL MARG. ORIZZ. (mm) 50 DPRIG. ALI SUP. el DIST. DAL MARG. ORIZZ. (mm) 75	(-) (mm) 750 c2 DIST. DAL MARG. VERTIC. (mm) 50 20 c2 DIST. DAL MARG. VERTIC. (mm) 100	COMPR. ANIMA (KN) 8060 (Inv max) 2864 (Inv_min) N_ali COMPR. ALI (KN) 2735 (Inv_max) 972 (Inv_min) N_ali COMPR. ALI (KN) 2735 (Inv_max)	MOM. FLETT. ANIMA (KNm) 2798 (Inv. max) 1066 (Inv. min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv. max) 2119 (Inv. min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv. max)	(Mpa) Res. taglio bull. per sez. lorda 274,8 4.bull (mm) Diametro bullone (sez. lorda) 27 mm 4.bull (mm)	(Mpa) Res rifoll coprig- anima 510,0 CO Fvr.d (Mpa) Res taglio bull. per sez. lorda 274,8 CO Fvr.d (Mpa) Res taglio bull. per	(Mpa) Res. rifoll. ala sup. 510,0 OPRIGIUNTO ALA: Nb.copr.sup N° PIANI DITAGLIO COPR. (-) 2 OPRIGIUNTO ALA Nb.copr.sup N° PIANI DITAGLIO COPR.	(Mpa) Res. rifoll. ala inf. 1275,0 SUPERIORE Nb,adi N° TOT. BULL. (-) 20 INFERIORE Nb,adi N° TOT. BULL.	V SUL SINGOLO BULL. N 10718 (Inv max) 12738 (Inv min) N_file,b_ali (-) 4 N_file,b_ali N° FILE BULL. ALI	SFORZO MAX BULL N 142280 (Inv max) 54212 (Inv min) N_col.b_ali N° COL. BULL. ALI (-) 5 N_col.b_ali N° COL. BULL. ALI	TAGLIO MAX BULL. ANIMA C/D,min = 2,06 133,6 KN (Inv. max) 50,4 KN (Inv. min) B_c,all BASE. COPRIG. ALI (mm) 600 B_c,all BASE. COPRIG. ALI	LUNGH. COPRIG. ALI (mm) 1000 L_e,al LUNGH. COPRIG. ALI	[mm] V_(N),bull TAGLIO_(N) (KN) 34 (Inv max) 12 (Inv min) V_(N),bull TAGLIO_(N) (KN) 34 (Inv max)	V_(M),bull TAGLIO_(M) (KN) 100 (Inv max) 30 (Inv min) TAGLIO_(M) (KN) 100 (Inv max)	V,bull. TAGLIO MAX BULL. AI C/D = 2,04 134.7 KN (Inv max) 42.2 KN (Inv min) V,bull. TAGLIO MAX BULL. AI C/D = 2,04 134.7 KN (Inv max)
BARIC. (mm) 275 pl PASSO ORIZZONTALE (mm) 100 t.copr_ali PASSO ORIZZONTALE (mm)	P2 PASSO VERTICALE (mm) 166,7 PASSO PASSO VERTICALE (mm) PASSO PASSO	el DIST. DAL MARG. OPRIG. ALI SUP.	(-) (mm) 750 e2 DIST. DAL MARG. VERTIC. (mm) 50 20 e2 DIST. DAL MARG. VERTIC. (mm)	COMPR. ANIMA (KN) 8060 (Inv max) 2864 (Inv min) N_ali COMPR. ALI (KN) 2735 (Inv max) 972 (Inv min) N_ali COMPR. ALI (KN)	MOM. FLETT. ANIMA (KNm) 2798 (Inv. max) 1066 (Inv. min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv. max) 2119 (Inv. min) M_ali MOM. FLETT. ALI (KNm)	(Mpa) Res. taglio bull. per sez. lorda 274,8 4.bull (mm) Diametro bullone (sez. lorda) 27 mm 4.bull (mm) Diametro bullone (sez. lorda)	(Mpa) Res rifoll coprig, anima 510.0 Ct Fvr.d (Mpa) Res taglio bull.per sez. lorda 274.8 Ct Fvr.d (Mpa) Res taglio bull.per sez. lorda Res taglio bull.per sez. lorda Res taglio bull.per sez. lorda	(Mpa) Res. rifoll. ala sup. 510,0 OPRIGIUNTO ALA: Nb.copr.sup N° PIANI DITAGLIO COPR. (-) 2 OPRIGIUNTO ALA Nb.copr.sup N° PIANI DITAGLIO COPR. (-) (-) (-) (-) (-)	(Mpa) Res. rifoll. ala inf. 1275,0 SUPERIORE Nb,ali N° TOT. BULL. (-) 20 INFERIORE Nb,ali N° TOT. BULL. (-) (-) (-) (-) (-) (-)	V SUL SINGOLO BULL. N 10718 (fiv max) 12738 (fiv min) N file.b_ali N° FILE BULL. ALI (-) 4 N file.b_ali N° FILE BULL. ALI (-)	SFORZO MAX BULL N 142280 (Inv. max) 54212 (Inv. min) N colb. ali N COL. BULL. ALI 1 N COL. BULL. ALI N COL. BULL. ALI (-)	TAGLIO MAX BULL. ANIMA CDmin = 2.06 133,6 KN (Inv max) 50,4 KN (Inv min) B_cal BASE COPRIG. ALI (mm) 600 B_cal BASE. COPRIG. ALI (mm)	LUNGH. COPRIG. ALI (mm) 1000 L_c,al LUNGH. COPRIG. ALI (mm)	[mm] V_(N),bull TAGLIO_(N) (KN) 34 (Inv_max) 12 (Inv_min) V_(N),bull TAGLIO_(N) (KN)	V_(M),bull TAGLIO_(M) (KN) 100 (Inv max) 30 (Inv min) V_(M),bull TAGLIO_(M) (KN)	V,bull. TAGLIO MAX BULL. AI C/D = 2,04 134.7 KN (fnv max) 42,2 KN (lnv min) V,bull. TAGLIO MAX BULL. AI C/D = 2,04
BARIC. (mm) 275 pl PASSO ORIZZONTALE (mm) pl PASSO ORIZZONTALE (mm) loo	p2 PASSO VERTICALE (mm) 166,7 SPESS. CO SPESS. CO	el DIST. DAL MARG. ORIZZ. (mm) el DIST. DAL MARG. ORIZZ. (mm) fo OPRIG. ALI SUP.	(-) (mm) 750 e2 DIST. DAL MARG. VERTIC. (mm) 50 20 DIST. DAL MARG. VERTIC. (mm) 100 30 30	COMPR. ANIMA (KN) 8060 (Inv max) 2864 (Inv_min) N_ali COMPR. ALI (KN) 2735 (Inv_max) 972 (Inv_min) N_ali COMPR. ALI (KN) 2735 (Inv_max)	MOM. FLETT. ANIMA (KNm) 2798 (Inv. max) 1066 (Inv. min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv. max) 2119 (Inv. min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv. max) 2119 (Inv. min)	(Mpa) Res. taglio bull. per sez. lorda 274,8 4.bull (mm) Diametro bullone (sez. lorda) 27 mm 4.bull (mm) Diametro bullone (sez. lorda)	(Mpa) Res rifoll coprig, anima 510.0 Ct Fvr.d (Mpa) Res taglio bull.per sez. lorda 274.8 Ct Fvr.d (Mpa) Res taglio bull.per sez. lorda Res taglio bull.per sez. lorda Res taglio bull.per sez. lorda	(Mpa) Res. rifoll. ala sup. 510,0 OPRIGIUNTO ALA: Nb.copr.sup N° PIANI DITAGLIO COPR. (-) 2 OPRIGIUNTO ALA Nb.copr.sup N° PIANI DITAGLIO COPR. (-) (-) (-) (-) (-)	(Mpa) Res. rifoll. ala inf. 1275,0 SUPERIORE Nb.ali N° TOT. BULL. (-) 20 INFERIORE Nb,ali N° TOT. BULL. (-) 20	V SUL SINGOLO BULL. N 10718 (fiv max) 12738 (fiv min) N file.b_ali N° FILE BULL. ALI (-) 4 N file.b_ali N° FILE BULL. ALI (-)	SFORZO MAX BULL N 142280 (Inv. max) 54212 (Inv. min) N col.b ali N COL. BULL. ALI (-) 5 N col.b ali N COL. BULL. ALI (-) 5 N col.b ali N COL. BULL. ALI (-) 5 S COL. BULL. ALI (-) 5 COL. BULL. ALI (-) COL. BULL. ALI (TAGLIO MAX BULL. ANIMA CDmin = 2.06 133,6 KN (Inv max) 50,4 KN (Inv min) B_cal BASE COPRIG. ALI (mm) 600 B_cal BASE. COPRIG. ALI (mm)	LUNGH. COPRIG. ALI (mm) 1000 L_cal LUNGH. COPRIG. ALI (mm) 1200	[mm] V_(N),bull TAGLIO_(N) (KN) 34 (Inv max) 12 (Inv min) V_(N),bull TAGLIO_(N) (KN) 34 (Inv max) 12 (Inv min)	V_(M),bull TAGLIO_(M) (KN) 100 (Inv max) 30 (Inv min) TAGLIO_(M) (KN) 100 (Inv max)	V,bull. TAGLIO MAX BULL. AI C/D = 2,04 1347, RN (Inv. max) 42.2 KN (Inv. min) V,bull. TAGLIO MAX BULL. AI C/D = 2,04 1347, RN (Inv. max)
BARIC. (mm) 275 pl PASSO ORIZZONTALE (mm) 100 t.copr_ali PASSO ORIZZONTALE (mm) 100 t.copr_ali 00 t.copr_ali	p2 PASSO VERTICALE (mm) 166,7 SPESS. CO SPESS. CO	el DIST. DAL MARG. ORIZZ. (mm) el DIST. DAL MARG. ORIZZ. (mm) fo OPRIG. ALI SUP.	(-) (mm) 750 e2 DIST. DAL MARG. VERTIC. (mm) 50 20 e2 DIST. DAL MARG. VERTIC. (mm) 100 33 distributed 30 distributed 30 distributed Graff cop al j. Graff cop al j.	COMPR. ANIMA (KN) 8060 (Inv. max) 2864 (Inv. min) N_ali COMPR. ALI (KN) 2735 (Inv. max) 972 (Inv. min) N_ali COMPR. ALI (KN) 2735 (Inv. max) 972 (Inv. min) Ali COMPR. ALI (KN) 2735 (Inv. min) Ali COMPR. ALI (KN) 2735 (Inv. max) 972 (Inv. min) AMENTO LAMIE Griff an	MOM. FLETT. ANIMA (KNm) 2798 (Inv. max) 1066 (Inv. min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv. max) 2119 (Inv. min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv. max) 2119 (Inv. min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv. max) 2119 (Inv. min)	(Mpa) Res. taglio bull. per sez. lorda 274,8 4.bull (mm) Diametro bullone (sez. lorda) 27 mm 4.bull (mm) Diametro bullone (sez. lorda)	(Mpa) Res rifoll coprig, anima 510.0 Fvr.d (Mpa) Res taglio bull. per soz. Jorda 274.8 C Fvr.d (Mpa) Res taglio bull. per soz. Jorda 274.8 G Fvr.d (Mpa) Res taglio bull. per soz. Jorda 274.8	(Mpa) Res. rifoll. ala sup. 510,0 OPRIGIUNTO ALA: Nb.copr.sup N° PIANI DITAGLIO COPR. (-) 2 OPRIGIUNTO ALA Nb.copr.sup N° PIANI DITAGLIO COPR. (-) (-) (-) (-) (-)	(Mpa) Res. rifoll. ala inf. 1275,0 SUPERIORE Nb,ali N° TOT. BULL. (-) 20 INFERIORE Nb,ali N° TOT. BULL. 20 Or, o	V SUL SINGOLO BULL. N 10718 (fav max) 12738 (Inv_min) N file,b_ali N FILE BULL. ALI (-) 4 N file,b_ali N file,b_ali or, file,b_ali or, file,b_ali	SFORZO MAX BULL N 142280 (Inv. max) 54212 (Inv. min) N. colb. ali VERIFIC Grif (op al. i	TAGLIO MAX BULL. ANIMA CDmin = 2.06 133,6 KN (Inv max) 50,4 KN (Inv min) B_c,al BASE. COPRIG. ALI (mm) 600 B_c,al BASE. COPRIG. ALI (mm) 700 A RIFOLLAMENT Griff an	LUNGH, COPRIG. ALI (mm) 1000 L_cal LUNGH, COPRIG. ALI (mm) 1200 O LAMIERE - IN Grif cop an	[mm] V_(N),bull TAGLIO_(N) (KN) 34 (Inv max) 12 (Inv min) V_(N),bull TAGLIO_(N) (KN) 34 (Inv max) 12 (Inv min)	V.(M),bull TAGLIO_(M) (KN) 100 (Inv max) 30 (Inv min) V.(M),bull TAGLIO_(M) (KN) 100 (Inv max) 30 (Inv min)	V,bull. TAGLIO MAX BULL. AI C/D = 2,04 134.7 KN (Inv max) 42.2 KN (Inv min) V,bull. TAGLIO MAX BULL. AI C/D = 2,04 134.7 KN (Inv max)
pl PASSO ORIZZONTALE (mm) 100 t.copr.ali 100 t.copr	p2 PASSO VERTICALE (mm) 166,7 SPESS. CO PASSO VERTICALE (mm) 166,7 SPESS. CO Orif cop an 3 IENS. RIF. COPR. ALA	e1 DIST. DAL MARG. ORIZZ. (mmn) 50 DPRIG. ALI SUP. e1 DIST. DAL MARG. ORIZZ. (mmn) 50 OPRIG. ALI SUP. vei	(-) (mm) 750 e2 DIST. DAL MARG. VERTIC. (mm) 50 20 DIST. DAL MARG. VERTIC. (mm) 100 30 CIFICA RIFOLI. G.rif cop al i TENS. RIF. COPR.	COMPR. ANIMA (KN) 8060 (Inv max) 2864 (Inv min) N_ali COMPR. ALI (KN) 2735 (Inv max) 972 (Inv min) N_ali COMPR. ALI (KN) 2735 (Inv max) 972 (Inv min) AMENTO LAMIE Griff an TENS. RIFOLL.	MOM. FLETT. ANIMA (KNm) 2798 (Inv. max) 1066 (Inv. min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv. max) 2119 (Inv. min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv. max) 2119 (Inv. min) Toron (Inv. min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv. max) 2119 (Inv. min) TETT. ALI TETT.	(Mpa) Res. taglio bull. per sez. lorda 274,8 4,bull (mm) Diametro bullone (sez. lorda) 27 mm 4,bull (mm) Diametro bullone (sez. lorda) 27 mm	(Mpa) Res rifoll coprig, anima 510,0 CO Fvr.d (Mpa) Res taglio bull. per sez. Jorda 274,8 CO Fvr.d (Mpa) 274,8 CO Graz Graz Graz Graz Graz Graz Graz Graz	(Mpa) Res. rifoll. ala sup. 510,0 OPRIGIUNTO ALA: Nb.copr.sup PIAND DI TAGLIO COPR. (-) 2 OPRIGIUNTO ALA Nb.copr.sup N° PIAND DI TAGLIO COPR. (-) 2	(Mpa) Res. rifoll. ala inf. 1275.0 SUPERIORE Nb.ali N° TOT. BULL. (-) 20 INFERIORE Nb.ali N° TOT. BULL. (-) 20 G.rif cop an s TENS. RIF. COPR.	V SUL SINGOLO BULL. N 10718 (Inv_max) 12738 (Inv_min) N file,b_ali N file,b_ali (-) 4 N file,b_ali N file,b_ali TENS. RIF. ALA	SFORZO MAX BULL N 142280 (Inv. max) 54212 (Inv. min) N_col.b_ali N° COL. BULL. ALI (-) 5 N_col.b_ali N° COL. BULL. ALI (-) 5 VERIFIC Garif cop_ali TENS. RIF. COPR.	TAGLIO MAX BULL. ANIMA CD_min = 2.06 133.6 KN (Inv max) 50.4 KN (Inv min) B_cal BASE_COPRIG_ALI (mm) 600 B_scal BASE_COPRIG_ALI (mm) 700 A RIFOLLAMENT G_rif_an TENS_RIFOLL.	LUNGH. COPRIG. ALI (mm) 1000 L_cal LUNGH. COPRIG. ALI (mm) 1200 O LAMIERE - IN G.rif cop an TENS. RIF. COPRIG.	[mm] V_(N),bull TAGLIO_(N) (KN) 34 (Inv max) 12 (Inv min) TAGLIO_(N) (KN) (KN) 34 (Inv max) 12 (Inv min)	V_(M),bull TAGLIO_(M) (KN) 100 (Inv max) 30 (Inv min) TAGLIO_(M) (KN) 100 (Inv max) 30 (Inv min) Golden	V,bull. TAGLIO MAX BULL, AI C/D = 2,04 134,7 KM (finy max) 42.2 KN (finy min) V,bull. TAGLIO MAX BULL, AI C/D = 2,04 134,7 KN (finy min) 42.2 KN (finy min)
PASSO ORIZZONTALE (mm) 100 t.copr_ali PASSO ORIZZONTALE (mm) 100 t.copr_ali Asso ORIZZONTALE (mm) 100 t.copr_ali TENS.RF.ALA SUP.	p2 PASSO VERTICALE (mm) 166,7 SPESS. CO p2 PASSO VERTICALE (mm) 166,7 SPESS. CO Grif cop an s TENS RIF- COPR ALIA SLID	el DIST. DAL MARG. ORIZZ. (mm) cl DIST. DAL MARG. ORIZZ. (mm) ppriig. ALI SUP. el DIST. DAL MARG. ORIZZ. (mm) 75 ppriig. ALI INF. VEI σ,rif al i	(-) (mm) 750 DIST. DAL MARG. VERTIC. (mm) 50 20 DIST. DAL MARG. VERTIC. (mm) 100 30 RIFICA RIFOLL. Grif cop al. i TENS. RIF. COPR. ALA INF	COMPR. ANIMA (KN) 8060 (Inv max) 2864 (Inv min) N_ali COMPR. ALI (KN) 2735 (Inv max) 972 (Inv_min) N_ali COMPR. ALI (KN) 2735 (Inv max) 972 (Inv min) AMENTO LAMIE G.tif_an TENS. RIFOLL ANIMA	MOM. FLETT. ANIMA (KNm) 2798 (Inv. max) 1066 (Inv. min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv. max) 2119 (Inv. min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv. max) 2119 (Inv. min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv. max) 2119 (Inv. min) RE_INV_MAX G.rif cop_an TENS. RIPOLL. COPRIG. ANIMA	(Mpa) Res. taglio bull. per sez. lorda 274,8 4,bull (mm) Diametro bullone (sez. lorda) 27 mm 4,bull (mm) Diametro bullone (sez. lorda) 27 mm 5,traz c al,s	(Mpa) Res rifoll coprig- anima 510.0 CO FVr.d (Mpa) Res. taglio bull. per sez. lorda 274.8 CO FVr.d (Mpa) Res. taglio bull. per sez. lorda 274.8 CO TVr.d (Mpa) Res. taglio bull. per sez. lorda TVr.d (Mpa) TVr.d TV	(Mpa) Res. rifoll. ala sup. \$10,0 PRIGIUNTO ALA: Nb.copr.sup N° PIANI DI TAGLIO COPR. (-) 2 OPRIGIUNTO ALA Nb.copr.sup N° PIANI DI TAGLIO COPR. (-) 2 OPRIGIUNTO ALA Nb.copr.sup N° PIANI DI TAGLIO COPR. (-) 2 G.rif al. s TENS. RIF. ALA SUP.	(Mpa) Res rifoll ala inf. 1275,0 SUPERIORE Nb,ali N° TOT. BULL. (-) 20 NFERIORE Nb,ali N° TOT. BULL. (-) 20 G,rif cop an s TENS, RIF. COPR. ALA SUP. ALA SUP.	V SUL SINGOLO BULL. N 10718 (fav. max) 12738 (fav. min) N_file.b_ali N° FILE BULL. ALI (-) 4 N_file.b_ali (-) 4 Grif al i TENS RIF. ALA INF.	SFORZO MAX BULL N 142280 (Inv. max) 54212 (Inv. min) N col.b ali N col.b ali N col.b ali (-) 5 VERIFIC σ.rif cop al.i TENS. RIF. COPR. ALA NIP	TAGLIO MAX BULL. ANIMA CD.min = 2.06 133,6 KN (Inv max) 50,4 KN (Inv min) B_call BASE. COPRIG. ALI (mm) 600 B_call BASE. COPRIG. ALI (mm) 700 A RIFOLLAMENT Grif an TENS. RIFOLL. ANIMA	LUNGH. COPRIG. ALI (mm) 1000 L_call LUNGH. COPRIG. ALI (mm) 1200 O LAMIERE - IN Grif cop an TENS RIF. COPRIG. AN.	[mm] V_(N),bull TAGLIO_(N) (KN) 34 (Inv max) 12 (Inv min) V_(N),bull TAGLIO_(N) (KN) 34 (Inv max) 12 (Inv min) V_(N),bull TAGLIO_(N) (KN) (KN) 34 (Inv max) 12 (Inv min)	V_(M),bull TAGLIO_(M) (KN) 100 (Inv max) 30 (Inv min) TAGLIO_(M) (KN) 100 (Inv max) 30 (Inv min) Golden	V,bull. TAGLIO MAX BULL, AI C/D = 2,04 134,7 KN (inv max) 42,2 KN (inv min) V,bull. TAGLIO MAX BULL, AI C/D = 2,04 134,7 KN (inv min) Traz_e_al.j C COPR. ALA INF
pl PASSO ORIZZONTALE (mm) 100 t.copr_ali 100 t.copr	P2 PASSO VERTICALE (mm) 166,7 SPESS. CO PASSO VERTICALE (mm) 166,7 SPESS. CO PASSO VERTICALE (mm) 166,7 SPESS. CO PASSO VERTICALE (mm) 166,7 SPESS. CO PASSO P	(-) (mm) 225 e1 DIST. DAL MARG. ORIZZ. (mm) 50 DPRIG. ALI SUP. e1 DIST. DAL MARG. ORIZZ. (mm) 75 ORIZZ. (mm) 75 OFRIG. ALI INF. VEI G.rif al i TENS. RIF. ALA INF. (Mpa) σ = 99,7	(-) (mm) 750	COMPR. ANIMA (KN) 8060 (Inv. max) 2864 (Inv. min) N_ali COMPR. ALI (KN) 2735 (Inv. max) 972 (Inv. min) N_ali COMPR. ALI (KN) 2735 (Inv. max) 972 (Inv. min) AMENTO LAMIE G.rif an TENS. RIFOLL. ANIMA (Mpa) σ = 165,0	MOM. FLETT. ANIMA (KNm) 2798 (Inv. max) 1066 (Inv. min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv. max) 2119 (Inv. min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv. max) 2119 (Inv. min) TOT3 (Inv. max) 2119 (Inv. min) TOT3 (Inv. max) 2119 (Inv. min) RE - Inv. MAX G.rif. (op. an TENS. RIFOLL COPRIG. ANIMA (Mpa) \(\text{Mpa} \) \(\text{COPRIG. ANIMA} \) (Mpa) \(\text{COPRIG. ANIMA} \)	(Mpa) Res. taglio bull. per sez. lorda 274,8 4,bull (mm) Diametro bullone (sez. lorda) 27 mm 4,bull (mm) Diametro bullone (sez. lorda) 27 mm 7,bull (mm) Diametro bullone (sez. lorda) 27 mm 7,traz, e. al,s TENS. T/C COPR. ALA SUP (Mpa) $\sigma = 168,0$	(Mpa) Res. rifoll. coprig. anima 510,0 CU Fvr.d (Mpa) Res. taglio bull. per sez. lorda 274,8 CU (Mpa) Res. taglio bull. per sez. lorda 274,8 CU (Mpa) Tens. r. c.	(Mpa) Res. rifoll. ala sup. 510,0 OPRIGIUNTO ALA: Nb.copr.sup N° PIANI DI TAGLIO COPR. (-) 2 OPRIGIUNTO ALA Nb.copr.sup N° PIANI DI TAGLIO COPR. (-) 2 OPRIGIUNTO ALA TOPPIANI DI TAGLIO COPR. (-) 2 ORIGIUNTO ALA Nb.copr.sup N° PIANI DI TAGLIO COPR. (-) 2 ORIGIUNTO ALA Nb.copr.sup N° PIANI DI TAGLIO COPR. (-) 2 ORIGIUNTO ALA Nb.copr.sup N° PIANI DI TAGLIO COPR. (-) 2	(Mpa) Res. rifoll. ala inf. 1275.0 SUPERIORE Nb.ali N° TOT. BULL. (-) 20 INFERIORE Nb.ali N° TOT. BULL. (-) 20 G.rif. cop. an. s TENS. RIF. COPR. ALA SUP. (Mpa) σ=78.2	V SUL SINGOLO BULL. N 10718 (Inv max) 12738 (Inv min) N file,b ali N FILE BULL. 4 N FILE BULL. 4 O, rif al i TENS. RIF. ALA INF. (Mpa) σ = 31,3	SFORZO MAX SULL N 142280 (Inv_min) 54212 (Inv_min) N_col.b_ali N° COL. BULL. ALI C S N_col.b_ali N° COL. BULL. ALI C S VERIFIC S Ording top ali TENS. RIF. COPR. ALA INF C MPa Ording top ali TENS. RIF. COPR. ALA INF Office	TAGLIO MAX BULL. ANIMA CD_min = 2.06 133.6 KN (Inv max) 50.4 KN (Inv min) B_c.al BASE. COPRIG. ALI (mm) 600 B_c.al BASE. COPRIG. ALI (mm) 700 A RIFOLLAMENT σ.rif an TENS. RIFOLL. ANIMA (Mpa) σ = 6.2.2	LUNGH. COPRIG. ALI (mm) 1000 L_cal LUNGH. COPRIG. ALI (mm) 1200 O LAMIERE - IN G.rif cop an TENS. RIF. COPRIG. AN. (Mpa) (Mpa) σ = 62,2	[mm] V_(N),bull TAGLIO_(N) (KN) 34 (fm max) 12 (fnv min) V_(N),bull TAGLIO_(N) (KN) 34 (fm max) 12 (fnv min) Office Color Color Office Color Color Office Color Color Office Color Color Office Co	V_(M),bull TAGLIO_(M) (KN) 100 (Inv_max) 30 (Inv_min) V_(M),bull TAGLIO_(M) (KN) 100 (Inv_max) 30 (Inv_min)	V,bull. TAGLIO MAX BULL. AI C/D = 2,04 1347, KN (Inv. min) 42.2 KN (Inv. min) V,bull. TAGLIO MAX BULL. AI C/D = 2,04 1347, KN (Inv. min) traz_c_al.i COPR. ALA INF (Mpa) 0 = 60,0
PASSO ORIZZONTALE (mm) 100 t.copr_ali PASSO ORIZZONTALE (mm) 100 t.copr_ali C.rif_al_s TENS.RIF.ALA SUP. (Mpa) G=166.2 f=6-2 f=6-510.0	P2	e1 DIST. DAL MARG. ORIZZ. (mm) 50 DPRIG. ALI SUP. e1 DIST. DAL MARG. ORIZZ. (mm) 70 DIST. DAL MARG. ORIZZ. (mm) 75 OPRIG. ALI SUP. VEI G.rif al i TENS. RIF. ALA INF. (Mpa) G = 99,7 f.d = 1275,0	(-) (mm) 750	COMPR. ANIMA (KN) 8060 (Inv max) 2864 (Inv min) N_ali COMPR. ALI (KN) 2735 (Inv max) 972 (Inv min) N_ali COMPR. ALI (KN) 2735 (Inv max) 972 (Inv min) AMENTO LAMIE G.Tif an TENS. RIPOLL ANIMA (Mpa) \(\pi = 165.0 \) f.d = 510,0	MOM. FLETT. ANIMA (KNm) 2798 (finv max) 1066 (finv min) M_ali MOM. FLETT. ALI (KNm) 7073 (finv max) 2119 (finv min) M_ali MOM. FLETT. ALI (KNm) 7073 (finv max) 2119 (inv min) M_ali MOM. FLETT. ALI (KNm) 7073 (finv max) 2119 (finv min) RE - INV MAX G.rif (op) an TENS. RIFOLL COPRIG. ANIMA (Mpa) \[\sigma = 165.0 \tau = 165.0 \tau = 165.0 \tau = 165.0 \tau = 165.0	(Mpa) Res. taglio bull. per sez. lorda 274.8 4.bull (mm) Diametro bullone (sez. lorda) 27 mm 4.bull (mm) Diametro bullone (sez. lorda) 27 mm 5.traz_e_al_s TENS. T/C COPR. ALA SUP (Mpa) 6.de 338.1 6.338.1	(Mpa) Res rifoll coprig- anima 510.0 Fvr.d (Mpa) Res taglio bull. per soz. lorda 274.8 Ci Fvr.d (Mpa) Res taglio bull. per soz. lorda 274.8 Grant Ci Fvr.d (Mpa) Tests, Ti C COPR. ALA INF (Mpa) Grant 186,1 f.d = 319.0	(Mpa) Res. rifoll. ala sup. 510,0 OPRIGIUNTO ALA Nh.copr.sup N° PIANI DI TAGLIO COPR. (-) 2 OPRIGIUNTO ALA Nh.copr.sup N° PIANI DI TAGLIO COPR. (-) 2 TENS. RIF. ALA SUP. (Mpa) σ = 52,2 f, = 510,0	(Mpa) Res. rifoll. ala inf. 1275,0 SUPERIORE Nb,ali N° TOT. BULL. (-) 20 NFERIORE Nb,ali N° TOT. BULL. (-) 20 G.rif cop an s TENS. RIF. COP. (Mpa) (Mpa) (Mpa) (f.d = 58,2,3	VSUL SINGOLO	SFORZO MAX BULL N 142280 (Inv. min) 54212 (Inv. min) N colb. ali N COL. BULL. ALI (-) 5 N colb. ali N COL. BULL. ALI (-) 5 VERIFIC Grif cop. al. i TENS. RF. COPR ALA NFP ALA NFP (Mpa) G 52,2 f d = 813,5	TAGLIO MAX BULL. ANIMA CDmin = 2.06 133,6 KN (Inv max) 50,4 KN (Inv min) B_c,al BASE COPRIG. ALI (mm) 600 B_c,al BASE COPRIG. ALI (mm) 700 A RIFOLLAMEN¹ G,rif an TENS. RIFOLL ANIMA (Mpa) (Mpa) G = 62,2 f,d = 510,0	LUNGH COPRIG. ALI (mm) 1000 L_cal LUNGH COPRIG. ALI (mm) 1200 O LAMIERE - IN G.rif cop an TENS.RIF. COPRIG. AN. (Mpa) σ = 0.2 f.d = 5100	[mm] V_(N),bull TAGLIO_(N) (KN) 34 (Inv. max) 12 (Inv. min) V_(N),bull TAGLIO_(N) (KN) 34 (Inv. max) 12 (Inv. min) 12 (Inv. min) NV. MIN GATRA & GALS GATRA & GALS GATRA & GAT	V_(M),bull TAGLIO_(M) (KN) 100 (Inv max) 30 (Inv min) TAGLIO_(M) (KN) 100 (Inv_max) 30 (Inv min) TENS. T(V,bull. TAGLIO MAX BULL, AI C/D = 2,04 134,7 KN (nv max) 42,2 KN (nv min) V,bull. TAGLIO MAX BULL, AI C/D = 2,04 134,7 KN (nv max) 42,2 KN (nv min) traz_c_al.i C COPR, ALA INF (Mpa) = 60,0 = 319,0
BARIC. (mm) 275	P2 PASSO VERTICALE (mm) 166,7 SPESS. CO PASSO VERTICALE (mm) 166,7 SPESS. CO PASSO VERTICALE (mm) 166,7 SPESS. CO PASSO VERTICALE (mm) 166,7 SPESS. CO PASSO P	(-) (mm) 225 e1 DIST. DAL MARG. ORIZZ. (mm) 50 DPRIG. ALI SUP. e1 DIST. DAL MARG. ORIZZ. (mm) 75 ORIZZ. (mm) 75 OFRIG. ALI INF. VEI G.rif al i TENS. RIF. ALA INF. (Mpa) σ = 99,7	(-) (mm) 750	COMPR. ANIMA (KN) 8060 (Inv. max) 2864 (Inv. min) N_ali COMPR. ALI (KN) 2735 (Inv. max) 972 (Inv. min) N_ali COMPR. ALI (KN) 2735 (Inv. max) 972 (Inv. min) AMENTO LAMIE G.rif an TENS. RIFOLL. ANIMA (Mpa) σ = 165,0	MOM. FLETT. ANIMA (KNm) 2798 (Inv. max) 1066 (Inv. min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv. max) 2119 (Inv. min) M_ali MOM. FLETT. ALI (KNm) 7073 (Inv. max) 2119 (Inv. min) TOT3 (Inv. max) 2119 (Inv. min) TOT3 (Inv. max) 2119 (Inv. min) RE - Inv. MAX G.rif. (op. an TENS. RIFOLL COPRIG. ANIMA (Mpa) \(\text{Mpa} \) \(\text{COPRIG. ANIMA} \) (Mpa) \(\text{COPRIG. ANIMA} \)	(Mpa) Res. taglio bull. per sez. lorda 274,8 4,bull (mm) Diametro bullone (sez. lorda) 27 mm 4,bull (mm) Diametro bullone (sez. lorda) 27 mm 7,bull (mm) Diametro bullone (sez. lorda) 27 mm 7,traz, e. al,s TENS. T/C COPR. ALA SUP (Mpa) $\sigma = 168,0$	(Mpa) Res. rifoll. coprig. anima 510,0 CU Fvr.d (Mpa) Res. taglio bull. per sez. lorda 274,8 CU (Mpa) Res. taglio bull. per sez. lorda 274,8 CU (Mpa) Tens. r. c.	(Mpa) Res. rifoll. ala sup. 510,0 OPRIGIUNTO ALA: Nb.copr.sup N° PIANI DI TAGLIO COPR. (-) 2 OPRIGIUNTO ALA Nb.copr.sup N° PIANI DI TAGLIO COPR. (-) 2 OPRIGIUNTO ALA TOPPIANI DI TAGLIO COPR. (-) 2 ORIGIUNTO ALA Nb.copr.sup N° PIANI DI TAGLIO COPR. (-) 2 ORIGIUNTO ALA Nb.copr.sup N° PIANI DI TAGLIO COPR. (-) 2 ORIGIUNTO ALA Nb.copr.sup N° PIANI DI TAGLIO COPR. (-) 2	(Mpa) Res. rifoll. ala inf. 1275.0 SUPERIORE Nb.ali N° TOT. BULL. (-) 20 INFERIORE Nb.ali N° TOT. BULL. (-) 20 G.rif. cop. an. s TENS. RIF. COPR. ALA SUP. (Mpa) σ=78.2	V SUL SINGOLO BULL. N 10718 (Inv max) 12738 (Inv min) N file,b ali N FILE BULL. 4 N FILE BULL. 4 O, rif al i TENS. RIF. ALA INF. (Mpa) σ = 31,3	SFORZO MAX SULL N 142280 (Inv_min) 54212 (Inv_min) N_col.b_ali N° COL. BULL. ALI C S N_col.b_ali N° COL. BULL. ALI C S VERIFIC S Ording top ali TENS. RIF. COPR. ALA INF C MPa Ording top ali TENS. RIF. COPR. ALA INF Office	TAGLIO MAX BULL. ANIMA CD_min = 2.06 133.6 KN (Inv max) 50.4 KN (Inv min) B_c.al BASE. COPRIG. ALI (mm) 600 B_c.al BASE. COPRIG. ALI (mm) 700 A RIFOLLAMENT σ.rif an TENS. RIFOLL. ANIMA (Mpa) σ = 6.2.2	LUNGH. COPRIG. ALI (mm) 1000 L_cal LUNGH. COPRIG. ALI (mm) 1200 O LAMIERE - IN G.rif cop an TENS. RIF. COPRIG. AN. (Mpa) (Mpa) σ = 62,2	[mm] V_(N),bull TAGLIO_(N) (KN) 34 (fm max) 12 (fnv min) V_(N),bull TAGLIO_(N) (KN) 34 (fm max) 12 (fnv min) Office Color Color Office Color Color Office Color Color Office Color Color Office Co	V_(M),bull TAGLIO_(M) (KN) 100 (Inv max) 30 (Inv min) TAGLIO_(M) (KN) 100 (Inv_max) 30 (Inv min) TENS. T(V,bull. TAGLIO MAX BULL., (7D = 2.04 134,7 KN (Inw max) 42.2 KN (Inv min) V,bull. TAGLIO MAX BULL., (7D = 2.04 134,7 KN (Inv max) 42.2 KN (Inv min) traz_e_al.i C COPR. ALA INF (Mpa) (Mpa)

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

VERIFICA DELLE TRAVI CENTRALI L = 40 M SEZ. DI CAMPATA – SLE_CARATT. 7.13.11.

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

							CA	ARATTERISTICH	E GEOMET	RICHE TE	RAVE A-CLS					
Ltr	Beff,soletta	h,sol	Φa,long.	p_a,l	d,a	As,long.	Htr	Bi	Bs	h,a	t,i	t,s	t,a	r1	Aa	Ga
(m)	3,25 m	(mm)	(mm)	(mm)	(mm)	(mm^2)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm^2)	(KN/m)
Lunghezza trave	Largh.im palcato	Altezza soletta	Armatura long. soletta		Dist. baric. Aa,l dal bordo sup.	A. arm. soletta	Altezza trave acc.	Base piatto inferiore	Base piatto superiore	Altezza anima	Spessore piatto inferiore	Spessore piatto	Spessore anima	raggio curvat. raccordo	Area trave acciaio	Peso trave acciaio
40,00	12,90 m	350	16	200	47	4825	1800	700	600	1720	50	30	30	16	104600	8,211
Rck	f,cd	f,y	Ec,m	f,d	Φ,infinito	n,2	n,3	8,rit	Ac,full	Ntr	N,rit_slu	ΔT,differ.	α	CLASSE SEZ	IONE NTC_4.2.3.1	Verifica imbozz CNR
(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(-)	(-)	(-)	(-)	(mmq)	(-)	(N)	(°C)	(1/°C)	Parametri	h/t	10011 p.to 7.2.6.1
Res_cubic	Res_ a compr.	tens. snerv.	Modulo elastico	Tens.lim.	Coeff.viscosità di Withney	Coeff.Omog	Coen.Omogen	Coeff.ritiro	Area compless.	Numero	F. ritiro eccentr. (soletta)	Variaz. termica	Coeff. dilat.	β = 0,00116	Pareti sott.	Occorre verif. dettagliata
					Cucii.viscusită di vvitillev			Cocii.lillio	1-441-	4	r. ritiro eccenti. (soletta)	termica	term.	0.010.00	h/t = 57.3	Occorre vern. dettagnata
a compr.	Pura	acc.carpent.	medio	carnenteri		Fase II	Fase III		soletta cls	travi ponte		differenz	tei iii.	ε = 0,81362	n/t = 5/,3	ad imbozz.

FASE 0 - SLE COMB. RARA

SCHEMA DI TRAVE SEMPLICEMENTE APPOGGIATA - SOLO TRAVE IN ACCIAIO

CARA	TTERISTI	CHE MECCA	NICHE	ASCISSA DI VERIF.
Aa	S	X_0	Ja_0	x
(mm^2)	(mm^3)	(mm)	(mm^4)	(val.compr. fra 0 e 40 m)
Area acciaio	Momento Statico	Asse Neutro - Fase I	Momento Inerzia - Ease I	20,00 m
104600	########	1036	5,171E+10	

	SOLLEC	ITAZIONI SL	U					TENSIONI SLE - I	FASE 0				VER	IFICHE
	N	V_2	M_3	σc,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	τ	σ_id,max	VERIFICA	
	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	ACC.	η,асс
CDS	N_(pp_ti	V_(pp_tr)	M_(pp_tr)	Tens.cls,m ax	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima sup	Tens.acc. quota irrigidim. longitud.	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ_id,max < 0,8f,d	C/D
	0,0	0,0	1642,22			-32,89	-31,94	-22,41	22,69	24,28	0,00	32,89	Verificato	10,28

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

FASE I - SLE COMB. RARA

SCHEMA TRAVE CONTINUA - SOLETTA NON REAGENTE - CARICO PERM. SOLETTA G1k

CARA	TTERISTI	CHE MECCA	NICHE
Aa	S	X_1	Ja_1
(mm^2)	(mm^3)	(mm)	(mm^4)
Area acciaio	Momento Statico	Asse Neutro - Fase I	Momento Inerzia - Fase I
104600	#######	1036	5,171E+10

N V_2	М 3											
	141_3	σc,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	τ	σ_id,max	VERIFICA	_
N) (KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	ACC.	η,асс
op+G 1) V_(pp+Gk1	M_(pp+Gk1	Tens.cls,m ax	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima sup	Tens.acc. quota irrigidim. longitud.	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ_id,max < 0,8f,d	C/D
,0 28,2	2837,4			-56,82	-55,18	-38,72	39,20	41,95	0,55	56,83	Verificato	4,76
,0 -68,4	709,3			-14,21	-13,79	-9,68	9,80	10,49	1,33	14,39	Verificato	18,80
,0 92,6	697,0			-13,96	-13,56	-9,51	9,63	10,30	1,79	14,30	Verificato	18,91
,0 -92,6	697,0			-13,96	-13,56	-9,51	9,63	10,30	1,79	14,30	Verificato	18,91
,0 8,0	2846,4			-57,01	-55,35	-38,84	39,33	42,08	0,16	57,01	Verificato	4,74
,0 -80,5	641,7			-12,85	-12,48	-8,76	8,87	9,49	1,56	13,13	Verificato	20,60
), (,(,(D+G V_(pp+GkI) 0 28,2 0 -68,4 0 92,6 0 -92,6 0 8,0) + G V_(pp+Gk1) M_(pp+Gk1) 0 28,2 2837,4 0 -68,4 709,3 0 92,6 697,0 0 -92,6 697,0 0 8,0 2846,4	1	1	Description	Tens.acc. ala sup Tens	Tens.acc. Tens	heart V_(pp+Gk1) M_(pp+Gk1) Tens.acls,m ax Tens.acm. Soletta Tens.acc. ala sup ala sup ala sup ala sup inf. Tens.acc. quota irrigidim. longitud. 39,20 39,20 39,20 49,80 9,80 9,80 9,80 9,80 9,80 9,80 9,63 -9,51 9,63 -9,51 9,63 -9,51 9,63 -9,51 9,63 -9,51 9,63 -9,51 9,63 -	Tens.acc. alia sup Tens.ac	Tens.acc. ala sup Tens.acc. ali sup Tens	Tens.acc. ala sup Tens	Tens.acc. at Tens

FASE II - SLE COMB. RARA

SCHEMA TRAVE CONTINUA - SOLETTA REAGENTE OMOGENEIZZATA A TEMPO INFINITO (VISCOSITA') - SOVRACC. PERM. G2k + RITIRO CLS

						CA	RATTERISTIC	CHE MECCANICHE							SOLLECITAZ, RITH	RO
Ea	Ec	n,2	Aa	As	Ac	Ai,2 (+)	Si,2 (+)	X_2 (+)	Ja_2 (+)	Ai,2 (-)	Si,2 (-)	X_2 (-)	Ja_2 (-)	N,rit,soletta	σ,ritiro_slu	SOLL_SAP
(Mpa)	(Mpa)	(-)	(mm^2)	(mm^2)	(mm^2)	(mm^2)	(mm^3)	(mm)	(mm^4)	(mm^2)	(mm^3)	(mm)	(mm^4)	(N)	(Mpa)	N,rit. (compr.)
Mod.Elast.	Mod.Elas	C 60		Area			Momento	A.N Fase II	Mom. Inerzia -		M	A.N Fase	Mom. Inerzia -		Tens. traz. nella soletta	-4390,1 KN/Trave
Acc.	t.Cls	Coeff.Omog. Area accia	Area acciaio	armature	Area cls	Area ideale	Statico	Soletta tutta compr.	Fase II	Area ideale	Momento Statico	II	Fase II	eccentrica (soletta)	(connettori)	M,rit.(M. posit.)
210000	12013,0	17,48	104600	4825	1137500	174496	1,565E+08	897	1,147E+11	109425	1,452E+08	1327	5,997E+10	5,268E+06	3,48	3170,2 KNm/Trave
	•				•		•					•	•			

	SOLLECI	TAZIONI SLI	U					TENSIONI SLE - F	ASE II					١	ERIFICHE SLU	
ENNUPLE	N	V_2	M_3	σc,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	τ	σ_id,max	VERIFICA		VERIFICA CLS	
DI COMB.	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	ACC.	η,асс	VERIFICA CLS	η,cls
MAX CONTEM P.	N_(Gk2)	V_GK2	M_GK2	Tens.cls,m ax	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima sup	Tens.acc. quota irrigidim. longitud.	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ_id,max < 0,8f,d	C/D	σ,c_max <= 0,6*f,Ck	C/D
MAX N	-97,3	40,0	2098,8	-0,97	-16,11	-10,56	-10,02	-4,53	21,44	22,36	0,78	22,40	Verificato	12,08	Verificato	23,09
MIN N	-5346,6	-19,4	2039,8	-2,67	-45,75	-40,37	-39,83	-34,50	-9,26	-8,37	0,38	40,37	Verificato	6,70	Verificato	8,41
MAX V2	-111,9	49,4	1939,7	-0,90	-15,01	-9,89	-9,38	-4,31	19,69	20,54	0,96	20,61	Verificato	13,13	Verificato	24,78
MIN V2	-5336,4	-49,8	1939,7	-2,62	-44,95	-39,83	-39,32	-34,25	-10,25	-9,40	0,96	39,87	Verificato	6,78	Verificato	8,56
MAX M3	-112,3	26,8	2243,2	-1,04	-17,26	-11,34	-10,75	-4,89	22,87	23,85	0,52	23,87	Verificato	11,33	Verificato	21,55
MIN M3	-5333,7	-45,8	1914,1	-2,60	-44,75	-39,69	-39,19	-34,19	-10,50	-9,67	0,89	39,72	Verificato	6,81	Verificato	8,60

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

	SCHEMA TRAVE CONTINUA - SOLETTA REAGENTE OMOGENEIZZATA A TEMPO ZERO - SOVRACC, VARIABILI Qik, + VARIAZ, TERMICHE DT															
	SCHEMA TRAVE CONTINUA - SOLETTA REAGENTE OMOGENEIZZATA A TEMPO ZERO - SOVRACC. VARIABILI Qik. + VARIAZ, TERMICHE DT															
	CARATTERISTICHE MECCANICHE SOLLECITAZ. \(\Delta T_\) diff															
-	-								1 7 2(1)	1124	GLQ ()	1 2 2 4 3		ε.ΔT differ.	σ.ΔT differ.	
Ea	Ec	n,3	Aa	As	Ac	Ai,3 (+)	Si,3 (+)	X_3 (+)	Ja_3 (+)	Ai,3 (-)	Si,3 (-)	X_3 (-)	Ja_3 (-)		- / =	SOLL. AT, diff_SAI
` /	(Mpa)	(-)	(mm^2)	(mm^2) Area	(mm^2)	(mm^2)	(mm^3)	(mm)	(mm^4)	(mm^2)	(mm^3)	(mm)	(mm^4)	(-)	(Mpa)	N,ΔT_differ. (traz.)
	cc. t.Cls Coeff.Omog. Area acciaio armature soletta (M+) Statico (M+) Statico (M+) Soletta tutta compr. Fase III (M+) (M-) Momento Statico (M-) III (M-) Fase III (M-) Fas															
210000	soletta / / Soletta tutti tompi															
SC	SOLLECITAZIONI SLU TENSIONI SLE - FASE III VERIFICHE SLU															
NNUPLE	PLE N V.2 M.3 GC, max GS Ga, ali_sup Ga, an_sup Ga, an_irr Ga, an_inf Ga, ali_inf T G_id, max VERIFICA N SC VERIFICA CLS To cls															
I COMB.	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	ACC.	η,асс	VERIFICA CLS	η,cis
MAX CONTEM N	N_(Gk2)	V_GK2	M_GK2	Tens.cls,m ax	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima sup	Tens.acc. quota irrigidim. longitud.	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ_id,max < 0,8f,d	C/D	σ,c_max <= 0,6*f,Ck	C/D
MAX N	7315,2	443,7	5653,4	-7,38	49,60	60,75	61,86	72,91	125,20	127,04	8,60	127,91	Verificato	2,11	Verificato	3,04
MIN N -	-1234,8	-436,5	-891,5	-4,43	14,86	10,36	9,91	5,45	-15,66	-16,40	8,46	21,99	Verificato	12,30	Verificato	5,06
MAX V2	7309,7	532,5	-1018,8	-3,74	91,62	86,47	85,96	80,87	56,74	55,89	10,32	88,30	Verificato	3,06	Verificato	5,99
MIN V2 -	-1173,5	-533,2	-1018,8	-4,39	17,79	12,64	12,13	7,03	-17,09	-17,94	10,33	25,34	Verificato	10,67	Verificato	5,10
MAX M3	7264,6	470,0	5749,6	-7,44	48,77	60,11	61,24	72,47	125,65	127,53	9,11	128,50	Verificato	2,10	Verificato	3,01
															Verificato	5,08

					TENSIONI SL	Æ					V	ERIFICHE SLU	
	σc,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	τ	σ_id,max	VERIFICA		VEDIEICA CLS	
COMBINAZIONI	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	ACC.	η,асс	VERIFICA CLS	η,cls
	Tens.cls,m ax	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima sup	Tens.acc. quota irrigidim. longitud.	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ_id,max < 0,8f,d	C/D	σ,c_max <= 0,6*f,Ck	C/D
MAX N	-8,35	33,49	-39,52	-35,27	7,25	208,54	215,62	9,92	216,31	Verificato	1,25	Verificato	2,68
MIN N	-7,09	-30,89	-77,10	-75,65	-61,13	7,58	10,00	10,16	79,09	Verificato	3,42	Verificato	3,16
MAX V2	-4,64	76,61	29,73	31,09	44,64	108,76	111,02	13,07	113,30	Verificato	2,39	Verificato	4,83
MIN V2	-7,01	-27,17	-74,04	-72,69	-59,14	4,98	7,24	13,09	77,44	Verificato	3,49	Verificato	3,20
MAX M3	-8,48	31,50	-41,12	-36,81	6,34	210,55	217,74	9,78	218,40	Verificato	1,24	Verificato	2,64
MIN M3	-7,01	-22,93	-69,74	-68,53	-56,34	1,35	3,39	11,66	72,61	Verificato	3,73	Verificato	3,20

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

7.13.12. VERIFICA DELLE TRAVI CENTRALI L = 40 M SEZ. DI CAMPATA - SLE FREQUENTE

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

FASE I - SLE COMB. FREQ.

SCHEMA TRAVE CONTINUA - SOLETTA NON REAGENTE - CARICO PERM. SOLETTA G1k

CARA	TTERISTI	CHE MECCA	NICHE
Aa	S	X_1	Ja_1
(mm^2)	(mm^3)	(mm)	(mm^4)
Area acciaio	Momento Statico	Asse Neutro - Fase I	Momento Inerzia - Esse I
104600	########	1036	5,171E+10

	SOLLECI	TAZIONI SLI	U				TENS	IONI SLE - FASE I					VEI	RIFICHE
ENNUPLE	N	V_2	M_3	σc,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	τ	σ_id,max	VERIFICA	
DI COMB.	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	ACC.	η,асс
MAX CONTEM	N_(pp+G	V_(pp+Gk1)	M_(pp+Gk1	Tens.cls,max Tens.arm. Soletta		Tens.acc. ala	Tens.acc. anima sup	Tens.acc. quota	Tens.acc.an.	Tens.acc. ali	Tens.taglio anima	Tensione	σ_id,max <	C/D
P.	k1)	v_(pp+Gk1))	Tens.cis,max	Tens.at in. Soletta	sup	rens.acc. annna sup	irrigidim. longitud.	inf.	inf.	Tens.tagno anima	ideale	0,8f,d	CrD
MAX N	0,0	28,2	2837,4			-56,82	-55,18	-37,37	39,20	41,95	0,55	56,83	Verificato	4,76
MIN N	0,0	-68,4	709,3			-14,21	-13,79	-37,37	9,80	10,49	1,33	14,39	Verificato	18,80
MAX V2	0,0	92,6	697,0			-13,96	-13,56	-37,37	9,63	10,30	1,79	14,30	Verificato	18,91
MIN V2	0,0	-92,6	697,0			-13,96	-13,56	-37,37	9,63	10,30	1,79	14,30	Verificato	18,91
MAX M3	0,0	8,0	2846,4			-57,01	-55,35	-37,37	39,33	42,08	0,16	57,01	Verificato	4,74
MIN M3	0,0	-80,5	641,7			-12,85	-12,48	-37,25	8,87	9,49	1,56	13,13	Verificato	20,60

FASE II - SLE COMB. FREQ.

SCHEMA TRAVE CONTINUA - SOLETTA REAGENTE OMOGENEIZZATA A TEMPO INFINITO (VISCOSITA') - SOVRACC. PERM. G2k + RITIRO CLS

						CARAT	TERISTICHE MEC	CANICHE							SOLLECITAZ, RITIRO	
Ea	Ec	n,2	Aa	As	Ac	Ai,2 (+)	Si,2 (+)	X_2 (+)	Ja_2 (+)	Ai,2 (-)	Si,2 (-)	X_2 (-)	Ja_2 (-)	N,rit,soletta	σ,ritiro_slu	SOLLSAP
(Mpa)	(Mpa)	(-)	(mm^2)	(mm^2)	(mm^2)	(mm^2)	(mm^3)	(mm)	(mm^4)	(mm^2)	(mm^3)	(mm)	(mm^4)	(N)	(Mpa)	N,rit. (compr.)
Mod.Elast.	Mod.Elas	C	Area acciaio	Area	Asses als	Area ideale	Momento Statico	A.N Fase II	Mom. Inerzia -	Area ideale	Momento Statico	A.N	Mom. Inerzia -	Forza di ritiro	Tens. traz. nella soletta	-4390,1 KN/Trave
Acc.	t.Cls	Coen.Omog.	Area acciaio	armature	Area cls	Area ideale	Momento Statico	Soletta tutta compr.	Fase II	Area ideale	Momento Statico	Fase II	Fase II	eccentrica (soletta)	(connettori)	M,rit.(M. posit.)
210000	120120	17.49	104600	4025	1127500	174406	1 565E±00	907	1 147E±11	100425	1 452F±08	1327	5 007F±10	5 268F±06	2 49	3170 2 KNm/Trovo
210000	00 12013,0 17,48 104600 4825 1137500 174496 1,565E+08 897 1,147E+11 109425 1,452E+08 1327 5,997E+10 5,268E+06 3,48 3170,2 KNm/Trave															

									VERIFICA APERT	URA DELLE FE	SSURE						
	Tipol	ogia durata	earichi		LU	JNGA DURATA		Condizion	ni ambientali		AGGRI	ESSIVE	Tipologi	a combinazioni		FREQUENTE	
	K1	K2	К3	K4	σs	$A_{c,eff.min}$		Kt	_	$ ho_{ m p,eff}$	$[e_{\text{sm}}\text{-}\epsilon_{\text{cm}}]_{\text{min}}$	[e _{sm} -ε _{cm}] _{min}	$[e_{sm}$ - $\varepsilon_{cm}]_{calc}$	s _{r,max.1}	S _{r,max.2}	S _{r,max}	w _k
(Coefficie	nti k per il e	alcolo dell'ai	npiezza di	(MPa)	(mmq)	W _{k,lim}	KI	S _{max,rif}	(-)	(-)	(-)	(-)	(mm)	(mm)	(mm)	(mm)
		fessu	razione		Tens. arm.	Area efficace tesa di	Amp. lim.	Fatt due carios	Spaziatura max (mm)	As toss/als toss	Difference	tra la deformazione nell'acciai	a a nal ala		Distanza massima tra	la faccuna	Ampiezza di calc.
	0,8	0,5	3,4	0,425	soletta	calcestruzzo	fessure	ratt. dur. carico	Spaziatura max (mm)	As,teso/cis teso	Differenza	ira ia deioi mazione nen acciai	o e nei cis		Distanza massima tra	ie iessure	fessure
MA	ΧN	-97,3	40,0	2098,8		892096											
MIN	NN	-5346,6	-19,4	2039,8		A66122											
MA	X V2	-111,9	49,4	1939,7		Ac_eff,1,2,3	0.30	0.4	235	0.00541							
MIN	VV2	-5336,4	-49,8	1939,7		1137500	0,30	0,4	255	0,00341							
MA	X M3	-112,3	26,8	2243,2		892096											
MIN	N M3	-5333,7	-45,8	1914,1		1137500											

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

								FASE III - SLI	E COMB. FI	REQ.						
					SCHEMA TRAVE	CONTINUA - S	SOLETTA REAGEN	TE OMOGENEIZZAT	TA A TEMPO ZI	ERO - SOVRA	ACC. VARIABILI Qik. + VA	RIAZ. TER	MICHE DT			
						CARAT	TERISTICHE MEC	CANICHE							$SOLLECITAZ.\Delta T_diff$	
Ea	Ec	n,3	Aa	As	Ac	Ai,3 (+)	Si,3 (+)	X_3 (+)	Ja_3 (+)	Ai,3 (-)	Si,3 (-)	X_3 (-)	Ja_3 (-)	ε,ΔT_differ.	σ , ΔT _differ.	SOLL. \(\Delta\)T,diff_SAP
(Mpa)	(Mpa)	(-)	(mm^2)	(mm^2)	(mm^2)	(mm^2)	(mm^3)	(mm)	(mm^4)	(mm^2)	(mm^3)	(mm) A.N	(mm^4)	(-)	(Mpa)	N,ΔT_differ. (traz.)
Mod.Elast.		Coeff.Omog.	Area acciaio	Area armature	Area cls	Area ideale	Momento Statico		Mom. Inerzia -	Area ideale	Momento Statico (M-)	Fase III	Mom. Inerzia -	Def.term. diff.	Tens. compr. nella	7177,3 KN
Acc.	t.Cls	Ü		soletta		(M+)	(M+)	Soletta tutta compr.	Fase III (M+)	(M-)		(M-)	Fase III (M-)			M,ΔTdiffer. (M negat.)
210000	34625	6,06	104600	4825	1137500	296980	1,780E+08	599	1,535E+11	109425	1,452E+08	1327	5,997E+10	1,200E-04	-4,16	-3045,3 KNm
								VERIFICA APERT	UDA DELLE EE	CCUDE						
Tinol	logia durata	carichi		R	REVE DURATA		Condizion	ni ambientali	OKA DELLE FE	AGGRE	SSIVE	Tipolog	ia combinazioni		FREQUENTE	
K1 K2 K3 K4 σs A _{c,eff,min} W _{i, to} Kt S _{min} et P _{p,eff} [e _{sm} -ε _{cm}] _{min} [e _{sm} -ε _{cm}] _{min} e _{sm} -ε _{cm}] _{calc} s _{r,max.1} s _{r,max.2}															S _{r.max}	w _k
				(MPa)	(mmq)	W _{k.lim}	Kt	S _{max,rif}	(-)	(-)	(-)	(-)	(mm)	(mm)	(mm)	(mm)
Coemen		urazione	npician di	Tens. arm.	Area efficace tesa di	Amp. lim.					•		` /	` ′	` ′	Ampiezza di calc.
0,8	0,5	3,4	0,425	soletta	calcestruzzo	fessure	Fatt. dur. carico	Spaziatura max (mm)	As,teso/cls teso	Differenza t	ra la deformazione nell'accia	io e nel cls		Distanza massima tra	le fessure	fessure
MAX N	4307,4	399,9	4263,7	25,84	892096					0,000074	-0,001706	0,000074	635,5	1071	635	0,05
MIN N	-804,5	-328,4	-673,6	11,66	Ac eff,1,2,3					0,000033	-0,001773	0,000033	635,5	1071	635	0,02
MAX V2	4297,0	401,1	-770,3	57,51		0,30	0,6	235	0.00541	0,000164	-0,001555	0,000164	635,5	1071	635	0,10
MIN V2	-743,2	-401,7	-770,3	13,93	1137500	0,50	0,0	233	0,00011	0,000040	-0,001762	0,000040	635,5	1071	635	0,03
MAX M3	4299,7	352,7	4331,0	25,53	892096	1				0,000073	-0,001707	0,000073	635,5	1071	635	0,05
MIN M3	-777,5	-356,8	-916,9	16,94	1137500					0,000048	-0,001748	0,000048	635,5	1071	635	0,03
															VERIF. APERT. TOT.	DELLE EFECURE
															VERIF, APERI, 101.	
															$\mathbf{w}_{k.lim}$	Σw _k (mm)
																Ampiezza tot. di
															Amp. lim. fessure	calc. fessure
																0,05
																0,02
															0.20	0,10
															0,30	0,03
																0,05
																0,03

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

FASE I - SLE COMB. FREQ.

SCHEMA TRAVE CONTINUA - SOLETTA NON REAGENTE - CARICO PERM. SOLETTA G1k

CAI	RATTERIST	ICHE MECCANI	ICHE
Aa	S	X_1	Ja_1
(mm^2)	(mm^3)	(mm)	(mm^4)
Area acciaio	Momento Statico	Asse Neutro - Fase I	Momento Inerzia - Fase I
104600	108319000	1036	5.171E+10

	SOLLECI	TAZIONI SLU						TENSIONI SLE - FA	ASE I					VERIFICHE
ENNUPLE	N	V_2	M_3	σc,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	τ	σ_id,max	VERIFICA	
DI COMB.	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	ACC.	η,асс
MAX CONTEMP.	N_(pp+Gk1	V_(pp+Gk1)	M_(pp+Gk1)	Tens.cls,max	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima sup	Tens.acc. quota irrigidim. longitud.	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ_id,max < 0,8f,d	C/D
MAX N	0.0	-81.6	2608.3			-52.24	-50.72	-37.37	36.04	38.56	1.58	52.31	Verificato	5.17
MIN N	0.0	-79.4	2612.8			-52.33	-50.81	-37.37	36.10	38.63	1.54	52.39	Verificato	5.16
MAX V2	0.0	93.5	2728.5			-54.64	-53.06	-37.37	37.70	40.34	1.81	54.73	Verificato	4.94
MIN V2	0.0	-93.5	2728.5			-54.64	-53.06	-37.37	37.70	40.34	1.81	54.73	Verificato	4.94
MAX M3	0.0	-7.1	2836.5			-56.81	-55.16	-37.37	39.19	41.93	0.14	56.81	Verificato	4.76
MIN M3	0.0	-84.0	2556.8			-51.20	-49.72	-37.25	35.33	37.80	1.63	51.28	Verificato	5.27

FASE II - SLE COMB. FREQ.

SCHEMA TRAVE CONTINUA - SOLETTA REAGENTE OMOGENEIZZATA A TEMPO INFINITO (VISCOSITA') - SOVRACC. PERM, G2k + RITIRO CLS

						CARATT	TERISTICHE ME	CCANICHE							SOLLECITAZ RITIRO	
	- 1					· ·					(II.2.4.)	77.00				COLL CAR
Ea	Ec	n,2	Aa	As	Ac	Ai,2 (+)	Si,2 (+)	X_2 (+)	Ja_2 (+)	Ai,2 (-)	Si,2 (-)	X_2 (-)	Ja_2 (-)	N,rit,soletta	σ,ritiro_slu	SOLLSAP
(Mpa)	(Mpa)	(-)	(mm^2)	(mm^2)	(mm^2)	(mm^2)	(mm^3)	(mm)	(mm^4)	(mm^2)	(mm^3)	(mm)	(mm^4)	(N)	(Mpa)	N,rit. (compr.)
Mod.Elast.Ac	Mod Flast Area A.N Fase II Mom Ingris . A.N Fase III									Mom. Inerzia	Forza di ritiro eccentrica	Tens. traz. nella soletta	-4390.1 KN/Trave			
c.	Cls	Coeff.Omog.	Area acciaio	armature soletta	Area cls	Area ideale	Momento Statico	Soletta tutta compr.	Fase II	Area ideale	Momento Statico	II	- Fase II	(soletta)	(connettori)	M,rit.(M. posit.)
210000	12013.0	17.48	104600	4825	1137500	174496	1.565E+08	897	1.147E+11	109425	1.452E+08	1327	5.997E+10	5.268E+06	3.48	3170.2 KNm/Trave

										VERIFICA AP	ERTURA DELI	E FESSURE						
	Tipologia	a durata ca	richi		1	LUNGA I	OURATA		Condizio	oni ambientali		AGGRE	ESSIVE	Tipologia c	ombinazioni		FREQUENTE	
K1	1	K2	К3	K4	σs		$\mathbf{A}_{c,eff.min}$		Kt	_	$ ho_{ m p,eff}$	[e _{sm} -ε _{cm}] _{min}	[e _{sm} -ε _{cm}] _{min}	[e _{sm} -ε _{cm}] _{calc.}	s _{r,max.1}	\$ _{r,max.2}	S _{r,max}	w _k
Coeffic	ionti k nor	r il anlanla	dell'ampiezza d	i fossuraziono	(MPa)		(mmq)	W _{k.lim}	Kt	S _{max,rif}	(-)	(-)	(-)	(-)	(mm)	(mm)	(mm)	(mm)
Coemic	ienu k pei	ii caicoio	uen ampiezza u	i iessui azione	Tens. arm.	A	rea efficace tesa di	Amp. lim.	Fatt dur sarias	Spaziatura max (mm)	As topo/als topo	Differenz	ra tra la deformazione nell'acciaio e	nol ale		Distanza massima tr	a la fassura	Ampiezza di calc.
0.8	,	0.5	3.4	0.425	soletta		calcestruzzo	fessure	ratt. dur. carico	Spaziatura max (mm)	As,teso/cis teso	Differenz	a tra la delormazione nell'accialo e	nei cis		Distanza massima tr	a ie iessure	fessure
MAX N	-9	98.9	41.9	2084.4			892096											
MIN N	-53	347.1	-20.0	2067.5			A											
MAX V2	OM	FATI:	49.8	1948.7			Ac_eff,1,2,3	0.30	0.4	235	0.00541							
MIN V2	-53	340.1	-50.2	1948.7			1137500	0.30	0.4	233	0.00541							
MAX M3	-1	111.6	27.2	2242.6			892096						Pag. 169 di					
MIN M3	-53	335.9	-46.0	1921.0			1137500	ESE	naek	0	^ IN	1	216					

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

FASE III - SLE COMB. FREQ. SCHEMA TRAVE CONTINUA - SOLETTA REAGENTE OMOGENEIZZATA A TEMPO ZERO - SOVRACC. VARIABILI QIL, + VARIAZ. TERMICHE DT SOLLECITAZ. ∆T diff CARATTERISTICHE MECCANICHE Ai,3 (+) Si,3 (+) X_3 (+) Ja_3 (+) Ai,3 (-) Si,3 (-) X_3 (-) Ja_3 (-) ε,ΔT_differ. $\sigma,\Delta T_differ.$ SOLL. ∆T,diff_SAP Ea Ec n,3 Aa As Ac (Mpa) (-) (mm^2) (mm^2) (mm^2) (mm^2) (mm^3) (mm^2) (mm^3) (mm) (mm^4) (Mpa) N,ΔT differ. (traz.) (-) Area Mom. Inerzia A.N. Fase III (M+) 7177.3 KN Iod.Elast.Ac Mod.Elast .N. - Fase Tens. compr. nella soletta Area ideale Aomento Statio Mom. Inerzia rea ideale (M Coeff.Omog. rmatur Area cls Momento Statico (M-) - Fase III (M-Def.term. diff. III (M-) Cls (M+) (M+)Soletta tutta compr. Fase III (M+) (soletta calda) M,ΔTdiffer. (M negat. soletta 210000 34625 1137500 296980 1.780E+08 1.535E+11 1.452E+08 1327 5.997E+10 1.200E-04 -3045.3 KNm 6.06 104600 4825 109425 -4.16 VERIFICA APERTURA DELLE FESSURE BREVE DURATA Tipologia durata carichi Condizioni ambientali AGGRESSIVE Tipologia combinazioni FREQUENTE К2 К3 σs $A_{\text{c,eff.min}}$ $[e_{\text{sm}}\text{-}\epsilon_{\text{cm}}]_{\text{min}}$ $\mathbf{w}_{\mathbf{k}}$ $\rho_{p,eff}$ $s_{\text{r,max.2}}$ $s_{r,max}$ Kt (MPa) (mmq) (-) (-) (-) (-) (mm) (mm) (mm) (mm) Coefficienti k per il calcolo dell'ampiezza di fessurazione Tens. arm. Area efficace tesa di Amp. lim. Ampiezza di calc. Fatt. dur. carico Spaziatura max (mm As,teso/cls teso Differenza tra la deformazione nell'acciaio e nel cls Distanza massima tra le fessure soletta calcestruzzo fessure fessure 0.8 3.4 0.425 4308.4 0.000074 0.000074 635.5 IAX N 399 4 42964 25.73 892096 -0.001706 1071 635 0.05 -896.5 -328.7 -679.7 11.48 0.000033 -0.001774 0.000033 635.5 1071 635 0.02 Ac_eff,1,2,3 IAX V2 4308.4 402.6 -780.0 57.83 0.000165 -0.001553 0.000165 635.5 1071 635 0.10 0.30 235 0.00541 0.6 IIN V2 -745.7 -402.4 -780.0 14.13 1137500 0.000040 -0.001761 0.000040 635.5 1071 635 0.03 IAX M3 4303.6 353.2 4345.7 25.51 892096 0.000073 -0.001707 0.000073 635.5 1071 635 0.05 IIN M3 -811.4 -359.0 -934.5 17.21 1137500 0.000049 -0.001747 0.000049 635.5 1071 635 0.03 VERIF. APERT. TOT. DELLE FESSUR $\Sigma \mathbf{w}_k$ (mm) Ampiezza tot. di Amp. lim. fessure calc. fessure 0.05 0.02 0.10 0.30 0.03 0.05 0.03

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

7.13.13. VERIFICA DELLE TRAVI CENTRALI L = 40 M SEZ. DI CAMPATA - SLE QUASI **PERMANENTE**

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

							CA	RATTERIST	TCHE GEO	METRICH	IE TRAVE A-CLS					
Ltr	Beff,soletta	h,sol	Φa,long.	p_a,l	d,a	As,long.	Htr	Bi	Bs	h,a	t,i	t,s	t,a	r1	Aa	Ga
(m)	3,25 m	(mm)	(mm)	(mm)	(mm)	(mm^2)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm^2)	(KN/m)
Lunghezza trave	Largh.impal cato	Altezza soletta		Passo arm. long. soletta	Dist. baric. Aa,l dal bordo sup.	A. arm. soletta	Altezza trave acc.	Base piatto inferiore	Base piatto superiore	Altezza anima	Spessore piatto inferiore	Spessore piatto	Spessore anima	raggio curvat. raccordo	Area trave acciaio	Peso trave acciaio
40,00	12,90 m	350	16	200	47	4825	1800	700	600	1720	50	30	30	16	104600	8,211
Rck	f,cd	f,y	Ec,m	f,d	Φ,infinito	n,2	n,3	g,rit	Ac,full	Ntr	N,rit_slu	ΔT,differ.	α	CLASSE SEZI	ONE NTC_4.2.3.1	Verification - CND 10011 - to 72 (1
(Mpa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(-)	(-)	(-)	(-)	(mmq)	(-)	(N)	(°C)	(1/°C)	Parametri	h/t	Verifica imbozz CNR 10011 p.to 7.2.6.1
Res cubica	Res a	tens. snerv.	Modulo	Tens.lim.	C. M. J. Wild.	Coeff.Omog.	Coeff.Omogenizz.	Coeff.ritiro	Area compless.	Numero	E -14 (1-4-)	Variaz.	Coeff. dilat.	β = 0,00116	Pareti sott.	
a compr.	compr. Pura	acc.carpent.	elastico	acc.	Coeff.viscosità di Withney	Fase II	Fase III	Coen.ritiro	soletta cls	travi ponte	F. ritiro eccentr. (soletta)	termica differenz	term.	ε = 0,81362	h/t = 57,3	Occorre verif. dettagliata ad imbozz.
45	19.83	355	34077	338	1.84	6,16	17.48	0.00024	4537100	3	5.268E+06	10,0 °C	1.2E-05	c/t = 173	h/t.lim = 36.0	

FASE 0 - SLE COMB. QUASI PERM.

SCHEMA DI TRAVE SEMPLICEMENTE APPOGGIATA - SOLO TRAVE IN ACCIAIO

CAR	ATTERISTIC	CHE MECCAN	NICHE	ASCISSA DI VERIF.
Aa	S	X_0	Ja_0	x
(mm^2)	(mm^3)	(mm)	(mm^4)	(val.compr. fra 0 e 40 m)
Area acciaio	Momento Statico	Asse Neutro - Fase I	Momento Inerzia -	20,00 m
104600	108319000	1036	5,171E+10	

		SOLLECIT	AZIONI SLU					TENS	SIONI SLE - FASE	0				VE	RIFICHE
		N	V_2	M_3	σc,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	τ	σ_id,max	VERIFICA	
		(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	ACC.	η,асс
CD	os	N_(pp_tr)	V_(pp_tr)	M_(pp_tr)	Tens.cls,ma x	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima sup	Tens.acc. quota irrigidim. longitud	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ_id,max < 0,8f,d	C/D
		0,0	0,0	1642,22			-32,89	-31,94	-22,19	22,69	24,28	0,00	32,89	Verificato	10,28

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

FASE I - SLE COMB. QUASI PERM.

SCHEMA TRAVE CONTINUA - SOLETTA NON REAGENTE - CARICO PERM. SOLETTA GIK

CAR	ATTERISTIC	THE MECCA!	NICHE
Aa	S	X_1	Ja_1
(mm^2)	(mm^3)	(mm)	(mm^4)
Area acciaio	Momento Statico	Asse Neutro - Fase I	Momento Inerzia -
104600	108319000	1036	5,171E+10

	SOLLECIT	AZIONI SLU					TENS	SIONI SLE - FASE	I				VEI	RIFICHE
ENNUPLE	N	V_2	M_3	σc,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	τ	σ_id,max	VERIFICA	
DI COMB.	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	ACC.	η,асс
MAX CONTEM P.	N_(pp+Gk1)	V_(pp+Gk1)	M_(pp+Gk1	Tens.cls,ma x	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima sup	Tens.acc. quota irrigidim.	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ_id,max < 0,8f,d	C/D
MAX N	0,0	28,2	2837,4			-56,82	-55,18	-37,37	39,20	41,95	0,55	56,83	Verificato	4,76
MIN N	0,0	-68,4	709,3			-14,21	-13,79	-37,37	9,80	10,49	1,33	14,39	Verificato	18,80
MAX V2	0,0	92,6	697,0			-13,96	-13,56	-37,37	9,63	10,30	1,79	14,30	Verificato	18,91
MIN V2	0,0	-92,6	697,0			-13,96	-13,56	-37,37	9,63	10,30	1,79	14,30	Verificato	18,91
MAX M3	0,0	8,0	2846,4			-57,01	-55,35	-37,37	39,33	42,08	0,16	57,01	Verificato	4,74
MIN M3	0,0	-80,5	641,7			-12,85	-12,48	-37,25	8,87	9,49	1,56	13,13	Verificato	20,60
		- /-	,			- /-	/	- /-	,	/	-, -	- /-	Verificato	

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

								FASE I	I - SLE CON	1B. QUAS	I PERM.					
					SCHEN	AA TRAVE CO	NTINUA - SOLETTA	REAGENTE OMO	GENEIZZATA	A TEMPO IN	FINITO (VISCOSITA') - SO	VRACC, PERI	M. G2k + RITIR	O CLS		
						CARAT	TERISTICHE MECC.	ANICHE							SOLLECITA	Z. RITIRO
Ea	Ec	n,2	Aa	As	Ac	Ai,2 (+)	Si,2 (+)	X_2 (+)	Ja_2 (+)	Ai,2 (-)	Si,2 (-)	X_2 (-)	Ja_2 (-)	N,rit,soletta	σ,ritiro_slu	SOLL_SAP
(Mpa)	(Mpa)	(-)	(mm^2)	(mm^2)	(mm^2)	(mm^2)	(mm^3)	(mm)	(mm^4)	(mm^2)	(mm^3)	(mm)	(mm^4)	(N)	(Mpa)	N,rit. (compr.)
Mod.Elast. Acc.	Mod.Elast. Cls	Coeff.Omog.	Area acciaio	Area armature	Area cls	Area ideale	Momento Statico	A.N Fase II	Mom. Inerzia - Fase II	Area ideale	Momento Statico	A.N Fase II	Mom. Inerzia - Fase II	Forza di ritiro eccentrica (soletta)	Tens. traz. nella soletta (connettori)	-4390,1 KN/Trave M,rit.(M. posit.)
210000	12013,0	17,48	104600	4825	1137500	174496	1,565E+08	897	1,147E+11	109425	1,452E+08	1327	5,997E+10	5,268E+06	3,48	3170,2 KNm/Trave
		,				•					<u> </u>		· · · ·			
	SOLLECIT	AZIONI SLU					TENS	IONI SLE - FASE	II						VERIFICHE SLU	
ENNUPLE	N	V_2	M_3	σc,max	σs	σa,ali_sup	σa,an_sup	σa,an_irr	σa,an_inf	σa,ali_inf	τ	σ_id,max	VERIFICA	η,acc	VERIFICA CLS	η,cls
DI COMB. MAX	(KN)	(KN)	(KNm)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	ACC.	цасс	VERIFICA CLS	ų,cis
CONTEM P.	N_(Gk2)	V_GK2	M_GK2	Tens.cls,ma x	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima sup	Tens.acc. quota irrigidim.	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ_id,max < 0,8f,d	C/D	σ,c_max <= 0,6*f,Ck	C/D
MAX N	-97,3	40,0	2098,8	-0,97	-16,11	-10,56	-10,02	-4,33	21,44	22,36	0,78	22,40	Verificato	12,08	Verificato	23,09
MIN N	-5346,6	-19,4	2039,8	-2,67	-45,75	-40,37	-39,83	-34,54	-9,26	-8,37	0,38	40,37	Verificato	6,70	Verificato	8,41
MAX V2	-111,9	49,4	1939,7	-0,90	-15,01	-9,89	-9,38	-3,99	19,69	20,54	0,96	20,61	Verificato	13,13	Verificato	24,78
MIN V2	-5336,4	-49,8	1939,7	-2,62	-44,95	-39,83	-39,32	-34,54	-10,25	-9,40	0,96	39,87	Verificato	6,78	Verificato	8,56
MAX M3	-112,3	26,8	2243,2	-1,04	-17,26	-11,34	-10,75	-4,33	22,87	23,85	0,52	23,87	Verificato	11,33	Verificato	21,55
MIN M3	-5333,7	-45,8	1914,1	-2,60	-44,75	-39,69	-39,19	-34,54	-10,50	-9,67	0,89	39,72	Verificato	6,81	Verificato	8,60
									FICA APERTUI							
	ologia durata c				UNGA DURATA		Condizioni a	mbientali		AGGRI			combinazioni		QUASI PERM	<u> </u>
K1	K2	К3	K4	σs	A _{c,eff.min}	w _{k,lim}	Kt	s _{max.rif}	$ ho_{ m p,eff}$	[e _{sm} -ε _{cm}] _{min}	[e _{sm} -ε _{cm}] _{min}	[e _{sm} -ε _{cm}] _{calc.}	S _{r,max.1}	\$ _{r,max.2}	s _{r,max}	w _k
Coeffici		alcolo dell'am	piezza di	(MPa)	(mmq)			,	(-)	(-)	(-)	(-)	(mm)	(mm)	(mm)	(mm)
0.0		razione	0,425	Tens. arm. soletta	Area efficace tesa di calcestruzzo	Amp. lim. fessure	Fatt. dur. carico	Spaziatura max (mm)	As,teso/cls teso	Differenza	tra la deformazione nell'acci	iaio e nel cls		Distanza massima tra	le fessure	Ampiezza di calc. fessure
0,8 MAX N	0,5 -97,3	3,4 40.0	0,425 2098.8	soietta	892096	lessure		(IIIII)				T				
MIN N	-97,3	-19.4	2039,8		892090	1										
MAX V2	-5346,6	-19,4 49,4	1939,7		Ac_eff,1,2,3									 		
MIN V2	-5336,4	-49,4	1939,7		1137500	0,20	0,4	235	0,00541					1		
MAX M3	-112.3	26.8	2243,2		892096	†										
MIN M3	-5333.7	-45.8	1914.1		1137500	†										
IVIII VIVIO	-5555,/	-43,0	1,714,1		115/500									1	1	

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

								FASE II	II - SLE CO	MB. QUAS	I PERM.					
					SCHE	MA TRAVE CO	NTINUA - SOLETTA	REAGENTE OMO	OGENEIZZATA	A TEMPO ZI	ERO - SOVRACC. VARIABI	ILI Qik. + VAR	IAZ. TERMICH	E DT		
						CARAT	TERISTICHE MECC.	ANICHE							SOLLECITA	Z. ∆T_diff
Ea	Ec	n,3	Aa	As	Ac	Ai,3 (+)	Si,3 (+)	X_3 (+)	Ja_3 (+)	Ai,3 (-)	Si,3 (-)	X_3 (-)	Ja_3 (-)	ε,ΔT_differ.	σ , ΔT _differ.	SOLL. ∆T,diff_SAP
(Mpa)	(Mpa)	(-)	(mm^2)	(mm^2)	(mm^2)	(mm^2)	(mm^3)	(mm)	(mm^4)	(mm^2)	(mm^3)	(mm)	(mm^4)	(-)	(Mpa)	N,ΔT_differ. (traz.)
Mod.Elast.	Mod.Elast.	Coeff.Omog.	Area acciaio	Area armature	Area cls	Area ideale	Momento Statico	SoieMa'tutta	Mom. Inerzia -	Area ideale	Momento Statico (M-)		Mom. Inerzia -	Def.term. diff.	Tens. compr. nella	7177,3 KN
Acc.	Cls			soletta		(M+)	(M+)	compr	Fase III (M+)	(M-)		III (M-)	Fase III (M-)		soletta (soletta calda)	M,ΔTdiffer. (M negat.)
210000	34625	6,06	104600	4825	1137500	296980	1,780E+08	599	1,535E+11	109425	1,452E+08	1327	5,997E+10	1,200E-04	-4,16	-3045,3 KNm
							-									
ENNUPLE		AZIONI SLU						IONI SLE - FASE I							VERIFICHE SLU	
DI COMB.	N	V_2	M_3 (KNm)	σc,max	(MPa)	σa,ali_sup (MPa)	σa,an_sup (MPa)	σa,an_irr (MPa)	σa,an_inf (MPa)	σa,ali_inf (MPa)	(MPa)	σ_id,max (MPa)	VERIFICA ACC.	η,acc	VERIFICA CLS	η,cls
MAX	(KN)	(KN)	(KNm)	(MPa)	(MPa)	. ,	(MPa)	Tens.acc. quota	. ,	\ /	(MPa)					·
CONTEM P.	N_(Gk2)	V_GK2	M_GK2	Tens.cls,ma x	Tens.arm. Soletta	Tens.acc. ala sup	Tens.acc. anima sup	irrigidim.	Tens.acc.an. inf.	Tens.acc. ali inf.	Tens.taglio anima	Tensione ideale	σ_id,max < 0,8f,d	C/D	σ,c_max <= 0,6*f,Ck	C/D
MAX N	3589,5	11,0	111,0	-3,81	33,92	34,14	34,16	85,03	35,40	35,44	0,21	35,44	Verificato	7,63	Verificato	5,88
MIN N	-430,3	-17,7	-61,7	-3,98	-0,13	-0,44	-0,48	14,14	-2,24	-2,30	0,34	2,37	Verificato	114,07	Verificato	5,63
MAX V2	3580,8	17,4	-61,7	-3,74	35,55	35,24	35,21	96,62	33,44	33,39	0,34	35,24	Verificato	7,67	Verificato	5,99
MIN V2	-430,3	-17,7	-61,7	-3,98	-0,13	-0,44	-0,48	14,68	-2,24	-2,30	0,34	2,37	Verificato	114,07	Verificato	5,63
MAX M3	3581,4	13,1	201,1	-3,87	33,52	33,91	33,95	85,03	36,20	36,27	0,25	36,27	Verificato	7,46	Verificato	5,79
MIN M3	-428,4	-9,1	-85,1	-3,98	0,37	-0,06	-0,10	14,68	-2,54	-2,61	0,18	2,63	Verificato	102,91	Verificato	5,63
					DELE DID LE		Condizioni a		FICA APERTUF			m: 1 :	combinazioni		OUASI PERN	AND THE
K1	logia durata c	arichi K3	K4		REVE DURATA		Condizioni a	mbientali		AGGRE		Tipologia [e _{sm} -ε _{cm}] _{calc}			1	
				(MPa)	A _{c,eff.min}	W _{k.lim}	Kt	s _{max,rif}	ρ _{p,eff} (-)	[e _{sm} -ε _{cm}] _{min}	[e _{sm} -ε _{cm}] _{min}	[e _{sm} -ε _{cm}] _{calc} .	s _{r,max.1} (mm)	s _{r,max.2}	S _{r,max} (mm)	W _k (mm)
Coeffic		alcolo dell'am razione	piezza di	Tens. arm.	Area efficace tesa di	4 17		6	(-)	(-)	(-)	(-)	(IIIII)	(IIIII)	(IIIII)	(IIIII)
0,8	0,5	3,4	0,425	soletta	calcestruzzo	Amp. lim. fessure	Fatt. dur. carico	Spaziatura max (mm)	As,teso/cls teso	Differenza	tra la deformazione nell'acci	aio e nel cls	1	Distanza massima tra	le fessure	Ampiezza di calc. fessure
MAX N	3589,5	11,0	111,0	33,92	892096					0,000097	-0,001667	0,000097	635,5	1071	635	0,06
MIN N	-430,3	-17,7	-61,7		Ac eff,1,2,3											
MAX V2	3580,8	17,4	-61,7	35,55	AC_011,1,2,3	0.20	0.6	235	0,00541	0,000102	-0,001659	0,000102	635,5	1071	635	0,06
MIN V2	-430,3	-17,7	-61,7		1137500	0,20	0,0	233	0,00341							
MAX M3	3581,4	13,1	201,1	33,52	892096	1				0,000096	-0,001669	0,000096	635,5	1071	635	0,06
MIN M3	-428,4	-9,1	-85,1	0,37	1137500					0,000001	-0,001827	0,000001	635,5	1071	635	0,00

TRATTO MADONNA DEL PIANO - COLLESTRADA

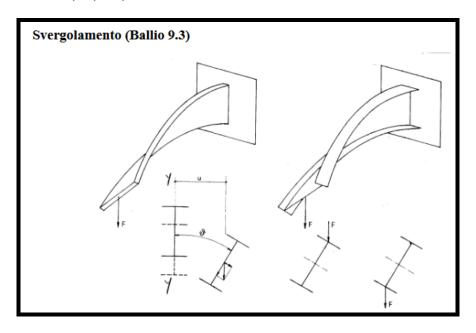
OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

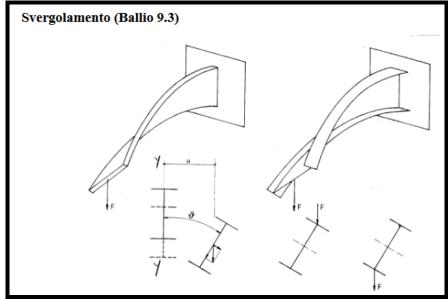
TENSIONI TOTALI - SLE COMB. QUASI PERM. SOMMA DELLE TENSIONI NELLE FASI 0 - I - II - III ALLA ASCISSA X = 20 m PER GLI INVILUPPI DELLE SOLLECITAZIONI MAX VERIFICHE SLU TENSIONI SLE σa,ali_sup σa,ali_inf σ_id,max VERIFICA σa,an_irr σa,an_inf σc,max σs σa,an_sup VERIFICA CLS η,acc η,cls COMBINAZIONI (MPa) ACC. (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) Tens.acc. quota Tens.cls,ma Tens.acc. ala Tens.acc.an. Fens.acc. ali Tensione σ_id,max < Tens.arm. Soletta Tens.acc. anima sup irrigidim. Tens.taglio anima C/D σ ,c_max <= 0,6*f,Ck C/D 0,8f,d ideale sup inf. MAX N -4,78 Verificato Verificato 17,81 -66,14 -62,97 21,15 118,74 124,02 1,53 124,05 MIN N Verificato Verificato 3.37 -6,64 -45,89 -87,91 -86,04 -79,96 20,99 24,10 2,04 87,98 3.07 MAX V2 -4,64 20,54 -21,50 -19,67 33,07 85,45 88,51 3,09 88,67 Verificato 3,05 Verificato 4,83 MIN V2 -6,60 -45,09 -87,12 -85,29 -79,42 19,83 22,89 3,10 87,29 Verificato 3,10 Verificato 3,40 4,57 MAX M3 -4,91 16,25 -67,32 -64,09 21,15 121,10 126,48 0,93 126,49 Verificato 2,14 Verificato -6,58 -44,37 -85,49 -83,71 3,40 MIN M3 -79,29 18,52 21,49 2,62 85,61 3,16 Verificato Verificato

VERIF. APERT. TOT. DELLE FESSURE	
W _{k.lim}	Σw_k
	(mm)
Amp. lim. fessure	Ampiezza tot. di calc. fessure
0,20	0,06
	-
	0,06
	-
	0,06
	0,00

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo





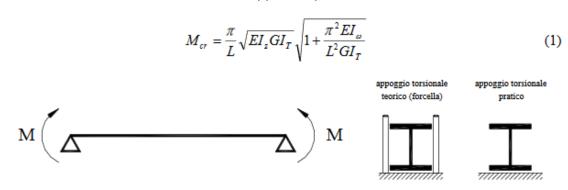
TRATTO MADONNA DEL PIANO - COLLESTRADA OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

7.13.14. VERIFICA INSTABILITÀ FLESSO-TORSIONALE

L'instabilità flesso torsionale è un fenomeno che comporta lo sbandamento laterale di un elemento soggetto a flessione nel proprio piano verticale:

Il fenomeno si presenta sotto forma di instabilità laterale dall'ala compressa a causa della forte componente di compressione trasmessa dal momento flettente.

Sotto l'azione torcente provocata dal momento flettente nella configurazione variata, l'ala compressa fornisce un contributo, anch'esso torcente detto bi-momento.



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Nel caso di trave soggetta a momento costante, con vincoli di appoggio torsionale, scrivendo l'equilibrio nella configurazione deformata e considerando il cosiddetto effetto del bi-momento il momento critico di instabilità di una trave a doppio T è pari a:

Il fenomeno viene anche chiamato:

- Stabilità della flessione piana
- Stabilità laterale
- Stabilità flesso-torsionale

e dipende da:

- rigidezza flesionale intorno all'asse debole
- rigidezza torsionale (IT, Iω)
- lunghezza libera (distanza tra sezioni impedite di traslare orizzontalmene e quindi di ruotare)
- vincoli esterni
- quota del punto di applicazione del carico

Nel caso di momento variabile lungo l'asta, il valore del momento massimo che determina l'instabilità è maggiore. Il punto di applicazione del carico influenza il valore del momento critico: un carico applicato all'estradosso è più instabilizzante.

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Normativa italiana

La CNR 10011/85 indica due metodi approssimati che permettono di evitare il calcolo del momento critico e considerano critica una distribuzione di momento flettente definita da un momento equivalente M_{eq}

 $M_{eq} = 1.3 M_{m}$ con la limitazione 0.75 $M_{max} < M_{eq} < M_{max}$ per travi appoggiate o continue $M_{eq} = M_{m}$ con la limitazione 0. 5 $M_{max} \le M_{eq} \le M_{max}$ per travi a mensola essendo M_m il momento medio lungo la trave:

$$M_m = \frac{\int M dx}{L}$$

Metodo ω₁

$$\sigma = \frac{\omega_1 M_{eq}}{W} \le \sigma_{adm}$$

Il coefficiente ω_1 è funzione del rapporto $\frac{hL}{bt}$.

$$\omega_1 = \frac{f_y}{0.585E} \frac{hL}{bt_f}$$

Il metodo è applicabile per travi a doppio T laminate o saldate (con rapporti dimensionali definiti) e deriva dalle considerazioni che seguono.

Se nella (1) si trascura la rigidezza torsionale secondaria EI_{ω}/L^2 rispetto alla primaria GI_T , la tensione critica si scrive:

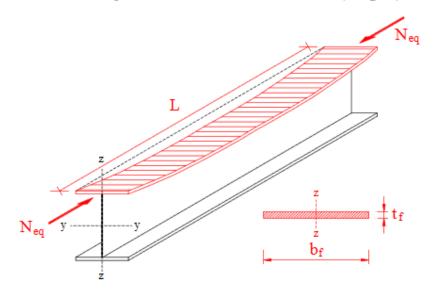
$$\sigma_{cr,D} = \frac{1}{W} \frac{\pi}{L} \sqrt{EI_z GI_T} = \frac{\pi}{L} \sqrt{EG} \frac{\sqrt{I_z I_T}}{W}$$

Per le travi a doppio T del sagomario si ha:

$$\frac{\sqrt{I_z I_T}}{W} \cong 0.3 \frac{bt_f}{h}$$

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo


$$\sigma_{cr,D} = \pi \sqrt{EG} \ 0.3 \frac{bt_f}{hL} = \pi \sqrt{206000 \cdot 80000} \ 0.3 \frac{bt_f}{hL} = 121000 \frac{bt_f}{hL} \ N/mm^2$$

Nello spirito delle tensioni ammissibili si può scrivere:

$$\begin{split} \sigma & \leq \frac{\sigma_{\mathit{cr},D}}{\nu} = \frac{\sigma_{\mathit{adm}}}{\omega_1} \quad \rightarrow \quad \omega_1 = \frac{\sigma_{\mathit{adm}} \ \nu}{\sigma_{\mathit{cr},D}} = \frac{f_y}{\sigma_{\mathit{cr},D}} \\ \omega_1 & = \frac{f_y}{121000} \frac{hL}{bt_f} = \frac{f_y}{0.585E} \frac{hL}{bt_f} \end{split}$$

Metodo dell'ala isolata

E' un metodo a favore di stabilità, applicabile a qualsiasi trave, anche nel caso di corrente compresso controventato con una trave orizzontale reticolare (ad esempio per le vie di corsa). Se si trascura la rigidezza torsionale primaria GI_T, la stabilità è affidata alla rigidezza flessionale, intorno all'asse z-z, dell'ala compressa considerata isolata dall'anima (v. figura).

Si verifica quindi l'ala a carico di punta soggetta alla forza assiale N_{eq}:

$$N_{eq} = \int_{ala} \sigma dA = \frac{M_{eq}}{I_y} S_y \cong \frac{M_{eq}}{d}$$

Si verifica l'asta col metodo ω o χ, con la curva di stabilità c o d, usando come lunghezza di libera inflessione la luce L e come momento d'inerzia quello dell'ala intorno all'asse z:

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

$$I_{1x} = \frac{t_f b_f^3}{12} \rightarrow i = \frac{b_f}{\sqrt{12}} \rightarrow \lambda = \frac{L}{i}$$

Eurocodice 3 #5.5.2 – Instabilità flesso-torsionale delle travi

$$M_{b,Rd} = \chi_{LT} \beta_w W_{pl,y} f_y / \gamma_{M1} \rightarrow M_{b,Rd} = \chi_{LT} M_{c,Rd}$$

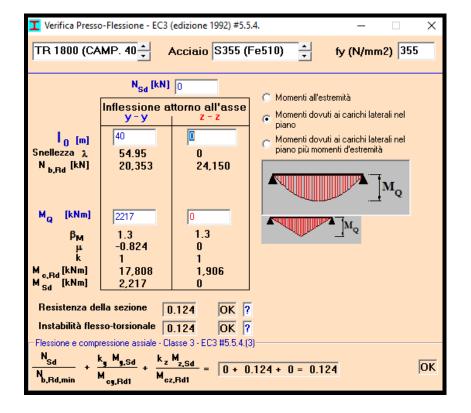
Il coefficiente χ_{LT} di riduzione per l'instabilità flesso-torsionale è uguale al coefficiente χ per carico di punta (#5.5.1.2) e si ricava in funzione della snellezza adimensionale $\overline{\lambda}_{LT}$, analoga alla snellezza λ per carico di punta:

$$\overline{\lambda}_{LT} = \sqrt{\frac{M_{pl}}{M_{cr}}} \quad \left(\overline{\lambda} = \sqrt{\frac{N_{pl}}{N_{cr}}} \quad per \ carico \ di \ punta
ight)$$

Mer è il momento critico di svergolamento calcolato in campo elastico. Nell'appendice F sono riportate le formule per vari casi di carico; per momento costante vale la (1).

Si devono adottare i valori di χ della curva a per sezioni laminate e della curva c per sezioni saldate.

Se λ_{LT} < 0.4 non è necessaria la verifica a svergolamento.

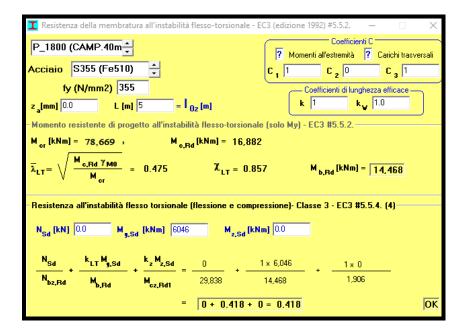


TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Nel caso presente si ha:

FASE 0: SCHEMA DI TRAVE SEMPLICEMENTE APPOGGIATA - SOLO TRAVE IN ACCIAIO L = 40 mGtr = 8.21 KN/m $\gamma_{g1} = 1.35$ M= 2217 KNm



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Verificato

7.13.15. STATO LIMITE DI DEFORMAZIONE

Lo stato limite di deformazione è trattato in NTC18 al cap. 4.1.2.2.2 e nella Circolare al cap. C4.1.2.2.2:

Per quanto riguarda la salvaguardia dell'aspetto e della funzionalità dell'opera, le frecce a lungo termine di travi e solai, calcolate sotto la condizione quasi permanente dei carichi, non dovrebbero superare il limite di 1/250 della luce.

		Tab. 5.1.VI -	Coefficienti y r per le azioni variabili j	per ponti stradali	e pedenali	
2.5.3. COMBINAZIONI DELLE AZIONI Ai fini delle verifiche degli stati limite, si definiscono le seguenti combina	rioni della szioni	Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente V ₀ di combi- nazione	Coefficiente V ₁ (valori frequenti)	Coefficiente V (valori quasi permanenti)
			Schessa 1 (carichi tandess)	0,75	0,75	0,0
- Combinazione fondamentale, generalmente impiegata per gli stati limit			Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} +$	[2.5.1]	Azioni da	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
 Combinazione caratteristica, cosiddetta rara, generalmente impiegata p 		(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} +$	[2.5.2]		2	0,0	0,0	0,0
- Combinazione frequente, generalmente impiegata per gli stati limite di			3	0,0	0,0	0,0
$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} +$	[2.5.3]		4 (folia)	-	0,75	0,0
 Combinazione quasi permanente (SLE), generalmente impiegata per gli G₁ + G₂ + P + ψ₂₁ · Q_{k1} + ψ₂₂ · Q_{k2} + ψ₂₃ · Q_{k3} + 	effetti a lungo termine: [2.5.4]		5	0,0	0,0	0,0
 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio 	connessi all'azione sismica E:		a ponte scarico SLU e SLE	0,6	0,2	0,0
$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} +$	[2.5.5]	Vento	in esecuzione	0,8	0,0	0,0
- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi			a ponte carico SLU e SLE	0,6	0,0	0,0
$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} +$	[2.5.6]		SUESE	0,0	0,0	0,0
Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse a	associate ai seguenti carichi gravitazionali:	Neve	in esecuzione	0,8	0,6	0,5
$G_1 + G_2 + \sum_i \psi_{2i} Q_{ki}$.	[2.5.7]	Temperatura	SUeSE	0,6	0,6	0,5

Tenuto conto dei coefficienti ψ relativi alla combinazione SLE quasi permanente, si ha:

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

STATO LIMITE DI DEFORMAZIONE C4.1.2.2								
G1k	G2k	Rit.	Q,traff	Q,vento	Q,temp.	L	ρ,lim	ρ,d
δ_PESO TRAVE + SOLETTA	δ_SOVRACC. PERM.	δ_RITIRO	δ_TRAFF.	δ_VENTO	δ_ТЕМР.	Luce campata	L/f	L/f,d
FASE 1 - SOLO ACCIAIO	FASE 2 A-CLS	FASE 2 A-CLS	FASE 3 A-CLS	FASE 3 A-CLS	FASE 3 A-CLS		()	()
Ec = 0.00	Ec = 12013,05	Ec = 12013,05	Ec = 34077,15	Ec = 34077,15	Ec = 34077,15	(-)	(-)	(-)
0,020 m	0,0096 m	0,0054 m	0,017 m	0,0008 m	0,00220 m	40,000 m	250	1097
$\gamma = 1,00$	$\gamma = 1,00$	$\gamma = 1,00$	$\Psi 2 = 0.00$	$\Psi 2 = 0.00$	$\Psi 2 = 0,50$	δ TOT.	250	1097
0,020 m	0,010 m	0,005 m	0,000 m	0,000 m	0,001 m	0,036 m	VERIF	ICATO

Volendo verificare anche la deformabilità dell'impalcato per i soli carichi mobili, si ha:

 $\delta_{vert,max}$ < L / 400 $L = 40.0 \text{ m} \rightarrow \delta_{\text{vert,max}} = 100 \text{ mm}$ $\delta_{vert,tr}$ = 17 mm

 $\rho = 100/17 = 5.88$

Verificato

7.14. **VERIFICA DEI TRAVERSI**

In ottemperanza ai paragrafi §4.2.4.1.2.1 e §4.2.4.1.3.1 delle NTC18, gli elementi irrigidenti devono essere verificati ad instabilità per pressoinflessione:

GPIngegneria GESTIONE PROGETTI INGEGNERIA srl

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

4.2.4.1.3 Stabilità delle membrature

4.2.4.1.3.1 Aste compresse

La verifica di stabilità di un'asta si effettua nell'ipotesi che la sezione trasversale sia uniformemente compressa. Deve essere

$$\frac{N_{\text{Ed}}}{N_{\text{b,Rd}}} \le 1 \tag{4.2.41}$$

dove

NEd è l'azione di compressione di progetto,

 $N_{b,Rd}~$ è la resistenza di progetto all'instabilità nell'asta compressa, data da

$$N_{b,Rd} = \frac{\chi A f_{yk}}{\gamma_{M1}}$$
 per le sezioni di classe 1, 2 e 3, [4.2.42]

e da

$$N_{b,Rd} = \frac{\chi A_{eff} f_{yk}}{\gamma_{M1}}$$
 per le sezioni di classe 4 [4.2.43]

I coefficienti χ dipendono dal tipo di sezione e dal tipo di acciaio impiegato; essi si desumono, in funzione di appropriati valori della snellezza normalizzata $\overline{\lambda}$, dalla seguente formula

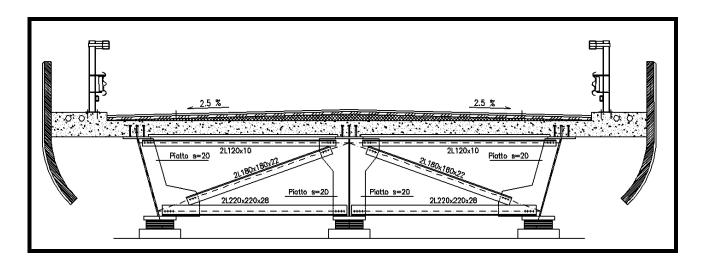
$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} \le 1.0$$
 [4.2.44]

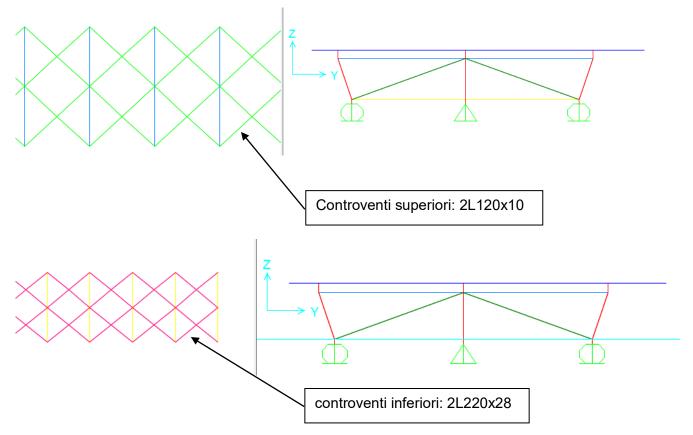
 $dove \ \Phi = 0.5 \left[1 + \alpha \left(\overline{\lambda} - 0.2\right) + \overline{\lambda}^2\right], \ \alpha \ \text{\'e il fattore di imperfezione ricavato dalla Tab. 4.2.VIII e la snellezza normalizzata} \ \overline{\lambda} \ \ \text{\'e pari a} \ \ \ \text{\'e pari a} \ \ \ \text{\'e pari a} \ \ \ \text{\'e pari a} \ \ \text{\'e pari a$

$$\overline{\lambda} = \sqrt{\frac{A \cdot f_{yk}}{N_{cr}}}$$
 per le sezioni di classe 1, 2 e 3, e a [4.2.45]

$$\overline{\lambda} = \sqrt{\frac{A_{eff} \cdot f_{yk}}{N_{cr}}} \text{ per le sezioni di classe 4}.$$

I profili da verificare sono:





TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

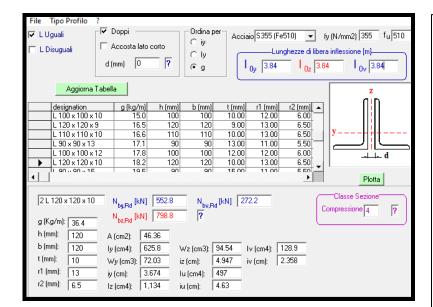
2L120x10 lungh. libera di inflessione: 3840 mm (contr.orizz. Linfl=3400 mm)

2L180x22 lungh. libera di inflessione: 3060 mm

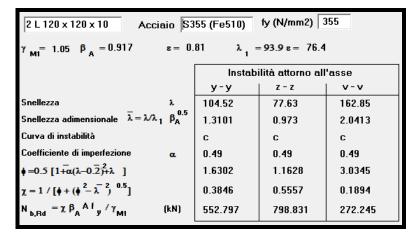
lungh. libera di inflessione: 3520 mm (contr.orizz. Linfl=3400 mm) 2L220x28

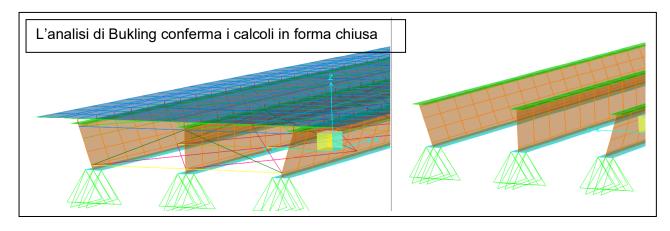
La sollecitazione massima di compressione viene ricavata come soma degli inviluppi delle sollecitazioni nelle diverse fasi:

- 2L120x10
- lungh. libera di inflessione: 3840 mm (contr.orizz. Linfl=3400 mm)



TRATTO MADONNA DEL PIANO - COLLESTRADA

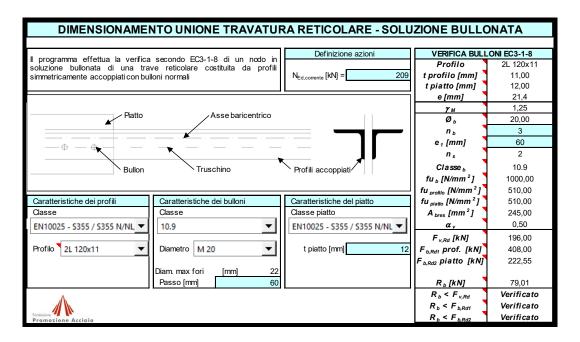

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

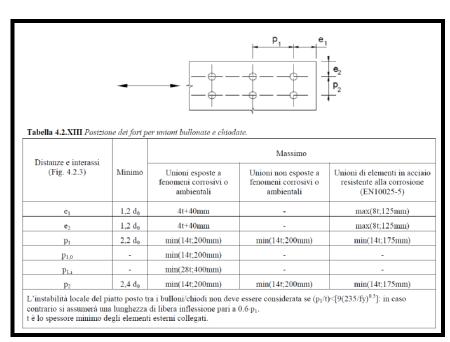


Nmin = 119+90 = 209 KN Verificato

Nota:

a vantaggio di sicurezza le sollecitazioni massime sono state prese sui massimi inviluppi delle due fasi, pertanto non necessariamente corrispondenti ad una medesima asta





E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Verifica bullonature

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

7.15. **VERIFICA A FATICA**

Le NTC18 prevedono la verifica a fatica ai seguenti paragrafi:

4.1.2.3.8 Resistenza a fatica

In presenza di azioni cicliche che, per numero dei cicli e per ampiezza della variazione dello stato tensionale, possono provocare fenomeni di fatica, le verifiche di resistenza devono essere condotte secondo affidabili modelli tratti da documentazione di comprovata validità, verificando separatamente il calcestruzzo e l'acciaio.

4.2.4.1.4 Stato limite di fatica

Per le strutture soggette a carichi ciclici deve essere verificata la resistenza a fatica imponendo che:

$$\Delta_d \leq \Delta_R / \gamma_{Mf}$$
 [4.2.54]

 $\Delta_{
m d}$ l'escursione di tensione (effettiva o equivalente allo spettro di tensione) prodotta dalle azioni cicliche di progetto che inducono fenomeni di fatica con coefficienti parziali γ_{Mf} = 1;

 $\Delta_{
m p}$ la resistenza a fatica per la relativa categoria dei dettagli costruttivi, come desumibile dalle curve S-N di resistenza a fatica, per il numero totale di cicli di sollecitazione N applicati durante la vita di progetto richiesta,

γ_{Mf} il coefficiente parziale definito nella Tab. 4.2.XI.

Nel caso degli edifici la verifica a fatica delle membrature non è generalmente necessaria, salvo per quelle alle quali sono applicati dispositivi di sollevamento dei carichi o macchine vibranti.

Nel caso dei ponti gli spettri dei carichi da impiegare per le verifiche a fatica sono fissati nel Capitolo 5 delle presenti norme.

Per valutare gli effetti della fatica è innanzitutto necessario classificare le strutture nei confronti della loro sensibilità al fenome-

Si definiscono strutture poco sensibili alla rottura per fatica quelle in cui si verifichino tutte le seguenti circostanze:

- dettagli costruttivi, materiali e livelli di tensione tali che le eventuali lesioni presentino bassa velocità di propagazione e significativa lunghezza critica;
- disposizioni costruttive che permettano la ridistribuzione degli sforzi;
- dettagli idonei ad arrestare la propagazione delle lesioni;
- dettagli facilmente ispezionabili e riparabili;
- prestabilite procedure di ispezione e di manutenzione atte a rilevare e riparare le eventuali lesioni.

Si definiscono strutture sensibili alla rottura per fatica quelle che non ricadono nei punti precedenti.

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

La resistenza a fatica di un dettaglio è individuata mediante una curva caratteristica, detta curva S-N, che esprime il numero di cicli a rottura N in funzione delle variazioni di tensione nel ciclo $\Delta \sigma$ o $\Delta \tau$.

Per indicazioni riguardanti le modalità di realizzazione dei dettagli costruttivi e la loro classificazione, con le rispettive curve S-N si può fare riferimento al documento UNI EN1993-1-9.

Tab. 4.2.XI - Coefficienti di sicurezza da assumere per le verifiche a fatica.

	Conseguenze della rottura		
	Conseguenze moderate	Conseguenze significative	
Strutture poco sensibili alla rot- tura per fatica	$\gamma_{\rm Mf}$ = 1,00	$\gamma_{\rm Mf}$ = 1,15	
Strutture sensibili alla rottura per fatica	$\gamma_{\rm Mf}$ = 1,15	$\gamma_{\rm Mf}$ = 1,35	

Le verifiche a fatica possono essere a vita illimitata o a danneggiamento.

Verifica a vita illimitata.

La verifica a vita illimitata si esegue controllando che sia:

$$\Delta \sigma_{\text{max d}} = \gamma_{\text{Mf}} \cdot \Delta \sigma_{\text{max}} \le \Delta \sigma_{\text{D}}$$
 [4.2.55]

oppure che:

$$\Delta \tau_{\text{max d}} = \gamma_{\text{Mf}} \cdot \Delta \tau_{\text{max}} \le \Delta \tau_{\text{D}} = \Delta \tau_{\text{L}}$$
 [4.2.56]

dove $\Delta\sigma_{\max,d}$ e $\Delta\tau_{\max,d}$ sono, rispettivamente, i valori di progetto delle massime escursioni di tensioni normali e di tensioni tangenziali indotte nel dettaglio considerato dallo spettro di carico, e $\Delta\sigma_{D}$ e $\Delta\tau_{D}$ i limiti di fatica ad ampiezza costante.

La verifica a vita illimitata è esclusa per tutti i dettagli le cui curve S-N non presentino limite di fatica ad ampiezza costante (per es., i connettori a piolo).

Verifica a danneggiamento

La verifica a danneggiamento si esegue mediante la formula di Palmgren-Miner, controllando che il danneggiamento D risulti:

$$D = \sum_{i} \frac{n_i}{N_i} \le 1.0$$
 [4.2.57]

dove n_i è il numero dei cicli di ampiezza $\Delta\sigma_{i,i}$ indotti dallo spettro di carico per le verifiche a danneggiamento nel corso della vita prevista per il dettaglio e N_i è il numero di cicli di ampiezza $\Delta\sigma_{i,t}$ a rottura, ricavato dalla curva S-N caratteristica del dettaglio.

La verifica a danneggiamento può essere eseguita anche con il metodo dei coefficienti di danneggiamento equivalente 2. Per l'impiego di tale metodo si deve fare riferimento a normative di comprovata validità, di cui al capitolo 12.

Nel caso di combinazioni di tensioni normali e tangenziali, la valutazione della resistenza a fatica dovrà considerare i loro effetti congiunti adottando idonei criteri di combinazione del danno.

Nella valutazione della resistenza a fatica dovrà tenersi conto dello spessore del metallo base nel quale può innescarsi una potenziale lesione.

Le curve S-N reperibili nella letteratura consolidata sono riferite ai valori nominali delle tensioni.

Per i dettagli costruttivi dei quali non sia nota la curva di resistenza a fatica, le escursioni tensionali potranno riferirsi alle tensioni geometriche o di picco, cioè alle tensioni principali nel metallo base in prossimità della potenziale lesione, secondo le modalità e le limitazioni specifiche del metodo, nell'ambito della meccanica della frattura.

Nelle verifiche a fatica è consentito tenere conto degli effetti favorevoli di eventuali trattamenti termici o meccanici, purché adeguatamente comprovati.

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Per quato più specificatamente attiene i ponti, occorre far riferimento al cap.5.1.4.3 delle NTC18:

5.1.4.3 VERIFICHE ALLO STATO LIMITE DI FATICA

Per strutture, elementi strutturali e dettagli sensibili a fenomeni di fatica devono essere eseguite opportune verifiche.

Le verifiche devono essere condotte considerando spettri di carico differenziati, a seconda che si conduca una verifica per vita illimitata o una verifica a danneggiamento.

In assenza di studi specifici, volti alla determinazione dell'effettivo spettro di carico che interessa il ponte, si può far riferimento ai modelli descritti nel seguito.

Verifiche per vita illimitata

Le verifiche a fatica per vita illimitata possono essere condotte, per dettagli caratterizzati da limite di fatica ad ampiezza costante, controllando che la massima differenza di tensione $\Delta\sigma_{max}$ = $(\sigma_{max}$ - $\sigma_{min})$ indotta nel dettaglio stesso dallo spettro di carico significativo risulti minore del limite di fatica del dettaglio stesso. Ai fini del calcolo del $\Delta\sigma_{max}$ si possono impiegare, in alternativa, i modelli di carico di fatica 1 e 2, disposti sul ponte nelle due configurazioni che determinano la tensione massima e minima, rispettivamente, nel dettaglio considerato.

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Modello di carico 1

Il modello di carico di fatica 1 è costituito dallo Schema di Carico 1 assumendo il 70% dei carichi concentrati ed il 30% di quelli distribuiti (vedi fig. 5.1.4), applicati in asse alle corsie convenzionali individuate secondo i criteri individuati al §5.1.3.3.5

Per verifiche locali si deve considerare, se più gravoso, il modello costituito dall'asse singolo dello schema di carico 2, isolato e con carico al 70% (vedi fig.5.1.4).

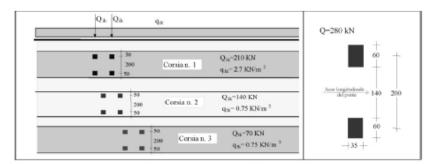


Fig. 5.1.4 - Modello di carico di fatica 1

Modello di carico 2

Quando siano necessarie valutazioni più precise, in alternativa al modello di carico di fatica semplificato 1, derivato dal modello di carico principale, si può impiegare il modello di carico di fatica 2, rappresentato nella Tab. 5.1.VII; applicato al centro della corsia convenzionale n. 1, che è quella che determina gli effetti più severi nel dettaglio in esame

Il modello di carico 2 non considera gli effetti di più corsie caricate sull'impalcato in esame. Nel caso in cui siano da prevedere significativi effetti di interazione tra veicoli, per l'applicazione di questo modello si deve disporre di dati supplementari, reperibili o da letteratura tecnica consolidata o a seguito di studi specifici.

Tab. 5.1.VII - Modello di carico di fatica 2 - veicoli frequenti

Sagoma del veicolo	Distanza tra gli assi (m)	Carico frequente per asse (kN)	Tipo di ruota (Tab. 5.1.IX)
	4,50	90 190	A B
0	4,20 1,30	80 140 140	A B B
0 0 000	3,20 5,20 1,30 1,30	90 180 120 120 120	A B C C
	3,40 6,00 1,80	90 190 140 140	A B B
0 0 00	4,80 3,60 4,40 1,30	90 180 120 110 110	A B C C

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA Tratto Madonna del Piano - Collestrada

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Verifiche a danneggiamento

Le verifiche a danneggiamento consistono nel verificare che nel dettaglio considerato lo spettro di carico produca un danneggiamento $D \le 1$.

Il danneggiamento D è valutato mediante la legge di Palmgren-Miner, considerando la curva S-N caratteristica del dettaglio e la vita nominale dell'opera.

Le verifiche devono essere condotte considerando lo spettro di tensione indotto nel dettaglio dal modello di carico di fatica semplificato 3, riportato in Fig. 5.1.5, costituito da un veicolo di fatica simmetrico a 4 assi, ciascuno di peso 120 kN, o, in alternativa, quando siano necessarie valutazioni più precise, dallo spettro di carico equivalente costituente il modello di carico di fatica 4, riportato in Tab. 5.1.VIII, ove è rappresentata anche la percentuale di veicoli da considerare, in funzione del traffico interessante la strada servita dal ponte.

I veicoli dei modelli di carico di fatica 3 o 4 possono essere applicati in asse alle corsie convenzionali determinate in accordo con il §5.1.3.3.5. È possibile, tuttavia, adottare disposizioni più favorevoli dei veicoli, considerando che il flusso avvenga per il 10% sulle corsie convenzionali e per il 90% sulle corsie fisiche. La posizione dei veicoli sulle corsie fisiche dovrà essere tale da determinare gli effetti più severi nel dettaglio in esame.

I tipi di pneumatico da considerare per i diversi veicoli e le dimensioni delle relative impronte sono riportati nella Tab. 5.1.IX.

In assenza di studi specifici, per verifiche di danneggiamento, si deve considerare sulla corsia lenta il flusso annuo di veicoli di peso superiore a 100 kN, rilevanti ai fini della verifica a fatica, dedotto dalla Tab. 5.1.X.

Nel caso in cui siano da prevedere significativi effetti di interazione tra veicoli, si deve far riferimento a studi specifici o a metodologie consolidate.

Il modello di carico di fatica 3, considerato in asse alla corsia convenzionale, può essere utilizzato per le verifiche col metodo λ , o metodo dei coefficienti di danneggiamento equivalente. Per la determinazione dei coefficienti di danneggiamento equivalente, che devono essere specificamente calibrati sul predetto modello di carico di fatica 3, si può far riferimento alle norme UNI EN1992-2, UNI EN1993-2 ed UNI EN1994-2.

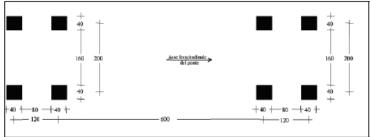


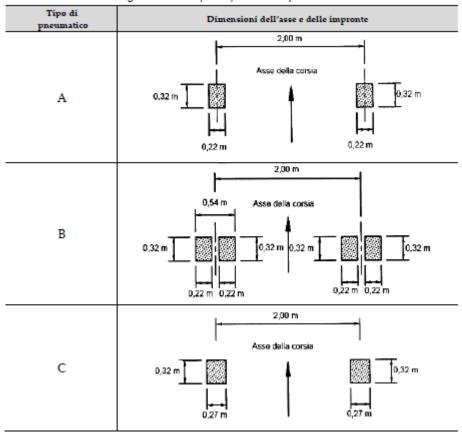
Fig. 5.1.5 - Modello di carico di fatica. 3

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Tab. 5.1.VIII - Modello di carico di fatica 4 – veicoli equivalenti

				Сомро	SIZIONE DEL TI	RAFFICO
Sagoma del veicolo	Tipo di pneumatico (Tab.5.1-IX)	Interassi [m]	Valori equi- valenti dei ca- nichi asse [KN]	Lunga	Media	Traffico locale
	A B	4,50	70 130	20,0	40,0	80,0
00	A B B	4,20 1,30	70 120 120	5,0	10,0	5,0
0-0 000	A B C C	3,20 5,20 1,30 1,30	70 150 90 90 90	50,0	30,0	5,0
0 0 00	A B B	3,40 6,00 1,80	70 140 90 90	15,0	15,0	5,0
0 0 00	A B C C C	4,80 3,60 4,40 1,30	70 130 90 80 80	10,0	5,0	5,0



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Tab. 5.1.IX - Dimensioni degli assi e delle impronte per i veicoli equivalenti

Tab. 5.1X – Flusso annuo di veicoli pesanti sulla corsia di marcia lenta

Categorie di traffico	Flusso annuo di veicoli di peso superiore a 100 kN sulla corsia di marcia lenta
1 - Strade ed autostrade con 2 o più corsie per senso di mar- cia, caratterizzate da intenso traffico pesante	2,0x10 ⁶
Strade ed autostrade caratterizzate da traffico pesante di media intensità	0,5x10 ⁶
 3 - Strade principali caratterizzate da traffico pesante di mo- desta intensità 	0,125x10 ⁶
 4 - Strade locali caratterizzate da traffico pesante di intensità molto ridotta 	0,05×10 ⁶

Per quanto attiene i dettagli sulle curve S-N ocorre fare riferimento al cap. C4.2.4.1.4.3 della Circolare Esplicativa alle NTC18:

GPIngegneria GESTIONE PROGETTI INGEGNERIA srl

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

C4.2.4.1.4.3 Curve S-N

La resistenza a fatica di un dettaglio è individuata nel piano bilogaritmico $log(\Delta \sigma)-log(N)$ o $log(\Delta \tau)-log(N)$, essendo N il numero di cicli a rottura, mediante una curva caratteristica, detta curva S-N. Detta curva, è individuata mediante la classe di resistenza a fatica $\Delta\sigma_{C}$ o $\Delta\tau_{C}$, che rappresenta la resistenza a fatica del dettaglio, espressa in MPa, per N=2·10 $^{\circ}$ cicli.

Le curve S-N per tensioni normali sono caratterizzate, oltre che dalla classe $\Delta\sigma_{C}$, dal limite di fatica ad ampiezza costante $\Delta\sigma_{D}$, corrispondente a N=5·10 6 cicli e dal limite per i calcoli di fatica, $\Delta\sigma_{L}$, che corrisponde all'intersezione del secondo ramo della curva con la verticale per N=108 cicli.

L'equazione della curva S-N è

$$\begin{split} \Delta\sigma &= \Delta\sigma_C \left(\frac{2\cdot 10^6}{N}\right)^{\frac{1}{m}} & \text{per } N \leq 5\cdot 10^6 \\ \Delta\sigma &= \Delta\sigma_D \left(\frac{2\cdot 10^6}{N}\right)^{\frac{1}{m+2}} & \text{per } 5\cdot 10^6 < N \leq 10^8 \;, & \text{[C4.2.94]} \\ \Delta\sigma &= \Delta\sigma_L & \text{per } N > 10^8 \end{split}$$

dove m-3, cosicché risulta

$$\Delta \sigma_{\rm D} = 0.737 \Delta \sigma_{\rm C};$$
 $\Delta \sigma_{\rm L} = 0.549 \Delta \sigma_{\rm C}$ [C4.2.95]

Le curve S-N per tensioni normali sono rappresentate in Figura C4.2.21.

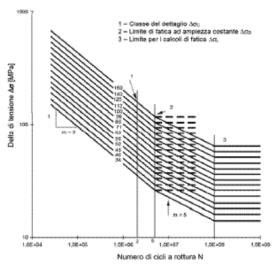


Figura C4.2.21 - Curve S-N per dettagli/elementi soggetti a tensioni normali

Le classi di resistenza a fatica per tensioni normali relative a i dettagli più comuni sono riportate nella Tabelle C4.2.XII.a, C4.2.XII.d, C4.2.XIII, C4.2.XIV, C4.2.XV e C4.2.XVI.a, mentre in Tabella C4.2.XVII sono riportate le classi dei dettagli tipici dei carriponte. Nelle tabelle le classi relative ad alcuni dettagli sono contrassegnate con un asterisco: per questi dettagli è possibile adottare una classificazione superiore di una classe, se si assume come resistenza a fatica ad ampiezza costante quella corrispondente a 107 cicli (vedi Figura C4.2.22).

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

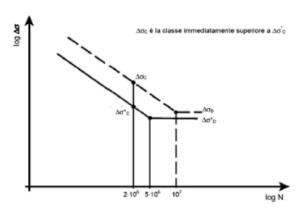


Figura C4.2.22 – Classificazione alternativa $\Delta\sigma_{\mathbb{C}}$ per dettagli classificati come $\Delta\sigma_{\mathbb{C}}$

Le curve S-N per tensioni tangenziali sono rappresentate in Figura C4.2.23.

Le curve S-N per tensioni tangenziali sono caratterizzate, oltre che dalla classe $\Delta \tau_C$, dal limite per i calcoli di fatica, $\Delta \tau_U$ corrispondente a N=108 cicli. L'equazione della curva S-N è

$$\Delta \tau = \Delta \tau_C \left(\frac{2 \cdot 10^6}{N} \right)^{\frac{1}{m}} \qquad \text{per N} \leq 10^8$$

$$\Delta \tau = \Delta \tau_L \qquad \text{per N} > 10^8$$

dove m=5, cosicché risulta

$$\Delta \tau_{L} = 0.457 \Delta \tau_{C}$$
. [C4.2.97]

Le classi di resistenza a fatica per tensioni tangenziali relative ai dettagli più comuni sono riportate nella Tabelle C4.2.XII.b, C4.2.XII.c e C4.2.XVI.b.

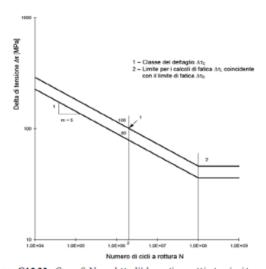


Figura C4.2.23 - Curve S-N per dettagli/elementi soggetti a tensioni tangenziali

Per la resistenza dei dettagli costruttivi tipici degli impalcati a piastra ortotropa, si può far riferimento al documento UNI EN 1993-1-9.

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Tabella C4.2.XII.a - Dettagli costruttivi per prodotti laminati e estrusi e loro classificazione (Δσ)

Classe del dettaglio	Dettaglio costruttivo	Descrizione	Requisiti
160 140 ⁽¹⁾		Prodotti laminati e estrusi 1) Lamiere e piatti laminati; 2) Lamiere e piatti; 3) Profili cavi senza saldatura, rettangolari e circolari	Difetti superficiali e di laminazione e spigoli vivi devono essere eliminati mediante molatura
140 125 ⁽¹⁾	4	Lamiere tagliate con gas o meccan icamente 4) Taglio a gas automatico o taglio meccanico e successiva eliminazione delle tracce del taglio	Tutti i segni visibili di intaglio sui bordi devono essere eliminati. Le aree di taglio devono essere lavorate a macchina. Graffi e scalfitture di lavorazione devono essere paralleli agli sforzi
125 112 ⁽¹⁾	5	automatico con tracce del taglio regolari e	 e 5) Angoli rientranti devono essere raccordati con pendenza ≤1:4, in caso contrario occorre impiegare opportuni fattori di concentrazione degli sforzi. Non sono ammesse riparazioni mediante saldatura

 $^{^{(1)}}$ Classe da adottare per acciai resistenti alla corrosione.

Tabella C4.2.XII.b - Dettagli costruttivi per prodotti laminati e estrusi e loro classificazione (Δτ)

Classe del dettaglio	Dettaglio costruttivo Descrizione		Requisiti
100		Prodotti laminati e estrusi (come quelli di tabella C4.2XVI.a) soggetti a tensioni tangenziali	

Tabella C4.2.XII.c - Bulloni sollecitati a taglio (Δτ)

Classe del dettaglio	Det	taglio costruttivo	Descrizione	Requisiti
100	(15) —	-	15) Bulloni sollecitati a taglio su uno o due piani non interessanti la parte filettata. - Bulloni calibrati - Bulloni normali di grado 5.6, 8.8 e 10.9 e assenza di inversioni di carico	$\Delta \tau$ calcolati in riferimento all'area del gambo

GESTIONE PROGETTI INGEGNERIA srl

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Tabella C4.2.XII.d - Dettagli costruttivi per giunti chiodati o bullonati (Δσ)

Classe del dettaglio	Dettaglio costruttivo	Descrizione	Requisiti
112	8	Giunti bullonati con coprigiunti doppi e bulloni AR precaricati o bulloni precaricati iniettati	$\Delta\sigma$ riferiti alla sezione lorda
	9	Giunti bullonati con coprigiunti doppi e bulloni calibrati o bulloni non precaricati iniettati	Δσ riferiti alla sezione netta
90	10	Giunti bullonati con coprigiunti singoli e bulloni AR precaricati o bulloni precaricati iniettati	Δσ riferiti alla sezione lorda
		Elementi strutturali forati soggetti a forza normale e momento flettente	Δσ riferiti alla sezione netta

Classe del dettaglio	Dettaglio costruttivo	Descrizione	Requisiti
80		Giunti bullonati con coprigiunti singoli e bulloni calibrati o bulloni non precaricati iniettati	$\Delta\sigma$ riferiti all a sezione netta
50	13	 Giunti bullonati con coprigiunti singoli o doppi con bulloni con precarico in fori di tolleranza normale. Assenza di inversioni del carico. 	$\Delta\sigma$ riferiti all a sezione netta
50		14) Bulloni e barre filettate soggetti a trazione. Per bulloni di diametro φ>30 mm, si deve adottare una classe ridotta del coefficiente $k_s = (30/\phi)^{0,25}$	Δσ riferiti alla sezione della parte filettata, considerando gli effetti dovuti all'effetto leva e alla flessione ulteriore. Per bulloni precaricati i Δσ possono essere ridotti.

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Tabella C4.2.XIII - Dettagli costruttivi per sezioni saldate (Δσ)

Classe del dettaglio	Dettaglio costruttivo	Descrizione	Requisiti
125		Saldature longitudi nali continue 1) Saldatura automatica a piena penetrazione effettuata da entrambi i lati 2) Saldatura automatica a cordoni d'angolo. Le parti terminali dei piatti di rinforzo devono essere verificate considerando i dettagli 5) e 6) della tabella C4.2.XVI.a)	1) e 2) Non sono consentite interruzioni/riprese, a meno che la riparazione sia eseguita da un tecnico qualificato e siano eseguiti controlli atti a verificare la corretta esecuzione della riparazione
112		Saldatura automatica a cordoni d'angolo o a piena penetrazione effettuata da entrambi i lati, ma contenente punti di interruzione/ripresa. Saldatura automatica a piena penetrazione su piatto di sostegno, non contenente punti di interruzione/ripresa	Se il dettaglio contiene punti di interruzione/ripresa, si deve far riferimento alla classe 100
100	6	Saldatura manuale a cordoni d'angolo o a piena penetra-zione Saldatura a piena penetra-zione manuale o automatica eseguita da un sol lato, in particolare per travi a cassone	5) e 6) Deve essere assicurato un corretto contatto tra anima e piattabanda. Il bordo dell'anima deve essere preparato in modo da garantire una penetrazione regolare alla radice, senza interruzioni
100	7	Saldatura a cordoni d'angolo o a piena penetrazione, manuale o automatica, appartenente ai dettagli da 1) a 6) riparata	In caso di adozione di metodi migliorativi mediante molatura eseguita da tecnici qualificati, integrati da opportuni controlli, è possibile ripristinare la d'asse originaria
80	g h 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Saldatura l'ongitudinale a cordoni d'angolo a tratti	$\Delta\sigma$ riferiti alle tensioni nella piattabanda
71	9	Saldatura longitudinale a piena penetrazione, a cordoni d'angolo e a tratti, con lunette di scarico di altezza non maggiore di 60 mm. Per lunette di altezza maggiore vedere dettaglio 1) della tabella C4.2.XV)	Δσ riferiti alle tensioni nella piattabanda

Classe del dettaglio	Dettaglio costruttivo	Descrizione	Requisiti
125 (a) 112 (b) 90 (c)	100	Saldatura longitudinale a piena penetrazione	(a) Entrambe le facce molate in direzione degli sforzi e controlli non distruttivi al 100% (b) Come saldata, assenza di interruzioni/riprese (c) Con interruzioni/riprese
140 (a) 125 (b) 90 (c)		composizione in sezioni cave circolari o	(a) Difetti entro i limiti della UNI EN 1090. Spessore t≤12,5 mm e controlli non distruttivi al 100% (b) Come saldata, assenza di interruzioni/riprese (c) Con interruzioni/riprese

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Tabella C4.2.XIV - Dettagli costruttivi per saldature a piena penetrazione ($\Delta \sigma$)

Classe del dettaglio	Dettaglio costruttivo	Descrizione	Requisiti
112	2 s1/4 s1/4 s1/4 s1/4 s1/4 s1/4 s1/4 s1/4	Saldature senza piatto di sostegno 1) Giunti trasversali in piatti e lamiere 2) Giunti di anime e piattabande in travi composte eseguiti prima dell'assemblaggio 3) Giunti trasversali completi di profili laminati, in assenza di lunette di scarico 4) Giunti trasversali di lamiere e piatti con rastremazioni in larghezza e spessore con pendenza non mag-giore di 1:4. Nelle zone di transi-zione gli intagli nelle saldature devono essere eliminati Per spessori t>25 mm, si deve adot-tare una dasse ridotta del coefficiente	Saldature effettuate da entrambi i lati, molate in direzione degli sforzi e sottoposte a controlli non distruttivi Le saldature devono essere iniziate e terminate su tacchi d'estremità, da rimuovere una volta completata la saldatura I bordi esterni delle saldature devono essere molati in direzione degli sforzi 3) Vale solo per profilati tagliati e risaldati
90	\$0.1b b \$1/4 \$1 5 \$1/4 \$7	k _s = (25/t) ^{0.2} Saldature senza piatto di sostegno 5) Giunti trasversali in piatti e lamiere 6) Giunti trasversali completi di profili laminati, in assenza di lunette di scarico 7) Giunti trasversali di lamiere e piatti con rastremazioni in larghezza e spessore con pendenza non maggiore di 1:4. Nelle zone di transizione gli intagli nelle saldature devono essere eliminati Per spessori t>25 mm, si deve adot-tare una classe ridotta del coefficiente k _s = (25/t) ^{0.2}	Saldature effettuate da entrambi i lati e sottopo ste a controlli non distruttivi Sovraspessore di saldatura non maggiore del 10% della larghezza del cordone, con zone di transizione regolari Le saldature devono essere iniziate e terminate su tacchi d'estremità, da rimuovere una volta completata la saldatura I bordi esterni delle saldature devono essere molati in dire-zione degli sforzi Le saldature dei dettagli 5) e 7) devono essere eseguite in piano
90	8	8) Come il dettaglio 3), ma con lunette di scarico $ \label{eq:continuous} $	Saldature effettuate da entrambi i lati, molate in direzione degli sforzi e sottoposte a controlli non distruttivi. Le saldature devono essere iniziate e terminate su tacchi d'estremità, da rimuovere una volta completata la saldatura I bordi esterni delle saldature devono essere molati in direzione degli sforzi I profili laminati devono avere le stesse dimensioni, senza differenze dovute a tolleranze
80	(i) (ii) (iii) (ii	Saldature senza piatto di sostegno 9) Giunti trasversali in travi com-poste, in assenza di lunette di scarico 10) Giunti trasversali completi di profili laminati, in presenza di lunette di scarico 11) Giunti trasversali di lamiere, piatti, profilati e travi composte Per spessori t>25 mm, si deve adot-tare una classe ridotta del coefficiente k, = (25/t) ^{0.2}	Saldature effettuate da entrambi i lati, non molate e sottoposte a controlli non distruttivi. Le saldature devono essere iniziate e terminate su tacchi d'estremità, da rimuovere una volta completata la saldatura I bordi esterni delle saldature devono essere molati in direzione degli sforzi Sovraspessore di saldatura non maggiore del 20% della larghezza del cordone, per i dettagli 9) e 11), o del 10% per il dettaglio 10, con zone di transizione regolari

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Classe del dettaglio	Dettaglio costruttivo	Descrizione	Requisiti
63	12	12) Giunti trasversali completi di profili laminati, in assenza di lunette di scarico	Saldature effettuate da entrambi i lati Le saldature devono essere iniziate e terminate su tacchi d'estremità, da rimuovere una volta completata la saldatura I bordi esterni delle saldature devono essere molati in direzione degli sforzi
71 (36)		13) Giunti trasversali a piena penetrazione eseguiti da un solo lato, con piena penetrazione controllata mediante opportuni controlli non distruttivi. Per spessori t>25 mm, si deve adot-tare una classe ridotta del coefficiente $k_s = \left(25/t\right)^{0.2}$ In assenza di controlli, si deve adottare la classe 36, per qual siasi valore di t	Saldature senza piatto di sostegno Le saldature devono essere iniziate e terminate su tacchi d'estremità, da rimuovere una volta completata la saldatura I bordi esterni delle saldature devono essere molati in direzione degli sforzi
71	15 10mm	Saldature su piatto di sostegno 14) Giunti trasversali in piatti e lamiere 15) Giunti trasversali di lamiere e piatti con rastremazioni in larghezza e spessore con pendenza non maggiore di 1:4. Vale anche per lamiere curve Per spessori t>25 mm, si deve adot-tare una classe ridotta del coefficiente k _s = (25/t) ^{0,2}	I cordoni d'angolo che fissano il piatto di sostegno devono terminare a più di 10 mm dai bordi dell'elemento e devono essere interni alla saldatura di testa
50	(16)		Da adottarsi quando i cordoni d'angolo che fissano il piatto di sostegno terminano a meno di 10 mm dai bordi dell'elemento o quando non può essere garantito un buon accoppiamento
71	pendenzas1:2 $t_2 \downarrow \qquad \qquad t_1 \\ \downarrow \qquad \qquad t_2 \geq t_1$	Saldature trasversali a piena penetrazione tra elementi di spessore differente con assi allineati Per spessori t₁>25 mm si deve adottare una classe ridotta del coefficiente k₁ = (25/t₁)0,2	Nel caso di disassamento la classe deve essere ridotta con il coefficiente $k_{\rm se} = \left(1 + \frac{6e}{t_{\rm i}} \cdot \frac{t_{\rm i}^{1,5}}{t_{\rm i}^{1,5} + t_{\rm i}^{1,5}}\right)^{-1}$ da combinare, eventualmente, con $k_{\rm e}$, quando $t_{\rm t} > 25 \ \text{mm}$

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

 $\textbf{Tabella C4.2.XV} - Dettagli costruttivi per attacchi e irrigiditori saldati (\Delta\sigma)$

Classe del dettaglio	Dettaglio costruttivo	Descrizione	Requisiti
80 (a) 71 (b) 63 (c) 56 (d)		Attacchi saldati longitudinali 1) La dasse del dettaglio dipende dalla lunghezza dell'attacco (a) L ≤ 50 mm (b) 50 < L ≤ 80 mm (c) 80 < L ≤ 100 mm (d) L > 100 mm	Spessore dell'attacco minore della sua altezza. In caso contrario vedi dettagli 5 e 6
71	2	 Attacchi saldati longitudinali a piatti o tubi con L>100 m e α<45° 	
80	3		Raccordo di transizione di raggio r realizzato con taglio meccanico o a gas realizzato prima della saldatura del faz-zoletto. Al termine della salda- tura, la parte terminale deve essere molata in direzione della freccia per eliminare completa- mente la punta della saldatura

Classe del dettaglio	Dettaglio costruttivo	Descrizione	Requisiti
90 (a) 71 (b) 50 (c)	4	4) Fazzoletti d'attacco saldati a un lato di un piatto o della piattabanda di una trave e dotati di raccordo di transizione di raggio r. La lunghezza L deve essere valutata come per i dettagli 1), 2) e 3). La stessa dassificazione può essere adottata anche per piattabande saldate dotate di raccordo di transizione di raggio r. (a) r≥ L/3 o r >150 mm (b) L/3 > r≥ L/6 (c) r < L/6	Raccordo di transizione di raggio r realizzato con taglio meccanico o a gas realizzato prima della saldatura del fazzoletto. Al termine della saldatura, la parte terminale deve essere molata in direzione della freccia per eliminare completamente la punta della saldatura
40	5	Come saldato, senza raccordo di transizione	
80 (a) 71 (b)		Attacchi trasversali 6) Saldati a una piastra 7) Nervature verticali saldate a un profilo o a una trave composta 8) Diagrammi di travi a cassone composte, saldati all'anima o alla piattabanda (a) ✓ ≤ 50 mm (b) 50< ✓ ≤ 80 mm Le classi sono valide anche per nervature anulari	6) e 7) Le parti terminali delle saldature devono essere molate accuratamente per eliminare tutte le rientranze presenti 7) Se la nervatura termina nell'anima, Δσ deve essere calcolato usando le tensioni principali
80	9	Effetto della saldatura del piolo sul materiale base della piastra	

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Tabella C4.2.XVI.a - Connessioni saldate direttamente sollecitate (Δσ)

Classe del dettaglio	Dettaglio costruttivo	Descrizione	Requisiti
80 (a) 71 (b) 63 (c) 56 (d) 50 (e) 45 (f) 40 (g)	pannello flessibile	Giunti a croce o a T 1) Lesioni al piede della saldatura in giunti a piena penetrazione o a parziale penetrazione 2) Lesione al piede della saldatura a partire dal bordo del piatto caricato, in presenza di picchi locali di tensione nelle parti terminali della saldatura dovuti alla deformabilità del pannello (a) ≤ 50 mm e t qualsiasi (b) 50 < / ≤ 80 mm e t qualsiasi (c) 80 < / ≤ 100 mm e t qualsiasi (d) / >120 mm e t ≤ 20 mm (e) 120 < / ≤ 200 mm e t >20 mm (e) / >200 mm e 20 < t ≤ 30 mm (f) 200 < / ≤ 300 mm e t >30 mm (f) / >300 mm e 30 < t ≤ 50 mm (g) / >300 mm e t >50 mm	1) Il giunto deve essere controllato: le discontinuità e i disallineamenti devono essere conformi alle tolleranze della UNI EN 1090 2) Nel calcolo di Δσ si deve far riferimento al valore di picco delle tensioni, mediante un opportuno fattore di concentrazione degli sforzi k _f 1) e 2) Il disallineamento dei piatti caricati non deve superare il 15% dello spessore della piastra intermedia

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Classe del dettaglio	Dettaglio costruttivo	Descrizione	Requisiti
36*		Giunti a croce o a T 3) Lesione alla radice della saldatura in giunti a T a cordoni d'angolo, a parziale penetrazione e a parziale penetrazione equivalente alla piena penetrazione	Nelle saldature a parziale penetrazione sono richieste due verifiche: la prima riguardo alle lesioni alla radice della saldatura deve essere riferita alla classe 36° per $\Delta\tau$ e alla classe 80 per $\Delta\tau$, la seconda riguardo alle lesioni al piede della saldatura nel piatto caricato deve essere riferita alle classi dei dettagli 1 e 2 della presente ta bella II disallineamento dei piatti caricati non deve superare il 15% dello spessore della piastra intermedia
come dettaglio 1	>10 mm >10 mm Zona solectuta	Giunzioni a sovrapposizione 4) Giunzione a sovrapposizione a cordoni d'angolo (verifica della piastra principale)	Δσ nella piastra principale deve essere calcolato considerando l'area indicata in figura (diffusione con pendenza 1:2) Le saldature devono terminare a più di 10 mm dal bordo della piastra. Le verifiche a fatica della saldatura per tensioni tangenziali devono essere effettuate in riferimento al dettaglio 8 (Tabella C4.2.XVI.b)
45*	>10 mm	Giunzioni a sovrapposizione 4) Giunzione a sovrapposizione a cordoni d'angolo (verifica degli elementi sovrapposti)	Δσ è riferito agli elementi sovrapposti Le saldature devono terminare a più di 10 mm dal bordo della piastra. Le verifiche a fatica della saldatura per tensioni tangen-ziali devono essere effettuate in riferimento al det
56* (a) 50 (b) 45 (c) 40 (d) 36 (e)	Summanus Lic Li	Coprigiunti di travi e travi composte 6) Zone terminali di coprigiunti sal dati singoli o multipli, con o senza cordoni terminali trasversali (a) t< t e t ≤ 20 mm (b) t< t e 20 < t ≤ 30 mm (b) t< t e 30 < t ≤ 50 mm (c) t< t e 30 < t ≤ 50 mm (d) t< t e 20 < t ≤ 30 mm (d) t< t e 50 mm	Se il coprigiunto è più largo della flangia occorre eseguire un cordone terminale trasversale, che deve essere accuratamente molato per eliminare le incisioni marginali La lunghezza minima del coprigiunto è 300 mm
56	Control terminals delivated (2)/4.	Coprigiunti di travi e travi composte 7) Zone terminali di coprigiunti saldati con cordone terminale rinforzato di lunghezza minima 5 t _c	Cord one trasversale rinforzato molato e raccordato Se t.>20 mm, il raccordo, di pendenza non maggiore di 1:4, deve essere esteso fino al bordo superiore del coprigiunto

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

Tabella C4.2.XVI.b - Connessioni saldate direttamente sollecitate (Δτ)

Classe de dettaglio	Dettaclin costruttivo	Descrizione	Requisiti
80	8 9 Plant	8) Cordoni d'angolo continui soggetti a sforzi di sconnessione, quali quelli di composizione tra anima e piattabanda in travi composte saldate 9) Giunzioni a sovrapposizione a cordoni d'angolo soggette a tensioni tangenziali	8) Δτ deve essere calcolato in riferimento alla sezione di gola del cordone 9) Δτ deve essere calcolato in riferimento alla sezione di gola del cordone, considerando la lunghezza totale del cordone, che deve terminare a più di 10 mm dal bordo della plastra

Tabella C4.2.XVII - Dettagli costruttivi e resistenza a fatica per le vie di corsa di carriponte

Classe del dettaglio	Dettaglio costruttivo	Descrizione	Requisiti
160	1	1) Sezioni laminate ad I o H	La classe è relativa ai delta di compressione verticali $\Delta\sigma_{\rm vat}$ indotti nell'anima dai carichi ruota

Classe del dettaglio	Dettaglio costruttivo	Descrizione	Requisiti
71	2	2) Saldatura a piena penetrazione a T	La classe è relativa ai delta di compressione verticali Δσ _{vert} indotti nell'anima dai carichi ruota
36*	3	Saldatura a T a parziale penetrazione o a piena penetrazione equivalente a parziale penetrazione	La classe è relativa ai delta di compressione verticali Δσ _{vert} indotti nella sezione di gola della saldatura dai carichi ruota
36*	4	4) Saldature a cordone d'angolo	La classe è relativa ai delta di compressione verticali Δσ _{vert} indotti nella sezione di gola della saldatura dai carichi ruota
71	(5)	Saldatura a T a piena penetrazione tra anima e piattabanda a T	La classe è relativa ai delta di compressione verticali $\Delta\sigma_{\rm vert}$ indotti nell'anima da i carichi ruota
36*	©	Saldatura a T a parziale penetrazione o a piena penetrazione equivalente a parziale penetrazione tra anima e piattabanda a T	
36*	② T	Saidatura a T a cordoni d'angolo tra anima e piattabanda a T	La classe è relativa ai delta di compressione verticali \(\text{Advert} \) indotti nella sezione di gola della saldatura dai carichi ruota

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Curva S-N per connettori a piolo

La curva S-N per connettori a piolo sollecitati a taglio delle strutture composte acciaio-calcestruzzo è rappresentata in Figura C4.2.24 ed è caratterizzata dall'assenza di limite di fatica. La pendenza della curva è m = 8 e la classe del particolare per calcestruzzo normale è $\Delta \tau_C$ = 90 MPa.

Per calcestruzzi leggeri la classe si riduce, in funzione del limite superiore della densità della classe di appartenenza, ρ, espresso in kg/m3, a

$$\Delta \tau_{\rm C} = 90 \left(\frac{\rho}{2200} \right)^2 \text{MPa} \qquad [C4.2.98]$$

Le tensioni tangenziali devono essere valutate in riferimento alla sezione nominale del connettore.

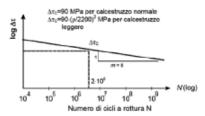


Figura C4.2.24 – Curva S-N per connettori a piolo

C4.2.4.1.45 Metodi di verifica

Nelle verifiche a fatica le tensioni da considerare devono essere coerenti con quelle alle quali è riferita la curva S-N del dettaglio. Di solito, le curve S-N dei dettagli costruttivi riportate nelle normative sono riferite alle tensioni nominali e pertanto ad esse si deve generalmente far riferimento. Per dettagli costruttivi particolarmente complessi o innovativi, per i quali si proceda ad uno studio

ad hoc, potrebbe essere necessario riferirsi alle tensioni di picco, misurate o determinate con specifici protocolli sperimentali. In questo caso, le tensioni debbono essere calcolate per via teorica o numerica con le stesse modalità adottate sperimentalmente.

Nell'associare al dettaglio in esame la corrispondente curva S-N di resistenza a fatica è consentito tener conto degli effetti benefici di eventuali trattamenti termici o meccanici di distensione, sulla base della letteratura consolidata o di adeguata sperimentazione.

Per i dettagli costruttivi dei quali non sia nota la curva di resistenza a fatica le escursioni tensionali potranno riferirsi alle tensioni geometriche o di picco, cioè alle tensioni principali nel metallo base in prossimità della potenziale lesione, secondo le modalità e le limitazioni specifiche del metodo, nell'ambito della meccanica della frattura.

Nel caso di verifica a danneggiamento, sulla base del danno D si può definire uno spettro di tensione equivalente, ad ampiezza di tensione costante, $\Delta\sigma_{eq.d}$ (o $\Delta\tau_{eq.d}$), in grado di produrre, nello stesso numero di cicli, $n_{tot} = \sum n_i$, un danneggiamento uguale a

quello prodotto dallo spettro di tensione di progetto, oppure, in alternativa, un delta di tensione convenzionale $\Delta \sigma_{E,d}$ in grado di produrre in 2×10^s cicli, lo stesso danneggiamento prodotto dallo spettro di tensione di progetto.

Nel caso di variazioni simultanee di tensioni normali e tangenziali, la valutazione della resistenza a fatica dovrà considerare i loro effetti congiunti adottando idonei criteri di combinazione del danno.

Nel caso di variazioni non simultanee del campo di tensioni normali e tangenziali si potranno sommare i danneggiamenti $D_{\sigma}e$ D_{τ} prodotti dai cicli di tensione normale e dai cicli di tensione tangenziale, valutati separatamente con la formula [4.2.57] del § 4.2.4.1.4 delle NTC, controllando che

$$D = D_{\alpha} + D_{\tau} \le 1,0$$
 [C4.2.99]

C4.2.4.1.4.6 Influenza dello spessore

Nella valutazione della resistenza a fatica dovrà tenersi conto dello spessore del metallo base nel quale può innescarsi una

Nel caso che l'influenza dello spessore sulla resistenza a fatica non sia trascurabile, la classe del dettaglio deve essere ridotta secondo la formula

$$\Delta \sigma_{C,red} = k_s \cdot \Delta \sigma_{C}$$
 [C4.2.100]

dove il coefficiente riduttivo k, dipende dal dettaglio strutturale considerato ed i cui valori indicativi sono indicati, per alcuni dettagli costruttivi, nel documento UNI EN 1993-1-9.

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Si procede ora al calcolo di verifica a fatica.

Le verifiche a danneggiamento consistono nel verificare che nel dettaglio considerato lo spettro di carico produca un danneggiamento D <= 1.

Il danneggiamento D è valutato mediante la legge di Palmgren-Miner, considerando la curva S-N caratteristica del dettaglio e la vita nominale dell'opera.

La verifica a fatica consiste nel verificare che sia:

$$\Delta_A \leq \Delta_R / \gamma_{Mf}$$
 [4.2.54]

essendo

 $\Delta_{
m d}$ l'escursione di tensione (effettiva o equivalente allo spettro di tensione) prodotta dalle azioni cicliche di progetto che inducono fenomeni di fatica con coefficienti parziali $\gamma_{Mf} = 1$;

Δ_R la resistenza a fatica per la relativa categoria dei dettagli costruttivi, come desumibile dalle curve S-N di resistenza a fatica, per il numero totale di cicli di sollecitazione N applicati durante la vita di progetto richiesta,

 γ_{Mf} il coefficiente parziale definito nella Tab. 4.2.XI.

Tab. 4.2.XI - Coefficienti di sicurezza da assumere per le verifiche a fatica.

	Conseguenze della rottura	
	Conseguenze moderate	Conseguenze significative
Strutture poco sensibili alla rot- tura per fatica	$\gamma_{\rm Mf}$ = 1,00	$\gamma_{\rm Mf}$ = 1,15
Strutture sensibili alla rottura per fatica	$\gamma_{\rm Mf}$ = 1,15	$\gamma_{\rm Mf}$ = 1,35

Si definiscono strutture poco sensibili alla rottura per fatica quelle in cui si verifichino tutte le seguenti circostanze:

- dettagli costruttivi, materiali e livelli di tensione tali che le eventuali lesioni presentino bassa velocità di propagazione e significativa lunghezza critica;
- disposizioni costruttive che permettano la ridistribuzione degli sforzi;
- dettagli idonei ad arrestare la propagazione delle lesioni;
- dettagli facilmente ispezionabili e riparabili;
- prestabilite procedure di ispezione e di manutenzione atte a rilevare e riparare le eventuali lesioni.

Nel caso presente si ha:

- Struttura poco sensibile
- Conseguenze significative

→
$$\gamma_{Mf} = 1.15$$

Le verifiche vengono condotte considerando lo spettro di tensione indotto nel dettaglio dal modello di carico di fatica semplificato 3 costituito da un veicolo di fatica simmetrico a 4 assi, ciascuno di peso 120 kN

Le curve S-N sono funzione della classe del dettaglio considerato e riportano su un piano bilogaritmico

 $\log (\Delta \sigma)$ - $\log (N)$ la resistenza del dettaglio considerato in funzione del numero di cicli a rottura N. PROGETTAZIONE ATI:

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

L'equazione della curva S-N:

$$\Delta \sigma = \Delta \sigma_c \left(\frac{2 \cdot 10^6}{N}\right)^{\frac{1}{m}} per N \le 5 \cdot 10^6$$

$$\Delta \sigma = \Delta \sigma_D \left(\frac{2 \cdot 10^6}{N}\right)^{\frac{1}{m+2}} per 5 \cdot 10^6 \le N \le 10^8$$

$$\Delta \sigma = \Delta \sigma_L per N > 10^8$$

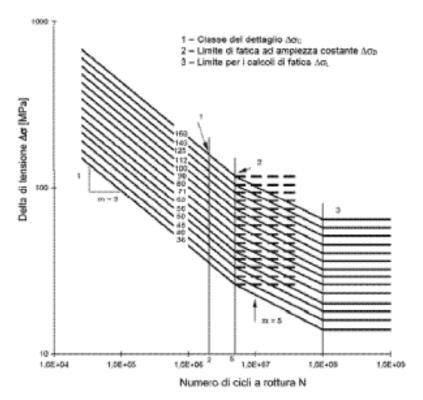


Figura C4.2.21 - Curve S-N per dettagli/elementi soggetti a tensioni normali

Le curve S-N sono caratterizzate da un limite di fatica ad ampiezza costante $\Delta\sigma_D$ corrispondente ad un numero di cicli pari a N=5·10⁶ calcolabile con la seguente relazione:

 $\Delta \sigma_D = 0.737 \ \Delta \sigma_c$

Il limite per i calcoli a fatica $\Delta\sigma_L$ si trova in corrispondenza di un numero di cicli $N=10^8$ ed è calcolabile con la seguente relazione:

 $\Delta \sigma_L = 0.549 \Delta \sigma_c$

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

 $\Delta \sigma_c$ è la classe di resistenza del singolo dettaglio e ne rappresenta la resistenza a fatica.

1.2.1 SPETTRI DI CARICO

Per valutare la ciclicità dei carichi, cioè il numero di ripetizioni in un intervallo di tempo predefinito, si fa ricorso ai cosiddetti spettri di carico. La normativa da libera scelta nell'individuazione dello spettro di carico più idoneo da utilizzare nella verifica. Questi possono essere ricavati mediante studi specifici, dedotti da normative di comprovata validità o possono essere spettri di carichi reali ricavati dall'effettiva registrazione delle azioni cicliche. Nell'ultimo caso citato la normativa suggerisce che qualora lo spettro di carico effettivo sia complicato a tal punto da non poter essere impiegato facilmente nelle verifiche si può sostituire con uno spettro convenzionale in grado di riprodurre il danneggiamento a fatica e il massimo livello di escursione delle tensioni prodotte dallo spettro di carico effettivo.

Per le seguenti verifiche a fatica sono stati impiegati gli spettri di carico riportati dalle NTC18. Si riporta di seguito la verifica a fatica per danneggiamento avendo ipotizzato che l'opera sia soggetta a programmate operazioni di ispezione e manutenzione.

1.2.2 VERIFICA A DANNEGGIAMENTO

Vengono eseguite le verifiche a danneggiamento per i dettagli considerati, adottando la relazione di Palmgre-Miner:

$$D = \sum_{i=1}^{n} \frac{n_i}{N_i} \le 1$$

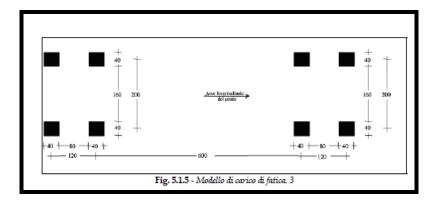
-ni il numero di cicli di ampiezza $\Delta \sigma i,d$ indotti dallo spettro di carico delle verifiche a danneggiamento;

-Ni il numero di cicli a rottura di ampiezza $\Delta \sigma i, d$ ricavato dalla curva S-N caratteristica del dettaglio

Il numero di ripetizioni del carico *ni* è riportato nella tabella 5.1.X:

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI – Viadotti e Ponti – Collestrada DX – Impalcato – Relazione tecnica e di calcolo

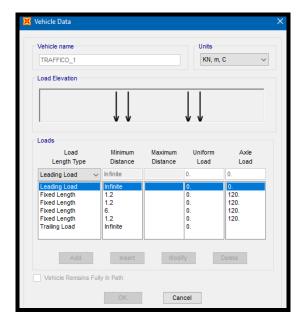

Tab. 5.1X – Flusso avinuo di veicoli pesanti sulla corsia di marcia lenta

Categorie di traffico	Flusso annuo di veicoli di peso superiore a 100 kN sulla corsia di marcia lenta
 Strade ed autostrade con 2 o più corsie per senso di mar- cia, caratterizzate da intenso traffico pesante 	2,0x10 ⁶
 2 - Strade ed autostrade caratterizzate da traffico pesante di media intensità 	0,5x10 ⁶
 3 - Strade principali caratterizzate da traffico pesante di mo- desta intensità 	0,125x10 ⁶
 4 - Strade locali caratterizzate da traffico pesante di intensità molto ridotta 	0,05×10 ⁶

Nel presente caso la categoria di traffico è la numero 2, quindi ni=0.5*10⁶

1.2.3 MODELLAZIONE FEM TRAMITE SAP2000

E' stato realizzato un ulteriore modello di calcolo nel quale sono state implementate la condizione di carico relativa al modello a fatica 3, ottenuto procedendo ad inserire le corsie di carico caratterizzate dal carico distribuito nullo e da doppio carico tandem disposto in modo tale da rappresentare la condizione più sfavorevole. Per soddisfare quest'ultima condizione si è ricorso alla funzione propria di SAP2000 che permette di definire nel modello delle corsie di carico (path) e dei carichi viaggianti su di esse:



TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

Le corsie vengono applicate ad elementi frame (trave fittizia).

Nota:

la combinazione di carico per fatica prevede i soli carichi mobili caratteristici

Di seguito si riportano i dati estrapolati dalla trave più cimentata.

La verifica a fatica viene effettuata sui seguenti dettagli:

- bullonature
- Saldature dei pioli sull'ala superiore
- Piatti saldati di collegamento Trave-Trasversi

Dalle tabelle sopra riportate è possibile estrarre la classe di dettaglio $\Delta \sigma_c$ (MPa), indice della resistenza a fatica di riferimento per il dettaglio considerato.

In questa fase progettuale si tiene conto delle seguenti eventualità:

 $\rightarrow \gamma_{Mf}$ =1.15.

L'escursione massima di tensione ricavata dall'applicazione del modello di carico a fatica 3 è stata riscontrata alla progressiva x=24~m (campata centrale L=45 m) e risultata essere pari a: $\Delta \sigma_{MAX}$ = 35.6 *MPa*

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX - Impalcato - Relazione tecnica e di calcolo

 $\Delta \sigma d_{,MAX} = \gamma_{Mf} \Delta \sigma_{MAX} = 1.15 * 35.6 = 40.9 MPa$

Per la verifica a danneggiamento si deve individuare il numero di cicli Ni a rottura con ampiezza determinata dall'escursione massima di tensione $\Delta \sigma_{i,d}$ ricavato dalla curva S-N caratteristica del dettaglio. A tal fine è sufficiente ricavare il valore del numero di cicli Ni dall'equazione della curva S-N per ni (numero di cicli indotti dallo spettro di carico) pari a 5E5:

$$\Delta \sigma = \Delta \sigma_c * \left(\frac{2*10^6}{N_i}\right)^{\frac{1}{m}} \quad \text{Per N}_i \le 5 * 10^6$$

$$N_i = \left(\frac{\Delta \sigma_c}{\Delta \sigma}\right)^m * 2 * 10^6$$

La verifica risulta soddisfatta per D = ni/Ni <=1

La tabella seguente riporta le verifiche del caso, tutte ampiamente soddisfatte

GESTIONE PROGETTI INGEGNERIA srl

TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

VERIFICA A FATICA											
σc,max	σs	σa,ali_sup	Δσa,ali_sup	σa,an_sup	Δσa,an_sup	σa,an_inf	Δσa,an_inf	σa,ali_inf	Δσa,ali_inf	τ	Δσa,ali_sup
(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
Tens.cls,max	Tens.arm. Soletta	Tens.acc. ala sup	Variazione tens. ala sup.	Tens.acc. anima sup	Variazione tens. anima sup.	Tens.acc. ala inf.	Variazione tens. anima inf.	Tens.acc. anima inf.	Variazione tens. ali inf.	Tens.taglio anima	Variazione tens. anima sup.
ΔMAX,ass	27,11	ΔΜΑΧ	15,52	ΔΜΑΧ	14,85	ΔΜΑΧ	25,13	ΔΜΑΧ	26,78	ΔΜΑΧ	9,72
		ΔΜΙΝ	-15,53	ΔΜΙΝ	-14,86	ΔΜΙΝ	-25,42	ΔΜΙΝ	-27,11	ΔΜΙΝ	-9,77
n,i	Δσ,max	Condizioni (tab. 4.2.IX)		γ	m	Δσc	$\Delta \sigma d$	ΔσL	Δσ,max,d	N,i	D
(-)	(MPa)			(-)	(-)	(MPa)	(MPa)	(MPa)	(MPa)	(-)	(-)
Tens.	Tens.	DANNEGGIAMENT O ACCETTABILE	CONSEGUENZE SIGNIFICATIVE	Coeff. sic. verif. a fatica	Tens.	classe di dettaglio giunti bullonati	ΔσD=0.737 Δσ c	ΔσL=0.549 Δσc	Tens.	Tens.	Tens.
5,00E+05	27,1	OACCETTABLE	SIGNII ICATIVE	1,15	3	90	66,33	49,41	31,2	48.100.875	0,010
1						Δσc	$\Delta \sigma d$	ΔσL	Δσ,max,d	N,i	D
$\Delta \sigma = \Delta \sigma_c \left(\frac{2 \cdot 10^6}{N} \right)^{\frac{1}{m}} per N \le 5 \cdot 10^6$					(MPa)	(MPa)	(MPa)	(MPa)	(-)	(-)	
$\Delta \sigma = \Delta \sigma_D \left(\frac{2 \cdot 10^6}{N}\right)^{\frac{1}{m+2}} per 5 \cdot 10^6 \le N \le 10^8$ $\Delta \sigma = \Delta \sigma_L per N > 10^8$ $D = \sum_{i}^{n} \frac{n_i}{N_i} \le 1$						classe di dettaglio saldatura pioli	ΔσD=0.737 Δσc	ΔσL=0.549 Δσc	Tens.	Tens.	Tens.
						80	58,96	43,92	31,2	33.782.782	0,015
						Δσε	Δσd	ΔσL	Δσ,max,d	N,i	D
						(MPa)	(MPa)	(MPa)	(MPa)	(-)	(-)
						classe di dettaglio irrigidim. Saldati	ΔσD=0.737 Δσ c	ΔσL=0.549 Δσc	Tens.	Tens.	Tens.
						80	58,96	43,92	31,2	33.782.782	0,015

E45 – SISTEMAZIONE STRADALE DEL NODO DI PERUGIA TRATTO MADONNA DEL PIANO - COLLESTRADA

OPERE D'ARTE MAGGIORI - Viadotti e Ponti - Collestrada DX. - Impalcato - Relazione tecnica e di calcolo

8. CONCLUSIONI

8.1. GENERALITÀ

La presente relazione di calcolo strutturale, in conformità al punto §10.1 del DM 17/01/18, è comprensiva di una descrizione generale dell'opera e dei criteri generali di analisi e verifica. Segue inoltre le indicazioni fornite al §10.2 del DM 17/01/18 per quanto concerne analisi e verifiche svolte con l'ausilio di codici di calcolo.

Per chiarire ulteriormente i valori numerici di ogni elaborazione, sono stati riportati tabelle e schemi grafici rappresentativi delle parti più sollecitate della struttura e delle principali caratteristiche della sollecitazione, nonché i diagrammi di inviluppo associati alle combinazioni di carichi considerate, le configurazioni deformate e gli schemi grafici con la rappresentazione delle azioni applicate, oltre ad una breve descrizione delle convenzioni sui segni e delle simbologie adottate.

Come detto in precedenza tutte le analisi, i confronti, le comparazioni e le verifiche svolte hanno evidenziato il corretto comportamento del modello e l'affidabilità dei risultati, pertanto i risultati sono accettabili.

Le analisi numeriche qui esposte riguardano il viadotto effettivamente più critico, e meritevole di approfondimento anche in questa fase di studio, rispetto alle parti restanti costituite da elementi più semplici e facilmente dimensionabili sulla base delle soluzioni tipologiche simili ed assolutamente standardizzate.

8.1. **ESITO DELLE VERIFICHE**

Le verifiche svolte, in accordo alla normativa vigente (DM'18), sia nei confronti degli SLE che degli SLU (statici e sismici) hanno dato tutte esito positivo per tutti gli interventi in oggetto, così come dimostrato nei paragrafi precedenti.

