WPD Salentina s.r.l

P.IVA 16496441003 Corso d'Italia 83, 00198 Roma

REALIZZAZIONE DI UN IMPIANTO EOLICO DELLA POTENZA DI CIRCA 52,8 MW IN AGRO DI GUAGNANO (LE) E SAN DONACI (BR), CON OPERE CONNESSE ALLA SE DI ERCHIE (BR)

Via Degli Arredatori, 8 70026 Modugno (BA) - Italy www.bfpgroup.net - info@bfpgroup.net tel. (+39) 0805046361 - fax (+39) 0805619384

> Azienda con Sistema di Gestione Certificato UNI EN ISO 9001:2015 UNI EN ISO 14001:2015 UNI ISO 45001:2018

Tecnico

ing. Danilo POMPONIO

Collaborazioni

- ing. Milena MIGLIONICO
- ing. Giulia CARELLA
- ing. Valentina SAMMARTINO
- ing. Tommaso MANCINI
- ing. Fabio MASTROSERIO
- ing. Martino LAPENNA
- ing. Margherita DEBERNARDIS
- arch. Angela LA RICCIA

pianif. terr. Antonio SANTANDREA

- ing. Nunzia ZECCHILLO
- ing. Mariano MARSEGLIA
- ing. Giuseppe Federico ZINGARELLI
- ing. Dionisio STAFFIERI

Responsabile Commessa

ing. Danilo POMPONIO

ELAE	BORATO	TITOLO	COMMESS	SA	TI	POLOGIA		
			22015			D		
	202	DELAZIONE DECORITTIVA	CODICE ELABORATO DC22015D-C02					
	CO2	RELAZIONE DESCRITTIVA						
REV	ISIONE	Tutte le informazioni tecniche contenute nel presente documento sono di proprietà	SOSTITUIS	TITUITO DA				
		esclusiva della Studio Tecnico BFP S.r.l e non possono essere riprodotte, divulgate o comunque utilizzate senza la sua preventiva autorizzazione scritta. All technical information				-		
	00	contained in this document is the exclusive property of Studio Tecnico BFP S.r.l. and may	NOME FII	NOME FILE PAG				
		neither be used nor disclosed without its prior written consent. (art. 2575 c.c.)	DC22015D-C0	2.doc	25 -	+ copertina		
REV	DATA	MODIFICA	Elaborato	Contro	ollato	to Approvato		
00	29/04/22	Emissione	Zingarelli	Miglio	onico	Pomponio		
01								
02								
03								
04								
05								
06								

Elaborato realizzato con sistema WORD. È vietata la modifica manuale.

Mod. P-19 Rev. 4 18.12.2020

INDICE

1.	PREMESS	5A	2
2.	DESCRIZI	ONE DELL'INTERVENTO	2
	a.	IL PROGETTO	2
	b.	AEROGENERATORI	5
	ELETTRIC	c. IL SISTEMA DI PRODUZIONE, TRASFORMAZIONE E TRASPORTO DELL'ENERG A PRODOTTA	
	d.	FONDAZIONE AEROGENERATORE	9
	e.	VIABILITÀ	. 10
	f.	PIAZZOLE	. 11
	g.	CAVIDOTTI	. 11
3.	MODALIT	À DI ESECUZIONE DELL'IMPIANTO: IL CANTIERE	. 12
4.	PRODUZIO	ONE DI RIFIUTI E SMALTIMENTO DELLE TERRE E ROCCE DI SCAVO	. 13
5.	SMALTIM	ENTO DELLE TERRE E ROCCE DI SCAVO SULLA FASE DI CANTIERIZZAZIONE	. 14
6.	CRONOPI	ROGRAMMA	. 15
7.	SISTEMA	DI GESTIONE E DI MANUTENZIONE DELL'IMPIANTO	. 16
8.	DISMISSIO	ONE DELL'IMPIANTO	. 17
9.	RIPRISTIN	NO DELLO STATO DEI LUOGHI	. 20
10.	ANALISI	RICADUTE SOCIALI, OCCUPAZIONALI ED ECONOMICHE	. 22
	ELENCO	AUTORIZZAZIONI, INTESE, CONCESSIONI, PARERI, NULLA OSTA E ASSENSI DA ACQUISIRE	E

1. PREMESSA

La presente relazione descrive le opere relative al progetto per la realizzazione di un impianto per la produzione di energia elettrica da fonte rinnovabile eolica proposto dalla società WPD Salentina S.r.l..

La proposta progettuale è finalizzata alla realizzazione di un impianto per la produzione di energia elettrica da fonte rinnovabile eolica, costituito da 8 aerogeneratori, del tipo Siemens-Gamesa con rotore pari a 170 m e altezza al tip di 250 m, ciascuno di potenza nominale pari a 6,6 MW, per una potenza complessiva di 52,8 MW, da realizzarsi nel comune di Guagnano (LE) e San Donaci (BR), in cui insistono gli aerogeneratori, e le relative opere di connessione che attraversano i territori di San Pancrazio Salentino (BR), Salice Salentino (LE), Avetrana (TA) e Erchie (BR), per il collegamento alla Stazione Elettrica Terna di Erchie, mediante rete elettrica interrata a 36 kV.

2. DESCRIZIONE DELL'INTERVENTO

a. IL PROGETTO

Il parco eolico di progetto sarà ubicato a ridosso del confine comunale tra Guagnano (LE) e San Donaci (BR), rispettivamente a distanza di 2,5 km m e 2 km dai centri urbani. I terreni sui quali si installerà il parco eolico, interessa una superficie di circa 310 ettari, anche se la quantità di suolo effettivamente occupato è significativamente inferiore e limitato alle aree di piazzole dove verranno installati gli aerogeneratori, come visibile sugli elaborati planimetrici allegati al progetto.

L'area di progetto, intesa come quella occupata dagli 8 aerogeneratori di progetto con annesse piazzole e cavidotti interni interessa i territori comunali di Guagnano (LE), San Donaci (BR); mentre il cavidotto AT esterno e la cabina utente attraversano anche i territori di San Pancrazio Salentino (BR), Salice Salentino (LE), Avetrana (TA) e Erchie (BR).

Dal punto di vista cartografico, le opere di progetto ricadono nelle seguenti tavolette e fogli di mappa:

- Foglio I.G.M. scala 1:50.000 Tavola n° 495 "Mesagne";
- Foglio I.G.M. scala 1:50.000 Tavola n° 511 "Nardò";
- CTR scala 1:5.000 Tavolette nn. 495142, 495143, 495151, 495152, 495153, 495163, 495164, 511021, 511024, 511034.

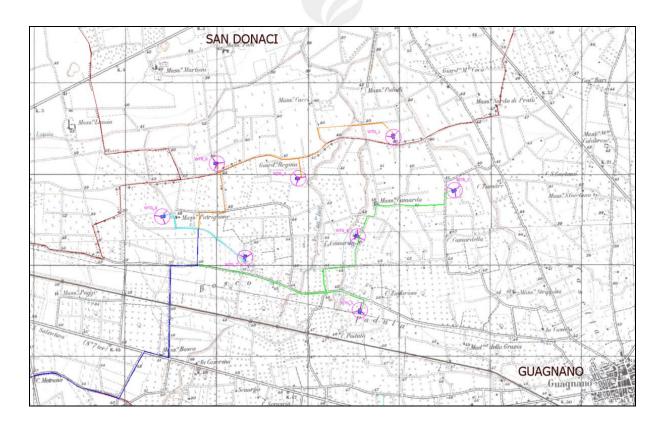


Figura 1: Ubicazione dell'area di impianto specifica degli aerogeneratori su IGM

L'area occupata dagli 8 aerogeneratori di progetto, con annesse piazzole, interesserà i fogli di mappa 5, 6, 7, 9, 21, 23 del comune di Guagnano e i fogli di mappa 34, 37 del comune di San Donaci.

I cavidotti di interconnessione attraverseranno:

- i fogli 34, 35, 36, 37 del comune di San Donaci;
- i fogli 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 28 del comune di Guagnano;
- i fogli 1, 2, 3, 4, 5, 6, 10, 12 del comune di Salice Salentino;
- i fogli 44, 45, 46, 48, 49 del comune di San Pancrazio Salentino;
- il foglio 20 del comune di Avetrana;
- i fogli 37, 38, 39 del comune di Erchie.

La cabina utente ricade nel foglio 37 del comune di Erchie.

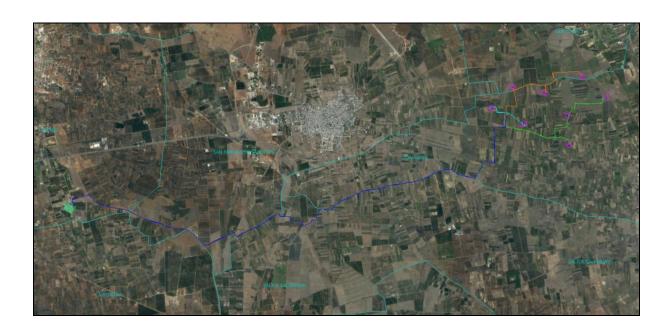


Figura 2: Ubicazione dell'area di impianto su ortofoto

Di seguito, si riporta la tabella riepilogativa in cui sono indicate per ciascun aerogeneratore le relative coordinate (WGS84 – UTM zone 33N) e le particelle catastali, con riferimento al catasto dei terreni dei Comuni di Guagnano (LE) e San Donaci (BR).

		GEOGRAFICHE S84	COORD PLANIMETRI WGS	CHE UTM33	DATI CATASTALI				
WTG	LATITUDINE	LONGITUDINE	NORD (Y)	EST (X)	Comune	foglio	p.lla		
01	40°25'35.99"	17°55'19.23"	4479215.28	747879.84	San Donaci	37	4		
02	40°25'16.44"	17°55'46.91"	4478633.99	748552.09	Guagnano	9	196		
03	40°25'22.49"	17°54'34.36"	4478764.02	746835.97	Guagnano	6	149		
04	40°25'1.16"	17°55'1.06"	4478127.00	747487.00	Guagnano	7	75		
05	40°24'34.96"	17°55'0.95"	4477319.00	747511.00	Guagnano	23	317		
06	40°25'28.69"	17°53'56.74"	4478926.00	745943.00	San Donaci	34	16		
07	40°24'54.90"	17°54'8.40"	4477893.00	746252.00	Guagnano	21	6		
08	40°25'10.51"	17°53'30.50"	4478345.00	745343.00	Guagnano	5	143		

b. AEROGENERATORI

Gli aerogeneratori saranno ad asse orizzontale, costituiti da un sistema tripala, con generatore di tipo asincrono. Il tipo di aerogeneratore da utilizzare verrà scelto in fase di progettazione esecutiva dell'impianto; le dimensioni previste per l'aerogeneratore tipo sono:

- diametro del rotore pari 170 m,
- altezza mozzo pari a 165 m,
- altezza massima al tip (punta della pala) pari a 250 m.

L'aerogeneratore eolico ad asse orizzontale è costituito da una torre tubolare in acciaio che porta alla sua sommità la navicella, all'interno della quale sono alloggiati l'albero di trasmissione lento, il moltiplicatore di giri, l'albero veloce, il generatore elettrico ed i dispositivi ausiliari. All'estremità dell'albero lento, corrispondente all'estremo anteriore della navicella, è fissato il rotore costituito da un mozzo sul quale sono montate le pale, costituite in fibra di vetro rinforzata.

La navicella può ruotare rispetto al sostegno in modo tale da tenere l'asse della macchina sempre parallela alla direzione del vento (movimento di imbardata); inoltre è dotata di un sistema di controllo del passo che, in corrispondenza di alta velocità del vento, mantiene la produzione di energia al suo valore nominale indipendentemente dalla temperatura e dalla densità dell'aria; in corrispondenza invece di bassa velocità del vento, il sistema a passo variabile e quello di controllo ottimizzano la produzione di energia scegliendo la combinazione ottimale tra velocità del rotore e angolo di orientamento delle pale in modo da avere massimo rendimento.

Il funzionamento dell'aerogeneratore è continuamente monitorato e controllato da un'unità a microprocessore.

Il sistema di controllo dell'aerogeneratore assolve le seguenti funzioni:

- sincronizzazione del generatore elettrico con la rete prima di effettuarne la connessione,
 in modo da contenere il valore della corrente di cut-in (corrente di inserzione);
- mantenimento della corrente di cut-in ad un valore inferiore alla corrente nominale;
- orientamento della navicella in linea con la direzione del vento;
- monitoraggio della rete;
- monitoraggio del funzionamento dell'aerogeneratore;
- arresto dell'aerogeneratore in caso di guasto.

Il sistema di controllo dell'aerogeneratore garantisce l'ottenimento dei seguenti vantaggi:

generazione di potenza ottimale per qualsiasi condizione di vento;

- limitazione della potenza di uscita a 6,60 MW;
- livellamento della potenza di uscita fino ad un valore di qualità elevata e quasi priva di effetto flicker;
- possibilità di arresto della turbina senza fare ricorso ad alcun freno di tipo meccanico;
- minimizzazione delle oscillazioni del sistema di trasmissione meccanico.

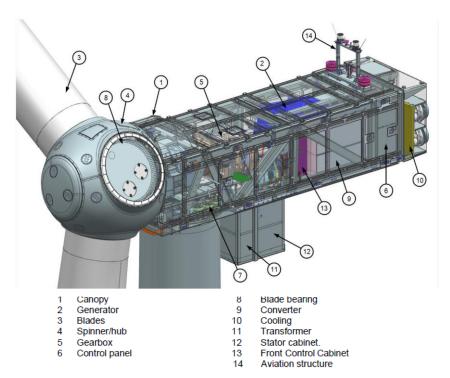


Figura 3: Schema aerogeneratore

Ciascun aerogeneratore può essere schematicamente suddiviso, dal punto di vista elettrico, nei seguenti componenti:

- generatore elettrico;
- interruttore di macchina BT;
- trasformatore di potenza MT/BT;
- cavo MT di potenza;
- quadro elettrico di protezione MT;
- servizi ausiliari;
- rete di terra.

	Diametro max	170 m				
	Area spazzata max	22.698 m²				
	Numero di pale	3				
■ ROTORE	Materiale	GRP (CRP) materiale plastico rinforzato con fibra di				
- KOTOKE	Materiale	vetro				
	Velocità nominale	8,5 giri/min				
	Senso di rotazione	orario				
	Posizione rotore	Sopra vento				
TRASMISSIONE	Potenza massima	6.600 kW				
SISTEMA ELETTRICO	Tipo generatore	Asincrono a 4 poli, doppia alimentazione, collettore				
SISTEMA ELETTRICO	Tipo generatore	ad anelli				
	Classe di protezione	IP 54				
	Tensione di uscita	690 V				
	Frequenza	50 Hz				
TORRE IN ACCIAIO	Altezza al mozzo	165 m				
	Numero segmenti	3				
SISTEMA DI	Tipo	Microprocessore				
CONTROLLO	1100	ind opi occssore				
	Trasmissione	Fibra ottica				
	segnale	i ibi a ottica				
	Controllo remoto	PC-modem, interfaccia grafica				

Figura 4 : Scheda tecnica dell'aerogeneratore tipo

Da ogni generatore viene prodotta energia elettrica a bassa tensione (BT) e a frequenza variabile se la macchina è asincrona (l'aggancio alla frequenza di rete avviene attraverso un convertitore di frequenza ubicato nella navicella).

All'interno di ogni navicella l'impianto di trasformazione BT/AT consentirà l'elevazione della tensione al valore di trasporto 36kV (tensione in uscita dal trasformatore).

Al fine di mitigare l'impatto visivo degli aerogeneratori, si utilizzeranno torri di acciaio di tipo tubolare, con impiego di vernici antiriflettenti di color grigio chiaro.

Gli aereogeneratori saranno equipaggiati, secondo le norme attualmente in vigore, con un sistema di segnalazione notturna con luce rossa intermittente (2000cd) da installare sull'estradosso della navicella dell'aerogeneratore, mentre la segnalazione diurna consiste nella verniciatura della parte estrema della pala con tre bande di colore rosso ciascuna di 6 m per un totale di 18 m.

L'ENAC (Ente Nazionale per l'Aviazione Civile) potrà fornire eventuali prescrizioni concernenti la colorazione delle strutture o la segnaletica luminosa, diverse o in aggiunta rispetto a quelle precedentemente descritte.

c. IL SISTEMA DI PRODUZIONE, TRASFORMAZIONE E TRASPORTO DELL'ENERGIA ELETTRICA PRODOTTA

La soluzione di connessione alla RTN prevede che l'impianto venga collegata in antenna a 36 kV con il futuro ampliamento della Stazione Elettrica (SE) di Trasformazione della RTN a 380/150 kV di "Erchie".

La connessione in antenna avverrà mediante raccordo in cavo interrato AT tra gli aerogeneratori e il quadro di arrivo all'interno dell'ampliamento della stazione TERNA di nuova realizzazione.

Per il collegamento degli aerogeneratori alla stazione Terna è prevista la realizzazione delle seguenti opere:

- Cavidotto AT, composto da 3 linee provenienti ciascuna da un sottocampo del parco
 eolico, esercito a 36 kV, per il collegamento elettrico degli aerogeneratori con la
 suddetta stazione. Detti cavidotti saranno installati all'interno di opportuni scavi
 principalmente lungo la viabilità ordinaria esistente e sulle strade di nuova realizzazione
 a servizio del parco eolico.
- Rete telematica di monitoraggio in fibra ottica per il controllo della rete elettrica e dell'impianto eolico mediante trasmissione dati via modem o satellitare.
- **Cabina utente** ubicata nei pressi del punto di connessione, che raccoglie le linee AT di interconnessione del parco eolico, consentendo poi la trasmissione dell'intera potenza del parco eolico al punto di consegna mediante un raccordo in cavo interrato (36 kV).

Partendo dalle condizioni al contorno individuate nel paragrafo, si sono studiate le caratteristiche dell'impianto elettrico con l'obiettivo di rendere funzionale e flessibile l'intero parco eolico, gli aerogeneratori sono stati collegati con soluzione "entra-esce" raggruppandoli anche in funzione del percorso dell'elettrodotto, contenendo le perdite ed ottimizzando la scelta delle sezioni dei cavi stessi. I percorsi delle linee, illustrati negli elaborati grafici, potranno essere meglio definiti in fase costruttiva.

All'atto dell'esecuzione dei lavori, i percorsi delle linee elettriche saranno accuratamente verificati e definiti in modo da:

- evitare interferenze con strutture, altri impianti ed effetti di qualunque genere;
- evitare curve inutili e percorsi tortuosi;
- assicurare una facile posa o infilaggio del cavo;
- effettuare una posa ordinata e ripristinare la condizione ante-operam.

La rete elettrica a 36 kV interrata assicurerà il collegamento dei trasformatori di torre degli aerogeneratori alla stazione. Si possono pertanto identificare due sezioni della rete in AT:

- La rete di raccolta dell'energia prodotta suddivisa in 3 sottocampi costituiti da linee che collegano i quadri AT delle torri in configurazione entra/esce;
- La rete di vettoriamento che collega l'ultimo aerogeneratore del sottocampo alla stazione
 Terna;

Ciascuna delle suddette linee provvede, con un percorso interrato, al trasporto dell'energia prodotta dalla relativa sezione del parco fino all'ingresso del quadro elettrico di raccolta all'interno della stazione Terna (punto di connessione).

Il percorso di ciascuna linea della rete di raccolta è stato individuato sulla base dei seguenti criteri:

- minima distanza;
- massimo sfruttamento degli scavi delle infrastrutture di collegamento da realizzare;
- migliore condizione di posa (ossia, in presenza di forti dislivelli tra i due lati della strada, contenendo, comunque, il numero di attraversamenti, si è cercato di evitare la posa dei cavi elettrici dal lato più soggetto a frane e smottamenti).

Per le reti AT non è previsto alcun passaggio aereo.

d. FONDAZIONE AEROGENERATORE

La torre, il generatore e la cabina di trasformazione andranno a scaricare su una piastra di fondazione in cemento armato del tipo indiretto su pali.

La fondazione è stata calcolata in modo tale da poter sopportare il carico della macchina e il momento prodotto sia dal carico concentrato posto in testa alla torre che dall'azione cinetica delle pale in movimento.

Le verifiche di stabilità del terreno e delle strutture di fondazione sono state eseguite con i metodi ed i procedimenti della geotecnica, tenendo conto delle massime sollecitazioni sul terreno che la struttura trasmette.

Le strutture di fondazione sono dimensionate in conformità alla normativa tecnica vigente.

Il plinto di fondazione è stato dimensionato in funzione delle caratteristiche tecniche del terreno derivanti dalle indagini geologiche e sulla base dall'analisi dei carichi trasmessi dalla torre (forniti dal costruttore dell'aerogeneratore), l'ancoraggio della torre alla fondazione sarà costituito da tirafondo, tutti gli ancoraggi saranno tali da trasmettere sia forze che momenti agenti lungo tutte e tre le direzioni del sistema di riferimento adottato.

In funzione dei risultati delle indagini geognostiche, atte a valutare la consistenza stratigrafica del terreno, le fondazioni sono state dimensionate su platea di forma circolare, di diametro mt 28,00.

Le verifiche di stabilità del terreno e delle strutture di fondazione sono state eseguite con i

metodi ed i procedimenti della geotecnica, tenendo conto delle massime sollecitazioni sul terreno che la struttura trasmette.

Tutti i calcoli eseguiti e la relativa scelta dei materiali, sezioni e dimensioni andranno verificati in sede di progettazione esecutiva e potranno pertanto subire variazioni anche sostanziali per garantire i necessari livelli di sicurezza.

Pertanto, quanto riportato nel presente progetto, con particolare riguardo alla tavola DW22015D-C13, potrà subire variazioni in fase di progettazione esecutiva, fermo restando le dimensioni di massima del sistema fondazionale.

e. VIABILITÀ

Al campo eolico si accede attraverso la viabilità esistente (strade provinciali, Comunali e poderali), mentre l'accesso alle singole pale avviene mediante strade di nuova realizzazione e/o su strade interpoderali esistenti, che saranno adeguate al trasporto di mezzi eccezionali.

Laddove necessario tali strade saranno adeguate al trasporto delle componenti degli aerogeneratori.

Nell'elaborato grafico (tav. DW22015D-C06) sono illustrati i percorsi per il raggiungimento degli aerogeneratori, sia in fase di realizzazione sia in fase di esercizio, come illustrato nelle planimetrie di progetto, saranno anche realizzati opportuni allargamenti degli incroci stradali per consentire la corretta manovra dei trasporti eccezionali. Detti allargamenti saranno rimossi o ridotti, successivamente alla fase di cantiere, costituendo delle aree di "occupazione temporanea" necessarie appunto solo nella fase realizzativa.

La sezione stradale avrà larghezza carrabile di 5,00 metri (tav. DW22015D-C08), dette dimensioni sono necessarie per consentire il passaggio dei mezzi di trasporto delle componenti dell'aerogeneratore eolico.

Il corpo stradale sarà realizzato secondo le seguenti modalità:

- a) Scotico terreno vegetale;
- b) Polverizzazione (frantumazione e sminuzzamento di eventuali zolle), se necessario, della terra in sito ottenibile mediante passate successive di idonea attrezzatura;
- c) Determinazione in più punti e a varie profondità dell'umidità della terra in sito, procedendo con metodi speditivi.
- d) Spandimento della calce.
- e) Polverizzazione e miscelazione della terra e della calce mediante un numero adeguato di passate di pulvimixer in modo da ottenere una miscela continua ed uniforme.
- f) Spandimento e miscelazione della terra a calce.
- g) Compattazione della miscela Terra-Calce mediante rulli vibranti a bassa frequenza e rulli gommati di adeguato peso fino ad ottenere i risultati richiesti.

La sovrastruttura sarà realizzata in misto stabilizzato di spessore minimo pari a 10 cm.

Per la viabilità esistente (strade provinciali, comunali e poderali), ove fosse necessario ripristinare il pacchetto stradale per garantire la portanza minima o allargare la sezione stradale per adeguarla a quella di progetto, si eseguiranno le modalità costruttive in precedenza previste.

f. PIAZZOLE

Tenuto conto delle componenti dimensionali del generatore, la viabilità di servizio all'impianto e le piazzole andranno a costituire le opera di maggiore rilevanza per l'allestimento del cantiere. In corrispondenza di ciascun aerogeneratore sarà realizzata una piazzola, che in fase di cantiere dovrà essere della superficie media di 3.600,00 mq, per poter consentire l'istallazione della gru principale e delle macchine operatrici, lo stoccaggio delle sezioni della torre, della navicella e del mozzo, ed "ospitare" l'area di ubicazione della fondazione e l'area di manovra degli automezzi, sono inoltre previste 2 aree di 25x10 per il posizionamento delle gru ausiliarie al montaggio del

Le piazzole adibite allo stazionamento dei mezzi di sollevamento durante l'installazione, saranno realizzate facendo ricorso al sistema di stabilizzazione a calce, descritto nel precedente paragrafo.

Alla fine della fase di cantiere le dimensioni piazzole saranno ridotte a $50 \times 30 \text{ m}$ per un totale di 1500 mq, per consentire la manutenzione degli aerogeneratori stessi, mentre la superficie residua sarà ripristinata e riportato allo stato ante-operam.

g. CAVIDOTTI

braccio della gru principale.

La profondità dello scavo per l'alloggiamento dei cavi, dovrà essere minimo 1,50 m, mentre la larghezza degli scavi è in funzione del numero di cavi da posare e dalla tipologia di cavo, è varia da 0,50 m a 1,50 m.

La lunghezza degli scavi previsti è di ca. 18,5 km, per la maggior parte lungo le strade esistenti o di nuova realizzazione come dettagliato negli elaborati progettuali.

I cavi, poggiati sul fondo, saranno ricoperti da uno strato di base realizzato con terreno vagliato con spessore variabile da 20,00 cm a 50,00 cm e materiale di scavo compattato.

Potrebbe essere posata nello scavo degli elettrodotti AT un cavo unipolare in rame con guaina in PVC a protezione dei cavi AT. La scelta finale deriverà dai calcoli effettuati in fase di progettazione esecutiva.

Lo strato terminale di riempimento degli scavi realizzati su viabilità comunale, sarà realizzato con misto granulare stabilizzato e conglomerato bituminoso per il piano carrabile.

Lungo tutto il percorso dei cavi, ogni 2,5 km circa, saranno posati dei pozzetti di sezionamento delle dimensioni 1.65x1.65x1.50.

Come detto in precedenza gli scavi saranno realizzati principalmente lungo la viabilità ordinaria esistente e sulle strade di nuova realizzazione a servizio del parco eolico.

3. MODALITÀ DI ESECUZIONE DELL'IMPIANTO: IL CANTIERE

In questa fase verranno descritte le modalità di esecuzione dell'impianto in funzione delle caratteristiche ambientali del territorio, gli accorgimenti previsti e i tempi di realizzazione.

In fase di realizzazione delle opere saranno predisposti i sequenti accorgimenti ed opere:

- Sarà prevista la conservazione del terreno vegetale al fine della sua ricollocazione in sito;
- Sarà eseguita cunette in terra perimetrale all'area di lavoro e stazionamento dei mezzi per convogliare le acque di corrivazione nei naturali canali di scolo esistenti;

In fase di esercizio, la regimentazione delle acque superficiali sarà regolata con:

- cunette perimetrali alle piazzole;
- manutenzione programmata di pulizia delle cunette e pulizia delle piazzole.

Successivamente all'installazione degli aerogeneratori la viabilità e le piazzole realizzate verranno ridotte in modo da garantire ad un automezzo di raggiungere le pale per effettuare le ordinarie operazioni di manutenzione.

In sintesi, l'istallazione della turbina tipo in cantiere prevede le seguenti fasi:

- 1. Montaggio gru.
- 2. Trasporto e scarico materiali
- 3. Preparazione Navicella
- 4. Controllo dei moduli costituenti la torre e loro posizionamento
- 5. Montaggio torre
- 6. Sollevamento della navicella e relativo posizionamento
- 7. Montaggio del mozzo
- 8. Montaggio della passerella porta cavi e dei relativi cavi
- 9. Sollevamento delle pale e relativo posizionamento sul mozzo
- 10. Montaggio tubazioni per il dispositivo di attuazione del passo
- 11. Collegamento dei cavi al quadro di controllo a base torre
- 12. Spostamento gru tralicciata. Smontaggio e rimontaggio braccio gru.
- 13. Commissioning.

Durante la fase di cantiere verranno usate macchine operatrici (escavatori, dumper, ecc.) a norma, sia per quanto attiene le emissioni in atmosfera che per i livelli di rumorosità; periodicamente sarà previsto il carico, il trasporto e lo smaltimento, presso una discarica autorizzata dei materiali e delle attrezzature di rifiuto in modo da ripristinare, a fine lavori,

l'equilibrio del sito (viabilità, zona agricola, ecc.).

4. PRODUZIONE DI RIFIUTI E SMALTIMENTO DELLE TERRE E ROCCE DI SCAVO

La presente sezione ha l'obiettivo di identificare i volumi di movimento terra e le relative destinazioni d'uso, che saranno effettuati per la realizzazione del parco eolico. (cfr DC22015D-V13).

L'adeguamento delle sedi stradali, la viabilità di nuova realizzazione, i cavidotti interrati per la rete elettrica, le fondazioni delle torri e la formazione delle piazzole, caratterizzano il totale dei movimenti terra previsti per la costruzione del parco eolico.

Il progetto è stato redatto cercando di limitare i movimenti terra, utilizzando la viabilità esistente e prevedendo sulla stessa interventi di adeguamento.

Al fine di ottimizzare i movimenti di terra all'interno del cantiere, è stato previsto il riutilizzo delle terre provenienti dagli scavi, per la formazione del corpo del rilevato stradale, dei sottofondi o dei cassonetti in trincea, in quanto saranno realizzate mediante la stabilizzazione a calce (ossido di calcio CaO).

Lo strato di terreno vegetale sarà invece accantonato nell'ambito del cantiere e riutilizzato per il rinverdimento delle scarpate e per i ripristini.

Il materiale inerte proveniente da cave sarà utilizzato solo per la realizzazione della sovrastruttura stradale e delle piazzole.

I rifiuti che possono essere prodotti dagli impianti eolici sono costituiti da ridotti quantitativi di oli minerali usati per la lubrificazione delle parti meccaniche, a seguito delle normali attività di manutenzione. È presumibile che le attività di manutenzione comportino la produzione di modeste quantità di oli esausti con cadenza semestrale (oli per lubrificazione del moltiplicatore di giri a tenuta, per freno meccanico e centralina idraulica per i freni delle punte delle pale, oli presenti nei trasformatori elevatori delle cabine degli aerogeneratori), per questo, data la loro pericolosità, si prevede lo smaltimento presso il "Consorzio Obbligatorio degli oli esausti" (D.Lgs. n. 95 del 27 gennaio 1992 e ss.mm. ii, "Attuazione delle Direttive 75/439/CEE e 87/101/CEE relative alla eliminazione degli oli usati e all'art. 236 del D.lgs. 152/06 e ss.mm.ii.). Per quanto riguarda i rifiuti prodotti per la realizzazione dell'impianto, considerato l'alto grado di prefabbricazione dei componenti utilizzati (navicelle, pale, torri, tubolari), si tratterà di rifiuti non pericolosi originati prevalentemente da imballaggi (pallets, bags, ecc.), che saranno raccolti e gestiti in modo differenziato secondo le vigenti disposizioni.

5. SMALTIMENTO DELLE TERRE E ROCCE DI SCAVO SULLA FASE DI CANTIERIZZAZIONE

Contestualmente alle operazioni di spianamento e di realizzazione delle strade e delle piazzole di montaggio, di esecuzione delle fondazioni degli aerogeneratori e della messa in opera dei cavidotti, si procederà ad asportare e conservare lo strato di suolo fertile.

Il terreno fertile sarà stoccato in cumuli che non superino i 2 m di altezza, al fine di evitare la perdita delle sue proprietà organiche e biotiche; e protetto con teli impermeabili, per evitarne la dispersione in caso di intense precipitazioni.

In fase di riempimento degli scavi, in special modo per la realizzazione delle reti tecnologiche, nello strato più profondo sarà sistemato il terreno arido derivante dai movimenti di terra, in superficie si collocherà il terreno ricco di humus e si procederà al ripristino della vegetazione.

Gli interventi di ripristino dei soprasuoli forestali e agricoli comprendono tutte le operazioni necessarie a ristabilire le originarie destinazioni d'uso.

Nelle aree agricole essi avranno come finalità quella di riportare i terreni alla medesima capacità d'uso e fertilità agronomica presenti prima dell'esecuzione dei lavori, mentre nelle aree caratterizzate da vegetazione naturale e seminaturale, i ripristini avranno la funzione di innescare i processi dinamici che consentiranno di raggiungere nel modo più rapido e seguendo gli stadi evolutivi naturali, la struttura e la composizione delle fitocenosi originarie.

Gli interventi di ripristino vegetazionale dei suoli devono essere sempre preceduti da una serie di operazioni finalizzate al recupero delle condizioni originarie del terreno:

- il terreno agrario, precedentemente accantonato ai bordi delle trincee, deve essere ridistribuito lungo la fascia di lavoro al termine dei rinterri;
- il livello del suolo deve essere lasciato qualche centimetro al di sopra dei terreni circostanti, in funzione del naturale assestamento, principalmente dovuto alle piogge, cui il terreno va incontro una volta riportato in sito.

I materiali inerti prodotti, che in nessun caso potrebbero divenire suolo vegetale, saranno riutilizzati per il riempimento degli scavi, per la pavimentazione delle strade di servizio, eccetera. Non saranno create quantità di detriti incontrollate, né saranno abbandonati materiali da costruzione o resti di escavazione in prossimità delle opere. Nel caso rimanessero resti inutilizzati, questi verranno trasportati al di fuori della zona, alla discarica autorizzata per inerti più vicina o nel cantiere più vicino che ne faccia richiesta.

La stima del bilancio dei materiali comprendere le sequenti opere:

- allargamento della viabilità esistente;
- realizzazione di piste di collegamento e di servizio alle piazzole e le piazzole;
- realizzazione delle fondazioni;

- realizzazione degli scavi per la posa delle linee elettriche.

Complessivamente, in fase di cantiere, è stato stimato un volume di scavo complessivo di circa **mc 42.900,00** di cui la quasi totalità del materiale sarà utilizzato per il rinterro e la realizzazione delle strade, delle piazzole, e al ripristino delle opere temporanee (allargamenti, piazzole di montaggio, piste ecc.)

Il materiale destinato alla discarica verrà accompagnato da una bolla di trasporto, la proprietà della discarica poi rilascerà ricevuta di avvenuto scarico nelle aree adibite, ogni movimento avverrà nel pieno rispetto della normativa vigente.

I movimenti terra all'interno del cantiere saranno descritti in un apposito diario di cantiere con riportati giornalmente il numero di persone occupate in cantiere, il numero e la tipologia di mezzi in attività e le lavorazioni in atto.

6. CRONOPROGRAMMA

FASI DI ESECUZIONE

Il programma di realizzazione dei lavori sarà costituito da 4 fasi principali che si svilupperanno nella sequenza di seguito descritta, si ricorda che i tempi sono indicati a partire dall'operatività della fase di attuazione del progetto.

I Fase:

- a) puntuale definizione delle progettazioni esecutive delle strutture e degli impianti;
- b) acquisizione dei pareri tecnici degli enti interessati;
- c) definizione della proprietà;
- d) preparazione del cantiere ed esecuzione delle recinzioni necessarie.

II Fase:

- a) picchettamento delle piazzole su cui sorgeranno le torri
- b) tracciamento della viabilità di servizio e delle aree da cantierizzare;
- c) esecuzione dei cavidotti interni alle aree di cantiere;
- d) esecuzione della viabilità;

III Fase:

- a) esecuzione degli scavi e dei riporti;
- b) realizzazione delle opere di fondazione;
- c) realizzazione dei cavidotti;
- d) installazione degli aerogeneratori;
- e) realizzazioni e montaggio dei quadri elettrici di progetto;
- f) collegamenti elettrici;

IV Fase:

- a) realizzazione delle parti edilizie accessorie nella stazione MT/AT;
- b) allacciamento delle linee;
- c) completamento definitivo dell'impianto ed avviamento dello stesso;
- d) collaudo delle opere realizzate;
- e) smobilizzo di ogni attività di cantiere.

Per la realizzazione dell'impianto è previsto un tempo complessivo prossimo di circa 18 mesi, come illustrato nel cronoprogramma seguente.

CRONOPROGRAMMA																			
LAVORI:		MESI																	
2 Words	1	2	3	4	5	6	7	8	9	10	11	12	2 :	13	14	15	16	17	18
RILIEVI TOPOGRAFICI E PROVE DI LABORATORIO		Ш																	
PROGETTAZIONE ESECUTIVA																			
CANTIERIZZAZIONE			Ш																
REALIZZAZIONE STRADE E PIAZZOLE																			
REALIZZAZIONE PLINTI DI FONDAZIONE																			
REALIZZAZIONE CAVIDOTTI									Ш	Ш									
OPERE DI CONNESSIONE ALLA RTN:																			
Opere elettriche																			
Colllaudi e connessione alla Rete																			
ISTALLAZIONE AEROGENERATORI																			
COMMISSIONING WTG																			
MESSA IN ESERCIZIO DELL'IMPIANTO																			
RIPRISTINI																			

7. SISTEMA DI GESTIONE E DI MANUTENZIONE DELL'IMPIANTO

Un parco eolico in media ha una vita di 25÷30 anni, per cui il sistema di gestione, di controllo e di manutenzione ha un peso non trascurabile per l'ambiente in cui si colloca.

La ditta concessionaria dell'impianto eolico provvederà a definire la programmazione dei lavori di manutenzione e di gestione delle opere che si devono sviluppare su base annuale in maniera dettagliata per garantire il corretto funzionamento del sistema.

In particolare, il programma dei lavori dovrà essere diviso secondo i seguenti punti:

- manutenzione programmata
- manutenzione ordinaria
- manutenzione straordinaria

La programmazione sarà di natura preventiva e verrà sviluppata nei seguenti macrocapitoli:

- struttura impiantistica
- strutture-infrastrutture edili
- spazi esterni (piazzole, viabilità di servizio, etc.).

Verrà creato un registro, costituito da apposite schede, dove dovranno essere indicate sia le caratteristiche principali dell'apparecchiatura sia le operazioni di manutenzione effettuate, con le date relative.

La manutenzione ordinaria comprenderà l'attività di controllo e di intervento di tutte le unità che comprendono l'impianto eolico.

Per manutenzione straordinaria si intendono tutti quegli interventi che non possono essere preventivamente programmati e che sono finalizzati a ripristinare il funzionamento delle componenti impiantistiche che manifestano guasti e/o anomalie.

La direzione e sovrintendenza gestionale verrà seguita da un tecnico che avrà il compito di monitorare l'impianto, di effettuare visite mensili e di conseguenza di controllare e coordinare gli interventi di manutenzione necessari per il corretto funzionamento dell'opera.

8. DISMISSIONE DELL'IMPIANTO

Al termine della vita utile dell'impianto, dovrà essere prevista la dismissione dello stesso e la restituzione dei suoli alle condizioni ante-opera.

Quest'ultima operazione comporta, nuovamente, la costruzione delle piazzole per il posizionamento delle gru ed il rifacimento della viabilità di servizio, che sia stata rimossa dopo la realizzazione dell'impianto, per consentire l'allontanamento dei vari componenti costituenti le macchine. In questa fase i vari componenti potranno essere sezionati in loco con i conseguenti impiego di automezzi più piccoli per il trasporto degli stessi.

La dismissione dell'impianto eolico sarà seguita, per quanto possibile, dal ripristino del sito in condizioni analoghe allo stato originario (attraverso interventi eventuali di rigenerazione agricola, piantumazioni, ecc.).

In particolare, sarà assicurato il totale ripristino del suolo agrario originario, anche mediante pulizia e smaltimento di eventuali materiali residui, quali spezzoni o frammenti metallici, frammenti di cemento, ecc.

Fasi della Dismissione

L'aerogeneratore schematicamente è costituito dalla torre, dalla navicella del rotore e dalle pale fissate al rotore, che, a sua volta, è collegato tramite un mozzo al gearbox e questo, tramite un altro mozzo, è collegato al generatore elettrico. Tutti questi componenti, ad eccezione del rotore e delle pale, si trovano nella navicella che viene sistemata su un adeguato supporto.

All'interno della navicella si trova il trasformatore BT/MT.

Tutto il sistema risulta montato su una torre in acciaio che viene imbullonata alla flangia di fondazione, all'interno della quale si trova il modulo di controllo della turbina e i quadri elettrici. Per lo smontaggio e lo smaltimento delle parti dei singoli aerogeneratori e il ripristino geomorfologico e vegetazionale dell'area delle fondazioni e di servizio bisogna effettuare le sequenti operazioni:

- Realizzare le piazzole, nei pressi dei singoli aerogeneratori, sulla quale verranno fatte transitare le gru ed i mezzi per il trasporto; scollegare i cavi interni alla torre;
- smontare i componenti elettrici presenti nella torre;
- procedere in sequenza allo smontaggio del rotore con le pale, della navicella e dei tronchi della torre; la navicella ed i tronchi della torre saranno caricati sui camion ed avviati agli stabilimenti industriali per il loro smantellamento e riciclaggio. Il rotore sarà posizionato a terra nella piazzola, dove si provvederà allo smontaggio delle tre pale dal rotore centrale.
- caricare i componenti su opportuni mezzi di trasporto;
- smaltire e/o rivendere i materiali presso centri specializzati e/o industrie del settore.

Modalità di allontanamento dal sito dei materiali

Per l'allontanamento dal sito dei materiali, si procederà con mezzi in sagoma per tutto il materiale proveniente dalla demolizione-rimozione delle strade e dei plinti di fondazione.

Nel dettaglio il pietrame calcareo sarà trasportato con normali camion in sagoma per dimensioni e pesi, così come i blocchi di conglomerato cementizio derivanti dalla demolizione della fondazione.

Le torri saranno allontanate su autocarri e portate agli stabilimenti per il loro recupero.

La navicella sarà trasportata via dal sito con un camion dotato di un rimorchio speciale, la cui lunghezza totale è di 30 m con rimorchio di 27,20 m.

Il rotore e tutti i componenti accessori saranno trasportati con camion in sagoma idonea per dimensioni e pesi.

Le pale saranno tagliate per procedere al carico su mezzi in sagoma ed avviate all'industria per il riciclo (la pala viene riciclata per l'88%).

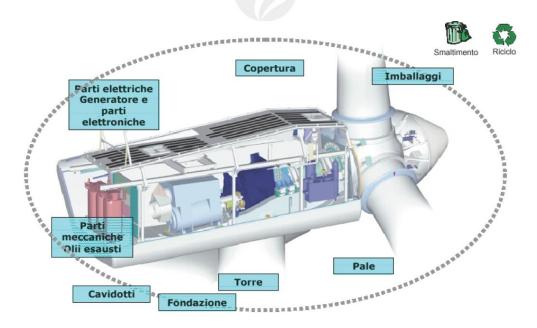
Rimozione cavi elettrici

Tutti i cavi elettrici, sia quelli utilizzati all'interno dell'impianto eolico, sia quelli utilizzati all'esterno dello stesso per permettere il collegamento alla Stazione Elettrica Terna, saranno rimossi.

L'operazione di dismissione prevede comunque i seguenti principali step:

- scavo di vasche per consentire lo sfilaggio dei cavi;
- Ripristino dello stato dei luoghi.

I materiali da smaltire sono relativi ai componenti dei cavi (rivestimento, guaine ecc.), mentre la restante parte del cavo (rame o alluminio) e quindi saranno rivenduti per il loro riutilizzo in altre attività. Ovviamente tale smaltimento avverrà nelle discariche autorizzate, a meno di successive e future variazioni normative che dovranno rispettarsi.


Rimozione delle fondazioni

Si procederà con lo scavo del terreno di copertura tramite escavatori per raggiungere la fondazione, che sarà demolita (solo la parte superiore per circa metri 1 di profondità dal piano campagna) tramite martelli demolitori; il materiale derivato, formato da blocchi di conglomerato cementizio, sarà caricato su camion per essere avviato alle discariche autorizzate e agli impianti per il riciclaggio.

Lo scavo risultante dalla rimozione della parte superficiale del plinto di fondazione sarà ricoperto con terreno con contestuale ripristino della sagoma del terreno preesistente, come prima evidenziato. La rimodulazione della piazzola sarà volta a ricreare il profilo originario del terreno, riempiendo i volumi di sterro o sterrando i riporti realizzati in fase di cantiere. Alla fine di questa operazione verrà, comunque, steso sul nuovo profilo uno strato di terreno vegetale per il ripristino delle attività agricole.

Smantellamento delle piazzole e delle strade ad hoc realizzate, qualora non siano più utilizzabili per l'agricoltura

Saranno demolite tutte le piazzole e le strade di collegamento. In particolare, sarà rimossa la sovrastruttura stradale di circa 10 cm, che sarà ceduta alle discariche autorizzate per il riciclaggio totale della stessa. Il cassonetto stradale sarà dissodato e predisposto per il normale utilizzo agricolo del terreno.

Elementi riciclabili e smaltibili di una turbina eolica

Costi del Ripristino

Dal calcolo effettuato, l'importo necessario per lo smontaggio ed il ripristino dei luoghi sarà pari a € 2.400.000,00. Tale valutazione è desumibile dall'esame della stima allegata all'elaborato DC22015D-C03(Relazione della dismissione dell'impianto e ripristino luoghi).

Da notare, inoltre, che in fase di smantellamento dell'impianto, indipendentemente da tali previsioni di costi, saranno disponibili elevati quantitativi di materiale di risulta con un notevole valore del loro prezzo di vendita anche in caso di riciclo.

9. RIPRISTINO DELLO STATO DEI LUOGHI

La dismissione dell'impianto eolico sarà seguita, per quanto possibile, dal ripristino del sito in condizioni analoghe allo stato originario (attraverso interventi eventuali di rigenerazione agricola, piantumazioni, ecc.).

In particolare, sarà assicurato il totale ripristino del suolo agrario originario, anche mediante pulizia e smaltimento di eventuali materiali residui, quali spezzoni o frammenti metallici, frammenti di cemento, ecc.

Sistemazione delle mitigazioni a verde

Le mitigazioni a verde saranno mantenute anche dopo il ripristino agrario del sito quali elementi di strutturazione dell'agro-ecosistema in accordo con gli obiettivi di rinaturalizzazione delle aree agricole. Per questo motivo sarà eseguita esclusivamente una manutenzione ordinaria (potatura di rimonda e, dove necessario, riequilibrio della chioma) e potranno essere effettuati espianti mirati all'ottenimento del migliore compromesso agronomico - produttivo fra appezzamenti coltivati e siepi interpoderali. Tutto il materiale legnoso risultante dalla rimonda e dagli eventuali espianti sarà cippato direttamente in campo ed inviato a smaltimento secondo le specifiche di normativa vigente o, in caso favorevole, ceduto ai fini della valorizzazione energetica in impianti preposti.

Messa a coltura del terreno

Le operazioni di messa a coltura del terreno saranno basate sulle informazioni preventivamente raccolte mediante una caratterizzazione analitica dello stato di fertilità ed individuare eventuali carenze.

Ai fini di una corretta analisi, saranno effettuati diversi prelievi di terreno (profondità massima 20-25 cm) applicando, per ogni unità di superficie, un'idonea griglia di saggio opportunamente randomizzata.

Si procederà, quindi, con la rottura del cotico erboso e primo dissodamento del terreno mediante estirpatura a cui seguirà un livellamento laser al fine di profilare gli appezzamenti secondo la struttura delle opere idrauliche esistenti e di riportare al piano di campagna le pendenze idonee ad un corretto sgrondo superficiale.

Una volta definiti gli appezzamenti e la viabilità interna agli stessi, sarà effettuata una fertilizzazione di restituzione mediante l'apporto di ammendante organico e concimi ternari in quantità sufficienti per ricostituire l'originaria la fertilità e ridurre eventuali carenze palesate dall'analisi.

Infine, sarà eseguita una lavorazione principale profonda (almeno 50 cm possibilmente doppio strato), mediante la quale dissodare lo strato di coltivazione ed interrare i concimi, ed erpicature di affinamento così da ottenere un letto di semina correttamente strutturato.

Tutte le operazioni di messa a coltura saranno effettuate, seguendo le tempistiche dettate dalla classica tecnica agronomica, mediante il noleggio conto terzi di comuni macchinari agricoli di idonea potenza e dimensionamento (trattrice gommata, estirpatore ad ancore fisse, lama livellatrice, spandiconcime, ripuntatore e/o aratro polivomere ed erpice rotativo).

10. ANALISI RICADUTE SOCIALI, OCCUPAZIONALI ED ECONOMICHE

L'energia eolica realizza impatti socioeconomici rilevanti, i quali si distinguono in diretti, indiretti ed indotti.

Quelli diretti si riferiscono al personale impegnato nelle fasi summenzionate sia per la produzione delle macchine e dei componenti, sia presso l'impianto (costruzione, funzionamento e manutenzione, dismissione) o presso la società proprietaria dell'impianto.

Si genera comunque ulteriore occupazione, denominata "indiretta", poiché tiene conto, ad esempio, dell'occupazione generata nei processi di produzione dei materiali utilizzati per la costruzione dei componenti. Per ciascun componente del sistema finale esistono, infatti, varie catene di processi di produzione intermedi che determinano occupazione a vari livelli. Per occupazione indiretta s'intende il personale utilizzato per produrre l'acciaio usato per costruire l'aerogeneratore.

La terza categoria di benefici è denominata occupazione "indotta". Tali occupati si creano in settori in cui avviene una crescita del volume d'affari (e di redditività) a causa del maggior reddito disponibile nella zona interessata dall'impianto. Tale reddito deriva dai salari percepiti dagli occupati nell'iniziativa e dal reddito scaturente dalle royalties percepite dai proprietari dei suoli.

I risultati delle ricadute economiche e sociali del settore eolico che sono stati presentati, prendono in considerazione dei dati relativi alla produzione della turbina, la realizzazione dell'impianto, non prendendo in analisi le attività appartenenti all'indotto, ovvero lo sviluppo dell'occupazione dovuta all'installazione degli impianti eolici.

Tra sorveglianza, gestione e manutenzione delle strutture di servizio ai parchi, le wind farm realizzano quindi grandi impatti sociali.

11. ELENCO AUTORIZZAZIONI, INTESE, CONCESSIONI, PARERI, NULLA OSTA E ASSENSI DA ACQUISIRE

Di seguito si riporta l'elenco degli Enti generalmente convocati per la Conferenza dei Servizi per il rilascio della Autorizzazione Unica ex art. 12 D.Lgs. 387/03, che dovranno fornire pareri di competenza:

1	Acquedotto Pugliese S.p.A.
2	Aeronautica Militare - Centro Informazioni Geotopografiche (C.I.G.A)
3	Aeronautica Militare - Comando Scuole A.M 3 Regione Aerea
4	Aeronautica Militare III Regione Aerea - Reparto Territorio e patrimonio
5	Agenzia del Demanio - Direzione Regionale Puglia e Basilicata
6	Agenzia delle Dogane - Ufficio delle Dogane di Lecce
9	Anas S.p.A.
10	Area Politiche per la riqualificazione, la tutela e la sicurezza ambientale e per l'attuazione delle opere pubbliche - Servizio Difesa del suolo e rischio sismico
11	ARPA Puglia - Dipartimento Provinciale di Lecce
12	ASL Campi Salentina
13	Autorità di Bacino della Puglia Segretariato Regionale per la Puglia
14	Autorità di Bacino Distrettuale dell'Appennino Meridionale - Sede Puglia
15	Autostrade per l'Italia S.p.A.
16	Comando Forze Operative Sud
17	Comando in Capo del Dipartimento Militare dell'Adriatico
18	Comando Marittimo Sud
	Comando Militare Esercito Puglia
20	Comando Prov.le Vigili del Fuoco di Lecce
21	Comune di Guagnano (LE)
22	Comune di San Donaci (LE)
23	Comune di Salice Salentino (LE)
24	Comune di San Pancrazio Salentino (LE)
25	Comune di Avetrana (LE)
26	Comune di Eriche (LE)
27	Corpo Forestale dello Stato - Provincia di Lecce
28	Dipartimento la Mobilità, Qualità Urbana, Opere pubbliche, Ecologia e Paesaggio – Sezione Ciclo Rifiuti e Bonifiche – Servizio Attività Estrattive
29	Dipartimento Mobilità, Qualità Urbana, Opere pubbliche, Ecologia e Paesaggio - Sezione Difesa del suolo e rischio sismico
29	Dipartimento per le Comunicazioni - Ispettorato territoriale Puglia-Basilicata
30	Dipartimento Risorse Finanziarie e Strumentali, Personale e Organizzazione - Servizio Riforma Fondiaria

31	Dipartimento Sviluppo Economico, Innovazione, Istruzione, Formazione e Lavoro – Sezione Infrastrutture Energetiche e Digitali
32	Direzione Generale Belle Arti e Paesaggio - Servizio III - Tutela del paesaggio
33	Direzione Generale per il clima e l'Energia
34	ENAC - Direzioni e Uffici Operazioni Sud - Napoli
35	ENAC - Ente Nazionale per l'Aviazione Civile
36	ENAV - Ente Nazionale Assistenza al volo
37	Ispettorato Territoriale Puglia e Basilicata
38	Marina Militare Comando in Capo del Dipartimento Militare Marittimo dello Jonio e del Canale d'Otranto
39	Ministero della Difesa - Direzione Generale dei Lavori e del Demanio
40	Ministero dell'Ambiente e della Tutela del Territorio e del Mare
41	Ministero delle Infrastrutture e dei Trasporti U.S.T.I.F.
42	Ministero dello Sviluppo Economico - Div. VI Fonti rinnovabili di energia
43	Ministero dello Sviluppo Economico Divisione IV U.N.M.I.G.
44	Ministero per i Beni e le attività Culturali – Soprintendenza Archeologia, Belle Arti e Paesaggio per la provincia di Lecce
45	Ministero per i Beni e le Attività Culturali - Sovrintendenza per i Beni archeologici per la Puglia
46	Ministero per i Beni e le Attività Culturali e per il Turismo
47	Ministero Sviluppo Economico - Dipartimento per le Comunicazioni - Ispettorato Territoriale Puglia - Basilicata
48	Provincia di Lecce
49	Provincia di Lecce - Assetto Territorio
50	Provincia di Lecce - Servizio Ambiente
51	Provincia di Lecce - Viabilità
52	Regione Puglia - Dipartimento Agricoltura, Sviluppo Rurale ed Ambientale – Sezione Gestione Sostenibile e Tutela delle Risorse Forestali e Naturali - Servizio Foreste - Ufficio Provinciale di Lecce
53	Regione Puglia - Dipartimento Mobilità, Qualità Urbana, Opere pubbliche, Ecologia e Paesaggio - Sezione Lavori Pubblici – Servizio Espropri e Contenzioso
54	Regione Puglia - Dipartimento Mobilità, Qualità Urbana, Opere pubbliche, Ecologia e Paesaggio - Sezione LL.PP Ufficio Struttura Tecnica Provinciale di Lecce
55	Regione Puglia - Dipartimento Mobilità, Qualità Urbana, Opere pubbliche, Ecologia e Paesaggio – Sezione Tutela e Valorizzazione del Paesaggio
56	Regione Puglia - Servizio Demanio e Patrimonio - Ufficio Parco Tratturi
57	Regione Puglia -Dipartimento Agricoltura, Sviluppo Rurale ed Ambientale – Sezione Coordinamento dei Servizi Territoriali - Servizio Agricoltura - Ufficio Provinciale di Lecce
58	Regione Puglia -Dipartimento Agricoltura, Sviluppo Rurale ed Ambientale - Sezione Risorse Idriche
59	Regione Puglia -Dipartimento la Mobilità, Qualità Urbana, Opere pubbliche, Ecologia e Paesaggio – Sezione Ciclo Rifiuti e Bonifiche – Servizio Attività Estrattive
60	Regione Puglia -Dipartimento Mobilità, Qualità Urbana, Opere pubbliche, Ecologia e Paesaggio - Sezione Autorizzazioni Ambientali
61	Segretariato Regionale per la Puglia

Studio Tecnico BFP S.r.l.

62	Servizio Gestione Demanio Forestale - P.O. Attuazione Politiche Forestali di Lecce
63	Servizio Riforma Fondiaria - P.O. Struttura Provinciale Riforma Fondiaria - Lecce
64	Sezione Ciclo Rifiuti e Bonifica - Servizio Attività Estrattive
65	Sezione Coordinamento dei Servizi Territoriali – Servizio Provinciale Agricoltura di Lecce
66	Sezione Demanio e Patrimonio - Struttura Provinciale Demanio e Patrimonio - Lecce
67	Sezione Lavori Pubblici – Servizio Espropri e Contenzioso
68	Sezione Lavori Pubblici - Ufficio Coordinamento Struttura Tecnica Provinciale di Lecce
69	Sezione Tutela e Valorizzazione del Paesaggio – Servizio Parchi e Tutela della Biodiversità
70	SNAM Rete Gas S.p.A.
71	TERNA S.p.A.