

Nuovo impianto per la produzione di energia da fonte eolica nel comune di Maracalagonis (CA)

RELAZIONE GEOTECNICA

Rev. 0.0

Data: Giugno 2022

WIND006.REL003b

Incaricato:

ECOWIND 2 S.r.l.

Via Alessandro Manzoni 30, 20121 Milano (MI) P.IVA: 12071590967

PEC: ecowind2srl@legalmail.com

QueequegRenewables,Unit 3.03, 1110 Great West RoadTW80GP London (UK)Company number: 111780524email: mail@quenter.co.uk

ltd

SOMMARIO

1 Premessa e finalità dello studio	4
2 Normativa di riferimento	4
3 Studi ed indagini di riferimento	5
4 Inquadramento geografico generale	5
5 Caratteristiche di progetto dell'opera	11
6 Inquadramento geologico	13
6.1 Descrizione del contesto geologico dell'area vasta oggetto di intervento	14
6.2 Analisi qualitativa di stabilità dell'ammasso roccioso	16
7 Indagini geognostiche	19
7.1 Sondaggi Geognostici	21
7.1.1 Attrezzature utilizzate	22
7.1.2 Prove SPT (Standard Penetration Test)	23
7.1.3 MA_SN_01	23
7.2 Sismica a Rifrazione - Tecnica e parametri utilizzati	24
7.3 M.A.S.W Tecnica e parametri utilizzati	26
7.4 Sismica a Rifrazione – Elaborazioni e risultati	29
7.4.1 Base Sismica R1 (WTG008)	31
7.4.2 Base sismica R2 (WTG005)	33
7.4.3 Base Sismica R3 (WTG010)	35
7.4.4 Base Sismica R4 (WTG006)	37
7.4.5 Base Sismica R5 (WTG009)	39
7.5 MASW – Elaborazioni e risultati	40
7.5.1 Base sismica M1	41
7.5.2 Base Sismica M2	42
7.5.3 Base Sismica M3	43
7.5.4 Base Sismica M4	44
7.5.5 Base Sismica M5	45
7.6 Indicazioni per la determinazione di parametri geomeccanici	46
7.7 Considerazioni sull'assetto geostrutturale degli ammassi rocciosi	47
7.8 Analisi di Laboratorio	48
7.8.1 Prove di Rottura Point Load	48
7.8.2 Determinazione della massa volumica apparente (UNI CEN ISO/TS 19892-2 Metodo b)	50
8 Modellazione geologica	51
8.1 Caratterizzazione geostrutturale degli ammassi rocciosi	51
8.2 Modello Geologico di sito	62

Rev. 00| WIND003.REL003b

8.2.1 Modello Geologico 01 e Modello Geologico 02 – Granodiorite inequigranulare	. 64
8.3 Caratterizzazione Geotecnica	. 65
Modelli geotecnici di riferimento per le verifiche	. 66
9 Descrizione dell'opera di fondazione degli aerogeneratori	. 67
10 Condizioni di carico delle fondazioni degli aerogeneratori	. 68
11 Azioni e resistenze nelle verifiche agli stati limite	. 69
12 Verifiche di sicurezza (§c6.4.2)	. 71
Verifiche di sicurezza agli SLU di tipo geotecnico (GEO) (§C6.4.2.1)	. 71
12.1 Modello geotecnico 01 – D.24,50m	. 73
12.2 Modello geotecnico 02 – D.24,50	. 76
13 Verifiche di esercizio (SLE) (§C6.4.2.2)	. 79
14 Fronti di scavo (§c6.8.6)	. 79
15 Considerazioni conclusive	. 79

Allegato 1 – Relazione di calcolo

1 Premessa e finalità dello studio

La presente relazione è parte integrante del procedimento di **Valutazione d'Impatto Ambientale** ai sensi del Decreto Legislativo numero 152 del 2006, e di Autorizzazione Unica Regionale ai sensi dell'articolo 12 del Decreto Legislativo numero 387 del 2003 e del D. G. R. 3/15 del 23 Gennaio 2018.

Nell'ambito della redazione del **Progetto Definitivo** che prevede la realizzazione di un impianto eolico per la produzione di energia elettrica, di potenza nominale pari a 92.400 kW denominato "*Bruncu de Lianu*" e dislocato nel territorio comunale di Maracalagonis nella Provincia di Cagliari, al fine di avere un quadro completo del contesto geologico e geotecnico è stata redatta la presente **Relazione Geotecnica**, la cui stesura ottempera quanto previsto dal D.M. del 17/01/2018 recante le nuove Norme Tecniche per le Costruzioni (di seguito NTC), con l'obiettivo di evidenziare, il comportamento fisico-meccanico dei terreni interessati dalle opere in progetto attraverso:

- Analisi dell'assetto geologico e geomorfologico e definizione del modello geologico di sito;
- La caratterizzazione geotecnica preliminare del modello geologico di sito;

• L'analisi dell'interazione opera-terreno nel volume significativo in funzione delle caratteristiche geotecniche dei terreni di imposta, in relazione alla generica tipologia di fondazioni previste e le potenziali interazioni con le dinamiche di circolazione sotterranea eventualmente esistenti.

• La valutazione preliminare della portanza dei terreni e l'indicazione delle indagini da realizzarsi in fase esecutiva necessarie alla determinazione dei parametri geotecnici specifici per ogni sito.

2 Normativa di riferimento

La presente è redatta in osservanza a quanto stabilito dalla vigente normativa in materia, con particolare riferimento a:

- D.M LL.PP. 11.03.1988 "Norme Tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii attuali e delle scarpate, i criteri generali e le prescrizioni pe la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione in applicazione della Legge 02.02.1974 n°64.
- Circ. Min. LL.PP. n° 30483 del 24.09.1988 Istruzioni per l'applicazione del D.M. LL.PP.11.03.1988.
- Raccomandazioni, programmazione ed esecuzione delle indagini geotecniche, 1975 Associazione Geotecnica Italiana.
- D.M. Infrastrutture 17.01.2018 Norme Tecniche per le Costruzioni. (6.2.1 Caratterizzazione e modellazione geologica del sito, 6.4.2 Fondazioni superficiali)

Rev. 00| WIND003.REL003b

- Circ. Min. Infrastrutture e Trasporti 21.01.2019 n°7 Istruzioni per l'applicazione delle Norme Tecniche per le Costruzioni di cui al Decreto Ministeriale 17.01.2018.
- D.L. 3 aprile 2006, n. 152 e successive modificazioni "Norme in materia ambientale".

3 Studi ed indagini di riferimento

Le informazioni topografiche e geologiche dell'area oggetto della presente sono state ricavate dalle pubblicazioni ufficiali e cartografia tematica esistente. Si elencano di seguito:

- Carta Topografica I.G.M. scala in 1:25000
- Carta Tecnica Regionale in scala 1:10000 sezione 558130 "Bruncu de su Soli", 558140 "Castiadas", 567010 "Geremeas" e 567020 "Santa Barbara".
- Carta Geologica dell'Italia in scala 1:100000, nel foglio n°234 "Cagliari"
- Carta Geologica dell'Italia in scala 1:50.000 (CARG) nel foglio n°557 "Cagliari" e 549 "Muravera".
- Cartografia Geologica di base della R.A.S. in scala 1:25.000
- RAS Carta dell'Uso del Suolo della Regione Sardegna, 2008
- I.S.P.R.A. Archivio nazionale delle indagini nel sottosuolo (legge 464/84)
- RAS Studio dell'Idrologia Superficiale della Sardegna, annali idrologici 1922-2009
- RAS Autorità di Bacino Piano Stralcio d'Assetto Idrogeologico
- RAS Autorità di Bacino Piano di Tutela delle Acque
- RAS Autorità di Bacino Piano Stralcio delle Fasce Fluviali
- Foto aeree, Regione Sardegna

I dati a disposizione sono stati integrati con le informazioni derivanti dai sopralluoghi effettuati dalla scrivente in sito e dagli esiti della campagna delle indagini geologico-geostrutturali e geofisiche eseguita in data 10-15 e 16/03/2021 nella zona di interesse.

4 Inquadramento geografico generale

Maracalagonis è un Comune italiano di 7 922 abitanti della città metropolitana di Cagliari, che si trova a 82 metri sul livello del mare.

L'inquadramento cartografico di riferimento è il seguente:

 Cartografia ufficiale dell'Istituto Geografico Militare I.G.M scala 1:25 000. Serie 25 –Fogli: 558 "Castiadas" sez. III, e sez. I, 567 "Geremeas" sez. IV. Carta Tecnica Regionale in scala 1:10000 sezione 558130 "Bruncu de su Soli", 558140 "Castiadas", 567010 "Geremeas" e 567020 "Santa Barbara".

Figura 1-Panoramica dal lato occidentale dell'area di studio

Figura 2-Panoramica dal lato occidentale dell'area di studio

Figura 3 Localizzazione su foto aerea (Fonte RAS, 2016) dell'area interessata dal progetto

Rev. 00| WIND003.REL003b

Rev. 00| WIND003.REL003b

Le turbine verranno posizionate nelle sommità dei colli situati circa 5Km a NE di Geremeas. L'area del Parco eolico in progetto è delimitata da Cuccuru Ella, Sa Sedda Simius, Bruncu Posolu, Br.cu Castangedda, cava di pietra di Bacci Ingroneddus, Monte Nieddu e Br.cu Sa Murta Bianca.

5 Caratteristiche di progetto dell'opera

È prevista l'installazione di 14 aerogeneratori di ultima generazione ad asse orizzontale (HAWTG, Horizontal axis wind turbine generators) di potenza pari a 6,6 MW ciascuno, per una potenza complessiva di 92,4 MW, denominati in ordine crescente da WTG001 a WTG014. Gli aerogeneratori saranno montati su torri tubolari di acciaio che porteranno il mozzo del rotore a un'altezza da terra di 135 metri, e l'altezza massima dal suolo di ogni macchina sarà pertanto pari a 220 metri. È inoltre prevista l'installazione di una torre anemometrica di misura che monitorerà le condizioni di vento e ambientali della zona di impianto per tutta la vita di quest'ultimo.

Aerogeneratore	СооХ	CooY	CooZ
WTG001	1536368.583	4339008.329	321
WTG002	1535156.337	4339560.923	501
WTG003	1538058.740	4339519.341	678
WTG004	1538214.087	4338730.348	592
WTG005	1536787.866	4337233.403	530
WTG006	1537571.352	4337448.357	564
WTG007	1538129.925	4337650.813	564
WTG008	1538246.199	4338165.999	532
WTG009	1536840.138	4339222.730	401
WTG010	1535246.799	4338990.539	396
WTG011	1536469.533	4338399.080	407
WTG012	1537231.039	4338560.993	552
WTG013	1537520.016	4339231.078	581
WTG014	1534970.376	4340142.446	491

Gli aerogeneratori previsti sono macchine con potenza nominale pari a 6,6 MW, orientati sopravento, con controllo attivo del pitch delle pale e dello yaw della navicella. Per la progettazione di dettaglio, ai fini della valutazione dei carichi, delle dimensioni e di tutti i valori tecnici e di ingombro architettonico sono stati utilizzati gli aerogeneratori SG-170 di Siemens Gamesa. In fase realizzativa le macchine potranno però essere differenti, rimanendo nelle caratteristiche tecniche e dimensionali delle stesse.

Il rotore (rotor) del generatore è composto da tre pale ognuna di lunghezza pari a 83,33 metri. Nel complesso,

il gruppo rotante ha un diametro di 170 metri, e spazza un'area pari a 22.698 metri quadrati. Il mozzo del generatore sarà collocato ad un'altezza di 135 metri (hub height), mentre l'altezza massima raggiunta da ogni generatore (tip height), inclusa l'altezza massima da terra delle pale, sarà di 220 metri.

Figura 7 Generatore eolico ad asse orizzontale

L'impianto verrà collegato in antenna a 150 kV, verso una futura stazione elettrica SE della RTN a 150 kV da inserire in entra-esce alla RTN a 150 kV "Villasimius-Quartucciu", gestita dall'operatore Terna S.p.A. L'energia prodotta sarà convogliata tramite un cavidotto in media tensione a 30 kV interamente interrato su strada, che raggiungerà la stazione di innalzamento della tensione di competenza del proponente, come da elaborati prodotti (rif. Elaborati WIND003.ELB010a; WIND003.ELB011b). Nella Sottostazione Elettrica Utente (SSE), l'energia prodotta dall'impianto ad una tensione di 30 kV, viene portata ad una tensione di 150 kV per poi convogliarla nella Rete Elettrica di Trasmissione Nazionale (RTN) gestita da Terna S.p.A.

Le strade di accesso al parco sono state previste secondo le specifiche di curva, inclinazione longitudinale e pendenza previste dal produttore delle componenti del generatore eolico, così da permettere ai mezzi pesanti che opereranno durante la fase di cantiere di manovrare e percorrere la viabilità. Un trasportatore

Rev. 00 | WIND003.REL003b

specializzato nella movimentazione e nella posa di strutture eoliche ha supportato queste valutazioni provvedendo a una fattibilità per le soluzioni di viabilità e opere civili previste in progetto.

La viabilità dovrà sopportare un peso per asse pari a 24,5 tonnellate, una pressione massima di 2,45 kg/cm. Lo sbancamento stradale di percorrenza dovrà essere pari a 6 metri, compresi 50 centimetri per lato di fascia di distanza. I gradienti longitudinali non dovranno superare il 20% sui rettilinei e il 15% in prossimità delle curve. Le curve stesse dovranno avere un raggio di curvatura interna non inferiore a 30 metri.

Le componenti con il maggiore ingombro saranno stoccati nel porto commerciale di Cagliari e successivamente trasportati verso i luoghi d'intervento e stoccati temporaneamente in due aree di stoccaggio. Essi sono le navicelle dei generatori, i tronchi delle torri di sostegno e le pale.

La viabilità di arrivo prevista è composta da strade statali, provinciali e comunali. La viabilità esistente è per lo più in condizioni idonee: il trasporto prevede l'utilizzo esclusivo del Blade Lifter.

Per ulteriori specifiche si rimanda agli elaborati tecnici di progetto.

6 Inquadramento geologico

L'obiettivo dell'analisi dell'assetto geologico è quella di caratterizzare geologicamente e geotecnicamente l'area ove verrà installato il parco eolico e quella geomorfologicamente significativa, con particolare riferimento alle condizioni del substrato roccioso di fondazione, agli scavi ed ai riporti necessari per la realizzazione del sistema di fondazione e delle sue potenziali interazioni con le condizioni al contorno (dinamica geomorfologica, circolazione idrica superficiale e sotterranea, rapporti fra le componenti litologiche interessate) attraverso:

- Definizione dell'assetto geologico-strutturale e idrogeologico di area vasta e dell'area geomorfologicamente significativa;

- Definizione dell'assetto stratigrafico dell'area di sedime delle opere;
- Definizione del modello geologico di sito.

6.1 Descrizione del contesto geologico dell'area vasta oggetto di intervento

A partire dal Paleozoico si sono susseguiti una serie di eventi geologici sviluppatisi nell'arco di circa mezzo miliardo di anni, che hanno reso la Sardegna una delle regioni geografiche più antiche del Mediterraneo centrale e, morfologicamente e cronologicamente eterogenea.

L'isola riflette pertanto una storia geologica molto articolata, che testimonia, in maniera più o meno completa, alcuni dei grandi eventi geodinamici degli ultimi 400 milioni di anni.

L'orogenesi Caledoniana, la più antica, le cui tracce si rinvengono principalmente nel nord della Gran Bretagna e nella Scandinavia occidentale, fu causata dalla progressiva chiusura dell'oceano Giapeto, a seguito della collisione dei continenti Laurentia, Baltica e Avalonia, dando così origine al super continente Laurussia.

La successiva fase dell'orogenesi Ercinica (o Varisica) ha avuto corso a partire dal Carbonifero, circa 350 Ma fa e si è protratta fino al Permiano determinando un'estesa catena montuosa ubicata tra il Nord America e l'Europa.

Quest'orogenesi ha prodotto in Sardegna tre zone metamorfiche principali. Procedendo dal nucleo orogenetico verso l'avanfossa si trovano le zone dette: Assiale (Sardegna NE) – a Falde interne (Sardegna centrale) - a Falde esterne (Sardegna SW).

Successivamente, tra il Carbonifero Sup. e il Permiano Inf., il basamento paleozoico è soggetto magmatismo, intrusioni di differente composizione, che danno luogo a un batolite granitico composito, la cui ossatura fondamentale affiora in continuità nella Sardegna Settentrionale e nella Corsica Occidentale. Questo processo ha prodotto metamorfismo termico e di alta pressione delle rocce esistenti.

Nel resto dell'Isola affiorano plutoni isolati, anch'essi compositi, di minori dimensioni, quali quelli dell'Iglesiente e del Sarrabus, settore di interesse della presente relazione.

Tale complesso è costituito da prodotti intrusivi ed effusivi che si sono messi in posto tra il Carbonifero superiore e il Permiano, contemporaneamente al sollevamento, al collasso e allo spianamento della catena ercinica. Tra i granitoidi nell'aria di interesse affiorano litologie appartenenti all' *Unità Intrusiva di Geremeas* (*GEA*) e all'*Unità Intrusiva di S.Gregorio (GGO)*.

La prima è costituita da granodioriti da inequigranulari a fortemente inequigranulari a grana grossa, con megacristalli di K-feldspato bianchi o rosati che vanno dai 2-3cm ai 6-7cm, e da granodioriti equigranulari mesocrate a grana media grossa.

La seconda è costituita sia da monzograniti biotitici a struttura equigranulare e tessitura isotropa, sia da monzograniti biotici a struttura inequigranulare in genere microporfirica.

Nei corpi granitoidi sono frequenti filoni basici e filoni aplitici, che presentano direzioni comprese fra nord ovest - sud est e nord - sud. Tali masse granitiche hanno indotto sulle formazioni che hanno intruso un'aureola metamorfica più o meno estesa.

Sono poi presenti talvolta depositi recenti rappresentati dai prodotti di disfacimento della roccia madre e dei suoi derivati che vanno a colmare le vallecole e/o i piccoli impluvi presenti.

Figura 8-Sezione geologica rappresentativa dell'area vasta (da Foglio CARG 557)

In particolare, nell'area vasta affiorano le seguenti litologie, di seguito riportate con la nomenclatura adottata dalla RAS nella stesura della cartografia geologica in scala 1:25000:

DEPOSITI QUATERNARI DELL'AREA CONTINENTALE

ba- Depositi alluvionali. Ghiaie da grossolane a medie. OLOCENE

bna-Depositi alluvionali terrazzati. Ghiaie con subordinate sabbie. OLOCENE

PVM2a - Litofacies nel Subsintema di Portoscuso (SINTEMA DI PORTOVESME). Ghiaie alluvionali terrazzate da medie a grossolane, con subordinate sabbie. PLEISTOCENE SUP.

CORTEO FILONIANO

fq-Filoni idrotermali di Quarzo, spesso mineralizzati a Barite

fp-Filoni ed ammassi acidi, porfidi riolitici e dacitici

fa-Filoni acidi: aplo-pegmatiti

fi-Filoni intermedio-basici da andesitici a basaltici indistinti CARBONIFERO SUP.-PERMIANO

GRANITOIDI E PLUTONITI BASICHE

UNITA' INTRUSIVA DI SAN GREGORIO

GGOc - Micro-sienograniti a biotite a carattere leucocrato, a struttura microporfirica, talora microgranulare a grana fine.

GGOb Leuco-sienograniti biotitici a grana medio-grossa, struttura equigranulare

GGOa Monzograniti biotitici a grana media, struttura equigranulare, localmente microporfirica. CARBONIFERO SUP.-PERMIANO

UNITA' INTRUSIVA DI GEREMEAS

GEAC Granodioriti biotitico-anfiboliche con accessori allanite e titanite, a grana grossa, struttura inequigranulare localmente faneroporfirica per feldspati pluricetimetrici.

GEAb Masse gabbriche, gabbri anfibolici e pirossenico anfibolici grigio verdastri a struttura equigranulare.

GGOa Episieniti a grana medio fine, struttura inequigranulare per cristalli di plagioclasio (albite) di taglia massima di 1cm, solitamente molto alterati.

CARBONIFERO SUP.-PERMIANO

6.2 Analisi qualitativa di stabilità dell'ammasso roccioso

L'intensa fratturazione e i fenomeni di dissoluzione legati al carsismo, ampiamente descritti nei precedenti capitoli producono sulla roccia una geometria estremamente variabile in termini di direzione e immersione, nelle tre direzioni principali dello spazio. Ciò che varia in relazione alla composizione granulometrica dei singoli strati originari è la spaziatura tra i giunti e il grado di fissilità. Pertanto è estremamente difficile se non impossibile definire l'assetto a piccola scala per quanto appena descritto.

Si può definire un range di spaziatura alla mesoscala, tale da individuare una potenziale compagine di blocchi in grado di staccarsi dall'ammasso se le condizioni geostrutturali lo permettono (piani a franapoggio o intersezione di piani con direttrice a franapoggio:

Figura 9-Piano di scivolamento influenzato dalla fratturazione in filone aplitico

Tali dimensioni possono essere individuate tra il decimo di metro cubo a qualche metro cubo. La variabilità direzionale delle famiglie di giunti che individuano i blocchi è piuttosto marcata e diversificata in funzione, come detto della competenza degli strati soggetti agli sforzi.

Ne deriva di fatto, una difficile previsione delle potenziali propensioni a fenomeni di crollo e/o scivolamento, ma si tratta di caratteri locali la cui eteropia laterale risulta sempre molto marcata.

In generale si può affermare che versanti come questi sono oggetto di fenomeni di scivolamento legati al dominio di famiglie di giunti.

Negli ammassi rocciosi studiati, la presenza di famiglie di giunti con maggiori spaziature e con assetto geometrico più regolare determina la formazione di blocchi più grandi, nell'ordine del metro cubo e più.

A scala media difatti, le spaziature sono maggiori, anche di qualche metro ed interessano blocchi più grandi ma che rispondono alle medesime dinamiche di quelli pocanzi analizzati.

Di fatto quindi, non potendo generalizzare alla piccola scala è sempre d'obbligo un rilievo puntuale sugli affioramenti ove possibile. Il materiale distaccato si raccoglie ai piedi del pendio, in accumuli più o meno estesi in funzione della pendenza.

Rev. 00| WIND003.REL003b

Figura 10-Un grado di fratturazione più intenso può creare punti di debolezza nell'ammasso roccioso dando luogo a scivolamenti e/o ribaltamenti concentrati accumulando detrito al piede del versante (aplite in figura).

7 Indagini geognostiche

La necessità di integrare le informazioni di tipo geologico e geotecnico derivanti da studi pregressi, dalla letteratura di settore e dai rilievi geologici e geostrutturali in sito, ha reso necessario predisporre un piano di indagini geognostiche propedeutiche alla definizione del modello geologico di riferimento di sito funzionale alle opere previste in progetto così come richiamato dalle Norme Tecniche sulle Costruzioni (NTC2018 - §Cap. 6.2.1).

L'obiettivo delle indagini realizzate è stato:

- Definire la stratigrafia ed i rapporti tra le formazioni geologiche interessate dagli interventi;
- Definire le caratteristiche fisico-meccaniche degli ammassi rocciosi coinvolti nelle opere in progetto;
- Individuare la presenza di circolazione d'acqua sotterranea alle profondità di interesse in relazione ai volumi significativi delle opere (fondazioni, piazzole, trincee e rilevati stradali, stabilità dei pendii)

Sono state utilizzate due metodiche di indagine:

- <u>Diretta in sito</u> mediante l'esecuzione di sondaggi a carotaggio continuo con il prelievo e la conservazione delle carote in apposite cassette per lo studio e il prelievo di campioni da caratterizzare in laboratori e l'esecuzione di prove in foro per la stima delle caratteristiche di resistenza dei terreni (SPT);
- <u>Indiretta in sito</u> mediante l'utilizzo delle metodiche di indagine geofisica esecuzione di profili di sismica a rifrazione e MASW;

Mediante prove di laboratorio è stata poi effettuata la caratterizzazione geotecnica di campioni di roccia e terreni prelevati dai sondaggi (point load, classificazione delle terre, prove di taglio diretto)

Le indagini in sito sono state realizzate in data 10 Marzo 2021 dalla Ditta Dr. Antonello Angius con sede in Cagliari (CA) e in data 03/03/21 e 11/03/21 dalla ditta GEOSERVICE con sede in Villa San Pietro (CA). Le analisi di tipo geotecnico sono state effettuate presso il Laboratorio Geotecnico GEOSYSTEM con sede in Quartu Sant'Elena (CA). Le operazioni si sono svolte sotto la Direzione Lavori della scrivente.

Le sedi di indagine sono state scelte in modo da essere rappresentative dei diversi assetti geologico-strutturali che interesseranno le opere di progetto.

Indagini dirette in sito:

- n.1 sondaggi a carotaggio continuo della profondità massima raggiunta di 11,50 mt con l'esecuzione complessiva di prove n° 2 SPT in foro;
- prelievo di campioni di carota a quote definite e successiva caratterizzazione geotecnica dei terreni con analisi in laboratorio (peso di volume e grado di umidità, prove su spezzoni di carota Point Load);

Viene di seguito riportata una tabella con l'ubicazione delle stesse corredata da una tabella riassuntiva.

Rev. 00| WIND003.REL003b

Tabella 1 Ubicazione dei sondaggi geognostici							
Sondaggio	Località	Coordinate	Coordinate	Profondità (m)			
Sondaggio	Localita	Nord	Est	da p.c.			
SN_01	Bruncu Nuraxeddu	39°11'54"	9°24'40"	11,50			

Indagini indirette in sito:

- Esecuzione di n° 5 stendimenti di sismica con tecnica MASW (M1 M2 M3 M4 M5) e rifrazione in onde P (R1 – R2 – R3 – R4 – R5). Le basi sismiche MASW ricadono lungo il medesimo allineamento delle Rifrazioni in onde P.
- Rilievo topografico tramite GPS differenziale STONEX S70G (geofoni, punti di shot, elettrodi/picchetti) e restituzione dei profili altimetrici da impiegare nelle sezioni di tomografia elettrica e sismica.
- Elaborazione dei dati tramite analisi delle prospezioni acquisite in campagna, applicazione filtri, e restituzione grafica delle sezioni sismiche con l'impiego del software specialistici.

Gli stendimenti sono stati posizionati in modo da esser rappresentativi delle condizioni litostratigrafiche e geostrutturali, in accordo con quanto rilevato dai rilievi di superficie.

Nella Tab. 2 è riportato il quadro riassuntivo delle indagini svolte, con le sigle identificative, la direzione di esecuzione (da elettrodo/geofono iniziale a quello finale), e la loro lunghezza complessiva, mentre nella Fig. 12 sono rappresentati i punti dove sono state effettuate le indagini.

Stendimento	Aerogeneratore	Orientamento	Lunghezza (m)				
R1/M1	WTG008	NNW-SSE	69,0				
R2/M2	WTG005	SSW-NNE	69,0				
R3/M3	WTG010	NE-SW	69,0				
R4/M4	WTG006	SW-NE	69,0				
R5/M5	WTG009	W-E	69,0				

Tabella 2 Quadro riassuntivo indagine geofisica

Di seguito si riportano le specifiche di rilievo e gli esiti dell'elaborazione dei profili sismici acquisiti.

Figura 11 Localizzazione delle indagini geofisiche

7.1 Sondaggi Geognostici

I sondaggi geognostici e geotecnici consentono di verificare direttamente la successione stratigrafica lungo una verticale di esplorazione, di prelevare i campioni per le analisi di laboratorio, e di eseguire le prove meccaniche e idrauliche a fondo foro, durante la perforazione.

Poiché lo scopo delle indagini è quello di definire le caratteristiche del sottosuolo all'interno del volume significativo, il numero, la profondità, e la disposizione planimetrica delle verticali di esplorazione sono state definite in base alla forma e all'estensione del volume significativo, ed al grado di dettaglio richiesto in relazione alla categoria geotecnica delle opere da realizzare.

Sono stati eseguiti **nr.1 sondaggi a carotaggio continuo della profondità massima raggiunta di 11,5m** scelti in ordine a quanto previsto dalle NTC2018 - §Cap.6.2.2, facendo riferimento al volume significativo delle opere di fondazioni ipotizzando una profondità presunta del piano di posa delle fondazioni a circa 5m da piano campagna e una estensione presunta della fondazione (diretta a pianta circolare troncoconica) di circa 30m di diametro.

Sulle componenti terrose incontrate, di interesse alla stima della componente portante del sottosuolo, sono stati realizzate prove di resistenza in foro di sondaggio (prova di penetrazione di una punta - SPT Standard Penetration Test) e prove di rottura Point Load su spezzoni di carota.

7.1.1 Attrezzature utilizzate

I sondaggi sono stati eseguiti mediante le seguenti attrezzature:

- Sonda idraulica Hydra mod. Joy3 matr. H02490 con motore diesel, montata su autocarro Fresia F120C 4x4; Tiro e spinta 4000 Kg, testa di rotazione con motoriduttore epicicloidale da 1000 Kgm, velocità di rotazione 0-400 giri/min, certificazione CE, Pompa triplex 90, verricello 1000 Kg, doppia morsa con svitatore 0-220 mm, corsa slitta 3400 mm; Motore KUBOTA V 3300-T-EU2, SERIAL: 4A2156,CODE: 1GS64-00000

Le perforazioni sono state realizzate utilizzando il carotaggio continuo, per quanto possibile senza l'utilizzo di fluidi di perforazione, tramite un carotiere semplice per rendere minimo il disturbo dei materiali attraversati consentendo quindi il prelievo di campioni rappresentativi.

Le carote estratte sono state poste all'interno di apposite cassette catalogatrici da 5m, opportunamente identificate con: nr. della cassetta, nome del sondaggio, data del sondaggio, luogo e profondità di avanzamento.

Figura 12 Sonda idraulica Hydra mod. Joy3

7.1.2 Prove SPT (Standard Penetration Test)

Per la caratterizzazione geotecnica del terreno, durante la perforazione, sono state eseguite n°2 prove SPT (Standard Penetration Test) sul sondaggio **SN_01**.

Le prove penetrometriche dinamiche (SPT) consistono nella misura della resistenza offerta dal terreno alla penetrazione di un campionatore standard fatto avanzare per battitura collegato alla superficie mediante batteria di aste in testa alle quali agisce un maglio del peso di 63.5 kg che cade liberamente da un'altezza di 0.76 m.

Caratteristiche Dispositivo prova SPT (Standard Penetration Test)

- Tubo campionatore apribile longitudinalmente: * est= 50.8 mm; * int= 35 mm; Lminima (escluso tagliente principale)>457 mm; L utile = 630 mm; L scarpa tagliente terminale (con rastremazione negli ultimi 19 mm) = 76 mm; il campionatore è munito di valvola a sfera alla sommità e aperture di scarico e sfiato;

- Punta Conica: apertura della punta conica 60° e diametro esterno 50.8 mm;

- Massa battente: di peso 63,4 kg che cada da 75 cm di altezza con dispositivo di sgancio automatico;

- Aste collegate al campionatore: aventi peso per metro lineare 6.5 kg (*0.5 kg/ml). Aste diritte ed avvitate in corrispondenza dei giunti e con flessione totale della batteria pronta per la prova $< 1^{\circ}/^{\circ\circ}$.

Durante la prova si misurano i seguenti parametri:

N1 = numero di colpi di maglio necessari a provocare l'avanzamento del campionatore per i primi 15 cm, assunti come tratto di "avviamento";

N2 = numero di colpi che provoca la penetrazione del campionatore nei successivi 15 cm;

N3 = numero di colpi necessari per gli ultimi 15 cm di avanzamento.

Si assume come resistenza alla penetrazione il valore:

$$NSPT = (N2 + N3)/2$$

Risultati delle prove SPT

ID Sondaggio	Sigla	SPT	Profondità (m) da p.c.	N1	N2	N3	Nspt	
SN_01	SPT_SN_01_01	1	1,50	16	31	>50	-	
	SPT_SN_01_02	1	3,00	>50	-	-	-	
Taballa 2. Taballa riassunti a dati SDT								

Tabella 3 - Tabella riassuntiva dati SPT

Si riportano di seguito in sintesi le stratigrafie dei sondaggi eseguiti. Per un maggior dettaglio si faccia riferimento all'*Allegato A – Stratigrafie e documentazione fotografica*.

7.1.3 MA_SN_01

0m

Rev. 00 | WIND003.REL003b

Suolo, colore bruno, presenza di rari ciottoli di granitoidi dalle dimensioni dai 0,5cm ai 4cm.

-1,2m

Granitoide molto alterato, la struttura originaria è a malapena riconoscibile, l'ossido di Ferro prodotto dall'alterazione dei minerali che componevano la roccia madre gli conferisce un colore arancione-rosso. Sono presenti piccoli frammenti di quarzo (circa 1mm) che vanno ad aumentare per dimensioni e frequenza verso il basso.

Si sgretola con una leggera pressione delle dita.

-7m

Granitoide alterato, molto fratturato, presenza di livelli arenizzati. Laddove è possibile riconoscere la struttura della roccia madre si nota la presenza di feldspati e miche fortemente alterati affiancati a quarzo poco alterato, la roccia nel complesso prende un colore grigio-marrone a chiazze bianche.

Si frantuma con un colpo di martello.

-9,5m

Granito molto fratturato non alterato, presenza di frammenti spigolosi dalle dimensioni medie di 5-6cm, si riconoscono minerali quali il quarzo (incolore), i feldspati (da bianco a salmone), e la biotite (nera). *Si frantuma con diversi colpi di martello*.

er ji antanna con arverer corpi a

-11,2m

Sono stati prelevati i campioni SN_01_GR1 e SN_01_GR2 alla profondità rispettivamente di 3-4m e 5-6m sottoposti ad analisi granulometriche, n.3 campioni nominati SN_01_PL1, SN_01_PL2 e SN_01_PL3 ad una profondità di 9.20m, 9.60m e 11,0m sottoposti a rottura per punzonamento (Point Load), il campione SN_01_PL2 è stato inoltre sottoposto a determinazione del Peso di Volume. Non è stata rinvenuta falda alle profondità di indagine.

7.2 Sismica a Rifrazione - Tecnica e parametri utilizzati

In ambito d'indagini indirette l'esplorazione geofisica la sismica a rifrazione risulta tra le metodologie più affermate e meglio sperimentate. Il metodo si basa sugli effetti di rifrazione del segnale sismico in corrispondenza dell'interfaccia tra un mezzo soprastante a velocità sismica minore rispetto ad uno strato sottostante al primo con velocità sismica maggiore.

La tecnica di prospezione sismica a rifrazione consiste nella misura dei tempi di primo arrivo delle onde sismiche generate in un punto in superficie (punto di energizzazione/sparo), in corrispondenza di una molteplicità di ricevitori (geofoni) disposti allineati sulla superficie topografica.

Rev. 00 | WIND003.REL003b

Varie metodologie di interpretazione si sono susseguite nel tempo, passando dalle valutazioni di spessori e velocità in funzione del tempo all'intercetta fino a giungere alle più classiche interpretazioni mediante il General Reciprocal Method di Palmer '72.

Lo studio della propagazione delle onde sismiche consente di valutare le proprietà fisico - meccaniche dei terreni e il grado di addensamento e/o la compattezza dei materiali da queste attraversati.

Le profondità raggiunte sono al massimo la metà della distanza compresa tra lo shot esterno e l'ultimo geofono della stesa sismica sviluppata. È comunque generalmente considerato che la profondità esplorata non superi 1/3 dello sviluppo geometrico sopradescritto.

La capacità risolutiva in termini di spessore degli strati sismici viene ad essere valutato in circa il 25/30% della distanza geofonica.

Nel caso in esame, in funzione della lunghezza degli stendimenti sono state eseguite 9 energizzazioni-shot al fine di meglio descrivere la geometria degli orizzonti rifrattori lungo l'intera base sismica come meglio specificato nello schema di seguito rappresentato (Fig. 14.3).

Attraverso l'elaborazione tomografica dei dati acquisiti è possibile ricostruire l'andamento stratigrafico, nel senso di spessori elastomogenei, del substrato indagato. Tale ricostruzione permette di migliorare la caratterizzazione dei primi 15-20 m di profondità degli ammassi rocciosi investigati, fornendo importanti informazioni sul loro stato di fratturazione e di alterazione, e sulle loro caratteristiche geotecniche propedeutiche allo studio di instabilità potenziale dei versanti direttamente connessi al layout di progetto.

Figura 14 localizzazione stendimento R1/M1 (WTG008).

7.3 M.A.S.W. - Tecnica e parametri utilizzati

Il metodo MASW (Multichannel Analysis of Surface Waves) è una tecnica di indagine non invasiva, che individua il profilo di velocità delle onde di taglio verticali Vs, basandosi sulla misura delle onde superficiali fatta in corrispondenza di diversi sensori (geofoni) posti sulla superficie del suolo.

Il contributo predominante alle onde superficiali è dato dalle onde di Rayleigh, che viaggiano con una velocità correlata alla rigidezza della porzione di terreno interessata dalla propagazione delle onde. In un mezzo stratificato le onde di Rayleigh sono dispersive, cioè onde con diverse lunghezze d'onda si propagano con diverse velocità di fase e velocità di gruppo (Achenbach, J.D., 1999, Aki, K. and Richards, P.G., 1980) o detto in maniera equivalente la velocità di fase (o di gruppo) apparente delle onde di Rayleigh dipende dalla frequenza di propagazione. La natura dispersiva delle onde superficiali è correlabile al fatto che onde ad alta frequenza con lunghezza d'onda corta si propagano negli strati più superficiali e quindi danno informazioni sulla parte più superficiale del suolo, invece onde a bassa frequenza si propagano negli strati più profondi e quindi interessano gli strati più profondi del suolo." (da Caratterizzazione sismica dei suoli con il metodo MASW

(Multichannel Analysis of Surface Waves – V. Roma 2006). L'indagine svolta ha visto l'applicazione di tecnica M.A.S.W. di tipo attivo, ossia misura del comportamento dei terreni a seguito di un'energizzazione.

L' indagine si sviluppa mediante la materializzazione sul terreno di una linea retta mediante la posa di una fettuccia metrica. A seguire vengono posizionati i geofoni intervallati ad una distanza pari a 3,0 m in funzione anche della disponibilità di spazio. Esternamente alla stesa geofonica, da ora base sismica, a distanza di interesse che può essere pari ad un multiplo della distanza intergeofonica ma anche variabile (in funzione delle disponibilità di cantiere), sia in andata (ovvero in prossimità del geofono 1) che al ritorno (ovvero all'ultimo geofono posizionato sulla base sismica), vengono svolte delle energizzazioni mediante massa battente pari a Kg 10,0. Nel caso in esame, sono state svolte le energizzazioni in "andata" e in "ritorno" con distanza dal geofono 1 e dal geofono 24 crescente e pari a multipli della distanza intergeofonica (v. schemaFigura 15)

Il metodo risulta efficace se la base sismica è ubicata su piano a pendenza costante e per una stratificazione piano parallela al piano topografico. Al fine di svolgere al meglio la campagna geofisica M.A.S.W., è utile che lo sviluppo lineare della base sismica sia limitata in lunghezza secondo i siti. La maggior profondità di caratterizzazione raggiunta è legata alla minor frequenza registrata. Come già indicato nella figura, una frequenza alta caratterizza gli strati superficiali. La registrazione delle frequenze minori è destinata ai geofoni più lontani dalla sorgente.

Il numero di geofoni utile all'esecuzione ottimale di un'indagine M.A.S.W. è risultato, per il cantiere svolto, di 24 geofoni dei quali sono state utilizzate tutte le tracce. Il tempo dell'acquisizione è stato definito tra 1.00 e 2.00 secondi.

Figura 17 Localizzazione stendimento R3/M3 (WTG010) e del sondaggio S1.

Rev. 00| WIND003.REL003b

7.4 Sismica a Rifrazione – Elaborazioni e risultati

Si riportano di seguito gli elementi identificati nelle sezioni sismiche elaborate. Sulla base delle velocità misurate e dei dati bibliografici, sono stati definiti i seguenti sismostrati nelle sezioni tomografiche:

A - Sismostrato A: Unità delle terre di copertura (facilmente rippabili);

- B Sismostrato B: Unità delle rocce molto fratturate (rippabili);
- C Sismostrato C: Unità delle rocce da poco fratturate a sane (non rippabili).

La delimitazione dei sismostrati ha un valore indicativo, può presentare delle oscillazioni locali a causa delle variazioni delle caratteristiche dei litotipi.

Nelle descrizioni che seguono le profondità sono riferite al piano di campagna e per direzione dello stendimento si intende l'orientamento geografico formato dalla linea che unisce il geofono iniziale con quello finale, che nella planimetria di ubicazione è stato indicato con una freccia.

Figura 18 Localizzazione dello stendimento R4/M4 (WTG006).

Figura 19 Localizzazione dello stendimento R5/M5 (WTG009).

7.4.1 Base Sismica R1 (WTG008)

Nella sezione	sismica R1	è stato	nossihile	distinguere	i seguenti	sismostrati
Nella sezione	SISILICA VT		hossinile	uistillguele	iseguenti	SISITIOSU du.

Stendimento R1	ONDE P			
Sismostrati	Profondità da pc (m)	Velocità in m/s		
A: Unità delle terre di copertura (facilmente rippabili)	Da 0,0 a 3,0/7,5	400-1000		
B: Unità del granito in disfacimento e rocce molto fratturate(rippabili)	Da 3,0/7,5 a 5,0/16,0	1000-1500		
C: Unità delle rocce da poco fratturate a sane (non rippabili)	Da 5,0/16,0 a 25,0	1500-5500		

Figura 20 Sismostrati individuati nella sezione R1.

Tavola 2 : PLANIMETRIA UBICAZIONE INDAGINI GEOFISICHE (WTG008)	Legenda Stendimento R/M1 (WTG008) - Lunghezza = 69,0 m
Scala 1:1000	geofono

Figura 21 Localizzazione stendimento R1/M1

Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche

Nella tabella di Tab.4 sono schematizzati i parametri di deformazione dinamici medi calcolati tramite correlazione bibliografica dei parametri di input Vs, Vp e densità (da bibliografia/correlazione) per ciascun sismostrato definito dalle indagini eseguite.

Sismo strato	Prof/ zona	CT⁺	Densità Y	Vp	Vs	Coefficiente di Poisson v	Modulo di Young dinamico Ed	Modulo di Young statico Ed	Modulo di taglio G₀	Modulo di comprimibilità o di Bulk - K
			[Kg/m ³]	[m/s]	[m/s]		[MPa]	[MPa]	[MPa]	[MPa]
1	0,0-3,9	10%	1.800	510	255	0,33	314	31	118	314
2	3,9-6,9	10%	1.900	840	420	0,33	892	89	333	892
3	6,9-9,8	15%	2.000	1.340	670	0,33	2.393	359	902	2.393
4	9,8-17,5	20%	2.100	2.780	1.390	0,33	10.817	2.163	4.060	10.817
5	17,5-31,9	40%	2.300	4.790	2.395	0,33	35.177	14.071	13.190	35.177
6	>31,9	40%	2.300	5.480	2.740	0,33	46.043	18.417	17.270	46.043

Figura 22 Sezione tomografica della sezione R1.

Dall'esame della sezione si riconoscono 3 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 5500 m/s. Il

Rev. 00| WIND003.REL003b

sismostrato A presenta un andamento quasi parallelo al piano campagna, tranne che per le progressive 12,0 e 30,0 m dove si osserva un'anomalia data da un inspessimento dei materiali con caratteristiche fisicomeccaniche più scadenti delle litologie presenti. Il sismostrato A arriva a profondità comprese tra 3,0 e 7,5 m dal p.c.

Il sismostrato B (limite dei materiali rippabili), che si rileva fino a profondità comprese tra 5,0 e 16,0 m dal p.c., presenta delle variazioni dovute sia all'anomalia sopra descritta, ma anche al maggior spessore del sismostrato C nella parte sinistra della sezione.

Il sismostrato C (materiali non rippabili) si osserva a partire da profondità comprese tra 5,0 e 16,0 m di profondità dal p.c m e rappresenta un substrato lapideo non rippabile. Dall'osservazione della sezione tomografica si può notare un aumento abbastanza graduale delle Vp, salvo la presenza di un'anomalia presente tra le progressive 12,0-30,0 m legate ad un'inversione di velocità determinata da un peggioramento delle caratteristiche fisico-meccaniche delle litologie presenti.

In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 5,0 e 16,0 m dal p.c i terreni risultano non rippabili.

7.4.2 Base sismica R2 (WTG005)

Nella sezione sismica R2 è stato possibile distinguere i seguenti sismostrati:

Stendimento R2	ONDE P			
Sismostrati	Profondità da pc (m)	Velocità in m/s		
A: Unità delle terre di copertura (facilmente rippabili)	Da 0,0 a 2,0/6,0	400-1000		
B: Unità del granito in disfacimento e rocce molto fratturate (rippabili)	Da 2,0/6,0 a 4,0/12,0	1000-1500		
C: Unità delle rocce da poco fratturate a sane (non rippabili)	Da 4,0/12,0 a 22,0	1500-5500		

Tabella 5 Sismostrati individuati nella sezione R2

Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche

Nella Tab.6 sono schematizzati i parametri di deformazione dinamici medi calcolati tramite correlazione bibliografica dei parametri di input Vs, Vp e densità (da bibliografia/correlazione) per ciascun sismostrato definito dalle indagini eseguite.

Sismo strato	Prof/ zona	CT*	Densità Y	Vp	Vs	Coefficiente di Poisson v	Modulo di Young dinamico Ed	Modulo di Young statico Ed	Modulo di taglio G₀	Modulo di comprimibilità o di Bulk - K
			[Kg/m ³]	[m/s]	[m/s]		[MPa]	[MPa]	[MPa]	[MPa]
1	0,0-4,0	10%	1.800	580	290	0,33	402	40	147	402
2	4,0-6,6	10%	1.900	840	420	0,33	892	89	333	892
3	6,6-9,4	15%	2.000	1.300	650	0,33	2.256	338	843	2.256
4	9,4-17,6	20%	2.100	2.390	1.195	0,33	7.993	1.599	3.001	7.993
5	17,6-31,9	40%	2.300	3.770	1.885	0,33	21.791	8.716	8.169	21.791
6	>31,9	40%	2.300	4.460	2.230	0,33	30.499	12.200	11.435	30.499

Figura 23 Sezione tomografica della sezione R2.

Dall'esame della sezione R2 si riconoscono 3 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 5500 m/s. L'aumentare delle velocità delle onde P è riconducibile al miglioramento delle caratteristiche fisico-meccaniche dei litotipi presenti nel sottosuolo con la profondità.

Le 3 unità sismostratigrafiche presentano un andamento parallelo al p.c. con qualche variazione di spessore nella parte centrale della sezione. Anche in questo caso, si osserva un aumento graduale delle Vp con l'aumento della profondità dal p.c. causato da un miglioramento delle caratteristiche fisico-meccaniche dei terreni incontrati.

In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 4,0 e i 12,0 m dal p.c. i terreni risultano non rippabili.

7.4.3 Base Sismica R3 (WTG010)

Nella sezione sismica R3 è stato possibile distinguere i seguenti sismostrati:

Tabella 7 Sismostrati individuati nella sezione R3.

Stendimento R3	ONDE P			
Sismostrati	Profondità da pc (m)	Velocità in m/s		
A: Unità delle terre di copertura (facilmente rippabili)	Da 0,0 a 4/10,0	400-1000		
B: Unità del granito in disfacimento e rocce molto fratturate (rippabili)	Da 4/10,0 a 10,0/14,0	1000-1500		
C: Unità delle rocce da poco fratturate a sane (non rippabili)	Da 10,0/14,0 a 28,0	1500-5500		

Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche

Nella Tab. 8 sono schematizzati i parametri di deformazione dinamici medi calcolati tramite correlazione bibliografica dei parametri di input Vs, Vp e densità (da bibliografia/correlazione) per ciascun sismostrato definito dalle indagini eseguite.

Tabella 8 Parametri di deformazione dinamici medi per la base M3 (CT* indica il coefficiente di trasformazione per la roccia)

Sismo strato	Prof/ zona	CT*	Densità Y	Vp	Vs	Coefficiente di Poisson v	Modulo di Young dinamico Ed	Modulo di Young statico Ed	Modulo di taglio G₀	Modulo di comprimibilità o di Bulk - K
			[Kg/m ³]	[m/s]	[m/s]		[MPa]	[MPa]	[MPa]	[MPa]
1	0,0-3,9	10%	1.800	690	345	0,33	569	57	216	569
2	3,9-6,4	10%	1.900	840	420	0,33	892	89	333	892
3	6,4-13,5	15%	2.000	1.250	625	0,33	2.079	312	785	2.079
4	13,5-18,1	20%	2.100	1.980	990	0,33	5.492	1.098	2.059	5.492
5	18,1-23,7	40%	2.300	2.860	1.430	0,33	12.543	5.017	4.707	12.543
6	23,7-31,2	50%	2.300	4.220	2.110	0,33	27.302	13.651	10.238	27.302
7	>31,2	50%	2.300	5.900	2.950	0,33	53.378	26.689	20.016	53.378

Rev. 00 | WIND003.REL003b

Figura 24 Sezione tomografica della sezione R3.

Dall'esame della sezione tomografica R3 si riconoscono 3 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 5500 m/s. L'aumentare delle velocità delle onde P è riconducibile al miglioramento delle caratteristiche fisicomeccaniche dei litotipi presenti nel sottosuolo con la profondità. Anche lungo questa sezione si osserva che le varie unità sismostratigrafiche hanno un andamento piano parallelo con il p.c e leggerissime variazioni di spessore. In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 10,0 e 14,0 m dal p.c. i terreni risultano non rippabili.
7.4.4 Base Sismica R4 (WTG006)

Nella sezione sismica R3 è stato possibile distinguere i seguenti sismostrati:

Tabella 9 Sistriostrau individuau nella sezione R4							
Stendimento R4	ONDE P						
Sismostrati	Profondità da pc (m)	Velocità in m/s					
A: Unità delle terre di copertura (facilmente rippabili)	Da 0,0 a 4/5,0	400-1000					
B: Unità del granito in disfacimento e rocce molto fratturate (rippabili)	Da 4/5,0 a 12,0/16,0	1000-1500					
C: Unità delle rocce da poco fratturate a sane (non rippabili)	Da 12,0/16,0 a 20,0	1500-1600					

Tabella 9 Sismostrati individuati nella sezione R4

Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche

Nella Tab. 10 sono schematizzati i parametri di deformazione dinamici medi calcolati tramite correlazione bibliografica dei parametri di input Vs, Vp e densità (da bibliografia/correlazione) per ciascun sismostrato definito dalle indagini eseguite.

Sismo strato	Prof/ zona	CT*	Densità Y	Vp	Vs	Coefficiente di Poisson v	Modulo di Young dinamico Ed	Modulo di Young statico Ed	Modulo di taglio G₀	Modulo di comprimibilità o di Bulk - K
			[Kg/m ³]	[m/s]	[m/s]		[MPa]	[MPa]	[MPa]	[MPa]
1	0,0-4,0	10%	1.800	570	285	0,33	392	39	147	392
2	4,0-5,8	10%	1.900	800	400	0,33	814	81	304	814
3	5,8-18,5	15%	2.000	1.250	625	0,33	2.079	312	785	2.079
4	18,5-25,4	20%	2.100	1.600	800	0,33	3.579	716	1.344	3.579
5	25,4-33,9	30%	2.300	2.020	1.010	0,33	6.257	1.877	2.344	6.257
6	>33,9	40%	2.300	3.080	1.540	0,33	14.543	5.817	5.453	14.543

Tabella 10 Parametri di deformazione dinamici medi per la base M3 (CT* indica il coefficiente di trasformazione per la roccia)

Figura 25 Sezione tomografica della sezione R4.

Dall'esame della sezione tomografica R4 si riconoscono 3 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 1600 m/s. L'aumentare delle velocità delle onde P è riconducibile al miglioramento delle caratteristiche fisicomeccaniche dei litotipi presenti nel sottosuolo con la profondità. Anche lungo questa sezione si osserva che le varie unità sismostratigrafiche hanno un andamento piano parallelo con il p.c e leggerissime variazioni di spessore, infatti si osserva che nella parte destra della sezione i sismostrati A e B hanno spessori leggermente inferiori rispetto alla parte sinistra. In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 12,0 e 16,0 m dal p.c. i terreni risultano non rippabili.

Rev. 00 | WIND003.REL003b

7.4.5 Base Sismica R5 (WTG009)

Nella sezione sismica R5 è stato possibile distinguere i seguenti sismostrati:

i duella 11 Jisti ilosti du li luividudu i lella sezioli e r.s.						
Stendimento R5	ONDE P					
Sismostrati	Profondità da pc (m)	Velocità in m/s				
A: Unità delle terre di copertura (facilmente rippabili)	Da 0,0 a 2/8,0	400-1000				
B: Unità del granito in disfacimento e rocce molto fratturate (rippabili)	Da 2/28,0 a 5,0/14,0	1000-1500				
C: Unità delle rocce da poco fratturate a sane (non rippabili)	Da 5,0/14,0 a 30,0	1500-5000				

Tabella 11 Sismostrati individuati nella sezione R5.

Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche

Sismo strato	Prof/ zona	CT*	Densità γ	Vp	Vs	Coefficiente di Poisson v	Modulo di Young dinamico Ed	Modulo di Young statico Ed	Modulo di taglio G₀	Modulo di comprimibilità o di Bulk - K
			[Kg/m ³]	[m/s]	[m/s]		[MPa]	[MPa]	[MPa]	[MPa]
1	0,0-3,8	10%	1.800	560	280	0,33	373	37	137	373
2	3,8-6,6	10%	1.900	860	430	0,33	941	94	353	941
3	6,6-9,8	15%	2.000	1.220	610	0,33	1.981	297	745	1.981
4	9,8-13,2	20%	2.100	1.920	960	0,33	5.158	1.032	1.932	5.158
5	13,2-23,5	40%	2.300	3.270	1.635	0,33	16.397	6.559	6.149	16.397
6	23,5-31,9	50%	2.300	4.340	2.170	0,33	28.881	14.441	10.827	28.881
7	>31,9	50%	2.300	4.380	2.190	0,33	29.420	14.710	11.033	29.420

Tabella 12 Parametri di deformazione dinamici medi per la base M4 (CT* indica il coefficiente di trasformazione per la roccia)

Dall'esame della sezione tomografica R5 si riconoscono 3 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 5000 m/s. L'aumentare delle velocità delle onde P è riconducibile al miglioramento delle caratteristiche fisicomeccaniche dei litotipi presenti nel sottosuolo con la profondità dal p.c.. Anche in questo caso le 3 unità sismostratigrafiche presentano un andamento parallelo al p.c. e variazioni di spessore definite nella tabella sopra. Si osserva che nella parte sinistra della sezione i limiti dei materiali rippabili si incontra a profondità nettamente inferiori rispetto alla parte destra, dove invece gli spessori dei sismostrati A e B (materiali rippabili) sono maggiori.

In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 5,0 e 14,0 m dal p.c. i terreni risultano non rippabili.

Figura 26 Sezione tomografica della sezione R5.

7.5 MASW – Elaborazioni e risultati

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs della sezione MX, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

7.5.1 Base sismica M1

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs della sezione M1, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

Profondità [m sotto il pc]	Descrizione
0-3,9	1" sismostrato con Vs tra 180 e 330m/s, Terre da poco a mediamente addensate
3,9-6,9	2° sismostrato con Vs di 420 m/s, Terre molto addensate
6,9-9,8	3° sismostrato con Vs di 670 m/s, Roccia fratturata
9,8- 17,5	4° sismostrato con Vs tra1110 e 1670 m/s, Substrato roccioso da fratturato a debolmente fratturato
17,5 - 31,9	5° sismostrato con Vs tra 2210 e2580m/s, Substrato roccioso sano
>31,9	6° sismostrato con Vs di 2740 m/s, Substrato roccioso sano

MASW M1 - PROFILO Vs (Vs eq da p.c= 362 m/s)

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione

con: hi spessore dell'i-esimo strato;

Vs.i velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Esaminato il profilo delle Vs si pone come profondità del substrato 9,8 m (Vs>800 m/s).

La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a 9,8 m di profondità dal p.c. è pari a: Vs eq = 9,8/0,027101=362 m/s che dà luogo ad una categoria B, ossia:

Categoria B: Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

Si precisa che per fondazioni con piano di imposta sito a profondità maggiore di 9,8 m la classe di sottosuolo passa a Categoria A, in quanto la Vs diventa maggiore di 800 m/s includendo in superficie terreni con caratteristiche meccaniche più scadenti con spessore massimo pari a 3,0 m.

Rev. 00| WIND003.REL003b

7.5.2 Base Sismica M2

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs della sezione M2, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

Profondità [m sotto il pc]	Descrizione
0,0-4,0	1º sismostrato con Vs tra 250 e 330 m/s, Terre da poco a mediamente addensate
4,0-6,6	2° sismostrato con Vs di 420 m/s, Terre molto addensate
6,6-9,4	3° sismostrato con Vs di 650 m/s Roccia fratturata
9.4 - 17.6	4" sismostrato con Vs tra 1000 e 1390 m/s, Substrato roccioso fratturato
17,6-31,9	5° sismostrato con Vs tra 1740 e 2030 m/s, Substrato roccioso sano
>31,9	6° sismostrato con Vs di 2230 m/s, Substrato roccioso sano

MASW M2 - PROFILO Vs (Vs eq da p.c= 388 m/s)

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione

V _{S,eq}	H
*5.eq *	$\frac{N}{\sum h_i}$
	i=1 VS.i

hi spessore dell'i-esimo strato;

Vs,velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

con:

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Esaminato il profilo delle Vs si pone come profondità del substrato 9,4 m (Vs>800 m/s).

La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a 9,4 m di profondità dal p.c. è pari a: Vs eq = 9,4/0,024232=388 m/s che dà luogo ad una categoria B, ossia:

Categoria B: Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

Si precisa che per fondazioni con piano di imposta sito a profondità maggiore di 9,4 m la classe di sottosuolo passa a Categoria A, in quanto la Vs diventa maggiore di 800 m/s includendo in superficie terreni con caratteristiche meccaniche più scadenti con spessore massimo pari a 3,0 m.

Rev. 00 | WIND003.REL003b

7.5.3 Base Sismica M3

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs della sezione M3, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

Profondità [m sotto il pc]	Descrizione
0-3,9	1° sismostrato con Vs tra 320 e 370m/s, Terre mediamente addensate
3,9-6,4	2° sismostrato con Vs di 420 m/s, Terre molto addensate
6,4-13,5	3" sismostrato con Vs tra 530 e 720 m/s Roccia fratturata
13,5 - 18,1	4" sismostrato con Vs di 990 m/s, Substrato roccioso fratturato
18,1-23,7	5" sismostrato con Vs di 1430 m/s, Substrato roccioso sano
23,7-31,2	6° sismostrato con Vs di 2110m/s, Substrato roccioso sano
>31,2	7º sismostrato con Vs di 2950 m/s, Substrato roccioso sano

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs, eq (in m/s), definita dall'espressione con:

hi spessore dell'i-esimo strato;

Vs.velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Esaminato il profilo delle Vs si pone come profondità del substrato 13,5m (Vs>800 m/s).

La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a 13,5 m di profondità dal p.c. è pari a: Vs eq = 13,5/0,028755=470 m/s che dà luogo ad una categoria B, ossia:

Categoria B: Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

Nell'ipotesi però in cui le fondazioni siano realizzate a profondità maggiori di 13,5 m sotto il p.c. il substrato si

troverà a quote < 3 metri per cui la categoria diventa una A.

Rev. 00 | WIND003.REL003b

7.5.4 Base Sismica M4

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs della sezione M4, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

Profondità [m sotto il pc]	Descrizione
0-4,0	1° sismostrato con Vs tra 280 e 290 m/s, Terre mediamente addensate
4,0-5,8	2° sismostrato con Vs di 400 m/s, Terre molto addensate
5,8 - 18,5	3" sismostrato con Vs tra 540 e 710 m/s Roccia fratturata
18,5 - 25,4	4° sismostrato con Vs di 810 m/s, Substrato roccioso intensamente fratturato
25,4-33,9	5" sismostrato con Vs di1010 m/s, Substrato roccioso fratturato
> 33,9	6" sismostrato con Vs di 1540 m/s, Substrato roccioso sano

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione

hi spessore dell'i-esimo strato;

Vs./velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

con:

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Esaminato il profilo delle Vs si pone come profondità del substrato 18,5m (Vs>800 m/s).

La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a 18,5 m di profondità dal p.c. è pari a: Vs eq = 18,5/0,038766=477 m/s che dà luogo ad una categoria B, ossia:

Categoria B: Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

Si precisa che per fondazioni con piano di imposta sito a profondità maggiore di 18,5 m la classe di sottosuolo passa a Categoria A, in quanto la Vs diventa maggiore di 800 m/s includendo in superficie terreni con caratteristiche meccaniche più scadenti con spessore massimo pari a 3,0 m.

Rev. 00 | WIND003.REL003b

7.5.5 Base Sismica M5

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs della sezione M5, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

Profondità [m sotto il pc]	Descrizione
0-3,8	1º sismostrato con Vs tra 210 e 350 m/s, Terre mediamente addensate
3,8-6,6	2° sismostrato con Vs di 430 m/s, Terre molto addensate
6,6-9,8	3° sismostrato con Vs di610m/s, Roccia fratturata
9,8-13,2	4° sismostrato con Vs di 960m/s, Substrato roccioso fratturato
13,2-23,5	5° sismostrato con Vs tra 1400 e 1870 m/s, Substrato roccioso sano
23,5-31,9	6° sismostrato con Vs di 2170m/s, Substrato roccioso sano
>31,9	7° sismostrato con Vs di 2190 m/s, Substrato roccioso sano

MASW M5 - PROFILO Vs (Vs eq da p.c= 386 m/s)

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione

hi spessore dell'i-esimo strato;

Vs.velocitá delle onde di taglio nell'i-esimo strato;

N numero di strati;

con:

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Esaminato il profilo delle Vs si pone come profondità del substrato 9,8 m (Vs>800 m/s).

La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a 9,8 m di profondità dal p.c. è pari a: Vs eq = 9,8/0,025398=386 m/sche dà luogo ad una categoria B, ossia:

Categoria B: Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

Si precisa che per fondazioni con piano di imposta sito a profondità maggiore di 9,8 m la classe di sottosuolo passa a Categoria A, in quanto la Vs diventa maggiore di 800 m/s includendo in superficie terreni con caratteristiche meccaniche più scadenti con spessore massimo pari a 3,0 m.

Rev. 00 | WIND003.REL003b

7.6 Indicazioni per la determinazione di parametri geomeccanici

Le prospezioni geofisiche possono essere utilizzate in situazioni molto complesse quali gli ammassi metamorfici molto fratturati o in assenza di indagini dirette (v. sondaggi geognostici) per la definizione spaziale di alcuni elementi degli ammassi rocciosi (fratture, RQD, etc).Tra questi quello che potrebbe essere impiegato nel contesto in esame, è quello di N. Barton (2002) – che ha cercato di correlare, attraverso relazioni empiriche, le velocità delle onde P con la qualità della roccia Q e quest'ultima con una serie di parametri meccanici. Il grafico mostra la correlazione tra Vp con RQD e λ (fratture per metro) e il relativo indice di qualità dell'ammasso roccioso di Barton (Q).

Sulla base dei litotipi individuati dai sondaggi si può applicare la correlazione ai sismostrati B e C. Il rettangolo verde indica il settore del sismostrato B, con un RQD compreso tra 0 e 7, un numero di fratture per metro che varia tra 50 e 35 e un indice di qualità Q tra 0,01 e 0,03 (ammasso roccioso estremamente scadente); il rettangolo rosso rappresenta il sismostrato C che ha valori di RQD compresi tra 7 e 60, un numero di fratture per metro di fratture per metro compreso tra 35 e 9,0 e un valore dell'indice Q tra 0,03 e 5 (ammasso roccioso da estremamente scadente a scadente/discreto).

Da quanto sopra le 3 unità sismostratigrafiche possono essere classificate come segue:

Sismostrati	Vp (m/s)	RQD (%)	λ (1/m)	Q
B: Unità del granito in disfacimento e rocce molto fratturate (rippabili)	1000-1500	0-3	50-45	0.01-0.02
C: Unità delle rocce da poco fratturate a sane (non rippabili)	1500-5000	3-85	45-5	0.02-30

L'indice Q può essere correlato all'indice RMR della classificazione di Bieniawski con la relazione: RMR=9lnQ+44.

7.7 Considerazioni sull'assetto geostrutturale degli ammassi rocciosi

La prospezione geofisica attraverso l'impiego delle tecniche MASW, sismica a rifrazione in onde P e tomografica elettrica ha permesso di ricostruire con un buon grado di precisione l'assetto lito-stratigrafico dell'area in esame e dedurne le caratteristiche sismiche. Lungo la verticale indagata si evince la presenza di sismostrati con velocità Vp e Vs in genere crescente con la profondità con andamento e spessori indicati nei precedenti paragrafi.

Per quanto riguarda le MASW, lungo gli stendimenti si evince la presenza di sismostrati con velocità Vs crescente con la profondità sino ad incontrare il bed rock con andamento e spessori indicati nei precedenti paragrafi. La velocità equivalente di propagazione delle onde di taglio calcolata per i differenti siti di indagine, che si ricorda sarà anche funzione del piano di posa delle fondazioni è riportata nel seguente schema riassuntivo:

Sigla Stendimento	Profondità substrato [m]	Vs _{eq} [m/s]	Categoria sottosuolo (NTC2018)
M1 (WTG008)	9,8	362	В
M2 (WTG005)	9,4	388	В
M3 (WTG010)	13,5	470	В
M4 (WTG006)	18,5	477	В
M5 (WTG009)	9,8	386	В

I dati derivati dalla MASW messi in correlazione con dei dati presenti in bibliografia hanno permesso di determinare i parametri di deformazione dinamici e statici dei terreni e per correlazione ottenere una preliminare definizione dei parametri di resistenza al taglio.

L'elaborazione dei dati di sismica a rifrazione ha permesso di ricostruire l'assetto sismostratigrafico dei terreni. Nei precedenti paragrafi si illustrano i differenti sismostrati individuati rippabilità si evidenzia che a partire da profondità comprese tra 4 e 5 m dal p.c. per R1, R2 e R5, e da 10-12 dal p.c. per R3 e R4 i terreni risultano non

Rev. 00 | WIND003.REL003b

rippabili. In particolare come si osserva anche dalla tabella dei dati MASW e dalle sezioni di sismica a rifrazione il bed rock si incontrerà a profondità maggiori lungo lo stendimento sismico R4/M4.

Sigla Stendimento	Profondità Terreni non rippabili [m dal p.c]
R1 (WTG008)	Tra 5/16
R2 (WTG005)	Tra 4/12
R3 (WTG010)	Tra 10/14
R4 (WTG006)	Tra 12/16
R5 (WTG009)	Tra 5/14

Le prospezioni geofisiche in rifrazione sono state utilizzate anche per la definizione spaziale di alcuni elementi degli ammassi rocciosi (fratture, RQD, etc) e per la definizione per l'indice di qualità di Barton Q: si tratta chiaramente di correlazioni da impiegare con le dovute approssimazioni ma comunque utili in determinate situazioni nelle quali dai sondaggi è difficile ottenere dei parametri di caratterizzazione dell'ammasso roccioso.

7.8 Analisi di Laboratorio

Per la determinazione dei parametri geotecnici, sono stati prelevati nr.5 campioni (n.2 per analisi granulometriche e n.3 per Point Load Test) di carota riposti in appositi contenitori muniti di etichetta catalogatrice ed inviati in laboratorio.

Campione	Profondità (m) da p.c.	Analisi eseguite
SN_01_GR1	3,00-4,00	GR
SN_01_GR2	5,00-6,00	GR
SN_01_PL1	9,20-9,35	PL
SN_01_PL2	9,60-9,75	PL + PV
SN_01_PL3	11,10-11,20	PL

7.8.1 Prove di Rottura Point Load

Nel corso dei sondaggi sono stati prelevati vari spezzoni di carota lapidea. Le caratteristiche litologiche hanno fatto optare per l'immediata esecuzione di nr.3 prove Point Load al fine di evitare che il detensionamento del campione alterasse i valori di resistenza.

E' stata utilizzata l'apparecchiatura: Point Load digitale CONTROLS mod. 45-D0550/D matr.06053686, applicando le Norme di riferimento: ASTM D5731, Raccomandazioni ISRM (in allegato si riporta il certificato di taratura).

Figura 27 Esecuzione delle prova Point Load

Tipo del provino: carote \varnothing 85 mm

La resistenza al punzonamento (Point Load Strength Index) è data dalla seguente espressione

$I_{S} = (P \times 1000)/D_{E}^{2}$

IS (MPa) = Point Load Strength Index

P (kN) = Resistenza massima a rottura

DE (mm) = Diametro equivalente della carota (diametro del provino) DE = 89 mm, DE2 = 7921)

Il valore IS deve essere corretto per rapportarlo a provini con \varnothing 50 mm, come segue:

Per ottenere una stima della resistenza a compressione monoassiale si dovrà moltiplicare il valore IS50 per un coeff. K variabile in funzione del litotipo testato.

Tabella 14 Valori del coeff. di correlazione K (Bruschi, 2004)						
LITOTIPO	К					
Rocce effusive	22					
Rocce intrusive	18					
Rocce sedimentarie a grana grossa	18					
Rocce sedimentarie a grana fine	8					
Rocce metamorfiche a basso metamorfismo	18-24					
Rocce metamorfiche a medio metamorfismo	16-19					
Rocce metamorfiche ad alto metamorfismo	14					

				Tabella 15 prove	Point load			
Campione	Profondità (m)	P (kN) media su 3 rotture	Tipo rottura	ls (MPa)	ls (50) (MPa)	K e Su (MPa)	Litotipo	Valutazione della resistenza
PN_S01_C1	9,20-9,35	5,10	Giunto latente	0,9	1,166	20,1 - 1,71	Granitoide fratturato	Bassa
PN_S01_C2	9,60-9,75	8,00	Giunto latente	1,4	1,814	25,2 – 6,46	Granitoide fratturato	Media
PN_S01_C3	11,10-11,20	6,00	Giunto latente	1,05	1,361	18,9– 3,23	Granitoide fratturato	Bassa

I campioni hanno dunque resistenza variabile, da molto bassa a media (Brown E.T., Rock Characterization, Testing and Monitoring-ISRM suggest methods, Tab.15).

Resistenza a compressione monoassiale (MPa)	Descrizione resistenza
>250	Estremamente elevata
100 – 250	Molto elevata
50 - 100	Elevata
25 – 50	Media
5 – 25	Bassa
1-5	Molto bassa
0,25 - 1	Estremamente bassa

7.8.2 Determinazione della massa volumica apparente (UNI CEN ISO/TS 19892-2 Metodo b)

E' stata determinata la massa volumica apparente di n.1 campioni mediante pesata in acqua a temperatura ambiente dopo aver provveduto ad impermeabilizzare il provino con paraffina.

Tabella 17 Risultati determinazione massa volumica apparente								
VDA N.	CAMPIONE	Massa Vol. naturale Mg/m3						
SN_01_PL2	(9.60- 9.70m)	2.45						

8 Modellazione geologica

8.1 Caratterizzazione geostrutturale degli ammassi rocciosi

Per la definizione dei parametri geotecnici del substrato roccioso al quale la fondazione delle turbine si appoggia, è stato adoperato il criterio di caratterizzazione dell'ammasso roccioso di Hoek-Brown generalizzato (1995), supportato dai dati geostrutturali rilevati in sito in pareti esposte laddove disponibili. Sulla base di tale classificazione, il cui criterio di rottura è definito dalla relazione seguente:

$\sigma'_1 = \sigma'_3 + \sigma_{ci} (mb (\sigma'_3 / \sigma_{ci}) + s)^a$

dove:

 $\sigma'_1 e \sigma'_3 = sforzi efficaci principali rispettivamente massimo e minimo a rottura;$ mb = costante d'ammassos ed a = costanti d'ammasso

 σ_{ci} = resistenza a compressione monoassiale della roccia intatta

è stato possibile risalire ai parametri di coesione e angolo di attrito interno secondo Mohr- Coulomb.

Tale metodologia si basa su caratteristiche proprie dell'ammasso, valutabili tramite osservazioni in sito o con l'ausilio di tabelle sviluppate sulla base di una vasta raccolta di dati pubblicati in letteratura, attraverso cui è possibile stimare con una certa precisione i parametri di coesione e angolo di attrito interno necessari alle verifiche di stabilità, valutando i seguenti parametri:

• Stima dell'indice GSI (Geological Strength Index) in base alle caratteristiche geologiche dell'ammasso: tale indice, introdotto da Hoek, Kaiser e Bawden (1995), può esser definito sulla base delle caratteristiche dell'ammasso (Figura 29) o sulla base di un controllo diretto con l'indice RMR della classificazione di Bieniawski.

• Determinazione della costante mi (Funzione del tipo di roccia): i valori delle costanti caratteristiche della roccia (oci e mi) vengono generalmente definiti sulla base di apposite prove di laboratorio, ma in assenza delle suddette, è possibile fare riferimento alla tabella presente in Figura 30, che riassume i valori della costante *mi* per diversi tipi di roccia.

CLASSE [*]	DESCRIZIONE	RESISTENZA A COMPRESSIONE MONOASSIALE (MPA)	INDICE DI RESISTENZA (POINT LOAD) (MPA)	VALUTAZIONE DELLA RESISTENZA IN SITO	ESEMPI
R6	R6 Resistenza > 250 estremamente elevata		> 10	Un campione può essere scheggiato solamente con un martello geologico	Basalto intatto, silice, selce, diabase, gneiss granito, quarzite
R5	Resistenza molto elevata	100-250	4-10	Un campione richiede molti colpi di un martello geologico per essere fratturato	Anfibolite, arenaria basalto, gabbro, gneiss, granodiorite calcare, marna riolite, tufi
R4	Resistenza elevata	50-100	2-4	Un campione richiede più di un martello geologico per essere fratturato	Calcare, marna, fillite, arenaria, scisto, argillite
R3	Resistenza media	25-50	1-2	Non può essere raschiato o spellato con un coltellino, un campione può essere fratturato con un solo colpo mediante un martello geologico	Argillite, carbone, calcestruzzo, scisto, siltite
R2	Resistenza bassa	5-25	[**]	Con difficoltà può essere spellato con un coltellino, una intaccatura superficiale può essere procurata con un colpo inferto mediante la punta di un martello geologico	Calcare bianco, salgemma
R1	Resistenza 1-5 molto bassa		[**]	Si frantuma per effetto di alcuni colpi con la punta di un martello geologico, può essere spellato mediante un coltellino	Rocce estremamente alterate o alterate
R0	Resistenza estremamente bassa	0.25-1	[**]	Intagliato con l'unghia di un pollice	Miloniti, cataclasi

Figura 28 Resistenza a compressione monoassiale per diversi tipi di roccia

Sulla base di queste caratteristiche si ottengono i seguenti valori di mb, s, a :

mb = mi [(GSI-100)/28]

s = e [(GSI-100)/(9-3D)]

a = 0,5 (per GSI >25)

tramite i quali si stimano coesione e angolo di attrito interno secondo il criterio di rottura di Mohr-Coulomb:

$\sigma'1 = (2c'\cos \phi'/1-\sin \phi') + (1+\sin \phi'/1-\sin \phi') \sigma'3$

I valori coesione e di angolo di attrito interno ottenuti attraverso l'applicazione di tale classificazione sono in generale rispondenti alla tipologia litologica interessata.

È utile sottolineare che esistono delle correlazioni dirette fra i valori di GSI e il valore RMR del sistema di classificazione di Bieniawski riportato nella Figura 31.

DESCRIZIONE DELL'AMMASSO ROCCIOSO PER LA VALUTAZIONE DELLE CARATTERISTICHE DI RESISTENZA Sulla base dell'apparenza della roccia, scegliere la categoria che si pensa da la migiore descrizione delle condizioni "mode" dell'ammisso indistrutato preserte n sto. Da notare che la superficie visibel della roccia ottenuda da una voltata con esplasivo pod dere una impressione Aborriante sulla qualità della roccia pod dere una impressione Aborriante sulla qualità della roccia notario di subortato arreccia dallo scoavo con esplosivo riguardo può essere utile fesame di carotaggi ottenuti da perforazioni a cartaggia controllata. E notare indevi importante noto di disto sarrecta da los scavo cone soltave essere noconta entre da abottimento con cortona imminata o roccoso multa piccoli in controlno alle dimensioni dello scavo in consuderazione.	2 MOLTO BUONE 2 Superfici moto scabre, sane, non aterale.	no 17 m BUONE 2009 BUONE 2009 BUONE 2009 BUONE 2009 BUONE	SPT SSP DISCRETE 28 F Superial Ince, moderatamente aterate.	0.2. 2.2. SCADENTE -Superficie di laglia lisciata (alickensides), 2.3. gupertici moto attarate con materate di lempimento 0.3. compatto o costituito da frammenti angolari	Mout To SCADENTE - Superficie of taglia fisciala Me (alchemater), superfici molo alerate con materiale of interprinentio costatado da argide feneree	INDICE GEOLOGICO DI RESISTENZA GS1 (Geological Strength Index) Dale soje, determinate con la tabella riportata precedentemente, ore descrivero la situatione a la conditione signeficial cell'ammasso roccioso, selezionare faporonata casella della presente tabella, Strame i visore medio di GS1 delli fine di guali visore di GS1 che attraversano la casella di refirmento. A quest utimo npuardo non è importante essere tropo procesi, indicare per GS1 indi visore compreso tra 30 e 42 è moto più realisico che indicare GS1=30. Strumute tropo procesi, indicare per GS1 indicare GS1=30.	P MOLTO SCADENTE - Supericia di laglia factata di (sickensides), superfici molto aferate con materiale di lempimento costituito da argile tenere
A BLOCCHI - Ammasso roccioso indisturbato og costituto da blocch cubici, formati da tre tampie di ascontrutu tra ta bro ortogonal, con un elevato grado di mutuo incastro.	B/VG	B/G	B/F	B/P	BNP	A BLOCCHI - Ammasso rocciseo indisturbato femiliario da blocchi cuest, formati da tre fono un elevato grado di mutuo incestro.	
CON MOLTI BLOCCHI - Ammasso roccioso parzialmente distutatio con biocchi angolari, muluamente incestrati, con pui stacostature formati da quattro o pui tamgite di discontinuta,	VB/VG	VB/G	VB/F	VB/P	VB/VP	CON MOLT BLOCCH - Ammassa fractiona CON MOLT BLOCCH - Ammassa fractiona discussmente dissurate con bio service and the service of the servi	
A BLOCCHI/DISTURBATA - Ammassa noccess con skicchi angoan formati dar mensezone di mote tampte di discontruuta.	BD/VG	BD/G	BD/F	BD/P	BDAVP	A BLOCCHI/DISTURBATA - Ammasso nocioses con blocch angelarit formati dal' referenzione di mote famigie di discontinuta 30	$\left \right $
DISINTEGRATA - Ammasso roccicso moto raturato e con basso grado di mubo incastro tormato da uninseme di blocchi rocciosi angolari e arrotondati.	DIVG	D/G	D/F	0/P	DAVP	DISINTEGRATA - Ammasso roccioso molto fratturato e con basso grazo di multo incastro forma e annoveme di biocchi roccioei angolari e arrotondali.	10

Figura 29 Abaco per la determinazione di GSI sulla base delle caratteristiche geologiche e strutturali dell'ammasso

TIPO	CLASSE	GRUPPO	Tessitura						
DI ROCCIA			GROSSOLANA	MEDIA	FINE	MOLTO FINE			
SEDIMENTARIE	Clastiche		Conglomerato (22)	Arenaria 19 Grova	Siltite 9	Argillite 4			
	Organogene		Calcare bianco (7) Carbone (8-21)						
	Non clastiche	Carbonatiche	Breccia(20)	Calcare Sparitico (10)	Calcare Micritico	8			
		Chimiche		Gesso 16	Anidride 13				
HOR OF	Non foliate		Marmo 9	Hornfels (19)	Quarzite 24				
MORE	Leggerm	ente foliate	Migmatite (30)	Anfibolite 25-31	Miloniti (6)				
METP	Fo	liate*	Gneiss 33	Scisti 4-8	Filliti (10)	Scisti argillosi 9			
	C	hiare	Granito 33		Riolite (16)	Ossidiana (19)			
			Granodiorite (30)		Dacite (17)				
GNEE			Diorite (28)		Andesite 19				
	Scure		Gabbro 27	Dolerite (19)	Basalto (17)				
	Effusive	piroclastiche	Agglomerato (20)	Breccia (18)	Tufo (15)				

di m, sarà sensibilmente inferiore se la rottura avviene lungo un piano di debolezza

Figura 30 Valori della costante mi per diversi tipi di roccia

L'analisi delle caratteristiche geomeccaniche in sito degli ammassi rocciosi interessati dal progetto e l'applicazione del metodo di Hoek-Brown per la definizione dei parametri geotecnici del substrato roccioso ha portato alla classificazione di nr.6 tipologie tra le litologie che caratterizzano la formazione presente e il corteo filoniano.

Il calcolo degli indici è stato effettuato:

- Sulla facies GEAc inalterata
- Sulla facies GEAc alterata
- Sulla facies GEAd inalterata
- Sulla facies GEAd alterata
- Su un filone basico Fb
- Su un filone aplitico Ap

Per il calcolo degli indici e della relativa trasformazione in parametri di coesione e angolo di attrito interno secondo Mohr- Coulomb è stato utilizzato il software RocData vers.3.013 della Rocscience Inc.

Criterio di rottura empirico $\sigma_1 = \sigma_3 + \sqrt{m\sigma_{u(r)}\sigma_3 + s\sigma^2_{v(r)}}$ $\sigma_1 = tensione efficace principale massima \sigma_3 = tensione efficace principale minima \sigma_{v(r)} = resistenza a compressione monoassiale m ed s: costanti empiriche$	COSTANTI DEL MATERIALE: m, s	ROCCE CARBONATICHE CON CLIVAGGIO CRISTALLINO BEN SVILUPPATO Dolomile, cakare e marmo.	ROCCE ARGILLOSE LITIFICATE Argilite, sittle, scisti argitosi con citvaggio ben marcato.	ROCCE ARENACEE CON ELEVATA CRISTALLIZZAZIONE E LIMITATO SVILUPPO DI CLIVAGGIO PER CRISTALLIZZAZIONE Arenaria e quarzite	FIOCCE CRISTALLINE IGNEE E GRANA FINE Andesite, dolerite, diabase e riolite	ROCCE IGNEE A GRANA GROSSOLAVA E ROCCE CRISTALLINE METAMOFICHE Antibolite, gabbro, gneiss, norite, quarzo-diorite
CAMPIONI DI ROCCIA INTATTA Campioni di laboratorio senza discontinuità (matrice rocciosa) Indice CSIR: RMR = 100 Indice NGI: Q = 500	m s	7.00 1.00	10.00 1.00	15.00 1.00	17.00 1.00	25.00 1.00
AMMASSO ROCCIOSO DI OTTIMA QUALITÀ Ammasso roccioso indisturbato con giunti non alterati di spaziatura compresa fra 1 e 3 m Indice CSIR: RMR = 85 Indice NGI: Q = 100	m S	2.40 0.082	3.43 0.082	5.14 0.082	5.82 0.082	8.56 0.082
AMMASSO ROCCIOSO DI BUONA QUALITÀ Roccia sana o leggermente alterata, leggermente distur- bato con giunti di spaziatura compresa fra 1 e 3 m. Indice CSIR: RMR = 65 Indice NGI: Q = 10	m s	0.575 0.00293	0.821 0.00293	1.231 0.00293	1.395 0.00293	2.052 0.00293
AMMASSO ROCCIOSO DI DISCRETA QUALITÀ Numerose famiglie di giunti moderatamente alterati, con spaziature comprese fra 0.3 e 1 m. Indice CSIR: EMR = 44 Indice NGI: Q = 1	m s	0.128	0.183 0.00009	0.275 0.00009	0.311 0.00009	0.458 0.00009
AMMASSO ROCCIOSO DI QUALITÀ SCADENTE Numerosi giunti alterati con spaziatura compresa fra 30 e 500 mm, alcuni con riempimento. Detrito di roccia puli- ta compattata. Indice CSIR: RMR = 23 Indice NGI: Q = 0.1	m S	0.029 0.000003	0.041 0.000003	0.061 0.000003	0.069 0.000003	0.102 0.000003
AMMASSO ROCCIOSO DI QUALITÀ MOLTO SCADENTE Numerosi giunti molto alterati con spaziatura inferiore a 50 mm e con riempimento. Detrito di roccia con mate- riale fine. Indice CSIR: RMR = 3 Indice NGI: Q = 0.01	m s	0.007 0.0000001	0.010 0.0000001	0.015 0.0000001	0.017 0.0000001	0.025 0.0000001

CSIR (Commonwealth Scientific and Industrial Research Organization) Organizzazione Scientifica ed Industriale di Ricerca (Bienlawski 1974) NGI Norway Geotechnical Institute (Barton 1974)

Figura 31 Correlazione fra valori di mi, s, indice RMR, ed il tipo di roccia.

Di seguito si riportano gli schemi di analisi degli ammassi rocciosi e i relativi diagrammi di Mohr -Coulomb:

Geremeas Fm GEAc-1 (Inalterata)

Standard ISRM = R5 Un campione richiede molti colpi di martello per essere fratturato

RQD =85%

Spaziatura delle discontinuità (s)=0,4 m

Persistenza (continuità) del giunto = 1,5 m

Apertura del giunto = 1 - 25 mm

Giunto – rugoso (JRC medio= 7)

Pareti - non alterate

Riempimento - Sciolto 10-20 mm ; Assente 1-5mm

Figura 32 Parametri ammasso roccioso GEAc-1 da Rocdata

Geremeas Fm GEAc-2 (Alterata)

Standard ISRM = R2 Debole, si sbriciola con un colpo di martello

RQD =50%

Spaziatura delle discontinuità (s)=0,3 m

Persistenza (continuità) del giunto = 1,5 m

Apertura del giunto = 1 - 8 mm

Giunto – rugoso (JRC medio= 8)

Pareti - alterate

Riempimento - Sciolto 3-10 mm ; Assente 1-5mm

Figura 33 Parametri ammasso roccioso GEAc-2 da Rocdata

Geremeas Fm GEAd-1 (Inalterata)

Standard ISRM = R5 Un campione richiede molti colpi di martello per essere fratturato

RQD =50%

Spaziatura delle discontinuità (s)=0,3 m

Persistenza (continuità) del giunto = 1,5 m

Apertura del giunto = 2 - 30 mm

Giunto – rugoso (JRC medio= 8)

Pareti – non alterate

Riempimento - Sciolto 2-40 mm ; Assente 1-30mm

Geremeas Fm GEAd-2 (Alterata)

Standard ISRM = R2 Debole, si sbriciola con un colpo di martello

RQD =10%

Spaziatura delle discontinuità (s)=0,2 m

Persistenza (continuità) del giunto = 1,5 m

Apertura del giunto = 1 - 10 mm

Giunto – rugoso (JRC medio= 7)

Pareti - alterate

Riempimento - Sciolto 3-10 mm ; Assente 1-2mm

Filone Basico Fb (Inalterato)

Standard ISRM = R6 Estremamente resistente, si scheggia se sottoposto a vari colpi di martello

RQD =90%

Spaziatura delle discontinuità (s)=0,5 m

Persistenza (continuità) del giunto = 1,5 m

Apertura del giunto = 2 - 50 mm

Giunto – rugoso (JRC medio-basso = 4)

Pareti – non alterate

Riempimento - Sciolto 5-50 mm ; Assente 1-15mm- Quarzo 2mm

Figura 36 Parametri ammasso roccioso Fb da Rocdata

Filone Aplitico Ap (Inalterato)

Standard ISRM = R5 Un campione richiede molti colpi di martello per essere fratturato

RQD =50%

- Spaziatura delle discontinuità (s)=0,3 m
- Persistenza (continuità) del giunto = 1 m
- Apertura del giunto = 1 15 mm
- Giunto rugoso (JRC medio-basso= 5)
- Pareti non alterate

Riempimento - Assente 1-15mm

Figura 37 Parametri ammasso roccioso Ap da Rocdata

8.2 Modello Geologico di sito

Sulla base di quanto emerso dai rilievi e dalle indagini in sito, nell'approccio progettuale, stante il contesto geologico si evidenziano le seguenti criticità a cui sarà necessario prestare la opportuna attenzione nella progettazione esecutiva dell'opera e nelle varie fasi di realizzazione.

L'analisi di tali fattori è funzionale alla progettazione e ha lo scopo di valutare la risposta del terreno ai nuovi carichi ed individuare azioni correttive o accorgimenti tali da limitarne gli effetti. Nello specifico:

<u>Azioni sulle pareti e stabilità dei fronti</u>. Lo scavo stesso, in quanto genera depressione, può innescare locali smottamenti in corrispondenza degli orizzonti meno competenti a causa di fenomeni di detensionamento determinati dall'asportazione del materiale durante l'escavazione, in relazione soprattutto alle direzioni del sistema di fratturazione che può generare ribaltamenti di blocchi e scivolamenti di cunei deconfinati, pertanto si ritiene importante in fase di realizzazione degli scavi di fondazione eseguire un dettagliato rilievo geostrutturale finalizzato all'esclusione di ogni possibile rischio di crollo e/o slittamento di porzioni di parete.

Figura 38-Piccola frana su taglio stradale nei pressi dell'area di studio

L'analisi ha permesso di fatto di definire il modello geologico del sito che viene di seguito riassunto. In particolare, in relazione alle diverse condizioni geologiche e geostrutturali rilevate, sono stati individuati nr.2 modelli geologici rappresentativi descritti di seguito.

Sono stati distinti due litotipi principali - **Litotipo A -** rocce granitiche in disfacimento e/o rocce molto rippabili) e il **Litotipo B** – rocce da poco fratturate a integre. A loro volta i due litotipi sono stati suddivisi in ulteriori classi in relazione al grado di alterazione e di fratturazione.

Modello Geologico 01: Tale modello è stato ottenuto dalla correlazione dei risultati di rilevamento geologico di campo e indagini geofisiche (M1-R1/, M2/R2, M3/R3, M5/R5) e dal sondaggio SN_01, tiene conto di un substrato costituito dall'ammasso roccioso granodioritico caratterizzato da una fratturazione medio-bassa principalmente per diaclasi, i risultati della sismica a rifrazione e MASW suggeriscono una profondità del substrato (Litotipo B2) intorno ai 13 metri. Il sovrastante Litotipo B1, riconosciuto per un repentino abbassamento della V delle onde di taglio e per una diminuzione sostanziale del PV, è probabilmente costituito da granodiorite fratturata si riscontra tra i 10 e i 13m. I primi 10 metri (Litotipo A1-A2-A3), sono costituiti da ciottoli residuali del basamento immersi in una matrice limo argillosa rossastra prodotto dell'alterazione chimica data dall'acqua infiltrata tra le fratture. Il litotipo A va probabilmente da clasto-sostenuto (regolite) a matrice-sostenuto dal basso verso l'alto stratigrafico. Il sondaggio ha permesso di determinare che la roccia può essere talvolta alterata chimicamente fino a profondità che superano gli 8,5 metri. Tra gli 8,5m e gli 11,5m (prof. max sondaggio) il granito risulta estremamente fratturato poco alterato chimicamente, caso del Litotipo A3-B1;

<u>Modello Geologico 02:</u> Per tale modello si è tenuto conto dei risultati dati da rilevamento geologico di campo, da indagini sismiche (M4/R4). La divisione dei litotipi è identica a quella del Modello 01, la differenza è data dagli spessori degli stessi. Il litotipo A può raggiungere profondità di 18,5m. Sotto i 18,5m le caratteristiche dell'ammasso migliorano. Un tale grado di fratturazione e di alterazione chimica che si spinge fino a queste profondità può essere dovuto non più solo a fenomeni superficiali, probabilmente aree con queste caratteristiche sono situati in prossimità di piccole faglie non rilevabili perché coperte ma che danno luogo ad una fascia di intensa fratturazione che si propaga in profondità nel substrato, l'alterazione chimica sarà poi data dall'acqua meteorica che potrà conseguentemente infiltrarsi a profondità maggiori.

8.2.1 Modello Geologico 01 e Modello Geologico 02 – Granodiorite inequigranulare.

In seguito all'analisi delle caratteristiche geomeccaniche in sito degli ammassi rocciosi interessati dal progetto e mediante l'applicazione del metodo di Hoek-Brown per la definizione dei parametri geotecnici dell'ammasso roccioso sono stati ottenuti i seguenti valori caratterizzanti le formazioni geologiche incontrate:

Sito	Maracalag (WTG001- WTG010-V	gonis WTG002-W	- I /TG003-WT TG012- WT	MODELLO G004-WTG0	GEOLOG 05-WTG008-W	ICO 01 /TG009-
Dati Parametri Resistenza	W10010 (<u> </u>	10012 101	0013 11100		
Tipo di Terreno/ profondità (m da p.	Litotipo A1 0,00– 4,00	Litotipo A2 4,00– 7,00	Litotipo A3 7,00– 10,00	Litotipo B1 10,00– 13,00	Litotipo B2 > 13,00	
Descrizione						
Peso di volume	[kg/mc]	1800	1900	2000	2100	2300
Peso di volume saturo	[kg/mc]	1900	1950	2050	2150	2300
Angolo di attrito interno	[°]	35.0	36.12	40.0	45.33	50.0
Coesione	[kg/cmq]	1.0	1.526	2.0	18.355	49.86
Dati Parametri Deformabilità						
Modulo elastico	[MPa]	314	892	1981	5158	16397
Coefficiente di Poisson	[]	0,33	0.33	0.33	0.33	0.33
Modulo di taglio (G)	[MPa]	118	333	745	1932	6149
Velocità onde di taglio	[m/sec]	255	420	610	960	1635

Sito	Maracalagonis - MODELLO GEOLOGICO 02 (WTG006-WTG007)					
Dati Parametri Resistenza	(1110000					
Tipo di Terreno/ profondità (m da p.c.)		Litotipo A1 0,00– 4,00	Litotipo A2 4,00– 6,00	Litotipo A3 6,00– 18,00	Litotipo B1 18,00– 34,00	Litotipo B2 > 34,00
Descrizione						
Peso di volume	[kg/mc]	1800	1900	2000	2100	2300
Peso di volume saturo	[kg/mc]	1900	1980	2050	2150	2300
Angolo di attrito interno	[°]	31.45	35.0	40.0	46.20	49.9
Coesione [kg/cmq]		1.253	2.0	5.0	19.246	20.0
Dati Parametri Deformabilità						
Modulo elastico	[MPa]	398	814	2079	5492	12543
Coefficiente di Poisson	[]	0.33	0.33	0.33	0.33	0.33
Modulo di taglio (G)	[MPa]	147	304	785	2059	4707
Velocità onde di taglio Vs	[m/sec]	285	400	625	1010	1540

<u>Si sottolinea che i parametri geotecnici individuati sono derivati da indagine geofisica realizzata in prossimità</u> <u>di 5 turbine e pertanto rappresentativa ma non di dettaglio delle condizioni geostrutturali dell'ammasso</u> <u>roccioso e da formulazioni empiriche pertanto tale modellazione, come l'esistenza o meno di cavità, diaclasi o</u> <u>particolari condizioni di fratturazione, dovrà essere verificata e validata per ogni singola WTG in fase di</u> <u>progettazione esecutiva.</u>

8.3 Caratterizzazione Geotecnica

Le indagini di caratterizzazione del terreno hanno restituito valori geognostici differenti in ordine ai 14 punti di installazione degli aerogeneratori; allo stesso tempo la natura del terreno, caratterizzata da rocce, e la sua pendenza, modificano le quote del piano di posa degli stessi plinti.

In funzione dei parametri ottenuti in seguito a prove sperimentali in situ, e riportati nella relazione geologica allegata al progetto, sono stati quindi identificati due modelli geotecnici rappresentativi sulla base del quale verranno prodotte le analisi di predimensionamento strutturale.

PLINTO n°	PROFONDITA' PIANO DI POSA m.	TIPO PLINTO Ø m.	MODELLO GEOLOGICO
1	6,00	24,50	01
2	6,20	24,50	01
3	4,60	24,50	01
4	2,00	24,50	01
5	5,50	24,50	01
6	6,50	24,50	02
7	5,10	24,50	02
8	3,60	24,50	01
9	5,50	24,50	01
10	3,10	24,50	01
11	10,30	24,50	01
12	4,40	24,50	01
13	5,10	24,50	01
14	8,30	24,50	01

Nella discretizzazione dei modelli geologici verrà assunto, inoltre, uno strato di ricoprimento (SO) avente lo scopo di simulare il volume di riporto steso sull'estradosso del plinto fino a raggiungere la quota d'imposta del cassonetto della piazzola.

Rev. 00 | WIND003.REL003b

Modelli geotecnici di riferimento per le verifiche

STRATIGRAFIA MODELLO GEOLOGICO 01 MARACALAGONIS (CA): PLINTO 4				
	Colonna 1	Colonna 2	Colonna 3	
	Z 1 (m)	Z 2(m)	Z 3 (m)	
Terreno (SO)	4,0			
Terreno (S1)	6,0			
Terreno (S2)	9,0			
Terreno (S3)	12,0			
Terreno (S4)	15,0			
Terreno (S5)	>15,0			

	Colonna 1	Colonna 2	Colonna 3
	Z 1 (m)	Z 2(m)	Z 3 (m)
Terreno (SO)	4,0		
Terreno (S2)	6,0		
Terreno (S3)	18,0		
Terreno (S4)	34,0		8
Terreno (S5)	> 34,0		

MODELLO GEOLOGICO							
SITO		MARACALAG	GONIS - MOD	01			
	TERRENO	SO TERRENO RIPORTO	S1 LITOTIPO A1	S2 LITOTIPO A2	S3 LITOTIPO A3	S4 LITOTIPO B1	S5 LITOTIPO B2
Peso di volume	[kN/mc]	18 633	17.652	18 633	19 614	20 594	22 556
Peso di volume saturo	[kN/mc]	19,123	18,633	19,123	20,104	21,085	22,556
Angolo di attrito interno	[°]	38,00	35,00	36,12	40,00	45,33	50,00
Dati Parametri Resistenza	Dati Parametri Resistenza						
Coesione	[kPa]	0,00	98,07	149,65	196,13	1.800,01	4.889,60
Dati Parametri Deformabilità							
Modulo elastico	[kPa]	147.100	314.000	892.000	1.981.000	5.158.000	16.397.000
Coefficiente di Poisson	[]	0,33	0,33	0,33	0,33	0,33	0,33
Modulo di taglio (G)	[kPa]	55.300	118.000	333.000	745.000	1.932.000	6.149.000
Velocità onde di taglio	[m/sec]	420	255	420	610	960	1.635

MODELLO GEOLOGICO							
SITO		MARACALAGONIS - MOD 02					
TIPO DI TERRENO		SO TERRENO	S2 LITOTIPO	S3 LITOTIPO	S4 LITOTIPO	S5 LITOTIPO	
DESCRIZIONE		RIPORTO	A2	A3	Bl	82	
Peso di volume	[kN/mc]	18,633	18,633	19,614	20,594	22,556	
Peso di volume saturo	[kN/mc]	19,123	19,417	20,104	21,085	22,556	
Angolo di attrito interno	[°]	38,00	35,00	40,00	46,20	49,90	
Dati Parametri Resistenza	١						
Coesione	[kPa]	0,00	196,13	490,33	1.887,39	1.961,33	
Dati Parametri Deformabilità							
Modulo elastico	[kPa]	147.100	814.000	2.079.000	5.492.000	12.543.000	
Coefficiente di Poisson	[]	0,33	0,33	0,33	0,33	0,33	
Modulo di taglio (G)	[kPa]	55.300	304.000	785.000	2.059.000	4.707.000	
Velocità onde di taglio	[m/sec]	420	400	625	1.010	1.540	

Figura 39 - Modelli geotecnici di riferimento

9 Descrizione dell'opera di fondazione degli aerogeneratori

Il dimensionamento preliminare, in attesa della scelta progettuale del committente, tiene conto del modello tipologico di aerogeneratore descritto in premessa.

In questa fase si prevede la realizzazione di opere di fondazione di tipo diretto costituite da un plinto con forma tronco-conica, circolare in pianta con diametro massimo pari a 24,50 metri, ed una sezione trapezia avente altezza minima al bordo esterno pari a 0,50 metri, altezza di 3,60 metri nel profilo della connessione della parte tronco-conica con il colletto centrale dove raggiunge i 4,10 metri altezza.

Il profilo superiore del plinto emerge di 10 centimetri rispetto al piano di sistemazione della piazzola.

SEZIONE MODELLO GEOLOGICO 01 E 02 D.24.50

In corrispondenza del colletto centrale, punto di connessione tra il plinto e la torre eolica, è prevista l'installazione di una doppia flangia.

Quella inferiore, rialzata rispetto al piano di posa del plinto di fondazione, viene collegata dai tirafondi, aventi una lunghezza di 4000 millimetri, con la piastra superiore su cui si inserisce la flangia di giunzione della torre eolica.

Sia la piastra inferiore, che quella superiore sono dotate di due file di fori disposte radialmente rispetto al centro della base circolare della torre; sono disposti 140 fori su cui andranno inserite 280 barre filettate ancorate sulla piastra inferiore e annegate in opera per il collegamento della flangia della torre eolica. In aderenza al plinto di fondazione dovrà essere previsto opportuno drenaggio per l'allontanamento delle acque dalla fondazione.

10 Condizioni di carico delle fondazioni degli aerogeneratori

Nella fase di predimensionamento si utilizzano i carichi sulle fondazioni calcolati in accordo alla norma IEC 61400 Ed3 e definiti per un aerogeneratore di riferimento; in questo caso verrà adottato il modello SG 6.0-170 T135-50° prodotto dalla società Siemens Gamesa Renewable Energy S.A.

Si riportano qui di seguito i valori contenuti nel documento ufficiale D2406108/002 rilasciato dal produttore in data 17/04/2020; si rimanda alla fase di progettazione esecutiva il dimensionamento sui dati relativi al fornitore scelto.

Rev. 00| WIND003.REL003b

Extreme load SG 6.0-170 HH 135

Load case	Load factor	Fx (kN)	Fy (kN)	Fz (kN)	Mx (kNm)	My (kNm)	Mz (kNm)
Dic22_3bn_v11.0_p_s8	1,1	1899,37	-30,2	-8518,03	10542,98	248324,9	848,69

I carichi forniti da Siemens Gamesa come "Extreme load" sono i carichi statici massimi per la specifica turbina eolica calcolati per qualsiasi condizione.

Includono il comportamento dinamico della struttura e corrispondono al caso più sfavorevole alla base dell'aerogeneratore tra i diversi casi di carico, secondo le norme IEC 61400 o DIBt.

Pertanto, i carichi forniti da Siemens Gamesa come "Extreme load" sono i carichi di progetto della fondazione e non devono essere divisi o combinati con altri carichi.

11 Azioni e resistenze nelle verifiche agli stati limite

La nuova normativa sulle costruzioni prevede i coefficienti parziali **y**F relativi alle azioni indicati nella Tab. 6.2.I.

Ad essi deve essere fatto riferimento con le precisazioni riportate nel § 2.6.1 delle NTC. Si deve comunque intendere che il terreno e l'acqua costituiscono carichi permanenti (strutturali) quando, nella modellazione utilizzata, contribuiscono al comportamento dell'opera con le loro caratteristiche di peso, resistenza e rigidezza.

Nella valutazione della combinazione delle azioni i coefficienti di combinazione ψ ij devono essere assunti come specificato nel Cap. 2.

CARICHI	EFFETTO	Coefficiente Parziale $\gamma_{\rm F}$ (o $\gamma_{\rm E}$)	EQU	(A1) STR	(A2) GEO
Dormononti	Favorevole	~	0,9	1,0	1,0
Permanenti	Sfavorevole	γG1	1,1	1,3	1,0
Permanenti non strutturali ⁽¹⁾	Favorevole		0,0	0,0	0,0
	Sfavorevole	YG2	1,5	1,5	1,3
Variabili -	Favorevole	γ _{Qi}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

 Tabella 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni.

(1) Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

Nel caso specifico di fondazioni superficiali come quella in progetto [6.4.2] "si considerano azioni sull'opera di fondazione quelle dovute al peso proprio del terreno e del materiale di riempimento, ai sovraccarichi, all'acqua, ad eventuali ancoraggi presollecitati, ad urti e collisioni, alle variazioni di temperatura e al ghiaccio. Per quanto concerne i sovraccarichi si deve tener conto della eventuale presenza di costruzioni, di depositi di materiale, di veicoli in transito, di apparecchi di sollevamento.

Il valore di progetto della resistenza Rd può essere determinato:

a) in modo analitico, con riferimento al valore caratteristico dei parametri geotecnici del terreno, diviso per il valore del coefficiente parziale IM specificato nella successiva Tab. 6.2.II e tenendo conto, ove necessario, dei coefficienti parziali IR specificati nei paragrafi relativi a ciascun tipo di opera;

b) in modo analitico, con riferimento a correlazioni con i risultati di prove in sito, tenendo conto dei coefficienti parziali IR riportati nelle tabelle contenute nei paragrafi relativi a ciascun tipo di opera;

c) sulla base di misure dirette su prototipi, tenendo conto dei coefficienti parziali 🛛 R riportati nelle tabelle contenute nei paragrafi relativi a ciascun tipo di opera.

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	$\gamma_{\rm M}$		
Tangente dell'angolo di resistenza al taglio	$\tan \phi'_k$	Ύφ΄	1,0	1,25
Coesione efficace	c' _k	Ye	1,0	1,25
Resistenza non drenata	Cuk	Yeu	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

Tabella 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Per le rocce, al valore caratteristico della resistenza a compressione uniassiale qu deve essere applicato un coefficiente parziale yqu=1,6. Per gli ammassi rocciosi e per i terreni a struttura complessa, nella valutazione della resistenza caratteristica occorre tener conto della natura e delle caratteristiche geometriche e di resistenza delle discontinuità strutturali.

Nello specifico, la normativa evidenzia anche che ...[6.2.4] nei casi in cui a causa della particolare complessità della situazione geotecnica e dell'importanza e impegno dell'opera, dopo estese ed approfondite indagini permangano documentate ragioni di incertezza risolvibili solo in fase costruttiva, la progettazione può essere basata sul metodo osservazionale.

Nell'applicazione di tale metodo si deve seguire il seguente procedimento:

- devono essere stabiliti i limiti di accettabilità dei valori di alcune grandezze rappresentative del comportamento del complesso manufatto-terreno;

- si deve dimostrare che la soluzione prescelta è accettabile in rapporto a tali limiti;

Rev. 00 | WIND003.REL003b

- devono essere previste soluzioni alternative, congruenti con il progetto, e definiti i relativi oneri economici;
- deve essere istituito un adeguato sistema di monitoraggio in corso d'opera, con i relativi piani di controllo, tale da consentire tempestivamente l'adozione di una delle soluzioni alternative previste, qualora i limiti indicati siano raggiunti.

12 Verifiche di sicurezza (§c6.4.2)

Verifiche di sicurezza agli SLU di tipo geotecnico (GEO) (§C6.4.2.1)

Gli stati limite ultimi delle fondazioni superficiali si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione stessa.

Nel caso di fondazioni posizionate su o in prossimità di pendii naturali o artificiali deve essere effettuata la verifica anche con riferimento alle condizioni di stabilità globale del pendio includendo nelle verifiche le azioni trasmesse dalle fondazioni.

Le verifiche devono essere effettuate almeno nei confronti dei seguenti stati limite:

- SLU di tipo geotecnico (GEO)

- collasso per carico limite dell'insieme fondazione-terreno
- collasso per scorrimento sul piano di posa
- stabilità globale
- SLU di tipo strutturale (STR)
- raggiungimento della resistenza negli elementi strutturali,

accertando che la condizione (6.2.1) sia soddisfatta per ogni stato limite considerato.

La verifica di stabilità globale deve essere effettuata secondo l'Approccio 1:

- Combinazione 2: (A2+M2+R2)

tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II per le azioni e i parametri geotecnici e nella Tabella 6.8.I per le resistenze globali.

La rimanenti verifiche devono essere effettuate, tenendo conto dei valori dei coefficienti parziali riportati nelle

Tab. 6.2.I, 6.2.II e 6.4.I, seguendo almeno uno dei due approcci:

Approccio 1:

- Combinazione 1: (A1+M1+R1)
- Combinazione 2: (A2+M2+R2)

Approccio 2:

(A1+M1+R3).

Rev. 00| WIND003.REL003b

Nelle verifiche effettuate con l'approccio 2 che siano finalizzate al dimensionamento strutturale, il coefficiente gR non deve essere portato in conto.

Nel caso in esame le verifiche dovranno essere condotte secondo l'approccio 1 combinazione 2.

VERIFICA	COEFFICIENTE	COEFFICIENTE	COEFFICIENTE
OPENEDRIPHIC TOTAL SACAL	PARZIALE	PARZIALE	PARZIALE
	(R1)	(R2)	(R3)
Capacità portante	$\gamma_{\rm R} = 1.0$	$\gamma_R = 1.8$	$\gamma_R = 2,3$
Scorrimento	$\gamma_{\rm R} = 1.0$	$\gamma_{\rm R} = 1, 1$	$\gamma_{\rm R} = 1.1$

Tabella 6.4.I - Coefficienti parziali	YR per le verifiche agli stati limite	e ultimi di fondazioni superficiali.
---------------------------------------	---------------------------------------	--------------------------------------

Le verifiche sono state eseguite sui due modelli geotecnici utilizzati per il predimensionamento della fondazione. È stato utilizzato il software Loadcap 2022 della GEOSTRU. La fondazione è stata schematizzata come una piastra circolare dello spessore pari all'altezza delle due fondazioni proposte, in quanto il programma non permette l'inserimento di plinto circolare a sezione tronco-conica, con un leggero surplus di carico dovuto al differente peso tra c.a. e terreno di riporto.

In tutte le casistiche analizzate la fondazione proposta risulta verificata. Si riporta di seguito la sintesi delle analisi effettuate e si rimanda all'**Allegato 1 – Relazione di calcolo** allegata alla presente per le specifiche di ogni caso analizzato.

La scelta di valori dei parametri geotecnici "cautelativi", in mancanza di indagini dirette su ogni singolo aerogeneratore, potrebbe sottostimare la capacità portante dei terreni di imposta. E' quindi opportuno, in fase esecutiva disporre un accurato piano di indagini localizzato sulle singole postazioni.
12.1 Modello geotecnico 01 – D.24,50m

DATI GENERALI

Diametro della fondazione	24.5 m
Profondità piano di posa	4.1 m
SottofondazioneSporgenza, Altezza	0.1/0.1 m

SISMA

=======================================	
Accelerazione massima (amax/	g) 0.031
Effetto sismico secondo	Paolucci, Pecker (1997)
Coefficiente sismico orizzontale	e 0.0063

STRATIGRAFIA TERRENO

Spessor	Peso	Peso	Angolo	Coesion	Coesion	Modulo	Modulo	Poisson	Coeff.	Coeff.	Descrizi
e strato	unità di	unità di	di	е	e non	Elastico	Edomet		consolid	consolid	one
[m]	volume		attrito	[kN/m²]	drenata	[kN/m²]	rico			azione	

Rev. 00 | WIND003.REL003b

	[kN/m³]	volume	[°]		[kN/m²]		[kN/m²]		az.	seconda	
		saturo							primaria	ria	
		[kN/m³]							[cmq/s]		
4.0	18.63	19.12	38.0	0.0	0.0	147100.	0.0	0.33	0.0	0.0	
						0					
6.0	17.65	18.63	35.0	98.07	0.0	314000.	0.0	0.33	0.0	0.0	
						0					
9.0	18.63	19.12	36.12	149.65	0.0	892000.	0.0	0.33	0.0	0.0	
						0					
12.0	19.61	20.1	40.0	196.13	0.0	198100	0.0	0.0	0.0	0.0	
						0.0					
15.0	20.59	21.09	45.33	1800.01	0.0	515800	0.0	0.0	0.0	0.0	
						0.0					
20.0	22.56	55.56	50.0	4889.6	0.0	169700	0.0	0.0	0.0	0.0	
						0.0					

Carichi di progetto agenti sulla fondazione

Nr.	Nome Pressione		Ν	Mx	My	Hx	Hy	Tipo
	combinazio norr		[kN]	[kN·m]	[kN·m]	[kN]	[kN]	
	ne	progetto						
		[kN/m²]						
1	A1+M1+R1	100.00	8518.00	10542.98	248324.90	1899.37	-30.20	Progetto
2	A2+M2+R2	100.00	8518.00	10542.98	248324.90	1899.37	-30.20	Progetto
3	Sisma	0.00	0.00	0.00	0.00	0.00	0.00	Progetto
4	S.L.E.	0.00	0.00	0.00	0.00	0.00	0.00	Servizio
5	S.L.D.	0.00	0.00	0.00	0.00	0.00	0.00	Servizio
6	A(1)+M(1)+	0.00	0.00	0.00	0.00	0.00	0.00	Progetto
	R(3)							

Sisma + Coeff. parziali parametri geotecnici terreno + Resistenze

		0						
Nr	Correzione	Tangente	Coesione	Coesione	Peso Unità	Peso unità	Coef. Rid.	Coef.Rid.Ca
	Sismica	angolo di	efficace	non	volume in	volume	Capacità	pacità
		resistenza		drenata	fondazione	copertura	portante	portante
		al taglio					verticale	orizzontale
1	Si	1	1	1	1	1	1.8	1
2	Si	1.25	1.25	1.4	1	1	1.8	1.1
3	Si	1.25	1.25	1.4	1	1	1.8	1.1
4	No	1	1	1	1	1	1	1
5	No	1	1	1	1	1	1	1
6	No	1	1	1	1	1	2.3	1.1

CARICO LIMITE FONDAZIONE COMBINAZIONE...A2+M2+R2 Autore: VESIC (1975)

Carico limite [Qult]	186.49 kN/m²
Resistenza di progetto[Rd]	103.61 kN/m²
Tensione [Ed]	100.0 kN/m²
Fattore sicurezza [Fs=Qult/Ed]	1.86
Condizione di verifica [Ed<=Rd]	Verificata

Rev. 00| WIND003.REL003b

COEFFICIENTE DI SOTTOFONDAZIONE BOWLES (1982) Costante di Winkler 7459.56 kN/m³

A1+M1+R1

Autore: HANSEN (1970) (Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO

=======================================	
Peso unità di volume Peso unità di volume saturo Angolo di attrito Coesione	17.65 kN/m³ 18.63 kN/m³ 0.0 ° 98.07 kN/m²
Fattore [Nq]	1.0
Fattore [Nc]	5.14
Fattore forma [Sc]	0.22
Fattore profondità [Dc]	0.07
Fattore inclinazione carichi [Ic]	0.01
Fattore correzione sismico inerziale [zq]	1.0
Fattore correzione sismico inerziale [zg]	1.0
Fattore correzione sismico inerziale [zc]	1.0
Carico limite	720.35 kN/m²
Resistenza di progetto	400.19 kN/m ²
Condizione di verifica [Ed<=Rd]	Verificata

12.2 Modello geotecnico 02 – D.24,50

DATI GENERALI

Diametro della fondazione	24.5 m				
Profondità piano di posa	4.1 m				
SottofondazioneSporgenza, Altezza	0.1/0.1 m				
SISMA					
Accelerazione massima (amax/g)	0.031				
Effetto sismico secondo Paolucci, Pec	ker (1997)				
Coefficiente sismico orizzontale	0.0063				
	=======================================				

Rev. 00 | WIND003.REL003b

STRATIGRAFIA TERRENO

Spessor	Peso	Peso	Angolo	Coesion	Coesion	Modulo	Modulo	Poisson	Coeff.	Coeff.	Descrizi
e strato	unità di	unità di	di	е	e non	Elastico	Edomet		consolid	consolid	one
[m]	volume	volume	attrito	[kN/m²]	drenata	[kN/m²]	rico		az.	azione	
	[kN/m³]	saturo	[°]		[kN/m²]		[kN/m²]		primaria	seconda	
		[kN/m³]							[cmq/s]	ria	
4.0	18.63	19.12	38.0	0.0	0.0	147100.	0.0	0.33	0.0	0.0	
						0					
6.0	18.63	19.42	35.0	196.13	0.0	814000.	0.0	0.33	0.0	0.0	
						0					
18.0	19.61	20.1	40.0	490.33	0.0	207900	0.0	0.33	0.0	0.0	
						0.0					
34.0	20.59	21.09	46.2	1887.39	0.0	549200	0.0	0.0	0.0	0.0	
						0.0					
20.0	22.56	22.56	49.9	0.0	0.0	125430	0.0	0.0	0.0	0.0	
						00.0					

Carichi di progetto agenti sulla fondazione

Nr.	Nome	Pressione	Ν	Mx	My	Hx	Ну	Tipo
	combinazio	normale di	[kN]	[kN·m]	[kN·m]	[kN]	[kN]	
	ne	progetto						
		[kN/m²]						
1	A1+M1+R1	100.00	8518.00	10542.98	248324.90	1899.37	-30.20	Progetto
2	A2+M2+R2	100.00	8518.00	10542.98	248324.90	1899.37	-30.20	Progetto
3	Sisma	0.00	0.00	0.00	0.00	0.00	0.00	Progetto
4	S.L.E.	0.00	0.00	0.00	0.00	0.00	0.00	Servizio
5	S.L.D.	0.00	0.00	0.00	0.00	0.00	0.00	Servizio
6	A(1)+M(1)+	0.00	0.00	0.00	0.00	0.00	0.00	Progetto
	R(3)							

Sisma + Coeff. parziali parametri geotecnici terreno + Resistenze

Nr	Correzione	Tangente	Coesione	Coesione	Peso Unità	Peso unità	Coef. Rid.	Coef.Rid.Ca
	Sismica	angolo di	efficace	non	volume in	volume	Capacità	pacità
		resistenza		drenata	fondazione	copertura	portante	portante
		al taglio					verticale	orizzontale
1	Si	1	1	1	1	1	1.8	1
2	Si	1.25	1.25	1.4	1	1	1.8	1.1
3	Si	1.25	1.25	1.4	1	1	1.8	1.1
4	No	1	1	1	1	1	1	1
5	No	1	1	1	1	1	1	1
6	No	1	1	1	1	1	2.3	1.1

CARICO LIMITE FONDAZIONE COMBINAZIONE...A2+M2+R2 Autore: VESIC (1975)

Carico limite [Qult]	288.73 kN/m²
Resistenza di progetto[Rd]	160.41 kN/m²

Rev. 00| WIND003.REL003b

Tensione [Ed]	100.0 kN/m²
Fattore sicurezza [Fs=Qult/Ed]	2.89
Condizione di verifica [Ed<=Rd]	Verificata

COEFFICIENTE DI SOTTOFONDAZIONE BOWLES (1982) Costante di Winkler 11549.28 kN/m³

A1+M1+R1

Autore: HANSEN (1970)	(Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume	18.63 kN/m³
Peso unità di volume saturo	19.42 kN/m³
Angolo di attrito	0.0 °
Coesione	196.13 kN/m²
Fattore [Nq]	1.0
Fattore [Nc]	5.14
Fattore forma [Sc]	0.22
Fattore profondità [Dc]	0.07
Fattore inclinazione carichi [Ic]	0.01
Fattore correzione sismico inerziale [zq]	1.0
Fattore correzione sismico inerziale [zg]	1.0
Fattore correzione sismico inerziale [zc]	1.0
Carico limite	1367.52 kN/m ²
Resistenza di progetto	759.73 kN/m ²
Condizione di verifica [Ed<=Rd]	Verificata

13 Verifiche di esercizio (SLE) (§C6.4.2.2)

Si devono calcolare i valori degli spostamenti e delle distorsioni per verificarne la compatibilità con i requisiti prestazionali della struttura in elevazione (§§ 2.2.2 e 2.6.2), nel rispetto della condizione (6.2.7).

Analogamente, forma, dimensioni e rigidezza della struttura di fondazione devono essere stabilite nel rispetto dei summenzionati requisiti prestazionali, tenendo presente che le verifiche agli stati limite di esercizio possono risultare più restrittive di quelle agli stati limite ultimi.

Si fa notare come la scelta di valori dei parametri geotecnici "cautelativi" in mancanza di indagini dirette su ogni singolo aerogeneratore potrebbe sottostimare la capacità portante dei terreni di imposta. E' quindi opportuno, in fase esecutiva disporre un accurato piano di indagini localizzato sulle singole postazioni.

14 Fronti di scavo (§c6.8.6)

È stata eseguita una verifica qualitativa di stabilità dei fronti di scavo della fondazione in ordine alle altezze di scavo previste e alla tipologia di materiale attraversato. In generale per i litotipi S1 e S2 si hanno da localmente scarse a medie proprietà di autosostegno. Dato il grado di fratturazione presenti alle profondità investigate non si escludono fenomeni di detensionamento in fase di scavo con il possibile innesco di fenomeni gravitativi localizzati.

Di conseguenza, in fase esecutiva sarà opportuno verificare con indagini dirette le caratteristiche proprie dei terreni e valutare quindi l'opportunità di realizzare pareti di scavo inclinate e/o gradonate.

15 Considerazioni conclusive

Lo studio ha evidenziato che le aree direttamente interessate dallo sviluppo degli aerogeneratori sono delle superfici pianeggianti e subpianeggianti, in cui affiorano litotipi differenziati di natura granitica, fratturate nelle porzioni più superficiali e medio-profonde e localmente ricoperte da un debole strato pedogenizzato.

L'areale su cui andrà posizionata la sottostazione in progetto è caratterizzato esclusivamente da rocce granitiche, affioranti in prevalenza fin dal piano campagna; dove si ha la presenza di suolo, esso si sviluppa essenzialmente lungo il substrato di alterazione della roccia madre, che non supera l'1,0 m di profondità. Lo studio condotto di cui alla presente, ha permesso di:

- Identificare n.02 modelli geotecnici rappresentativi dei siti di imposta degli aerogeneratori;
- Ricavare i parametri geotecnici della formazione interessata;

- Valutare con buona approssimazione la circolazione idrica sotterranea nel volume significativo di terreno;
- Valutare qualitativamente la capacità di autosostegno delle pareti di scavo delle fondazioni.

In fase esecutiva sarà opportuno prevedere una campagna di indagini dirette mediante la realizzazione di sondaggi geognostici a carotaggio continuo, prove in sito e in laboratorio finalizzate alla determinazione diretta dei parametri geotecnici della formazione, alle varie profondità interessate dagli sforzi indotti dalle opere previste.

In particolare dallo studio è emerso quanto segue:

- nell'ambito dell'area esaminata non sono stati rilevati movimenti gravitativi importanti che possano coinvolgere estese porzioni di territorio; localmente sono stati rilevati processi legati alla dinamica dei versanti, nei settori più acclivi, con fenomeni gravitativi, crolli e smottamenti interessanti le coltri granitiche superficiali maggiormente fratturate e alterate e le coperture detritiche di modesto spessore.

- la localizzazione degli aerogeneratori e della sottostazione in progetto non interferiscono con processi geomorfologici connessi alle dinamiche fluviali e di versante, l'area indagata non evidenzia segni di dissesto profondo tanto che nel suo insieme può essere considerata pressoché stabile.

- la tipologia di intervento in progetto, non invasiva, non comporta alterazioni nell'attuale assetto idrologico del territorio, tuttavia dovrà essere curato il drenaggio delle acque superficiali, in particolare nelle piste e nelle strade di accesso, per scongiurare i fenomeni di erosione;

- il progetto non prevede modificazioni morfologiche significative rispetto all'assetto attuale, anche l'apertura della viabilità di servizio non comporta modifiche profonde allo stato dei luoghi in quanto segue, ridefinendola e adattandola, la viabilità esistente.

Allegato 1 – Relazione di calcolo

WIND003.REL003b-All.01

CALCOLO PORTANZA E CEDIMENTI DI FONDAZIONI SUPERFICIALI

NORMATIVE DI RIFERIMENTO

Norme tecniche per le Costruzioni 2018

Aggiornamento alle Norme tecniche per le costruzioni D.M. 17 gennaio 2018.

Gli **stati limite ultimi** per sviluppo di meccanismi di collasso determinati dal raggiungimento della resistenza del terreno interagente con le fondazioni (**GEO**) riguardano:

- collasso per carico limite nei terreni di fondazione;
- scorrimento sul piano di posa.

In tali verifiche, tutte le azioni su un elemento di fondazione possono essere ricondotte a una forza risultante applicata al piano di posa.

Per le verifiche agli stati limite ultimi di tipo geotecnico (GEO) per carico limite e per scorrimento si deve fare riferimento all'**approccio 2**.

L'analisi deve essere condotta con la Combinazione (A1+M1+R3), nella quale i coefficienti parziali sui parametri di resistenza del terreno (M1) sono unitari, i coefficienti parziali sulle azioni (A1) sono indicati dalla tabella 6.2.I e la resistenza globale del sistema è ridotta tramite i coefficienti γ_R del gruppo R3 riportati in tab. 6.4.I.

Tab. 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni					
	Effetto	Coefficiente	EOU	(A1)	(A2

	Effetto	Coefficiente Parziale	EQU	(A1)	(A2)
		γ _F (ογ _E)			

			-		
Carichi	Favorevole	γG1	0.9	1.0	1.0
G ₁	Sfavorevole		1.1	1.3	1.0
Carichi	Favorevole	γG2	0.8	0.8	0.8
$G_2(1)$	Sfavorevole		1.5	1.5	1.3
_					
Azioni	Favorevole	γQi	0.0	0.0	0.0
variabili Q	Sfavorevole		1.5	1.5	1.3

(1) Per i carichi permanenti G_2 si applica quanto indicato alla Tabella 2.6.1. Per la spinta delle terre si fa riferimento ai coefficienti γ_{G1}

Tab. 6.4.I – Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali

Verifica	Coefficiente	
	parziale	
	(R3)	
Carico limite	$\gamma_R = 2.3$	
Scorrimento	$\gamma_{R}=1.1$	

Stati Limite di Esercizio (SLE)

La capacità di garantire le prestazioni previste per le condizioni di esercizio (SLE) deve essere verificata confrontando il valore limite di progetto associato a ciascun aspetto di funzionalità esaminato (Cd), con il corrispondente valore di progetto dell'effetto delle azioni (Ed), attraverso la seguente espressione formale:

Dove:

- Ed, valore di progetto dell'azione o degli effetti dell'azione;
- Cd, valore limite dell'effetto delle azioni (spostamenti e deformazioni che possano compromettere la funzionalità di una struttura).

I valori degli spostamenti e delle distorsioni andranno calcolati considerando le combinazioni di carico per gli SLE specificate al §2.5.3:

- Combinazione frequente;
- Combinazione quasi permanente s l.t.

Le verifiche relative alle deformazioni (cedimenti) e agli spostamenti si effettuano adoperando i valori caratteristici dei parametri (f_k).

Nelle analisi, devono essere impiegati i valori caratteristici delle proprietà meccaniche e pertanto i relativi coefficienti parziali di sicurezza devono sempre essere assunti unitari ($f_k = f_d$): si adottano i valori caratteristici dei moduli di deformazione dei terreni (E'_k, Eed_k).

Sotto l'effetto **dell'azione sismica** di progetto le opere e i sistemi geotecnici devono rispettare gli stati limite ultimi e di esercizio già definiti in precedenza (§ 3.2.1 NTC), con i requisiti di sicurezza indicati nel § 7.1.

Le verifiche degli stati limite ultimi in presenza di azioni sismiche devono essere eseguite ponendo pari a 1 i coefficienti parziali sulle azioni e sui parametri geotecnici e impiegando le resistenze di progetto, con i coefficienti parziali γ_R indicati nel presente Capitolo 7 oppure con i γ_R indicati nel Capitolo 6 laddove non espressamente specificato

Stato Limite Ultimo (SLV) per carico limite (§ 7.11.5.3.1)

Le azioni derivano dall'analisi della struttura in elevazione come specificato al § 7.2.5. Le resistenze sono i corrispondenti valori limite che producono il collasso del complesso fondazione-terreno; esse sono valutabili mediante l'estensione di procedure classiche al caso di azione sismica, tenendo conto dell'effetto dell'inclinazione e dell'eccentricità delle azioni in fondazione. Il corrispondente valore di progetto si ottiene applicando il coefficiente γ_{R} di Tabella 7.11.II. Se, nel calcolo del carico limite,

si considera esplicitamente l'effetto delle azioni inerziali sul volume di terreno significativo (e.g. Richards et al., Paolucci e Pecker), il coefficiente γ_R può essere ridotto a 1.8.

Stato Limite Ultimo (SLV) per scorrimento sul piano di posa (§ 7.11.5.3.1)

Per azione si intende il valore della forza agente parallelamente al piano di scorrimento, per resistenza si intende la risultante delle tensioni tangenziali limite sullo stesso piano, sommata, in casi particolari, alla risultante delle tensioni limite agenti sulle superfici laterali della fondazione.

<u>Specificamente</u>, si può tener conto della resistenza lungo le superfici laterali nel caso di contatto diretto fondazione-terreno in scavi a sezione obbligata o di contatto diretto fondazione-calcestruzzo o fondazione-acciaio in scavi sostenuti da paratie o palancole.

In tali casi, il progettista deve indicare l'aliquota della resistenza lungo le superfici laterali che intende portare in conto, da giustificare con considerazioni relative alle caratteristiche meccaniche dei terreni e ai criteri costruttivi dell'opera.

Ai fini della verifica allo scorrimento, si può considerare la resistenza passiva solo nel caso di effettiva permanenza di tale contributo, portando in conto un'aliquota non superiore al 50%.

Stato limite di esercizio (SLE)

A meno dell'impiego di specifiche analisi dinamiche, in grado di fornire la risposta deformativa del sistema fondazione-terreno, <u>la verifica nei confronti dello stato limite di danno può essere ritenuta</u> soddisfatta impiegando le azioni corrispondenti allo SLD e determinando il carico limite di progetto con il coefficiente $\gamma_{\rm R}$ riportato nella Tabella 7.11.II.

Tab. 7.11.II - Coefficienti parziali γ_R per le verifiche degli stati limite (SLV) delle fondazionisuperficiali con azioni sismiche

Verfica	Coefficiente parziale
Carico limite	2.3
Scorrimento	1.1
Resistenza sulle superfici laterali	1.3

CARICO LIMITE DI FONDAZIONI SU TERRENI

Il carico limite di una fondazione superficiale può essere definito con riferimento a quel valore massimo del carico per il quale in nessun punto del sottosuolo si raggiunge la condizione di rottura (metodo di Frolich), oppure con riferimento a quel valore del carico, maggiore del precedente, per il quale il fenomeno di rottura si è esteso ad un ampio volume del suolo (metodo di Prandtl e successivi).

Prandtl ha studiato il problema della rottura di un semispazio elastico per effetto di un carico applicato sulla sua superficie con riferimento all'acciaio, caratterizzando la resistenza a rottura con una legge del tipo:

 $\tau = c + \sigma \cdot \tan \phi$ valida anche per i terreni.

Le ipotesi e le condizioni introdotte dal Prandtl sono le seguenti:

- Materiale privo di peso e quindi $\gamma=0$
- Comportamento rigido plastico
- Resistenza a rottura del materiale esprimibile con la relazione $\tau = c + \sigma \cdot \tan \phi$
- Carico uniforme, verticale ed applicato su una striscia di lunghezza infinita e di larghezza 2b (stato di deformazione piana)
- Tensioni tangenziali nulle al contatto fra la striscia di carico e la superficie limite del semispazio.

All'atto della rottura si verifica la plasticizzazione del materiale racchiuso fra la superficie limite del semispazio e la superficie *GFBCD*.

Nel triangolo *AEB* la rottura avviene secondo due famiglie di segmenti rettilinei ed inclinati di $45^{\circ}+\varphi/2$ rispetto all'orizzontale.

Nelle zone $ABF \ e \ EBC$ la rottura si produce lungo due famiglie di linee, l'una costituita da segmenti rettilinei passanti rispettivamente per i punti A ed E e l'altra da archi di de famiglie di spirali logaritmiche.

I poli di queste sono i punti A ed E. Nei triangoli AFG e ECD la rottura avviene su segmenti inclinati

di \pm (45°+ φ /2) rispetto alla verticale.

Meccanismo di rottura di Prandtl

Individuato così il volume di terreno portato a rottura dal carico limite, questo può essere calcolato scrivendo la condizione di equilibrio fra le forze agenti su qualsiasi volume di terreno delimitato in basso da una qualunque delle superfici di scorrimento.

Si arriva quindi ad una equazione q =B·c, dove il coefficiente B dipende soltanto dall'angolo di attrito φ del terreno.

$$B = \cot g\phi \left[e^{\pi t g \phi} t g^2 (45^\circ + \phi/2) - 1 \right]$$

Per $\phi=0$ il coefficiente B risulta pari a 5.14, quindi q=5.14·c.

Nell'altro caso particolare di terreno privo di coesione (c=0, $\gamma \neq 0$) risulta q=0, secondo la teoria di **Prandtl**, non sarebbe dunque possibile applicare nessun carico sulla superficie limite di un terreno incoerente.

Questa teoria, anche se non applicabile praticamente, ha dato inizio a tutte le ricerche ed i metodi di calcolo successivi.

Infatti *Caquot* si pose nelle stesse condizioni di Prandtl ad eccezione del fatto che la striscia di carico non è più applicata sulla superficie limite del semispazio, ma a una profondità h, con h \leq 2b; il terreno compreso tra la superficie e la profondità h ha le seguenti caratteristiche: $\gamma \neq 0$, $\varphi=0$, c=0, rappresenta un mezzo dotato di peso ma privo di resistenza.

Risolvendo le equazioni di equilibrio si arriva all'espressione:

$$q \,=\, A \cdot \gamma_1 + B \cdot c$$

che è sicuramente è un passo avanti rispetto a Prandtl, ma che ancora non rispecchia la realtà.

Metodo di Terzaghi (1955)

Terzaghi, proseguendo lo studio di Caquot, ha apportato alcune modifiche per tenere conto delle effettive caratteristiche dell'insieme opera di fondazione-terreno.

Sotto l'azione del carico trasmesso dalla fondazione il terreno che si trova a contatto con la fondazione stessa tende a sfuggire lateralmente, ma ne è impedito dalle resistenze tangenziali che si sviluppano fra la fondazione ed il terreno. Ciò comporta una modifica dello stato tensionale nel terreno posto direttamente al di sotto della fondazione; per tenerne conto *Terzaghi* assegna ai lati AB ed EB del cuneo di Prandtl una inclinazione ψ rispetto all'orizzontale, scegliendo il valore di ψ in funzione delle caratteristiche meccaniche del terreno al contatto terreno-opera di fondazione.

L'ipotesi $\gamma_2 = 0$ per il terreno sotto la fondazione viene così superata ammettendo che le superfici di rottura restino inalterate, l'espressione del carico limite è quindi:

$$q = A \cdot \gamma_1 \cdot h + B \cdot c + C \cdot \gamma \cdot b$$

in cui C è un coefficiente che risulta funzione dell'angolo di attrito φ del terreno posto al di sotto del piano di posa e dell'angolo φ prima definito; b è la semilarghezza della striscia.

Inoltre, basandosi su dati sperimentali, *Terzaghi* passa dal problema piano al problema spaziale introducendo dei fattori di forma.

Un ulteriore contributo è stato apportato da Terzaghi sull' effettivo comportamento del terreno.

Nel metodo di Prandtl si ipotizza un comportamento del terreno rigido-plastico, *Terzaghi* invece ammette questo comportamento nei terreni molto compatti.

In essi, infatti, la curva carichi-cedimenti presenta un primo tratto rettilineo, seguito da un breve

tratto curvilineo (comportamento elasto-plastico); la rottura è istantanea ed il valore del carico limite risulta chiaramente individuato (rottura generale).

In un terreno molto sciolto invece la relazione carichi-cedimenti presenta un tratto curvilineo accentuato fin dai carichi più bassi per effetto di una rottura progressiva del terreno (rottura locale); di conseguenza l'individuazione del carico limite non è così chiara ed evidente come nel caso dei terreni compatti.

Per i terreni molto sciolti, Terzaghi consiglia di prendere in considerazione il carico limite il valore che si calcola con la formula precedente introducendo però dei valori ridotti delle caratteristiche meccaniche del terreno e precisamente:

$$\tan \varphi_{\rm rid} = \frac{2}{3} \tan \varphi \quad c_{\rm rid} = \frac{2}{3} c$$

Esplicitando i coefficienti della formula precedente, la formula di Terzaghi può essere scritta:

$$q_{ult} = c \cdot N_c \cdot s_c + \gamma \cdot D \cdot N_q + 0.5 \cdot \gamma \cdot B \cdot N_\gamma \cdot s_\gamma$$

dove:

$$\begin{split} N_{q} &= \frac{a^{2}}{2 \cdot \cos^{2} (45 + \phi / 2)} \\ a &= e^{(0.75\pi - \phi / 2) \tan \phi} \\ N_{c} &= \left(N_{q} - 1 \right) cot \phi \\ N_{\gamma} &= \frac{tan \phi}{2} \left(\frac{K_{p\gamma}}{cos^{2} \phi} - 1 \right) \end{split}$$

Formula di Meyerhof (1963)

Meyerhof propose una formula per il calcolo del carico limite simile a quella di *Terzaghi*; le differenze consistono nell'introduzione di ulteriori coefficienti di forma.

Egli introdusse un coefficiente s_q che moltiplica il fattore N_q , fattori di profondità d_i e di pendenza

ii per il caso in cui il carico trasmesso alla fondazione è inclinato sulla verticale.

I valori dei coefficienti N furono ottenuti da Meyerhof ipotizzando vari archi di prova BD (v. meccanismo Prandtl), considerando valori approssimati del taglio che si sviluppa nel terreno al di sopra del piano di posa. I fattori di forma tratti da Meyerhof sono di seguito riportati, insieme all'espressione della formula.

Carico verticale

 $q_{ult} = c \cdot N_c \cdot s_c \cdot d_c + \gamma \cdot D \cdot N_q \cdot s_q \cdot d_q + 0.5 \cdot \gamma \cdot B \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma$

Carico inclinato

 $q_{ult} = c \cdot N_c \cdot s_c \cdot d_c \cdot i_c + \gamma \cdot D \cdot N_q \cdot s_q \cdot d_q \cdot i_q + 0.5 \cdot \gamma \cdot B \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma \cdot i_\gamma$

$$N_{q} = e^{(0.75\pi - \phi/2)} \cdot \tan^{2}(45 + \phi/2)$$
$$N_{c} = (N_{q} - 1)\cot\phi$$
$$N_{\gamma} = (N_{q} - 1)\tan(1.4 \cdot \phi)$$

$$\begin{split} s_{c} &= 1 + 0.2 \cdot k_{p} \cdot \frac{B}{L} \qquad \text{per } \phi > 0 \\ s_{q} &= s_{\gamma} = 1 + 0.1 \cdot k_{p} \cdot \frac{B}{L} \qquad \text{per } \phi = 0 \end{split}$$

fattore di profondità:

$$d_{c} = 1 + 0.2\sqrt{k_{p}} \cdot \frac{D}{B}$$

$$\begin{split} d_{q} &= d_{\gamma} = 1 + 0.1 \sqrt{k_{p}} \cdot \frac{D}{B} \quad \text{per } \phi > 10 \\ \\ d_{q} &= d_{\gamma} = 1 \qquad \qquad \text{per } \phi > 10 \end{split}$$

inclinazione:

$$i_{c} = i_{\gamma} = \left(1 - \frac{\theta}{90}\right)^{2}$$
$$i_{\gamma} = \left(1 - \frac{\theta}{\phi}\right)^{2} \text{ per } \phi > 0$$
$$i_{\gamma} = 0 \qquad \text{ per } \phi = 0$$

dove:

- $k_{p} = \tan^{2} \left(45 + \varphi / 2 \right)$
- θ = Inclinatione della risultante sulla verticale.

Formula di Hansen (1970)

È una ulteriore estensione della formula di *Meyerhof*; le estensioni consistono nell'introduzione di bi che tiene conto della eventuale inclinazione sull'orizzontale del piano di posa e un fattore gi per terreno in pendenza.

La formula di Hansen vale per qualsiasi rapporto D/B, quindi sia per fondazioni superficiali che profonde, ma lo stesso autore introdusse dei coefficienti per meglio interpretare il comportamento reale della fondazione, senza di essi, infatti, si avrebbe un aumento troppo forte del carico limite con la profondità.

Per valori di D/B <1:

$$d_{\rm c} = 1 + 0.4 \cdot \frac{\rm D}{\rm B}$$

$$d_q = 1 + 2 \cdot \tan(1 - \sin \phi)^2 \cdot \frac{D}{B}$$

Per valori D/B >1: $d_{c} = 1 + 0.4 \cdot \tan^{-1} \frac{D}{B}$ $d_{q} = 1 + 2 \cdot \tan(1 - \sin \phi)^{2} \cdot \tan^{-1} \frac{D}{B}$ Nel caso $\phi = 0$ $\frac{D/B \quad 0 \quad 1 \quad 1.1 \quad 2 \quad 5 \quad 10 \quad 20 \quad 100}{d'_{c} \quad 0 \quad 0.40 \quad 0.33 \quad 0.44 \quad 0.55 \quad 0.59 \quad 0.61 \quad 0.62}$

Nei fattori seguenti le espressioni con apici (') valgono quando $\varphi=0$.

Fattore di forma:

$$s'_{c} = 0.2 \frac{B}{L}$$

$$s_{c} = 1 + \frac{N_{q}}{N_{c}} \frac{B}{L}$$

$$s_{c} = 1 \text{ per fondazioni nastriform i}$$

$$s_{q} = 1 + \frac{B}{L} \tan \varphi$$

$$s_{\gamma} = 1 - 0.4 \frac{B}{L}$$

- 11 -

Fattori di inclinazione del carico:

$$\begin{split} &i'_{c} = 0.5 - 0.5 \sqrt{1 - \frac{H}{A_{f} \cdot c_{a}}}. \\ &i_{c} = i_{q} - \frac{1 - i_{q}}{N_{q} - 1} \\ &i_{q} = \left(1 - \frac{0.5 \cdot H}{V + A_{f} \cdot c_{a} \cdot \cot \phi}\right)^{5} \\ &i_{q} = \left(1 - \frac{0.7 \cdot H}{V + A_{f} \cdot c_{a} \cdot \cot \phi}\right)^{5} \quad (\eta = 0) \\ &i_{q} = \left(1 - \frac{(0.7 - \eta / 450) \cdot H}{V + A_{f} \cdot c_{a} \cdot \cot \phi}\right)^{5} \quad (\eta = 0) \end{split}$$

Fattori di inclinazione del terreno (fondazione su pendio):

$$g'_{c} = \frac{\beta}{147}$$
$$g_{c} = 1 - \frac{\beta}{147}$$
$$g_{q} = g_{\gamma} = (1 - 0.5 \tan \beta)^{5}$$

Fattori di inclinazione del piano di fondazione (base inclinata):

$$b'_{c} = \frac{\eta^{\circ}}{147^{\circ}}$$
$$b_{c} = 1 - \frac{\eta^{\circ}}{147^{\circ}}$$
$$b_{q} \exp(-2\eta \cdot \tan \phi)$$

Formula di Vesic (1975)

La formula di Vesic è analoga alla formula di Hansen, con Nq ed Nc come per la formula di Meyerhof ed Nγ come sotto riportato:

$$N_{\gamma} = 2 \cdot (N_{q} + 1) \cdot \tan \varphi$$

I fattori di forma e di profondità che compaiono nelle formule del calcolo della capacità portante sono uguali a quelli proposti da Hansen; alcune differenze sono invece riportate nei fattori di inclinazione del carico, del terreno (fondazione su pendio) e del piano di fondazione (base inclinata).

Formula Brich-Hansen (EC 7 – EC 8)

Affinché una fondazione possa sostenere il carico di progetto con sicurezza nei riguardi della rottura generale, deve essere soddisfatta la seguente disuguaglianza per tutte le combinazioni di carico relative allo SLU (stato limite ultimo):

$$Vd \le Rd$$

Dove Vd è il carico di progetto allo SLU, normale alla base della fondazione, comprendente anche il peso della fondazione stessa; mentre Rd è il carico limite di progetto della fondazione nei confronti di carichi normali, tenendo conto anche dell'effetto di carichi inclinati o eccentrici.

Nella valutazione analitica del carico limite di progetto Rd, nei terreni a grana fine, si devono considerare le situazioni a breve e a lungo termine.

Il carico limite di progetto in condizioni non drenate si calcola come:

$$\frac{\mathbf{R}}{\mathbf{A'}} = (2 + \pi) \cdot \mathbf{c}_{\mathbf{u}} \cdot \mathbf{s}_{\mathbf{c}} \cdot \mathbf{i}_{\mathbf{c}} + \mathbf{q}$$

Dove:

- A' = B' L' area della fondazione efficace di progetto, intesa, in caso di carico eccentrico, come l'area ridotta al cui centro viene applicata la risultante del carico;
- c_u= coesione non drenata;
- q= pressione litostatica totale sul piano di posa
- $s_c = fattore di forma;$

- $s_c = 1 + 0.2 \cdot \left(\frac{B'}{L'}\right)$, per fondazioni rettangolari
- $s_c = 1.2$, per fondazioni quadrate o circolari
- i_c = Fattore correttivo per l'inclinazione del carico dovuta ad un carico H.

$$i_c = 0.5 + 0.5 \sqrt{1 - \frac{H}{A'_f \cdot c_a}}.$$

Per le condizioni drenate il carico limite di progetto è calcolato come segue:

$$\frac{\mathbf{R}}{\mathbf{A}'} = \mathbf{c'} \cdot \mathbf{N}_{\mathbf{c}} \cdot \mathbf{s}_{\mathbf{c}} \cdot \mathbf{i}_{\mathbf{c}} + \mathbf{q'} \cdot \mathbf{N}_{\mathbf{q}} \cdot \mathbf{s}_{\mathbf{q}} \cdot \mathbf{i}_{\mathbf{q}} + 0.5 \cdot \gamma' \cdot \mathbf{B'} \cdot \mathbf{N}_{\gamma} \cdot \mathbf{s}_{\gamma} \cdot \mathbf{i}_{\gamma}$$

Dove:

$$N_{q} = e^{\pi \cdot \tan \phi'} \cdot \tan^{2} (45 + \phi'/2)$$
$$N_{c} = (N_{q} - 1) \cot \phi'$$
$$N_{\gamma} = 2 \cdot (N_{q} - 1) \tan \phi'$$

Fattori di forma:

$$\begin{split} s_{q} &= 1 + \frac{B'}{L'} \cdot sen \phi' & \text{per forma rettangolare} \\ s_{q} &= 1 + sen \phi' & \text{per forma quadrata o} \\ circolare \\ s_{\gamma} &= 1 - 0.3 \frac{B'}{L'} & \text{per forma rettangolare} \\ s_{\gamma} &= 0.7 & \text{per forma quadrata o} \\ circolare \\ s_{c} &= \frac{s_{q} \cdot N_{q} - 1}{N_{q} - 1} & \text{per forma rettangolare,} \\ \end{split}$$

Fattori inclinazione risultante dovuta ad un carico orizzontale H:

$$\begin{split} \mathbf{i'_c} &= 0.5 - 0.5 \sqrt{1 - \frac{H}{A_f \cdot c_a}}.\\ \mathbf{i_c} &= \mathbf{i_q} - \frac{1 - \mathbf{i_q}}{N_q - 1}\\ \mathbf{i_q} &= \left(1 - \frac{H}{V + \mathbf{A' \cdot c' \cdot \cot \phi'}}\right)^m\\ \mathbf{i_\gamma} &= \left(1 - \frac{H}{V + \mathbf{A' \cdot c' \cdot \cot \phi'}}\right)^{m+1}\\ \mathbf{i_c} &= \frac{\mathbf{i_q} \cdot N_q - 1}{N_q - 1} \end{split}$$

Dove:

$$m = m_{B} = \frac{\left[2 + \left(\frac{B'}{L'}\right)\right]}{\left[1 + \left(\frac{B'}{L'}\right)\right]} \quad \text{con } H //.B'$$
$$m = m_{L} = \frac{\left[2 + \left(\frac{L'}{B'}\right)\right]}{\left[1 + \left(\frac{L'}{B'}\right)\right]} \quad \text{con } H //.L'$$

Se H forma un angolo θ con la direzione di L', l'esponente "m" viene calcolato con la seguente espressione:

$$m = m_{\theta} = m_{L} \cdot \cos^{2} \theta + m_{B} \cdot \sin^{2} \theta$$

Oltre ai fattori correttivi di cui sopra sono considerati quelli complementari della profondità del piano di posa e dell'inclinazione del piano di posa e del piano campagna (Hansen).

Meyerhof e Hanna (1978)

Tutta l'analisi teorica sviluppata per la determinazione del carico limite è stata basata sull'ipotesi che il terreno sia isotropico ed omogeneo fino a notevole profondità.

Tale ipotesi però non rispecchia la realtà perché, in natura, il terreno presenta disomogeneità litologica per cui può essere costituito da diverse percentuali delle componenti granulometriche come ghiaia, sabbia, limo e argilla.

Le relazioni per la stima del carico limite, ricavate dall'ipotesi di terreno omogeneo risultano essere molto approssimative se il terreno è stratificato, soprattutto se le superfici di rottura interferiscono con i limiti degli strati del terreno.

Si consideri un sistema costituito da due strati di terreno distinti ed una fondazione posizionata sullo strato superiore a una profondità D dal piano campagna, le superfici di rottura a carico limite possono svilupparsi completamente sullo strato superiore oppure coinvolgere anche il secondo strato. Può accadere che lo strato superiore sia più resistente rispetto allo strato inferiore o viceversa.

In entrambi i casi verrà presentata un'analisi generale per c = 0 e si dimostrerà che sarà valida anche nel caso di terreni sabbiosi o argillosi.

Lo studio della capacità portante di un sistema a strati è stato affrontato da diversi autori: Button (1953), Vesic (1975), Meyerhof (1974), Meyerhof e Hanna (1978)

Meyerhof (1974) ha analizzato un sistema a due strati composto da sabbia densa su argilla morbida e sabbia sciolta su argilla rigida e ha supportato il suo studio con alcuni test su modello. Successivamente Meyerhof e Hanna (1978) hanno integrato lo studio di Meyerhof (1974) includendo nelle analisi il terreno privo di coesione.

Si riporta la trattazione di Meyerhof (1974) e Meyerhof e Hanna (1978).

Nella figura 12.16 (a) è rappresentata una fondazione di larghezza B e profondità D in uno strato di terreno resistente (strato 1). Lo strato debole si trova a distanza H dal piano di posa della fondazione.

Se si verificano le condizioni per cui la distanza H non è sufficientemente ampia, oppure, si ha un carico eccezionale, una parte dello stesso carico verrà trasferito oltre il livello mn. Questa condizione indurrà il formarsi di superfici di rottura anche nello strato più debole (strato 2). Se la distanza H è relativamente grande, le superfici di rottura si svilupperanno completamente nello strato 1 come evidenziato in Figura 12.16b.

Figure 12.16 Failure of soil below strip footing under vertical load on strong layer overlying weak deposit (after Meyerhof and Hanna, 1978)

Il carico limite negli strati 1 e 2 può essere espresso dalle seguenti relazioni:

Strato 1

$$q_1 = c_1 \cdot N_{c1} + \frac{1}{2}\gamma_1 \cdot B \cdot N_{\gamma l}$$

Strato 2

$$q_2 = c_2 \cdot N_{c2} + \frac{1}{2}\gamma_2 \cdot B \cdot N_{\gamma 2}$$

Dove:

- N_{c1} , $N_{\gamma 1}$ = fattori di capacità portante dello strato 1 con angolo di resistenza a taglio ϕ_1
- N_{c2} , $N_{\gamma 2}$ = fattori di capacità portante dello strato 2 con angolo di resistenza a taglio φ_2

Se il piano di posa della fondazione si trova ad una distanza D_f rispetto al piano campagna e la distanza H è relativamente grande l'espressione del carico limite è la seguente:

$$q_{u} = q_{t} = c_{1} \cdot N_{c1} + q'_{0} \cdot N_{q1} + \frac{1}{2} \gamma_{1} \cdot B \cdot N_{\gamma 1}$$

Se q_1 è maggiore di q_2 e se la distanza H non è sufficiente a formare una condizione di plasticizzazione completa nello strato 1, allora la rottura è legata alla spinta del terreno che si sviluppa dallo strato più debole allo strato più resistente. La formulazione per la stima del carico limite diventa:

$$q_u = q_b + \frac{2 \cdot (c_a + P_p \sin \delta)}{B} - \gamma_1 \cdot H$$

Dove:

- q_b= carico limite nello strato 2;
- Pp= spinta passiva;
- C_a=adesione;
- δ = inclinazione della spinta passiva rispetto all'orizzontale

Con:

$$P_{p} = \frac{\gamma_{1} \cdot H^{2}}{2 \cos \delta} \left(1 + \frac{2D_{f}}{H} \right) \cdot K_{p}$$

Metodo di Richards et al.

Richards, Helm e Budhu (1993) hanno sviluppato una procedura che consente, in condizioni sismiche, di valutare sia il carico limite sia i cedimenti indotti, e quindi di procedere alle verifiche di entrambi gli stati limite (ultimo e di danno). La valutazione del carico limite viene perseguita mediante una semplice estensione del problema del carico limite al caso della presenza di forze di inerzia nel terreno di fondazione dovute al sisma, mentre la stima dei cedimenti viene ottenuta mediante un approccio che segue il metodo di Newmark (cfr. Appendice H di "Aspetti geotecnici della progettazione in zona sismica" – Associazione Geotecnica Italiana). Gli autori hanno esteso la classica formula trinomia del carico limite nel seguente modo:

$$q_{L} = \frac{\gamma_{1} \cdot H^{2}}{2 \cos \delta} \left(1 + \frac{2D_{f}}{H} \right) \cdot K_{p}$$
$$q_{L} = N_{q} \cdot q + N_{c} \cdot c + 0.5N_{\gamma} \cdot \gamma \cdot B$$

Dove i fattori di capacità portante vengono calcolati con le seguenti formule:

$$N_{c} = (N_{q} - 1) \cdot \cot(\phi)$$
$$N_{q} = \frac{K_{pE}}{K_{AE}}$$

$$N_{\gamma} = \left(\frac{K_{pE}}{K_{AE}} - 1\right) \cdot tan(\rho_{AE})$$

Gli autori hanno, inoltre, esaminato un meccanismo di tipo Coulomb, con un approccio che segue quello dell'equilibrio limite, considerando anche le forze di inerzia agenti sul volume di terreno sottoposto a rottura. In campo statico, il classico meccanismo di Prandtl può essere infatti approssimato come mostrato nella figura che segue, eliminando la zona di transizione (ventaglio di Prandtl) ridotta alla sola linea AC, che viene considerata come una parete ideale in equilibrio sotto l'azione della spinta attiva e della spinta passiva che riceve dai cunei I e III:

Schema di calcolo del carico limite (qL).

Gli autori hanno ricavato le espressioni degli angoli ρ_A e ρ_P che definiscono le zone di spinta attiva e passiva, e dei coefficienti di spinta attiva e passiva K_A e K_P in funzione dell'angolo di attrito interno ϕ del terreno e dell'angolo di attrito δ terreno – parete ideale:

$$\rho_{A} = \varphi + \tan^{-1} \cdot \left\{ \frac{\sqrt{\tan \varphi \cdot (\tan \varphi \cdot \cot \varphi) \cdot (1 + \tan \delta \cdot \cot \varphi)} - \tan \varphi}{1 + \tan \delta \cdot (\tan \varphi + \cot \varphi)} \right\}$$

$$\rho_{\rm P} = -\phi + \tan^{-1} \cdot \left\{ \frac{\sqrt{\tan \phi \cdot (\tan \phi \cdot \cot \phi) \cdot (1 + \tan \delta \cdot \cot \phi)} + \tan \phi}{1 + \tan \delta \cdot (\tan \phi + \cot \phi)} \right\}$$
$$K_{\rm A} = \frac{\cos^2(\phi)}{\cos(\delta) \left\{ 1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi)}{\cos(\delta)}} \right\}^2}$$
$$K_{\rm P} = \frac{\cos^2(\phi)}{\cos(\delta) \left\{ 1 - \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi)}{\cos(\delta)}} \right\}^2}$$

È comunque da osservare che l'impiego delle precedenti formule assumendo ϕ =0.5 δ , conduce a valori dei coefficienti di carico limite prossimi a quelli basati su un'analisi di tipo Prandtl. Richards et al. hanno quindi esteso l'applicazione del meccanismo di Coulomb al caso sismico, portando in conto le forze d'inerzia agenti sul volume di terreno a rottura. Tali forze di massa, dovute ad accelerazioni k_h g e k_v g, agenti rispettivamente in direzione orizzontale e verticale, sono a loro volta pari a k_h γ e k_v γ . Sono state così ottenute le estensioni delle espressioni di pa e ρ p, nonché di K_A e K_P, rispettivamente indicate come ρ_{AE} e ρ_{PE} e come K_{AE} e K_{PE} per denotare le condizioni sismiche:

$$\begin{split} \rho_{AE} &= (\phi - \theta) + \tan^{-1} \cdot \left\{ \frac{\sqrt{\left[1 + \tan^2(\phi - \theta)\right) \cdot \left[1 + \tan(\delta + \theta) \cdot \cot(\phi - \theta)\right]} - \tan(\phi - \theta)}}{1 + \tan(\delta + \theta) \cdot (\tan(\phi - \theta) + \cot(\phi - \theta))} \right\} \\ \rho_{PE} &= -(\phi - \theta) + \tan^{-1} \cdot \left\{ \frac{\sqrt{\left[1 + \tan^2(\phi - \theta)\right] \cdot \left[1 + \tan(\delta + \theta) \cdot \cot(\phi - \theta)\right]} - \tan(\phi - \theta)}}{1 + \tan(\delta + \theta) \cdot (\tan(\phi - \theta) + \cot(\phi - \theta))} \right\} \\ K_{AE} &= \frac{\cos^2(\phi - \theta)}{\cos(\theta) \cdot \cos(\delta + \theta) \left\{ 1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \theta)}{\cos(\delta + \theta)}} \right\}^2} \\ K_{PE} &= \frac{\cos^2(\phi - \theta)}{\cos(\theta) \cdot \cos(\delta + \theta) \left\{ 1 - \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \theta)}{\cos(\delta + \theta)}} \right\}^2} \end{split}$$

I valori di Nq e N γ sono determinabili ancora avvalendosi delle formule precedenti, impiegando naturalmente le espressioni degli angoli ρ_{AE} e ρ_{PE} e dei coefficienti K_{AE} e K_{PE} relative al caso sismico. In tali espressioni compare l'angolo θ definito come:

$$\tan(\theta) = \frac{k_h}{1 - k_v}$$

Nella tabella sottostante sono mostrati i fattori di capacità portante calcolati per i seguenti valori dei parametri:

$$\varphi = 30^{\circ} \delta = 15^{\circ}$$

Per diversi valori dei coefficienti di spinta sismica:

$k_{h}/(1-k_{v})$	Nq	N_{γ}	N _c
0	16.51037	23.75643	26.86476
0.087	13.11944	15.88906	20.9915
0.176	9.851541	9.465466	15.33132
0.268	7.297657	5.357472	10.90786
0.364	5.122904	2.604404	7.141079
0.466	3.216145	0.879102	3.838476
0.577	1.066982	1.103E-03	0.1160159

Tabella dei fattori di capacità portante per $\varphi=30^{\circ}$

VERIFICA A CARICO LIMITE DELLE FONDAZIONE (SLU)

La verifica a carico limite delle fondazioni secondo l'approccio SLU si esegue con la seguente diseguaglianza:

$$E_d \le \frac{R_d}{\gamma_{RV}}$$

Dove:

- E_d= pressioni agenti alla base della fondazione;
- Rd= capacità portante di calcolo;
- γ_{RV} = coefficiente riduttivo della capacità portante verticale

Le pressioni agenti alla base della fondazione si calcolano con dalla seguente espressione:

$$E_{d} = \frac{N_{d}}{A_{ef}}$$

Dove:

- N_d= azione normale di progetto;
- $A_{ef} B_R \cdot L' = area ridotta;$

Fondazioni quadrate o rettangolari

L'area ridotta risulta essere:

$$A_{ef} = B' \cdot L'$$

L'=L-2e_x; B'=B-e_y; e_x = $\frac{M_x}{N}$; e_y = $\frac{M_y}{N}$

Per le verifiche a carico limite allo SLU è lecito considerare la "plasticizzazione" del terreno, in tal caso si può assumere una distribuzione uniforme delle pressioni agenti sul piano di posa.

Come evidenziato nella seguente immagine, la distribuzione delle pressioni si considera estesa sulla base "ridotta" $B_R=B-2e$.

Dove:

• $e=N_d/M_d$ - eccentricità dei carichi

Fondazioni circolari

Una fondazione circolare sottoposta ad un carico verticale applicato con un'eccentricità e = Md / Ndpuò essere considerata equivalente ad una fondazione fittizia con un carico applicato centralmente (Figura seguente), come suggerito da Meyerhof (1953) e Vesic (1973). In questo caso, l'area della fondazione fittizia, A', può essere calcolata con questa espressione:

$$\mathbf{A'} = \frac{\mathbf{D}^2}{2} \left(\arccos \frac{2\mathbf{e}}{\mathbf{D}} - \frac{2\mathbf{e}}{\mathbf{D}} \sqrt{1 - \left(\frac{2\mathbf{e}}{\mathbf{D}}\right)^2} \right)$$

Il rapporto delle lunghezze dei lati della fondazione rettangolare equivalente può essere approssimato al rapporto tra le lunghezze b ed l, si ricava da:

$$\frac{\mathrm{B}}{\mathrm{L'}} = \frac{\mathrm{b}}{\mathrm{1}} = \sqrt{\frac{\mathrm{D} - 2\mathrm{e}}{\mathrm{D} + 2\mathrm{e}}}$$

Metodo di calcolo delle dimensioni equivalenti di una fondazione circolare soggetta a carico non baricentrico.

VERIFICA A SLITTAMENTO

In conformità con i criteri di progetto allo SLU, la stabilità di un plinto di fondazione deve essere verificata rispetto al collasso per slittamento oltre a quello per rottura generale. Rispetto al collasso per slittamento la resistenza viene valutata come somma di componenti: una delle componenti è dovuta all'adesione, l'altra è dovuta all'attrito fondazione-terreno. La resistenza laterale derivante dalla spinta passiva del terreno può essere messa in conto secondo una percentuale indicata dall'utente. La resistenza di calcolo per attrito ed adesione è valutata secondo l'espressione:

 $F_{Rd} = N_{sd} \cdot \tan \delta + c_a \cdot A'$

Nella quale N_{sd} è il valore di calcolo della forza verticale, δ è l'angolo di resistenza a taglio alla base del plinto, c_a è l'adesione plinto-terreno e A' è l'area della fondazione efficace, intesa, in caso di carichi eccentrici, come area ridotta al centro della quale è applicata la risultante.

CARICO LIMITE DI FONDAZIONI SU ROCCIA

Per la valutazione della capacità portante ammissibile delle rocce si deve tener conto di di alcuni parametri significativi quali le caratteristiche geologiche, il tipo di roccia e la sua qualità, misurata con l'RQD. Nella capacità portante delle rocce si utilizzano normalmente fattori di sicurezza molto alti e legati in qualche modo al valore del coefficiente RQD: ad esempio, per una roccia con RQD pari al massimo a 0.75 il fattore di sicurezza varia tra 6 e 10. Per la determinazione della capacità portante di una roccia si possono usare le formule di Terzaghi, usando angolo d'attrito e coesione della roccia, o quelle proposte da **Stagg** e **Zienkiewicz** (1968) in cui i coefficienti della formula della capacità portante valgono:

$$N_{q} = \tan^{6} (45 + \phi / 2)$$
$$N_{c} = 5 \tan^{4} (45 + \phi / 2)$$
$$N_{\gamma} = N_{q} + 1$$

Con tali coefficienti vanno usati i fattori di forma impiegati nella formula di Terzaghi.La capacità portante ultima calcolata è comunque funzione del coefficiente RQD secondo la seguente espressione:

$$q' = q_{ult} (RQD)^2$$

Se il carotaggio in roccia non fornisce pezzi intatti (RQD tende a 0), la roccia viene trattata come un terreno stimando al meglio i parametri c e φ .

FATTORI CORRETTIVI SISMICI (PAOLUCCI E PECKER)

Quando si determina q_{lim}, per tener conto degli effetti inerziali indotti dal sisma sulla determinazione del vengono introdotti i fattori correttivi z:

$$z_{q} = \left(1 - \frac{k_{h}}{tg\phi}\right)^{0.35}$$
$$z_{c} = 1 - 0.32 \cdot k_{h}$$
$$z_{\gamma} = z_{q}$$

Dove k_h è il coefficiente sismico orizzontale.

CEDIMENTI ELASTICI

I cedimenti di una fondazione rettangolare di dimensioni B×L posta sulla superficie di un semispazio elastico si possono calcolare in base aduna equazione basata sulla teoria dell'elasticità (Timoshenko e Goodier, 1951):

$$\Delta H = q_0 B' \frac{1 - \mu^2}{E_s} \left(I_1 + \frac{1 - 2\mu}{1 - \mu} I_2 \right) \cdot I_F$$
(1)

dove:

q₀ Intensità della pressione di contatto

B' Minima dimensione dell'area reagente,

E e µ Parametri elastici del terreno.

 I_i Coefficienti di influenza dipendenti da: L'/B', spessore dello strato H, coefficiente di Poisson μ , profondità del piano di posa D;

I coefficienti *I*₁ *e I*₂ si possono calcolare utilizzando le equazioni fornite da *Steinbrenner (1934)* (V. Bowles), in funzione del rapporto L'/B' ed H/B, utilizzando B'=B/2 e L'=L/2 per i coefficienti relativi al centro e B'=B e L'=L per i coefficienti relativi al bordo.

Il coefficiente di influenza IF deriva dalle equazioni di *Fox* (1948), che indicano il cedimento si riduce con la profondità in funzione del coefficiente di *Poisson* e del rapporto L/B.

In modo da semplificare l'equazione (1) si introduce il coefficiente IS:

$$\mathbf{I}_{\mathbf{S}} = \mathbf{I}_1 + \frac{1 - 2\mu}{1 - \mu} \cdot \mathbf{I}_2$$

Il cedimento dello strato di spessore H vale:

$$\Delta \mathbf{H} = \mathbf{q}_0 \cdot \mathbf{B}' \frac{1 - \mu^2}{\mathbf{E}_S} \cdot \mathbf{I}_S \cdot \mathbf{I}_F$$

Per meglio approssimare i cedimenti si suddivide la base di appoggio in modo che il punto si trovi in corrispondenza di uno spigolo esterno comune a più rettangoli. In pratica si moltiplica per un fattore pari a 4 per il calcolo dei cedimenti al centro e per un fattore pari a 1 per i cedimenti al bordo. Nel calcolo dei cedimenti si considera una profondità del bulbo delle tensioni pari a 5B, se il substrato roccioso si trova ad una profondità maggiore. A tal proposito viene considerato substrato roccioso lo strato che ha un valore di E pari a 10 volte dello strato soprastante. Il modulo elastico per terreni stratificati viene calcolato come media pesata dei moduli elastici degli strati interessati dal cedimento immediato.

CEDIMENTI EDOMETRICI

Il calcolo dei cedimenti con l'approccio edometrico consente di valutare un cedimento di consolidazione di tipo monodimensionale, prodotto dalle tensioni indotte da un carico applicato in condizioni di espansione laterale impedita. Pertanto la stima effettuata con questo metodo va considerata come empirica, piuttosto che teorica.

Tuttavia la semplicità d'uso e la facilità di controllare l'influenza dei vari parametri che intervengono nel calcolo, ne fanno un metodo molto diffuso.

L'approccio edometrico nel calcolo dei cedimenti passa essenzialmente attraverso due fasi:

a) Il calcolo delle tensioni verticali indotte alle varie profondità con l'applicazione della teoria dell'elasticità;

b) la valutazione dei parametri di compressibilità attraverso la prova edometrica.

In riferimento ai risultati della prova edometrica, il cedimento è valutato come:

$$\Delta H = H_0 \cdot RR \cdot \log \frac{\sigma'_{v0} + \Delta \sigma_v}{\sigma'_{v0}}$$

se si tratta di un terreno sovraconsolidato (OCR>1), ossia l'incremento di tensione dovuto all'applicazione del carico non fa superare la pressione di preconsolidazione $\sigma'_p (\sigma'_p + \Delta \sigma_v < \sigma'_p)$.

Se invece il terreno è normalconsolidato ($\sigma'_{v0} = \sigma'_p$) le deformazioni avvengono nel tratto di compressione ed il cedimento è valutato come:

$$\Delta H = H_0 \cdot CR \cdot \log \frac{\sigma'_{v0} + \Delta \sigma_v}{\sigma'_{v0}}$$

dove:

- *RR*: Rapporto di ricompressione;
- *CR*: Rapporto di compressione;
- H₀: Spessore iniziale dello strato;
- σ'_{v0} : Tensione verticale efficace prima dell'applicazione del carico;
- $\Delta \sigma_{v}$: Incremento di tensione verticale dovuto all'applicazione del carico.

In alternativa ai parametri *RR* e *CR* si fa riferimento al modulo edometrico M; in tal caso però occorre scegliere opportunamente il valore del modulo da utilizzare, tenendo conto dell'intervallo tensionale $(\sigma'_0 + \Delta \sigma_v)$ significativo per il problema in esame.

L'applicazione corretta di questo tipo di approccio richiede:
- la suddivisione degli strati compressibili in una serie di piccoli strati di modesto spessore (< 2.00 m);
- la stima del modulo edometrico nell'ambito di ciascuno strato;
- il calcolo del cedimento come somma dei contributi valutati per ogni piccolo strato in cui è stato suddiviso il banco compressibile.

Le espressioni sopra riportate per il calcolo del cedimento di consolidazione vengono utilizzate sia per le argille che per le sabbie di granulometria da fina a media, perché il modulo di elasticità impiegato è ricavato direttamente da prove di consolidazione. Tuttavia, per terreni a grana più grossa le dimensioni dei provini edometrici sono poco significative del comportamento globale dello strato e, per le sabbie, risulta preferibile impiegare prove penetrometriche statiche e dinamiche.

Cedimento secondario

Il cedimento secondario è calcolato facendo riferimento alla relazione:

$$\Delta H_{s} = H_{c} \cdot C_{\alpha} \cdot \log \frac{T}{T_{100}}$$

in cui:

- H_c: altezza dello strato in fase di consolidazione;
- C_α: coefficiente di consolidazione secondaria come pendenza nel tratto secondario della curva *cedimento-logaritmo tempo*;
- *T*: tempo in cui si vuole il cedimento secondario;
- T_{100} : tempo necessario all'esaurimento del processo di consolidazione primaria.

CEDIMENTI DI SCHMERTMANN

Un metodo alternativo per il calcolo dei cedimenti è quello proposto da Schmertmann (1970) il quale ha correlato la variazione del bulbo delle tensioni alla deformazione. L'autore ha considerato nel suo modello un diagramma delle deformazioni di forma triangolare in cui la profondità alla quale si hanno deformazioni significative è assunta pari a 4B, nel caso di fondazioni nastriformi, e pari a 2B per fondazioni quadrate o circolari.

Secondo tale approccio il cedimento si esprime attraverso la seguente espressione:

$$\mathbf{w} = \mathbf{C}_1 \cdot \mathbf{C}_2 \cdot \Delta q \cdot \boldsymbol{\Sigma} \frac{\mathbf{I}_z \cdot \Delta z}{\mathbf{E}}$$

nella quale:

- Δq : rappresenta il carico netto applicato alla fondazione;
- I_Z: è un fattore di deformazione il cui valore è nullo a profondità di **2B**, per fondazione circolare o quadrata, e a profondità **4B**, per fondazione nastriforme.

Il valore massimo di Iz si verifica a una profondità rispettivamente pari a:

- B/2, per fondazione circolare o quadrata
- B, per fondazioni nastriformi

e vale

$$I_{Z \max} = 0.5 + 0.1 \cdot \left(\frac{\Delta q}{\sigma_{vi}}\right)^{0.5}$$

Dove:

- σ'_{vi}: rappresenta la tensione verticale efficace a profondità B/2 per fondazioni quadrate o circolari, e a profondità B per fondazioni nastriformi.
- E_i: rappresenta il modulo di deformabilità del terreno in corrispondenza dello strato i-esimo considerato nel calcolo;
- Δ_{zi} : rappresenta lo spessore dello strato i-esimo;
- C₁ e C₂ sono due coefficienti correttivi.

Il modulo E viene assunto pari a 2.5 q_c per fondazioni circolari o quadrate e a 3.5 q_c per fondazioni nastriformi. Nei casi intermedi, si interpola in funzione del valore di L/B.

Il termine $\mathbf{q}_{\mathbf{c}}$ che interviene nella determinazione di E rappresenta la resistenza alla punta fornita dalla prova CPT.

Le espressioni dei due coefficienti $C_1 e C_2$ sono:

$$C_1 = 1 - 0.5 \cdot \frac{\sigma'_{v0}}{\Delta q} > 0.5$$

che tiene conto della profondità del piano di posa.

$$C_2 = 1 + 0.2 \cdot \log \frac{t}{0.1}$$

che tiene conto delle deformazioni differite nel tempo per effetto secondario.

Nell'espressione **t** rappresenta il tempo, espresso in anni dopo il termine della costruzione, in corrispondenza del quale si calcola il cedimento.

CEDIMENTI DI BURLAND e BURBIDGE

Qualora si disponga di dati ottenuti da prove penetrometriche dinamiche per il calcolo dei cedimenti è possibile fare affidamento al metodo di Burland e Burbidge (1985), nel quale viene correlato un indice di compressibilità *Ic* al risultato N della prova penetrometrica dinamica. L'espressione del cedimento proposta dai due autori è la seguente:

$$\mathbf{S} = \mathbf{f}_{\mathbf{S}} \cdot \mathbf{f}_{\mathbf{H}} \cdot \mathbf{f}_{\mathbf{t}} \cdot \left[\boldsymbol{\sigma}_{\mathbf{v}0}^{'} \cdot \mathbf{B}^{0.7} \cdot \mathbf{I}_{\mathbf{C}} / 3 + \left(\boldsymbol{q}^{'} - \boldsymbol{\sigma}_{\mathbf{v}0}^{'} \right) \cdot \mathbf{B}^{0.7} \cdot \mathbf{I}_{\mathbf{C}} \right]$$

nella quale:

- q': pressione efficace lorda;
- σ'_{VO} : tensione verticale efficace alla quota d'imposta della fondazione;

- B: larghezza della fondazione;
- Ic: Indice di compressibilità;
- f_s, f_H, f_t: fattori correttivi che tengono conto rispettivamente della forma, dello spessore dello strato compressibile e del tempo, per la componente viscosa.

L'indice di compressibilità Ic è legato al valore medio Nav di Nspt all'interno di una profondità significativa z:

$$I_{\rm C} = \frac{1.706}{N_{\rm AV}^{1.4}}$$

Per quanto riguarda i valori di Nspt da utilizzare nel calcolo del valore medio N_{AV} va precisato che i valori vanno corretti, per sabbie con componente limosa sotto falda e Nspt>15, secondo l'indicazione di Terzaghi e Peck (1948):

$$N_{c} = 15 + 0.5 \cdot (Nspt - 15)$$

dove N_c è il valore coretto da usare nei calcoli.

Per depositi ghiaiosi o sabbioso-ghiaiosi il valore corretto è pari a:

$$N_c = 1.25 \cdot Nspt$$

Le espressioni dei fattori correttivi f_S , f_H e f_t sono rispettivamente:

$$f_{S} = \left(\frac{1.25 \cdot L / B}{L / B + 0.25}\right)^{2}$$
$$f_{H} = \frac{H}{z_{i}} \left(2 - \frac{H}{z_{i}}\right)$$
$$f_{t} = \left(1 + R_{3} + R \cdot \log \frac{t}{3}\right)$$

Con:

t tempo in anni > 3;

R3 costante pari a 0.3 per carichi statici e 0.7 per carichi dinamici;

R 0.2 nel caso di carichi statici e 0.8 per carichi dinamici.

MODELLO GEOTECNICO 01

DATI GENERALI

24.5 m	
4.1 m	
0.1/0.1 m	
	24.5 m 4.1 m 0.1/0.1 m

SISMA

Accelerazione massima (amax/g)	0.031	
Effetto sismico secondo Paolucci, Pecke	r (1997)	
Coefficiente sismico orizzontale	0.0063	

STRATIGRAFIA TERRENO

Spessor	Peso	Peso	Angolo	Coesio	Coesio	Modul	Modul	Poisson	Coeff.	Coeff.	Descriz
e strato	unità di	unità di	di	ne	ne non	0	0		consoli	consoli	ione
[m]	volume	volume	attrito	[kN/m ²	drenata	Elastic	Edomet		daz.	dazione	
	[kN/m ³	saturo	[°]]	[kN/m ²	0	rico		primari	second	
]]				а	aria	

		[kN/m ³				[kN/m ²	[kN/m ²		[cmq/s]		
]]]				
4.0	18.63	19.12	38.0	0.0	0.0	147100	0.0	0.33	0.0	0.0	
						.0					
6.0	17.65	18.63	35.0	98.07	0.0	314000	0.0	0.33	0.0	0.0	
						.0					
9.0	18.63	19.12	36.12	149.65	0.0	892000	0.0	0.33	0.0	0.0	
						.0					
12.0	19.61	20.1	40.0	196.13	0.0	198100	0.0	0.0	0.0	0.0	
						0.0					
15.0	20.59	21.09	45.33	1800.0	0.0	515800	0.0	0.0	0.0	0.0	
				1		0.0					
20.0	22.56	55.56	50.0	4889.6	0.0	169700	0.0	0.0	0.0	0.0	
						0.0					

Carichi di progetto agenti sulla fondazione

Nr.	Nome	Pressione	Ν	Mx	My	Hx	Ну	Tipo
	combinazi	normale di	[kN]	[kN∙m]	[kN·m]	[kN]	[kN]	
	one	progetto						
		$[kN/m^2]$						
1	A1+M1+	100.00	8518.00	10542.98	248324.90	1899.37	-30.20	Progetto
	R1							
2	A2+M2+	100.00	8518.00	10542.98	248324.90	1899.37	-30.20	Progetto
	R2							
3	Sisma	0.00	0.00	0.00	0.00	0.00	0.00	Progetto
4	S.L.E.	0.00	0.00	0.00	0.00	0.00	0.00	Servizio
5	S.L.D.	0.00	0.00	0.00	0.00	0.00	0.00	Servizio
6	A(1)+M(1)	0.00	0.00	0.00	0.00	0.00	0.00	Progetto
)+R(3)							

Sisma + Coeff. parziali parametri geotecnici terreno + Resistenze

Nr	Correzion	Tangente	Coesione	Coesione	Peso	Peso unità	Coef. Rid.	Coef.Rid.
	e Sismica	angolo di	efficace	non	Unità	volume	Capacità	Capacità
		resistenza		drenata	volume in	copertura	portante	portante
		al taglio			fondazion		verticale	orizzontal
					e			e
1	Si	1	1	1	1	1	1.8	1
2	Si	1.25	1.25	1.4	1	1	1.8	1.1
3	Si	1.25	1.25	1.4	1	1	1.8	1.1
4	No	1	1	1	1	1	1	1
5	No	1	1	1	1	1	1	1
6	No	1	1	1	1	1	2.3	1.1

CARICO LIMITE FONDAZIONE COMBINAZIONE...A2+M2+R2 Autore: VESIC (1975)

Carico limite [Qult]	186.49 kN/m ²
Resistenza di progetto[Rd]	103.61 kN/m ²
Tensione [Ed]	100.0 kN/m ²
Fattore sicurezza [Fs=Qult/Ed]	1.86
Condizione di verifica [Ed<=Rd]	Verificata

COEFFICIENTE DI SOTTOFONDAZIONE BOWLES (1982) Costante di Winkler 7459.56 kN/m³

A1+M1+R1

Autore: HANSEN (1970) (Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume Peso unità di volume saturo Angolo di attrito Coesione	17.65 kN/m ³ 18.63 kN/m ³ 0.0 ° 98.07 kN/m ²
Fattore [Nq]	1.0
Fattore [Nc]	5.14
Fattore forma [Sc]	0.22
Fattore profondità [Dc]	0.07
Fattore inclinazione carichi [Ic]	0.01
Fattore correzione sismico inerziale [zq]] 1.0
Fattore correzione sismico inerziale [zg]	1.0
Fattore correzione sismico inerziale [zc]	1.0
Carico limite	720.35 kN/m ²
Resistenza di progetto	400.19 kN/m ²

Condizione di verifica [Ed<=Rd] Verificata

Autore: TERZAGHI (1955) (Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume	17 65 kN/m ³	
Peso unità di volume saturo	18.63 kN/m^3	
Angolo di attrito	0.0 °	
Coesione	98.07 kN/m ²	

Fattore [Nq]	1.0	
Fattore [Nc]	5.7	
Fattore forma [Sc]	1.3	
Fattore forma [Sg]	0.6	
Fattore correzione sismico inerziale	e [zq] 1.0	
Fattore correzione sismico inerziale	[zg] 1.0	
Fattore correzione sismico inerziale	e [zc] 1.0	
Carico limite	805.05 kN/m ²	
Resistenza di progetto	447.25 kN/m ²	
Condizione di verifica [Ed<=Rd]	Verificata	

Autore: MEYERHOF (1963) (Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume	17.65 kN/m ³	
Peso unità di volume saturo	18.63 kN/m ³	
Angolo di attrito	$0.0~^\circ$	
Coesione	98.07 kN/m ²	
Fattore [Nq]	1.0	
Fattore [Nc]	5.14	
Fattore forma [Sc]	1.22	
Fattore profondità [Dc]	1.03	
Fattore inclinazione carichi [Ic]	0.73	
Fattore forma [Sq]	1.0	
Fattore profondità [Dq]	1.0	
Fattore inclinazione carichi [Iq]	0.73	
Fattore forma [Sg]	1.0	
Fattore profondità [Dg]	1.0	
Fattore correzione sismico inerziale	[zq] 1.0	
Fattore correzione sismico inerziale	[zg] 1.0	
Fattore correzione sismico inerziale	[zc] 1.0	
Carico limite	506.55 kN/m ²	
Resistenza di progetto	281.42 kN/m ²	
Condizione di verifica [Ed<=Rd]	Verificata	

Autore: VESIC (1975) (Condizione non drenata)

Peso unità di volume	17.65 kN/m ³	
Peso unità di volume saturo	18.63 kN/m ³	
Angolo di attrito	$0.0~^\circ$	
Coesione	98.07 kN/m ²	
Fattore [Nq]	1.0	
Fattore [Nc]	5.14	
Fattore forma [Sc]	0.22	
Fattore profondita [Dc]	0.07	
Fattore inclinazione carichi [Ic]	0.99	
Fattore correzione sismico inerziale [2	zq] 1.0	
Fattore correzione sismico inerziale [2	zg] 1.0	
Fattore correzione sismico inerziale	[ac] 1.0	
Carico limite	227.36 kN/m ²	
Resistenza di progetto	126.31 kN/m ²	
Condizione di verifica [Ed<=Rd]	Verificata	

PARAMETRI GEOTECNICI DI CALCOLO

Autore: Brinch - Hansen 1970 (Condizione non drenata)

Peso unità di volume	17 65 kN/m ³	
Peso unità di volume saturo	18.63 kN/m^3	
Angolo di attrito	0.0 °	
Coesione	98.07 kN/m ²	
Fattore [Nq]	1.0	
Fattore [Nc]	5.14	
Fattore forma [Sc]	1.2	
Fattore profondità [Dc]	1.0	
Fattore inclinazione carichi [Ic]	0.99	
Fattore inclinazione pendio [Gc]	1.0	
Fattore inclinazione base [Bc]	1.0	
Fattore correzione sismico inerziale [zc] 1.0	
Fattore correzione sismico inerziale [zg	g] 1.0	
Fattore correzione sismico inerziale [zo	2] 1.0	
Carico limite	678.41 kN/m ²	
Resistenza di progetto	376.9 kN/m ²	

Condizione di verifica	[Ed<=Rd]	Verificata
------------------------	----------	------------

Autore: Meyerhof and Hanna (1978) (Condizione non drenata)

Strato 1 sopra, strato 2 sotto

Condizione di verifica [Ed<=Rd]	Verificata	
Carico limite Resistenza di progetto	14423.32 kN/m ² 8012.96 kN/m ²	
Conica limita	14402 20 LN / 2	
Rapporto (q1/q2)	1.55	
Coefficiente di punzonamento (ks)	8.14	
Incremento carico limite strato 1	388.86 kN/m ²	
Carico limite strato 1 (at)	14423.32 kN/m ²	
Carico limite strato 2 (qb)	26825.11 kN/m ²	
Fattore [Ng]	12.17	
Fattore [Nc]	51.16	
Fattore [Nq]	38.33	
Fattori di capacità portante strato 2	20.22	
Fattore [Ng]	10.18	
Fattore [Nc]	46.12	
Fattore [Nq]	33.3	
Fattori di capacita portante suato i	22 2	
Fattori di canacità portante strato 1		

VERIFICA A SCORRIMENTO (A1+M1+R1)

A2+M2+R2		
Condizione di verifica [Ed<=Rd]	Verificata	
Sollecitazione di progetto	1899.61 kN	
Resistenza di progetto	12140.79 kN	
Frazione spinta passiva	0 %	
Angolo di attrito terreno fondazione	0 °	
Adesione terreno fondazione	19.9 kN/m ²	

Autore: HANSEN (1970) (Condizione non drenata)

Peso unità di volume	17.65 kN/m ³
Peso unità di volume saturo	18.63 kN/m ³
Angolo di attrito	0.0 °
Coesione	70.05 kN/m ²
Fattore [Ng]	1.0
Fattore [Nc]	5.14
Fattore forma [Sc]	0.22
Fattore profondità [Dc]	0.07
Fattore inclinazione carichi [Ic]	0.01
Fattore correzione sismico inerziale [zq] 1.0
Fattore correzione sismico inerziale [zg	1.0
Fattore correzione sismico inerziale [zc] 1.0
Carico limite	535.43 kN/m ²
Resistenza di progetto	297.46 kN/m ²
Condizione di verifica [Ed<=Rd] Ve Autore: TERZAGHI (1955) (Condizio	erificata ===================================
PARAMETRI GEOTECNICI DI CALO	COLO
Peso unità di volume	17.65 kN/m ³
Peso unità di volume saturo	18.63 kN/m ³
Angolo di attrito	0.0 °
Coesione	70.05 kN/m ²
Fattore [Nq]	1.0
Fattore [Nc]	5.7
Fattore forma [Sc]	1.3
Fattore forma [Sg]	0.6
Fattore correzione sismico inerziale [zq] 1.0
Fattore correzione sismico inerziale [zg	1.0
Fattore correzione sismico inerziale [zc] 1.0
Carico limite	======================================
Resistanza di progetto	$331.9 \mathrm{kN/m^2}$

PARAMETRI GEOTECNICI DI CALCOLO

Condizione di verifica [Ed<=Rd] Verificata

Autore: MEYERHOF (1963) (Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO		
Peso unità di volume	17.65 kN/m ³	
Peso unità di volume saturo	18.63 kN/m ³	
Angolo di attrito	$0.0~^\circ$	
Coesione	70.05 kN/m ²	
Fattore [Nq]	1.0	
Fattore [Nc]	5.14	
Fattore forma [Sc]	1.22	
Fattore profondità [Dc]	1.03	
Fattore inclinazione carichi [Ic]	0.73	
Fattore forma [Sq]	1.0	
Fattore profondità [Dq]	1.0	
Fattore inclinazione carichi [Iq]	0.73	
Fattore forma [Sg]	1.0	
Fattore profondità [Dg]	1.0	
Fattore correzione sismico inerziale [zc	l] 1.0	
Fattore correzione sismico inerziale [zg	g] 1.0	
Fattore correzione sismico inerziale [zc	2] 1.0	
Carico limite	378.21 kN/m ²	
Resistenza di progetto	210.11 kN/m ²	

Condizione di verifica [Ed<=Rd] Verificata

Autore: VESIC (1975) (Condizione non drenata)

Peso unità di volume	17.65 kN/m ³
Peso unità di volume saturo	18.63 kN/m ³
Angolo di attrito	0.0 °
Coesione	70.05 kN/m ²
Fattore [Nq]	1.0
Fattore [Nc]	5.14
Fattore forma [Sc]	0.22
Fattore profondità [Dc]	0.07
Fattore inclinazione carichi [Ic]	0.98
Fattore correzione sismico inerziale [zq]	1.0

GEOSTRU: info@gaiaconsulting.eu BMX9V-UEZB4-VDDGH-ZFPVK

Fattore correzione sismico inerziale Fattore correzione sismico inerziale	e [zg] 1.0 e [zc] 1.0	
Carico limite Resistenza di progetto	186.49 kN/m² 103.61 kN/m²	
Condizione di verifica [Ed<=Rd]	Verificata	

Autore: Brinch - Hansen 1970 (Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume	17.65 kN/m ³
Peso unità di volume saturo	18.63 kN/m ³
Angolo di attrito	0.0 °
Coesione	70.05 kN/m ²
Fattore [Nq]	1.0
Fattore [Nc]	5.14
Fattore forma [Sc]	1.2
Fattore profondità [Dc]	1.0
Fattore inclinazione carichi [Ic]	0.99
Fattore inclinazione pendio [Gc]	1.0
Fattore inclinazione base [Bc]	1.0
Fattore correzione sismico inerziale [zq]	1.0
Fattore correzione sismico inerziale [zg]	1.0
Fattore correzione sismico inerziale [zc]	1.0
Carico limite	505.57 kN/m ²
Resistenza di progetto	280.87 kN/m ²

Condizione di verifica [Ed<=Rd] Verificata

Autore: Meyerhof and Hanna (1978) (Condizione non drenata)

Strato 1 sopra, strato 2 sotto

Fattori di capacità portante strato 1	
Fattore [Nq]	16.92
Fattore [Nc]	28.42
Fattore [Ng]	4.16

Fattori di capacità portante strato 2

_

Fattore [Nq] Fattore [Nc] Fattore [Ng]	38.33 51.16 12.17	
Carico limite strato 2 (qb)	26825.11 kN/m ²	
Carico limite strato 1 (qt)	6901.84 kN/m ²	
Incremento carico limite strato 1	213.01 kN/m ²	
Coefficiente di punzonamento (ks)	5.22	
Rapporto $(q1/q2)$	3.34	
Carico limite	6901.84 kN/m ²	
Resistenza di progetto	3834.35 kN/m ²	
Condizione di verifica [Ed<=Rd]	Verificata	

VERIFICA A SCORRIMENTO (A2+M2+R2)

Adesione terreno fondazione	19.9 kN/m ²	
Angolo di attrito terreno fondazione	0 °	
Frazione spinta passiva	0 %	
Resistenza di progetto	7883.63 kN	
Sollecitazione di progetto	1899.61 kN	
Condizione di verifica [Ed<=Rd]	Verificata	

Sisma

Autore: HANSEN (1970) (Condizione non drenata)

Peso unità di volume Peso unità di volume saturo	17.65 kN/m ³ 18.63 kN/m ³	
Coesione	0.0 ⁻⁵ 70.05 kN/m ²	
Fattore [Nq]	1.0	
Fattore [Nc]	5.14	
Fattore forma [Sc]	0.22	
Fattore profondità [Dc]	0.07	
Fattore correzione sismico inerziale [zq]	1.0	
Fattore correzione sismico inerziale [zg]	1.0	
Fattore correzione sismico inerziale [zc]	1.0	

Carico limite	540.6 kN/m ²
Resistenza di progetto	300.33 kN/m ²

Autore: TERZAGHI (1955) (Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume	17.65 kN/m ³	
Peso unità di volume saturo	18.63 kN/m ³	
Angolo di attrito	$0.0~^\circ$	
Coesione	70.05 kN/m ²	
Fattore [Nq]	1.0	
Fattore [Nc]	5.7	
Fattore forma [Sc]	1.3	
Fattore forma [Sg]	0.6	
Fattore correzione sismico inerziale [zc	1.0	
Fattore correzione sismico inerziale [zg	g] 1.0	
Fattore correzione sismico inerziale [zo	2] 1.0	
Carico limite	597.43 kN/m ²	
Resistenza di progetto	331.9 kN/m ²	

Autore: MEYERHOF (1963) (Condizione non drenata)

Peso unità di volume Peso unità di volume saturo Angolo di attrito Coesione	17.65 kN/m ³ 18.63 kN/m ³ 0.0 ° 70.05 kN/m ²
Fattore [Nq]	1.0
Fattore [Nc]	5.14
Fattore forma [Sc]	1.22
Fattore profondità [Dc]	1.03
Fattore inclinazione carichi [Ic]	1.0
Fattore forma [Sq]	1.0
Fattore profondità [Dq]	1.0
Fattore inclinazione carichi [Iq]	1.0
Fattore forma [Sg]	1.0

Fattore profondità [Dg]	1.0
Fattore correzione sismico inerziale [zq]	1.0
Fattore correzione sismico inerziale [zg]	1.0
Fattore correzione sismico inerziale [zc]	1.0
Carico limite	531.24 kN/m ²
Resistenza di progetto	295.14 kN/m ²

Autore: VESIC (1975) (Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume	17.65 kN/m ³
Peso unità di volume saturo	18.63 kN/m ³
Angolo di attrito	0.0 °
Coesione	70.05 kN/m ²
Fattore [Nq] Fattore [Nc] Fattore forma [Sc] Fattore profondità [Dc] Fattore correzione sismico inerziale [zq Fattore correzione sismico inerziale [zg Fattore correzione sismico inerziale [zc	1.0 5.14 0.22 0.07 1] 1.0 g] 1.0 g] 1.0 g] 1.0
Carico limite	540.6 kN/m ²
Resistenza di progetto	300.33 kN/m ²

Autore: Brinch - Hansen 1970 (Condizione non drenata)

Peso unità di volume	17.65 kN/m ³	
Peso unità di volume saturo	18.63 kN/m ³	
Angolo di attrito	0.0 °	
Coesione	70.05 kN/m ²	
Fattore [Nq]	1.0	
Fattore [Nc]	5.14	
Fattore forma [Sc]	1.2	
Fattore profondità [Dc]	1.0	
Fattore inclinazione carichi [Ic]	1.0	

Fattore inclinazione pendio [Gc]	1.0
Fattore inclinazione base [Bc]	1.0
Fattore correzione sismico inerziale [zq] 1.0
Fattore correzione sismico inerziale [zg] 1.0
Fattore correzione sismico inerziale [zc]] 1.0
======================================	510.42 kN/m ²
Resistenza di progetto	283.57 kN/m ²

Autore: Meyerhof and Hanna (1978) (Condizione non drenata)

Strato 1 sopra, strato 2 sotto

Fattori di capacità portante strato 1		
Fattore [Nq]	16.92	
Fattore [Nc]	28.42	
Fattore [Ng]	4.16	
Fattori di capacità portante strato 2		
Fattore [Nq]	38.33	
Fattore [Nc]	51.16	
Fattore [Ng]	12.17	
Carico limite strato 2 (qb)	26825.11 kN/m ²	
Carico limite strato 1 (qt)	6901.84 kN/m ²	
Incremento carico limite strato 1	213.01 kN/m ²	
Coefficiente di punzonamento (ks)	5.22	
Rapporto (q1/q2)	3.34	
Carico limite	6901.84 kN/m ²	
Resistenza di progetto	3834.35 kN/m ²	

A(1)+M(1)+R(3)

Autore: HANSEN (1970) (Condizione non drenata)

Peso unità di volume	17.65 kN/m ³
Peso unità di volume saturo	18.63 kN/m ³
Angolo di attrito	0.0 °
Coesione	98.07 kN/m ²

Fattore [Nq]	1.0
Fattore [Nc]	5.14
Fattore forma [Sc]	0.22
Fattore profondità [Dc]	0.07
Fattore correzione sismico inerziale [zq]	1.0
Fattore correzione sismico inerziale [zg]	1.0
Fattore correzione sismico inerziale [zc]	1.0
Carico limite	725.5 kN/m ²
Resistenza di progetto	315.43 kN/m ²

Autore: TERZAGHI (1955) (Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume	17.65 kN/m ³
Peso unità di volume saturo	18.63 kN/m ³
Angolo di attrito	0.0 °
Coesione	98.07 kN/m ²
Fattore [Nq]	1.0
Fattore [Nc]	5.7
Fattore forma [Sc]	1.3
Fattore forma [Sg]	0.6
Fattore correzione sismico inerziale [zq]] 1.0
Fattore correzione sismico inerziale [zg]] 1.0
Fattore correzione sismico inerziale [zc]] 1.0
Carico limite	805.05 kN/m ²
Resistenza di progetto	350.02 kN/m ²

Autore: MEYERHOF (1963) (Condizione non drenata)

Peso unità di volume Peso unità di volume saturo Angolo di attrito Coesione	17.65 kN/m ³ 18.63 kN/m ³ 0.0 ° 98.07 kN/m ²	
======================================	1.0	

Fattore [Nc]	5.14
Fattore forma [Sc]	1.22
Fattore profondità [Dc]	1.03
Fattore inclinazione carichi [Ic]	1.0
Fattore forma [Sq]	1.0
Fattore profondità [Dq]	1.0
Fattore inclinazione carichi [Iq]	1.0
Fattore forma [Sg]	1.0
Fattore profondità [Dg]	1.0
Fattore correzione sismico inerziale [zq]	1.0
Fattore correzione sismico inerziale [zg]	1.0
Fattore correzione sismico inerziale [zc]	1.0
Carico limite	712.4 kN/m ²
Resistenza di progetto	309.74 kN/m ²

Autore: VESIC (1975) (Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume Peso unità di volume saturo Angolo di attrito Coesione	17.65 kN/m ³ 18.63 kN/m ³ 0.0 ° 98.07 kN/m ²	
Fattore [Nq]	1.0	
Fattore [Nc]	5.14	
Fattore forma [Sc]	0.22	
Fattore profondità [Dc]	0.07	
Fattore correzione sismico inerziale [2	[20] 1.0	
Fattore correzione sismico inerziale	[1.0	
Fattore correzione sismico inerziale [z	[1.0	
Carico limite	725.5 kN/m ²	
Resistenza di progetto	315.43 kN/m ²	

Autore: Brinch - Hansen 1970 (Condizione non drenata)

Peso unità di volume	17.65 kN/m ³	
Peso unità di volume saturo	18.63 kN/m ³	

GEOSTRU: info@gaiaconsulting.eu BMX9V-UEZB4-VDDGH-ZFPVK

Angolo di attrito	0.0 °
Coesione	98.07 kN/m ²
Eattore [Na]	1 <u>0</u>
Fattore [Nc]	5 14
Fattore forma [Sc]	1 2
Fattore profondità [Dc]	1.2
Fattore inclinazione carichi [Ic]	1.0
Fattore inclinazione pendio [Gc]	1.0
Fattore inclinazione base [Bc]	1.0
Fattore correzione sismico inerziale l	[za] 10
Fattore correzione sismico inerziale	$[2\alpha] 1.0$
Fattore correzione sismico inerziale [[zc] 1.0
Carico limite	======================================
Resistenza di progetto	297.07 kN/m ²
Autore: Meyerhof and Hanna (1978)	(Condizione non drenata)
Strato 1 sopra, strato 2 sotto	
Fattori di capacità portante strato 1	
Fattore [Ng]	33.3
Fattore [Nc]	46.12
Fattore [Ng]	10.12
Fattori di capacità portante strato 2	
Fattore [Nq]	38.33
Fattore [Nc]	51.16
Fattore [Ng]	12.17
Carico limite strato 2 (ab)	26825.11 kN/m ²
Carico limite strato 1 (qt)	14423.32 kN/m^2
Incremento carico limite strato 1	388.86 kN/m ²
Coefficiente di punzonamento (ks)	8.14
Rapporto $(q1/q2)$	1.55
Carico limita	$1/1/23 32 k N/m^2$
Resistenza di progetto	$6271 01 \text{ kN/m}^2$
	02/1.01 KIN/III

MODELLO GEOTECNICO 02

DATI GENERALI

Diametro della fondazione	24.5 m	
Profondità piano di posa	4.1 m	
SottofondazioneSporgenza, Altezza	0.1/0.1 m	
SISMA		
Accelerazione massima (amax/g)	0.031	

Effetto sismico secondoPaolucci, Pecker (1997)Coefficiente sismico orizzontale0.0063

STRATIGRAFIA TERRENO

Spessor	Peso	Peso	Angolo	Coesio	Coesio	Modul	Modul	Poisson	Coeff.	Coeff.	Descriz
e strato	unità di	unità di	di	ne	ne non	0	0		consoli	consoli	ione
[m]	volume	volume	attrito	[kN/m ²	drenata	Elastic	Edomet		daz.	dazione	
	[kN/m ³	saturo	[°]]	$[kN/m^2]$	0	rico		primari	second	
]	[kN/m ³]	[kN/m ²	[kN/m ²		а	aria	
]]]		[cmq/s]		
4.0	18.63	19.12	38.0	0.0	0.0	147100	0.0	0.33	0.0	0.0	
						.0					
6.0	18.63	19.42	35.0	196.13	0.0	814000	0.0	0.33	0.0	0.0	
						.0					
18.0	19.61	20.1	40.0	490.33	0.0	207900	0.0	0.33	0.0	0.0	
						0.0					
34.0	20.59	21.09	46.2	1887.3	0.0	549200	0.0	0.0	0.0	0.0	
				9		0.0					
20.0	22.56	22.56	49.9	0.0	0.0	125430	0.0	0.0	0.0	0.0	
						00.0					

Carichi di progetto agenti sulla fondazione

Nr.	Nome	Pressione	Ν	Mx	My	Hx	Ну	Tipo
	combinazi	normale di	[kN]	[kN∙m]	[kN·m]	[kN]	[kN]	-
	one	progetto						
		$[kN/m^2]$						
1	A1+M1+	100.00	8518.00	10542.98	248324.90	1899.37	-30.20	Progetto
	R1							
2	A2+M2+	100.00	8518.00	10542.98	248324.90	1899.37	-30.20	Progetto
	R2							
3	Sisma	0.00	0.00	0.00	0.00	0.00	0.00	Progetto
4	S.L.E.	0.00	0.00	0.00	0.00	0.00	0.00	Servizio
5	S.L.D.	0.00	0.00	0.00	0.00	0.00	0.00	Servizio
6	A(1) + M(1)	0.00	0.00	0.00	0.00	0.00	0.00	Progetto
)+R(3)							

Sisma + Coeff. parziali parametri geotecnici terreno + Resistenze

Nr	Correzion	Tangente	Coesione	Coesione	Peso	Peso unità	Coef. Rid.	Coef.Rid.
	e Sismica	angolo di	efficace	non	Unità	volume	Capacità	Capacità
		resistenza		drenata	volume in	copertura	portante	portante
		al taglio			fondazion		verticale	orizzontal
					e			e
1	Si	1	1	1	1	1	1.8	1
2	Si	1.25	1.25	1.4	1	1	1.8	1.1

GEOSTRU: info@gaiaconsulting.eu BMX9V-UEZB4-VDDGH-ZFPVK

3	Si	1.25	1.25	1.4	1	1	1.8	1.1
4	No	1	1	1	1	1	1	1
5	No	1	1	1	1	1	1	1
6	No	1	1	1	1	1	2.3	1.1

CARICO LIMITE FONDAZIONE COMBINAZIONE...A2+M2+R2 Autore: VESIC (1975)

Carico limite [Qult]	288.73 kN/m ²
Resistenza di progetto[Rd]	160.41 kN/m ²
Tensione [Ed]	100.0 kN/m ²
Fattore sicurezza [Fs=Qult/Ed]	2.89
Condizione di verifica [Ed<=Rd]	Verificata

COEFFICIENTE DI SOTTOFONDAZIONE BOWLES (1982)Costante di Winkler11549.28 kN/m³

A1+M1+R1

Autore: HANSEN (1970) (Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume	18.63 kN/m ³	
Peso unità di volume saturo	19.42 kN/m ³	
Angolo di attrito	0.0 °	
Coesione	196.13 kN/m ²	
Fattore [Nq]	1.0	
Fattore [Nc]	5.14	
Fattore forma [Sc]	0.22	
Fattore profondità [Dc]	0.07	
Fattore inclinazione carichi [Ic]	0.01	
Fattore correzione sismico inerzia	le [zq] 1.0	
Fattore correzione sismico inerzia	le [zg] 1.0	
Fattore correzione sismico inerzia	le [zc] 1.0	
Carico limite	1367.52 kN/m²	
Resistenza di progetto	759.73 kN/m ²	
Condizione di verifica [Ed<=Rd]	Verificata	

Autore: TERZAGHI (1955) (Condizione non drenata)

Peso unità di volume	18.63 kN/m ³	
Peso unità di volume saturo	19.42 kN/m ³	
Angolo di attrito	0.0 °	
Coesione	196.13 kN/m ²	
======================================	1.0	
Fattore [Nc]	5.7	
Fattore forma [Sc]	1.3	
Fattore forma [Sg]	0.6	
Fattore correzione sismico inerziale [z	zq] 1.0	
Fattore correzione sismico inerziale [z	[g] 1.0	
Fattore correzione sismico inerziale [z	[ac] 1.0	
Carico limite	 1531.75 kN/m²	
Resistenza di progetto	850.97 kN/m ²	
Condizione di verifica [Ed<=Rd]	Verificata	

PARAMETRI GEOTECNICI DI CALCOLO

Autore: MEYERHOF (1963) (Condizione non drenata)

Peso unità di volume	18.63 kN/m ³
Peso unità di volume saturo	19.42 kN/m ³
Angolo di attrito	0.0 °
Coesione	196.13 kN/m ²
Fattore [Nq]	1.0
Fattore [Nc]	5.14
Fattore forma [Sc]	1.22
Fattore profondità [Dc]	1.03
Fattore inclinazione carichi [Ic]	0.73
Fattore forma [Sq]	1.0
Fattore profondita [Dq]	1.0
Fattore inclinazione carichi [Iq]	0.73
Fattore forma [Sg]	1.0
Fattore profondità [Dg]	1.0
Fattore correzione sismico inerziale [zq]	1.0
Fattore correzione sismico inerziale [zg]	1.0
Fattore correzione sismico inerziale [zc]	1.0

_

955.74 kN/m ²
530.97 kN/m ²

Condizione di verifica [Ed<=Rd] Verificata

Autore: VESIC (1975) (Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume Peso unità di volume saturo Angolo di attrito Coesione	18.63 kN/m ³ 19.42 kN/m ³ 0.0 ° 196.13 kN/m ²	
Fattore [Nq] Fattore [Nc] Fattore forma [Sc] Fattore profondità [Dc] Fattore inclinazione carichi [Ic]	1.0 5.14 0.22 0.07 0.99	
Fattore correzione sismico inerziale Fattore correzione sismico inerziale	[zq] 1.0 [zg] 1.0 [zc] 1.0	
Carico limite Resistenza di progetto	370.48 kN/m ² 205.82 kN/m ²	

Condizione di verifica [Ed<=Rd] Verificata

Autore: Brinch - Hansen 1970 (Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume	18.63 kN/m ³	
Angolo di attrito	$19.42 \text{ KIN/III}^{\circ}$	
Coesione	196.13 kN/m ²	
Fattore [Ng]	1.0	
Fattore [Nc]	5.14	
Fattore forma [Sc]	1.2	
Fattore profondità [Dc]	1.0	
Fattore inclinazione carichi [Ic]	1.0	

Fattore inclinazione pendio [Gc] Fattore inclinazione base [Bc] Fattore correzione sismico inerziale Fattore correzione sismico inerziale Fattore correzione sismico inerziale	1.0 1.0 [zq] 1.0 [zg] 1.0 [zc] 1.0
Carico limite Resistenza di progetto	1283.33 kN/m ² 712 96 kN/m ²
Resistenza di progetto	/12.90 kivin
Condizione di verifica [Ed<=Rd]	Verificata
Autore: Meyerhof and Hanna (1978) (Condizione non drenata)
Strato 1 sopra, strato 2 sotto	
Fattori di capacità portante strato 1	
Fattore [Nq]	33.3
Fattore [Nc]	46.12
Fattore [Ng]	10.18
Fattori di capacità portante strato 2	
Fattore [Ng]	64.2
Fattore [Nc]	75.31
Fattore [Ng]	23.0
Carico limite strato 2 (qb)	96424.89 kN/m ²
Carico limite strato 1 (qt)	24473.47 kN/m ²
Incremento carico limite strato 1	455.07 kN/m ²
Coefficiente di punzonamento (ks)	8.14
Rapporto (q1/q2)	3.73
Carico limite	24473.47 kN/m ²
Resistenza di progetto	13596.37 kN/m ²
Condizione di verifica [Ed<=Rd]	Verificata

VERIFICA A SCORRIMENTO (A1+M1+R1)

==

Adesione terreno fondazione	19.9 kN/m ²	
Angolo di attrito terreno fondazione	0 8	
Frazione spinta passiva	0 %	
Resistenza di progetto	12140.79 kN	
Sollecitazione di progetto	1899.61 kN	

Condizione di verifica [Ed<=Rd] Verificata

A2+M2+R2

Autore: HANSEN (1970) (Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume Peso unità di volume saturo Angolo di attrito Coesione	18.63 kN/m ³ 19.42 kN/m ³ 0.0 ° 140.0929 kN/m ²	
Fattore [Nq]	1.0	
Fattore [Nc]	5.14	
Fattore forma [Sc]	0.22	
Fattore profondità [Dc]	0.07	
Fattore inclinazione carichi [Ic]	0.01	
Fattore correzione sismico inerziale [z	q] 1.0	
Fattore correzione sismico inerziale [z	g] 1.0	
Fattore correzione sismico inerziale [z	c] 1.0	
Carico limite	997.73 kN/m ²	
Resistenza di progetto	554.3 kN/m ²	

Condizione di verifica [Ed<=Rd] Verificata

Autore: TERZAGHI (1955) (Condizione non drenata)

Peso unità di volume	18.63 kN/m ³	
Peso unità di volume saturo	19.42 kN/m ³	
Angolo di attrito	0.0 °	
Coesione 1	40.0929 kN/m ²	
Fattore [Nq]	1.0	
Fattore [Nc]	5.7	
Fattore forma [Sc]	1.3	
Fattore forma [Sg]	0.6	
Fattore correzione sismico inerziale [ze	q] 1.0	
Fattore correzione sismico inerziale [z	g] 1.0	

GEOSTRU: info@gaiaconsulting.eu BMX9V-UEZB4-VDDGH-ZFPVK

Fattore correzione sismico inerziale [zc] 1.0		
Carico limite Resistenza di progetto	1116.51 kN/m ² 620.28 kN/m ²	
Condizione di verifica [Ed<=Rd]	Verificata	

Autore: MEYERHOF (1963) (Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume Peso unità di volume saturo Angolo di attrito Coesione	18.63 kN/m ³ 19.42 kN/m ³ 0.0 ° 140.0929 kN/m ²	
Fattore [Nq]	1.0	
Fattore [Nc]	5.14	
Fattore forma [Sc]	1.22	
Fattore profondità [Dc]	1.03	
Fattore inclinazione carichi [Ic]	0.73	
Fattore forma [Sq]	1.0	
Fattore profondità [Dq]	1.0	
Fattore inclinazione carichi [Iq]	0.73	
Fattore forma [Sg]	1.0	
Fattore profondità [Dg]	1.0	
Fattore correzione sismico inerzia	le [zq] 1.0	
Fattore correzione sismico inerzia	le [zg] 1.0	
Fattore correzione sismico inerzia	le [zc] 1.0	
Carico limite	699.07 kN/m ²	
Resistenza di progetto	388.37 kN/m ²	
Condizione di verifica [Ed<=Rd]	Verificata	

Autore: VESIC (1975) (Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO

_

Peso unità di volume	18.63 kN/m ³
Peso unità di volume saturo	19.42 kN/m ³
Angolo di attrito	0.0 °

GEOSTRU: info@gaiaconsulting.eu BMX9V-UEZB4-VDDGH-ZFPVK

_

Coesione	140.0929 kN/m ²	
Fattore [Nq]	1.0	
Fattore [Nc]	5.14	
Fattore forma [Sc]	0.22	
Fattore profondita [Dc]	0.07	
Fattore inclinazione carichi [Ic]	0.99	
Fattore correzione sismico inerzia	ale [zq] 1.0	
Fattore correzione sismico inerziale [zg] 1.0		
Fattore correzione sismico inerzia	ale [zc] 1.0	
Carico limite	288.73 kN/m ²	
Resistenza di progetto	160.41 kN/m ²	
Condizione di verifica [Ed<=Rd]	Verificata	

Autore: Brinch - Hansen 1970 (Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume	18.63 kN/m ³	
Peso unità di volume saturo	19.42 kN/m ³	
Angolo di attrito	$0.0~^\circ$	
Coesione	140.0929 kN/m ²	
Fattore [Nq]	1.0	
Fattore [Nc]	5.14	
Fattore forma [Sc]	1.2	
Fattore profondità [Dc]	1.0	
Fattore inclinazione carichi [Ic]	0.99	
Fattore inclinazione pendio [Gc]	1.0	
Fattore inclinazione base [Bc]	1.0	
Fattore correzione sismico inerziale	[zq] 1.0	
Fattore correzione sismico inerziale	[zg] 1.0	
Fattore correzione sismico inerziale	[zc] 1.0	
Carico limite	937.69 kN/m ²	
Resistenza di progetto	520.94 kN/m ²	
Condizione di verifica [Ed<=Rd]	Verificata	

Autore: Meyerhof and Hanna (1978) (Condizione non drenata)

_

Strato 1 sopra, strato 2 sotto

Fattori di capacità portante strato 1		
Fattore [Nq]	16.92	
Fattore [Nc]	28.42	
Fattore [Ng]	4.16	
Fattori di capacità portante strato 2		
Fattore [Nq]	64.2	
Fattore [Nc]	75.31	
Fattore [Ng]	23.0	
Carico limite strato 2 (qb)	96424.89 kN/m ²	
Carico limite strato 1 (qt)	11833.12 kN/m ²	
Incremento carico limite strato 1	260.53 kN/m ²	
Coefficiente di punzonamento (ks)	5.22	
Rapporto $(q1/q2)$	7.85	
Carico limite	11833.12 kN/m ²	
Resistenza di progetto	6573.96 kN/m ²	
Condizione di verifica [Ed<=Rd]	Verificata	

VERIFICA A SCORRIMENTO (A2+M2+R2)

Adesione terreno fondazione	19.9 kN/m ²	
Angolo di attrito terreno fondazione	0 °	
Frazione spinta passiva	0 %	
Resistenza di progetto	7883.63 kN	
Sollecitazione di progetto	1899.61 kN	
Condizione di verifica [Ed<=Rd]	Verificata	

Sisma

Autore: HANSEN (1970) (Condizione non drenata)

Peso unità di volume	18.63 kN/m ³
Peso unità di volume saturo	19.42 kN/m ³
Angolo di attrito	0.0 °
Coesione	140.0929 kN/m ²

Fattore [Nq]	1.0
Fattore [Nc]	5.14
Fattore forma [Sc]	0.22
Fattore profondità [Dc]	0.07
Fattore correzione sismico inerziale [zq]	1.0
Fattore correzione sismico inerziale [zg]	1.0
Fattore correzione sismico inerziale [zc]	1.0
Carico limite 10	002.86 kN/m ²
Resistenza di progetto 5	57.15 kN/m ²

Autore: TERZAGHI (1955) (Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume	18.63 kN/m ³	
Peso unità di volume saturo	19.42 kN/m ³	
Angolo di attrito	0.0 °	
Coesione	140.0929 kN/m ²	
Fattore [Nq]	1.0	
Fattore [Nc]	5.7	
Fattore forma [Sc]	1.3	
Fattore forma [Sg]	0.6	
Fattore correzione sismico inerzial	e [zq] 1.0	
Fattore correzione sismico inerzial	e [zg] 1.0	
Fattore correzione sismico inerzial	e [zc] 1.0	
Carico limite	1116.51 kN/m ²	
Resistenza di progetto	620.28 kN/m ²	

Autore: MEYERHOF (1963) (Condizione non drenata)

Peso unità di volume Peso unità di volume saturo Angolo di attrito Coesione	18.63 kN/m ³ 19.42 kN/m ³ 0.0 ° 140.0929 kN/m ²	
======================================	1.0	

Fattore [Nc]	5.14
Fattore forma [Sc]	1.22
Fattore profondità [Dc]	1.03
Fattore inclinazione carichi [Ic]	1.0
Fattore forma [Sq]	1.0
Fattore profondità [Dq]	1.0
Fattore inclinazione carichi [Iq]	1.0
Fattore forma [Sg]	1.0
Fattore profondità [Dg]	1.0
Fattore correzione sismico inerziale [zq]] 1.0
Fattore correzione sismico inerziale [zg]] 1.0
Fattore correzione sismico inerziale [zc]	1.0
Carico limite	984.15 kN/m ²
Resistenza di progetto	546.75 kN/m ²

Autore: VESIC (1975) (Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume Peso unità di volume saturo Angolo di attrito Coesione	18.63 kN/m ³ 19.42 kN/m ³ 0.0 ° 140.0929 kN/m ²	
Fattore [Ng]	1.0	
Fattore [Nc]	5.14	
Fattore forma [Sc]	0.22	
Fattore profondità [Dc]	0.07	
Fattore correzione sismico inerzia	ale [zq] 1.0	
Fattore correzione sismico inerzia	ale [zg] 1.0	
Fattore correzione sismico inerzia	ale [zc] 1.0	
Carico limite	1002.86 kN/m ²	
Resistenza di progetto	557.15 kN/m ²	

Autore: Brinch - Hansen 1970 (Condizione non drenata)

Peso unità di volume	18.63 kN/m ³
Peso unità di volume saturo	19.42 kN/m ³

GEOSTRU: info@gaiaconsulting.eu BMX9V-UEZB4-VDDGH-ZFPVK

Angolo di attrito	0.0 °
Coesione	140.0929 kN/m ²
Fattore [Nq]	1.0
Fattore [Nc]	5.14
Fattore forma [Sc]	1.2
Fattore profondità [Dc]	1.0
Fattore inclinazione carichi [Ic]	1.0
Fattore inclinazione pendio [Gc]	1.0
Fattore inclinazione base [Bc]	1.0
Fattore correzione sismico inerziale	[zq] 1.0
Fattore correzione sismico inerziale	[zg] 1.0
Fattore correzione sismico inerziale	[zc] 1.0
Carico limite	942.51 kN/m ²
Resistenza di progetto	523.62 kN/m ²
Autore: Meyerhof and Hanna (1978)) (Condizione non drenata)
Strato 1 sopra, strato 2 sotto	
Fattori di capacità portante strato 1	
Fattore [Nq]	16.92
Fattore [Nc]	28.42
Fattore [Ng]	4.16
Fattori di capacità portante strato 2	
Fattore [Nq]	64.2
Fattore [Nc]	75.31
Fattore [Ng]	23.0
Carico limite strato 2 (qb)	96424.89 kN/m ²
Carico limite strato 1 (qt)	11833.12 kN/m ²
Incremento carico limite strato 1	260.53 kN/m ²
Coefficiente di punzonamento (ks)	5.22
Rapporto (q1/q2)	7.85
Carico limite	11833.12 kN/m ²
Resistenza di progetto	6573.96 kN/m ²

A(1)+M(1)+R(3)

Autore: HANSEN (1970) (Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO			
Peso unità di volume	18.63 kN/m ³		
Peso unità di volume saturo	19.42 kN/m ³		
Angolo di attrito	0.0 °		
Coesione	196.13 kN/m ²		
Fattore [Nq]	1.0		
Fattore [Nc]	5.14		
Fattore forma [Sc]	0.22		
Fattore profondità [Dc]	0.07		
Fattore correzione sismico inerziale [zc] 1.0		
Fattore correzione sismico inerziale [zg	g] 1.0		
Fattore correzione sismico inerziale [zc	2] 1.0		
Carico limite	1372.64 kN/m ²		
Resistenza di progetto	596.8 kN/m ²		

Autore: TERZAGHI (1955) (Condizione non drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume Peso unità di volume saturo Angolo di attrito Coesione	18.63 kN/m ³ 19.42 kN/m ³ 0.0 ° 196.13 kN/m ²	
Fattore [Nq] Fattore [Nc] Fattore forma [Sc] Fattore forma [Sg] Fattore correzione sismico inerzia Fattore correzione sismico inerzia	1.0 5.7 1.3 0.6 Ile [zq] 1.0 Ile [zg] 1.0	
Fattore correzione sismico inerzia	ıle [zc] 1.0	
Carico limite Resistenza di progetto	1531.75 kN/m ² 665.98 kN/m ²	

Autore: MEYERHOF (1963) (Condizione non drenata)

Peso unità di volume	18.63 kN/m ³
Peso unità di volume saturo	19.42 kN/m ³
Angolo di attrito	0.0 °
Coesione	196.13 kN/m ²
======================================	1.0
Fattore [Nc]	5.14
Fattore forma [Sc]	1.22
Fattore profondita [Dc]	1.03
Fattore inclinazione carichi [Ic]	1.0
Fattore forma [Sq]	1.0
Fattore profondita [Dq]	1.0
Fattore inclinazione carichi [Iq]	1.0
Fattore forma [Sg]	1.0
Fattore profondità [Dg]	1.0
Fattore correzione sismico inerziale [ze	q] 1.0
Fattore correzione sismico inerziale [z	g] 1.0
Fattore correzione sismico inerziale [z	2] 1.0
Carico limite	1346.45 kN/m ²
Resistenza di progetto	585.41 kN/m ²

PARAMETRI GEOTECNICI DI CALCOLO

Autore: VESIC (1975) (Condizione non drenata)

Peso unità di volume Peso unità di volume saturo Angolo di attrito Coesione	18.63 kN/m ³ 19.42 kN/m ³ 0.0 ° 196.13 kN/m ²	
Fattore [Nq]	1.0	
Fattore [Nc]	5.14	
Fattore forma [Sc]	0.22	
Fattore profondità [Dc]	0.07	
Fattore correzione sismico inerziale	e [zq] 1.0	
Fattore correzione sismico inerziale	e [zg] 1.0	
Fattore correzione sismico inerziale	e [zc] 1.0	
Carico limite	1372.64 kN/m ²	
Resistenza di progetto	596.8 kN/m ²	

Autore: Brinch - Hansen 1970 (Condizione non drenata)

Peso unità di volume	18.63 kN/m ³		
Peso unità di volume saturo	19.42 kN/m ³		
Angolo di attrito	$0.0~^\circ$		
Coesione	196.13 kN/m ²		
Fattore [Nq]	1.0		
Fattore [Nc]	5.14		
Fattore forma [Sc]	1.2		
Fattore profondità [Dc]	1.0		
Fattore inclinazione carichi [Ic]	1.0		
Fattore inclinazione pendio [Gc]	1.0		
Fattore inclinazione base [Bc]	1.0		
Fattore correzione sismico inerziale	e [zq] 1.0		
Fattore correzione sismico inerziale	e [zg] 1.0		
Fattore correzione sismico inerziale	e [zc] 1.0		
Carico limite	1288.15 kN/m ²		
Resistenza di progetto	560.07 kN/m ²		

Autore: Meyerhof and Hanna (1978) (Condizione non drenata)

Strato 1 sopra, strato 2 sotto

Fattori di capacità portante strato 1		
Fattore [Nq]	33.3	
Fattore [Nc]	46.12	
Fattore [Ng]	10.18	
Fattori di capacità portante strato 2		
Fattore [Nq]	64.2	
Fattore [Nc]	75.31	
Fattore [Ng]	23.0	
Carico limite strato 2 (qb)	96424.89	kN/m ²
Carico limite strato 1 (qt)	24473.47	kN/m ²
Incremento carico limite strato 1	455.07	kN/m ²
Coefficiente di punzonamento (ks)	8.14	
Rapporto (q1/q2)	3.73	
Carico limite24473.47 kN/m²Resistenza di progetto10640.64 kN/m²