Bentu Energy Srl

Parco Eolico BENTU sito nel Comune di Thiesi

Relazione sulla Pericolosità Sismica di Base

Luglio 2022

	Regione autonoma della Sardegna				Comune di Thies	și N
Commit	ttente: BENTU Er	nergy Srl		BENTU Energy Via Sardeg 00187 Roma P.IVA/C.F. 15802	y Srl na, 40 2451003	
Titolo d	el Progetto: Pa	arco Eolico BENI	TU sit	o nel Com	une di Thiesi	
Docume	Documento: Relazione sulla Pericolosità Sismica di base			N° Documento: i IT-VesBen-CLP-CIV-TR-19		
Dase Image: Construction of the second of the se		I GEOL SARDEGNA NE A SIJA ATZ				
Rev	Data Revisione	Descrizione	Redatt	0	Controllato	Approvato
00	05.07.2022	Prima emissione	Cosima	Atzori		

DENTH From Cri	Carl Carina Ataari	N° Doc.	Day 0	Pagina
BEINTO Effergy Sh	Geol. Cosima Alzon	IT-VesBen-CLP-CIV-TR-19	Rev U	3 di 35

Sommario

1.	Premessa	5
2.	Normativa di riferimento	5
3.	Studio e indagini di riferimento	5
4.	Inquadramento geografico generale	6
5.	Inquadramento geologico1	1
5.1.	Successione litostratigrafica dell'area di intervento1	1
5.1.	1. Distretto vulcanico di Capo Marargiu Miocene Inferiore)	11
5.1.	2. Distretto Vulcanico di Osilo-Castelsardo (Miocene Inferiore)	12
5.2.	Successione sedimentaria Oligo-Miocenica del Logudoro-Sassarese1	2
5.3.	Depositi Quaternari dell'area continentale1	3
6.	Inquadramento geomorfologico1	5
6.1.	Lineamenti geomorfologici dell'area di studio1	7
6.2.	Definizione dell'area geomorfologicamente significativa	3
7.	Inquadramento sismico 2	4
7.1.	Azione sismica	4
7.2.	Vita nominale, classi d'uso e periodo di riferimento2	5
7.3.	Amplificazione stratigrafica e topografica2	6
8.	Indagini geognostiche 2	7
8.1.	Indagini sismiche: MASW 2	8
8.1.	1. Specifiche delle indagini svolte	29
8.1.	2. Caratteristiche della strumentazione impiegata	29
8.1.	3. Categorie di sottosuolo - D.M. 19.01.2018 (NTC 2018)	29
8.2.	Risultati delle indagini del sito SMT01	1
8.2.	1. Masw SMT01	1
8.3.	Risultati delle indagini del sito SMT02	2
8.3.	1. Masw SMT02	32
8.4.	Risultati delle indagini del sito SMT03	3
8.4.	1. Masw SMT03	33
9.	Categorie di sottosuolo e parametri di pericolosità sismica	4

BENTU Energy Srl	Geol. Cosima Atzori	N° Doc.	Pov 0	Pagina
		IT-VesBen-CLP-CIV-TR-19	Rev U	4 di 35

Indice delle figure

Figura 1 Localizzazione del progetto	6
Figura 2 Inquadramento CTR, sezione W	8
Figura 3 Inquadramento CTR, sezione E	9
Figura 4 Inquadramento IGM	10
Figura 5 Paesaggio caratteristico dell'area di studio	11
Figura 6 Stralcio carta geologica (Fonte RAS)	14
Figura 7 Parete carbonatica esposta a Nord nella parte meridionale del parco	16
Figura 8 Vista in sezione della struttura stratificata con adamento concentrico nell'altopiano a sud del	
parco, presunto centro d'emissione a sinistra nella foto	17
Figura 9 Piazzola AG01	18
Figura 10 Piazzola AG02	18
Figura 11 Piazzola AG03	19
Figura 12 Piazzola AG04	19
Figura 13 Piazzola AG06	20
Figura 14 Piazzola AG07	20
Figura 15 Piazzola AG08	21
Figura 16 Rilievo isolato a N del parco ospitante le Domus de Janas.	21
Figura 17 Erosione selettiva dovuta all'azione aggressiva dell'acqua nella roccia costituita da livelli di flusso	
piroclastico di differente competenza	22
Figura 18 Esempio di tafonature ad ovest della AG04 affetta da tafonature	22
Figura 19 Carta della pericolosità sismica del territorio nazionale.	24
Figura 20 Valori minimi della Vita nominale VN di progetto per i diversi tipi di costruzioni	25
Figura 21 Valori di coefficiente d'uso CU	26
Figura 22 Valori massimi del coefficiente di amplificazione topografica ST (NTC 2018 3.2 - Tab. 3.2.V)	26

	Cash Casima Ataani	N° Doc.	Day 0	Pagina
BENTO Energy Sri	Geol. Cosima Atzori	IT-VesBen-CLP-CIV-TR-19	Rev U	5 di 35

1. Premessa

In relazione al progetto per la realizzazione di un Parco Eolico denominato "**BENTU**" dislocato nel territorio Comunale di **Thiesi** (Provincia di Sassari), è stata redatta la **Relazione sulla Pericolosità Sismica di Base** in supporto al progetto.

Sono stati eseguiti di n°**3 stendimenti di geoelettrica** (08 e 14 Giugno 2022), **3 stendimenti di sismica** con tecnica **MASW e rifrazione in onde P**. Tutte le basi sismiche MASW ricadono lungo il medesimo allineamento delle rifrazioni, così come i 3 stendimenti geoelettrici, i quali hanno il medesimo centro degli allineamenti sismici ma sono leggermente più lunghi (93,0 m).

2. Normativa di riferimento

La presente relazione è redatta in osservanza a quanto stabilito dalla vigente normativa in materia, con particolare riferimento a:

- D.M LL.PP. 11.03.1988 "Norme Tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii attuali e delle scarpate, i criteri generali e le prescrizioni pe la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione in applicazione della Legge 02.02.1974 n°64.
- 2. Circ. Min. LL.PP. n° 30483 del 24.09.1988 Istruzioni per l'applicazione del D.M. LL.PP.11.03.1988.
- 3. Raccomandazioni, programmazione ed esecuzione delle indagini geotecniche, 1975 Associazione Geotecnica Italiana.
- 4. D.M. Infrastrutture 17.01.2018 Norme Tecniche per le Costruzioni. (6.2.1 Caratterizzazione e modellazione geologica del sito, 6.4.2 Fondazioni superficiali)
- 5. Circ. Min. Infrastrutture e Trasporti 21.01.2019 n°7 Istruzioni per l'applicazione delle Norme Tecniche per le Costruzioni di cui al Decreto Ministeriale 17.01.2018.
- 6. D.L. 3 aprile 2006, n. 152 e successive modificazioni "Norme in materia ambientale".

3. Studio e indagini di riferimento

Le informazioni topografiche e geologiche dell'area oggetto della presente relazione sono state ricavate dalle pubblicazioni ufficiali e cartografia tematica esistente. Si elencano di seguito:

- 1. Carta Topografica I.G.M. scala in 1:25000
- 2. Carta Tecnica Regionale in scala 1:10000
- 3. Carta Geologica dell'Italia in scala 1:100000
- 4. Carta Geologica dell'Italia in scala 1:50.000 (CARG).
- 5. Cartografia Geologica di base della R.A.S. in scala 1:25.000
- 6. RAS Carta dell'Uso del Suolo della Regione Sardegna, 2008
- 7. I.S.P.R.A. Archivio nazionale delle indagini nel sottosuolo (legge 464/84)
- 8. RAS Studio dell'Idrologia Superficiale della Sardegna, annali idrologici 1922-2009
- 9. RAS Autorità di Bacino Piano Stralcio d'Assetto Idrogeologico
- 10. RAS Autorità di Bacino Piano di Tutela delle Acque
- 11. RAS Autorità di Bacino Piano Stralcio delle Fasce Fluviali
- 12. Foto aeree, Regione Sardegna

	Caral Caraina Ataani	N° Doc.	Day 0	Pagina
BEINTO Energy Sri	Geol. Cosima Atzori	IT-VesBen-CLP-CIV-TR-19	Rev 0	6 di 35

I dati a disposizione sono stati integrati con le informazioni derivanti dai sopralluoghi effettuati dalla scrivente in sito e dagli esiti della campagna di indagini geognostiche eseguite rispettivamente in data 12/05/2022 e 08-14/06/2022 nella zona di interesse.

4. Inquadramento geografico generale

L'aggettivo *tiesu* significa disteso: non a caso, il suo abitato si adagia su un pianoro alle pendici dell'altopiano *su Montiju*. Thiesi è un centro di tremila abitanti del *Meilogu*, a 40 chilometri da Sassari, fondato, secondo alcune fonti, da ebrei deportati dai romani.

L'impianto urbano si è sviluppato in due aree: attorno alla seicentesca chiesa di sant'Antonio e attorno alla parrocchiale di santa Vittoria, bell'edificio gotico-aragonese costruito fra 1400 e 1590, con decorazione interna e portale rinascimentali. In origine la forma del paese era a triangolo con ai vertici altre tre chiese: san Sebastiano, san Giovanni, immersa nella rigogliosa vallata *Badde Serena* (e raggiungibile da una scala in pietra) e il santuario della Madonna di *Seunis*, in periferia, costruita nel Settecento (poi rimaneggiata) su uno spuntone roccioso che domina la valle del rio *Molinu*.

A dieci chilometri dal paese, si trova la necropoli di *Mandra Antine*: quattro *domus de Janas* ricavate in un costone trachitico. Spicca la tomba III detta 'dipinta' per i raffinati e variopinti affreschi all'interno: è una delle eredità più sorprendenti del Neolitico sardo (III millennio a.C.).

Figura 1 Localizzazione del progetto

Fuori dal paese anche il protonuraghe *Fronte 'e Mola*. È uno dei circa 350 nuraghi del *Meilogu*, territorio che ti conquisterà anche con particolarità naturalistiche, come i coni vulcanici spenti che si ergono isolati: il colle *santu Bainzu* di Thiesi è uno dei cinque crateri vulcanici del *Meilogu*, affascinante monumento naturale protetto, che crea un paesaggio insolito e unico. Altro emergenza naturalistica è la grotta di monte *Majore*, che si apre con un ampio ingresso nel versante orientale del monte.

L'inquadramento cartografico di riferimento è il seguente:

RENTLI Eporav Srl	Cool Cosima Atzari	N° Doc.	Pov 0	Pagina
BLINTO LITERBY SIT	Geol. Cosilità Alzon	IT-VesBen-CLP-CIV-TR-19	Nev U	7 di 35

- 1. Cartografia ufficiale dell'Istituto Geografico Militare I.G.M scala 1:25 000. Serie 25 -Fogli: 479 sez. I "Ittiri"
- 2. Carta Tecnica Regionale scala 1:10 000 Fogli: **479080** "Monte Cheia" e **479040** "Diga 'e su Bidighinzu".

Figura 2 Inquadramento CTR, sezione W

Figura 3 Inquadramento CTR, sezione E

Figura 4 Inquadramento IGM

PENTLI Eporgy Srl	Cool Cosimo Atzori	N° Doc.	Pov 0	Pagina
BEINTO EITEIRY SIT	Geol. Cosilia Alzon	IT-VesBen-CLP-CIV-TR-19	Kev U	11 di 35

Figura 5 Paesaggio caratteristico dell'area di studio

5. Inquadramento geologico

L'area di studio ricade nella zona costituita dalla copertura sedimentaria e vulcanica post-ercinica; principalmente è costituita dalle coperture sedimentarie mioceniche, dalle rocce della successione vulcano-sedimentaria Miocenica, e dai depositi quaternari. In particolare, l'area vasta è compresa all'interno *Distretto vulcanico di Capo Marargiu*, del *Distretto vulcanico di Osilo Castelsardo* e della *Successione sedimentaria oligo-miocenica del Logudoro-Sassarese*.

5.1. Successione litostratigrafica dell'area di intervento

La successione vulcanica oligo-miocenica affiorante nell'area di interesse è costituita da ammassi lavici, duomi e piroclastiti messi in posto in condizioni subaeree e da subordinate epiclastiti.

5.1.1. Distretto vulcanico di Capo Marargiu Miocene Inferiore)

(MTD) Unità di Pala Mantedda: è costituita da un'alternanza di colate e duomi a chimismo da andesitico a dacitico, per uno spessore di circa un centinaio di metri. Le lave, talora scoriacee, hanno tessitura porfirica per fenocristalli di plagioclasio e clinopirosseno, immersi in una pasta di fondo vetrosa. Le colate, spesso separate tra loro da livelli conglomeratici, presentano porzioni autoclastiche nelle parti basali, e laminazioni di flusso in quelle centrali. Aquitaniano.

(LGS) Unità di Monte Longos: è rappresentata da depositi di flusso piroclastico in facies ignimbritica, pomiceocineritici, saldati, di colore nerastro o violaceo alla base. I depositi si presentano ben saldati, con aspetto vetroso e ricchi in cristalli di plagioclasio, pirosseno e biotite, e rare fiamme di colore nero. I depositi hanno chimismo riolitico, e spessore minimo di 5 m. Al contatto con le sottostanti piroclastiti (UUI) sono presenti alcuni livelli centimetrici di ceneri di caduta, con pomici e litici. Burdigaliano.

(UUI) Unità di Uri: è costituita da depositi di flusso piroclastico in facies ignimbritica, variamente saldati, di colore grigiastro e subordinatamente rossastro per alterazione, ricchi in frammenti litici e cristalli liberi. Il deposito

PENTLI Enormy Srl	Cool Cosimo Atzori	N° Doc.	Pov 0	Pagina
BLINTO LITERBY SIT	Geol. Cosilia Atzon	IT-VesBen-CLP-CIV-TR-19	Kev U	12 di 35

piroclastico è costituito da pomici biancastre e litici eterometrici (4-5 cm) di natura andesitica o ignimbritica, in matrice cineritica grossolana nella quale sono immersi anche cristalli di plagioclasio, pirosseno e biotite. Il diverso grado di saldatura varia dalla base (nullo) verso il tetto della successione (elevato), influenza la tessitura della roccia, che si presenta debolmente isoorientata nei termini poco saldati, mentre è marcatamente eutassitica nei termini saldati. La composizione delle piroclastiti è riolitica, e lo spessore varia da pochi metri fino a 30 m. Le datazioni radiometriche (40Ar/39Ar, Gattacecca et al., 2007) indicano un'età di 18,95±0,07 (Burdigaliano).

(UNV) Unità di Nuraghe Vittore: è costituita da colate di andesiti basaltiche e basalti, con caratteristiche prevalenti di autobrecce, e daciti porfiriche. Le lave coerenti hanno colore grigio scuro e tessitura porfirica per fenocristalli di plagioclasio, pirosseno e olivina in pasta di fondo microcristallina. Presentano frequente fratturazione tipo *platy jointing* secondo la direzione di flusso. Le lave a blocchi sono costituite da blocchi irregolari e eterometrici di lava, debolmente vescicolati, a tessitura clasto-sostenuta, con arrossamento dovuto ad alterazione idrotermale. I rapporti con le piroclastiti a contatto a letto (SSU) e a tetto (UUI) sono caratterizzati da disconformità. Burdigaliano inferiore.

(MLO) Unità di Villanova Monteleone: sono costituiti da depositi di flusso piroclastico in facies ignimbritica, a chimismo riodacitico, da saldati a mediamente saldati, con strutture vitroclastiche e/o eutaxitiche, e cristalli liberi di plagioclasio, sanidino, clinopirosseno, anfibolo, biotite e rare olivine. Burdigaliano.

(OMN) Unità di Romana: rappresentata da depositi di flusso piroclastico in facies ignimbritica a chimismo riodacitico, pomiceo-cineritici, mediamente saldati, ricchi in pomici e cristalli liberi di Pl, San, Bt, e subordinato Px.

(SSU) Unità di Su Suerzu: rappresentati da depositi di flusso piroclastico in facies ignimbritica, saldati, e con tessitura paratassitica, di colore rossastro, con fiammae grigiastre di dimensioni comprese tra 2 cm e 20 cm, e litici centimetrici costituiti da altre ignimbriti o da andesiti. Nell'area a NNW di **Thiesi** è presente un prodotto di aspetto ossidianaceo, probabilmente originato dalla silicizzazione di una piroclastite, di colore grigio da chiaro a scuso, con spessore limitato (7-8 m), preceduto da cineriti bianche contenenti frustoli carboniosi e litici e lapilli accrezionali. I depositi di Su Suerzu sono delimitati dalle Lave di Pala Mantedda (MTD) a letto, e dai corpi di Nuraghe Vittore (UNV) a tetto, con rapporti di disconformità. La composizione chimica delle ignimbriti è riodacitica, mentre lo spessore varia tra 15-20 m fino a 70 m. Burdigaliano.

5.1.2. Distretto Vulcanico di Osilo-Castelsardo (Miocene Inferiore)

(ILV) Unità di Monte sa Silva: sono costituiti da piroclastiti di flusso pomiceo-cineritiche, di colore bianco-grigiastro, non saldate, ricche di fenoclasti (plagioclasio, quarzo, biotite), con litici di vulcaniti di dimensioni da 3 a 10 cm, e pomici di dimensioni variabili tra il centimetro e 5 cm. Le piroclastiti sono prevalentemente massive, con rari livelli grossolanamente stratificati per effetto della concentrazione dei litici. Il chimismo dei depositi è riolitico, e lo spessore varia da 10 fino a 100 m. L'età radiometrica determinata col metodo 39Ar/40Ar (progetto CARG) è di 18,61±0,23 Ma. Burdigaliano.

5.2. Successione sedimentaria Oligo-Miocenica del Logudoro-Sassarese

La successione sedimentaria miocenica affiorante nell'area di interesse è caratterizzata dalla presenza di due sequenze deposizionali limitate da discordanze riconoscibili a scala bacinale. Il substrato di questi depositi è costituito da vulcaniti ed epiclastiti di età compresa tra i 23 e i 18 Ma.

La prima sequenza deposizionale è costituita da depositi continentali fluviali e di piana alluvionale, deltizi e marini di piattaforma, mentre la seconda sequenza è costituita da depositi fluvio-marini e carbonatici di piattaforma.

	Geol. Cosima Atzori	N° Doc.	Dour O	Pagina
BENTO Energy Sri		IT-VesBen-CLP-CIV-TR-19	Rev 0	13 di 35

(RESa) Litofacies nella Formazione di Mores: nota come "calcari inferiori", è costituita da una successione di calcareniti, calcari bioclastici fossiliferi, e calcari a componente terrigena variabile, con faune a gasteropodi "Turritelle", ostreidi ed echinidi (Scutella, Amphiope), riferibili al Miocene inferiore (Burdigaliano). Il passaggio alla soprastante formazione di Borutta (RTU) presenta spesso caratteri eteropici, infatti può esser sormontata direttamente dalla Formazione di Monte Santo (NST). Burdigaliano superiore.

(RTU) Formazione di Borutta: si tratta di una successione di marne, marne arenacee bioturbate, calcari marnosi e siltiti, localmente in alternanze ritmiche, di colore da grigio-bruno a biancastro-giallastro. Tali depositi, il cui spessore varia tra 100 e 200 m, presentano contatto superiore eteropico con le arenarie della formazione di Florinas, oppure direttamente con i calcari della Formazione di Monte Santo (NST). Il contenuto fossilifero abbondante, costituito da echinidi, bivalvi, gasteropodi, pteropodi, foraminiferi planctonici e ostracodi, permette di riferire i depositi di questa formazione al Burdigaliano superiore - Langhiano.

(TLR) Unità di Chelchedu-Tiloromo. Andesiti e andesiti basaltiche in cupole di ristagno, ipocristalline, porfiriche per fenocristalli di Pl, Ol, Cpx; intercalate e/o iniettate entro i depositi piroclastici dell'unità UUI.

Formazione del Rio Minore. Depositi epiclastici con intercalazioni di selci, siltiti e marne con resti di piante, conglomerati, e calcari silicizzati di ambiente lacustre ("Formazione lacustre" Auct.). Burdigaliano

(FSI) Unità di Monte Frusciu. Daciti ipocristalline, porfiriche per fenocristalli di Pl, Sa, Bt, Am, Mag; in cupole di ristagno e locali versamenti laterali. (K/Ar 17,5 ± 0,5 Ma: Lecca et alii, 1997), (40Ar/39Ar bt: 18,48 ± 0,18 Ma: Progemisa S.p.A., dati

(NST) Formazione di Monte Santo: è costituita da una successione di calcari bioclastici di piattaforma interna, con rare intercalazioni silicoclastiche ed episodi biohermali, e calcareniti. Poggiano eteropicamente sopra la Formazione di Florinas, quella di Borutta (RTU) o sulle vulcaniti. Gli affioramenti che poggiano sulla Formazione di Florinas sono costituiti da *grainstone* con stratificazione incrociata o clinoformi, ricche in alghe calcaree (*Rodophyllum*, *Lithophyllum*) e coralli (*Tarbellastrea, Porites*), con accumuli di *algal ball*, gasteropodi, lamellibranchi, echinidi, macroforaminiferi. Quando poggia sulle marne della Formazione di Borutta (RTU), il passaggio avviene in giacitura caotica ed erosiva, con slumping e megabrecce. Lo spessore è variabile, con un massimo di 50 m. L'associazione fossilifera permette di riferire tali depositi al Serravalliano - Tortoniano.

5.3. Depositi Quaternari dell'area continentale

I depositi quaternari cartografati nell'area di studio sono generalmente poco rilevanti; sono rappresentati principalmente da depositi alluvionali, depositi di versante e sedimenti legati a gravità.

(PVM2a) Litofacies nel Subsintema di Portovesme: si tratta di depositi di ghiaie e alluvioni terrazzate, da medie a grossolane, con subordinate sabbie. Pleistocene superiore.

(a) Depositi di versante: sono costituiti da detriti con clasti angolosi, talora parzialmente cementati accumulati essenzialmente per gravità alla base dei versanti rocciosi più ripidi. Olocene.

(a1a) Sedimenti legati a gravità: sono costituiti di frana, e rappresentano corpi di frana antichi accumulati essenzialmente per gravità alla base dei versanti rocciosi più ripidi. Olocene.

AG07

AG03

LGS

RESa

GS

SSU

GS

NIN

N

6. Inquadramento geomorfologico

Il territorio indagato è caratterizzato principalmente dalla presenza di altopiani, con rilievi tabulari e dislivelli massimi dell'ordine di 350 m circa tra monte e valle, e morfologie a *cuestas* dovute alla presenza di versanti con pendenze talvolta differenti, che individuano valli a orientamento SW-NE e N-S. I rilievi presentano altezze massime di 550-570 m s.l.m., mentre le valli si trovano da quote minime di 200m fino a 350 m circa.

I fenomeni di sollevamento tettonico hanno ridefinito la morfologia del paesaggio operando un ringiovanimento del rilievo, innescando una nuova azione geomorfogenetica ad opera degli agenti atmosferici (acqua, vento in primis) che hanno rimodellato l'altopiano così come lo conosciamo, ovvero solcato da profonde incisioni vallive che riprendono le linee di fratturazione tettoniche, che isolano il settore montano distinguendolo nettamente dalle aree pianeggianti circostanti.

I prodotti di erosione vengono trasportati dall'acqua e dal vento e si depositano in relazione alla loro dimensione e all'energia di trasporto delle acque lungo le pendici dei versanti e nelle valli andando a costituire le coperture sedimentarie.

Le morfologie osservabili in quest'area sono strettamente connesse alle caratteristiche di messa in posto e dalle caratteristiche fisico-chimiche delle litologie presenti e dalla tipologia ed intensità degli agenti modellanti predominanti.

Il settore oggetto di studio è contraddistinto essenzialmente da due unità geomorfologiche:

- 1. i rilievi di natura vulcanica, dati dalle colate di flusso piroclastico nel caso della Monte Longos Fm., e dalle daciti nel caso della Monte Frusciu Fm.
- 2. le coperture sedimentarie, date dalla Formazione di Mores.

I primi rappresentano la manifestazione di un vulcanismo appartenente al ciclo calco-alcalino oligo-miocenico, che produsse flussi piroclastici e in subordine lavici. Il paesaggio è dominato da rilievi tabulari costituiti dalla sovrapposizione di bancate estese e generalmente inclinate; sono costituite prevalentemente da piroclastiti a chimismo acido e intermedio, di aspetto massivo e con fessurazioni di raffreddamento colonnari irregolari e prismatiche, talvolta anche tabulari.

DENTIL Enorgy Srl	Cool Cosimo Atzori	N° Doc.	Boy 0	Pagina
BEINTO ETIELBY SIT	Geol. Cosilia Alzon	IT-VesBen-CLP-CIV-TR-19	KeV U	16 di 35

Figura 7 Parete carbonatica esposta a Nord nella parte meridionale del parco

Alla fratturazione da raffreddamento si sovrappongono frequenti fratturazioni legate alla successiva attività tettonica o a cedimenti puramente gravitativi. L'alternanza tra le bancate con facies meno coerenti, essenzialmente tufacee, e quelle decisamente litoidi e resistenti, ossia ignimbritiche o laviche, determina il profilo a "gradinata" che caratterizza i versanti dei rilievi. Questa morfologia, nota in letteratura col termine di cuestas, è particolarmente evidente nei rilievi a Nord delle AG01, AG02 e la AG03. Meno diffuse che nei territori circostanti, le lave, di composizione prevalentemente andesitica, si rinvengono a Nord della AG05, nella quale è rappresentato da una sequenza di colate sub-orizzontali e di aspetto massivo, con ritrazioni per consolidamento indicate da fessurazioni prismatiche e macrostrutture colonnari.

Le coperture sedimentarie, testimoniano quelle fasi di deposito in ambiente dapprima continentale e fluviolacustre, successivamente marino, verificatesi dalle ultime fasi del ciclo vulcanico e proseguite durante la trasgressione marina che interessò la Sardegna occidentale nel Miocene inferiore e medio, in un contesto in cui i maggiori rilievi vulcanici, per via della loro quota, emergevano da un mare poco profondo. Questa condizione ha rappresentato l'ambiente di deposito da cui traggono origine le strutture che poggiano sulle formazioni vulcaniche delle quali, per quanto si è detto, quelle più elevate risultano prive di copertura. Di ambiente fluvio-lacustre, instaurato nel paesaggio vulcanico, risultano i depositi conglomeratici a elementi vulcanici in parte elaborati e caotici, alternati con depositi a granulometria fine, verdastri, con sottile stratificazione piano-parallela, diffusamente alterati e argillificati. Tali formazioni, derivate dall'erosione e rimaneggiamento delle vulcaniti nonché dalla sedimentazione in ambiente acquatico di materiali piroclastici sottili, si rinvengono lungo i versanti della valle

	Cool Cocimo Atzori	N° Doc.	Rev 0	Pagina
BENTO Energy Sri	Geol. Cosima Atzori	IT-VesBen-CLP-CIV-TR-19		17 di 35

del Riu Minore, lungo il corso del Riu Mannu e presso Ponte Camedda, alla base della successione marina. Questa è costituita da calcari organogeni, biocalcareniti, calcari marnosi e arenarie calcaree, poggianti su conglomerati di trasgressione a cemento calcareo e clasti vulcanici. Benché lungo le incisioni fluviali e a margine dei rilievi vulcanici le strutture sedimentarie siano state smantellate dall'erosione, queste coperture giacciono talvolta sottoforma di tavolati e pianori come nel caso dell'area centro-meridionale del parco qualche centinaio di metri a Est della AG01. Le stesse azioni erosive che hanno determinato la frammentazione delle strutture sedimentarie, si sono esplicate su tutto il territorio dando luogo a quei prodotti dell'alterazione e del degrado diffusi nell'area in esame, che costituiscono spesse coltri di detrito di falda, orizzonti pedogenizzati e depositi alluvionali lungo i corsi d'acqua.

Nel complesso entrambe le unità geomorfologiche conferiscono all'area un paesaggio ad altopiani, le Formazioni di Mores (calcari) e di Monte Longos (depositi di flusso piroclastico) tendono a giacere suborizzontali arrivando nei casi limite a formare delle Cuestas. Diversamente, la litologia che interessa direttamente la fondazione dell Turbine, ovvero la Formazione di Monte Frusciu (Daciti), risulta essere interessata da una fratturazione la cui giacitura è influenzata dal flusso lavico durante le messa in posto, questo fenomeno prende il nome di "platy jointing".

Osservando le foto aeree è possibile notare come queste discontinuità a piccola scala prendano un andamento concentrico a giustificare l'espansione da uno o più centri d'emissione.

Laddove la giacitura dei *platy joints* presenta pendenze elevate, tende talvolta a dare luogo a versanti ad Hogback.

Figura 8 Vista in sezione della struttura stratificata con adamento concentrico nell'altopiano a sud del parco, presunto centro d'emissione a sinistra nella foto.

6.1. Lineamenti geomorfologici dell'area di studio

I tratti geomorfologici del settore di studio sono dati da estese aree a rilievi tabulari appartenenti al ciclo vulcanosedimentario miocenico, incise dai corsi d'acqua principali e dai loro affluenti. I corsi d'acqua incidono le rocce formando valli con versanti poco acclivi. Le rocce affioranti nell'area di studio appaiono incise da un reticolo idrografico impostato sui principali lineamenti strutturali, in connessione con l'evoluzione tettonica dell'intero settore e in particolar modo con l'evoluzione plio-quaternaria.

Le superfici morfologiche principali sono rappresentate da modesti rilievi tabulari e dai resti di un altipiano profondamente dissecato dai processi erosivi lineari.

PENTLI Enormy Srl	Cool Cocimo Atzori	N° Doc.	Boy O	Pagina
BEINTO EITERBY SIT	Geol. Cosilia Alzon	IT-VesBen-CLP-CIV-TR-19	KeV U	18 di 35

Nel settore occidentale, nei pressi delle AG01, AG02 e AG03 il paesaggio si compone di campi e dolci rilievi le cui quote vanno dai 490m ai 500m circa, nel settore centrale la AG04 è situata da un gruppo di rilievi dalle quote pari a 520m, 527m e 542mslm.

Figura 9 Piazzola AG01

Figura 10 Piazzola AG02

	Cool Cocimo Attori	N° Doc.	Davi O	Pagina
BEINTO Effergy Sh	Geol. Cosima Alzon	IT-VesBen-CLP-CIV-TR-19	Rev U	19 di 35

Figura 11 Piazzola AG03

Figura 12 Piazzola AG04

Le turbine AG05, AG06, AG07 e AG08 poggerranno su un unico altopiano con delle quote che si aggirano intorno a i 500m-540mslm.

RENTH Enorgy Srl	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
BEINTO EITERBY SIT		IT-VesBen-CLP-CIV-TR-19		20 di 35

Figura 13 Piazzola AG06

Il reticolato idrografico dell'area di studio mostra valli quasi sempre poco incassate, con prevalente andamento NW-SE e N-S.

Figura 14 Piazzola AG07

DENTLI Enorgy Srl	Caal Casima Ataari	N° Doc.	Boy 0	Pagina
BEINTO EITEI BY SIT	Geol. Cosilia Atzon	IT-VesBen-CLP-CIV-TR-19	Kev U	21 di 35

Figura 15 Piazzola AG08

Figura 16 Rilievo isolato a N del parco ospitante le Domus de Janas.

Nei pressi delle scarpate appartenenti alla formazione del Monte Tului e del Monte Longos sono state rilevate microforme ricorrenti quali tafoni, "nidi d'ape", vacuoli e cavità di varie dimensione, dovute principalmente all'idrolisi. I processi di degradazione meteorica per il quale i silicati e i minerali ferromagnesiaci, aggrediti dalle acque di precipitazione leggermente acidule per la presenza dell'anidride carbonica dell'atmosfera, si decompongono, possono comportare, per erosione selettiva, l'approfondimento e l'allargamento delle discontinuità, costituite da lesioni e fratture di origine meccanica della roccia, prodotte dagli agenti fisici della degradazione (dilatazioni termiche differenziali, azione di cuneo delle radici) e dalle forze tettoniche.

PENITI J Eporgy Srl	Gool Cosima Atzori	N° Doc.	Rev 0	Pagina
BEINTO Energy Sh	Geol. Cosima Alzon	IT-VesBen-CLP-CIV-TR-19		22 di 35

Figura 17 Erosione selettiva dovuta all'azione aggressiva dell'acqua nella roccia costituita da livelli di flusso piroclastico di differente competenza

Il processo dell'idrolisi dei silicati è massimo in condizioni di clima caldo-umido. La deflazione eolica può nel tempo rimuovere le parti rocciose distaccate, determinando nel blocco ancora inalterato la formazione di cavità tipiche, note come tafoni.

Figura 18 Esempio di tafonature ad ovest della AG04 affetta da tafonature.

DENITU Eporar Srl	N° Doc.	N° Doc.	Dev: 0	Pagina
BEINTO EITERBY SIT	Geol. Cosilia Alzon	IT-VesBen-CLP-CIV-TR-19	KeV U	23 di 35

Tra le morfologie osservabili nell'area a Nord del parco ve ne sono alcune strettamente connesse alle caratteristiche fisico-chimiche delle litologie presenti e dalla tipologia ed intensità degli agenti modellanti predominanti, in questo caso il carsismo.

Tale processo si sviluppa principalmente a seguito della dissoluzione chimica delle rocce carbonatiche. Il processo carsico rientra nel grande insieme delle azioni di disgregazione compiute dagli agenti esogeni a spese delle rocce affioranti sulla crosta terrestre. La corrosione avviene come nel caso dell'idrolisi sopra citata per opera delle acque meteoriche che, oltre a contenere una certa quantità di anidride carbonica atmosferica disciolta al loro interno, scorrendo sulla superficie del suolo ed attraversando lo strato superficiale del suolo si arricchiscono ulteriormente di CO2. Queste acque reagiscono con la roccia calcarea intaccandola lentamente, sia in superficie sia infiltrandosi nel reticolo, fino a dar luogo nell'arco del tempo a veri e propri condotti di dimensioni variabili, che costituiscono i classici acquiferi tipici delle rocce carbonatiche. Infatti le acque ricche di anidride carbonica sono particolarmente aggressive nei confronti del carbonato di calcio.

6.2. Definizione dell'area geomorfologicamente significativa

La predisposizione naturale di un territorio a fenomeni di instabilità legata alle dinamiche geomorfologiche deriva in generale dall'interazione di diversi fattori come natura geologica dei terreni, loro assetto sia deposizionale che geostrutturale, circolazione delle acque superficiali e sotterranee con la morfologia, cioè la geometria del territorio. L'area oggetto di intervento, in base delle caratteristiche suddette **non presenta allo stato attuale evidenze di dissesto di natura geologico-geomorfologica in atto**, mentre, potenziali fenomeni di dissesto potrebbero presentarsi con la naturale evoluzione del pendio.

L'area geomorfologicamente significativa per le azioni di progetto è quell'area in cui si esplicano tutti i processi geomorfici, il cui effetto può generare interazioni con le dinamiche ambientali. Pertanto la stessa, nello specifico, si individua nei versanti e nei sub-bacini idrografici presenti che interferiscono con l'opera.

		N° Doc.	Rev 0	Pagina
BENTU Energy Srl	Geol. Cosima Atzori	IT-VesBen-CLP-CIV-TR-19		24 di 35

7. Inquadramento sismico

La sismicità indica la frequenza e la forza con cui si manifestano i terremoti, ed è una caratteristica fisica del territorio. Sulla base delle conoscenze relative alla frequenza e all'energia associate ai terremoti che caratterizzano un territorio, si attribuisce un valore di probabilità al verificarsi di un evento sismico di una data magnitudo in un certo intervallo di tempo, possiamo definirne la pericolosità sismica. La pericolosità sismica sarà tanto più elevata quanto più probabile sarà il verificarsi di un terremoto di elevata magnitudo, a parità di intervallo di tempo

Figura 19 Carta della pericolosità sismica del territorio nazionale.

considerato.

Le conseguenze di un terremoto dipendono anche dalle caratteristiche di resistenza delle costruzioni alle azioni di una scossa sismica. La predisposizione di una costruzione ad essere danneggiata si definisce vulnerabilità. Quanto più un edificio è vulnerabile (per tipologia, progettazione inadeguata, scadente qualità dei materiali e modalità di costruzione, scarsa manutenzione), tanto maggiori saranno le conseguenze.

Infine, la maggiore o minore presenza di beni esposti al rischio, la possibilità cioè di subire un danno economico, ai beni culturali, la perdita di vite umane, è definita esposizione.

Il rischio sismico, determinato dalla combinazione della pericolosità, dalla vulnerabilità e dall'esposizione, è la misura dei danni attesi in un dato intervallo di tempo, in base al tipo di sismicità, di resistenza delle costruzioni e di antropizzazione (natura, qualità e quantità dei beni esposti).

Per quanto concerne la sismicità, ai sensi della normativa di settore citata in precedenza, il territorio comunale di **Thiesi** ricade in **Zona 4 a bassa pericolosità**, vengono indicati i parametri sismici da utilizzare nelle verifiche secondo quanto previsto dalle NTC 2018.

7.1. Azione sismica

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "**pericolosità sismica di base**" del sito di costruzione e sono funzione delle caratteristiche morfologiche e stratigrafiche che determinano la risposta sismica locale.

Dalla normativa vigente NTC2018 si evince che la pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (di categoria A come definita al § 3.2.2), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se(T), con riferimento a prefissate probabilità di eccedenza PVR come definite nel § 3.2.1, nel periodo di riferimento VR, come definito nel § 2.4. inoltre, in alternativa è ammesso l'uso di accelerogrammi, purché correttamente commisurati alla pericolosità sismica locale dell'area della costruzione.

Le forme spettrali sono definite, per ciascuna delle probabilità di superamento PVR nel periodo di riferimento VR, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

a_g accelerazione orizzontale massima al sito;

Fo valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

RENTH Enormy Srl	Gool Cosima Atzori	N° Doc.	Boy O	Pagina
BLINTO LITERBY SIT	Geol. Cosima Atzon	IT-VesBen-CLP-CIV-TR-19	Nev U	25 di 35

T_c* valore di riferimento per la determinazione del periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.¹

Per i valori di **a**_g, **Fo** e **T**_c*necessari per la determinazione delle azioni sismiche, si fa riferimento agli Allegati A e B al Decreto del Ministro delle Infrastrutture 14 gennaio 2008, pubblicato nel S.O. alla Gazzetta Ufficiale del 4 febbraio 2008, n.29, ed eventuali successivi aggiornamenti.

7.2. Vita nominale, classi d'uso e periodo di riferimento

La tipologia di costruzioni previste in progetto (NTC2018 - par.2.4) ha **vita nominale ≥ 50 anni** e appartiene alla classe d'uso IL.

	TIPI DI COSTRUZIONI	Valori minimi di V _N (anni)
1	Costruzioni temporanee e provvisorie	10
2	Costruzioni con livelli di prestazioni ordinari	50
3	Costruzioni con livelli di prestazioni elevati	100

Figura 20 Valori minimi della Vita nominale VN di progetto per i diversi tipi di costruzioni.

- Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.
- *Classe II:* Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.
- Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.
- *Classe IV:* Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento VR che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale VN per il coefficiente d'uso C_U :

$VR = VN \times CU$

Il valore del coefficiente d'uso CU è definito, al variare della classe d'uso, come mostrato in Tab. 2.4.II (Figura 22). Nel Caso specifico Cu = 1,0.

¹ Per i valori di ag, Fo e TC*necessari per la determinazione delle azioni sismiche, si fa riferimento agli Allegati A e B al Decreto del Ministro delle Infrastrutture 14 gennaio 2008, pubblicato nel S.O. alla Gazzetta Ufficiale del 4 febbraio 2008, n.29, ed eventuali successivi aggiornamenti.

RENTLI Eporgy Srl	Geol Cosima Atzori	sima Atzori	Pov 0	Pagina
DENTO LITERBY SIT	Geol. Cosima Atzon	IT-VesBen-CLP-CIV-TR-19	Nev 0	26 di 35

CLASSE D'USO	Ι	II	III	IV
COEFFICIENTE C _u	0,7	1,0	1,5	2,0

Figura 21 Valori di coefficiente d'uso CU

Il valore del periodo di riferimento è V_r = 50

7.3. Amplificazione stratigrafica e topografica

Nel caso di pendii con inclinazione maggiore di 15° e altezza maggiore di 30 m, l'azione sismica di progetto deve essere opportunamente incrementata o attraverso un coefficiente di amplificazione topografica o in base ai risultati di una specifica analisi bidimensionale della risposta sismica locale, con la quale si valutano anche gli effetti di amplificazione stratigrafica

Per le aree di installazione delle turbine la **categoria topografica è la T1** a cui corrisponde un valore del fattore di amplificazione pari a 1.0.

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15°
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^\circ \le i \le 30^\circ$
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

Figure 23 Categorie topografiche (NTC 2018 3.2 - Tab. 3.2.II)

Tab. 3.2. V = Valori mussimi dei coefficiente di umplificazione lopografica $S_{\rm T}$			
Categoria topografica	Ubicazione dell'opera o dell'intervento	ST	
T1	-	1,0	
T2	In corrispondenza della sommità del pendio	1,2	
T3	In corrispondenza della cresta di un rilievo con	1,2	
	pendenza media minore o uguale a 30°		
T4	In corrispondenza della cresta di un rilievo con	1,4	
	pendenza media maggiore di 30°		

Tab. 3.2.V – Valori massimi del coefficiente di amplificazione topografica S

Figura 22 Valori massimi del coefficiente di amplificazione topografica ST (NTC 2018 3.2 - Tab. 3.2.V)

Al fine di definire l'azione sismica di progetto, basata sull'identificazione della categoria del sottosuolo di riferimento, si è voluto definire il parametro fondamentale per la "classificazione sismica dei terreni", e quindi per la determinazione della categoria, **corrispondente alla velocità equivalente di propagazione delle onde di taglio VS30**, valutata entro i primi 30 m di profondità dal piano campagna ma nel caso specifico relativa alla quota di imposta delle fondazioni.

Per tale scopo, in accordo agli approcci semplificati proposti dal D.M. 17/01/2018 - Tab. 3.2.II (Figura 23) la determinazione del parametro delle onde di taglio VS30 è stato stimato mediante misura delle velocità sismiche attraverso l'esecuzione di una prospezione geofisica MASW di seguito descritta in dettaglio.

8. Indagini geognostiche

La necessità di integrare le informazioni di tipo geologico e geotecnico derivanti da studi pregressi, dalla letteratura di settore e dai rilievi geologici e geostrutturali in sito, ha reso necessario predisporre un piano di indagini geognostiche propedeutiche alla definizione del modello geologico di riferimento di sito funzionale alle opere previste in progetto così come richiamato dalle Norme Tecniche sulle Costruzioni (NTC2018 - §Cap. 6.2.1). L'obiettivo delle indagini realizzate è stato:

- 1. Definire la stratigrafia ed i rapporti tra le formazioni geologiche interessate dagli interventi;
- 2. Definire le caratteristiche fisico-meccaniche degli ammassi rocciosi coinvolti nelle opere in progetto;
- 3. Individuare la presenza di circolazione d'acqua sotterranea alle profondità di interesse in relazione ai volumi significativi delle opere (fondazioni, piazzole, trincee e rilevati stradali, stabilità dei pendii)

La metodica utilizzata è quella indiretta in sito, ovvero l'indagine geofisica, questa costituisce parte integrante delle indagini geognostiche dirette e indirette legate alla caratterizzazione dei terreni di fondazione. In particolare si pone come obbiettivo la ricostruzione dell'assetto sismo-stratigrafico dei terreni sede di posa delle opere di fondazione nonché la classificazione del suolo di fondazione per le categorie semplificate indicate nel Decreto 17 gennaio 2018 - NTC 2018 aggiornamento delle "Norme tecniche per le costruzioni".

Sono stati eseguiti di n°**3 stendimenti di geoelettrica** (08 e 14 Giugno 2022), **3 stendimenti di sismica** con tecnica **MASW e rifrazione in onde P**. Tutte le basi sismiche MASW ricadono lungo il medesimo allineamento delle rifrazioni, così come i 3 stendimenti geoelettrici, i quali hanno il medesimo centro degli allineamenti sismici ma sono leggermente più lunghi (93,0 m).

E' stato inoltre eseguito il Rilievo topografico tramite GPS differenziale STONEX S70G (geofoni, punti di shot, elettrodi /picchetti) e restituzione dei profili altimetrici da impiegare nelle sezioni di tomografia elettrica e sismica. Sono stati infine elaborati i dati ottenuti tramite analisi delle prospezioni acquisite in campagna, applicazione filtri, e restituzione grafica delle sezioni sismiche con l'impiego di software specialistici.

Al fine di definire le caratteristiche fisico-meccaniche e sismiche dei terreni di sedime di cui al progetto in data 08 e 14 Giugno 2022 dalla ditta GEOSERVICE Snc specializzata nel settore, è stata eseguita una prospezione sismica eseguita con la tecnica MASW.

L'indagine sismica attiva con tecnica MASW (Multichannel Analysis of Surface Waves) è una tecnica di indagine non invasiva, che attraverso la definizione del profilo di velocità delle onde di taglio verticali Vs, è in grado di ricostruire una sismo-stratigrafia atta a permettere la definizione della categoria di suolo ai sensi del Decreto 17/01/2018. Per l'esecuzione del cantiere d'interesse, è stata usata una strumentazione di acquisizione DoReMi, prodotto dalla SARA Electronic Instruments, 24 bit con frequenza di campionamento di 5000 Hz per ognuno dei canali registrati, ciascuno attrezzato con geofoni verticali SARA Electronics con frequenza propria di 4.5 Hz. Per l'energizzazione è stata usata una mazza battente da 10 kg impattante su piastra di battuta in duralluminio, diametro 18 cm, spessore 4 cm, peso 2 kg.

Stendimento	Metodo di indagine	Orientamento	Lunghezza (m)
SMT01- AG02	MASW	W-E	69,0
SMT02- AG06	MASW	SW-NE	69,0
SMT03- AG05	MASW	NW-SE	69,0

Tabella 1 Ubicazione degli stendimenti

8.1. Indagini sismiche: MASW

Metodologia

La geofisica osserva il comportamento delle onde che si propagano all'interno dei materiali. Un segnale sismico, infatti, si modifica in funzione delle caratteristiche del mezzo che attraversa. Le onde possono essere generate in modo artificiale attraverso l'uso di masse battenti, di scoppi, etc.

Moto del segnale sismico

Il segnale sismico può essere scomposto in più fasi ognuna delle quali identifica il movimento delle particelle investite dalle onde sismiche. Le fasi possono essere:

• P-Longitudinale: onda profonda di compressione;

- S-Trasversale: onda profonda di taglio;
- L-Love: onda di superficie, composta da onde P e S;
- R-Rayleigh: onda di superficie composta da un movimento ellittico e retrogrado.

Onde di Rayleigh – "R"

In passato gli studi sulla diffusione delle onde sismiche si sono concentrati sulla propagazione delle onde profonde (P,S) considerando le onde di superficie come un disturbo del segnale sismico da analizzare. Recenti studi hanno consentito di creare dei modelli matematici avanzati per l'analisi delle onde di superficie in mezzi a differente rigidezza.

Analisi del segnale con tecnica MASW

Secondo l'ipotesi fondamentale della fisica lineare (Teorema di Fourier) i segnali possono essere rappresentati come la somma di segnali indipendenti, dette armoniche del segnale. Tali armoniche, per analisi monodimensionali, sono funzioni trigonometriche seno e coseno, e si comportano in modo indipendente non interagendo tra di loro. Concentrando l'attenzione su ciascuna componente armonica il risultato finale in analisi lineare risulterà equivalente alla somma dei comportamenti parziali corrispondenti alle singole armoniche. L'analisi di Fourier (analisi spettrale FFT) è lo strumento fondamentale per la caratterizzazione spettrale del segnale. L'analisi delle onde di Rayleigh, mediante tecnica MASW, viene eseguita con la trattazione spettrale del segnale nel dominio trasformato dove è possibile, in modo abbastanza agevole, identificare il segnale relativo alle onde di Rayleigh rispetto ad altri tipi di segnali, osservando, inoltre, che le

onde di Rayleigh si propagano con velocità che è funzione della frequenza. Il legame velocità frequenza è detto spettro di dispersione. La curva di dispersione individuata nel dominio f-k è detta curva di dispersione sperimentale, e rappresenta in tale dominio le massime ampiezze dello spettro.

Modellizzazione

E' possibile simulare, a partire da un modello geotecnico sintetico caratterizzato da spessore, densità, coefficiente di Poisson, velocità delle onde S e velocità delle Onde P, la curva di dispersione teorica la quale lega velocità e lunghezza d'onda secondo la relazione:

$v = \lambda \times v$

Modificando i parametri del modello geotecnico sintetico, si può ottenere una sovrapposizione della curva di dispersione teorica con quella sperimentale: questa fase è detta di inversione e consente di determinare il profilo delle velocità in mezzi a differente rigidezza.

Modi di vibrazione

Sia nella curva di inversione teorica che in quella sperimentale è possibile individuare le diverse configurazioni di vibrazione del terreno. I modi per le onde di Rayleigh possono essere: deformazioni a contatto con l'aria, deformazioni quasi nulle a metà della lunghezza d'onda e deformazioni nulle a profondità elevate.

DENTLI Enorgy Srl	Cool Cosimo Attori	N° Doc.	Pov 0	Pagina
DEINTO EITEIRY SIT	Geol. Cosinia Atzon	IT-VesBen-CLP-CIV-TR-19	Kev U	29 di 35

Profondità di indagine

Le onde di Rayleigh decadono a profondità circa uguali alla lunghezza d'onda. Piccole lunghezze d'onda (alte frequenze) consentono di indagare zone superficiali mentre grandi lunghezze d'onda (basse frequenze) consentono indagini a maggiore profondità.

8.1.1. Specifiche delle indagini svolte

L'indagine si sviluppa mediante la materializzazione sul terreno di una linea retta mediante la posa di una fettuccia metrica. A seguire vengono posizionati i geofoni intervallati ad una distanza pari a **3,0** m in funzione anche della disponibilità di spazio. Esternamente alla stesa geofonica, da ora base sismica, a distanza di interesse che può essere pari ad un multiplo della distanza intergeofonica ma anche variabile (in funzione delle disponibilità di cantiere), sia in andata (ovvero in prossimità del geofono 1) che al ritorno (ovvero all'ultimo geofono posizionato sulla base sismica), vengono svolte delle energizzazioni mediante massa battente pari a Kg 10,0. Nel caso in esame, sono state svolte le energizzazioni in "andata" e in "ritorno" con distanza dal geofono 1 e dal geofono 24 crescente e pari a multipli della distanza intergeofonica (v. schema), oltre che una battuta al centro della base sismica.

Il numero di geofoni utile all'esecuzione ottimale di un'indagine M.A.S.W. è risultato, per il cantiere svolto, di 24 geofoni dei quali sono state utilizzate tutte le tracce. Il tempo dell'acquisizione è stato definito tra 1.00 e 2.00 secondi.

MASW: schema geometrico delle acquisizioni a 24 geofoni e interdistanza di 3,0 m

8.1.2. Caratteristiche della strumentazione impiegata

Il metodo interpretativo della M.A.S.W. si compone dei seguenti passaggi di analisi dei segnali acquisiti:

- 7. individuazione della variazione del segnale acquisito nel tempo
- analisi di Fourier con definizione dei contenuti spettrali acquisiti nei segnali

• stacking dello spostamento di fase con definizione delle velocità di rotazione retrograda compatibile con il campo di frequenza definita.

A posteriori dell'analisi matematica del segnale acquisito, definito un modello stratigrafico compatibile con la geologia locale, si provvede all'inversione della curva di dispersione ottenendo la sismo-stratigrafia.

L'elaborazione dei dati che ha prodotto il profilo di velocità è stata realizzata grazie all'impiego del software ZondST2D.

8.1.3. Categorie di sottosuolo - D.M. 19.01.2018 (NTC 2018)

Le "Norme Tecniche per le Costruzioni" – Decreto del 19/01/2018 definiscono le regole per progettare l'opera sia in zona sismica che in zona non sismica. La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

con:

hi spessore dell'i-esimo strato;

VS, i velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Per le fondazioni superficiali, la profondità del substrato H è riferita al piano di imposta delle stesse, mentre per le fondazioni su pali è riferita alla testa dei pali. Nel caso di opere di sostegno di terreni naturali, la profondità è riferita alla testa dell'opera. Per muri di sostegno di terrapieni, la profondità è riferita al piano di imposta della fondazione. Le categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato sono definite in Tab. 3.2.II.Per queste cinque categorie di sottosuolo, le azioni sismiche sono definibili come descritto al § 3.2.3 delle NTC 2018. Per qualsiasi condizione di sottosuolo non classificabile nelle categorie precedenti, è necessario predisporre specifiche analisi di risposta locale per la definizione delle azioni sismiche.

 Tabella 3.2.II. Categorie di sottosuolo (Fonte NTC 2018)

Categoria	Descrizione
А	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

BENTU Energy Srl	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesBen-CLP-CIV-TR-19		31 di 35

8.2. Risultati delle indagini del sito SMT01

8.2.1. Masw SMT01

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs dello stendimento SMT01, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

Profondità [m sotto il pc]	Descrizione
0 – 1,0	1° sismostrato con Vs di 580 m/s, Terre di copertura molto addensate
1,0 - 3,1	2° sismostrato con Vs di 790 m/s, Roccia fratturata
3,1 – 5,6	3° sismostrato con Vs tra 1010 e 1230 m/s, Substrato roccioso da fratturato a debolmente fratturato
5,6 - 17,7	4º sismostrato con Vs tra 1330 e 1580 m/s, Substrato roccioso sano
17,7 - 32,2	5° sismostrato con Vs tra 1750 e 2030 m/s, Substrato roccioso sano
>32,2	6° sismostrato con Vs di 2470 m/s, Substrato roccioso sano

MASW SMT01 - PROFILO Vs

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione

V _	Н
VS,eq =	$\sum_{i=1}^{N} h_{i}$
	$\sum_{i=1}^{L} V_{S,i}$

hi spessore dell'i-esimo strato;

V_{S,i}velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

con:

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Esaminato il profilo delle Vs si pone come profondità del substrato 3,1 m (Vs>800 m/s)

La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a 3,1 m di profondità dal p.c. è pari a: Vs eq = 3,1/0,004372=709 m/s.

Ciò consente di classificare il terreno come **Categoria B** Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

Chiaramente in caso di realizzazione di <u>fondazioni a profondità maggiore di 0,2 m</u> da p.c. la classificazione del sottosuolo passa ad una **categoria A**

	Caal Casima Atrani	N° Doc.	Dov 0	Pagina
BENTO Energy Sh	Geol. Cosima Alzon	IT-VesBen-CLP-CIV-TR-19	Rev U	32 di 35

8.3. Risultati delle indagini del sito SMT02

8.3.1. Masw SMT02

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs dello stendimento SMT02, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

Profondità [m sotto il pc]	Descrizione
0 - 2,3	1° sismostrato con Vs tra 400 e 440 m/s, Terre mediamente addensate
2,3 - 6,3	2° sismostrato con Vs tra 520 e 670 m/s, Rocce fratturate
6,3 - 9,4	3° sismostrato con Vs di 880 m/s, Substrato roccioso fratturato
9,4 – 17,4	4º sismostrato con Vs tra 1170 e 1540 m/s, Substrato roccioso da fratturato a sano
17,4 – 31,9	5° sismostrato con Vs tra 1910 e 2120 m/s, Substrato roccioso sano
>31,9	6° sismostrato con Vs di 2200 m/s, Substrato roccioso sano

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione

hi spessore dell'i-esimo strato;

Vs,ivelocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

con:

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Esaminato il profilo delle Vs si pone come profondità del substrato 6,3 m (Vs>800 m/s)

La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a 6,3 m di profondità dal p.c. è pari a: Vs eq = 6,3/0,012101=520 m/s.

Ciò consente di classificare il terreno come **Categoria B** Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

DENTLI Enormy Srl	Caal Casima Atzari	N° Doc.	Poy 0	Pagina
DEINTO EITEIRY SIT	Geol. Cosilia Alzon	IT-VesBen-CLP-CIV-TR-19	Kev U	33 di 35

8.4. Risultati delle indagini del sito SMT03

8.4.1. Masw SMT03

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs dello stendimento SMT03, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

Profondità [m sotto il pc]	Descrizione
0,0 – 1,9	1° sismostrato con Vs tra 190 e 290 m/s, Terre debolmente addensate
1,9 – 4,5	2° sismostrato con Vs di 690 m/s, Roccia fratturata
4,5 - 5,9	3° sismostrato con Vs di 1100 m/s, Substrato roccioso fratturato
5,9 – 11,6	4° sismostrato con Vs tra 1400 e 1610 m/s, Substrato roccioso da fratturato a sano
11,6 – 23,9	5° sismostrato con Vs tra 1760 e 1870 m/s, Substrato roccioso sano
23,9 - 30,3	6° sismostrato con Vs di 2010 m/s, Substrato roccioso sano
>30,3	7° sismostrato con Vs > di 2280 m/s, Substrato roccioso sano

MASW SMT03 - PROFILO Vs

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione

hi spessore dell'i-esimo strato;

Vs,i velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

con:

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Esaminato il profilo delle Vs si pone come profondità del substrato 4,5 m (Vs>800 m/s)

La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a 4,5 m di profondità dal p.c. è pari a: Vs eq = 4,5/0,012294=366 m/s.

Ciò consente di classificare il terreno come **Categoria B** Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

BENTU Energy Srl	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesBen-CLP-CIV-TR-19		34 di 35

9. Categorie di sottosuolo e parametri di pericolosità sismica

Attraverso le indagini con la tecnica MASW si rileva un substrato roccioso (Vs>800 m/s) a profondità variabile tra 3,1m e 6,3m che dà luogo ovunque alla categoria B.

Categoria	Caratteristiche della superficie topografica
А	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde
	di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteri-
	stiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi-
	stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da
	valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi-
	stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-
	le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra
	180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consi-
	stenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-
	le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra
	100 e 180 m/s.
Е	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le catego-
	rie C o D, con profondità del substrato non superiore a 30 m.

Tab. 3.2.II – Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.

Per quanto riguarda le MASW, lungo gli stendimenti si evince la presenza di sismostrati con velocità Vs crescente con la profondità sino ad incontrare il bed rock con andamento e spessori indicati nei precedenti paragrafi. La velocità equivalente di propagazione delle onde di taglio calcolata per i differenti siti di indagine, che si ricorda sarà anche funzione del piano di posa delle fondazioni è riportata nel seguente schema riassuntivo:

Sigla Stendimento	Profondità substrato [m]	Vs _{eq} [m/s]	Categoria sottosuolo (NTC2018)
SMT01-AG02	3,1	709	B
SMT02-AG06	6,3	520	В
SMT03-AG05	4,5	366	В

BENTU Energy Srl	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesBen-CLP-CIV-TR-19		35 di 35

In base ai dati di localizzazione, tipologia dell'opera e classe d'uso si quindi sono calcolati i parametri sismici relativi alle verifiche SLO, SLD, SLV e SLC. (SW AZTEC Sisma 10.0):

-Parametri sismici	i ———			*
	T _R	a _g	F ₀	T _c
	[anni]	[m/s ²]	[—]	[s]
SLO	30	0,183	2,610	0,273
SLD	50	0,231	2,670	0,296
SLV	475	0,490	2,880	0,340
SLC	975	0,591	2,980	0,372

dove: Stati limite di esercizio Stato Limite di Operatività (SLO) Stato Limite di Danno (SLD)

Stati limite ultimi Stato Limite di salvaguardia della Vita (SLV) Stato Limite di prevenzione del Collasso (SLC) $\begin{array}{c} \textbf{ag} \text{ accelerazione orizzontale massima al sito}\\ \textbf{Fo} valore massimo del fattore di ampl.dello spettro in accelerazione orizzontale\\ \textbf{T^C} periodo di inizio del tratto a velocità costante dello spettro in acc.orizzontale\\ \end{array}$

10. Conclusioni

Le indagini geofisiche MASW eseguite hanno permesso di definire le condizioni dei terreno secondo quanto richiesto dalle NTC 2018 in relazione alla pericolosità sismica di base.

Tutti i terreni investigati appartengono alla categoria di sottosuolo B – Rocce tenere e/o depositi a grana grossa molto addensati o terreni a grana fina molto consistenti, con velocità equivalenti comprese tra 366m/s e 709m/s