

IMPIANTO AGRIVOLTAICO "SERRAMANNA 2"

COMUNE DI SERRAMANNA

PROPONENTE

IMPIANTO AGRIVOLTAICO PER LA PRODUZIONE DI ENERGIA DA FONTE SOLARE NEL COMUNE DI SERRAMANNA

OGGETTO:

Valutazione previsionale di impatto acustico

CODICE ELABORATO

VIA-R03

COORDINAMENTO

BIA srl

P.IVA 03983480926 cod. destinatario KRRH6B9 + 39 347 596 5654 energhiabia@gmail.com energhiabia@pec.it piazza dell'Annunziata n. 7 09123 Cagliari (CA) | Sardegna

GRUPPO DI LAVORO S.I.A.

Dott.ssa Geol. Cosima Atzori
Dott. Ing. Fabio Massimo Calderaro
Dott. Giulio Casu
Dott.ssa Ing. Silvia Exana
Dott.ssa Ing. Ilaria Giovagnorio
Dott. Giovanni Lovigu
Dott. Ing Bruno Manca
Dott. Nat. Nicola Manis
Dott. Ing. Michele Piglaru
Dott. Ing. Giuseppe Pili
Dott. ng. Luca Salvadori
Dott.ssa Ing. Alessandra Scalas
Dott. Nat. Fabio Schirru
Dott. Agr. Vincenzo Sechi
Dott. Archeol. Matteo Tatti

REDATTORE

Dott. Ing. Fabio Massimo Calderaro Dott. Ing. Vincenzo Buttafuoco

00	novembre 2022	Prima emissione
DEV	DATA	DESCRIZIONE DEVISIONE

INDICE

1.	I	PREMESSA	2
2.	I	NORMATIVA DI RIFERIMENTO	4
	2.1.	NORMATIVA NAZIONALE	4
	2.2.	NORMATIVA DELLA REGIONE SARDEGNA	4
3.	'	VALUTAZIONE DI IMPATTO ACUSTICO	5
	3.1.	Descrizione della tipologia dell'opera o attività in progetto, del ciclo produttivo tecnologico, degli impianti, delle attrezzature e dei macchinari di cui è prevedibi l'utilizzo, dell'ubicazione dell'insediamento e del contesto in cui viene inserita (punto "a DGR 62/9 del 14.11.2008)	le
	3.2.	Descrizione delle caratteristiche costruttive dei locali (coperture, murature, serramen vetrate ecc.) con particolare riferimento alle caratteristiche acustiche dei materia utilizzati (punto "b" DGR 62/9 del 14.11.2008)	
	3.3.	Descrizione delle sorgenti rumorose connesse all'opera o attività, con indicazione d dati di targa relativi alla potenza acustica e loro ubicazione (punto "c" DGR 62/9 d 14.11.2008)	
	3.4.	Indicazione degli orari di attività e di quelli di funzionamento degli impianti principali sussidiari (punto "d" DGR 62/9 del 14.11.2008)	e 19
	3.5.	Indicazione della classe acustica cui appartiene l'area di studio (punto "e" DGR 62 del 14.11.2008)	/9 19
	3.6.	Identificazione e descrizione dei ricettori presenti nell'area di studio, con indicazion delle loro caratteristiche utili sotto il profilo acustico (punto "f" DGR 62/9 d 14.11.2008)	
	3.7.	Individuazione delle principali sorgenti sonore già presenti nell'area di studio indicazione dei livelli di rumore preesistenti in prossimità dei ricettori (punto "g" DG 62/9 del 14.11.2008)	
	3.8.	Calcolo previsionale dei livelli sonori generati dall'opera o attività nei confronti d ricettori e dell'ambiente esterno circostante indicando i parametri e i modelli di calco utilizzati (punto "h" DGR 62/9 del 14.11.2008)	
	3.9.	Calcolo previsionale dell'incremento dei livelli sonori in caso di aumento del traffic veicolare indotto da quanto in progetto nei confronti dei ricettori e dell'ambieni circostante (punto "i" DGR 62/9 del 14.11.2008)	
	3.10	Descrizione degli eventuali interventi da adottarsi per ridurre i livelli di emissioni sono al fine di ricondurli al rispetto dei limiti associati alla classe acustica assegnata ipotizzata per ciascun ricettore (punto "I" DGR 62/9 del 14.11.2008)	
	3.11	l. Analisi dell'impatto acustico generato nella fase di realizzazione, o nei siti di cantiel (punto "m" DGR 62/9 del 14.11.2008)	re 11
		,	to rt. 16
1	(CONCLUSIONI	47

1. PREMESSA

Nel presente elaborato viene riportata la Valutazione Previsionale di Impatto Acustico relativa alla realizzazione ed esercizio di un Impianto Agrivoltaico di potenza nominale pari a 27136.2 kWp, denominato "Serramanna 2" e sito nel Comune di Serramanna (SU).

La relazione tecnica è articolata in base a quanto richiesto dalla Deliberazione N. 62/9 del 14.11.2008 della Regione Sardegna ed in specifico nel documento tecnico denominato "Direttive regionali in materia di inquinamento acustico". Si riporta nel seguito lo stralcio del articolo 3 della Parte IV del suddetto documento tecnico in cui sono elencati i contenuti richiesti per la Valutazione Previsionale di Impatto Acustico.

- a) descrizione della tipologia dell'opera o attività in progetto, del ciclo produttivo e tecnologico, degli impianti, delle attrezzature e dei macchinari che verranno utilizzati, dell'ubicazione dell'insediamento e del contesto in cui viene inserita;
- b) descrizione delle caratteristiche costruttive dei locali (coperture, murature, serramenti, vetrate ecc.) con particolare riferimento alle caratteristiche acustiche dei materiali utilizzati;
- c) descrizione delle sorgenti rumorose connesse all'opera o attività, con indicazione dei dati di targa relativi alla potenza acustica e loro ubicazione. In situazioni di incertezza progettuale sulla tipologia o sul posizionamento delle sorgenti sonore che saranno effettivamente installate è ammessa l'indicazione di livelli di emissione stimati per analogia con quelli derivanti da sorgenti simili (nel caso non siano disponibili i dati di potenza acustica, dovranno essere riportati i livelli di emissione in pressione sonora);
- d) indicazione degli orari di attività e di quelli di funzionamento degli impianti principali e sussidiari. Dovranno essere specificate le caratteristiche temporali dell'attività e degli impianti, indicando l'eventuale carattere stagionale, la durata nel periodo diurno e notturno e se tale durata è continua o discontinua, la frequenza di esercizio, la possibilità (o la necessità) che durante l'esercizio vengano mantenute aperte superfici vetrate (porte o finestre), la contemporaneità di esercizio delle sorgenti sonore, eccetera;
- e) indicazione della classe acustica cui appartiene l'area di studio. Nel caso in cui l'amministrazione comunale non abbia ancora approvato e adottato il Piano di classificazione acustica è cura del proponente ipotizzare, sentita la stessa Amministrazione comunale, la classe acustica da assegnare all'area interessata.
- f) identificazione e descrizione dei ricettori presenti nell'area di studio, con indicazione delle loro caratteristiche utili sotto il profilo acustico, quali ad esempio la destinazione d'uso, l'altezza, la distanza intercorrente dall'opera o attività in progetto, con l'indicazione della classe acustica da assegnare a ciascun ricettore presente nell'area di studio avendo particolare riguardo per quelli che ricadono nelle classi I e II;
- g) individuazione delle principali sorgenti sonore già presenti nell'area di studio e indicazione dei livelli di rumore preesistenti in prossimità dei ricettori di cui al punto precedente. L'individuazione dei livelli di rumore si effettua attraverso misure articolate sul territorio con riferimento a quanto stabilito dal D.M. Ambiente 16 marzo 1998 (Tecniche di rilevamento e di misurazione dell'inquinamento acustico);
- h) calcolo previsionale dei livelli sonori generati dall'opera o attività nei confronti dei ricettori e dell'ambiente esterno circostante indicando i parametri e i modelli di calcolo utilizzati. Particolare attenzione deve essere posta alla valutazione dei livelli sonori di emissione e di immissione assoluti, nonché ai livelli differenziali, qualora applicabili, all'interno o in facciata dei ricettori individuati. La valutazione del livello differenziale deve essere effettuata nelle condizioni di potenziale massima criticità del livello differenziale;
- i) calcolo previsionale dell'incremento dei livelli sonori in caso di aumento del traffico veicolare indotto da quanto in progetto nei confronti dei ricettori e dell'ambiente circostante;
- l) descrizione degli eventuali interventi da adottarsi per ridurre i livelli di emissioni sonore al fine di ricondurli al rispetto dei limiti associati alla classe acustica assegnata o ipotizzata per ciascun ricettore. La descrizione di detti interventi è supportata da ogni informazione utile a specificare le loro caratteristiche e a individuare le loro proprietà di riduzione dei livelli sonori, nonché l'entità prevedibile delle riduzioni stesse;

- m) analisi dell'impatto acustico generato nella fase di realizzazione, o nei siti di cantiere, secondo il percorso logico indicato ai punti precedenti, e puntuale indicazione di tutti gli appropriati accorgimenti tecnici e operativi che saranno adottati per minimizzare il disturbo e rispettare i limiti (assoluto e differenziale) vigenti all'avvio di tale fase, fatte salve le eventuali deroghe per le attività rumorose temporanee di cui all'art. 6, comma 1, lettera h, e dell'art. 9 della legge 447/1995:
- n) indicazione del provvedimento regionale con cui il tecnico competente in acustica ambientale, che ha predisposto la documentazione di impatto acustico, è stato riconosciuto "competente in acustica ambientale" ai sensi della legge n. 447/1995, art. 2, commi 6 e 7.

Il documento è stato redatto dagli ingegneri Vincenzo Buttafuoco e Fabio Massimo Calderaro, Tecnici Competenti in Acustica Ambientale regolarmente inseriti nell' Elenco Nazionale dei Tecnici Competenti in Acustica, istituito ai sensi dell'art. 21 del d.lgs. 42/2017 (cfr. https://agentifisici.isprambiente.it/enteca/home.php):

- Dott. Ing. Fabio Massimo Calderaro, n° 4473;
- Dott. Ing. Vincenzo Buttafuoco, n° 4468.

2. NORMATIVA DI RIFERIMENTO

Lo studio acustico è stato sviluppato coerentemente a quanto prescritto dal quadro normativo vigente. Nel seguito si riporta l'elenco delle normative a carattere nazionale e regionale di specifico interesse per la presente relazione.

2.1. NORMATIVA NAZIONALE

- D.lgs 17 febbraio 2017, n. 41 (G.U. 4 aprile 2017 n. 79): "Disposizioni per l'armonizzazione della normativa nazionale in materia di inquinamento acustico con la direttiva 2000/14/CE e con il regolamento (CE) n. 765/2008, a norma dell'articolo 19, comma 2, lettere i), l) e m) della legge 30 ottobre 2014, n. 161"
- D.lgs 17 febbraio 2017, n. 42 (G.U. 4 aprile 2017 n. 79): "Disposizioni in materia di armonizzazione della normativa nazionale in materia di inquinamento acustico, a norma dell'articolo 19, comma 2, lettere a), b), c), d), e), f) e h) della legge 30 ottobre 2014, n. 161"
- D.Lgs. 19/8/2005, n. 194 (G.U. n. 239 del 13/10/2005): "Attuazione della direttiva 2002/49/CE relativa alla determinazione e alla gestione del rumore ambientale"
- Circolare Ministro dell'Ambiente 6/9/2004 (G.U. n. 217 del 15/9/2004): "Interpretazione in materia di inquinamento acustico: criterio differenziale e applicabilità dei valori limite differenziali"
- DPR 30/3/2004, n. 142 (G.U. n. 127 dell'1/6/2004): "Disposizioni per il contenimento e la prevenzione dell'inquinamento acustico derivante dal traffico veicolare, a norma dell'articolo 11 della legge 26 ottobre 1995, n.447"
- DPR 3/4/2001, n. 304 (G.U. n. 172 del 26/7/2001): "Regolamento recante disciplina delle emissioni sonore prodotte nello svolgimento delle attività motoristiche, a norma dell'art. 11 della legge 26 novembre 1995, n. 447"
- DPR 18/11/98 n. 459 (G.U. n. 2 del 4/1/99): "Regolamento recante norme in materia di inquinamento acustico derivante da traffico ferroviario"
- DPCM 31/3/98 (G.U. n. 120 del 26/5/98): "Atto di indirizzo e coordinamento recante criteri generali per l'esercizio dell'attività del tecnico competente in acustica"
- DM Ambiente 16/3/98 (G.U. n. 76 dell'1/4/98): "Tecniche di rilevamento e di misurazione dell'inquinamento acustico"
- DPCM 5/12/97 (G.U. n. 297 del 19/12/97): "Determinazione dei requisiti acustici passivi degli edifici"
- DPCM 14/11/97 (G.U. n. 280 dell'1/12/97): "Determinazione dei valori limite delle sorgenti sonore"
- DM Ambiente 11/12/96(G.U. n. 52 del 4/3/97): "Applicazione del criterio differenziale per gli impianti a ciclo produttivo continuo"
- LEGGE 26/10/1995, n. 447 (G.U. n. 254 del 30/10/95): "Legge quadro sull'inquinamento acustico"
- DPCM 1/3/1991 (G.U. n. 57 dell'8/3/91): "Limiti massimi di esposizione al rumore negli ambienti abitativi e nell'ambiente esterno".

2.2. NORMATIVA DELLA REGIONE SARDEGNA

• Delibera del 14 novembre 2008, n. 62/9: "Direttive regionali in materia di inquinamento acustico ambientale" e disposizioni in materia di acustica ambientale.

3. VALUTAZIONE DI IMPATTO ACUSTICO

3.1. Descrizione della tipologia dell'opera o attività in progetto, del ciclo produttivo o tecnologico, degli impianti, delle attrezzature e dei macchinari di cui è prevedibile l'utilizzo, dell'ubicazione dell'insediamento e del contesto in cui viene inserita (punto "a" DGR 62/9 del 14.11.2008)

3.1.1. Impianto agrivoltaico

L'impianto oggetto di approfondimento è una centrale agrivoltaica per la produzione di energia elettrica da fonte rinnovabile solare denominata "Serramanna 2".

L'impianto sarà del tipo grid-connected e l'energia elettrica prodotta sarà riversata completamente in rete, salvo gli autoconsumi di centrale, con connessione alla rete di trasmissione in Alta Tensione a 150 kV mediante cabina di trasformazione MT/AT, di competenza del proponente, collegata in antenna a 150 kV sul futuro ampliamento della stazione elettrica di smistamento (SE) della RTN 150 kV di Serramanna, previo potenziamento/rifacimento della linea RTN a 150 kV "Serramanna – Villasor" di proprietà di Terna S.p.A.

L'impianto avrà una potenza di picco paria a 27136.2 kWp, pari alla somma delle potenze nominali dei moduli fotovoltaici installati, e una potenza nominale di 27000 kW, pari alla somma delle potenze in uscita (lato AC) dei 135 inverter fotovoltaici da 200 kW presenti in impianto.

I moduli fotovoltaici saranno installati a terra mediante tracker monoassiali.

L'impianto è suddiviso in 3 campi corrispondenti a tre linee MT a 36 kV ARE4H5EX in cavo tripolare elicordato interrato che collegano l'impianto alla sottostazione MT/AT (SEU). Ciascun campo è ulteriormente diviso in sottocampi secondo il seguente schema:

- Campo fotovoltaico 1:
 - Sottocampo 1-1
 - Sottocampo 1-2
 - o Sottocampo 1-3
 - o Sottocampo 1-4
 - Sottocampo 1-5
- Campo fotovoltaico 2:
 - o Sottocampo 2-1
 - Sottocampo 2-2
 - Sottocampo 2-3
 - o Sottocampo 2-4
 - Sottocampo 2-5
- Campo fotovoltaico 3:
 - SottoCAMPO 3-1
 - SottoCAMPO 3-2
 - SottoCAMPO 3-3
 - SottoCAMPO 3-4
 - o SottoCAMPO 3-5.

Ciascun campo fotovoltaico fa capo ad una cabina MT/BT (cabina di campo) contenente un quadro MT 36 kV che raccoglie le linee interrate a 36 kV provenienti dai sottocampi. In ogni cabina di campo è inoltre installato un trasformatore MT/BT 36kV/400V da 100 kVA e un quadro di BT per l'alimentazione dei servizi ausiliari del campo stesso. Sono previste 3 cabine di campo.

Ciascun sottocampo fotovoltaico è alimentato da una cabina MT/BT (cabina di sottocampo) contenente al suo interno un quadro MT 36 kV, un trasformatore MT/BT 36 kV/800V da 2000 kVA e un quadro BT. Dal quadro BT sono alimentati gli inverter da 200 kWac dislocati in campo. All'interno di ciascun campo le cabine di sottocampo sono collegate a stella alla rispettiva cabina di campo mediante linee MT a 36 kV ARE4H5EX in cavo tripolare elicordato interrato. Sono presenti in totale 15 cabine di sottocampo.

I moduli fotovoltaici, ciascuno con potenza nominale di picco pari a 700 Wp, saranno raggruppati in stringhe da 26 moduli.

Dai moduli fotovoltaici alle cabine inverter di ciascun sottocampo sono distribuite le linee DC in cavo interrato che collegano i moduli direttamente allo stadio di ingresso DC degli inverter.

Alla cabina di campo 1 sono sottese 5 cabine di sottocampo secondo il seguente schema:

CAMPO FOTOVOLTAICO 1							
SOTTOCAMPI FOTOVOLTAICI	N. INVERTER /CABINA	_	NOMINALE ABINA	_	ZA MAX AC A (cosφ=1)		A TRAFO /BT
SOTTOCAMPO 1-1	9	1800	kW	1935	kVA	2000	kVA
SOTTOCAMPO 1-2	9	1800	kW	1935	kVA	2000	kVA
SOTTOCAMPO 1-3	9	1800	kW	1935	kVA	2000	kVA
SOTTOCAMPO 1-4	9	1800	kW	1935	kVA	2000	kVA
SOTTOCAMPO 1-5	9	1800	kW	1935	kVA	2000	kVA

Alla cabina di campo 2 sono sottese 5 cabine di sottocampo secondo il seguente schema:

CAMPO FOTOVOLTAICO 2							
SOTTOCAMPI FOTOVOLTAICI	N. INVERTER /CABINA		A NOMINALE CABINA		A MAX AC (cosφ=1)	POTENZA MT/	
SOTTOCAMPO 2-1	9	1800	kW	1935	kVA	2000	kVA
SOTTOCAMPO 2-2	9	1800	kW	1935	kVA	2000	kVA
SOTTOCAMPO 2-3	9	1800	kW	1935	kVA	2000	kVA
SOTTOCAMPO 2-4	9	1800	kW	1935	kVA	2000	kVA
SOTTOCAMPO 2-5	9	1800	kW	1935	kVA	2000	kVA

Alla cabina di campo 3 sono sottese 6 cabine di sottocampo secondo il seguente schema:

CAMPO FOTOVOLTAICO 3							
SOTTOCAMPI FOTOVOLTAICI	N. INVERTER /CABINA	POTENZA AC/CA		POTENZA CABINA (POTENZA F	_
SOTTOCAMPO 3-1	9	1800	kW	1935	kVA	2000	kVA
SOTTOCAMPO 3-2	9	1800	kW	1935	kVA	2000	kVA
SOTTOCAMPO 3-3	9	1800	kW	1935	kVA	2000	kVA
SOTTOCAMPO 3-4	9	1800	kW	1935	kVA	2000	kVA
SOTTOCAMPO 3-5	9	1800	kW	1935	kVA	2000	kVA

È prevista la fornitura in opera di n. 15 trasformatori MT/BT da 2000 kVA per l'alimentazione dei sottocampi fotovoltaici e di n. 3 trasformatori MT/BT da 100 kVA per l'alimentazione degli impianti ausiliari (uno per ogni cabina di campo). I trasformatori dovranno avere le seguenti caratteristiche tecniche:

Potenza nominale	2000 KVA	100 kVA
Tensione nominale Vn ₁ /Vn ₂	36000/800 V	15000/400 V
Collegamento	Dyn11	Dyn11
Tensione di cortocircuito	Vcc 6	Vcc 6%
Isolamento	resina	resina
Protezione sovratemperatura 49		
Protezione relè omopolare 51G - corrente	In = 0 A	In = 0 A
Protezione relè omopolare 51G - tempo	t = 0 s	t = 0 s
Rifasamento fisso trasformatore	20,8 [kvar]	2,5 [kvar]

Le strutture di sostegno dei pannelli saranno distanziate, in direzione est-ovest, con un interasse le une dalle altre di circa 5 m, in modo da evitare fenomeni di ombreggiamento reciproco che si manifestano nelle primissime ore e nelle ultime ore della giornata.

Ogni tracker, posizionato secondo la direzione Nord-Sud, ruota intorno al proprio asse indipendentemente dagli altri, guidati dal proprio sistema di guida. La **Figura 3.1-1** mostra le posizioni estreme: la posizione assunta all'alba, al mezzogiorno solare e al tramonto e gli intervalli di rotazione. L'intervallo di rotazione esteso del Tracker è 110 ° (-55 °; + 55 °) e consente rendimenti energetici più elevati rispetto all'indice di riferimento del settore (-45 °; + 45 °). I pannelli fotovoltaici utilizzati, della potenza di 700 W, hanno dimensioni in pianta di 2384 x 1303 mm. La scelta effettuata sulla scorta delle linee guida sull'agrivoltaico, relativamente all'altezza dei moduli da terra, è stata quella di optare per l'altezza minima da terra di 1.30 m.

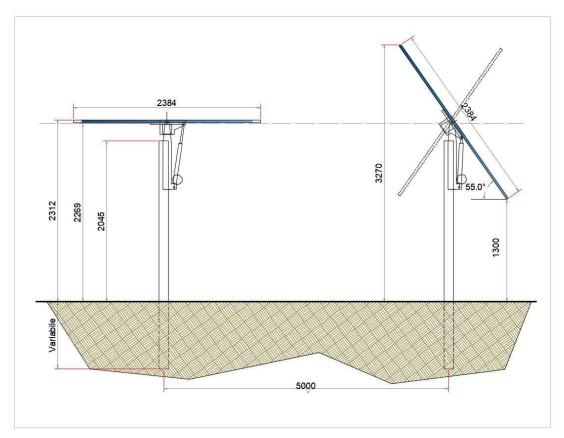


Figura 3.1-1 - Tracker - Inseguitore mono-assiale - intervalli di rotazione

Tutti i cavi di cui si farà utilizzo, sia per il collegamento interno dei sottocampi che per la connessione alla nuova SE Terna, saranno cavi multipolari con conduttori in alluminio riuniti in elica visibile. Per l'attraversamento dei fiumi è prevista la posa interrata mediante TRIVELLAZIONE ORIZZONTALE CONTROLLATA (T.O.C.).

3.1.2. Cabina di step-up MT/AT di competenza del Proponente (SEU)

La cabina di step-up MT/AT di competenza del Proponente (SEU), sarà adiacente alla cabina primaria "SE SERRAMANNA" di Terna S.p.A.

La step-up riceve a 36 kV l'energia prodotta dall'impianto agrovoltaico tramite una cabina MT posta all'interno dell'area della step-up stessa. Successivamente, l'energia collettata viene innalzata al livello di tensione della RTN 150kV, tramite un trasformatore 150/36 kV della potenza di 25 MVA ONAN. – 33 MVA ONAF. Dal trasformatore si diparte lo stallo AT, costituito da organi di misura, protezione e sezionamento in AT isolati in aria, fino a giungere al punto di connessione con l'adiacente cabina primaria Terna (SE SERRAMANNA), attraverso un cavo AT interrato.

3.1.2.1 Sezione 150 kV

La sezione di impianto AT di utente sarà così composta (procedendo dal lato impianto verso la SE SERRAMANNA di Terna):

• n. 1 trasformatore AT/MT 150/36 kV della potenza di 25 MVA ONAN. – 33 MVA ONAF;

- n. 1 scaricatore di sovratensioni;
- n. 3 TA induttivi lato AT (protezioni);
- n. 1 interruttore di protezione generale (DG) che svolge anche la funzione di dispositivo di interfaccia (DDI);
- n. 3 TV induttivi (misure);
- n. 3 TV capacitivi (protezioni);
- n. 1 sezionatore di linea;
- n. 1 sistema di distribuzione in corda e sbarre di alluminio;

Le distanze di guardia e di vincolo previste per le tensioni di funzionamento saranno progettate in armonia con quanto prescritto dal Gestore della Rete di Trasmissione Nazionale anche al fine di ridurre al minimo le indisponibilità per manutenzione ove sussistano problematiche relative allo spazio, si può prendere in esame la possibilità di ridurre alcune distanze nel rispetto delle distanze di sicurezza e di quelle strettamente necessarie previste per le operazioni di manutenzione (Cei 11-48).

PRINCIPALI DISTANZE DI PROGETTO	
Distanza fra le fasi per le sbarre, le apparecchiature e i conduttori in sorpasso	2.2m
Larghezza degli stalli (se applicabile)	12.5m
Altezza dei conduttori di stallo (se applicabile)	4.5m
DISTANZE LONGITUDINALI TRA LE PRINCIPALI APPARECCHIATURE DI STAI	LO
Distanza tra l'interruttore e lo scaricatore (distanze tra le mezzerie delle apparecchiature)	4m
Distanza tra il TV e lo scaricatore di linea (distanze tra le mezzerie delle apparecchiature)	3.5m
Distanza tra il trasformatore e lo scaricatore	2m

Come dati di progetto si adottano i seguenti valori:

- Tensione di esercizio del sistema: 150 kV
- Tensione massima del sistema: 170 kV
- Frequenza nominale: 50 Hz
- Tensione di tenuta a frequenza industriale: 325 kV
- Tensione di tenuta ad impulso atmosferico: 750 kV
- Corrente nominale di corto circuito 31.5 KA
- Corrente nominale di guasto monofase a terra 31.5 kA

3.1.2.2 Sezione 36 kV

L'impianto sarà completato dalla sezione 36 kV, posta all'interno della cabina MT, la quale sarà composta da:

- n. 1 quadro MT generale 36 kV completo di:
 - Scomparti di sezionamento e protezione linee provenienti dall'impianto agrovoltaico (n. 3 montanti)
 - Scomparti misure
 - Scomparto protezione generale
 - Scomparto trafo ausiliari
- Trasformatore MT/BT servizi ausiliari 36/0,4 kV da 100 kVA;

- Quadro servizi ausiliari;
- Misuratori fiscali;
- · Sistema di monitoraggio e controllo;
- Impianto TVCC;

L'edifico ospitante la cabina MT, come già detto in precedenza, è contenuto all'interno dei confini della cabina MT/AT ed è anch'esso di nuova edificazione.

Le corografie generali e di dettaglio sono contenute in Figura 3.1-2 ÷ Figura 3.1-3.

Per maggiori approfondimenti tecnici si rimanda alla documentazione progettuale.

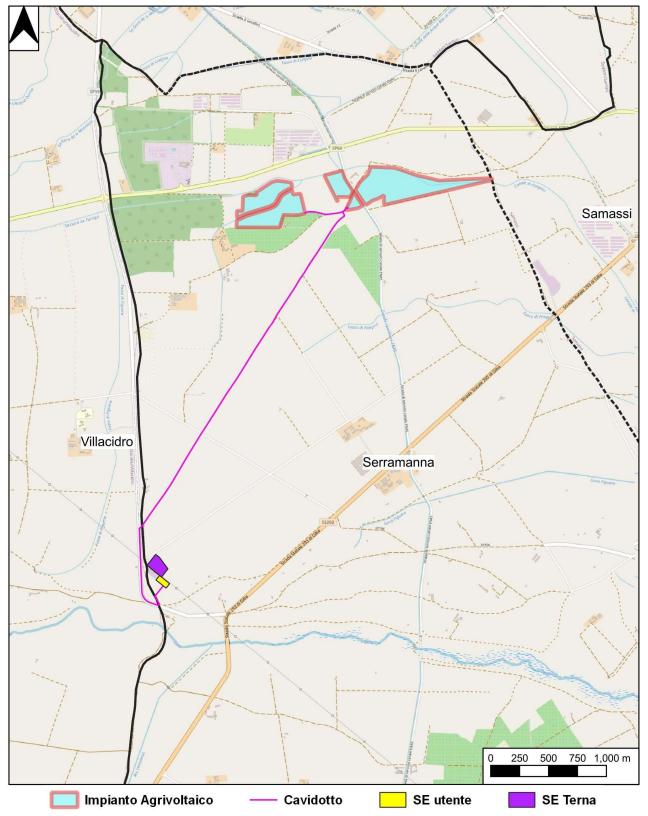


Figura 3.1-2 – Corografia Impianto

Figura 3.1-3 – Dettaglio Impianto (1/3)



Figura 3.1-4 – Dettaglio Impianto (2/3)



Figura 3.1-5 – Dettaglio Impianto (3/3)

3.2. Descrizione delle caratteristiche costruttive dei locali (coperture, murature, serramenti, vetrate ecc.) con particolare riferimento alle caratteristiche acustiche dei materiali utilizzati (punto "b" DGR 62/9 del 14.11.2008)

Le cabine elettriche saranno del tipo prefabbricato in c.a.v., realizzate in conformità alle vigenti normative e adatte per il contenimento delle apparecchiature MT/BT.

Le cabine sono realizzate con calcestruzzo vibrato tipo C28/35 con cemento ad alta resistenza adeguatamente armato e opportunamente additivato con super fluidificante e con impermeabilizzante, idonei a garantire adeguata protezione contro le infiltrazioni di acqua per capillarità. L'armatura metallica interna a tutti i pannelli sarà costituita da doppia rete elettrosaldata e ferro nervato, entrambi B450C. Il pannello di copertura è calcolato e dimensionato secondo le prescrizioni delle NTC DM 17 01 2018, ma comunque per supportare sovraccarichi accidentali minimi di 480 kg/m2. Tutti i materiali utilizzati sono certificati CE.

Il tetto della cabina sarà a falde con copertura in coppi.

Il raffreddamento dei locali sarà effettuato con sistemi di aereazione forzata.

I manufatti garantiranno un potere fonoisolante complessivo dell'involucro pari ad almeno 20 dB.

3.3. Descrizione delle sorgenti rumorose connesse all'opera o attività, con indicazione dei dati di targa relativi alla potenza acustica e loro ubicazione (punto "c" DGR 62/9 del 14.11.2008)

3.3.1. Impianto Agrivoltaico

Le sorgenti sonore associate all'esercizio dell'impianto sono costituite da:

- Inverter;
- Trasformatori da 100 e 2000 kVA (alloggiati all'interno di cabine);
- Estrattori per il condizionamento delle cabine.

Nelle **Figura 3.3-1**÷ **Figura 3.3-2** si riportano le emissioni acustiche fornite dalle schede tecniche di tipologie dei suddetti componenti reperibili sul mercato e con caratteristiche conformi alle esigenze del progetto.

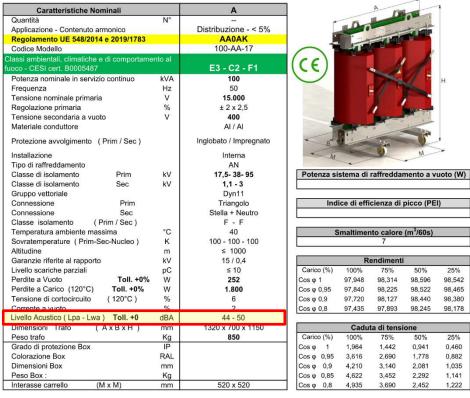
In questa fase progettuale non è possibile definire con certezza il modello dei macchinari che verranno impiegati, in ogni caso le emissioni riportate nel seguito e utilizzate per caratterizzare le sorgenti acustiche inserite nel modello previsionale (**cfr. Paragrafo 3.8**) sono da considerarsi rappresentative delle emissioni tipiche degli impianti di cui si prevede l'installazione.

MBUS	Supported	Supported Supported		Supported		
General Data						
Topology	Transformerless	Transformerless		Transformerless		Transformerless
Dimensions (W x H x D)	1035mm*700mm* 365mm		mm*700mm* 365mm	1035mm*7 365m		1035mm*700mm* 365mm
Weight	84(±1)kg		34(±1)kg	84(±1)kg	84(±1)kg
Operating temperature	-25°C to +60°C	-25°	C to +60°C	-25°C to	+60°C	-25°C to +60°C
Cooling	Smart air cooling	Sma	rt air cooling	Smart air	cooling	Smart air cooling
Humidity	0%-100% RH	0%	-100% RH	0%-100	% RH	0%-100% RH
Operating altitude	4000m		4000m	4000	m	4000m
Input terminal			Staubli M	C4 EVO2		
Output terminal			OT Cor	nnector		
Enclosure Protection (IP)	IP 66	IP 66		IP 66		IP 66
Protective class	Class I		Class I	Class I		Class I
Internal consumption at Night	3,3W		3,3W 3,3W		٧	3,3W
Noise	≤ 65 dB(A)	≤	65 dB(A)	≤ 65 di	B(A)	≤ 65 dB(A)
Firmware version	V300R001	V	300R001	V300R	001	V300R001
Technical specifications	SUN2000-196KTL-H0 S		SUN2000-2	00KTL-H2	SUN	2000-215KTL-H0
			Input			
Max. input voltage	1500V		1500V		1500V	
Max. input current (per MPPT circuit)	30A		30	A		30A
Max. short-circuit current (per MPPT circuit)	50A	50A		A		50A

Noise = livello di pressione sonora a 1 metro di distanza dalla macchina operante alla potenza nominale con strumento di misura verso il lato frontale secondo standard IEC/EN62477

Figura 3.3-1 - Emissioni acustiche inverter

DATI TECNICI E PRESTAZIONALI


Corrente Assorbita a 220 V (A)	0,45
Corrente Assorbita a 240 V (A)	0,47
Corrente assorbita max (A)	0,47
Diametro Nominale Condotto (mm)	250
Frequenza (Hz)	50
Grado protezione motore IP	44
Isolamento	I° classe
Numero Poli	2
Peso (Kg)	3,5
Potenza Assorbita a 220 V (W)	95

Potenza Assorbita a 240 V (W)	105
Potenza assorbita max (W)	105
Temp. ambiente max funzionamento continuativo (°C)	70
Temperatura aria aspirata max (°C)	70
Tensione (V)	220-240
Portata max (l/s)	416,7
Portata max (m³/h)	1500
Pressione max (mmH2O)	20
Pressione max (Pa)	196
Pressione Sonora Lp [dB (A)] 3m	71
RPM	2800

Figura 3.3-2 - Emissioni acustiche estrattori per il condizionamento delle cabine

TRASFORMATORE TRIFASE IN RESINA

TRASFORMATORE TRIFASE IN RESINA

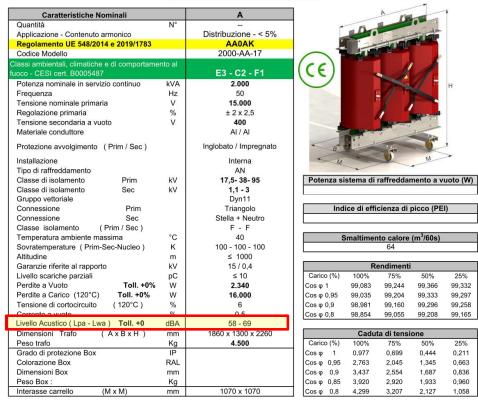


Figura 3.3-3 - Emissioni acustiche trasformatori

3.3.2. Elettrodotto interrato

L'esercizio dell'elettrodotto interrato non determina alcuna emissione acustica in fase di esercizio e pertanto tale aspetto non verrà considerato nel presente studio.

3.3.3. Cabina di step-up MT/AT di competenza del Proponente (SEU)

Le sorgenti sonore principali che fanno capo alla SEU sono il trasformatore, gli interruttori e l'impianto di condizionamento della sezione MT ospitata all'interno dell'Edificio descritto nel **Paragrafo 3.2**.

I trasformatori hanno funzionamento continuo e anche il sistema di condizionamento della sezione MT, almeno per alcune fasi dell'anno.

Gli interruttori AT hanno invece funzionamento sporadico, legato esclusivamente ad eventuali manovre; la loro emissione sonora è di brevissima durata e può essere considerata trascurabile. Gli interruttori MT sono posti all'interno dell'edificio.

Le sorgenti considerate nelle valutazioni modellistiche sono pertanto i due trasformatori ed il sistema di condizionamento della sezione MT.

In un'ottica cautelativa tutte le sorgenti sono state considerate costantemente funzionanti per tutto il periodo di riferimento diurno.

Per la potenza sonora dei trasformatori si è assunto, come valore di partenza, il dato imposto nella specifica tecnica di acquisizione Enel, che, per le macchine di nuova installazione, è quella siglata con GST002 del 15/01/2014. Tale dato, relativo ad una situazione di prova a vuoto con ventilatori disattivati, è stato corretto per tenere conto del carico, mediante la formula riportata dalla norma IEC 60076-10:2016 e della corrente, secondo la formula della norma stessa. Si è assunto il dato peggiorativo del 130% della corrente che, a fini conservativi, dà origine ad un valore più elevato del livello di potenza sonora. Infine, per tenere conto della variazione della tensione di esercizio, che in CP dovrebbe restare contenuta al massimo entro il 2% circa, si è assunto un ulteriore termine correttivo di 2 dB.

In **Figura 3.3-1** si riportano i livelli di potenza acustica richiesti dalla specifiche ENEL e corretti, per tenere conto delle effettive emissioni in esercizio, dei trasformatori. Seppure nell'ambito del presente progetto siano previsti trasformatori da 40 MVA, nelle presenti valutazioni sono stati considerati, in un'ottica di massima cautela, i valori corretti relativi alla potenza in MVA massima (63 MVA).

La potenza sonora attribuita al condizionatore, ricavata da un'analisi di prodotti commerciali, è risultata pari a circa 64 dB(A). Nel caso oggetto di approfondimento è stata ipotizzata la presenza di 2 condizionatori installati sul fronte sud dell'edificio che ospita la sezione a MT.

Livelli di tensione [kV]			Livello di	Livello di		
Avvolgimento di AT	Avvolgimento di MT	Potenza [MVA]	potenza sonora di specifica [dB(A)]	potenza sonora corretto (*) [dB(A)]		
	15.6					
132	20.8					
	20.8-10.4	16		74.0		
	15.6	16		71.2		
150	20.8					
	20.8-10.4		67			
132	15.6		67			
	20.8	25				
	20.8-10.4			73.0		
150	15.6					
	20.8					
	20.8-10.4					
	15.6					
132	20.8					
	20,8-10,4	40	40 70	70	76.4	
	15.6			40	/0	76.4
150	20.8					
	20.8-10.4					
132	15.6					
132	20.8	62	63 74	74	78.1	
150	15.6	60	/4	70.1		
150	20.8					
(*) Questo valore	è stato utilizzato con	ne dato di ingr	esso nelle simulazioni.			

Tabella 3.3-1 – Emissioni acustiche trasformatori

3.4. Indicazione degli orari di attività e di quelli di funzionamento degli impianti principali e sussidiari (punto "d" DGR 62/9 del 14.11.2008)

L'attività dell'impianto è strettamente connessa alla presenza di radiazione solare e, di conseguenza, il suo orario dipenderà dal periodo dell'anno e dalle condizioni meteorologiche.

Il funzionamento delle potenziali sorgenti di impatto acustico, inverter e sistemi di condizionamento dei locali di trasformazione, sarà legato all'effettiva attività dei pannelli e, pertanto, si può escludere qualunque emissione sonora in periodo notturno.

3.5. Indicazione della classe acustica cui appartiene l'area di studio (punto "e" DGR 62/9 del 14.11.2008)

Il campo agrivoltaico e i suoi elementi accessori (elettrodotto interrato, SE) ricadono quasi completamente nel comune di Serramana. Per completezza si riportano anche le classificazioni acustiche del Comune di Samassi, con cui l'impianto confina a nord, e di Villacidro interessato da un breve tratto del cavidotto.

Il Comune di Serramanna è dotato di un Piano di Classificazione Acustica adottato con la Deliberazione n° 1/2013 del 31/01/2013.

In **Figura 3.5-1** si riporta lo stralcio relativo all'ambito comunale interessato dall'ubicazione dell'impianto, dell'elettrodotto interrato e della SEU, come si può osservare il territorio oggetto di approfondimento ricade esclusivamente in classe III (limiti di immissione diurni/notturni 60/50). In **Figura 3.5-2** si riportano per completezza le fasce di pertinenza infrastrutturali presenti nell'ambito di studio.

Il Comune di Samassi è dotato di una classificazione acustica del proprio territorio reperibile sul sito istituzionale dell'amministrazione comunale (https://www.comune.samassi.ca.it/zf/index.php/trasparenza/index/index/categoria/246).

In **Figura 3.5-3** si riporta lo stralcio relativo all'ambito comunale confinante a nord con l'impianto. Come si può osservare l'ambito di studio afferisce esclusivamente ad un'area classificata in classe III (limiti di immissione diurni/notturni 60/50). Per completezza in **Figura 3.5-4** si riportano le fasce di pertinenza infrastrutturali presenti nell'ambito di studio.

Il Comune di Villacidro è dotato di una classificazione acustica del proprio territorio reperibile sul sito istituzionale dell'amministrazione comunale (https://comune.villacidro.vs.it/archivio/strumenti-urbanistici/piano-di-classificazione-acustica.html).

In **Figura 3.5-5** si riporta lo stralcio relativo all'ambito comunale confinante con l'area di studio in cui verrà realizzata la SEU e dove ricade un piccola porzione dell'elettrodotto interrato. Come si può osservare il territorio prossimo alla futura SEU è inserito in classe III (limiti di immissione diurni/notturni 60/50).

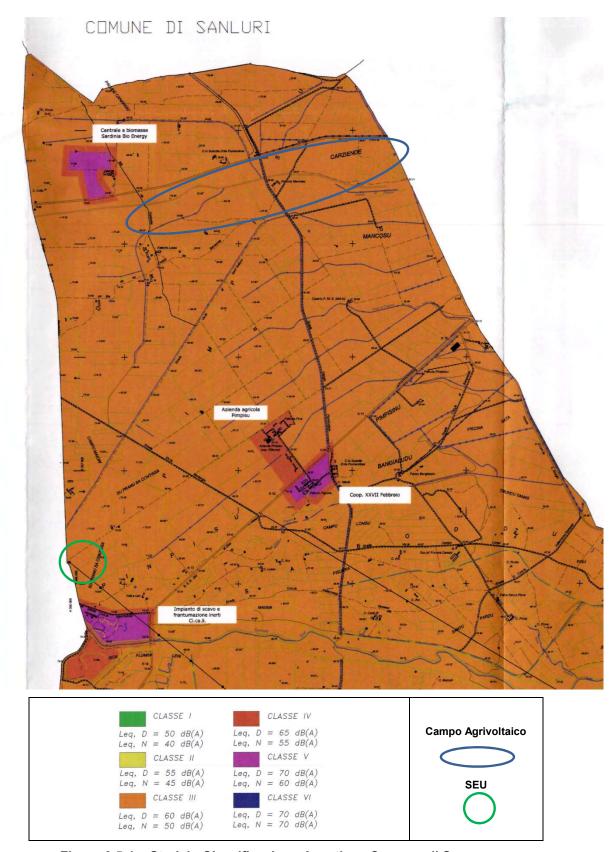


Figura 3.5-1 – Stralcio Classificazione Acustica - Comune di Serramana

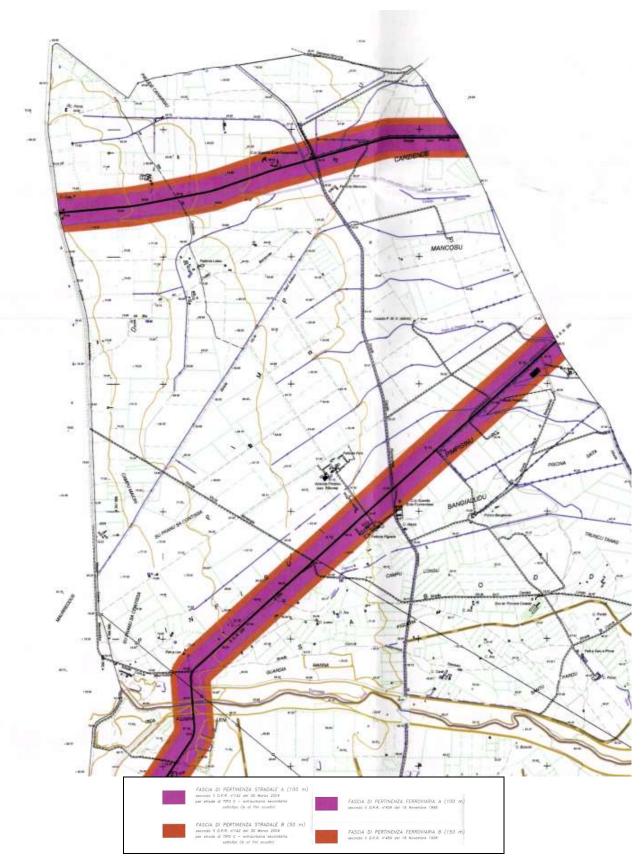


Figura 3.5-2 – Stralcio Classificazione Acustica fasce di pertinenza infrastrutture di trasporto - Comune di Serramana

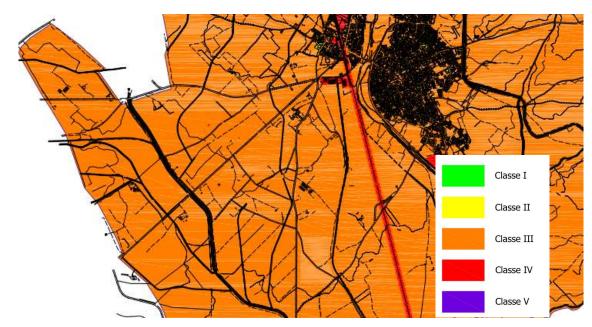


Figura 3.5-3 - Stralcio Classificazione Acustica - Comune di Samassi

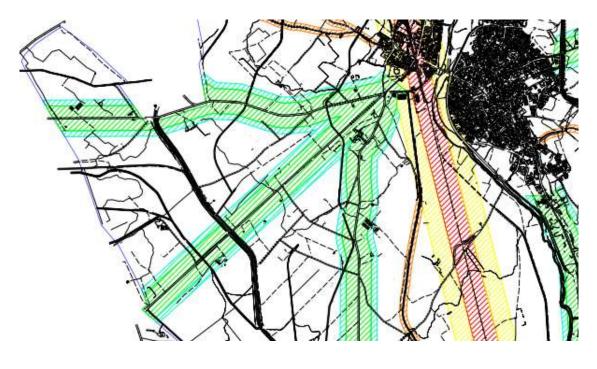


Figura 3.5-4 – Stralcio Classificazione Acustica fasce di pertinenza infrastrutture di trasporto – Comune di Samassi

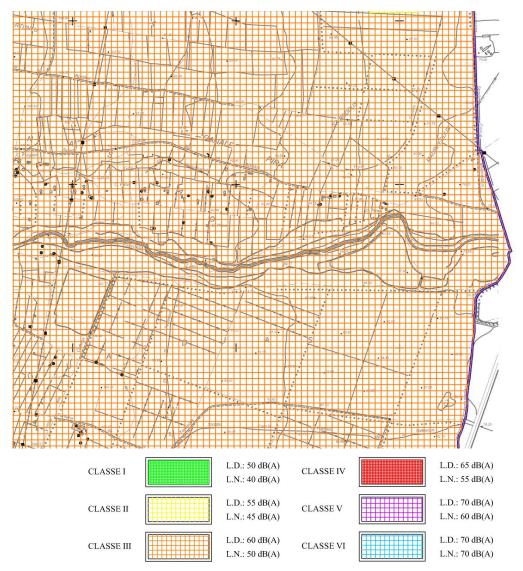


Figura 3.5-5 - Stralcio Classificazione Acustica - Comune di Villacidro

3.6. Identificazione e descrizione dei ricettori presenti nell'area di studio, con indicazione delle loro caratteristiche utili sotto il profilo acustico (punto "f" DGR 62/9 del 14.11.2008)

L'opera oggetto di approfondimento (impianto agrivoltaico, cavidotto, SEU) è ubicata nel territorio del Comune di Serramana. L'impianto a nord confina con il territorio del Comune di Samassi, una piccola porzione del cavidotto attraversa il Comune di Villacidro.

L'abitato di Samassi dista dall'area di intervento circa 2.5 km in direzione Est, l'abitato di Serramanna 7 km in direzione Sud-Est ed infine l'abitato di Villacidro 8 km in direzione Ovest.

Il cavidotto a 36 kV verrà realizzato interamente nel sottosuolo ad una profondità rispetto al piano stradale non superiore a 1.50 mt e correrà per la quasi totalità della sua estensione (circa 4.4 km) lungo strade sterrate esistenti, e per la parte finale di circa 200 m in campo aperto, fino a raggiungere la Sottostazione Elettrica Utente, subito a Sud Est della Stazione Elettrica Terna esistente, in località Su Pranu Sa Contissa.

Dal punto di visto morfologico l'area risulta pianeggiante ed è attualmente occupata da aree a vocazioni prevalentemente agricola ed in particolare terreni destinati a foraggio e pascolo (cfr. Figura 3.6-2).

Dal punto di vista strettamente antropico nella fascia di 250 m dal confine dell'impianto sono presenti alcuni ricettori a carattere rurale/residenziale e rurale/produttivo. In **Figura 3.6-1** si riporta la documentazione fotografica di alcuni dei ricettori presenti.

Seppure nell'ambito dei sopralluoghi effettuati è emerso un sistema ricettore caratterizzato da una presenza prevalente di edifici rurali ed agricoli in un'ottica di estrema cautela tutti gli edifici sono stati consideranti potenzialmente oggetto di presenza umana in periodo diurno (periodo in cui le potenziali sorgenti di rumore saranno attive) e pertanto meritevoli della verifica del rispetto dei limiti normativi in ambiente esterno ed abitativo. Operativamente le verifiche sono state effettuate in corrispondenza dei ricettori maggiormente prossimi al confine dell'impianto (cfr. **Paragrafo 3.11**), gli esiti delle valutazioni sono pertanto rappresentativi degli impatti su tutto il sistema ricettore.

In **Figura 3.6-3** ÷ **Figura 3.6-6** si riporta la veduta su ortofoto dell'ambito territoriale interessato dall'impianto e l'ubicazione dei ricettori di controllo. Sono anche indicate le fasce di 250, 500 e 1000 m che consentono di delimitare l'**area di studio** intesa come la porzione di territorio entro la quale incidono gli effetti della componente rumore prodotti durante la realizzazione e l'esercizio dell'opera o attività in progetto e oltre la quale possono essere considerati trascurabili. Nello specifico, in ragione dei livelli di potenza medi delle sorgenti presenti, la fascia dei 250 m indentifica l'area di studio relativamente alla fase di esercizio, la fascia di 500 m quella relativa alla fase di cantiere. A completamento dell'analisi su scala vasta è stata indicata anche la fascia di 1000 m.

In **Figura 3.6-7** è evidenziato, su ortofoto, il percorso del cavidotto che, come si può osservare, attraversa aree rurali scarsamente antropizzate. Si segnala, in ogni caso, la presenza di ricettori rurali/residenziali a distanze inferiori a 50 m dal tracciato. La SEU sarà realizzata in un'area a connotazione fortemente rurale (cfr. **Figura 3.6-8**), in adiacenza alla cabina primaria "SE SERRAMANNA" di Terna S.p.A e non risultano presenti manufatti antropici nel raggio di 100 m.

RIC01

Figura 3.6-1 – Documentazione fotografica sistema ricettore

Figura 3.6-2 – Documentazione fotografica dell'area in cui sorgerà impianto agrivoltaico

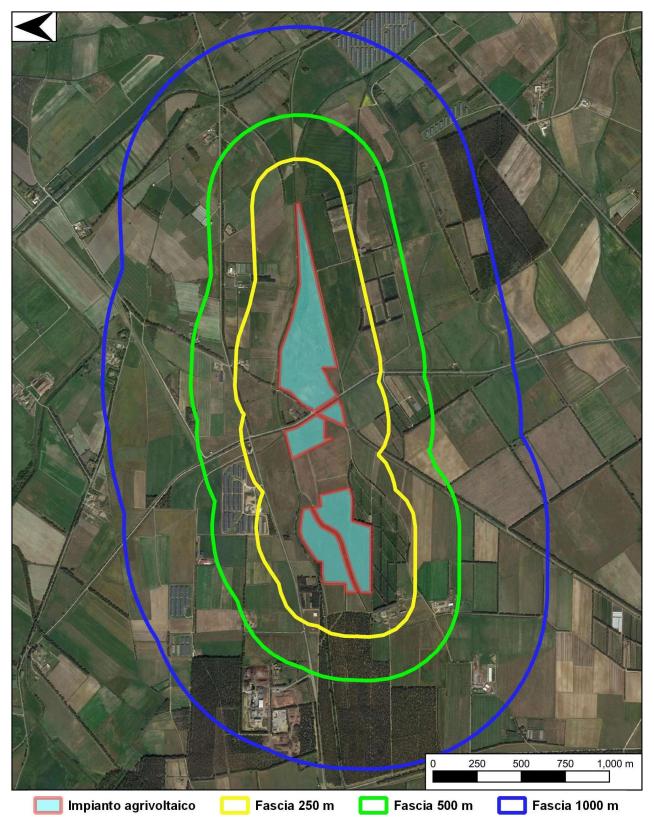


Figura 3.6-3 - Localizzazione impianto - Area vasta

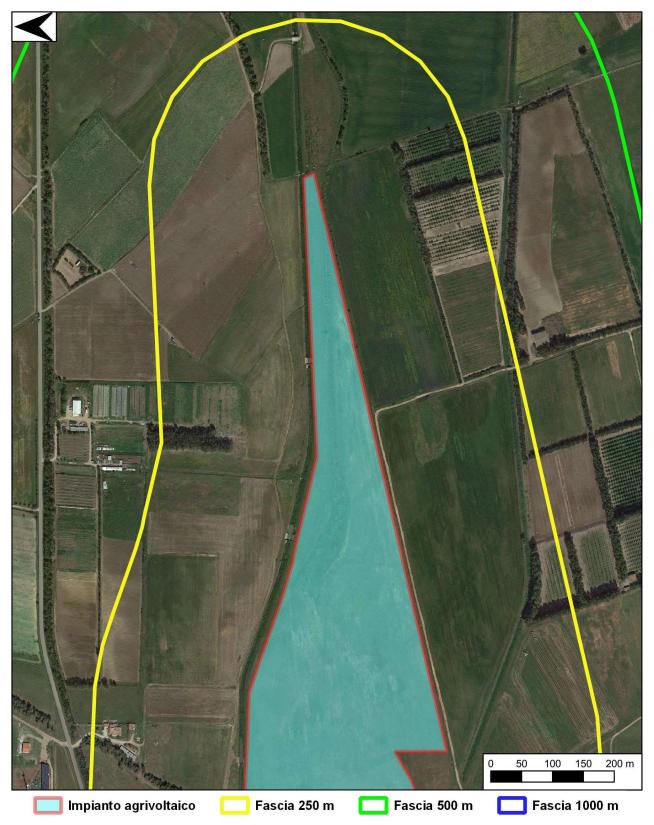


Figura 3.6-4 - Localizzazione impianto

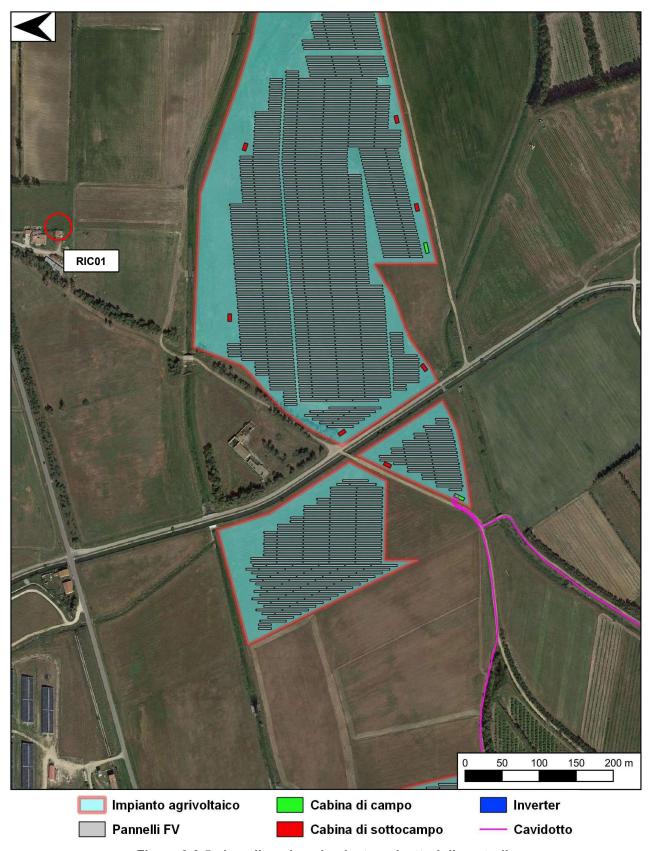


Figura 3.6-5 - Localizzazione impianto e ricettori di controllo

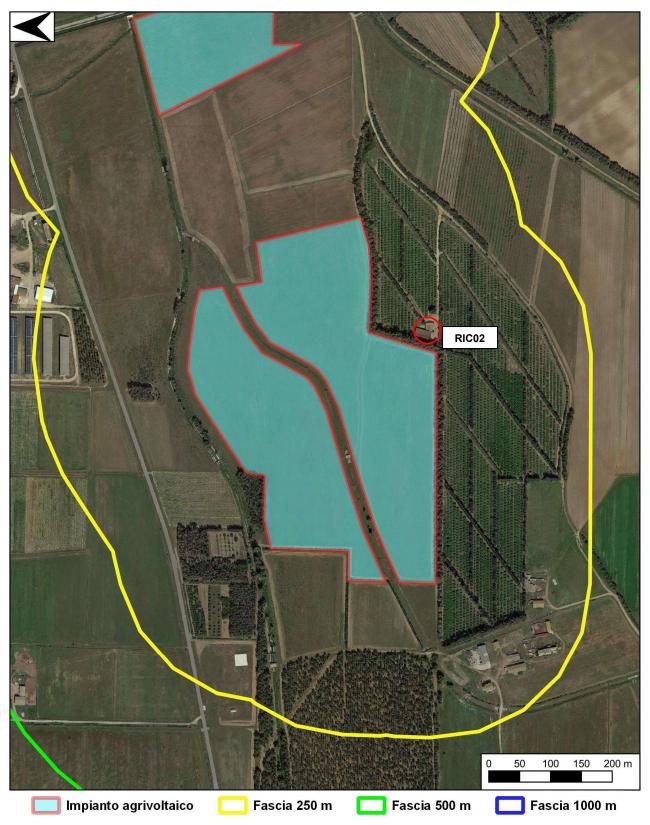


Figura 3.6-6 - Localizzazione impianto e ricettori di controllo

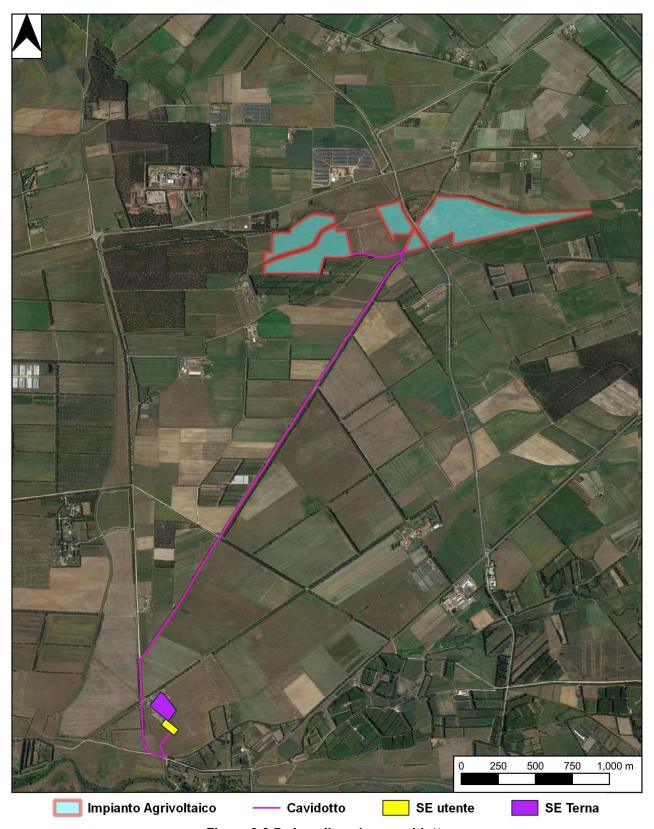


Figura 3.6-7 - Localizzazione cavidotto

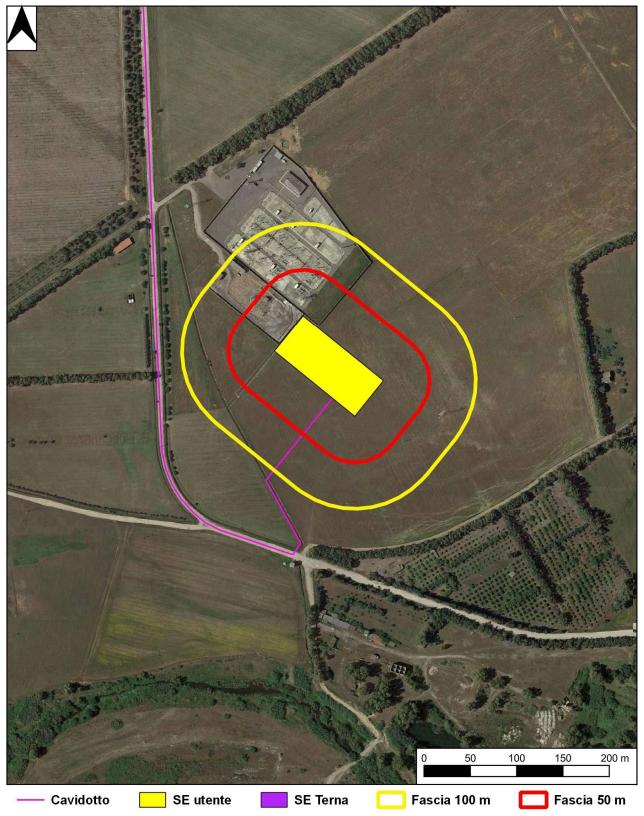


Figura 3.6-8 - Localizzazione SE Utente

3.7. Individuazione delle principali sorgenti sonore già presenti nell'area di studio e indicazione dei livelli di rumore preesistenti in prossimità dei ricettori (punto "g" DGR 62/9 del 14.11.2008)

La caratterizzazione acustica di un ambiente o di una sorgente richiede la definizione di una serie di indicatori fisici (Leq, Ln, Lmax...) per mezzo dei quali "etichettare" il fenomeno osservato.

Tale caratterizzazione, ottenuta con strumentazione conforme alle prescrizioni contenute nelle direttive comunitarie/leggi nazionali o fornite in sede di regolamentazione tecnica delle misure del rumore, deve riguardare le condizioni di esercizio o di funzionamento in cui può normalmente operare la sorgente o il mix di sorgenti di emissione presenti nell'area.

La valutazione dei livelli di rumore che attualmente caratterizzano l'area in oggetto è stata effettuata attraverso una specifica campagna di rilevamenti fonometrici in corrispondenza di due punti con metodica spot. Coerentemente agli orari di attività dell'impianto, i rilievi sono stati effettuati in periodo diurno.

Al fine di garantire l'attendibilità dei risultati sono state rispettate alcune prescrizioni generali relativamente alla calibrazione e alle condizioni meteorologiche.

Calibrazione

All'inizio e alla fine di ogni serie di misurazioni il fonometro è stato calibrato con uno strumento di Classe 1. Le misure fonometriche sono state considerate valide se le due calibrazioni differivano al massimo di 0.5 dB.

Condizioni meteorologiche

Le misure non sono state eseguite nelle seguenti condizioni meteorologiche:

- in caso di precipitazioni (pioggia, neve)
- con velocità del vento superiore a 5 m/s
- in periodi di gelo
- con il suolo coperto da uno strato di neve.

In ogni caso i rilevamenti sono stati effettuati utilizzando la "cuffia" antivento, a protezione del microfono.

I rilievi sono stati svolti con strumentazione conforme alle prescrizioni normative vigenti e alle indicazioni della normativa tecnica di settore. Nel seguito si riporta l'elenco dei principali riferimenti normativi a cui ci si è attenuti nella definizione della catena di misura.

EN 60651-1994	Class 1 Sound Level Meters (CEI 29-1)
EN 60804-1994	Class 1 Integrating-averaging sound level meters (CEI29-10)
EN 61094/1-1994	Measurements microphones Part 1: Specifications for laboratory standard microphones
EN 61094/2-1993	Measurements microphones Part 2: Primary method for pressure calibration of laboratory standard microphones by the reciprocity technique
EN 61094/3-1994	Measurements microphones Part 3: Primary method for free-field calibration of laboratory standard microphones by the reciprocity technique
EN 61094/4-1995	Measurements microphones Part 4: Specifications for working standard microphones
EN 61260-1995	Octave Band and fractional O.B. filters (CEI 29-4)
IEC 942-1988	Electroacoustics - Sound calibrators (CEI 29-14)
ISO 226-1987	Acoustics - Normal equal - loudness level contours
UNI 9884-1991	Caratterizzazione acustica del territorio mediante la descrizione del rumore ambientale

DPCM 1/3/1991 Limiti massimi di esposizione al rumore negli ambienti abitativi e nell'ambiente esterno

Legge 447-1996 Legge quadro sull'inquinamento acustico

DPCM 14/11/1997 Determinazione dei valori limite delle sorgenti sonore

DM 16/03/1998 Tecniche di rilevamento e di misurazione dell'inquinamento acustico.

Tutti i rilievi sono stati effettuati con strumentazione in Classe 1, la catena di misura impiegata è riportata in **Tabella 3.7-1**.

Catena di misura LD831

Fonometro Integratore Real Time Larson Davis mod. 831 Preamplificatore PRM 831 - Microfono Larson Davis 377B02

Tabella 3.7-1 - Strumentazione impiegata

Nello specifico sono stati effettuati due rilievi da 30' in periodo diurno in corrispondenza di due postazioni di monitoraggio. In **Figura 3.7-1** e in **Figura 3.7-3** si riportano l'ubicazione e la documentazione fotografica delle postazioni di monitoraggio.

I risultati dei rilievi sono contenuti nelle schede tecniche riportate in **Allegato 2** e sintetizzati in **Tabella 3.7-2**.

Postazione	Data	Orario	Durata	LAeq	L90	Limite immissione PZA	Limite DPR 142
			[min]	[dB(A)]	[dB(A)]	[dB(A)]	[dB(A)]
P01	17/10/22	08:05	30'	58.6	32.2	60	70
	17/10/22	14:12	30'	58.9	36.2	60	70
P02	17/10/22	09:09	30'	37.2	32.1	60	-
	17/10/22	15:10	30'	34.9	30.9	60	-

Tabella 3.7-2 - Sintesi dei rilievi fonometrici effettuati

Figura 3.7-1 - Localizzazione postazioni di monitoraggio

Figura 3.7-2 - Localizzazione postazioni di monitoraggio - dettaglio

Figura 3.7-3 - Documentazione fotografica postazioni di monitoraggio

I livelli di rumore documentati dai rilievi fonometrici sono compresi tra 34.9 e 58.9 dBA e pertanto compatibili con i limiti normativi di Classe III, limite immissione diurna pari a 60 dBA, in cui i ricettori oggetto di monitoraggio sono inseriti in base alla Classificazione Acustica di Serramanna (cfr. **Paragrafo 3.5**). Da segnalare per la postazione P01 la dominanza del rumore di origine veicolare e di conseguenza la necessità di confrontarsi con i limiti previsti dal DPR 142/04 che per la SP 60, classificata dalla Zonizzazione del Comune di Serramanna come Cb, prevedono, per la fascia A di pertinenza (100 m), limiti in periodo diurno pari a 70 dBA.

Per la postazione P01, l'area a connotazione rurale risulta caratterizzata da una discreta qualità acustica. Le sorgenti di rumore antropico che influiscono sul clima acustico dell'area sono costituite principalmente dal traffico circolante sulla Strada Provinciale 60 e dalle attività di lavorazione dei campi. Sono altresì percepibili le emissioni rumorose provenienti da un aerogeneratore ubicato

nelle vicinanze e da qualche sorvolo aereo. La componente biotica è ascrivibile soprattutto al cinquettio dell'avifauna ed al belare delle pecore.

Per la postazione P02 l'area a connotazione rurale risulta caratterizzata da una buona qualità acustica. Le sorgenti di rumore antropico che influiscono sul clima acustico dell'area sono costituite dal modesto traffico circolante sulle locali strade rurali e dalle attività di lavorazione dei campi. La componente biotica è ascrivibile soprattutto al cinguettio dell'avifauna.

3.8. Calcolo previsionale dei livelli sonori generati dall'opera o attività nei confronti dei ricettori e dell'ambiente esterno circostante indicando i parametri e i modelli di calcolo utilizzati (punto "h" DGR 62/9 del 14.11.2008)

L'analisi degli impatti acustici dell'opera considera le seguenti potenziali sorgenti:

- Impianto agrivoltaico;
- Cavidotto interrato;
- SE utente.

3.8.1. Impianto agrivoltaico

La verifica del rispetto delle prescrizioni normative in materia di impatto acustico è sviluppata attraverso una dettagliata analisi critica dei risultati di valutazioni modellistiche numeriche che hanno consentito di stimare il contributo al clima acustico dell'area direttamente riconducibile al funzionamento dell'impianto oggetto di valutazione.

Le valutazioni modellistiche hanno considerato le sorgenti di emissione descritte nel **Paragrafo 3.3** e sono state sviluppate con il supporto del modello previsionale SoundPLAN 8.2.

Il modello consente di considerare le caratteristiche geometriche e morfologiche del territorio e dell'edificato esistente e previsto nell'area di studio, la tipologia delle superfici, le caratteristiche emissive delle sorgenti, la presenza di schermi naturali o artificiali alla propagazione del rumore. Nel caso specifico le valutazioni sono state effettuate utilizzando l'implementazione dello Standard CNOSSOS-EU:2021/2015.

CNOSSOS-EU è lo standard europeo che la Direttiva della Commissione Europea UE 2015/996/CE ha individuato come metodo comune obbligatorio per la redazione delle mappature strategiche a partire dal 31 dicembre 2018, identificando un approccio comune per il calcolo del rumore stradale, ferroviario e industriale.

Il metodo CNOSSOS-EU è stato sviluppato tramite un lungo processo che ha visto coinvolti la Commissione Europea, l'agenzia europea per l'ambiente (EEA), l'agenzia europea per la sicurezza aerea (EASA), la sezione europea dell'organizzazione mondiale della sanità (WHO-Europe) e più di 150 esperti di rumore. Una prima fase di sviluppo ha portato alla definizione nel 2012 del quadro operativo definendo in particolare gli obiettivi e i requisiti del metodo, i modelli di emissione e propagazione delle sorgenti stradali, ferroviarie e industriali, la metodologia e il database per la stima del rumore aeroportuale e infine la metodologia per l'assegnazione dei livelli alla popolazione.

Una seconda fase ha visto l'implementazione della metodica tra gli stati membri, realizzando in particolare la creazione di una serie di dati di input per le sorgenti stradali, ferroviarie e industriali, un software open-source per testare la metodica punto-punto e verificare le differenti capacità di tre metodi di propagazione possibili (ISO 9613, NMPB 2008, HARMO-NOISE). Nella seconda fase sono state infine realizzate le linee guida per la definizione dell'emissione e la validazione del modello di propagazione sonora. La valutazione dei tre metodi di propagazione sonora si è resa

necessaria in considerazione dei diversi approcci nella modellizzazione degli ostacoli e degli effetti meteorologici. In particolare si è tenuto conto di diversi aspetti quali la precisione e l'accuratezza richiesta come fattori principali, secondariamente della velocità computazionale ma anche della flessibilità e della semplicità del metodo nonché del numero di parametri da gestire.

Tale fase si è conclusa con la scelta del metodo NMPB 2008 in quanto le prestazioni superiori del metodo HARMONOISE non risultano essere significative a livello delle valutazioni necessarie nell'ambito delle mappature strategiche dal momento che richiedono tempi di calcolo molto più ampi. Questa fase ha inoltre prodotto dei documenti per stabilire relazioni di equivalenza tra i modelli ad interim precedentemente in vigore e il nuovo metodo CNOSSOS-EU ad esclusione della sorgente aeroportuale per il quale è stato di fatto confermata la stessa metodologia già vigente.

I calcoli relativi alla mappatura di impatto acustico sono stati realizzati con le seguenti impostazioni:

- Maglia di calcolo: quadrata a passo 10x10 m.
- Riflessioni: vengono considerate riflessioni del 3° ordine sulle superfici riflettenti.
- Coefficienti assorbimento degli edifici: si considera in forma generalizzata un valore di perdita per riflessione intermedia pari a 1 al fine di considerare la presenza di facciate generalmente lisce, che utilizzano anche materiali parzialmente fonoassorbenti (intonaco grossolano, rivestimenti in lastre di cemento, ecc.) e di balconi.
- Coefficiente di assorbimento copertura terreno: sono stati assegnati considerando in SoundPLAN un coefficiente G (Ground Absorption Coefficient) pari a zero in presenza di superfici dure (pavimentazioni pedonali e stradali, banchine ferroviarie, ecc), coefficiente pari a 1 in presenza di superfici soffici o molto fonoassorbenti (area parco, ballast scalo ferroviario, ecc.), coefficiente intermedio pari a 0,5 alle aree in cui sono generalmente compresenti superfici caratterizzate da impedenza variabile (aree private/pubbliche intercluse tra i fronti edificati).

La scala di colore adottata nella mappatura è a campi omogenei delimitati da isolivello a passo 5 dB(A).

Per una corretta interpretazione dei livelli documentati dalle valutazioni modellistiche si ritiene opportuno sottolineare che tutte le sorgenti sono state considerate costantemente funzionanti.

I livelli documentati possono pertanto essere ragionevolmente considerati dei livelli di impatto massimi assoluti.

Gli esiti delle valutazioni sono rappresentati al continuo mediante mappe cromatiche delle curve isofoniche dei livelli equivalenti in periodo diurno, unico periodo in cui gli impianti sono attivi (Leq 6-22) (cfr. **Allegato 1**).

Inoltre per i ricettori di controllo individuati ed evidenziati nelle **Figura 3.6-5** ÷ **Figura 3.6-6** sono riportati nelle **Tabella 3.8-1** e **Tabella 3.8-2** i risultati puntuali delle valutazioni.

Come valore di fondo ("residuo") è stato considerato cautelativamente il valore di L90 più basso tra quelli rilevati in occasione della campagna di monitoraggio di caratterizzazione effettuata e documentata nel **Paragrafo 3.7** pari a 30.9 dBA.

Per la stima dei livelli in ambiente abitativo a finestre aperte e chiuse, necessaria per la verifica di applicabilità del limite, si è ipotizzato un potere di fonoisolante della facciata pari a 21 dB a finestre chiuse e una riduzione dei livelli a finestre aperte (fattore di forma) pari a 5 dBA¹.

¹ Cfr. Planning Policy Guidance 24: Planning and Noise, UK Department for Communities and Local Government; NANR116:"Open/closed window research – sound insulation through ventilated domestic windows, The Building Performance centre, Napier University, 2007; "Night noise guidelines for Europe", capp. 1 e 5, WHO Regional Office for Europe, 2009.

Impianto agrivoltaico "Serramanna 2" Comune di Serramanna (SU)

Ric.	Classe Zon.	Impatto [dBA]	Residuo [dBA]	Ambientale [dBA]	Limite emissione [dBA]	Limite immissione [dBA]	Esubero emissione [dBA]	Esubero immissione [dBA]
			6-22		6-22	6-22	6-22	6-22
RIC01	III	34.8	30.9	36.3	55.0	60.0	-	-
RIC02	III	37.6	30.9	38.4	55.0	60.0	-	-

Tabella 3.8-1 - Livelli di impatto in facciata e confronto con i limiti di Emissione ed Immissione

		Livelli equiv	Ambientale	Ambientale		
Ricettore	Impatto	Residuo	Ambientale	Differenziale	interno f.a.	interno f.c.
		6-22		6-22	6-22	6-22
RIC01	34.8	30.9	36.3	N.A.	31.3	15.3
RIC02	37.6	30.9	38.4	N.A.	33.4	17.4
	Limite d					
	S	50	35			

Tabella 3.8-2 – Livelli in ambiente abitativo e verifica limiti differenziali

Gli esiti delle valutazioni documentano il pieno rispetto dei limiti di legge:

- Il contributo delle emissioni acustiche presso i ricettori di controllo è compreso tra 34.8 e 37.6 dBA. Per tutti i punti i livelli sono inferiori ai limiti di emissione diurni.
- I **limiti di immissione**, stimando il livello ambientale considerando gli attuali livelli di rumore documentati dai rilievi fonometrici e le emissioni calcolate, risultano ampiamente rispettati.
- Il **limite differenziale**, calcolato considerando cautelativamente come livello residuo il parametro statistico L90 più basso tra quelli documentati dai rilievi fonometrici, risulta non applicabile presso tutti i ricettori come evidenziato in **Tabella 3.8-2**. In ogni caso, anche utilizzando il valore di L90 più alto, il criterio differenziale risulterebbe non applicabile.

3.8.2. Cavidotto interrato

Non sono previsti impatti acustici associati all'esercizio del cavidotto interrato.

3.8.3. Cabina di Step-up

In considerazione dell'assenza di ricettori residenziali in un ambito spaziale di 250 m e della limitata entità delle emissioni acustiche determinate dagli impianti installati si procederà ad una valutazione analitica degli impatti generati dall'esercizio degli impianti previsti nella cabina di Step-up.

Come evidenziato al **Paragrafo 3.3** gli impianti che ragionevolmente risultano più rivelanti dal punto di vista acustico sono associati all'esercizio dei un Trasformatore di elevazione della tensione da MT ad AT da 40/63 MVA.

Noti i livelli di potenza complessiva dei singoli impianti (cfr. **Paragrafo 3.3**), applicando le relazioni matematiche che descrivono la propagazione delle onde sonora in campo aperto ed in presenza

di terreni fonoassorbenti, è possibile stimare i livelli di pressione sonora che la cabina determinerà nell'intorno delle aree di Step-up.

Come accennato si è comunque utilizzato un approccio fortemente conservativo considerando le condizioni di utilizzo più sfavorevoli per gli impianti presenti nell'area di Step-up. Gli esiti delle valutazioni sono riportati in **Figura 3.8-1**.

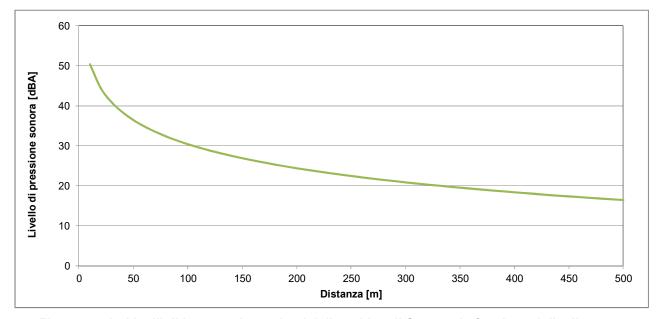


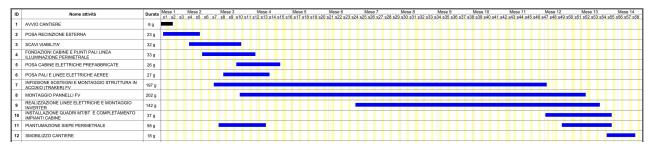
Figura 3.8-1 - Livelli di impatto determinati dalla cabina di Step-up in funzione della distanza

Considerando cautelativamente l'impatto complessivo della cabina è possibile determinare che già a 100 metri dall'impianto (ambito in cui non risultano comunque essere presenti manufatti antropici) i livelli sonori stimati sono inferiori ai 30 dBA e pertanto acusticamente trascurabili (oltre 15 dBA inferiori) rispetto ai limiti di **immissione** ed **emissione** di classe III, in cui le classificazioni di Serramanna e Villacidro inseriscono l'ambito di studio prossimo alla SEU, per il periodo diurno e notturno (60/50 dBA ÷ 55/45 dBA). Tali valori di impatto sono altresì trascurabili rispetto ad i limiti di applicabilità del criterio **differenziale** (50/40 dBA a finestre aperte e 35/25 dBA a finestre chiuse).

3.9. Calcolo previsionale dell'incremento dei livelli sonori in caso di aumento del traffico veicolare indotto da quanto in progetto nei confronti dei ricettori e dell'ambiente circostante (punto "i" DGR 62/9 del 14.11.2008)

L'esercizio dell'impianto non determinerà traffico indotto e, pertanto, i livelli di rumore ad esso associati possono essere considerati nulli.

3.10. Descrizione degli eventuali interventi da adottarsi per ridurre i livelli di emissioni sonore al fine di ricondurli al rispetto dei limiti associati alla classe acustica assegnata o ipotizzata per ciascun ricettore (punto "I" DGR 62/9 del 14.11.2008)


Gli esiti delle valutazioni hanno documentato livelli di impatto pienamente conformi ai limiti di legge con buoni margini di sicurezza. Non risulta pertanto necessario alcun specifico intervento di mitigazione.

Al fine di garantire la massima tutela rispetto al sistema ricettore potenzialmente impattato, quando l'impianto sarà a pieno regime, potrà essere concordata con gli Enti di controllo competenti una campagna di rilievi fonometrici di verifica.

3.11. Analisi dell'impatto acustico generato nella fase di realizzazione, o nei siti di cantiere (punto "m" DGR 62/9 del 14.11.2008)

Nel presente paragrafo è analizzato il potenziale impatto acustico determinato dalla cantierizzazione necessaria per la realizzazione dell'opera oggetto di approfondimento.

In **Figura 3.11-1** si riporta il cronoprogramma dei lavori che dureranno complessivamente circa 14 mesi.

ID	Nome attività	Durata
1	AVVIO CANTIERE	8 g
2	POSA RECINZIONE ESTERNA	23 g
3	SCAVI VIABILITA'	32 g
4	FONDAZIONI CABINE E PLINTI PALI LINEA ILLUMINAZIONE PERIMETRALE	33 g
5	POSA CABINE ELETTRICHE PREFABBRICATE	26 g
6	POSA PALI E LINEE ELETTRICHE AEREE	27 g
7	INFISSIONE SOSTEGNI E MONTAGGIO STRUTTURA IN ACCIAIO (TRAKER) FV	197 g
8	MONTAGGIO PANNELLI FV	202 g
9	REALIZZAZIONE LINEE ELETTRICHE E MONTAGGIO INVERTER	142 g
10	INSTALLAZIONE QUADRI MT/BT E COMPLETAMENTO IMPIANTI CABINE	37 g
11	PIANTUMAZIONE SIEPE PERIMETRALE	58 g
12	SMOBILIZZO CANTIERE	18 g

Figura 3.11-1 - Cronoprogramma lavori

3.11.1. Impianto agrivoltaico

L'installazione dell'impianto determinerà inevitabilmente degli impatti sulla componente rumore connessi all'impiego di macchinari intrinsecamente rumorosi.

La rumorosità è strettamente connessa alle tipologie di macchinari che verranno impiegati e alle scelte operative delle imprese che realizzeranno l'opera, pertanto una valutazione di dettaglio degli impatti potrà essere effettuate solo in presenza di un progetto esecutivo della cantieristica. In ogni caso alcune indicazioni di massima possono essere ottenute dall'analisi della letteratura tecnica di settore ed in particolare della pubblicazione "Conoscere per prevenire N° 11: La valutazione dell'inquinamento acustico prodotto dai cantieri" redatta dal Comitato Paritetico Territoriale per la prevenzione infortuni, l'igiene e l'ambiente di lavoro di Torino e Provincia. La pubblicazione raccoglie i risultati di una serie di rilievi fonometrici effettuati in corrispondenza dei principali macchinari utilizzati nei cantieri edili al fine di determinarne i livelli di potenza sonora. Vengono, inoltre, fornite delle "schede lavorazioni" che per le principali tipologie di lavorazioni edili forniscono l'elenco dei macchinari impiegati e una stima delle percentuali di utilizzo.

Oltre le lavorazioni riportate nella suddetta pubblicazione è stata anche considerata la fase di posa dei supporti dei pannelli mediante macchinario battipalo le cui emissioni sono state desunte dalle schede tecniche di macchinari presenti in commercio.

Nella **Tabella 3.11-1** si riportano i livelli di potenza acustica delle attività che presumibilmente saranno effettuate per la realizzazione dell'opera, valutati sulla base delle informazioni fornite dei progettisti e dalle indicazioni dalla suddetta pubblicazione. Per una migliore comprensione della tabella si specifica che per "% di impiego" si intende il rapporto percentuale tra le ore di effettivo lavoro dalla macchina nell'ambito della giornata rispetto all'intero turno di lavoro, mentre per "% attività effettiva" si intendono i tempi di effettiva produzione del rumore sottratti i tempi delle pause durante l'utilizzo della macchina. Come si può osservare i livelli di potenza sonora risultano al massimo pari a 110 dBA per l'attività di scavo e sbancamento

Noti i livelli di potenza complessiva delle varie lavorazioni è stato possibile, applicando le relazioni matematiche che descrivono la propagazione delle onde sonore in campo aperto ed in presenza di terreni fonoassorbenti tipici delle aree rurali, stimare i livelli di pressione sonora che il cantiere, in funzione delle diverse attività, determinerà nell'intorno delle aree di lavorazione. Gli esiti delle valutazioni sono riportati in **Figura 3.11-2**.

Analizzando il contesto insediativo, in base a quanto indicato dalle Classificazioni Acustiche dei Comune di Seramanna e Samassi, si osserva la presenza di ricettori rurali/residenziali ricadenti in un'area di Classe III (limite di emissione 55 dBA) nelle immediate vicinanze del confine dell'impianto (d< 20m).

In base ai decadimenti riportati in **Figura 3.11-2** si osserva che, in corrispondenza delle lavorazioni maggiormente rumorose, i livelli di impatto presso i suddetti ricettori potrebbero non essere conformi ai limiti normativi. Per lo scavo di sbancamento il limite di classe III (55 dBA) viene infatti rispettato oltre i 175 m dalle lavorazioni.

Si ritiene pertanto opportuno che l'impresa che realizzerà i lavori richieda deroga ai limiti presso il comune di Serramanna, ai sensi della Parte V del documento tecnico denominato "Direttive regionali in materia di inquinamento acustico" inserito nella Deliberazione N. 62/9 del 14.11.2008 della Regione Sardegna.

Fase	Macchinario	Lw [dBA]	% impiego	% attività effettiva	Lw _{eff} [dBA]	
	Escavatore gommato	107.5	100%	85%		
Scavo di sbancamento	Pala meccanica gommata	107.4	60%	85%	110.4	
	Autocarro	106.1	100%	85%		
Scavi di fondazione	Escavatore mini	97.4	100%	85%	96.7	
	Escavatore gommato	107.5	10%	85%		
B	Autocarro	106.1	20%	85%	400.4	
Posa manufatti	Autogrù	110.0	60%	85%	108.1	
	Motosaldatrice	103.7	10%	85%		
Posa manufatti - battipalo	Battipalo	105.9	100%	85%	105.2	
Getti	Autobetoniera	100.2	70%	85%	97.9	

Tabella 3.11-1 – Livelli di rumorosità associati alle attività per la posa dei pannelli solari

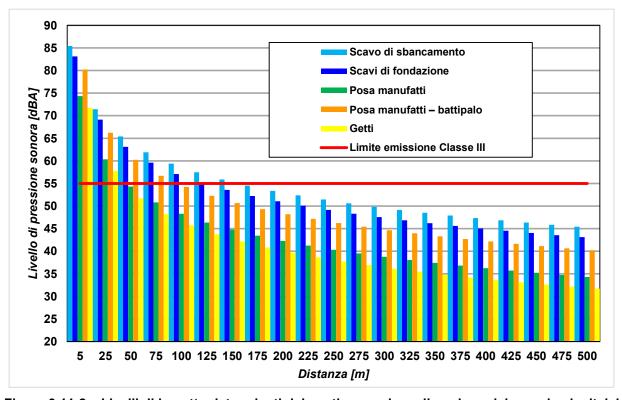


Figura 3.11-2 – Livelli di impatto determinati dal cantiere per la realizzazione dei campi agivoltaici

3.11.2. Elettrodotto interrato

Il fronte di avanzamento lavori per la realizzazione del cavidotto interrato determinerà impatti sulla componente rumore connessi all'impiego di macchinari rumorosi. Tali attività sono comunque molto limitate nel tempo.

In tale situazione le principali attività che potranno produrre alterazione del clima acustico possono essere riassunte nelle seguenti fasi:

- 1. Demolizione manto stradale e scavo cavidotto con escavatore:
- 2. Posa cavo e riempimento scavo mediante mezzi meccanici;
- 3. Posa e rullaggio del manto di usura.

L'attività di posa dei cavi è acusticamente irrilevante.

La tipologia di lavorazione in oggetto, in considerazione della mobilità della stessa, risulta disturbante quando svolta in corrispondenza di uno o più ricettori residenziali. Considerando uno sviluppo lineare del cantiere tipo di 30 m è possibile stimare le tempistiche di lavorazione indicate in **Tabella 3.11-2.** In sostanza in una giornata lavorativa è possibile ipotizzare la realizzazione di un tratto di 30 m di elettrodotto interrato dall'inizio alla fine del processo.

	Fase di Lavoro	Durata [ore]
1	Demolizione manto stradale e scavo cavidotto con escavatore	3.5
2	Riempimento scavo mediante mezzi meccanici	1.5
3	Posa e rullaggio del manto di usura	2

Tabella 3.11-2 – Durata stimata delle principali fasi lavorative per uno scavo di 30 m in centro abitato [Fonte e-distribuzione]

La rumorosità delle suddette attività è strettamente connessa alle tipologie di macchinari che verranno impiegati e alle scelte operative delle imprese che realizzeranno l'opera, pertanto una valutazione di dettaglio degli impatti potrà essere effettuate solo in presenza di un progetto esecutivo della cantieristica. Anche in questo caso è possibile desumere alcune indicazioni preliminari dall'analisi della letteratura tecnica di settore ed in particolare della pubblicazione "Conoscere per prevenire N° 11: La valutazione dell'inquinamento acustico prodotto dai cantieri" redatta dal Comitato Paritetico Territoriale per la prevenzione infortuni, l'igiene e l'ambiente di lavoro di Torino e Provincia.

Nella **Tabella 3.11-3** si riportano i livelli di potenza acustica delle attività che presumibilmente saranno effettuate per la realizzazione dell'opera, valutati sulla base delle indicazioni fornite dalla suddetta pubblicazione.

	Fase di Lavoro	Lw [dB(A)]
1a	Demolizione manto stradale	113.2
1b	Scavo cavidotto con escavatore	110.4
2	Riempimento scavo mediante mezzi meccanici	101.1
3	Posa e rullaggio del manto di usura	104.1

Tabella 3.11-3 – Livelli di rumorosità associati alle attività per la realizzazione dell'elettrodotto interrato

Noti i livelli di potenza complessiva delle varie lavorazioni è stato possibile, applicando le relazioni matematiche che descrivono la propagazione delle onde sonore in campo aperto ed in presenza di terreni fonoriflettenti tipici delle viabilità asfaltate, stimare i livelli di pressione sonora che il cantiere, in funzione delle diverse attività, determinerà nell'intorno delle aree di lavorazione. Gli esiti delle valutazioni sono riportati in **Figura 3.11-3**.

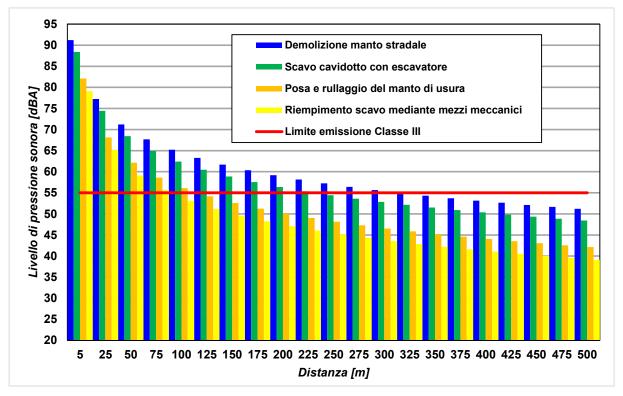


Figura 3.11-3 – Livelli di impatto determinati dal cantiere in funzione della distanza dal FAL

Come documentato nel **Paragrafo 3.5** il tracciato dell'elettrodotto ricade in aree classificate in Classe III con limiti di emissione diurni pari a 55 dBA. Analizzando i decadimenti riportati in **Figura 3.11-3** si può osservare che l'area di potenziale non conformità dei limiti normativi è pari a circa 300 m per la classe III. All'interno di tale ambito spaziale sono presenti alcuni ricettori rurali, non si possono pertanto escludere esuberi sul sistema ricettore locale, seppur per un tempo limitato (1/2 gg).

Si ritiene pertanto opportuno che l'impresa che realizzerà i lavori di posa dell'elettrodotto interrato verifichi la necessità di richiesta di deroga ai limiti presso i comuni di Serramanna e Villacidro ai sensi della Parte V del documento tecnico denominato "Direttive regionali in materia di inquinamento acustico" inserito nella Deliberazione N. 62/9 del 14.11.2008 della Regione Sardegna.

3.11.3. Interventi di mitigazione

Anche in presenza di specifica deroga ai limiti acustici rilasciata dai comuni interessati dagli interventi dovrà essere cura delle imprese che opereranno porre in atto le seguenti prescrizioni ed attenzioni finalizzate alla riduzione del carico acustico immesso nell'ambiente.

Scelta delle macchine, delle attrezzature e miglioramenti prestazioni:

- selezione di macchine ed attrezzature omologate in conformità alle direttive della Comunità Europea e ai successivi recepimenti nazionali;
- impiego, se possibile, di macchine movimento terra ed operatrici gommate piuttosto che cingolate;
- installazione, se già non previsti e in particolare sulle macchine di una certa potenza, di silenziatori sugli scarichi.

Manutenzione dei mezzi e delle attrezzature:

- eliminazione degli attriti attraverso operazioni di lubrificazione;
- sostituzione dei pezzi usurati e che lasciano giochi;
- controllo e serraggio delle giunzioni;
- bilanciatura delle parti rotanti delle apparecchiature per evitare vibrazioni eccessive;
- verifica della tenuta dei pannelli di chiusura dei motori;
- svolgimento di manutenzione alle sedi stradali interne alle aree di cantiere e sulle piste esterne, mantenendo la superficie stradale livellata per evitare la formazione di buche.

Modalità operazionali e predisposizione del cantiere:

- imposizione di direttive agli operatori tali da evitare comportamenti inutilmente rumorosi (evitare di far cadere da altezze eccessive i materiali o di trascinarli quando possono essere sollevati...);
- divieto di uso scorretto degli avvisatori acustici, sostituendoli quando possibile con avvisatori luminosi.

Transito dei mezzi pesanti

- riduzione delle velocità di transito in presenza di residenze nelle immediate vicinanze dei percorsi;
- evitare il transito dei mezzi nelle prime ore della mattina e nel periodo serale;
- attenta pianificazione dei trasporti al fine di limitarne il numero per giorno.
- 3.12. Indicazione del provvedimento regionale con cui il tecnico competente in acustica ambientale, che ha predisposto la documentazione di impatto acustico, è stato riconosciuto "competente in acustica ambientale" ai sensi della legge n. 447/1995, art. 2, commi 6 e 7 (punto "n" DGR 62/9 del 14.11.2008)

La relazione e le relative valutazioni sono state effettuate dai seguenti Tecnici Acustici regolarmente inseriti nell' Elenco Nazionale dei Tecnici Competenti in Acustica, istituito ai sensi dell'art. 21 del d.lgs. 42/2017 (cfr. https://agentifisici.isprambiente.it/enteca/home.php):

- Dott. Ing. Fabio Massimo Calderaro, n° 4473;
- Dott. Ing. Vincenzo Buttafuoco, n° 4468.

4. CONCLUSIONI

Le analisi svolte in merito al potenziale impatto sulla componente rumore determinato dalla realizzazione ed esercizio di un Impianto Agrivoltaico denominato "Serramanna 2" sito nel Comune di Serramanna, hanno documentato la **piena compatibilità dell'intervento**.

Le valutazioni relative alla **fase di esercizio** (cfr. **Paragrafo 3.8**), sviluppate con l'ausilio di modelli previsionali di dettaglio, hanno evidenziato livelli di impatto pienamente conformi ai limiti normativi con adeguati margini di sicurezza.

Relativamente alla **fase di cantiere** (cfr. **Paragrafo 3.11**), sono stati evidenziati potenziali impatti completamente reversibili che potranno essere efficacemente ridotti attraverso specifiche attenzioni operative. Per tale fase si ritiene in ogni caso opportuno prevedere la richiesta di deroga ai limiti di emissione acustica ai sensi della Parte V del documento tecnico denominato "Direttive regionali in materia di inquinamento acustico" inserito nella Deliberazione N. 62/9 del 14.11.2008 della Regione Sardegna ai Comuni interessati dalle opere oggetto di approfondimento.

ALLEGATO 1

ESITI DELLE VALUTAZIONI MODELLISTICHE

ALLEGATO 2

SCHEDE TECNICHE DI MONITORAGGIO

Nome misura		Data e ora di inizio	Operatore	
P01 - Serramanna 2		17/10/2022	Ing. Calderaro - per.naut.Sannino	
Tipologia misura Filtri - Costa		nte di tempo - Delta Time	Strumentazione	
RUMORE	20÷2000	00 Hz - Fast - 1 s	Larson-Davis 831	
Ricettore			Calibrazione	
Latitudine: 39.478368°- Loi	ngitudine:	8.855378°	Larson Davis CAL200	

Postazione di misura / Note

Microfono ubicato in corrispondenza della recinzione di confine di un gruppo di ricettori a destinazione d'uso rurale con possibilità di permanenza umana, potenzialmente più impattati dalle emissioni sonore dell'impianto, ad un'altezza di circa 4 m dal piano di campagna.

CARATTERISTICHE DEL RICETTORE

Descrizione

"Sa Lolla fattoria didattica".

Edifici a destinazione d'uso rurale, struttutati su 1/2 piani fuori terra.

Il ricettore è localizzato in Località Carziende in un'area periferica ed isolata rispetto all'abitato di Serramanna.

Zonizzazione acustica e limiti di immissione diurni e notturni

ZONIZZAZIONE ACUSTICA COMUNALE: Il Comune di Serramanna dispone di un Piano di Classificazione Acustica del suo territorio adottato con la Deliberazione n° 1/2013 del 31/01/2 013

CLASSE ACUSTICA: III - Aree di tipo misto - Immissione 60/50 dB(A)

Classificazione ex. DPR n. 142 del 30/03/2004: Tipo di strada C - Sottotipo Cb - Fascia A - Immissione 70/60 dB(A)

CARATTERISTICHE DELLE SORGENTI DI RUMORE

Descrizione

L'area a connotazione rurale risulta caratterizzata da una discreta qualità acustica. Le sorgenti di rumore antropico che influiscono sul clima acustico dell'area sono costituite pricipalmente dal traffico circolante sulla Strada Provinciale 60 e dalle attività di lavorazione dei campi.

Sono altresì percepibili le emissioni rumorose provenienti da un aerogeneratore ubicato nelle vicinanze e da qualche sorvolo aereo.

La componente biotica è ascrivibile soprattutto al cinguettio dell'avifauna ed al belare delle pecore.

METEO

Condizioni cielo:

sereno

Temperature:

19.7 ÷ 27.3 ℃

Umidità:

55 ÷ 79 %

Vento:

 $1.0 \div 3.1 \text{ m/s}$

SINTESI DEI LIVELLI RILEVATI:

	Data	Ora	L _{Aeq} [dBA]	Limite Zonizzazione	Limite DPR n. 142 del 30/3/2004
Day-1	17/10/2022	08:05:07	58.6	60	70
Day-2	17/10/2022	14:12:51	58.9	60	70

Data

Operatore

17/10/2022

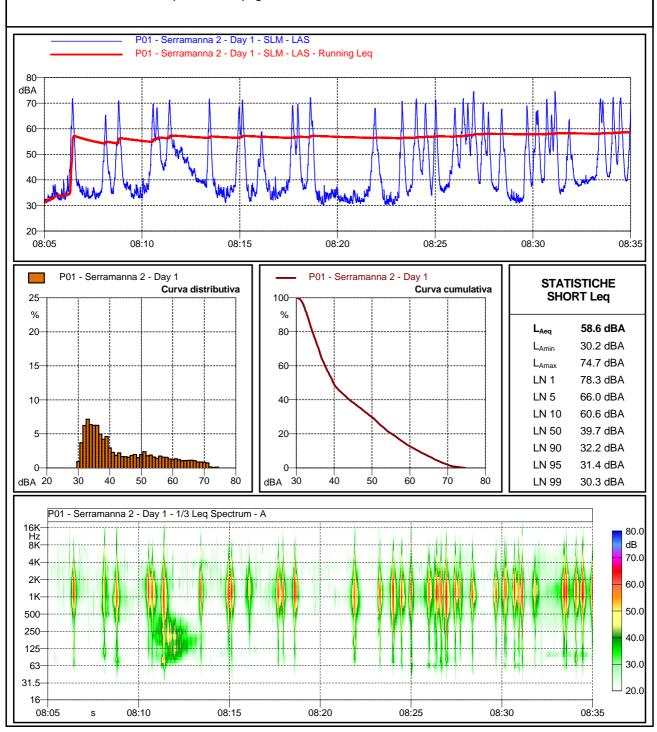
Ing. Calderaro - per.naut.Sannino

Firma e timbro Dott. Ing. Fabio Massimo Calderaro TECNICO COMPETENTE L. 447/95 D.D. Regione Pierronte n. 11 del 18/01/2007

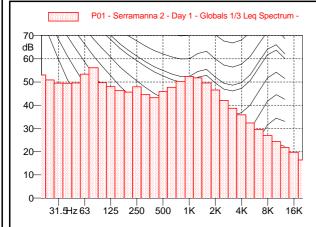
Nome misura		Data e ora di inizio	Operatore	
P01 - Serramanna 2		17/10/2022	Ing. Calderaro - per.naut.Sannino	
Tipologia misura Filtri - Costa		nte di tempo - Delta Time	Strumentazione	
RUMORE 20÷2000		00 Hz - Fast - 1 s	Larson-Davis 831	
Ricettore			Calibrazione	
Latitudine: 39.478368°- Loi	ngitudine:	8.855378°	Larson Davis CAL200	

Postazione di misura / Note

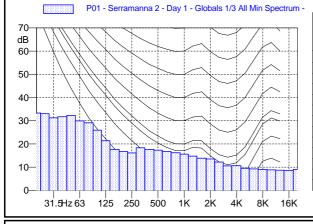
Microfono ubicato in corrispondenza della recinzione di confine di un gruppo di ricettori a destinazione d'uso rurale con possibilità di permanenza umana, potenzialmente più impattati dalle emissioni sonore dell'impianto, ad un'altezza di circa 4 m dal piano di campagna.


Foto Postazione Foto Postazione

Stralcio planimetrico


Nome misura		Data e ora di inizio	Operatore	
P01 - Serramanna 2 - Day 1		17/10/2022 - 08:05:07	Ing. Calderaro - per.naut.Sannino	
Tipologia misura	Filtri - Costa	nte di tempo - Delta Time	Strumentazione	
RUMORE 20÷2000		00 Hz - Fast - 1 s	Larson-Davis 831	
Ricettore			Calibrazione	
Latitudine: 39.478368°- Loi	ngitudine:	8.855378°	Larson Davis CAL200	

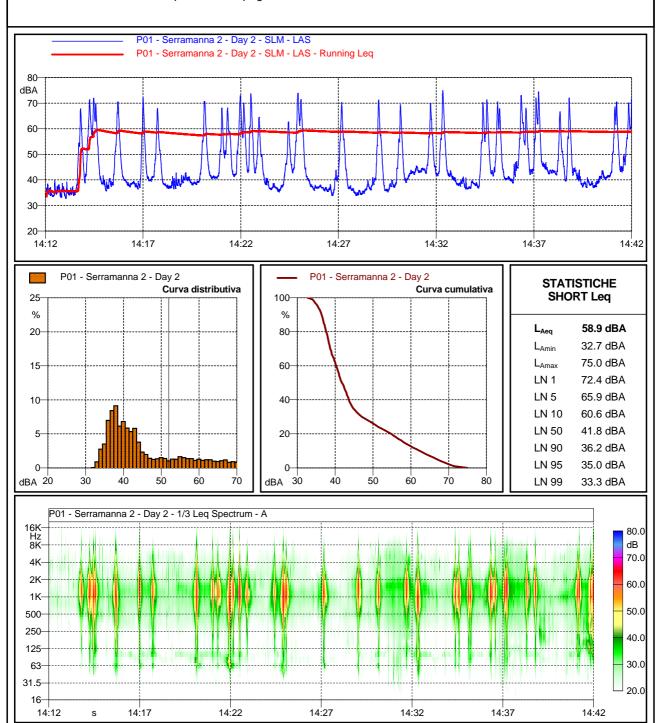
Postazione di misura / Note



Nome misura		Data e ora di inizio	Operatore	
P01 - Serramanna 2 - Day 1		17/10/2022 - 08:05:07	Ing. Calderaro - per.naut.Sannino	
Tipologia misura	Filtri - Costa	nte di tempo - Delta Time	Strumentazione	
RUMORE	20÷2000	00 Hz - Fast - 1 s	Larson-Davis 831	
Ricettore			Calibrazione	
Latitudine: 39.478368° - Lor	ngitudine:	8.855378°	Larson Davis CAL200	

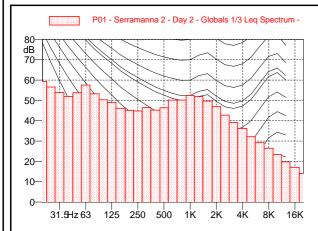
Postazione di misura / Note

P01 - Serramanna 2 - Day 1 Globals 1/3 Leq Spectrum -					
Hz	dB	Hz	dB	Hz	dB
6.3	63.1	100	49.7	1600	49.6
8	61.1	125	48.0	2000	46.5
10	58.5	160	46.2	2500	42.0
12.5	56.2	200	45.6	3150	38.7
16	54.4	250	47.9	4000	35.9
20	53.0	315	44.5	5000	32.4
25	50.9	400	43.2	6300	29.5
31.5	49.5	500	45.8	8000	26.9
40	49.4	630	47.7	10000	24.3
50	49.5	800	50.2	12500	21.8
63	53.3	1000	52.4	16000	19.7
80	56.1	1250	51.8	20000	16.4

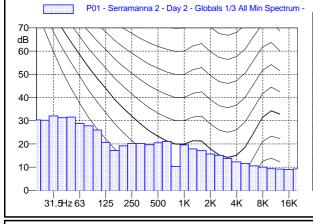

P01 - Serramanna 2 - Day 1 Globals 1/3 All Min Spectrum -					
Hz	dB	Hz	dB	Hz	dB
6.3	30.6	100	26.0	1600	13.9
8	29.1	125	21.4	2000	13.5
10	27.0	160	17.7	2500	12.3
12.5	29.4	200	16.7	3150	10.6
16	28.2	250	16.2	4000	10.6
20	33.3	315	18.4	5000	9.6
25	33.0	400	17.6	6300	9.3
31.5	31.2	500	17.3	8000	9.1
40	31.7	630	16.8	10000	8.9
50	32.3	800	16.2	12500	8.7
63	30.0	1000	15.6	16000	8.7
80	29.2	1250	14.8	20000	9.1

P01 - Serramanna 2 - Day 1 - Globals 1/3 Max Spectrum -
100 dB 90
80
70
60-1
50-
40-
30—

Globals 1/3 Max Spectrum -					
	Giot	iais i/s	wax Specific	JIII -	
Hz	dB	Hz	dB	Hz	dB
6.3	69.1	100	70.2	1600	67.2
8	63.9	125	69.5	2000	65.2
10	61.9	160	67.9	2500	61.0
12.5	61.8	200	65.4	3150	58.7
16	59.6	250	64.1	4000	56.7
20	59.5	315	63.9	5000	53.7
25	61.6	400	64.3	6300	52.7
31.5	64.9	500	62.1	8000	50.7
40	68.1	630	67.9	10000	48.5
50	66.0	800	72.4	12500	45.7
63	67.6	1000	74.1	16000	43.7
80	69.9	1250	70.7	20000	39.0


Nome misura		Data e ora di inizio	Operatore		
P01 - Serramanna 2 - Day 2		17/10/2022 - 14:12:51	Ing. Calderaro - per.naut.Sannino		
Tipologia misura	Filtri - Costante di tempo - Delta Time		Strumentazione		
RUMORE 20÷2000		00 Hz - Fast - 1 s	Larson-Davis 831		
Ricettore			Calibrazione		
Latitudine: 39.478368° - Longitudine: 8.855378°			Larson Davis CAL200		

Postazione di misura / Note



Nome misura		Data e ora di inizio	Operatore	
P01 - Serramanna 2 - Day 2		17/10/2022 - 14:12:51	Ing. Calderaro - per.naut.Sannino	
Tipologia misura	Filtri - Costante di tempo - Delta Time		Strumentazione	
RUMORE 20÷2000		00 Hz - Fast - 1 s	Larson-Davis 831	
Ricettore			Calibrazione	
Latitudine: 39.478368° - Longitudine: 8.855378°			Larson Davis CAL200	

Postazione di misura / Note

			manna 2 - D Leq Spectru		
Hz	dB	Hz	dB	Hz	dB
6.3	70.8	100	50.3	1600	49.7
8	68.9	125	49.0	2000	47.0
10	66.2	160	46.1	2500	42.8
12.5	63.9	200	45.1	3150	39.2
16	61.8	250	44.8	4000	36.2
20	59.3	315	46.5	5000	32.1
25	56.6	400	45.2	6300	29.3
31.5	53.9	500	46.4	8000	26.5
40	52.0	630	50.2	10000	23.3
50	53.8	800	50.2	12500	19.7
63	57.6	1000	52.5	16000	17.1
80	53.3	1250	51.9	20000	14.0

P01 - Serramanna 2 - Day 2 Globals 1/3 All Min Spectrum -					
	Olobe		iii iviiii opcot		
Hz	dB	Hz	dB	Hz	dB
6.3	34.5	100	26.0	1600	17.1
8	28.7	125	20.7	2000	15.7
10	28.9	160	17.2	2500	15.2
12.5	30.9	200	19.2	3150	13.8
16	29.6	250	20.2	4000	12.3
20	30.4	315	20.1	5000	11.6
25	30.3	400	19.7	6300	10.6
31.5	32.1	500	20.5	8000	10.0
40	31.4	630	21.1	10000	9.3
50	31.6	800	10.3	12500	9.2
63	28.9	1000	19.6	16000	9.0
80	27.8	1250	17.9	20000	9.3

P01 - Serramanna 2 - Day 2 - Globals 1/3 Max Spectrum -
90 dB 80
70
60-
50-
40-
30— 31.5Hz 63 125 250 500 1K 2K 4K 8K 16K
5.14.255 125 255 500 IN 2N 10N

P01 - Serramanna 2 - Day 2 Globals 1/3 Max Spectrum -					
Hz dE	Hz	dB	Hz	dB	
6.3 81.7	100	65.1	1600	70.9	
8 83.9	125	65.7	2000	68.1	
10 85.7	160	63.3	2500	65.1	
12.5 81.1	200	62.6	3150	62.7	
16 72.1	250	60.3	4000	59.3	
20 70.6	315	61.9	5000	54.8	
20 70.6 25 68.1	400	61.2	6300	53.8	
31.5 63.9	500	64.1	8000	49.9	
40 66.7	630	65.0	10000	46.4	
50 64.5	800	65.9	12500	43.4	
63 59.2	1000	70.7	16000	39.3	
80 61.9	1250	72.6	20000	33.8	

Nome misura		Data e ora di inizio	Operatore	
P02 - Serramanna 2		17/10/2022	Ing. Calderaro - per.naut.Sannino	
Tipologia misura	Filtri - Costante di tempo - Delta Time		Strumentazione	
RUMORE 20÷2000		00 Hz - Fast - 1 s	Larson-Davis 831	
Ricettore			Calibrazione	
Latitudine: 39.471127°- Longitudine: 8.847494°			Larson Davis CAL200	

Postazione di misura / Note

Microfono ubicato in corrispondenza della recinzione di confine di un gruppo di ricettori a destinazione d'uso rurale con possibilità di permanenza umana, potenzialmente più impattati dalle emissioni sonore dell'impianto, ad un'altezza di circa 4 m dal piano di campagna.

CARATTERISTICHE DEL RICETTORE

Descrizione

Edifici a destinazione d'uso rurale, struttutati su 1/2 piani fuori terra.

Il ricettore è localizzato in Località Carziende in un'area periferica ed isolata rispetto all'abitato di Serramanna.

Zonizzazione acustica e limiti di immissione diurni e notturni

ZONIZZAZIONE ACUSTICA COMUNALE: Il Comune di Serramanna dispone di un Piano di Classificazione Acustica del suo territorio adottato con la Deliberazione n° 1/2013 del 31/01/2 013

CLASSE ACUSTICA: III - Aree di tipo misto - Immissione 60/50 dB(A)

Classificazione ex. DPR n. 142 del 30/03/2004: -

CARATTERISTICHE DELLE SORGENTI DI RUMORE

Descrizione

L'area a connotazione rurale risulta caratterizzata da una buona qualità acustica. Le sorgenti di rumore antropico che influiscono sul clima acustico dell'area sono costituite dal modesto traffico circolante sulle locali strade rurali e dalle attività di lavorazione dei campi.

La componente biotica è ascrivibile soprattutto al cinguettio dell'avifauna.

METEO

Condizioni cielo:

sereno

Temperature:

22.4 ÷ 26.9 ℃

Umidità:

57 ÷ 71 %

Vento:

 $0.3 \div 1.0 \text{ m/s}$

SINTESI DEI LIVELLI RILEVATI:

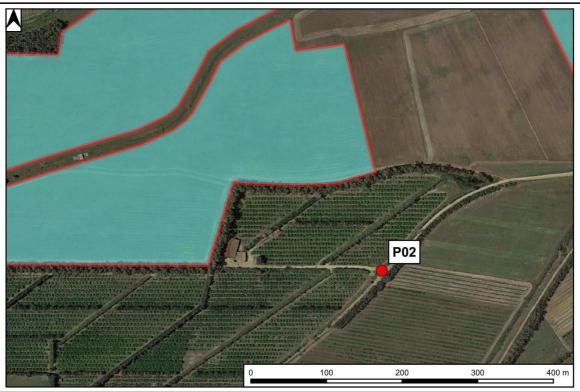
	Data	Ora	L _{Aeq} [dBA]	Limite Zonizzazione	Limite DPR n. 142 del 30/3/2004
Day-1	17/10/2022	09:09:08	37.2	60	-
Day-2	17/10/2022	15:10:13	34.9	60	-

Data

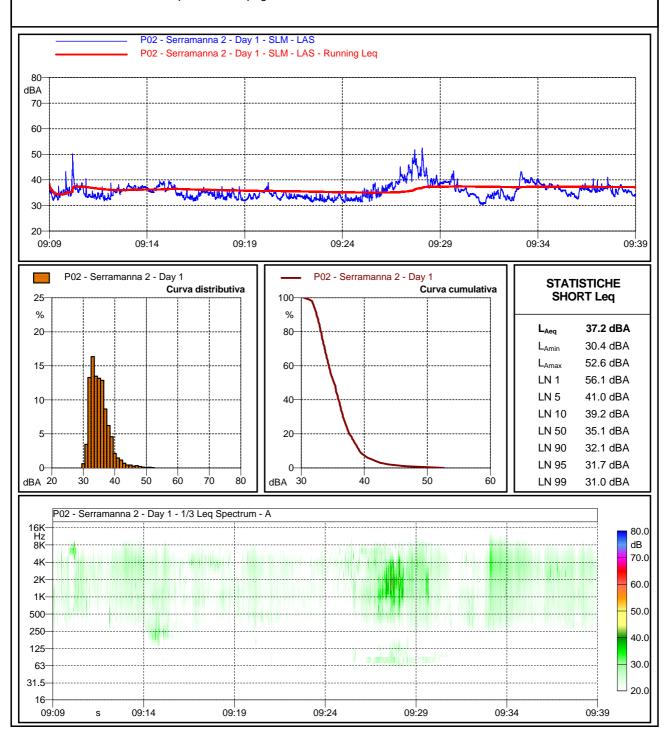
Operatore

17/10/2022

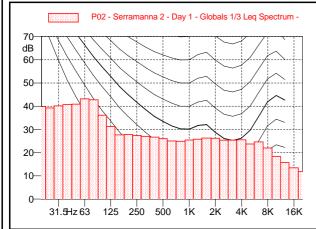
Ing. Calderaro - per.naut.Sannino


Nome misura		Data e ora di inizio	Operatore	
P02 - Serramanna 2		17/10/2022	Ing. Calderaro - per.naut.Sannino	
Tipologia misura	misura Filtri - Costante di tempo - Delta Time		Strumentazione	
RUMORE 20÷2000		00 Hz - Fast - 1 s	Larson-Davis 831	
Ricettore			Calibrazione	
Latitudine: 39.471127°- Longitudine: 8.847494°			Larson Davis CAL200	

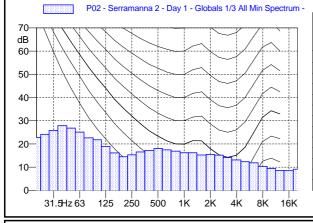
Postazione di misura / Note


Foto Postazione Foto Postazione

Stralcio planimetrico


Nome misura		Data e ora di inizio	Operatore	
P02 - Serramanna 2 - Day 1 17/10/2		17/10/2022 - 09:09:08	Ing. Calderaro - per.naut.Sannino	
Tipologia misura	Tipologia misura Filtri - Costante		Strumentazione	
RUMORE 20÷2000		00 Hz - Fast - 1 s	Larson-Davis 831	
Ricettore			Calibrazione	
Latitudine: 39.471127° - Longitudine: 8.847494°			Larson Davis CAL200	

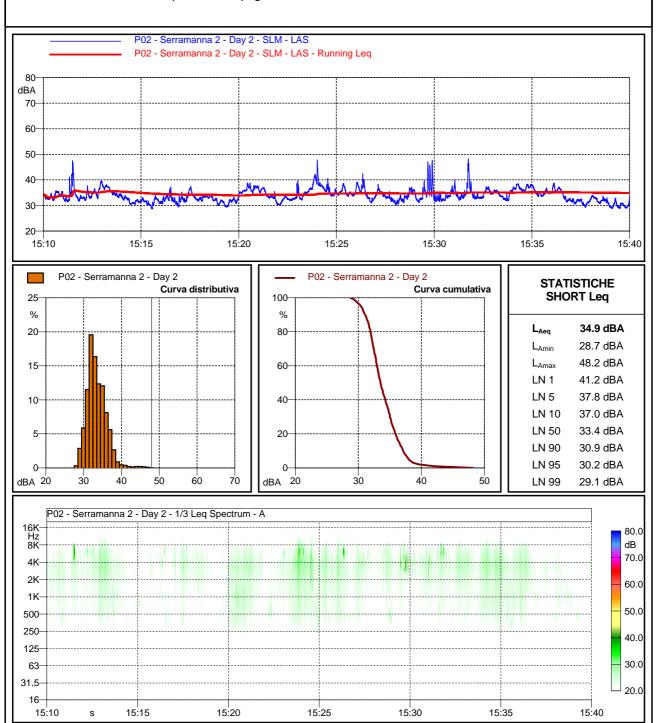
Postazione di misura / Note



Nome misura		Data e ora di inizio	Operatore	
P02 - Serramanna 2 - Day 1		17/10/2022 - 09:09:08	Ing. Calderaro - per.naut.Sannino	
Tipologia misura	Filtri - Costa	nte di tempo - Delta Time	Strumentazione	
RUMORE 20÷2000		00 Hz - Fast - 1 s	Larson-Davis 831	
Ricettore			Calibrazione	
Latitudine: 39.471127° - Longitudine: 8.847494°			Larson Davis CAL200	

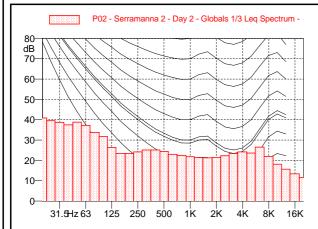
Postazione di misura / Note

P02 - Serramanna 2 - Day 1 Globals 1/3 Leq Spectrum -					
Hz	dB	Hz	dB	Hz	dB
6.3	47.6	100	36.1	1600	26.3
8	45.0	125	31.3	2000	26.2
10	42.5	160	27.7	2500	25.4
12.5	41.4	200	27.8	3150	25.3
16	41.5	250	27.3	4000	25.5
20	39.9	315	27.0	5000	23.7
25	39.2	400	26.7	6300	24.6
31.5	40.1	500	26.0	8000	22.0
40	40.7	630	25.0	10000	18.4
50	40.9	800	24.9	12500	15.7
63	43.2	1000	25.4	16000	13.4
80	42.7	1250	25.8	20000	11.8

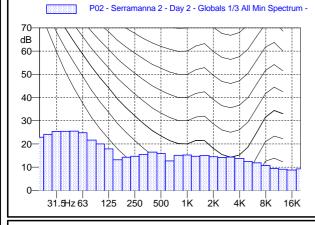

			anna 2 - D Min Spect	•	
Hz	dB	Hz	dB	Hz	dB
6.3	20.3	100	21.8	1600	15.3
8	18.1	125	19.0	2000	15.5
10	16.3	160	16.2	2500	15.2
12.5	20.9	200	14.6	3150	14.2
16	20.6	250	15.3	4000	13.2
20	22.8	315	16.6	5000	12.4
25	24.2	400	17.3	6300	11.9
31.5	25.8	500	18.1	8000	10.4
40	27.9	630	17.5	10000	9.5
50	26.8	800	16.9	12500	8.7
63	25.1	1000	16.2	16000	8.5
80	22.7	1250	16.2	20000	9.2

		P02 - Serr	amanna 2 - I	Day 1 - Globa	als 1/3 Max S	Spectrum -
100- dB 90-						
80-						
70-					<i>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </i>	
60-						
50- 40-						
30-	_			4		
	31.5Hz 6	3 125	250 500	1K 2k	4K 8	8K 16K

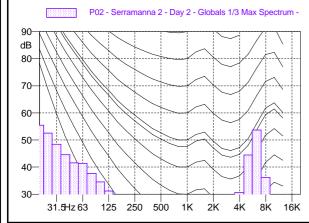
			manna 2 - D Max Spectru		
Hz	dB	Hz	dB	Hz	dB
6.3	43.5	100	38.2	1600	26.2
8	45.8	125	34.0	2000	27.8
10	45.9	160	32.0	2500	26.1
12.5	45.0	200	30.7	3150	27.6
16	42.5	250	26.1	4000	32.6
20	42.0	315	30.8	5000	45.7
25	43.9	400	29.8	6300	56.9
31.5	47.3	500	27.5	8000	48.8
40	48.7	630	28.6	10000	23.9
50	50.0	800	32.1	12500	31.0
63	46.8	1000	32.2	16000	21.1
80	42.9	1250	25.0	20000	16.5
. 80	42.9	1250	25.0	20000	16.5


Nome misura		Data e ora di inizio	Operatore					
P02 - Serramanna 2 - Day 2	02 - Serramanna 2 - Day 2 17/10/2022 - 15:10:13 Ing. C		Ing. Calderaro - per.naut.Sannino					
Tipologia misura Filtri - Costante di tempo -		nte di tempo - Delta Time	Strumentazione					
RUMORE 20÷2000		00 Hz - Fast - 1 s	Larson-Davis 831					
Ricettore			Calibrazione					
Latitudine: 39.471127°- Longitudine: 8.847494°			Larson Davis CAL200					

Postazione di misura / Note



Nome misura		Data e ora di inizio	Operatore	
P02 - Serramanna 2 - Day 2		17/10/2022 - 15:10:13	Ing. Calderaro - per.naut.Sannino	
Tipologia misura Filtri - Costa		nte di tempo - Delta Time	Strumentazione	
RUMORE 20÷2000		00 Hz - Fast - 1 s	Larson-Davis 831	
Ricettore			Calibrazione	
Latitudine: 39.471127°- Longitudine: 8.847494°			Larson Davis CAL200	


Postazione di misura / Note

P02 - Serramanna 2 - Day 2 Globals 1/3 Leq Spectrum -					
Hz	dB	Hz	dB	Hz	dB
6.3	48.4	100	31.8	1600	21.3
8	46.4	125	26.4	2000	21.5
10	44.3	160	23.5	2500	22.3
12.5	43.6	200	23.4	3150	23.4
16	42.8	250	24.2	4000	24.2
20	40.9	315	25.1	5000	23.7
25	39.6	400	25.1	6300	26.6
31.5	38.8	500	24.4	8000	22.0
40	37.5	630	23.0	10000	18.1
50	38.9	800	22.4	12500	15.6
63	37.3	1000	21.9	16000	13.4
80	33.8	1250	21.4	20000	11.6

P02 - Serramanna 2 - Day 2 Globals 1/3 All Min Spectrum -					
Hz	dB	Hz	dB	Hz	dB
6.3	15.1	100	20.0	1600	15.0
8	18.3	125	17.9	2000	14.5
10	19.3	160	13.2	2500	14.2
12.5	22.0	200	14.3	3150	14.4
16	23.1	250	14.7	4000	13.8
20	22.9	315	15.6	5000	12.4
25	24.2	400	16.5	6300	11.9
31.5	25.4	500	15.9	8000	10.7
40	25.4	630	12.7	10000	9.5
50	25.6	800	15.1	12500	9.1
63	24.8	1000	15.3	16000	8.8
80	21.7	1250	14.7	20000	9.3

P02 - Serramanna 2 - Day 2 Globals 1/3 Max Spectrum -					
Hz	dB	Hz	dB	Hz	dB
6.3	59.2	100	34.5	1600	25.7
8	59.3	125	31.2	2000	26.3
10	61.9	160	26.3	2500	27.1
12.5	55.3	200	28.2	3150	27.9
16	61.4	250	27.7	4000	30.6
20	55.4	315	28.7	5000	44.5
20 25	52.6	400	29.4	6300	53.7
31.5	48.4	500	29.1	8000	36.1
40	44.6	630	26.7	10000	25.5
50	41.5	800	26.2	12500	28.2
63	41.4	1000	25.0	16000	20.2
80	37.6	1250	24.8	20000	18.5