COMMITTENTE	-	
GRENERGY		Grenergy
RINNOVABILI 8 s.r.l.		renovables
1" 5 00101		(4.41)

Via Borgonuovo, 9 -20121 Milano (MI)

ELABORAZIONI

I.A.T. Consulenza e progetti S.r.l. con socio unico -Via Giua s.n.c. – Z.l. CACIP, 09122 Cagliari (CA) Tel./Fax +39.070.658297 Web www.iatprogetti.it

COD. ELABORATO	
	GREN-FVM-RP2

1 di 20

IMPIANTO FOTOVOLTAICO "GR MACOMER"

- COMUNE DI MACOMER (NU) -

OGGET	то		TITOLO			
PRO	GETTO DEF	FINITIVO		PRELIMINAR NAMENTO E		
I.A.T. CC	<i>TTAZIONE</i> DNSULENZA E PR USEPPE FRONGI <i>A</i>		Gruppo di lavoro: Ing. Giuseppe Frongia (coordinatore e responsabile) Ing. Marianna Barbarino Ing. Elisa Roych Dott. Pian. Terr Andrea Cappai Ing. Antonio Dedoni (Archeologia) Dott. Geol. Maria Francesca Lobina Agr. Dott. Nat. Nicola Manis Dott. Nat. Maurizio Medda Ing. Gianluca Melis Dott. Geol. Mauro Pompei			
Cod. pra	Cod. pratica 2022/0305 Nome File: GREN-FVM-RP2_Calcoli preliminari di dimensionamento elettrico.docx			o elettrico.docx		
0	23/10/2022	Emissione per procedura di VIA	Emissione per procedura di VIA		GF	GREN
REV.	DATA	DATA DESCRIZIONE		ESEG.	CONTR.	APPR.

Disegni, calcoli, specifiche e tutte le altre informazioni contenute nel presente documento sono di proprietà della I.A.T. Consulenza e progetti s.r.l. Al ricevimento di questo documento la stessa diffida pertanto di riprodurlo, in tutto o in parte, e di rivelarne il contenuto in assenza di esplicita autorizzazione.

INDICE

1	GENER	RALITÀ	2
2	CALCO	OLI ELETTRICI	4
2.1	De	eterminazione della potenza dell'impianto	4
2.2	Ca	aratteristiche moduli fotovoltaici	4
2.3	Ca	aratteristiche inverter	5
	2.3.1	Potenza nominale del generatore fotovoltaico	6
	2.3.2	Accoppiamento stringhe-inverter	6
2.4	Qı	uadri BT	8
	2.4.1	Quadri elettrici BT lato c.a	8
	2.4.2	Quadri di campo e di parallelo stringhe c.c	ε
2.5	Qı	uadri a 36 kV	9
2.6	Ca	avi per la distribuzione elettrica in BT c.c	9
2.7	Ca	avi per la distribuzione elettrica in BT c.a	10
	2.7.1		
2.8	Ca	avi per la distribuzione elettrica d'impianto	12
2.9	Di	mensionamento dei circuiti	14
2.10) Pr	otezione dei circuiti a 36kV	16
2.11	l Pr	otezione dei circuiti BT	17
	2.11.1	Protezione contro i sovraccarichi	17
	2.11.2	Protezione contro i cortocircuiti	17
2.12	2 Co	ontributo alle correnti di corto circuito al PCC	18
3	NORME	E E PRESCRIZIONI DI RIFERIMENTO	19
3.1	No	orme tecniche	19
3 2	No	orme del gestore della rete di trasmissione	19

GRENERGY RINNOVABILI 8 s.r.l.	OGGETTO IMPIANTO FOTOVOLTAICO DENOMINATO "GR MACOMER" IN LOCALITÀ "ARRULAS" DELLA	COD. ELABORATO GREN-FVM-RP2
Via Borgonuovo, 9 –20121 Milano (MI)	POTENZA NOMINALE DI 27,44 MWac	
Calat consulenza Progetti	TITOLO CALCOLI PRELIMINARI DI DIMENSIONAMENTO ELETTRICO	PAGINA 2 di 20
www.iatprogetti.it		

1 GENERALITÀ

La presente relazione dei calcoli elettrici preliminari costituisce parte integrante del progetto definitivo di un impianto fotovoltaico denominato "GR MACOMER", da realizzarsi su terreni ubicati in agro del Comune di Macomer in località "Arrulas" (Regione Sardegna – Provincia di Nuoro).

La proponente è la società GRENERGY RINNOVABILI 8 s.r.l avente sede in via Borgonuovo, 9 – 20121 Milano (MI).

L'impianto in progetto avrà una potenza complessiva AC di 27,44 MW, data dalla somma delle potenze nominali dei singoli inverter (potenza nominale lato DC pari a 35,30 MW_P), e sarà costituito da n. 1925 inseguitori monoassiali (*tracker* da n. 2x14 pannelli FV); l'impianto sarà altresì integrato con un sistema di accumulo elettrochimico da 10 MW/22,36 MWh.

L'intervento ha ottenuto il preventivo di connessione di cui al Codice pratica TERNA n. 202101341 relativo ad una potenza in immissione di 27,5 MW; anche quando il funzionamento dell'impianto avverrà con il sistema di accumulo esso verrà limitato alla massima potenza erogabile coincidente con il limite imposto dal Gestore della rete di trasmissione nazionale (RTN).

In accordo con la citata STMG l'impianto sarà collegato in antenna a 36 kV sulla sezione 36 kV della futura Stazione Elettrica (SE) di Trasformazione 380/150/36 kV della RTN da inserire in entra – esce alla linea RTN a 380 kV "Ittiri -Selargius".

In attesa della pubblicazione delle specifiche tecniche da parte di Terna su cavi, celle e apparecchiature per le connessioni a 36 kV (attualmente oggetto di valutazione, indagine di mercato e verifiche di cantiere da parte di Terna), ogni indicazione qui riportata ai cavi a 36 kV deve intendersi riferita a cavi da 20,8/36 kV o cavi da 26/45 kV commercialmente disponibili e idonei allo scopo.

Nel seguito saranno definite le caratteristiche del generatore fotovoltaico e dei circuiti di distribuzione in c.a. e c.c.

I criteri progettuali seguiti sono principalmente quelli di pervenire ad una configurazione impiantistica tale da garantire il corretto funzionamento della centrale fotovoltaica nelle diverse condizioni operative.

Dal punto di vista del dimensionamento degli impianti il documento è redatto in conformità alla Norma CEI 0-2 con lo scopo di:

- determinare i parametri elettrici fondamentali di funzionamento dell'impianto, sia in condizioni normali che in condizione di guasto;
- determinare i parametri elettrici di riferimento per l'acquisizione dei principali componenti di impianto, determinando i criteri generali di scelta delle soluzioni impiantistiche adottate;
- definire i criteri e le soluzioni impiantistiche ai fini della sicurezza delle persone nei confronti dei contatti diretti e indiretti.

COMMITTENTE	OGGETTO	COD. ELABORATO
GRENERGY Grenergy	IMPIANTO FOTOVOLTAICO DENOMINATO "GR	GREN-FVM-RP2
RINNOVABILI 8 s.r.l.	MACOMER" IN LOCALITÀ "ARRULAS" DELLA	
Via Borgonuovo, 9 –20121 Milano (MI)	POTENZA NOMINALE DI 27,44 MWac	
PROGETTI	TITOLO CALCOLI PRELIMINARI DI DIMENSIONAMENTO ELETTRICO	PAGINA 3 di 20
www.iatprogetti.it		

Le condizioni ambientali di riferimento nei calcoli effettuati nella presente relazione sono:

- temperatura interna da -10°C a + 60°C,
- temperatura esterna da -10°C a + 60°C,
- umidità interna variabile dal 20 % al 85 %.

COMMITTENTE	OGGETTO	COD. ELABORATO
GRENERGY Grenergy	IMPIANTO FOTOVOLTAICO DENOMINATO "GR	GREN-FVM-RP2
RINNOVABILI 8 s.r.l.	MACOMER" IN LOCALITÀ "ARRULAS" DELLA	
Via Borgonuovo, 9 –20121 Milano (MI)	POTENZA NOMINALE DI 27,44 MWac	
iat consulenza progetti	TITOLO CALCOLI PRELIMINARI DI DIMENSIONAMENTO ELETTRICO	PAGINA 4 di 20
www.iatprogetti.it		

2 CALCOLI ELETTRICI

2.1 Determinazione della potenza dell'impianto

Per calcolare la potenza dell'impianto in progetto si è proceduto, in primo luogo, alla definizione del layout d'impianto - ottimizzandolo in funzione dell'orientamento dei confini del terreno e delle limitazioni vincolistiche e infrastrutturali riscontrate – avuto riguardo della soluzione tecnica minima generale (STMG) elaborata da Terna.

2.2 Caratteristiche moduli fotovoltaici

I moduli fotovoltaici che saranno impiegati, aventi tecnologia bifacciale, sono riferibili al modello commerciale dalla Canadian Solar "CS7N-655MB-AG" bifacciali in silicio monocristallino, o similari, le cui caratteristiche riferite alle condizioni standard di irraggiamento (STC: 1000W/m², 25°C, AM 1,5) sono riportate in Tabella 2.1.

Tabella 2.1 - Dati tecnici moduli

Potenza massima (P _{max}) [W _p]	655
Tolleranza sulla potenza [%]	0~+10
Tensione alla massima potenza (V _{mpp}) [V]	38,1
Corrente alla massima potenza (I _{mpp}) [A]	17,20
Tensione di circuito aperto (V _{oc}) [V]	45,2
Corrente di corto circuito (I _{sc}) [A]	18,43
Massima tensione di sistema [V _{dc}]	1500
Coefficiente termico αP _{mpp} [%/°C] (NOCT 46°)	-0,34
Coefficiente termico αV _{oc} [%/°C] (NOCT 46°)	-0,26
Coefficiente termico αI _{sc} [%/°C] (NOCT 46°)	+0,05
Efficienza modulo [%]	21,1
Dimensioni principali [mm]	2384 x 1303 x 35
Numero di celle per modulo	132 [2 x (11 x 6)]

COMMITTENTE GRENERGY RINNOVABILI 8 s.r.l. Via Borgonuovo, 9 –20121 Milano (MI)	OGGETTO IMPIANTO FOTOVOLTAICO DENOMINATO "GR MACOMER" IN LOCALITÀ "ARRULAS" DELLA POTENZA NOMINALE DI 27,44 MWac	COD. ELABORATO GREN-FVM-RP2
PROGETTI	TITOLO CALCOLI PRELIMINARI DI DIMENSIONAMENTO ELETTRICO	PAGINA 5 di 20
www.iatprogetti.it		

2.3 Caratteristiche inverter

Gli inverter selezionati per l'impianto avranno le caratteristiche individuate dal costruttore Power Elettronics, modello HEMK 645V – FS3430K o similare con potenza nominale di 3430 kW e saranno ubicati all'interno di strutture aperte completi di trasformatore e di interruttori per le linee in ingresso e uscita, oltre che per la protezione del trasformatore stesso e servizi ausiliari.

I dati tecnici sono riportati in Tabella 2.2.

Tabella 2.2 - Dati tecnici HEMK 645V - FS3430K

Marca e Modello Tipo ¹	HEMK 645V – FS3430K
Potenza nominale [kVA]	3430
Potenza nominale [kW] cos φ=1	3430
Corrente massima DC [A]	3970
Corrente massima AC [A]	3175
Intervallo Tensione MPPT - Vmpp [V]	913-1500
Tensione Max DC-Vmax DC [V]	1500
N° di ingressi lato DC	36
Connessione di rete AC	645 V, 50 Hz, 3F
Fattore di potenza cosφ	>0.99 / ±0.8 IND/CAP
Dimensioni (A x L x P) mm	3700/2200/2200
Efficienza Europea	98.6 %
Efficienza Inverter max	98,87 %

¹ Non vincolante per le scelte esecutive

COMMITTENTE	OGGETTO	COD. ELABORATO
GRENERGY Grenergy	IMPIANTO FOTOVOLTAICO DENOMINATO "GR	GREN-FVM-RP2
RINNOVABILI 8 s.r.l.	MACOMER" IN LOCALITÀ "ARRULAS" DELLA	
Via Borgonuovo, 9 –20121 Milano (MI)	POTENZA NOMINALE DI 27,44 MWac	
iat consulenza progetti	TITOLO CALCOLI PRELIMINARI DI DIMENSIONAMENTO ELETTRICO	PAGINA 6 di 20
www.iatprogetti.it		

2.3.1 Potenza nominale del generatore fotovoltaico

Tenuto conto della superficie utile all'installazione degli inseguitori monoassiali e delle dimensioni standard dei *tracker* (aventi caratteristiche costruttive del modello PVH_ML2V_28M o similare), l'impianto presenta la configurazione funzionale indicata in Tabella 2.3.

Tabella 2.3 – Dati principali impianto

Modello moduli FV	Canadian Solar CS7N-655MB-AG
Potenza moduli (Wp)	655
Inverter	FS3430K
Potenza inverter (MW)	3,43
n. inverter	8
Distanza E-W tra le file	10,5 m
Distanza N-S tra le file	0.5 m
n. tracker da 2 x 14 moduli	1925
n. totale tracker	1925
n. totale moduli	53900
n. stringhe da 28 moduli	1925
Potenza DC (MWp)	35,30
Potenza nominale AC (MW)	27,44
Potenza apparente AC (MVA)	27,44
Rapporto DC/AC	1,29

La potenza complessiva nominale dell'impianto, considerando n. 53.900 moduli da 655 Wp, sarà pertanto di 35,30 MWp mentre la potenza in AC sarà pari a 27,44 MW, con un rapporto AC/DC di circa 1,29.

2.3.2 Accoppiamento stringhe-inverter

Per assicurare un funzionamento sicuro ed efficiente dell'inverter è necessario configurare il campo fotovoltaico adattandolo al modello di inverter prescelto, valutandone attentamente le condizioni estreme di funzionamento.

Il dimensionamento delle stringhe dell'inverter è stato effettuato considerando i requisiti previsti dalla guida CEI 82-25 ed in particolare, sono state verificate con il simulatore d'impianto implementato in PVSYTS, le seguenti condizioni di funzionamento:

COMMITTENTE	OGGETTO	COD. ELABORATO
GRENERGY Grenergy	IMPIANTO FOTOVOLTAICO DENOMINATO "GR	GREN-FVM-RP2
RINNOVABILI 8 s.r.l.	MACOMER" IN LOCALITÀ "ARRULAS" DELLA	
Via Borgonuovo, 9 –20121 Milano (MI)	POTENZA NOMINALE DI 27,44 MWac	
iat consulenza progetti	TITOLO CALCOLI PRELIMINARI DI DIMENSIONAMENTO ELETTRICO	PAGINA 7 di 20
www.iatprogetti.it		

1. Tensione massima stringa a vuoto, alla minima temperatura:

Tensione di circuito aperto Voc a -10 °C inferiore alla tensione massima dell'inverter.

2. Tensioni MPPT:

La tensione nel punto STC deve essere compresa nella finestra di tensione in cui ricade il punto di funzionamento alla massima potenza.

La tensione nel punto di massima potenza, V_{pm} a 60 $^{\circ}$ C deve essere maggiore della Tensione MPPT minima.

Tensione nel punto di massima potenza, V_{pm} a -10 $^{\circ}$ C deve essere minore della Tensione MPPT massima.

Il parallelo delle uscite in c.c. avverrà mediante l'utilizzo di quadri di campo e manovra distribuiti opportunamente nei singoli sottocampi FV.

I risultati delle verifiche di accoppiamento, nelle condizioni più gravose, sono riassunti nella Tabella 2.4.

Tabella 2.4 - Configurazione stringhe – MPPT (28 moduli per stringa).

Ver. n.	Grandezza	Temperatura	Valore grandezza	Valore verifica
	Tanciano a Vueto ella			<1500V (Moduli)
1	Tensione a Vuoto alla Minima Temperatura	-10°C	1389 V	<1500V
				(Inverter)
	Tensione di MPPT a STC	25°C	1062V	913V -1500 V
2	Tensione di MPPT alla minima Temperatura	-10°C	1193 V	<1500V
	Tensione di MPPT alla Massima Temperatura	60 °C	930 V	>913V

COMMITTENTE	OGGETTO	COD. ELABORATO
GRENERGY Grenergy	IMPIANTO FOTOVOLTAICO DENOMINATO "GR	GREN-FVM-RP2
RINNOVABILI 8 s.r.l.	MACOMER" IN LOCALITÀ "ARRULAS" DELLA	
Via Borgonuovo, 9 –20121 Milano (MI)	POTENZA NOMINALE DI 27,44 MWac	
iat consulenza progetti	TITOLO CALCOLI PRELIMINARI DI DIMENSIONAMENTO ELETTRICO	PAGINA 8 di 20
www.iatprogetti.it		

2.4 Quadri BT

2.4.1 Quadri elettrici BT lato c.a.

I quadri elettrici saranno realizzati con struttura in robusta lamiera di acciaio con un grado di protezione IP55. I quadri elettrici di BT c.a. dovranno avere le caratteristiche riportate in Tabella 2.5.

Tabella 2.5 - Dati tecnici Quadri Elettrici BT c.a.

Tensione nominale [V]	690
Tensione esercizio [V]	400
Numero delle fasi	3F + PE
Livello nominale di isolamento tensione di prova a frequenza industriale per 1 min verso terra e tra le fasi [kV]	2,5
Frequenza nominale [Hz]	50
Corrente nominale sbarre principali	3200 A

2.4.2 Quadri di campo e di parallelo stringhe c.c.

I quadri elettrici di BT c.c. dovranno avere le caratteristiche riportate in Tabella 2.6.

Tabella 2.6 - Dati tecnici Quadri Elettrici BT c.c.

Tensione nominale [V]	1500
Tensione esercizio [V]	800-1500
Numero delle fasi	+/-
Livello nominale di isolamento tensione di prova a frequenza industriale per 1 min verso terra e tra le fasi [kV]	2,5
Frequenza nominale [Hz]	0
Corrente nominale sbarre principali	3200 A

COMMITTENTE	OGGETTO	COD. ELABORATO
GRENERGY Grenergy	IMPIANTO FOTOVOLTAICO DENOMINATO "GR	GREN-FVM-RP2
RINNOVABILI 8 s.r.l.	MACOMER" IN LOCALITÀ "ARRULAS" DELLA	
Via Borgonuovo, 9 –20121 Milano (MI)	POTENZA NOMINALE DI 27,44 MWac	
PROGETTI	TITOLO CALCOLI PRELIMINARI DI DIMENSIONAMENTO ELETTRICO	PAGINA 9 di 20
www.iatprogetti.it		

2.5 Quadri a 36 kV

Nell'impianto sono dislocati quadri di smistamento e di connessione alle *cabine di conversione e trasformazione*.

In ciascuna cabina di conversione e trasformazione è previsto un quadro a 36 kV con la cella di protezione del trasformatore e i due sezionatori della linea entra-esci che collega tra loro le cabine d'impianto.

I dati tecnici principali dei quadri di distribuzione prescelti sono riportati in Tabella 2.7.

Tabella 2.7 - Dati tecnici quadri a 36kV

Tensione nominale [kV]	36
Tensione di esercizio [kV]	40,5 kV
Frequenza nominale [Hz]	50
N° fasi	3
Corrente nominale delle sbarre principali [A]	Fino a 2500 A
Corrente nominale max delle derivazioni [A]	Fino a 2500 A
Corrente nominale ammissibile di breve durata [kA]	12,5/16 kA
Corrente nominale di picco [kA]	25-31,5 kA
Potere di interruzione degli interruttori alla tensione nominale [kA]	12,5/16 kA
Durata nominale del corto circuito [s]	1

La tensione di riferimento per l'isolamento delle apparecchiature è di 36 kV.

2.6 Cavi per la distribuzione elettrica in BT c.c.

I cavi utilizzati sul lato c.c. dell'impianto di produzione devono essere in grado di sopportare severe condizioni ambientali per tutta la durata in vita dell'impianto. Le condutture devono avere un isolamento doppio per ridurre i guasti a terra e i corto circuiti.

Per il collegamento dei quadri di stringa agli inverter si utilizzeranno cavi del tipo ARG7OR 0,6/1 kV c.a 0,9/1,5KV c.c., conduttore in alluminio, corda rigida compatta isolamento classe 2, materiale

COMMITTENTE GRENERGY RINNOVABILI 8 s.r.l. Via Borgonuovo, 9 –20121 Milano (MI)	OGGETTO IMPIANTO FOTOVOLTAICO DENOMINATO "GR MACOMER" IN LOCALITÀ "ARRULAS" DELLA POTENZA NOMINALE DI 27.44 MWac	COD. ELABORATO GREN-FVM-RP2
PROGETTI	TITOLO CALCOLI PRELIMINARI DI DIMENSIONAMENTO ELETTRICO	PAGINA 10 di 20
www.iatprogetti.it		

gomma, qualità G7, guaina riempitiva materiale termoplastico, guaina esterna materiale: pvc, qualità rz, colore: grigio.

Per collegamenti in c.c. tra i moduli verranno impiegati cavi unipolari adatti al collegamento dei vari elementi degli impianti fotovoltaici e solari, sigla H1Z2Z2-K con tensione nominale di esercizio: 1.0kV c.a - 1.5kV c.c., Um: 1.800 V c.c., colore guaina esterna Nero o Rosso (basato su RAL 9005 o 3000), isolati con gomma Z2, sotto guaina Z2, con conduttori flessibili stagnati. Non propaganti la fiamma, senza alogeni, a basso sviluppo di fumi e gas tossici e corrosivi.

La sezione del cavo deve essere tale che la sua portata I_z non sia inferiore alla corrente d'impiego I_b e che la caduta di tensione ai suoi capi sia entro il 2-3% per limitare al minimo le perdite di energia per effetto Joule.

2.7 Cavi per la distribuzione elettrica in BT c.a.

I cavi utilizzati sul lato c.a. dell'impianto di produzione devono essere adatti per l'alimentazione di energia per installazione su murature e strutture metalliche, su passarelle, tubazioni, canalette e sistemi similari, sarà possibile la posa fissa all'interno, all'esterno e interrata (ammessa diretta e indiretta) del tipo FG16OR16 con tensione nominale Uo/U: 600/1.000 V c.a., tensione massima Um: 1.200 V c.a.

La sezione del cavo deve essere tale che la sua portata I_z non sia inferiore alla corrente d'impiego I_b e che la caduta di tensione ai suoi capi sia entro il 2-3% per limitare al minimo le perdite di energia per effetto Joule.

2.7.1 Cavi lato a.c in bassa tensione all'interno degli edifici

All'interno degli edifici quali cabine elettriche, sale quadri etc. si utilizzeranno cavi del tipo FG16M16-FG16OM16 0,6/1 kV sono cavi per il trasporto di energia e di segnali con isolamento in gomma di qualità G16, sotto guaina termoplastica LS0H, qualità M16 a ridotta emissione di gas corrosivi.

COMMITTENTE	OGGETTO	COD. ELABORATO
GRENERGY Grenergy	IMPIANTO FOTOVOLTAICO DENOMINATO "GR	GREN-FVM-RP2
RINNOVABILI 8 s.r.l.	MACOMER" IN LOCALITÀ "ARRULAS" DELLA	
Via Borgonuovo, 9 –20121 Milano (MI)	POTENZA NOMINALE DI 27,44 MWac	
iat consulenza progetti	TITOLO CALCOLI PRELIMINARI DI DIMENSIONAMENTO ELETTRICO	PAGINA 11 di 20
www.iatprogetti.it		

Le caratteristiche principali dei cavi FG160M1 FG160M16 sono:

- Non propagazione della fiamma;
- Non propagazione dell'incendio;
- Bassissima emissione alogeni, gas tossici e corrosivi;
- Zero alogeni;
- Buon comportamento alle basse temperature.

Le caratteristiche funzionali dei cavi FG160M1 FG160M16 sono:

- Tensione nominale Uo/U:
 - 600/1.000 V c.a.
 - 1.500 V c.c.
- Tensione Massima Um:
 - 1.200 V c.a.
 - 1.800 V c.c.
- Tensione di prova industriale: 4.000 V
- Massima temperatura di esercizio: 90°C
- Temperatura minima di esercizio: -15°C (in assenza di sollecitazioni meccaniche)
- Temperatura massima di corto circuito: 250°C
- Sforzo massimo di trazione: 50 N/mm² di sezione del rame.
- Raggio minimo di curvatura: 4 volte il diametro del cavo.
- Temperatura minima di posa: 0°C.

COMMITTENTE	OGGETTO	COD. ELABORATO	
GRENERGY Grenergy	IMPIANTO FOTOVOLTAICO DENOMINATO "GR	GREN-FVM-RP2	
RINNOVABILI 8 s.r.l.	MACOMER" IN LOCALITÀ "ARRULAS" DELLA		
Via Borgonuovo, 9 –20121 Milano (MI)	POTENZA NOMINALE DI 27,44 MWac		
iat consulenza e progetti	TITOLO CALCOLI PRELIMINARI DI DIMENSIONAMENTO ELETTRICO	PAGINA 12 di 20	
www.iatprogetti.it			

2.8 Cavi per la distribuzione elettrica d'impianto

La linea di distribuzione elettrica d'impianto realizza le connessioni tra le cabine di conversione/trasformazione e le connette alla cabina di raccolta. I cavi sono stati dimensionati considerando la modalità e profondità di posa e la lunghezza della linea.

I cavi utilizzati sono del tipo tripolari ARG7H1RX - 36 kV elicordati.

Le caratteristiche indicate nella Tabella 2.8 e nella Tabella 2.9.

Tabella 2.8 – Caratteristiche tecniche cavi tipo ARG7H1RX - 36 kV

Formazione	Ø indicativo	Spessore medio	Spessore medio	Ø indicativo	Ø circoscritto	Peso indicativo		di corrente A
	conduttore	isolante	guaina	anima	indicativo	cavo	in aria	interrato(*)
n° x mm²	mm	mm	mm	mm	mm	kg/km	Α	Α
3 x 1 x 35	7,0	8,0	1,9	33,5	72,0	3150	144	142
3 x 1 x 50	8,1	8,0	2,0	34,1	73,3	3480	174	168
3 x 1 x 70	9,7	8,0	2,0	36,2	77,8	3880	218	207
3 x 1 x 95	11,4	8,0	2,1	38,2	82,1	4355	266	247
3 x 1 x 120	12,9	8,0	2,2	40,0	86,0	5020	309	281
3 x 1 x 150	14,3	8,0	2,2	41,0	88,2	5385	352	318
3 x 1 x 185	16,0	8,0	2,3	43,1	92,7	6040	406	361
3 x 1 x 240	18,3	8,0	2,4	45,0	96,8	6910	483	418

^(*) I valori di portata si riferiscono alle seguenti condizioni: - Resistività termica del terreno: 1 K·m/W - Temperatura ambiente 20°C

Tabella 2.9 - Caratteristiche elettriche cavi tipo ARG7H1RX - 36 kV

Formazione	Resistenza elettrica a 20°C	Resistenza apparente a 90°C e 50Hz	Reattanza di fase	Capacità a 50Hz
n° x mm²	Ω/Km	Ω/Km	Ω/Km	μF/km
3 x 1 x 35	0,868	1,113	0,14	0,17
3 x 1 x 50	0,641	0,822	0,13	0,18
3 x 1 x 70	0,443	0,568	0,13	0,21
3 x 1 x 95	0,320	0,411	0,12	0,23
3 x 1 x 120	0,253	0,325	0,12	0,25
3 x 1 x 150	0,206	0,265	0,11	0,27
3 x 1 x 185	0,164	0,211	0,11	0,29
3 x 1 x 240	0,125	0,161	0,11	0,32

⁻ profindità di posa: 0,8 m

GRENERGY RINNOVABILI 8 s.r.l. Via Borgonuovo, 9 – 20121 Milano (MI)	OGGETTO IMPIANTO FOTOVOLTAICO DENOMINATO "GR MACOMER" IN LOCALITÀ "ARRULAS" DELLA POTENZA NOMINALE DI 27,44 MWac	COD. ELABORATO GREN-FVM-RP2
consulenza e progetti www.iatprogetti.it	TITOLO CALCOLI PRELIMINARI DI DIMENSIONAMENTO ELETTRICO	PAGINA 13 di 20

Per la connessione tra la cabina di raccolta situata ai confini dell'area di progetto con la futura Stazione Elettrica RTN i cavi utilizzati sono del tipo unipolari ARG7H1R - 36 kV - Umax: 36 kV.

Le caratteristiche sono indicate nella Tabella 2.10 e nella Tabella 2.11

Tabella 2.10 - Caratteristiche tecniche cavi tipo ARG7H1R - 36 kV

Ø Spessore Ø Peso Formazione indicativo medio esterno indicativo		Portate di corrente A						
	conduttore	isolante	max	cavo	in a	aria	interr	ato*
n° x mm²	mm	mm	mm	kg/km	a trifoglio	in piano	a trifoglio	in piano
1 x 35	7,0	8,0	33,5	1045	144	152	142	149
1 x 50	8,1	8,0	34,1	1155	174	183	168	177
1 x 70	9,7	8,0	36,2	1545	218	229	207	218
1 x 95	11,4	8,0	38,2	1290	266	280	247	260
1 x 120	12,9	8,0	40,0	1670	309	325	281	296
1 x 150	14,3	8,0	41,0	1790	352	371	318	335
1 x 185	16,0	8,0	43,1	2005	406	427	361	380
1 x 240	18,3	8,0	45,0	2300	483	508	418	440
1 x 300	21,0	8,0	47,0	2570	547	576	472	497
1 x 400	23,6	8,0	51,1	3145	640	674	543	572
1 x 500	26,5	8,0	53,0	3555	740	779	621	654
1 x 630	30,1	8,0	60,2	4195	862	907	706	743

^(*) I valori di portata si riferiscono alle seguenti condizioni:
- Resistività termica del terreno: 1 K·m/W
- Temperatura ambiente 20°C
- profindità di posa: 0,8 m

Tabella 2.11 - Caratteristiche elettriche cavi tipo ARG7H1R - 36 kV

Formazione	Resistenza elettrica a 20°C	e 5	Resistenza apparente a 90°C e 50Hz Ω/km		a di fase Km	Capacità a 50Hz	
n° x mm²	Ω/Km	a trifoglio	in piano	a trifoglio	in piano	μF/km	
1 x 35	0,868	1,113	1,113	016	0,21	0,15	
1 x 50	0,641	0,822	0,822	0,15	0,20	0,15	
1 x 70	0,443	0,568	0,568	0,14	0,20	0,16	
1 x 95	0,320	0,411	0,411	0,13	0,19	0,18	
1 x 120	0,253	0,325	0,325	0,13	0,18	0,19	
1 x 150	0,206	0,265	0,265	0,12	0,18	0,20	
1 x 185	0,164	0,211	0,211	0,12	0,18	0,22	
1 x 240	0,125	0,161	0,161	0,11	0,17	0,24	
1 x 300	0,100	0,130	0,129	0,11	0,17	0,27	
1 x 400	0,0778	0,102	0,101	0,11	0,16	0,29	
1 x 500	0,0605	0,0801	0,0794	0,10	0,16	0,32	
1 x 630	0,0469	0,0635	0,0625	0,099	0,16	0,36	

COMMITTENTE	OGGETTO	COD. ELABORATO
GRENERGY Grenergy	IMPIANTO FOTOVOLTAICO DENOMINATO "GR	GREN-FVM-RP2
RINNOVABILI 8 s.r.l.	MACOMER" IN LOCALITÀ "ARRULAS" DELLA	
Via Borgonuovo, 9 –20121 Milano (MI)	POTENZA NOMINALE DI 27,44 MWac	
PROGETTI	TITOLO CALCOLI PRELIMINARI DI DIMENSIONAMENTO ELETTRICO	PAGINA 14 di 20
www.iatprogetti.it		

2.9 Dimensionamento dei circuiti

I cavi elettrici in corrente continua e in corrente alternata, ossia dalla connessione di stringa agli inverter, passando per i quadri di campo fino alla stazione AT, sono stati dimensionati in modo tale che risultino soddisfatte la relazioni:

lb ≤ lz

 $\Delta V\% \leq 2\%$,

dove:

Ib è la corrente di impiego del cavo;

Iz è la portata del cavo, calcolata tenendo conto del tipo di cavo e delle condizioni di posa;

 $\Delta V\%$ è la caduta di tensione percentuale nel tratto di circuito considerato.

I valori di dimensionamento delle tratte principali di impianto sono riassunti in Tabella 2.12, dove si riportano le sezioni per fase e le portate dei cavi impiegati nelle tratte principali della distribuzione interna d'impianto.

Tabella 2.12 – Sezioni per fase e portate dei cavi delle tratte principali

Tratta	POTENZA (W)	Ib (A)	S (mmq)	Iz(A)				
CAMPO FV								
SE RTN - Cabina di raccolta 1	2,74E+07	441	3x1x630	706				
SE RTN - Cabina di raccolta 2	1,00E+07	161	3x1x630	706				
	CLUSTER 1							
Cabina di raccolta - CAB 1	1,37E+07	220	3x1x95	247				
CAB 1 - CAB 2	1,03E+07	165	3x1x95	247				
CAB 2 - CAB 3	6,86E+06	110	3x1x50	168				
CAB 3 - CAB 4	3,43E+06	55	3x1x50	168				
CLUSTER 2								
Cabina di raccolta - CAB 5	1,37E+07	220	3x1x95	247				
CAB 5 - CAB 6	1,03E+07	165	3x1x95	247				
CAB 6 - CAB 7	6,86E+06	110	3x1x50	168				
CAB 7 - CAB 8	3,43E+06	55	3x1x50	168				
	BESS							
Cabina di raccolta - BESS 1	1,00E+07	161	3x1x50	168				
BESS 1 - BESS 2	8,00E+06	128	3x1x50	168				
BESS 2 - BESS 3	6,00E+06	96	3x1x50	168				
BESS 3 - BESS 4	4,00E+06	64	3x1x50	168				
BESS 4 - BESS 5	2,00E+06	32	3x1x50	168				

COMMITTENTE	OGGETTO	COD. ELABORATO
GRENERGY Grenergy	IMPIANTO FOTOVOLTAICO DENOMINATO "GR	GREN-FVM-RP2
RINNOVABILI 8 s.r.l.	MACOMER" IN LOCALITÀ "ARRULAS" DELLA	
Via Borgonuovo, 9 –20121 Milano (MI)	POTENZA NOMINALE DI 27,44 MWac	
CONCULENZA	TITOLO	PAGINA
atconsulenza e progetti	CALCOLI PRELIMINARI DI DIMENSIONAMENTO	15 di 20
TO CL PRODETTI	ELETTRICO	
www.iatprogetti.it		

Per il dimensionamento dei cavi dei circuiti in corrente continua si è valutata la corrente d'impiego I_b pari alla corrente di corto circuito I_{sc} erogata dal modulo, con una maggiorazione del 25% per tener conto di valori di irraggiamento superiori rispetto alle condizioni standard.

$$I_{b} = 1,25 \cdot I_{sc}$$

La relazione riportata di seguito esprime la caduta di tensione nei vari tratti:

$$\Delta V\% = \frac{\Delta V}{V} \cdot 100 = \frac{K \cdot R \cdot I_b}{V} \cdot 100$$

dove:

K=1 per linee trifase a.c., K=2 per linee in c.c.

R è la resistenza elettrica del cavo considerato espressa in ohm;

V è la tensione nel tratto di circuito considerato.

I valori delle cadute di tensione calcolati sono riportati in Tabella 2.13.

Tabella 2.13 – Cadute di tensione delle tratte principali a 36kV

Tratta	POTENZA (W)	Ib (A)	S (mmq)	Iz(A)	R (Ohm/km)	V (kV)	L (km)	DV (V)	DV%
CAMPO FV									
SE RTN - Cabina di raccolta 1	2,74E+07	441	3x1x630	706	0,05	36	3,300	68,19	0,19
SE RTN - Cabina di raccolta 2	1,00E+07	161	3x1x630	706	0,05	36	3,300	24,85	0,07
			CLU	STER 1					
Cabina di raccolta - CAB 1	1,37E+07	220	3x1x95	247	0,32	36	0,200	14,10	0,04
CAB 1 - CAB 2	1,03E+07	165	3x1x95	247	0,32	36	0,600	31,72	0,09
CAB 2 - CAB 3	6,86E+06	110	3x1x50	168	0,64	36	0,600	42,30	0,12
CAB 3 - CAB 4	3,43E+06	55	3x1x50	168	0,64	36	0,300	10,57	0,03
			CLU	STER 2					
Cabina di raccolta - CAB 5	1,37E+07	220	3x1x95	247	0,32	36	0,200	14,10	0,04
CAB 5 - CAB 6	1,03E+07	165	3x1x95	247	0,32	36	0,400	21,15	0,06
CAB 6 - CAB 7	6,86E+06	110	3x1x50	168	0,64	36	0,700	49,35	0,14
CAB 7 - CAB 8	3,43E+06	55	3x1x50	168	0,64	36	0,700	24,67	0,07
	BESS								
Cabina di raccolta - BESS 1	1,00E+07	161	3x1x50	168	0,64	36	0,040	4,11	0,01
BESS 1 - BESS 2	8,00E+06	128	3x1x50	168	0,64	36	0,010	0,82	0,00
BESS 2 - BESS 3	6,00E+06	96	3x1x50	168	0,64	36	0,010	0,62	0,00
BESS 3 - BESS 4	4,00E+06	64	3x1x50	168	0,64	36	0,010	0,41	0,00
BESS 4 - BESS 5	2,00E+06	32	3x1x50	168	0,64	36	0,010	0,21	0,00

Infine, nella Tabella 2.14 vengono indicate le cadute di tensione per le tratte tipo in BT, assumendo una lunghezza massima per tratta da striga a quadro di campo di 200m, con cavo tipo H1Z2Z2-K Formazione 2x10 mm² e da quadro di campo a inverter di 300m con cavo tipo ARG7OR Formazione 2x120 mm².

COMMITTENTE GRENERGY RINNOVABILI 8 s.r.l. Via Borgonuovo, 9 –20121 Milano (MI)	OGGETTO IMPIANTO FOTOVOLTAICO DENOMINATO "GR MACOMER" IN LOCALITÀ "ARRULAS" DELLA POTENZA NOMINALE DI 27,44 MWac	COD. ELABORATO GREN-FVM-RP2
calat Consulenza e Progetti www.iatprogetti.it	TITOLO CALCOLI PRELIMINARI DI DIMENSIONAMENTO ELETTRICO	PAGINA 16 di 20

Tabella 2.14 – Calcolo cadute di tensione delle tratte tipo BT

Tratta BT	Ib (A)	S (mmq)	Iz(A)	R (Ohm/km)	V (kV)	L (km)	DV (V)	DV%
Stringa - QDC	13,29	2x10	95	3,08	1,2	0,20	8,19	0,68
QDC - Inverter	253,00	2x120	277	0,16	0,80	0,30	12,14	1,52

2.10 Protezione dei circuiti a 36kV

Le unità di protezione elettrica dei circuiti a 36kV saranno basate su tecnologia a microprocessore e adatte a garantire elevata affidabilità e disponibilità di funzionamento.

Le unità di protezione saranno di tipo espandibile e potranno essere dotate, anche in un secondo tempo, di ulteriori accessori che permetteranno di realizzare:

- automatismi di richiusura per linee a 36kV;
- gestione dei segnali dai trasformatori;
- acquisizione dei valori di temperatura da sonde termiche;
- emissione di una misura analogica associabile ad una delle grandezze misurate dall'unità stessa (correnti, temperature, ecc.).

La regolazione delle soglie avverrà direttamente in valori primari nelle relative grandezze espresse in corrente o tempo rendendo più semplice l'utilizzo e la consultazione all'operatore.

Saranno implementate le seguenti protezioni:

- massima tensione concatenata (59 senza ritardo intenzionale);
- massima tensione omopolare (59N ritardata);
- minima tensione concatenata (27- ritardo tipico: 300 ms);
- massima frequenza (81> senza ritardo intenzionale);
- minima frequenza (81< senza ritardo intenzionale);
- protezione contro la perdita di rete con PLC di richiusura DDI con rete presente;
- protezione direzionale di terra 67N;
- massima corrente 50/51;
- massima corrente di terra 50N/51N;
- sequenza negativa / squilibrio 46;
- mancata apertura interruttore 50BF.

I valori di taratura delle diverse protezioni saranno definiti in fase di progettazione esecutiva.

COMMITTENTE	OGGETTO	COD. ELABORATO
GRENERGY Grenergy	IMPIANTO FOTOVOLTAICO DENOMINATO "GR	GREN-FVM-RP2
RINNOVABILI 8 s.r.l.	MACOMER" IN LOCALITÀ "ARRULAS" DELLA	
Via Borgonuovo, 9 –20121 Milano (MI)	POTENZA NOMINALE DI 27,44 MWac	
iat consulenza progetti	TITOLO CALCOLI PRELIMINARI DI DIMENSIONAMENTO ELETTRICO	PAGINA 17 di 20
www.iatprogetti.it		

2.11 Protezione dei circuiti BT

2.11.1 Protezione contro i sovraccarichi

La protezione dei sovraccarichi è effettuata secondo la norma CEI 64-8/4 rispettando le condizioni seguenti:

 $lb \le ln \le lz$

If ≤ 1,45 Iz

Dove:

I_b = Corrente di impiego del circuito

I_n = Corrente nominale del dispositivo di protezione

I_z = Portata in regime permanente della conduttura

I_f = Corrente di funzionamento del dispositivo di protezione

La protezione contro i sovraccarichi può essere omessa sui cavi delle stringhe FV e dei moduli FV poiché la portata dei cavi è superiore a 1,25 volte I_{SC} (712.433.1 della Norma CEI 64-8/7), dove I_{SC} è la corrente di cortocircuito del generatore fotovoltaico a STC.

La protezione contro i sovraccarichi può essere omessa sul cavo principale FV poiché la portata è superiore a 1,25 volte il valore I_{SC} del generatore FV (712.433.2 della Norma CEI 64-8/7).

2.11.2 Protezione contro i cortocircuiti

La protezione dei cortocircuiti sarà effettuata secondo la norma CEI 64-8/4 rispettando le condizioni seguenti:

 $Icc_{max} \leq P.d.I.$

I²t ≤K²S²

Dove:

Icc_{max} = Corrente di cortocircuito massima

P.d.I. =Potere di interruzione apparecchiatura di protezione

l²t = Integrale di Joule della corrente di cortocircuito presunta (valore letto sulle curve delle apparecchiature di protezione)

K = Coefficiente della conduttura utilizzata

- 115 per cavi isolati in PVC;
- o 135 per cavi isolati in gomma naturale e butilica;
- o 143 per cavi isolati in gomma etilenpropilenica e polietilene reticolato;

S = Sezione della conduttura.

COMMITTENTE	OGGETTO	COD. ELABORATO
GRENERGY Grenergy	IMPIANTO FOTOVOLTAICO DENOMINATO "GR	GREN-FVM-RP2
RINNOVABILI 8 s.r.l.	MACOMER" IN LOCALITÀ "ARRULAS" DELLA	
Via Borgonuovo, 9 –20121 Milano (MI)	POTENZA NOMINALE DI 27,44 MWac	
PROGETTI	TITOLO CALCOLI PRELIMINARI DI DIMENSIONAMENTO ELETTRICO	PAGINA 18 di 20
www.iatprogetti.it		

2.12 Contributo alle correnti di corto circuito al PCC

Il calcolo del contributo dell'impianto alla corrente di corto circuito al punto di consegna (*Point of Common Coupling - PCC*) è condotto considerando la situazione più gravosa valutando il contributo al corto circuito nei morsetti del generatore fotovoltaico.

Il contributo alla corrente di corto circuito degli inverter lato c.a. a 36 kV è in genere di valore molto inferiore rispetto al contributo della rete. Infatti, gli inverter sono dotati di dispositivi di protezione interna che limitano ad un valore dell'ordine di circa due volte la propria corrente nominale e sono in grado di portare in stand-by gli inverter in pochi decimi di secondo.

Il contributo al corto circuito sul lato c.a. a 36kV può essere pertanto calcolato considerando il contributo alla corrente di cortocircuito dei singoli inverter, considerato pari alla somma del doppio della corrente nominale degli inverter. Tale valore di corrente di corto circuito, riportata al valore di tensione del punto di connessione, risulta pari a 881,2 A.

COMMITTENTE	OGGETTO	COD. ELABORATO
GRENERGY Grenergy	IMPIANTO FOTOVOLTAICO DENOMINATO "GR	GREN-FVM-RP2
RINNOVABILI 8 s.r.l.	MACOMER" IN LOCALITÀ "ARRULAS" DELLA	
Via Borgonuovo, 9 –20121 Milano (MI)	POTENZA NOMINALE DI 27,44 MWac	
iat consulenza progetti	TITOLO CALCOLI PRELIMINARI DI DIMENSIONAMENTO ELETTRICO	PAGINA 19 di 20
www.iatprogetti.it		

3 NORME E PRESCRIZIONI DI RIFERIMENTO

Di seguito è riportato un elenco, certamente non esaustivo, dei principali riferimenti di legge e delle norme tecniche applicabili per la progettazione e la realizzazione dell'intervento in esame. L'elenco normativo è riportato soltanto a titolo di promemoria informativo; esso non è esaustivo per cui eventuali leggi o norme applicabili, anche se non citate, andranno comunque applicate.

Infine, qualora le sopra elencate norme tecniche siano modificate o aggiornate, si dovranno applicare le norme più recenti.

3.1 Norme tecniche

- CEI 0-16 Regola tecnica di riferimento per la connessione di utenti attivi e passivi alle reti AT e MT.
- CEI 11-17 Impianti di produzione, trasmissione e distribuzione pubblica di energia elettrica. Linee in cavo.
- CEI EN 61936-1 (CEI 99-2): Impianti elettrici con tensione superiore a 1 kV in c.a. Parte 1: Prescrizioni comuni.
- CEI EN 50522 -2: Messa a terra degli impianti elettrici a tensione superiore a 1 kV in c.a.
- CEI EN 61000: Compatibilità elettromagnetica (EMC)
- CEI EN 62305: Protezioni contro i fulmini
- CEI 81-29: Linee Guida per l'applicazione delle Norme CEI EN 62305
- CEI EN IEC 62858 (CEI 81-31) "Densità di fulminazione. Reti di localizzazione fulmini (LLS)
 Principi generali".
- CEI 20-89 Guida all'uso e all'installazione dei cavi elettrici e degli accessori di MT.
- CEI 64-8 Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e a 1500 V in corrente continua.

3.2 Norme del gestore della rete di trasmissione

- Codice di rete Terna Codice di trasmissione, dispacciamento, sviluppo e sicurezza della rete.
- Guida Tecnica Terna. Allegato A68 CENTRALI FOTOVOLTAICHE. Condizioni generali di connessione alle reti AT. Sistemi di protezione regolazione e controllo. Maggio 2022.
 Aggiornamento per schemi di connessione a 36 kV e revisione generale.
- Guida Tecnica Terna. Allegato A79. IMPIANTI CON SISTEMI DI ACCUMULO ELETTROCHIMICO Condizioni generali di connessione alle reti AAT e AT. Sistemi di protezione regolazione e controlloRev. 00. Giugno 2022.