21_14_PV_ALF_AU_RE_19_00	LUGLIO 2022	REPORT PRODUCIBILITÀ	Ing. Pietro Rodia	Arch. Paola Pastore	Ing. Leonardo Filotico
N. ELABORATO	DATA EMISSIONE	DESCRIZIONE	ESEGUITO	CONTROLLATO	APPROVATO

OGGETTO:

Progetto dell'impianto fotovoltaico su cava della potenza di 10.916,92 kWp + 11.148,06 kWp in via Portuense n. 881 nel Comune di Roma.

TITOLO:

A. ELABORATI TECNICI Report producibilità

PROJETTO engineering s.r.l.

società d'ingegneria

direttore tecnico Ph.D. Ing. LEONARDO FILOTICO

COMMITTENTE:

CAVA ALFA S.r.I.

00165 Roma (RM)

CARTA:

SOSTITUISCE:

SOSTITUITO DA:

Via della Stazione di S. Pietro, 65

Α4 SCALA:

ELAB. **RE.19**

Sede Legale: Via dei Mille, 5 74024 Manduria Sede Operativa: Z.I. Lotto 31 74020 San Marzano di S.G. (TA) tel. 099 9574694 Fax 099 2222834 cell. 349.1735914

studio@projetto.eu

web site: <u>www.projetto.eu</u>

P.IVA: 02658050733

Tutti i diritti di autore sono riservati a termine di legge. E' vietata la riproduzione senza autorizzazione.

21_14_PV_ALF_AU_RE_19_00

INDICE

1	INT	RODUZIONE	2
	1.1	DATI GENERALI DEL PROGETTO	3
2	DES	SCRIZIONE SINTETICA DEL PROGETTO	4
	2.1	DESCRIZIONE DEL SITO DI INTERVENTO	4
	2.2	DESCRIZIONE DELL'IMPIANTO	8
	2.3	SPECIFICHE TECNICHE DEI COMPONENTI DI IMPIANTO	11
	2.3.1		
	2.3.2	()	13
	2.3.3	Strutture di supporto	14
3	CAL	COLO DELLA PRODUCIBILITÀ	15
	3.1	DATI DI IRRAGGIAMENTO SOLARE	15
	3.2	BENEFICI AMBIENTALI	19
	3.2.1	Emissioni evitate	
	3.2.2	Risparmio di combustibile	20
,	A11	ECATI	21

PROJETTO engineering s.r.l. società d'ingegneria

REPORT PRODUCIBILITÀ

Direttore Tecnico: Ing. LEONARDO FILOTICO
Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733
Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

SR EN ISO 9001:2015

SR EN ISO 14001:2015

1 INTRODUZIONE

Scopo della presente relazione è quello di illustrare il calcolo della producibilità dell'impianto, nella

configurazione di impianto progettuale.

La Società CAVA ALFA s.r.l, con sede legale in Via della Stazione di S. Pietro, 65 – 00165 Roma, risulta

soggetto Proponente di una iniziativa finalizzata alla realizzazione e messa in esercizio di un impianto

fotovoltaico di produzione da fonte solare costituito da due rami di impianto denominati "Cava Alfa" e "Cava

Beta" rispettivamente della potenza nominale di 10.916,92 kWp + 11.148,06 kWp nel Comune di Roma.

L'impianto sarà connesso alla rete di distribuzione MT con tensione nominale di 20 kV mediante allestimento

cabina di consegna/utente collegata in antenna alla cabina primaria AT/MT "Vignaccia".

La soluzione per la connessione dell'impianto che si intende prospettare in questo progetto prevede la

realizzazione di un nuovo tronco di linea interrata con livello di tensione di 20 kV, allestimento di n. 2 cabine

di consegna collegate in antenna da cabina primaria, installazione quadri elettrici MT con scomparto linea e

consegna. Inoltre è prevista l'installazione, attivazione e taratura dei quadri elettrici con scomparto

interruttore in cabina primaria e apparecchiature connesse, quest'ultimo intervento sarà realizzato dall'ente

distributore.

Attraverso la realizzazione dell'impianto si otterrà un notevole beneficio dal punto di vista ambientale in

quanto si abbatteranno le emissioni di ${\rm CO_2}$ necessarie alla produzione dell'energia elettrica consumata in

loco dallo stabilimento. In effetti, considerando il mix di produzione energetica italiano si può ipotizzare che

la produzione di 1 kWh comporti la produzione di 0,4648 kg di CO₂ pertanto attraverso la produzione di oltre

31,81 GWh annuali si avrà un beneficio ambientale in termini dì emissioni di CO₂ evitate pari a 14.783 tonnellate annui che diventano 443.490 tonnellate per la vita utile dell'impianto stimata in almeno 30

anni. Inoltre, verranno abbattute le emissioni di altri gas inquinanti muovendosi nell'ottica prevista delle

direttive europee vigenti.

A fronte degli enormi benefici dal punto di vista ambientale, l'impatto sarà minimo e totalmente eliminabile

alla fine del ciclo di vita dell'impianto. Si sottolinea che prima di finalizzare il progetto esecutivo, saranno

valutate le migliori tecnologie disponibili al fine di ridurre ulteriormente l'impatto ambientale

dell'opera.

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO
Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

REPORT PRODUCIBILITÀ

I ISO 9001:2015 SR EN ISO 140

SR EN ISO 45001:201

1.1 DATI GENERALI DEL PROGETTO

INQUADRAMENTO Il sito di installazione ricade nel territorio amministrativo del

Comune di Roma (RM), Via Portuense n.881.

PROPONENTE CAVA ALFA srl

Sede Legale: Via della Stazione, 45 – 000165 – Roma (Italy)

DISPONIBILITÀ DEL SITOContratto di Diritto di Superficie

POTENZA MASSIMA IMPIANTO 10.916,92 kWp + 11.148,06 kWp

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. Leonardo FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva : 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

SR EN ISO 9001:2015 SR EN ISO 1

O 14001:2015 SR EN

2 DESCRIZIONE SINTETICA DEL PROGETTO

2.1 DESCRIZIONE DEL SITO DI INTERVENTO

Il sito di installazione ricade nel territorio amministrativo del Comune di Roma (RM) ed è localizzato all'interno dell'area urbana B38 "Muratella" del Municipio Roma XI, in zona Z. XL "Magliana Vecchia".

L'area dell'impianto è ubicato a sud-ovest rispetto all'abitato del Comune di Roma (RM), precisamente in località "Tenuta Somaini" (Magliana - Ponte Galeria) tra via Portuense a Nord, il Fosso della Magliana a Est, il centro direzionale dell'Alitalia (Autostrada Roma – Fiumicino) a Sud e il G.R.A. a Est.

L'impianto risulta facilmente raggiungibile da nord percorrendo Via Portuense ed accedendo alla strada interna di servizio, sino all'area di cava.

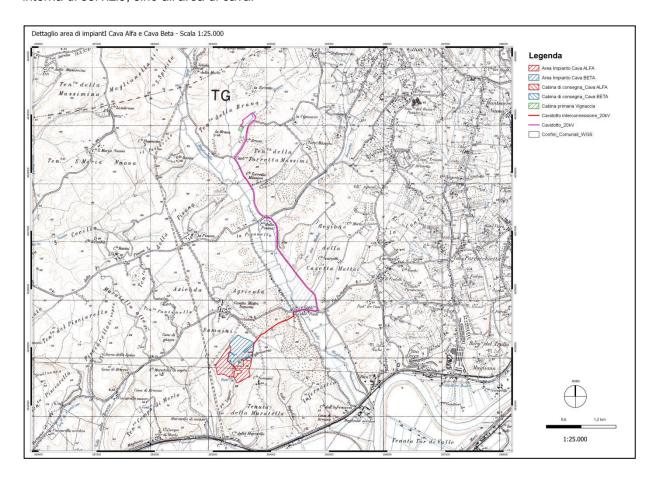


Figura 1 | Inquadramento intervento su base IGM

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

Si riportano di seguito le coordinate geografiche dei vertici delle aree secondo il sistema di riferimento UTM WGS84 33N:

Tabella 1 | Coordinate geografiche dei vertici dell'area del ramo di impianto "Cava Alfa"

UTM WGS84 33N					
VERTICI	East [m]	North [m]			
1A	283053.90331	4634705.59765			
1B	283285.19951	4635036.92418			
1C	283249.51449	4634764.88073			
1D	283368.63299	4634671.67751			
1E	283525.03160	4634669.19309			
1F	283520.81407	4634779.69964			
1G	283661.88533	4634766.98356			
1H	283619.54784	4634603.70442			
11	283639.72919	4634503.34873			
1L	283413.22655	4634391.38767			
1M	283282.11353	4634482.63014			
1N	283077.76242	4634531.11918			

Dettaglio su ramo di impianto denominato "Cava Alfa" - Scala 1:5.000

1:5.000

Figura 2 | Inquadramento su base ortofoto | Area 2 della "Cava Alfa"

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

Tabella 2 | Coordinate geografiche dei vertici dell'area del ramo di impianto "Cava Beta"

UTM WGS84 33N					
VERTICI	East [m]	North [m]			
2A	283282.56100	4635056.78291			
2B	283438.03245	4635210.03188			
2C	283556.27357	4635155.14212			
2D	283702.07159	4635074.60519			
2E	283705.63225	4635008.57910			
2F	283670.63597	4634806.29968			
2G	283520.81342	4634779.71657			
2H	283525.03160	4634669.19309			
21	283368.63299	4634671.67751			
2L	283255.08056	4634770.81664			

Dettaglio su ramo di impianto denominato "Cava Beta" - Scala 1:5.000

Figura 3 | Inquadramento su base ortofoto | "Cava Beta"

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO
Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

ISO 9001:2015 SR EN ISO 14001

5 SR EN ISO 45001:2

Nel catasto terreni del comune di Roma (RM), l'area d'intervento è individuata dai seguenti identificativi catastali:

Tabella 3 | Identificativi catastali dell'area di impianto

Comune	FG	P.LLA
Roma	771	31
Roma	771	32
Roma	771	33
Roma	771	34
Roma	771	35
Roma	771	36
Roma	771	37
Roma	771	38
Roma	771	52
Roma	771	214
Roma	771	285
Roma	771	363

L'impianto nella sua interezza sarà costituito dai seguenti componenti principali:

- Opere civili
- Campo fotovoltaico
- Inverters.
- · Quadri di parallelo.
- Strutture di supporto moduli.
- · Cabina di trasformazione.

Il tratto del cavidotto che connette l'impianto dalle cabine di raccolta, interne all'impianto, alle cabine di consegna ha lunghezza complessiva di 1.318,5 m ed ha gli identificativi catastali presenti in tabella:

COMUNE	FG	P.LLA
Roma	771	19
Roma	771	20
Roma	771	23
Roma	771	24
Roma	771	32
Roma	771	52
Roma	771	89
Roma	771	280
Roma	771	282

PROJETTO engineering s.r.l. società d'ingegneria

REPORT PRODUCIBILITÀ

Direttore Tecnico: ING. LEONARDO FILOTICO
Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

Il cavidotto 20 kV, che collega le cabine di consegna alla cabina primaria Vignaccia, ha una lunghezza complessiva di circa 4836,6 m e sarà posato al di sotto della sede stradale delle strade provinciali SP N.1/a (Via Portuense), Via del Ponte Pisano, via di Brava, Via della Vignaccia e Via dei Cadolingi.

I suoi identificativi catastali sono riassunti nella tabella a seguire:

COMUNE	FG	P.LLA
Roma	417B	36
Roma	417B	233
Roma	417B	239
Roma	417B	249
Roma	417B	620
Roma	417B	665
Roma	417B	666

La Cabina primaria Vignaccia 150/20 kV è individuata nel catasto terreni del comune di Roma al Foglio 417B particella 249.

La cabina di consegna è individuata al NCT del Comune di Roma al Fg. 771 e P.lla 89, mentre la Cabina Primaria Vignaccia 150/20 kV di proprietà di Areti S.p.A. è accatastata alla Sezione B Fg. 417 P.lla 249 del medesimo Comune.

DESCRIZIONE DELL'IMPIANTO 2.2

Il generatore fotovoltaico sarà realizzato con 34.776 moduli totali, di cui 17.192 appartenenti al ramo di impianto Alfa e 17.556 appartenenti al ramo di impianto Beta. La potenza nominale dei moduli è di 635 Wp, per un totale di 10.916,92 kWp + 11.148,06 kWp.

La potenza di picco (Ptot) dell'impianto fotovoltaico in corrente continua definita come la somma delle potenze dei singoli moduli che li compongono misurate in condizioni standard, (radiazione 1 kW/m², 25°C) risulta pari a:

Ptot = $Pmod \times Nmod = 635 \times 17.192 = 10.916,92 \text{ kWp per il ramo di impianto Alfa}$,

Ptot = Pmod x Nmod = 635 x 17.556 = 11.148,06 kWp per il ramo di impianto Beta.

La potenza fornita in rete elettrica (Pca) tiene conto delle perdite del sistema dovute al discostarsi dalle condizioni standard ed alle perdite per la trasformazione della corrente continua in corrente alternata.

La potenza in immissione prevista ai fini della connessione di ciascun impianto in media tensione 20 kV è di 9.280 kW come da preventivo di connessione. La potenza prodotta dal sistema di conversione è rispettivamente di:

PROJETTO engineering s.r.l. società d'ingegneria

REPORT PRODUCIBILITÀ

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733 Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

cava Alfa: 8.960 kWp;cava Beta: 9.120 kWp.

Tabella 4 | Descrizione del ramo di impianto denominato Cava Alfa

	Soggetto responsabile	Cava Alfa s.r.l.
	Ubicazione dell'impianto	Roma (RM)
	Latitudine	41.833787°
DATI GENERALI	Longitudine	12.388870°
	Altitudine s.l.m.	37 m
	Inclinazione piano moduli	0
	Orientamento piano moduli	4 gradi (rispetto a sud)
	Zona di vento	3
	Potenza nominale	10,91692MWp
GENERATORE	Tensione di stringa alla massima potenza, Vmp	501,2 V
FOTOVOLTAICO	Tensione (di stringa) massima di circuito aperto, Voc	596,4 V
	N° moduli totale	17.192
	Potenza nominale, Pn	635 Wp
	Tensione alla massima potenza, Vmp	35,8 V
MODULI	Tensione massima di circuito aperto, Voc	42,6 V
FOTOVOLTAICI	Corrente alla massima potenza, Im	17,74 A
	Corrente massima di corto circuito, Isc	18,76 A
	Tipo celle fotovoltaiche	monocristalline
OTPUTTURE DI	Materiale	Acciaio zincato e acciaio inossidabile
STRUTTURE DI SOSTEGNO	Posizionamento	Terreno
SOSTEGNO	Integrazione architettonica dei moduli	No
	-	
	Potenza di picco	88,8 kVA
	Potenza nominale d'uscita	80 kW
WW. (2022)	Corrente CC max per stringa	25 A
INVERTER	Tensione d'ingresso	200 – 1000 V
	Tensione d'uscita	400 Vac
	Rendimento europeo	98,5 %
	•	·
	Potenza	2500 kVA - 500 kVA
TD 4 0 5 0 D 14 4 T 0 D 5	Rapporto di trasformazione	0,4/20 kV
TRASFORMATORE	Gruppo di connessione	Dy11
	Tipo di raffreddamento	ONAN

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

N ISO 9001:2015 SR EN ISO 1

SR EN ISO 14001:2015

Tabella 5 | Descrizione dell'impianto cava β :

	Soggetto responsabile	Cava Alfa s.r.l.
	Ubicazione dell'impianto	Roma (RM)
	Latitudine	41.837854°
- A - I O - I I - I I I	Longitudine	12.392472°
DATI GENERALI	Altitudine s.l.m.	45 m
	Inclinazione piano moduli	0
	Orientamento piano moduli	4 gradi (rispetto a sud)
	Zona di vento	3
	Potenza nominale	11,14806MWp
GENERATORE	Tensione di stringa alla massima potenza, Vmp	501,2 V
FOTOVOLTAICO	Tensione (di stringa) massima di circuito aperto, Voc	596,4 V
	N° moduli totale	17.556
	Potenza nominale, Pn	635 Wp
	Tensione alla massima potenza, Vmp	35,8 V
MODULI	Tensione massima di circuito aperto, Voc	42,6 V
FOTOVOLTAICI	Corrente alla massima potenza, Im	17,74 A
	Corrente massima di corto circuito, Isc	18,76 A
	Tipo celle fotovoltaiche	monocristalline
STRUTTURE DI	Materiale	Acciaio zincato e acciaio inossidabile
SOSTEGNO	Posizionamento	Terreno
	Integrazione architettonica dei moduli	No
	Potenza di picco	88,8 kVA
	Potenza nominale d'uscita	80 kW
INVERTER	Corrente CC max per stringa	25 A
	Tensione d'ingresso	200 – 1000 V
	Tensione d'uscita	400 Vac
	Rendimento europeo	98,5 %
	Determe	2500 1374
	Potenza	2500 kVA
TRASFORMATORE	Rapporto di trasformazione	0,4/20 kV
	Gruppo di connessione	Dy11
	Tipo di raffreddamento	ONAN

L'impianto sarà suddiviso in sottocampi come riportato di seguito:

Tabella 6 | Configurazione sottocampi del ramo di impianto denominato Cava Alfa

SOTTOCAMPO	POTENZA DC (W)	N. MODULI	N. STRINGHE	N. INVERTER	POTENZA AC (kW)	N. CAB. DI TRASF. / POTENZA TRASF. (kVA)
A.1	2738120	4312	308	28	2240	1 / 2.500
A.2	2720340	4284	306	28	2240	1 / 2.500
A.3	2738120	4312	308	28	2240	1 / 2.500
A.4	2720340	4284	306	28	2240	1 / 2.500

PROJETTO engineering s.r.l. società d'ingegneria

REPORT PRODUCIBILITÀ

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

9001:2015 SR EN ISO 14001:20

Tabella 7 | Configurazione sottocampi del ramo di impianto denominato Cava Beta

SOTTOCAMPO	POTENZA DC (W)	N. MODULI	N. STRINGHE	N. INVERTER	POTENZA AC (kW)	N. CAB. DI TRASF. / POTENZA TRASF. (kVA)	
B.1	2738120	4312	308	28	2240	1 / 2.500	
B.2	2640330	4158	297	27	2160	1 / 2.500	
B.3	2640330	4158	297	27	2160	1 / 2.500	
B.4	2640330	4158	297	27	2160	1 / 2.500	11

Le stringhe che costituiscono il generatore fotovoltaico sono state ottenute collegando in serie 14 moduli.

All'interno delle aree interessate dal generatore fotovoltaico, nel ramo di impianto denominato "Cava Alfa" saranno presenti:

- n.4 cabine di trasformazione MT/BT;
- n. 1 cabina di controllo;
- n. 4 cabine di stoccaggio;
- n. 1 cabina di raccolta MT 20 kV;
- 1 cabine di consegna utente.

Nel ramo di impianto denominato "Cava Beta" saranno presenti:

- n. 5 cabine di trasformazione;
- n.1 cabine di controllo;
- n. 5 cabine di stoccaggio;
- n. 1 cabine di raccolta 20kV;
- 1 cabine di consegna utente.

La potenza nominale totale del generatore fotovoltaico, pari a 10.916,92 kWp + 11.148,06 kWp, intesa come sommatoria delle potenze di targa o nominali di ciascun modulo misurata in condizioni standard (STC).

2.3 SPECIFICHE TECNICHE DEI COMPONENTI DI IMPIANTO

2.3.1 Moduli fotovoltaici

Il dimensionamento di massima sarà realizzato con un modulo fotovoltaico bifacciale composto da n. 210 celle fotovoltaiche, ad alta efficienza e connesse elettricamente in serie, per una potenza complessiva di 635 Wp. L'impianto sarà costituito da 34.776 moduli totali, di cui 17.192 appartenenti al ramo di impianto Alfa e 17.556 appartenenti al ramo di impianto Beta, per una potenza totale di picco pari a 10.916,92 kWp + 11.148,06 kWp.

Le caratteristiche principali della tipologia di moduli scelti sono le seguenti:

PROJETTO engineering s.r.l. società d'ingegneria

REPORT PRODUCIBILITÀ

Direttore Tecnico: Ing. LEONARDO FILOTICO
Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733
Partita Iva: 02658050733

Tel099 9574694 fax 099 2222834 mob. 3491735914

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Produttore: Jolywood

Modello: JW-HD120N 635 W

Caratteristiche geometriche e dati meccanici

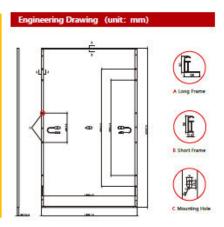
Dimensioni (LxAxP): 2172,00 x 1303,00 x 30,00 mm

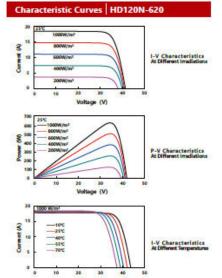
Tipo celle: silicio monocristallino 210.00mm*105.00mm

Telaio: alluminio Peso: 35,50 kg

JW-HD120N Series N-type Bifacial High Efficiency Mono Silicon Half-Cell Double Glass Module

Electrical Properties	NOCT	NOCT*					
Testing Condition	Front Side						
Peak Power (Pmax) (W)	461	465	469	473	477	480	
MPP Voltage (Vmp) (V)	32.7	32.9	33.1	33.3	33.5	33.6	
MPP Current (Imp) (A)	14.10	14.13	14.17	14.21	14.24	14.30	
Open Circuit Voltage (Voc) (V)	39.9	40.0	40.2	40.4	40.6	40.7	
Short Circuit Current (Isc) (A)	14.92	14.96	15.00	15.04	15.08	15.13	





Temperature Coefficient		
Temperature Coefficient of Pmax*	-0.320%/°C	
Temperature Coefficient of Voc	-0.260%/°C	
Temperature Coefficient of Isc	+0.046%/°C	
Nominal Operating Cell Temperature (NOCT)	42±2°C	

Cell Type	210.00mm*105.00mm
Number of Cells	120pcs(12*10)
Dimension	2172mm*1303mm*30mm
Weight	35.5kg
Front /Rear Glass*	2.0mm/2.0mm
Frame	Anodized Aluminium
lunction Box	IP68 (3 diodes)
Length of Cable*	4.0mm², 300mm
Connector	MC4 Compatible
"Heat drengthened place"	

With Differ	ent Power Ge	neration Gair	(regarding	620W as an e	xample)
Power Gain (%)	Peak Power (Pmax) (W)	MPP Voltage (Vmp) (V)	MPP Current (Imp) (A)	Open Grouit Voltage (Voc) (V)	Short Grouit Current (Isc) (A)
10	670	35.3	18.97	42.1	20.07
15	694	35.3	19.66	42.1	20.80
20	719	35.3	20.36	42.1	21.54
25	744	35.3	21.05	42.1	22.27
30	769	35.4	21.75	42.2	23.01

Partner Section
NOTE:
"The specification and bay features described in this datasheet may deviate slightly and are not guaranteed. Due to ongoing innovation, R&D enhancement, Jolysood (Tairboxos Solar Technology Co., Ltd. reserves the right to make any adjustment to the information
described herein at any time without notice. Please always obtain the most recent version of the datasheet which shall be duly incorporated into the binding contract made by the
parties governing all transactions related to the purchase and sale of the products described herein.

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

2.3.2 Convertitori/trasformatori di potenza (inverter)

La conversione/trasformazione da corrente continua a corrente alternata sarà realizzata mediante n. 112 e n. 114 convertitori/trasformatori (inverter) del tipo MAX 80KTL3 LV installati rispettivamente nel ramo di impianto Alfa e nel ramo di impianto Beta, mediante idonei supporti, sui montanti finali delle strutture tracker. La ripartizione dei vari moduli, su ognuno degli inverter utilizzati, sarà effettuata sulla base delle caratteristiche tecniche sotto riportate.

I principali dati tecnici relativi all'inverter sono i seguenti:

Datasheet	MAX 50KTL3 LV	MAX 60KTL3 LV	MAX 70KTL3 LV	MAX 80KTL3 LV
arametri d'ingresso (DC)		**************************************		
otenza FV massima raccomandata per modulo STC)	65000W	78000W	91000W	104000W
Massima tensione DC	1100V	1100V	1100V	1100/
ensione di attivazione (V starf)	250V	250V	250V	250V
ntervalo di tensione MPPT	200V-1000V	200V-1000V	200V-1000V	200V-1000V
			7571.17571	
ensione nominale	585V	585V	600V	600V
Conente massima per stringa	25A	25A	25A	25A
iumero di inseguitati MPP indipendenti / htnghe per inseguitati MPP	6/2	6/2	7/2	7/2
arametri d'uscita (AC)				
otenza di uscita AC nominale	50000W	60000W	70000W	80000W
Aassima Polenza apparente AC	55500VA	66600WA	77700VA	88800WA
Aassima corrente in uscita	80.5A	96.6A	112.7A	128.8A
ensione nominale AC	230V/400V	230V/400V	230V/400V	230V/400V
ntervalio di frequenza di rete AC	50/60Hz, ±5Hz	50/60Hz, ±5Hz	50/60Hz, ±5Hz	50/60Hz, ±5Hz
aftore di potenza	0 induttivo a 0 capacitivo	0 induttivo a 0 capacitivo	0 induttivo a 0 capacitivo	0 induttivo a 0 capacitivo
Distorsione armonica totale THDI	<3%	<3%	<3%	<3%
Connessione AC	3W+N+PE	3W+N+PE	3W+N+PE	3W+N+PE
fficienza di conversione				
Molenza maselma	98.8%	98.8%	99%	99%
uro Efficienza	98.4%	98.4%	98.5%	98.5%
Molenza MPPT	99.9%	99.9%	99.9%	99.9%
Dispositivi di sicurezza				
totezione inversione di polarità DC	Si Si	SI	SI	S
	si si	s s	9	s s
ezionatore DC	-	7	-	
totezione da soviacoriente DC	Tipo II	Tipo II	Tipo II	Tipo II
Aspositivo rilevamento guasto a terra	SI	SI	SI	Si
rotezione da corto circuito in uscita	Si	SI	SI	S
hotezione sovrateratorii di uscita (AC)	Tipo II	Tipo II	Tipo II	Tipo II
Aonitoraggio guasti di stringa	Si	SI	Si	Si
trofezione anti PID/AFCI (Internatione archi elettrici)	Opz/opz	Opz/opz	Opz/opz	Opz/opz
Dati generali				
Vimensioni (L / A / P) in mm	860/600/900	860/600/300	860/600/300	860/600/300
aso	82kg	82kg	82kg	82kg
ntervallo di temperatura d'esercizio	-25°C +60°C	-25°C +60°C	-25°C +60°C	-25°C +60°C
missioni sonore (fipiche)	60dB(A)	60dB(A)	60dB(A)	60dB(A)
uto consumo	< 1W*	< 1W*	< 1W*	< 1W*
opologia	Senza trasformatore	Senza trasformatore	Senza trasformatore	Senga trasformatore
Islama di raffieddamento	Ventilazione controllata	Ventilazione controllata	Ventilazione controlata	Ventilizzione controlata
irado di profezione ambientale	IP65	P65	IP65	IP65
Vitudine	4000m	4000m	4000m	4000m
imidità relativa	0~100%	0~100%	0~100%	0~100%
Caratteristiche		- ***		3 100
Xiplay	LED/WFI+APP	LED/WIFI+APP	LED/WIFI+APP	LED/WIFI+APP
nterfacce: USB/R5485/GPRS/4G/WIFURF	SI/si/opz/opz/opz/opz	Si/si/opz/opz/opz/opz	SI/si/opz/opz/opz/opz	SI/si/opz/opz/opz/op
INNOCAT COOMS 40 CALLS AND MARKET.	and any others others other	my my squery squery squery sque	mil sol nami nami nami name	not a Lebre Lebre Lebre Lebre Lebr

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

2.3.3 Strutture di supporto

Le strutture di supporto dei moduli fotovoltaici saranno costituite da un sistema per installazione in campo aperto prodotto dalla TrinaTracker tipo TRACKER Vanguard – 2P (Single-Row/Multidrive System).

Trattasi di strutture caratterizzate da un sistema modulare di installazione dei moduli fotovoltaici e da un angolo di rotazione orizzontale pari a 110° (± 55°).

	CONVERT TRJ - TECHNICAL DATA SHEET
TECHNICAL SPECIFICATIONS	
Type of tracking system	Horizontal Single Axis Tracker with balanced structure, North-South axis alignment and East-Wes
	tracking with independent rows and backtracking
Type of control	Control based on an astronomical clock algorithm; self-configuring; without irradiation sensors
Maximum tracking error	
Control System Architecture	1 control board each 10 rows with integrated GPS and anemometer for wind safety - control in
	closed loop with encoder
PV - Module Type	Structure adaptable to available PV modules types on market: Monofacial and Bifacial (Thin F.m.
	Framed and Frameless)
Configurations	- 1 module in portrait
	- 2 modules in landscape
	- 2 modules in portrait
Rotation angle	Up to 120" (±60")
Maters	Linear actuator with induction AC motor (oil-free trasmission) with integrated encoder
Power Supply	- AC power supply from auxiliary services
	- Selfpowered by PV string (with patented backup solution without batteries)
	- Smartpower by distributed inverters
Monitoring and data stream	Real-time communication or remote mode communication via ModBus
Communication	Communication between SCADA and control board: Wired (RS485) or Wireless (LoRa)
Maximum wind speed	In compliance with local codes
Operation temperature range	Standard Range=10°C / +50°C ; Extended Range Available
Foundation	Compatible with all widespread types: Driven Piles, Predrilled and concrete backfilled, Concrete
	Ballasts
Electrical Grounding	Selfgrounding system
Materials	Galvanized steel or Weathering Steel (CorTen) in compliance with site environmental conditions
Occupation factors	Totally configurable based on project specifications
Availability	>96%
Warranty	10 years for structural components; 5 years for motors and electronic components (Extended
	warranty available)
INSTALLATION TOLERANCES	
ASSEMBLY ERROR RECOVERY	
Height	± 20mm
Aisalignment North/South	± 45mm
Misalignment East/West	±45mm
Inclination	± 2*
Twisting	±5°
Maximum Land Slope	15% North-South; Unlimited East-West

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO
Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva : 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

REPORT PRODUCIBILITÀ

2015 SR EN ISO 14001:

SR EN ISO 45001:20

CALCOLO DELLA PRODUCIBILITÀ

Con la realizzazione dell'impianto si intende conseguire un significativo risparmio energetico mediante il ricorso alla fonte energetica rinnovabile rappresentata dal sole.

Il ricorso a tale tecnologia nasce dall'esigenza di coniugare:

- la compatibilità con esigenze architettoniche e di tutela ambientale;
- nessun inquinamento acustico;
- un risparmio di combustibile fossile;
- una produzione di energia elettrica senza emissioni di sostanze inquinanti.

Ad oggi, la produzione di energia elettrica è per la quasi totalità proveniente da impianti termoelettrici che utilizzano combustibili sostanzialmente di origine fossile.

Il dimensionamento energetico dell'impianto fotovoltaico connesso alla rete del distributore, oltre che della disponibilità economica, è stato effettuato tenendo conto di:

- disponibilità di spazi sui quali installare l'impianto fotovoltaico, con lo studio delle aree non idonee
- disponibilità della fonte solare:
- fattori morfologici e ambientali (ombreggiamento e albedo).

DATI DI IRRAGGIAMENTO SOLARE 3.1

Come nella maggior parte degli impianti ad energia rinnovabile, la fonte primaria risulta aleatoria e quindi solo statisticamente prevedibile. Per avere riferimenti oggettivi sui calcoli di prestazione dei sistemi, si fa riferimento a pubblicazioni ufficiali che raccolgono le elaborazioni di dati acquisiti sul lungo periodo fornendo così medie statistiche raccolte in tabelle di anni-tipo.

I dati di irraggiamento solare utilizzati per la presente stima della producibilità sono presenti all'interno del software PVSyst 6.88. Trattasi di dati meteorologici mensili, basati su circa 7.700 stazioni appartenenti alla rete di Meteonorm (METEOTEST, Piazza Fabrikstrasse, 14 - CH-3012 Berna, Svizzera). I dati sulla posizione non registrati vengono interpolati sulla base di altitudine e zona.

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

Si riporta di seguito i dati dell'area di progetto.

Grid-Connected System: Simulation parameters

Project: Cava ALFA_050822

Geographical Site Muratella Country Italy Situation Latitude 41.84° N Longitude 12.39° E Time defined as Legal Time Time zone UT+1 45 m Altitude Albedo 0.20

Meteo data: Muratella Meteonorm 7.2 (1991-2009), Sat=28% - Synthetic

	GlobHor kWh/m²	DiffHor kWh/m²	T_Amb °C	GlobInc kWh/m²	GlobEff kWh/m²	EArray MWh	E_Grid MWh	PR
January	51.2	30.27	7.36	85.7	81.8	871	809	0.865
February	69.6	32.81	8.30	107.5	102.9	1083	1005	0.856
March	115.8	49.88	11.52	146.7	139.7	1448	1343	0.838
April	139.8	73.69	14.33	151.9	143.8	1489	1385	0.835
May	181.9	79.39	19.34	194.0	183.9	1871	1741	0.822
June	193.7	85.61	23.01	204.6	194.2	1959	1828	0.818
July	206.5	85.00	25.77	219.5	208.4	2082	1943	0.811
August	176.6	81.02	25.79	191.9	181.9	1819	1696	0.810
September	127.5	60.20	20.98	153.6	145.8	1475	1371	0.817
October	89.5	46.16	17.63	122.3	116.5	1194	1109	0.831
November	53.9	28.60	12.62	90.5	86.5	906	838	0.848
December	41.3	25.56	8.81	71.1	67.9	721	665	0.856
Year	1447.6	678.20	16.34	1739.4	1653.3	16918	15733	0.828
	0.0	0			0.00			V.

Legends: GlobHor Horizontal global irradiation GlobEff Effective Global, corr. for IAM and shadings DiffHor Horizontal diffuse irradiation **EArray** Effective energy at the output of the array Energy injected into grid T_Amb T amb. E_Grid Performance Ratio GlobInc Global incident in coll. plane PR

Figura 4 | Parametri meteo ramo di impianto "Cava Alfa"

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

SR EN ISO 14001:2015

SR EN ISO 45001:201

Grid-Connected System: Simulation parameters

Project: Cava BETA_050822

Geographical SiteMuratellaCountryItalySituationLatitude41.84° NLongitude12.39° ETime defined asLegal TimeTime zone UT+1Altitude45 m

Albedo 0.20

Meteo data: Muratella Meteonorm 7.2 (1991-2009), Sat=28% - Synthetic

	GlobHor kWh/m²	DiffHor kWh/m ²	T_Amb °C	GlobInc kWh/m²	GlobEff kWh/m²	EArray MWh	E_Grid MWh	PR
January	51.2	30.27	7.36	85.7	81.8	890	827	0.864
February	69.6	32.81	8.30	107.5	102.9	1107	1027	0.856
March	115.8	49.88	11.52	146.7	139.7	1480	1372	0.838
April	139.8	73.69	14.33	151.9	143.8	1522	1415	0.835
May	181.9	79.39	19.34	194.0	183.9	1911	1779	0.822
June	193.7	85.61	23.01	204.6	194.2	2002	1867	0.818
July	206.5	85.00	25.77	219.5	208.4	2127	1985	0.810
August	176.6	81.02	25.79	191.9	181.9	1859	1733	0.810
September	127.5	60.20	20.98	153.6	145.8	1507	1400	0.817
October	89.5	46.16	17.63	122.3	116.5	1220	1133	0.830
November	53.9	28.60	12.62	90.5	86.5	926	856	0.848
December	41.3	25.56	8.81	71.1	67.9	736	679	0.856
Year	1447.6	678.20	16.34	1739.4	1653.3	17287	16073	0.828

Legends: GlobHor Horizontal global irradiation GlobFff Effective Global, corr. for IAM and shadings DiffHor Horizontal diffuse irradiation EArray Effective energy at the output of the array T Amb Tamb. E Grid Energy injected into grid GlobInc PR Performance Ratio Global incident in coll. plane

Figura 5 | Parametri meteo ramo di impianto "Cava Beta"

Il generatore fotovoltaico sarà realizzato con 34.776 moduli totali, di cui 17.192 appartenenti al ramo di impianto Alfa e 17.556 appartenenti al ramo di impianto Beta. La potenza nominale dei moduli è di 635 Wp, per un totale di 10.916,92 kWp + 11.148,06 kWp.

La potenza di picco (Ptot) dell'impianto fotovoltaico in corrente continua definita come la somma delle potenze dei singoli moduli che li compongono misurate in condizioni standard, (radiazione 1 kW/m², 25°C) risulta pari a:

Ptot = Pmod x Nmod = 635 x 17.192 = 10.916,92 kWp per il ramo di impianto Alfa,

Ptot = Pmod x Nmod = 635 x 17.556 = 11.148,06 kWp per il ramo di impianto Beta.

La Potenza fornita in rete elettrica (P_{CA}) tiene conto delle perdite del sistema dovute al discostarsi dalle condizioni standard ed alle perdite per la trasformazione della corrente continua in corrente alternata; si riportano di seguito le perdite ipotizzate:

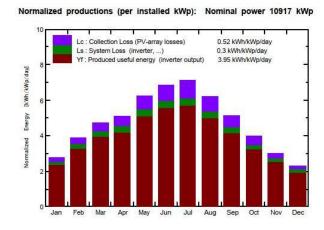
PROJETTO engineering s.r.l. società d'ingegneria

REPORT PRODUCIBILITÀ

Direttore Tecnico: Ing. LEONARDO FILOTICO
Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto


Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

- Perdite per scostamento dalle condizioni di targa (temperatura)
- Perdite per riflessione
- Perdite per mismatching tra stringhe(moduli)
- Perdite in corrente continua
- Perdite sul sistema di conversione cc/ca
- · Perdite nel trasformatore
- Perdite per polluzione sui moduli
- Perdite nei cavi, quadri, ecc.

A tal proposito si è redatta simulazione dell'impianto in progetto, restituendo i seguenti dati:

Main system parameters	System type	No 3D scene defined, no shadings			
PV Field Orientation	Tracking, horizontal axis E-W	Norma	I azimut to axis	0°	
PV modules	Model	JW-HD120N 635	Pnom	635 Wp	
PV Array	Nb. of modules	17192	Pnom total	10917 kWp	
Inverter	Model	Growatt MAX80KTL	E LV Pnom	80.0 kW ac	
Inverter pack	Nb. of units	112.0	Pnom total	8960 kW ac	
User's needs	Unlimited load (grid)				
Main simulation results					
System Production	Produced Energy Performance Ratio PR	and the state of t	Specific prod.	1441 kWh/kWp/yea	

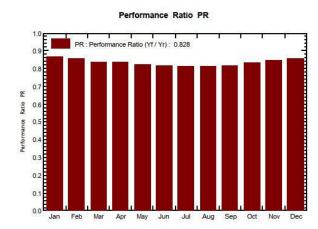


Figura 6 | Analisi di producibilità ramo di impianto "Cava Alfa"

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO
Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

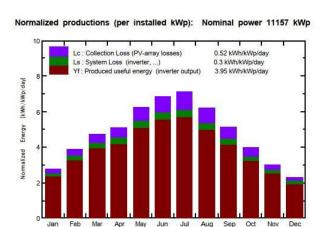
Partita Iva : 02658050733

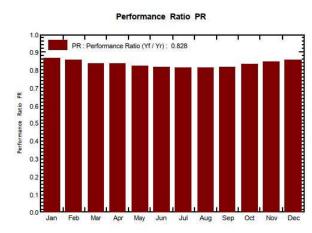
Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

SR EN ISO 9001:2015 SR Certificate No. Q204 Ce

REPORT PRODUCIBILITÀ


EN ISO 14001:2015


SR EN ISO 45001:2018

Main system parameters	System type	No 3D scene defined, n	o shadings	i
PV Field Orientation	Tracking, horizontal axis E-W	Normal azin	nut to axis	0°
PV modules	Model	JW-HD120N_635	Pnom	635 Wp
PV Array	Nb. of modules	17570 F	nom total	11157 kWp
Inverter	Model	Growatt MAX80KTLE LV	Pnom	80.0 kW ac
Inverter pack	Nb. of units	114.0 F	nom total	9120 kW ac
User's needs	Unlimited load (grid)			

Main simulation results

System Production **Produced Energy** 16073 MWh/year Specific prod. 1441 kWh/kWp/year Performance Ratio PR 82.82 %

19

Figura 7 | Analisi di producibilità ramo di impianto "Cava Beta"

L'energia producibile, in corrente continua, dal generatore fotovoltaico, a seguito della simulazione dell'impianto fotovoltaico in progetto, risulta pari a 15.733 MWh/y per il ramo di impianto "Cava Alfa" e di 16.073 MWh/y per il ramo di impianto "Cava Beta", per un totale di 31.806 MWh/y, con un'efficienza di impianto rispettivamente pari a 82,85% e 82,82%.

L'intero impianto godrà di una garanzia non inferiore a due anni a far data dal collaudo dell'impianto stesso, mentre i moduli fotovoltaici godranno di una garanzia pari a 25 anni.

Inoltre, l'impianto fotovoltaico consente la riduzione di emissioni in atmosfera delle sostanze che hanno effetto inquinante e di quelle che contribuiscono all'effetto serra.

3.2 **BENEFICI AMBIENTALI**

3.2.1 Emissioni evitate

Sulla base della producibilità annua determinata nel paragrafo precedente, si stimano le seguenti quantità di emissione evitate suddivise per tipologia di inquinante (Anidride carbonica CO₂, Anidride Solforosa SiO₂ e ossidi di azoto NOx).

PROJETTO engineering s.r.l. società d'ingegneria

REPORT PRODUCIBILITÀ

Direttore Tecnico: ING. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733 Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

Tabella 8 | Mancate emissioni di inquinanti

Mancate emissioni di inquinanti							
Produzione (MWh/anno)	Inquinante	Fattore di emissione specifico (g/kWh)	Mancate emissioni (t/anno)				
	CO ₂	464,80	14.783				
31.806	SO ₂	1,40	44				
	NO _x	1,90	60				

3.2.2 Risparmio di combustibile

Tra gli obiettivi strategici nazionali e dell'Unione Europea rientra, senz'altro, la sicurezza dell'approvvigionamento energetico. Tale obiettivo si realizza attraverso la riduzione dell'importazione di petrolio e la diversificazione delle risorse energetiche. Sotto questo aspetto, l'Italia è un paese particolarmente vulnerabile, in quanto le importazioni di energia ammontano a circa l'80% del fabbisogno energetico totale.

È da constatare che l'attuazione delle previsioni del Libro Bianco per le Rinnovabili comporterà un contributo relativamente modesto rispetto alle problematiche inerenti la sicurezza energetica e alla riduzione delle emissioni inquinanti. Tuttavia, se si inquadrano tali contributi nel più ampio sforzo nazionale di incrementare il ricorso alle fonti endogene, in particolare, nel caso delle rinnovabili, idroelettrico, eolico, solare, geotermia, biomasse, rifiuti, si vede che il risultato conseguibile può essere significativo.

Considerando per il sistema nazionale un consumo di petrolio pari a 187 TEP/GWh, si riporta di seguito la quantità di Tonnellate Equivalenti di Petrolio (TEP) su base annuale.

Tabella 9 | Mancato consumo di petrolio (TEP/anno)

Produzione (MWh/anno)	Fattore di consumo di petrolio specifico (TEP/GWh)	Mancato consumo di petrolio (TEP/anno)
31.806	187	5948

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Tel099 9574694 fax 099 2222834 mob. 3491735914

REPORT PRODUCIBILITÀ

4 ALLEGATI

Sono parte integrante della presente relazione:

- Report di producibilità dell'impianto in progetto, ramo "Cava Alfa";
- Report di producibilità dell'impianto in progetto, ramo "Cava Beta".

21

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

O 9001:2015 SR EN ISO 14001:2

EN ISO 14001:2015

PVSYST V6.88 Projetto Engineering s.r.l (Italy) 05/08/22 Page 1/5

Grid-Connected System: Simulation parameters

Project: Cava ALFA_050822

Geographical SiteMuratellaCountryItalySituationLatitude41.84° NLongitude12.39° ETime defined asLegal TimeTime zone UT+1Altitude45 m

Albedo 0.20

Meteo data: Muratella Meteonorm 7.2 (1991-2009), Sat=28% - Synthetic

Simulation variant: Cava Alfa_050822

Simulation date 05/08/22 17h42

Simulation parameters System type No 3D scene defined, no shadings

Tracking plane, Horizontal E-W Axis

Normal azimut to axis 0°

Rotation Limitations Minimum Tilt -50° Maximum Tilt 50°

Models used Transposition Perez Diffuse Perez, Meteonorm

Horizon Free Horizon

Near Shadings No Shadings

User's needs: Unlimited load (grid)

PV Arrays Characteristics (4 kinds of array defined)

PV module Si-mono Model JW-HD120N 635

Custom parameters definition Manufacturer Jolywood

Sub-array "A.1"

Number of PV modules In series 14 modules In parallel 308 strings Total number of PV modules Nb. modules 4312 Unit Nom. Power 635 Wp

Array global power Nominal (STC) 2738 kWp At operating cond. 2538 kWp (50°C)

Array operating characteristics (50°C) U mpp 461 V I mpp 5510 A

Sub-array "A.2"

Number of PV modules In series 14 modules In parallel 306 strings
Total number of PV modules Nb. modules 4284 Unit Nom. Power 635 Wp

Array global power Nominal (STC) 2720 kWp At operating cond. 2521 kWp (50°C)

Array operating characteristics (50°C) U mpp 461 V I mpp 5475 A

Sub-array "A.3"

Number of PV modules In series 14 modules In parallel 308 strings Total number of PV modules Nb. modules 4312 Unit Nom. Power 635 Wp

Array global power Nominal (STC) 2738 kWp At operating cond. 2538 kWp (50°C)

Array operating characteristics (50°C) U mpp 461 V I mpp 5510 A

Sub-array "A.4"

Number of PV modules In series 14 modules In parallel 306 strings
Total number of PV modules Nb. modules 4284 Unit Nom. Power 635 Wp

Array global power Nominal (STC) **2720 kWp** At operating cond. 2521 kWp (50°C)

Array operating characteristics (50°C) U mpp 461 V I mpp 5475 A

Total Arrays global power Nominal (STC) **10917 kWp** Total 17192 modules

Module area 48655 m² Cell area 45490 m²

Inverter Model Growatt MAX80KTLE LV

Custom parameters definition Manufacturer Growatt New Energy

Characteristics Operating Voltage 200-1000 V Unit Nom. Power 80.0 kWac **Sub-array "A.1"** Nb. of inverters 28 units Total Power 2240 kWac

Pnom ratio 1.22

PVSYST V6.88	Projetto Engineerin	g s.r.l (Italy)	(05/08/22	Page 2/5	
Gı	rid-Connected Systen	ո։ Simulation բ	oarameters			
Sub-array "A.2"	Nb. of inverters	28 units	Total Power			
Sub-array "A.3"	Nb. of inverters	28 units	Total Power Pnom ratio	2240 kV	/ac	
Sub-array "A.4"	Nb. of inverters	28 units	Total Power Pnom ratio	2240 kV	/ac	
Total	Nb. of inverters	112	Total Power	8960 kV	/ac	
PV Array loss factors Array Soiling Losses			Loss Fraction	2.0 %		
Thermal Loss factor	Uc (const)	29.0 W/m ² K	Uv (wind)		² K / m/s	
Wiring Ohmic Loss	Array#1 Array#2 Array#3 Array#4 Global	0.72 mOhm 1.4 mOhm 1.4 mOhm 1.4 mOhm	Loss Fraction Loss Fraction Loss Fraction Loss Fraction Loss Fraction	1.5 % at 1.5 % at 1.5 % at	STC STC STC	
LID - Light Induced Degradati Module Quality Loss Module Mismatch Losses Strings Mismatch loss	on		Loss Fraction Loss Fraction Loss Fraction Loss Fraction	1.3 % -0.5 % 0.8 % at		
Incidence effect, ASHRAE pa	arametrization IAM =	1 - bo (1/cos i - 1)	bo Param.			
System loss factors AC wire loss inverter to trans	fo Inverter voltage	400 Vac tri				
External transformer	Wires: 3x10000.0 mm² Iron loss (Night disconnect) Resistive/Inductive losses	147 m 10389 W 0.154 mOhm	Loss Fraction Loss Fraction Loss Fraction	0.1 % at	STC	
Auxiliaries loss	Proportionnal to Power	6.0 W/kW fro	m Power thresh.	0.0 kW		

Model

Model

Grid-Connected System: Main results

Project: Cava ALFA_050822 Simulation variant: Cava Alfa_050822

Main system parameters

System type Tracking, horizontal axis E-W

PV Field Orientation PV modules PV Array Nb. of modules Inverter Inverter pack

Nb. of units Unlimited load (grid)

No 3D scene defined, no shadings

Normal azimut to axis 0° JW-HD120N 635 Pnom 635 Wp 17192 Pnom total 10917 kWp Growatt MAX80KTLE LV Pnom 80.0 kW ac

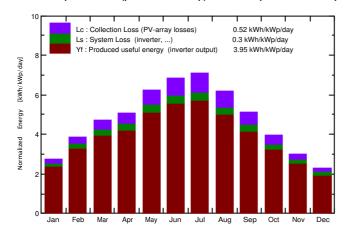
112.0 Pnom total 8960 kW ac

Main simulation results

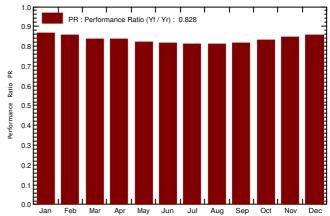
System Production

User's needs

Produced Energy


15733 MWh/year

Specific prod.


1441 kWh/kWp/year

82.85 % Performance Ratio PR

Normalized productions (per installed kWp): Nominal power 10917 kWp

Performance Ratio PR

Cava Alfa 050822 **Balances and main results**

	GlobHor	DiffHor	T_Amb	GlobInc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	
January	51.2	30.27	7.36	85.7	81.8	871	809	0.865
February	69.6	32.81	8.30	107.5	102.9	1083	1005	0.856
March	115.8	49.88	11.52	146.7	139.7	1448	1343	0.838
April	139.8	73.69	14.33	151.9	143.8	1489	1385	0.835
May	181.9	79.39	19.34	194.0	183.9	1871	1741	0.822
June	193.7	85.61	23.01	204.6	194.2	1959	1828	0.818
July	206.5	85.00	25.77	219.5	208.4	2082	1943	0.811
August	176.6	81.02	25.79	191.9	181.9	1819	1696	0.810
September	127.5	60.20	20.98	153.6	145.8	1475	1371	0.817
October	89.5	46.16	17.63	122.3	116.5	1194	1109	0.831
November	53.9	28.60	12.62	90.5	86.5	906	838	0.848
December	41.3	25.56	8.81	71.1	67.9	721	665	0.856
Year	1447.6	678.20	16.34	1739.4	1653.3	16918	15733	0.828

Legends: GlobHor

DiffHor

Horizontal global irradiation

Horizontal diffuse irradiation

T_Amb

GlobInc

Global incident in coll. plane

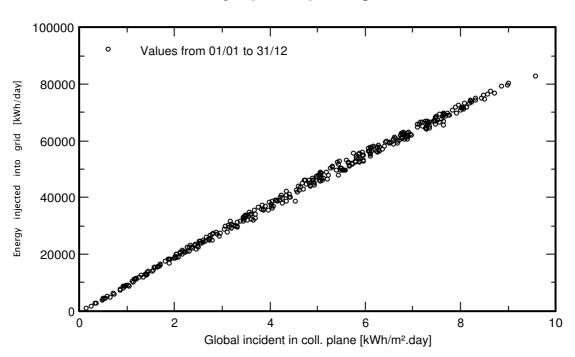
GlobEff **EArray** E_Grid

PR

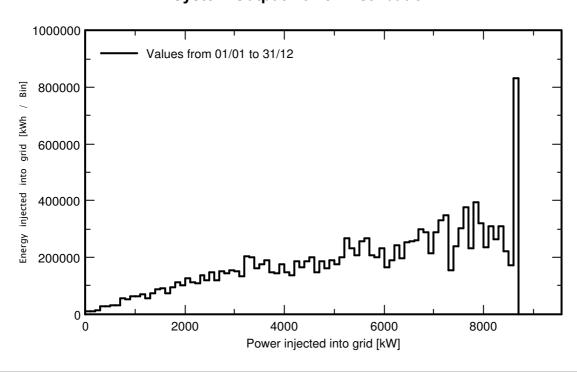
Effective Global, corr. for IAM and shadings Effective energy at the output of the array

Energy injected into grid Performance Ratio

Grid-Connected System: Special graphs


Project : Cava ALFA_050822 Simulation variant : Cava Alfa_050822

Main system parametersSystem typePV Field OrientationTracking, horizontal axis E-WPV modulesModelPV ArrayNb. of modulesInverterModelInverter packNb. of unitsUser's needsUnlimited load (grid)


No 3D scene defined, no shadings Normal azimut to axis

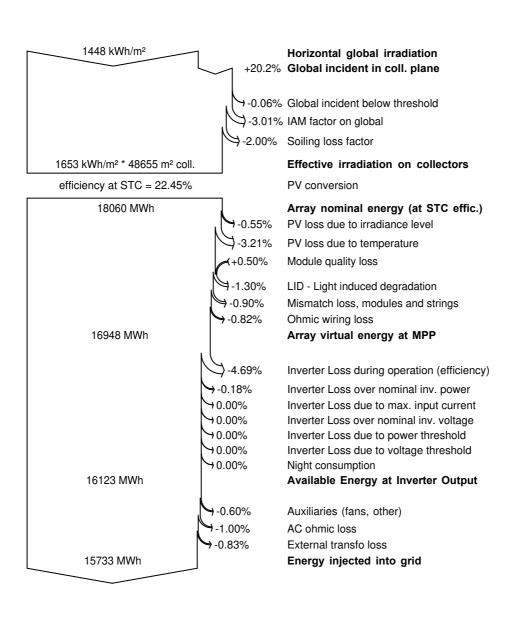
JW-HD120N_635 Pnom 635 Wp
17192 Pnom total
Growatt MAX80KTLE LV Pnom 80.0 kW ac
112.0 Pnom total 8960 kW ac

Daily Input/Output diagram

System Output Power Distribution

Grid-Connected System: Loss diagram

Project : Cava ALFA_050822 Simulation variant : Cava Alfa_050822


Main system parametersSystem typeNoPV Field OrientationTracking, horizontal axis E-WPV modulesModelJW-PV ArrayNb. of modules171InverterModelGroInverter packNb. of units112User's needsUnlimited load (grid)

No 3D scene defined, no shadings

S E-W Normal azimut to axis 0°

Model JW-HD120N_635 Pnom 635 Wp
odules 17192 Pnom total 10917 kWp
Model Growatt MAX80KTLE LV Pnom 80.0 kW ac
of units 112.0 Pnom total 8960 kW ac

Loss diagram over the whole year

Grid-Connected System: Simulation parameters

Project: Cava BETA_050822

Geographical SiteMuratellaCountryItalySituationLatitude41.84° NLongitude12.39° ETime defined asLegal TimeTime zone UT+1Altitude45 m

Albedo 0.20

Meteo data: Muratella Meteonorm 7.2 (1991-2009), Sat=28% - Synthetic

Simulation variant : Cava Beta_050822

Simulation date 05/08/22 17h46

Simulation parameters System type No 3D scene defined, no shadings

Tracking plane, Horizontal E-W Axis

Normal azimut to axis 0°

Rotation Limitations Minimum Tilt -50° Maximum Tilt 50°

Models used Transposition Perez Diffuse Perez, Meteonorm

HorizonFree HorizonNear ShadingsNo Shadings

User's needs: Unlimited load (grid)

PV Arrays Characteristics (5 kinds of array defined)

PV module Si-mono Model JW-HD120N_635

Custom parameters definition Manufacturer Jolywood

Sub-array "A.1"

Number of PV modules In series 14 modules In parallel 308 strings
Total number of PV modules Nb. modules 4312 Unit Nom. Power 635 Wp
Array global power Nominal (STC) 2738 kWp At operating cond. 2538 kWp (50°C)

Array operating characteristics (50°C)

U mpp 461 V

I mpp 5510 A

Sub-array "A.2"

Number of PV modules In series 14 modules In parallel 297 strings
Total number of PV modules Nb. modules 4158 Unit Nom. Power 635 Wp

Array global power Nominal (STC) **2640 kWp** At operating cond. 2447 kWp (50°C)

Array operating characteristics (50°C) U mpp 461 V I mpp 5314 A

Sub-array "A.3"

Number of PV modules In series 14 modules In parallel 297 strings
Total number of PV modules Nb. modules 4158 Unit Nom. Power 635 Wp

Array global power Nominal (STC) **2640 kWp** At operating cond. 2447 kWp (50°C)

Array operating characteristics (50°C) U mpp 461 V I mpp 5314 A

Sub-array "A.4"

Number of PV modules In series 14 modules In parallel 297 strings
Total number of PV modules Nb. modules 4158 Unit Nom. Power 635 Wp

Array global power Naminal (STC) 2640 kWp At appraising cond 2447 kWp (50%)

Array global power Nominal (STC) **2640 kWp** At operating cond. 2447 kWp (50°C)

Array operating characteristics (50°C) U mpp 461 V I mpp 5314 A

Sub-array "A.5"

Number of PV modules In series 14 modules In parallel 56 strings
Total number of PV modules Nb. modules 784 Unit Nom. Power 635 Wp

Array global power Nominal (STC) 498 kWp At operating cond. 461 kWp (50°C)

Array operating characteristics (50°C) U mpp 461 V I mpp 1002 A

Total Arrays global power Nominal (STC) 11157 kWp Total 17570 modules

Module area **49725 m²** Cell area 46490 m²

PVSYST V6.88		Projetto Engineerir		05/08/22	Page 2/5			
Grid-Connected System: Simulation parameters								
Inverter Model Growatt MAX80KTLE L								
Custom param Characteristics	·		Growatt New Energy 200-1000 V Unit Nom. Pow		er 80.0 kWac			
Sub-array "A.1"		Nb. of inverters	28 units		Total Power 2240 kWac Pnom ratio 1.22			
Sub-array "A.2"		Nb. of inverters	27 units	Total Powe	r 2160 kWac			
Sub-array "A.3"		Nb. of inverters	27 units	Total Power 2160 kV Pnom ratio 1.22		Wac		
Sub-array "A.4"		Nb. of inverters	27 units	Total Power 2160 kW		Wac		
Sub-array "A.5"		Nb. of inverters	5 units		Pnom ratio 1.22 Total Power 400 kWa Pnom ratio 1.24			
Total		Nb. of inverters	114	Total Powe	er 9120 k\	9120 kWac		
PV Array loss fa								
Array Soiling Los Thermal Loss fac		Uc (const)	29.0 W/m²K	Loss Fraction Uv (wind		n²K / m/s		
Wiring Ohmic Los		Array#1		Loss Fraction	,			
vviiling Offithic Los	55	Array#2	1.4 mOhm	Loss Fraction				
		Array#3	1.4 mOhm	Loss Fraction				
		Array#4	1.4 mOhm	Loss Fraction	n 1.5 % a	t STC		
		Array#5	7.4 mOhm	Loss Fraction	n 1.5 % a	t STC		
		Global		Loss Fraction		t STC		
LID - Light Induce				Loss Fraction				
Module Quality Lo				Loss Fraction				
Module Mismatch				Loss Fraction		it MPP		
Strings Mismatch		matrization IAM	1 ho (1/222 i 1)	Loss Fraction				
Incidence effect, A	ASHRAE para	metrization IAM =	1 - bo (1/cos i - 1)	bo Param	1. 0.05			
System loss fact		_						
AC wire loss inve	rter to transfo	Inverter voltage	400 Vac tri		4.0.07			
Francisco de la composición del composición de la composición de l		Wires: 3x10000.0 mm ²	148 m	Loss Fraction				
External transform	ner	Iron loss (Night disconnect) Resistive/Inductive losses	10617 W 0.151 mOhm	Loss Fraction				
Resistive/Inductive losses 0.151 mOhm Loss Fraction 1.0 % at STC						1.310		
Auxiliaries loss	Auxiliaries loss Proportionnal to Power		6.0 W/kW from Power thresh		n. 0.0 kW			

PV modules

Inverter pack

User's needs

PV Array

Inverter

Grid-Connected System: Main results

Project: Cava BETA_050822 Simulation variant: Cava Beta_050822

Main system parameters PV Field Orientation

System type Tracking, horizontal axis E-W Model

Nb. of modules Model

Nb. of units Unlimited load (grid)

No 3D scene defined, no shadings

Normal azimut to axis 0° JW-HD120N 635 Pnom 635 Wp

17570 Pnom total Growatt MAX80KTLE LV Pnom 114.0

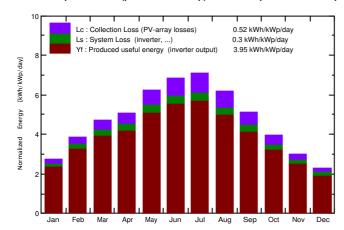
11157 kWp 80.0 kW ac

9120 kW ac Pnom total

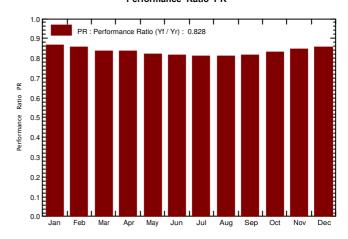
Main simulation results

System Production

Produced Energy


16073 MWh/year

Specific prod.


1441 kWh/kWp/year

Performance Ratio PR 82.82 %

Normalized productions (per installed kWp): Nominal power 11157 kWp

Performance Ratio PR

Cava Beta 050822 **Balances and main results**

	GlobHor	DiffHor	T_Amb	GlobInc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	
January	51.2	30.27	7.36	85.7	81.8	890	827	0.864
February	69.6	32.81	8.30	107.5	102.9	1107	1027	0.856
March	115.8	49.88	11.52	146.7	139.7	1480	1372	0.838
April	139.8	73.69	14.33	151.9	143.8	1522	1415	0.835
May	181.9	79.39	19.34	194.0	183.9	1911	1779	0.822
June	193.7	85.61	23.01	204.6	194.2	2002	1867	0.818
July	206.5	85.00	25.77	219.5	208.4	2127	1985	0.810
August	176.6	81.02	25.79	191.9	181.9	1859	1733	0.810
September	127.5	60.20	20.98	153.6	145.8	1507	1400	0.817
October	89.5	46.16	17.63	122.3	116.5	1220	1133	0.830
November	53.9	28.60	12.62	90.5	86.5	926	856	0.848
December	41.3	25.56	8.81	71.1	67.9	736	679	0.856
Year	1447.6	678.20	16.34	1739.4	1653.3	17287	16073	0.828

Legends: GlobHor Horizontal global irradiation

> DiffHor Horizontal diffuse irradiation T_Amb

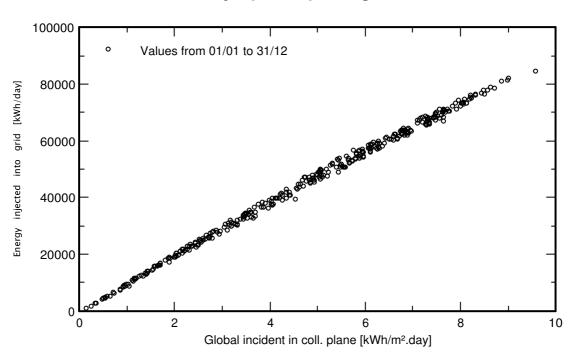
GlobInc Global incident in coll. plane GlobEff **EArray** E_Grid PR

Effective Global, corr. for IAM and shadings Effective energy at the output of the array

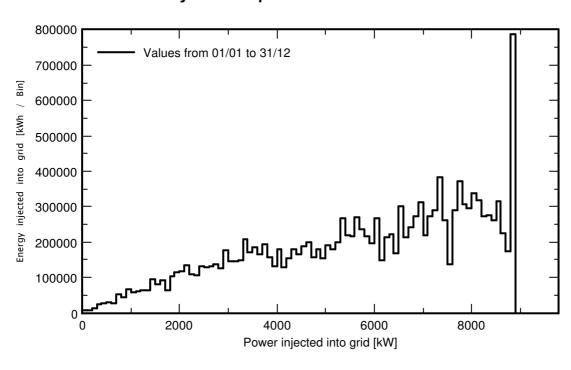
Energy injected into grid Performance Ratio

Grid-Connected System: Special graphs

Project : Cava BETA_050822 Simulation variant : Cava Beta_050822


Main system parametersSystem typePV Field OrientationTracking, horizontal axis E-WPV modulesModelPV ArrayNb. of modulesInverterModelInverter packNb. of unitsUser's needsUnlimited load (grid)

No 3D scene defined, no shadings


Normal azimut to axis 0°

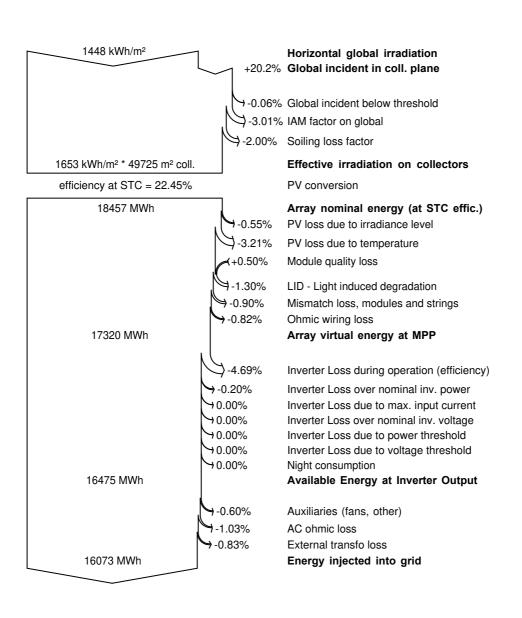
JW-HD120N_635 Pnom 635 Wp
17570 Pnom total 11157 kWp
Growatt MAX80KTLE LV Pnom 80.0 kW ac
114.0 Pnom total 9120 kW ac

Daily Input/Output diagram

System Output Power Distribution

Grid-Connected System: Loss diagram

Project : Cava BETA_050822 Simulation variant : Cava Beta_050822


Main system parametersSystem typePV Field OrientationTracking, horizontal axis E-WPV modulesModelPV ArrayNb. of modulesInverterModelInverter packNb. of unitsUser's needsUnlimited load (grid)

No 3D scene defined, no shadings

Normal azimut to axis 0°

Model JW-HD120N_635 Pnom 635 Wp
odules 17570 Pnom total 11157 kWp
Model Growatt MAX80KTLE LV Pnom 80.0 kW ac
of units 114.0 Pnom total 9120 kW ac

Loss diagram over the whole year

